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Abstract 

The study presented in this PhD thesis is related to exploration of the 

properties of graphitic materials within the frame-work of ab initio methods. 

Structural and dynamical properties of graphitic materials are evaluated using the ab 

initio pseudopotential method. In graphitic materials, properties are obtained by 

incorporating Van der Waals interactions together with the generalized gradient 

approximation to density functional theory. These Van der Waals interactions 

improve the structural and dynamics of graphitic systems.   

In order to study the dynamical properties, the finite displacement method has 

been used to construct the dynamical matrix and force constant matrix. Phonon 

dispersions are investigated by the direct force constant matrix method in supercells. 

In this approach, force constants are assumed to be zero beyond a certain limit. 

Phonon frequencies are calculated from the force constant matrix. The dispersion 

relations and the Brillouin zone integrated density of states are also investigated. 

The significance of phonon dispersion has been studied to in various regions. 

Results are compared with dispersion corrected scheme and without dispersion 

corrected schemes to understand the importance of dispersion correction. 

Conclusions are also drawn on the applicability of theoretical approximations used. 

Further, ab initio results are also compared with the available data from experimental 

studies.  

The binding energies and electronic band gaps of exo-hydrogenated carbon 

nanotubes are determined to investigate the stability and band gap opening using 

density functional theory. The vibrational density of states for hydrogenated carbon 

nanotubes has been calculated to confirm the C-H stretching mode due to sp
3
 

hybridization. The thermodynamical stability of hydrogenated carbon nanotubes has 

been explored in the chemisorption limit. Statistical physics and density functional 

theory calculations have been used to predict hydrogen release temperatures at 

standard pressure in zigzag and armchair carbon nanotubes.  
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Chapter 1. Introduction 

The extra-ordinary variety of carbon allotropes gives them a special place in 

diverse fields such as nano-electronics and bio-engineering. Structural, dynamical 

and thermodynamical properties of graphitic materials lead to many important 

phenomena of physics. The most important form of carbon is known as graphite. 

This mechanically soft material is mostly used in pencil leads utilizing its weak inter-

layer interactions. Graphite is also an important material due to its high conductivity.  

The recent discovery of graphene has highlighted the need for graphitic 

materials. In future, graphene (Novoselov et al., 2005, Geim and Novoselov, 2007) 

can be considered as an important form among the carbon family. Graphene is 

becoming a rising star on the horizon of material science and condensed matter 

physics. Graphene consists of flat mono layers of carbon atoms tightly packed into a 

2D (two dimensional) honey comb lattice and is considered as a building block for 

graphite materials of all other dimensions. It can be wrapped up to 0D fullerenes, 

rolled into 1D nanotubes or stacked in to 3D graphite. Properties of carbon based 

materials change on shrinking the size down to the nano scale. Therefore graphite, 

graphene and carbon nanotubes (CNTs) have many interesting structural and 

dynamical properties in 3D, 2D and 1D respectively.  

Carbon nanotubes research was greatly encouraged by the initial report of the 

observations of carbon tubules of nanometer dimensions (Iijima, 1991) with amazing 

mechanical, thermal and electronic properties. CNTs are among the strongest and 

most resilient materials known to exist in nature. Their electronic properties present 

peculiar features in the sense that these properties depend on tube geometry, resulting 

in semiconductor or metallic character (Tans et al., 1997).  CNTs have an important 

application as these can be used as hydrogen storage materials. Hydrogen can meet 

the energy demand of a hungry world to cover the energy shortage and global 

climate change in a scenario where hydrogen is produced by carbon neutral methods. 

It is important to find the ways to store the hydrogen on board efficiently and safely 

for the purpose of hydrogen powered transportation (Nikitin et al., 2005). 
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One of the suitable ways for storage is hydrogen adsorption on a medium 

which is useful for adsorbing and releasing amounts of hydrogen. Carbon based 

materials like graphite and CNTs are also widely used to store the hydrogen. 

Recently high attention has been paid to the carbon nanotube as potential hydrogen 

storage medium due to its light mass density and high surface to volume ratio, as 

well as a high degree of reactivity between carbon and hydrogen (Dillon et al., 1997). 

But still controversy is found about the storage of hydrogen in single wall carbon 

nanotubes. This controversy arises due to fact that Single Wall Nanotubes (SWNTs) 

can be either metal or semiconductor in nature depending on their diameters and 

helicities (Wu et al., 2006). 

It is vital to understand the interactions of CNTs with the hydrogen molecule 

and atomic hydrogen. Both physisorption and chemisorption methods are used to 

store the hydrogen in CNTs. Physisorption, that is the process of weak adsorption of 

molecular hydrogen on SWNTs has been widely investigated and debated but 

covalent reactions between atomic hydrogen and SWNTs have a particular interest 

and are still less explored (Li et al., 2003).  

1.1. Atomic structure of Carbon Nanotubes 

The pure element carbon can be found in different allotropes. In 1985, Kroto 

et. al  discovered fullerene. Before this only amorphous carbon, graphite and 

diamond were included in well-known forms of carbon. One of the most important 

and prominent molecule is the spherical bucky ball C60, which has a bound structure 

similar to the seams of an old fashioned soccer ball. After this discovery, it became 

accepted that sp
2
 hybrid graphene layers exist not only in planar honeycomb sheets 

like in graphite but also as spherical curved and closed shaped cages. In 1991, Iijima 

discovered a cylindrical form of the bucky ball, known as the nanotube. These new 

fullerenes divide into two main categories: Single Wall Nanotube (SWNT) and Multi 

Walls Nanotube (MWNT). SWNT consists of one graphene sheet rolled into cylinder 

and MWNT is made of several concentric SWNTs. 

In this section, basic atomic structures of graphene and CNTs are described. 

The unit cell of graphene contains two carbon atoms A and B as shown in Figure  1-1 

and the distance acc between carbon to carbon atoms is about 0.142 nm (Buchs, 
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2008). Graphene to graphene inter planar spacing is about 0.335 nm in a graphite 

stack, where a1 and a2 are primitive vectors.  

 

Figure  1-1: Schematic diagram of graphene ; a1 and a2 are the lattice vectors. 

A SWNT is geometrically considered as a single graphene sheet rolled into a 

cylinder. Its structure is generally indexed by its Chiral vector Ch as defined by the 

circumferential vector    ⃗⃗ ⃗⃗ ⃗⃗   which starts and ends on the same lattice site on the 

SWNT and is brought back to the basic graphene sheet as shown Figure  1-2. The 

circumferential vector is defined as linear combination of basis vectors a1 and a2 of 

the hexagonal honey comb lattice with (Buchs, 2008). 

            (1.1) 

Thus, the geometry of a SWNT is described by the pair of integers (n, m) called the 

Chiral indices where diameter of tube D can be defined as 

   
|  |

 
 

 

 
 √         (1.2) 

Where   is a lattice constant of the honey comb lattice:   √       (    

       is the C-C bond legth). The chiral angle   which is defined as the angle 

between    and the zigzag direction of graphene sheet parallel to    can be written 

as: 

      
     

|  ||  |
 

    

 √         
 (1.3) 

As the graphene lattice has hexagonal symmetry, the possible values of   are in the 

range of        and the complementary angle between the tube axis and zigzag 

direction         is shown in Figure  1-2. If         (n,0) is a type of zigzag. 

On the other hand, if        (n,n) is a type of arm-chair. The unit cell of CNT is 
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described by Chiral vector Ch and the translation vector T perpendicular to Ch. The 

translational vector T is the smallest graphene lattice which is defined the 

translational period R along the tube axis and can be evaluated as             

with 

    
    

  
     

    

  
 (1.4) 

where    is the greatest common divisor of (2m+n) and (2n+m). The Norm of T is 

given by: 

 | |  
    √         

  
 (1.5) 

The unit cell of CNT is built by a cylindrical surface with height | | and diameter D, 

having number of atoms: 

    
           

  
 (1.6) 

 

Figure  1-2:  Graphene honey comb lattice with Chiral vector              

and Translation vector T. A metallic (8,2) Chiral SWNT is illustrated in this figure 

(Buchs, 2008; Fig.1.1). 

Generally, on the basis of indices n and m, nanotubes can be defined in such a 

way that if m=0, the nanotubes are called zigzag nanotubes and if n = m, nanotubes 

are called arm chair nanotubes. Otherwise, they are called Chiral nanotubes. For 

given nanotube indices (n,m) if n = m + 3k ( where k is positive integer including 

zero), the nanotube is metallic otherwise it will be semiconducting.  
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1.2. Literature Review  

A considerable amount of literature has been published on Graphitic 

materials. In 1956, Yoshimori and Kitano performed the first study of lattice 

vibration of graphite. Subsequently, Young and Kopple (1965) presented a model for 

the reactor graphite  which was based upon the previous Yoshimiri and Kitano bond 

bending and stretching model. It was considered the best model in primary studies of 

graphite. 

In 1972, Nicklow et al. investigated normal modes of vibration of graphite 

lattices for high quality pyrolytic graphite by using coherent inelastic neutron 

scattering. The axially Symmetric model was presented to best fit the experimental 

dispersion data and described the data on low q {phonon wave number}, low 

frequency modes in the (1 0 0) direction. In 1973, Ross also studied the modes of 

vibration in polycrystalline graphite using inelastic neutron scattering at temperatures 

up to 1920 
0
C. 

In 1995, Kresse et al. performed an ab initio study to investigate the 

dispersion relation of diamond and graphite. In this study, the supercell approach and 

local density approximation was used and found to agree with neutron inelastic data 

for low energy modes. In this study, high optical modes were also matched with 

reflection energy loss spectroscopy. In 2003, Dubay and Kresse performed an ab 

initio calculation of the phonon dispersion relation for single wall arm chair 

nanotubes and zigzag nanotubes. In this paper, the zone folding method was used to 

calculate dispersion relation of an isolated graphite layer. Discrepancies between the 

theory and experiment were found in this research work. 

In 2004, Wirtz and Rubio reviewed the ab initio calculation of graphite and 

graphene by using the LDA and GGA approaches of density functional theory. On 

comparing both ab initio approaches the modes of vibration for the GGA approach 

were found to be close to the experimental predictions. The calculated values of 

frequency in the GGA approach were also found to be lower than the LDA approach. 

  In 2005, Mounet and Marzari studied the structural, vibrational and 

themodynamical properties of diamond, graphite and derivatives using density 
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functional perturbation theory (DFPT) in the Generalized Gradient Approximation 

(GGA). The low frequency modes of vibration for the graphite system were studied 

but these modes of vibration needed further explanation. 

In 2007, Piscanec et al. found two Kohn anomalies in the highest optical 

phonon branch at   and K points of Brillouin Zone. The ab initio DFPT-GGA 

method was used in order to study the dispersion curve for graphite system. In 2008, 

Zimmermann et al. developed the force constant model to describe the lattice 

dynamics of Graphene and CNT(10,10). A set of parameters was introduced to 

calculate the phonon dispersion of graphene by fitting the ab initio dispersion. 

Vibrational modes of special carbon nanotubes were obtained by folding the two 

dimensional (2D) dispersion of graphene. 

  In 2008, Lazzeri et al. found electron-phonon coupling of selected phonon 

modes for graphene and graphite. In this study, long range electron-electron 

interaction was introduced using Green’s function approaches based on the screened 

electron-electron interaction. These interactions would be neglected in GGA and 

LDA approaches.  

In 2008, Falkovsky calculated the dispersion curve of graphene with 

interaction between three neighbours in the frame work of the Born-von Karman 

model. In this work, values of force constant were found by fitting the frequencies at 

critical points and elastic constants were also measured for the graphite system. 

In 2008, Yan et al. performed the ab initio study of monolayer and a few 

layers of graphite using LDA in the frame-work of the DFPT. It was reported that 

optical modes can shift their frequency in bilayer and trilayer graphite relative to 

single layer graphite. In this study, differences are found between the ab initio 

theoretical and available experimental studies of graphite. 

In 2009,  Perebeinos and Tersoff  studied the phonon for the graphene system 

using the valence force model. This study was compared with the previous ab initio 

investigation and experimental results for graphene. 

In 2009,  Tewary and Yang constructed the parametric inter atomic potential 

based on the Tersoff-Brenner potential model. In this study, the range of interaction 



Chapter 1                                                                                                                                Introduction 

 

7 
 

of each atom was extended up to four atoms for the graphene system. The parameters 

of potential were obtained by fitting the calculated values to the cohesive energy, 

lattice constants and phonon frequencies of graphene. The potential has been used to 

study the flexural rigidity of graphene. Nika  and Balandin (2012) described the 

optical phonons by counting number of atomic planes in Raman experiment with few 

layer graphene and acoustic phonons which are responsible as heat carriers in the 

graphene. In recent studies, Paulatto et al. (2013) used the DFPT to analyse the 

phonon anharmonic broadening and thermal conductivity. In this study, it was found 

that broadening in graphite and bilayer graphene is very similar to graphene. 

It is becoming increasing difficult to ignore the weak VDW interaction in 

graphitic materials especially sp
2 

bonded graphite. So far very few dispersion 

corrected studies have been performed to study the structure and dynamical 

properties of graphite by using density functional theory. Previously the GGA was 

considered a more reliable approach to study the weakly bonded system. Recently 

semi-empirical dispersion corrections have been introduced in CASTEP {Cambridge 

Serial Total Energy Package} code (Clark et al., 2005).  In the present study, we used 

the semi empirical dispersion scheme along with the GGA rather than just using the 

LDA. These types of study of the graphitic materials still were not found in 

literature. The purpose of this ab initio study, therefore, was to investigate the effect 

of dispersion correction on the structural and vibrational properties of the graphite 

system. These dispersion corrections have improved the prediction of structural 

properties. The dispersion corrected schemes, especially  the TS scheme (Tkatchenko 

and Scheffler, 2009)  produce  accurate modes of vibration using ab initio methods. 

This approach reduces the computation time compared with semi-local GGA-PBE 

functional so it is a more efficient way to calculate the dynamical properties of 

graphite as well.  

 

However, ab initio methods use direct solution of large sets of quantum wave 

functions in Density Functional Theory (DFT). The results generated from these 

calculations are extremely accurate and approach the reality of the system via the 

mathematics or solutions of quantum mechanics. The methods of ab initio phonon 

frequency fall into two broad classes: the linear response approach and the direct 

approach. Many physical properties depend upon a system response to some form of 
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Perturbation. Density functional Perturbation theory (DFPT) is particularly powerful 

and is a flexible tool in calculation of phonon, Raman Intensities and infra-red 

absorption. System responses to external perturbation may be calculated using DFT 

with addition of some perturbing potential. These types of calculations need large 

computational efforts. However, the second category is based on the Supercell Finite 

Displacement Approach. This is an efficient and better way to calculate the phonon 

in large number of systems. This includes the interactions of large number of atoms. 

This method is used in the present vibrational studies about the graphitic materials.  

 

Over the next 30 years, two major issues may be decreasing the world supply 

of fossil fuels and the increasing rate of global warming and climate change. 

Therefore, major attention has been paid towards the hydrogen manufacture and 

storage (Yurum et al., 2009). The hydrogen can be used as an alternate and 

renewable source; it may be obtained from water. However efficient storage of the 

hydrogen for mobile applications is still a vital challenge for the scientific and 

industrial community (Jena, 2011). 

 

Numerous works have been published on carbon as hydrogen storages as 

carbon is mostly used as a catalyst support and in fuel cell electrodes. In 1997, Dillon 

et.al. performed the first study of the use of the Single Wall Nanotubes (SWNT) as 

hydrogen storage materials. It was reported 10 wt. % of hydrogen in SWNT, this was 

measured using the temperature desorption programme. The large quantity of gas can 

be adsorbed in the pores of carbon nanotubes. After this study, researchers developed 

an interest to use carbon nanotubes as hydrogen storage. 

For instance, in 1998, Chambers et al. studied the hydrogen-storage abilities 

of graphitic nano fibres and alkali doped multi-walled graphite. In 2001, Yildrim 

et.al. performed an ab initio study of a fully exo-hydrogenated zigzag and armchair 

single wall carbon nanotubes. They found that zigzag nanotubes were more likely to 

have significant sp
3
 structure as compared with arm chair nanotubes. It means that 

the binding energy of zigzag is always lower than arm chair nanotubes with the same 

radius. In 2001, Chan developed a mechanism for the dissociation of hydrogen 

molecule on CNT using density functional theory. In this ab initio study; pressure 

was used to dissociate H-H bonds and form C-H bonds. In 2002, Khare et al. found 
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that atomic hydrogen covalently binds with the carbon atoms of nanotubes and the 

formation of C-H bond was confirmed by the IR stretching mode.  

  In 2003, Schimmel et al. claimed the storage capacities of carbon materials 

were closer to 2.5 wt. %. In 2004, Bashkin studied the thermal stability of 

hydrogenated SWNT under the pressure of 9 GPa at T=500 
0
C. It was reported that 

C-H peaks were found in the region between 2860 cm
-1

 to 2920 cm
-1

 using IR 

spectroscopy. In 2005,  Nikitin et al. reported that C-H bonds weakened with 

increase in radius for hydrogenated SWNTs. They also found that 65  15 at. % of 

the carbon atoms in SWNTs can be hydrogenated to form C-H bonds. This 

corresponds to hydrogen capacity 5.1 2.1 wt. %. It was also found that 

hydrogenated CNTs were stable at room temperature and hydrogen was released by 

heating to 600
0
C. Thus hydrogenation and dehydrogenation processes were found to 

be reversible. It was mentioned that a stable C-H bond can break in the well-defined 

carbon nanotubes between the ranges of temperature 50-100
0
C. In 2005, Park et al. 

studied the atomic and electronic structures of hydrogen–chemisorbed single wall 

CNTs. In this study they investigated the relative stability of the various hydrogen 

adsorption geometries with coverage. The band gap of carbon nanotubes also 

changed with the hydrogen coverage, independent of the metallicity of nanotubes. 

This may be caused by sp
3
 hybridization in hydrogenated CNTs. 

In 2006, Zhang et al. reported the hydrogenation of SWNT by means of 

hydrogen plasma treatment. It was reported that the vibrational frequency of 

chemisorbed hydrogen was found to be 2920 cm
-1

 corresponding to sp
3
 C-H 

stretching or asymmetric stretching of sp
3
 CH2 group. In this study, each hydrogen 

atom was externally attached to carbon through the chemisorbtion  process and the 

calculated value of the gravimetric density was about 7.74 wt. %. 

In 2006,  Bazhenov reported 5.4 wt. % of hydrogen in SWNT at a  hydrogen 

pressure of 50 kbar at 500 
0
C. The C-H mode was found at the value of 2845 cm

-1
 by 

studying the optical transmission spectra. In 2008, Nikitin et al. found that SWCN 

with diameter 2nm could be 100% hydrogenated and the nanotubes were stable at 

room temperature with hydrogen storage capacity  calculated at 7 wt. %. In this 

study, it was reported that most of the C-H bonds formed on the nanotube surface 

can be dissociated in the temperature range 200-300 
0
C. It was also found that 
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hydrogen desorption was largely controlled by the reaction kinetics due to large 

activation barriers of H2 formation from stable H pairs adsorbed on the SWCN.      

Tokura et al. (2008) investigated adsorption of atomic hydrogen on SWNTs 

using spectroscopy. This study suggests that the hydrogen adsorption which creates 

the structure deformation from sp
2
 to sp

3
 like bonding depends on the diameters of 

SWCNTs. Yoshihara et al. (2008) reported the interaction of hydrogen with SWNTs 

using an SWNT thin film sensor and thermal desorption spectroscopy. It was found 

that adsorption of atomic hydrogen on SWNTs shows non- activated and thermal 

adsorption states due to first order kinetics, where non-activated adsorption is 

dominated. The desorption of hydrogen molecules was also found to follow the first 

order kinetics. 

In 2009, Bhowmick et al. performed studies of Pt-SWNTs to investigate the 

spill- over effect for the hydrogenation of Pt-SWNT composite using hydrogen 

molecules. It was also reported that SWNTs store the hydrogen by chemisorption to 

form stable C-H bond. It was also reported that C-H bond formation can be probed 

using the spectroscopic techniques during the interaction of hydrogen with SWCN. 

Recently, it was also reported that chemisorption of two hydrogen atoms on the 

exterior side walls of carbon ad-dimer defective armchair SWCNTs was 

thermodynamically more stable than the pristine nanotubes with two hydrogen atoms 

chemisorbed (Wang et al., 2010). 

In all the studies mentioned in previous paragraphs about chemisorbed 

hydrogenated carbon nanotubes, the C-H bond formation was not properly studied 

using the density functional theory. Hydrogen release temperature was not yet 

properly investigated in zigzag and arm chair hydrogenated CNTs. Therefore, we 

performed the systematic ab initio study of hydrogen release temperature in 

hydrogenated CNTs. 
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1.3. Aims and Objectives of the Work 

 Research about the structural and dynamical properties of graphite system 

cannot be completed without including the VdW (Van der Waals) interactions due to 

weakly intermolecular forces between layers of graphite. These VdW interactions 

have a strong influence on properties of graphite. 

In this project, structural and dynamical properties of graphite system were 

performed using dispersion corrections like G06 and TS schemes (Grimme, 2006, 

Tkatchenko and Scheffler, 2009) along with density functionals. Local density 

functional (LDA) and generalized gradient approximation (GGA) were also used to 

investigate the properties of single layer and double layers graphite. The research 

work was carried out to compare the properties of graphite with density functionals 

and incorporation of these functionals with dispersion corrections. 

The following are the main objectives of performing this study: 

 To investigate the structural and vibrational properties of graphite using density 

functional theory (DFT) and density functional theory with dispersion 

corrections (DFT-D) methods.  

 To study the structural and vibrational properties of rhombohedral graphite 

system using DFT-D functional. 

 To obtain the binding energies and band gaps of hydrogenated zigzag and 

armchair CNTs. 

 To obtain the complete vibrational information of hydrogenated carbon 

nanotube by means of computational vibrational density of states and 

dispersion curve. 

 To utilise the results of computational calculations and statistical 

thermodynamics to predict the hydrogen releasing temperatures in 

hydrogenated CNTs. 

The binding energies and band gaps have been found for zigzag and armchair 

CNTs using PBE-GGA functional. The band gap opening in CNTs are important due 

to its use in nano-electronics. Hydrogenation of nanotubes is vital in the modification 

of electronic structure for the device applications. These properties have been 
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compared with respect to diameters of CNTs. The hydrogenated CNT was explored 

to investigate the C-H mode using vibrational density of states. The prediction of 

hydrogen releasing temperature was done to find the stability of a C-H bond in 

hydrogenated CNTs using the density functional theory and statistical 

thermodynamics. This is the first extensive study of hydrogen release temperatures in 

CNTs. 

1.4. Outline of Thesis 

In the first chapter, inspirations and motivations have been discussed to 

perform the current study of graphitic materials. In the second chapter, the origin of 

density functional theory has been described by using Hartree-Fock approximation 

and Born Oppenheimer Approximation. The density functionals and influence of 

dispersion corrected schemes on density functionals are described and their 

limitations also pointed out. 

The third chapter explains the role of the plane wave pseudopotential 

methods in order to solve the Kohn-Sham equations for periodic systems. Various 

methods are described to solve the Kohn-Sham equations in order to get the ground 

state energy.  

The fourth chapter provides the insight about the methods of the phonon 

calculations. Statistical partition functions are also described to perform the free 

energy calculations. These free energy calculations will be utilized to find the 

hydrogen release temperatures. 

 The fifth chapter is about the results and discussion in which structural and 

dynamical properties of graphite and graphene have been described by using ab initio 

methods. The VdW dispersion corrections are important factors in this study. The 

semi empirical ab initio methods are successful and efficient tools to explain the 

structural properties. 

  In the sixth chapter, the major application of CNT as hydrogen storage has 

been studied using density functional theory and statistical partition functions. 

Following the geometry optimization in zigzag and arm chair CNTs, binding 
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energies of chemisorbed hydrogenated CNTs have been studied. The dependence of 

band gaps of hydrogenated CNTs on diameters are determined using the PBE-GGA 

functional. The vibrational density of states has been studied for hydrogenated CNTs 

in order to evaluate the C-H modes of vibration. The partition functions have been 

used to determine the translational and rotational free energies of hydrogen 

molecules. Hydrogen release temperatures in zigzag and arm chair CNTs have been 

predicted using the thermodynamical calculations as implemented in CASTEP code.  

Finally, the seventh chapter is about a brief summary of the work and 

accuracy of the modelling that has been described. Some suggestions and 

recommendations have been made regarding further research on graphitic materials. 
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Chapter 2. Theoretical Background 

 

2.1. Introduction 

 

One significant need is to solve the quantum mechanical wave function for 

the system. These solutions are useful to explain the properties of ions or atoms. This 

chapter gives a brief description about the methods to solve the Schrodinger wave 

equation. In particular, we describe how to solve the wave function in the Born-

Oppenheimer approximation (Born and Oppenheimer, 1927) and Hartree-Fock 

formalism (Hartree, 1928, Fock, 1930). We then describe the Thomas-Fermi 

approximation (Thomas, 1926, Fermi, 1928). Finally, we describe Density functional 

theory (DFT) as developed by Kohn-Sham (Kohn and Sham, 1965). Exchange and 

correlation functionals play fundamental roles in density functional theory but exact 

forms of these functionals are still unknown. Dispersion correction schemes 

introduce the VdW interactions in weakly bonded systems. These schemes have been 

recently employed correctly in CASTEP 7.0 code (Clark et al., 2005) to add the long 

range interactions for layered systems such as the graphite. 

2.2. Many –Body Problem Interacting System 

Atomic systems are always described in terms of interactions between two 

types of particle: positive nuclei and negative electrons. The Schrodinger wave 

equation describing the motion can be written as 

  ̂     (2.1) 

with   as the many body wave function, E as the energy of the system and  ̂ as the 

Hamiltonian describing this interaction which can be written as: 
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 Where the nuclei have the positions   , mass M and charge Z and electrons are with 

positions   , mass m and charge e. The same term i.e. I=J or i=j are ignored to avoid 

the self-interaction. 

2.3.  Born-Oppenheimer Approximation  

  Born and Oppenheimer (1927) recognised that the atomic nuclei are more 

massive particles than the electrons and, as a result, their velocities are much lower. 

The nuclei can be considered as stationary with electrons following the motion of the 

nuclei. The Hamiltonian for the electronic wave function is given by 

  ̂    
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|     |
   

 
(2.3) 

 

The second term in equation (2.3) is the electron-electron interaction term, a 

repulsive Coulomb interaction due to the negative charge of the electron. 

For a system in the electronic state,  ,  the measured energy ,  , will be an upper 

bound to the  true ground state energy (Parr and Yang, 1989;p.05); 

  [ ]     (2.4) 

The average of many measurement of the energy  [ ] is given by the relation 

  [ ]  
⟨ | ̂| ⟩

⟨ | ⟩
 (2.5) 

Each measurement of energy provides one of the eigenvalues of the  ̂ and full 

minimization of the functional  [ ] with respect to all allowed N-electron wave 

functions will give the true ground state    and energy E0 . 

2.4. Quasi Particles 

The result of placing one electron into a uniform distribution of electrons 

creates a hole in the charge density from all other electrons as similar charge 

electrons repel each other. The exchange interaction arises due to the exclusion 



Chapter 2                                                                                                             Theoretical Background 

 

16 
 

principle, electron with parallel spin tend to avoid each other. The result of this 

repulsion is that there is a reduction in the probability of finding an electron near to a 

given electron as shown in Figure 2-1. This is known as the exchange-correlation 

hole. The charge of the exchange-correlation hole is equal to minus one electron and 

therefore, viewed from a distance each electron-hole pair (or the quasi particle) acts 

like a charge neutral particle (Sutton, 1996; p.155). Charge neutral particles do not 

interact at a distance and their motion is essentially independent.  The electron and its 

exchange-correlation hole are inseparable and they move through the system as a 

single entity which is called a quasi particle. 

 

Figure 2-1: The electron-hole pair–the electron causes a dip in the charge distribution 

of all other electrons.  

2.5.  Hartree Approximation 

  Hartree (1928 ) expressed the independent quasi particle view of the electron 

that only sees the average field generated by the other electrons in the system. This 

was in order to approximately solve the electron-electron interaction in equation by 

rewriting the many body wave function as a product of single electron wave 

functions,         

                 
 
 

   
       

   (2.6) 

 

The single particle states can be normalised to unity and the energy of the system  

can be written as (Kaxiras, 2003; p.44). 
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(2.7) 

 



Chapter 2                                                                                                             Theoretical Background 

 

17 
 

 Applying the variational principle we obtain single particle Hartree equation: 

 
[
     

 

   
           ∑⟨  |

 

|    |
|  ⟩]

   

          
    

 

 (2.8) 

 

Where the constraints     are Lagrange multipliers that take into account the 

normalization of states. 

In order to solve the single particle Schrodinger equation for each       , all 

other states   (  ) must be known. This requires a self-consistent method of solution 

starting with an initial choice of the functions and continuing until convergence. If 

the trial functions are orthogonal and this orthogonality should be maintained 

throughout the self-consistent cycle then the final functions will look like single-

particle states. Each electron will experience the ionic potential         and the 

potential due to all the other electrons, this is called the Hartree potential. 

   
       ∑ ⟨  |

 

|    |
|  ⟩       (2.9) 

This mean field approximation includes only the Coulomb repulsion between 

electrons. The aim is to reduce the many-electron problem to an effective one-

electron form. 

2.6. Hartree-Fock Theory  

  Fock (1930) improved  the Hartree model and described the way to make the 

wave function anti symmetric with respect to the exchange of electrons and therefore 

satisfy the Pauli exclusion principle (Pauli, 1925). This could be achieved by adding 

and subtracting all possible permutations of the Hartree product. This wave function 

is explained  by Slater in the form of the determinant of the matrix (Slater, 1930). 

     
 

√  |

|

  
          

           
    

   
          

           
    

                
               
   

          
           

    

|

|
 

(2.10) 

 

The Hartree-Fock described the methods to solve the orthogonal orbtials,    , that 

minimize the ground state energy for this form of  . The single-particle wave 

equations from the variational method now written as: 
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                   (2.11) 

This has one extra term compared with the Hartree’s equation  (2.8), known as the 

exchange term   
    . 

2.7. Density Functional Theory 

The DFT approach involves writing the total energy of a system of 

interacting electrons in terms of the density of charge n(r) rather than the many body 

wavefunction. The density has an advantage as it deals with function of three 

variables, i.e. three Cartesian directions rather than the dealing with many-body wave 

functions of the system which depend on 3N variables. 

2.8. The Thomas –Fermi Model 

In the earliest form of density functional theory, Thomas (1926) and Fermi 

(1928) proposed a model to describe the energy as a simple function of density. The 

energy of the system is then given by: 

 

 

   [    ]   ∫
 

  
     

 
 ⁄      

 
 ⁄   
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∬

         

|    |
      

 

                          = Kinetic Energy + External Potential (due to nuclei) 

+ Electron- Electron Interaction 

 

 

 

(2.12) 

 

This model is qualitatively correct for atoms but does not give a binding energy for 

molecules and fails to explain the exchange and correlation effects. 

 

2.9. Hohenberg-Kohn Theorems 

  Hohnberg and Kohn (1964) showed that the external potential is uniquely 

determined by the electron density only. Therefore, the Hamiltonian, and hence all 

ground state properties, are determined solely by the electron density. 
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In other words, all physical properties of a system can be determined by the 

charge density as the expectation value of an operator  that is a unique functional of 

the ground state charge density,        

The Hamiltonian uniquely determined by     , is also defined as the sum of 

the kinetic energy T, the external potential Vext and the electron-electron interaction 

potential V.  In order to prove the Hohenberg and Kohn theorem, we will start with 

the Schrodinger equations for two systems with potential,      and     
 

  that differ by 

more than a constant. These systems described by Hamiltonians   and      have 

ground state energies    and   
 
  and charge densities       and   

     respectively 

(Taylor and Heinonen, 2002; p.186). The ground state wave functions for 

Hamiltonian   and    are    and   
  respectively. According to the variational 

principle: 

    ⟨  | |  ⟩  ⟨  
 

| |  
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(2.13) 

Where: 

 

⟨  
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 ⟩  ⟨  
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  ∫  
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]   

(2.14) 

(2.15) 

Therefore: 

      
  ∫  

    [         
 

]   (2.16) 

It can  also be shown similarly that 

   
     ∫     [    

      ]   (2.17) 

 If we assume that       and   
     are equal and combine the above two equations 

      
       

   (2.18) 

This is clearly not true and hence,    and   
  must be different as the charge densities 

cannot be equal. We have established that two non-degenerate ground states always 

lead to different ground state densities.  

In principle,    can be found by varying the n(r) to minimize  [    ], if 

 [    ] is known. The energy functional can be written in terms of the external 

potential and another functional    [    ] which includes the kinetic energy and 

electron-electron terms: 
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  [    ]     [    ] ∫           (2.19) 

Where  

    [    ]  ⟨ [ ]|   | [ ]⟩ (2.20) 

Hohenberg and Kohn also observed that if one can find  [    ]  then true 

ground-state density      minimizes it. In equation (2.19),    [    ] comprise of all 

internal energies of the interacting particle systems. This is also called universality of 

total energy functional. It should be noted that  [    ] is not known. 

 

2.10. Kohn-Sham formalism 

The basic idea in Kohn and Sham (1965) formalism is to use a non- 

interacting “reference” or auxiliary system and to look for an external potential       

such that the non-interacting system has the same ground state density as the real 

interacting system.  

The Hamiltonian for this system can be written as  

          (2.21) 

According to Hohenberg-Kohn theory, the energy of this system is described as: 

  [    ]     [    ]  ∫         dr (2.22) 

As the particles in this system are non-interacting, the exact wave-function can be 

separated into normalized single-particle states,     , and the charge density can be 

written as (Taylor and Heinonen, 2002 ; p.187): 

 

      ∑|     |
 

 

   

 (2.23) 

The energy functional for the real system can be described to include the kinetic 

energy   [    ] of the non-interacting system 

 

 [    ]     [    ]   
  

 
∬

         

|    |
     

 ∫               [    ] 

(2.24) 

    [    ] is known as the exchange-correlation energy. According to the 

Hohenberg and Kohn theorem, the charge density that minimizes  [    ] is the 

ground state density. 

Application of the variational principle leads to the Kohn-Sham equations; 
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[ 

  

   
  

                      ]               (2.25) 

Where     is called the exchange-correlation potential defined as  
    [    ]

     
.  These 

equations need to be solved self-consistently and the solution gives the Kohn-Sham 

eigenvalues    and electron wave functions. 

The exact form of the    [    ] functional is not known but several approximations 

are available. The Kohn-Sham formulation thus achieves in transforming the N-body 

problem in to N single-body problems. It is worth mentioning that formally there is 

no physical interpretation of these single Kohn-Sham eigen values and orbitals, they 

are solely mathematical artefacts that support the determination of the true ground 

state density. 

2.11. Functionals 

In the Kohn-Sham equations, we simply replace the fully interacting system 

with a non-interacting system that produces the same ground state density. As the 

Kohn-Sham kinetic energy is not the true kinetic energy, we need to define the 

exchange and correlation energy as (Tulip, 2005); 

    [    ]   [    ]    [    ]    [    ]   [    ] (2.26) 

where   [    ] and    [    ] are the exact kinetic and electron-electron interaction 

energies respectively. Physically this term can be explained as consisting of the 

contributions of detailed correlation and exchange to the system. The equation (2.25) 

ensures the exact form of the Kohn-Sham formulation. However, the actual form of 

   [    ] is still not known. Thus we need to develop an approximate functional 

based upon the electron density.  

2.12. Local Density Approximation 

The Local Density Approximation (LDA) states that the contribution to the 

exchange-correlation energy from an infinitesimal volume dr is same as a 

homogenous electron gas (jellium) with the same density at r. Therefore, by 

assuming this approximation, the only need is the exchange and correlation energy of 

the homogenous electron gas as a function of density. In this system the electrons are 
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subject to a constant potential and thus the charge density is constant     . Hence the 

exchange and correlation energy    
   

 can be written as: 

 
   

        
        ∫     

          (2.27) 

Where N is the number of electrons and    
        is the exchange-correlation energy per 

unit volume. 

 

Figure 2-2:  Local density equivalent to uniform electron gas is being considered in 

the region dr by Local density approximation. 

This leads to the exchange-correlation energy of the system being expressed as: 

    
    ∫       

   [    ]    (2.28) 

and the exchange-correlation potential is now: 

    
        

    
   

  
    

                
    

      

     
 (2.29) 

The LDA is usually parameterized by separating the energy into the exchange energy 

and correlation energy. The exchange energy is a simple analytical form and comes 

from the Dirac’s exchange formula (Dirac, 1930) for the homogenous electron gas of  

density n. 

   
     

 

 
 
 

 
 

 
 ⁄

∫    
 

 ⁄    (2.30) 

The correlation energy can be interpolated based on series of quantum  Monte Carlo 

calculations obtained by Ceperley and Alder (1980) from the exchange and 

correlation of  the electron gas.  

This method is considered to provide suitable results for slowly varying 

density systems like nearly free electron metals. It also works better in the systems 
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where the charge density is rapidly varying. It is found to work reasonably well in 

semiconductors and insulators. However, LDA tends to overestimate the ground state 

energy density and bulk modulus; and underestimates the band gap as compared with 

experimental data. Therefore, the LDA provides unexpected results for narrow gap 

insulators and certain oxides. LDA also overestimates the weaker bonds such as 

hydrogen bonds. 

2.13. Generalized Gradient Approximation 

The exchange-correlation energy becomes a functional of the charge density 

and the gradient of the density in the Generalized Gradient Approximation (GGA) 

method ; 

    [    ]  ∫ [     |  |]    (2.31) 

The gradient correction improves the accuracy of density functional theory when 

applied to homo-nuclear dimers, small molecules and bulk properties of transition 

metals (Jaun and Kaxiras, 1993).  Well established examples of the GGA 

approximation are the PW91 and  PBE functionals  (Perdew et al., 1996, Perdew and 

Yue, 1986). 

The GGA functional provides a better overall description of the electronic 

sub systems than does the LDA functional. The LDA description tends to over bind 

atoms, so that the bond length and cell volume are usually underestimated by a few 

percent.  GGA corrects this error but produces the slightly long bond lengths. 

2.14. Dispersion Corrected Functionals 

The GGA-DFT methods fail to describe the long range electron correlations 

that are responsible for the dispersion interaction. This is due to the semi-local nature 

of  the density functional, which is deficient in treating the long range electron 

correlations necessary to provide all the dispersive interactions, for example, the 

layers in graphite system. 

Dispersion interactions (also known as VdW interactions or London forces) 

play a crucial role. London (1930) described the relationship between the electron 
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correlation and long range forces between the atoms. It was realized that although the 

time-average electron density around an atom or the non-polar molecule has no 

dipole moment, electron oscillations lead to deformations of the density resulting in 

transient dipole moment on the other atoms or molecules by distorting the electron 

density. The existence of two dipoles creates a net interaction (Scholl and Steckel, 

2009;p.225). Three schemes have been introduced to study the dispersion corrections 

in density functional theory. The first, known as the OBS scheme was introduced by 

Ortmann et al. (2005) in which the London relation has been used to calculate the 

dispersion coefficients from experimentally measured polarizabilities and ionization 

potentials. Grimme (2006) employed the scheme which was effective for 

transferability and successfully applied to study adsorption problems. The 

Tkatchenko and Scheffler (2009) scheme provided the relationship between the 

polarizability and volume, this scheme also explains the relative variation in 

dispersion coefficients of differently bonded atoms (McNellis et al., 2009). 

  London (1930) showed that the general form of the interaction between two 

spherically symmetric atoms at large distance was: 

            
 

  
 

Where r is the distance between the atoms and C is a collection of physical constants. 

The total energy expression can be written as  

                      (2.32) 

Where          is the usual self-consistent Kohn-Sham energy as obtained from the 

chosen density functional and       is an empirical dispersion correction given by 

          ∑ ∑
  

  

   
 

   

     

     

   

    (   ) (2.33) 

Here,     is the number of atoms in the system,   
  

 denotes the dispersion 

coefficient for the atom pair ij,    is the global scaling factor that only depends on 

density functional used, and     is an inter-atomic distance. In order to avoid near 

singularities for small R, a damping function      must be used, which is given by 

     (   )  
 

   
   

   

   
   

  
(2.34) 
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Where R is the sum of the atomic VdW radii, d is a parameter which controls the 

damping function steepness and    is called the scaling factor (Grimme, 2006) 

referred to as G06. 

The default values of    and d in the Grimme scheme are 0.75 and 20 with 

the PBE functional for the graphite system. These parameters are used to perform the 

optimized graphite structure calculations. However, in order to perform the 

vibrational studies, the values of    and d can be adjusted for the graphite system in 

order to achieve the required frequency.  

The better TS dispersion correction was applied by Tkatchenko and Scheffler 

(2009). In contrast to G06, the TS scheme is a parameter free non empirical method. 

The TS scheme replaces the    by a constant factor ½. In this scheme, the scaling 

factor     is functional dependent. The default values for    and d are 0.94 and 20 for 

the TS scheme in the CASTEP 7.0 code. These values are sufficient for geometry 

optimization in graphite. However, values of    and d should be adjusted for 

vibrational properties of graphite. The approach to calculate the VdW radii is the 

same in both methods. However, a difference is found in determining the dispersion 

coefficients. The TS scheme is more self-consistent compared to the Grimme scheme  

in the sense that C6  coefficients are calculated using the electron density of the 

system  under study  using the data  for the free atoms (Admaska et al., 2012). 

2.15. Summary 

The problem of modelling a system of atoms becomes easier by separating 

the motion of the electron with that of ion cores and it is based on the assumption 

that electrons respond instantaneously to any change in nuclear positions. Therefore, 

electrons are usually treated as an independent particles travelling in an external 

nuclear potential and modelled by the single particle wave functions. 

 

The energy of the system is a functional of charge density (which can be 

calculated from the electron wave functions) and the ground state-density can be 

obtained by minimising the energy with respect to charge density. These are the 

fundamentals of density functional theory. 
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The exchange-correlation energy which is required to solve the Kohn-Sham 

equations can be approximated by number of functionals. The local and semi-local 

functionals have limitations for the inter-layer bonded system and therefore 

dispersion corrected functionals have also been used. 
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Chapter 3. Computational Methods 

 

3.1. Introduction 

 

For applications of the density functional theory, the Kohn-Sham equations 

need to be solved. This chapter describes the computational methods used to solve 

the Kohn-Sham equations. We would need to define an appropriate basis set to 

expand the wave functions and express the different parts of the Hamiltonian.  The 

pseudopotential method can reduce the size of the basis set and therefore reduce the 

computational expense. For this purpose, the Cambridge Serial Total Energy 

Package CASTEP 7.0 (Clark et al., 2005) was developed by Clark et al. (2005) in 

order to study periodic systems. The CASTEP code deals with solving the ground 

state charge density and wave function for a given set of coordinates. The forces can 

also be calculated on ions to optimize the ionic positions and cell parameters to give 

a minimum energy configuration.  

3.2.  Basis Sets 

The Kohn-Sham equations can be solved by expanding the orbitals       in a 

set of N basis functions that can be written as: 

     ∑   

 

   

                 (3.1) 

Our purpose is to find the coefficients    needed to expand    in a given basis 

set   . We would require an infinite basis set for an exact solution, but in practice we 

can work with finite sets, trying to make it one that can generate a function that is 

close enough to     
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Plane wave basis sets are used because of their analytic properties and their 

mathematical simplicity. Due to their periodicity, they are well suited to the 

calculations of periodic solids. In calculations of this work we have only used plane 

waves basis sets which are the independent of atom positions and species, unbiased.  

3.3. Plane Wave Basis Sets 

Bloch (1928) introduced a wave function for periodic systems that can be 

written as  a product of a wave –like function and a cell periodic part (Ashcroft and 

Mermin, 1976). 

                                  (3.2) 

In solid state systems, the cell periodic part of the wave function can be expanded 

using a basis set of plane waves whose wave vectors are the reciprocal vectors of the 

crystal,  

        ∑    

 

      
              (3.3) 

Thus each electronic wave function can be written as a discrete sum of plane waves: 

        ∑    

 

           
             (3.4) 

The coefficients      can be defined in terms of their Discrete Fourier Transforms 

(FFT): 

 

 

            
 

    
∑              

             ∑    

 

             

              (3.5) 

This can be attained computationally using a finite 3D FFT grid, the size of which is 

marked by certain parameters of the system in question; r is a point in grid. The 

reciprocal lattice vectors G are defined by          where   is the lattice vector 

of the crystal and m is an integer. n represents the band index number.  

According to Bloch’s theorem, the electronic wave function at each k-point 

can be expanded in terms of a discrete plane wave basis set. In principle, an infinite 

plane wave basis set is required for that purpose. However, the coefficients        

for the plane waves with smaller kinetic energy |   |  are typically more 

important than those of large kinetic energy. A cut-off energy can be described in a 
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sphere for the reciprocal space by fixing the highest G vectors for the infinite basis 

set; 

 
     

  
|   | 

   
 

              (3.6) 

Thus the plane wave basis set can be truncated to include only plane waves 

that have the kinetic energy less than some particular cut-off energy; this produces 

the finite basis set. Unfortunately, an error in the computed total energy results from 

this truncation. This error can be reduced by increasing the value of the cut-off 

energy.  The Kohn-Sham equations can be obtained in the form required by 

expanding the electron wave expansion in terms of plane waves  

 
∑[

 

 
|   |                          

  

         ]              

 

              (3.7) 

obtained by substitution of equation (3.4) in equation (2.25). 

It is clear that the first term in above equation representing the reciprocal 

representation of the kinetic energy is diagonal, while the potentials           and    

representing Coulombic, exchange-correlation and Hartree potentials are expressed 

in terms of Fourier components. The solution of (3.7) proceeds by diagonalization of 

a Hamiltonian matrix whose elements           are given by the terms in brackets 

above , or by using the Car-Parrinello or conjugate-gradient methods for large basis 

sets; the details of which will be described in section 3.10. However, the size of the 

matrix is fixed by the choice of cut off energy     , and will be intractably large for 

systems that contain both the valence and core electrons. This is a problem, but it can 

be overcome by using the pseudopotentials as we describe later. 

3.4. K-point Sampling 

It has already been described from Bloch’s theorem that each electron 

occupies a definite state k. However, the theoretically infinite number of electrons 

within a periodic solid corresponds to an infinite number of k-points. At each k-

point, only a finite number of available energy levels are occupied. Thus it is 

required to consider a finite number of electrons at an infinite number of k-points. 

However, it is possible to use only a finite number of k-points  using special 
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sampling in reciprocal space. Therefore, an integrated function      over the 

Brillouin zone can be written as  

      
 

     
∫        ∑  

 

     

  

 

 

              (3.8) 

where      is the Fourier transform of     ,   is the cell volume, j represent the number of 

special points in a set and    are weighting factors. Monkhorst and Pack (1976) 

described the method consisting a set of special k-points for selecting the appropriate 

sampling of Brillouin zone. This is an unbiased method of choosing a set of k-points. 

3.5. Pseudopotentials 

The basic idea of the pseudopotential is the replacement of one problem with 

other. The pseudopotential approximation replaces the core electrons and the 

coulomb potential with a weaker potential. The purpose of this is to develop smooth, 

node-less pseudo wave functions for the valence states in the core region while 

matching the real wave function outside a ‘core radius’    . A material in a system 

consists of ion cores and valence electrons, cores consist of atomic nuclei and tightly 

bound electrons held by a strong coulomb potential. The wave functions of these 

core electrons are orthogonal to the valence electrons. In the pseudopotential method, 

the ion cores are considered frozen and valence electrons are treated explicitly. On 

the basis of this assumption, core electrons do not influence the chemical bonding of 

the system and do not change as a result of the environment.  
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Figure 3-1: Pseudo wave function and potential corresponding to all electron wave 

function and potential are identical outside the core radius    . 

The weaker potential is vital as it makes the solution of the Kohn-Sham equations 

simpler by allowing the expansion of the wave functions in a relatively small set of 

planewaves. In this way, pseudopotentials can reduce the computational effort. 

3.6. Ab-initio Pseudopotentials 

The ab initio pseudopotentials used in electronic structure calculations are 

generated from ab initio all electron atomic calculations. Within DFT, this is done by 

assuming a spherical screening approximation and self-consistently solving the radial 

Schrodinger equation. The Schrodinger equation for an atom can be expressed 

assuming spherical symmetry; 

  ̂  
      

 
             (3.9) 

 

 
  

  
  

 
  

       
            (3.10) 

Where    is a solution of the radial Schrodinger equation. 

If we replace u inside the core region with an optimally smooth function the radial 

Schrodinger equation becomes (Fuchs and Scheffler, 1999). 

 
[ 

 

 

  

   
 

      

   
   

  
   ]  

       
  

 
            (3.11) 

 

The expression for pseudopotential    
  

    can be written as 

 

  
  

    

[   
 
 

  

    
      

   ]  
  

  
   

                           

(3.12) 

 

Values for the potential   
  

corresponding to value of    are obtained from the above 

expression. This results in the semi-local pseudopotential; 

     ∑  
  

   
 

 ̂  
            (3.13) 

 

 In early studies of pseudopotential methods, Kleinman and Bylander (1982)  

introduced the non-local separable pseudopotential to reduce the number of integrals 

for the energy band calculations. Non-local pseudopotentials in the semi-local form 

can be expressed as: 
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             ∑ ∑    
  ̃

 

    

  ̂
 

 
            (3.14) 

 

with    
  ̃    

           and   ̂ represents the projection operator. The Kleinman- 

Bylander  potential can be given in separable form as: 

    
           ∑

|       
           

  |

⟨   
  

|    |   
  

⟩  

 
          (3.15) 

 

   
    is an eigenstate of the Hamiltonian. Kleinmann-Bylander pseudopotentials are 

norm conserving (see next section) and allow the calculation to scale linearly with 

the size of basis set.  

3.7. Norm-Conservation Condition 

Norm conserving pseudopotentials are developed under the following conditions 

(Hamann et al., 1979). 

1. Real and pseudo valence-state eigen-values are the same for a selected atomic 

configuration. 

2. Real and pseudo-wave functions must be matched beyond a core radius,   . 

3. The integrals from 0 to r of the real and pseudo-charge densities agree for each 

valence state for       . Thus both charge densities should be equal beyond the 

core radius. 

4. The logarithmic derivatives of the real and pseudo-wave functions agree at   . 

5. The first energy derivative of the logarithmic derivatives of the real and pseudo 

wave functions agree at   . 

The third condition is important as this is related to  the conservation property of 

a pseudopotential. The properties (4) and (5) are also vital for pseudopotential to 

have an optimum transferability among the various chemical environments in self-

consistent calculations in which the pseudo charge density is treated as a real 

physical object.  

3.8. Transferability 

The hardness of a pseudopotential is a measure of its variation in real space 

which is quantified by the extent of the potential in Fourier space. Usually, hard 
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potentials describe the properties of the localized rigid ion cores and are more 

transferable from one material to other. However, soft (smooth) potentials lead to the 

poor transferability. Considerable efforts have been made to find accurate and 

transferable potentials. 

The transferability is a measure of the ability of the valence pseudo-electrons 

to respond to a change in the environment properly (Goedecker and Maschke, 1992). 

The norm conservation assures that the electron states of the atom have the correct 

first derivative with respect to energy. The integrated charge density in the core 

region is also closely related to the norm conservation condition. 

3.9.  Ultrasoft  Pseudopotentials 

An ultrasoft pseudopotential was developed by Vanderbilt (1990)  to achieve 

a much smoother pseudo-wave function. This method is based on two main points: 

(i)  The potentials are constructed from the atomic states evaluated at two different 

energies. It means that more than one reference energy   per quantum state is 

allowed. For each quantum number l corresponding to a reference energy  , a pseudo 

wavefunction     is constructed which fulfills the norm-conserving conditions.  

For each pseudo wave function, a function can be described as (Kresse and Hafner, 

1994): 

 |      = (T         |    
                (3.16) 

It is now possible to describe the nature of basis      which is dual to       
    It 

means to have a rather complete set of projectors, two partial waves for each 

quantum channel l,m  are constructed. 

If the l,m and   are labelled as index j for the basis      and these parameters are also 

labelled as i for the pseudo wave function       
   then  

 ⟨  |  
  ⟩ =                 (3.17) 

also 

 ⟨  |  
  ⟩ =                 (3.18) 

and 

 |    = ∑      
  

 |               (3.19) 

where  
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     = ⟨  
  |  ⟩.             (3.20) 

The nonlocal factorised pseudopotential operator can be described as  

     = ∑ |       | =∑         |      |             (3.21) 

It can be proved that      and thus     are Hermitian if the pseudopotential   
   

satisfies a generalized norm conserving constraint; 

     are matrix elements: 

      ⟨  
  |  

  ⟩  ⟨  
  |  

  ⟩=0 
            (3.22) 

The above equation can be written as  

         ∫  
  
 

 
  
   

   
    

  
   

   
   dr =0             (3.23) 

This step makes better the transferability over a large energy range even for larger 

cut-off radii   . Such norm conserving Vanderbilt pseudopotentials have been 

worked out for certain elements, (Chou, 1992, Morrison et al., 1993),  but usually 

these are not used in calculations. 

(ii)  Dropping the norm-conservation constraint leads to a new class of pseudo-

potentials. The pseudopotential operator is no longer Hermitian; but it is possible to 

transform the standard eigenvalue form: 

 (T             |                  (3.24) 

 to a generalized eigenvalue problem: 

 (T              |                  (3.25) 

with the Hermitian overlap operator:  

 S =   ∑         |      |             (3.26) 

    is projector function depending on ionic positions with Hermitian pseudopotential 

operator: 

  ̂  = ∑         |      |             (3.27) 

where 

                               (3.28) 

As the norm-conservation constraint does not apply, a charge deficit between the 

pseudo wave functions and exact wave functions exists.  This deficit is described by 

the local augmentation charges. There is close connection between the augmentation 

charges and overlap operator in the generalized eigenvalue problem above. 

It can be verified that the ultrasoft pseudopotentials generated with the above 

steps have an excellent transferability; it means that pseudo wave functions and their 
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logarithmic derivatives match at each reference energy    and for small variations 

around it. The basic purpose of these potentials is to allow calculations to be 

performed with as low a cut off energy for the plane wave basis set as possible. This 

is due to relaxing the norm conservation rule. The resulting wave function can then 

be expanded using a small plane wave basis set.  

In this work, the pseudo atomic calculations have been performed at 

configurations for C: 2s
2
 2p

2
 and H: 1s

1
 for the ultrasoft pseudopotentials.  The 

ultrasoft on the fly (OTF) pseudopotentials (Vanderbilt, 1990)  have been used for 

graphitic and hydrogenated graphitic materials. The CASTEP code allows generating 

pseudopotential on the fly, parameters can be provided rather than a file from the 

data base. This approach has a number of advantages; for example, the same 

exchange and correlation functional for atomic and solid state calculations can be 

used. It is possible to generate softer and harder potentials by changing the core 

radius. 

3.10. Solution of Kohn-Sham Equations 

There are several methods to minimize the Kohn-Sham equation (2.25). A few well 

known methods are presented here. 

3.11. Matrix Diagonalization 

The Kohn-Sham matrices can be constructed for a given set of atomic coordinates 

and trial density function. Hamiltonian matrices for each k-point must be formulated 

using the coefficients       as in equation (3.4) and diagonalized to obtain the 

Kohn-Sham eigenstates.  The matrix diagonalization produces a set of  eigenstates 

that can be used to generate the new charge density. A new set of matrices are now 

constructed using new density. This process is repeated again and again until self-

consistency is achieved. The procedure is depicted in Figure 3-2. The number of 

plane waves required in calculation, NPW, increases with the volume of the unit cell. 

This method is not efficient as computational cost for iteration increases with the 

cube of number of plane waves.  
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Figure 3-2: Flow diagram of the conventional matrix diagonalization process. 

3.12. Iterative Methods 

Iterative methods reduce the computational costs when compared with the 

diagonalization of the Kohn-Sham matrix by finding only the lowest energy 

eigenstates. The techniques depend upon the initial guess of the energy of the system 

and the nature of the iterative steps. 

The Car-Parrinello technique is an iterative method (Car and Parrinello, 

1985). The iterations in this case are performed by integrating an effective classical 

force equation after assigning a fictitious mass,    to each Kohn Sham wave function. 

The effective force on a wavefunction is given by: 

  
  

   
   ̂               (3.29) 

Where  ̂ is Kohn-Sham Hamiltonian to comply with orthonormality constraint. 
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This force can be used to integrate an effective set of Newton’s equations: 

    
̈       ̂               (3.30) 

Initial conditions are determined by some guess to    and   
̇  assuming an initial 

effective kinetic energy associated with the time varying functions 

      
 

 
∑⟨   

̇ |   
̇ ⟩

 

             (3.31) 

As we integrate in time, the wave functions will approach the ground state provided 

     is kept small in some sense. 

3.13. Steepest Descent Method 

The ground state of a given configuration is found by direct minimization of 

the energy functional. The gradient of the energy function    is calculated by      

The simplest of these methods is the steepest descent (SD) method. This can be 

illustrated by using two dimensional functions on a contour graph. 

A simple minimization method is to move along directions of steepest 

descent locating the minimum along the path of steepest descent and calculating new 

directions from the minimum until the ground state is found. The steepest descent 

method is limited by the fact that each direction is chosen using the information 

regarding the present sample point only neglecting the knowledge of previous 

directions. Assuming an arbitrary function F(x), and starting from the point x1, the 

direction of steepest descent g1, is calculated from the gradient operator. The function 

is minimized along g2 to the point x2 where the gradient g2 is calculated (g2 g1). 

These iterations continue until F(xn) is equal to F(xn+1) with a given tolerance. This 

can demand many steps to reach the minima and is not always assured to find 

accurate minima. 
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Figure 3-3: The steepest descent method requires many steps to converge. 

3.14. Conjugate Gradient Method 

The Conjugate Gradient (CG) method generally requires fewer iterative steps 

than Steepest Descent (SD). The Conjugate Gradient (CG) method combines the 

information from all previous directions in such a way as to create a subsequent 

search direction that is independent of all previous directions. Starting from a point 

x1, the function is minimized along the direction of d1 which for this first step is the 

direction of gradient g1, as in the SD method. The direction of dn+1 for subsequent 

iterations are conjugate to all previous directions (Fletcher and Reeves, 1964) and 

calculated by  

 

                

           
         

     

 

            (3.32) 

 

     is the step size along the gradient     . This usually reduces the number 

of steps needed to converge on the minima as shown in Figure 3-4. The conjugate 

gradient method is the best n-steps procedure for solving a set of simultaneous linear 

equations containing a symmetric positive matrix of coefficients. The CASTEP code 

implements an efficient CG method or a related scheme known as Density Mixing.  
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Figure 3-4: The conjugate gradient method requires two steps to converge. 

3.15. Density Mixing Scheme 

In this scheme, the sum of electronic eigenvalues is minimized in the fixed potential 

rather than self-consistent minimization of the total energy (Kresse and Furthmuller, 

1996).  The new charge density at the end of a step is mixed with the initial charge 

density and process is repeated until convergency is achieved. The major advantage 

of density mixing is that metallic systems can be reliably converged in a quite small 

number of steps. The density mixing scheme can be used together with other 

minimization methods such as conjugate gradients that minimize the sum of 

eigenvalues.  

3.16. Fast Fourier Transforms 

A major computational requirement is calculating the product of the 

Hamiltonian with a wave function   . As the wave functions are expressed by a 

finite set of plane waves, this leads to the idea of a reciprocal–space grid. The 

components of Hamiltonian e.g. kinetic energy, the Hartree and the local 

pseudopotential operators can be expressed in reciprocal space in a “best possible” 

way. Thus transformation between real and reciprocal space has a benefit during the 

parts of calculations. A Fast Fourier Transform (FFT) is an efficient way of 

transforming various entities (wave function, potentials, search direction) from real 

to reciprocal space and vice versa (Segall et al., 2002). 
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3.17. Geometry Optimization 

We may need to change the ionic positions to minimise total energy. Forces 

on the ions are calculated in minimization process to optimize the geometry. The 

force on an atom may be obtained as  

 
   

  

  
             (3.33) 

the partial derivative of total energy with respect to atomic positions give the force 

acting  on that atom. The default for CASTEP is BFGS {Broyden-Fletcher-Goldfarb-

Shanno} method (Broyden, 1970), in which a variable matrix method works in the 

same way as in Conjugate Gradient (CG) but it searches in a more accurate direction 

by evaluating the Hessian Matrix and therefore requires more memory to store large 

matrices but this problem can be solved on large parallel machines. 

3.18. Summary 

The electron wave-function can be expressed as the product of a cell-periodic 

part and a plane-wave part. The pseudopotential-method can reduce computational 

effort to solve density functional theory calculations of the solids by treating only the 

valence electrons. 

The Kohn-Sham equations can be solved by matrix diagonalization or 

iterative methods to obtain the ground state wave function. The forces on the atoms 

in the system can be obtained from the gradient of energy.  The magnitudes of forces 

lead towards the stable structure of the system. The properly optimized structure can 

be used in better modelling to a real material if the coordinates of atoms do not much 

differ from the experimentally calculated values. 
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Chapter 4. Lattice Dynamics and Thermodynamics 

 

4.1. Introduction 

In this chapter, the theory of lattice dynamics is explained for properties of a 

crystal that are not covered by the static lattice model but describe the net motions of 

atoms. These properties include the dispersion relations, heat capacity and free 

energy.  In the harmonic approximation, phonons are considered as independent of 

each other. However, the vibrations of a real crystal are not purely harmonic, 

meaning that the concept of independent phonons breaks down. This section covers 

the ab initio methods to calculate the phonon characteristics. The partition functions 

of statistical physics enable calculation of the free energy of the system. The 

harmonic approximation is used in evaluation of the vibrational free energy.  

4.2.  Harmonic Approximation 

The total potential of the crystal can be written in terms of the inter-atomic 

potentials assuming multi-body interactions over the sums of two-body terms. Here 

we will consider two-body interactions only. If an atom whose equilibrium position 

at lattice site R moves a small distance u(R), its new position is given by  

                         (4.1) 

  If  the  contribution to the total potential of the crystal, U, from two atoms at 

position R and    is given by          the potential can be written as (Ashcroft and 

Mermin, 1976; p.422); 

   
 

 
∑

 

 (               )
   

              (4.2) 

Expanding the above relation about the equilibrium position as a three-dimensional 

Taylor series we get: 
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∑(          )         

   

 
 

 
∑[              ] 

   

        

        

            (4.3) 

 

As the first term in the above equation is constant and the second term produces a 

force (the gradient of energy) that must be equal to zero in the equilibrium 

configuration, then the next important is the quadratic term. Considering only this 

term in the potential is known as the Harmonic Approximation. The total potential is 

therefore defined as a sum of the equilibrium and Harmonic terms: 

                          (4.4) 

Since      is just a constant, it can be ignored in dynamical problems. The harmonic 

term is usually written in more general form: 

 
      

 

 
∑  

   

  

                
   

  (4.5) 

Where     is the force constant matrix which, for pair potentials, can be written as: 

               ∑[   

   

                 ]  (4.6) 

4.3. Phonon Calculation: Finite Displacement Method 

The finite displacement phonon calculations were carried out in order to 

calculate the vibrational properties of optimised structures (Frank et al., 1995) after 

performing the geometry optimization. In a finite displacement calculation, each 

atom is displaced by small amount along the Cartesian direction, then a self-

consistent field calculation is carried out to evaluate the forces on the perturbed 

system. Both positive and negative displacements are applied in each direction so 

that corresponding force constants can be calculated using the central force 

differences. Using the harmonic approximation, vibrational frequencies can be 

evaluated from the force constants. The number of calculated frequencies is 3N, 

where N is the number of atoms in the unit cell. As, there are three centre of mass 

translations along the x, y and z directions, there are, in total, 3N-3 modes of 

vibration.  
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In the finite difference approach,      
  is the force on atom j in the   

direction due to a shift   of the atom i in the positive   direction and      
  is the 

force due to a shift of atom i in the negative   direction. The force constant matrix  

       is given by: 

        
     

       
 

  
 

 (4.7) 

Before constructing the dynamical matrix, we have to make sure that the matrix of 

the force constants should fulfil a particular set of rules (Ackland et al., 1997). The 

force constants of equation (4.7) can be used in (4.5) to get the potential energy. 

Firstly, matrix elements should be symmetric because of partial differentiation is 

commutative; 

                (4.8) 

In this notation the atoms   and   are included in the subscript.   and   show the 

Cartesian direction. 

The second rule follows from Newton’s third law: 

          ∑      

   

 (4.9) 

And from the two above rules, it follows 

 ∑      

   

  ∑      

   

 (4.10) 

These three rules are true regardless of the actual symmetry of the system under 

consideration. Ideally, for an exact force constant matrix they should be 

automatically satisfied.  

The displacement of atoms to calculate the force constant destroys the 

periodic boundary conditions. In order to treat this problem in practical terms, a 

supercell is chosen, which consists of large number of primitive cells such that 

interaction of an atom outside this cell with the displaced atom in the central 

primitive cell can be regarded as being negligible. The accuracy of phonon 

calculation depends upon the size of supercell. By using a large supercell in force 

calculations, we can include more inter-atomic interactions and reduce the error in 

this interaction cut-off approximation. 
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The supercell method for the phonon calculations is an extension of the finite 

displacement method. The inter-atomic force constant method is based on the 

supercell approach. In the supercell, Hellmann-Feynman forces on all atoms can be 

evaluated inside the supercell by moving away one atom from equilibrium in the 

central primitive cell. The Harmonic approximation remains applicable as long as the 

displacement of the source atom is small (Ye et al., 2004). The interatomic force 

constant between the source and destination atoms is described by the ratio of force 

on the displacement. 

 
           

   

              
 

       

       
       (4.11) 

In equation (4.11)  (0j) and (mk) are the source and destination atoms respectively 

and   and    are three Cartesian directions x, y and z. The term        shows the 

force acting on the destination atom due to displacement of source atom          

and   is the total energy of the system. Suppose the supercell contains M primitive 

cells, with each primitive cell containing J atoms inside, the 3J 3J dynamical matrix 

elements are then constructed by the Fourier transformation of the inter-force 

constants. 

 

             
 

√    

∑           

   

   

         (4.12) 

The phonon dispersion relation can be found from the above dynamical matrix. The 

dynamical matrix is used to solve the eigenvalue problem,      is the eigenvector of 

the phonon. 

  

 
D(q)     =             (4.13) 
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Figure 4-1:The supercell approach for the calculating of dynamical matrices (Ye et 

al., 2004)  

4.4.  Possible Error in Supercell Method  

In the supercell calculation, the k-points set (detailed is given in section 3.4) 

and the FFT grid are a potentially serious source of error in the calculation, both in 

unit cell and the supercell.  Since the supercell consists of unit cells, k-points must be 

in proportion. In graphite and CNTs systems, two different types of k-points grid 

were chosen due to difference in dimensions of these crystals. 

However, the FFT grid deals with the number of grid points necessary to 

determine the oscillations in the density. The density needs a grid with twice the 

linear size of the grid required by the wave function, because the squaring of the 

wave function to obtain the density doubles the frequencies of the Fourier 

component. Thus for an exact calculation the FFT-mesh must contain all wave 

vectors up to       if      
  

  
     

       being the cut-off energy. Increasing the 

FFT-mesh beyond this value does not change the results, except for a possibly very 

small change due to the exchange-correlation potential. An insufficient FFT-mesh 

can cause of ‘wrap around’ errors (Cote, 2004). The coarse grid (a grid size of the 

half the spacing of the standard grid) represents the soft density and practically has a 
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spacing 1/1.75 of that of the standard grid. The description of the augmentation 

charge in ultrasoft pseudopotential needs a finer grid due to high frequency 

components. We need special care when choosing the FFT grid for the supercell, in 

all dimensions. For example, if the unit cell is doubled to create the supercell, we 

must also double the grid for the supercell in order to have an equivalent 

representation of the system.   

 Ackland et al. (1997) mentioned the following source of errors which may 

lead to violation of  the sum rule: 

 Computational rounding errors and interpolation errors due to use of a 

discrete grid on which the wave function is represented, as the total energy is 

not conserved under a rigid shift of entire crystal. Typically, theoretical limit 

about 10
-5

 (eV/   is set by interpolation between FFT grid points. 

 Errors to do with evaluating forces using a finite basis set and finite k-point 

set. Typically these are converged to 10
-3

 (eV/  . 

   Errors may occur in finite convergence of structural parameters. If the 

structure contains free parameters then relaxation should be performed until 

the forces on the atom reach a suitable minimum value. 

 Errors due to anharmonicity as the forces are calculated using the finite 

displacement. The minimum possible displacement for which the force can be 

calculated is checked by the errors in force calculation. The degree of 

anharmonicity depends on structure. 

This understanding about the error in the supercell approach will be utilized to 

demonstrate the errors in our modelling which is described in results section 7.2.  
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4.5. Phonon Density of States 

The vibrational or phonon density of states is defined as (Ashcroft and Mermin, 

1976;p.464); 

 

     = ∑ ∫
  

     
             (4.14) 

where      d  is the number of the modes in the frequency range      and the 

integral over the surface of the first Brillouin zone on which        . Normally, 

it is convenient to define the density of normal modes per unit volume. Practically, 

the integration over k is approximated by a sum, where the delta function can be 

broadened using a Gaussian, so the VDOS becomes 

      = ∑
 

√            
         

 

   ) (4.15) 

where   is a standard deviation. The projected density of states is then obtained by 

summation of these contributions over all the phonon bands. All the projected 

phonon DOS add up to the true phonon DOS 

Phonon density of states (or vibrational density of states) can be described in 

analogy with the electronic density of states. The partial (or projected) phonon 

density of states is determined as a contribution from the given atom to the total 

phonon DOS. This concept is useful to understand the nature of various branches in 

the phonon spectrum.  

4.6. Free Energy Calculation 

The partition function determines a significant role in thermodynamical 

calculations (in the present study, namely internal energies and ultimately free 

energies). The partition function “Z” establishes, as given (4.16), how the particles 

within the system distribute themselves over the accessible quantum states. 

 Z = ∑         
          (4.16) 
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In the above relation the sum is taken over all over all different quantum states of the 

system. Z is an abbreviation of German word ‘Zustandssumme’ which means sum 

over the states. The Helmholtz free energy is defined as; 

                    (4.17) 

The partition function is just the product of the partition functions for the 

translational, rotational and vibrational states of molecule.  

 Z=                            (4.18) 

Thus free energy expression is modified as  

                                                  (4.19) 

In order to calculate the thermodynamics of the gaseous phases that is needed to find    

the hydrogen release temperature, the translation and rotational contributions are also 

considered. For diatomic gases, the translational partition function can be written as 

(Bowley and Sanchez, 1999;p.105,111); 

         
  (

          

    
)

 
 

 

 

(4.20) 

 

The Free energy relation for translation partition function can be calculated as  

 

                   

                               =     {      
 

 
  (

          

    )} 

(4.21) 

 

where V is molar volume of a diatomic gas. 

The pressure  for molecules can be written as  

 
  

   

 
      (4.22) 

The rotational partition function for a rigid rotor is given by  

       
 ∑        

         
     

 

   

 
(4.23) 

 

The Rotational energy of the molecule in free space is 

            
(4.24) 

 

Where, J is a quantum number J=0, 1, 2.......... 

B is a rotational constant calculated from the moment of inertia I. 

 B = 
  

  
 (4.25) 
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and                                   (
 

 
)
 

  
 

Rotational free energy can be calculated using the rigid rotor approximation and is 

given by the relation  

 

                

                                 =        (
     

  ) 

  (4.26) 

 

The vibrational partition function is a geometric series which can be summed as 

(Bowley and Sanchez, 1999;p.112); 

 
Z=∑  

      
 
 
 

      
    

                                 = 
 
 

  
    

   
 

  
   

 

 

            (4.27) 

The vibrational free energy can be written as 

 F = 
  

 
 +      [        

  

   
 ] (4.28) 

Zero Point Energy (ZPE) is the lowest possible energy that a quantum 

mechanical physical system may have; it is the energy of its ground state. All 

quantum mechanical systems undergo fluctuations even in their ground state and 

have an associated zero point energy. ZPE is fundamentally related to the Heisenberg 

Uncertainty Principle. The relation for zero point energy is given by 

     
  

 
 (4.29) 

Harmonic Approximation leads to thermodynamic properties including the zero point 

energy and free energy as a function of temperature. In thermodynamics calculations, 

important points are 

 Geometry is fully converged. 

 Eigenvalues must be real and non-negative. 

The free energy F including the vibrational free energy calculated by CASTEP code 

can be written as 

 

             

    ∫      [        
  

   
 ]   

(4.30) 

 

From the Helmholtz energy, F(V,T) and the pressure, the Gibbs energy, can then be 

evaluated as : 
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 G (p,T) = F(V,T) + pV 

 

(4.31) 

 

The molar Gibbs energy of an ideal gas is related to Helmholtz energy through G = F 

+RT. 

4.7. Summary 

 

 Lattice dynamics can be modelled using the supercell method in order to 

calculate the phonon properties. The supercell method is an extension of finite 

displacement method for these calculations. The possible errors in modelling of the 

supercell phonon method have also been described. The vibrational density of states 

has also been marked out to get the complete vibrational information of the system. 

The statistical physics relations have been identified to find the translational, 

rotational and vibrational properties of the system. The free energy calculations can 

be used to find the stability of bonds in a system.  The free energy calculations play 

an essential role in determining the hydrogen release temperatures. 



 

51 
 

Chapter 5. Structural and Vibrational Properties of Graphite 

 

5.1. Introduction 

 

In previous chapters, computational methods were described to perform the 

structural and vibrational studies of systems. Here, those methods have been 

implemented in detail for structural and vibrational studies in graphite systems. Ab 

initio computational methods which are used in this chapter are combined in the 

Cambridge Serial Total Energy Package (CASTEP) (Clark et al., 2005).  It uses 

plane waves and its important factors include the pseudopotentials (Norm conserving 

and ultrasoft pseudopotentials), and various methods of minimization to perform full 

structural relaxation.  Dispersion corrected density functional calculations have been 

performed to study the structure and vibrational properties of the graphite system. 

The supercell approach has been applied to study the ab initio dynamical properties. 

5.2. Aims 

The main aims of  our calculations on the graphite systems are: 

 To perform the DFT and DFT-D calculations to investigate the structure of 

hexagonal graphite.  

 To study the band structure of graphite to investigate its semi-metallic nature 

using a PBE+TS (Pedrew and Yue, 1986, Tkatchenko and Scheffler, 2009) 

functional. 

 To investigate the performance of DFT-D functionals over the DFT functionals 

to investigate vibrational properties of graphite and  study the vibrational 

density of states for the graphite system using PBE+TS (Tkatchenko and 

Scheffler, 2009) functional.  

 To investigate the structural and vibrational properties of rhombohedral 

graphite using the PBE+TS (Tkatchenko and Scheffler, 2009) functional. 
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5.3. Static Calculation 

The hexagonal unit cell of graphite containing four atoms was initially 

considered in performing the static calculations. The coordinates of those atoms are 

listed in Table 5-1. The atoms in graphite are arranged in AB stacking layered with 

hexagonal basal planes of sp
2
 hybrid bonded (          carbon as shown in 

Figure 5-1, with interatomic spacing along the hexagonal side of 1.42   and the 

inter-planar (          spacing between adjacent planes of 3.35  .  

 

Table 5-1:  The relative atomic coordinates of the starting (non-optimised) 4 atom 

hexagonal unit cell. The lattice parameter    =2.465   and    = 6.710   are for an un-

optimized cell (Trucano and Chen, 1975). 

0.000000 0.000000 0.250000 

0.333333 0.666667 0.250000 

0.000000 0.000000 0.750000 

0.333333 0.666667 0.750000 

 

 

Figure 5-1: The supercell of size 4     for graphite system as AB layers stacking. 

 

It was initially considered to employ norm conserving pseudopotentials and 

Vanderbilt pseudopotentials for the graphite system. Norm conserving 
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pseudopotentials are considered accurate but these are an expensive method of 

calculation in large simulation cells. Therefore, ultrasoft pseudopotentials 

(Vanderbilt, 1990) were applied finally in a supercell approach for the graphite 

system, as this scheme minimised computational cost. 

As there are various choices for ultrasoft pseudopotentials for the graphite in 

CASTEP libraries, we carried out a number of tests on the primitive cell using 

various combinations. The convergence properties were verified and it was decided 

to use on-the-fly (OTF) pseudopotentials in the framework of LDA, GGA-PBE, 

GGA-D (D=TS, G06) functionals for the graphite system.  

5.4. Convergency Tests  

The convergency tests were performed to find the optimum parameters for 

the graphite structure. By fixing the cut off energy, k points were varied to sample 

the Brillouin zone. Table 5-2 displays the k-point convergence testing for the 

graphite system using OTF pseudopotential. The total energy per atom was 

converged within 1meV for these k-points. Therefore, Monk-Pack (Monkhorst and 

Pack, 1976) grid of size         has been used to sample the Brillouin zone 

having 288 k-points. To determine the optimum Ecut needed, single point calculations 

were performed on the graphite unit cell while systematically increasing the values 

of cut off energy. The optimum value of cut off of energy 500 eV was determined by 

fixing the k-points as shown in Figure 5-2 so that values of total energies per atom 

were converged within 1meV. Thus required accuracy and convergency was 

achieved, so all calculations on graphite have been performed with the same value of 

cut off energy and k-points grid. 
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Table 5-2: Calculated energies of graphite system using different k-points while 

fixing Ecut = 500 eV. 

Number of k-points Total Energy (eV) Total Energy per atom (eV) 

1 -610.67733 -152.66933 

3 -623.47543 -155.86886 

5 -624.38009 -156.09502 

24 -624.43019 -156.10755 

40 -624.41363 -156.10341 

126 -624.41598 -156.104 

188 -624.41377 -156.10344 

 

 

 

Figure 5-2: Total energy of graphite system with respect to cut-off energy. 

5.5. Crystal Geometry Optimization 

We used the BFGS minimization technique to optimize the graphite structure. 

The forces were zero due to symmetry arising from the p6/mmm (   
 ) space group. 

A series of geometry optimization calculations were performed to find the C-C 

distance in a 4-atom graphite optimized cell. The calculated C-C distance  is in good 

agreement with the value 1.42     given in literature (Mohr et al., 2007, Falkovsky, 

2008). The LDA overbinds the bond so underestimates the bond length. GGA-PBE 
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corrects it but slightly overestimates the bond length. The calculated values of lattice 

constant given in Table 5-3 for LDA and GGA-PBE are comparable with the quoted 

values by Mounet and Marzari (2005) using LDA and PBE functionals. The 

calculated values of parameters for dispersion corrected schemes PBE +G06 and 

PBE+TS seem to be a better choice and more closer to the actual bond length. For 

the G06 and TS scheme, default values of the parameter for a PBE functional (as 

implemented in CASTEP code 7.0) have been used. The theoretical details of 

dispersion corrected parameters have been provided in section 2.14. The calculated 

values of lattice constants given in Table 5-3 are quite interesting as values of lattice 

constants improve after adding dispersion corrections with PBE-GGA functional. 

Experimental values of lattice constants given in Table 5-3 were reported by 

Hanfland et al. (1989) and Zhao and Spain (1989) who measured these lattice 

constants using X-ray diffraction. It is clear from Table 5-3 that TS scheme is better 

for a static calculation as it improves C-C bond lengths and inter-planar distance. In 

calculation of both these parameters, an error less than 1% was found for the TS 

scheme as compared with experimental values.  

Table 5-3:   Structural parameters of graphite obtained for an optimized structure.  

 LDA PBE PBE+G06 PBE+TS Experimental 

In-plane lattice constant    2.445   2.467   2.459   2.456   2.460   

Interlayer distance/   1.342 1.621 1.295 1.355 1.36 

c0/   2.6826 3.239 2.6007 2.714 2.725 

Inter planer distance 3.28   4.0   3.2    3.3    3.35   

Bond Length 

C-C  (   
1.41339 1.42424 1.42020 1.41836 1.42 

The cohesive energy (crystal energy per atom – energy of a single carbon 

atom) of graphite was calculated using the PBE+ TS functional. The value of 

cohesive energy was found to be 7.325 eV for the graphite. The calculated value has 

less than 1% error as compared with the experimental value of the cohesive energy 

7.37 eV as cited in Dunlap and Boettgar (1996).  
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Following the geometry optimization of the graphite structure, the effect of 

pressure on inter layer distance was investigated using the PBE+TS functional. The 

values of interlayer distances decrease with an increase in pressure. Such trends are 

clear from Table 5-4 and comparable with the XRD data  given by Wang et al. 

(2012) who also studied the compression behaviour of graphite.  The calculated error 

in values of inter layer distance was about 1% and the maximum error was about 

2.6% at P=19.2 GPa. 

Table 5-4: Pressure vs Interlayer distance for a graphite system by PBE+TS 

functional. 

Pressure (GPa) Interlayer Distance d (   Experimental (   

0 3.33 3.35 

16.9 2.81 2.75 

19.2 2.77 2.70 

24.9 2.69 2.69 

31 2.66 2.65 

 

5.6. Band Structure of Graphite and Graphene 

Following the geometry optimizations, the ab initio band structures of 

hexagonal graphite and graphene have been calculated using CASTEP (Clark et al., 

2005) for the periodic system. The band structure of graphite shown in Figure 5-4 

was calculated using the PBE+TS functional in order to include the VdW 

interactions. However, no significant difference is found between the calculated band 

structures from the GGA-PBE functional and PBE+TS functionals.  

Band Structures are usually drawn along the symmetry path         

of the Brillouin zone. The shape of the Brillouin zone for the hexagonal graphite 

system is shown in Figure 5-3. The   and    bands cross each other at K-point at the 

Femi Level. The band curvature around the K-point is parabolic and it becomes 

linear away from the K-point. In both graphite and graphene structures, the band gap 

vanishes at K–point as shown in Figure 5-5 and Figure 5-6 respectively. The crossing 
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of bands transformed to anti-crossing along K-   direction in graphite structure 

which was also reported by Partoens et al. (2006) who investigated the band structure 

of graphite and graphene using the tight binding approach. Thus, present findings 

confirm the semi-metallic character of graphite and zero band gap semi-conductor 

behaviour for graphene by GGA-PBE approximation (Pedrew et al., 1996). The 

calculated value of the energy gap for outer      bands was about 1.48 eV for 

graphite system at the K-point of Brillouin zone. The calculated value was found to 

be comparable with the value 1.45 eV for the energy gap of graphite given by 

AlZahrani and Srivistava (2009) who performed a DFT calculation to investigate the 

electronic band structure from graphene to graphite. In graphene, the interaction of 

neighbouring pz orbitals create delocalized  -bonding and    anti-bonding states, 

which determine the energy bands around the Fermi energy 

 

 

Figure 5-3: The first Brillouin zone of a hexagonal lattice, with high symmetry k-

points marked and b1, b2 and b3 are reciprocal lattice vectors (Setyawan et al., 2010; 

DOI:10.1016). 
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Figure 5-4: Band Structure of graphite using PBE+TS functional along high 

symmetry direction. 

 

 

Figure 5-5:  Band Structure of graphite using PBE along the high symmetry 

direction. 
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Figure 5-6:  Band Structure of graphene using PBE along the high symmetry 

direction. 

 

5.7. Vibrational Study of Graphite using the Supercell Approach 

The dispersion curves of phonons for the graphite system were calculated 

using ultrasoft pseudopotentials (Vanderbilt, 1990)  and the finite displacement 

method. The supercell of size       for the graphite system was used and the 

PBE functional was applied. The atom was displaced 0.01   within the cut off radius 

10   to find the force constant and dynamical matrices and sum rules were also 

applied (Ye et al., 2004). The selected value of displacement was used to remove 

imaginary frequencies and anharmonic effects but other factors like un-optimized 

structure may still cause the imaginary frequencies, too small a displacement 

magnifies numerical errors in forces and too large a displacement moves into the 

anharmonic displacement regime. 

The twelve force constants were generated in the CASTEP output file along 

one direction corresponding to one atom for the graphite unit cell having 4-atoms. 

The atoms that are covalently attached to each other have the largest force constants 
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due to strong interaction. The force constants can be described in longitudinal and 

transverse directions. The force constants in our calculation decay rapidly after the 

value of 2.465    i.e. the distance of second nearest neighbour. Dispersion curves 

including interaction with up to four neighbours are shown in Figure 5-7. It is 

obvious that bands do not have dispersion for first nearest neighbours which have the 

distance equal to 1.42  . This is due to the fact that the cut off radius is too small for 

the calculation. The second neighbour has a flat LO band in the dispersion curve. 

The fourth neighbours have same values of frequencies as compared with 

frequencies of the third neighbour.  

 

Figure 5-7: Calculated phonon dispersion relation of graphite from 128 atoms 

supercell by PBE functional to minimize the effect of the periodic boundary 

condition. The effect of truncating the range of force constants up to four nearest 

neighbours is shown. Calculations were performed with the experimental lattice 

parameters. 
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The imaginary frequencies for lower acoustic branches may be due to un-

optimized geometry, pseudopotential error and the wrong selection of k-points for 

Brillouin zone integration. However, no significant difference is found in the values 

of frequencies up to four nearest neighbour for the properly optimized graphite 

structure. For this purpose, the phonon frequencies were converged with respect to k-

points sampling after adjusting the smearing parameter at 0.4 eV. The values of 

smearing between 0.2-0.4 eV can change frequency within 1 cm
-1

. The final cut-off 

energy of the value about 500 eV was used for this system. 

The First BZ of the hexagonal cell is shown in Figure 5-3. The irreducible 

wedge is called a subset of BZ k-points after the symmetry has been applied and 

identifies the practical region of the reciprocal space that must contain all the 

information of the crystal. We only need to consider k-points in the irreducible part 

and usually the vibrational energies/frequencies are specified in that region. 

Dispersion curves are commonly projected along the lines of symmetry   ,     and 

    It is clear that the relative coordinates in reciprocal space of points of the special 

symmetry are             (
 

 
    )       

 

 
    and K = (-1/3,2/3,0). 

  Following the geometry optimization and properly relaxed graphite 

structure, dispersion curves for the graphite system are calculated using the PBE 

functional as shown in Figure 5-8. The graphite unit cell has twelve modes of 

vibration. Three modes are zero due to translational degree of freedom. Three are 

called acoustic modes {acoustic: LA, TA, ZA} and rest of six optical modes {optical: 

LO, TO, ZO,             } are being explained in dispersion curves shown in 

Figure 5-8 and Figure 5-9. Graphite is a non-polar crystal and has in plane LO/TO 

modes at  , in plane LO/LA  modes at K-point, and the out–of-plane ZA/ZO  modes 

at K-point due to symmetry. These modes are also in agreement with the study of 

Mounet and Marzari (2005) who calculated the modes of vibration using density 

functional perturbation theory.  At the M -point, the LO branch is at higher frequency 

than the LA, as a result, the two branches do not cross each other between the M-

point and K-point. The crossing of TA and ZO branches are found near the M-point. 

This study is consistent with the study of  Mohr et al. (2007) who measured the 

modes of vibration using inelastic x-ray scattering. Low frequency modes move in 

phase in one layer but in the opposite direction with the other layer along the A-   
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direction as shown in Figure 5-9. These out of phase and out of plane modes have 

been labelled by    and     respectively. There are two Kohn anomalies found in 

graphite system. First the frequency at the  -point is lowered due to interaction of the 

phonon with the electronic system. The second Kohn anomaly in graphite can be 

found for the TO derived phonon branch at the K-point.  

 

Figure 5-8: Dispersion curve of graphite supercell of 4 4 2 using ultrasoft 

pseudopotential and finite displacement scheme by PBE functional. 

 
Figure 5-9:  Low frequency dispersion curve of graphite supercell of size by 4 4 2   

using the PBE functional and the geometry optimised structure. 

 

Dispersion curves as shown in Figure 5-10 and Figure 5-11 are plotted using 

the LDA functional for graphite. A supercell of size 4 4 2 has been used to perform 
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the calculations. The finite displacement method was applied to perform the 

dynamical calculations. The atom was displaced 0.01   to find the dynamical matrix 

and sum rules were also applied. Yan et al. (2008) also mentioned the discrepancy 

between the LDA and experimental modes of vibration for graphite. This supports 

the present findings for the low frequency modes of vibrations in the graphite 

system. 

 

 

Figure 5-10:  Dispersion curve of graphite supercell of size 4 4 2 using LDA 

functional and finite displacement scheme. 

 

Figure 5-11:  Low frequency dispersion curve of graphite supercell of size 4 4 2 

using the LDA functional. 
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To compare the results of the LDA and GGA functionals, dispersion curves 

are plotted in Figure 5-12 . It is projected from the figures that LDA frequencies have 

high values compared with PBE functionals. Surprisingly, the low frequency modes 

of vibration for PBE shown in Figure 5-13 have higher values than the LDA.  In 

dynamical calculations of graphite, underestimation and overestimation of frequency 

are not specific for PBE and LDA functionals. The GGA gives better results than 

LDA but GGA needs further improvement. Now it is believed that both LDA and 

GGA functional have been failed to describe the vibrational frequencies due to lack 

of long range interlayer interactions in various region of Brillouin zone. The 

calculated values for the     mode for the LDA and PBE are 125 cm
-1

 and 128 cm
-1

 

and compare well with the available experimental value of 127 cm
-1

. The error for 

this mode in LDA and PBE calculations was found to be 1.5% and less than 1% 

respectively. The present study supports the findings of a great deal of the previous 

work in this field. 

 

 

Figure 5-12: Dispersion curve of graphite using ultrasoft pseudopotential and finite 

displacement scheme for PBE and LDA functionals. 
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Figure 5-13: Low frequency dispersion curve using the LDA and PBE functionals. 

 

These modes of vibration for PBE functional were visualized using Jmol 

software. The low frequency optical modes as shown in Figure  5-14 and Figure 5-15 

are only found in graphite and are due to the weak VdW interaction. The arrows in 

figures indicate the direction of the modes of vibration.   

 

 

Figure  5-14:  (Left) low  out of plane  mode  for frequency 128 cm
-1

; (Right)   out of 

phase for  the frequency 66 cm
-1

 at         the centre of Brillouin zone. 

 

Figure 5-15:  (Left) side outer mode  for the frequency 879 cm
-1

 ; (Right) inner mode 

for the frequency 1585 cm
-1

at         the centre of Brillouin Zone. 
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Phonon frequencies of graphite are given in Table 5-5 to compare the 

theoretical results with experimental values measured by Nicklow et al. (1972) and 

Mohr et al. (2007) using inelastic neutron scattering and inelastic x-ray scattering 

approaches. Our calculated modes of vibration for graphite have been  also compared 

with the theoretical ab initio findings of Mounet and Marzari (2005) and semi 

empirical calculations which were performed by Zimmermann et al. (2008). These 

findings do not only strengthen the previous studies of graphite but also give an 

insight into vibrational properties of graphite. However, the LDA and GGA 

functional could not produce the accurate vibrational frequencies in graphite as the 

long range interaction parts were missing in these functionals. To improve these 

drawbacks, VdW corrections have been considered along with the GGA-PBE and 

LDA functionals. The details of dispersion corrected modes of vibration will be 

discussed in section 5.9. 
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Table 5-5 :  Phonon frequencies of graphite by supercell appraoch. 

Experimental values were cited in reference of Mounet and Marzari (2005). 

Modes Ab initio PBE  

(cm
-1

) 

Ab initio LDA 

 (cm
-1

) 

Experimental (cm
-1

) 

   
   ⁄

 90 89 89 

   
   ⁄

 46 44 35 

ALO 879 891 - 

ATO 1585 1622 - 

     66 62 42 

     128 125 127 

 LO/TO 1585 1609 1581 

 ZO 874 889 868 

     129 201 148 

MZA 474 467 471,465,451 

MTA 644 629 630 

MZO 651 650 670 

MLA 1334 1356 1290 

MLO 1354 1373 1321 

MTO 1358 1393 1388,1389 

KZA 544 538 482,517,530 

KZO 549 547 588,627 

KTA 995 1004 - 

KLA/LO 1224 1247 1184,1202 

KTO 1325 1363 1313,1291 

          

 

5.8. Vibrational Study of Graphene  

We have used the same lattice input parameters for the graphene system as 

calculated for the graphite in section 5.5. The structure of the graphene sheet is 

properly relaxed to attain the equilibrium values of lattice parameters. The calculated 
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values of lattice constants were about  = 2.443   and c= 6.710    for LDA and   = 

2.465   and c = 6.710    for PBE respectively. Calculated values of C-C bond 

lengths for LDA and PBE were 1.4104   and 1.4234    respectively. The cut off 

energy 500 eV was used to ensure the convergence of total energies within the value 

of 1meV. The Monk-Pack k-points grid         (72-kpoints) was used to make 

certain the convergence of total energies within 1meV. The calculated dispersion 

curve of graphene looks similar to graphite except the low frequency modes of 

vibrations are missing. Actually, low modes splitting have been found due to VdW 

interactions in graphite only below 400 cm
1
. LDA overbinds the bond length in 

graphene so frequency in the optical region for LDA is higher than the PBE 

functional as shown in Figure 5-16. 

 

Figure 5-16 : Dispersion curve of graphene using PBE and LDA functional for 

4 4 2 supercell along the high symmetry direction. 

 

The calculated values of frequencies for the PBE functional given in Table 

5-6 looks close to the experimental values as cited by Mohr et al. (2007) using 

inelastic x-ray scattering technique. However, values of frequencies using LDA were 

found to be higher than the experimental values. Wirtz and Rubio (2004) also 

compared the LDA and GGA with experimental results. According to Wirtz and 

Rubio (2004), values from LDA were found to be larger than PBE. This is in 

excellent agreement with our study for LDA and PBE functionals. 
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  Table 5-6 : Phonon frequencies of graphene by supercell appraoch.  

  Experimental values are taken from the reference (Mohr et al., 2007).   

Modes Ab initio LDA 

(cm
-1

) 

Ab initio PBE (cm
-1

) Experimental (cm
-1

) 

 ZO 901 881 867 

 LO/TO 1608 1568 1581 

MZA 484 487 480 

MTA 631 628 627 

MZO 648 646 670 

MLA 1354 1334 1290 

MLO 1381 1350 1340 

MTO 1439 1400 1398 

KZA 551 551 542 

KZO 551 551 588 

KTA 1000 989 1007 

KLA/LO 1240 1213 1217 

KTO 1381 1339 - 

   

 

Figure 5-17: Dispersion curve of graphene using PBE functional by 3 3 1 supercell 

along the high symmetry direction. 
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Figure 5-18: Dispersion curve of graphene using LDA functional by 3 3 1 

supercell along the high symmetry direction. 

 

 

Figure 5-19: Dispersion curve of graphene using LDA functional by 4 4 2 

supercell along the high symmetry direction using grid 16 16 1. 
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Figure 5-20: Dispersion curve of graphene using PBE functional by 4 4 2 supercell 

along the high symmetry direction using grid 16 16 1. 

 

5.9.  Dispersion Corrected Study of Phonons  

Following the geometry optimization, phonon calculations for graphite were 

performed using the dispersion corrected schemes. In reviewing the literature, no 

vibrational study was found for graphite using dispersion corrections. Therefore we 

performed the vibrational study by including G06 and TS dispersion corrections 

(Grimme, 2006, Tkatchenko and Scheffler, 2009). Initially, the graphite primitive 

cell was hexagonal but it was converted into a cubic super cell of size       

containing 128 atoms. The values of frequency were ensured to converge within 

1cm
-1

 for the k-points.  Smearing parameters of value 0.2 eV, 0.3 eV and 0.4 eV 

were tested and values of frequency were found to be converged within 1cm
-1

. The 

smearing parameter was adjusted to a value of 0.4 eV to converge the frequency. The 

cut-off radius, 10   for the force constant matrix was selected to allow the interaction 

of large number of atoms. A cut off energy value of 500 eV was used for the phonon 

calculations. Vibrational frequencies were calculated using the finite displacement 

method (Ye et al., 2004). To choose the atomic displacement, different types of tests 
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were performed to reduce the negative frequencies and anharmonic effects. The best 

option was to displace the atom about 0.01  .  

The functional dependent global scaling factor    and damping function 

steepness d for the G06 scheme were adjusted to the values 1.50 and 20 in order to 

get the desired low frequency. The functional dependent scaling factor    and 

damping function steepness d were adjusted for TS scheme. The values of    and d 

were set at 0.86 and 15 to optimize the vibrational properties of graphite. For the 

choice of these parameters, various tests have been performed (see Appendix A.1). 

These parameters were found to be sensitive with respect to inter-planar distance. 

The inter-planar distance increases with the increase of scaling factor    and damping 

function steepness d. These parameters were also found to be sensitive with respect 

to frequency. The frequency decreases with the decrease in steepness of damping 

function d and scaling factor   . In our calculations, sum rules were enforced to find 

the dynamical matrix. TS and G06 dispersion were applied with the PBE functional 

to find the dispersions curves as shown in Figure 5-21 and Figure 5-23.  

        Table 5-7 shows that in medium and high range of frequency both dispersion 

schemes produce the values close to the available experimental data. The low 

frequency optical modes of vibration for PBE+G06 and PBE+TS functionals shown 

in Figure 5-22 and Figure 5-24 have an excellent comparison with the available 

experimental data as cited by Nicklow et al. (1972). Both dispersion corrected G06 

and TS schemes include the dispersion interaction in graphite system and thus give 

much better results compared with the previous local and semi-local density 

functionals studies. The low frequencies out of phase modes of vibration for the TS 

scheme are found to be closer to the experimental Raman active mode as compared 

to its value with the G06 functional. Both TS and G06 schemes give accurate values 

for the out of plane modes but G06 gives high values for the out of phase modes of 

vibration. The TS scheme can be considered as an accurate scheme as it gives much 

better results for all ranges of frequencies in graphite system. 

The efficiency of calculations increases in dispersion corrected schemes. The 

time for the calculation was noted from the CASTEP output file and it was found that 

dispersion corrected G06 the time by 25% as compared with the calculation using 
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only the PBE functional. The G06 scheme is also slightly faster than the dispersion 

corrected TS scheme. However, on the basis of vibrational studies, it can be 

mentioned that the more advanced and self-consistent TS scheme should be 

considered as a better choice for the graphite system. 

        Table 5-7 :  Phonon frequencies of graphite by supercell appraoch.     

 Experimental values were cited in reference of Mounet and Marzari (2005). 

Modes PBE+TS 

(cm
-1

) 

PBE+G06 

(cm
-1

) 

Experimental (cm
-1

) 

   
   ⁄

 90 90 89 

   
   ⁄

 32 39 35 

ALO 893 867 - 

ATO 1575 1576 - 

     41 55 42 

     127 128 127 

 LO/TO 1576 1596 1581 

 ZO 893 873 868 

     123 209 148 

MZA 478 485 471,465,451 

MTA 652 638 630 

MZO 656 649 670 

MLA 1320 1333 1290 

MLO 1355 1357 1321 

MTO 1356 1360 1388,1389 

KZA 554 543 482,517,530 

KZO 559 560 588,627 

KTA 1004 992 - 

KLA/LO 1213 1226 1184,1202 

KTO 1302 1330 1313,1291 
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Figure 5-21:  Dispersion curve of graphite using PBE+G06 functional for ultrasoft 

pseudopotential and finite displacement scheme. 

 

 

Figure 5-22:  Low frequency dispersion curve using the PBE+G06 functional. 
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Figure 5-23: Dispersion curve of graphite using PBE+TS functional along high 

symmetry directions. 

 

 

Figure 5-24:  Low frequency dispersion curves using the PBE+TS functional. 

  



Chapter 5                                                                      Structural and Vibrational Properties of Graphite 

 

76 
 

The calculated values for out of plane (127 cm
-1

) and out of phase (41 cm
-1

) modes 

shown in Figure 5-25 are found to be in good agreement with the experimental 

values 127 cm
-1

 (15.7 meV) and 42 cm
-1

 (5.2 meV) as cited by Mohr et al. (2007). 

The out of phase mode of vibration has 2% lower frequency than the experimental 

value of frequency but the out of plane mode of vibration has exactly the same 

frequency as reported by experimental studies. This is the first accurate ab initio 

study of dispersion corrected low frequency modes of vibration. The calculated low 

frequency modes of vibration also seem to be consistent with the study of Reich and 

Thomsen (2009) who measured the modes of vibration for the graphite system  using 

Raman spectroscopy. 

 

 

Figure 5-25: (Left) Low frequency dispersion curve using the PBE+TS functional 

along     direction; (Right) Open triangles represent the inelastic x-ray scattering 

data and full squares are present neutron scattering data (Nicklow et al., 1972, Mohr 

et al., 2007). 

Figure 5-26 shows dispersion curves for a 3     supercell along high symmetry 

directions   ,     and    of the Brillouin zone. The dispersion curve for a 4     

supercell shown in Figure 5-27 has been calculated using the high symmetry 

directions different from the above study in order to complete the study in Brillouin 

zone. Here, the relative coordinates in reciprocal space of points of the special 

symmetry are            (
 

 
    )       

 

 
 
 

 
  and H = (-1/3,2/3,0).  
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Figure 5-26: Dispersion curve of graphite using the using 3     supercell by 

PBE+TS functional along high symmetry direction. 

 

 

Figure 5-27: Dispersion curve of graphite using 4     supercell by PBE+TS 

functional along high symmetry direction and k points mesh 16      . 
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5.10. Vibrational Density of States  

The vibration density of states for hexagonal graphite was calculated using 

the equation  (4.14) for the PBE+TS functional. The system was geometry optimized 

before performing the calculation of density of states. The frequencies were 

broadened using a Gaussian function of half width half maximum (1cm
-1

) and 

integrated over the Brillouin Zone using a fine k-point mesh having 288 k-points. We 

repeated the calculation by varying the k-points grid to ensure the convergence of the 

frequencies. The calculations were repeated at denser k-points grid in order to reduce 

the noise in density of states. The smearing parameter was also adjusted to value of 

0.4 eV to facilitate convergence of the frequencies. The same calculation was 

performed using the Gaussian broadening of 2 cm
-1

, 5 cm
-1

, 10 cm
-1 

and 50 cm
-1

. The 

smooth density of states was found at the larger Gaussian broadening.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-28: Vibrational density of states of graphite system using the PBE+TS 

functional. 

Two important peaks were found at the 1574 cm
-1

 and 474 cm
-1

 which could  be 

compared with the values 1601 cm
-1

 and 466 cm
-1

 given by Nicklow et al. (1972) on 

the basis of an axially symmetric model. The typical D band peak for graphite was 

calculated at 1344 cm
-1

. Moreover, peaks were also calculated at the values 178 cm
-1

, 
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660 cm
-1

 and 862 cm
-1

. The calculated trend of peaks compares well with those  

reported by Vitali et al. (2004)  using LDA–DFT. 

5.11. Structural and Vibrational Study of Rhombohedral Graphite  

The graphite rhombohedral unit cell consists of two atoms. The atoms were placed at 

the positions A(0.16400 0.16400 0.16400) and B(-0.16400 -0.16400 -0.16400) 

respectively in a box. The rhombohedral graphite structure (Lipson and Stokes, 

1942) has an ABC stacking, with half of the atoms directly below the atoms in 

adjacent planes and directly above the hexagonal ring centre, while the other half of 

the atoms directly above the atoms and below the hexagonal ring centres as shown in 

Figure 5-30. The lattice parameter and bond angles used in calculations were 

a=b=c=3.635   and      =      . On-the-fly (OTF) pseudopotentials were 

generated by CASTEP and determined at a cut-off energy 350 eV, which guaranteed 

the convergence of lattice parameters and total energies to less than 1meV per atom. 

The ultrasoft pseudopotential (Vanderbilt, 1990)  was employed to model the 

electron-ion interactions. Brillouin zone sampling was obtained using the Monk-Pack 

(Monkhorst and Pack, 1976) k-points grid of size 8 8 8. The structure of symmetry 

group Ci was geometrically optimized using the BFGS method. Forces were zero due 

to symmetry of structures. The dispersion corrected TS scheme (Tkatchenko and 

Scheffler, 2009) along with the PBE functional (Perdew et al., 1996) was also 

applied to perform the geometry optimization. 

 Following the geometry optimization, the calculated value of inter planar 

distance was about 3.34   at P = 0 GPa.  A less than 1% error was found between 

calculated and experimental values. The system was fully relaxed to optimize all the 

atomic position of atoms until maximum force and stress had values less than 0.05 

 
  

 
  and 0.1 GPa respectively and each atom is moved less than 10

-3
     The effect of 

pressure on inter layer distance for rhombohedral graphite was determined by 

performing further optimization. Table 5-8 shows good agreement with the XRD 

data given by Wang et al. (2012) who investigated the structures of carbon by 

applying the compression and decompression at room temperature. It was found that 

interlayer distances have been decreased with increase in pressure.  
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Table 5-8: Interlayer distance corresponding to pressure for graphite using PBE+TS 

functional. 

Pressure (GPa) Interlayer Distance d ( ) Experimental d ( ) 

0 3.34 3.35 

14.1 2.9 3.0 

23.8 2.74 2.9 

29.3 2.67 2.8 

The vibrational frequencies of a graphite supercell 2 2 2  were performed 

using the ab initio supercell method (Ye et al., 2004). The atom was displaced 0.01    

within the cut off radius 10    to find the force constant and dynamical matrices. The 

smearing parameter was also adjusted to 0.4 eV for the convergence of the 

frequency. The dispersion corrected TS scheme (Tkatchenko and Scheffler, 2009) 

along with PBE functional (Perdew et al., 1996) was also applied  to include the long 

range interaction in calculating the vibrational frequencies. The dispersion curve of 

rhombohedral graphite along the high system direction is shown in Figure 5-29.  

 

Figure 5-29: Dispersion curve of rhombohedral graphite using PBE+TS functionals 

along high symmetry direction. 
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Unlike the hexagonal graphite, rhombohedral graphite has no crossing ZA 

and ZO modes at K-point of the hexagonal Brillouin zone. LA and LO modes 

coincide at the M-point. Unlike the hexagonal graphite, LA and LO modes do not the 

cross at the K-point. This is due to different geometrical structures for the hexagonal 

and rhombohedral graphite. The LA and TA modes of vibrations have been 

calculated along                (
 

 
 
 

 
 
 

 
) along the symmetry direction of 

Brillouin zone shown in Figure 5-30 for rhombohedral graphite. The frequencies of 

LA and TA modes are 154 cm
-1

 and 47 cm
-1

 respectively at Z-symmetry point are 

shown Figure 5-31 and the arrows in Figure 5-32 show the direction of vibration of 

these modes. 

 

 

Figure 5-30: (Left) ABC-Stacking rhombohedral graphite; (Right) The Brillouin 

zone of  rhombohedral lattice, with high symmetry k-points marked and b1, b2 and b3 

are reciprocal lattice vectors (Setyawan et al., 2010). 
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Figure 5-31: Frequency of rhombohedral graphite along the       direction. 

 

Figure 5-32: (Left) LA mode of vibration of frequency 154 cm
-1

;  (Right) TA mode 

of vibration of frequency 47 cm
-1

. 

5.12. Summary 

 

Following the geometry optimization of graphite system using the 

pseudopotential method, structural geometries have been determined. The band 

structure of graphite and graphene has been studied using the generalized gradient 

approximation. The LDA and GGA exchange and correlation functionals have been 

used to find the vibrational frequencies of graphite using the ab initio finite 

displacement method.  

The vibrational frequencies of graphite have been found using the dispersion 

corrected functionals in order to include the long range interactions. The vibrational 

density of states has been explored using the PBE+TS functional. The structural and 

dynamical properties of graphite have also been studied using the PBE+TS 

functional. 
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5.13. Conclusions 

The utilization of DFT-D functionals leads to an improved C-C bond length 

and inter layer distance in hexagonal graphite. The errors in calculated structural 

parameters were found to be less than 1% compared with experimental results. The 

band structure has confirmed that graphite is a zero band gap semi-conductor 

material. The DFT-D functional also produced better results for the frequencies in 

graphite compared with the results without dispersion corrected functionals. The TS 

dispersion corrected scheme was found to be better than the G06 dispersion corrected 

scheme in evaluating the phonon dispersion curve of graphite. The structural and 

vibrational properties were also evaluated for the rhombohedral graphite using TS 

dispersion corrected scheme. The calculated value of interlayer distance was found to 

be comparable with the experimental value. The low frequency rhombohedral modes 

were investigated but no experimental study was found for comparison.   
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Chapter 6. Carbon Nanotubes for Hydrogen Storage 

 

6.1. Introduction 

 

CNTs are considered as potential candidates to store hydrogen. The reaction 

energies of hydrogen in atomic and molecular forms with carbon nanotubes has been 

calculated using the generalized gradient approximation. The interaction of atomic 

hydrogen and molecular hydrogen with CNTs is vital in calculating the binding 

energies and band gaps in hydrogenated CNTs. In the present study, each hydrogen 

atom has been externally bonded with carbon to investigate chemisorption with a 

value of gravimetric density at 7.74 wt. %. This first principles study has been 

carried out to investigate the chemisorption of hydrogen with respect to diameters 

and chirality of CNTs. The vibrational study of hydrogenated CNTs is also used to 

explore the C-H modes of vibration.  

The harmonic approximation was used to study the thermodynamic properties 

of the materials. The partition functions of statistical physics have been used to 

investigate the rotational and translational free energy of diatomic gases like H2. 

Following the optimized geometry and phonon calculations, free energy has been 

investigated to determine the hydrogen release temperatures. 

6.2. Aims 

The following are the aims in this study of hydrogenated CNTs. 

 To determine the binding energies and band gaps of exo-hydrogenated zigzag 

and armchair CNTs using DFT PBE-GGA (Perdew et al., 1996) functional. 
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 To study the complete vibrational information of hydrogenated CNT by means 

of  vibrational density of states and dispersion curves  using PBE-GGA 

(Perdew et al., 1996) functional. 

 To utilise the results of phonon calculations and statistical thermodynamics to 

determine the vibrational, rotational and translational free energies of hydrogen 

molecule. 

 To utilise the results of phonon calculations and statistical thermodynamics to 

predict hydrogen releasing temperatures in hydrogenated armchair and zigzag 

CNTs. 

6.3. The Convergence Tests  

 Convergence testing was carried out to determine the optimum 

computational parameters to use for geometry optimization of structure.  As the 

number of k-points and Ecut has been increased, the calculated ground state moves 

towards the actual ground state energy of system. However, increasing the number of 

k-points and Ecut can increase the computational expense. In this study, a 

convergency criterion of less than 1meV per atom has been used. These tests were 

performed with the same k-point grid and cut off energy for the reactants and 

product. Here, convergence tests of only one type of CNT were being discussed and 

calculations of other CNTs were also studied before calculating the binding energies 

of these systems. 

6.4. Hydrogenated CNT(4,4) 

The hydrogenated CNT(4,4) was placed in a cell with dimensions    

13.6797  ,              and c = 2.4630   and corresponding angles were 

  =    ,        and       . In order to avoid the interaction between the 

CNTs, the closest distance between H-H atoms for the two adjacent CNTs was about 

8.2  . The convergence tests with respect to both k-point sampling and Ecut were 

carried out. First, the number of k-points were varied by fixing the Ecut (540 eV) and 

single point energy calculations were performed using various sets of k-points. Table 

6-1 displays the k-point convergence testing for the hydrogenated CNT using the 

OTF pseudopotential. The 10 k-points from   1    Monk-Pack grid (Monkhorst 
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and Pack, 1976) were used to sample the Brillouin Zone. The total energy converged 

for the CNT(4,4) system within the range of 1meV. To find the optimum Ecut 

required, a series of single point energy calculations were performed by fixing the k-

points. The total energies of CNT (4,4)H  were converged within 1meV as shown in 

Figure 6-1. Hence a value of cut-off energy of 540 eV was a better choice in our 

calculation.  

 

Table 6-1: Calculated energies of CNT(4,4)H using different k-points while fixing    

Ecut = 540 eV. 

Number of k-points Total Energy (eV) Total Energy per atom (eV) 

1 -2720.0443 -85.001386 

3 -2757.9194 -86.18498 

5 -2757.9531 -86.18603 

8 -2757.9562 -86.18613 

10 -2757.9564 -86.18614 

 

  

 

Figure 6-1:  Cut-of energy versus total energy per atom of CNT (4,4)H. 
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6.5.  CNT(4,4) and the Hydrogen Molecule 

In order to choose the fine grid scale, single point calculations were 

performed by varying the size of the grid. The fine grid scale parameter defines a 

denser grid necessary to deal with the addition of hard augmented charge densities to 

the smoother valence charge density in the ultra-soft pseudopotential method. The 

values of total energy are shown in Figure 6-2 and these values were found to be 

converged within the value of 1meV when changing the fine grid scale from 2.0 to 

3.0. Thus a 2.0 fine grid scale has been used in the calculations of CNTs.  

 

 

Figure 6-2:  Choice of fine grid scale corresponding to total energy of CNT (4,4). 

 

The number of k-points were changed by fixing Ecut (540 eV) and single point energy 

calculations were carried out using various sets of k-points.  

 

Table 6-2 displays the k-point convergence testing for the hydrogenated CNT using 

an OTF pseudopotential. The Brillouin Zone was sampled using Monk-Pack grid (10 

k-points)   1     (Monkhorst and Pack, 1976).  
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Table 6-2: Calculated energies of CNT(4,4) using different k-points while fixing Ecut 

= 540 eV. 

Number of k-points Total Energy (eV) Total Energy per atom (eV) 

1 -2503.0021 -156.438 

3 -2518.9024 -157.431 

5 -2518.8545 -157.428 

8 -2518.8283 -157.427 

10 -2518.8170 -157.426 

 

 

Table 6-3 displays the k-point convergence testing for the hydrogen molecule using 

an OTF pseudopotential. The Brillouin Zone was sampled by the Monk-Pack grid 

  1    (10 k-points) (Monkhorst and Pack, 1976)  for the hydrogen molecule. 

 

Table 6-3: Calculated energies of hydrogen using different k-points while fixing Ecut 

= 540 eV. 

 

 

 

 

 

 

 

 

To find the optimum Ecut required, a series of single point energy calculations 

were carried out by fixing the k-points. The total energies of CNT (4,4) were 

converged within 1meV as shown in Figure 6-3. Similarly, optimum Ecut = 540 eV 

was also found for hydrogen molecule as shown in Figure 6-4. The total energy of 

CNT(4,4) converged within a range of 1meV/atom as shown in Figure 6-5 for  fixing 

the dimension of cell. The inter layer distances have increased to reduce the 

interaction between the CNTs. Lattice parameters were determined in order to 

construct the isolated CNTs.  

 

Number of k-points Total Energy (eV) Total Energy per atom (eV) 

1 -31.5481114 -15.774056 

3 -31.5481088 -15.774054 

5 -31.5481087 -15.774054 

8 -31.5481112 -15.774056 

10 -31.5481133 -15.774057 
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Figure 6-3:  Cut of energy versus total energy per atom of CNT (4,4) . 

 

 

Figure 6-4:  Cut off energy for the convergency of H2 molecule. 
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Figure 6-5:   The Convergency of  the electronic energy of CNT (4,4) with respect to 

lattice parameter  . 

6.6. Binding Energy Calculations of Exo-Hydrogenated CNTs 

In order to calculate the binding energy, initial geometries were generated 

using the Tube Gen tool (Frey and Doren, 2011) based on the hexagonal unit cell. 

The hydrogen was attached externally with each carbon atom and the length of the 

C-H bond is 1.10  .  This study is based on the assumption that all carbon atoms in a 

nanotube are hybrid with hydrogen atoms from outside as shown in Figure 6-6. The 

cut off energy used in these calculations is 540 eV. The Brillouin zone was sampled 

using a Monk-Pack (Monkhorst and Pack, 1976) grid of 1×1×20 of k-points. An 

ultrasoft pseudopotential (Vanderbilt, 1990) was used along with a GGA-PBE 

functional (Perdew et al., 1996) to perform these calculations and on the fly (OTF) 

pseudopotentials were generated by CASTEP code. For the pseudopotential, the cut 

off radii rc,H and rc,C have the values 0.423 Å and 0.741 Å respectively. The distance 

between H-H atoms for two CNTs was kept in the range of 6-9 Å in order to generate 

isolated hydrogenated CNTs. The CNT structure was examined to consider the CH 

rotation along the high symmetry direction as shown in Figure 6-6. Single point 

energy calculations were performed to find the optimum orientation of CNT (4,4)H. 

Our calculated local CCH-bond angles (      curve in Figure 6-7 are comparable 

with the previous calculations of Yildirim et al. (2001), who obtained the optimum 

orientation when the CH bond is tilted about c-axis in arm chair CNTs.  
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Figure 6-6: Optimized structure of CNT(4,4)H, direction of arrows show the rotation 

of CH bond along the symmetry direction. The arrows indicate the possible 

directions of rotations of CH bond (Yildirim et al., 2001). 

 

 

Figure 6-7: The minimum energy curve of CNT(4,4)H as CH is rotated along high 

symmetry direction. 

 

Similarly, optimum orientation was also obtained for hydrogenated zigzag 

CNT(4,0)H along the c-axis when CH bond tilted along the positive and negative 

direction. The structure in is drawn in Figure 6-8 to show the CH bond tilt along the 
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z-axis. The single point calculations were carried out to find the optimum bond angle 

for the CNT(4,0)H as shown in Figure 6-9. 

 

 

 

Figure 6-8: Optimized structure of CNT(4,0)H, tilting of CH bond along c-axis. 

 

 

Figure 6-9: The minimum energy curve of CNT(4,0)H as CH is rotated along high 

symmetry direction. 

 

All the attached hydrogen atoms were shifted by small displacement along 

the z-axis and the structures were relaxed to ensure the equilibrium orientation of 

bonds along the z-axis. All the structures of hydrogenated CNTs were fully relaxed 
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by optimizing all the positions along the tube axis until maximum force and stress 

are less than 0.05  
  

 
   and 0.1 GPa respectively and each atom was moved less than 

10
-3

Å.  The H-H distance between two CNTs was calculated in the range of 6-9Å in 

order to generate isolated hydrogenated CNTs as shown in Figure 6-10. Table 6-4 

displays the calculated total energies of CNTs and hydrogenated CNTs. 

 

 
Figure 6-10:  Geometry optimized structure CNT(4,4)H to measure the H-H distance. 

 

Table 6-4: Total energy of CNTs and Hydrogenated CNTs for optimized structure. 

CNT(n,m) Total Energy (eV) CNT(n,m)H Total Energy (eV) 

(4,4) -2518.847863266 (4,4)H -2770.619520289 

(5,5) -3150.494817047 (5,5)H -3459.679605947 

(6,6) -3781.849060137 (6,6)H -4148.377912475 

(8,8) -5044.146708149 (8,8)H -5525.326431653 

(9,9) -5675.154497031 (9,9)H -6213.630535465 

(10,10) -6306.135001431 (10,10)H -6901.929519107 

(4,0) -2511.175834208 (4,0)H -2777.295780610 

(5,0) -3143.855111284 (5,0)H -3468.826404637 

(6,0) -3776.233255247 (6,0)H -4159.271076588 

(7,0) -4408.196140036 (7,0)H -4848.981140956 

(8,0) -5039.896379711 (8,0)H -5538.267078178 

(9,0) -5671.346285029 (9,0)H -6227.255952379 

(10,0) -6302.782187364 (10,0)H -6916.030402765 

 

Bond lengths and bond angles given in Table 6-5 are determined for the 

optimized zigzag and armchair nanotubes structures. Two types of bond lengths have 
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been calculated. In the first type the CC-bond length       was found to increase 

with increase in diameters and in the second type the CC-bond length     ) was 

observed to decrease with increases in diameters for zigzag CNTs. On the other 

hand, the length of both types of     were observed to decrease with an increase in 

diameters (D) for arm chair CNTs. CCC bond-angles in both types of CNTs increase 

with the increase in diameters of CNTs. 

                      Table 6-5: Optimized parameter of zigzag and armchair CNTs. 

Materials D ( )     ( ) 
CCC 

(degree) 

CNT(4,0) 3.37 1.338,1.477 107.5,119.2 

CNT(5,0) 4.14 1.408,1.452 111.1,119.9 

CNT(6,0) 4.74 1.410,1.443 113.5,120 

CNT(7,0) 5.98 1.418,1.434 115.2,120 

CNT(8,0) 6.36 1.418,1.432 116.2,120 

CNT(9,0) 7.01 1.420, 1.429 116.9,120.1 

CNT(10,0) 7.89 1.423,1.426 117.4,120.1 

CNT(4,4) 5.52 1.428,1.428 117.8,119.4 

CNT(5,5) 6.78 1.424,1.427 118.5,119.7 

CNT(6,6) 8.19 1.422,1.426 118.9,119.9 

CNT(8,8) 10.88 1.421,1.424 119.3,120.1 

CNT(9,9) 12.22 1.421,1.424 

 

119.5,120.1 

CNT(10,10) 13.59 1.421,1.424 119.5,121 

 

The CNTs and hydrogenated CNTs were geometrically optimized. The 

Binding Energy per hydrogen was calculated using the expression (6.1) (Andreoni et 

al., 2012).  

 
EB(n) = (E(CNT) - E(CNT + nH))/n + E(H) (6.1) 

 

In the equation (6.1), E(H) is an energy of an isolated single atom and its  calculated 

value is in the present study about E(H) = -13.584 eV. Upon the hybridization, the 

value of the original CC- bond length      was found to increases from 1.42   to 

1.62  , which was typical for an sp
3
 structure.

  
From Table 6-6, it is seen that the CC-
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bond length       stretches more in arm chair carbon nanotubes than zigzag CNTs. 

Moreover,     was also found to be dependent upon the diameters of CNTs. Our 

calculated     was found to increase by about 9-12% for zigzag CNTs and by about 

10-15% in arm chair CNTs. After hydrogenation,     stretches more from the actual 

bond length 1.42   in zigzag CNTs as compared with arm chair CNTs. The CH-bond 

length         is also found to have a weak dependence on the diameter of the tube. 

It is also observed that the value of     decreases with the increase in diameters of 

CNTs.  

 

.  

Table 6-6: Various parameters of the fully optimized structures of exo-hydrogenated 

armchair and zigzag carbon nanotubes. 

Materials Formula D( )      ( )     ( ) 
      

(degree) 

      

(degree) 

CNT(4,0)H C16H16 3.71 1.544,1.562 1.103 112.8, 116.8 103.7, 105.5 

CNT(5,0)H C20H20 4.64 1.548,1.568 1.103 113.3, 121.8 100.3.104.2 

CNT(6,0)H C24H24 5.51 1.556,1.568 1.102 113.6, 124.5 98, 103.1 

CNT(7,0)H C28H28 6.80 1.565, 1.569 1.101 113.9, 126 96.4 ,102.3 

CNT(8,0)H C32H32 7.35 1.570,1.572 1.099 114.2, 127 95.2 ,101.6 

CNT(9,0)H C36H36 8.58 1.570, 1.579 

 

1.097 114.4,127.5 94.4,101 

CNT(10,0)H C40H40 9.22 1.571,1.585 1.096 

 

114.6,127.8 93.7,100.5 

CNT(4,4)H C16H16 6.29 1.558,1.583 1.099 112.5, 120.9 96.7, 98.7 

CNT(5,5)H C20H20 7.83 1.567,1.596 1.096 112.9,121.7 94.7, 97.2 

CNT(6,6)H C24H24 9.47 1.574,1.606 1.093 113.4,122 93.5, 96.3 

CNT(8,8)H C32H32 12.66 1.584,1.620 1.089 114.2, 122.2 92,  95 

CNT(9,9)H C36H36 14.04 1.587,1.625 1.088 114.5,122.2 91.5,94.6 

CNT(10,10)H C40H40 15.86 1.590,1.630 1.086 114.8,122.2 91.1,94.2 

Cubane C8H8 4.01 1.570 1.097 90 125.3 

 

On the other hand, local CCH-bond angles        in arm chair CNTs deviate 

more than the ideal tetrahedral bond angle bond angle 109.5
0
. It is observed that 

CCH-bond angles        in zigzag CNTs are found to be closer to optimum 
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tetrahedral sp
3 

bonding than those armchair CNTs. These results are comparable with 

the previous ab initio study of exo-hydrogenated CNTs which was performed by 

Yildirim et al. (2001).  

 

Figure 6-11: Binding energy as a function of diameters D of zigzag and arm chair 

CNTs. 

The binding energies are proportional to the inverse of diameter (1/D) for the 

zigzag and armchair CNTs. The calculated values of binding energy for zigzag CNTs 

are found to be lowered compared with arm chair CNTs as shown in Figure 6-11. 

The calculated values of the binding energies are also found to be negative which 

indicate the energetically favourable adsorption. The values of binding energy are 

found to decrease with increase in diameters of CNTs. The present study is different 

than the study of Yilidirim’s study regarding the treatment of zigzag CNTs. Yildirim 

et al. (2001) only considered the large diameter zigzag CNTs, however, small 

diameters CNTs produced the highest values for binding energies. Therefore, the 

present study was set out to perform the calculations from the small diameters to 

large diameters zigzag CNTs.  

 

 The hydrogen-carbon interaction has also been studied in cubane (C8H8) 

(Eaton and Cole, 1964). The cut off energy value 540 eV and  -point Brillouin zone 

were opted to perform geometry optimization. In this system,  CCC-bond angles are 

90
0
 rather than 109.5

0
 as for the tetrahedral sp

3
 bonded system. The calculated values 

of C-C =1.570   and C-H = 1.097   were found to comparable with the experimental 
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values 1.570   and 1.097    respectively as cited in Maslov et al. (2009). The total 

energy for the optimized structure of cubane has a value -1383.2885 eV. The 

calculated value of binding energy of 4.01 eV/atom for cubane is less than the 

experimental value 4.42 eV/atom as cited in Maslov et al. (2009). The polyhedral 

molecule (cubane) represents the zero-dimensional case. However, we mainly focus 

on the properties of the hydrogen-carbon interaction in CNTs due to their unique 

one-dimensional nature and curvature. 

 

The reaction energy per H as given in Table 6-7 was calculated using the 

relation (6.2) (Stojkovic et al., 2003) in order to find the stability and energetics of 

CH-bond formation. 

 
               

 

 
   

 

 

(6.2) 

 

where n is the number of hydrogens. In above relation,        is the total energy of 

chemisorbed hydrogenated CNT,      is the total energy of pristine CNT, and    
 is 

the total energy of an isolated hydrogen molecule. 

 

Table 6-7 presents the values of binding energies of exo-hydrogenated CNTs 

by interaction of molecular hydrogen with CNTs. The electronic energy    
 of an 

isolated hydrogen molecule is calculated to be about -31.74 eV. The reaction energy 

has negative and positive values for molecular hydrogen in the gas phase. It is found 

that that reaction energies of hydrogenated zigzag CNTs have energetically 

favourable values at pressure p = 1bar for only small diameter nanotubes up to 

diameter 5.71  . At larger diameters zigzag CNTs and armchair CNTs have a 

reaction energy which becomes unfavourable for the hydrogen molecule. These 

findings can be compared with the experimental study of Talyzin et al. (2011) in 

which it was reported that molecular hydrogen could not react with nanotube walls at 

H2 pressure of a few mega Pascal at moderately high temperatures. On the other 

hand, the reaction energy for atomic hydrogen was found to be highly favourable for 

zigzag and armchair CNTs. This study produced results which confirm the findings 

of a great deal of the previous work in this field.  
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       Table 6-7: Reaction energy per Hydrogen for zigzag and arm chair CNTs. 

Materials   /H (eV) 

CNT(4,0) -0.7625 

CNT(5,0) -0.3785 

CNT(6,0) -0.0899 

CNT(7,0) 0.1277 

CNT(8,0) 0.2960 

CNT(9,0) 0.4281 

CNT(10,0) 0.5388 

CNT(4,4) 0.1344 

CNT(5,5) 0.4108 

CNT(6,6) 0.5980 

CNT(8,8) 0.8332 

CNT(9,9) 0.9124 

CNT(10,10) 0.9752 

 

6.7. Band Structure of Hydrogenated CNTs 

Following the geometry optimization, band structures of CNT(4,4) and 

hydrogenated CNT(4,4) were calculated using the GGA-PBE functional. The k-point 

path was selected along symmetry   Z direction for the self-consistent band 

calculations. Figure 6-12 shows that the valence band and conduction band cross 

each other at Fermi level for CNT(4,4). This confirms the metallic nature of armchair 

CNT(4,4). Armchair CNTs are metallic. Zigzag CNTs have both metallic and 

semiconductor behaviour. The small diameter zigzag CNTs up to 4.74   are found to 

be metallic in nature due to high curvature. These findings seem to be consistent with 

the study of Zólyomi and Kürti (2004) who performed band structure calculations for 

small diameters CNTs using the LDA functional. However, Figure 6-13 shows that 

hydrogenated CNT(4,4) has a band gap between the top of valence band and bottom 

of the conduction band as shown in the band structure and corresponding density of 

states. This shows that hydrogenated CNT changes from metallic to semiconcuctor 

behaviour due to hydrogenation. The direct band gap at the  -point is calculated to 
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be 2.4505 eV for the hydrogenated CNT(4,4). The calculated value is found to be 

comparable with the value reported by Yildirim et al. (2001).  

 

 

Figure 6-12: Band structure of CNT (4,4) using GGA-PBE functional. 

 

 

Figure 6-13: Band structure and density of states of CNT(4,4)H using GGA-PBE 

functional 

The band gaps as a function of tube diameter are plotted in Figure 6-14 for 

hydrogenated zigzag and armchair CNTs. The values of band gap in zigzag and 

armchair hydrogenated CNTs decrease with increase of diameter. It is interesting to 

note that small diameter hydrogenated zigzag CNTs are found to be more stable 
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compared to large diameters. Contrary to findings of Yilidrim et.al (2001), band gaps 

of zigzag CNTs have relatively large values in the present study. This point was 

missing in Yilidrim’s study as only large diameters of zigzag were considered.   

 

 
Figure 6-14: Band gap as a function of  hydrogenated nanotubes diameters D. 

 

6.8. Vibrational Study of CNT(4,4)H 

The vibrational density of states of hydrogenated carbon nanotubes have been 

calculated using CASTEP (Clark et al., 2005). For these calculations, the supercell 

approach was used to construct the dynamical matrix and the PBE–GGA functional 

was applied. A supercell of size 1×1×4 was chosen. After this, q-points of 1×1×25 

mesh were chosen to integrate the Brillouin zone for the calculation of vibrational 

density of states. The value of geometry force tolerance was increased up to 0.1  
  

 
  

in order to avoid imaginary frequencies. It is found that the peaks lie in the region 

2875-2963 cm
-1

 (356-367 meV) due to sp
3
 hybridization and C-H stretching modes 

as shown in Figure 6-15. This study seem to be  consistent with study of Meletov et 

al. (2007) who mentioned the C-H stretching modes in a frequency region 2800-3000 

cm
-1

 using Raman spectroscopy for hydrogenated CNT. The G band peak was found 
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at 1547 cm
-1

 for the vibrational density of states. The peak at 1423 cm
-1

 was due to a 

bending mode of vibration. A more intense D band in spectrum at the value of 1310 

cm
-1

 was due to the structural disorder of hydrogenated CNT. The ratio of intensities 

from G/D bands decreases in hydrogenated CNT due to structural disorder as 

compared with the ratio of the peaks in pristine CNTs. 

 

Figure 6-15: Vibrational density of states of hydrogenated CNT using PBE 

functional. 

 

Figure 6-16: Dispersion curve of hydrogenated CNT(4,4)H using PBE functional. 

The dispersion curve along z-axis was calculated using the supercell 

approach shown in Figure 6-16 for the hydrogenated carbon nanotube CNT(4,4)H. A 
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total of 96 modes of vibration were generated by hydrogenated CNT. Among these, 

three modes of vibrations were acoustic and the rest modes were Raman and IR 

active between the frequency regions 73-3006 cm
-1

. Figure 6-17 represents the 

modes of vibration for hydrogenated CNT. The low frequency modes between the 

ranges 73-160 cm
-1

 can be called longitudinal “rocking modes”, where the opposing 

halves of the tube were found to be in anti-phase. The “radial breathing mode” was 

found near at the value of 381 cm
-1

. The modes between the ranges from 799-984 

cm
-1

 were the “outer planar” modes and modes between the frequencies ranges 1026-

1444 cm
-1

 are known as “bending modes” of atoms. The modes between the ranges 

of frequency from 1562 cm
-1

 to 1610 cm
-1

 are called “tangential” modes of vibration. 

The flat bands between the frequency regions 2838-3006 cm
-1

 are due to C-H 

“stretching modes” of vibration in hydrogenated CNT. The arrows in Figure 6-18 

show the C-H stretching modes of vibrations. The vibrational density of sates and 

dispersion curves are drawn for six armchair CNTs and zigzag CNTs (see appendix 

B.4 and B.5). 
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Figure 6-17:  Vibrational modes for hydrogenated CNT(4,4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-18:  Stretching mode of vibration for hydrogenated CNT(4,4). 
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6.9. Free Energy Contributions of the Hydrogen Molecule 

The translational and rotational free energy of hydrogen in the gaseous phase 

were performed using statistical thermodynamics (Bowley and Sanchez, 1999) with 

equations (4.21) and (4.26) respectively. Following the phonon calculation of the 

optimized hydrogen molecule using finite displacement method, vibrational energy 

was calculated using the CASTEP (Clark et al., 2005). The hydrogen molecule has 

only one mode of vibration and its calculated value was 4330 cm
-1

 at value of H-H 

bond length 0.751  . The calculated value of frequency and hydrogen bond was 

found to be comparable with reported experimental values (   4160 cm
-1

 at H-H = 

0.750  ) given by Stoicheff (1957) as cited in Okamoto et al. (1997). The calculated 

value of bond length and frequency has an error less than 1% and 4% compared with 

the available experimental values.   

 

Figure 6-19: Break down contributions of free energies for H2 molecule. 

The calculated value of ZPE = 0.3119 eV for the hydrogen molecule is also 

included in the values of vibrational energy. These calculations were performed at 

the standard pressure of 1 bar and at this pressure, the Helmholtz free energy can be 

considered equal to the Gibbs free energy (Moser et al., 2011). The behaviours of 

translational, rotational and vibrational free energy for the hydrogen molecule is 

shown in Figure 6-19. In the total free energy, all three contributions (translational, 
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rotational and vibrational) plus ZPE were included. It can be seen that the 

contribution of the vibrational free energy is low as compared with rotational and 

translational energies of the hydrogen molecule in the gaseous phase. 

6.10. Hydrogen Releasing Temperature in Carbon Nanotubes 

To calculate the free energy, initial geometries have been generated using the 

Tube Gen tool (Frey and Doren, 2011) based on the hexagonal unit cell. The single 

point calculations were carried out for carbon nanotubes to investigate the 

convergence parameters. The distance between H-H atoms for two adjacent CNTs 

was calculated in the range of 6-9Å in order to generate isolated hydrogenated CNTs. 

For CNTs, a constraint was applied to vary the c-axis coordinates only. 

The single point calculations were carried out for both systems of the CNTs 

and hydrogenated CNTs in order to find the lattice parameters. The ultrasoft 

(Vanderbilt, 1990) on the fly (OTF) pseudopotentials were generated to model the 

ion-electron interactions with the generalized gradient approximation (GGA) for the 

exchange and correlation functional in the formalism of Perdew, Burke and 

Ernzerhof (PBE) (Perdew et al., 1996). The values of cut off energy for all structures 

were selected so that the total energy should be converged with in 1meV. All the 

reactants and product should have the same value of cut-off energies in all 

calculations. The Brillouin Zone was sampled by 1×1×20 Monk-Pack mesh 

(Monkhorst and Pack, 1976) of k-points. The total energy of systems was converged 

within 1meV. In Section 6.3, details of convergence tests for CNTs and 

hydrogenated CNTs have been provided.  

All the systems were fully relaxed in order to attain equilibrium until the 

maximum force on each ion reached the value 0.05 (eV/Å) and the calculated 

maximum value of the stress was found about 0.01 GPa. Each atom had moved about 

10
-3   from the previous step. The relaxed structure of hydrogenated CNT(4,4)H is 

shown in Figure 6-20 and the C-C bond length has increased to attain an sp
3
 hybrid 

structure.  
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Figure 6-20: Geometry optimized structure of chemisorbed hydrogen with 

CNT(4.4)H. 

 

The vibrational free energies have been calculated for pristine and 

hydrogenated carbon nanotubes using CASTEP. The Phonon q-points grid for 

1×1×25 was used for dynamical calculations along the tube axis. The transition 

temperatures of zigzag and arm chair nanotubes were calculated in order to 

investigate the stability of hydrogenated carbon nanotubes. 

In the present study of CNT(4,4) with H2 and hydrogenated CNT(4,4) 

(C16H16),  hydrogen releasing temperature has value 259 K and the calculated value 

of Gibbs energy was about -0.0158 (eV/atom). The crossing point in Figure 6-21 

indicates the hydrogen releasing temperature of CNTs and hydrogenated CNTs. At 

this temperature, sp
2
 to sp

3
 conversion takes place due to re-hybridization of the C-C 

  bond. The Gibbs energy of systems was used to determine the temperature of the 

release and the effect of pressure on the hydrogen releasing temperatures. The effect 

of pressure on the Gibbs free energy of CNT(4,4)H was found to be negligible over a 

pressure range 0 bar to 100 bar  in hydrogenated CNT(4,4).  However, Figure 6-22 
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shows that the hydrogen release temperature becomes larger with increase in 

pressure. 

 

 

Figure 6-21:  Hydrogen releasing temperature for CNT(4,4)H. 

 

 

Figure 6-22:  Temperature of dissociation at different H2 pressures. Pressures up to 

100 bar have negligible effect on the Gibbs energy of CNT(4,4)H. 
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After performing the calculation of one hydrogenated CNT, the study of 

hydrogen release temperatures was extended to six different zigzag and armchair 

CNTs. Table 6-8 displays the hydrogen release temperatures at p = 1bar for zigzag 

and armchair CNTs. In order to predict the hydrogen release temperatures, the 

electronic energy H2 was included along with zero point energy, translational, 

rotational and vibrational free energies (See Table 6-7). In our calculations, hydrogen 

release temperatures decrease with increase in diameters of zigzag CNTs. 

Surprisingly, calculated values for hydrogen release temperatures rises with increase 

with diameters for armchair CNTs. The calculated range of temperatures can be 

significantly compared with Nikitin et al. (2008) ‘s experimentally determined range 

(473-573K) for the stable C-H using experimental spectroscopic techniques. 

          Table 6-8: Hydrogen releasing temperatures for zigzag and arm chair CNTs. 

Reactants Product Hydrogen Releasing 

Temperature (K) 

CNT(4,0) + 8H2 C16H16 611 

CNT(5,0) + 10H2 C20H20 415 

CNT(6,0) + 12H2 C24H24 240 

CNT(8,0) + 16H2 C32H32 170 

CNT(4,4) + 8H2 C16H16 259 

CNT(5,5) + 10H2 C20H20 433 

CNT(6,6) + 12H2 C24H24 530 

Further, it was also mentioned in previous work by Nikitin et al. (2005) that 

the C-H bond dissociated above the temperature of 873K in a reversible reaction. 

The current findings were found to be consistent with previous findings of Tokura et 

al. (2008) in which it was reported that hydrogen atomic adsorption on SWNT has 

been induced by structural deformation from sp
2
 to sp

3
 like bonding. This 

deformation was found to be dependent on diameters of SWCNTs. Talyzin et al. 

(2011) also reported the temperature 823 K for the formation of C-H bonds in 

hydrogenated CNT using the etching method. This temperature was matched with 
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the calculated hydrogen release temperatures using vibrational free energy (see 

Appendix B.7). 

 

      Figure 6-23:  Hydrogen releasing temperature for CNT(4,0)H. 

 

 

      Figure 6-24:  Hydrogen releasing temperature for CNT(5,0)H. 
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      Figure 6-25:  Hydrogen releasing temperature for CNT(6,0)H. 

 

 

      Figure 6-26:  Hydrogen releasing temperature for CNT(8,0)H. 
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           Figure 6-27:  Hydrogen releasing temperature for CNT(5,5)H. 

 

 

 

      Figure 6-28:  Hydrogen releasing temperature for CNT(6,6)H. 
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6.11. Summary 

 

The structural properties of CNTs and hydrogenated CNTs have been studied 

using the GGA-DFT. The binding energies of hydrogen and band gaps have been 

calculated in exo-hydrogenated CNTs with respect to their diameter. The vibrational 

density of states in hydrogenated CNTs has been studied to evaluate C-H modes of 

vibration. The C-H modes of vibrations in different regions of frequency have been 

studied to get complete vibrational information for the exo-hydrogenated CNTs. The 

hydrogen molecule free energies have been determined the using statistical physics 

relations. The free energies have been used to determine the hydrogen release 

temperature in hydrogenated CNT. 

6.12. Conclusions 

The reaction energies of atomic hydrogen with zigzag CNTs were higher than 

armchair CNTs. Thus, zigzag CNTs were found to be more stable than armchair 

CNTs. The GGA-PBE functional was found to be successful in the prediction of 

binding energies in hydrogenated CNT. The reaction of molecular hydrogen with 

small diameter zigzag CNTs with high curvature were found to be more favourable 

compared to large diameter zigzag and armchair CNTs. The band gap in zigzag and 

armchair CNTs was determined to find the stability and it was found that lower 

diameter zigzag CNTs have larger values of band gap so these were more stable than 

the armchair CNTs.  

As for phonon calculations, the vibrational density of states (VDOS) of 

hydrogenated CNT has been generated to get the information about the C-H 

stretching mode of vibration. The contribution of translational and rotational energies 

was found to be higher than the vibrational energy for the hydrogen molecule. The 

predicted hydrogen release temperature for zigzag CNTs is found to be decreased 

with increase in diameters but the opposite trend was noted in arm chair CNTs. 

Subsequently, from the predicted hydrogen release temperatures, zigzag CNTs can 

be considered as a better choice for the hydrogen storage. 
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Chapter 7. Conclusions and Final Remarks 

 

7.1. Summary 

This study set out to determine the static and dynamical properties of 

graphitic materials. Here, we explored the properties of graphite using dispersion 

corrected density functional theory and the pseudopotential method. 

Thermodynamical calculations were used to predict the hydrogen release temperature 

in hydrogenated arm chair and zigzag CNTs. 

Vanderbilt pseudopotentials were used to study the static and dynamic 

properties of graphitic materials. This type of pseudopotential uses relatively low cut 

off energies so it is found more efficient. We performed the geometry optimization 

of graphite to find the lattice constants and bond length. In the graphite system, we 

especially used the dispersion corrected scheme to get the accurate structural 

parameters for the hexagonal and rhombohedral graphite. Moreover, the band gap 

and semi metallic behaviour of graphite was determined using the new PBE+TS 

functional. 

  The vibrational properties of graphite were investigated using the finite 

displacement method. The supercell method was used to extend the vibrational 

studies by including the interaction of large the number of atoms.  The dispersion 

corrected functions were used to carry out the vibrational studies in graphite. In the 

present study, special attention has been made to investigate the dispersion curves of 

the graphite system by including the accurate dispersion effects at low frequency. 

Our calculated lower modes vibration for graphite system has an excellent agreement 

with available experimental data. Although significant research has been performed 

on graphite, the low frequency modes of interaction have not been extensively 

considered by previous ab initio methods. In the present study, the dispersion 

corrected TS scheme was found to be more efficient and reliable for the graphite 

system. The k-dependent phonon frequencies were determined and the 
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Brillouin Zone integrated density of states was also evaluated. A dynamical study of 

rhombohedral graphite was also performed using the dispersion corrected TS 

scheme. The important modes were analysed by evaluating the dispersion curve in 

the important region of the Brillouin zone.  

The reaction energies of gaseous hydrogen in atomic and molecular form in 

armchair and zigzag hydrogenated CNTs were calculated using the PBE-GGA 

functional. The zigzag CNTs were found to be more stable than arm chair CNTs. The 

band gap of hydrogenated zigzag and arm chair CNTs were determined to find the 

stability. The band gaps have high values in low diameter hydrogenated zigzag 

CNTs, which, therefore, showed higher stability. Also, vibrational density of states 

have been studied for the hydrogenated CNT(4,4) to evaluate the C-H stretching 

mode of vibration using the GGA-PBE functional.   

Following the geometry optimization and phonon calculations, the free 

energy of CNTs and hydrogenated carbon nanotubes has been calculated using the 

PBE-GGA functional. The partition functions of statistical thermodynamics have 

been used to find rotational and translational energies of the hydrogen molecule. The 

vibrational energies and electronic energies of hydrogenated CNTs were found using 

CASTEP. These calculations have been performed in order to predict the hydrogen 

release temperature in both zigzag and armchair CNTs. The calculated values of 

hydrogen release temperatures are needed to determine the stability of the C-H bond 

in hydrogenated arm chair and zigzag CNTs. These calculations predict that low 

diameter hydrogenated zigzags CNTs are more favourable and better for hydrogen 

storage. 

7.2. Sources of Errors in Our Model 

Although many efforts have been made to reduce the errors in our 

calculations, we cannot get rid of all possible errors. Here we present the most 

probable sources of error that may affect the accuracy of calculation. Pseudopotential 

selection is always vital as it influences the structural parameters of materials. 

Although we have improved the structural parameters by including accurate VdW 

interactions in graphite, there may be some inherent sources of error. The GGA-

functional also overestimates the bond length so it can also be a cause of error. The 
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main concern is the adequacy of the GGA functional in accurately modelling 

hydrogen bonds in a complex system such as CNTs with hydrogen. The discrete FFT 

grid may have of rounding errors and interpolation errors, since the total energy is 

not conserved under a shift of the entire crystal. Total energy calculations have errors 

through the use of a finite basis set and a finite k-point set. We choose different k-

points sampling for the graphite and CNTs. This difference in k-points sampling is 

due to three dimensional graphite and one dimensional CNTs systems.  

Another major source of error is due to anharmonic effects, since we are 

using finite displacement in calculating the forces. The degree of anharmonicity is 

strongly dependent on structure. In using a large supercell, noise in force calculations 

may become a serious error which can reduce the accuracy of phonon calculations. 

As we have been using the TS and G06 dispersion correction schemes, the wrong 

choice of steepness of damping function and scaling factor may lead to some 

inaccuracies.  

7.3.  Future Work 

The present study has thrown many questions in need of further investigation 

in the area of structural and dynamical properties of graphitic materials. The 

dynamical properties of graphite can be helpful in the calculation of heat 

conductivity and thermal transport phenomena. Low frequency modes play a 

significant role in explanation of thermal conductivity.  

Experimental studies are currently limited in examining various regions of 

the dispersion curve in graphite. The high frequency region still needs to be explored 

in detail for all regions of the dispersion curves with the experimental tools so that 

our ab initio results could be matched with experimental results. For the CNTs, the 

experimental determination of phonon dispersion throughout the entire Brillouin 

zone would require a mono crystalline sample; this study is still unavailable so far. 

In the present study, a finite displacement method has been used to 

investigate the dynamical properties of Graphitic materials. Another interesting way 

of calculating the dynamical properties is that of Linear Response Theory. In this 

method, force constant matrix is calculated in the harmonic approximation and the 



Chapter 7                                                                                                 Conclusions and Final Remarks 

 

116 
 

perturbative description can be applied beyond the harmonic approximation (Baroni 

et al., 2001). Moreover, for a single k, the calculation of phonon frequencies can be 

better since there is no requirement to have a supercell. There might be some issues 

of convergence with linear response theory, in that the force constant matrix depends 

on the second derivative, thus more accurate convergence of the wave functions is 

needed for the finite difference approach than has been used in present study, where 

the dependence was only the first derivatives. Thus, it may be not suitable for large 

systems.   

It is suggested that the association of nano particles (catalysts) with graphene 

and CNTs as hydrogen storage can be investigated in future studies. The transition 

metals and nano particles can be used as a catalyst to enhance the storage of the 

hydrogen in graphitic materials. The binding energy of hydrogen molecules in 

transition metal doped graphitic materials can be studied through a physisorption 

process using the density function theory.  

Another interesting study might be high pressure hydrogenated CNTs, as in 

the present study we are limited up to 100 bar. At high pressure, a vibrational study 

of hydrogenated CNTs can bring interesting information about the modes of 

vibration. In this thesis, we mainly focus on the CNTs as hydrogen storage. This 

study can be extended to include  graphene and graphane.   

Very few experimental studies of hydrogenated CNTs have been performed 

to find the hydrogen release temperature to determine the stability of C-H bond. But 

still further experimental efforts are required to know the accurate range of hydrogen 

release temperatures. Therefore, the present study of the hydrogen releasing 

temperature is beneficial for the choice of CNTs as hydrogen storage materials and 

as a guide to further experiments. 

Boron nitride (BN) and molybdenum disulphide (MoS2) have a similar 

hexagonal structure to the graphitic materials. The ab initio supercell approach can 

be used to explore the structural, dynamical and thermodynamical properties of these 

materials.  These materials may be used as hydrogen storage materials in the future. 
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Currently, researchers are exploring graphitic materials in detail using high 

performance computing but still it needs more efforts to create novel hydrogenated 

graphitic materials for further in depth study. The complete understanding of these 

materials is still a significant challenge for theoretical and experimental researchers.
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  Appendices 

Appendix A 

A.1.   Dispersion Corrected Parameters for TS Scheme  

 

Table A-1 displays the inter layer spacing for the graphite system by fixing 

one by one the parameters damping of steepness function d and the scaling factor   . 

Table A-2, Table A-2 and Table A-6 show the sensitivity of frequency with respect 

to parameter d and   . These parameters are adjusted in order to obtain accurate 

values at low frequency in graphite system 

 

Table A-1: Sensitivity of inter-layer spacing with respect to damping steepness and 

scaling factor    . 

Damping function 

steepness d 

Inter layer distance 

d     

Scaling 

factor sr 

Inter layer distance 

d     

25 3.33 0.95 3.36 

20 3.33 0.94 3.33 

15 3.33 0.92 3.29 

10 3.32 0.90 3.25 

5 3.28 0.89 3.22 

- - 0.88 3.2 

- - 0.86 3.16 

 

Table A-2: Sensitivity of frequency with respect to scale factor    at damping 

steepness d = 15. 

Scaling factor    Inter layer distance 

d     

Out of phase 

(cm
-1

) 

Out of plane 

(cm
-1

) 

0.87 3.20 45.4215 132.7468 

0.86 3.18 45.1859 127.2613 

0.85 3.19 44.9562 121.5345 
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Table A-3: Sensitivity of frequency with respect to damping steepness at scale factor 

   = 0.94. 

Damping function  

Steepness d 

Out of phase mode 

(cm
-1

) 

Out of plane mode 

(cm
-1

) 

20 46.1731 176.7918 

15 44.3097 140.7838 

5 41.4135 126.8182 

 

Table A-4: Sensitivity of frequency with respect to scaling factor    at damping 

function steepness d = 20. 

Scaling factor    Out of phase mode 

(cm
-1

) 

Out of plane mode 

(cm
-1

) 

0.94 46.1371 176.7918 

0.92 45.9561 169.6219 

0.88 45.7376 139.3250 

0.86 42.2883 128.8753 

0.85 44.45035 115.6254 

 

A.2.    Dispersion Corrected Parameters for G06 Scheme 

These tests for frequency sensitivity with respect to scaling parameter   were 

performed in order to adjust the dispersion corrected parameters for a 4-atom unit 

cell in graphite at the Gamma point of the Brillouin zone. 

Table A-5: Sensitivity of frequency with respect to scaling factor    at damping 

function steepness d = 20.  

Scaling factor    Out of phase mode 

(cm
-1

) 

Out of plane mode 

(cm
-1

) 

0.75 53.23083 150.5775 

0.85 53.20712 147.5470 

0.95 53.18340 144.4519 

1.05 53.15967 141.2878 

1.3 53.10028 133.0434 

1.4 53.07650 129.5966 

1.45 53.06461 127.8379 

1.48 53.05747 126.7708 

1.5 53.05272 126.0544 
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A.3.   Dispersion Curve of Diamond 

The dispersion curve of diamond having two atoms in a primitive cell has 

been calculated using the finite displacement approach. Supercell of size 2 2 2 has 

been used to perform dynamical calculations. Most tetrahedral semiconductors have 

a particular flatness of the transverse acoustic (TA) modes over a large portion of 

Brillouin Zone (BZ). However the case of diamond is different; the TA acoustic 

branches are no longer flat and the frequency of LO decreases from   to L and X 

point due to over bending as shown in Figure A-1. Another very interesting feature 

has been found in the spectrum in that the maximum of the optical branches was not 

at the zone centre. Symbols    , L, X, W represent high symmetry points labelling 

the Brillouin Zone of a face centred cubic crystal. Long range interactions can be 

responsible for the flattening of the phonon dispersion in zinc blende and diamond 

semiconductor along the K-X line. This study is in general agreement with previous 

ab initio and experimental studies. Experimental values given in Table A-6 were 

reported by Warren et al. (1967) on the basis of inelastic neutron scattering for the 

diamond system. 

 

 

Figure A-1: Dispersion curve of diamond by finite displacement approach along the 

high symmetry direction. 
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Table A-6: Calculated values of frequency corresponding to modes of vibration by 

PBE functional. 

Modes    XTA XTO XLO LTA LLA LTO LLO 

Ab initio 1278 801 1021 1181 563 1006 1170 1253 

Experimental 1331 803 1077 1194 552 1035 1210 1242 

A.4.   Linear Response  

In the microscopic linear response approach, the total energy of the system is 

calculated in the frame work of the dielectric matrix which contains the electric 

response of the material to linear order. Linear response is an approach to model 

lattice dynamics using density functional perturbation theory (Barno et al., 1987). 

This method describes the analytical derivative of the total energy with respect to a 

given perturbation. If such a perturbation is in the atomic positions then this directly 

calculates the dynamical matrix as in equation (4.12) and therefore leads to the 

normal modes of phonons.   

The linear response method applies by minimizing the second order 

perturbation in the total energy, which gives the first order changes in the wave 

function, charge density and potential (Gonze, 1997). The equation minimized in this 

approach (as implemented  by CASTEP 6.0 (Clark et al., 2005))   is 

 

   ∑{⟨    
   

|         
   

|    
   

⟩  ⟨    
   

|    |    
   

⟩

   

 ⟨    
   

|    |    
   

⟩

 
 

 
∫

     

           
               

 ∑⟨    
   

|    |    
   

⟩

   

} 

 

(A.1) 

 

 

                       

The superscripts (0), (1) and (2) denote the ground state and first and second order 

changes. The dynamical matrix is generated from the converged first order wave 
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function      and density           Linear response theory is not yet available for the 

ultrasoft pseudopotential in CASTEP code. 
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Appendix B 

B.1.   Structure File of CNT(4,4) 

data_nanotube 

 

_audit_creation_method       '(4,4) Nanotube -- TubeGen 3.3, J T Frey, University of 

Delaware 

 

_cell_length_a         8.8181 

_cell_length_b         8.8181 

_cell_length_c         2.4630 

_cell_angle_alpha     90.00 

_cell_angle_beta      90.00 

_cell_angle_gamma    120.00 

 

C        2.735532     0.000000    -1.231487 

C        2.366455     1.372233    -1.231487 

C        1.934313     1.934313     0.000000 

C        0.703021     2.643652     0.000000 

C       -0.000000     2.735532    -1.231487 

C       -1.372233     2.366455    -1.231487 

C       -1.934313     1.934313     0.000000 

C       -2.643652     0.703021     0.000000 

C       -2.735532     0.000000    -1.231487 

C       -2.366455    -1.372233    -1.231487 

C       -1.934313    -1.934313     0.000000 

C       -0.703021    -2.643652     0.000000 

C        0.000000    -2.735532    -1.231487 

C        1.372233    -2.366455    -1.231487 

C        1.934313    -1.934313     0.000000 

C        2.643652    -0.703021     0.000000 
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B.2.   Structure File of CNT(4,4)H 

 

%BLOCK LATTICE_ABC 

           13.6797  13.6797      2.4630 

          90               90      120 

 %ENDBLOCK LATTICE_ABC 

 
 %BLOCK POSITIONS_ABS 

 C 2.735532 0 -1.23149 

C 2.366455 1.372233 -1.23149 

C 1.934313 1.934313 0 

C 0.703021 2.643652 0 

C 0 2.735532 -1.23149 

C -1.37223 2.366455 -1.23149 

C -1.93431 1.934313 0 

C -2.64365 0.703021 0 

C -2.73553 0 -1.23149 

C -2.36646 -1.37223 -1.23149 

C -1.93431 -1.93431 0 

C -0.70302 -2.64365 0 

C 0 -2.73553 -1.23149 

C 1.372233 -2.36646 -1.23149 

C 1.934313 -1.93431 0 

C 2.643652 -0.70302 0 

H 3.835489 0 -1.23149 

H 3.318007 1.924008 -1.23149 

H 2.7121 2.7121 0 

H 0.985706 3.706664 0 

H 0 3.835489 -1.23149 

H -1.92401 3.318007 -1.23149 

H -2.7121 2.7121 0 

H -3.70666 0.985706 0 

H -3.83549 0 -1.23149 

H -3.31801 -1.92401 -1.23149 

H -2.7121 -2.7121 0 

H -0.98571 -3.70666 0 

H 0 -3.83549 -1.23149 

H 1.924008 -3.31801 -1.23149 

H 2.7121 -2.7121 0 

H 3.706664 -0.98571 0 

%ENDBLOCK POSITIONS_ABS 

 

    symmetry_generate 
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SNAP_TO_SYMMETRY 

 

    

    kpoint_mp_grid           1 1 20 

 

    %BLOCK SPECIES_POT 

        C  2|1.4|9.187|11.025|12.862|20UU:21UU(qc=6)[] 

%ENDBLOCK SPECIES_POT 

 

  

B.3.  Lattice Constants of Optimized CNTs 

 

Table B-1: Lattice constants of geometry optimized structures of CNTs. 

Materials 
Types of 

Nanotubes 
  Å) b(Å) c(Å) 

CNT(4,0) zigzag 9.6649 9.6649 4.2194 

CNT(4,0)H  10.2625 10.2625 4.3308 

CNT(5,0) zigzag 11.9117 11.9117 4.2644 

CNT(5,0)H  12.7589 12.7589 4.3508 

CNT(6,0) zigzag 11.9498 11.9498 4.2662 

CNT(6,0)H  13.0005 13.0005 4.3853 

CNT(7,0) zigzag 13.4840 13.4840 4.2726 

CNT(7,0)H  14.7952 14.7952 4.4075 

CNT(8,0) zigzag 15.2672 15.2672 4.2721 

CNT(8,0)H  13.0005 13.0005 4.3853 

CNT(9,0) zigzag 15.051 15.051 4.2744 

CNT(9,0)H  16.8024 16.8024 4.4462 

CNT(10,0) zigzag 15.8343 15.8343 4.2760 

CNT(10,0)H  17.7897 17.7897 4.4634 

CNT(4,4) armchair 12.4079 12.4079 2.4685 

CNT(4,4)H  14.8880 14.8880 2.5930 

CNT(5,5) armchair 14.9049 14.9049 2.4678 

CNT(5,5)H  17.2612 17.2612 2.6134 
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Materials 
Types of 

Nanotubes 

Nanotubes 

  Å) b(Å) c(Å) 

CNT(6,6) armchair 17.0163 17.0163 2.4624 

CNT(6,6)H  18.9728 18.9728 2.6319 

CNT(8,8) armchair 19.3770 19.3770 2.4678 

CNT(8,8)H  21.9279 21.9279 2.6594 

CNT(9,9) armchair 21.2120 21.2120 2.4675 

CNT(9,9)H  24.1048 24.1048 2.6705 

CNT(10,10)H armchair 21.5695 21.5695 2.4675 

  24.6284 24.6284 2.6799 

C8H8(Cubane)  9.1543 9.1543 9.1543 
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B.4.   Vibrational Density of States of CNTs and Hydrogenated 

CNTs 

 

 
Figure B-1: Vibrational density of states of pristine zigzag and armchair CNTs. 

 

 

Figure B-2: Vibrational density of states of hydrogenated zigzag and armchair CNTs  
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B.5.   Dispersion Curves of CNTs and Hydrogenated CNTs 

 

 
 

 

Figure B-3: Dispersion curve of pristine zigzag and armchair CNTs. 

 

 
Figure B-4: Dispersion curve of hydrogenated zigzag and armchair CNTs. 
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B.6.   Hydrogen Molecule Free Energies 

Table B-2 shows the translational, rotational and vibration free energies 

(including ZPE) of H2 molecule. Translation and rotational free energies were 

calculated using the statistical physics relations as described in section (4.6) and 

vibration free energies (including ZPE) were calculated using the CASTEP code 

(Clark et al., 2005).  

 

 

Table B-2:  Free Energies of hydrogen molecule. 

Temperature 

(K) 

Translational 

Energy (eV) 

Rotational 

 Energy  (eV) 

Vibrational 

Energy (eV) 

0 0 0 0.311953 

30 -0.011486383 0.00241559 0.311953 

60 -0.033369974 0.000672297 0.31195 

90 -0.059177926 -0.00264074 0.311896 

120 -0.087534363 -0.006973172 0.311643 

150 -0.117785837 -0.012063618 0.311045 

180 -0.149547474 -0.01775813 0.310017 

210 -0.182564964 -0.023954983 0.308527 

240 -0.216657557 -0.030581877 0.306572 

270 -0.251690106 -0.037584753 0.304165 

300 -0.287557712 -0.044921652 0.301325 

330 -0.324176574 -0.052559053 0.298075 

360 -0.361478195 -0.060469559 0.294437 

390 -0.399405542 -0.068630354 0.290432 

420 -0.437910382 -0.077022147 0.286081 

450 -0.476951393 -0.085628408 0.281401 

480 -0.516492775 -0.094434818 0.276411 

510 -0.556503213 -0.10342885 0.271125 

540 -0.596955082 -0.112599454 0.265559 

570 -0.637823832 -0.121936811 0.259725 

600 -0.679087502 -0.131432135 0.253636 

630 -0.720726328 -0.141077522 0.247303 
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Temperature 

(K) 

Translational 

Energy (eV) 

Rotational 

 Energy  (eV) 

Vibrational 

Energy (eV) 

659.9 -0.76258187 -0.150832963 0.240736 

689.9 -0.804917889 -0.160757227 0.233944 

719.9 -0.847580145 -0.170811987 0.226935 

749.9 -0.890555035 -0.180991799 0.219719 

779.9 -0.933830045 -0.19129166 0.212301 

809.9 -0.977393625 -0.201706949 0.204689 

839.9 -1.021235081 -0.212233388 0.19689 

869.9 -1.065344483 -0.222867005 0.188908 

899.9 -1.109712586 -0.233604103 0.180749 

929.9 -1.154330763 -0.244441231 0.172418 

959.9 -1.199190944 -0.25537516 0.163919 

989.9 -1.244285563 -0.266402864 0.155258 

1019.9 -1.289607512 -0.277521501 0.146437 

1049.9 -1.335150102 -0.288728394 0.137461 

1079.9 -1.380907028 -0.300021021 0.128334 

1109.9 -1.426872334 -0.311397 0.119057 

1139.9 -1.473040385 -0.322854077 0.109636 

1169.9 -1.519405844 -0.334390117 0.100071 

1199.9 -1.565963649 -0.346003096 0.090367 

1229.9 -1.612708989 -0.357691089 0.080526 

1259.9 -1.659637289 -0.369452265 0.07055 

1289.9 -1.706744191 -0.381284883 0.060442 

1319.9 -1.754025542 -0.39318728 0.050204 

1349.9 -1.801477374 -0.405157869 0.039837 

1379.9 -1.849095899 -0.417195136 0.029345 

1409.9 -1.896877492 -0.42929763 0.018729 

1439.9 -1.944818683 -0.441463963 0.00799 

1469.9 -1.992916146 -0.453692805 -0.002868 

1499.9 -2.041166692 -0.46598288 -0.013845 

1529.9 -2.089567257 -0.478332963 -0.024939 

1559.9 -2.138114901 -0.490741877 -0.036149 
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Temperature 

(K) 

Translational 

Energy (eV) 

Rotational 

 Energy  (eV) 

Vibrational 

Energy (eV) 

1619.9 -2.235640212 -0.515731715 -0.058907 

1649.9 -2.284612536 -0.528310502 -0.070453 

1679.9 -2.33372124 -0.54094384 -0.082108 

1709.9 -2.382963887 -0.553630756 -0.093872 

1739.9 -2.432338128 -0.566370309 -0.105742 

1769.9 -2.481841693 -0.579161591 -0.117717 

1799.9 -2.53147239 -0.592003727 -0.129797 

1829.9 -2.5812281 -0.604895867 -0.141979 

1859.9 -2.631106772 -0.617837193 -0.154263 

1889.9 -2.681106425 -0.630826911 -0.166648 

1919.8 -2.731057878 -0.643820716 -0.179131 

1949.8 -2.7812934 -0.656904781 -0.191714 

1979.8 -2.831644322 -0.670035007 -0.204393 

2009.8 -2.882108897 -0.683210694 -0.217169 

2039.8 -2.932685428 -0.696431163 -0.230039 

2069.8 -2.983372268 -0.709695756 -0.243004 

2099.8 -3.034167817 -0.723003832 -0.256061 
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B.7.   Vibrational Contribution for Hydrogen Releasing 

Temperature 

Table B-3 displays the hydrogen releasing temperatures using the vibrational 

free energy from CASTEP code. Hydrogen releasing temperature increases with 

increase in diameters in both armchair and Zigzag CNTs. 

 

          Table B-3: Hydrogen releasing temperature using vibrational contribution. 

Reactants Product Hydrogen Releasing  

Temperature (K) 

CNT(4,0) + 8H2 C16H16 785 

CNT(5,0) + 10H2 C20H20 793 

CNT(6,0) + 12H2 C24H24 804 

CNT(8,0) + 16H2 C32H32 830 

CNT(4,4) + 8H2 C16H16 812 

CNT(5,5) + 10H2 C20H20 845 

CNT(6,6) + 12H2 C24H24 849 
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