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Abstract

Graphite based materials are of particular interest as energy materials. Graphite
is used as a moderator in nuclear reactors and there have been investiga-
tions into the ability of modified graphites, such as expanded or intercalated
graphite, to store hydrogen. Poly-crystalline coherent inelastic neutron scat-
tering (poly-CINS) is used to give information on the dynamic properties of
materials. Typically poly-CINS produces large and difficult to interpret data
sets. Neutronplot, a novel analysis software suite described in this work, is
used in conjunction with predicted dynamic information to analyse poly-CINS
data. X-ray diffraction measurements taken by Keens [1] were used to investi-
gate the bulk structural properties of several natural graphites, one of which
was chosen for poly-CINS analysis using IN5 experimental data, simulated
data and Neutronplot. These investigations were also replicated with an ex-
foliated graphite sample. Both x-ray and neutron diffraction were used to
investigate the structure of a C60 intercalated graphite sample derived from
the exfoliated graphite and a Poly-CINS experiment was conducted using the
NEAT spectrometer.

We have found that the current IUPAC lattice values for rhombohedral stack-
ing in graphite do not fit with experimental measurements. Also the interlayer
spacing of rhombohedrally stacked graphite in natural graphite samples tends
to be larger than that of hexagonal graphite. The investigations of exfoliated
graphite show how interactions other than the graphene interlayer begin to
dominate as disorder is added into the system. Successful C60 intercalation in
graphite layers is confirmed by neutron diffraction.

Measurements of the elastic constant C33 for natural and exfoliated graphite
show good agreement with other graphite measurements. The intercalate
poly-CINS measurement suffered from low statistics and shows how Neu-
tronplot can be used for less than ideal data sets. The data shows diffuse C60
in the graphite matrix, this result is reflected in the diffraction measurements.
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Chapter 1

Introduction

1.1 Motivation

Graphite is a material of both economical and scientific interest and despite

much historical investigation, there is still much that is not understood about

the graphite structure. The anisotropy and weak interlayer bonding of graphite

make modelling difficult and it is also prone to defects in both natural and

manufactured forms. It is still a matter of debate how defects in the material

contribute to its behaviour in bulk, particularly in its use as a graphite mod-

erator, now that graphite moderated reactors are coming to the end of their

lives. This application and investigations into hydrogen storage mean it is par-

ticularly of interest as an energy material. In this work we will investigate the

structure and dynamics of natural and expanded graphite samples to further

knowledge of defected graphite crystals.

Investigations of graphite as a potential hydrogen storage material, have led

to the hypothesis that its capacity to store hydrogen increases when the planes

of graphite are expanded [2]. To investigate this phenomenon a C60 Graphite

intercalate (C60 GIC) sample was created by Keens [1]. This is a novel mate-

rial and although it was tested for hydrogen storage potential by Keens the
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material was never fully characterised and its dynamic properties were not in-

vestigated. It was unknown whether the sample did indeed contain intercalate

rather than just a mixture of graphite and C60, a matter which is settled in this

work.

Thermal neutrons provide an ideal probe of the dynamics of matter, due to

their wavelength relative to interatomic spacing and energy, compared with

lattice vibrations. Full dispersion curves of materials can be directly traced us-

ing a triple axis spectrometer containing a single crystal sample of coherently

scattering elements. However this method is unusable when a large area of

space needs to be explored using detector banks covering large solid angles

or when the sample is poly-crystalline. The majority of dynamical analysis

on poly-crystalline samples is performed using incoherent, inelastic, neutron

scattering. Incoherent scattering gives density of state information on phonon

modes. However information on the spatial displacements involved in partic-

ular phonon modes are often useful and this requires coherent, inelastic, neu-

tron scattering (poly-CINS) measurements which result in large complicated

data sets.

Due to the difficulties associated with interpreting poly-CINS measurements,

currently available neutron scattering visualisation packages are designed pri-

marily for the analysis of incoherent scattering data. These packages have typ-

ically been created independently at several experimental centres, thus there is

no industry standard for the visualisation of inelastic neutron scattering data,

and neutron scatterers must learn to use several different programs each with

their own strengths and weaknesses. Some advances in the interpretation of

poly-CINS data have been made recently with the advent of the Scatter code

by Roach [3]. Scatter uses lattice dynamics data, calculated by GULP (General

Utility Lattice Program) to create theoretical poly-CINS data. This code is still

in development but a working version is available to members of the group.

2



This project will utilise Scatter data and due to the difficulty of comparing

experimental and theoretical data from different sources a program has been

created by the author to enable the easy viewing and analysis of poly-CINS

data. This program will be of use primarily in this project, and could also be

of benefit to the wider scattering community.

Carbon based structures are ideally suited to poly-CINS analysis, as many of

these materials are created in powder form, and others such as graphite are

easily ground into powder samples. Carbon also has an almost completely

coherent cross section, the only incoherent contribution would come from the

presence of the C13 isotope, which is sufficiently rare as to be unnoticeable in

scattering measurements.

1.2 Experimental Methods of Materials Character-

isation

The suitability of a particle as a probe of materials depends on several impor-

tant properties. An ideal probe would be easy to produce and detect, have a

tuneable wavelength and have the ability to differentiate clearly between dif-

ferent species in a sample. The energy of the probe should also be around the

same magnitude as the vibrations in the lattice in order to measure these with

inelastic scattering.

1.2.1 X-Rays

X-rays at certain energies have wavelengths roughly equal to the atomic spac-

ing in materials. Historically they were the most important probe of matter for

diffraction studies, as x-rays suitable for diffraction are relatively easy to detect
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and produce. X-rays suitable for dynamics research are generally produced in

synchrotrons as these provide a much more powerful source of x-rays than

a standard x-ray tube. X-rays can be used to study both single crystals and

powder samples. X-rays interact with the electrons in the system. This means

that the intensity of the diffraction increases as electron number per atom in-

creases and has no dependence on isotope. Thus x-rays detect large atoms

more strongly than light atoms so these can be ’lost’ in systems containing

large atoms. These attributes make x-rays a poor tool for use in studies such

as hydrogen diffusion experiments. As detection of isotopes is not possible,

x-rays cannot be used to study the isotopes in a material, for example what

their ratios are, or if there is any difference in the behaviour of the isotopes.

1.2.2 Raman and Infrared Spectroscopy

Raman spectroscopy involves shining monochromatic light on a sample. Al-

though most of the light will scatter elastically some of the light will un-

dergo inelastic collisions with polarisable molecules. If the polarisability of

the molecule changes its value in a given vibration mode, Raman spectra are

observed. The absorption of Infrared Radiation (IR) at wavelengths above one

micro-meter distorts dipoles in molecules thus molecules with symmetrical

bonds are not excited unless they can be induced by the IR to undergo bend-

ing or rocking motions.

As Raman and IR have different selection rules these techniques are used in a

complementary fashion. They are used mostly in the field of molecular char-

acterisation. Raman and IR instruments are relatively small and are present

in a typical materials analysis lab. For this reason they are the first option for

dynamic analysis. A disadvantage of infrared spectroscopy and Raman is that

it is not guaranteed that all modes will be activated. The frequency range of
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Raman is typically confined to zero momentum transfer. Also some materials,

such as metals, do not have a Raman signature.

1.2.3 Electron Diffraction and Microscopy

Electrons [4] readily lead themselves to be used as a probe of matter due to

their wavelengths and ease of detection. Electron microscopes are common in

scientific environments. Electrons can be used in both diffraction and imag-

ing applications. Electrons interact with the electrons in the material, so again

different isotopes can not be detected. The suitability of electrons as a probe

depends on the material in question. Electrons react strongly with material

and so can only pass through thin slices of material. The beams are also

highly focused, thus electrons can often tell you more about surface and lo-

cal effects, and are often not suitable for researching the bulk properties of a

material. Not all materials can be formed into specimens suitable for electron

microscopy. For energetic studies Electron Energy Loss Spectroscopy (EELS)

is used, typically for finding the chemical composition and types of chemical

bonds in the material. The effectiveness of EELS depends upon the elements

in use, it is particularly suited for the elements ranging from carbon to the 3d

transition metals.

1.2.4 Neutron Scattering

Neutrons [5] are not easy to produce at the flux necessary for materials study,

A high flux reactor such as the ILL creates 1.5× 1015 neutrons per cm2 sec this

flux is then moderated and spilt between several experiments. In comparison

an electron microscope produces 4× 1016 electrons per second per cm2 as a

minimum, however this flux is attenuated quickly by a sample. Neutrons
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are also relatively difficult to detect, due to the lack of electron interactions,

so neutron experiments are performed at large centralised facilities. As the

neutron’s main interaction is with the nucleus of an atom they can be used to

detect different isotopes of an element. The interaction between a neutron and

the nucleus does not depend on atom size so small atoms are equally easy to

detect. The neutron also has a magnetic dipole which reacts with the unpaired

electrons in the system so the neutron is well suited to magnetic studies.

1.3 Current Neutron Data Analysis Programs

The two main programs for looking at neutron scattering data are LAMP

(Large Array Manipulation Program) [6] developed at the Institut Laue-Langevin

(ILL) in Grenoble and Mslice [7] developed in the ISIS facility in Oxfordshire.

Both have issues related to usability and functionality. Neither has been de-

signed specifically with coherent inelastic neutron scattering in mind.

1.3.1 LAMP

LAMP was developed initially for treating the output from scattering experi-

ments at the ILL. LAMP is based on the IDL language and its functionality is in

the form of macros. In its data analysis processes LAMP takes into account the

experiment used. This is a very powerful feature of LAMP as idiosyncrasies

in the instrument can be taken into account, for example malfunctioning de-

tectors or instrument setup. To perform any sort of evaluation on the data,

the user has to take the original data then type into the analysis area which

functions the user wants to apply to the data and the parameters they want

this analysis to be performed under. This is not a very user friendly way of

manipulating data. An advantage of LAMP is that one can write their own
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macros and thus extend the functionality for their own needs, however this re-

quires knowledge of the programming language and some knowledge of how

LAMP works as a whole.

1.3.2 Mslice

Mslice is a scattering visualisation program based on the MATLAB program-

ming language. The ISIS team uses a family of data analysis programs, written

in different languages, to analyse their data. Their data analysis needs range

from processing the raw output from the detectors, to various fitting tools.

Mslice was designed to read data files produced from Homer [8]. Homer is a

data transformation routine involved in further processing of raw data.

1.3.3 Introduction to Neutronplot

Neutronplot was developed for this project and aims to have the useful func-

tionally of both LAMP and Mslice without the drawbacks. Neutronplot should

be user friendly, and it will aim to appeal to all members of the neutron scat-

tering community. It can been seen as a useful addition to GULP and the

Scatter code and hopefully an independent tool in its own right for use by

both experimental and theoretical neutron scatterers. It has been developed

using MATLAB [9] and has a Graphical User Interface (GUI). Most operations

are performed at the click of a button to enable ease of use. However simplic-

ity and an easy learning curve can lead to a lack of flexibility, functionality

and difficulty in code analysis for users. Hopefully a good compromise can

be found. Neutronplot has been written so that each operation that can be

performed is a separate MATLAB function. This should make it easy to add

new functionality and update the existing code.
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1.4 Graphitic Structures

The main materials focus of this project is the study of the structure and dy-

namic of graphite based materials. The hexagonal form is the most common

form of graphite, and differs from the rhombohedral form only in its stack-

ing. Hexagonal graphite stacks in an ABAB pattern, whereas rhombohedral

graphite stacks in an ABCABC pattern. Other possible types of graphite in-

clude pyrolytic graphite where the graphene layers are bound by a high num-

ber of crystallographic defects and turbostratic graphite where the layers of

graphene are rotated with respect to each other. It was shown that in graphitic

carbons, the fraction of correctly orientated graphitic layers, p, was related

to both the interlayer spacing and the intensity of diffraction peaks [10]. Tur-

bostratic graphite was first discovered in carbon fibres by Johnson & Watt [11].

Figure 1.1: C60 intercalated graphite model created in Materials Studio

The model in figure (1.1) is based on the dimensions stated in Gupta et al. [12]

Other important graphitic structures are graphite intercalated compounds (GICs).
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These compounds are currently being studied by many groups as they may

have applications in hydrogen storage. It has been proposed by Kuc et al. [2]

that the capability of a graphitic material to store hydrogen molecules is deter-

mined by the graphite interlayer distance. Therefore a method of changing the

interlayer distance, such as by the introduction of C60, is desirable. C60 GIC

can be modelled as layers of graphene with C60 between the layers. A sam-

ple of C60 GIC was created by Keens [1] to investigate the hydrogen storage

properties of the material. This sample was used in the C60 GIC poly-CINS

analysis in later chapters.

A study of C60 GIC using neutron scattering has not been previously per-

formed, thus the information gained by these investigations is unique and

should prove very useful in understanding the dynamics of C60 GIC.
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Chapter 2

Background and Theory

Both x-rays and neutrons were used for materials investigation in this work.

To aid understanding of the results shown and the reasons behind the design

of Neutronplot, a background of the physics of these probes is provided. This

chapter covers both elastic and inelastic neutron scattering as well as informa-

tion about the instruments used to analyse samples. In this work x-rays are

only used to produce powder diffraction patterns so the description of x-ray

scattering will be limited to elastic scattering.

The crystal lattice and lattice vibrations are also described as these concepts

are essential to understanding the dynamics of solid materials.

2.1 Neutron and X-Ray Spectrometry

The neutron has several properties which make it a useful probe of matter.

Firstly it has no detectable electrical charge or electrical dipole moment. Hence

the neutron can penetrate deeply into the material giving nucleus positions

rather than electron cloud positions. For low energy neutrons the wavelength

of the neutron is comparable to the typical spacing of nuclei in materials, giv-

ing good diffraction patterns from the atoms in a crystal. These neutrons are
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known as thermal neutrons as they have the energies they would possess at

room temperature which is around 0.025 eV. The energy of thermal neutrons

is also comparable to that of phonons in a material so interactions between

the neutron and the lattice vibrations can be measured. Experimental neutron

scattering consists of a variety of techniques which use neutron radiation as a

probe of materials.

X-rays are commonly used as a probe of the structure of crystallographic ma-

terials. They can be created with wavelengths of the order of the spacing

between atoms in a material and are easier to create than neutrons in the

intensities necessary to penetrate samples. Laboratories typically contain an

x-ray diffractometer, leading to XRD being one of the first lines of investiga-

tion for material samples. X-rays react with the electrons around the atom in

a material and so do not differentiate between different isotopes but between

different elements. They also attenuate relatively quickly in a sample. X-rays

can be used as a probe of the dynamics of a material, but this requires a syn-

chrotron source, which removes the advantage of convenience that x-rays have

over neutrons.

Neutrons for materials investigation are created either in a nuclear or spalla-

tion source. In the case of spallation accelerated protons hit a heavy element

such as tungsten and neutrons are released. In a nuclear reactor neutrons are

released from the nucleus of radioactive material in the fission process. In both

cases neutrons are moderated after release to ensure that the majority are at

the energies required for neutron scattering. Neutrons are typically detected

using tubes filled with 3He which absorbs the neutron and then decays to 1H

and 3H which can be detected easily. Scintillating detectors are becoming more

commonly used and are based on the absorption of the neutron by 6Li giving

3H and a helium nucleus.
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X-rays in a diffractometer are created by electrons from a cathode hitting a

charged metal surface, known as the source, which is typically copper. When

hit the electrons in the metal are excited and release radiation in the form of x-

rays. The x-rays are then usually monochromated and collimated by a series of

mirrors. Samples are rotated in the beam to cover the different crystallographic

directions in the material. X-rays can be detected by anything capable of react-

ing to electromagnetic radiation, historically photographic film was used but

this has largely been replaced by CCDs.

The scattering of a neutron by a nucleon is typically described in terms of

a scattering cross-section. This cross-section is the equivalent to the effective

area presented by the nucleus to the passing neutron, this area is measured

in barns (10−28m2). The cross-section is an experimentally derived quantity

which varies from element to element and from isotope to isotope. As the

scattering cross-section varies from isotope to isotope, different isotopes can be

used in a sample to create the best conditions for the type of neutron scattering

being undertaken.

As x-rays interact with the electron cloud the scattering cross-section of x-rays

is proportional to the size of the atom. Thus heavy elements interact more

strongly with x-rays than light elements.

This relationship is represented in figure (2.1), demonstrating the increase in

cross-section with increased electrons for x-rays and the lack of correlation for

neutrons.

Neutrons are scattered both elastically and inelastically. Elastic neutron scat-

tering is used in neutron diffraction. Neutron diffraction assumes no move-

ment on the part of the nucleons and no energy gain or loss for the neutrons

interacting with the nucleons. This gives a diffraction pattern which contains

structural information about the sample. Elastic neutron scattering can also
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Figure 2.1: A comparison of scattering cross-sections of neutrons and x-rays
for some elements and isotopes [13]

be used to measure fluctuations in the neutron scattering density function in

the range of 10-1000 Å using small angle neutron scattering. Depth profiles

can also be measured using reflectometry. Inelastic neutron scattering gives

information about the thermal properties of a material, its phonon properties.

This in turn gives information on the inter-atomic forces in the system.

2.2 Introduction to Scattering

This treatment broadly follows that of Squires [14], with a particular focus on

coherent inelastic scattering and some important physical results. Vectors are

indicated by a bold typeface. The scattering of neutrons and x-rays shares

basic similarities as both involve particles scattering from an atom leading to

a change in the momentum of the scattered particle.

The change in momentum P of the scattered particle is represented as,

P = h̄k− h̄k′ = h̄Q (2.1)

k and k′ denote the initial and final wavevectors of the scattering particle, the
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magnitude of k is |k| = 2π
λ , λ is the wavelength of the scattering particle. Q is

the scattering vector.

Q = k− k′ (2.2)

This scattering vector allows analysis of scattering independent of experimen-

tal conditions, such as incident angle, as different k and k′ can give the same

momentum change and thus the same Q value.

The particle also has an energy E which is related to the angular frequency of

the particle.

E = h̄ω (2.3)

where ω = 2πv and v is the speed of the scattering particle.

dE = h̄ω− h̄ω′ (2.4)

gives the change in energy of the scattered particle.

For elastic scattering there is no energy transfer thus the wavelength of the

scattered particle is unchanged. Only the direction of the particle is affected.

For elastic scattering

|k| = |k′| = 2π

λ
(2.5)

In two dimensions Q can be found as

Q =
4π sin θ

λ
(2.6)
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and in three

Q =
4π sin θ

λ
(− cos θ cos φ,− cos θ sin φ, sin θ) (2.7)

in the polar co-ordinate system.

2.2.1 The Neutron Scattering Cross-Section

We now concentrate on the case of neutron scattering specifically.

Figure 2.2: A scattering system [14]

Above we see a representation of a neutron scattering experiment where a

beam of neutrons with the same incident energy E are shone on a target. The

measurements made on the scattered neutrons can be expressed in terms of a

cross-section. The distance between the detector and the sample is assumed to

be large so the solid angle dΩ is well defined. The co-ordinate system chosen

is polar so the direction of the neutrons is φ, θ.

The measured quantity in a scattering experiment is the double differential
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cross-section.

∂2σ

∂Ω∂E′
(2.8)

It is defined to be "number of neutrons scattered per second into a small solid

angle dΩ in the direction θ,φ with final energy between E′ and E′ + dE′ ,

divided by Φ the flux of incident neutrons dΩdE" [14]

If the energy of the neutrons is not analysed we can obtain the differential

cross-section, by integration over E′. The differential cross-section is therefore

defined as

dσ

dΩ
= (number of neutrons scattered per second into dΩ in the direction φ, θ)/Φ dΩ

(2.9)

The total scattering cross-section, obtained by integrating over Ω is defined by

the equation

σtot = (number of neutrons scattered per second)/Φ (2.10)

The scattering cross-section is equivalent to the effective area presented to the

neutron by the nucleus. Neutron scattering theory is based on attempting to

find theoretical expression for the cross-sections. Experimental cross-sections

are quoted per atom or per molecule i.e. the cross-sections defined above are

divided by the number of atoms or molecules present in the scattering system.

16



2.2.2 Scattering of Neutrons by a Single Fixed Nucleus

We take the origin to be at the position of the nucleus and the z axis to be

along the direction of k, the wavevector of the incident neutrons (see fig 2.2).

So the wavefunction of incident neutron is a plane wave of the form.

Ψk = eik•z (2.11)

When a plane wave is scattered from a point it gives a spherical wavefunction

of the form

Ψk′ = −
b
r

eik′•r (2.12)

where b is a constant normally independent of the angles φ, θ.

In the spherical wavefunction the minus sign is used to give a positive value of

b for the majority of materials. This is explored further in the section concern-

ing coherence. The b value is called the ’scattering length’ and depends upon

the interaction with the nucleus of the particle and the combined spin of the

neutron nucleus system. For low neutron energies, as explored in this work, it

is independent of the energy of the neutron. As we do not have a full theory

of nuclear forces the scattering length cannot be calculated theoretically. This

means that b is a parameter which has to be found experimentally. The scat-

tering lengths do not correlate directly with any property such as nucleus size

and they vary between elements and isotopes.

Using the expressions (2.11) and (2.12) it is possible to calculate the cross-

section dφ/dΩ for scattering from a single fixed nucleus.

For elastic collisions v the velocity of the neutrons will be the same before

and after scattering. The number of neutrons passing through the area dS per
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second is

v dS|Ψk′ |2 = v dS
b2

r2 = vb2 dΩ (2.13)

The flux of incident neutrons will be

Φ = v|Ψk|2 = v (2.14)

From the definition of the cross-section

dσ

dΩ
=

vb2dΩ
ΦdΩ

= b2 (2.15)

So in this case the total cross-section is

σtot = 4πb2 (2.16)

2.2.3 Fermi’s Golden Rule

Looking at a general system of particles we need to find an expression for

the double differential cross-section for a specific transition of the scattering

system from one quantum state to another.

Starting with equation (2.9), the definition of the differential cross-section, we

will denote the state of the scattering system with µ and the wavefunction of

the scattering system with χµ. The wavevector of the incident neutron is k and

the wavefunction of the neutron is Ψk. We assume a co-ordinate system where

Rj is the position vector of the jth nucleus and r is the position vector of the

neutron. In this situation (j = 1, ...N) where N is the number of nuclei in the

scattering system.
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We now sum over all changes µ to µ′ and from k to k′ over all values of k′ that

lie in the solid angle dΩ in the direction φ, θ. These conditions give

dσ

dΩ µ→µ′
=

1
Φ

1
dΩ ∑

k′
Wk,µ→k′µ′ (2.17)

where Wk,µ→k′µ′ is the number of transitions from the state k, µ to the state

k′, µ′, and Φ is the flux of incident neutrons. To evaluate the expression on the

right hand side we use a fundamental result in quantum mechanics known as

Fermi’s golden rule. (This result can be found in most quantum mechanics

textbooks for example see Merzbacher chapter 18 [15]).

∑
k′

Wk,µ→k′µ′ =
2π

h̄
ρk′ |〈k′µ′|V|kµ〉|2 (2.18)

In this result V is the interaction potential and ρk′ is the number of momentum

states in dΩ per unit energy range for neutrons in the state k′. For the equation

(2.18) the matrix element can be expressed in standard notation as

〈k′µ′|V|kµ〉 =
∫

Ψ∗k′χ
∗
µ′VΨkχµ dR dr (2.19)

where

dR = dR1dR2...dRN (2.20)

We can now perform a standard procedure known as box normalisation. This

is a quantum mechanical device where one imagines the neutron and scatter-

ing systems are within a large box. This enables the calculation of ρk′ and fixes

the normalisation constant of the neutron wave functions. The full derivation

of this is included in appendix A.

The result of this operation is
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(
dσ

dΩ

)
µ→µ′

=
k′

k

(
m

2πh̄2

)2

|〈k′µ′|V|kµ〉|2 (2.21)

Differentiation by E′ reintroduces the energy terms and gives

(
d2σ

dΩ dE′

)
µ→µ′

=
k′

k

(
m

2πh̄2

)2

|〈k′µ′|V|kµ〉|2δ(Eµ − Eµ′ + E− E′) (2.22)

We need a form of this equation which is closer to that measured in scattering

experiments. This requires expanding the terms in the equation above and

expressing it terms which can be measured by neutron scattering. Q, R, k

and ω. Taking the Hamiltonian of the scattering system into account gives us

functions with these terms with the addition of some other considerations.

The energy function on the left hand size of (2.22) is an energy δ function

which can be expressed as an integral over time

δ(Eµ − Eµ′ + E− E′) =
1

2πh̄

∫ ∞

−∞
exp{i(Eµ − Eµ′)t/h̄} exp(iωt)dt (2.23)

V is found to be

V(Q) =
2πh̄2

m
bj (2.24)

by considering the effect of an unbound nucleus on scattering length.

These factors lead to a form of the double differential cross-section which will

be used in the rest of this work
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d2σ

dΩ dE′
=

k′

k
1

2πh̄ ∑
jj′

bj′bj

∫
〈exp{−iQ.R′j(0)}exp{iQ.Rj(t)}〉 × exp(−iωt)dt

(2.25)

2.2.4 Coherent and Incoherent Scattering Systems

Given a system with one element where the scattering length b varies from

one nucleus to another owing to nuclear spin or to the presence of isotopes or

both. If the value bi occurs with relative frequency f such that

∑
i

fi = 1 (2.26)

The average b value is

b̄ = ∑
i

fibi (2.27)

and the average value of b2 is

b̄2 = ∑
i

fibi
2 (2.28)

The cross-section in this case will be

d2σ

dΩ dE′
=

k′

k
1

2πh̄ ∑
jj′

bj′bj

∫
〈j′, j〉exp(−iωt)dt (2.29)

where

〈j′, j〉 = 〈exp{−iQ.R′j(0)}exp{iQ.Rj(t)}〉 (2.30)

Assuming no correlation between the scattering lengths b of different nuclei.
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bj′bj = (b̄)2, j′ 6= j

bj′bj = b̄2, j′ = j.

(2.31)

So for a sum excluding j = j′

d2σ

dΩ dE′
=

k′

k
1

2πh̄
(b̄)2 ∑

jj′

∫
〈j′, j〉exp(−iωt)dt

+
k′

k
1

2πh̄
b̄2 ∑

j

∫
〈j, j〉exp(−iωt)dt

(2.32)

=
k′

k
1

2πh̄
(b̄)2 ∑

jj′

∫
〈j′, j〉exp(−iωt)dt +

k′

k
1

2πh̄
{b̄2 − (b̄)2}∑

j

∫
〈j, j〉exp(−iωt)dt

(2.33)

The first term in equation (2.33) is known as the coherent scattering term. The

second term in the equation is the incoherent scattering term. Splitting these

terms gives

(
d2σ

dΩ dE′

)
coh

=
σcoh
4π

k′

k
1

2πh̄ ∑
jj′

∫ ∞

−∞
〈exp(−iQ.Rj′(0))exp(iQ.Rj(t))〉× exp(−iωt)dt

(2.34)

(
d2σ

dΩ dE′

)
inc

=
σinc

4π

k′

k
1

2πh̄ ∑
j

∫ ∞

−∞
〈exp(−iQ.Rj(0))exp(iQ.Rj(t))〉× exp(−iωt)dt

(2.35)
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where

σcoh = 4π(b̄)2, σinc = 4π{b̄2 − (b̄)2} (2.36)

For coherent inelastic scattering, the interference between waves produced by

the scattering of a single neutron from all the nuclei in a sample is described.

The intensity of scattering for coherent scattering depends strongly on scatter-

ing angle. Incoherent scattering assumes that scattered waves from different

nuclei sum to zero so that the observed scattering is all self scattering. The lack

of interference from different nuclei makes incoherent scattering a good tool

for studying the motions of atomic tracer diffusion, averaged over the system.

Elastic incoherent scattering is isotropic, so the scattering angle does not affect

the intensity. This makes the coherent scattering component easy to separate

from the incoherent.

As mentioned after equation (2.12) the choice of a negative sign in the spherical

wavefunction results from the normal situation with hard sphere scattering,

that is a repulsive potential which gives rise to a phase change. Some isotopes

such as 1H have an attractive potential resulting in a negative scattering length.

2.3 Crystal Structure and Lattices

This project is focused on materials properties and characterisation. It is help-

ful therefore to give an explanation of the conventions for describing the struc-

ture of a crystalline material. To this end, a short background on crystallogra-

phy is provided. For a more in-depth introduction see Dove [16].
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2.3.1 The Lattice and Atomic Basis

Crystalline materials are periodic in nature and contain symmetries in the ar-

rangement of atoms in the material. This allows for clearly defined diffraction

patterns. The structure of crystalline materials can be explained in terms of a

lattice. Lattices are constructed of a series of points which are periodic and can

cover all space without gaps. They should be described completely by three

basis vectors, here known as a, b and c, which allow a linear combination of

the basis vectors to describe the vector between any two points on the lattice,

such that

tUVW = ha + kb + lc (2.37)

where h,k,l are integers. The vector thkl can be represented by the short hand

hkl such that a direction through a symmetric lattice can be defined. For ex-

ample the 100 plane in a cubic lattice which is normal to the 100 direction.

Figure 2.3: 100 plane of a cubic lattice [17]

Crystalline materials are defined by their lattice and the basis of atoms in that

lattice. For example NaCl has a simple cubic lattice with Na and Cl atom basis

arranged alternately on the corners of the lattice.

24



2.3.2 Lattice Geometry

Following from symmetry concerns fourteen Bravais lattices are defined. The

Bravais lattices are generally defined in terms of their lattice parameters, but

symmetry must also be taken into account when fully explaining the origin of

Bravais lattices. Lattices are also defined in terms of space groups of which

there are 230 derived from the 14 Bravais lattices, again they arise from sym-

metries and require group theory to fully explain. Space groups are labelled

either by number or by systems such as Hermann-Mauguin notation otherwise

known as international notation which is used to describe the lattice structures

in this work.

Bravais lattices can be described by the centreing of their lattice points. For ex-

ample primitive cells only have lattice points on the corners of the cell whereas

face centred lattices have an additional point in the centre of the face of cell. In

the table below P is the primitive lattice, I is a body centred lattice with a point

at the centre of the lattice cell, F is the face centred lattice and base centred

lattices have points at alternate ends of the lattice cell and are denoted by B.

Figure 2.4: Examples of lattice centreing in cubic lattices [17]

The structure of the materials in the following chapters will be described in

terms of Hermann-Mauguin notation. This notation first describes the centre-

ing of the Bravais lattice. For example the hexagonal lattice present in graphite
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Table 2.1: The Fourteen Bravais lattices and associated space groups
Name Types Geometry Space Groups

Triclinic P a 6= b 6= c; α 6= β 6= γ 1-2
Monoclinic P, B a 6= b 6= c; α = γ = 90 6= β 3-15

Orthorhombic P, B, I, F a 6= b 6= c; α = β = γ = 90 16-74
Tetragonal P, I a = b 6= c; α = β = γ = 90 75-142

Rhombohedral P a = b = c; α = β = γ 6= 90 143-167
Hexagonal P a = b 6= c; α = β = 90, γ = 120 168-194

Cubic P, I, F a = b = c; α = β = γ = 90 195-230

is P 63/mmc. Thus P represents a primitive lattice, the rest of the notation

describes the symmetry elements of the lattice. The symmetry elements can

be separated such that 63/m, m and c represent different symmetry planes in

the lattice. 63/m is a 63/ screw axis with a perpendicular mirror plane and the

letters m and c describe other mirror and glide planes in the lattice.

2.3.3 Identifying Crystals

The structure of a crystalline material can be explored using a diffraction pat-

tern. The diffraction pattern of a purely crystalline material will be in the form

of a series of points, in the case of a 2D diffraction pattern or peaks in the case

of a diffraction spectrum. As the particles diffracted by the material interact

with planes of atoms rather than individual atoms, these peaks are related to

the planes in the lattice. Relating the planes in the lattice to the points in a

diffraction measurement leads to the concept of a reciprocal lattice, using the

diffraction peaks as a basis to discover the structure of the reciprocal lattice.

This gives a mathematical representation of the planes of atoms in a real lat-

tice. Therefore the reciprocal lattice aids interpretation of diffraction data. It

also simplifies calculations involving planes or surfaces and is necessary for

describing the waves and vibrations within the material.

Mathematically the reciprocal lattice is defined as
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eiG·R = 1 (2.38)

where eiG·R is a wave with the same periodicity of vector points depicted by

R of the Bravais lattice, and G is the reciprocal lattice which arises from a set

of vectors which satisfy equation (2.38). The reciprocal lattice will be a Bravais

lattice. Taking the reciprocal of a reciprocal lattice gives the original lattice.

The three basis vectors of the reciprocal lattice are mathematically determined

from the basis vectors a, b and c.

a∗ = 2π
b× c

a · b× c
(2.39)

b∗ = 2π
a× c

a · b× c
(2.40)

c∗ = 2π
a× b

a · b× c
(2.41)

Where a · b × c is the volume of the unit cell. The factor 2π is not always

included by crystallographers.

2.3.4 Powder Diffraction

The interaction of waves with planes in the lattice is known as Bragg’s law and

is described thus

Nλ = 2d sin θ (2.42)
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Where N is an integer specifying the number of the wavelength λ, d is the

distance between planes and θ is the direction of the scattering vector Q. The

conditions of Bragg’s law must be met for diffraction peaks to be observed.

Figure 2.5: Bragg’s law for planes of atoms in a lattice [17]

Historically samples for X-ray diffraction were in the form of large single crys-

tals, often grown specifically for structural analysis. It is not always possible

to create these samples but fine powders can be manufactured for most mate-

rials. In this case powder diffraction can be used, this form of diffraction has

several factors which should be taken into account when interpreting powder

diffraction data.

In the case of single crystals the orientation of the crystal in relation to the

incoming beam dictates which planes are scattered from. In the case of powder

samples the crystal directions are averaged over all directions. Thus rather

than a set of diffraction points, cones of scattering are created known as Debye-

Scherrer Cones. These lead to circles of scattering intensities when viewed

perpendicular to the direction of scattering.

In theory powder samples should lead to a complete insensitivity to the ori-

entation of the sample with respect to the incoming beam, however the shape

of the powder particles can lead to preferred orientation of the crystal so this

must be kept in mind, especially when interpreting the intensities of diffrac-
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Figure 2.6: Debye-Scherrer cones from a randomly orientated powder sam-
ple [18]

tion peaks. XRD machines can be set up in transmission or reflection modes,

in Bragg-Brentano geometry, which is typical, lattice planes are measured par-

allel to the sample surface. Neutron diffraction is more commonly performed

in transmission.

The width of diffraction peaks can be affected by the range of widths of planes

in the material, and thus the inhomogeneous strain in the material which will

lead to differing plane widths. The peak width is also affected by crystallite

size. Relationships between the Bragg angle θ and broadening allow us to

investigate these two contributions. Ignoring strain gives the Scherrer formula

for crystallite size

βτ =
Kλ

τ cos θ
(2.43)

where τ is average crystallite size, K is a factor related to crystallite shape,

usually a value of 0.9 is used, λ is the incident wavelength, βτ is the peak

broadening at full width half maximum and θ is the Bragg angle.

It is also possible to consider only the broadening due to strain βε, which is
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given by the Stokes and Wilson equation

βε = Cε tan θ (2.44)

where C is a constant related to the nature of the strain and is usually around

4 or 5, ε is the inhomogeneous strain in the sample, θ is again the Bragg angle.

Given these two equations for broadening caused by strain and crystallite size

we can combine them to get an expression for total broadening.

βtot = Cε tan θ +
Kλ

τ cos θ
(2.45)

A line graph of the form y = mx + c can be created by multiplication of cos θ

βtot cos θ = Cε tan θ +
Kλ

τ
(2.46)

This method of broadening analysis is known as the Williamson Hall method

and the line graph described is a Williamson Hall plot.

2.4 Phonons

The primitive cell of a reciprocal lattice is know as the Brillouin zone. It can

be found by taking surfaces at the same distance from one element of the

reciprocal lattice and its neighbours. The volume included is the first Brillouin

zone. The primitive cell of a real lattice can also be found in the same way, in

this case it is know as the Wigner-Seitz cell.

The Brillouin zone aids understanding of crystallography and simplifies con-

cepts in phonon physics.
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Figure 2.7: First Brillouin zone of a 2D lattice [17]

The atoms in real materials undergo constant vibrations. These vibrations are

linked to the other atoms in the lattice and so the movements can be inter-

preted in terms of lattice vibrations. In the simplest possible system of linked

atoms, a 1-D chain of atoms with a spring like force between them, the dis-

placement of each atom is ul. The force on the atom at origin F0l due to the lth

atom will be proportional to ul − u0

thus

F0l = γl(ul − u0) (2.47)

where γl is a force constant between the atoms 0 and l.

So the total force acting on atom 0 is

F0 = ∑ F0l = ∑
l 6=0

γl(ul − u0) (2.48)

and the equation of motion for atom 0 is

m
δ2un

δt2 = F0 = ∑ F0l = ∑
l 6=0

γl(ul − u0) (2.49)
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As each vibration of an atom will affect the others, a representation for the

collective oscillations of the atoms must be found. The most simple represen-

tation assumes these are normal modes and that they take the form of waves

such that

u(x) = Aei(ωt−qx) (2.50)

where q = 2π
λ and ω is the frequency of the wave.

As this is a quantum mechanical system the amplitude A is quantised.

So for the lth atom u(x) becomes

u(l) = Aei(ωt−qla) (2.51)

where a is the distance between atoms.

Substitution of this condition into the equation of motion for atom 0 confirms

that the waves are normal modes. Thus the frequencies of the modes can be

found.

−Amω2eiωt = ∑
l 6=0

γl A(ei(ωt−qla) − eiωt) (2.52)

removing Aeiωt from both sides gives

−mω2 = ∑
l 6=0

γl(eiqla − 1) (2.53)

As all the atoms are identical γl = γ−l, meaning that positive and negative

powers of e can be combined in pairs of terms with positive and negative l.
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eix + e−ix = 2 cos x (2.54)

The summation thus becomes one over l > 0, when adding together the pair

terms.

−mω2 = ∑
l>0

γl(2 cos qla− 2) (2.55)

Dividing through by 2 and m gives the equation in terms of ω.

ω2 =
2
m ∑

l>0
γl(1− cos qla) (2.56)

If we only consider nearest neighbour forces γ1 = γ, γ2 = γ3 = ... = 0. This

reduces the summation for ω2 to a single term

ω2 =
2γ

m
(1− cos qa) (2.57)

Using the double angle expansion cos 2x = 1− 2 sin2 x and treating qa as a

double angle gives

ω2 =
2γ

m
.2 sin2 1

2
qa (2.58)

thus

ω = 2
√

γ

m

∣∣∣∣sin
1
2

qa
∣∣∣∣ (2.59)

Lattice vibrations with a quantised frequency are known as phonons. They

have a wavevector q and an angular frequency ω. The graph of frequency ω

verses wavevector q is known as a dispersion curve. These curves are related
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to the graphs obtained from a poly-CINS experiment. In a periodic lattice,

two waves with wavevectors q and q′ that differ only by a reciprocal lattice

vector have the same properties. They will produce identical displacements

at each lattice position. Thus only wavevectors that differ within a reciprocal

lattice vector contain unique information. This property is equivalent to the

Brillouin zone of a lattice, thus dispersion curves can be represented in terms

of Brillouin zone boundaries. All vibrations can be seen as equivalent to a

vibration in the Brillouin zone.

Atoms move in different ways depending on the forces acting on them. They

can move in the direction of wave propagation, known as longitudinal motion.

Movement at right angles to the wave is known as transverse motion. If the

material contains more than one kind of atom they may react in different ways

to the propagation of the waves. If the motion of the different types of atom

are in phase, at long wavelength, this is known as an acoustic mode. If the

different atoms are in anti-phase this is known as an optic mode. Below is a

theoretical phonon dispersion curve which represents the motion of a line of

atoms, where alternate atoms differ in mass. We can see that two forms of

motion, or modes, are possible in this case.

Figure 2.8: Simple dispersion curves [17]

For real structures the dispersion curves become much more complicated. In

figure (2.9) experimental dispersion data for silicon is shown and the modes
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are labelled. For example LO is a Longitudinal Optic mode.

Figure 2.9: Experimentally determined dispersion curves of crystalline sili-
con [19]

When interpreting data the labelling of modes is not a trivial task. The use of

models and theoretical dispersion curves becomes very important.

The calculation of dispersion curves is dependent on accurate models for the

forces in a system. Forces are typically modelled as a system of force constants

describing the relationship between any atom in the system and its near neigh-

bours. These force constants can be derived from density functional code, thus

giving unbiased non-empirical data for the system, or from lattice dynamics

calculations using force constant models derived from the observed interac-

tions between atoms. Both of these approaches have their disadvantages. In

general performing DFT calculations is time consuming and behaviours which

occur above the ground state energy can be poorly modelled, as can weak

forces such as the bonding between graphite layers. Lattice dynamics calcula-

tions using force constant models are typically much faster to perform, but are

much more reliant on the accuracy of the model they are based on.
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2.4.1 The Debye Waller Factor

If we treat the scattering system as a crystal phonon interactions are intro-

duced. This leads to the inclusion of the phonon terms due to normal modes

such as q the wavevector of the mode. We will also define ωp as the angular

frequency of the phonon mode, ep its polarisation vector, l is a lattice vector

and ul is the displacement of the atom from its equilibrium position.

Functions V and U are defined to be

V = iQ.ul(t) = i ∑
p

hpap + h∗pa+s (2.60)

U = −iQ.u0(0) = −i ∑
p

gpap + g∗pa+s (2.61)

where

hp =

(
h̄

2NM

)1/2 Q.ep√
ωp

exp{i(q.l −ωst)} (2.62)

gs =

(
h̄

2NM

)1/2 Q.ep√
ωp

(2.63)

The UV notation is related to photon creation and annihilation operators.

From the phonon interactions we can obtain an important result.

Here we show equations of coherent and incoherent scattering when in a crys-

tal system in terms of U and V. In these equations N is the number of nuclei

in the crystal.

(
d2σ

dΩ dE′

)
coh

=
k′

k
1

2πh̄ ∑
l
(b̄)2Nexp〈U2〉∑

l
exp(iQ.l)

∫ ∞

−∞
exp(UV)exp(−iωt)dt

(2.64)
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The term U2 is known as the Debye Waller factor and is typically represented

as

2W = −〈U2〉 = h̄
2MN ∑

s

(Q.es)2)

ωs
〈2ns + 1〉 (2.65)

Where 〈U2〉 is the mean square displacement of the atom from the centre of

its motion. A standard result for the expansion of the 〈2ns + 1〉 term for an

isotropic oscillator is

〈2ns + 1〉 = coth
(

1
2

h̄ωsβ

)
(2.66)

this gives the Debye Waller factor as

2W =
h̄

2MN ∑
s

(Q.es)2

ωs
coth

(
1
2

h̄ωsβ

)
(2.67)

The Debye Waller factor is an important effect in both coherent neutron scatter-

ing and x-ray scattering. Physically it takes into account the thermal motion of

atoms, leading to a suppression of intensity in scattering peaks with increasing

Q.

2.5 Inelastic Neutron Scattering

2.5.1 S(Q, ω)

An important quantity in neutron scattering experiments is the scattering func-

tion S(Q, ω). This quantity comes from using Van Hove [20] correlation func-

tions in terms of scattering cross-sections. Converting experimental results to

S(Q, ω) data allows more direct comparison with phonon dispersion curves

37



and more importantly allows comparison between experiments as it removes

experiment dependent factors such as the angular range or initial energy of

the instrument.

Starting with an expression for the coherent double differential cross-section

(
d2σ

dΩdE′

)
coh

=
σcoh
4π

k′

k
1

2πh̄

∫
∑
jj′
〈exp{−iQ.Rj′(0)}exp{iQ.Rj(t)}〉× exp(−iωt)dt

(2.68)

we take a function I to be

I(Q, t) =
1
N ∑

jj′
〈exp{−iQ.Rj′(0)}exp{iQ.Rj(t)}〉 (2.69)

we then define a function G as

G(r, t) =
1

(2π)3

∫
I(Q, t)exp(−iQ.r)dk (2.70)

and a function S as

S(Q, ω) =
1

2πh̄

∫
I(Q, t)exp(iωt)dt (2.71)

We can obtain the inverse relations for the equations using Fourier transforms

I(Q, t) =
∫

G(r, t)exp(−iQ.r)dr (2.72)

I(Q, t) = h̄
∫

S(Q, ω)exp(iωt)dω (2.73)

this gives us relationships between G and S.
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G(r, t) =
1

(2π)3

∫
S(Q, ω)exp{−i(Q.r−ωt)}dQ dω (2.74)

S(Q, ω) =
1

2πh̄

∫
G(r, t)exp(−i(Q.r−ωt))dr dt (2.75)

We now define a quantity called the self intermediate function by

Is(Q, t) =
1
N ∑

j
〈exp{−iQ.Rj(0)}exp{iQ.Rj(t)}〉 (2.76)

Using the relationship between S and I gives

Si(Q, ω) =
1

2πh̄

∫
Is(Q, t)exp(−iωt))dt (2.77)

This now allows us to substitute S(Q, ω) into cross-section expressions

(
d2σ

dΩ dE′

)
coh

=
k′

k
(b̄)2

2πh̄
NS(Q, ω) (2.78)

(
d2σ

dΩ dE′

)
inc

=
k′

k
(b̄2 − (b̄)2)

2πh̄
NSi(Q, ω) (2.79)

We can now see that the function S(Q, ω) and Si(Q, ω) are closely related to

the coherent and incoherent scattering cross-sections. Plotting neutron scatter-

ing experiments in terms of S(Q, ω) gives a plot which shows phonon curves

and more importantly removes instrument and experiment based factors al-

lowing direct comparison between experiments taken at different locations and

under different conditions.
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2.5.2 The Principle of Detailed Balance

Using an expression for the scattering cross-section with explicit energy terms

leads to an important result in scattering physics

(
d2σ

dΩdE′

)
coh

=
σcoh
4π

k′

k ∑
µ

pµ ∑
µ′
|∑

j
〈µ′|exp(iQ.Rj)|µ〉|

2
∂(Eµ− Eµ′ + h̄ω) (2.80)

thus S(Q, ω) becomes

S(Q, ω) =
1

NZ ∑
µ′µ

exp(−Eµβ)|∑
j
〈µ′|exp(iQ.Rj)|µ〉|2∂(Eµ − Eµ′ + h̄ω) (2.81)

substituting S(Q, ω) with S(−Q,−ω) gives

S(−Q,−ω) =
1

NZ ∑
µ′µ

exp(−Eµ′β)|∑
j
〈µ′|exp(−iQ.Rj)|µ′〉|

2
∂(Eµ − Eµ′ − h̄ω)

= exp{−(Eµ′ − Eµ)β} 1
NZ ∑

µµ′
exp(−Eµβ)|∑

j
〈µ′|exp(iQ.Rj)|µ〉|2

× δ(Eµ − Eµ′ + h̄ω)

= exp(−h̄ωβ)S(Q, ω)

(2.82)

S(−Q,−ω) = exp(−h̄ωβ)S(Q, ω) (2.83)

Equation (2.83) tells us the relationship for the cross-section, between the en-
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ergy lost and the energy gained by the neutron in inelastic scattering. It shows

that the chance of a neutron gaining energy from the lattice is lower than the

chance of the neutron losing energy to the lattice, by a factor of exp(−h̄ωβ).

Physically this can be taken as a consequence of the fact that, regardless of

the energy of the lattice it can always gain energy but it needs to have certain

minimum energy to be able to impart some to a scattered neutron.

2.6 Neutron Scattering Instruments

Neutron scattering experiments give information about scattering cross-sections,

scattering lengths and can be used to provide S(Q, ω) plots.

There are two ways of producing neutrons with high enough flux for scattering

experiments. The first is to use a High Flux Beam Reactor, these reactors

are specifically designed to produce a high flux beam of neutrons at useful

energies for neutron scattering experiments. The alternative to using a nuclear

reactor is to use a particle accelerator in combination with a suitable material

to create a spallation source.

In both cases neutrons are typically created at higher energies than are useful

for materials research so the energy of the neutrons is reduced by the use of

neutron moderators. The thermal neutrons suitable for lattice dynamic and

lattice structure investigations require different moderators to those for neu-

trons needed at higher and lower energies, known as hot (≈ 2000 K) and cold

neutrons (≈ 20 K), the different neutron energies give different wavelengths

and are therefore useful for probing different scales. In the case of the ILL, a re-

actor source, liquid D2 is used as a moderator to produce cold neutrons, liquid

D2O for thermal neutrons and graphite for hot neutrons. Spallation sources

produce higher energy neutrons and typically use solid methane, solid hydro-
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gen or a combination for moderation. Moderation produces neutrons with a

range of energies similar to a Maxwell Boltzmann distribution.

Some experiments use this white beam of neutrons but monochromation is

also often used after moderation to select neutrons with a specific energy.

Monochromation techniques are discussed later in the chapter.

Inelastic neutron scattering can be measured by using a triple axis spectrom-

eter (TAS) or a time of flight (TOF) technique. Triple axis spectrometers are

best used when information on excitations in single crystals is sought, at well

defined points or along a given direction in Q space. In a triple axis spec-

trometer the experiment is set up such that one energy transfer is chosen by

varying the initial wavevector of the neutron whilst keeping Q constant [21],

giving measurements of ω peaks. This method gives a high flux but is rela-

tively inflexible and time consuming if many different Q values are needed.

Figure 2.10: A diagram of triple axis spectrometer [22]
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Time of flight techniques give a global overview of excitations in a broad Q, ω

range and are suitable for analysing powder samples. All pulsed spallation

sources use time of flight techniques to measure material properties. The ex-

periments in the later chapters were performed using TOF spectrometers due

to the powdered nature of the sample and the need for an broad overview

of excitations, we will therefore discuss TOF spectroscopy and instruments in

more detail.

2.6.1 Time of Flight Spectroscopy

A time of flight spectrometer can be described as either direct or indirect.

Figure 2.11: A diagram of direct geometry and indirect geometry spectrome-
ters [23]

A direct geometry spectrometer defines the incident energy of the neutron by

the use of synchronised choppers or a crystal and the final energy is deter-

mined by time of flight. An indirect geometry spectrometer illuminates the

sample with a white pulse of neutrons. The final energy is defined by a crystal

or filter, the initial energy is found from the time of flight of the neutron from

source to sample.

Choppers are a mechanical means of selecting energies in a neutron beam. Un-

like other methods such as monochromating crystals, choppers can be tuned
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by varying their speed to select a range of energies. There are two main forms

of choppers, Fermi choppers and disk choppers.

Figure 2.12: Diagrams of neutron choppers

(a) Diagram of a disc chopper. The neutron
beam is perpendicular to the surface of the
disk [24]

(b) Diagram of a Fermi chopper, the direc-
tion of the neutron beam is shown by
n [25]

Fermi choppers are rotating drums with a hole along the diameter. The hole is

filled with layers of alternating absorbing and transmitting material. Pulses are

produced when the axis of the slit is parallel to the incident neutron direction.

The chopper is arranged with an axis of spin normal to the incident neutron

direction. Disk choppers are simply rotating disks with holes at or near the

circumference to allow the transmission of some neutrons. Disk choppers and

Fermi choppers are equally flexible in selection of E. Both Fermi and disc

choppers are subject to a maximum rotational speed determined by the me-

chanical strength of the structure, this effect is typically more of a problem for

disk choppers. An advantage of disk choppers is that they will transmit any

neutron velocity, Fermi choppers will not transmit slow neutrons because the

slit closes while the neutron is inside it, unless the slits are curved.

The parameters of interest for inelastic neutron scattering are energy and mo-

mentum transfer h̄ω and h̄Q respectively. Not all regions of Q, ω space are

accessible to neutron detectors. The scattering triangles below demonstrate
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the trajectories of Q, ω .

Figure 2.13: Scattering triangles for a direct geometry and indirect geometry
spectrometer [23]

The cosine rule is then applied to find Q

Q2 = k2 + k′2 − 2kk′ cos φ (2.84)

Remembering that Q = k − k′ and h̄ω = E − E′. This equation can be con-

verted to energy by substituting in the expression for k

h̄2Q2

2m
= E + E′ − 2(EE′)1/2 cos φ (2.85)

for direct geometry E′ can be eliminated giving

h̄2Q2

2m
= 2E− h̄ω− 2 cos φ(E(E− h̄ω))1/2 (2.86)

for indirect geometry E can be eliminated leaving

h̄2Q2

2m
= 2E′ + h̄ω− 2 cos φ(E′(E′ + h̄ω))1/2 (2.87)

Thus each detector has a parabolic trajectory through Q, ω space. For direct

geometry spectrometers large arrays of detectors are used to show large areas

of Q ω space. For indirect geometry spectrometers the parabola are inverted
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Figure 2.14: Parabola of direct and indirect geometries

so they show a wide range of energy transfers from the energy loss side of

the spectrum. The maximum energy transfer for neutron energy loss is E, the

initial energy of the neutrons. This comes at Q = k, and for large neutron

energy gain Q tends to k′.

2.6.2 Instrument Details

Here we can see the layout of a typical neutron scattering centre. The neutrons

in this case are produced in a reactor, beams of neutrons are then split and

sent to various experiments.

When deciding which experiment would be most suitable for the study of

a sample there are several factors which need to be taken into account. For

poly-CINS measurements it is necessary to use an experiment which has been

designed for measuring inelastic scattering. The angular range of detectors

affects how much of Q, ω space is visible. Detectors also vary in their resolu-

tion. Neutron flux varies slightly from experiment to experiment but mainly

from centre to centre. Reactors produce a constant beam of relatively low flux,

whereas the flux from spallation sources is relatively high in the pulse but can
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Figure 2.15: Floor plan of HZB [26]

be low when averaged over time. Flux affects how long it takes to obtain re-

sults, and thus the quality of scattering obtained. The flux at the sample also

depends on the energy of neutrons required for the experiment.

Instrument types can be roughly defined in terms of the neutron source, and

whether the instrument is direct or indirect geometry. Two important spal-

lation sources are ISIS [27] in Oxfordshire and SNS [28] in OakRidge USA. An

example of an indirect geometry machine that can be used for coherent in-

elastic scattering is TOSCA at ISIS. Tosca can measure both forward and back

scattering with a resolution around 1%. Other experiments useful for coherent

inelastic scattering at ISIS are direct geometry machines such as; MARI, MER-

LIN, MAPS and LET. The neutron flux at ISIS varies from 2 to 5× 104 n/cm2s

in the pulse depending on the instrument in question. SNS has been designed
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to produce very high fluxes. The useful instruments for Poly-CINS at SNS are

the direct geometry machines ARC and SEQUOIA. The neutron flux at SNS is

greater than 5× 105n/cm2s at the sample position.

Two reactor centres are at the ILL [29] in France and Helmholtz Zentrum Berlin

(HZB) [26]. At the ILL the instruments that are useful for coherent inelastic

scattering are IN4 and IN5. These are both direct geometry chopper instru-

ments. IN4 uses both a monochromating crystal and a system of choppers to

achieve desired energies. IN5 uses a system of six choppers to achieve the de-

sired energy, the neutron flux at sample at the ILL is typically around 5× 105

n/cm2s.

At HZB the most useful instrument for poly-CINS is V3 (NEAT). V3 is a multi-

chopper spectrometer which uses a primary and a secondary detector. The flux

at sample is around 2× 104 n/cm2s and so is substantially lower than the ILL.

The incident energy effect governs which half of the neutron spectrum will

contain the most information. So for the IN5, which depends on cadmium

absorption, incident energies are low, therefore only a small amount of energy

loss can be measured. Other instruments such as MERLIN are mainly used

for energy loss spectra as they have high incident energies.

During an experiment it is also important to have the ability to produce dif-

ferent temperatures and pressures. This can then allow you to study different

attributes of your system and reduce the Debye Waller effect. These abilities

are generally dependent on the sample holder used, a wide range of sample

environments can be provided at most modern experiments.
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Chapter 3

Neutronplot

This chapter describes the Neutronplot program which was developed by the

author to improve poly-CINS analysis tools. We will start with a discussion

of the equations which underpin the Neutronplot program. The architecture

and development of the program will be described to demonstrate how the

program could be modified in the future and to show the philosophies and

decisions behind its development. A guide to using Neutronplot is also in-

cluded.

3.1 Background

Neutronplot was originally conceived as a visualisation program for Scatter

output as using Excel or other commercially available graphing software was

time consuming and not designed for the analysis of neutron scattering data.

It was also necessary to be able to compare Scatter data with experimental

data. Current visualisation software varies from centre to centre and in some

cases between instruments.

There is currently an attempt to create a more universal software for neutron

scattering in the form of the Mantid [30] project, however this has not yet been
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completed. Current analysis software was not created with Poly-CINS as a pri-

ority and so is missing functionality which is useful to Poly-CINS analysts. It

was therefore decided that a more user friendly and flexible viewing software

should be created.

MATLAB was chosen for this purpose due to its native sophisticated graph

creation capabilities and the ease of matrix manipulation. MATLAB also fea-

tures a Graphical User Interface (GUI) editor GUIDE. GUIs are visual inter-

faces which allow functions created by the programmer to be accessed by the

user without using a command line or requiring hard coding.

3.2 Fundamentals

The principal function of Neutronplot is to create S(Q, ω) graphs. For experi-

mental data this will mean some level of conversion from the data as received.

This is necessary as at the instrument data is collected in terms of time and

angle, the time of flight will obviously vary from instrument to instrument and

depends on initial energy. The angular range of instruments and experimen-

tal conditions also vary and so to compare data from different sites the data

needs to be converted to terms of energy and momentum transfer which will

be universal.

The equations governing the relationships between time, energy and momen-

tum for neutron scattering were presented in the theory and are repeated be-

low.

E =
mnv2

2
(3.1)

Where E is the energy of the neutron, mn is the mass of the neutron, and v is
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the speed of the neutron. As v = distance/time the equation above shows the

relationship between time and energy for the neutron.

Q2 = k2 + k′2 − 2kk′ cos φ (3.2)

Where Q is momentum transfer of the neutron, k is the initial wavevector, k′

is the final and φ is the scattering angle.

At some sites, such as ISIS, the experimental data is given to the user with the

conversion from time to energy already performed, but this is not always the

case, the example below shows the conversion for ILL data. The code is from

a routine for reading in IN5 data in Neutronplot, and is a modified version of

a section of the ’t2e’ routine in LAMP.

const1 = 5.22697; % E(meV)=const1*V(m/ms)^2 for neutron

const2 = 2.07193571; % E(meV)=const2*k(A^-1)^2 for neutron

ei = const2/lambda^2; % Initial energy

Vi = sqrt(ei/const1);% Speed

Tel = Distance/Vi;

time = chan_width*(Xaxis - elastic_chan) + Tel;

ef = const1*((Distance./time).^2);% Final energy array

energies = ei - ef;% Energy transfer

The initial energy is found from the initial wavelength of the neutrons (lambda),

and the array of final energies is found from the time associated with each

channel. The energy transfer is then calculated allowing the data to be pre-

sented in terms of neutron energy loss and gain.

All instrument data requires conversion from scattering angle and energy to

S(Q, ω). This conversion is a coordinate transfer and is governed by the equa-

tion (3.2).
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Neutronplot implements this conversion by splitting the data into energy loss

and gain and finding the Q loci for each side.

for i = 1:ndets %Loop over scattering angles

current_theta = angles(i);

for j = 1:loss_chans(2)% Loop over energy

current_energy = Etrans_loss(i,j);

Ef = Einit + current_energy; % Final energy

kf2 = Ef/16.7;% Final wavevector

kf = sqrt(kf2);% Square of final wavevector

Qloc_loss(i,j) = sqrt(kinit2+kf2-2*kinit*kf*cos(current_theta));

% creating Q loci array

end;

end;

In the code above an array of Q values is created by selecting an angle then

looping over all energy values to find all the Q values for that angle, the next

angle value is then selected and the process repeats until Q values have been

found for every energy and angle value in the data.

The Q array creation also underpins many of the analysis functions of Neu-

tronplot such as comparing experimental and theoretical data and showing

the loci of neutron scattering instruments. These functions are detailed later in

the chapter.

3.3 Architecture

Neutronplot is comprised of several interacting GUIs which are underpinned

with visualisation and analysis functionality. MATLAB GUIs consist of a re-

lated .m and .fig file which must have the same name. Elements of the GUI
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such as buttons and text boxes are shown in the .fig file and are linked to

functions in the .m file known as ’Callbacks’ which are triggered by the user

interacting with the element.

Typical features of a MATLAB GUI are text boxes, both for the user to enter

information and to inform the user. There are also push buttons, tick boxes,

sliders, drop down menus and radio buttons. It is also possible to embed

graphs and tables into MATLAB GUIs. Using a GUI gives easy access to func-

tions and saves data within the program so it only has to be loaded once when

running the program. GUIs are designed using GUIDE then responses to the

users actions are programmed. For example when the user pushes the Con-

tour Graph button this calls a function which calls other functions to select the

correct data set, and plot the requested graph.

Neutronplot as a whole consists of around 75 separate .m files, most of which

would cover more than two pages of A4 in standard format. The .m files

which control GUIs are around 18 pages long, the bulk of which is created

automatically in the form of the callbacks, which then need to be individually

edited and expanded to give the desired functionality.

Named functions within Neutronplot shall be referred to in italics to avoid

confusion as, for example, there is a function named neutronplot within the

Neutronplot program.

There are two main functions in Neutronplot, neutronplot which is the user

interface for reading in an working with time of flight data and Contour_plots

which contains analysis and visualisation tools for S(Q, ω) data.
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3.3.1 The neutronplot function

The Neutronplot program is started by running the neutronplot function which

brings up a GUI. The neutronplot GUI links to several other functions related to

data input, it also contains tools for data correction and experiment planning.

Typically the user starts by reading in the data to be analysed which can be

in the formats given by Scatter, LAMP, mSlice or NEAT. This data can be time

of flight or S(Q, ω) depending on the format specified. The user specifies the

data type to be read in and can browse for the path to the file.

Figure 3.1: Loading data in Neutronplot

Neutronplot is designed to create an easy to view useful plot of the data as
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soon as the data is loaded. Therefore on loading the data various default

actions are performed to give an easily interpretable spectra to the user. All

original data is stored so that any changes that need to be made by the user

can be easily executed.

Data is stored in the form of global variables to enable easy access of data for

each function. Figure (3.1) demonstrates how reading in data is handled in

Neutronplot. The neutronplot function passes the name, location and type of

the text file to storedata, which then chooses the correct data loading function

and passes the file information to this function. The data loading function will

read the data, transform it if necessary and then call the cutoff function which

removes higher intensity data for easy viewing of low intensity data. Cutoffs

can be easily changed in the Contour Plots window.

3.3.2 The Contour_ Plots Function

The Contour_ Plots GUI is the primary tool for analysis of Poly-CINS data.

It contains links to other analysis tools as well as functionality to show full

spectra and refine the viewing of the spectra.

Contour_ Plots is linked to several different types of function. These functions

can be characterised as separate groups. First are those which create new GUIs

these contain links to many other functions and require the user to give further

information about the analysis they require. Secondly there are internal func-

tions which are coded only in the larger Contour_ Plots function. An example

is changing the azimuth and elevation of graphs, the internal functions do not

call any functions other than the standard functions. The ’standard’ functions

are called by all internal, external and GUI functions connected to Contour_

Plots. One such function is the data section function DataSetSelect which is

called every time a new data set needs to be accessed and graphcreation which
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Figure 3.2: Function links in Contour_ Plots

is called every time a graph is changed. External functions do not create a GUI

and are not performed within Contour_ Plots the standard functions are of this

type.

3.4 Development

Neutronplot started life as single page program which was used to load Scatter

data and output it as a 3D graph or as line graph cuts through the data. The

data could also be smoothed using a broadening routine and cut offs could

be applied. Locus cuts through the data could also be shown. This function-

ality remains in the current Neutronplot code. When operating the original

program the data had to be read in every time an option was changed or if

the user wanted to look at a different type of graph. It was designed only to
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read in Scatter code output and any changes to the file name or size had to be

hard-coded into the program.

Figure 3.3: First version of Neutronplot

The first step was to make a GUI which would allow the creation of the differ-

ent graph types by pressing a button and allow the user to define the values

used in the cuts. In the example shown, the name of the data file used still has

to be hard coded and the ability to look at two different graphs at the same

time is possible. When the data set is loaded the user can then choose whether

to look at a contour plot or constant cuts. It is possible to specify whether the

instrument is direct or indirect for the locus cuts. This version of Neutronplot

used the original program as a function and very few variables were passed

between functions.

The loading and viewing parts of the program were then separated and the

ability to add masks to the data was added. In this version the file path and

name are added by the user. The user also had to know the size of the file
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in advance and enter this information into the set-up options panel. Most

of the graph options, such as cutoffs, have to be selected before loading the

data and the amount that can be done afterwards by the user was limited.

Graph options such as plotting a contour graph or a cut were selected on the

Neutronplot bar. In the code new functions were written to perform each

action. This meant that many variables had to be passed from one function to

another. This led to the use of global variables so that each variable could be

stored in memory and accessed at will.

Figure 3.4: Second version of Neutronplot

The next stage was to improve the layout of the Neutronplot interface. The

tabs were removed and the options boxes condensed. It was also important to

add a progress box as reading in the files could be time consuming, over 15

seconds for some LAMP files. The graph GUI remained the same and the file

name and path still had to be added manually.

The next step was to add different types of data so the ability to read in LAMP

and Mslice data was added, as was a file browser. The new file types were
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Figure 3.5: First version of Plotview

Figure 3.6: Third version of Neutronplot

accompanied by the addition of several functions to the graph GUI. As the

LAMP and Mslice data were experimental the separation of the energy gain

and energy loss halves of the spectrum became beneficial. The user could also

select where constant cuts were taken by using a data point on the 3D graph

to specify the exact co-ordinates of a feature. Neutronplot changed to being

purely a loading and set-up options GUI as more options involving the graphs
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were moved to the graph GUI throughout the process of development. This

change meant that more options could be changed by the user on the fly rather

than being set at the start. Creating a flexible cut-off was very important and

removed the need for a colour bar. A structural variable was added to store all

the data, meaning that only one global variable needed to be used and all the

data could be accessed by using that variable.

Figure 3.7: Graphing GUIs

(a) First attempt at new Graph GUI
(b) Final version of graph GUI,

now known as Contour Plots

It was then decided to decouple the graph from the graph GUI in order to take

advantage of the capabilities of the MATLAB graph viewer and to allow the

user to view multiple graphs at once.

The capabilities of the current version of Neutronplot will be described in

detail below. The major addition to functionality at this point was the ability

to load multiple data sets, this enabled easy comparison of different data sets.

The original code was continually updated as the original was written without
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awareness of the full capabilities of MATLAB. MATLAB was created for use

with matrices and thus many lines of code which would be necessary in a

language such as C or FORTRAN can be removed or changed. For example

the full routine for looping over the matrix and applying the cut-off.

for i = 1:mcut

for j = 1:ncut

if (zcut(i,j)> cutoff)

zcut(i,j) = cutoff;

end

end %for loop over j - energy transfer

end% for loop over i - momentum transfer

could be replaced with this line:-

zcut(zcut>cutoff)=cutoff;

Data files were also originally read in line by line in a loop which then allocated

data to different matrices, this process took several seconds depending on the

size of the file. MATLAB is capable of reading in all of the data in a document

as a single matrix, if the format of the file is known. This is much quicker and

matrix elements such as columns can then be assigned as different collections

of data such as energy or angle. This reduced the time to load data from

LAMP files from fifteen seconds to under two.

3.5 Using Neutronplot

Neutronplot is started by running the neutronplot.m file, this brings up a win-

dow for loading data.
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Figure 3.8: The loading window of Neutronplot

The user chooses the data type by clicking on the radio buttons. Four data sets

can be used in Neutronplot at any one time. These are numbered and the set

number can be chosen by the user or Neutronplot will automatically move to

the next set when one is loaded. After browsing for a data file and pressing

the Load Data button the Contour Plots window opens if the data has loaded

successfully. The location of the last file loaded is saved so that the browser

will open in that folder when the user next looks for a data file.

3.5.1 Contour Graphs

Typically the first action performed by the user is the creation of a graph, the

Contour Graph button (2) gives the poly-CINS data set with the parameters

set by Neutronplot. These can then be changed with the use of the functions

on the Contour Plots window.

The Current Data Set box (1) is used to choose which data set you are working

on at any particular time. The sets are named after the file which contained

the initial data. Selecting a data set means that any options chosen on the
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Figure 3.9: The Contour_Plot GUI with areas numbered

Contour Plot window will be applied to that data set only. Graphs containing

information from other sets remain open and are unaltered. The Active Figure

box informs the user which one of any open graphs will be altered.

The energy units preferred can be selected with the Energy Unit drop down list

(10), this immediately changes the energy axis of the active figure and remains

selected when new graphs are created. Old graphs remain unchanged.

The 3D plot box (7) allows the user to user to toggle between 3D surface and
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Figure 3.10: 3D plot options

(a) Surf plot of theoretical graphite data (b) Pcolor plot of theoretical graphite data

flat color plots. One of the difficulties with interpreting poly-CINS data is that

the data sets are 3D so, unlike a line graph, features can be far from obvious.

Neutronplot has two possible viewing methods for viewing a 3D data set.

These use the pcolor and surf commands. Surf allows you to see and rotate

a 3D plot of the data, looking at the data in this way can be very useful for

picking more subtle features. However it can also make the more obvious

features seem more subtle.

This is where pcolor comes in as this gives a better overview of the data and

makes zooming more useful. It also allows the overlay of 2d data sets. In

figure (3.10) the peaks at high Q and low ω are more obvious in the surf

graph. Pcolor shows them in relation to the rest of the data.

For the surface graph it is possible to specify the exact azimuth and eleva-

tion you wish to see the data from by typing in the relevant boxes. This is

particularly useful for flipping the data by 180◦.

Changes to intensity data can be saved in the form of text files. These are saved

in the same format as the original data.
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3.5.2 Cut-Offs and Smoothing

In experimental data the highest intensities are found at the elastic line. This

tends to mask the lower intensity dynamic data removing the high intensity

data allows the dynamic data to be viewed.

Figure 3.11: Demonstration of cutoffs on surface plots

(a) The full intensity spectrum of graphite,
taken at IN5

(b) The IN5 graphite spectrum with high
intensities removed, showing disper-
sion curve detail

Figure 3.12: Demonstration of cutoffs on colour 3D plots

(a) The full intensity spectrum of graphite,
taken at IN5

(b) The IN5 graphite spectrum with high
intensities removed, showing disper-
sion curve detail
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The figures (6.30) and (6.31) demonstrate the use of the cut-off feature.

Figure 3.13: Demonstration of smoothing on model graphite data

(a) Graphite Scatter data as given (b) Graphite Scatter data smoothed

Poly-CINS data is often saved in quite a rough form either due to the dis-

crete channels in an instrument or due to the sampling used in calculations

of modelled data. This does not give an accurate representation of the vibra-

tions in the material and thus smoothing can be used to give a more accurate

view of how data would look if all neutrons were captured or modelled. The

Smoothing slider (6) allows the user to select the degree of smoothing desired.

Pressing Save allows the user to work with this smoothed data for the rest of

the analysis.

3.5.3 TOF Data Correction

Raw data is taken in the form of angle verses channel number and can have

detector faults as well as other issues which make interpretation difficult. For

this reason the TOF Data Correction panel was created.

T.O.F data loaded into Neutronplot is automatically converted into S(Q, E)

data, but the original data is stored in case any corrections need to be made.
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Figure 3.14: The TOF data correction panel of the neutronplot GUI

Raw data does not show phonon features clearly, and needs to be converted

to Q and E. This conversion uses equation (3.2) to perform a co-ordinate

transform of the data. The intensity data is reassigned to new array elements

depending on the Q loci information.

Figure 3.15: Conversion from TOF to S(Q,E)

(a) Raw data. y axis is angle, x axis is chan-
nel (b) S(Q, E) data

The data in figure (3.15) shows a detector fault at 1.9 Å−1. This defect can be

removed to make real features clearer.

This is especially useful for cuts through the data as it can be impossible to

distinguish detector faults from real features. To remove detectors the user

67



Figure 3.16: Detector removal interface

goes to the TOF Data Correction tab and presses Get Current Data. Neutron-

plot then shows the data set selected in Contour Plots if there is time-of-flight

data present for the data set. Pressing Show T.O.F gives a surface graph of

the data in terms of energy verses angle. The user then presses Remove De-

tectors which brings up a window tof_corr. Pressing Select Detectors in the

Detector Removal window gives a data point cursor which fills in the first text

box when a point is selected. Pressing Confirm moves a cursor to the next

text box which is filled in when another point is selected. Pressing the second

confirm button then allows you to Apply the removal, which gives the user a

graph of the T.O.F data with the detectors removed. Pressing Save then saves

this change for the S(Q, E) data which can be viewed with the Contour Plot

Window.

Figure (3.17) shows a data set with a detector fault before and after the removal
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Figure 3.17: Detector fault removal

(a) Unaltered scan (b) Corrected scan

of the fault.

3.5.4 Instruments

Figure 3.18: The Instruments panel on the Neutronplot GUI

Also on the neutronplot window is the Instruments panel. Neutronplot con-

tains a database of the angular range and energy range of all the relevant

Poly-CINS instruments, and thus can produce loci for all Poly-CINS capable

instruments. Figure (3.19) shows the area covered by the NEAT spectrometer
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in Berlin, given an initial energy of 5 meV.

Figure 3.19: Loci of the NEAT spectrometer for an initial energy of 5 meV

This graph is created using equation (3.2) together with the data saved in Neu-

tronplot. Pressing the Show Loci button gives the user a window to enter an

initial energy, the maximum energy transfer they are interested in and choose

the units they are using.

3.5.5 The Neutronplot Suite

Figure (3.20) shows the full layout of the Neutronplot suite as set out by default

when the individual windows are called. In this figure A is the neutronplot

GUI, which as well as the data saving functions detailed above also contains

functionality on different tabs for correcting time-of-flight data and informa-

tion on neutron scattering instruments.

Window B is an example of a line graph produced by Neutronplot, C is an

example of a poly-CINS data plot, D controls the creation of graphs based on

Q loci and E allows the combination of data sets.
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Figure 3.20: Neutronplot Suite
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F is the Line Graph creation window and G is the Contour Plots window

as described above. We will now give a full description of the use of the

functionality of these other windows.

3.5.6 Line Graphs

Figure 3.21: Pcolor graphite data with constant cuts taken from the data point

Neutronplot can be used to create several types of 2D line graphs from the

scattering data. These are, a cut at constant Q, a cut at constant E and a cut
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along a locus. These graphs help to identify and quantify features in the full

poly-CINS plot.

To create a line graph the user presses the Line Graphs button on the Contour

Plots window. This brings up a new window with options for the creation

of line graphs, this is shown in figure (3.20) as window F. The window gives

information on which data set is currently selected and the user can either type

in a value for a constant energy or momentum value through the data, or an

angle and energy for a locus through the data. In the case of constant values

a point can be chosen by clicking on the poly-CINS graph after checking the

Select Data Point box. This is demonstrated in figure (3.21).

The data point shown is chosen by the user clicking on a point in the graph,

this action shows the axis points this point corresponds to, and these values

are also sent to the boxes in the line graphs window. The lines through the

data at these points are created as graphs when the user clicks on the Constant

Energy or Constant Momentum buttons on the line graphs window.

The first graph below the poly-CINS plot shows a line though the data at an

energy of 80 cm−1, the second graph a cut at constant momentum of 1.4018

Å−1. The peaks and edges from the poly-CINS data can be seen clearly.

Figure (3.22) shows a locus cut through the data at an angle of 40◦ with an

initial energy of 10 meV.

It is also possible to plot several lines on the same graph, allowing the user to

see the evolution of a feature over S(Q, ω) space. On the Line Graphs window

there is a tick box called Add to Current, this box will allow the addition of

more line graph data to graphs of the same type and data set as demonstrated

in figure (3.23).
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Figure 3.22: Cut along a locus

Figure 3.23: Several cuts at different energy values
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3.5.7 Combine Scatter

Scatter data can also be combined. This helps to show if experimental data has

contributions from different force constants or elements. Figure (3.24) shows

individual Scatter data for magnesium deuteride and for graphite.

Figure 3.24: Scatter data sets for different materals

(a) Scatter data for a MgD2 crystal (b) Scatter data for graphite

Figure 3.25: Combination of Scatter data

(a) The combine scatter GUI
(b) An equal ratio combination of MgD2

and graphite Scatter data
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The window which controls the combination of data is shown in figure (3.20)

as window E and also in figure (3.25a). The window is shown when the user

presses the Combine Scatter button which is button (5) in the Contour Plots

figure (3.9). The user chooses which data sets are to be combined and at what

ratios. Applying this combination shows the user a plot of the combined sets.

The Save button saves this combination as a data set which can then be worked

with.

Figure (3.25b) shows a model graphite data set combined with a model mag-

netism deuteride for demonstration.

3.5.8 Locus Options

As covered previously the loci an instrument covers can be easily found given

details such as angular range and initial energy.

Figure 3.26: Creating experimental loci

(a) The locus options GUI
(b) Scatter data over a loci starting at 10◦ to

160◦ with an initial energy of 5meV

Using the Locus Options window, which is shown to the user by Contour

Button (4), instrument loci can be applied to Scatter data. This is useful for
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planning experiments as the user can check if features predicted by Scatter are

covered. It is also useful in interpreting experimental data, this functionally is

highlighted in the Graphite chapter.

The loci are found using equation (3.2) once again and the user then has the

option of showing just the loci as demonstrated in the Instruments section, the

loci applied to Scatter data as demonstrated in figure (3.26b) or Scatter data

overlayed on experimental as demonstrated in figure (3.27).

Figure 3.27: Contours of Scatter data, over graphite IN5 measurement

The application of Neutronplot to the analysis of poly-CINS data is shown in

chapters 4 and 5.
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Chapter 4

Structure of Graphite Based

Materials

4.1 Graphite Background

In this chapter we will investigate the structure of several natural graphite

powder samples. Historically the study of the structure and dynamics of

graphite focused on the perfect crystal, this was followed by studies of var-

ious artificial graphitic materials such as those suitable for use as neutron

moderators. The natural graphite samples allow us to investigate the defects

in graphite. We will particularly focus on stacking faults such as the rhom-

bohedral and turbostratic structures present in these samples. We will also

investigate how the structure of an expanded graphite derived from natural

graphite is changed by the processes it has undergone.

Graphite was amongst the earliest materials studied using x-ray diffraction

with measurements taken by both Bragg [31] and Ewald [32] in 1914. The struc-

ture of graphite was confirmed in 1924 by Bernal [33]. Investigations into the

behaviour and structure of graphites continued, peaking during the creation

of graphite moderated reactors. The study of graphite then waned but was
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recently revived with the discovery of fullerenes and the need to investigate

the end of life of nuclear reactors.

Figure 4.1: The structure of hexagonal graphite created in Materials Studio

(a) Hexagonal graphite structure viewed
perpendicular to graphene planes

(b) Hexagonal graphite structure showing
layered structure and stacking

Perfect crystalline graphite is comprised of carbon atoms in a hexagonal lattice

structure. It has the space group P63/mmc and lattice parameters of a=2.461

Å and c=6.708 Å giving a plane to plane distance of 3.354 Å.

Atoms are arranged in sheets with strong sp2 covalent bonding between the

atoms in the layer, leaving free electrons in the material allowing graphite to

act as a conductor. Layers are weakly bound to each other by Van der Waals

interactions. The high anisotropy in graphite means that its properties vary

depending on the orientation of the sample with phonons travelling quickly

in the layers but slowly between. Graphite has a high melting point and a low

thermal conductivity perpendicular to the plane. Its electrical properties lead

to its use as an electrode and in batteries. It has a low neutron absorption

cross-section and is therefore used as a moderator.

Natural graphite is formed by the reduction of carbon deposits during meta-

morphosis. Under high temperatures hexagonal graphite will form together
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with possible non-carbon impurities. Graphite can experience mechanical

forces in the earth creating areas of rhombohedral and turbostratic graphites.

These can be annealed fully or partially due to heating of the material far un-

derground. Geologists study the structure of natural graphite to discover the

geological history of the areas in which it is found [34]. As natural graphite sam-

ples can contain elements of different graphite structures, we will investigate

the structure of Highly Ordered Pyrolytic Graphite (HOPG), rhombohedrally

stacked graphite and turbostratic graphite, to aid understanding of the full

structure of natural graphite.

Figure 4.2: Two of the 00l planes in the hexagonal lattice shown in the
graphite structure

(a) The 001 planes of the hexago-
nal lattice

(b) The 002 planes of the hexago-
nal lattice

There are several important planes of atoms present in the graphite lattice

which give rise to peaks in the graphite XRD pattern. The 00l planes are

parallel to the layers of carbon atoms in graphite. Odd 00l directions do not

correspond with layers of atoms and so give no peaks in a diffraction measure-

ment. Even 00l reflections do correspond with atomic planes and the 002 plane

gives the most intense diffraction peak of these reflections and generally the

whole XRD measurement, depending on orientation and the disorder in the

sample. The 00l peaks give information about the spacing of graphene layers
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in graphite. The broadness and position of the peaks can give information on

the range of interlayer widths which is related to the level of disorder in the

material.

Figure 4.3: hkl planes of the hexagonal lattice shown in graphite

(a) The 100 planes of the hexagonal lat-
tice

(b) The 102 planes of the hexago-
nal lattice

Other planes in the hexagonal lattice are the hk0 planes such as 110, 100 and

010. These directions are equivalent and are perpendicular to the 00l reflec-

tions. The hk0 planes give information about the distance between atoms

within the graphene plane.

Other planes cover directions both in and perpendicular to the graphite plane

such as the 101 102 and 212 directions. Peaks arising from these planes will be

seen in following diffraction measurements.

As our measurements are on powder samples, as discussed in the theory chap-

ter, this should mean the effects of orientation are removed as all planes are

distributed equally. However in practice the shape of the powder particles

affects how the planes are orientated with respect to the diffraction surface.

Natural graphite shows substantial peak broadening particularly on the 00l

peaks as graphite is particularly susceptible to changes of graphene interlayer

distance due to the weak bonding between these layers.
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4.1.1 HOPG

HOPG (Highly Ordered Pyrolytic Graphite) is an artificial form of graphite.

It is produced by applying high temperatures and pressures to pyrocarbons.

HOPG has an almost perfect structure in reference to the layered structure

in graphite. The process of creating HOPG results in pinning between the

layers giving highly defined layers of graphite with very little difference in

the distance between layers and in the orientation of the layers. Single crystal

samples of graphite consist of small blocks of crystal known as ’mosaic blocks’,

the average angular spread of orientation of these blocks is known as ’mosaic

spread’. A high mosaic spread affects diffraction patterns and results in peak

broadening. HOPG is defined by having a mosaic spread of less than 1%.

Figure 4.4: XRD measurements of HOPG compared to natural graphite [35]

Stacking faults leading to features such as turbostratic and rhombohedral graphite,

as described below, are deliberately minimised. It is used as a model material

for calibrating microscopes and a basis of comparison to other graphitic ma-

terials. Due to its use as a reference material XRD measurements of HOPG
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occur frequently in literature. Figure (4.4) shows work by Endo et al. [35]with

XRD measurements of HOPG compared to a coke derived graphite.

Taken on a Rigaku RINT 2100 powder diffractometer it clearly highlights the

difference between the graphite and HOPG XRD measurements, with the

graphite having much lower intensity 00l peaks, thus highlighting the other

reflections in the material. The graphite also shows peaks at a lower angle

than the 002 indicating the presence of impurities in the material.

This figure demonstrates that pure HOPG gives very high intensity narrow

width peaks in the 00l reflections with minimal other reflections visible. The

lack of other visible reflections could be due to the way the planes are bonded

with interstitial atoms, thus removing the planes of atoms for other reflections.

Alternatively the relative peak intensity of the 002 peak could be so high that

the other reflections cannot be seen in the intensities shown. In contrast the

natural graphite has wider 00l peaks due to the range of plane spacing and

orientation and at least the 100, 101 and 110 peaks are clearly present.

4.1.2 Turbostratic

Turbostratic graphite is defined as having layers which are randomly rotated

and translated with respect each other. This means that the stacking patterns,

such as ABAB, are lost. This affects the interlayer spacing and the intensity of

diffraction peaks [10] depending on the fraction of correctly orientated graphite

layers.

As previously stated the interlayer spacing in perfect hexagonal graphite is

3.35 Å, this can increase to a maximum of 3.44 Å [36]. Natural graphite is likely

to have interlayer values somewhere between these figures depending on the

degree of disorder in the material.
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Figure 4.5: Turbostratic graphite. This view is perpendicular to the graphite
layers which are rotated with respect to each other

Figure (4.6) shows XRD patterns obtained from graphite after milling and an-

nealing [37]. It demonstrates how graphite becomes more turbostratic in nature

after undergoing mechanical pressure.

Figure 4.6: XRD patterns of different graphite powders. (a) As-received, (b)
Ball-milled for 20 h,(c) Ball-milled for 20 h and then annealed at
1700C for 9h [37]

This figure demonstrates the reduction in peak height and increased broaden-

ing of the 00l peaks in graphite when the material becomes more disordered.

As they are before and after measurements of the same material these changes

can be directly compared. In the samples analysed in this work such direct

comparisons to a perfectly ordered graphite cannot be made, but a measure-
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ment of the turbostratic nature of a graphite sample is possible.

As shown in figure (4.6) turbostratic layers result in a shift in the 002 peak to

the left as wider layers are present. The peak position can be converted to a

measurement of layer spacing and the fraction of turbostratic graphite found.

Given the relative interlayer spacings for hexagonal and turbostratic graphite

a measure of the turbostratic nature of a graphite sample can be found. This

measure is known as the p value of the graphite, it is defined as "the proportion

of disorientated layers" [10] and was originally proposed by Franklin [38].

From Franklin we have

d(002) =
c
2
= 3.354− 0.086(1− p2) (4.1)

where 3.354 is the value in angstroms for the interlayer spacing of hexagonal

graphite. The average interlayer spacing of the sample d(002) is found from

the XRD peak position.

This can be re-arranged to give the p value of the sample.

p =

√
c
2 − 3.354

0.086
(4.2)

This equation gives perfect graphite a p value of 0 and fully turbostratic

graphite a p value of 1, HOPG would have a p value of 0.

It is possible that turbostratic stacking could lead to areas of rhombohedral

graphite.
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4.1.3 Rhombohedral Graphite

Rhombohedral graphite has an ABCABC stacking structure and is formed by

slipping of layers by mechanical deformation. It has a D3d5 − R3̄m lattice struc-

ture with unit cell constants of a = 2.566 Å and c = 10.062 Å as described by

IUPAC.

Figure 4.7: Rhombohedral graphite lattice structure. The c lattice parameter
labelled is in Angstroms

These dimensions give a plane to plane distance S of 3.354 Å, matching that

of hexagonal graphite. Rhombohedrally stacked graphite is generally found

in small fractions in natural graphite and converts to hexagonal graphite on

annealing.

The structure of rhombohedral graphite is often described in terms of a rhom-

bohedral lattice structure, where the dimensions are described in terms of an

angle α and distance a where all angles and dimensions of the cell are equal

a = b = c, α = β = γ. Hexagonal cells have parameters of a = b 6= c,

α = β = 90 γ = 120. These crystal structures are equivalent as shown in figure

(4.8) which shows the rhombohedral cell within the hexagonal.

XRD measurements of natural graphite in literature typically highlight the

presence of rhombohedral graphite. For example figure (4.9) from Parthasarathy
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Figure 4.8: Rhombohedral graphite lattice structure. The c lattice parameter
labelled is in Angstroms

et al. [39] shows XRD patterns of natural graphite containing rhombohedral lay-

ers, compared to a sample without the presence of rhombohedral graphite.

The rhombohedral peaks are labelled with R.

Figure 4.9: Comparison of graphite samples with and without rhombohedral
stacking

Figure (4.10) is an XRD measurement of natural graphite taken by Ong and

Yang [40] which also labels rhombohedral peaks.

Both of these figures show the R101 and R012 peaks at approximately 43◦

and 46◦ which are common to all samples containing a detectable fraction of
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Figure 4.10: A natural graphite sample containing rhombohedral stacking [40]

rhombohedral graphite. Other peaks of rhombohedral graphite such as the 00l

reflections are so close to hexagonal graphite reflections that these hexagonal

peaks dominate. Parthasarathy et al. estimated the proportion of rhombo-

hedral graphite in their sample to be 20-25%, by comparison of the intensity

ratios for the 101 peaks of both forms.

The distance between planes in a material d can be calculated if the lattice

parameters, which can be found from XRD measurements, are known. The d

equation for the hexagonal cell is

dhkl =
1√

4
3 a2(h2 + k2 + hk) + l2

c2

(4.3)

where a and c are lattice parameters, h, k and l are set to the relevant index to

find the distances required. The d spacing for rhombohedral cells can also be

found. The following equation is taken from Klug [41].

dhkl =
a√

(h2+k2+l2) sin2 α+2(hk+hl+kl)(cos2 α+cos α)
1+2cos3α−3 cos2 α

(4.4)

Hexagonal lattice parameters can be converted to rhombohedral using the fol-
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lowing equations [41].

aR =
1
3

√
3a2

H + c2 (4.5)

sin
α

2
=

3
2
√

3 + (c/aH)2
(4.6)

4.2 Analysis of Natural Graphite

Figure 4.11: Low intensity detail of XRD patterns from untreated Branwell
graphites, as received, taken with D-5000 diffractometer, CuKa
radiation. Data has been normalised to the (002) reflections

Natural graphite typically contains examples of different types of graphite

structures. Four natural graphite samples were provided by Branwell Graphite
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which were labelled A, B, C and D. For analysis of the graphite samples graphs

will be presented in terms of 2θ for ease of comparison with other examples.

All of the structural data for the Branwell graphites was taken with a CuKa

radiation powder XRD diffractometer.

In figure (4.11) all of the peaks which fit hexagonal or rhombohedral graphite

are indexed. The peaks without indices do not fit any known graphite struc-

tures. The peaks in Branwell A and Branwell C at 18◦ are likely to be defects

with long range order rather than impurities, as typical impurities such as

metals have smaller lattice parameters than graphite. Rhombohedral peaks

are visible in all the samples other than Branwell C, and a large peak attached

to the left of 002 peak is present in all of the samples. They were analysed by

Keens [1] for the likelihood of successful C60 intercalation.

4.2.1 Previous Analysis

The structure of the Branwell Graphites was analysed by Keens [1], who wanted

to ascertain which specimen would be most suitable for C60 intercalation. It

was decided that purity and disorder were the most important characteris-

tics, with high purity and high disorder being desirable. The samples were

analysed using electron microscopy to check the visual structure at nanometer

scale and with XRD to check the bulk structure.

The interlayer spacing of the graphites was found from equation (4.3) In the

cases of Branwell B and Branwell D the distance between layers was found to

be 3.3645 Å and 3.3595 Å respectively by Keens, these slight increases on the

standard interlayer value suggesting some turbostratic nature to the samples

with Branwell B showing this more. The p values of the Branwell graphites

was then calculated from these values.

Below we have a comparison of the interlayer spacing and p value of the
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graphite samples analysed by Keens values quoted above.

Table 4.1: Interlayer distances and p values for Branwell graphites found by
Keens [1].

Graphite Interlayer Distance (Å) p value
Branwell A 3.3695 0.425
Branwell B 3.3636 0.349
Branwell C 3.3645 0.349
Branwell D 3.3693 0.253

Branwell A has high disorder but also has high quantities of impurities as

shown by the unindexed peaks in the XRD data making it unsuitable for in-

tercalation. Branwell C has an average level of disorder for the samples and

also has impurities shown in the XRD data and so was deemed unsuitable.

Branwell D has a low level of impurities but also a low level of disorder, thus

Branwell B was chosen for intercalation as it best matched the criteria of low

levels of impurities and high disorder needed.

4.2.2 New Analysis

In this analysis we will mainly focus on the Branwell B and D samples for

similar reasons to those given above. Branwell D graphite was chosen as a

candidate for study as a good example of natural graphite due to the low

levels of impurities in the material and the presence of rhombohedral graphite.

It also has a similar structure to Branwell B and so provides a good comparison

for further studies to the altered materials which arise from Branwell B.

Branwell B was sourced in China and is 98% carbon. Branwell D was found

in Zimbabwe and is more than 99% carbon. The XRD data gathered by Keens

was analysed further as it was to be used as supporting information for the

neutron scattering data analysed later in this work. The rhombohedral and

unexplained XRD peaks were of particular interest in this analysis, as well as

changes in peak intensity due to disorder.
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Figure 4.12: Comparison of the XRD patterns of Branwell D and B graphite

Figure 4.12 shows a direct comparison of the XRD patterns of Branwell D

and Branwell B graphite. Visually these patterns seem very similar, with a

deviation at around 58◦ where Branwell D shows a small peak that is not

present in the Branwell B graph, probably due to impurities in the material.

The indexing clarifies the existence of rhombohedral graphite in the sample

and highlights the presence of impurities in the material.

Table (4.2) shows a comparison of the interlayer spacing and p value of the

graphite samples analysed. These values have been recalculated and thus dif-

fer slightly from the Keens values quoted above.

The peak measurements for Branwell B and D graphite give increases in the
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Table 4.2: Interlayer distances and p values for different graphites
Graphite Interlayer Distance (Å) p value

Hexagonal 3.354 0
Rhombohedral 3.354 0

Branwell B 3.3613 0.29
Branwell D 3.367 0.39

Expanded Graphite 3.3818 0.57

interlayer distance of perfect graphite of 0.0073 Å and 0.013 Å respectively.

4.2.3 Rhombohedral Lattice Parameters

Rhombohedral graphite was first reported by Lipson and Stokes [42] who de-

scribed a R-3mr symmetry with a=3.635 Å and α = 39.49◦. This is equal to a

hexagonal structure where a=2.456 Å and c=10.044 Å. This gives an interlayer

distance S of 3.348 Å which is slightly smaller than the current accepted value

of 3.354 Å. The graphite studied was described as artificial but they mentioned

that the rhombohedral structure seems to be present in natural graphite in the

same proportions as their sample, which they give as 14% rhombohedral, 6%

disordered and 80% hexagonal.

As previously mentioned the currently accepted lattice parameters are a D3d5−

R3̄m structure with a=2.566 Å and c=10.062 Å as found in the IUPAC Com-

pendium of Chemical Terminology (1997) giving a interlayer value of 3.354 Å

matching that of hexagonal graphite.

The XRD simulation routine Reflex in Materials Studio was used in conjuga-

tion with the equation

dhkl =
1√

4
3 a2(h2 + k2 + hk) + l2

c2

(4.7)

to analyse the rhombohedral content of the Branwell graphites.
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The Branwell graphite samples which contain detectable rhombohedral peaks

show them at around 43.3◦, 46.1◦ and 63.2◦ for the 101, 102 and 105 reflections

respectively. Models were created in Materials Studio to check the fit of the

rhombohedral peaks with those predicted by IUPAC. The models had atomic

bases at ±(u, u, u) where u is 1
6 for the rhombohedral lattice as suggested

by Lipson and Stokes [42] and the Naval Research Laboratory Crystal Lattice

Structure database.

Figure 4.13: Rhombohedral graphite structure created with IUPAC dimen-
sions for the creation of XRD simulations.

(a) Rhombohedral graphite model viewed
normal to the graphite planes with the
a lattice parameter shown in red

(b) Rhombohedral graphite model viewed
parallel to the graphite planes with the
c lattice parameter shown in green.

Using the IUPAC values for rhombohedral graphite peaks would be expected

at 41.6◦ for 101 and 44.6◦ for 102 reflections. As the peaks did not fit well with

the indices predicted by IUPAC, being around 1.5◦ larger which corresponds

to a 10% change in c dimension, a literature search was performed to see if the

peaks found by others matched or disagreed with the Branwell peaks.

Five papers with graphite XRD patterns containing rhombohedral peaks were

chosen for comparison. These were: Soneda et al. [43] shown in figure (4.14a).

Kohs et al. [44] shown in figure (4.14b, Parthasarathy et al. [39] shown in figure

(4.14c), Touzain et al. [34] shown in figure (4.14d) and Matuyama et al. [45]shown
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in figure (4.15). These papers include both natural and manufactured graphite

samples.

Figure 4.14: XRD peaks of graphite samples containing rhombohedral stack-
ing in terms of 2θ.

(a) Graphite nanofibers containing rhombohedral
stacking

(b) Comparison of graphite anodes
containing and not containing
rhombohedral stacking

(c) Natural graphite containing rhombo-
hedral stacking compared to graphite
without

(d) Natural graphite containing rhom-
bohedral stacking

None of the papers suggested a difference in interlayer distance from hexago-

nal graphite and several mentioned that rhombohedral graphite has the same

interlayer spacing as hexagonal.

All of the figures from literature show rhombohedral peaks within 0.5◦ of the

Branwell peaks, and thus show disagreement of around 1.5◦ of the predicted

IUPAC values.
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Figure 4.15: XRD peaks of a graphite sample containing rhombohedral stack-
ing 1/d

An estimate of interlayer spacing for the rhombohedral structures in these

graphites can be made. However as the peak positions are taken from the fig-

ures these values will not be highly accurate but will give enough information

for comparison with the Branwell graphites. The results of S spacing calcula-

tions using dkhl values derived from the peak positions in the XRD patterns is

shown below. The error in the estimates from literature is around ± 0.5 Å.

Table 4.3: S parameters from XRD peaks with a set to 2.566 Å
hkl Branwell Mean Soneda Kohs Parthasatly Touzain Matuyama Average

101 S 2.10 Å 2.05 Å 2.01 Å 2.19 Å 2.22 Å 1.99 Å 2.10 Å
102 S 2.81 Å 2.86 Å 2.83 Å 2.86 Å 2.91 Å 2.65 Å 2.82 Å
105 S 3.25 Å 3.286 Å N/A N/A N/A N/A 3.266 Å

For the first calculation the a parameter used was the IUPAC value as it was

assumed that the a lattice value for rhombohedral graphite would remain fixed

as this bond is much stronger than that between the layers and any change in

dimension would be confined to the c direction.

It is obvious that these values are drastically smaller than the 3.354 Å value ex-

pected, with the calculated distance increasing at higher reflections. As these

values were so far from those expected the calculations were repeated using

the hexagonal a lattice parameter. As the a value only applies to atoms within

the layer there seems to be no reason why it would differ from hexagonal to

rhombohedral stacking. The IUPAC value also gives a nearest neighbour dis-

tance of 1.482 Å, when the hexagonal graphite value is 1.420 Å. The Lipson
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and Stokes a parameter gives a nearest neighbour distance much closer to that

of hexagonal graphite. The increase in nearest neighbour distance for rhom-

bohedral graphite given by IUPAC is likely to be unphysical as the graphite

structure is very stable in the plane.

Repeating the calculation with the hexagonal graphite parameter of a=2.461 Å

gave results much closer to the expected value.

Table 4.4: S parameters from XRD peaks with a set to 2.461 Å
hkl Branwell Mean Soneda Kohs Parthasatly Touzain Matuyama Average

101 S 3.75 Å 4.14 Å 3.53 Å 4.32 Å 4.76 Å 3.27 Å 3.87 Å
102 S 3.39 Å 3.48 Å 3.43 Å 3.48 Å 3.57 Å 3.12 Å 3.41 Å
105 S 3.37 Å 3.41 Å N/A N/A N/A N/A 3.38 Å

This demonstrates that the IUPAC a value is incorrect if using an atomic basis

of ±(1
6 , 1

6 , 1
6) and that the standard hexagonal a value can be used to analyse

the structure of rhombohedral graphite in the Branwell samples. Thus we will

continue our analysis using this value.

Figure 4.16: Comparison of the area containing rhombohedral peaks in exfo-
liated and natural Branwell B graphite XRD

Lattice parameters for rhombohedral graphite were found by Keens in the

exfoliated graphite using GSAS profile refinement. For Branwell B exfoliated
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α was found to be 39.1468◦ and a=3.8069 Å, giving hexagonal parameters of a=

2.5507 Å and c= 10.5316 Å and thus an interlayer spacing of 3.5105 Å, this fits

well with the values found for the rhombohedral peaks in Branwell B. However

the evidence for rhombohedral peaks in the exfoliated sample is unconvincing

as shown in the figure (4.16).

The first attempt at finding the dimensions of rhombohedral graphite in the

Branwell samples used the peak positions for different indices along with the

dhkl equation. This equation is very sensitive to small changes in peak position,

a 1% change in peak position translates to a 10% change in the S value calcu-

lated hence the errors in the individual S values are quite large. The peaks also

vary in their sharpness making it difficult to obtain accurate values for peak

position. Plotting the S values found with both a parameters shows how the

calculated parameter is affected by index and a parameter.

Figure 4.17: S values calculated from Branwell graphite and literature rhom-
bohedral peaks. Points were calculated using the hexagonal a
parameter

For figure (4.17) set 1 is the average Branwell graphite peak, sets 2 to 7 are the

98



literature values in the order of the tables above thus set 4 is Soneda and so on.

The graph shows that the majority of the measurements using the hexagonal

a parameter give an S value between 3 Å and 5 Å.

From this analysis it seems that the interlayer spacing of rhombohedral graphite

is larger than that of hexagonal, however the estimated literature values can

not be relied upon as the errors will be too large. We need to find a value for

the interlayer spacing in the Branwell graphites as we have the raw diffraction

data for these samples.

Figure 4.18: Interlayer spacing calculated for the Branwell graphites with er-
ror bars

Figure (4.18) shows the interlayer spacing calculated from each sample’s rhom-

bohedral peaks. The 101 peak gives a much larger error in the interlayer spac-

ing value although, as shown below, errors in the peak position are similar for
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all the indices. Figure (4.19) shows the d values of the peaks taken directly

from the XRD measurements.

Figure 4.19: Peak positions of rhombohedral planes with error bars

Table 4.5: c values derived from rhombohedral peaks
hkl Branwell B (Å) Branwell D (Å)
101 3.503 3.760
102 3.428 3.616
105 3.366 3.361

We have several candidates therefore when defining the rhombohedral c lattice

parameter in the Branwell graphites. The average from the values of Branwell

B and D give an interlayer value of 3.529 Å, which is greater than that of tur-

bostratic graphite. The values from Branwell B have the highest agreement

between themselves and give an average interlayer of 3.442 Å which is similar

to the turbostratic value. The lowest possible estimate comes from the Bran-

well D 105 value which gives an interlayer value of 3.361 Å, which is again

higher than the standard hexagonal graphite value but fits within turbostrac-

tic bounds.
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Due to the variance in values obtained looking at individual peaks GSAS was

used to perform a Rietveld refinement on the A B and D samples.

The results of this analysis gave interlayer values of 3.396 Å, 3.397 Å and 3.375

Å for A,B and D respectively. The full values obtained are shown in table 4.6.

Comparison of calculated and measured peak positions show some disagree-

ment however, as shown in figure (4.20).

Table 4.6: Lattice Parameter a, interlayer distance S and p value of rhombohe-
dral graphite in the Branwell samples calculated with GSAS

Sample a (Å) S (Å) p
Ideal 2.461 3.354 0

Branwell A 2.464 3.396 0.6988
Branwell B 2.460 3.397 0.7071
Branwell D 2.464 3.375 0.4942

Figure 4.20: GSAS matches to Branwell graphite peaks

(a) GSAS fits to Branwell A graphite peaks (b) GSAS fits to Branwell D graphite peaks

These fits show that although the 002 hexagonal peak in the Branwell graphites

is well defined the 101 peaks of both the hexagonal and rhombohedral stack-

ing are broad and tend towards high interlayer spacing, assuming that the a

parameter is unaffected. As discussed in the later Interlayer Distance Analysis

section, the proof for a larger a parameter is not present.

Due to an issue with the validity of some peaks before the hexagonal 002,

new XRD measurements of the Branwell D graphite were taken. The details
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of these experiments are given in a later section. In these measurements the

rhombohedral peaks of the Branwell D are shown to resolve into two peaks.

Figure 4.21: XRD of Branwell D showing the results of new measurements

This suggests that there is more than one phase of rhombohedral graphite in

the sample. The two peaks are shown in measurements from two separate

instruments and fit the ranges shown by the original measurements. If these

separate peaks were also present in the other Branwell samples this would

explain the errors and range in the rhombohedral interlayer values present in

the samples. This also explains the difficulty with obtaining good GSAS fits.

Bringing this information together therefore points to two possible solutions

for the rhombohedral parameters found in the Branwell graphites. The large

interlayer distances could be due to a mixture of high disorder and different

phases of graphite together with errors due to the lack of an 00X peak for the

rhombohedral graphite. It is also possible that Rhombohedral graphites tend

to have larger interlayer spacing than hexagonal. Some evidence of this can be
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found in (4.22) by Wang et al. [46].

Figure 4.22: XRD measurements of graphite at different pressures

In figure (4.22) 002 is the hexagonal graphite d spacing, the peaks enclosed

by the dashed 003 area are interpreted as rhombohedral peaks. For this ex-

periment a graphite sample was put under pressure and a synchrotron XRD

measurement was taken at different points of compression and decompres-

sion. The figure shows the 003 d spacing as larger than the 002 d spacing at

similar pressures. Nuske et al. [47] also has rhombohedral peaks which suggest

an interlayer spacing of between 3.4 and 3.5 Å.

Whether deliberately formed or naturally occurring, rhombohedral layers will

form in the most disordered or stressed areas of the graphite. Due to this it

would follow that in the majority of cases rhombohedral graphite has a larger
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interlayer spacing than hexagonal graphite. More work specifically on rhom-

bohedral graphites would have to be undertaken to see if this is the case for all

rhombohedral graphites. Finding lattice parameters is especially difficult as

rhombohedral graphite lacks the visible 00X peaks of the hexagonal graphite

which allow the interlayer spacing for the bulk of the material to be measured,

without being affected by the a parameter. In the case of the Branwell graphites

the calculated interlayer spacing for rhombohedral stacking is around 0.03 Å

higher than the standard value.

4.2.4 Interlayer Distance Analysis

All of the Branwell samples contain a peak at around 23.9◦ including the Bran-

well C sample which shows no rhombohedral peaks. We shall refer to this

peak as ’23’. It comes before the hexagonal 002 peak and corresponds to a d

spacing of 3.723 Å. This is substantially larger than the interlayer spacing in

graphite and does not match any typical impurities found in graphite such as

transition metals. We will therefore need to investigate possible origins of this

peak.

One possibility is that this is the 003 peak of the rhombohedral graphite in the

samples. The peak does give a similar interlayer spacing value to that given by

the rhombohedral 101 peak but there are several issues with this assumption.

Firstly this peak is also present in the Branwell C sample which shows no other

signs of rhombohedral graphite. In the samples which do show rhombohedral

stacking the 101 spacing values have large error bounds making it difficult to

trust the figures given by the 101 peak.

The possible 003 peak also underestimates the quantity of rhombohedral graphite

in the sample. Typically the proportion of rhombohedral graphite in a sample

is taken from the ratio between the rhombohedral and hexagonal 101 peaks.
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Figure 4.23: Peak before 002 in Branwell graphite samples

In the case of Branwell D the hexagonal 101 peak is 2.7 times higher than the

rhombohedral peak, however the 002 peak is 129 times higher than this pos-

sible 003 peak indicating that this peak is either unrelated to rhombohedral

graphite or only represents a small proportion of it.

The samples show a high level of agreement of intensity and position of this

peak, with a difference of only 0.05◦ between samples. In contrast the 101

peaks of the samples show more variance on intensity and position. This

suggests that the 23 peak is a 00X peak of graphite as it does not match the

pattern shown by the 101 intensities for the samples. The 23 peak does not

fit well with the intensities given by the 004 peaks for each sample but does

correlate well with the pattern of positions shown.
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Table 4.7: Comparison of peak position and intensity for Branwell graphites,
where intensity is relative to the 002 peak.

Branwell A Branwell B Branwell C Branwell D
23 position 23.95◦ 23.95◦ 23.9◦ 23.9◦

101 position 44.50◦ 44.35◦ n/a 44.50◦

004 position 54.65◦ 54.56◦ 54.55◦ 54.55◦

23 intensity 0.89 0.77 0.86 0.72
101 intensity 0.30 0.08 n/a 0.06
004 intensity 4.70 5.58 5.70 7.14

Figure 4.24: XRD of all the Branwell samples highlighting the peak at 23.9◦

Figure 4.25: 101 peaks of the Branwell samples

Due to the unusual agreement of position and intensity given by peak 23 in
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samples which do not otherwise have much in common an investigation of

whether this peak was an artifact was undertaken.

Data from the elastic line of a Poly CINS measurement of Branwell D did not

show this peak, however spectrometers are poor diffractometers and cannot

be relied upon to show fine detail.

Figure 4.26: Comparison of elastic line of poly-CINS measurement to XRD

(a) IN5 poly-CINS elastic line measurement
of Branwell D

(b) Elastic line measurement of Branwell D
compared with XRD of Branwell D

An exfoliated sample of the Branwell B was measured on the same instrument

under the same conditions as the Branwell samples.

Figure 4.27: 002 peak of exfoliated graphite

The exfoliated sample does not show the 23 peak, this suggests the peak is not
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an artifact and could be annealed out, though this is not fully clear as the noise

of the sample also removes fine detail of the peaks in the sample.

A measurement of Branwell D graphite was retaken for this work, three years

after the original measurement on a more modern Siemens D5000 diffractome-

ter and on a Bruker AXS D8 to ensure the feature was not due to an instrument

artifact. Only the Branwell D was remeasured as unfortunately this was the

only sample still available.

Figure 4.28: New measurements of Branwell D XRD

The D5000 measurements were taken by running the sample from 10 2θ to

90 2θ with a step size of 0.01 and step time of 25 seconds. The sample was

prepared by packing directly into a standard holder. The D8 measurements

were taken under the same criteria but silicon grease was used to secure the

powder sample in this diffractometer. The D5000 has better optics than the

D8 and thus gives a better peak shape, but the D8 has a better peak detection

system.
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Figure 4.29: Low 2θ new XRD data

These measurements give a range of interlayer values for Branwell D, the orig-

inal D5000 gave a value of 3.366 Å, the D8 gave 3.356 Å and the 2014 D5000

gave 3.361 Å. It can be assumed the 2014 value is the most accurate due to

the superior optics. All the measurements still show the 23 peak indicating

that it is not an instrument artifact. They also show additional peaks to the

original measurement, for example the new D5000 highlights a peak at 25.4◦

which corresponds to a distance of 3.5039 Å. This peak is also present in the

exfoliated sample.

Figure 4.30: Peak at 25.4◦ in exfoliated and Branwell B graphite

A peak is also shown before the 004 peak which would correspond to an inter-
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Figure 4.31: 004 peaks of new XRD measurements

layer spacing of 3.512 Å. The 101 peaks of both hexagonal and rhombohederal

graphite are resolved into two peaks in both the new measurements.

Figure 4.32: Peaks around 101 in new XRD measurements

The splitting is most obvious in the hexagonal 101 peak but is not shown in
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the 10X peaks from 102 to 105. Splitting is shown strongly in the hexagonal

2-12 peak and the rhombohedral 101, it is subtle in the rhombohedral 102.

The new XRD data shows there is a range of interlayer spacings in the hexag-

onal and rhombohedral stacking in Branwell D graphite. All the hexagonal

00X peaks show adjacent lower intensity peaks suggesting several areas of the

graphite with a wider interlayer spacing than the bulk.

This also shows an effect in other peaks, but does not seem to affect those

from in plane peaks such as the 100. Though it is possible there is a range of

a parameters, they do not drastically affect the peaks shown. It is not possible

to match any particular auxiliary peak to just the hexagonal or rhombohedral

stacking as both show the same splitting of the 101 peaks. If we assume the

other Branwell samples would show similar features to the Branwell D this

range of interlayer spacings would explain the issues with finding good in-

terlayer values from 101 peaks as well as the problems of characterising the

rhombohedral stacking in the graphites.

4.2.5 Exfoliated Graphite

Branwell B was exfoliated by Keens [1] using an an acid mixture followed by

thermal shock, resulting in a visible expansion of the material of around 30

times original size. X-ray analysis was performed under the same conditions

of the previous experiments. This treatment has had several effects on the XRD

pattern of the material.

The most obvious difference is the relative peak intensities, in figure (4.33) the

diffraction patterns have been normalised to the 002 peak which highlights the

increase in relative intensity of the non 00l peaks. In the case of the Branwell

B graphite the 002 peak is 786 times higher than the 101 peak, whereas for the

exfoliated graphite this is decreased to a difference of just 14 times.
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Figure 4.33: XRD pattern of expanded Branwell B graphite, compared with
the original sample, data normalised to the 002 peak

The difference in area between the 002 and 101 peaks for the exfoliated and

Branwell B has also been calculated by multiplying the peak height with the

width at half maximum. For Branwell B graphite the 002 peak is 340± 5 times

the area of the 101. For exfoliated graphite the difference in peak areas is 18± 2

thus the intensity of the 002 peak has been reduced by an order of magnitude,

or 19 times after exfoliation.

If we plot the expanded graphite with Branwell B at 50 times normal intensity

we can see the effect exfoliation has had on the rest of the XRD pattern. The

100 and 101 peaks of the exfoliated sample are much less well defined and sev-

eral peaks are missing entirely. The peaks have broadened indicating a much

wider range of layer spacing in the material. The rhombohedral peaks are no
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Figure 4.34: XRD pattern of exfoliated Branwell B graphite, compared with
the original sample at fifty times the original intensity

longer present, this could be due to the process changing the stacking of the

rhombohedral areas or to the broadening of other peaks overlapping the rhom-

boheral peaks. In any case the sample no longer has detectable rhombohederal

stacking.

The loss of 002 intensity could be attributed to a change in orientation of the

sample compared to the Branwell sample, as the two samples had different

particle shapes which would lead to different packing in the sample holder.

However it is much more likely that the exfoliation process itself, with the

weakening of the bonds between the layer, would give rise to fewer layers

with the same distance between them, thus a reduction of intensity. This is

also shown in the evolution of the change in peak intensity as the material

moves further from the HOPG structure, with HOPG XRD showing 00l peaks

almost to the exclusion of all others and other peaks becoming more prominent

as the layers become less defined and well ordered.
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We would like to determine if there is any evidence that the change in peak

intensity is due to a change in the material rather than an orientation issue.

As shown in table 4.1 above, the p value of exfoliated graphite is increased

substantially. Given intensity data for the graphite samples we can check if p

value has an effect on the relative intensity the 002 and 101 peaks. To do this

we have set the intensity of the 002 peak to equal 100 for each sample, we can

then compare p value to the intensity of the 101 peak.

Table 4.8: A comparison of 101 intensity to the p value of the material
Graphite 101 intensity p value

Branwell A 0.312 0.425
Branwell B 0.07986 0.349
Branwell D 0.06076 0.253

Expanded Graphite 7.034 0.5686

Figure 4.35: Intensity of 101 Branwell graphite peaks vs p value

Figure 4.35 shows the relationship between p value and relative 101 intensity.

The relationship seems to be exponential but more samples would be needed

to prove this.
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4.2.6 Summary of Branwell Graphite Structure Investigation

The investigation of the natural graphite samples has raised several impor-

tant areas for discussion. The investigation started with information on previ-

ous analysis of the Branwell graphites and what was missed in this analysis.

Some analysis was then repeated, during this problems were found with some

assumptions such as the rhombohedral interlayer distance and unexplained

peaks. The investigation of the rhombohedral stacking showed that the a lattice

parameter given by IUPAC is incorrect assuming an atomic basis of ±(1
6 , 1

6 , 1
6)

and that the a parameter of hexagonal graphite also fits that of rhombohedral.

New measurements of Branwell D graphite showed that there are several areas

in the natural graphite samples with larger than expected interlayer distances,

some even exceeding those of turbostratic graphite. These also give almost

complete splits of the 101 hexagonal and rhombohedral peaks, thus explaining

the issues with getting good values from these peaks and showing that the

different interlayer spacings are not confined to one type of stacking. The

exfoliated sample shows that many of the distinct interlayer peaks are removed

by exfoliation but not all. This sample also demonstrated the link between

relative peak intensity and disorder.

The Branwell D and exfoliated graphite samples have been further analysed

using inelastic neutron scattering as detailed in the Graphite poly-CINS chap-

ter.
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Chapter 5

Structure of C60 Graphite

Intercalate

5.1 Background

Carbon can bond with up to four other atoms allowing a great flexibility in car-

bon based structures. Allotropes of carbon other than diamond and graphite

had been proposed since the 1970s but were not discovered until the deliberate

synthesis of C60 by Kroto et al. [48] in 1985. C60 is also known as Buckminster-

fullerene, other spherical forms of carbon are known as fullerenes. Carbon

molecules can also take on hollow tube forms known as carbon nanotubes.

Fullerenes and nanotubes occur in nature and are stable, C60 is the most well

known as it was the first to be synthesised and is the most common fullerene.

Fullerenes are one of the products of soot [49] and evidence of C60 molecules

has recently been found in space [50].

Solid C60 has a face centred cubic lattice structure in the space group Fm-

3m with a lattice constant a of 14.154 Å at room temperature. Below 249 K

this structure changes to a simple cubic lattice. This is discussed in detail in

Heiney et al. [51]. Molecular C60 binds strongly with hydrogen if its structure
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Figure 5.1: A single Buckminsterfullerene C60 molecule

is modified such as by doping with transition metals [52].

The structure of graphite lends itself to the addition of molecules between the

layers, providing natural pores for other materials to bind to. The addition

of material within layers of graphite is known as intercalation. Graphite in-

tercalation is typically used to improve the electronic properties of graphite,

it is used in lithium ion batteries in the form of carbon monoflouride and in

potassium ion batteries. Graphite also has a long history of investigation as a

hydrogen storage medium due to its low weight, cost and toxicity. However in

its pure state it is a poor hydrogen storage medium, its capacity is improved

by increasing the interlayer distance [2] and thus creating more porosity in the

material. This can be achieved with the addition of a relatively large molecule

such as C60.

C60 graphite intercalate (C60 GIC) was first synthesised by Gupta et al. [12] in

2004, similar materials had been proposed by Saito and Oshiyama [53] previ-

ously. The sample of C60 GIC analysed in this work was created by Keens [1].

The methods followed in the production of the intercalate by Gupta and Keens

were similar.

The first process in intercalation was to apply acid to a graphite sample. Keens
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Figure 5.2: A simple model of C60 graphite intercalate

added both sulphuric and nitric acid which intercalate in the graphite over

time. The mixture is then heated rapidly to 1173 K releasing a gas of the

acid molecules, forcing apart the layers of graphite. This led to the exfoliated

graphite, for C60 intercalation the now exfoliated graphite and powdered C60

were added to a vessel which was then evacuated and sealed. This vessel was

heated at 883 K, the sublimation temperature of C60, for several weeks. When

the mixture was removed from the vessel and washed very little free C60 was

present. This sample was then tested for its hydrogen retaining properties by

Keens, but its structure was not fully analysed and the presence of interca-

late was not definitively proved. We therefore present a full analysis of the

structure below.
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5.2 Diffraction of C60 GIC

It is assumed that the C60 GIC will retain some of the characteristics of pure

graphite and pure C60. Therefore these peaks must be identified before planes

associated with the intercalation of C60 and graphite can be determined. The

structural analysis of the C60 GIC will be presented with graphs in terms

of Q to allow comparison between neutron diffraction, x-ray diffraction and

literature.

Figure 5.3: X-ray diffraction measurement of C60 GIC with graphite 002 peak
indexed

X-ray diffraction data of the C60 GIC sample was taken by Keens [1]. This was

taken with a D-5000 diffractometer at room temperature using CuKa radiation

giving a wavelength of 1.5418 Å.
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Figure 5.4: Neutron diffraction of C60 GIC with C60 peaks indicated

A neutron diffraction measurement of the intercalate was also taken, at the E9

spectrometer at Helmholts Zentrum Berlin by Dr P. Henry, Dr D.Roach and

the author. This measurement was taken at a wavelength of 1.8 Å at room

temperature. This measurement was the first neutron diffraction experiment

performed on a C60 GIC sample and shows additional detail to the XRD data.

5.2.1 Graphite Content

The analysis of the graphite content presumes a hexagonal structure for graphite

with a plane to plane distance of 3.354 Å.

In general for the diffraction measurements the peaks beyond the 002 graphite
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peak in Q are assumed to belong to graphite. Those below 002 will involve C60

as the 002 peak has the lowest Q value in graphite as it is the widest distance

structure. The XRD measurement shows a C60 peak at a similar intensity to

the 002 graphite peak suggesting that the two materials are represented in

similar proportions in the intercalate.

Figure 5.5: X-ray diffraction measurement of C60 GIC with graphite 002 peak
indexed

The neutron diffraction measurement however shows several graphite peaks

at a much higher intensity than the C60 peaks. The Q values of the inter-

calate were compared to those expected from pure graphite. The calculated

values were generated using the software CaRIne Crystallography [54], using a

basic pure hexagonal graphite model. Table (5.1) shows those peaks which are

altered by changes in graphite interlayer spacing.

For the C60 GIC sample it would be expected that the peaks which contain a

contribution from the interlayer spacing would have a smaller Q value than
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Table 5.1: A comparison of predicted and found Q values, for the C60 GIC at
different reflections

hkl Calculated Q −1 Neutron Q Å−1 Exfoliated Q −1 XRD Q Å−1

002 1.8722 1.828 1.854 1.892
101 3.0891 3.036 3.07 3.116
004 3.7444 3.717 3.729 3.757
103 4.0694 4.041
104 4.7636 4.846
2-10 5.1000 5.111
2-12 5.4306 5.415
006 5.6150 5.580

that of standard graphite as this corresponds to a larger lattice parameter. This

decrease in Q is shown in the exfoliated XRD and neutron diffraction but the

C60 GIC XRD has higher Q peaks suggesting a smaller lattice parameter than

that of graphite.

Direct comparison of the XRD data of exfoliated graphite sample and the in-

tercalate highlights the peak shift.

Figure 5.6: X-ray diffraction of exfoliated graphite and C60 GIC, with peaks
identified

The reasons for this shift are not clear especially as the C60 GIC material was
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created using the exfoliated graphite and there is no reason why the spacing

should have decreased, the neutron diffraction of the same material also does

not show this behaviour, suggesting some form of error in the GIC XRD.

Figure 5.7: Comparison of intensities predicted by CaRIne to those measured

In the case of the neutron diffraction it is believed that the differences in Q

from the hexagonal graphite values are accounted for by an increase in the

graphite plane to plane distance. This increase could be due to the intercalate

or to an increase in the possible turbostratic nature of the graphite.

For the neutron diffraction data the indexed peaks in figure (5.8) were identi-

fied as belonging to graphite. Using the relationship

1
d2 = 4

3(
[h2+k2+hk]

a2 ) + ( l2

c2 ), as well as d = λ
sin θ and Q = 2π

d .

An increase of around 0.5 Å is found in c. From the CaRIne model expected
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Figure 5.8: Graphite peaks in neutron diffraction of C60 GIC

intensities can also be found. Comparing these and the expected Q values

shows some discrepancies. Clearly the 002 and 2-12 reflections are of a much

lower intensity than expected, and those at 101 and 2-10 are much higher

than expected. This demonstrates how preferred orientation can affect pow-

der samples, the neutron diffraction measurements are taken in transmission

geometry rather than reflection as for the XRD. The sample holders are also

different shapes which could affect how the C60 powder orientates. However

the peak positions are not affected and the increase in interlayer spacing from

the exfoliated graphite is still clear.

5.2.2 C60 Content

Figure (5.9) shows x-ray diffraction data of a pure C60 powder sample at two

different temperatures, these results were presented by Heiney et al. [51]. This

data demonstrates the change from FCC to simple cubic lattice structure at

low temperatures. As both our diffraction data sets were taken at room tem-
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perature we assume C60 is present only in FCC form.

Figure 5.9: X-ray diffraction of pure C60 at two temperatures, in terms of Q
and intensity

Expected Q peaks for a cubic structure can be calculated using the equation

d =
a√

h2 + k2 + l2
(5.1)

hkl Calculated Q −1 Heiney Q −1 [51]

111 0.76 0.75
220 1.25 1.25
311 1.47 1.47
222 1.53 1.53
330 1.88 1.93

Together with the relationships for d and Q above. Comparing the peaks with

calculated values gives a very good agreement with an FCC lattice. Peaks

which fit those found in FCC C60 can be seen in the x-ray diffraction data of

the C60 GIC sample.

The C60 peaks shown by XRD are present at the positions expected for the

C60 lattice but with a large hump around the 111 peak suggesting a range

of lattice parameters. These peaks are also present in the neutron diffraction

measurement, this measurement covers a lower Q range and shows the 111

peak as slightly more defined. It also shows peaks which are not present in

the C60 lattice most prominently the hump at 0.5 Å−1.
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Figure 5.10: X-ray diffraction of C60 GIC, with peaks identified

Figure 5.11: Neutron diffraction of C60 GIC showing C60 FCC peaks
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A calculation of the peaks in a pure C60 lattice has been made using the

diffraction simulation package in Materials Studio. This can be compared with

diffraction peaks to show any changes from the standard lattice clearly.

Figure (5.12a) shows a good match with the 220 and 311 C60 peaks with the

111 peak shifted to the right and broadened. This suggests the lattice has been

compressed in this direction, showing the reduction in lattice parameter also

predicted by the XRD graphite peaks. This reduction is likely to be unphysical

and could result from an error in the measurement shifting all the peaks to the

right. The presence of C60 in the sample is clear but there is no indication of

intercalation.

The calculated peaks can also be compared to the neutron diffraction measure-

ment as shown in figure (5.12b). As mentioned before all the peaks measured

by E9 show a shift to the left indicating a larger lattice parameters. The low

Q measurement also show peaks which could not be detected with the XRD

measurements. Centred around 0.5 Å−1 is an amorphous hump and peaks

around 1 Å−1 are unexplained by the presence of C60.

The 1/d values for the three C60 FCC peaks in the sample can be compared.

The calculated values assume a lattice parameter a=14.2 Å.

Table 5.2: Comparison C60 FCC peaks shown by diffraction
hkl Calculated 1/d −1 XRD1/d Å−1 E9 data 1/d Å−1

111 0.1220 0.1220 0.1139
220 0.1992 0.200 0.1916
311 0.2336 0.2340 0.2268

For both measurements C60 lattice peaks with Q values higher than 1.9 Å−1

are lost in the graphite diffraction peaks. The peaks in the neutron diffraction

data which do not fit C60 must be explained.
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Figure 5.12: Comparison of calculated C60 peaks with diffraction

(a) Comparison of calculated C60 XRD with the C60 GIC XRD

(b) Comparison of calculated C60 XRD with GIC E9 data
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5.2.3 Calculated Intercalate XRD

A simple lattice model of C60 GIC based on the lattice parameters given by

Gupta et al. was created using Materials Studio which was then used to create

an XRD simulation as above. This model has a C60-C60 centre distance of 12.9

Å and will not capture the large amounts of pure graphite and C60 that are

expected to remain in the material.

Figure 5.13: GIC model with parameters

The model was created as a triclinic lattice, the key peaks in the XRD above are

the 00X peaks, which correspond to the layers of graphene with a distance of

12.9 Å. The other peaks include the 101 and 111 directions which are illustrated

in figure (5.15).

The simulated XRD pattern was first compared with the C60 GIC XRD mea-
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Figure 5.14: Calculated XRD pattern of the C60 GIC model with key peaks
indexed

Figure 5.15: Planes in C60 GIC model
(a) 101 planes of the C60 GIC model (b) 111 planes of the C60 GIC model

surement.

Figure (5.16) shows that the C60 111 peak falls between two peaks of the GIC

lattice possibly explaining the broadening of this peak. The peak at 0.5 Å−1

could not have been captured by this XRD measurement.
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Figure 5.16: Comparison of calculated GIC XRD with the C60 GIC XRD

Figure 5.17: Comparison of calculated GIC XRD with the C60 GIC E9 data
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Comparison with the neutron diffraction data shows that the unexplained

peaks at 0.5 and 1 Å−1 are present in the model.

This confirms the presence of C60 intercalate in the material as there are fea-

tures in the diffraction pattern which can only be explained by lattice planes

which match those of C60 GIC. The GIC clearly has a large range of plane dis-

tances which would be expected due to the nature of the C60 in the sample. It

shows features found in disordered C60. This information allows us to index

almost all the peaks in the diffraction pattern.

Figure 5.18: C60 GIC E9 data indexed

Figure (5.18) shows the culmination of the analysis. We can be confident that

the first two GIC indexes are so far from anything expected in graphite or

C60 alone that they must be the product of an intercalate structure. They also

fit well with predictions given by other groups. This is the first analysis of

its type, no neutron scattering and very few other diffraction measurements
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have been performed on this material. The neutron diffraction shows a clear

advantage, giving good results at low Q values. In the case of this sample the

humps around the GIC peaks suggest that there is a range of interlayer spacing

for the intercalate. It is less obvious whether the last four GIC peaks are more

connected to the C60 lattice or the intercalate as there is overlap in this area.

Some C60 peaks are starred as although they match well with some predicted

C60 peaks and do not fit with graphite or the GIC model, it is possible they

are connected to the GIC as the model is not exhaustive.
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Chapter 6

Dynamic Analysis of Graphite

6.1 Background

Graphite is a historically important material in neutron scattering studies due

to its low neutron absorption which makes it suitable for use as a moderator

for nuclear reactors. It has a very small incoherent scattering cross-section and

so is well suited to coherent scattering analysis. The dynamics of graphite can

be challenging to study. Its extreme asymmetry makes creating simple force

constant models difficult. In the case of experiments producing large, single

crystal, defect free samples is rarely possible. The difficulty of obtaining single

crystal samples of graphite means that powder analysis is generally necessary.

Measurements of the density of states of graphite were performed in the late

sixties by several groups using the incoherent approximation. The phonon dis-

persion curve measurements were taken on single crystal samples, particularly

focusing on the vibrations between the 00l planes at relatively low energies, by

groups including Ross [55]. Nicklow et al. [56] and others also calculated elastic

constants under different conditions.

Some recent work has shed light on the high energy optical modes which have

been badly modelled historically. Using x-ray techniques Maultzsch et al. [57]
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shows these modes are important in the free carrier dynamics and electronic

transport. However this work will focus on the low energy acoustic modes as

we are more interested in the thermal properties of the material and expanding

the knowledge of perfect hexagonal graphite to studies of natural graphites.

6.1.1 Force Constant Models

There are two graphite force constant models used in this thesis to repli-

cate poly-CINS experimental results. One is a bond bending, bond stretch-

ing model (BBS) the form of which was described by Young and Koppel [58],

building on work by Yoshimori and Kitano [59]. This model is comprised of

four interaction types between nearest neighbour atoms. Bond stretching in

the plane, bond bending in the plane, bond stretching between the plane and

bond bending between atoms in the same plane in the c axis direction. This

model emphasises the covalent bonds in the material, fitting well with the

structure of the material. However issues arise as the third nearest neighbour

interaction is not present and the fourth nearest neighbour interaction is only

partial. Also the C44 elastic constant is calculated to be zero in this form, due

to matrix elements being set to zero. The dispersion curves predicted by this

model are shown in figure (6.1a) below.

The axially symmetric model as described by Nicklow et al. [56] depends on

interactions between pairs of atoms. The forces between these are assumed to

be harmonic and depend only on the distance between the atoms. This model

is more general, with less of the restrictions which give rise to the unphysical

results of the (BBS) model. However the interactions between the atoms is

over simplified which leads to zone boundary effects. The dispersion curves

predicted by this model are shown in figure (6.1b) below.

Phonon dispersion curves for both of the models were created using GULP.
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Figure 6.1: Phonon dispersion curves predicted by Young and Kopple and
axially symmetrical models

(a) Young and Kopple model 100(red) 110(blue) 001(green) [3]

(b) Axially symmetrical model 100(red) 110(blue) 001(green) [3]

They are represented in terms of scans through the atomic planes of graphite,

these planes were illustrated in the Structure chapter of this work. The scans

were taken through the 100, 110 and 001 planes.

Inelastic x-ray scattering measurements of graphite were taken by Mohr et
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al. [60]

Figure 6.2: Phonon dispersion of graphite from inelastic x-ray scattering. Tri-
angles and circles are inelastic x-ray data and the full squares
are INS data. Solid lines are the force-constant calculations, the
dashed line is a quadratic extrapolation of the data. The lines are
denoted by their symmetry representation in space group nota-
tion. [60]

Figure 6.3: Phonon dispersion of graphite along the 002 direction. Open tri-
angles are present IXS data and full squares are neutron scattering
data. The lines are a guide to the eye. [60]

Comparing these measurements with the predicted curves gives us an idea of

the validity of the models. Figure (6.4) shows the comparison of the 100 and

110 curves of both models with experiment. The figures clearly highlight some

of the deficiencies of the models, neither fully matches the experimental data

and though it seems that the axially symmetrical model does better over all,

there are areas in which the Young and Kopple model gives a better match.
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Figure 6.4: Comparison of graphite models with experimental measurements

(a) Young and Kopple model compared to experiment

(b) Axially symmetrical model compared to experiment

The area of most interest for this work is the low energy 002 curve. The ex-

perimental data for this area was shown separately by Mohr and can also be
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compared to the force constant models.

Figure 6.5: Experimental and calculated 002 phonon curves

(a) Young and Kopple model 002 curve
compared to experimental data.

(b) Axially symmetrical model 002 curve
compared to experimental data.

Both of these models show good agreement with experiment in this area, with

the axially symmetrical model showing the curve which crosses the axis at 5

meV as well as the one at 15 meV, and both fitting the data of the 15 meV curve.

Due to the focus on this area we can be confident that our data will be well

modelled with either force constant model, however we tend to use the axially

symmetrical model due to the extra data and better fit of other curves.

Figure 6.6: Extended phonon dispersion curves predicted by Young and Kop-
ple and axially symmetrical models

(a) Extended representation of Young
and Kopple model 100(red) 110(blue)
001(green) [3]

(b) Extended representation of axially
symmetrical model 100(red) 110(blue)
001(green) [3]
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These calculations can also be presented in extended form. This presentation

does not use the Brillouin zone to overlap equivalent points and is closer to

the data as shown in poly-CINS experiments.

In figure (6.6) it can be seen that the scan through the 001 direction gives a pure

sinusoidal acoustic dispersion curve which holds in the case of both models.

At energies below 20 meV the 100 and 110 directions meet the origin between

2 and 4 Å−1. The models disagree at energies above 40 meV particularly in

the case of the 110 direction where there is a difference in the shape of the

curves and the peak energies. In the case of the 100 direction the peak energies

are around 40 meV lower in the Y&K case. For the purposes of this work

the models are used interchangeably as we are focused only on low energies

looking mainly at the vibrations of the 002 plane. The models do differ slightly,

with Young and Kopple giving a 002 curve peak of 15.79 meV and the axially

symmetrical model giving a peak of 15.96 meV. This difference is well within

errors expected in experimental measurements.

These force constant models are used in Scatter [61] to create predicted poly

CINS data. The full details and validation of this technique are explained in

Roach [3]. Some details of the models are shown below.

6.1.2 Simulated Poly-CINS Graphite Measurements

Figure (6.7) shows a poly-CINS spectra, simulated by Scatter, of the perfect

hexagonal graphite lattice. This spectra shows several important features of

graphite scattering data, particularly the 002 curves which leave a window

between 0 and 1.9 Å−1 which can be used to identify non graphite material in

the sample, and the presence of optical modes at around 200 meV.

Looking at a smaller range of data which was simulated using the axially

symmetric model (6.8) the gap between 0 and 1.9 Å−1 is clearer and other
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Figure 6.7: Young and Koppel model poly-CINS simulation

Figure 6.8: Axially symmetric Scatter data of low frequency phonons
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curves can be seen from 3 Å−1.

These figures demonstrate that calculations can be performed over different

areas of Q, ω. Calculation time is governed by the amount of points in Q, ω

space calculated, the quantity of points and their distribution in a calculation

is know as sampling. A high detail, wide Q, ω calculation has high sampling

and takes a great deal of time. By focusing on the area of Q, ω which is of

most interest the calculation time can be reduced. The figures at (6.9) show

the same Q, ω area of graphite modelled using the axially symmetric model at

different levels of detail.

Figure 6.9: Calculations of the 002 phonon curve of graphite using the axially
symmetrical model at different levels of sampling

(a) The 002 curve with low sampling (b) The 002 curve with medium sampling

(c) The 002 curve with high sampling
(d) The high sampling 002 curve with

smoothing
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Beginning with figure (6.9a) we show the 002 curve from 0 to 2 Å−1. This

demonstrates a calculation which covers more points than the calculation shown

in figure (6.9b) but has more pixelation due to a coarse sampling. Figure (6.9c)

demonstrates the same curve with the area in fine detail. Figure (6.9d) shows

the effect of smoothing on the high detail curve. It has further removed some

pixelation and reduced the difference in intensity of different parts of the spec-

trum.

These different calculations can be compared with an experimental measure-

ment showing the same curve at a higher Q value in figure (6.10). This mea-

surement shows slightly less coarseness than the (6.9a) calculation, but is more

pixelated than the other calculations.

Figure 6.10: Section of the Branwell D IN5 spectrum

All of the calculations do show the same information, and are suitable for

comparison with experiment at a general level. The effect of sampling on

comparison with experimental data is explored further in a later section.
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6.2 Experimental Graphite Measurements

Poly-CINS experiments were performed at the ILL facility on graphitic ma-

terials, including a natural graphite, an expanded graphite and carbon-nano

fibres. Present were Dr D.Roach and Dr S.Keens.

Measurements were taken at a wavelength of 5 Å which should give a flux

at sample of around 105 n/cm2/s [62]. The IN5 has 12 3He detectors each

comprised of 32 tubes.

Figure 6.11: IN5 spectrometer at the IIL [62]

The data sets below were vanadium corrected and converted from TOF to

S(Q, E) using LAMP. The following analysis was performed using Neutron-

plot.

6.2.1 Branwell D

Figure (6.12) is the spectrum of Bran D graphite taken by the IN5 spectrometer

at a temperature of 494 K for 15 minutes. This figure shows the data as pre-

sented by Neutronplot when first loaded by the user, displayed with a default
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medium cut off as described in the Neutronplot section.

Figure 6.12: Bran D IN5 data as presented by default by Neutronplot

The data clearly shows the shape of the loci from the instrument. The majority

of the measurement is from neutron energy loss, as IN5 is a direct geometry

spectrometer. The data has not been smoothed by Neutronplot and is shown

at a maximum energy transfer of 50 meV. The thick red line at zero energy

transfer is the elastic line. The neutrons which landed at this part of the spec-

trum have neither lost nor gained energy but have still been diffracted by the

material. The elastic line is the highest intensity poly-CINS data, as most of

the neutrons will pass through the material without a change in energy. Elas-

tic data intensity therefore needs to be reduced to make the lower intensity

energy transfer data visible.

Increasing the cut off and therefore looking more closely at lower intensities
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Figure 6.13: Bran D IN5 data focusing on lower intensity data

Figure 6.14: Bran D IN5 data at low intensity showing curves at 2.5 Å−1 and
above

shows the 002 curve more clearly as shown in figure (6.13). Further increasing

the cut off begins to highlight other phonon curves at higher Q.

In all the spectra the 002 curve is visible, starting at 1.9 Å−1 as are several

higher curves with the 110 curve showing very faintly at around 2.75 Å−1 and

the more visible 100 reflection coming in after 3 Å−1. Detector deficiencies
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leading to a loss in intensity are faintly visible cutting through the 002 curve.

This loss is far more visible at lower intensities.

The figures showing the full spectrum do not show the neutron energy loss

side clearly. Neutronplot allows the separation of neutron energy gain and

loss thus the two sides can be compared. Figure (6.15) shows the energy loss

side on its own. The line at 1.8 Å−1 is part of the 002 dispersion curve.

Figure 6.15: Energy loss spectrum of Bran D graphite

Figure (6.16) shows the two sides of the spectrum compared at the same energy

transfer. These should show the same information other than differences in

intensity due to detailed balance.
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Figure 6.16: Energy loss and gain Bran D data at the same energy transfer

(a) Energy loss spectrum of Bran D graphite

(b) Energy gain spectrum of Bran D graphite
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However the energy loss spectrum shows a strange feature which shows up

very clearly. If this feature is a real dynamic effect it should also be present

on the energy gain side of the spectrum, albeit at a slightly lower intensity. It

seems from the comparison that the feature is not present on the energy gain

side of the spectra, however it is possible that it is just at a very low intensity.

Cuts through the data allow a clearer inspection of the area containing the

spectra.

Figure 6.17: Cut through IN5 Bran D data at ±1.24 meV

Cuts through the data at ±1.24 meV show the intensities of the 002 curve and

the feature on both sides of the elastic line. At this energy transfer the 002

curve has an intensity of 0.025 for energy gain and 0.056 for energy loss, thus

loss is 2.2 times more intense at this energy transfer. The feature’s intensity

peaks at 0.049 so a peak would be expected at 0.022 on the energy gain graph,

but this is not present. There is a peak at 0.0048 but this is a magnitude less

than expected.
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Several cuts through the data from ±0.99 to ±1.24 meV (6.18) were taken to

check the result above. The 002 peaks increase in intensity at lower energy

transfer.

Figure 6.18: Cuts through IN5 Bran D data at different energy transfers

As the feature is not present on any of the cuts through the energy gain spectra

the feature cannot be due to the properties of the sample and is a spurious set

of data created by the conditions in the spectrometer.

Looking at the time-of-flight data, the feature is present at later time measure-

ments and must have been caused by neutrons being delayed.

This delay was most likely caused by a sequence of elastic diffractions, the first

in the sample and the second somewhere inside the detector array box, giving

rise to a longer path length and therefore an apparent energy loss. IN5 at this
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Figure 6.19: IN5 Bran D time-of-flight data

point was an old spectrometer and these measurements were some of the last

taken before a full refitting and upgrade of the instrument.

6.2.2 Bran D 002 Curve

The energy gain side of the spectra also seems to show a difference in the cur-

vature of the dispersion curves on either side of the 1.9A−1 peak. Scattering

theory predicts these curves to be identical, as shown by Scatter data. Sine

curves were fitted to the data with an amplitude of 16 meV and 14 meV re-

spectively. It seems that the 14 meV curve fits the left hand side curve better

and the 16 meV data gives a better fit to the right hand side curve, but the fit
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is somewhat ambiguous.

Figure 6.20: Energy gain spectrum of Bran D with two sine curves fitted at 14
meV(black) and 16 meV(white)

Using the Locus Options function a graph of Scatter data can be created which

covers the same loci as the experimental data. Thus a direct comparison can

be made.

Figure 6.21: Scatter data for graphite at the loci covered by the instrument
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When the contours of the Scatter data (in black) are overlaid onto experimental

data the ambiguity of the sine curve data is removed.

Figure 6.22: Contours of Scatter data, over Bran D data

The scatter data shows clearly that the curves are different. However the left

hand curve does seem to match the Scatter data at the top and bottom of the

visible curve. Though it is possible that these differences are caused by defects

in the material. The matching of the curve at areas with high intensity, as well

as the existence of some level of intensity at all areas covered by the Scatter

data, suggests that the curves are in fact the same as predicted. It seems that

we are again having issues caused by the spectrometer.
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6.2.3 Expanded Graphite

For the expanded graphite sample, measurements were taken at 497 K for 15

minutes.

Figure 6.23: Full spectrum of expanded graphite data showing a maximum
energy transfer of 30 meV

In the spectra of this sample the highest intensity has changed from the 002

curve to the higher Q dispersion curves. This fits the results seen in the XRD

measurements where the relative intensity of the 002 peak was much reduced.

It also has a greater amount of noise around the elastic line than the Bran D

data, the detector deficiencies are still visible.

We can show Scatter data overlaid at several different cutoffs. The Scatter data
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Figure 6.24: High intensity Scatter data over expanded graphite data

Figure 6.25: Theoretical and experimental graphite data directly compared

(a) Medium intensity Scatter data over ex-
panded graphite data

(b) Very low intensity Scatter data over ex-
panded graphite data

seems to match well with the experimental data, with no visible broadening

or shifting of curves. Using the cut off function we can see the low intensity

scatter curves.
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These figures show a progression of Scatter data intensities. The first figure

shows the highest intensity Scatter data. The next figure has a lower cut off

which shows more low intensity data. The final figure shows the Scatter data

with all of the intensity values were set to one, so that all intensities are shown

equally. At this level, some of the data is an artifact of the calculation but it

also shows some data which fits well with the curve at 2.5 Å−1.

This expanded graphite was then used to create the C60 GIC sample. The re-

sults of poly-CINS experiments on this material are shown in the next chapter.

6.3 Comparison of Calculated and Measured Data

Using the Line Graphs functionality of Neutronplot we can compare data in a

less ambiguous way.

Figure 6.26: Lines through axially symmetric model graphite data

(a) Line through calculated graphite data at 10
meV

(b) Lines through calculated graphite data
at constant Q

Figure (6.26) shows lines through modeled graphite data set. Line graphs have

been produced at these areas for the Branwell D, exfoliated and Young and

Kopple model data sets. The data sets were normalised to the most intense
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data point.

Figure 6.27: Several graphite data sets at 10 meV

Figure 6.28: Cuts through graphite data sets at constant Q values

(a) Graphite data sets at 1.45 Å−1 (b) Graphite data sets at 1.65 Å−1

(c) Graphite data sets at 2.6 Å−1 (d) Graphite data sets at 2.8 Å−1
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Figure (6.27) shows line graphs of calculated and measured graphite data sets

taken at 10 meV. From figure (6.26a) peaks would be expected 0.5, 1.5, 2.3, 2.6,

3.0 and 3.4 Å−1. The graphs shown in figure (6.27) do not show the peak at

0.5 due to the range covered by the experimental data. The other features are

visible on the data sets but show different intensities to those predicted by the

calculated data. As the calculated data sets are biased on a perfect graphite

lattice they underestimate the intensity of the none 002 curves. Orientation

effects could also be involved as with the diffraction measurements.

Lines were also taken through the data sets at Q values of 1.45, 1.65, 2.60 and

2.80 Å−1. These values were chosen to match important areas in the Branwell

D data such as the peak of the 002 curve at 2.80 Å−1, other points on the curve

and the beginning of other curves at 2.6 Å−1.

Figure (6.30) shows the intensity expected from the 002 curve at the 1.45Å−1

point. The experimental data sets do not cover an energy transfer over 11 meV

at this point, so there is no data to compare with that shown for the calculated.

The exfoliated and Branwell D graphites show differences in intensity, with

the exfoliated graphite showing more intensity over all but not showing a

clear peak at 10 meV. The calculated data sets predict the peak to be at a

slightly higher energy transfer than that shown by Branwell D. In figure (6.31)

The experimental and calcualted data sets agree with a peak at 6.5 meV, albeit

at slightly different intensities, the Branwell D also shows a rise in intensity

at around 11 meV which is also shown in its full S(Q, E) spectrum. Figures

(6.28c) and (6.28d) show clearly the difference in intensity of the exfoliated

graphite to the other samples at these Q values. The positions of the peaks

are largely in agreement, however the exfoliated sample does not show a clear

peak at 16 meV in figure (6.28d).

The calculated data shows the issues with sampling, as discussed in an earlier
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section, in these graphs. The experimental data covers the areas in question

more thoroughly than the calculated data and is less jagged. Figure (6.29)

shows the quality of the Young and Kopple data set at the areas used.

Figure 6.29: Young and Kopple model data at similar Q, E to experimental
data

Although the data is quite rough the curve positions are still captured by these

calculations and can be compared to experiment.

These cuts through the data can also be used to find other information about

the properties of the materials. They are used to find elastic constants for the

experimental data in the following section.

6.4 Elastic Constants

The neutron scattering measurements can be used to find information about

forces in materials, such as the the compressibility in the z direction, known

as the C33 constant. The phonon curve arising from the interaction between
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the layers is clearly shown in the above measurements. Elastic constants are

measured directly by finding the speed of sound through a single crystal of

material. This is difficult to achieve with graphite samples so they are found

using information from inelastic x-ray and neutron spectra. An inelastic x-ray

measurement by Bosak et al. [63] gave a figure of 3.87×1011 dynes cm−2.

C33 can be measured from this phonon curve. The equation which describes

the phonon curves in graphite relates the frequency of the phonon v to a force

constant K’

v = ± 1
2π

√
2K′

M
sin(πq/2τ002) (6.1)

where K’ is the force constant for stretching the bond between atoms in adja-

cent planes, M is the mass of the carbon atom, q is the wave vector and τ is a

reciprocal lattice vector.

The relation between the compressibility in the z direction C33 and the force

constant K’ is

C33 =
K′ρc2

8M
(6.2)

substitution of equation (6.1) gives

C33 =
4π4ρv2

max
τ2 (6.3)

To obtain values for the 002 curve necessary for the C33 calculation cuts through

the data were taken at intervals of 0.5 Å−1.

In figure (6.30) there is a sharp rise in intensity at 6.082meV which is the edge

of the phonon curve. The measurement for the point of the phonon curve is

therefore taken at this point. Other graphs do not show this clear edge.

Figure (6.31) has a hump rather than an edge. For these cases a point at the

highest point of the hump was used as it is the least ambiguous measurement
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Figure 6.30: Cut through Bran D IN5 data at 2.15 Å−1

of where the phonon curve is at that Q value.

This approach does have issues in terms of the accuracy of the measurement,

thus the error bars at these points are much larger. Taking measurements at

many points around the curve should minimise the error in the C33 calculation.

The Bran D sample gives the curve shown in figure (6.32).

The points taken from the cuts can be compared to the poly-CINS data. This

shows clearly the where the measurements were more ambiguous, such as

around 3 Å−1 where contributions from other phonons overlap with the 002

curve.

The points on the right hand of the curve were fitted to a sine curve using the
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Figure 6.31: Cut through Bran D IN5 data at 2.3 Å−1

Figure 6.32: The 002 curve of BranD graphite taken from the IN5 measure-
ment with error bars

MATLAB curve fitting tool, c f tool.

This fitting gave the curve 15.93 ∗ sin(1.616 ∗ x + 3.226) with an error of ±0.25

in the amplitude. This corresponds to a maximum energy of 16 meV±0.25

from which a Vmax value for Bran D can be calculated. The exfoliated graphite

sample does not give as clear a 002 phonon curve as the Bran D.
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Figure 6.33: Data points taken from cuts on poly-CINS data

Figure 6.34: Curve fitted to 002 data points

Figure 6.35: Fit to full Branwell D 002 curve
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Figure 6.36: Exfoliated graphite IN5 measurement

Cuts through the data were taken using the same method as for Bran D, how-

ever the intensity of the 002 curve is lost at around 2.4 Å−1 well before the

peak position. The curve fitting method used above cannot be used in this

case as it requires a peak estimate.

Figure 6.37: 002 curve points of exfoliated graphite taken from cuts

A theoretical graphite data set was overlaid to give a guide to the shape of

the phonon curve and thus allow an estimate of the peak height to be made.
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Figure 6.38: Scatter data over IN5 data for exfoliated graphite as a guide to
the 002 curve

Based on the slight expansion of the curve it has been assumed that the peak of

the curve would be slightly lower than that predicted by the theoretical data,

thus a peak height of 15.37 meV was used for the calculation of the C33 value,

however this assumption will give quite large errors.

Table 6.1: Comparison of the C33 values of different graphites
Graphite Vmax (meV) τ002 (Å−1) C33(×1011 dynes cm−2) p Temperature (K)
Bran D 16.00± 0.25 1.9 3.8787± 0.1 0.25 494
Exfoliated Bran B 15.37± 0.4 1.85 3.527± 0.2 0.524 497
Ax Scatter 15.96 1.9 3.6891 0 0
YandK Scatter 15.80 1.87 3.69 0 0
Ross [55] 14.00 1.87 2.94± 0.4 0.2 293
Ross [55] 13.50 1.819 2.808± 0.2 0.2 1273
Ross [55] 11.50 1.768 2.097± 0.2 0.2 2193
Dolling [64] 15.90 1.876 3.78 0 296
Roy [65] 1.853 3.42 0 480
Seldin [66] 1.876 3.65+-0.1 0 293

The C33 values obtained from the IN5 data seem to fit well with values from

other sources. The Ross [55] data demonstrates that increasing temperature

reduces the C33 values measured, though between authors there is a spread in
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values due to different sample types. Increases in p value also decrease the

C33 value which fits with the exfoliated graphite measurement though there is

a large uncertainly in this value due to the disorder in this material creating a

noisy phonon curve.

In this chapter we have shown an analysis of the dynamics of two different

types of graphite. The analysis tools of Neutronplot were highlighted with

the use of theoretical data overlays and line graphs through the experimental

data. This has allowed us to come to a definitive answer to questions posed

by the data. We proved that the strange feature shown on the energy loss

spectra is not present on the energy gain side and thus cannot reflect a true

behavior of the natural graphite sample. We were also able to directly compare

theoretical and experimental poly-CINS data to demonstrate the difference in

curve intensity for two sides of a 002 phonon curve of natural graphite and

provide a possible explanation for this. This was followed by an investigation

into an exfoliated graphite sample. This demonstrated that the loss in 002

intensity shown in diffraction measurements has an effect on the dynamics of

the material, with the higher Q curves showing a much higher intensity, to the

point of dominating the 002. The data was then used to find the C33 elastic

constant for the graphites. With Neutronplot being used again to show regular

lines through the data and for using theoretical data as a comparison to give

an idea of the shape of the exfoliated curve. This gave results which fit well

with patterns of the constant at different temperatures and for samples with

different p values.
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Chapter 7

Inelastic Scattering C60 Graphite

Intercalate

Unlike graphite, which has been investigated and characterised over many

years, C60 GIC is a novel material. There are no previous inelastic neutron

scattering measurements of C60 GIC, though there has been investigation into

the dynamics of the pure C60 lattice.

Poly-CINS measurements were performed on a C60 GIC sample, in the NEAT

Facility at Helmholtz Zentrum Berlin (HZB) by D. Roach, M. Russina, N. Tsap-

atsaris and the author. These measurements can be interpreted using previous

investigations into C60 together with the neutron diffraction measurements,

giving us some insight into the behaviour of C60 in the graphite lattice. These

measurements were taken over a period of two weeks, with each measurement

having around three days in the beam. This is in contrast to the IN5 measure-

ments which were typically taken in a few minutes. NEAT is said to have a

flux at sample of 2× 104 n/cm2/s given an initial wavelength of 6 Å. This is

an order of magnitude less than the figure quoted for the IN5. Both neutron

scattering centres use a reactor to produce their neutrons.

The areas of forbidden scattering in graphite, which are below the 002 curves,
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give a good window for the indication of other materials in the graphite sam-

ple. If features appear within them this gives a clear and unambiguous indi-

cation that there is something else, with a periodic nature, in the sample. As

in the diffraction measurements it is expected that features from C60 will be

present at Q values below that of the 002 graphite peak.

7.1 C60 Literature

There have been several investigations into the dynamics of the C60 lattice,

with DFT and molecular dynamics calculations and inelastic neutron scat-

tering measurements taken by different groups. Solid C60 can have an face

centred cubic (FCC) or simple cubic (SC) lattice structure depending on the

temperature of the material, the transition to SC takes place at around 250 K.

It is also known that the molecules in the FCC lattice rotate quite freely, this

rotation lessens at lower temperatures but is not believed to halt entirely [67].

We will discuss the dynamics of both the FCC and SC forms, as the C60 GIC

sample was created at temperatures above 250 K but the inelastic neutron scat-

tering measurements were taken at temperatures below 50 K.

Yu et al. [68] used molecular dynamic tight-binding calculations to predict the

phonon dispersion and density of states for solid C60. The results below are

for the simple cubic form. These dispersion curves shown in figure 7.1 show

a clear gap between 7.6 and 30 meV, where the lower phonon curves arise

from interactions between the molecules and the higher curves are interactions

within the molecule. We are interested in the lower energy intermolecular

vibrations, thus discussion will be focused on these modes. The modes at 2.3

and 3.7 meV are librational modes.

Yu also calculated density of states (DOS) for several ordered and disordered
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systems show in figure 7.2. Starting with a system labelled (a) which has an

an orientation angle Γ of 23.45◦ with respect to the 111 FCC axis, the standard

ordered form for SC, going through to (d) a different ordered form which has

an an orientation angle Γ of 70.54◦ with disordered intermediate forms at (b)

and (c).

Figure 7.1: Calculated dispersion curves of C60 FCC lattice by Yu et al. [68]

(a) Calculated dispersion curves
of C60 SC lattice up to 50 meV

(b) Calculated dispersion curves
of C60 SC lattice up to 10 meV

Figure 7.2: Calculated DOS for C60 lattices calculated by Yu et al. [68]

(a) Calculated DOS for the C60 SC lattice
compared to neutron scattering mea-
surement

(b) Calculated DOS for ordered and disor-
dered C60, (a) is non disordered

Parker et al. [69] characterised the dynamics of the C60 lattice using neutron
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scattering and CASTEP DTF calculations. They covered both the simple cu-

bic and FCC forms. The intermolecular energies calculated by Parker peak at

around 70cm which is around 8.7 meV, 1 meV higher than the value calcu-

lated by Yu, showing disagreement between molecular dynamics and density

functional theory. Parker notes that the DFT calculations overestimate energies

by 10cm−1 (1.24 meV) compared to experiment, thus the values from Yu are

shown to be more accurate.

Figure 7.3: C60 lattice phonon dispersion curves calculated by Parker [69]

(a) Calculated phonon dispersion for FCC
C60

(b) Calculated phonon dispersion
for simple cubic C60

Figure 7.4: INS spectra of C60 measured by TOSCA (a) calculated by CASTEP
(b) [69]
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A inelastic neutron scattering measurement of a C60 lattice was taken on

TOSCA. This was performed at a temperature of 17 K so the lattice in this

case should be simple cubic. A CASTEP simulation was also performed and

compared to the experimental result.

The experimental and calculated spectra do not match entirely and a peak is

shown at higher energy in the calculation which is not shown in the experi-

mental data.

Glebov et al. [67] used helium atom scattering (HAS) and lattice dynamics cal-

culations to investigate C60 films in the 111 direction.

Figure 7.5: C60 HAS measurements taken by Glebov et al. [67]

(a) Measured phonon dispersion from
HAS for the 111 surface of C60, verti-
cal lines indicate Brillouin zone centres

(b) C60 TOF spectra for different
temperatures

The phonon data shows lines of intensity at 1.75, 3.25 and 5 meV, with curves

dipping to 0 meV at 0, 1.2, 2 and 2.5 Å−1. The data shown in figure (7.5b) shows

the change of intensity for energy peaks with temperature. The peaks reduce
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in energy and intensity as the temperature increases. Glebov et al. calculated

phonon curves using lattice dynamics for intermolecular interactions, their

results agree with those calculated by Yu et al. and peak around 7 meV.

7.2 NEAT Data

Figure 7.6: Poly-CINS measurement of the C60 GIC taken at 30 K with an
initial wavelength of 2.1 Å

As mentioned above, for the C60 GIC sample the most interesting data was at

the low energy transfer range which corresponds to low Q. Studying this range

involved lowering the temperature of the sample and changing the chopper

speeds, incurring a loss of flux. The sample was also very fine and light so

there was not a good quantity of material in the beam. The combination of low
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flux and the low density of sample makes analysis more difficult as the features

become very hard to see, this is demonstrated in the figures below. Using

Neutronplot we can analyse data obtained from NEAT. All of this data was

converted from TOF to S(Q, E) using the conversion routine in Neutronplot

which is based on the equation Q2 = k2 + k′2 − 2kk′ cos φ.

Measurements of the C60 GIC were taken at several wavelengths in an attempt

to see the low Q areas of most interest. We will first present an overview of the

measurements taken to show the range of data obtained and the issues with it.

Figure 7.7: Poly-CINS measurement of the C60 GIC taken at 10 K with an
initial wavelength of 4.8 Å

Figure (7.6) shows a measurement taken with an initial wavelength of 2.1 Å

at 30 K. This has the widest Q range of the measurements but does not cover
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Q lower than 1 Å−1. This measurement has reasonably good statistics, no

obvious phonon curves are present, but this is true for all the C60 GIC mea-

surements.

The measurement with an initial wavelength of 4.8 Å at 10 K, figure (7.7)

covers a Q range of 0.5 Å−1 to 3 Å−1. A vanadium run was also taken at 4.8

Å allowing this data to be vanadium corrected. The measurement also has

reasonably good statistics.

Vanadium data can be used to normalise for detector efficiency and to remove

any features caused by the instrument. It also provides the resolution function

of the instrument. The resolution function can be used to decide whether

features are real or an artifact of the resolution of the instrument.

Figure 7.8: Vanadium correction of data

(a) Unaltered scan (b) Vanadium corrected scan

As shown in figure (7.9a) the measurement with an initial wavelength of 6.5

Å gives slightly more data at low Q but has poorer statistics and also has a

detector fault which passes through the elastic line at 1.75 Å−1, this has been

removed in the figure. The measurement with an initial wavelength of 7.5 Å,
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figure (7.9b), at 30 K covers a low Q range but has very poor statistics.

Figure 7.9: Poly-CINS measurement of C60 GIC at two wavelengths

(a) Poly-CINS measurement of the C60 GIC taken at 30 K with an initial wavelength
of 6.5 Å

(b) Poly-CINS measurement of the C60 GIC taken at 30 K with an initial wavelength
of 7.5 Å

We chose to focus our investigation on the measurements taken at 2.1 Å and
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4.8 Å due to the ranges covered and the quality of the data. The structural

data showed that the areas of interest for the intercalate are between 0.5 and

1.5 Å−1, although this area is covered by the 6.5 Å and 7.5 Å data the quality is

so low that there is no more information than that shown in the low Q section

of the 4.8 Å measurement.

Figure 7.10: Resolution of the NEAT Poly-CINS data

Due to concerns with the low statistics the resolution function of the instru-

ment was calculated to ensure that data was not just an artifact of the instru-

ment. The calculation used the vanadium data as a basis and a Gaussian dis-

tribution was assumed. As shown in figure (7.10) the data beyond the elastic

line was found to be outside the resolution function.
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7.2.1 Zero Energy Transfer PolyCINS data

Cuts were taken through the NEAT data at zero energy transfer for comparison

with neutron diffraction data.

Figure 7.11: Comparison of NEAT and E9 data

It can be seen that the peaks are shifted to the right by approximately 0.0689

Å−1 and that the relative intensities vary from those in the diffraction data.

The shift could be due to NEAT not being correctly calibrated, also the two

measurements were taken at very different temperatures with the NEAT mea-

surements being performed at around 270 K less than the diffraction. There

are at least two peaks which are not attributable to typical C60 or graphite

lattice structures, it is possible that these are intercalate peaks which were not

modelled by the simple system used to prove the evidence of intercalation in

the Structure chapter.

177



We can also compare the data at low Q.

Figure 7.12: Low Q comparison of NEAT and E9 data

Again the peaks are shifted to the right and the intercalate peaks are visible at

0.55 Å and 0.78 Å. The C60 peaks are particularly intense in this measurement.

The diffuse peaks around the intercalate are not visible but are shown in the

full poly-CINS measurements as shown in later sections.

7.2.2 Graphite Contribution

Starting with the 2.1 Å data we will try to find evidence of information relating

to the dynamics of the structures in the material. First we attempt to isolate

the features arising from the graphite in the material.

The data obtained is confined to low energy transfer and is only present as

small wings extending from the elastic line. Although we can be confident

that the data is not just due to noise as it is beyond the resolution function we

cannot see true phonon curves and thus the dynamic information which can
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be obtained is limited.

Figure 7.13: C60 GIC at an initial wavelength of 2.1 Å

In figure (7.13) the 2.1 Å data has been smoothed and focused on the area of

most interest. Several features can be seen, in the form of extensions from the

elastic line, but it is not clear what structures these are associated with as we

are missing features such as the obvious 002 curve typically found in graphitic

materials.

Calculated graphite poly-CINS data can be compared to data from NEAT, thus

showing which features belong to graphite. Figure (7.14) shows graphite data

in black overlayed on to the NEAT data.

Possible features corresponding to those of graphite can be seen at 1.9 Å−1, 3

Å−1 and 3.4 Å−1. Several features are not accounted for and those which occur

in the region between the 002 curves are of most interest.
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Figure 7.14: Comparison of model graphite data (black) with 2.1 Å data
(colour)

Figure 7.15: Line through 5 meV in 2.1 Å data compared with graphite calcu-
lation

180



The technique of comparing line graphs as shown in the Dynamic Analysis of

Graphite chapter does not yield good results for this data. Figure (7.15) shows

the graphs at 5 meV for the C60 GIC compared to the axially symmetric model

data. There are no obvious peaks in the data where they would be expected

for graphite phonon curves it is possible the features are present but they are

not clear.

Figure 7.16: Comparison of model graphite data (black) with 4.8 Å data
(colour)

Overlaying the calculated data onto the 4.8 Å measurement as demonstrated

in figure (7.16) shows that only a small part of the 002 curve is expected to be

shown in this measurement. The comparison shows no evidence of the curve.

There is a feature in the elastic line in the area expected but nothing obvious

beyond this.
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Figure (7.17) shows a comparison of the 4.8 Å data with the axially symmetric

model at 1.5 meV. As with the 2.1 Å data any graphite features are far from

obvious, this technique is clearly not suitable for this data.

Figure 7.17: Line through 1.5 meV in 4.8 Å data compared with graphite cal-
culation

7.2.3 C60 Contribution

C60 phonons at low energy transfer have been shown by several groups in the

literature review above to occur between 2.5 and 10 meV. Phonon curves are

shown by Glebov et al., in figure (7.5a), and cross the elastic line at around 0.6,

1.2 and 2.5 Å−1.

Scattering can be seen in the forbidden area between the 002 graphite curves,

this could correspond to the C60 phonon modes and interactions between the
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C60 and the graphite. Intensity between 2.5 and 10 meV does not seem to be

shown by the NEAT data. It is possible that the curves shown by Glebov et al.

are present, there are features at 0.77, 1.242 and 2.644 Å−1 but they are subtle

and not conclusive.

Figure 7.18: NEAT data (colour) compared to model graphite data (black) and
E9 diffraction data (white)

Comparison of the neutron diffraction data shows that the features not ex-

plained by the graphite phonons correspond with diffraction peaks. It is not

clear if there is any dynamic information present in this data.

The measurement taken at 4.8 Å has a Q range which covers the C60 spec-

tra and has been vanadium corrected. Looking at a lower intensity than the

previous 4.8 Å figure, diffuse scattering between 0.5 Å−1 to 1 Å−1 is evident.
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Figure 7.19: Diffuse Scattering in the C60 GIC

(a) Poly-CINS of C60 GIC taken at 4.8 Å showing diffuse scattering

(b) Poly-CINS of C60 GIC taken at 4.8 Å with diffraction measurement overlaid
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Comparison with the neutron diffraction shows that this corresponds with the

hump present in the diffraction. Thus the disordered C60 demonstrated in the

diffraction pattern is also showing an effect in the dynamics of the material.

7.2.4 Sum Over Q Data

As demonstrated by Yu [68] for the C60 lattice interactions between the molecules

are separated from interactions within the molecule by a gap around 20 meV.

The first internal interactions are present at 30 meV which is not covered by

our data. The peak of the first graphite phonon, the 002 vibration, occurs at

around 16 meV an energy transfer not covered by the NEAT measurements.

Summing over all Q should therefore give data that is only a result of inter-

actions between C60 molecules. This summation allows features to be seen

which are too weak to be visible in the S(Q, ω) scans or cuts through data.

Figure 7.20: Summation over all Q for C60 GIC NEAT measurement

(a) Sum over Q for C60 GIC at 2.1 Å (b) Sum over Q for C60 GIC at 4.8 Å

We can see several clear peaks in intensity particularly in the 2.1 Å measure-

ment. In order to ascertain if this is valid data and not just noise, the vanadium

sample was also summed over Q to show the background. Figure (7.21) shows
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a comparison between the vanadium and C60 GIC data, demonstrating the

clear distance between the background and the C60 GIC data.

Figure 7.21: The sum over Q for C60 GIC compared to vanadium

Now we are satisfied the data is valid we can compare these peaks with data

from literature to ascertain which vibrations they correspond with and possi-

bly to deduce the effect of the GIC on the sample’s dynamics.

Due to the temperature at which the poly-CINS measurements were taken we

cannot be sure if the C60 in the sample is in an FCC or SC lattice structure. The

C60 GIC was created at high temperatures and thus is presumed to have so-

lidified into an FCC lattice, however the low temperature of the measurement

means that the C60 molecules could have shifted to an SC lattice depending

on the amount of movement available to the molecules in the sample. We will

therefore explore both possibilities.
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FCC intensities are given by Parker [69] at 5.8 meV and 3.7 meV. Neumann [70]

measured librational motion, using neutron scattering, at 2.0 meV for a mea-

surement at 250 K, which moved to 2.8 meV at 20 K. Glebov et al. [67] showed

that the libration modes at 1.75 and 3.25 meV shift to lower energies and re-

duce in intensity as temperature is increased, they also showed a mode at 5

meV.

SC modes are given by Parker at 2.7, 4.3 and 6.2 meV with a calculated peak

at 8.7 meV. Yu [68] shows intensity in neutron scattering at 2.8, 3.8, 4.8 and 6.2

meV with calculated intensities at 2.5, 5 and 7 meV. Pintschovius et al. [71] used

inelastic neutron scattering to find modes at 2.4, 3.6,and 4.6 meV. Horoyski et

al. [72] used Raman spectroscopy at 77 K which gave peaks at 2.2, 2.6, 3.0 and 4.0

meV which were identified as libration modes with other peaks at 5.1, and 6.1

meV. These higher modes were also found by Horoyski et al. [73] using infrared

spectrosopy at 5.0 and 6.8 meV at a temperature of 2 K. Also measured with

infrared were peaks at 1.0, 1.6, 2.2, and 2.7 meV by Huant et al. [74] at 2 K.

Figure 7.22: Peaks in the sum over Q for NEAT data compared to energies
from literature
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These values have been compared to the NEAT measurements in figure 7.22

and we can see that most of the peaks are accounted for.

NEAT (meV) Other Work
0.7041
0.8619 1.0 [74]

1.205
1.297
1.539 1.6 [74]

1.91
2.023 2.0 [70]*
2.14 2.2 [74] [73]

2.77 2.5 [68], 2.6 [73],2.7 [74] [69] 2.8 [68] [70]

3.594 3.5 [69], 3.6 [71],3.8 [68]

4.236 4.3 [69]

4.9 4.8 [68], 5 [68] [73]

6.094 6.1 [73], 6.2 [69] [68]

6.59 6.8 [73]

7.109 7 [68]

7.912
8.753 8.7 [69]

9.635
Table 7.1: Peaks in NEAT data between 0.7 and 9.7 meV compared to litera-

ture values, FFC peaks are starred

The table 7.1 shows all the peaks from the NEAT data compared to the litera-

ture values. Those from FCC measurements are starred.

In this data the FCC values of 1.75, 3.25 and 5 meV from Glebov et al. are not

present in the C60 GIC measurements and there are few matches to other FCC

values such as those given by Parker et al.. The match to SC values is good

with some missing or shifted values but the majority of peaks present. This

suggests that the C60 is in the simple cubic form in the NEAT data.

The peaks for the C60 GIC tend to be lower than those for the pure simple cubic

forms, suggesting that the C60 is more disordered as shown by the Glebov et al

data which illustrates a reduction of energy value with increased temperature.

The data also shows the peaks between 1 and 2 meV shown by Yu in their

calculations of disordered C60.
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We also have several peaks unaccounted for, particularly at low energy transfer

which could be due to the intercalate. However it is not possible to specify if

any effects arise from the interactions between the C60 and the graphite layers

without a model for this system.

In summary we have shown that despite the low quality of data we have

still been able to find some information about the sample, although it has

not been possible to find any specific information about the intercalation of

the C60 GIC. The information found in the poly-CINS and diffraction data

shows that more investigation of this material would be justified. As we have

shown, there are features which cannot be explained by graphite and C60

independently. Further poly-CINS experiments would be needed to find the

best conditions for gaining information such as true phonon curves which

would give real information about the dynamics of the material. It is not

obvious if this would be easy to achieve with a better instrument as although

the experiments with higher flux did give more information, the nature of the

sample makes it difficult to put a lot of material in the neutron beam. As

shown in the next section the instrument is capable of showing phonon curve

information given a high enough quantity of scattering material.

7.2.5 Deuterium in C60 GIC

As the material was created for possible hydrogen storage applications an ex-

periment was performed at NEAT which added D2 gas to the C60 GIC under

pressure. Deuterium is used in coherent scattering experiments instead of hy-

drogen as it has a coherent scattering cross-section similar to that of carbon.

The deuterium and carbon coherent scattering cross-sections are 5.59 and 5.55

barns respectively. Hydrogen however has a low coherent cross-section of 1.76

barn and a very high incoherent cross-section of 79.9 barns, this incoherent
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cross-section results in data loss for the other coherent scatterers in the sys-

tem.

The experiments were performed at a pressure of 20 bar and with an initial

wavelength of 4.8 Å as this wavelength provided the best data range in the

previous experiments.

In the first experiment the gas was added when the system was at a temper-

ature of 10 K. It was forgotten that D2 solidifies at temperatures below 18 K

thus this measurement shows dynamic information from solid D2.

Figure 7.23: Poly-CINS measurement of C60 GIC and solid D2

This data does demonstrate that clear intense phonon curves can be shown by
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the NEAT spectrometer under the same conditions as the other measurements

were taken, thus the lack of C60 GIC in the beam seems to be the main con-

tributor to the low quality of the previous data. The curves beyond 2 Å−1 fit

with those expected from solid D2 as measured by Nielsen [75] and others.

The temperature of the system was then raised to 34 K to allow the D2 to

return to its gaseous form. The poly-CINS spectra of this system is shown in

figure (7.24).

Figure 7.24: Poly-CINS of C60 GIC with D2 gas added

This shows strong diffuse scattering at Q values associated with D2 gas. How-

ever it is unclear if the D2 has travelled into the C60 GIC.
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Comparison with the GIC measurement at the same wavelength, figure (7.25),

shows how the system has changed with the addition of the gas.

Figure 7.25: Comparison of C60 GIC before and after the addition of D2 gas

(a) Poly-CINS of C60 GIC taken at 4.8 Å

(b) Poly-CINS of C60 GIC with D2 gas added
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Figure 7.26: Comparison of C60 GIC before and after the addition of D2 gas
at full intensity

(a) Poly-CINS 3D plot of C60 GIC at full intensity

(b) Poly-CINS 3D plot of C60 GIC with D2 gas added at full intensity

Figure (7.25) seems to show an increase in intensity between 1 and 1.5 Å−1 but

it is not entirely clear.
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In figure (7.26) the two data sets have been normalised to the most intense

elastic peak and are shown in full in a 3D plot.

These figures show an increase in intensities at low Q relative to the peak at

1.8 Å−1 which is the graphite 002 peak. This would seem to suggest that the

D2 has diffused through the material and has possibly accumulated around

the intercalated areas. However more analysis is needed to definitively show

the locations and movement of D2 in the system.

It is also interesting that the graphite 002 peak dominates the elastic line de-

spite the high intensity of the D2 diffuse scattering. The elastic line for the

sample with solid D2 shows D2 peaks with an intensity almost two orders of

magnitude higher than the graphite 002 peak.

Figure 7.27: Poly-CINS measurement of C60 GIC and solid D2 at full intensity

In figure (7.27) only D2 peaks are visible, all other intensities are too low to see
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if not highlighted by the removal of very high D2 intensities.

In summary, the deuterium added data shows that it is possible to gain good

poly-CINS data from the NEAT spectrometer, and that the main issue with

the measurements are related to the nature of the C60 GIC sample. The data

seems to show D2 gas traveling through the GIC at a pressure of 20 bar but

more investigations would be needed, at different temperatures and pressures

to characterise the full behavior of D2 or hydrogen gas in a C60 GIC material.
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

In this work we covered the creation and use of the neutron scattering visu-

alisation and and analysis software Neutronplot. The creation of Neutronplot

was necessary to allow the comparison of theoretical and experimental data.

Without this software Scatter data would have to be transformed into input

files for each analysis suite. Although this would be relatively easy to achieve,

it would not allow the comparison capabilities of Neutronplot such as overlay-

ing, and combining data sets. Neutronplot is also particularly user friendly, as

a specific poly-CINS visualiser it performs several default actions to show the

data in a clear form. Features such as the radio buttons moving to the next

data set after loading and allowing points for line graphs to be chosen by a

mouse click are unique.

Chapter four covered analysis of the structure of natural graphites. For natural

graphite we found that the rhombohedral stacking in graphite tended to give

a larger interlayer spacing than that of hexagonal and that at least one sam-

ple contained areas of different interlayer spacing. The exfoiliated graphite

demonstrated the reduction in intensity of the 002 peak with the addition of
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disorder to the system and the loss of visible rhombohedral peaks after ex-

foilation.

We also found that the sample created by Keens had C60 molecules interca-

lated in the graphite layers, giving a structure with dimensions similar to that

found by Gupta et al., with a large amount of disorder in plane spacing.

Poly-CINS measurements were used to investigate the dynamics of a natu-

ral graphite and an exfoilated graphite. We saw the natural graphite sam-

ple showed features which were a product of instrument error and were able

to identify these by comparison of both sides of the energy transfer. It also

showed differences in intensity from the predicted ideal graphite structure,

this is likely to be due to defects in the material. The exfoilated sample showed

a great difference in intensity from the theoretical and natural graphite data.

With the phonon curves starting above 3Å showing higher intensity than the

002 curve.

The poly-CINS measurements of the C60 GIC proved challenging to interpret

due to the poor statistics leading to a lack of clear phonon curves. We were able

to find that the C60 in the structure showed similar dynamics to the the simple

cubic form with alterations due to the disorder in the material. We also showed

that the NEAT spectrometer was capable of showing dispersion information

under the same conditions and that deuterium gas would percolate through

the sample.

8.2 Further Work

There are many avenues for further investigation raised by this work. In the

case of Neutronplot, it would be more accessible if it was written in a language

such as C which can be easily complied to allow easy distribution and is more
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commonly known. Ideally the functions specific to Neutronplot would be

added to the current MANTID project, perhaps as an additional package for

those interested in poly-CINS analysis.

In the case of the structural investigations more work needs to be undertaken

to give a definitive answer to the subject of rhombohedral layer spacing in

graphites, with diffraction measurements performed to investigate these peaks

specifically. Ideally DFT or lattice dynamics calculations would be used to see

if a different spacing is predicted, however DFT has difficulty in predicting the

bonding between graphite layers.

The disordered nature of the C60 in the C60 GIC could be investigated further.

The C60 sample used was not investigated prior to intercalation and it would

be useful to perform diffraction analysis on this or a similar material to check

if other fullerines or carbon based structures are present.

The investigation of the dynamics of graphite would be greatly improved with

a model for the spectra expected from rhombohedral stacking to see what

effect if any it has on the dynamics of graphite. A model of defected graphite,

currently in development, would also be ideal for comparison with the natural

and exfoilated samples. Experiments have also been performed investigating

the effect of different orientations in the beam, this data could be used as

comparison to this work to see how different phonon intensities are affected

by both orientation and defects.

The dynamic properties of the C60 GIC could be better understood with the

addition of models for the interactions between the C60 and the graphite and

also by Scatter data for the C60 lattice and the GIC lattice. The model for

diffraction proved essential in explaining peaks present in the neutron diffrac-

tion measurement and it is likely that Scatter data could give further insight

into the poly-CINS data. This would be best done in conjunction with fur-
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ther poly-CINS measurements with a higher neutron flux now that the areas

of most interest have been identified. The analysis of the measurements of

gaseous deuterium in the C60 GIC would benefit from more measurements

taken under different conditions.
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Appendix A

Derivations

A.1 Box Normalisation

Starting with the result from Fermi’s golden rule

∑
k′

Wk,µ→k′µ′ =
2π

h̄
ρk′ |〈k′µ′|V|kµ〉|2 (A.1)

we need to find an expression for ρk′

box normalisation imagines the quantum system in a large box, this fixes nor-

malisation constants and means that the only neutrons states are those who de

Broglie waves are periodic in the box. The wavevectors of these states forms a

lattice in k space

The volume of the unit cell of this lattice is

vk =
(2π)3

Y
(A.2)

where Y is the volume of the box

neutron final energy is
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E′ =
h̄2

2m
k′2 (A.3)

with

dE′ =
h̄2
m

k′dk′ (A.4)

ρk′dE is defined to be the number of states in dΩ with energy between E′

and E′ + dE′, this is equal to the number of wavector points in the element of

volume k′2dk′dΩ, giving

ρk′dE′ =
1
vk

k′2dk′dΩ (A.5)

substiution of the volume of the lattice gives

ρk′ =
Y

(2π)3 k′
m
h̄2 dΩ (A.6)

the wavefunction of the neutron which is the plane wave exp(ik.r) and there

is one neutron in the box, thus the neutron density is 1/Y giving

Ψk =
1√
Y

exp(ik.r) (A.7)

thus the matrix element of the golden rule result is

〈k′µ′|V|kµ〉 =
∫

Ψ∗k′χ
∗
µ′VΨkχµ dR dr (A.8)

=
1
Y

∫
exp(−ik′.r)χ∗µ′V exp(ik.r)χ∗µ dR dr (A.9)
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We can also find the flux of the incident neutrons as it is the product of their

density and velocity

Φ =
1
Y

h̄
m

k (A.10)

substitution of (A.1), (A.5), (A.9) and (A.10) into the differential cross section

equation

dσ

dΩ µ→µ′
=

1
Φ

1
dΩ ∑

k′
Wk,µ→k′µ′ (A.11)

gives

(
dσ

dΩ

)
µ→µ′

=
k′

k

(
m

2πh̄2

)2

|〈k′µ′|V|kµ〉|2 (A.12)
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