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ABSTRACT 
 

This thesis focuses on the development of a micro-simulation model for urban shuttle-lane 

roadworks. The aim of this research is to study the effectiveness of shuttle-lane roadworks 

traffic management controls (i.e. operated by temporary traffic signals) on capacity, delays 

and safety. 

SIMSUR (SIMulation of Shuttle-lane Urban Roadworks) micro-simulation model is based on 

car-following and shuttle-lane rules, considers the various decisions undertaken when 

approaching temporary traffic signals at urban shuttle-lane roadworks (i.e. tailgating, crossing 

through amber or even violating the red light). Data from six different sources were collected 

(from 23 different sites with over 54 hours of traffic data video recordings). This includes 

data from visited roadworks sites, Individual Vehicle Data (IVD) from UK motorways and 

data from typical signalised junctions. 

Temporary traffic signals operation modes, including Fixed Time (FT) and Vehicle Actuated 

(VA) signals, have been integrated within the developed micro-simulation model. The 

developed model has been verified, calibrated and validated using real traffic data. 

Various scenarios were tested using the developed simulation model such as the effect of 

various parameters on system capacity, delays and safety (i.e. site length, HGVs%, 

directional split, and drivers’ non-compliance with temporary traffic signals). The results 

revealed that the maximum shuttle-lane roadworks capacity values which could be achieved 

(using existing temporary traffic signals settings) for two-way flow are 1,860 and 2,060 

veh/hr for FT and VA signals, respectively. Regression analysis was also carried out using 

different factors and could be used in analytical models to provide a more accurate estimation 

of system capacity compared to existing equations. Using improved signals settings, capacity 

could be increased by about 3.5%. Making the assumption that Microwave Vehicle Detector 

(MVD) could be simulated within the model, various ranges were tested and the optimum 

range was found to be 80m (rather than the existing 40m) which could result in an increase in 

system capacity of 4.2%. Using speed reduction (i.e. speed hump) in advance of the stop line 

could reduce the effect of dilemma zone by reducing the number of vehicles crossing at the 

onset of amber or violating the red light by about 33%.   
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CHAPTER ONE:  INTRODUCTION 

1.1 Background 

Roadworks have become an unavoidable aspect of the road network due to the continuous 

requirement for road surface maintenance and the need for utility companies to perform their 

tasks (i.e. water, gas and electricity companies). When roadworks take place in any urban 

road network, they cause an obstruction to traffic, which in turn increases the risk of 

accidents and delays/congestion and reduces capacity and vehicle speed, which could lead to 

extra costs for road users. These issues have led to an investigation into the main factors 

influencing roadworks operations, with the aim of reducing their effects as much as possible. 

In the United States, the Federal Highway Administration (2004) estimated that work zones 

cause around 10% of overall congestion. It was reported by Tang (2008) that the Texas 

Transportation Institute report (2007) stated that the cost of congestion in the United States in 

2005 alone was $78 billion. In the United Kingdom, it was estimated that the congestion 

caused by roadworks in London alone costs around £750 million/year (London First, 2012). 

Furthermore, in the United States in 2006, 1,010 people were killed and around 40,000 

injuries were caused because of traffic accidents in work zones (Tang, 2008). 

Transportation agencies are under pressure to reduce congestion and accident levels at 

roadworks. In the United States, the government has started applying incentive/disincentive 

(I/D) fees to roadworks contractors in an attempt to reduce the duration of the roadworks and 

therefore try reducing congestion and accident levels. It was indicated that 35 states in the 

USA are using I/D methods. Lane rental has also been introduced to add daily costs to 

contractors to speed up the roadworks to reduce duration (Herbsman et al., 1995; Benekohal 

et al., 2003 and Tang, 2008). In the United Kingdom, the lane rental scheme was introduced 

in 2011 and implemented in 2012 in the City of London. 

1.2 Roadworks in an urban environment 

Most urban road networks are built up from single carriageway roads, and when roadworks 

take place, it is usually carried out by closing one-lane and leaving the other lane for use in 

alternate one-way working. This is referred to as shuttle-lane operation (Summersgill, 1981; 

Department for Transport, 2009).  
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When applying shuttle-lane operations, appropriate types of control are required. These types 

of control should achieve the following goals: 

1- Minimise delays for road users and disperse queues effectively; 

2- Safety for road users (drivers, pedestrians and workers). 

Designing shuttle-lane roadworks and the traffic control selection method are very complex 

issues as various factors need to be taken into account. These factors are (but not limited to) 

site length, presence of pedestrians and cyclists movements, junction proximity and type of 

operation, proximity to a railway crossing, public transport routes, level and directional split 

of existing flow, etc. 

According to Mahoney et al. (2007), alternating one-way operation (shuttle-lane) has the 
following advantages and disadvantages: 

Advantages: 

� Low agency cost compared with other methods; 

� Several variations available (various control methods can be implemented). 

Disadvantages: 

� Requires the stopping of traffic; 

� Reduces capacity.  

1.3 Problem statement 

Shuttle-lane roadworks government design guidelines of several countries (i.e. United 

Kingdom, United States, France and Australia) have been collected and studied. Various 

differences were found within these guidelines such as recommended site lengths and 

maximum allowed flow levels for each method of traffic operation. Important factors were 

not taken into account when selecting or designing each traffic control method. 

Mathematical models generally have various limitations, including the ability to replicate 

queues and delays for oversaturated conditions and a lack of comparison with observed field 

data. Mathematical models also cannot replicate the effect of various methods of control for 

shuttle-lane such as Vehicle Actuated (VA) or Intelligent Transportation System (ITS) and no 

effect of vehicles’ acceleration and deceleration (Cassidy and Han, 1993; Son, 1999; Huang 

and Shi, 2008). 
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Analytical models use inadequate capacity models, because there are several roadworks 

features such as the presence of flaggers, ITSs and Vehicles Actuated  (VA) traffic signals 

which are not reflected in these models (Edara and Cottrell, 2007; Tang, 2008; Ramezani et 

al., 2011). Previous studies showed that the accuracy of some software programs in 

estimating roadworks delay and queue length are inadequate (Schnell et al., 2002; Benekohal 

et al., 2003 and Lee et al., 2008). 

Simulation models were generally designed for under-saturated conditions where traffic does 

not exceed the site capacity. Simulation packages have various limitations such as omitting 

vehicles, various parameters are imbedded within the program code that the users do not have 

access to and the required level of complicated steps to ensure correct behaviour of such a 

system as is the case from real traffic situations. The models also do not take into account the 

aggressive nature of drivers’ behaviour (i.e. tailgating and red light violations). 

Considering the limitations of the existing simulation, mathematical and analytical models in 

estimating site capacity, queue length and delay, a new micro-simulation model needed to be 

developed to take into account:  

� Accurate estimation of shuttle-lane roadworks capacity, delays and queues under 

various traffic control conditions; 

� The ability to replicate aggressive drivers’ behaviour such as tailgating (close-

following), amber crossing and red light violations. 

� The effect of various parameters that affect roadworks performance such as HGVs 

percentage, directional split, etc.; 

� The ability to test advanced traffic control techniques such as the latest Vehicle 

Actuated (VA) signals settings, microwave vehicle detectors with various detection 

lengths, improved control methods, etc. 

1.4 Aims and objectives 

The aim of this study is to develop a micro-simulation model, which will be used as a tool to 

investigate the factors that affect the operation of shuttle-lane roadworks on reducing travel 

time by reducing delays and maximising capacity (which might lead to a reduction in vehicle 

emissions) and reducing the aggressive nature of drivers’ behaviour which might lead to a 

reduction in the risk of accidents (i.e. tailgating and amber crossing/red light violations).   



CHAPTER ONE                                                                                     INTRODUCTION 

4 
 

The objectives of the study are to: 

� Determine the factors that affect the operation of shuttle-lane roadworks based on 

previous literature research. 

� Develop a traffic micro-simulation model (i.e. using S-Paramics and Compaq Visual 

Fortran) representing shuttle-lane operation. The model should be capable of taking 

into consideration the limitations of previous models using the existing rules and 

algorithms and applying the necessary modifications as required.  

� Use real observed traffic data to build, verify, calibrate and validate the developed 

model.  

� Use real traffic data to study the effect of various traffic signals operation methods 

such as Fixed Time signals (FT) and Vehicle Actuated signals (VA). 

�  Utilise the model to study the effect of various traffic parameters such as traffic 

composition, flow levels and HGVs percentage on delays and site capacity.   

� Use the model to test roadway factors such as site length, which affect capacity and 

delays. 

� Carry out regression analysis to develop a more comprehensive relationship between 

those parameters and capacity which can be used in analytical models. 

� Utilise the model to test new techniques on the methods of operation which could lead 

to improvement of site operation (maximising capacity and reducing delays) and 

improving safety. 

� Utilise the model to test the effect of aggressive drivers’ behaviour such as tailgating 

and amber crossing/red light violations and propose new techniques to reduce it 

accordingly. 

1.5 Thesis outline 

The thesis is divided into nine sections as described below: 

� Chapter one provides an introduction to the importance of roadworks and a brief 

description of roadworks in urban environment, problem statement and the study aim 

and objectives; 
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� Chapter two presents the review of literature of shuttle-lane roadworks from 

previous studies and design manuals. 

� Chapter three presents the data collection methodology and description of the visited 

sites during the current and previous available studies. 

� Chapter four presents the analysis that was performed on the collected data. 

� Chapter five describes the developed S-Paramics simulation model. It also describes 

the calibration, validation and limitations of the developed model. 

� Chapter six describes the newly developed SIMSUR (SIMulation of Shuttle-lane 

Urban Roadworks) simulation model and explains the adopted car-following and 

shuttle-lane rules. 

� Chapter seven explains the verification, calibration and validation of the car-

following and shuttle-lane rules and also for the whole of the simulation model using 

real data from the visited sites and from different sources. 

� Chapter eight presents the application of the developed model and the improvement 

achieved in terms of safety and capacity. 

� Chapter nine presents the conclusions and recommendations for future work. 

The structure of the following chapters has been presented to correspond to the development 

process of the current research as illustrated in Figure 1.1. It can be seen from Figure 1.1 that 

two main rules (sub-models) have been developed for the current study (i.e. car-following 

and shuttle-lane rules). The car-following rule governs the longitudinal vehicle behaviour (i.e. 

the relationship between the leader and the follower) and shuttle-lane rule governs the vehicle 

behaviour and interaction at the shuttle-lane roadworks operated by temporary traffic signals. 

The calibration of these rules was achieved using different data categories (i.e. trajectory data 

from Germany and observed real data from the UK). The results show reasonable behaviour 

when compared with other simulation models such as VISSIM and S-Paramics. Following 

the development of shuttle-lane rules, the calibration process has been achieved by utilising 

field data for both Fixed Time (FT) and Vehicle Actuated signals (VA). Finally, the whole 

developed simulation model was calibrated and validated with over 54 hours of real video 

recorded field data in addition to other sources as discussed in Chapters 3 and 4. 
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Figure 1.1: Flow chart of the current research study 
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CHAPTER TWO:  LITERATURE REVIEW 

2.1 Introduction 

The literature review chapter summarises the various aspects and design standards of shuttle-

lane operation and the types of traffic control methods employed. It also summarises studies 

that have been carried out to test different shuttle-lane roadworks components. 

2.2 Shuttle-lane site layout 

A typical site layout of shuttle-lane operation on single carriageway roads can be seen in 

Figure 2.1. According to the Department for Transport (2009), shuttle working with traffic 

control will be implemented if the unobstructed width (the distance between the edge of the 

cone and the carriageway curb) is within the limits shown in Table 2.1. 

 

Figure 2.1: Typical site layout of shuttle-lane operation on single carriageway 
(Department for Transport, 2011) 

 

Table 2.1: Unobstructed width for different single carriageway roadworks types 
(Department for Transport, 2009) 

Method of operation Normal traffic including 
buses and HGVs 

Cars and light vehicles only 

Two-way working 6.75 metres minimum 5.5 metres minimum 

Shuttle-lane working 
with traffic control 

3.7 metres maximum 
3.25 metres desirable minimum 
3.0 metres absolute minimum 

3.7 metres maximum 
2.75 metres desirable minimum 
2.5 metres absolute minimum 
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2.3 Stream definition 

In order to differentiate between the two traffic streams that use the shuttle-lane roadworks 

site, the following terms have been used (Summersgill, 1981), which are also illustrated in 

Figure 2.2: 

� Primary stream: Is the traffic stream which is running in the obstructed path (by the 

works); 

� Secondary stream: Is the traffic stream which is running in the unobstructed path; 

 

 

 

Figure 2.2: Illustration of primary and secondary streams 

It is important to distinguish between both streams as the drivers in the primary stream 

(which is obstructed by the work) generally gives priority to the secondary stream regardless 

if a signed priority control is used or not (Summersgill, 1981). Primary stream vehicles also 

require extra time to negotiate the layout (enter the running lane), and also when leaving the 

site back to their original lane. 

2.4 Types of traffic control 

Shuttle-lane roadworks will create conflict points between both traffic streams (e.g. primary 

and secondary) which require some form of control. The functions of using traffic control 

devices in roadworks are as follows (Matson et al., 1955): 

� To warn drivers about the hazards ahead; 

� Alert drivers of traffic conditions ahead; 

� Guide drivers by the right instructions in order to minimise the conflicts that could 

occur.  

Traffic control methods that can be used to operate shuttle-lane roadworks, which are 

obtained from various design manuals are summarised below (Federal Highway 

Administration, 2009; Queensland Goverment, 2010; Department for Transport, 2009; 

Makhloufi and Certu, 2003): 

Primary 
Stream 

Secondary 
Stream 
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1- No specified priority control (Give and Take); 

2- Signed priority control; 

3- Traffic signals control; 

4- Control by manually operated Stop/Go signs; 

5- Flag transfer method; 

6- Pilot car method/convoy working. 

Table 2.2 shows the available control methods for shuttle-lane roadworks in different 

countries, and each method is described in details in the following sections. 

Table 2.2: Various shuttle-lane roadworks control methods in different countries 

No. Control Method Australia France United 
Kingdom 

United 
States 

1 No specified priority � � � � 

2 Signed priority  � � � � 

3 Traffic signal � � � � 

4 Stop/Go sign  � � � 

5 Flag transfer    � 

6 Pilot car �  � � 

2.4.1 No specified priority (Give and Take) 

The “Give and Take” is a control method where there is no specified priority for any traffic 

stream. Both directions (streams) have equal priority and the drivers have to take a decision 

on the suitability of gaps in order to cross the roadworks site safely. A typical site layout of 

shuttle-lane roadworks operated by “give and Take” method is shown in Figure 2.1 above.  

According to the Department for Transport (2009), the “Give and Take” operation is the 

natural method for operating shuttle-lane roadworks. The visibility should be good where 

drivers from each approach should see 50 metres beyond the end of the works. It is also 

stated that if the work is to be carried out at night, then another alternative to this method 

should be considered such as temporary traffic signals. 

2.4.2 Signed priority control 

Signed priority is a control method where one stream, usually the one with the unobstructed 

lane by works (secondary stream) has priority over the obstructed direction (primary stream) 

as stated by the Department for Transport (2009). These priorities are backed up with the use 

of priority signs as shown in Figure 2.3.  
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Signed priority control requires a certain amount of visibility based on different speed limits, 

and it can be employed at night if certain conditions are met, such as street lighting and 

illuminated traffic signs as stated by the Department for Transport (2009). 

According to the Federal Highway Administration (2009), the stop or yield sign can be used 

on low volume roads (less than 400 vehicles per day) and when visibility is good that the 

drivers can see the other end of the work zone and also the other direction of traffic. 

Signed priority method operates in the same way as traffic calming using throttles. According 

to Yousif et al. (2013), if the sign is placed near a junction, special consideration should be 

given to various parameters such as the level of traffic, the distance from the junction and 

also the direction of the priority streams. 

 

Figure 2.3: Typical site layout for shuttle-lane roadworks operated by priority signs 

(Department for Transport, 2011) 

2.4.3 Traffic signals control 

Traffic signals control method is where portable or fixed traffic signals are placed in certain 

locations at the roadworks site to control traffic movements of both streams. The operation of 

the signals can be based on either Fixed Time signals (FT) or on Vehicle Actuated signals 

(VA) with the aid of vehicle detection techniques.  

According to the Queensland Goverment (2010), either a portable or temporary fixed traffic 

signals can be used in shuttle-lane roadworks. The signals should be operated primarily under 
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VA mode to satisfy certain conditions. If the VA operation is not possible, FT operation is the 

next preferred option. Manual operation should also be allowed (to override the signals 

settings) in certain circumstances. 

According to the Federal Highway Administration (2009), if the temporary traffic signals are 

located within 0.5 miles of an adjacent signalised intersection, a connected operation should 

be considered. There is no reference to signals settings for flow groups or all-red period 

according to different site lengths but engineering judgment should be used to determine 

these settings.  

The traffic signals controller can adjust the signals timings (all-red time and maximum green 

time) in order to suit the site length, which is measured between the ‘WAIT HERE’ signs as 

shown in Figure 2.4 (Department for Transport, 2009). 

 All-red timing has to be adjusted to the minimum in order to give the moving vehicles 

chance to clear the roadworks site as shown in Table 2.3 and illustrated in Figure 2.5. The 

maximum green timing has to be set to the maximum depending on the site length as shown 

in Table 2.4 (Department for Transport, 2009; ITE, 2010).  

Table 2.3: All-Red timing for different site length (Department for Transport, 2009) 

Distance (metres) 0-50 50-100 100-150 150-200 200-250 250-300 

All-red timing (sec) 5 10 15 20 25 30 

 
 

Table 2.4: Maximum green time for different site length                                    
(Department for Transport,  2009) 

Distance (metres) 30-75 75-135 135-195 195-300 

Green time (sec) 35 40 45 50 
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Figure 2.4: Typical site layout for shuttle-lane roadworks operated by portable traffic signals 

(Department for Transport, 2011) 

 

Figure 2.5: All-red timing for different site length 

2.4.3.1 Vehicle-Actuated operation (VA) 

The VA mode is the default preferred option when using the signals control method. The 

signals controller should be accompanied with detectors to respond to variable vehicle 

demand. The VA mode will be used if the traffic flow is not hindered by the operations at the 

work zone, and the roadworks site traffic control is required after working hours as stated by 

the Queensland Goverment (2010). 
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Microwave Vehicle Detector (MVD) is a detection unit placed on top of the signals head 

which uses microwave technology to detect the movement of vehicles. The MVD can detect 

most moving vehicles, including larger motorcycles with a maximum detection range of up to 

40 metres (but with smaller motorcycles and cycles the range is reduced to 25 metres) 

assuming that vehicles are travelling towards the MVD with a speed greater than 10 mph and 

the detector is aligned correctly (Department for Transport, 2008). 

Few limitations have been reported regarding the use of MVD detectors, such as it needs to 

be correctly aligned (correct angle), detection ability might be affected under harsh weather 

conditions (heavy rain or snow), the detection might be affected by parked vehicles or 

blocked view such as trees and might not detect approaching vehicle with speed under 10 

mph (Department for Transport, 2008; Dickenson and Wan, 1990 and Medina et al., 2012). 

According to the latest specification for portable traffic signals control and equipment to be 

used at roadworks (Highways Agency, 2005B), the minimum green time should be 

configured to either 7 or 12 seconds and will be extended following a passage of each vehicle 

(vehicles will be detected using the MVD unit) . The maximum green will be set to a value 

up to 50 seconds (depending on site length and as shown in Table 2.4).  

There is no direct reference given by the Highways Agency (2005B) to the green time 

extension amount which should be given to each vehicle. It was stated by the Department for 

Transport (1999a) that green time should be extended by an increment of 0.5 seconds until 

the vehicle passes the stop line.  

2.4.3.2 Fixed Time operation (FT) 

According to the Queensland Goverment (2010), FT mode will be used where the VA mode 

is not possible, the traffic flow at the approaches is relatively constant and the traffic control 

operation is required at the roadworks site after working hours. 

2.4.3.3 Manual operation 

The manual operation of traffic signals by the traffic controllers can be carried out if traffic 

flow at the approaches is variable and is blocked from time to time by the roadworks, or the 

VA mode fails and the FT mode is not appropriate, or traffic must be kept outside the work 

zone for a period of time (e.g. blasting, priming, etc.) as stated by the Queensland Goverment 

(2010). 
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2.4.3.4 Signals phase sequence 

The design procedure of traffic signals timings for shuttle-lane roadworks is not as 

complicated as in the case of typical signalised junctions in urban areas where the designer 

has to consider multiple conflicting movements from various directions and also the presence 

of pedestrians crossing at junctions (for the design procedure of traffic signals for normal 

junctions, see for example Salter and Hounsell, 1996). Temporary traffic lights at shuttle-lane 

roadworks are operated using the following phases (Highways Agency, 2005A):  

� Green period (G); 

� Stopping amber period (Amb), usually applied as 3 seconds; 

� Red and/or all-red period(AR), which is used to clear the shuttle-lane site; 

� Red-amber period (RAmb), usually applied as 2 seconds; 

The phase sequence of temporary traffic signals at shuttle-lane roadworks is illustrated in 

Figure 2.6. Values for maximum green and all-red periods are calculated based on site length 

as shown in Tables 2.3 and 2.4. Cycle length for the temporary traffic signals can be 

calculated using Equation 2.1 as follows: 

CT	 = 	G
 + Amb
 + AR
 + RAmb� + G� + Amb� + AR� + RAmb
           Equation 2.1 

Where, 

CT is the Cycle Time; 

P is the Primary stream; 

S is the Secondary stream; 

AmbP and AmbS are the stopping amber time for primary and secondary streams, 

respectively (in seconds); 

ARP and ARS are the all-red period for primary and secondary streams, respectively (in 

seconds); 

RAmbP and RAmbS are the red amber time for primary and secondary streams, 

respectively (in seconds); 

GP and GS are the green time for primary and secondary streams, respectively (in 

seconds). 
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Figure 2.6: Temporary traffic signals phase sequence 

2.4.3.5 Comparison with typical signalised junction 

There are various differences between Temporary Traffic Signals (TTS) at shuttle-lane 

roadworks and Typical Signalised Junctions (TSJ). These differences could be summarised as 

follows: 

� The number of conflicting movements is less in TTS at shuttle-lane roadworks 

compared with TSJ due to the presence of left/right movements and minor/major arms 

in TSJ which could affect safety. Therefore, the calculation of the phase sequence and 

green time/all red period may be different. 

� There may be issues relating to visibility on shuttle-lane roadworks when compared 

with TSJ.  These are affected by the presence of roadworks (including site lengths, 

especially for long site lengths and possible bends within the geometry of the road).  

Vehicles on the primary stream have to change their horizontal trajectory at shuttle-

lane roadworks. 

� There may possibly be differences in detection methods used for TTS at shuttle-lane 

roadworks. Normally Microwave Vehicle Detectors (MVD) are used which influence 

the operation as explained in previous sections compared with TSJ which mostly use 

loop detectors. 

� Other differences may include factors such as the required time of installing the 

signals, connection between signal heads (radio connection for TTS) and method of 

operation (e.g. FT and VA for TTS while a more advanced operation is available for 

TSJ, such as MOVA and SCOOT). See for example Department for Transport (1997, 

1999b).  
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2.4.4 Control by manually operated Stop/Go Signs 

Stop/Go boards control method is controlled either manually or electronically (e.g. using 

radio device) by an operator, which give directions to each traffic stream to either go or stop 

as shown in Figure 2.7.   

It is stated by the Department for Transport (2009) that the “Stop and Go” signs form a 

double sided sign placed outside the safety zone on a suitable stand. The sign will be operated 

remotely (e.g. using radio control device) unless for safety reasons, then manual operation 

will take place. If the sign could not be placed outside the safety zone, then temporary traffic 

signals are introduced. This method can be used at night if accompanied with appropriate 

illumination by operators.  

According to the Federal Highway Administration (2009), for a one-lane two-way operation 

(shuttle-lane) traffic can be controlled by a flagger (holding Stop and Slow signs) at each end 

of the work space and they can communicate orally, electronically or by a manual signal. If 

the visibility is good and the site length is short, the site can be controlled by a single flagger. 

 

Figure 2.7: Typical site layout for shuttle-lane roadworks operated by Stop/Go boards 

(Department for Transport, 2011) 

2.4.5 Flag transfer method 

According to the Federal Highway Administration (2009), the flag transfer method can be 

carried out by asking the driver of the last vehicle entering the roadwork site to transfer the 
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flag and deliver it to the flagger at the other end. The flagger at the other end will then know 

that traffic is permitted to move in the other direction. Usually, this method is carried out only 

on roadwork section of less than 1 mile in length. Typical shuttle-lane operation site layout 

operated by flag transfer is shown in Figure 2.8. 

 

Figure 2.8: Typical site layout for shuttle-lane roadworks operated by flag transfer method 

(Federal Highway Administration, 2009) 

2.4.6 Pilot car method 

Based on the Federal Highway Administration (2009), the pilot car control method is carried 

out by the use of a car which will lead a queue of vehicles from each stream in alternating 

way to the other side of the roadworks site. A flagger should also be available at the end of 

the activity area controlling the traffic until the pilot car is available. The use of pilot car is 

usually associated with poor visibility at roadworks site. 

The pilot car/convoy working is usually implemented if there is no or little safety zone for 

vehicles to pass the shuttle-lane roadworks site and the traffic should be brought to a stop 

before approaching the site. The traffic will be passing through the site at a reduced speed (10 
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mph or less). The method can be successfully implemented at sites with two-way traffic 

volume between 900-1000 vehicles/hour (Department for Transport, 2009).  

Table 2.5 summarises the advantages and disadvantages of each of the seven shuttle-lane 

control methods listed previously. 

2.5 Traffic control selection criteria 

Selection criteria for the appropriate traffic control method require the following 
considerations (Federal Highway Administration, 2009; Department for Transport, 2009): 

� Traffic volumes; 
� Duration of work; 
� Site layout and conditions (e.g. visibility, site length, etc.); 
� Personnel available; 
� Proximity of a junction, railway crossing or pedestrian crossing. 

Table 2.5: Advantages and disadvantages of shuttle-lane control methods 

Control Method Advantages Disadvantages 

No specified 
priority 

� No setup cost required. 
� Do not require personnel to 

operate or maintain. 
� Long work duration. 

� Cannot be applied at night (unless 
illuminated) or in poor visibility. 

� Only operates on low traffic volume. 

Signed priority  

� Can be operated at night if 
illuminated and the street is lit. 

� Do not require personnel to 
operate or maintain. 

� Long work duration. 

� Special considerations need to be 
taken if placed near a junction. 

Traffic signal 

� Operate on high volume of 
traffic. 

� Long work duration. 
� Can be synchronised/linked if 

near signalised junction. 
 

� Can cause high delays and queues if 
not setup correctly. 

� Regular maintenance of detectors is 
required to ensure adequate 
operation. 

Stop/Go sign 

� Can be used at night with 
sufficient illumination. 

� Can be used on high speed 
roads. 

� Can be adapted to respond to 
traffic flow variability. 

� Can be used near intersection. 

� Requires personnel to operate. 
� Short duration of work. 
� Requires good visibility. 
� Not applicable to use during night or 

weekends (inactive time) without the 
presence of personnel. 

Flag transfer 
� Can be used at sites up to 1 

mile in length. 

� Inadequate for sites with high traffic 
volume. 

� Interrupt the drivers by asking to 
deliver a flag. 

� Requires personnel to operate. 

Pilot car 
� Can be used with other control 

methods. 

� Requires personnel to operate. 
� Requires car with special signs to 

operate all the time. 
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Table 2.6 indicates the maximum desirable site length for each level of traffic volume in 

vehicles per hour as a selection method in Australia. The site can be operated by traffic 

controller, portable or temporary fixed traffic signals (Queensland Government, 2010).  

Table 2.7 shows the maximum two-way traffic flow for each roadworks site length under the 

Stop and Go method (Department for Transport, 2009). 

Table 2.8 summarises the different criteria available for selecting the appropriate traffic 

control method for shuttle-lane roadworks in different countries. The values shown in this 

table for the two-way flow, site length and speed indicate the maximum values. 

The values shown in Table 2.8 may vary depending on local conditions and circumstances. It 

is also noticed in the design guidelines, that (in few cases) there is no specific value provided 

such as low/high for traffic volume and short/long for site length without providing guidance 

on those descriptions. Therefore, it is based on engineering judgment to decide which might 

cause poor design leading to higher delays and queues than expected. 

Table 2.6: Desirable maximum length of single-lane operation (Queensland Goverment, 
2010) 

Traffic volume (both directions) in vehicle 
per hour Length of single lane section (metres) 

800 70 

700 100 

600 150 

500 250 

300 600 

<300 800 
 

Table 2.7: Critical site length vs. two-way flow for Stop/Go operation method (Department 
for Transport, 2009) 

Method of control 
Maximum speed 

limit (mph) 
Length of coned 

area (metres) 

Maximum two-way 
traffic flow (vehicle 

per hour) 

Stop/Go signs 60 

100 1,400 
200 1,260 
300 1,060 
400 940 
500 840 
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According to Schonfeld and Chien (1999) and Chien et al. (2002), both the Queensland 

Government (1988) and Highway Capacity Manual (HCM, 1985) cannot address the variety 

of problems, such as the optimal traffic control method selection at roadworks, although the 

responsible agencies have attempted to develop such guidelines. 

Table 2.8 shows that the maximum two-way traffic flow for each control method varies 

between countries. It also shows that there is no reference to the heavy goods vehicles 

(HGVs) composition (except in one situation) or the directional split for both streams in 

selecting each control method which is believed to be an important factor that affects the 

traffic operations at shuttle-lane roadworks. 
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Method of control 
Length of coned area              

(metres) 

Maximum two-way 
traffic flow                     

(vehicle per hour) 

Maximum speed 
limit                   
(kph) 

Considerations 

No specified priority 

(Give and Take) 

(1) 60 (max) 
(2) 15 (max) 
(3) 50 (max) 
(4) N/A 

(1)  40 
(2) 100 
(3) 400 and 20 HGVs/hr 
(4) 400 

(1)   70 
(2) 50 
(3) 48 (30 mph) 
(4) N/A 

(1) Good visibility 
(2) Good visibility 
(3) Good visibility 
(4) Low volume and good visibility 

Signed Priority 
(1) 100 
(2) 50-100 
(3) 80 (max) 
(4) N/A 

(1)  150 (vehicle/day) 
(2) 400 
(3) 840 
(4) 400 

(1) 60 
(2) 50 
(3) 96 (60 mph) 
(4) N/A 

(1)   Only in good visibility 
(2) N/A 
(3) N/A  
(4) Low volume and good visibility 

Traffic signals 
(1) N/A 
(2) 400 
(3) 300 (max) 
(4) N/A 

(1) No limit 
(2) 800 
(3) No limit 
(4) N/A 

(1)   60 
(2) 50 
(3) 96 (60 mph) 
(4) 96 

(1)  N/A  
(2) N/A  
(3) N/A  
(4) N/A  

Stop/Go signs 
(1) Not Used 
(2) 400 
(3) 500 
(4) Controller sight 

distance 

(1) Not Used 
(2) 1,000 
(3) 1,400 
(4) N/A 

(1)   Not Used 
(2) 50 
(3) 96 (60 mph) 
(4) 120 

(1) Not Used 
(2) N/A  
(3) Check  
(4) Table 2.7 

Flagg Transfer 
(1) Not Used 
(2) Not Used 
(3) Not Used 
(4) 1,610 (1 mile) 

(1) Not Used 
(2) Not Used 
(3) Not Used 
(4) N/A 

(1) Not Used 
(2) Not Used 
(3) Not Used 
(4) N/A 

(1) Not Used 
(2) Not Used 
(3) Not Used  
(4) N/A  

Pilot Car Usually available with other control methods if the visibility is poor or little safety clearance 
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2.6 Effects of roadworks 

Shuttle-lane roadworks have various effects on the road network and road users. Taking those 

impacts into consideration will determine the optimum management and operational 

methods. Detailed description of each type of the likely effects caused by shuttle-lane 

roadworks are provided in the following sections. 

2.6.1 Restricted height or width 

When applying shuttle-lane roadworks, the road width is subjected to a reduction (restriction) 

as mentioned in Table 2.1. Height restriction can also be imposed on drivers if the work is 

being carried out under a bridge. In both situations, warning signs should be provided at 

suitable distance to allow drivers to take extra care or to follow a diversion (Department for 

Transport, 2009). 

2.6.2 Reduction in speed 

Speed reduction at shuttle-lane roadworks sites are usually introduced for safety reasons. The 

speed limit can range between 30 mph to 60 mph. Department for Transport (2009) specified 

the speed limit for each type of hazard for high speed roads with speed limits of 50 mph or 

more (e.g. poor visibility, narrow lanes, etc.). 

Traffic speed will inevitably be reduced in urban environment, because of the presence of 

busy roads and temporary speed limits might not be necessary except in certain 

circumstances. 

The reduction in drivers’ speed at roadworks is also caused by the presence of traffic control 

devices where drivers have to take extra caution to reduce their speed to respond to such a 

control. Furthermore, the presence of queues at roadworks site will force drivers to reduce 

their speed and therefore increase in journey time. 

2.6.3 Reduction in visibility 

As mentioned by the Department for Transport (2009) that because of the presence of 

temporary structures, stores of the materials, bends, etc., the forward visibility available to the 

drivers will be reduced. It is therefore essential to make sure that the reduction of visibility is 

kept to the minimum at all day times especially at bends. Some methods are introduced to the 

drivers such as warning signs and speed limits that could reduce the hazard of reduced 

visibility. 
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2.6.4 Interference with non-motorised road users 

Shuttle-lane roadworks will usually affect the free movement of pedestrians, cyclists, 

vulnerable road users, which will force them to be diverted from their normal path to the 

carriageway. According to the Department for Transport (2009), this hazard should be 

minimised through the use of barriers or fences with the addition of lamps by night, which 

clearly warn the pedestrians of their presence and keep them away from the movement of the 

traffic providing safe a route/exit. 

2.6.5 Interference with other junctions 

In urban areas, junctions are usually located within a close proximity to each other. Shuttle-

lane roadworks might cause enough queues to block back several junctions, which will cause 

delays to drivers which are not part of the roadworks traffic. Extra care should be taken when 

designing roadworks near junctions. 

2.6.6 Reduction in capacity 

Capacity is a very important measure which determines the maximum amount of traffic 

volume that can pass through the shuttle-lane roadworks in an hour.  The appropriate 

identification of the system capacity will be used to calculate queues and delays resulted from 

capacity reduction. 

Maze et al. (2000) stated that different methods of calculating capacity were noticed such as 

the Texas Transportation Institute (TTI), which defines capacity as the hourly traffic volume 

under congested traffic conditions. A Pennsylvania study defined work zone capacity as the 

hourly traffic volume converted from the maximum 5 minutes flow rate. A California study 

measured capacity by using 2-three minutes intervals separated by 1 minute. The value was 

then averaged and multiplied by 20 to convert to hourly value. It was also stated by Maze et 

al. (2000) that Dixon and Hummer (1995) defined capacity as the flow rate where traffic 

changes from an uncongested to a congested condition. Jiang (1999) defined capacity as the 

flow just before a sharp drop in speed followed by a steady period of low speed and 

fluctuating traffic flow. 

Summersgill (1981) have calculated the capacity of shuttle-lane roadworks for different site 

lengths (30 to 280 metres) operated by traffic signals, no priority and priority specified as 

illustrated in Figure 2.9.  
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It can be seen from Figure 2.9 that the maximum site capacity for no priority or priority 

specified operation is around 1290 veh/hr for two-way flow. For shuttle-lane roadworks 

operated by temporary traffic signals, the maximum site capacity achieved is 1590 veh/hr for 

two-way flow. 

 

Figure 2.9: Relationship between site length and maximum capacity (Summersgill, 1981) 
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2.6.7 Increased delays 

In Great Britain, delays at traffic signals are estimated to be 100 million vehicle-hours each 

year. If a saving of few percent was possible by using improved methods of operation, the 

financial savings each year would be considerable (Webster and Cobbe, 1966). 

Delays and queues are the most important measures which determine the operational 

performance of roadworks. The overall delay due to shuttle-lane roadworks can be divided 

into two categories (Cassidy and Han, 1993): 

1- Queuing delay; 

2- Travel time delay. 

The components of these delay categories are: 

� Delay according to the reduction in speed/capacity of shuttle-lane operation; 

� Waiting time delay according to red light; 

� Move-up delay following a stopping situation (e.g. traffic signals, queues); 

� Acceleration/deceleration delays. 

Vehicle delay is the main parameter used to calculate the travel time cost of roadworks, 

which is then used for selecting optimum management and operational strategies. 

2.6.8 Environmental effect 

Traffic congestion (reduced speed and increased delays) contribute to a major part of the 

deteriorating urban air quality and pollution (Shefer, 1994). If urban roadworks are not 

designed appropriately, queues and delays are likely to form which could worsen air quality. 

More studies should therefore be carried out to show the effect of roadworks on urban air 

quality.  

2.6.9 Safety effect 

Safety is a very important aspect of the operational performance of shuttle-lane roadworks as 

it affects drivers, workers and pedestrians. The presence of roadworks and the associated 

traffic control devices, changes to road layout and congestion (which increase drivers’ 

frustration leading to dangerous actions such as crossing the red light, unsafe gaps or close 

following “tailgating”) are contributory factors to the high accident levels at roadworks sites.  
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A study carried out by the Highways Agency (2011) showed that around 83% of drivers 

change their behaviour through roadworks. Various reasons were given to the change in 

behaviour such as trying to avoid accidents, reading signs, narrow lanes, etc. The above 

changed behaviour is caused by the change in road layout especially to unfamiliar drivers, 

which could lead to accidents at roadworks. Based on SWOV (2010), it has been noticed that 

fewer accidents are recorded at longer duration and longer site length in the Netherlands. 

Various accident reduction studies were carried out (Allpress and Leland Jr, 2010; Xing et 

al., 2010 and Elghamrawy, 2011) to study and analyse the factors influencing the cause of 

accidents at roadworks and suggesting methods and solutions to reduce the accident rates. 

SWOV (2010) mentioned that various measures could be taken to improve safety through 

roadworks such as demarcating the work area for traffic, guiding traffic through the 

roadworks site, making roadworks and workers visible to road users and simplifying the 

driving task. 

Li and Bai (2009) carried out a study to test the effect of four shuttle-lane operation control 

methods on accident data using logistic regression analysis. It was found that 

flaggers/officers could considerably lower the odds of having severe accidents caused by 

human errors, while having stop signs/signals would dramatically increase the odds of having 

severe accidents. The study was based on limited data which was collected from the state of 

Kansas and will be unreliable to rule out those results on other states or countries. 

Pilot study was carried out by the Isle of Man’s Department of Infrastructure (2012) by 

installing mobile CCTV on urban roadworks to reduce the drivers’ violation of crossing the 

red light on temporary traffic signals. If the pilot study is successful, it will be a requirement 

to install mobile CCTV cameras on all future roadworks. 

2.6.9.1 Close following behaviour “tailgating” 

Many studies, driving codes of practice and drivers training programmes (UK Highway 

Code, 2012; National Safety Council, 1992; Tennessee Department of Safety, 1991) state that 

a two second gap, referred to as the “two-seconds rule”, is the minimum time gap for safe 

following on a dry road surface. On wet roads, the equivalent gap is increased to 4 seconds 

and could increase further for icy roads.  
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Various studies have reported that based on everyday driving experience in both urban and 

motorway environments, it has been noticed that many drivers attempt to follow with time 

headways significantly lower than two seconds. This is commonly referred to as 

“tailgating” (Michael et al., 2000; Brackstone et al., 2002 and Rajalin et al., 1997). 

Tailgating is a very dangerous phenomenon of drivers’ behaviour and contributes to a high 

percentage of the road traffic accidents (mainly rear-end collisions). For example in China it 

contributes to nearly 16% of all road traffic accidents (Duan et al., 2013). According to 

Michael et al. (2000), tailgating contributed to 1,835 fatalities and 653,000 injuries in 1996 in 

the USA alone. 

Considerable laboratory research using simulation techniques has investigated the factors 

associated with following distance and braking reaction time (e.g., Van Winsum and 

Heino, 1996; Van Winsum and Brouwer, 1997 and Evans et al., 2010). These studies 

examined how the drivers estimate time to collision and braking performance which are 

linked to the drivers' chosen headway. 

According to Shrestha and Chang (2005), there are very few studies on close following 

“tailgating” with no standard criteria (clear definition) or effective system to observe and 

reduce it accordingly. The factors that influence tailgating behaviour can be grouped under 

three main categories: Driver’s Profile, Driver’s Behaviour and External Conditions. The 

parameters under driver’s profile include (but are not limited to) age, gender and intoxication. 

The parameters that are under driver’s behaviour include speeding, braking and maintaining 

minimum headway and the parameters under external conditions include traffic density, 

weather, speed limit, number of lanes, tyre and brake efficiency and enforcement. 

2.6.9.2 Non-compliance with temporary traffic signals 

Red light running violations at signalised junctions constitute a widespread and growing 

phenomenon which has a significant cost to society. In the USA, red light running contributes 

to around 260,000 crashes each year, of which about 750 are fatal. Red light running crashes 

were also found to be more severe than other types of crashes (Retting et al., 1998 and 

Retting et al., 1999). 

A wide range of countermeasures has been studied and implemented to reduce red light 

running behaviour and its frequency. A study by Retting et al. (2007) has shown that both 

countermeasure categories (i.e. engineering and enforcement) are effective in reducing the 
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frequency of red light violations. According to Bonneson and Zimmerman (2004), guidelines 

on which countermeasures (i.e. whether engineering or enforcement should be used) are 

scarce in identifying junctions with the potential for safety improvement. 

Most of the available research is focused on the effect of implementing either engineering or 

enforcement countermeasures on signalised junctions using actual countermeasures on site or 

utilising micro-simulation approach (see for example Porter et al., 2013 and Bell et al., 

2012).  However, there is a clear lack of research on both drivers’ behaviour and red light 

running violations on shuttle-lane urban roadworks operated by temporary traffic signals. 

In the current study, driver compliance at temporary traffic signals with shuttle-lane operation 

has been observed to determine the factors that affect the drivers’ decision to undertake such 

red light violations. There are some similarities between traffic signals at junctions and those 

temporary ones at shuttle-lane operations. One phenomenon that occurs at traffic signals 

junctions is what is referred to as the “dilemma zone”. 

According to previous research, the dilemma zone is defined as a physical zone (area) in 

advance of the junction’s stop line where vehicles in the dilemma zone at the onset of amber 

indication can neither clear the junction during the amber interval nor safely stop before the 

stop line (Gazis et al., 1960). According to Puan and Ismail (2010), the dilemma zone is 

defined as an area near the stop line within which the driver finds him/herself too close to 

stop safely and yet too far away to pass completely through the intersection at a legal speed 

before the red phase starts. Any decision made by the driver may lead to an accident or near–

accident. When traffic signals change from green to amber, approaching vehicles have two 

possible decisions from which to choose, either to stop or pass depending on various factors 

such as speed, distance from stop line, drivers’ characteristics and other geometric layout 

(Hicks et al., 2005 and Papaioannou, 2007).  

According to previous research (see for example Martin et al., 2003 and Elmitiny et al., 

2010), it is suggested that a driver in a dilemma zone may run through red lights, come to an 

abrupt stop or accelerate through amber. This decision is considered the main risk of causing 

rear-end collisions (from vehicles following closely behind) and right angle collisions (from 

conflicting vehicles) at signalised junctions (Puan and Ismail, 2010; Gates et al., 2006 and 

Wei et al., 2010). 
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According to previous literature, there are two types of dilemma zone. The Type I dilemma 

zone (classic yellow time dilemma zone) was first explained by Gazis et al. (1960). This type 

is when the driver is unable to perform a safe and comfortable manoeuvre. In this case, a 

driver will either proceed through the intersection before the start of the red phase or stops in 

advance of the stop line. As originally described by Gazis et al. (1960), the yellow 

indication (yellow plus all red) is needed to be long enough for a vehicle to either stop or 

clear the intersection safely. 

The Type II dilemma zone (also called option or indecision zone), which was first described 

by ITE Technical Committee 18 (1974), is associated with driver behaviour. Drivers within a 

few seconds travel time (usually between 2.5 and 5 seconds) from the intersection tend to be 

indecisive about their ability to stop at the onset of the yellow (amber) indication. According 

to Wei et al. (2010), option zone is defined as a zone within which at the onset of amber, the 

driver can either come to a safe stop or proceed through the intersection (before the end of 

amber interval). The word “option” means that the driver’s final decision of whether to stop 

or to pass is optional and could be completed safely (without an abrupt stop or accelerating). 

This behaviour creates an indecision/option zone in advance of the stop line where some 

drivers may proceed and others may stop safely. Different definitions of Type II dilemma 

zone have been observed (see for example Zegeer and Deen, 1978 and Chang et al., 1985). 

For the purpose of the current study, the term “dilemma zone” refers to both Type I and 

Type II dilemma zones since there is not enough data to allow the authors to identify the 

exact type of dilemma zone accurately. The detailed definitions, equations and all aspects of 

dilemma zone have been adapted from a typical signalised junction and applied to shuttle-

lane roadworks using temporary traffic signals as illustrated in Figure 2.10. 

According to Gazis et al. (1960), the dilemma zone is the difference between the distance 

from the stop line to the front of the nearest vehicle that can safely and completely stop 

(Pds/Sds) and the maximum distance from the stop line to the front of the nearest vehicle that 

can safely cross (Pdc/Sdc). Equations 2.2 to 2.4 show the calculation of the dilemma zone 

(DZ) as stated by many researchers (see for example Gazis et al., 1960; Puan and Ismail, 

2010 and Wei et al., 2010). 
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Figure 2.10: Dilemma zone at shuttle-lane roadworks 

 

Dilemma	Zone	�DZ� 	� 	ds	 � 	dc               Equation 2.2 

Stopping	distance�ds� � vδ � %&
'()*+,                Equation 2.3 

Clearing/crossing	distance	�dc� 	� 	ντ	 � �Lv	 � 	L�                  Equation 2.4 

Where, 

dS is the shortest distance a vehicle can safely stop (metres) 

dC is the maximum distance a vehicle can safely cross (metres) 

ν is the speed of the vehicle (m/s) 

δ is the perception reaction time of the driver (seconds) 

23456 is the maximum comfortable deceleration rate (m/s2) 

τ is the length of the clearing period (amber plus all-red period) (seconds) 

L v is the length of the vehicle (metres) 

L  is the length of the roadworks site (metres) 

 
According to ITE (1999), the method of calculating the amber and all-red period is shown in 

Equations 2.5 to 2.7. 

Length	of	clearing	period	�τ� 	� 	Amb	 � 	AR              Equation 2.5 

Amb � δ � 9:;
'()*+,                         Equation 2.6 

AR � ,<=,
9>;                           Equation 2.7 
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Pds, Sds   : The shortest distance a vehicle can safely stop for Primary and Secondary stream, respectively  

Pdc, Sdc : The maximum distance a vehicle can safely cross for Primary and Secondary stream, respectively  

Dilemma zone 
(DZ) 

Not to scale 
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Where, 

ν85 is the 85th percentile speed of vehicles or the speed limit (m/s) 

ν15 is the 15th percentile speed of vehicles (m/s) 

Amb is the stopping amber time (in seconds) 

AR is the all red period (in seconds) 

2.7 Traffic flow modelling 

Various mathematical, simulation models and software packages were developed to estimate 

roadworks site capacity, queue length and delays to provide the following: 

� Comparison between different methods of operations; 

� Cost estimate for different roadworks management scenarios. 

The following sections will provide an overview of the fundamentals of traffic flow theory, 

definitions of the different types of models and also an overview of the fundamentals of 

micro-simulation modelling. 

2.7.1 Fundamentals of traffic flow theory 

When studying traffic flow characteristics, there are two main types of traffic stream models, 

namely microscopic (micro-simulation) and macroscopic (mathematical and analytical) 

models. The microscopic traffic models deal with traffic characteristics of individual vehicles 

(i.e. headways, gaps and speed/position of each vehicle). On the other hand, macroscopic 

models are based on the fundamental diagrams of traffic flow that represents the dependent 

relationship between average values of flow (q), speed (v) and density (k), and their 

importance for the use in many practical fields of traffic engineering studies. Equation 2.8 

shows the relationship between the main elements of traffic characteristics of speed, flow and 

density (Mannering and Washburn, 2012). 

q	 � 	vk                            Equation 2.8 
 

Where, 

q is the traffic flow (vehicle/hour); 

v is the traffic speed (km/hour); 

k is the traffic density (vehicle/km); 
 

The first study to model the relationship between these parameters was carried out by 

Greenshields (1935). This was followed by several studies proposing modifications and 
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adapting various versions of some of the main proposed models (see for example Heydecker 

and Addison, 2011; Zhang and Jin, 2002). Figure 2.11 shows a simple general layout of the 

relationship between speed-density, flow-density and speed-flow elements of the traffic 

assuming linear speed-density model. 

 

Figure 2.11: General layout of speed-density, flow-density and speed-flow relationships 
(Mannering and Washburn, 2012) 

The relationships between these main elements of traffic flow (speed, flow and density) 

provide the basis for the measurement and calculation of traffic stream parameters. It is also 

important to understand the interaction between those measures to fully analyse the 

operational performance of a traffic stream. 

2.7.2 Definitions of different types of models 

According to Perlman (2008), mathematical models are models that apply concepts or 

theoretical principles to represent the behaviour of a system (to solve/explain the targeted 

problems/phenomena). Mathematical model deals with the system as a whole (i.e. average 

value of the traffic stream in hourly basis) which is often based on fluid flow analogy. 

Mathematical models also are not dynamic (i.e. do not take into account live interaction 

between drivers and the system components such as dilemma zone, sudden change in 

acceleration/deceleration, vehicle actuated signals, effect of traffic management safety 

devices at shuttle-lane roadworks, change in visibility of drivers, etc.). 

For example, an input to a mathematical model could assume that vehicles arriving on the 

primary stream (e.g. 500 vehicle/hour) will have a fixed total green of 1,200 seconds in an 

hour for example. The equations will then calculate the throughput based on those 

assumptions without taking into account the interaction of the signal setting, VA, dilemma 

zone effect, etc. Therefore, mathematical models were not deemed to be fit for purpose when 
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studying the operational effects of shuttle-lane roadworks under varying conditions such as, 

for example, vehicle actuated signals and differing layout conditions. A summary of the 

existing mathematical models for shuttle-lane roadworks are provided in the following 

sections. 

According to Akcelik (2007), analytical models are software packages that were developed 

(by companies or institutions) using simplified mathematical equations and have a closed 

form solution (i.e. the solution to the equations used to describe changes in a system can be 

expressed as a mathematical analytic function). These models utilise various techniques such 

as regression analysis and simplified mathematical equations. 

The end-user may not have access to the software code and therefore the majority of 

assumptions were kept constant. Analytical models also provide average hourly values of the 

system (e.g. queues and delays) with no option for measuring the effect of the dynamic 

interaction between drivers (e.g. signal setting, VA, dilemma zone effect, etc.). Therefore, 

analytical models were also deemed to be not fit for purpose when studying the detailed 

operational effect of, for example, dilemma zone on shuttle-lane roadworks. A summary of 

the existing shuttle-lane analytical software (models) are shown in the following sections. 

Microscopic (micro-simulation) models describe the traffic at a detailed level where specific 

rules (sub-models) are used and applied to represent the interaction between individual 

vehicles such as: 

� Car-following rule; 

� Lane-changing rule; 

� Gap acceptance rule. 

Car-following sub-model calculates the acceleration/deceleration rates used in updating the 

longitudinal positions of vehicles in correspondence to the leader. Lane- changing sub-model 

describes the lateral movements of vehicles based on traffic conditions in the current and the 

target lanes. The gap acceptance sub-model is used to check the feasibility of executing a lane 

change (Al-Obaedi, 2012). In the case of shuttle lane roadworks operated by temporary 

traffic signals, no lane-changing is allowed and consequently there is no need for a gap 

acceptance rule to be applied. For every scanning time (e.g. 0.5 seconds), each vehicle in the 

system checks the feasibility of executing all these rules based on the vehicles’ situation and 

each rule (sub-model) consists of detailed decision tree. Detailed description of the listed 
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rules (i.e. decision tree for each rule) which are used in the development of the micro-

simulation model is explained in Chapter 6.  

The randomness used in micro-simulation models may help in replicating real traffic 

conditions. The calibration process is not as straightforward as in other high level models (i.e. 

macroscopic models). Micro-simulation models are more efficient in studying complicated 

situations such as merge sections, inclusion of ITS and vehicle actuated traffic lights 

(Burghout, 2004; Akcelik, 2007). Micro-simulation models could also replicate the geometry 

of the road even if the traffic management used on site is complex.   

Based on the above mentioned limitations of mathematical and analytical models, micro-

simulation models were found to be the most appropriate type of models that are fit for 

purpose when studying shuttle-lane operations at roadworks with various traffic control 

settings and other varying factors on site (including drivers’ behavior, dilemma zone effect 

and road geometry). Micro-simulation models are capable of dealing with individual 

vehicles’ movements and drivers’ decisions in crossing dilemma zone, interaction with 

changes to traffic signals, response to loop detectors, etc. A summary of the existing shuttle-

lane roadworks mathematical, analytical and simulation models are shown in the following 

sections. 

2.7.3 Existing shuttle-lane mathematical models and their limitations 

Various mathematical models have been developed to study the effects of shuttle-lane 

roadworks capacity on user delays, queues and cost. Table 2.9 summarises the main 

mathematical models, the parameters used and their limitations. These models are described 

in the following section. 

2.7.3.1 Summary of existing mathematical models 

Cassidy and Han (1993) developed a mathematical model to calculate traffic delay and queue 

length per cycle on a one-lane road with a two-way control work zone (shuttle-lane 

roadworks) under temporary traffic signals. Delays were divided into two components, 

namely queuing delays and travel time delays. The model was then compared with observed 

data and showed a relatively close fit to observed data under steady state conditions. 

Schonfeld and Chien (1999) developed a mathematical user delay model to calculate the 
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optimum work zone length and cycle time taking into account different variables such as 

traffic volume, speeds, maximum discharge rate and setup costs. 

Chien et al. (2002) improved the model by adding maintenance cost idling to the overall cost 

and adding maintenance breaks to avoid peak traffic which would help in optimising work 

zone length and cycle time. According to Huang and Shi (2008), the model does not address 

the practicality of maintenance breaks (how to withdraw workers and materials during or 

before rush hour). 

Huang and Shi (2008) developed a mathematical model to calculate users delay and total 

roadworks cost using objective function to optimise the work zone length and maintenance 

schedule. They also added delays caused by the presence of non-motorised users (e.g. 

vehicles travelling behind cyclists). Table 2.8 

Table 2.9: List of the main shuttle-lane roadworks mathematical models 

Model Purpose Comments 
Cassidy and Han 

(1993) 
Delay model Only applicable for under-saturated conditions. 

Schonfeld and 
Chien (1999) 

Optimisation model. 
Work zone length 
and traffic control 

Only applicable for under-saturated conditions; 
Does not include the effect of acceleration and 
deceleration; 
No observed data, calibration or validation. 

Chien et al. (2002) 
Optimisation model. 
Work zone length 

and cycle time 

Only applicable for under-saturated conditions; 
Does not include the effect of acceleration and 
deceleration; 
No observed data, calibration or validation. 

Huang and Shi 
(2008) 

Optimisation model. 
Work zone length 
and starting time 

Does not include the effect of acceleration and 
deceleration; 
No observed data, calibration or validation. 

2.7.3.2 Limitations of existing mathematical models 

The main limitations of the existing mathematical models are as follows: 

� The determination of the adjustment parameters could be complicated, especially with 

complicated control methods (Edara and Cottrell, 2007); 

� Using deterministic queuing analysis by simplified assumptions, to estimate the user 

delays may neglect important details (Yang et al., 2009). 

� Cassidy and Han (1993) model is not valid for oversaturated conditions which are the 

current situation in most roadworks sites. The equations for estimating delays 

sometimes are not equivalent to the real observed delays (Son et al., 1999). 
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� Schonfeld and Chien (1999) model is also not applicable to oversaturated conditions 

(Huang and Shi, 2008). Also there was no model calibration and validation using real 

observed data. 

� Chien et al. (2002) model did not take into account the effect of drivers’ acceleration 

and deceleration when approaching and passing through the work zone. There was no 

model calibration and validation of real data. Also the model is only capable of 

calculating the delay for under-saturated situation where traffic flow level does not 

exceed the site capacity. 

� Huang and Shi (2008) model has several limitations as the assumptions used do not 

reflect the real situation (i.e.no effect of acceleration or deceleration) and traffic have 

to use two constant speed values only. There is no observed real data and therefore, 

no calibration or validation process which does not provide the goodness of fit of the 

calculated values. 

2.7.4 Existing analytical software packages and their limitations 

Various computer software packages were developed using analytical methods which utilise 

an equation or a series of equations to calculate the roadworks site capacity, user delays, 

queue length and cost (Ramezani et al., 2011). The most popular software packages are 

summarised in the following section and listed in Table 2.10. 

2.7.4.1 Summary of existing analytical software packages 

QUADRO (QUeues and Delays at ROadworks) is a sponsored Department for Transport 

(United Kingdom) software package, which is used to evaluate road maintenance work by 

calculating user delay costs, vehicle operating costs and accident costs.  The shuttle-lane 

roadworks section in QUADRO (part 5, volume 14, section 1 and chapter 10) provides 

equations used to calculate site capacity and therefore associated user delay and queues. 

QUADRO assumes that shuttle-lane is operating under temporary signals with fixed settings 

and uses the site length as the main parameter. 

QUEWZ (Queue and User cost Evaluation of Work Zone) was developed by the Texas 

Transportation Institute in the late 1990s. QUEWZ is a menu-driven program which can be 

run under DOS. The latest QUEWZ model uses HCM 2000 equations to calculate site 

capacity, user delays, queues and vehicle operating cost. The model does not provide accurate 

delays and queues estimation compared with real data (Ramezani et al., 2011). 
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QUICKZONE model was developed by the Federal Highways Authority. The model is a 

spreadsheet-based tool which uses the deterministic queuing theory to calculate queues and 

delays using input parameters such as traffic flow, site capacity and site length (Tang, 2008). 

The model also takes into account travelers responses to the roadworks traffic conditions 

such as mode shift, peak spreading, etc. (Edara and Cottrell, 2007).  

WZCAT (Work Zone Capacity Analysis Tool) model was developed recently by the 

Wisconsin Department of Transportation. The model is a spreadsheet-based software package 

used to estimate delays and queues in short term roadworks (e.g. daily). The capacity is 

estimated using HCM 2000 values. 

Table 2.10: List of shuttle-lane roadworks software packages 

Model Purpose Comments 

QUADRO (2004) 

Analytical model-
Provides total cost for 

road maintenance work 
and accident cost 

Uses text file as input; 
Shuttle-lane roadworks queues and 
delays are based on study carried out by 
Summersgill (1981); 
Uses regression analysis; 
Does not take into account VA or other 
control methods; 
Very simple representation of SF curves. 

QUEWZ (1998)  

Analytical model-
Calculates user cost 

including user delay costs 
and vehicle operating 

costs 

No work zone optimisation capability; 
Capacity and queues does not match 
field data; 
Very simple representation of SF curves. 

QUICKZONE 
(1998) 

Analytical model-
Spreadsheet-based tool 

No work zone optimisation capability; 
Does not take into account delays due to 
lower speeds. 

WZCAT and  
WZCAT-R (2008) 

Analytical model-
spreadsheet-based tool – 
to calculate queue length 

and delays 

Short-term work zone (daily); 
Capacity model is not adequate; 
Does not take into account traffic control 
methods such as flaggers or ITS. 

INTELLIZONE, 
(2004) 

Analytical model 
Capacity model is not adequate; 
Does not take into account traffic control 
methods such as flaggers or ITS. 
 

2.7.4.2 Limitations of existing analytical software packages 

The main limitations of the existing analytical models are: 

� The assumptions in QUADRO are very simple and do not take into account very 

important factors which affect shuttle-lane operation (i.e. HGV%, directional split); 
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� QUEWZ model does not accurately estimate queues and delays when compared with 

real data (Ramezani et al., 2011). Determining adjustment factors could be a 

complicated task (Edara and Cottrell, 2007). 

� QUICKZONE, WZCAT and INTELLIZONE models do not accurately estimate 

queues and delays when compared with real data (Ramezani et al., 2011). 

QUICKZONE requires detailed coding of the road network by the user for both the 

roadwork and alternative routes (Edara and Cottrell, 2007). 

2.7.5 Existing simulation models and their limitations 

Various micro-simulation models have been developed to study the effects of shuttle-lane 

roadworks and to optimise various parameters to achieve minimum delay costs. Table 2.11 

summarises the main simulation models, the parameters used and their limitations. These 

models are described in the following section. 

2.7.5.1 Summary of existing simulation models 

Summersgill (1981) developed a micro-simulation model to calculate shuttle-lane roadworks 

site capacity, delays and queues for three traffic control methods and various site lengths (up 

to 300 metres). Summersgill also studied an improved method of traffic control by the use of 

all-red period when there is no traffic crossing the site. The study sets the basics for 

estimating delays and queues, and the outcomes were used by the Department for Transport 

software QUADRO (which is discussed in the previous sections) to estimate vehicle delays at 

shuttle-lane roadworks. 

Cassidy et al. (1994) employed Monte-Carlo simulation technique and approximate analysis 

techniques to calculate delay distribution. Deficiencies were found with the use of Monte-

Carlo simulation techniques in dealing with the use of random vehicle arrival and variability 

in headway discharge (Cassidy et al., 1994). 

Son et al. (1995) evaluated the appropriateness of the steady-state assumptions in calculating 

delays at shuttle-lane roadworks through the development of a simulation model. The study 

suggests that this method does not always provide reasonable results especially when demand 

increases. 

Son (1999) developed a simulation model to evaluate queuing delay models for shuttle-lane 

roadworks. The models were derived from Newell’s (1969) delay equation for intersections 
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of one-way streets operated by VA signals. The model shows a close representation when 

compared with real data. The delay models were only tested with a flow of up to 600 vehicles 

per hour for both directions. 

Ebben et al. (2004) developed a simulation model to study the Automatic Guided Vehicles 

(AGVs) system which uses single lane traffic for both directions to reduce infrastructure cost. 

The system is used to carry underground freight in Schiphol Airport in the Netherlands. The 

study tested an advanced traffic responsive system to reduce the waiting times. The study 

shows that when using the advanced control methods, the waiting times can be reduced by 

10-25% compared with the standard operation methods. 

Al-Kaisy and Kerestes (2006) carried out a study to evaluate four shuttle-lane roadworks 

control strategies including fixed-time control, fixed-queue control, convoy rule and adaptive 

control. The model consists of two parts, a spreadsheet deterministic approach which feeds 

into a simulation model (using Synchro and SimTraffic). Various variables were taken into 

account such as site length, speed through site, lost time and travel time. The study shows 

that significant delay reductions can be achieved through advanced traffic control techniques 

and appropriate flaggers training can result in highly efficient traffic control operations. 

CORSIM simulation model was developed by the FHWA (United States Federal Highway 

Authority) and has two components (NETSIM and FRESIM). Road network can be coded in 

CORSIM as nodes and links. Roadworks can be coded as incidents as there is no direct 

option of modelling roadworks (Benekohal et al., 2003; Ramezani and Benekohal, 2011 and 

Bloomberg and Dale, 2000). 

VISSIM is a microscopic, stochastic, discrete time-step based simulation where individual 

vehicles represent the most basic elements of the simulation.  VISSIM is based on the 

Wiedemann “psycho-physical” car-following and lane changing model. The characteristics 

and behaviour of individual vehicles affect the performance measures such as queue length, 

speed and throughput (Edara and Cottrell, 2007). Roadworks can be coded in VISSIM as 

incidents or by the use of complicated sets of signals and detectors as there is no direct option 

of modelling shuttle-lane roadworks. 
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Table 2.11: List of the main shuttle-lane roadworks simulation models 

Model Purpose Comments 

Summersgill 
(1981) 

Control methods, 
operation, capacity 

and delays 

Uses steady state delay equations; 
Does not include the effect of different HGVs 
percentage or directional split; 
Site length only up to 300 metres; 
Old VA signals specifications; 
No information about model calibration or 
validation; 
Only 3 control methods were tested. 

Cassidy et al. 
(1994) 

Monte-Carlo 
simulation to 

calculate average 
delay 

Only applicable for under-saturated conditions; 
Does not include the effect of different 
variables; 
Deficiencies associated with the model. 
 

Son et al. (1995) 
Micro-simulation 

model 

Only testing the appropriateness of the steady 
state assumption for the shuttle-lane operation 
with no operation scenarios tested. 

Son (1999) 
Simulation model 

to calculate 
queuing delay 

Long site length (starts from 0.75 miles); 
Low traffic levels were tested (up to 600 
vehicles per hour). 

Ebben et al. (2004) 
Simulation model 

to calculate waiting 
time savings 

Acceleration and deceleration are instant. 
 

Al-Kaisy and 
Kerestes (2006) 

Simulation model 
to calculate delay 

savings 

Only applicable for undersaturated conditions; 
Long site length (starts from 1km); 
Vehicle Actuated (VA) signals was not tested; 
No information about model calibration or 
validation; 
Four control methods were tested. 

VISSIM,              
S-Paramics 

Micro-simulation 
package 

No direct option of coding roadworks; 
The replication of shuttle-lane operation is 
complicated. 

CORSIM 
Micro-simulation 

package 

FRESIM-Do not have the capability of directly 
returning queue length; 
May not readily adapt work zone;  
Capacity and queues does not match field data. 
  

The S-Paramics is a micro-simulation software package which is capable of representing the 

behaviour and interaction between individual drivers on a road network. Different road 

layouts and features could be simulated and some drivers’ behaviour characteristics 

(parameters) can be changed relatively easily as part of the calibration and validation of the 

model to replicate actual site observations. Roadworks can be coded in S-Paramics as 

incidents or by the use of complicated sets of signals and detectors as there is no direct option 

of modelling shuttle-lane roadworks. 
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2.7.5.2 Limitations of existing simulation models 

The main limitations of the existing simulation models are: 

� The model developed by Summersgill (1981) is only applicable to under-saturated 

situations where traffic is less than the site capacity. Summersgill used the VA 

specification that was available at that time and recent specifications are being 

developed which could affect the modelling results. Site lengths of up to 300 metres 

only were tested (Summersgill, 1981). 

�  Monte-Carlo simulation was utilised by Cassidy et al. (1994) and various deficiencies 

were found (Cassidy et al., 1994). 

� Son et al. (1995) model only evaluates the steady state assumption (for under-

saturated situation) without reference to the evaluation method for different traffic 

control techniques. 

� Son’s (1999) model only tested long site lengths (starting from 0.75 mile) and low 

traffic volume (up to 600 vehicles for both directions). 

� Ebben et al. (2004) simulation model tested the AGVs system. The system has major 

differences to actual vehicles characteristics such as constant speed, instant 

acceleration and decelerations. 

�  Al-Kaisy and Kerestes’ (2006) model is applicable to long site length (starts from 1 

km) and for under-saturated situations. Only four control methods were tested (not 

including VA signals) and there was no calibration or validation for the modelling 

output. 

� CORSIM model requires the calibration of several variables that are difficult to 

measure (Crowther, 2001). CORSIM was not designed to model the effects of work 

zones on maintenance of traffic where the model shows a significant underestimation 

or overestimation of the queue length (Schnell et al., 2002). 

� VISSIM and S-Paramics do not have the ability of modelling roadworks directly. The 

operation of shuttle-lane needs to be replicated by the use of incidents or by the use of 

a complicated set of signals and the use of detectors which require highly skilled 

users. Another limitation in VISSIM is the cancellation of vehicles that reach their 

maximum waiting time and failed to reach their destination (PTV Vision, 2011). 
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2.8 Summary 

The current chapter can be summarised by the following main points in relation to urban 

shuttle-lane roadworks based on previous limitations from the literature:: 

� Various discrepancies and limitations were found from the design guidelines such as 

site length, maximum allowed flow levels for each method of traffic operation. 

Important factors were not taken into account when selecting or designing each traffic 

control method (i.e. HGVs %, directional split and other parameters). 
 

� Mathematical models are inadequate in accurately modelling shuttle-lane roadworks 

with the limitation of correctly replicating queues and delays. They also lack the 

comparison with real observed data and the inability to model the effect of any 

advanced traffic control techniques. 
 

� Analytical models were proven to be inadequate in estimating shuttle-lane roadworks 

capacity, delays and queues, because of their inability to model several roadworks 

features such as the presence of flaggers, ITSs, Vehicle Actuated traffic signals. 
 

� Simulation models are designed for under-saturated conditions. The models also have 

various limitations such as omitting vehicles, various parameters are imbedded within 

the program code that the user does not have access to, and the required level of 

complicated steps to ensure correct behaviour of such a system. 
 

� In addition to the previously described limitations from available literature, none of 

the existing models takes into account certain aspects of aggressive drivers’ behaviour 

(i.e. close following “tailgating” and red light running) which may have an impact on 

site safety and capacity. 

Therefore, there is a need to carry out data collection on shuttle-lane roadworks sites to 

observe aggressive drivers’ behaviour (i.e. close following “tailgating” and red light running). 

The data will then be used to develop a micro-simulation model to cover the previously 

described limitations in existing models and design manuals. Detailed description of the data 

collection and model development are explained in the following chapters. 
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CHAPTER THREE:   DATA COLLECTION AND 
DESCRIPTION 

3.1 Introduction 

The aim of this chapter is to give a brief description of the available data collection methods 

and the difficult issues related to data collection.  It also summarises the details of the visited 

sites such as location maps, layouts, collected data, etc.  Data was collected and analysed for 

various shuttle-lane roadworks sites to understand and observe traffic and drivers’ behaviour 

at shuttle-lane roadworks. The data was also used to provide the necessary input for 

developing, calibrating and validating the micro-simulation model. 

3.2 Data collection techniques 

Video recording was the main type of data collection technique used to capture traffic 

information at urban shuttle-lane roadworks sites. Various difficulties were experienced 

during the data collection stage, which are summarised below: 

� Unavailability of shuttle-lane roadworks sites due to their temporary nature; 

� Lack of proposed/current roadworks information from relevant government agencies; 

� Short duration of planning time for the available sites; 

� Lack of safe/appropriate position for recording; 

� Difficulties associated with adverse weather conditions; 

� Short roadworks duration or late knowledge of roadworks site; 

� Unavailability of cameras and other personnel. 

During recent decades, several methods of data collection have been developed. However, 

collecting traffic data using video cameras is still the main method for academic research 

purposes in the UK because of the reasonably low cost involved. Furthermore, video 

recording systems are the best tools for investigating certain traffic characteristics such as 

drivers’ behaviour, drivers’ compliance with temporary traffic signals at roadworks, gap 

acceptance, temporary signals settings, etc. In addition, other advantages have been reported 

by Yousif (1993) such as: 

� One person is capable of collecting information (low personnel requirements); 

� Any comments on events outside the field of the camera can be reported through the 

recording system; 
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� The relatively simple and quick setup of the video recording system; 

� The ability to view the recorded data continuously to extract the required information. 

As a result of the previously mentioned reasons, the most effective technique for capturing 

traffic information for this research was the use of video recordings. These took place using 

two video cameras (Sony HDD Handycam DCR-SR57) at each side of the selected shuttle-

lane roadworks as illustrated in Figure 3.1. Synchronisation between the cameras was carried 

out using stop watches and mobile phone communications to ensure accuracy. 

 

 

 

Figure 3.1: Schematic of the location of video cameras 

In order to ensure that drivers’ behaviours were not influenced by the presence of video 

cameras, the positioning and locations of video cameras were carefully considered for each 

site. For example, one camera was located inside the observer’s parked vehicle at one side of 

the shuttle (e.g. one observer filming the primary stream) and the other camera was located in 

a safe hiding place such as a shop frontage, inside a building or unobstructed footpath, etc. on 

the other side of a shuttle-lane (e.g. a second observer capturing information from the 

secondary stream).  

Some sites were visited more than once, at different times and over several days (especially 

for those roadworks sites which were carried out over several days and to ensure that weather 

conditions were not that adverse to affect the surveys) to capture different types of 

information and to increase the available sample size for drivers’ behaviours at different flow 

levels. Both primary and secondary streams were captured on both cameras as illustrated in 

Figure 3.1and explained below: 

� Primary (or Secondary) stream (BAR): primary (or secondary) stream vehicles are 

captured by camera Before Approaching Roadworks (BAR). 

� Primary (or Secondary) stream (ACR): primary (or secondary) stream vehicles are 

captured by camera After Crossing Roadworks (ACR). 

Primary 
Stream 

Secondary 
Stream 

BAR ACR 

ACR BAR 
Camera 1 

Camera 2 
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3.3 Site selection 

Due to the temporary nature of shuttle-lane roadworks in urban areas and the experienced 

difficulties that were previously mentioned (i.e. in Section 3.2), it was decided to visit any 

available shuttle-lane roadworks sites and is accessible for surveying. Six surveys/data 

collection categories were used in the current study and are described in the following 

sections. 

3.3.1 Category 1: Historical shuttle-lane roadworks sites 

Historical sites were previously surveyed between the years of 1996 and 2002. The data was 

collected by MSc students at the University of Salford, who investigated the operation of 

shuttle-lane roadworks. The data was very useful for the current study, it covers temporary 

traffic signals using both FT and VA modes and it also covers standard signalised junction. 

The data covers one stream only (i.e. primary or secondary) for seven sites in Greater 

Manchester as shown in Table 3.1 (with 20 hours of video recording) and a location map is 

shown in Figure 3.2. Please note that sites 8, 9 and 10 are traffic calming sites (using throttle) 

and were not used in the current study. 

Table 3.1: Summary of site list and collected data (historical sites) 

Site 
No. 

Site 
Date 

(Duration) 

 
Duration 

Surveyed 
Direction 

Site 
Length 
(metres) 

Type 

1 
Great Cheetham St. East, 

Salford 
(a) 09.07.02 

2 hrs     
(AM) NA NA TS 

2 Agecroft Rd, Salford 
(a) 12.07.02 
(b) 21.07.02   

3 hr     
(AM) 

P 114 Rd/FT 

3 
Europa Boulevard Road, 

Warrington 
(a) 01.09.02   

2.5 hrs     
(AM) 

S 147 Rd/VA 

4 Wilmslow Rd, Cheadle (a) 24.04.97    
2.5 hrs     
(AM) 

P 46 Rd/VA 

5 
Cromwell Grove, 

Levenshulme 
(a) 16.09.96   

3 hrs     
(PM) 

P 137 Rd/FT 

6 
Wilmslow Rd, 
Whithington 

(a) 26.07.96     
3 hrs     
(PM) 

P 34 Rd/VA 

7 Liverpool Rd., Irlam 
(a) 28.02.96 
(b) 10.03.96    

4 hrs     
(PM) 

P 72 Rd/VA 

P: Primary stream            S: Secondary stream             Rd: Roadworks                VA: Vehicle Actuated signals      
FT: Fixed Time signals                     TS: Traffic signals junction  

3.3.2 Category 2: Current shuttle-lane roadworks sites (full surveys) 

Current sites were surveyed in 2012 (during the period of the current research study). The 

data covers different types of shuttle-lane operations (i.e. temporary traffic signals using both 

FT and VA modes, priority operation and Give/Take operation) and it also covers standard 
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signalised junction. The data covers both streams (i.e. primary and secondary) for nine sites 

as shown in Table 3.2 (with 34 hours of video recording). Please see Figure 3.2 for sites 

locations and Appendix A for site plans, pictures, dimensions, etc.  

Table 3.2: Summary of site list and collected data (current sites) 

Site 
No. Site Date 

(Duration) 

 
Duration 

Surveyed 
Direction 

Site Length 
(metres) Type 

11 
Broughton Ln., 

Salford 

(a) 09.07.12 
(b) 10.07.12 
(c) 13.09.12 

7 hrs     
(AM &PM) P, S 42 Rd/VA 

12 
Burton Rd., 

Chorlton 
(a) 11.07.12   

2 hrs     
(AM) 

P, S 107 Rd/VA 

13 
Brunswick St., 

Manchester 
(a) 12.07.12   

2 hrs     
(AM) 

P 8 Pri 

14 
Liverpool St., 

Salford 
(a) 17.07.12    
(b)17.09.12  

4.5 hrs     
(AM &PM) S 17 G/T 

15 
Langworthy Rd., 

Salford 
(a) 18.07.12    

2 hrs     
(AM) NA NA TS 

16 
High Ln, 

Manchester 

(a) 04.09.12 
(b) 05.09.12 
(c) 08.11.12 

4.5 hrs     
(AM &PM) P, S 52 Rd/FT 

17 
New Blackley 

Rd., Manchester 
(a) 06.09.12    

2 hrs     
(AM) 

P, S 39 Rd/VA 

18 
New Blackley 

Rd., Manchester 
(a) 17.09.12   

3 hrs     
(PM) 

P, S 73 Rd/VA 

19 
Frederick Rd., 

Salford 

(a) 27.09.12 
(b) 02.10.12 
(c) 05.11.12    

7 hrs     
(AM) P, S 38 Rd/FT 

P: Primary stream                                    S: Secondary stream                Rd: Roadworks              
VA : Vehicle Actuated signals                   FT: Fixed Time signals            Pri : Priority operated shuttle-lane 
G/T: Give and Take operated shuttle-lane   TS: Traffic signals junction           NA: Not Applicable (not a roadworks site) 
Note: Any reference at later sections/chapters to any site without letters (e.g. a, b or c) means all observations are taken 

across all visits (i.e. representing the combined total of a, b and c) 

3.3.3 Category 3: Current shuttle-lane roadworks sites (partial surveys) 

Partial shuttle-lane roadworks sites surveys were undertaken on two sites in Greater 

Manchester as summarised in Table 3.3 and the location map shown in Figure 3.2. The sites 

dimensions, layout and pictures were collected and are shown in full details in Appendix A. 

No videos were recorded due to the various reasons/difficulties mentioned earlier (i.e. no 

suitable/safe locations to take video recording from, difficulties with adverse weather or lack 

of available equipment/personnel) and also due to very low traffic flows at certain site (less 

than 50 veh/hr). However, data from these sites were used to study signage, traffic 

management setup, etc. 
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3.3.4 Category 4: Current post-removal of shuttle-lane roadworks sites 

Surveys were also carried out on some of the previously surveyed sites (sites listed in Table 

3.2) but post-removal of the roadworks (without the effect of roadworks) to obtain the arrival 

distribution of vehicles without the impact of vehicles re-routing or stopping due to the 

presence of shuttle-lane roadworks. The data covers both directions for Sites 11, 16 and 19. 

Table 3.3: Summary of partially surveyed sites 

Site 
No. 

Site 
Date 

(Duration) 
Surveyed 
Direction 

Site 
Length 
(metres) 

Type 

20 
Manchester 

Road, Swinton 
(a) 12.12.11 P, S 67 Pri 

21 
Silk street, 

Salford 
(a) 17.07.12   P, S 19 G/T 

22 
University 

Road, Salford 
(a) 21.12.12   P, S 79 Rd/FT 

23 
University Road 
West, Salford 

(a) 21.12.12   P, S 68 Rd/FT 

 

 

Figure 3.2: Map of site locations (categories 2 to 5) 

3.3.5 Category 5: Typical signalised junctions sites 

Two typical signalised junctions were surveyed (with one-lane approach on the surveyed 

arms). The surveys were obtained from historical data as mentioned in Section 3.3.1 and also 

during the current research study as mentioned in Section 3.3.2. The data covers four hours of 

video recording in the area of Greater Manchester as summarised in Tables 3.1 and 3.2. 

19 

11 

17 18 

16 

12 

22 
23 

21 

20 

13 

14 15
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The data analysed from typical signalised junctions is described in Section  3.4 and will be 

compared with the same data collected from temporary traffic lights at shuttle-lane 

roadworks. 

3.3.6 Category 6: other data (Individual Vehicle Data-IVD) 

Individual Vehicle Data (IVD) was obtained from the Highways Agency, which contains 

headway data between vehicles, the length and speed for each individual vehicle. The data 

collected over several days in March and May in 2002 for the M25 and in August and 

September for the M42 in 2002 and covers over 5.3 million vehicles records. 

The lengths of cars obtained from IVD were used to build the distribution of car length which 

will be used as an input into the developed simulation model. It is assumed that the 

distribution of car length on motorways will be the same distribution as urban environment 

(cars will use the urban road network as part of their daily travel pattern). Full details of the 

data and the detailed analysis are presented in Chapter 4. 

3.4 Description of collected data 

Various types of data were collected from the surveyed sites. The data is summarised under 

four main headings as shown below and also summarised for each site in Table 3.4. A 

detailed description of the methods used for data extraction and the definition of each type is 

provided below and a full analysis is presented in Chapter 4. 

� Traffic characteristics: arrival traffic flow, traffic composition, time headway, site 

throughput, directional split, MUT (Move-up Time), MUD (Move-up Delay) and 

queues. 

� Roadworks site characteristics: site length, operation type and signage. 

� Drivers’ behaviours: close following “tailgating”, amber crossing and red light 

violations.  

� Signals settings: signals timing (i.e. green time and all-red period), signals type (i.e. 

FT and VA). 

3.4.1 Flow level, profile and composition 

Traffic flow information (i.e. flow by vehicle type, directional split and HGVs percentage) 

was collected for each site and each direction separately for each 5-minutes interval in order 

to create accurate flow profiles. Vehicles in each traffic stream were classified into two 
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vehicle types (i.e. cars and HGVs). Bicycles and motorcycles were ignored, because their 

number was negligible. Observed flow levels, profiles and composition will be used as input 

into the developed micro-simulation model.  

Table 3.4: Summary of studied parameters through site categories 

Site Selection 

Historical 
shuttle-lane 

roadworks sites 

Current shuttle-
lane roadworks 

sites (full surveys) 

Current shuttle- 
lane roadworks 

sites          
(partial surveys) 

Post-removal 
of shuttle-lane 

roadworks 
sites 

Normal 
signalised 

intersections 

 
� MUT 
� Signals 

compliance 
� Signage 

 

 

 

 
� Flow levels 
� Following time 

headway 
� MUT 
� MUD 
� Signals Timings 
� Queuing 
� Drivers behaviour 
� Signals compliance 
� Signage 

 
� Site dimensions 
� Signage 

 

 

 

 

 

 
� Arrival 

headway 
distribution 

 

 

 

 

 
� MUT 
� Signals 

compliance 

 

 

 

 
(Sites 2 to 7) (Sites 11 to 19) (Sites 20 to 23) (Sites 11,16, 19) (Sites 1, 15) 

3.4.2 Throughput 

The number of vehicles passing the shuttle-lane site was counted every cycle (for sites 

operated by temporary traffic signals) and also for every 5-minutes interval and by vehicle 

type and for each direction separately. Observed system throughput will be used to compare 

with the micro-simulation model output for validation purposes. 

3.4.3 Time headway 

Time Headway (TH) is defined as the time elapsed between the front of the leading 

vehicle (n-1) passing an imaginary datum line (x) on the road (or on the playback screen) and 

the front of the following vehicle (n) passing the same point, as illustrated in Figure 3.3 and 

shown in Equation 3.1 (Evans and Wasielewski, 1982; Evans, 1991). Observed TH (before 

approaching the roadworks) will be used to compare with the micro-simulation model output 

for validation purposes. 

TH	�B, D� � 	 Et	�B� − 	t	�B − 1�G              Equation 3.1          

Where, 

t is the time when the vehicle (n-1, n) crosses the datum line  

d is the distance from stop line where the time headway is observed  
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Figure 3.3: Illustration of time headway 

3.4.4 Move-up Time (MUT) 

Move-up Time (departure headway or discharge headway) at traffic signals is a fundamental 

parameter used to measure the capacity of an intersection and timing the traffic signals. MUT 

is usually defined as the time elapsed between successive vehicles (in a queue) when they 

start to cross the stop line at a signalised junction, after the traffic lights turn green (Jin et al., 

2009; Briggs, 1977 and Michael et al., 2000). The MUT can be calculated using Equation 

3.2. Observed MUT for each site and direction will be used to compare with micro-

simulation model output for validation purposes. 
 

MUT	�B� � 	 Et	�B� � 	t	�B � 1�G               Equation 3.2 
 

3.4.5 Move-up Delay (MUD) 

Following a stopping situation at traffic signals the driver (queue leader) will spend time 

preparing to move when the light shows green (move-up delay or start-up time). The move-

up delay was captured from the time the signals sequence shows red-amber until the first 

vehicle in the queue starts to move. Observed MUD for each stream will be used as an input 

into the developed micro-simulation model.  

3.4.6 Drivers’ behaviour 

Drivers’ behaviour was also observed on site and from video playback to capture the statistics 

of vehicles following too closely “tailgating”. Also drivers’ behaviour in terms of number of 

vehicles (cycles) crossing the stop line at the onset of amber and red light violations.  

Headway 

Datum line 

n n-1 

Direction of travel 
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3.4.7 Roadworks sites characteristics 

Various measurements such as site length and the location of roadworks signs were collected 

on site using a measuring wheel.  

3.4.8 Signals settings 

Detailed signals settings such as green time (minimum and maximum for VA sites), all-red 

period, amber and red-amber were collected on site and from video playbacks. Also the type 

of signals operation was identified on site and from video playbacks.  

3.5 Summary 

This chapter described the data collection stages, available methods and the difficult issues 

related to data collection.  In total, data from six different categories have been collected 

(data from 23 different sites with over 54 hours of video recording). Furthermore, description 

of each type of the collected data was also provided. 

The collected data will be analysed in details as shown in the next chapter and will be used as 

inputs/outputs for the developed S-Paramics simulation model as explained in the following 

chapters.  
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CHAPTER FOUR:  DATA ANALYSIS 

4.1 Introduction 

The aim of this chapter is to present the work that was undertaken in analysing the field data 

which will be used in developing, calibrating and validating the micro-simulation model. 

Data collection and analysis is a critical part of the current research in capturing the 

characteristics of various types of shuttle-lane roadworks and also in understanding drivers’ 

behaviour through urban roadworks. 

Data collected on roadworks sites were used to capture vehicles following time headways, 

departure headways at temporary traffic signals, move-up delays, queuing information, 

signing and drivers’ compliance with temporary traffic signals. Data collected from the same 

sites (post the removal of roadworks) were used to capture the arrival headway without the 

effect of the roadworks. Other data were collected on normal signalised junctions, which 

were used to compare drivers’ behaviour with temporary traffic signals at roadworks. 

4.2 Data extraction 

Data extraction was carried out by displaying the video playback on a computer monitor and 

a datum line was drawn to extract the data manually (i.e. using event recorder program which 

was designed for this purpose and works as a stop watch and called “Traffic Logger”). Every 

time a vehicle crosses the introduced datum line, the observer has to press a button on the 

keyboard (i.e. 1 for cars and 2 for HGVs) and the program will output a text file with the 

exact relative time (with accuracy of 1/100 of a second). Following the completion of the 

playback time (video survey time), the observer has to export the text file into excel and start 

the analysis work. 

Data such as queues was observed on site (using both a video camera microphone and a paper 

copy). Site length, road width and distance between signs were collected on site using a 

measuring wheel and a site layout was drawn on site with the respective dimensions. 

4.3 Accuracy of observed data 

It was mentioned in the previous section that the data extraction technique for the event time 

data (i.e. move-up delay, arrival time headway) was carried out using video playback and the 
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“Traffic Logger” program which acts as a stop watch. This method will result in two types of 

errors: 

1- Video playback error (depends on the playback frame rate per second); 

2- Human error (i.e. time taken to manually press a button when vehicle passes the 

datum line). 

The video rate in the current study is fixed to the standard 25 frames per second, which 

produces an error of 0.04s for the event-time data. According to Bonneson and Fitts (1995), 

the total possible error for the event-time data could be up to 0.1s. 

To measure accuracy (the amount of possible errors), two types of event time data (arrival 

time headway and move-up delay) were repeated by different trained observers (both used for 

the rest of the data analysis).  

Figure 4.1 shows the MUD measurements obtained by different observers with the R2 

(coefficient of determination) = 0.9479, which shows a close fit between both observers and 

the high reliability of the observed data. Table 4.1 shows the mean (µ) and standard deviation 

(σ) for the tested sample. 

 

Figure 4.1: Correlation between different observers in measuring MUD 
 

Table 4.1: MUD mean (µ) and sd (σ) by different observers (in seconds) 

Observer µ Σ 

1 2.13 0.65 
2 2.08 0.67 
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Figure 4.2 shows the arrival time headway measurements obtained by observer 1 and 

observer 2 with the R2 = 0.999, which shows a close fit between both observers and the high 

reliability of the observed data. Table 4.2 shows the mean (µ) and standard deviation (σ) for 

the tested sample. It can be seen from Table 4.2 that the difference in the sample mean 

between observer 1 and observer 2 is only 0.04 seconds, which can be assumed to be 

acceptable. 

 
Figure 4.2: Correlation between different observers in measuring arrival headway 

 

Table 4.2: Arrival headway mean (µ) and sd (σ) by different observers (in seconds) 

Observer 
Arrival headway 
µ σ 

1 8.25 10.74 
2 8.21 10.75 

4.4 Flow level and profile  

Traffic flow information (i.e. flow by vehicle type, directional split and HGVs percentage) 

was collected for each site and for each direction separately and will be used as input into the 

developed micro-simulation model. Flow profile (flow per 5-minutes interval) was also 

collected for each site and direction. Table 4.3 summarises the arrival flow, directional split 

and HGVs percentage for each site and each stream separately. The flow for each 5-minutes 

interval was multiplied by 12 to represent an average hourly flow in veh/hr. 
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It can be seen from Table 4.3 that the flow level varies between sites with an equivalent 

hourly rate ranging between 72-888 veh/hr. The directional split also varies between sites and 

between different hours for the same site (between 70/30 and 50/50). HGVs percentage also 

varies between sites, streams and different hours on the same site with HGVs percentage 

varies between 1% (minimum) and 10% (maximum). Flow profiles for each 5-minutes 

interval (for each site and each stream) are presented graphically in Appendix B. 

Table 4.3: Summary of arrival flow for each site 

Flow  
(veh/hr) 

Directional Split range  P/S 
(%) 

HGVs Percentage 
(%) 

Minimum Maximum Minimum Maximum Minimum Maximum 

(P) 72 
(S) 84 

(P) 888 
(S) 636 

50/50 71/29 
(P) 1 
(S) 1 

(P) 10 
(S) 10 

4.5 Arrival headway  

4.5.1 Arrival headway distribution 

As discussed in Chapter 3, arrival time headway represents the time interval between the 

passages of successive vehicles passing a reference point on the road (Salter and Hounsell, 

1996). Arrival headway is used to generate vehicles at the start of the micro-simulation 

model. 

Different single and composite distribution models have been used by previous researchers to 

represent headway distribution such as exponential distribution, negative exponential 

distribution (with and without the shift), lognormal distribution (with and without the shift) 

and gamma distribution (Salter and Hounsell, 1996; Luttinen, 1996). Detailed description of 

the tested headway distribution models are presented in the following sections. 

4.5.1.1 The shifted negative exponential 

The shifted negative exponential distribution by a minimum headway (Shift) is able to 

represent the vehicle arrival rate for moderate flow (Sultan, 2000; Al-Obaedi, 2012). The 

headway for each vehicle can be represented by Equation 4.1 (Benekohal, 1986); 

TH � shift − [l/z − shiftG	ln�RAND�                      Equation 4.1 

Where, 

Shift is the additional time such as 0.25, 0.5 and 1 in seconds 
RAND is the random number generated by the program 
z is the arrival flow rate 
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4.5.1.2 Lognormal distribution 

Yin et al. (2009) reported that the lognormal distribution is suitable to fit headway 

distribution data under low traffic level situations in urban areas. Below is the probability 

density function as shown in Equation 4.2 to Equation 4.4 (Walck, 1996; Sultan, 2000) 

F�x� 	� N
O*√'Q RS�TU	�V�	W	X�&	

&Y&                Equation 4.2 

μ	 � ln�[� −	O&
'                  Equation 4.3 

σ2 	= ln�1 + ^2
[2�                            Equation 4.4 

Where, 

µ and σ are the mean and the standard deviation of the normal distribution  

m and s are the mean and the standard deviation of the lognormal distribution 

The simplest way of achieving random numbers from a lognormal distribution is to take the 

exponential of the generated random numbers u (RAND=R_) from a normal distribution with 

mean µ and standard deviation σ (Walck, 1996). 

4.5.2 Headway models using real data 

Data was collected using the video recording technique as explained earlier for three sites 

(Sites 11, 16 and 19) without the presence of roadworks (post-completion of roadworks on 

separate days). The data was collected to test the goodness of fit with the headway 

distribution models mentioned earlier. The equivalent flow range was between 230-676 

veh/hr. For each site, data was collected for 60 minutes period. The tested models are the 

lognormal and the shifted negative exponential distributions. 

Using the lognormal distribution and based on sites 11 and 16 data, Figures 4.3 and 4.4 (for 

primary and secondary streams) show good agreement between the actual and the predicted 

cumulative headway distribution for a flow between 230-300 veh/hr (low level of flow) for 

both streams. The results also show that the shifted negative exponential distribution is not 

applicable for sites 11 and 16 where low flow levels exist. These results are in agreement 

with the findings of Yin et al. (2009), which recommended using the lognormal distribution 

for low flow level on urban roads. 
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(a) Primary Stream    (b) Secondary Stream 
 

Figure 4.3: Observed and predicted arrival headway cumulative distribution for Site 11 
using lognormal distribution 

  

(a) Primary Stream    (b) Secondary Stream 

Figure 4.4: Observed and predicted arrival headway cumulative distribution for Site 16 
using lognormal distribution 

  

(a) Primary Stream    (b) Secondary Stream 

Figure 4.5: Observed and predicted arrival headway cumulative distribution for Site 19 
using shifted negative exponential distribution 
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For Site 19 where moderate/high flow level is observed (500-700 veh/hr), the shifted negative 

exponential headway distribution shows good agreement between the actual and predicted 

cumulative headway distribution for both streams with the best shift value of 0.8 as shown in 

Figure 4.5. 

The non-parametric Kolmogorov-Smirnov hypothesis statistical test (K-S test) was used at 

5% level of significance (α = 0.05). The test compares the maximum difference (Dmax ) 

between two observed and fitted distribution functions with the critical value (Dcr) which can 

be obtained from tables or as shown in Equation 4.5 (Hayter, 2002). 

Dcr = 1.36cN1+N2
N1N2                 Equation 4.5 

 

(for 95% confidence level and sample size over 35 for each N1 or N2)  

Where,  

N1 and N2 are the sample sizes 

The test results are shown in Table 4.4 which reflects the above results and findings. The 

table also suggests that no single model is capable of representing the arrival distribution of 

traffic for the different tested flow rates. Therefore, when generating traffic in the simulation 

model, it was suggested to use the lognormal distribution for sites with low flow levels (up to 

500 veh/hr) and use the shifted negative exponential distribution for sites with moderate to 

high flow levels (over 500 veh/hr). 

Table 4.4: Summary of statistics for arrival headway distribution fitting 

Site Site 11 Site 16 Site 19 
Stream P S P S P S 

Average Flow (veh/hr) 254 235 263 297 676 509 
Lognormal (Dmax) 0.069 0.081 0.067 0.078 0.081 0.091 

Shifted negative exponential 
(Dmax) 

0.149 0.174 0.189 0.139 0.072 0.077 

K-S critical value (Dcr) 0.121 0.126 0.119 0.112 0.074 0.085 
Accept-Lognormal Yes Yes Yes Yes No No 

Accept-Shifted neg. exp. No No No No Yes Yes 

4.6 Following headway 

Time headway is a fundamental and important parameter which has been used in traffic flow 

theory to determine system capacity, level of service (LOS) and safety aspects                   
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(Jang et al., 2011). In the current study, time headway will be used to study both following 

behaviour and also for calibrating/validating the micro-simulation model.  

In an urban environment, the vehicle can be in two states; a “free vehicle” state, where the 

vehicle’s desired speed is not influenced by the speed of the leader or in a platoon state, 

where the vehicle is influenced by the speed of the leader vehicle and is forced to change its 

desired speed (Vogel, 2002). 

4.6.1 Following headway distribution 

Many studies have examined the criteria for defining the platoon threshold. These criteria are 

expressed by time, gap or following distance as summarised in Table 4.5. The suggested 

threshold of 6 seconds by Vogel (2002) has been adopted for the current study because of it 

being based on a similar urban environment whilst other studies were carried out on high 

speed roads. Therefore, a vehicle is assumed to be travelling at free flow conditions when the 

time headway between the following vehicle and the leading vehicle is > 6 seconds and 

vehicles are in a platoon when time headways are ≤ 6 seconds. 

Table 4.5: Summary of some previous studies examined following behaviour 

Study Type/Data 
source 

Number of 
Observations 

Following 
threshold Comments 

Parker (1996) 
Empirical data 

from video 
7,199 5 seconds Motorway roadworks 

Vogel (2002) 
Empirical data 

from loops 
100,000 6 seconds 

Urban areas/signalised 
intersection 

HCM (2000) 
TWOPAS 
simulation 
program 

NA 
3 seconds 

(5 
previously) 

based on assessment by 
Rouphail (2000) and Vogel 

(2002) 
Wasielewski 

(1979) 
Empirical data 

from site 
42,000 4 seconds Expressway 

Al-Kaisy and 
Karjala (2010) 

Pneumatic 
tubes 

50,854 6 seconds Highway (8 sites) 

 
Data was collected using the video recording technique as explained in Section  3.4 for all 

sites and for the primary and secondary streams separately. Only time headway data for 

vehicles ≤ 6 seconds were analysed. The data was also recorded for two separate situations 

(as shown in Figure 3.1) to determine the effect of the presence of roadworks on the 

following behaviour: 

1- Before Approaching the Roadworks sites (referred to as BAR); 

2- After Crossing the Roadworks sites (referred to as ACR). 
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Table 4.6 summarises the statistical values for following headway for each site by direction 

and situation (time headway for vehicles ≤ 6 seconds). It can be seen from Table 4.6 that the 

number of observations (amount of vehicles with time headway ≤ 6 seconds) have increased 

when comparing BAR and ACR for both streams (primary and secondary) and for all sites 

which shows that more vehicles have joined a platoon in the ACR situation as a result of 

introducing temporary traffic signals at shuttle-lane roadworks. This increase in the number 

of observations (N) and the decrease in mean time headway (µ) relates to various parameters 

including arrival rates, cycle time (and each direction green time), site length, the behaviour 

of drivers at roadworks, traffic composition and weather conditions. 

Table 4.6: Summary of statistics for following headway for each site 

Site No. 
Site Length 

(m) 
Location 

Number of 
observations 

(N) 

µ  

(sec) 

Min  

(sec) 

σ  

(sec) 

Site 11 42 
BAR 

(P) 174 
(S) 239 

(P) 3.18 
(S) 2.52 

(P) 0.93 
(S) 0.70 

(P) 0.97 
(S) 0.88 

ACR 
(P) 195 
(S) 283 

(P) 2.43 
(S) 2.51 

(P) 1.16 
(S) 0.99 

(P) 0.92 
(S) 1.07 

Site 12 107 
BAR 

(P) 86 
(S) 70 

(P) 2.49 
(S) 2.70 

(P) 0.88 
(S) 0.77 

(P) 1.09 
(S) 1.01 

ACR 
(P) 147 
(S) 155 

(P) 2.46 
(S) 2.48 

(P) 1.32 
(S) 1.37 

(P) 0.90 
(S) 0.86 

Site 16 52 
BAR 

(P) 383 
(S) 438 

(P) 3.30 
(S) 3.13 

(P) 1.04 
(S) 0.93 

(P) 0.57 
(S) 0.59 

ACR 
(P) 545 
(S) 639 

(P) 2.48 
(S) 2.52 

(P) 0.93 
(S) 1.10 

(P) 0.59 
(S) 0.47 

Site 17 39 
BAR 

(P) 58 
(S) 78 

(P) 3.41 
(S) 3.49 

(P) 1.17 
(S) 1.20 

(P) 0.66 
(S) 0.60 

ACR 
(P) 108 
(S) 123 

(P) 2.52 
(S) 2.49 

(P) 1.20 
(S) 0.94 

(P) 0.99 
(S) 0.88 

Site 18 73 
BAR 

(P) 160 
(S) 358 

(P) 3.26 
(S) 2.97 

(P) 0.89 
(S) 0.76 

(P) 1.16 
(S) 1.07 

ACR 
(P) 240 
(S) 475 

(P) 2.44 
(S) 2.41 

(P) 0.72 
(S) 0.83 

(P) 1.15 
(S) 0.96 

Site 19 38 
BAR 

(P) 932 
(S) 571 

(P) 2.88 
(S) 2.75 

(P) 0.82 
(S) 0.82 

(P) 0.83 
(S) 0.96 

ACR 
(P) 958 
(S) 707 

(P) 2.33 
(S) 2.33 

(P) 0.72 
(S) 0.93 

(P) 0.58 
(S) 0.85 

All sites 
BAR (P) 1,793 

(S) 1,754 
(P) 2.84 
(S) 3.01 

(P) 0.82 
(S) 0.72 

(P) 0.81 
(S) 0.86 

ACR 
(P) 2,192 
(S) 2,382 

(P) 2.47 
(S) 2.51 

(P) 0.70 
(S) 0.83 

(P) 0.71 
(S) 0.79 

All sites 
BAR 
ACR 

3,547 
4,574 

2.93 
2.49 

0.72 
0.70 

0.97 
1.08 

 

The distributions of following time headways in platoons for both primary and secondary 

streams and for both situations (BAR and ACR) fit the lognormal distribution and the 

statistical results are summarised in Table 4.7 and shown in details in Appendix B.  This 
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finding confirms studies carried out by Chin et al. (2010) and Dey and Chandra (2009). The 

non-parametric Kolmogorov-Smirnov (K-S) hypothesis statistical test was used at the 5% 

level of significance (α = 0.05). The K-S test compares the maximum difference (Dmax) 

between the two cumulative distributions and the critical value (Dcr) which is obtained from 

the K-S tables. The following headway distribution results will be used as part of the micro-

simulation model calibration/validation stage. 

Table 4.7: Summary of statistics for time headway with lognormal distribution fitting 

Site Location Sample Size Dcr  
Dmax 

(lognormal) 
Accept 

11 
BAR 

(P) 174 
(S) 239 

(P) 0.15 
(S) 0.12 

(P) 0.10 
(S) 0.09 

(P) Yes 
(S) Yes 

ACR 
(P) 195 
(S) 283 

(P) 0.14 
(S) 0.11 

(P) 0.07 
(S) 0.08 

(P) Yes 
(S) Yes 

12 
BAR 

(P) 86 
(S) 70 

(P) 0.21 
(S) 0.23 

(P) 0.13 
(S) 0.09 

(P) Yes 
(S) Yes 

ACR 
(P) 147 
(S) 155 

(P) 0.16 
(S) 0.15 

(P) 0.05 
(S) 0.05 

(P) Yes 
(S) Yes 

16 
BAR 

(P) 383 
(S) 438 

(P) 0.09 
(S) 0.09 

(P) 0.08 
(S) 0.06 

(P) Yes 
(S) Yes 

ACR 
(P) 544 
(S) 639 

(P) 0.08 
(S) 0.07 

(P) 0.05 
(S) 0.04 

(P) Yes 
(S) Yes 

17 
BAR 

(P) 58 
(S) 78 

(P) 0.25 
(S) 0.22 

(P) 0.08 
(S) 0.16 

(P) Yes 
(S) Yes 

ACR 
(P) 108 
(S) 123 

(P) 0.19 
(S) 0.17 

(P) 0.05 
(S) 0.05 

(P) Yes 
(S) Yes 

18 
BAR 

(P) 160 
(S) 358 

(P) 0.15 
(S) 0.10 

(P) 0.07 
(S) 0.05 

(P) Yes 
(S) Yes 

ACR 
(P) 240 
(S) 475 

(P) 0.12 
(S) 0.09 

(P) 0.06 
(S) 0.03 

(P) Yes 
(S) Yes 

19 
BAR 

(P) 932 
(S) 571 

(P) 0.06 
(S) 0.08 

(P) 0.04 
(S) 0.04 

(P) Yes 
(S) Yes 

ACR 
(P) 958 
(S) 707 

(P) 0.06 
(S) 0.07 

(P) 0.05 
(S) 0.04 

(P) Yes 
(S) Yes 

 

Following headway (vehicle with time headway ≤ 6 seconds) comparisons were also carried 

out for both BAR and ACR to compare if the roadworks site length had any significant 

impact on the following behaviour. A cumulative distribution function was plotted for both 

BAR and ACR situations and for the primary and secondary streams as shown in Appendix 

B. The non-parametric Kolmogorov-Smirnov hypothesis statistical test (K-S test) was used at 

5% level of significance (α = 0.05) to compare both situations for each stream. The results are 

summarised in Table 4.8. 

It can be seen from Table 4.8 that there is a significant difference in following time headway 

for vehicles when comparing BAR and ACR except for Site 12 using the K-S test. The 

reasons for Site 12 being the exception could be attributed to the fact that it has a length of 
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107 metres, which could be considered as long enough length for drivers to regulate to 

normal following behaviour after stopping at temporary traffic signals. While for relatively 

shorter site lengths (all other sites) less than 100 metres, this will not give the drivers enough 

time to regulate back to their normal following driving behaviour. It can also be seen that the 

increase in the number of vehicles with headway ≤6 seconds when comparing BAR and ACR 

is a result of both the introduction of temporary traffic signals and also roadworks sites with 

different lengths. 

Table 4.8: Summary of statistics for time headway comparison between BAR and ACR 

Site Direction Sample Size Dcr  Dmax Accept 

11 
Primary 

(BAR)   174 
(ACR)   195 

 0.14  0.15 No 

Secondary 
(BAR)   239 
(ACR)   283 

 0.12  0.17 No 

12 
Primary 

(BAR)   86 
(ACR)   147 

 0.18  0.14 Yes 

Secondary 
(BAR)   70 
(ACR)   155 

 0.20  0.17 Yes 

16 
Primary 

(BAR)   383 
(ACR)   544 

 0.09  0.31 No 

Secondary 
(BAR)   438 
(ACR)   639 

 0.08  0.23 No 

17 
Primary 

(BAR)   58 
(ACR)   108 

 0.22  0.30 No 

Secondary 
(BAR)   78 
(ACR)   123 

 0.20  0.33 No 

18 
Primary 

(BAR)   160 
(ACR)   240 

 0.14  0.30 No 

Secondary 
(BAR)   358 
(ACR)   475 

 0.10  0.18 No 

19 
Primary 

(BAR)   932 
(ACR)   958 

 0.06  0.09 No 

Secondary 
(BAR)   571 
(ACR)   707 

 0.08  0.18 No 
 

Analysis of platoon size was also carried out for each site, each direction (i.e. primary and 

secondary streams) and for each situation (i.e. BAR and ACR). The size of each platoon (the 

number of vehicles following with time headway ≤ 6 seconds) was recorded and is shown in 

Figure 4.6. The x-axis shows the platoon size in vehicles and the y-axis shows the frequency 

of each platoon size.  

Figure 4.6 shows that the relative frequency of longer platoon sizes (from platoon size of 4 

vehicles or more) increased for ACR compared with BAR. This could be due to various 

factors such as site length, the presence of temporary traffic signals, arrival headway 

distribution, etc. Platoon size could be investigated further in a separate study to determine 
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the platoon characteristics (i.e. platoon speed, platoon average headway and inter-arrival 

between consecutive platoons). Platoon-based signals algorithm was developed by Jiang et 

al. (2006), which could reduce vehicle delays, increase site capacity and also help in 

identifying the need for signals coordination between the upstream intersection and 

temporary traffic signals (to allow for the effective release of the queue and to avoid blocking 

back especially for longer platoon sizes). 

 
Figure 4.6: Platoon size frequency for shuttle-lane roadworks 

4.6.2 Close following behaviour “tailgating” 

In the current study, vehicles with time headway less than two seconds for each site, stream 

and location (BAR and ACR) are summarised in Table 4.9 and illustrated in Figure 4.7. The 

number of observations (n) shown in column 4 is the number of vehicles that are following in 

platoons with time headway ≤ 6 seconds.  

Table 4.9 shows that a high proportion of drivers do not comply with the two-seconds rule 

(i.e. travelling with time headways < 2 seconds). The figures suggest a range 

between 14% and 49% (in each site and for both streams) which is deemed to be high. 

Vehicles following with a time headways less than 1.5 seconds are also summarised (ranging 

between 3% to 22%). Vehicles with time headways less than 1 second were also noticed (up 

to 4% of the total).  

Figure 4.7 shows that the percentage of vehicles “tailgating”, which as a behaviour is 

considered dangerous and aggressive, is higher for ACR (After Crossing Roadworks) 
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compared with BAR (Before Approaching Roadworks) for every site and for every stream. 

Moreover, the percentage of non-complying drivers is higher in the primary stream (27% and 

39% for BAR and ACR, respectively) compared with the secondary stream (22% and 37% 

for BAR and ACR, respectively) as shown in Table 4.9.  This might be related to the primary 

horizontal deflection due to site obstruction and/or the manoeuvre to return to the original 

lane which could affect drivers’ behaviour and increase tailgating (e.g. primary stream 

drivers’ speed may be slightly lower due to horizontal deflection which may result in driving 

closer without compromising safety). However, the horizontal deflection could be one of 

many factors that could affect the increased behaviour of tailgating for few drivers.   

The increase in tailgating behaviour when comparing BAR with ACR for both streams could 

also be attributed to the fact that drivers experienced some delay when stopping at the 

temporary traffic signals.  Drivers may perceive that clearing the site as quickly as possible 

by speeding could save them time and as a result, they may not follow a safe following 

headway (i.e. less than 2 seconds). This higher percentage of tailgating could result in higher 

risks of rear-end collision or sudden/sharp braking. This in turn could have an adverse impact 

on safety and possibly cause capacity reduction.  Further work may be needed to investigate 

the relationship between relative speeds and close following for BAR and ACR. 

 
 
Figure 4.7: Percentage of vehicles with tailgating behaviour for each site, stream and location 
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Table 4.9: Summary of close following behaviour for all sites, streams and location 

Site Direction Location n 
Vehicles with  

TH < 2 sec  
(%)  

Vehicles with 
TH ≤ 1.5 sec  

(%)  

Vehicles with 
TH ≤ 1 sec  

(%)  

11 
Primary 

(BAR) 
(ACR) 

174 
195 

40 (23%) 
54 (28%) 

13 (7%) 
10 (5%) 

2 (1%) 
0 (0%) 

Secondary 
(BAR) 
(ACR) 

239 
283 

33 (14%) 
87 (31%) 

7 (3%) 
23 (8%) 

1 (0.4%) 
1 (0.4%) 

12 
Primary 

(BAR) 
(ACR) 

86 
147 

21 (24%) 
39 (27%) 

7 (8%) 
7 (5%) 

1 (1%) 
0 (0%) 

Secondary 
(BAR) 
(ACR) 

70 
155 

13 (19%) 
31 (20%) 

4 (6%) 
11 (7%) 

2 (3%) 
0 (0%) 

16 
Primary 

(BAR) 
(ACR) 

383 
544 

53 (14%) 
209 (38%) 

16 (4%) 
58 (11%) 

0 (0%) 
1 (0.2%) 

Secondary 
(BAR) 
(ACR) 

438 
639 

81 (18%) 
214 (33%) 

15 (3%) 
45 (7%) 

1 (0.2%) 
0 (0%) 

17 
Primary 

(BAR) 
(ACR) 

58 
108 

10 (17%) 
45 (42%) 

5 (9%) 
16 (15%) 

1 (2%) 
2 (2%) 

Secondary 
(BAR) 
(ACR) 

78 
123 

15 (19%) 
48 (39%) 

7 (9%) 
27 (22%) 

3 (4%) 
3 (2%) 

18 
Primary 

(BAR) 
(ACR) 

160 
240 

32 (20%) 
117 (49%) 

19 (12%) 
51 (21%) 

2 (1%) 
10 (4%) 

Secondary 
(BAR) 
(ACR) 

358 
475 

94 (26%) 
208 (44%) 

40 (11%) 
93 (20%) 

4 (1%) 
8 (2%) 

19 
Primary 

(BAR) 
(ACR) 

932 
958 

319 (34%) 
400 (42%) 

108 (12%) 
161 (17%) 

10 (1%) 
21 (2%) 

Secondary 
(BAR) 
(ACR) 

571 
707 

156 (27%) 
290 (41%) 

52 (9%) 
109 (15%) 

5 (1%) 
12 (2%) 

Total 
Primary (BAR) 

(ACR) 
1,793 
2,192 

475 (27%) 
864 (39%) 

168 (9%) 
303 (14%) 

16 (1%) 
34 (2%) 

Secondary 
(BAR) 
(ACR) 

1,754 
2,382 

392 (22%) 
878 (37%) 

125 (7%) 
308 (13%) 

16 (1%) 
24 (1%) 

Total 
(BAR) 
(ACR) 

3,547 
4,575 

867 (24%) 
1,742 (38%) 

293 (8%) 
611 (13%) 

32 (1%) 
58 (1%) 

N: Sample size                               TH : time headway  

4.7 Move-up time (MUT) 

4.7.1 Existing shuttle-lane roadworks data 

MUT data was collected for primary and secondary streams separately for micro-simulation 

model purposes. The observed drivers MUT will be compared with the micro-simulation 

model output as part of the model calibration/validation process. 

Table 4.10 summaries the move-up time statistical data (i.e. mean (µ), standard deviation (σ), 

minimum and maximum) for each vehicle position in the queue for both primary and 

secondary streams. Several studies (Jin et al., 2009; Briggs, 1977; Michael et al., 2000; 

Gerlough and Wagner, 1967; Hung et. al, 2002 and Niittymaki and Pursula, 1996) have 

indicated that a key feature of vehicles headway in a queue is that it often gradually decreases 
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from the first vehicle in the queue (queue head) to its end (last vehicle in the queue) and 

steady headway will be reached by the fourth or the fifth vehicle.  

According to Su et al. (2009), this occurs because the first few vehicles in the queue require 

longer reaction time and space to start while the rest have enough time and space to keep a 

distance. These findings were confirmed by the current study using temporary traffic signals 

at shuttle-lane roadworks, as shown in Figure 4.8. Various parameters (external factors) such 

as number of lanes, vehicle types, etc. were considered in the studies mentioned above but 

none of these were carried out on a single lane traffic signals or shuttle-lane roadworks. 

Table 4.10: Move-up time for shuttle-lane roadworks 

Vehicle 
position in 

a queue 

Sample Size 
(N) 

µ 
(sec) 

σ 
(sec) 

Minimum 
(sec) 

Maximum 
(sec) 

2 
(P) 405 
(S) 382 

(P) 2.35 
(S) 2.43 

(P) 0.84 
(S) 0.66 

(P) 1.15 
(S) 1.32 

(P) 5.66 
(S) 5.16 

3 
(P) 316 
(S) 288 

(P) 2.20 
(S) 2.26 

(P) 0.57 
(S) 0.48 

(P) 1.04 
(S) 1.16 

(P) 4.23 
(S) 4.07 

4 
(P) 228 
(S) 205 

(P) 2.14 
(S) 2.15 

(P) 0.61 
(S) 0.49 

(P) 0.99 
(S) 1.02 

(P) 4.34 
(S) 4.28 

5 
(P) 159 
(S) 125 

(P) 1.99 
(S) 2.12 

(P) 0.49 
(S) 0.39 

(P) 1.04 
(S) 1.26 

(P) 4.84 
(S) 3.63 

6 
(P) 110 
(S) 67 

(P) 1.90 
(S) 2.05 

(P) 0.41 
(S) 0.27 

(P) 1.05 
(S) 1.32 

(P) 3.24 
(S) 3.57 

7 
(P) 73 
(S) 34 

(P) 1.86 
(S) 2.00 

(P) 0.20 
(S) 0.42 

(P) 1.15 
(S) 1.17 

(P) 2.80 
(S) 2.69 

8 
(P) 44 
(S) 16 

(P) 1.82 
(S) 1.99 

(P) 0.43 
(S) 0.37 

(P)1.27 
(S) 1.37 

(P) 2.58 
(S) 2.80 

The distribution of move-up time for both streams fit the lognormal distribution as illustrated 

in Appendix B and for which the statistical results are summarised in Table 4.11. This finding 

is confirmed by a study that was carried out by Jin et al. (2009). The non-parametric 

Kolmogorov-Smirnov hypothesis statistical test (K-S test) was used at the 5% level of 

significance (α = 0.05). The test compares the maximum difference (Dmax ) between two 

observed and fitted cumulative distribution functions with the critical value (Dcr) which can 

be obtained from K-S tables or as shown in Equation 4.5 (Hayter, 2002). 
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Figure 4.8: Move-up time for various studies compared with shuttle-lane roadworks 

 

Table 4.11: Summary of statistics for MUT with lognormal distribution fitting 

Vehicle 
position in a 

queue 
Sample Size Dcr  

Dmax 

(lognormal) Accept 

2 
(P) 405 
(S) 382 

(P) 0.095 
(S) 0.098 

(P) 0.036 
(S) 0.021 

(P) Yes 
(S) Yes 

3 
(P) 316 
(S) 288 

(P) 0.108 
(S) 0.113 

(P) 0.076 
(S) 0.019 

(P) Yes 
(S) Yes 

4 
(P) 228 
(S) 205 

(P) 0.127 
(S) 0.134 

(P) 0.071 
(S) 0.127 

(P) Yes 
(S) Yes 

5 
(P) 159 
(S) 125 

(P) 0.152 
(S) 0.172 

(P) 0.102 
(S) 0.036 

(P) Yes 
(S) Yes 

6 
(P) 110 
(S) 67 

(P) 0.183 
(S) 0.235 

(P) 0.093 
(S) 0.096 

(P) Yes 
(S) Yes 

7 
(P) 73 
(S) 34 

(P) 0.225 
(S) 0.329 

(P) 0.065 
(S) 0.076 

(P) Yes 
(S) Yes 

8 
(P) 44 
(S) 16 

(P) 0.290 
(S) 0.481 

(P) 0.058 
(S) 0.282 

(P) Yes 
(S) Yes 

4.7.2 Comparison with historical data 

Move-up time for the historical sites (Site 1 to Site7 and 15) were observed and analysed on 

the same basis that was carried out on the current roadworks sites. MUT data for both 

roadworks (historical and current) sites and traffic signals sites are summarised in Table 4.12. 
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Data for the primary and secondary streams were combined for the current roadworks sites 

for comparison purposes as there was no significant difference between both streams. 

Table 4.12: Summary of MUT mean value (µ) in seconds for current and historical sites 

Vehicle 
position in a 

queue 

Current 
roadworks sites 

Historical 
roadworks 

sites 
Traffic signals 

2 2.39 2.47 1.95 
3 2.23 2.46 2.02 
4 2.15 2.35 2.13 
5 2.05 2.25 2.21 
6 1.96 2.23 1.97 
7 1.90 NA NA 
8 1.87 NA NA 

Total * 10.78 11.76 10.28 
      *: Total is up to the 6th vehicle                               NA: Not Available  

It can be seen from Table 4.12 that the MUT results for roadworks sites (current and historic) 

are not significantly different from typical signalised junctions. The difference is negligible 

which could be due to different factors (i.e. percentage of HGVs, drivers’ reaction time, 

acceleration capabilities, flow levels and frustration, weather conditions, etc.). 

4.8 Move-up delay (MUD) 

MUD was captured from the time that the signals sequence shows red-amber until the first 

vehicle in the queue starts to move. The data was collected for primary and secondary 

streams separately and will be used as an input in the micro-simulation model.  

Table 4.13 summaries the MUD for shuttle-lane roadworks compared with previous studies. 

It was noticed that for Site 12 (heavy rain conditions), the move-up delay increased by 35% 

and 30% for primary and secondary streams, respectively compared with sunny/cloudy with 

dry surface which could be attributed to poor visibility caused by adverse weather condition 

(i.e. heavy rain). 

It can be seen from Table 4.13 that move-up delay ranges between 0.8 and 6.2 seconds with a 

sample mean (µ) of 2.0 seconds for the primary stream. For the secondary stream, move-up 

delay ranges between 0.8 and 6.7 seconds with a sample mean (µ) of 2.0 seconds. These 

statistical values are for dry road surface condition (cloudy or sunny situation).  



CHAPTER FOUR                                                                                        DATA ANALYSIS 
 
 

69 
 

In heavy rain situations with wet road surface, the move-up delay ranges between 1.0 and 4.9 

seconds with a sample mean (µ) of 2.7 seconds for the primary stream. For the secondary 

stream, move-up delay ranges between 1.0 and 6.4 seconds with a sample mean (µ) of 2.6 

seconds. These means are higher than all averages reported by previous studies at signals 

control operations. The reason may be drivers' slow reactions when they anticipate that 

congestion still exists (Yousif, 1993). It is reasonable to assume that drivers with longer 

reaction times will have a longer move-up delay than those having shorter reaction times 

(Benekohal, 1986; Yousif, 1993; Al-Obaedi, 2012). 

Table 4.13: Move-up delay for various studies 

Study Road 
Type 

Road 
Condition 

Sample 
Size  
(N) 

µ 
(sec) 

σ  
(sec) 

Min 
(sec) 

Max 
(sec) 

Yousif, 
1993 

Motorway NA 437 
Cars 1.8 

HGVs 2.0 
NA 0.6 6.0 

Al-
Obaedi, 

2012 
Motorway NA NA 1.8 NA 0.5 6.5 

Current 
Study 

Urban-
Roadworks 

Dry 
(P) 510 
(S) 411 

(P) 2.0 
(S) 2.0 

(P) 0.7 
(S) 0.7 

(P) 0.8 
(S) 0.8 

(P) 6.2 
(S) 6.7 

Current 
Study 

Urban-
Roadworks 

Heavy 
rain/Wet 

(P) 48 
(S) 71 

(P) 2.7 
(S) 2.6 

(P) 0.8 
(S) 0.9 

(P) 1.0 
(S) 1.0 

(P) 4.9 
(S) 6.4 

NA: Not Available 

 

The distribution of move-up delay for both dry and wet situations and for both primary and 

secondary streams fit the lognormal distribution as shown in Figure 4.9 and the statistical 

results are summarised in Table 4.14. In the current study, drivers will be assigned a move-up 

delay as part of their characteristics before entering the model based on the lognormal 

distribution. Figure 4.10 show the cumulative frequency for the MUD for both dry and wet 

surface conditions and for both the primary and secondary streams. 
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(a) Dry Surface – Primary   (b) Dry Surface – Secondary 

  

(c) Wet Surface-Primary   (d) Wet Surface-Secondary 

Figure 4.9: Distribution of move-up delay for shuttle-lane roadworks 

  

Table 4.14: Summary of statistics for move-up delay distribution fitting 

Road Type 
Road 

Condition Distribution  
Sample 

Size Dcr  
Dmax 

(lognormal) Accept 

Urban-
Roadworks 

Dry 
Lognormal 

(P) 510 
(S) 411 

0.085 
0.095 

0.053 
0.033 

Yes 
Yes 

Wet 
(P) 48 
(S) 71 

0.278 
0.228 

0.052 
0.038 

Yes 
Yes 

4.9 Vehicle length 

In urban areas, there are various types of vehicles ranging from motorcycles, to heavy goods 

vehicles (HGVs). The dimensions and mechanical abilities between HGVs types and also 

over the years are different. Vehicle length is one of the factors that is considered in the 

calculation of acceleration/deceleration rates of the car following rule and also the estimation 

of gaps required, etc.  
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(a) Primary Stream   (b) Secondary Stream 

Figure 4.10: Cumulative frequency MUD for shuttle-lane roadworks 

A study was carried out by El-Hanna (1974) on UK motorways which classified the vehicles 

into two types, namely passenger cars and HGVs based on empirical data. El-Hanna reported 

that vehicle length is normally distributed with mean and standard deviation as reported in 

Table 4.15. Based on the assumption of normality, these results will produce unrealistically 

short length of HGVs. Chin (1983) found different results with HGVs mean length of 6.8m. 

Table 4.15: Vehicle classification (Source: El-Hanna, 1974) 

Vehicle Type Cars HGVs 

Mean (µ) 4.2 11.2 

Standard deviation (σ) 0.4 2.4 
 

The classification of vehicles into two types (cars and HGVs) was carried out because of the 

difficulty in obtaining standard values for both vehicle length and acceleration/deceleration 

for each vehicle type. In the current study the distribution of cars’ length were obtained from 

the M25 and M42 motorways IVD field data because of the availability and accuracy and 

large sample size of the obtained data. The data consisted of 5,338,769 vehicles that were 

analysed using a database. It was found that cars range from 2.3m to 5.6m. Table 4.16 shows 

statistical summary of the car data which shows a good agreement with El-Hanna (1974). 

Table 4.16: Vehicle classification based on UK motorway data (M25 and M42) 

Vehicle Type Mean (µ) SD (σ) Min Max Sample 

Cars 4.2 0.5 2.3 5.6 5,338,769 

Car length distribution fits a truncated (bounded) normal distribution as shown in Figure 4.11 

and the car length cumulative distribution is shown in Figure 4.12. The truncated normal 
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distribution has been used by many researchers and studies of various types of highway such 

as motorways, merging sections, parking (Zarean, 1987; Purnawan, 2005; Zheng, 2003; 

Wang, 2006 and Al-Jameel, 2012). Therefore, for the distribution of cars, a truncated normal 

distribution will be used with the statistical values shown in Table 4.16. 

For HGVs, the data was collected from all surveyed sites for various HGVs types as 

classified by the Department for Transport (2006) and shown in Table 4.17, with the sample 

size (which were obtained from urban roadworks sites) and average length for each type 

(which was obtained from HGVs manufacturers that follows the EU length standards). Al-

Obaedi (2012) and Westhaven Worldwide Logistics (2012) have reported that typical 

manufacturer’s data sources have been investigated and the minimum length of HGVs is 

5.6m. Therefore, this value was used to distinguish between cars and HGVs. The distribution 

of HGVs does not follow any distribution as shown in Figure 4.13. Therefore, in the current 

study, the value of HGVs length will be generated from a cumulative frequency curve as 

shown in Figure 4.14 with the statistical values shown in Table 4.18 and will be used as an 

input into the micro-simulation model. 

Table 4.17: HGVs classification based on urban roads 

Vehicle Type Illustration 
Overall length 

(m) 
Sample 

size Source 

Bus-double decker 
 

10 39 
TAN 

BP1/06 

Bus-single decker 
 

12 55 
TAN 

BP1/06 

2-axle rigid 
 

5.6-10.0 217 

www.volvo
trucks.com 

3-axle                   
(rigid and articulated)  

7.6-11.0 42 

4-axle                   
(rigid and articulated)  

9.5-11.5 17 

5-axle articulated 
 

15.5 (max) 19 

SN/BT/654 
6 (or more) 

-axle articulated 
 

16.5 (max) 5 
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Table 4.18: HGVs length statistical summary based on UK urban roadworks sites 

Vehicle Type Mean (µ) SD (σ) Min Max Sample 

HGVs 9.5 1.9 5.6 16.5 394 
 
 

 
Figure 4.11: Frequency car length distribution based on UK motorway (M25 and M42) 

 
 

 
Figure 4.12: Cumulative car length distribution based on UK motorway (M25 and M42) 
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Figure 4.13: Frequency distribution for HGVs length based on urban roadworks sites 

 

 
Figure 4.14: Cumulative distribution for HGVs length based on urban roadworks sites 

4.10 Signals settings 

Traffic signals information and settings have been collected on site and also from video 

playbacks using an event time recorder to record various phases and times. These signals 

settings are summarised in Table 4.19  along with the recommended design standard values. 

4.10.1 Signals settings 

It can be seen from Table 4.19 that FT traffic signals were used at sites 16 and 19. The 

Department for Transport (2008) clearly states that the signals control should always be VA 

unless agreed otherwise by the traffic authority to use other modes (i.e. FT or manual control) 

to relive short term difficulties. It was also observed on the FT sites that the system was not 

used for short term as the sites were surveyed over various days and different periods. It was 
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also noticed that for the primary stream of Site 19, the green time was not used according to 

the recommended maximum green time as specified by the Department for Transport (2008) 

and also different green for each stream were used. 

For the VA sites, it was observed that none of the sites followed the maximum green time 

recommended by the Department for Transport (2008) which is also summarised in Table 

4.19. Green time was extended to reach a value of 88 seconds (Site 12) which is clearly 

higher than what is recommended by the Department for Transport (2008) design guidelines. 

This extension occurred when the maximum recommended green time was reached for a 

certain stream (i.e. primary stream) without the presence of any detected vehicle on the 

opposite stream (i.e. secondary stream), and it continued to be extended until a vehicle was 

detected on the other stream (i.e. secondary stream).  

No reference was made to such a high green time in any of the design standards for shuttle-

lane roadworks (i.e. such as the Department for Transport (2008, 2009, 2011); Highways 

Agency (2005A, 2005B)). Temporary traffic signals (signals controllers) have a built-in 

maximum green up to 90 seconds. This information has been provided by temporary traffic 

signals manufacturers (see for example A-Plant LUX, 2013 and Pike Signals, 2013).  

It was also noticed that minimum green time used at all sites are 12 seconds (which will be 

used regardless if a vehicle is detected or not). Also, when there are 1 or 2 vehicles queuing at 

the traffic light on one stream (i.e. primary stream) with no further vehicles approaching the 

site from the same stream, the phase will run for a minimum of 12 seconds before it 

terminates. This will increase the amount of lost time and reduce site capacity for the 

opposite stream (in the case of vehicles already queuing in the opposite stream). It can be 

improved by using a minimum green time of 7 seconds as stated by the Highways Agency 

(2005A) and the Highways Agency (2005B) that the minimum green could be configured to 

either 7 or 12 seconds. 

The recommended all-red period by the Department for Transport (2008) was only 

implemented on sites 12 and 19. The observed values on site are higher than the design 

standards, although there is a safety margin accounted for in the design standard values. This 

increase in all-red period might improve safety of the shuttle-lane site by ensuring that all 

amber crossing/red light runners cleared the site safely, but it will reduce site capacity by 
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increasing the cycle time. This could possibly lead to an increase in queues and drivers’ 

frustration resulting in more violations (i.e. red light running). 

Table 4.19: Summary of signals settings for each site 

Site Direction 
L 

(m) 
Type 

CT (sec) GT (sec) 
GT-DS 
(sec) AR 

(sec) 

AR-
DS 

(sec) 

Amb, 
RA 
(sec) 

min max min max max min 

11 
P 

42 VA 40 152 
12 *60 

35 (�) *3 5 (�) 3,2 
S 12 *48 

12 
P 

107 VA 74 154 
12 *88 

40 (�) 20 15 (�) 3,2 
S 12 *60 

16 
P 

52 FT 60 60 
20 20 

35 (�) *5 10 (�) 3,2 
S 20 20 

17 
P 

39 VA 40 118 
12 *54 

35 (�) *3 5 (�) 3,2 
S 12 *72 

18 
P 

73 VA 44 128 
12 *76 

35 (�) *3 10 (�) 3,2 
S 12 *78 

19 
P 

38 FT 115 115 
*50 *50 35 (� for 

S and � 
for P) 

10 5 (�) 3,2 
S 35 35 

L: site Length  VA:  Actuated signals  FT: Fixed Time signals                   CT: Cycle Time       
GT: Green Time  AR: All-Red period   Amb: Amber period            RA: Red Amber        
DS: Design Standards   (�) and * not following design standards      (�) following design standards 
 

4.10.2 VA detection failure 

Vehicle detection errors were observed on all sites operated by VA signals on 10 occasions 

(10 out of 956 cycles operated by VA signals). The detection failure is caused by failure in 

the MVD unit (Microwave Vehicle Detector). This error in detection was observed and 

reported in Appendix B. In few occasions, the detection error caused drivers to violate the 

temporary traffic signals, which is explained in details in the next section. 

4.11 Drivers’ compliance 

Various types/categories of amber crossing/red light running violations were observed on 

shuttle-lane roadworks sites operated by temporary traffic signals. These were categorised 

under four main headings as explained in the following sections and as shown in Table 4.20. 
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Table 4.20: Categories of observed amber crossing/red light violations at temporary traffic 

signals 

Violation type 
Category 1: 

Dilemma Zone (DZ) 
Category 2:  
DZ follower 

Category 3:  
Group violations 

Category 4:  
Single violation 

Definition 
 
Drivers choose to cross 
on amber/red light due to 
the presence of dilemma 
zone (DZ) as explained in 
Section 2.6.9.2 and 
illustrated in Figure 2.10. 

 
Drivers choose to follow 
a leader that crossed on 
amber/red light due to the 
presence of DZ as 
explained in Section 
2.6.9.2 and illustrated in 
Figure 2.10. 

 
Drivers choose to violate the 
red light because of the 
frustration / long waiting 
time due to vehicle detection 
error. 

 
Drivers choose to violate 
the red light because of 
the available opportunity / 
gap. 

Factors affecting the decision 
 

� Vehicles approaching 
the temporary signals 
at the time that the 
light changes from 
green to amber.  

� Crossing on 
amber/red light is 
violated (could either 
deliberately or not 
deliberately). 

� Occurs on both 
saturated and 
unsaturated cycles 
(could happen in both 
FT and VA signals 
and for both good and 
bad visibility). 

 
� Vehicles are 

following amber 
crossing/red light 
violator (crossed 
because of the 
presence of dilemma 
zone). 

� Occurs on both 
saturated and 
unsaturated cycles 
(could happen in both 
FT and VA signals 
and for both good and 
bad visibility). 

� Occur in both single 
and group violations. 

� Crosses the amber/red 
light deliberately. 

 
� Detection failure: the 

drivers in the violated 
stream suffer long delays 
due to long red phase 
caused by green phase 
extension in the opposite 
stream (happens in VA 
signals, good visibility 
and with no vehicles in 
opposite stream at the 
time of the violation). 

� Usually occurs in group 
violations (3 cars or 
more). 

 
� Occurs in a single 

violation were a 
vehicle stops at the 
stop line for a very 
short time (less than 
10 seconds) and once 
the opposite stream is 
clear, the driver 
violates the red light 
and crosses the site 
(usually happens in 
good visibility and 
with no vehicles in 
opposite direction). 

� Run the red light 
deliberately. 

4.11.1 Category 1: Dilemma Zone (DZ) 

Observations from several shuttle-lane sites suggest that some drivers choose to cross on 

amber/red lights caused by the presence of dilemma zone.  This behaviour is referred to here 

as Category 1. Table 4.21 summarises the amber crossing/red light violations that were 

observed from each site and each stream separately for this category. 

Table 4.21 shows that out of the 1,484 signal cycles, vehicles passed the stop line on 232 

(15.6%) cycles when the lights show amber while 97 (6.5%) drivers violated the cycles by 

crossing within red phase.  These percentages (in the last column) underestimate non-

compliance behaviour as the total number of cycles includes cycles with no approaching 

vehicles at the onset of amber. 
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Although the total observed number of cycles operating under VA (956 cycles) is higher than 

for FT (528 cycles), it can be seen that 100 vehicles (10.5%) crossed the stop line on the 

onset of amber/red on VA signals while the number of vehicles that crossed the stop line on 

the onset of amber/red was 229 vehicles (43.4%) for FT signals. This indicates that the VA 

system performs better in reducing the number of vehicles that crosses on both amber/red in 

the presence of the dilemma zone. These results are in agreement with Puan and 

Ismail (2010). Over all, amber crossing for the primary stream is almost equal to the 

secondary stream with a total of 167 (22.5%) and 162 (22.8%), respectively. 

It is believed that the percentage of the total vehicles crossing on amber and red (22.2%) 

should be higher as the total number of cycles (1,484) includes empty cycles. Drivers in 

empty cycles do not have a decision to make whether to cross on amber or stop (i.e. because 

they arrive late after the other stream approached or no vehicles arrived at the stop line on the 

onset of amber). 

Table 4.21: Amber crossing/red light violation for Category 1 (DZ) 

Site Direction Type No of cycles Amber crossing Red light violation 
Overall crossing 
(Amber + Red) 

11 
P 

VA 
260 38 (14.6%) 11 (4.2%) 49 (18.8%) 

S 260 29 (11.2%) 9 (3.5%) 38 (14.6%) 

12 
P 

VA 
80 3 (3.8%) 0 (0%) 3 (3.8%) 

S 80 1 (1.3%) 0 (0%) 1 (1.3%) 

16 
P 

FT 
163 36 (22.1%) 18 (11%) 54 (33.1%) 

S 163 49 (30.1%) 16 (9.8%) 65 (39.9%) 

17 
P 

VA 
61 0 (0%) 1 (1.6%) 1 (1.6%) 

S 61 0 (0%) 1 (1.6%) 1 (1.6%) 

18 
P 

VA 
77 2 (2.6%) 0 (0%) 2 (2.6%) 

S 77 4 (5.2%) 1 (1.3%) 5 (6.5%) 

19 
P 

FT 
101 41 (40.6%) 17 (16.8%) 58 (57.4%) 

S 101 29 (28.7%) 23 (22.8%) 52 (51.5%) 

Total 
P 742 120 (16.2%) 47 (6.3%) 167 (22.5%) 
S 742 112 (15.1%) 50 (6.7%) 162 (22.8%) 

Total 
VA 956 77 (8.1%) 23 (2.4%) 100 (10.5%) 
FT 528 155 (29.4%) 74 (14%) 229 (43.4%) 

Total 1,484 232 (15.6%) 97 (6.6%) 329 (22.2%) 

 

4.11.2 Category 2: Dilemma zone follower 

According to previous research on dilemma zone, researchers focused on the effect of 

dilemma zone on the leading vehicle (if the driver will stop or cross and the ways to reduce 

the impact of dilemma zone) without paying much attention to vehicles that are following a 

leading vehicle in the dilemma zone. 
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In urban shuttle-lane roadworks operated by temporary traffic signals, it was noticed that 

when the leading vehicle (leader) decided to cross the stop line (amber crossing or red light 

violation) due to the presence of dilemma zone (DZ), the following vehicles may also make a 

decision to stop or cross the stop line following the leader. This will increase the risk of rear-

end collisions or near accidents.  

The observed dilemma zone follower violations (Category 2) in urban roadworks were 

clearly noticed during over saturated cycles with long queues, which possibly triggered 

drivers’ frustration. According to Bonneson and Zimmerman (2004), drivers’ frustration due 

to congestion and delays are the main factors that influence the decision of deliberate red 

light running (RLR) for drivers which is directly related to volume/capacity ratio. Porter and 

Berry (2001) found that being in a hurry was the most important factor affecting RLR. 

Table 4.22 summarises the amber crossing/red light violations that were observed from each 

site and for each stream separately for Category 2 (DZ followers). It can be seen from Table 

4.22 that that during the 329 cycles representing Category 2 violations, 95 following drivers 

decided to violate (cross the stop line) on either amber or red lights in 82 (24.9%) cycles. It 

can also be seen that sites operated by VA signals have DZ followers in 8 (8%) of the 

violated cycles while sites with FT signal have DZ followers in 74 (32.3%) cycles. This also 

indicates the effectiveness of the VA signal control in reducing the DZ followers. 

Table 4.22 also shows that the primary stream has DZ followers in 48 (28.7%) of the violated 

cycles while the secondary stream has 34 (21%) cycles with DZ followers. This difference 

may be attributed to the fact that there are slightly fewer observed cycles for the secondary 

stream compared with the primary.  However, it could be argued that for vehicles in the 

primary stream, they have to change their horizontal trajectory (to the opposite lane) to 

negotiate the roadwork site layout and the decision of stopping on the stop line becomes more 

difficult while they are deciding whether to cross rather than stop.  

It was also observed from site that the number of DZ followers varies between one and five 

vehicles in each cycle. The distribution of the number of vehicles involved in Category 1 and 

Category 2 violations are summarised in Table 4.23 and shown in Figure 4.15. 
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Table 4.22: Amber crossing/red light violation for Category 2 (DZ followers) 

Site Direction Type 

No of 
cycles in 
Category 

1 

Amber crossing 
Red light 
violation 

Overall crossing 
(Amber + Red) 

V C (%) V C (%) V C (%) 

11 
P 

VA 
49 1 1 (2) 2 2 (4.1) 3 3 (6.1) 

S 38 0 0 (0) 2 2 (5.3) 2 2 (5.3) 

12 
P 

VA 
3 0 0 (0) 0 0 (0) 0 0 (0) 

S 1 0 0 (0) 0 0 (0) 0 0 (0) 

16 
P 

FT 
54 6 4 (7.4) 3 3 (5.6) 9 7 (13) 

S 65 1 1 (1.5) 0 0 (0) 1 1 (1.5) 

17 
P 

VA 
1 0 0 (0) 0 0 (0) 0 0 (0) 

S 1 0 0 (0) 0 0 (0) 0 0 (0) 

18 
P 

VA 
2 2 2 (100) 0 0 (0) 2 2 (100) 

S 5 1 1 (20) 0 0 (0) 1 1 (20) 

19 
P 

FT 
58 19 19 (32.8) 28 17 (29.3) 47 36 (62.1) 

S 52 18 18 (34.6) 12 12 (23.1) 30 30 (57.7) 

Total 
P 167 28 26 (15.6) 33 22 (13.2) 61 48 (28.7) 
S 162 20 20 (12.3) 14 14 (8.6) 34 34 (21) 

Total 
 VA 100 4 4 (4) 4 4 (4) 8 8 (8) 

FT 229 44 42 (18.3) 43 32 (14) 87 74 (32.3) 

Total 329 48 46 (14) 47 36 (10.9) 95 82 (24.9) 

V: number of Vehicles  C: number of Cycles       

 

Table 4.23: Frequency of DZ and DZ follower (Category 1 and Category 2) 

Category Number of vehicles 
crossing (Amber/Red) 

Frequency Number 
of vehicles 

Relative 
Frequency 

1 1 329 329 78% 

2 

2 30 60 14% 

3 6 18 4% 

4 3 12 3% 

5 1 5 1% 
Total 424 100% 

4.11.3 Category 3: Group violations 

In this category, the observed deliberate red light violations in urban roadworks were due to 

drivers’ frustration and were mainly attributed to a long red phase in the stopped stream due 

to failure in the MVD equipment (Microwave Vehicle Detector) and the continuous green 

phase from the opposite stream (exceeding the maximum due to a double or triple green 

phase). This usually happens in multiple violations, VA signals, good visibility and when 

there are no vehicles in the opposite stream.  
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Vehicle detection error was observed from sites operated by VA signals on 10 occasions (10 

out of 956 cycles operated by VA signals) and when the red phase exceeded 75 seconds. In 

two out of the 10 cases in which MVD failures occurred, drivers decided to violate the red 

lights in group violations due to the presence of long queues and delays (violations occurred 

in groups of 3 and 4 vehicles). 

 
 

Figure 4.15: Distribution of DZ and DZ follower (Category 1 and Category 2) 

4.11.4 Category 4: Single violation 

The observed single violations usually occur when a single vehicle briefly waits at the stop 

line at the temporary traffic lights (vehicle waiting time is less than 10 seconds) and 

deliberately decides to violate the red lights before the green phase starts. This type of 

violation usually occurs when the visibility is good (i.e. a driver can see the opposite stream) 

and there are no vehicles approaching from the opposite stream. Table 4.24 summarises the 

observed red light violations for each site and for each stream separately for 

Category 4 (single violation).  

It can be seen from Table 4.24 that 21 cycles (1.4%) out of 1,484 cycles were violated by a 

single crossing and all violations occurred on sites with VA signals and when visibility was 

good. Also, the single violation for the primary stream is almost equal to the secondary 

stream with total violations of 12 (1.6%) and 9 (1.2%), respectively. 
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Table 4.24: Red light violation for Category 4 (single violation) 

Site Direction Type Visibility No of cycles Red crossing 

11 
P 

VA Good 
260 8 (3.1) 

S 260 4 (1.5) 

12 
P 

VA Bad 
80 0 (0) 

S 80 0 (0) 

16 
P 

FT Bad 
163 0 (0) 

S 163 0 (0) 

17 
P 

VA Good 
61 3 (4.9) 

S 61 2 (3.3) 

18 
P 

VA Good 
77 1 (1.3) 

S 77 3 (3.9) 

19 
P 

FT Bad 
101 0 (0) 

S 101 0 (0) 

Total 
P 742 12 (1.6) 
S 742 9 (1.2) 

Total 
VA 956 21 (2.2) 
FT 528 0 (0) 

Total 1,484 21 (1.4) 

Good visibility: drivers from one stream can see the vehicles from the opposite stream 
Bad visibility: drivers from one stream cannot see the vehicles from the opposite stream 

4.11.5 Summary of observed red light violations 

This section summarises the overall observed amber crossing and red light violations and also 

compares violations at roadworks to signalised junction from previous studies. Table 4.25 

summarises the amber crossing and red light violations by category and their frequency are 

shown graphically in Figure 4.16. 

It can be seen from Table 4.25 and Figure 4.16 that the dilemma zone (DZ) has the highest 

impact on drivers’ decision to cross on amber or red lights in shuttle-lane roadworks with a 

relative frequency of 82.9% and 58.1% for amber crossing and red light violations, 

respectively. Vehicles following the DZ vehicles that decided to cross are the second 

factor/category with a relative frequency of 17.1% and 28.1% for amber crossing and red 

light violations respectively. The third highest category is the single violation which 

contributes to 4.7% of the overall violations while the group violations caused by MVD error 

consist of only 0.4% of the red light violations. 
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Table 4.25: Amber crossing/red light violation by category 

Category 

Amber crossing Red light violation 
Overall crossing 
(Amber + Red) 

Frequency 
(cycles) 

Relative 
Frequency 

(%) 

Frequency 
(cycles) 

Relative 
Frequency 

(%) 

Frequency 
(cycles) 

Relative 
Frequency 

(%) 

Category 1 
(DZ) 

232 82.9  97 58.1 329 73.6  

Category 2 
(DZ follower) 

 

48 17.1 47 28.1 95 21.3 

Category 3 
(Group violations) 

NA NA 2 1.2 2 0.4 

Category 4 
(Single violations) 

NA NA 21 12.6 21 4.7 

Total 280 100 167 100 447 100 

 

 
Figure 4.16: Amber crossing/red light violation by category 

Red light violations at roadworks are also compared to typical signalised junctions from 

previous available research and summarised in Table 4.26. It is important to clarify that red 

light violations are site specific in signalised junctions and therefore, the numbers shown in 

Table 4.26 are averages sampled from previous available research and could vary from site to 

site. It is also important to clarify that signalised junctions consist of various arms and 

vehicles are driving in different directions (left, straight and right) while in shuttle-lane 

roadworks, vehicles are driving in one direction with one arm for each stream. 

It is clearly seen from Table 4.26 that red light violation in signalised junctions are 

lower (between 2.7% and 5.3%) than at shuttle-lane roadworks (11.3% on average for the 

current study and ranges between 12% and 30% from a previous study that was carried out by 
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Samoail and Yousif (1998)).  This is deemed to be relatively high and could cause a risk of 

road accident involving vehicles, pedestrians and workers at the site. 

Table 4.26: Comparison of red light violations (typical signals vs. roadworks)  

Study Country Type Total 
Cycles 

Red light 
violations 

Wei et al. (2010) USA 
Traffic 
signals 

1,601 77 (4.8%) 
Bonneson and Zimmerman 

(2004) 
USA 11,266 595 (5.3%) 

Koll et al. (2004) Europe 4,997 133 (2.7) 

Samoail and Yousif (1998) United 
Kingdom 

Roadworks 
12% – 30% 

Current study 1,484 167 (11.3%) 

4.12 Signage 

Signage is another important element of urban shuttle-lane roadworks as it provides drivers 

with warnings about oncoming hazards or change of road layout. The Department for 

Transport (2011) sets the required signs and their setting distances for each type of shuttle-

lane roadworks based on previous research. Failure to comply with the design standards will 

create unnecessary risks to drivers. Table 4.27 lists the required signs at each type of shuttle-

lane roadworks.  

According to the Department for Transport (2011), the minimum and normal maximum 

setting distance for the first sign in advance of the lead-in taper (first cone) should be between 

20 and 45 metres. It also states that all signs should be visible to approaching drivers with a 

minimum clear visibility of the first sign at 60 metres.  

For shuttle-lane roadworks controlled by temporary traffic signals, signs 1 to 6 should be 

used. For Give/Take operation, signs 1, 3 and 4 only should be used. For priority operation, 

signs 1, 3, 4, 6 and 7 should be used. All signs should be placed according to the Department 

for Transport (2011). 

Tables 4.28 and 4.29 summarise the observed signage for each site and each stream with their 

setting distances and comparing each direction to the design standards. Sites 1, 8, 9, 10 and 

15 are not included in the table as they are not shuttle-lane roadworks sites (i.e. signalised 

junction or traffic calming sites). 
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Table 4.27: List of sign for shuttle-lane roadworks  

Sign 
Number Sign Description 

1 
 

Roadworks ahead 

2 
 Traffic signals ahead (if site is operated by temporary traffic 

light) 

3 

   

Road narrows on left hand side (used in primary stream) 
Road narrows on right hand side (used in secondary stream) 

4 
 

Where vehicles should stop at temporary traffic signals 

4 

      

Keep right, keep left 

6 
 

End of roadworks 

7 

       

Give way to oncoming vehicles 
Priority over oncoming vehicles 

 

It can be seen from Tables 4.28 and 4.29 that placing signs at roadworks were not carried out 

correctly according to the design standards at most of the sites. At some sites (i.e. sites 7, 12, 

13 and 14), there were missing signs which can cause confusion to drivers approaching the 

roadworks site and may result in an increase in the risk of collision due to driver hesitation or 

sudden braking. 

It was also observed at most sites (i.e. sites 2 to 7, 11, 14, 15, 78, 18 and19) that signs were 

not placed according to the recommended design standards (signs should be placed at a 

distance between 25-50 metres from the first cone). It was also observed that not all signs 

were visible to drivers at most of the sites (columns 7 in Tables 4.28 and 4.29), were signs 

were either covered by parked vehicles or had been knocked down. 
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Table 4.28: Signs and distances for historical roadworks sites  

Site Dir. 
Are all 
signs 

available 

Missing 
signs 

Distance 
to first 

sign (m) 

According 
to 

standards 

Are all 
signs clear 

to 
oncoming 

traffic 

2 
P � - 260 � � 
S � - 285 � � 

3 
P � - 89 � � 
S � - 102 � � 

4 
P � - 187 � � 
S � - 142 � � 

5 
P � - 95 � � 
S � - 110 � � 

6 
P � - 70 � � 
S � - 92 � � 

7 
P � 1,2,3 21 � � 
S � all 26 � � 

 

Table 4.29: Signs and distances for current roadworks sites  

Site Dir. 
Are all 
signs 

available 

Missing 
signs 

Distance 
to first 

sign (m) 

According 
to 

standards 

Are all 
signs clear 

to 
oncoming 

traffic 

11 
P � - 55 � � 
S � - 68 � � 

12 
P � 1,3 40 � � 
S � - 44 � � 

13 
P � 1,7 25 � � 
S � 1,3 20 � � 

14 
P � - 30 � � 
S � all 0 � � 

16 
P � - 54 � � 
S � - 42 � � 

17 
P � - 89 � � 
S � - 114 � � 

18 
P � - 93 � � 
S � - 99 � � 

19 
P � - 54 � � 
S � - 42 � � 

20 
P � - 65 � � 
S � - 52 � � 

21 
P � - 32 � � 
S � - 28 � � 

22 
P � - 59 � � 
S � - 47 � � 

23 
P � - 48 � � 
S � - 30 � � 
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4.13 Summary 

This chapter presented the data analysis stage which is performed on the data collected from 

shuttle-lane roadworks sites and other various sources. The analysed data was used in 

developing, calibrating and validating the micro-simulation model as described in Chapter 5 

and 6. 

� Video recordings for over 54 hours (23 sites) were used to analyse the various 

information of shuttle-lane roadworks. 

� Video recordings were used to extract various sets of information such as flow level 

and profile, following headway (close following “tailgating”), Move-up time (MUT) 

and Move-up delay (MUD). 

� Data taken from over 5.3 million IVD data records were used to calculate car length 

and model the probability distribution of car length. HGVs data collected from both 

visited sites and manufacturer catalogues of vehicles and were used to calculate the 

HGVs length and distribution. 

� Signals type and settings were collected and analysed using video recordings and 

onsite observations. 

� Drivers’ compliance with temporary traffic signals was collected using video 

recordings. Information regarding drivers’ compliance included drivers crossing 

through amber and red light violations per cycle. 

� Site observations using a measuring wheel were used to collect signage information 

and distances at all shuttle-lane roadworks sites. 
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CHAPTER FIVE:  LIMITATIONS OF THE S-PARAMICS 
MICRO-SIMULATION MODEL 

5.1 Introduction 

The current chapter describes the development process of the S-Paramics micro-simulation 

model for studying urban roadworks and specifically, shuttle-lane roadworks operated by 

temporary traffic signals. The chapter also describes the calibration, validation and 

limitations of the S-Paramics micro-simulation model. 

S-Paramics is a micro-simulation software package capable of representing the behaviour and 

interaction between individual vehicles on the road network.  Different road layouts and 

features may be simulated and drivers’ behaviour characteristics can be changed relatively 

easily as part of the calibration and validation of the model to replicate actual site 

observations. 

The S-Paramics also provides outputs and presents real-time visual displays for various 

traffic management and road network designs. Vehicle dynamics (i.e. acceleration and 

deceleration rates and vehicle dimensions) can also be changed to represent real observations 

(SIAS Limited, 2007). In the current study, the S-Paramics 2010.1 was used to develop, 

calibrate and validate shuttle-lane urban roadworks micro-simulation model operated by FT 

signals as discussed in the following sub-sections. 

5.2 Development of the S-Paramics model 

Geometric layout using AutoCAD drawing was established using aerial photographs before 

the model building stage commenced. A model for Site 16 was built and a model screen shot 

layout is shown in Figure 5.1.  

The S-Paramics model consists of nodes and links, with each node carrying different 

characteristics, such as the type of traffic control and sight distance. Links carry the 

characteristics of traffic and geometric design (e.g. speed, visibility, number of lanes, 

directional movement, etc.). 

Below is a description of the various assumptions made in the S-Paramics model: 

� The model covers a 2 hours period (AM period); 
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� The first and last 30 minutes in the model are used as the warming up and cooling 

down periods, respectively; 

� Traffic is profiled for the whole of the 2-hour period with 5-minute profile details 

(representing the observed arrival rates of vehicles every 5 minutes); 

� Two vehicle classes were modelled namely, cars and HGVs with their corresponding 

proportions. 

Temporary traffic signals were coded in the S-Paramics model based on observed phases and 

values. All the model default values were used at the start of the verification and calibration 

processes (e.g. minimum gap, headway, visibility, acceleration and deceleration rates, 

awareness and aggression level). As part of the model calibration, these values can be 

amended to represent any observed surveyed values/behaviour on site as described in details 

in the following section. 

 

Figure 5.1: Shuttle-lane roadworks using S-Paramics 

5.3 Statistical tests 

Statistical goodness-of-fit measurements (tests) were carried out between the observed and 

simulation output data for calibration and validation purposes. In addition, graphical 

representation was also produced. Two goodness-of-fit measures were introduced, explained 

below and were used in the model calibration and validation for comparison between 

observed and modelled results. 
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5.3.1 Root Mean Square Error Percentage (RMSEP) 

This test is considered to be a good initial test to make a comparison between empirical and 

simulated data because it penalises high errors at higher rates than small errors (Toledo, 

2003). This test has been used in many simulation studies (see for example Wu et al. (2003), 

Panwai and Dia (2005), Wang (2006), Al-Jameel, (2012) and Al-Obaedi (2012)) and is 

represented in Equation 5.1.  

RMSEP = cN
d ∑ �*fSgf

*f �'dfhN                   Equation 5.1 

Where, 
n is the number of time intervals 
xi is the observed flow at time interval i; 
yi is the simulated flow at time interval i. 

 

5.3.2 Geoffrey E. Havers (GEH) 

The GEH statistical test was developed by the Department for Transport in 1996. The test is 

used to compare two sets of readings (modelled and observed) in order to test the validity of 

the model. The test (which is similar to the Chi-squared statistic) is widely used and 

recommended by the Department for Transport (1996) and is represented in Equation 5.2. 

GEH = c'�*fSgf�
*f=gf

'
                          Equation 5.2 

According to Hourdakis et al. (2003), satisfactory model results will be achieved if RMSEP 

is less than 15%. According to the Design Manual for Roads and Bridges (1996), the GEH 

should be ≤ 5 for the link flow to be satisfactory. These thresholds are monitored throughout 

the calibration/validation process to ensure acceptable model quality along with other 

measures. 

5.4 Calibration and validation of the S-Paramics model 

Following the S-Paramics model building stage, various calibration parameters were used to 

obtain the best results (i.e. headway factor, mean time headway and minimum space) and 

default S-Paramics values were used for other unavailable values.  

Although S-Paramics can model complicated control operations such as road narrowing using 

throttle and could also replicate complicated drivers’ behaviour such as cooperative 

behaviour as was carried out in a study by Yousif et al. (2013). S-Paramics cannot correctly 
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replicate shuttle-lane rules such as drivers’ behaviour in dilemma zone or amber crossing/red 

light violations and also no Move-up time (MUT) information could be extracted. Therefore, 

only flow, throughput, headway and queues will be provided in this section and compared 

with observed data with no amber crossing/red light violations results. 

The statistical results are presented in Table 5.1 for flow and throughput for each 5-minutes 

interval and shown graphically in Figure 5.2. Table 5.2 shows the output results for following 

headway values and Table 5.3 shows the queue results. 

Table 5.1: S-Paramics model statistics - flow and throughput (Site 16a) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 15.9 18.4 14.5 18.9 
GEH 2.64 3.26 2.72 3.44 

 
Table 5.2: S-Paramics model statistics - headway (Site 16a) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.46 3.20 -0.26 3.15 3.08 -0.07 

Avg. Headway (sec)  (ACR) 2.49 2.77 0.28 2.56 2.42 -0.14 

< 2.0 (%) (BAR) 13% 10% -3% 17% 9% -8% 

< 2.0 (%) (ACR) 38% 27% -11% 33% 34% 1% 

≤ 6.0  (veh) (BAR) 242 220 -22 284 321 37 

≤ 6.0   (veh) (ACR) 355 398 43 423 459 36 
 

  

(a) Primary Stream    (b) Secondary Stream 

Figure 5.2: S-Paramics model vs. observed flow (Site 16a) 
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It can be seen from Table 5.1 that the S-Paramics model fails statistically to replicate both 

flow and throughput for the primary stream and throughput for the secondary stream 

according to RMSEP % results. This indicates that a great deal of care should be taken in 

selecting the default values when using S-Paramics to represent shuttle-lane roadworks 

behaviour. Although the S-Paramics GEH results are within the acceptable limits, throughput 

per cycle could not be represented correctly due to the amber crossing/red light violations 

(drivers’ decisions) observed on site which could not be replicated accurately by S-Paramics. 

Results of the average time headway for vehicles in platoons (following headway ≤ 6 

seconds) were compared between observed and modelled data for vehicles in both situations 

(i.e. BAR and ACR) as shown in Table 5.2. It can be seen from Table 5.2 that the average 

time headway between real observed data and simulation model output for both streams and 

for both situations (BAR and ACR) are in good agreement with a maximum difference of less 

than 0.28 seconds for all situations.  

It can also be seen from Table 5.2 that the percentage of drivers violating the two-seconds 

rule are also in good agreement between modelled and observed data for both streams and all 

situations with a maximum difference of -11%. The final comparison which is the total 

number of vehicles in platoons is also in good agreement between modelled and observed on 

all situations (BAR and ACR) with a maximum difference of 13% (37 vehicles). 

Queues are reported and a comparison between the observed and simulation model output is 

shown in Table 5.3 for each stream separately. According to Dowling et al., (2002), 

maximum queue (in vehicles) is the maximum observed queue in any 5-minutes interval 

(over the simulation period). It is a useful measure that needs to be observed and compared 

between real data and the simulation model to indicate if the queues will spill back to the next 

junction. Average queue in any 5-minutes interval and total queued vehicles over the 

simulation period are also useful measures to report and compare between observed and 

modelled data. 

It can be seen from Table 5.3 that the differences in maximum queues are -40% and 50% for 

primary and secondary stream, respectively; while the differences in average queues are         

-30% and -43.1% for primary and secondary stream, respectively. The differences in the total 

reported queues over the simulation period are -31.4% and -20.1% for primary and secondary 

stream, respectively. According to Lee (2008), the validation criterion for the simulated 
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maximum and average queue is to be within ±20% of the observed value. Therefore, it can be 

concluded that reported simulation queues are not in good agreement with the real observed 

queues. Therefore, the S-Paramics model fails to replicate observed queues and that the 

queues statistics obtained from the S-Paramics model constantly under-estimates the queues 

for both streams. 

Table 5.3: S-Paramics model statistics - queues (Site 16a) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 15 9 -40.0% 14 7 -50.0% 

Average queue (veh) 4.0 2.8 -30.0% 5.1 2.9 -43.1% 

Total queued vehicles 
(veh) 

357 245 -31.4% 483 386 -20.1% 

5.5 Summary 

The current chapter presented the building, calibration and validation of the S-Paramics 

simulation model using real observed traffic data from surveyed shuttle-lane roadworks site. 

The results showed that the S-Paramics model fails statistically to replicate both flow and 

throughput for the primary stream and throughput for the secondary stream according to 

RMSEP % results. For all time headway statistics, it can be seen that the observed data and 

S-Paramics simulation model output for both streams and for both situations (BAR and ACR) 

are in good agreement. For queue statistics, the S-Paramics model fails to replicate observed 

queues and constantly under-estimates the queues for both streams. In addition, the               

S-Paramics model could not replicate the aggressive drivers’ behaviour of amber crossing/red 

light violation observed on site and the presence of dilemma zone which has an effect on both 

safety and capacity.  

Therefore, a new micro-simulation model needs to be developed as part of the current study 

to provide more accurate results. The model should also have the ability to cover S-Paramics 

limitations (the ability to model aggressive drivers’ behaviour and the effect of dilemma 

zone). 
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CHAPTER SIX:  SIMSUR MODEL SPECIFICATION 
AND DEVELOPMENT 

6.1 Introduction 

The current chapter describes the specification and the structure of SIMSUR (SIMulation of 

Shuttle-lane Urban Roadworks) simulation model for studying urban roadworks and 

specifically, shuttle-lane roadworks operated by temporary traffic signals. SIMSUR 

simulation model consists of two sub-models: car-following and shuttle-lane sub-models. 

Each of these sub-models is discussed in details in this chapter. Micro-simulation technique 

has been selected in the current study because of its ability to represent the interaction 

between individual vehicles.  

The micro-simulation model development requires information about vehicles, drivers and 

shuttle-lane roadworks characteristics. It also requires selection and development of suitable 

algorithms for car following sub-model. These characteristics and rules need to be 

programmed using a suitable programming language to test the performance of such a model 

before it could be applied. 

Compaq Visual FORTRAN (6.5) programming language was used in the current study to 

develop the SIMSUR simulation model. FORTRAN language was selected for this purpose 

because it has been widely used in engineering applications and the current version of visual 

FORTRAN could provide a visual representation of vehicles' movements and interactions. 

SIMSUR model was built from scratch for the current study using over 4,700 lines of coding 

and took around 18 months to be developed. 

The determination of scanning time for SIMSUR model was selected based on previous 

research that was carried out by Yousif (1993). Small scanning time will result in more time 

and cost, whereas long scanning time may affect the results. Therefore, the default scanning 

time of 0.5 sec was adopted for this study, which is the typical minimum value of drivers’ 

reaction time (Gipps, 1981). 

6.2 SIMSUR model structure 

SIMSUR micro-simulation model consists of various sub-models such as car following and 

shuttle-lane rules. The simplified micro-simulation model structure is shown in Figure 6.1. 
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The first process in SIMSUR micro-simulation model is to define each driver's and vehicle's 

characteristics (i.e. assigned speed, desired speed, driver's reaction time, vehicle type and 

length, etc.). Vehicles will then be generated and assigned into the road network based on 

their arrival headway. Vehicle information (i.e. current position and speed) will be updated 

every scanning time (∆t) for the whole simulated road length including the warm-up and 

cool-off sections. Data will be collected and sent to an output file. The process is carried out 

for each stream (i.e. primary and secondary) separately. The model will be terminated once 

the simulation period has been reached which is equal to the total simulation time (T). 

 

Figure 6.1: General structure of SIMSUR simulation model 

6.3 Drivers’ and vehicles’ characteristics 

Various drivers’ and vehicles’ characteristics are generated before the vehicle entry into the 

system. The generations of these characteristics are described in the following sections. 
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6.3.1 Perception reaction time  

Driver reaction time is a very important factor that contributes to the headway value between 

vehicles. The perception reaction time consists of two components: the time of seeing or 

receiving the stimulus and the application of the response (O’Flaherty, 1986). According to 

Green (2000), there are various factors affecting reaction time values (i.e. expectation, 

urgency, age and gender, cognitive load and testing conditions) and it is impossible to derive 

a single all-purpose value. 

According to Green (2000), participants in the controlled environment drove on either public 

or private roads (i.e. test tracks) while a researcher sat in the passenger seat. In most 

occasions, the participants knew that he/she is being tested (but without knowing the real 

purpose of the study). The natural environment is where the researchers set up digital 

recording equipment and the drivers’ response was measured (the drivers’ were unaware of 

being monitored). The typical natural reaction time study recorded the interval between a 

yellow traffic signal, brake lights of a leading vehicle (could possibly be driven by a 

researcher) and onset of the naive driver’s brake lights. 

Various researchers have attempted to study driver reaction time under various conditions. 

Table 6.1 summarises the main studies that were carried out in natural and controlled 

environment. 

Table 6.1: Summary of previous studies on drivers’ reaction time  

Study Sample size Min-Max RT mean 
and sd 

Situation 

Chang et al. 
(1985) 

1,614 NA 1.30 (0.74) Surprised 

Sivak et al. 
(1982) 

1,644 0.65-2.40 1.21 (0.63) Surprised 

Lerner 
(1994) 

56 0.7-2.5 1.51 (0.39) Surprised 

Johansson 
and Rumer 

(1971) 
321 

0.73-2.2 0.90 Surprised 

0.54-1.70 0.69 Alerted 

Johansson and Rumer (1971) defined the brake reaction time as representing the perception 

reaction time. They studied reaction times in both alerted and surprised situations using a 

sample of 321 drivers and the results (cumulative distribution) are shown in Figure 6.2. Those 
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values are adopted and used in SIMSUR model (minimum of 0.73 and maximum of 2.2 for 

surprised situation). The conversion factor from surprised to alerted situation is 1.35.  

Congested conditions (i.e. density of more than 37 veh/km) are considered to be for the 

alerted situations as implemented by many previous researchers (Benekohal, 1986; Yousif, 

1993; Al-Jameel, 2012; Al-Obaedi, 2012). According to the Department for Transport 

(2011), the roadworks signs warn (alert) drivers of the oncoming hazard. Therefore, it is 

assumed that the driver is in an alert situation if he/she approaches the “roadworks start” sign 

until he/she approaches the “roadworks end” sign.  

 

Figure 6.2: Distribution of drivers’ reaction time for alerted and surprised conditions 
(Johansson and Rumer, 1971) 

In the current study, drivers' reaction times were obtained from Figure 6.2 cumulative 

distribution by generating random numbers from a uniform distribution. The random numbers 

were set to be equal to the cumulative distribution as was modelled by others (e.g. Al-Jameel, 

(2012) and Al-Obaedi (2012)). 

6.3.2 Move-up delay  

Move-up delay is the time spent by the driver preparing to move when the lights show green 

following a stopping situation at traffic signals. It is obtained for each driver by generating a 

random number from a lognormal distribution based on site observations as discussed in 

Chapter 4, Section 4.8. 



CHAPTER SIX                       SIMSUR MODEL SPECIFICATION AND DEVELOPMENT 
 
 

98 
 

6.3.3 Vehicle type and length  

In SIMSUR model, vehicle type is assigned to each vehicle by generating a random number 

from a uniform distribution (Rtype). The vehicle will be regarded as a HGV if the random 

number is lower than the percentage of observed HGVs for each site and each stream (i.e. 

primary or secondary stream). A random number (RL) will be also generated after the 

assignment of vehicle type to obtain vehicle length. The distribution for vehicle length is 

obtained using truncated normal distribution for cars and cumulative distribution for HGVs as 

explained in Chapter 4, Section 4.9. The steps of assigning vehicle type and length are 

illustrated in Figure 6.3. 

 

Figure 6.3: Method of obtaining vehicle type and length 

6.3.4 Desired Speed  

Desired speed is the maximum speed at which the driver may wish to travel in a road section 

without the influence of any other road users (Yousif, 1993). The desired speed is assigned to 

each driver using normal distribution as reported by previous studies (Al-Jameel, 2012; Al-

Obaedi, 2012) using a random number generator. The mean desired speed used in the current 

study is assumed to be the road speed limit of 30 mph (48 km/h) because of the unavailable 

observed speed data and the standard deviation (σ) of 2 mph. 
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6.3.5 Buffer space 

Buffer space is the space between stopped vehicles under congested conditions (from the 

front bumper follower to the back of the leader) as shown in Figure 6.4. Buffer space is 

assumed to be 1.5 metres which is within the reported limits (Benekohal, 1986; Yousif, 1993; 

Al-Jameel, 2012; Al-Obaedi, 2012).  

 

 

Figure 6.4: Definition of buffer space 

6.3.6 Arrival headway distribution 

Arrival time headway represents the time interval between the arrivals of two successive 

vehicles at a given point (datum line), which is used to generate vehicles arriving into the 

system. According to O’Flaherty (1986), the distribution of the time headway depends on 

various parameters such as driver reaction time, braking distance, vehicle composition, and 

other factors. The headway distribution that is used in SIMSUR model is the lognormal 

distribution for sites with low flow levels (up to 500 veh/hr) and the shifted negative 

exponential distribution for sites with moderate to high flow levels (over 500 veh/hr) which 

were obtained from observed data as explained in Chapter 4, Section 4.5. 

6.3.7 Acceleration and deceleration rates 

The normal and maximum acceleration rates were obtained from the ITE (1999) and were 

also in the updated ITE (2010) as there is an absence of such data from the UK. The normal 

acceleration rate (comfortable acceleration) is used by the driver to reach his/her desired 

speed or when exceeding the desired speed. The values for the normal acceleration rates are 

suggested to be 1.1 m/sec2 for cars and 0.37 m/sec2 for HGVs. For normal deceleration rates, 

the values are 3.0 m/sec2 and 1.8 m/sec2 for cars and HGVs, respectively. The maximum 

acceleration rates (which represents the vehicle’s mechanical ability) rates are shown in Table 

6.2 for cars and HGVs for each speed group. The maximum deceleration rate is assumed as 

4.9 m/sec2. These values were factored down by 75% as suggested by previous research 

studies because of the relatively higher vehicle capabilities in the USA compared with 

Europe and the UK (Yousif, 1993; Wang, 2006; Al-Jameel, 2012). 

Buffer space 

Direction of travel 
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Table 6.2: Maximum acceleration rates (m/sec2) for cars and HGVs (ITE, 1999) 

Speed (km/hr) 0-32 32-48 48-64 64-80 > 80 
Cars 2.4 2.0 1.8 1.6 1.4 

HGVs 0.5 0.4 0.2 0.2 0.1 

6.4 Car-following model structure 

6.4.1 Introduction 

The rule governing the relationship between the leader and the follower is the most important 

rule (car-following rule) that governs the microscopic model. The car-following rule that was 

developed by Benekohal (1986) CARSIM was adopted for SIMSUR model because it is 

realistic and represents the free following as well as stop/go conditions which is the situation 

in an urban environment and particularly in shuttle-lane roadworks. 

The car-following sub-model structure which is based on CARSIM is shown in Figure 6.5 as 

used by many previous researchers (see for example Benekohal, 1986; Yousif, 1993; Al-

Jameel, 2012; Al-Obaedi, 2012) with a small modification to account for shuttle-lane rules, 

drivers’ compliance with temporary traffic signals and dilemma zone. The subroutine is 

called in SIMSUR every scanning time ∆t (0.5 seconds) to determine the 

acceleration/deceleration value in order to determine the new vehicle speed and the new 

position based on the safety rule. The different acceleration/deceleration rates used are 

explained in the following sections. 

Vehicles new speeds and positions were updated at the end of each scanning time using 

Equations 6.1 and 6.2.  

NSpn 	= 	 Spn + 	ACC�Δt�               Equation 6.1 

NPosn =	Posn 	+	SPn�Δt�		+ 	0.5	ACC	�Δt�2            Equation 6.2 

Where, 

ACC is the acceleration/deceleration rate of the vehicle n (m/sec2). 

∆t is the scanning time and it is equal to 0.5 seconds. 

NSpn and NPosn are the updated speed (m/sec) and position (m) of vehicle n (at the end 

of the current scan time interval). 

Spn and Posn are the current speed (m/sec) and position (m) of the vehicle n, 

respectively. 
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6.4.2 Acceleration from vehicle capability (ACC1) 

Based on the vehicle type, the mechanical capability of cars will be different from HGVs and 

each vehicle will be assigned an acceleration (positive value)/deceleration (negative value) 

accordingly. These values are assigned based on the vehicle’s current speed according to 

Table 6.2. 

6.4.3 Acceleration from comfortable conditions (ACC2) 

The desired speed is assigned to each vehicle before the entry to the system and the driver 

tries to reach his desired speed using normal acceleration/deceleration rates if there is no 

constraint by the leader or by roadway conditions such as speed limits, weather conditions, 

etc. The acceleration obtained by this condition is represented by the symbol ACC2.  

6.4.4 Acceleration from stopping distance conditions (ACC3) 

The spacing between the leader and the follower at every time scan is calculated to ensure 

that the follower can stop safely even in the situation of a sudden stop by the leader. The 

acceleration/deceleration rates (ACC3) that satisfy this situation can be calculated according 

to the following equations (Equation 6.3 to Equation 6.5):  

PosL −	�PosF	 + 	SpF	�Δt�	+ 	0.5	�ACCm�	Δt'� 	− 	L9 	− 	Bs	 ≥		                Equation 6.3 

Maximum of Equation 6.4 and Equation 6.5 

�SpF	 +	�ACCm�	Δt	�	Rt	                 Equation 6.4 

OR 

								pSpF	 +	�Accm��Δt�qRt	 +	 prst=	�uvvm��wx�q&
'()*+t −	 �rs,�&

'()*+,      Equation 6.5 
Where, 

ACC3 is the acceleration due to safe stopping conditions (m/sec2). 

Rt is the reaction time (sec). 

∆t is the scanning time (sec).  

PosF, PosL is the position of the follower and leader, respectively (m). 

SpF, SpL is the speed of the follower and leader, respectively (m/sec).  

Bs is the buffer spacing (m). 

LV is the vehicle length (m). 

MaxDL and MaxDF are the maximum deceleration for the leader and the follower, 

respectively (m/sec2). 
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6.4.5 Acceleration from slow moving conditions (ACC4) 

As the vehicle is moving in a platoon of very slow moving traffic, the distance between the 

follower and the leader is governed by the buffer space. The acceleration/deceleration used in 

this situation is determined according to the following equations (Equation 6.6 and 6.7): 

PosL − PosF	 ≥ 	 L9 +	By                 Equation 6.6 

PosL − �PosF	 + 	SpF	�Δt� 	+ 	0.5	�ACCz�	Δt'�	–	L9 	−	By 	≥ 	0.0   Equation 6.7 

Where:  

ACC4 is the acceleration/deceleration due to slow conditions (m/sec2). 

6.4.6 Acceleration from stationary conditions (ACC5) 

Moving from a stationary situation occurs when the leader stops due to roadway conditions 

(e.g. red signals, awaiting a gap to cross the shuttle-lane site, etc.) which forces the follower 

to stop. When the vehicle starts to accelerate due to the absence of that condition (e.g. the 

signals turn into green, safe gap is available, etc.), it will spend some time to start moving 

again (move-up delay). The acceleration values that the driver will use (ACC5) to accelerate 

when moving from stationary conditions are 0.42 m/sec2 and 0.21 m/sec2 for cars and HGVs, 

respectively (Benekohal, 1986; Al-Jameel, 2012). 

6.4.7 Acceleration for stopping at traffic signals (ACC6) 

When the driver approaches temporary traffic signals and the traffic lights show amber or 

red, the driver starts to calculate the required deceleration to stop at the stop line (ACC6). The 

deceleration rate (ACC6) that satisfies this situation can be calculated according to Equation 

6.8 and 6.9, which were calculated using the standard stopping distance equation (Gazis et 

al., 1960):  

Ds�n� 	= 	Posd 	− StpL   Equation 6.8 

Acc| = }.~	�rsd&�
�rsd���x�S+y�d�	    Equation 6.9 

Where,  

Ds (n)  is the difference between the current position of vehicle n and the stop line 

StpL is the stop line location 
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6.4.8 Selection criteria of the final acceleration rate (ACC) 

At every ∆t (scanning time), a unique value for the acceleration/deceleration rate (ACC) is 

calculated, selected and used in updating speeds and positions for each vehicle using 

Equations 6.1 and 6.2 shown above. The criteria for selecting this value is shown in the 

flowchart as illustrated in Figure 6.5.  

The value of ACC3 in Equations 6.3 to 6.5 is developed to enable the follower to stop safely 

even if the leader makes a sudden stop by applying a maximum deceleration. The value of 

ACC4 (in Equations 6.6 and 6.7) is developed for vehicles moving in a very slow moving 

platoon (the distance between the follower and the leader is governed by the buffer space). 

The ACC3 and ACC4 values are calculated using an iterative process (starting from a 

maximum acceleration to a maximum deceleration with an increment of -0.05 m/sec2). 

When the driver approaches the temporary traffic signals and the traffic lights shows amber 

or red, the driver starts to calculate the required deceleration to stop at the stop line (ACC6). 

The deceleration rate (ACC6) that satisfies this situation can be calculated according to 

Equations 6.8 and 6.9 using the standard stopping distance equation. 

At every ∆t, a unique value of acceleration/deceleration rate (ACC) is selected and is used in 

updating speed and position of each vehicle using Equations 6.1 and 6.2. The selection 

criterion of this value is shown in Figure 6.5. This selected rate should not exceed the 

maximum acceleration rate (i.e. ACC1). In addition, if the speed of the leader (SpL) is higher 

than the speed of the follower (SpF) by a certain value (i.e. 5 km/h) and if the distance 

headway between the two vehicles is available (>Bs+LV), the follower will not apply any 

deceleration rate. In all cases, the absolute value of the deceleration rate should not exceed 

the absolute value of the maximum deceleration rate (MaxDL), as shown in Figure 6.5. 
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Figure 6.5: Car-following sub-model structure 

6.5 Modelling of shuttle-lane roadworks 

6.5.1 Introduction 

Modelling the correct drivers’ behaviour when vehicles are in the influence zone of the 

shuttle-lane roadworks (before approaching the temporary traffic signals and while crossing 

the roadworks site) is a very important aspect of SIMSUR simulation model.  
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Shuttle-lane roadworks subroutine is called every scanning time (∆t) to determine all possible 

decisions that can be taken by the driver based on site observations. These decisions are 

either to stop at the traffic signals (when the lights show amber or red) or to cross (when 

lights show green or amber) or to violate the traffic signals (when the lights show red). 

Detailed description of the shuttle-lane roadworks subroutine is shown in the following 

section and illustrated in Figures 6.6 and 6.7. 

6.5.2 Drivers’ compliance with temporary traffic signals 

Shuttle-lane roadworks subroutine is explained in Figure 6.6. It can be seen from Figure 6.6 

that if the vehicle is inside the roadworks influence zone, the value of Ds (using Equation 6.8 

above), will be calculated for each vehicle for every time scan (∆t). The next step will be to 

check if the signal lights show green. In this case the vehicle will continue using the car 

following rule. If the signals does not show green and shows amber, then deceleration rate 

(ACC6) will be calculated based on Ds. 

If the vehicle is the first to approach the temporary traffic signals, then a check will be carried 

out to compare the calculated deceleration rate (ACC6) and the maximum deceleration   

rate (-4.9 m/sec2). If ACC6 is lower than the maximum deceleration, then the driver could not 

possibly stop on time at the stop line. In this case, he/she will cross the site on 

amber (unintentionally). 

If ACC6 is higher than the maximum deceleration and the driver has the capability to stop the 

vehicle, a random number generator (RACL) is called (representing Random number generated 

from Amber Crossing for Leaders). If this number is lower than the percentage of amber 

crossing for leading vehicles (Category 1 - DZ) based on observed data, then the driver will 

cross the site on amber. Alternatively, the driver will stop at the stop line using the calculated 

deceleration rate. 

The observed percentage of RACL is based on three types of amber crossing and red 

violations. These are summarised below: 

1- Drivers crossed unintentionally because they cannot stop due to their speed and 

distance to the stop line (crossed the stop line at the onset of amber); 

2- Drivers crossed intentionally (crossed the stop line at the onset of amber); 

3- Drivers decided to cross on amber but the lights turned to red at the time of crossing. 
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Figure 6.6: Shuttle-lane roadworks sub-model structure (green/amber crossing) 



CHAPTER SIX                       SIMSUR MODEL SPECIFICATION AND DEVELOPMENT 
 
 

107 
 

The split between first two types cannot be identified from the observed data. Therefore, the 

RACL value used in the model will account for intentional crossing only while the 

unintentional crossing due driver inability to stop will be accounted using the comparison 

between ACC6 and maximum deceleration rate (as discussed earlier). 

If the vehicle approaching the temporary traffic signals is not the leading vehicle, the 

subroutine will check the status of the leading vehicle (i.e. whether stopped at the stop line or 

crossed on amber). If the leading vehicle stopped at the stop line, then the following vehicle 

must also stop. If the leading vehicle crossed the stop line on amber, then a random number 

generator will be called (RACF) and if the random number is lower than the observed 

percentage of amber crossing for following vehicles (as shown in Table 4.22 for  

Category 2 – DZ follower), then the driver will cross the site on amber. Otherwise, the driver 

will stop at the stop line. 

If the approaching vehicle arrived at the roadworks influence zone and the temporary traffic 

signals show red, then the red crossing (violation) subroutine will be called. The detailed 

structure for this case is illustrated in Figure 6.7. The subroutine illustrates Category 2 (DZ 

follower crossing on the onset of red light as shown in Table 4.22), Category 3 (group 

violations) and Category 4 (single violation as shown in Table 4.24), as observed at the 

surveyed sites and explained in Chapter 4, Section 4.11. 

If the vehicle is the first vehicle approaching the temporary traffic signals on the onset of red, 

then the visibility will be checked and if the driver cannot see the first vehicle from the 

opposite stream, then the driver will stop at the stop line and comply with the traffic signals. 

Also, if the visibility is good, but there are vehicles approaching from the opposite stream, the 

driver will also stop at the stop line and will not violate the red light (as was the case from 

site observations). 

Alternatively, if visibility is good and there are no drivers approaching from the opposite 

stream and the vehicle is already stopped at the stop line (speed equal to zero), then 

Category 3 violation criteria are checked. 

Category 3 (group violations) occurs on VA signals and when vehicle waiting time exceeds 

75 seconds (as observed from sites due to MVD detection failures). If all these conditions are 

met, then a random number generator will be called (RRGC). If this random number is lower 
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than the percentage of group violations, then a group of 3 to 4 drivers, as observed from sites, 

may cross the site while on red signals, but if the number is higher, then the drivers will stop 

at the stop line. 

Category 4 (single violations) occurs at both FT and VA signals. A random number generator 

is called (RRSC) and if it is lowers than the observed percentage of single violations (as shown 

in Table 4.24), then the driver will cross the site on red. Otherwise, the driver will stop at the 

stop line. 

 

Figure 6.7: Shuttle-lane roadworks sub-model structure (red violations) 
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If the vehicle approaching the temporary traffic signal is not the leading vehicle, the model 

will check if the leading vehicle has crossed on amber/red. If not, then the following vehicle 

will also stop. Alternatively, if the leading vehicle crossed the stop line on amber, then a 

random number generator will be called (RRCF). If this number is lower than the observed 

percentage of red crossing for following vehicles (as shown in Table 4.22 for Category 2 – 

DZ follower), then the driver is assumed to cross the site on amber. Otherwise, the driver is 

assumed to stop at the stop line. Category 3 and category 4 violations are built in to the model 

but has not been activated as they are contributing to negligible amount of violations as 

shown in Table 4.25.  

6.6 Modelling of shuttle-lane traffic signals 

6.6.1 Introduction 

Modelling temporary traffic signals requires applying the correct system and sequences as 

observed on visited sites. Two types of signals settings were observed on site namely Fixed 

Time (FT) and Vehicle Actuated (VA). Detailed description of the method of modelling these 

systems is explained in the following sections. 

6.6.2 Fixed time signals (FT) 

Although it is stated by the Department for Transport (2008) that temporary traffic signals 

should always be operating under Vehicle Actuated (VA) settings and Fixed Time (FT) needs 

to be authorised in writing, it was noticed that two out of the six visited roadworks sites were 

operating under FT settings. Using fixed signals settings, green time will be fixed to the 

maximum recommended green time (which depends on site length) without taking into 

account the flow level or tidality. 

6.6.3 Vehicle actuated signals (VA) 

There is no direct reference to the amount of green time extension which will be given to 

each vehicle in the Highways Agency (2005B). It was stated by the Department for Transport 

(1999a) that vehicles will be extended by an increment of 0.5 seconds until the vehicle 

reaches the stop line.  It was also noticed on site that when a stream has the active green stage 

running and no vehicles are detected on the opposite stream, the green stage can be extended 

for up to 90 seconds before it is terminated. The simplified operation of VA signals is 

illustrated in Figure 6.8. 
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6.7 Other model characteristics 

Other SIMSUR model characteristics were added, such as each vehicle is assigned a unique 

vehicle code (serial number). The serial number does not change once vehicles exit the 

system and it holds all the characteristics of that vehicle for the output analysis.  

Warm-up and cooling-down sections were introduced (500 metres at each end of the model) 

representing the generation and exiting points of the model and all data on the traffic 

behaviour on these sections have been ignored in the output data analysis (road length 

excluding both warm-up and cooling-down sections is 2 kms in length).  

Warm-up and cooling down periods were also introduced (5 minutes each) at the start and the 

end of the simulation period and data on the traffic behaviour was ignored in the output data 

analysis. 

 

Figure 6.8: Vehicle Actuated (VA) sequence for temporary traffic signals 
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6.8 Model output 

There are various types of SIMSUR model output that were used for different tasks such as 

model verification, calibration, validation, traffic management testing, vehicle interaction and 

signals extension (i.e. VA signals and safety in shuttle-lane site). The model output files can 

be grouped under four main headings: 

1- Micro reporting: 

� Vehicle position, speed and acceleration (every scanning time) 

2- Cyclical reporting: 

� Cycle throughput; 

� Compliance with traffic signals; 

� Queues; 

� Move-up time. 

3- Macro reporting: 

� Waiting time (due to stopping at traffic signals); 

� Overall travel time; 

� Hourly throughput; 

� Average vehicle speed. 

4- Detector and interactive reporting: 

� Time headway for BAR and ACR; 

� Arrival flow and headway (when vehicles enter the system); 

� Vehicle detection to alter signals settings (VA signals); 

� Vehicle detection for shuttle-lane site safety. 

6.9 Model capabilities 

SIMSUR model was designed in order to test the effect of different traffic management 

controls and layouts (i.e. speed limits, signals settings, site length) on travel time, system 

capacity and drivers’ behaviour. Furthermore, all related parameters are easily changed in the 

input file in order to assess the effect of applying different values.  

SIMSUR model takes into account the limitations of previously reported simulation models 

(Chapter 2, Section 2.7) such as: 
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1- The ability to take into account the effect of various parameters such as HGVs 

percentage, tidal flow, new VA signals specification; 

2- The ability to take into account the effect of dynamic acceleration/deceleration 

changes for every vehicle; 

3- The ability to replicate the actual correct behaviour of dilemma zone and red light 

violations observed on site and test their effect on system capacity; 

6.10 Summary 

This chapter described the development of SIMSUR model for shuttle-lane roadworks 

operated by temporary traffic signals. The car following and shuttle-lane rules (sub models) 

were also discussed in details. The rules used in SIMSUR model were based on real data 

from sites observations as well as related previous studies. FORTAN programming language 

was used with over 4,700 lines of coding. The next chapter will describe SIMSUR model 

verification, calibration and validation stages using real data taken from different shuttle-lane 

roadworks sites and other sources. 
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CHAPTER SEVEN: SIMSUR MODEL VERIFICATION, 
CALIBRATION AND VALIDATION 

7.1 Introduction 

The reliability of any traffic micro-simulation model depends on the model’s ability to 

produce system’s behaviour that is close enough to real traffic situations (FHWA, 2004). 

According to Al-Obaedi (2012), exact replication of traffic parameters might not be achieved 

as it mainly depends on human behaviour which is subject to change (randomness) because 

of various reasons and that simulation errors should not exceed the permitted limits. 

In the previous chapter, SIMSUR simulation model and the associated sub-models (rules) for 

car-following and shuttle-lane were explained in details. The current chapter presents the 

verification, calibration and validation stages of these rules and also for the whole micro-

simulation model. 

The model verification process is determining the computer code which implements the 

modelling logic and produces the desired output for various sets of input data, observing the 

animation of the simulation outputs under a variety of input parameters (Olstam and Tapani, 

2011; Wang, 2006). Model calibration is the adjustment of model parameters (from real 

observations) using optimisation to determine the best match of the simulated outputs with 

real observations from sites (May, 1990). According to Liu and Wang (2007), model 

validation is the testing of different sets of data (from different time periods or different sites) 

using the calibrated model parameters, in which statistical measures (goodness-of-fit) are 

used to quantify the similarities between the simulated model output and the observed data.  

May (1990) described the typical structure of any simulation model as shown in Figure 7.1. 

The figure shows that the verification, calibration and validation processes are dependent and 

repetitive since any discovered error may require adjusting the model's assumptions and 

parameters. 

In this chapter, the statistical tests and the three model stages (verification, calibration and 

validation) are discussed in details in the following sections. 
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Figure 7.1: Micro-simulation model verification, calibration and validation stages (May, 
1990) 

Various sites were used for the model calibration and model validation stages as shown 

in Table 7.1. Different information (both observed data and assumed values) was used either 

as input for, or output from, the SIMSUR model. The information used as input/output were 

also utilised for either model calibration or validation stage. Table 7.2 provides a summary of 

the parameters/measurements which were used in the SIMSUR model either as an input or 

obtained as an output for both calibration/validation stages.  

Table 7.1: List of sites used for model calibration / validation stage 

Process FT sites VA sites 

Calibration � Site 16a � Site 12 

Validation 
� Site 16b 
� Site 19 

� Site 17 
� Site 18 

 

 

 

 

 

 

 

 



CHAPTER SEVEN                    SIMSUR MODEL VERIFICATION, CALIBRATION AND 
VALIDATION 

 
 

115 
 

Table 7.2: Data used in model input/output or calibration/validation stage 

Parameters/Measurements Observed/Assumed Input Output  Calibration Validation 

Arrival flow Observed �  NA 

Throughput Observed  �  � 

HGV % Observed �  NA 

Site geometric details Observed �  NA 

Signal timings Observed �  NA 

Arrival time headway Observed �  �  

Following time headway Observed  �  � 

MUT Observed  �  � 

MUD Observed �  NA 
Drivers’ signals 
compliance % 

Observed �  
�  

Close following Observed  �  � 

Queues Observed  �  � 

Buffer space Assumed �  �  

Reaction time Assumed �  �  

Shift value Assumed �  �  

Speed Assumed �  NA 

Car length Assumed �  NA 

HGV length Observed �  NA 

Acceleration Assumed �  NA 
Observed: Values taken from site visits               Assumed: Values taken from previous literature 
NA: Not applicable (neither used in calibration nor validation) 
Site geometric details: Such as site length, location of signs, etc. 
Arrival time headway: Time headway between successive vehicles (used to generate traffic to enter the system) 
Following time headway: Time headway between successive vehicles in a platoon (i.e. with headway 6 ≤ seconds) 
Drivers’ signals compliance %: Percentage of vehicles involved in amber crossing/red light violations (RACL, RACF RRCF) 
Close following: Vehicles not complying with the 2 seconds rule (i.e. with time headway < 2 seconds) 

7.2 Statistical tests 

Statistical goodness-of-fit measurements (tests) were carried out between the observed and 

simulation output data for calibration and validation purposes. In addition, graphical 

representation was also produced. Five new goodness-of-fit measures have been introduced, 

explained and used in the model calibration and validations for comparison between observed 

and modelled results. 

7.2.1 Root Mean Square Error (RMSE)  

This test is considered to be good initial test to make a comparison between empirical and 

simulated data because it penalises high errors at higher rates than small errors (Toledo, 
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2003). The test has been used in many simulation studies (see for example Wu et al., 2003; 

Panwai and Dia, 2005; Wang, 2006; Al-Jameel, 2012 and Al-Obaedi, 2012) and is shown in 

Equation 7.1.  

RMSE = cN
d ∑ �xi − yi�'dfhN                   Equation 7.1 

Where, 
n is the number of time intervals 

xi is the observed flow at time interval i; 

yi is the simulated flow at time interval i. 

7.2.2 Coefficient of correlation (r) 

The coefficient of correlation is considered a popular goodness-of-fit measure for testing the 

strength of the linear relationship between modelled and observed data and is shown in 

Equation 7.2 (Hourdakis et al., 2003).  

r = 
N

dSN ∑ �*fS*���gfSg��
O*Og

dfhN                              Equation 7.2 

Where, 

�� and �� are the mean and the standard deviation for the actual observed data 

�� and �� are the mean and the standard deviation for the simulation output 

7.2.3 Theil's Inequality Coefficient (U) 

Theil's Inequality Coefficient is considered to be more sensitive and accurate than the 

RMSEP or (r) and it is widely used in calibration and validation of traffic simulation models 

(see for example Wang (2006), Al-Jameel, (2012) and Al-Obaedi (2012)). The U value is 

between 0 and 1 with a value of 0 represent a perfect fit. It can be determined by the 

following equation (Hourdakis et al., 2003).  

U =   
c>

U ∑ �*fSgf�&U��>
c>

U ∑ �*f�&U��> =c>
U ∑ �gf�&U��>

  Equation 7.3 
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7.2.4 Bias proportion (Um) 

Bias proportion (Um) measures the error that can be used to determine consistent over-

counting or undercounting of vehicles by comparing mean values and is represented in 

equation 7.4 (Hourdakis et al., 2003).  

Um =   
d�*�Sg��&

∑ �*fSgf�&U��>
  Equation 7.4 

7.2.5 Variance proportion (Us) 

Variance proportion (Us) can measure the degree of variability of the simulated 

measurements compared with actual observed measurements (Hourdakis et al., 2003).  

Us =   
d�O*SOg�&

∑ �*fSgf�&U��>
  Equation 7.5 

According to Hourdakis et al. (2003), the coefficient of correlation (r) is considered to be a 

good measure but it does not provide any additional information on the nature of the error 

(difference) between real measurements and simulation. “Theil’s Inequality Coefficient” is 

more accurate and sensitive than RMSEP or r and it can also be decomposed into three other 

coefficients that provide more specific information about the nature of the error. 

According to Hourdakis et al. (2003), satisfactory model results will be achieved if (r) is 

above 0.8 and (U) is lower than 0.3. According to the Design Manual for Roads and 

Bridges (1996), the GEH should be ≤ 5 for the link flow to be satisfactory. These thresholds, 

along with other measures, are monitored throughout the calibration/validation process to 

ensure acceptable model quality. 

7.3 Model verification process 

According to Al-Jameel (2012), the model verification process can be described as the 

process of checking if the modelling assumptions have been correctly translated into a 

computer code (i.e. debugging the program code). In the simulation model development, the 

model verification can also be achieved by the observation of the model animation and the 

simulation output to check if they are reasonable under various input parameters without 

comparing with the real observed input data (Wang, 2006). 
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Therefore, the model verification process was carried out at the model development stage by 

observing the animation, analysing the model output and debugging the program code for any 

warnings and errors. Model animation screenshot is as shown in Figure 7.2. The verification 

was carried out for all input parameters (i.e. desired speed, arrival headway distribution, 

vehicle length distributions, car-following rules and shuttle-lane rules, etc.). 

 

Figure 7.2: Typical screenshot from the simulation model 
 

The normal distribution of the desired speed and for example, the cumulative distribution of 

HGVs length were found to be similar to what was expected (input into the model) as shown 

in Figure 7.3 and 7.4. The same tests were carried out for arrival headway distribution, 

reactions time, move-up delay. 

  

(a) Primary Stream    (b) Secondary Stream 

Figure 7.3: An example of model verification for desired speed distribution 
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(a) Primary Stream    (b) Secondary Stream 
 

Figure 7.4: An example of model verification for vehicle length distribution (HGVs) 

Vehicle trajectory diagram is the most commonly used parameter to reveal the capability of 

vehicle movements in simulation models and is used as part of the model verification process 

of vehicle movements and response to traffic signals. Figure 7.5 shows the trajectories for a 

sample of 20 vehicles on the primary stream. Vehicles arriving at the shuttle-lane roadworks 

site operated by temporary traffic signals will experience both interrupted and uninterrupted 

flow conditions at the traffic signals as illustrated in Figure 7.5. 

Figure 7.5 shows an example of the different arrival headways and following headways 

between vehicles during the simulation process. It also shows that interrupted vehicles will 

start decelerating before arriving at the temporary traffic signals and stopping during the red 

light. Vehicles will start accelerating when the lights show green. On the other hand, 

uninterrupted vehicles arrived at the site when the traffic lights show green will continue 

without stopping.  
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Figure 7.5: Sample of vehicle trajectories and the effect of traffic signals 

7.4 Model calibration process 

This section describes the calibration process of the car-following sub-model, shuttle-lane 

sub-model and the overall simulation model. It should be noted that the model calibration 

results were achieved after repetitive iterations of the model's verification and parameter 

calibration stages, as mentioned in section 7.1 and illustrated in Figure 7.1. During the 

iterative processes, the parameters were modified in order to achieve a closer fit between real 

observed data and simulation output.  

7.4.1 Calibration of the car-following model 

The calibration of the car-following sub-model is an important step to ensure the correct use 

of the car-following rule. Due to the very limited or unavailable trajectory data in the UK, the 

simulation model results were compared with real observed trajectory data that was collected 

by Robert Bosch GmbH Research Group using instrumented vehicles to collect relative speed 

and space headway between the leader and the follower (Panwai and Dia, 2005). The 

trajectory dataset can be summarised as: 

� Speed ranging between 0 and 60 kph; 

� The duration of the test is 300 seconds; 

� Three stopping situations. 

Temporary traffic 
signals location 
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Panwai and Dia (2005) compared the trajectory data with simulation models such as S-

Paramics, VISSIM and AIMSUM. The comparison used both RMSE in metres and EM 

(Error Metric) statistical tests to show the goodness-of-fit between the modelled and observed 

value of the spacing between the leader and the follower. The results of the tests with the 

developed SIMSUR simulation model are summarised in Table 7.3 and the graphical 

representation is shown in Figure 7.6. 

The calibration of the car-following model is a complicated and very sensitive step in 

determining the appropriate behaviour of the leader-follower relationship. As the developed 

model is based on the safety criteria, the assumed values of the reaction time and the buffer 

space are important and critical factors that were calibrated during this process. Iterative 

processes were carried out to select the optimum reaction time  Rt (starting with Rt of 0.5 

seconds and ending with 2.2 seconds) and buffer space Bs (assuming Bs of 0.5 to 2.5 

metres) which helped to achieve the best fit between simulation and observed values as 

shown in Table 7.3 and presented in Figure 7.6. 

It can be seen from Table 7.3 and Figure 7.6 that using the RMSE statistics, SIMSUR 

simulation model produced the best results (when compared with observed data) in terms of 

the representation of the car-following behaviour between the follower and the leader under 

the current test conditions. Using other statistics, such as the EM, the model is considered the 

second best after AIMSUM with a very small difference. These results were obtained using 

an optimum reaction time value of 1.2 seconds and an optimum buffer space value of 1.5 

metres following an iterative process. 

Table 7.3: Performance of the car-following model in the selected traffic micro-
simulation models (Panwai and Dia, 2005) 

Statistical 
measure 

AIMSUN 
(v4.15) 

VISSIM (v3.70) 
Paramics 

(v4.1) 
SIMSUR 

Model Wiedemann 
74 

Wiedemann 
99 

RMSE 4.99 5.72 5.05 10.43 3.96 

EM 2.55 4.78 4.50 4.68 3.77 
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Figure 7.6: Comparison between SIMSUR simulation model and observed distance between 
the follower and the leader 

Following the above results which shows a reliable fit of the car-following behaviour 

between the leader and the follower (which is known to be the core of the simulation model), 

the model can be used in building the anticipated shuttle-lane simulation model. 

7.4.2 Calibration of the shuttle-lane model 

The calibration of the shuttle-lane rule was carried out by ensuring that the model could 

replicate the correct drivers’ behaviour as accurately as possible (i.e. amber crossing and red 

light violations). This step was carried out by implementing the drivers’ behaviour rules and 

decisions when approaching temporary traffic signals as discussed in Section 6.5 (illustrated 

in Figure 6.6 and 6.7) and also by assuming that drivers are alert when they approach the site 

(which affects the reaction time and following headway).  

The calibration of temporary traffic signals violations was carried out for Category 1 and 

Category 2 violations only (as explained in Section 6.5) using a random number generator in 

an iterative process (starting with the observed values until it reached the final modelled 

value as shown in Table 7.4), which compares the generated number with the observed 

percentage (i.e. RACL, RACF, RRCF, etc.) in order to achieve as accurate results as possible for 

each site. These percentages (used in SIMSUR simulation model as an input) were modified 

slightly to take into account the random arrival and position of vehicles at the onset of amber 
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as shown in Table 7.4. Calibration results for RACL are shown in details in Appendix C 

(Tables C.13 and C.14). 

For example, the observed percentage of RACL (Random number generated from Amber 

Crossing for Leaders) is made up of three types of amber crossing and red violations, which 

are summarised below: 

1- Drivers crossed the stop line because they could not stop due to their speed and 

distance to stop line (crossed the stop line at the onset of amber); 

2- Drivers crossed the stop line intentionally (crossed the stop line at the onset of 

amber); 

3- Drivers decided to cross the stop line on amber but the lights changed to red at the 

time of crossing.  

The split between the first two categories cannot be identified from observed data. Therefore, 

the RACL value used in the model will account for intentional crossing only while the 

unintentional crossing due to driver’s inability to stop will be accounted for using the 

comparison between ACC6 and the maximum deceleration rule as discussed in Section 6.5. 

The calibration and validation results for the whole of the simulation model are shown in the 

following section. 

Table 7.4: Summary of observed and calibrated RACL for all sites 

Site 
Observed RACL  (%) Final Modelled RACL  (%) 

(%)(%) (%) Primary Secondary Primary Secondary 
Site 12 3.8 1.3 3.0 0.5 
Site 16a 22.5 14.8 18.0 12.0 
Site 16b 10.6 25.1 8.0 23.0 
Site 17 1.6 1.6 1.0 1.0 
Site 18 0.3 1.9 0.5 1.5 

Site 19b 23.5 27.2 21.0 25.0 

7.4.3 Calibration of the simulation model 

The calibration for the whole of the simulation model was carried out by iterating different 

sets of various parameters such as buffer space, different reaction time assumptions, different 

shift value (for headway distribution of vehicle arrivals) and different RACL values. 
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Regarding reaction time assumptions, two cases were assumed on drivers’ alertness and were 

used in model calibration as explained in Section 6.3 and summarised below. Results of 

following time headway were used as a primary indicator of the validity of the assumptions 

and are summarised in Table 7.5.  

� Case 1: drivers are alert when density reaches or exceeds 37 veh/km as implemented 

by many previous researchers (Benekohal, 1986; Yousif, 1993; Da Silva and Stosie, 

2010; Al-Jameel, 2012; Al-Obaedi, 2012); 

� Case 2: drivers are alert if he/she approaches the “roadworks start” sign until he/she 

approaches the “roadworks end” sign. 

Table 7.5: Summary of time headway results for different cases for Site 16a 

Direction  Location Headway 
Case 1 Cases  1 & 2 

(combined) 
% difference between observed 

and modelled time headway 

Primary 

BAR  
< 2 sec 

-7 -2 
ACR  -16 3 
BAR  

≤ 6 sec 
-9 -9 

ACR  15 10 

Secondary 

BAR  
< 2 sec 

-7 2 
ACR  -13 4 
BAR  

≤ 6 sec 
3 1 

ACR  -14 6 
BAR: Before Approaching Roadworks                                    ACR: After Crossing Roadworks 

It can be seen from Table 7.5 that the combined cases (i.e. cases 1 and 2) of drivers’ alertness 

provided closer values (smaller differences) to observed following headway data for both 

streams (i.e. primary and secondary streams), both situations (i.e. BAR and ACR) and for 

time headway (for both headway ≤ 6 seconds and < 2 seconds) for Site 16a. Therefore, both 

cases were used in all models and the results are shown in the following sections. 

Different shift values (in the shifted negative exponential distribution) were calibrated using 

various sets of shift value (i.e. 0.2 to 1.0 with an increment of 0.1 seconds). Table 7.6 shows 

the arrival flow statistical tests for both a selected shift value, the final calibrated shift value 

(i.e. primary and secondary streams) and the arrival flow profile is presented in Figure 7.7. 

The final selected shift value is 0.5 seconds for primary and secondary streams. 
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Various model outputs were also tested to determine that the model calibration is adequate. 

The model outputs are shown below for each site and each stream separately: 

� Hourly directional flow and throughput (i.e. the number of vehicles passing through TSS 
at every cycle) for each 5-minutes interval; 

� Average time headway (for both BAR and ACR); 
� Percentage of vehicles in platoons (time headway ≤ 6 seconds);  
� Drivers’ non-compliance with the two-seconds rule (time headway < 2 seconds); 
� Drivers’ non-compliance with traffic signals (amber crossing and red light violations); 
� Move-up time; 
� Queues. 

Table 7.6: Model calibration statistics-flow for various shift values (Site 16a) 

Statistical 
Test 

Primary Stream Secondary Stream 

Shift 1 Calibrated 
shift value          Shift 1 Calibrated 

shift value          
RMSEP % 15.9 5.6 12.2 11.5 

r 0.836 0.997 0.92 0.89 
U 0.08 0.02 0.05 0.07 
Um 0.00 0.57 0.01 0.00 
Us 0.00 0.20 0.00 0.00 

GEH 3.18 1.07 1.8 0.91 
Shift 1: is the worst results from a selected shift value of 0.8 seconds 

 

  

(a) Primary Stream    (b) Secondary Stream 
Figure 7.7: Arrival flow profile for different shift values (Site 16a) 

The calibration was divided into two categories, FT signals sites and VA signals sites. 
The sites used for the calibration process (as shown in Table 7.1) were divided into two 
categories, as follows:  

� Fixed Time signals (FT):  
� Site 16a 
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� Vehicle Actuated signals (VA): 
� Site 12 

These were based on using different ranges of site lengths to cover a wider range (i.e. 
52 metres for Site 16a and 107 metres for Site 12). The results of the calibrated model are 
summarised in the following sections. 

7.4.3.1 Fixed time signals (FT) 
 

a. Input Parameters 

Input data (as was observed and explained in Chapter 4) for Site 16a is summarised in Table 

7.7. 

Table 7.7: Model input parameters (Site 16a) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 263 303 

HGVs (%) 5.5 3.5 

Site 
Site Length (m) 52 
RDW sign (m) 59 52 

Signal 
GT (sec) 20 20 

All-Red (sec) 5 

Safety 
      *RACL  (%) 18.0 12.0 

RACF (%) 8.0 1.5 
RRCF (%) 1.6 0.0 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value obtained from Table 7.4 

 
b. Flow and throughput 

Site 16a traffic flow data (observed data for 2 hours period) were compared with simulation 

model output for each stream and for each 5-minutes interval. Figure 7.8 shows the observed 

and modelled traffic flow data for each 5-minutes interval and for each stream separately. 

The statistical goodness-of-fit measures for the assigned flow and signals throughput are 

reported in Table 7.8. 

It can be seen from Figure 7.8 that the arrival flow in the simulation model is in good 

agreement with the real observed data for each 5-minutes interval and for both primary and 

secondary streams. It can also be seen from Table 7.8 that all the six statistical goodness-of-

fit results for both flow and throughput for each 5-minutes interval are satisfactory. 
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(a) Primary Stream    (b) Secondary Stream 

Figure 7.8: Model calibration – observed vs. modelled flow data (Site 16a) 

Table 7.8: Model calibration statistics-flow and throughput (Site 16a) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 5.6 6.4 11.5 12.3 
r 0.997 0.96 0.89 0.87 
U 0.02 0.03 0.07 0.09 
Um 0.57 0.04 0.00 0.00 
Us 0.20 0.04 0.00 0.00 

GEH 1.07 1.22 0.91 0.50 

Throughput per cycle between observed and modelled data at cycle level was also compared 

to ensure that the model will not have a lower/higher maximum throughput which will affect 

the system capacity when the model application stage is carried out. The maximum 

throughput per cycle is observed to be 10 vehicles at oversaturated cycles which were also 

equal to the modelled throughput per cycle from the simulation model. 

c. Following headway 

Results of the average time headway for vehicles in platoons (following headway ≤ 6 

seconds) between observed and modelled data were compared for the vehicles in both 

situations (i.e. BAR and ACR) as shown in Table 7.9. It can be seen from Table 7.9 that the 

average time headway between real observed data and simulation model output for both 

streams and for both situations (BAR and ACR) are in good agreement with a maximum 

difference of less than 0.25 seconds in all situations.  

It can also be seen from Table 7.9 that the percentage of drivers violating the two-seconds 

rule are also in good agreement between modelled and observed data for both streams and all 
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situations with a maximum difference of -4%. The final comparison is the total number of 

vehicles in platoons is also in good agreement between modelled and observed data for all 

situations with a maximum difference of 9% (34 vehicles). 

Table 7.9: Model calibration results – time headway (Site 16a) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.46 3.40 -0.06 3.15 3.02 -0.13 

Avg. Headway (sec)  (ACR) 2.49 2.36 -0.13 2.56 2.31 -0.25 

< 2.0 (%) (BAR) 13% 11% -2% 17% 19% 2% 

< 2.0 (%) (ACR) 38% 41% 3% 33% 29% -4% 

≤ 6.0  (veh) (BAR) 242 221 -21 284 286 2 

≤ 6.0   (veh) (ACR) 355 389 34 423 448 25 

 
d. Drivers’ compliance 

Drivers’ non-compliance with traffic signals were also reported in details (amber crossing 

and red light violations) and were compared between observed and simulation model output 

as shown in Table 7.10 (for each stream separately and for both default and calibrated RACL 

value). Drivers’ non-compliance was calibrated using various sets of RACL percentage as 

explained earlier. It can be seen from Table 7.10 that the total number of amber crossing and 

red light violations for both streams is in good agreement between the real observed and 

model simulation data. For violation breakdown for both categories (i.e. vehicles and cycles), 

more details are shown in Appendix C. 

Table 7.10: Model calibration statistics – signals compliance (Site 16a) 

RACL  Violation 

Primary 
Stream 

Secondary 
Stream 

Obs. Mod. Obs. Mod. 

Default/observed 
RACL  

Total crossing on Amber & Red (veh) 34 39 49 60 

Total crossing on Amber & Red (%) 6% 7% 8% 10% 

Calibrated RACL  
Total crossing on Amber & Red (veh) 34 33 49 49 

Total crossing on Amber & Red (%) 6% 6% 8% 8% 
Obs. is the observed value from site   Mod. is the simulation model output 

e. Move-up time (MUT) 

Move-up time (MUT) is also reported and a comparison between observed and simulation 

output was conducted as shown in Table 7.11 (total MUT for all vehicles) and presented 
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graphically in Figure 7.9 (for each vehicle) for both streams. It can be seen from both Table 

7.11 and Figure 7.9 that the MUT results between observed and modelled data for both 

streams are in good agreement with a difference of -2% and -6% for primary and secondary 

streams, respectively. For complete MUT comparison for each vehicle position in the queue, 

see Appendix C. 

Table 7.11: Model calibration statistics – total MUT (Site 16a) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 12.69 
(S) 13.39 

(P) 12.48 
(S) 12.53 

                                                                    P is Primary stream                         S is Secondary stream 

  

(a) Primary Stream    (b) Secondary Stream 

Figure 7.9: Model calibration – MUT for each vehicle (Site 16a) 

f. Queues 

Queues are reported and a comparison between the observed and simulation model output is 

shown in Table 7.12 for each stream separately. According to Dowling et al., (2002), 

maximum queue (in vehicles) is the maximum observed queue in any 5-minutes interval 

(over the simulation period). It is a useful measure that needs to be observed and compared 

between real data and simulation model to indicate if the queues will spill back to the next 

junction. Average queue in any 5-minutes interval and total queued vehicles over the 

simulation period are also useful measures to report on and compare with observed and 

modelled data. 
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It can be seen from Table 7.12 that the differences in maximum queues are -6.7% and 7.1% 

for primary and secondary stream, respectively; while the difference in average queues is       

-5.0% and -3.9% for primary and secondary stream, respectively. The difference in the total 

reported queues over the simulation period is 3.9% and -3.5% for primary and secondary 

stream, respectively. According to Lee (2008), the validation criterion for the simulated 

maximum and average queue is to be within ±20% of the observed value. Therefore, it can be 

concluded that reported simulation queues are in good agreement with the real observed 

queues. 

Table 7.12: Model calibration statistics-queues (Site 16a) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 
Maximum queue (veh) 15 14 -6.7% 14 15 7.1% 

Average queue (veh) 4.0 3.8 -5.0% 5.1 4.9 -3.9% 

Total queued vehicles (veh) 357 371 3.9% 483 466 -3.5% 

7.4.3.2 Vehicle Actuated signals (VA) 

a. Input Parameters 

Input data (as was observed and explained in Chapter 4) for Site 12 is summarised in Table 

7.13. 

Table 7.13: Model input parameters (Site 12) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 158 147 

HGVs (%) 8.5 9.5 

Site 
Site Length (m) 107 
RDW sign (m) 40 42 

Signal 
GT (min, max) (sec) (12,88) (12,60) 

All-Red (sec) 20 

Safety 
      *RACL  (%) 3.0 0.5 

RACF (%) 0.0 0.0 
RRCF (%) 0.0 0.0 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value obtained from Table 7.4 
 

b. Flow and throughput 

Site 12 traffic flow data (observed data for 2 hours period) was compared with simulation 

model output for each stream and for each 5-minutes interval. Figure 7.10 shows the 

observed and modelled traffic flow data for each 5-minutes interval and for each stream 
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separately. The statistical goodness-of-fit measures for the assigned flow and signals 

throughput for the 5-minutes interval are reported in Table 7.14. These results were obtained 

after calibrating the shift value (in the shifted-negative exponential distribution for vehicle 

arrival). 

It can be seen from Figure 7.10 that the simulation model is in good agreement with the real 

observed data for each 5-minutes interval and for both primary and secondary streams. It can 

also be seen from Table 7.14 that all the six statistical goodness-of-fit results for both flow 

and throughput for each 5-minutes interval are satisfactory on all tests as they are within the 

limits as suggested by Hourdakis et al. (2003). 

  

(b) Primary Stream    (b) Secondary Stream 
Figure 7.10: Model calibration – observed vs. modelled flow data (Site 12) 

Table 7.14: Model calibration statistics-flow and throughput (Site 12) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 8.6 12.5 11.3 11.6 
r 1.00 0.95 0.90 0.96 
U 0.04 0.05 0.10 0.10 
Um 0.68 0.14 0.00 0.00 
Us 0.16 0.01 0.01 0.00 

GEH 1.28 1.74 2.83 2.69 

c. Following headway 

Results of the average time headway for vehicles in platoons (following headway ≤ 6 

seconds) were compared between observed and modelled data for vehicles before 

approaching roadworks (BAR) and after crossing roadworks (ACR) as shown in Table 7.15. 

It can be seen from Table 7.15 that average time headway between real observed data and 
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simulation model output for both stream and for both situations (BAR and ACR) are in good 

agreement with a maximum difference of less than 0.48 seconds in all situations.  

It can also be seen from Table 7.15 that the percentage of drivers violating the two-seconds 

rule are also in good agreement between modelled and observed data for both streams and all 

situations with a difference of less than 7%. The final comparison of the total number of 

vehicles in platoons is also in good agreement between the modelled and observed data for all 

situations with a maximum difference of 9% (13 vehicles). 

Table 7.15: Model calibration results-headway (Site 12) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.19 3.31 0.12 3.17 3.02 -0.15 

Avg. Headway (sec)  (ACR) 2.90 2.42 -0.48 2.85 2.44 -0.41 

< 2.0 (%) (BAR) 24% 17% -7% 19% 20% 1% 

< 2.0 (%) (ACR) 27% 27% 0% 20% 22% 2% 

≤ 6.0  (veh) (BAR) 86 93 7 70 75 5 

≤ 6.0   (veh) (ACR) 147 160 13 155 160 5 

d. Drivers’ compliance 

Drivers’ non-compliance with traffic signals was also reported in details (amber crossing and 

red light violations) and were compared between observed and simulation output as shown in 

Table 7.16 for each stream separately (for both the default and calibrated RACL value). 

Drivers’ non-compliance was calibrated using various sets of RACL percentage as explained 

earlier .It can be seen from Table 7.16 that the total number of amber crossing and red 

violations for both streams is in good agreement between the real observed and model 

simulation data. For violation breakdown for both categories (i.e. vehicles and cycles), more 

details are shown in Appendix C. 

Table 7.16: Model calibration statistics-compliance (Site 12) 

RACL  Violation 

Primary 
Stream 

Secondary 
Stream 

Obs. Mod. Obs. Mod. 

Default/observed 
RACL  

Total crossing on Amber & Red (veh) 3 6 1 4 

Total crossing on Amber & Red (%) 1% 2% 0.2% 1% 

Calibrated RACL  
Total crossing on Amber & Red (veh) 3 3 1 2 

Total crossing on Amber & Red (%) 1% 1% 0.2% 1% 
Obs. is the observed value from site   Mod. is the simulation model output 
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e. Move-up time (MUT) 

Move-up time (MUT) is also reported and a comparison between observed and simulation 

output was conducted as shown in Table 7.17 and presented graphically in Figure 7.11 for 

both streams. It can be seen from both Table 7.17 and Figure 7.11 that the MUT results 

between observed and modelled data for both streams are in good agreement with a 

difference of -5% and -6% for the primary and secondary streams, respectively. For complete 

MUT comparison for each vehicle position in the queue, see Appendix C. 

Table 7.17: Model calibration statistics – total MUT (Site 12) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 11.08 
(S) 11.37 

(P) 10.52 
(S) 10.65 

                                                                   P is Primary stream                         S is Secondary stream 

  

(b) Primary Stream    (b) Secondary Stream 
Figure 7.11: Model calibration – MUT for each vehicle (Site 12) 

 
f. Queues 

Queues are reported and comparison between observed and simulation model output is as 

shown in Table 7.18 for each stream separately. It can be seen from Table 7.18 that the 

differences in maximum queues are 14.3% and 0% for primary and secondary stream, 

respectively; while the difference in average queues is -12.1% and -16.1% for primary and 

secondary stream, respectively. The difference in the total reported queues over the 

simulation period is 6.0% and -9.1% for the primary and secondary stream, respectively. 
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Therefore, it can be concluded that reported simulation queues are in good agreement with 

the real observed queues. 

Table 7.18: Model calibration statistics-queues (Site 12) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 7 8.0 14.3% 7 7 0.0% 

Average queue (veh) 3.3 2.9 -12.1% 3.1 2.6 -16.1% 

Total queued vehicles (veh) 248 263 6.0% 263 239 -9.1% 
 

7.5 Model validation process 

In the previous section, the main two parts of the developed micro-simulation model (i.e. car 

following and shuttle-lane rules) were calibrated and tested using various data from real 

traffic information that was observed on sites. However, there is a need to check the overall 

model performance against independent sets of data from the same site or from different 

sites. The model validation was also divided into two groups (categories), Fixed Time signals 

sites (FT) and Vehicle Actuated signals sites (VA). Sites that were used in the validation for 

each category are shown below. 

� Fixed Time signals (FT):  
� Site 16b 
� Site 19 

� Vehicle Actuated signals (VA): 
� Site 17 
� Site 18 

7.5.1 Fixed Time signals (FT) 

a. Input Parameters 

Input data (as was observed and explained in Chapter 4) for Site 16b and Site 19 is 

summarised in Tables 7.19 and 7.20, respectively. 
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Table 7.19: Model input parameters (Site 16b) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 383 379 

HGVs (%) 2 1 

Site 
Site Length (m) 52 
RDW sign (m) 59 52 

Signal 
GT (sec) 20 20 

All-Red (sec) 5 

Safety 
      *RACL  (%) 8.0 23.0 

RACF (%) 3.1 0.0 
RRCF (%) 4.0 0.0 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value 
NA surveyed only for one hour 

Table 7.20: Model input parameters (Site 19) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 553 408 

HGVs (%) 3 4 

Site 
Site Length (m) 38 
RDW sign (m) 54 42 

Signal 
GT (sec) 50 35 

All-Red (sec) 10 

Safety 
      *RACL  (%) 21.0 25.0 

RACF (%) 16.5 18.2 
RRCF (%) 26.1 12.4 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value obtained from Table 7.4 
 

b. Flow and throughput 

Traffic flow data for Site 16b (observed for 1 hour period) and Site 19 (observed for 2 hours 

period) were compared with the simulation model output for each stream and for each 5-

minutes interval. Figures 7.12 and 7.13 show the observed and modelled traffic flow data for 

each 5-minutes interval and for each stream separately. The statistical goodness-of-fit 

measures for the assigned flow and signals throughput for the 5-minutes interval are reported 

in Tables 7.21 and 7.22. These results were obtained after calibrating the shift value (in the 

shifted-negative exponential distribution for vehicle arrival). 
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(c) Primary Stream    (b) Secondary Stream 
Figure 7.12: Model validation – observed vs. modelled flow data (Site 16b) 

 

  

(a) Primary Stream    (b) Secondary Stream 
Figure 7.13: Model validation – observed vs. modelled flow data (Site 19) 

 

Table 7.21: Model validation statistics-flow and throughput (Site 16b) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 7.1 11.1 3.3 3.2 
R 0.989 0.998 0.97 0.97 
U 0.04 0.03 0.08 0.00 
Um 0.02 0.19 0.00 0.00 
Us 0.00 0.01 0.00 0.00 

GEH 2.06 1.37 2.18 2.46 
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Table 7.22: Model validation statistics-flow and throughput (Site 19) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 3.9 4.8 13.0 12.5 
r 0.99 0.99 0.95 0.93 
U 0.02 0.02 0.12 0.11 
Um 0.06 0.06 0.00 0.00 
Us 0.00 0.00 0.00 0.00 

GEH 0.93 1.03 0.49 1.08 
 

It can be seen from Figures 7.12 and 7.13 that the simulation model for both sites (Site 16b 

and Site 19) is in good agreement with the real observed data for each 5-minutes interval and 

for both the primary and secondary streams. It can also be seen from Tables 7.21 and 7.22 

that all six statistical goodness-of-fit results for both flow and throughput for each 5-minutes 

interval and for both sites are satisfactory on all tests as they are within the acceptable limits.  

Throughput per cycle was also compared between observed and modelled data at cycle level 

to ensure that the model will not have a lower/higher maximum throughput which will affect 

the system capacity when the model application stage is carried out. The observed maximum 

throughput per cycle is also equal to the modelled throughput per cycle from the simulation 

model for each site and each stream. 

c. Following headway 

Results of the average time headway for vehicles in platoons (following headway ≤ 6 

seconds) were compared between observed and modelled data for vehicles before 

approaching roadworks (BAR) and after crossing roadworks (ACR) as shown in Tables 7.23 

and 7.24 for Site 16b and 19, respectively.  

It can be seen from Table 7.23 (Site 16b) that average time headway between real observed 

data and simulation model output for both stream and for both situations (BAR and ACR) are 

in good agreement with a maximum difference of less than 0.35 seconds in all situations. It 

can also be seen that the percentage of drivers who violate the two-seconds rule are also in 

good agreement between modelled and observed data for both streams and all situations with 

a difference of less than 6%. The final comparison of the total number of vehicles in platoons 

is also in good agreement between modelled and observed data for all situations with a 

difference of a maximum of 7% (13 vehicles). 
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Table 7.23: Model validation results-headway (Site 16b) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.46 3.27 -0.19 3.15 2.96 -0.19 

Avg. Headway (sec)  (ACR) 2.49 2.15 -0.34 2.56 2.21 -0.35 

< 2.0 (%) (BAR) 16% 19% 3% 21% 27% 6% 

< 2.0 (%) (ACR) 39% 41% 2% 35% 41% 6% 

≤ 6.0  (veh) (BAR) 141 134 -7 154 162 8 

≤ 6.0   (veh) (ACR) 189 202 13 216 229 13 
 

It can be seen from Table 7.24 (Site 19) that the average time headway between real observed 

data and simulation model output for both streams and for both situations (BAR and ACR) 

are in good agreement with a maximum difference of less than 0.20 seconds in all situations. 

It can also be seen that the percentage of drivers who violate the two-seconds rule are also in 

good agreement between modelled and observed data for both streams and all situations with 

a difference of less than 9%. The final comparison of the total number of vehicles in platoons 

is also in good agreement between modelled and observed for all situations with a difference 

of a maximum of 6% (57 vehicles). 

Table 7.24: Model validation results-headway (Site 19) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 2.48 2.66 0.18 2.75 2.79 0.04 

Avg. Headway (sec)  (ACR) 2.33 2.15 -0.18 2.33 2.13 -0.20 

< 2.0 (%) (BAR) 38% 32% -6% 30% 21% -9% 

< 2.0 (%) (ACR) 47% 52% 5% 45% 48% 3% 

≤ 6.0  (veh) (BAR) 932 875 -57 571 555 -16 

≤ 6.0   (veh) (ACR) 958 974 16 707 698 -9 
 

d. Drivers’ compliance 

Drivers’ non-compliance with traffic signals was also reported in details (amber crossing and 

red light violations) and was compared between observed and simulation output for both sites 

(Site 16b and Site 19) as shown in Tables 7.25 and 7.26 for each stream separately. Drivers’ 

non-compliance was calibrated using various sets of RACL percentage as explained earlier. It 

can be seen from Tables 7.25 and 7.26 that the total number of amber crossing and red light 

violations for both streams is in good agreement between the real observed and model 
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simulation data. For violation breakdown for both categories (i.e. vehicles and cycles), see 

Appendix C. 

Table 7.25: Model validation statistics-compliance (Site 16b) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 
Total crossing on Amber & Red (veh) 34 34 25 26 

Total crossing on Amber & Red (%) 9% 9% 7% 7% 

 
Table 7.26: Model validation statistics-compliance (Site 19) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 
Total crossing on Amber & Red (veh) 59 57 49 53 

Total crossing on Amber & Red (%) 5% 5% 6% 7% 

 
e. Move-up time (MUT) 

Move-up time (MUT) is also reported and a comparison between observed and simulation 

output was conducted as shown in Tables 7.27 and 7.28 and presented graphically in Figures 

7.14 and 7.15  for Site 17 and Site 18, respectively. For Site 16b, it can be seen from both 

Table 7.27 and Figure 7.14 that the MUT results between observed and modelled data for 

both streams are in good agreement with a difference of 3% and 0% for primary and 

secondary streams, respectively. For Site 19, it can be seen from both Table 7.28 and Figure 

7.15 that the MUT results between observed and modelled data for both streams are in good 

agreement with a difference of 3% and 5% for the primary and secondary streams, 

respectively. For complete MUT comparison for each vehicle position in the queue, see 

Appendix C. 

Table 7.27: Model validation statistics – total MUT (Site 16b) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 12.26 
(S) 12.54 

(P) 12.59 
(S) 12.60 

                                                                 P is Primary stream                         S is Secondary stream 
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Table 7.28: Model validation statistics – total MUT (Site 19) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 11.83 
(S) 12.19 

(P) 12.23 
(S) 12.75 

                                                                   P is Primary stream                         S is Secondary stream 

  

(a) Primary Stream    (b) Secondary Stream 
Figure 7.14: Model validation – MUT for each vehicle (Site 16b) 

 

  

(a) Primary Stream    (b) Secondary Stream 
Figure 7.15: Model validation – MUT for each vehicle (Site 19) 

f. Queues 

Queues are reported and comparison made between observed and simulation model output as 

shown in Tables 7.29 and 7.30 for Site 16b and Site 19, respectively. It can be seen from 

Table 7.29 (Site 16b) that the differences in maximum queues are -11.1% and 5.6% for 

primary and secondary streams, respectively; while the difference in average queues is -7.9% 
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and 13.7% for the primary and secondary streams, respectively. The difference in the total 

reported queues over the simulation period is 1.3% and 3.1% for primary and secondary 

streams, respectively. 

It can be seen from Table 7.30 (Site 19) that the differences in maximum queues are 3.6% 

and 4.5% for the primary and secondary streams, respectively; while the difference in 

average queues is 7.0% and 2.7% for the primary and secondary streams, respectively. The 

difference in the total reported queues over the simulation period is 6.8% and 8.3% for the 

primary and secondary streams, respectively. It can be concluded that reported simulation 

queues for both sites (Site 16b and Site 19) are in good agreement with the real observed 

queues as all queue measures for both sites are within acceptable limits (within ±20% of the 

observed value). 

Table 7.29: Model validation statistics-queues (Site 16b) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 18 16 -11.1% 18 19 5.6% 

Average queue (veh) 6.3 5.8 -7.9% 5.1 5.8 13.7% 

Total queued vehicles (veh) 303 307 1.3% 294 303 3.1% 

Table 7.30: Model validation statistics-queues (Site 19) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 28 29 3.6% 22 23 4.5% 

Average queue (veh) 12.9 13.8 7.0% 11.1 11.4 2.7% 

Total queued vehicles (veh) 751 802 6.8% 569 616 8.3% 
 

7.5.2 Vehicle Actuated signals (VA) 

a. Input Parameters 

Input data (as was observed and explained in Chapter 4) for Site 17 and Site 18 are 

summarised in Tables 7.31 and 7.32, respectively. 
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Table 7.31: Model input parameters (Site 17) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 204 223 

HGVs (%) 5 5 

Site 
Site Length (m) 39 
RDW sign (m) 89 114 

Signal 
GT (min, max) (sec) (12,54) (12,72) 

All-Red (sec) 3 

Safety 
      *RACL  (%) 1.0 1.0 

RACF (%) 0.0 0.0 
RRCF (%) 0.0 0.0 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value obtained from Table 7.4 
NA surveyed only for one hour 

Table 7.32: Model input parameters (Site 18) 

Observed 
Characteristics Parameter Primary Stream Secondary Stream 

Flow 
Arrival Flow (veh/hr) 179 313 

HGVs (%) 3 3 

Site 
Site Length (m) 73 
RDW sign (m) 91 99 

Signal 
GT (min, max) (sec) (12,76) (12,78) 

All-Red (sec) 3 

Safety 
      *RACL  (%) 0.5 1.5 

RACF (%) 0.0 0.0 
RRCF (%) 0.0 0.0 

RDW sign: the distance between the “Roadworks Start Sign” and the stop line 
* Calibrated value 
** observed for 30 minutes (not full hour) 

b. Flow and throughput 

Traffic flow data for Site 17 (observed for 1 hour period) and Site 18 (observed for 1.5 hours 

period) was compared with simulation model output for each stream and for each 5-minutes 

interval. Figures 7.16 and 7.17 show the observed and modelled traffic flow data for each 5-

minutes interval and for each stream separately. The statistical goodness-of-fit measures for 

the assigned flow and signals throughput for the 5-minutes interval are reported in Tables 

7.33 and 7.34 These results were obtained after calibrating the shift value (in the shifted-

negative exponential distribution for vehicle arrival). 
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(a) Primary Stream    (b) Secondary Stream 
Figure 7.16: Model validation – observed vs. modelled flow data (Site 17) 

 

Table 7.33: Model validation statistics-flow and throughput (Site 17) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 11.4 13.3 9.4 8.3 
R 0.95 0.87 0.90 0.88 
U 0.04 0.04 0.05 0.06 
Um 0.06 0.04 0.00 0.00 
Us 0.04 0.01 0.03 0.01 

GEH 1.45 1.40 1.38 2.10 
 

 

Table 7.34: Model validation statistics-flow and throughput (Site 18) 

Statistical 
Test 

Primary Stream Secondary Stream 
Flow Throughput          Flow Throughput          

RMSEP % 5.0 6.8 11.3 11.4 
r 0.99 0.96 0.87 0.96 
U 0.02 0.03 0.10 0.10 
Um 0.02 0.02 0.00 0.00 
Us 0.04 0.01 0.00 0.00 

GEH 0.95 1.33 2.94 2.17 
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(a) Primary Stream    (b) Secondary Stream 
Figure 7.17: Model validation-observed vs. modelled flow data (Site 18) 

It can be seen from Figures 7.16 and 7.17 that the simulation model for both sites (Site 17 and 

Site 18) is in good agreement with the real observed data for each 5-minutes interval and for 

both the primary and secondary streams. It can also be seen from Tables 7.33 and 7.34 that all 

six statistical goodness-of-fit results for both flow and throughput for each 5-minutes interval 

and for both sites are satisfactory on all tests as they are within the limits.  

c. Following headway 

Results of the average time headway for the vehicles in platoons (following headway ≤ 6 

seconds) were compared between observed and modelled data for vehicles before 

approaching roadworks (BAR) and after crossing roadworks (ACR) for both sites as shown 

in Tables 7.35 and 7.36 for Site 17 and 18, respectively.  

It can be seen from Table 7.35 (Site 17) that the average time headway between real observed 

data and simulation model output for both streams and for both situations (BAR and ACR) is 

in good agreement with a maximum difference of less than 0.35 seconds in all situations.  

It can also be seen from Table 7.35 that the percentage of drivers who violate the two-

seconds rule are also in good agreement between the modelled and observed data for both 

streams and all situations with a difference of less than 9%. The final comparison of the total 

number of vehicles in platoons is also in good agreement between the modelled and observed 

data for all situations with a difference of a maximum of 19% (21 vehicles). 

It can be seen from Table 7.36 (Site 18) that average time headway between real observed 

data and simulation model output for both streams and for both situations (BAR and ACR) is 
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in good agreement with a maximum difference of less than 0.18 seconds in all situations. It 

can also be seen that the percentage of drivers who violate the two-seconds rule are also in 

good agreement between modelled and observed data for both streams and all situations with 

a difference less than 7%. The final comparison of the total number of vehicles in platoons is 

also in good agreement between modelled and observed data for all situations with a 

difference of a maximum of 11% (18 vehicles). 

Table 7.35: Model validation results-headway (Site 17) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.41 3.10 -0.31 3.49 3.14 -0.35 

Avg. Headway (sec)  (ACR) 2.52 2.34 -0.18 2.49 2.52 0.03 

< 2.0 (%) (BAR) 17% 13% -4% 19% 17% -2% 

< 2.0 (%) (ACR) 42% 43% 1% 39% 30% -9% 

≤ 6.0  (veh) (BAR) 58 68 10 78 79 1 

≤ 6.0   (veh) (ACR) 108 129 21 123 138 15 
 

Table 7.36: Model validation results-headway (Site 18) 

Headway criteria Location 
Primary Stream Secondary Stream  

Observed Modelled Diff. Observed Modelled Diff. 

Avg. Headway (sec)  (BAR) 3.26 3.27 0.01 2.97 2.79 -0.18 

Avg. Headway (sec)  (ACR) 2.44 2.26 -0.18 2.41 2.32 -0.09 

< 2.0 (%) (BAR) 20% 13% -7% 26% 25% -1% 

< 2.0 (%) (ACR) 49% 52% 3% 44% 37% -7% 

≤ 6.0  (veh) (BAR) 160 142 -18 358 363 5 

≤ 6.0   (veh) (ACR) 240 263 23 475 489 14 

d. Drivers’ compliance 

Drivers’ non-compliance with traffic signals was also reported in details (amber crossing and 

red light violations) and was compared between observed and simulation output for both sites 

(Site 17 and Site 18) as shown in Tables 7.37 and 7.38 for each stream separately. Drivers’ 

non-compliance was calibrated using various sets of RACL percentage as explained earlier. It 

can be seen from Tables 7.37 and 7.38 that the total number of amber crossing and red light 

violations for both streams are in good agreement between the real observed and model 

simulation data. For violation breakdown for both categories (i.e. vehicles and cycles), see 

Appendix C. 
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Table 7.37: Model validation statistics-compliance (Site 17) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 
Total crossing in Amber & Red (veh) 1 0 1 3 

Total crossing in Amber & Red (%) 0% 0% 0% 1% 

 
Table 7.38: Model validation statistics-compliance (Site 18) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 
Total crossing in Amber & Red (veh) 4 5 6 8 

Total crossing in Amber & Red (%) 1% 1% 1% 1% 

 
e. Move-up time (MUT) 

Move-up time (MUT) is also reported and a comparison between observed and simulation 

output was conducted as shown in Tables 7.39 and 7.40 and presented graphically Figures 

7.18 and 7.19 for Site 17 and Site 18, respectively. For Site 17, it can be seen from both Table 

7.39 and Figure 7.18 that the MUT results between the observed and modelled data for both 

streams are in good agreement with a difference of -6% and -3% for the primary and 

secondary streams, respectively.  

For Site 18, it can be seen from both Table 7.40 and Figure 7.19 that the MUT results 

between the observed and modelled data for both streams are in good agreement with a 

difference of 9% and -4% for the primary and secondary streams, respectively. For complete 

MUT comparison for each vehicle position in the queue, see Appendix C. 

Table 7.39: Model validation statistics – total MUT (Site 17) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 9.21 
(S) 9.00 

(P) 8.64 
(S) 8.70 

                                                         P is Primary stream                         S is Secondary stream 

Table 7.40: Model validation statistics – total MUT (Site 18) 

MUT 
MUT (sec) 

Observed Modelled 

Total 
(P) 11.36 
(S) 12.90 

(P) 12.33 
(S) 12.36 
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(b) Primary Stream    (b) Secondary Stream 
Figure 7.18: Model validation – MUT for each vehicle (Site 17) 

  

(b) Primary Stream    (b) Secondary Stream 
Figure 7.19: Model validation – MUT for each vehicle (Site 18) 

f. Queues 

Queues are reported and compared between observed and simulation output as shown in 

Tables 7.41 and 7.42 for Site 17 and Site 18, respectively. It can be seen from Table 7.41 

(Site 17) that the difference in maximum queues are 16.7% and 0% for the primary and 

secondary streams, respectively; while the difference in average queues is -8.7% and -17.2% 

for primary and secondary streams, respectively. The difference in the total reported queues 

over the simulation period is 11.2% and 3.3% for primary and secondary stream, 

respectively. 

It can be seen from Table 7.42 (Site 18) that the difference in maximum queues is 10% and    

-7.7% for primary and secondary streams, respectively; while the difference in average 

queues is -10% and -17.3% for the primary and secondary streams, respectively. The 
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difference in the total reported queues over the simulation period is 6.2% and13% for the 

primary and secondary stream, respectively. Therefore, it can be concluded that reported 

simulation queues are in good agreement with the real observed queues. 

Table 7.41: Model validation statistics-queues (Site 17) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 6 7 16.7% 9 9 0.0% 

Average queue (veh) 2.3 2.1 -8.7% 2.9 2.4 -17.2% 

Total queued vehicles (veh) 232 258 11.2% 275 284 3.3% 

 
Table 7.42: Model validation statistics-queues (Site 18) 

Queue Measure 
Primary Stream Secondary Stream 

Observed Modelled Diff. Observed Modelled Diff. 

Maximum queue (veh) 10 11 10.0% 13 12.0 -7.7% 

Average queue (veh) 4.0 3.6 -10.0% 5.2 4.3 -17.3% 

Total queued vehicles (veh) 325 345 6.2% 345 390 13.0% 
 

7.6 Summary 

The current chapter presented the verification, calibration and validation of the car-following 

and shuttle-lane rules as well as the calibration/validation of the whole SIMSUR simulation 

model using real observed traffic data from various surveyed shuttle-lane roadworks sites. 

The results showed the validity of SIMSUR model results for various (short to long) site 

length (38m-107m), various flow (uncongested and congested) levels                                  

(134 veh/hr – 888 veh/hr) and for both FT and VA signals. 

Therefore, SIMSUR simulation model provides a sound basis for testing the effect of 

different scenarios on the traffic conditions at shuttle-lane roadworks. The next chapter shows 

the model applications that have been carried out. 
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CHAPTER EIGHT:   SIMSUR MODEL APPLICATION 
 

8.1 Introduction 

The current chapter presents a few of the possible applications of the newly developed 

SIMSUR micro-simulation model for testing different management scenarios of shuttle-lane 

roadworks operated by temporary traffic signals. Various parameters were also tested using 

the developed micro-simulation model to study their effect on capacity and delays (i.e. site 

length, signals operation type, HGVs % and directional split). 

The developed simulation model was also used to test improved shuttle-lane roadworks 

scenarios and their effect on capacity, delays and in reducing aggressive drivers’ behaviour. 

8.2 The effect of site length on system capacity and delays 

Site length has an effect on shuttle-lane roadworks site capacity. However, previous studies 

did not take into account various factors (i.e. up-to-date signals specifications, amber crossing 

and close following behaviour), which are believed to have an impact on shuttle-lane system 

capacity and delays. 

For the current test, various site lengths were tested (site length of 25m, 50m to 300m with an 

increment of 50m). Various flow levels for two-way flows (veh/hr) were also tested (flow 

level of 250-3000 with 250 veh increment). Table 8.1 lists the main parameters that have 

been used to test the effect of site length on shuttle-lane roadworks capacity and delays. All 

other vehicle and drivers’ characteristics were kept fixed. Over 1,600 simulation runs were 

used to test this parameter. 

Table 8.1: Input data for testing the effect of site length on system capacity and delays 

Operation type 
Site length 

(m) 
two-way flow 

(veh/hr) 
HGVs 

% 
Direction split 

(P/S) 
FT 

25, 50-300 250-3000 5 50/50 
VA 
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8.2.1 Effect on system capacity 

According to Summersgill (1981), the maximum site capacity achieved for shuttle-lane 

roadworks operated by temporary traffic signals is around 1590 veh/hr for two-way flow (as 

described in Section 2.6.6). 

Figure 8.1 shows the relationship (effect) between site length and site capacity for shuttle-

lane roadworks operated by temporary traffic signals for both FT and VA modes. In general, 

as the site length increases, the capacity decreases from 1,860 veh/hr to 1,240 veh/hr (for 

two-way flow) for FT mode. For VA mode, as the site length increases, the capacity 

decreases from 2,060 veh/hr to 1,350 veh/hr (for two-way flow). 

 

Figure 8.1: Effect of site length on shuttle-lane roadworks throughput 
 

The reduction in capacity is around 23 and 26 veh/hr for every 10 metres of site length for FT 

and VA modes, respectively. Maximum system throughput are higher than the results 

achieved by Summersgill (1981) because of the latest signals settings and specifications as 

well as various different assumptions (i.e. amber crossing and close following that were 

observed on site and the assumption of directional split). The amount of vehicles crossing on 

amber and red due to the presence of dilemma zone are 186 and 103 veh/hr (for 25 metres 

site length) for FT and VA modes, respectively. 
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8.2.2  Effect on delays 

Testing the effect of introducing shuttle-lane roadworks operated by temporary traffic signals 

on drivers’ delays was also tested. The test was carried out by comparing the same input data 

with and without the presence of roadworks as shown in Figure 8.2 for FT and VA modes. 

 

Figure 8.2: Effect of shuttle-lane roadworks site length on drivers’ delays 
 

It can be seen from Figure 8.2 that the delay curves follow the typical delay curves for 

signalised junctions as presented by HCM (1985) and Rouphail et al. (1996). It can also be 

seen that the VA mode reduced average vehicle delays by 14% for flow levels of 1,500 

veh/hr for two-way flow. The VA mode also has lower delays per vehicle at maximum 

capacity. Drivers’ delays could be higher when directional split is slightly imbalanced (i.e. 

directional split of 40/60 or 70/30). 

8.3 The effect of drivers’ non-compliance on system capacity  

Testing the effect of drivers’ non-compliance (red light violations) with temporary traffic 

signals on shuttle-lane roadworks capacity was carried out using various non-compliance 

percentages (0-40% with 10% increment) as shown in Table 8.2.  

Table 8.2: Input data for testing the effect of drivers’ non-compliance on system capacity 

Operation 
type 

Site length 
(m) 

two-way flow 
(veh/hr) 

HGVs 
% 

Direction split 
(P/S) 

Non-
Compliance  

% 

VA 100 250-3000 5 50/50 
0-40             

(10% increment) 
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Figure 8.3 illustrates the effect of different percentages of drivers’ non-compliance with 

temporary traffic signals at shuttle-lane roadworks system capacity. The results show that 

throughput could increase when drivers’ non-compliance increases up to 20% (maximum 

throughput of approximately 1,740 veh/hr (two-way)). The throughput might decrease when 

drivers’ non-compliance increases over 20%. This could be attributed to the fact that drivers 

violating the temporary traffic signals on one stream (e.g. primary stream) will restrict the 

movement of the other stream (e.g. secondary stream) when the lights show green (occupying 

the shuttle-lane roadworks site). 

 

Figure 8.3: Effect of drivers’ non-compliance on shuttle-lane roadworks site capacity 

8.4 The effect of HGVs percentage on system capacity  

Previous studies have suggested that the percentage of Heavy Goods Vehicles (HGVs) has a 

negative impact on the system capacity and could be related to the following reasons:  

� HGVs have longer lengths than cars which will increase headways and hence reduce 

capacity.  

� HGVs have lower acceleration rate abilities (ITE, 2010).  

� HGVs have lower desired speeds than those of small cars (Yousif, 1993).  

To test the effect of HGVs percentage on shuttle-lane roadworks capacity, various HGVs 

percentages between 0 and 30 (with 5 percent interval) were used as shown in Table 8.3. 
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Table 8.3: Input data for testing the effect of HGVs percentage on system capacity 

Operation 
type 

Site length 
(m) 

two-way flow 
(veh/hr) HGVs % 

Direction split 
(P/S) 

VA 100 250-3000 0-30 (5% interval) 50/50 
 

Figure 8.4 illustrates the effect of different HGVs percentage on shuttle-lane roadworks 

capacity. As the percentage of HGVs increases, the capacity decreases from approximately 

1,740 veh/hr (two-way) at 0.0% HGVs to approximately 1,340 veh/hr (two-way) at 30.0% 

(approximate reduction of 23% in system throughput). This shows the great effect of HGVs 

presence on system capacity. 

 

Figure 8.4: Effect of HGVs percentage on shuttle-lane roadworks capacity 

8.5 The effect of directional split on system capacity 
Testing the effect of directional split on shuttle-lane roadworks capacity was carried out using 

various directional split proportions for the primary and secondary streams as shown in Table 

8.4. The tested directional splits are 50/50, 60/40, 70/30 and 80/20. 

Table 8.4: Input data for testing the effect of HGVs percentage on system capacity 

Operation 
type 

Site length 
(m) 

two-way flow 
(veh/hr) 

HGVs % Direction split 
(P/S) 

VA 
100 250-3000 5 

50/50, 60/40, 
70/30, 80/20 FT 
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Figure 8.5 illustrates the effect of different directional splits on maximum system throughput 

for both FT and VA signals operation. The results show that for FT signals operation, the 

more the imbalanced directional flow (i.e. 80/20) will have a more adverse impact on system 

throughput and capacity reduction. The system throughput decreased from approximately 

1,560 veh/hr (two-way) for a directional split of 50/50 to approximately 1,220 veh/hr (two-

way) for a directional split of 80/20 (approximately a reduction of 21.8% in system 

throughput). 

For VA signals, the throughput is higher than those of FT signals (VA signals can adapt to 

different directional splits and the throughput reduction only starts with directional split of 

70/30 or higher). The system throughput decreased from approximately 1,670 veh/hr (two-

way) for a directional split of 50/50 to approximately 1,400 veh/hr (two-way) for a 

directional split of 80/20 (approximately a reduction of 16.2% in system throughput). 

 

Figure 8.5: Effect of HGVs percentage on shuttle-lane roadworks capacity 

8.6 Estimation of maximum system throughput 

Following the testing of different factors that affect the maximum throughput of shuttle-lane 

roadworks in previous sections using the simulation model, several proposed relationships 

were identified between maximum throughput and different factors (i.e. site length, HGVs%, 

directional split and type of signals operation). Multiple regression analysis was carried out 
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between the identified factors and the maximum throughput using statistical program 

(STATISTICA, version 10).  

Equation 8.1 shows the results from the regression analysis, which describes the relationship 

between the maximum throughput and the tested factors. 

Qm	 = 4120 − 2.08�L� − 18.11�HGV� − 1140.5�DSp� − 1708�FT� − 1578�VA�               Equation 8.1 

Where, 

Qm is the maximum two-way throughput of the shuttle-lane roadworks (veh/hr). 

L  is the site length (metres). 

HGVs%  is the percentage of Heavy Goods Vehicles. 

DSp is the directional split of the primary stream (decimal, i.e. 0.5 for 50%). 

FT is the type of signals operation-Fixed Time (1 if true and 0 if false). 

VA  is the type of signals operation-Vehicle Actuated (1 if true and 0 if false). 

The coefficient of determination (R2) value of the regression analysis is 0.98 which indicates 

strong relationship between the dependent variable (throughput) with the other independent 

variables. According to Equation 8.1, as the values of site length (L), HGVs% and DSp 

increase, the throughput decreases. Whereas, if the signals type is FT signals, the throughput 

decreases and if it is VA, the throughput increases. This effect seems to be consistent with the 

description of how these variables affect the throughput of shuttle-lane roadworks as 

discussed in sections 8.2 to 8.5. 

Equation 8.1 could be used as a more accurate representation of the maximum two-way 

throughput of shuttle-lane roadworks compared to existing equation used in analytical models 

(i.e. QUADRO), which only depends on one factor (i.e. site length). 

8.7 Improved shuttle-lane roadworks operation 

The micro-simulation modelling is a very useful tool for testing various types of traffic 

management scenarios without a real disruption to traffic and with little cost. As described in 

Section 2.7.3, various limitations have been listed in previous studies (i.e. very low flow, very 

long site length, no effect of drivers’ behaviour, outdated signals specifications) to test an 

improved operation of shuttle-lane roadworks operated by temporary traffic signals.  
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Therefore, this step has been taken by this study to improve capacity, reduce delays and 

improve safety by studying effective factors that influence the shuttle-lane roadworks’ 

capacity and safety, such as type of improved new signals technology and introducing new 

interventions (i.e. speed reduction techniques). 

8.7.1 Signals settings 

New signals settings have been proposed to improve the operation of shuttle-lane roadworks. 

The new signals settings are presented in Table 8.5 and the maximum green time has been 

increased from 90 to 120 seconds. The minimum green time is proposed to be 7 seconds 

(instead of 12 seconds based on the Highways Agency (2005B) and the all-red period has 

been modified from 10 seconds (based on the Department for Transport, 2009) to 8 seconds 

(based on ITE, 2010). 

Table 8.5: Input data for testing the effect of new signals settings 

Parameters Default value New value 

Maximum green time (sec) 90 120 

Minimum green time (sec) 12 7 

All-red time (sec) 10* 8** 

Site length (m) 100 

two-way flow (veh/hr) 250-3000 

HGVs % 5 

Direction split (P/S) 50/50 
       * based on the Department of Transport (2009)                                  ** based on ITE (2010) 

It can be seen from Figure 8.6 that the new signals settings can increase the site capacity from 

two-way flow of 1,670 veh/hr to 1,730 veh/hr (an increase of 3.5%) compared with the 

original VA settings and an increase of about 11% if FT signals were used. Figure 8.6 shows 

that delays in sec/veh can be reduced from 32 sec/veh to 28 sec/veh (reduction of 11% for 

VA signals and about 25% when using FT signals) using the new signals settings. 
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(a) Throughput    (b) Delay 

Figure 8.6: Effect of new signals settings on site capacity and delays 

8.7.2 Detection range 

According to the Department for Transport (2008), the MVD detector has a detection range 

up to 40m. New technology has been adopted by various MVD manufacturers to increase the 

detection length to 100 metres. There are no previous studies about the effect of such a 

technology on shuttle-lane roadworks site capacity, delays and dilemma zone. Therefore, 

various MVD detector ranges (60 to 120 with 20m increment) have been tested using the 

developed simulation model with the input data as presented in Table 8.6.  

Table 8.6: Input data for testing the effect of MVD detection range 

Operation 
type 

Detection range 
(m) 

Site length 
(m) 

two-way flow 
(veh/hr) 

HGVs 
% 

Direction split 
(P/S) 

VA 60-120 100 250-3000 5 50/50 
 

It can be seen from Figure 8.7 that the optimum MVD detection range that provides the 

maximum site capacity (throughput) is at 80 metres. The capacity could be increased for two-

way flow from 1,670 veh/hr to 1,740 veh/hr (by a further 4.2%) when the range increased 

from 40m to 80m for VA signals and a 12% where FT signals are used.  

Figure 8.7 also shows that delays in sec/veh remains the same for a detection range of 80m 

compared with the existing 40m MVD for VA signals, there is a slight reduction of about 1%. 

However, this reduction is about 14% when compared with the use of FT signals.  
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(a) Throughput    (b) Delay 

Figure 8.7: Effect of MVD detection range on site capacity and delays 

8.7.3 Reduction of dilemma zone effect 

As discussed in Section 2.6.9.2, the main factor affecting the length of dilemma zone is 

vehicle approach speed. Reducing the length of dilemma zone will reduce the risk of accident 

or near accident (Amer et al., 2011 and Medina et al., 2012). Practical speed reduction on site 

could be achieved by either installing temporary 20mph sign, Speed Indicator Devices (SID) 

or by installing temporary speed hump in advance of shuttle-lane roadworks site stop line.  

A temporary 20mph sign might be an effective speed reduction measure if accompanied by 

other extensive features Department for Transport (2004). The extensive speed reduction 

features will be inappropriate for temporary installation at shuttle-lane roadworks. On the 

other hand, Speed Indicator Devices (SID) can have a little effect on speed reduction of up to 

1.4 mph, which is not significant as indicated by Walter and Broughton (2011). Therefore, 

temporary speed hump is being chosen as an effective measure to test using the developed 

SIMSUR simulation model. 

Temporary speed hump (i.e. Pittman, easy rider speed hump) can be installed on the road in 

less than an hour using 16inch spikes (bolts). According to the Department for Transport 

(2007) (LTN 1/07), speed humps are more effective in reducing vehicles speed on 30mph 

roads. The mean vehicle’s speed will be 20mph (depending on hump dimensions). Speed 

reduction were tested in the developed simulation model with input data as shown in Table 

8.7 with the position of the speed hump at 30 metres from the stop line. 



CHAPTER EIGHT                                                             SIMSUR MODEL APPLICATION 
 
 

159 
 

Table 8.7: Input data for testing the effect of speed reduction 

Operation 
type 

Position of speed 
reduction from 

stop line (m) 

Site length 
(m) 

two-way flow 
(veh/hr) 

HGVs 
% 

Direction split 
(P/S) 

VA 30 100 250-3000 5 50/50 
 

It can be seen from Figure 8.8 that there is a negative impact between the introduction of 

speed reduction and the increase in site capacity. Site capacity could be reduced for two-way 

flow from 1,670 veh/hr to 1,540 veh/hr (a reduction of 7.8%) for VA signals and a reduction 

of 1.3% if FT signals are used.  

Figure 8.8 also shows that delays in sec/veh can be increased from 32 sec/veh to 38 sec/veh 

(increase of 23% for VA signals) and by an increase of about 4.6% if FT signals is used. 

Figure 8.9 shows that the number of vehicles crossing due to the presence of dilemma zone 

could be reduced from 102 veh/hr to 69 veh/hr (with a reduction of about 33%) for VA 

signals and about 64% if FT signals are used. This reduction could decrease the effect of 

dilemma zone and possible reductions of the risk of rear-end collisions. On the other hand it 

might reduce site capacity and increase average delay per vehicle. 

  

(a) Throughput    (b) Delay 

Figure 8.8: Effect of speed reduction on site capacity and delays 
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Figure 8.9: Effect of speed reduction on dilemma zone vehicles 

8.7.4 Reduction of tailgating behaviour 

As discussed in Section 2.6.9.1, tailgating is a dangerous drivers’ behaviour and attributes to 

a high percentage of road traffic accidents. According to Michael et al. (2000), the percentage 

of drivers that are involved in tailgating could be reduced by 8% using active message signs 

(the study was carried out on urban environment in the United States). These signs warn 

drivers who follow with headway less than 2 seconds by displaying variable signs (i.e. 

“Please Don’t Tailgate” or “Help Prevent Crashes, Please don’t Tailgate”). Message sign 

could have a different effect on shuttle-lane roadworks compared with normal urban roads in 

different countries. 

To implement the effect of the above sign, drivers’ buffer space was increased from 1.5 

metres to 3.0 metres (which will increase time headway between drivers) and test the effect 

on system capacity, delay and vehicles crossing on amber/red violations. A message sign is 

being tested in the developed simulation model with input data as shown in Table 8.8. 

Table 8.8: Input data for testing the combined improvements 

Operation 
type 

Site length 
(m) 

two-way flow 
(veh/hr) 

HGVs 
% 

Direction split 
(P/S) 

VA 100 250-3000 5 50/50 
 

It can be seen from Figure 8.10 that there is a negative impact between the introduction of 

message signs (assuming 8% reduction on tailgating will be achieved) and the increase in site 

capacity. Site capacity could be reduced for two-way flow from 1,670 veh/hr to 1,600 veh/hr 
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(reduction of 4.2%) for VA signals and capacity increase by about 2.6% if FT signals are 

used.  

Figure 8.10 also shows that delays in sec/veh could increase from 32 sec/veh to 33 sec/veh 

(increase of 3%) for VA signals and delay reduction by about 8.2% if FT signals are used as a 

result of reduced tailgating behaviour. Figure 8.11 shows that the number of vehicles crossing 

due to the presence of dilemma zone could be reduced from 102 veh/hr to 96 veh/hr (a 

reduction of about 4%) for VA signals and a possible reduction of about 48.5% if FT signals 

are used. This reduction could reduce the effect of dilemma zone and the possibilities of 

reducing the risk of rear-end collisions. On the other hand it might slightly reduce site 

capacity and increase average delay per vehicle. 

  

(a) Throughput    (b) Delay 
Figure 8.10: Effect of tailgating reduction on site capacity and delays 

 

 

Figure 8.11: Effect of tailgating reduction on dilemma zone vehicles 
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8.8 Summary 

The current chapter presented the application of the developed simulation model in testing 

various shuttle-lane roadworks scenarios. The main points can be summarised as follows: 

� The effect of various parameters on shuttle-lane roadworks site capacity and delays were 

tested (i.e. site length, drivers’ non-compliance, HGVs percentage, directional split and 

signals type). See Sections 8.2 to 8.5. 

� Regression analysis was carried out using different factors (i.e. site length, HGVs %, 

directional split and signals operation type). The regression analysis can be used in 

analytical models to produce more accurate representation of system capacity compared 

with previous models. 

� New signals settings were proposed and tested. The new signals settings could improve 

site capacity and reduce the level of delays (see Section 8.7.1). 

� Various MVD detection ranges were tested using the developed model and the optimum 

range was found to be 80m. The new range could increase site capacity and reduce 

delays (see Section 8.7.2). 

� Speed reduction scenario was proposed to reduce the effect of dilemma zone on drivers 

crossing on amber and violating the red light. It was found that speed reduction scenario 

could reduce the effect of vehicles crossing due to dilemma zone by up to 33% (see 

Section 8.7.3). 

� Reduction of tailgating behaviour was tested using the developed simulation model 

based on previous research by Michael et al. (2000). The tailgating behaviour was 

reduced by 8%. This reduction has little impact on system capacity (could be reduced by 

reduced by 4%) and delay could be increased by only 3%. The reduction in tailgating 

behaviour could reduce the amount of drivers crossing on amber/violating the red light 

by 4% (see Section 8.7.4). 
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CHAPTER NINE:  CONCLUSIONS AND 
RECOMMENDATIONS 

 

9.1 Conclusions 

The main conclusions and findings from this study can be summarised as follows: 

� Various discrepancies were found in the design guidelines such as site length, maximum 

allowed flow levels for each method of traffic operation (see Section 2.5). Important 

factors were not taken into account when selecting or designing each traffic control 

method (i.e. HGV %, directional split, junction proximity, etc.). 

� Mathematical and analytical models are inadequate for accurately modelling shuttle-lane 

roadworks with the limitation of correctly replicating queues and delays. They also lack 

the comparison with real observed data and the inability to model the effect of any 

advanced traffic control techniques (see Section 2.7). 

� Simulation models are designed for under-saturated conditions. Different models also 

have various limitations, such as omitting vehicles, various parameters are imbedded 

within the program code that the users do not have access to and the required level of 

complicated steps to ensure correct behaviour of such a system (see Section 2.7). 

� None of the mathematical, analytical or simulation models took into account the effect of 

aggressive drivers’ behaviour (i.e. close following “tailgating” and red light running) 

which may have an impact on site safety and capacity (see Section 2.7). 

� Large amount of data under six different categories were collected and analysed. Video 

survey site visits were carried out on 23 different sites with over 54 hours of video 

recording of traffic data in the area of Greater Manchester (see Chapter 3). 

� Various factors were analysed from the survey data including traffic flow (5-minutes 

profile), directional split, HGVs %, vehicle length, arrival headway, following headway 

(BAR and ACR), move-up time and move-up delay (see Chapter 4). 

� Two new extra drivers’ behaviours were studied at temporary traffic signals which are, 

close following “tailgating” and drivers’ compliance with traffic signals. It is found that 
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the percentage of drivers tailgating increased after crossing the roadworks compared with 

before approaching the roadworks (see Sections 4.6.2 and 4.11).  

� Drivers’ non-compliance with temporary traffic signals was much higher compared with 

normal signalised junctions as reported by previous researchers. Drivers’ non-

compliance was broken down into four categories and full statistics were provided (see 

Section 4.11). 

� The developed S-Paramics model fails statistically to replicate flow, throughput and 

queues. In addition, S-Paramics model could not replicate the aggressive drivers’ 

behaviour of amber crossing/red light violation observed on site and the presence of 

dilemma zone which has an effect on both safety and capacity. Therefore, it was 

recommended that a new micro-simulation model needs to be developed as part of the 

current study to provide more accurate results with the ability to cover S-Paramics 

limitations (see Chapter 5). 

� The developed SIMSUR car-following model was calibrated with the real field data. The 

results showed that the developed simulation model could represent both free following 

and "stop and go" conditions (which are similar to the conditions in shuttle-lane 

roadworks operated by temporary traffic signals) with more accurate representation 

compared with S-Paramics, VISSIM and AIMSUN (see Section 7.4.1). 

� The developed SIMSUR micro-simulation model shows satisfactory results when 

compared with the collected field data using various statistical measures and tests. The 

model was calibrated and validated for both FT and VA traffic signals. Moreover, the 

calibration and validation results of the developed simulation model show better 

compliance than the results obtained from the S-Paramics simulation model using the 

same set of field data (see Section 7.4, 7.5 and 7.6). 

� The developed SIMSUR simulation model was then applied to test the effect of various 

factors and new parameters on shuttle-lane roadworks capacity, delays and compliance 

with traffic signals.  

� The effect of site length was investigated using the developed simulation model. The 

relationship shows that when the site length increases, the maximum throughput 
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decreases. The results for capacity are higher than those obtained by Summersgill (1981), 

see Section 8.2. 

� The type of signals operation was also investigated.  The results show that Vehicle 

Actuated (VA) signals provided higher throughput compared with Fixed Time (FT) 

signals for the same flow levels and site lengths. Delays (sec/veh) were also decreased 

using VA signals, see Section 8.2. 

� The effect of drivers’ non-compliance with temporary traffic signals was investigated 

using the developed simulation model. The relationship shows that when the percentage 

of drivers not complying with temporary traffic signals increased up to a maximum of 

20%, the maximum throughput increased. When the percentage of drivers’ not 

complying with temporary traffic signals increased (beyond 20%), the maximum 

throughput decreased because of the blocking of the opposite stream (see Section 8.3). 

� The effect of HGVs percentage was investigated using the developed simulation model. 

The relationship shows that when the percentage of HGVs increased, the maximum 

throughput decreased, see Section 8.4. 

� The effect of directional split was investigated using the developed simulation model. 

The relationship shows that for FT signals, when the directional split is imbalanced (i.e. 

60/40 or higher), the maximum throughput decreased. For VA signals, when the 

directional split is (i.e. 50/50 or higher up to 60/40), the maximum throughput is the 

same and the signals can cope with the imbalanced flow. For imbalanced directional split 

beyond 70/30, the maximum throughput decreased (see Section 8.5). 

� Regression analysis was carried out to test the effect of different factors (i.e. site length, 

HGVs %, directional split and signals operation type). The regression equation may be 

recommended for use in analytical models (i.e. QUADRO) to provide more accurate 

representation of system capacity compared with existing equations which only take site 

length into consideration (see Section 8.6). 

� Modified signals settings (timings) were proposed and tested using the developed 

simulation model. The new timings show that the system capacity could be increased by 

3.5% and delays were reduced by 11% (for VA signals). If FT signals were used, the 
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system capacity could be increased by 11% and delays could be reduced by 25% (see 

Section 8.7.1). 

� Various settings of MVD detection ranges were tested to study the effect on system 

capacity, delays and dilemma zone crossings. It is found that the optimum detection 

length would be 80m. The optimum length increased system capacity by an extra 4.2% 

and delays were slightly increased by 1% (compared with VA signals). If FT signals 

were used, system capacity could be increased by an extra 12% and delays could be 

reduced by 14%. See Section 8.7.2. 

� A speed reduction scenario was proposed and tested to introduce a speed limit of 20 mph 

at a distance of 30 metres from the stop line using a speed hump. Speed reduction could 

reduce system capacity by 8%, increased delays by 23% and possibly reduce the amount 

of drivers’ crossing on amber or red (due to the presence of dilemma zone) by 33% (for 

VA signals). If FT signals were used, system capacity could be reduced by 1.3% and 

delays could be increased by 4.6% and the amount of vehicles crossing on amber or red 

could be reduced by 64% (see Section 8.7.3). 

� Reduction of tailgating behaviour was tested using the developed simulation model 

based on previous research. The tailgating behaviour was reduced by 8%. This reduction 

could reduce system capacity by 4.2%, increased delay by only 3% and the amount of 

drivers crossing on amber/violating the red light could be reduced by 4% (for VA 

signals). If FT signals were used, system capacity could be reduced by 2.6% and delays 

could be reduced by 8.2% and the amount of vehicles crossing on amber or red could be 

reduced by 48.5% (see Section 8.7.4). 

9.2 Recommendations and further research 

� Another type of shuttle-lane operation (i.e. priority operation or stop/go signs) could be 

modelled to test various parameters and compared with other operation methods by 

modifying SIMSUR model to account for gap acceptance rules. This could help in 

identifying the maximum system capacity using other operational methods compared to 

temporary traffic signals. 

� The effect of junction proximity on system capacity and delays needs to be studied using 

various junction proximity lengths and flow levels by carrying out extensive site visits. 
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This could help in identifying various parameters (e.g. appropriate operational type, 

signal coordination, signal settings)   

� Due to the lack of research in studying shuttle-lane roadworks on junctions, it could be 

studied (using more than 2 sets of traffic signals) to test the effect of other various 

parameters (i.e. the effect of right turners, minor arm location from the main road, signals 

settings and timings). 

� Speed hump (to reduce the effect of dilemma zone) and message signs (to reduce 

tailgating behaviour) could be tried and tested on real shuttle-lane roadworks sites to 

have a real estimate of their impact on system capacity and on drivers’ behaviour. 

� More studies on shuttle-lane roadworks sites in different cities and countries could be 

carried out to test for similarities and provide a more accurate representation.  

� Studying the platoon characteristics in shuttle-lane roadworks and develop a platoon- 

based algorithm with the aim to increase site capacity and reduce delays. 
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APPENDIX A: Shuttle-lane roadworks sites plans 
 

A.1. Site 11 

Site Number: 11 

Location: Broughton Lane, Salford (between Arrow Street and Milton Street) 

Roadwork operation method: Temporary traffic signal 

Site Length: 42 metres 

Surveyed: Primary and secondary streams 

Date: Monday and Tuesday 09 and 10 July 2012 

Time: 09:45 to 11:45 and 15:30 to 17:30 

Duration: 6 hours 

Weather: cloudy 

Comments: the site was filmed on 3 separate occasions. The weather was cloudy on the first 
occasion so filming from the road was achieved. The second time it was raining so each 
stream was filmed separately on 2 different days to cover the peak periods and filmed from 
inside parked vehicle. 

 

Figure A.1: Location map of Site 11 
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Figure A.2: Site 11 layout 
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A.2. Site 12 

Site Number: 12 

Location: Burton Road, Chorlton (between Everett Road/Ridsdale Avenue and Darlington 
Road) 

Roadwork operation method: Temporary traffic signal 

Site Length: 107 metres 

Surveyed: Primary and secondary streams 

Date: Tuesday 10.07.2012 

Time: 09:45 to 11:45 

Duration: 2 hours 

Weather: Rainy 

Comments: the site was filmed on once.  The first camera was placed in parked vehicle and 
the second was in a barber shop. Was not able to film again as the site was movable. It can be 
seen from Figure A.4 that only the temporary traffic signal sign was present on site in the 
direction of primary stream and also illustrated in Figure A.5 which is not according to the 
standards. 

 

 

Figure A.3: Location map of Site 12 
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Figure A.4: Pictures showing Site 12 
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Figure A.5: Site 12 layout 
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A.3. Site 13 

Site Number: 13 

Location: Brunswick Street, Manchester (between Bramwell Drive and Beamish 
close/Wadeson Road) 

Roadwork operation method: Priority Signs 

Site Length: 8 metres 

Surveyed: Primary and secondary streams 

Date: Thursday 12 July 2012 

Time: 09:45 to 11:45 

Duration: 2 hours 

Weather: cloudy and sunny 

The area was rough and mainly council estate. Filmed the primary stream and went back to 
film the secondary stream but the work was completed. It can be seen from Figures A.7 to 
A.9 the bad practise signage (i.e. knocked down signs, missing signs, etc.) at the roadworks 
site which is not according to the standards. 

 

 Figure A.6: Location map of Site 13 
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Figure A.7: Pictures showing Site 13 (secondary stream) 

 

 

Figure A.8: Pictures showing Site 13 (primary stream) 
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Figure A.9: Site 13 layout 
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A.4. Site 14 

Site Number: 14 

Location: Liverpool Street, Salford (between Fitzwarren Street/Athole Street and Bradden 
close) 

Roadwork operation method: Give or Take 

Site Length: 17 metres 

Surveyed: Secondary stream (no space to film the primary stream) 

Date: Tuesday 17 July 2012 

Time: 09:15 to 10:45 and 15:30 to 17:30 

Duration: 3.5 hours 

Weather: cloudy and rainy 

Comments: There was no safe position to film the primary stream and the weather was rainy. 
The area was not safe to film again due to the local circumstances (e.g. youth passing by, 
vandalism). It can be seen from Figures A.11 and A.12 that there are no signs in the 
secondary stream direction which is not according to the standards. 

 

 Figure A.10: Location map of Site 14 
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Figure A.11: Pictures showing Site 14 
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Figure A.12: Site 14 layout 
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A.5. Site 15 

Site Number: 15 

Location: Langworthy Road, Salford (junction Langworthy Road/Seedley Road/Sandy Lane) 

Signalised junction 

Date: Wednesday 18.07.2012 

Time: 09:25 to 11:25 

Duration: 2 hours 

Weather: cloudy 

 

 

Figure A.13: Location map of Site 15 
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A.6. Site 16 

Site Number: 16 

Location: High Lane, Manchester (between Acres Road and Chequers Road) 

Roadwork operation method: Temporary traffic signal 

Site Length: 42 metres 

Surveyed: Primary and secondary streams 

Date: Monday 04 September 2012 

Time: 11:30 to 13:30 

Duration: 3.5 hours 

Weather: Sunny 

Comments: the site was filmed for both directions. The weather was sunny. 

 

 

Figure A.14: Location map of Site 16 
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Figure A.15: Pictures showing Site 16 
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Figure A.16: Site 16 layout 
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A.7. Site 17 

Site Number: 17 

Location: New Blackley Road, Manchester (between Ellbourne Rd and Roch Bank) 

Roadwork operation method: Temporary traffic signal 

Site Length: 39 metres 

Surveyed: Primary and secondary streams 

Date: Thursday 06 September 2012 

Time: 11:00 to 12:00 

Duration: 1 hours 

Weather: Sunny 

Comments: the site was filmed for both directions. The weather was sunny. It can be seen 
from Figure A.18 the on-street parking in close proximity to the shuttle-lane roadworks site 
which makes the signs unclear to the drivers (in the secondary stream direction) causing 
traffic to stop in advance of the stop line.  

 

 

Figure A.17: Location map of Site 17 
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Figure A.18: Pictures showing Site 17 
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 Figure A.19: Site 17 layout 
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A.8. Site 18 

Site Number: 18 

Location: New Blackley Road, Manchester (between Ellbourne Rd and Roch Bank) 

Roadwork operation method: Temporary traffic signal 

Site Length: 73 metres 

Surveyed: Primary and secondary streams 

Date: Monday 17 September 2012 

Time: 16:30 to 18:00 

Duration: 1.5 hours 

Weather: Sunny 

Comments: the site was filmed for both directions. The weather was sunny. It can be seen 
from Figure A.21 the on-street parking in close proximity to the shuttle-lane roadworks site 
which makes the signs unclear to the drivers (in the primary stream direction) causing traffic 
to stop in advance of the stop line. 

 

 

Figure A.20: Location map of Site 18 
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Figure A.21: Pictures showing Site 18 
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Figure A.22: Site 18 layout 
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A.9. Site 19 

Site Number: 19 

Location: Frederick Road, Manchester (between Cheltenham Street and Lissadel Street) 

Roadwork operation method: Temporary traffic signal 

Site Length: 38 metres 

Surveyed: Primary and secondary streams 

Date: Thursday 27 September 2012 and Tuesday 02 October 2012 

Time: 09:15 to 11:15 

Duration: 3.5 hours 

Weather: Sunny 

Comments: the site was filmed for both directions. The weather was sunny. 

 

 

Figure A.23: Location map of Site 19 
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Figure A.24: Site 19 layout 
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A.10. Site 20 

Site Number: 20 

Date: 12.12.2011 

Location: Manchester Road, Swinton (between East Drive and Hospital Road) 

Roadwork operation method: Priority Rules 

Site Length: 67 metres 

Comments: The signage at site was very poorly designed and causing confusion to drivers. 
The signs were also covered behind parked vehicles as shown in Figures A.26 and A.27. 

 

 

Figure A.25: Location map of Site 20 
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Figure A.26: Pictures showing Site 20 (primary stream) 

 

 

Figure A.27: Pictures showing Site 20 (secondary stream) 
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A.11. Site 21 

Site Number: 21 

Date: 17.07.2012 

Location: Silk Street, Salford (between North George Street and Cannon Street) 

Roadwork operation method: Give or Take 

Site Length: 19 metres 

Comments: The visibility was very poor because of the bend and the site could not be filmed 
as there is no safe location to park a vehicle or stand as shown in Figures A.29 and A.30. 
Roadworks duration was for 2 days. 

 

Figure A.28: Location map of Site 21 
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Figure A.29: Pictures showing Site 21 (secondary stream) 

 

 

Figure A.30: Pictures showing Site 21 (primary stream) 
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 Figure A.31: Site 21 layout 
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A.12. Site 22 

Site Number: 22 

Date: 21.12.2012 

Location: University Road, Salford 

Roadwork operation method: FT temporary traffic signal 

Site Length: 79 metres 

Comments: Traffic flow was too low. No access provided to pedestrians which is not 
according to the design standards as shown in Figure A.33 and A.34. 

 

Figure A.32: Location map of Site 22 
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Figure A.33: Pictures showing Site 22 (secondary stream) 

 

 

Figure A.34: Pictures showing Site 22 (primary stream) 
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 Figure A.35: Site 22 layout 
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A.13. Site 23 

Site Number: 23 

Date: 21.12.2012 

Location: University Road West, Salford 

Roadwork operation method: FT temporary traffic signal 

Site Length: 68 metres 

Comments: Traffic flow was too low. Roadworks took place under a bridge. 

 

Figure A.36: Location map of Site 23 
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 Figure A.37: Site 23 layout 
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A.14. Temporary traffic signal control equipment 

Figure A.38 shown the inside of the temporary traffic signal head. The buttons can be 
changed easily to set the site leng.th and the controller will change the all-red period and 
maximum green time accordingly. The controller is set to a TA 47/85 which is out of date 
(superseded) and the new settings should be used. Figure A.39 shows the full signal head and 
the battery. 

 

Figure A.38: Photo of the signal control box for temporary traffic signal 

 

Figure A.39: Photo of the signal control equipment at temporary traffic signal 
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APPENDIX B: DATA ANALYSIS 
 

B.1 Flow levels and profile 

Table B.1: Flow statistics for each site 

Site No. Hour 
Minimum 

Flow 
(veh/hr) 

Maximum 
Flow 

(veh/hr) 

Average 
Flow 

(veh/hr) 

Directional 
Split         
(%) 

HGVs 
Percentage 

(%) 

Site 11a 
1 

(P) 144 
(S) 144 

(P) 216 
(S) 300 

(P) 184 
(S) 232 

(P) 44 
(S) 56 

(P) 6 
(S) 4 

2 
(P) 168 
(S) 168 

(P) 336 
(S) 432 

(P) 249 
(S) 268 

(P) 48 
(S) 52 

(P) 4 
(S) 3 

Site 11b 
1 

(P) 168 
(S) 192 

(P) 504 
(S) 360 

(P) 322 
(S) 279 

(P) 53 
(S) 47 

(P) 2 
(S) 5 

2 
(P) 264 
(S) 204 

(P) 468 
(S) 408 

(P) 373 
(S) 313 

(P) 54 
(S) 46 

(P) 1 
(S) 3 

Site 12 
1 

(P) 72 
(S) 84 

(P) 216 
(S) 192 

(P) 142 
(S) 134 

(P) 51 
(S) 49 

(P) 10 
(S) 10 

2 
(P) 108 

   (S) 96 
(P) 252 
(S) 264 

(P) 174 
(S) 159 

(P) 52 
(S) 48 

(P) 7 
(S) 9 

Site 13 
1 

(P) 228 
(S) 168 

(P) 372 
(S) 444 

(P) 307 
(S) 273 

(P) 53 
(S) 47 

(P) 7 
(S) 5 

2 
(P) 192 
(S) 156 

(P) 348 
(S) 324 

(P) 265 
(S) 245 

(P) 52 
(S) 48 

(P) 4 
(S) 3 

Site 14 
1 

(P) 96 
(S) 96 

(P) 444 
(S) 312 

(P) 258 
(S) 198 

(P) 57 
(S) 43 

(P) 2 
(S) 4 

30 mins 
(P) 216 
(S) 120 

(P) 312 
(S) 324 

(P) 276 
(S) 178 

(P) 61 
(S) 39 

(P) 2 
(S) 1 

Site 16a 
1 

(P) 168 
(S) 240 

(P) 336 
(S) 372 

(P) 265 
(S) 283 

(P) 48 
(S) 52 

(P) 7 
(S) 2 

2 
(P) 168 
(S) 240 

(P) 396 
(S) 408 

(P) 261 
(S) 322 

(P) 45 
(S) 55 

(P) 4 
(S) 5 

Site 16b 1 
(P) 264 
(S) 300 

(P) 468 
(S) 468 

(P) 383 
(S) 379 

(P) 50 
(S) 50 

(P) 2 
(S) 1 

Site 17 1 
(P) 156 
(S) 180 

(P) 264 
(S) 276 

(P) 204 
(S) 223 

(P) 48 
(S) 52 

(P) 5 
(S) 5 

Site 18 
1 

(P) 156 
(S) 336 

(P) 384 
(S) 516 

(P) 233 
(S) 442 

(P) 35 
(S) 65 

(P) 4 
(S) 2 

30 mins 
(P) 180 
(S) 252 

(P) 300 
(S) 456 

(P) 250 
(S) 366 

(P) 41 
(S) 59 

(P) 2 
(S) 3 

Site 19a 
1 

(P) 816 
(S) 216 

(P) 888 
(S) 636 

(P) 854 
(S) 450 

(P) 65 
(S) 35 

(P) 2 
(S) 2 

2 
(P) 816 
(S) 216 

(P) 888 
(S) 480 

(P) 832 
(S) 334 

(P) 71 
(S) 29 

(P) 1 
(S) 2 

Site 19b 
1 

(P) 564 
(S) 336 

(P) 816 
(S) 588 

(P) 683 
(S) 444 

(P) 61 
(S) 39 

(P) 2 
(S) 5 

2 
(P) 336 
(S) 264 

(P) 528 
(S) 468 

(P) 422 
(S) 372 

(P) 53 
(S) 47 

(P) 4 
(S) 2 

 



APPENDIX B                                                                                             Data Analysis  
 
 

218 
 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.1: Vehicle arrival profile for Site 11a 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.2: Vehicle arrival profile for Site 11b 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.3: Vehicle arrival profile for Site 12 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.4: Vehicle arrival profile for Site 13 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.5: Vehicle arrival profile for Site 14 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.6: Vehicle arrival profile for Site 16a 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.7: Vehicle arrival profile for Site 16b 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.8: Vehicle arrival profile for Site 17 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.9: Vehicle arrival profile for Site 18 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.10: Vehicle arrival profile for Site 19a 

 

  

(b) Primary Stream    (b) Secondary Stream 

Figure B.11: Vehicle arrival profile for Site 19b 

B.2 Time headway distribution 

  

(c) Primary Stream    (b) Secondary Stream 
Figure B.12: Time headway distribution for Site 11 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.13: Time headway distribution for Site 12 

 

  

(a) Primary Stream    (b) Secondary Stream 
Figure B.14: Time headway distribution for Site 16 

 

  

(a) Primary Stream    (b) Secondary Stream 
Figure B.15: Time headway distribution for Site 17 

 
 



APPENDIX B                                                                                             Data Analysis  
 
 

223 
 

  

(a) Primary Stream    (b) Secondary Stream 
Figure B.16: Time headway distribution for Site 18 

 
 
 

  

(a) Primary Stream    (b) Secondary Stream 
Figure B.17: Time headway distribution for Site 19 

 

B.3 Time headway cumulative distribution 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.18: Cumulative distribution for time headway for Site 11 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.19: Cumulative distribution for time headway for Site 12 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.20: Cumulative distribution for time headway for Site 16 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.21: Cumulative distribution for time headway for Site 17 
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(a) Primary Stream    (b) Secondary Stream 

Figure B.22: Cumulative distribution for time headway for Site 18 

 

  

(a) Primary Stream    (b) Secondary Stream 

Figure B.23: Cumulative distribution for time headway for Site 19 

B.4 Move-up time (MUT) 

  
(d) Headway of the 2nd Vehicle   (b) Headway of the 3rd Vehicle 
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(c) Headway of the 4th Vehicle   (d) Headway of the 5th Vehicle 

 

  
(e) Headway of the 6th Vehicle   (f) Headway of the 7th Vehicle 

 

   
(g) Headway of the 8th Vehicle        (h) Headway Distribution of All Vehicles 

Figure B.24: Distribution of MUT for Primary Stream in Shuttle-lane Roadworks 
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(a) Headway of the 2nd Vehicle   (b) Headway of the 3rd Vehicle 

 

  
(c) Headway of the 4th Vehicle   (d) Headway of the 5th Vehicle 

 

  
(e) Headway of the 6th Vehicle   (f) Headway of the 7th Vehicle 
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(g) Headway of the 8th Vehicle                  (h) Headway Distribution of All Vehicles 

Figure B.25: Distribution of MUT for Secondary Stream in Shuttle-lane Roadworks 
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B.5 VA detection failure 

 

Table B.2: VA signals detection failure 

Site Direction Time Comments 

Site 11a S 

00:03:39 
00:30:20 

 
 

1. The green phase was terminated and only 8 seconds later, the green 
phase was resumed again with vehicles already queuing on the 
primary stream. 

2. The green phase terminated and only 8 seconds later, the green phase 
resumed again with vehicles already queuing on the primary stream. 

Site 12 

P 00:59:35 
The green phase was terminated and only 30 seconds later, the green 
phase was resumed again with vehicles already queuing on the 
secondary stream. 

S 00:18:01 

The green phase was terminated and only 30 seconds later, the green 
phase resumed again with vehicles already queuing on the primary 
stream. 
 

Site 17 S 00:53:26 
The green phase was terminated and only 8 seconds later, the green 
phase was resumed again twice with no vehicles queuing on the 
primary stream. 

Site 18 

P 
00:04:45 
00:57:11 
01:12:01 

1. Vehicles stopped 45 m away from the stop line and have not been 
detected by the MVD as an effect of invisible WAIT HERE SIGN. 

2. Green time stayed for 75 seconds with no continuous arrival of 
vehicles forcing vehicles in the secondary stream to violate the red 
light 

3. The green phase was terminated and only 12 seconds later, the green 
phase was resumed again with vehicles already queuing on the 
secondary stream. This happened twice until 01:13:30 which forced the 
queued traffic on the secondary stream to violate the traffic light 

S 
00:04:41 
00:40:51 

1. The green phase was terminated and only 10 seconds later, the green 
phase was resumed again with vehicles already queuing on the 
primary stream. This happens twice until 00:06:40. 

2. The green phase was terminated and only 10 seconds later, the green 
phase was resumed again. 
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APPENDIX C: MODEL CALIBRATION AND VALIDATION 
 

Table C.1: Model calibration statistics – signal compliance (Site 16a) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 22 21 33 34 

Number of Amber crossing (%) 4% 4% 5% 6% 

Number of Red violations (veh) 12 12 16 15 

Number of Red violations (%) 2% 2% 3% 3% 

Total violations on Amber & Red (veh) 34 33 49 49 

Total violations on Amber & Red (%) 6% 6% 8% 8% 

Crossed cycles on Amber (cycles) 16 14 32 30 

Crossed cycles on Amber (%) 13% 12% 27% 19% 

Violated cycles on Red (cycles) 9 9 16 15 

Violated cycles on Red (%) 8% 8% 13% 13% 
 

 

 

Table C.2: Model calibration statistics - MUT (Site 16a) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.24 
(S) 2.60 

(P) 2.69 
(S) 2.58 

3 
(P) 2.22 
(S) 2.35 

(P) 2.18 
(S) 2.25 

4 
(P) 2.15 
(S) 2.21 

(P) 2.02 
(S) 2.00 

5 
(P) 2.12 
(S) 2.16 

(P) 1.99 
(S) 1.86 

6 
(P) 2.07 
(S) 2.09 

(P) 1.93 
(S) 1.94 

7 
(P) 1.89 
(S) 1.98 

(P) 1.86 
(S) 1.90 

Total 
(P) 12.69 
(S) 13.39 

(P) 12.48 
(S) 12.53 

                                                         P is Primary stream                         S is Secondary stream 
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Table C.3: Model calibration statistics - compliance (Site 12) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 3 2 1 1 

Number of Amber crossing (%) 1% 1% 0% 0% 

Number of Red violations (veh) 0 1 0 1 

Number of Red violations (%) 0% 0% 0% 0% 

Total violations on Amber & Red (veh) 3 3 1 2 

Total violations on Amber & Red (%) 1% 1% 0% 1% 

Crossed cycles on Amber (cycles) 3 2 1 1 

Crossed cycles on Amber (%) 4% 3% 1% 1% 

Violated cycles on Red (cycles) 0 1 0 1 

Violated cycles on Red (%) 0% 1% 0% 1% 
 

 

Table C.4: Model calibration statistics - MUT (Site 12) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.38 
(S) 2.48 

(P) 2.30 
(S) 2.33 

3 
(P) 2.21 
(S) 2.24 

(P) 2.20 
(S) 2.32 

4 
(P) 2.33 
(S) 2.10 

(P) 2.10 
(S) 2.00 

5 
(P) 2.16 
(S) 2.14 

(P) 2.04 
(S) 2.00 

6 
(P) 2.02 
(S) 2.42 

(P) 1.88 
(S) 2.00 

Total 
(P) 11.08 
(S) 11.37 

(P) 10.52 
(S) 10.65 

                                                                       P is Primary stream                         S is Secondary stream 
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Table C.5: Model validation statistics - compliance (Site 16b) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 25 24 22 23 

Number of Amber crossing (%) 7% 6% 6% 6% 

Number of Red violations (veh) 9 10 3 3 

Number of Red violations (%) 2% 3% 1% 1% 

Total violations on Amber & Red (veh) 34 34 25 26 

Total violations on Amber & Red (%) 9% 9% 7% 7% 

Crossed cycles on Amber (cycles) 15 13 17 18 

Crossed cycles on Amber (%) 25% 22% 28% 30% 

Violated cycles on Red (cycles) 8 8 3 3 

Violated cycles on Red (%) 13% 13% 5% 5% 
 

 

Table C.6: Model validation statistics - MUT (Site 16b) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.42 
(S) 2.51 

(P) 2.87 
(S) 2.92 

3 
(P) 2.11 
(S) 2.19 

(P) 2.22 
(S) 2.18 

4 
(P) 2.05 
(S) 2.04 

(P) 1.97 
(S) 1.95 

5 
(P) 1.95 
(S) 1.98 

(P) 1.87 
(S) 1.90 

6 
(P) 1.92 
(S) 1.92 

(P) 1.86 
(S) 1.84 

7 
(P) 1.81 
(S) 1.90 

(P) 1.80 
(S) 1.80 

Total 
(P) 12.26 
(S) 12.54 

(P) 12.59 
(S) 12.60 

                                                         P is Primary stream                         S is Secondary stream 
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Table C.7: Model validation statistics - compliance (Site 19) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 38 36 31 34 

Number of Amber crossing (%) 3% 3% 4% 4% 

Number of Red violations (veh) 21 21 18 19 

Number of Red violations (%) 2% 2% 2% 2% 

Total violations on Amber & Red (veh) 59 57 49 53 

Total violations on Amber & Red (%) 5% 5% 6% 7% 

Crossed cycles on Amber (cycles) 19 23 20 22 

Crossed cycles on Amber (%) 30% 37% 32% 35% 

Violated cycles on Red (cycles) 17 18 19 19 

Violated cycles on Red (%) 27% 29% 30% 30% 
 

 

 

Table C.8: Model validation statistics - MUT (Site 19) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.32 
(S) 2.40 

(P) 2.79 
(S) 2.85 

3 
(P) 2.02 
(S) 2.09 

(P) 2.14 
(S) 2.26 

4 
(P) 1.97 
(S) 2.01 

(P) 1.95 
(S) 1.98 

5 
(P) 1.89 
(S) 1.91 

(P) 1.83 
(S) 1.93 

6 
(P) 1.83 
(S) 1.90 

(P) 1.78 
(S) 1.86 

7 
(P) 1.81 
(S) 1.88 

(P) 1.74 
(S) 1.86 

Total (P) 11.83 
(S) 12.19 

(P) 12.23 
(S) 12.75 

                                                         P is Primary stream                         S is Secondary stream 
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Table C.9: Model validation statistics - compliance (Site 17) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 0 0 0 2 

Number of Amber crossing (%) 0% 0% 0% 0% 

Number of Red violations (veh) 1 0 1 1 

Number of Red violations (%) 0% 0% 0% 0% 

Total violations on Amber & Red (veh) 1 0 1 3 

Total violations on Amber & Red (%) 0% 0% 0% 1% 

Crossed cycles on Amber (cycles) 0 5 0 2 

Crossed cycles on Amber (%) 0% 4% 0% 2% 

Violated cycles on Red (cycles) 1 0 1 1 

Violated cycles on Red (%) 1% 0% 1% 1% 
 

 

 

Table C.10: Model validation statistics - MUT (Site 17) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.43 
(S) 2.59 

(P) 2.39 
(S) 2.50 

3 
(P) 2.22 
(S) 2.16 

(P) 2.36 
(S) 2.20 

4 
(P) 2.31 
(S) 2.25 

(P) 2.00 
(S) 2.00 

5 
(P) 2.25 
(S) 2.00 

(P) 1.90 
(S) 2.00 

Total 
(P) 9.21 
(S) 9.00 

(P) 8.64 
(S) 8.70 

                                                                  P is Primary stream                         S is Secondary stream 
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Table C.11: Model validation statistics - compliance (Site 18) 

Violation 
Primary Stream Secondary Stream 

Observed Modelled Observed Modelled 

Number of Amber crossing (veh) 4 5 5 6 

Number of Amber crossing (%) 1% 1% 1% 1% 

Number of Red violations (veh) 0 0 1 2 

Number of Red violations (%) 0% 0% 0% 0% 

Total violations on Amber & Red (veh) 4 5 6 8 

Total violations on Amber & Red (%) 1% 1% 1% 1% 

Crossed cycles on Amber (cycles) 4 5 5 6 

Crossed cycles on Amber (%) 4% 5% 5% 6% 

Violated cycles on Red (cycles) 0 0 1 2 

Violated cycles on Red (%) 0% 0% 1% 2% 
 

 

 

Table C.12: Model validation statistics - MUT (Site 18) 

Vehicle 
Position 

MUT (sec) 

Observed Modelled 

2 
(P) 2.20 
(S) 2.20 

(P) 2.31 
(S) 2.28 

3 
(P) 2.00 
(S) 2.18 

(P) 2.13 
(S) 2.14 

4 
(P) 1.83 
(S) 2.19 

(P) 2.05 
(S) 2.07 

5 
(P) 1.83 
(S) 2.19 

(P) 1.97 
(S) 2.04 

6 
(P) 1.75 
(S) 2.07 

(P) 1.95 
(S) 1.95 

7 
(P) 1.75 
(S) 2.06 

(P) 1.92 
(S) 1.88 

Total (P) 11.36 
(S) 12.90 

(P) 12.33 
(S) 12.36 

                                                                 P is Primary stream                         S is Secondary stream 
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Table C.13: RACL calibration values for all sites (primary stream) 

Site Obs. 
% 

Obs. 
value 

Iter.  1 
% 

Iter. 1 
Value 

Iter. 2 
% 

Iter. 2 
Value 

Final 
Iteration 

% 

Final 
Iteration 

value 

Site 12 3.8 3 3.8 6 3.5 5 3.0 3 

Site 
16a 

22.5 34 22.5 39 21.0 37 18.0 33 

Site 
16b 

10.6 34 10.6 39 10.0 37 8.0 34 

Site 17 1.6 1 1.6 3 1.4 3 1.0 0 

Site 18 0.3 4 0.3 6 0.4 6 0.5 5 

Site 
19b 

23.5 59 23.5 65 23.0 63 21.0 57 

 Obs.:  is the Observed value  

Iter.:   is the Iteration, which is the average of 10 simulation runs (each simulation run required approximately 2 hours of 

running time)  

 
 
 

Table C.14: RACL calibration values for all sites (secondary stream) 

Site Obs. 
% 

Obs. 
value 

Iter.  1 
% 

Iter. 1 
Value 

Iter. 2 
% 

Iter. 2 
Value 

Final 
Iteration 

% 

Final 
Iteration 

value 

Site 12 1.3 1 1.3 4 1.0 3 0.5 2 

Site 
16a 

14.8 49 14.8 60 14.0 58 12.0 49 

Site 
16b 

25.1 25 25.1 32 24.5 30 23.0 26 

Site 17 1.6 1 1.6 5 1.4 4 1.0 3 

Site 18 1.9 6 1.9 10 1.6 8 1.5 6 

Site 
19b 

27.2 49 27.2 61 26.5 58 25.0 53 

Obs.:  is the Observed value  

Iter.:   is the Iteration, which is the average of 10 simulation runs (each simulation run required approximately 2 hours of 

running time)  

 

 


