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Abstract 

In many countries, Phyllanthus niruri L is one of the most popular alternatives of natural 

herbal remedy to overcome many symptoms due to its wide range of therapeutic uses. Even 

though a considerable number of research projects have been conducted in order to reveal 

the pharmacological activities of Phyllanthus niruri L, and that a number of reports have 

been produced mentioning its pharmacological effect, the rich constituents of this plant are 

yet to be comprehensively studied, particularly with regards to the nature of the biological 

activities that the compounds have. 

Accordingly, the main focus of this study is the exploration of Phyllanthus niruri L as a new 

candidate of natural compound. This was done through a series of bioassay-guided plant 

extraction and isolation protocols. Phyllanthus niruri L crude extracts were tested against 

plasmodium, cancer cell lines, and platelet aggregation. Guided by the bioassay results, the 

isolation procedures were performed using advance chromatography techniques, in order 

to purify the most-active substances that represent the final candidate natural product. This 

study also employed flow cytometry and proteomics studies, as an attempt to identify the 

fundamental principles of the mechanism of action of the isolated compounds. 

The results demonstrated that Phyllanthus niruri L extracts showed a potency as 

antiplasmodial, anti-cancer, as well as anti-platelet agent. In inhibiting plasmodium 

falciparum growth, the potency of the extracts from the most to the least potent activity 

was methanol > water > ethanol > chloroform > hexane (IC50 values were 1.6 µg/ml, 9.6 

µg/ml, 25 µg/ml, and 141 µg/ml, respectively). With regards to its anti-cancer effect, 

Phyllanthus niruri L extracts showed a significant cytotoxic effect on human Caucasian lung 

large cell carcinoma (COR-L23), human acute T lymphoblastic leukaemia (MOLT-4), and 

human caucasian chronic myelogenous leukaemia (K562). Among all extracts, methanol 

extract demonstrated the strongest cytotoxicity effect with a low IC50 values for all cell lines 

tested (IC50 values for COR-L23, MOLT-4, and K562 was 48.92 ± 0.52 µg/ml, 42.21 ± 4.98 

µg/ml, and 139.28 ± 19.02 µg/ml, respectively). Methanol, water, ethanol, and hexane 

extracts did not show any toxicity towards normal fibroblast cell line (3T3). However, 

chloroform extract demonstrated a toxic effect to the normal cells line (IC50 value 164.3 ± 

8.4 µg/ml). 
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The antiplatelet activity of Phyllanthus niruri L was further explored in this study due to a 

remarkable inhibitory effect of methanolic extract observed on ADP-induced platelet 

aggregation. With the aid of bioassay-guided isolation protocol, the study has isolated four 

compounds from the methanolic extract, which demonstrated a potency in preventing in-

vitro platelet aggregation induced by ADP (compound 1, 2, 3, and 6). The IC50 of each 

compound was 179.9 ± 2.67 µg/ml (compound 1), 31.91 ± 1.86 µg/ml (compound 2), 

77.68±6.44 µg/ml (compound 3), and 43.35 ± 6.44 µg/ml (compound 6). Compound 2 was 

identified as corilagin or [3,5-dihydroxy-2- (3,4,5-trihydroxybenzoyl)oxy-6-[ (3,4,5-

trihydroxybenzoyl) oxymethyl] oxan-4-yl] 3,4,5-trihydroxybenzoate.  

The finding of this study demonstrated that corilagin altered the G-protein signalling 

pathway in a selective manner by impeding Gq-protein cascade. Corilagin might act through 

G13-mediated signalling; however it showed no significant effect on Gi-mediated signalling 

pathway. Consequently, corilagin inhibited platelet shape changes, granule secretion, and 

platelet aggregate formation, which was suggested to take place by the inhibition of the 

elevation of intracellular Ca2+ level due to the inactivation of PLCβ. Although corilagin 

showed no observable inhibitory effect on the initial activation of the major platelet 

glycoprotein, GPIIb/IIIa, the findings suggested that the interaction between the activated 

integrin and the related ligands is affected, which results in the inhibition of further 

amplification of platelet aggregation.  

Overall, this study confirmed the antiplatelet activity of corilagin and explained its coherent 

mode of actions, which support the future development of corilagin, isolated from 

Phyllanthus niruri L as a natural-sourced antiplatelet compound. 
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1.1 General introduction 

Nature has provided numerous natural sources of traditional remedies that have been used 

for many years as treatments for various ailments and diseases. Within the wide range of 

living organisms available on earth including higher plants, animals, fungi, and marine 

organisms, the databases of natural products have recorded more than 200.000 compounds 

from almost all part of the world (Füllbeck et al., 2006). Plants have been by far the most 

widely studied source of medicinal compounds  (Cragg et al., 1997). Dias and co-workers 

(2012) infer that one of the ancient scripts from Egypt (2600 BC) mentioned the uses of 

plants as the major constituents of their traditional drugs (pills, infusions, and ointments). 

Moreover, ancient Chinese scientists (100 BC) and Greek physicians (100 AD) documented 

several manuscripts regarding the prescription of numerous herbal medicines. Later, a 

famous Persian scientist (8th century), Avicenna, developed and introduced the basis of 

modern day pharmacy and medicine science for the first time, with the emphasis being on 

the application of plant-derived medicine.  

The earliest examples of the uses of plants as a source of medicinal products resulted from 

hundreds of years of trial-and-error experiments on local human populations, which was 

then assimilated in their culture and passed to their successors. The long history of the 

therapeutic (ethnomedical) applications has given much fundamental guidance in modern 

research aimed at elucidating the active compounds contained in a particular medicinal 

plant. Therapeutic natural products are likely to be safer than synthetically derived new 

chemical entities if the active compounds derived from plants previously used for humans 

use. Additionally, when one or more extracts of a particular plant shows some biological 

activities in preventing or treating a particular symptom of diseases, there is a potential 
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opportunity to seek for lead compounds from such plants. This may  ultimately lead to 

synthetic or semisynthetic drug development and patent protection (Fabricant and 

Farnsworth, 2001). 

Natural compounds are typically secondary metabolites that are synthesised by an 

organism; many of these metabolites are found to be unique to a particular organism. They 

may not be essentially needed for metabolism, but may be related to the function of 

environmental adaptation or as a possible defence mechanism for the survival of the 

organism (Dias et al., 2012).  

Over the past 30 years, there has been a significant rise in the number of publications on 

natural products focusing on the investigation of plant-derived lead compounds (Newman 

and Cragg, 2012). Fabricant and Farnsworth (2001) reviewed 122 compounds originated 

from 94 plants, which are widely used as important drugs in more than one country. 

Fabricant and Farnsworth further added that 80% of these compounds were used for 

identical or related ethnomedical porpose of the active elements of the plant. However, 

despite a resurgence of interest in the investigation of plants as a source of natural 

products, the numbers of plant-derived secondary metabolites is still far from exhausted. 

From a total of approximately 250.000 species of higher plant available on earth, only 15% 

have been investigated so far for their active compounds and  only 6% have been screened 

for their biological properties (Füllbeck et al., 2006, Newman and Cragg, 2012). Accordingly, 

there are many more candidates for new active compounds that remain untouched and 

therefore still await to be discovered. 

Phyllanthus niruri L is one of the most popular choices of natural herbal remedy to 

overcome many symptoms due to its wide range of therapeutic uses in traditional medicine. 
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Examples of usage include treating high fever, respiratory disturbance, abdominal 

disturbance, kidney disturbance, infection and bleeding disorders (Calixto et al., 1998, 

Syamasundar et al., 1985). This plant has been mentioned in a number of historic  

manuscripts, such as the ancient herbal medicine histories of Ayurveda Indian history, 

traditional chinese medicine and Indonesian Jamu (Bagalkotkar et al., 2006). Consequently, 

the long history of Phyllanthus niruri L use in herbal medicine from all over the world has 

brought the interest of many scientists to explore the pharmacological properties of this 

plant.  

A number of projects have been conducted to reveal the pharmacological activities of 

Phyllanthus niruri L, and, accordingly, a considerable number of publications are available 

that mention its pharmacological effects. However, although various active compounds 

have been identified from this plant, there are questions that remain to be answered 

regarding the nature of the active compounds responsible for the observed biological 

activities, and the mechanisms by which they exert their medicinal effects. 

Accordingly, this thesis is focused on the exploration of Phyllanthus niruri L to seek new 

pharmaceutical candidates against a number of disease conditions. This will be achieved by 

screening for the most active extracts possessing a particular biological effect, followed by 

the identification of the active substance responsible for the activity. This project will also 

provide a comprehensive explanation regarding the possible mode of action of the active 

compounds isolated from Phyllanthus niruri L. This will strengthen the knowledge used in 

the future development of new drugs derived from this plant. 
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1.2 Phyllanthus niruri L in pharmacognosy  

Phyllanthus niruri L is a small-size indigenous plant (shown in Figure 1.1) that grows in 

tropical and subtropical areas, such as South America, Africa and Asia, including Indonesia 

(Calixto et al., 1998, Mellinger et al., 2005, Elfahmi et al., 2006). It has small solitary, 

auxiliary and apetalous off-white-greenish flowers and green leaves that are up to 7-12 cm 

in length (Bagalkotkar et al., 2006). Different names are given to Phyllanthus niruri L, such as 

Chanca Piedra in Spanish, Quebra Pedra in Brazil, Pitirishi in India, and Meniran in Indonesia. 

 

 

Figure 1.1 – Whole plant of Phyllanthus niruri L (Wahyuni S., 2010) 

1.2.1 The constituents of Phyllanthus niruri L 

In a number of studies over  the last 30 years, there have been more than 50 compounds 

identified from almost all part of this plant, including the classes of flavonoids, terpenes, 

coumarines, lignans, tannins, saponins, and alkaloids (Bagalkotkar et al., 2006). Not 
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surprisingly, Phyllanthus niruri L has been acknowledged as one of the richest sources of 

plant-derived secondary metabolites. Among all the constituents, alkaloids, lignans, 

terpenes, and tannins are the most abundant compounds contained in this plant (Calixto et 

al., 1998). Some of the compounds and their known-activities are listed in the Table 1.1. 

 

Table 1.1 – Chemical constituents isolated from Phyllanthus niruri L 

Class Compound  Activities Reference 

Alkaloid Nor-securinine  Anti-fungal (Joshi et al., 1986) (Sahni 
et al., 2005)  

4- (Methoxy-d3) 
securinine 

  (Mulchandani and 
Hassarajani, 1984) 

Nirurine   (Petchnaree et al., 1986) 
Coumarin Ellagic acid Aldose reductase 

inhibitor, ACE-inhibitor 
(Ueno et al., 1988, 
Shimizu et al., 1989) 

Methyl 
brevifolincarboxylate 

Vasorelaxan, anti-
platelet 

(Iizuka et al., 2007) 
(Iizuka et al., 2006, Than 
et al., 2006)  

Brevifolin carboxylic 
acid 

Aldose reductase 
inhibitor 

(Shimizu et al., 1989, 
Ishimaru et al., 1992, 
Than et al., 2006) 

Ethyl Brevifolin 
carboxylate 

Aldose reductase 
inhibitor 

(Shimizu et al., 1989) 

Flavonoid Rutin Hepatoprotective (Sabir and Rocha, 2008) 
(Janbaz et al., 2002) 
(Colombo et al., 2009)  

Quercetin   (Subeki et al., 2005, 
Than et al., 2006) 

Quercitrin   (Sabir and Rocha, 2008) 
Astragalin   (Kale Kumud et al., 

2001) 
Catechin   (Ishimaru et al., 1992) 
Niruriflavone Antioxidant (Than et al., 2006) 

Lignan Phyllanthin Hepatoprotective,  (Syamasundar et al., 
1985, Satyanarayana et 
al., 1988) 

Hypophyllantin Hepatoprotective (Syamasundar et al., 
1985) 

Niranthin Anti-inflammatory, anti-
viral 

(Satyanarayana et al., 
1988, Huang et al., 2003, 
Kassuya et al., 2006) 
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Class Compound  Activities Reference 

Nirtetralin Anti-inflammatory, anti-
viral 

(Satyanarayana et al., 
1988, Huang et al., 2003, 
Kassuya et al., 2006) 

Phyltetralin Anti-inflammatory (Satyanarayana et al., 
1988, Kassuya et al., 
2006) 

Lintetralin   (Satyanarayana et al., 
1988) 

2,3-desmethoxy seco-
isolintetralin 

  (Singh et al., 1989) 

2,3-desmethoxyseco-
isolintetralin diacetate 

  (Singh et al., 1989) 

Linnanthin   (Singh et al., 1989) 
Demethylenedioxynira
nthin 

  (Singh et al., 1989) 

Nirphyllin   (Singh et al., 1989) 
Phyllnirurin   (Singh et al., 1989) 
Seco-4-
hydroxylintetralin 

  (Satyanarayana et al., 
1988) 

Seco-isolariciresinol 
trimethyl ether 

  (Satyanarayana et al., 
1988) 

Hydroxyniranthin,   (Satyanarayana et al., 
1988) 

Methylenedioxybenzyl-
3',4'- 

  (Satyanarayana et al., 
1988) 

dimethoxybenzylbutyro
lactone 

  (Satyanarayana et al., 
1988) 

cubebin dimethyl ether   (Elfahmi et al., 2006) 
Urina tetralin   (Elfahmi et al., 2006) 

Tannin Geraniin ACE-inhibitor, anti-viral (Huang et al., 2003) 
Repandusinic acid Anti-viral (Ogata et al., 1992) 
Corilagin    (Colombo et al., 2009)  
Isocorilagin   (Than et al., 2006) 
Gallic Acid ACE-inhibitor (Than et al., 2006) 

Other 1-O-galloyl-6-O-
luteoyla-D-glucose 

Anti-malaria (Subeki et al., 2005) 

β-glucogallin Anti-malaria (Subeki et al., 2005) 
Niruriside Anti-viral (Qian-Cutrone et al., 

1996) 
β-sitosterol   (Subeki et al., 2005) 

Adapted from Calixto et al. (1998) 
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1.2.2 Pharmacological properties of Phyllanthus niruri L 

Studies exploring the pharmacological properties of Phyllanthus niruri L and exploiting its 

biological effects are available from a number of sources for both in-vivo and in-vitro 

experiments. Within the hepatobiliary studies, the plant extracts showed a significant effect 

as a hepatoprotective agent. The early report on the pharmacological activity of Phyllanthus 

niruri L revealed the hepatoprotective activity of Phyllanthin and Hypophyllantin isolated 

from the hexane extract of the whole plant (Syamasundar et al., 1985). Sabir and Rocha 

(2008) identified that the aqueous extract demonstrated a protective effect against 

paracetamol-induced liver damage in mice, which was shown by the significant decrease of 

hepatic enzymes after 7 days oral administration of the extract. The Aqueous extract of 

Phyllanthus niruri L was also reported to show antioxidant activity by the decreased effect of 

lipid peroxidation marker level: thiobarbiturate acid-reactive substance (TBARS). The 

marker, observed from liver, brain, and kidney of mice underwent a sodium nitroprusside-

induced DNA damage, was significantly decreased by the presence of the extract, thus 

eliciting the hepatoprotective, neuro protective, and renal protection of Phyllanthus niruri L 

crude extracts (Sabir and Rocha, 2008). 

Phyllanthus niruri L has also been studied for its anti-viral effects. The aqueous extract 

suppressed the binding of hepatitis B antibody (anti-HBs) to hepatitis B antigen (HBsAg), 

which indicated the ability to bind the Hepatitis B surface antigen (Venkateswaran et al., 

1987). The extract also demonstrated a dose-dependent inhibitory activity towards DNA 

polymerase (DNAp), which is responsible for DNA synthesis and is closely related to the 

severity of the disease (Venkateswaran et al., 1987). From an in-vivo study, using 

woodchucks infected with Woodchuck Hepatitis Virus (WHV), oral administration of an 
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aqueous extract significantly decreased the Woodchuck hepatitis B antigen (WHsAg) and 

WHV DNAp titers to the undetected levels (Venkateswaran et al., 1987).  

Looking back at the long history of the ancient medicinal practice, this plant is famous for 

the elimination of renal stone and, accordingly, named as ‘renal stone breaker’ remedy. Not 

surprisingly, Phyllanthus niruri L activity in the treatment of urolithiasis has become one of 

the areas of interest for researchers for over the past 50 years. Yadaf and co-workers (2011) 

suggested that the action of Phyllanthus niruri L in preventing renal stone formation can be  

attributed to the diuretic, anti-spasmodic and vaso relaxant effects of the extracts. The 

aqueous extract of Phyllanthus niruri L demonstrated a potency in inhibiting the growth of 

matrix calculus and reduced the formation of stone satellites, thus prevents the 

development of crystal growth (Freitas et al., 2002). Although the same study reported that 

Phyllanthus niruri L extracts showed no effect on the urinary excretion of calculus promoter 

elements (calcium and oxalate) or protective elements (citrate and magnesium), the 

extracts significantly increased the concentration of glycosaminoglycans (GAGs). The higher 

level of GAGs is correlated to the larger size of calculi formation. Accordingly, the result 

suggested that the anti-lithogenic effect of Phyllanthus niruri L extracts is not related to the 

inhibition of these substances, but might be attributed to the alteration of crystal adhesion 

to the epithelium due to the modification of the binding sites of crystal surface (Campos and 

Schor, 1999, Freitas et al., 2002). 

In the case of its anti-malarial activity, based on one in-vivo study, alcoholic extracts of this 

plant have demonstrated a strong anti-plasmodia activity (Totte et al., 2001, Cimanga et al., 

2004, Mustofa et al., 2007). At a dose of 200 mg/kg/day, ethanol and dichloromethane 

extracts significantly decreased mice parasitemia rate to more than 50% fall against 
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Plasmodium berghei (Totte et al., 2001). A Further study confirmed the efficacy of the  

methanol and aqueous extracts against Plasmodium berghei with the half maximal 

inhibitory dose (IC50) of 9.1 mg/kg/day and 20 mg/kg/day, respectively (Mustofa et al., 

2007). An In-vitro study was conducted to evaluate the efficacy of methanol extract against 

Plasmodium falciparum, and the result demonstrated a potent inhibition effect with IC50 

range of 2.3 to 3.9 µg/ml (Mustofa et al., 2007).  

Methanol extracts of the aerial part of the plant was confirmed to have a potency in 

lowering blood glucose in diabetic rats as well as preventing the sudden increase of 

postprandial glucose level. The research also suggested that the extract may possess 

antioxidant and protective effects towards pancreas damage (Okoli et al., 2010). This study 

was in line with the previous work that reported anti-hyperuricemic effect of methanol 

extracts, demonstrated by the inhibition of xanthine oxidase activity (Murugaiyah and Chan, 

2009). In another study, conducted by Okoli and co-workers (2009), the extract increased 

the rate of wound healing, which was shown by the acceleration of wound contraction, 

epithelialization, and granuloma tissue formation. The author proposed that the wound 

healing effect is associated with the migration, proliferation, and the activity of epithelial 

cells and myofibroblast cells, which are known to play major roles in epithelialization and 

wound contraction. Moreover, the healing process showed the formation of granuloma 

tissue, which indicates the activity of peptide growth factors secreted by macrophages, thus 

stimulating fibroblast proliferation and angiogenesis. Taken together, these findings  

suggested the efficacy of methanol extracts of Phyllanthus niruri L. on the tissue 

regeneration process (Okoli et al., 2009). 
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In the same study, Okoli and co-workers (2009)  reported that the extract strongly inhibited 

indomethacin-induced gastric ulcer formation. The mucosal damage protective effect 

implies the role of methanol extracts of Phyllanthus niruri L in prostaglandin metabolism. 

Indomethacin, a non-steroidal anti-inflammatory agent, inhibits prostaglandin synthesis via 

the arachidonic pathway. Therefore, it has been suggested that the extract enhances 

prostaglandin synthesis followed by an increase in the activity of the mucosal defensive 

factor to ultimately inhibit ulcer formation. 

Furthermore, the anti-cancer effects of Phyllanthus species have been mentioned in a 

number of manuscripts, which reported that extracts from several species possessed the in-

vitro growth inhibitory activity against cancer cell lines, including renal cancer (Ratnayake et 

al., 2008), hepatocellular cancer, and lung cancer (Pinmai et al., 2008). Moreover, some 

authors have specifically described the efficacy of Phyllanthus niruri L as anti-cancer agents. 

Indeed the aqueous and methanol extracts of Phyllanthus niruri L expressed an inhibitory 

effect against the human melanoma cell line (MeWo), prostate cancer cell line (PC-3), lung 

cancer cell line (A549), and breast cancer cell line (MCF-7) (Tang et al., 2010, Lee et al., 

2011) , of which the methanol extracts showed a better inhibitory activity compared to the 

aqueous extract. For example, the IC50 of aqueous extract against MeWo cell line was 260 ± 

2.4 µg/ml while the IC50 of methanol extract was 153.3 ± 2.6 µg/ml (Tang et al., 2010). A dry 

extract of this plant also presented a significant effect in inhibiting the growth of human 

hepatocellular carcinoma cells (HepG2 and Huh-7) this was suggested to be brought about 

by the apoptotic effect of the extract (de Araújo Júnior et al., 2012).  
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Taken together, the various studies conducted on the biological activities of Phyllanthus 

niruri L extracts have given scientific evidence for its medicinal effects, which is consistent 

with the traditional application of this plant (de Araújo Júnior et al., 2012).  

1.2.3 Mechanism of action of the isolated compounds 

Despite a wide range of medical activity of Phyllanthus niruri L crude extracts and the rich 

amount of secondary metabolites contained in Phyllanthus niruri L that have been 

discovered, there is only a limited number of publications, available to date, which explain 

the mechanism of action of the medicinal compounds isolated from this plant.  

1.2.3.1 Antiplatelet activity 

One of early reports of the isolation and purification of Phyllanthus niruri L constituents was 

conducted by Ueno and co-workers (1988). This group isolated the medicinal compounds by 

a bioassay-guided isolation method to identify the most active compounds which exhibit the 

activity of the angiotensin-converting enzyme (ACE) inhibitors. The enzyme is known as an 

important player in the regulation of blood pressure. Accordingly, the inhibitory effect 

shown by the crude extracts is a promising starting point to the discovery of natural-based 

anti-hypertensive agent. There are three active compounds that presented the activity 

towards ACE inhibition; geraniin, ellagic acid, and gallic acid. However, the efficacy was far 

from a satisfactory result compared to captopril, a well-known ACE-inhibitor agent (Ueno et 

al., 1988). From this point, study on discovering and exploring this extract activity upon 

cardiovascular system has not shown a significant result. In 2006, Kassuya and co-workers  

assessed the anti-inflammatory effect of lignans isolated from the hexane extracts of 

Phyllanthus amarus, a-closely-related species of Phyllanthus niruri. The result suggested that 

the lignans and niranthin, significantly reduce the inflammatory activity, characterised by 
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the low rate of Platelet Activating Plasma Factor (PAF)-mediated inflammatory reaction. PAF 

is a pro-inflammatory phospholipid that plays a role in cardiovascular diseases, which 

activation of the corresponding cascade involves the receptor that belongs to G-protein 

coupled receptor, membrane calcium uptake, and phosphate metabolism (Nakamura et al., 

1991, Mazer et al., 1992). However, until now, there are no clear reports of a tangible 

mechanism for the cardiovascular activity of these compounds. 

Moriyama and co-workers (2002) were the first to report the anti-platelet activities of 

methanol extract derived from Phyllanthus niruri L. The extract inhibited 30% and 50% of in-

vitro platelet aggregation induced by collagen (2 µg/ml) and ADP (5 µg/ml), respectively, 

using the extract concentration of 1.5 mg/ml. When the concentration of the extract was 

doubled, the inhibition of platelet aggregation induced by ADP or collagen was more than 

80% compared to the control groups. The efficacy to inhibit platelet aggregation suggested a 

receptor-binding activity because ADP and collagen stimulate platelet activation via distinct 

specific receptors on platelet membrane (Iizuka et al., 2006).  

Later, the same group isolated methyl brevincarboxylate from the methanol extract of 

Phyllanthus niruri L and suggested that it possessed a potent ability to inhibit platelet 

aggregation (Iizuka et al., 2007). Although the report suggested that the inhibitory activity 

may involve platelet-receptor inhibition and platelet calcium mobilization, the exact 

mechanism of anti-platelet effect of Phyllanthus niruri L is yet to be explained.  

1.2.3.2 Anti-malarial activity 

From the study of anti-malaria screening of crude extracts of Phyllanthus niruri L, Subeki and 

co-workers (2005) isolated 1-O-galloyl-6-O-luteoyl-α-d-glucose from an aqueous extract, 

which demonstrated a strong inhibitory activity against Plasmodium falciparum growth in-
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vitro, with the IC50 of 1.4 µg/ml (Subeki et al., 2005). The same study also successfully 

identified several compounds from the fractionation of an aqueous extract. Some 

compounds that have been identified were quercetin 3-O-β-d-glucopyranosyl-(2→1)-O-β-d-

xylopyranoside, β-glucogallin, β-sitosterol, and gallic acid. All of those compounds showed 

an inhibitory effect towards Plasmodium falciparum growth. Nonetheless, the study has not 

been able to elucidate the mechanism of inhibition of the active compounds. 

 

 

Figure 1.2 – Chemical structures of anti-plasmodial compounds from Phyllanthus niruri L 

  

1-O-galloyl-6-O-luteoyl-α-d-glucose 

Quercetin 3-O-β-d-glucopyranosyl- 
(2→1)-O-β-d-xylopyranoside β-glucogallin 

β-sitosterol 

Gallic acid 
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1.2.3.3 Anti-cancer activity 

As a potential source of new anti-cancer agents, Phyllanthus niruri L extracts have shown 

significant potency to inhibit in-vitro cancer cell proliferation. However, until recently, the 

active compounds isolated from Phyllanthus niruri L have not been tested for anti-cancer 

activities, although the secondary metabolites contained in the plant are known to possess 

one or more actions towards cancer cell lines, some of which including classes of lignans, 

flavonoids, and terpenes (Nobili et al., 2009, Mills et al., 1995).Tang and co-workers (2010) 

suggested that the cytotoxic property might correspond to the presence of polyphenol 

compounds such as ellagitanin, gallo tannins, flavonoids, and phenolic acid, as the rich 

constituent of the methanol and ethanol extracts. Moreover, ethanol extracts showed an 

ability to alter the cancer cell cycle by the induction of apoptosis through caspase activation 

in melanoma and prostate cancer cells. It has also been reported that the extract prevented 

the progression of cancer by impeding the metastatic activity, in human lung and breast 

cancer (Lee et al., 2011).  

1.3 Platelet and its role in cardiovascular diseases 

Platelets are small blood cells derived from megakaryocytes with a diameter 3.0 x 0.5 µm 

and mean volume of 7-11 femtoliter (fl). Mature platelets are produced by the 

fragmentation of megakaryocytes in bone marrow releasing anucleated discoid cells, which 

are then released into the circulation. The normal platelet life span is 7-10 days and 

afterward will be cleared in the spleen and liver. In haemostatic processes, platelets play 

essential roles in the maintenance the physiologic condition of the circulatory system. This 

occurs as a result of a series of coagulation cascade events that are initiated by the platelet 

activation, followed by the release of platelet granule contents and subsequent platelet 
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aggregation (George, 2000). Therefore, platelet activation is the crucial stage in stopping 

blood leakage due to the vascular damage. The initial events after vascular injury involve 

platelet immobilisation at the damaged area, which causes platelet to be activated. 

Substances such as collagen and von Willebrand factor (vWF) which are located in the 

vascular sub-endothelial layer are exposed, following vessel damage, and stimulate platelet 

adhesion to the area of injury. Platelets are connected to collagen and other agonists 

through glycoproteins (GP) receptors on the platelet surface. Such binding will further 

expose other glycoproteins and lead to platelet aggregation (Hoffbrand and Moss, 2011). 

The purposes of these events are to build a primary platelet plug and prevent blood leakage 

from small vessel injury. Activated platelets also act as the initiator for blood coagulation 

process to stop massive blood loss due to medium and large vessel damage through the 

formation of secondary thrombotic plugs (Russel et al., 1982).  

1.3.1 Platelet activation 

Platelet activation is a complex cascade involving interactions between various biochemical 

agonists with specific receptors in platelet plasma membrane. The first response in primary 

haemostasis, or the forming of primary platelet plugs, is platelet adhesion at the site of 

vascular damage. This event is initiated by platelet binding to vWF and collagen of sub-

endothelium via GPIb-IX-V and GPVI receptors that will attract more circulating platelets to 

come to the injury site. Another collagen receptor, GPIa-IIa, also mediates direct platelet 

attachment to the vessel wall that strengthens platelet adhesion and stimulates platelet 

activation. 

The next event following the interactions between pro-coagulant substances and their 

corresponding receptor on the platelet surface is the alteration of cytoskeleton protein 
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formation in platelet cytoplasm, hence trigger the transformation of platelet shape. Before 

activation, circulated resting platelets have an irregular discoid shape. Signalling cascade 

initiated by platelet agonists, such as collagen, induce actin and myosin contraction in a 

platelet cytoplasm, which lead to the protrusions of cytoplasm to form dendritic 

pseudopodia. As a result, activated platelet is transformed into a spherical shape with 

several long pseudopodia. These protrusions eventually facilitate firm adhesion to the 

vascular wall due to the increase of the platelets surface area, on which a range of receptors 

is located. Subsequently, platelet signalling cascade activates GPIIb/IIIa receptors and causes 

the receptor to adopt a high fibrinogen binding affinity which is important to platelets cross-

linking to fibrinogen and further platelet aggregation process. 

 

Figure 1.3 – Platelet activation scheme 

Vascular injury exposes vWF and collagen on the vascular subendothelial, and initiates platelet 
adhesion to the injury site via glycoprotein receptors on the platelet surface. This event is followed 
by transformation of platelet shape and subsequent binding to fibrinogen, which act as a bridge for 
attaching other circulating platelets. The overall event is known as platelet activation. Activated 
platelets release cytoplasm granule contents into circulation, including platelet agonists such as ADP 
and thromboxane A2 that stabilise and amplify platelet aggregation and thrombus formation. Anti-
platelet drugs are targeting specific receptors on platelet activation thus preventing platelets from 
being activated and aggregated (Jurk and Kehrel, 2005). 



18 
 

1.3.2 Platelets release reaction 

As a result of platelet activation, various substances are released from platelet secretory 

granules into circulation. Secretion of these contents is facilitated by the surface-connected 

canalicular system in platelet plasma membrane through membrane invagination. The 

canalicular system captures nearby cytoplasmic granules, followed by the discharge of 

granule contents into plasma. There are two classes of secretory of granules in the platelet 

cytoplasm: alpha granules and dense granules (George, 2000). Alpha granules, the most 

common granules; contain clotting factors such as vWF, platelets-derived growth factor 

(PDGF), platelet factor 4, fibrinogen, albumin and Immunoglobulin. The less common 

granules, dense granules, contain adenosine diphosphate (ADP), adenosine triphosphate 

(ATP), serotonin and calcium (Hoffbrand and Moss, 2011). These substances are responsible 

for further platelet recruitment at the injury site as well as facilitating further platelet 

activation (Figure 1.3).  

In particular, alpha granules store platelet adhesive factors while secretion of dense granule 

contents plays a key role in formation of secondary thrombotic plug. There are two crucial 

platelet glycoproteins which are distributed on the membrane of alpha granules; P-selectin 

and GPIIb/IIIa (Stenberg et al., 1985b). Although P-selectin is also reported to be seen along 

the membrane of dense granule (Israels et al., 1992). Immediately after platelet activation, 

P-selectin and GPIIb/IIIa is redistributed and rapidly expressed on platelet plasma 

membrane. P-selectin is known as a member of selectin family of vascular cell surface 

receptors, and it mediates platelet adhesion to neutrophils (McEver et al., 1995). In the 

event of platelet aggregation, GPIIb/IIIa is a one of the pivotal adhesive molecules which 

recruit circulating platelets to the growing thrombus via fibrinogen bridging. Moreover, 



19 
 

activation of GPIIb/IIIa will initiate further platelet signalling cascade which amplify the 

overall process of platelet aggregation.  

Some molecules that are released from platelet granules, such as ADP and serotonin, are  

potent platelet agonists. ADP plays various roles in platelet activation and aggregation via 

different receptors on the platelet surface. Through binding with P2Y1-receptor, ADP is 

responsible in mobilization of calcium ions, initiation of platelets shapes transformation, and 

temporary platelet aggregation (Jin et al., 1998, Cattaneo and Gachet, 1999). Moreover, 

ADP binding to P2Y12 receptor enhances the secretion dense granule contents and 

formation of irreversible platelet aggregation (Dorsam and Kunapuli, 2004, Jin et al., 1998). 

In addition to ADP, serotonin, known as one of the potent platelet agonists, work together 

with ADP to strengthen the platelet activation response (Jurk and Kehrel, 2005). 

Moreover, endoplasmic reticulum (ER) and dense granules release calcium ions (Ca2+) which 

are essential trigger of platelet activation. Extracellular Ca2+ concentration shows a strong 

correlation with platelet binding to fibrinogen. High levels of Ca2+ concentration increases 

platelet binding to fibrinogen in the absence of other agonists such as ADP, thus initiating 

platelet aggregation (Hu et al., 2005). On the other hand, intracellular Ca2+ concentration 

that rises after platelet activation also contributes to platelet shape change due to kinase 

enzyme activity in phosphorylation of the myosin-light-chain in platelet cytoplasm. This is 

related to Thromboxane A2 (TXA2) synthesized from platelet phospholipid that, in turn, 

increases intracellular Ca2+ concentration by the inhibition of cyclic adenosine 

monophosphate (cAMP) production. 

TXA2 and thrombin are platelet agonists that are generated locally on the activated platelet 

surface (Brass, 2003). In general, these two agonists also act to initiate platelet activation; 
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through the rearrangement of the platelet cytoskeleton, which facilitates the shape change 

of platelets. In recent studies, thrombin shows the activity to activate protease-activated 

receptor (PAR) family, such as PAR-1 and PAR-4 on platelets surface, subsequently initiating 

platelet activation. In the end, these receptors also inhibit cAMP formation and increase 

intracellular Ca2+ concentration (Brass, 2003) 

1.3.3 Platelets aggregation 

Platelet aggregation is characterised by the accumulation of cross-linked platelets through 

active GPIIb/IIIa receptor with fibrinogen bridges (Jurk and Kehrel, 2005, Hoffbrand and 

Moss, 2011). Subsequently, activation of GPIIb/IIIa receptors on platelets membrane brings 

about important events for platelet aggregation. There is a significant increase of GPIIa/IIIb 

receptor numbers in response to platelet stimulation. Resting platelets express around 50-

80,000 GPIIb/IIIa receptors, which have no activity to soluble fibrinogen or other ligands, but 

are able to bind immobilized fibrinogen (Hoffbrand and Moss, 2011). During platelet 

activation, alpha granule exocytosis and fusion with plasma membrane release GPIIb/IIIa 

molecules on platelets surface. This event also activates the surface-exposed GPIIb/IIIa and 

enables soluble fibrinogen to bind at the active sites. Furthermore, fibrinogen, which is 

attached to activated-platelet, binds the inactive GPIIb/IIIa on circulating platelets and 

causes further platelets recruitment and enhances the aggregation process (Jurk and Kehrel, 

2005). Figure 1.4 below describes the role of platelet surface receptors in platelet activation 

and aggregation. 
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Figure 1.4 – Platelet surface receptors in platelet activation and aggregation 

Receptors on the platelet surface induce platelet activation after binding with particular platelet 
agonists. This event leads to secretion of platelet granules and changes of platelets shape and, in the 
end, activate GPIIb/IIIa receptor (or known as αIIbβ3 integrin) to enable platelets cross-linking 
through fibrinogen binding (Storey, 2008). 

1.3.4 Platelet signalling cascade 

Platelet activation and aggregation signalling cascade can be initiated by various platelet 

agonists. Each agonist, in particular, must interact to specific receptor on platelet surface to 

initiate further signalling events of platelet activation. In general, the signalling process can 

be classified into 3 stages. The first event is the interaction of agonists with their respective 

platelet receptors which mediate early platelet activation signalling. The second stage is the 

intermediate signalling cascade, which is a common signalling process shared by all platelet 

agonists. The last stage is integrin activation which involved the so-called inside-out and 

outside-in integrin signalling (Li et al., 2010).  
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In physiologic condition, for example following vascular injury, platelet adhesion receptors 

play a pivotal role in initiating platelet signalling events through the interaction of platelet 

adhesion molecules, GPIb-IX-V complex and GPVI, to the exposed sub endothelial collagen 

and vWF. Despite differences at the membrane receptor level, several major platelet 

adhesion receptors share many similarities at downstream signalling cascade. Collagen and 

vWF binding to their receptors initiate platelet signal transduction via Src family kinases 

(SFKs), phosphoinositide 3-kinases (PI3Ks) and the immunoreceptor tyrosine-based 

activation motif (ITAM) signalling pathway  (Li et al., 2010). The cross-linking of GPVI by 

collagen lead to the phosphorylation ITAM within the Fc receptor γ chain (FcRγ), which is 

noncovalently bound to cytoplasmic tail of GPVI, by SFKs (Lyn and Fyn) (Ezumi et al., 1998). 

Interaction of VWF with GPIb-IX-V also initiates platelet activation via phosphorylation of 

ITAM receptors (FcRγRIIA or FcRγ) (Wu et al., 2001). Moreover, cytoplasmic domain of GPIb 

alpha chain can interact with SFK (Lyn) and PI3Ks for transmitting signal from this receptor. 

SFK Lyn is required for activation of PI3K and its downstream effectors. In common, these 

overall events, initiated by GPVI or GPIb-IX-V complex, lead to the activation of tyrosine 

kinase Syk which is followed by phosphorylation of its downstream targets, activation of 

phospholipase Cγ (PLCγ) 2, synthesis of TXA2, secretion of platelet granule contents, and 

integrin activation.  

Soluble platelet agonists, such as Trombin, TXA2, serotonin, and ADP, are released into 

circulatory system from stimulated platelet. These agonists are crucial to amplifying the 

signal from the initial stimuli. These agonists work via G-protein-coupled receptors (GPCRs), 

a family of 7-transmembrane domain receptors that transmit signals through heterotrimeric 

G protein (Li et al., 2010). There are 3 subunits that build the structure of heterotrimeric G 

protein; α, β, and γ subunit. After receptor binding to its ligand, α subunit is activated and 
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subsequently dissociated from the α/β/γ complex. The Gα subunit is the main effector for 

transmitting the signals via interaction with downstream targets, although Gβ/γ complex 

can also interact with and activate downstream effectors, including PI3Kγ (Stephens et al., 

1997). There are four subfamilies of G protein according to the similarities of α subunit : 

Gq/G11, G12/G13, Gi/Go/Gz, and Gs (Offermanns, 2006b). Activation of platelet G protein 

(Gq, G13, Gi, and Gs) lead to the phosphorylation of their downstream targets. Among other 

G proteins, Gq is the main effector for GPCRs-mediated platelet signalling. Activation of Gq 

lead to the activation of PLCβ, production of second messenger IP3 and DAG, increase of 

platelet intracellular Ca2+ concentration, platelet granule secretion, integrin activation, 

platelet shape transformation, and consequent platelet aggregation (Li et al., 2010). Equally 

important, other G proteins also play critical role in promoting and regulating platelet 

signalling cascade. The role of Gi-coupled receptor in initiating platelet activation is mainly 

via SFKs and PI3K pathways. In addition, Gi protein inhibits the effect of cAMP-dependent 

protein kinases on platelet activation, which is known to counteract platelet activation 

signalling cascade (Li et al., 2010). G13 protein initiates platelet shape change and platelet 

granule secretion through the activation of small G-protein RhoA which activates Rho 

kinase, leading to phosphorylation myosin light chain. On the contrary, Gs protein is coupled 

with physiologic platelet inhibitor receptors, IP receptor, which mediates inhibitory signals 

by stimulating adenylyl cyclase-dependent cAMP synthesis (FIGURE). 
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Figure 1.5 - GPCR-coupled platelet activation signaling 

GPCRs binding to platelet agonists initiate platelet signalling cascade via activation of G proteins, 
followed by a complex cascade involving the activation of PLCβ , SFKs and PI3Ks pathways, Rho 
proteins, and activation of PKC. Ultimately, the overall event will lead to the elevation of platelet 
intracellular calcium level, the release of granule contents, platelet shape transformation, and 
activation of integrin αIIbβ3 (Li et al., 2010) 

The initial signalling of platelet activation induced by various stimuli, either via platelet 

adhesive receptors or GPCRs, converge into a common signalling pathway. In general, there 

are 3 signalling events which are shared by almost all agonists; elevation of intracellular 

calcium level, activation of protein kinase C (PKC), and granule secretion. Almost all agonists 

induce the activation of PLC, which is responsible for the hydrolysis if IP3 and DAG, leading 

to calcium mobilization and activation of PKC. At the end, the rise of platelet intracellular 



25 
 

calcium level will regulate multiple signalling events, including actin-myosin interaction, 

TXA2 synthesis, granule secretion, and SFKs and PI3K/Akt signalling pathway (Li et al., 2010).  

The final signalling event during platelet activation cascade is the activation of major 

platelet integrin, αIIb/β3, or GPIIb/IIIa. Integrin is heterodimeric (αβ) type I transmembrane 

receptor. Each of α and β subunit spans on plasma membrane, and contain an extracellular 

part (the relatively large domain), a single-pass transmembrane domain, and a short 

cytoplasmic tail (Bennett et al., 2009). Resting platelet membrane express GPIIb/IIIa with a 

low affinity/avidity for capturing fibrinogen. Immediately after platelet activation, signals 

from platelet agonists will activate the so-called inside-out and outside-in signalling which, 

in overall, referred to as platelet integrin signalling (Shattil et al., 1998). Inside-out signalling 

denotes the signalling events initiated by the binding of one or more agonists to their 

respective plasma membrane receptors which lead to the conversion of GPIIb/IIIa to its high 

affinity/avidity forms (Shattil and Newman, 2004). The transformation GPIIb/IIIa involves 

two characteristics of integrin active state; high affinity and high avidity. Affinity modulation 

refers to the structural change of the integrin heterodimer which results in a greater 

strength of ligand binding, while avidity modulation implies a functional change of the 

interaction  between receptor and ligand due to chelate or rebinding effects (Shattil et al., 

1998). After adapt a high affinity/avidity state, GPIIb/IIIa initiates outside-in signalling by 

integrin ligation and clustering, in coordinating with signals emanating from other plasma 

receptors, including GPCRs. The activated GPIIb/IIIa, by binding to its ligands (fibrinogen, 

vWF, and many matrix proteins), play important role in regulating postligand binding events, 

including stabilisation of large platelet aggregates, platelet spreading, granule secretion, clot 

retraction, and platelet procoagulant activity (Peerschke, 1995). Ultimately, outside-in 
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signalling is a determinant of the size of hemostatic plug or a pathological thrombus  (Shattil 

et al., 1998) 

 

Figure 1.6 - Platelet integrin activation 

(A) The inactivated αIIb/β3, or GPIIb/IIIa, is predominantly in resting platelet, where the integrin has a 
low affinity/avidity toward its ligand. Upon platelet activation, signals from agonists initiate the 
inside-out signalling, which lead to the conversion of the integrin heterodimer structure and increase 
its affinity/avidity for ligand binding. (B) The GPIIb/IIIa binding to its ligand (such as fibrinogen) 
commence the signal complex via the so-called outside-in signalling, which amplify the platelet 
activation and aggregation signals and, ultimately, determine the final size of platelet aggregates 
(Shattil and Newman, 2004) 

1.3.5 Bleeding disorder 

Alteration of haemostasis pathways is characterised by abnormal bleeding manifestations. 

One of the frequent causes of abnormal bleeding is thrombocytopenia or low platelet count 

as a result of either failure of platelet production or increase of platelet destruction. Bone 

marrow suppression, in general, is the common cause of blood cell count depletion, which is 

related to genetic disorders, radioactive exposures, infections or drug toxicology. However, 

thrombocytopenia due to platelet destruction is also a crucial cause of sudden bleeding 

disorder that without a proper management, can lead to serious haemorrhagic 
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complications (Matei and Schiller, 2002). Immunologic reaction is known as the main 

mechanism in platelet destruction (Porcelijn and Kr von dem Borne, 1998).  

Platelet membrane expresses a range of glycoproteins, which are able to induce serologic 

reactions in the presence of corresponding antibodies that lead to destruction of platelets. 

The trigger of antibody production may come from various aspects such as autoimmune 

(idiopathic thrombocytopenic purpura), infections (malaria, dengue or HIV), exposure to a 

foreign platelet antigen (post-transfusion purpura), and drugs-induced immune 

thrombocytopenia (quinine, quinidine and heparin).  

Antibodies for platelets are usually bind to GPIIb/IIIa, GPIa/IIa and GPIb-IX-V complex, as the 

main target antigens on platelets surface (Hoffbrand and Moss, 2011, Hegde, 1992, Kelton 

et al., 1988, Visentin et al., 1991). Consequently, platelet-coated-antibody is recognized as a 

must-degradable product that must be cleared through intravascular autolysis, 

complement-mediated cytolysis or macrophage cells in spleen and liver (Matei and Schiller, 

2002). Therefore, the understanding of this platelet auto-destruction mechanism has 

directed the development of new drugs for immune-mediated thrombocytopenia to the 

inhibition of antibody interaction with these platelet glycoprotein receptors. 

1.3.6 Thrombotic diseases 

Coagulation disorders have a strong correlation with platelet activation processes. 

Overreaction of platelet activation, including platelet adhesion and aggregation, causes 

undesired coagulation that leads to uncontrolled thrombus formation. Upon certain 

conditions, these unwarranted thrombi may be broken away from their primary locations 

and travel within blood circulation. This event might result in serious consequence when the 

clots reach the small vasculature and obstruct blood flow to distal arteries or veins. 
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Accordingly, it is known as the basic mechanism of thrombotic diseases such as myocardial 

infarction, deep-vein thrombosis and other cerebrovascular diseases.  

Adhesive factors on the platelet surface are also essential contributors to this event. 

Therefore, platelets surface receptors, which act as initial stimuli for platelet's adhesion and 

aggregation, have been intensively studied in the research of the development of 

antiplatelet drugs (Jennings, 2009). Recent studies have demonstrated the efficacy of 

GPIIb/IIIa inhibitor as a potent antiplatelet therapy (Peter et al., 1999). Other platelet-

surface-receptor inhibitors that are targeted to P2Y12 and protease-activated receptor 

(PAR)-1, which are known as the specific receptor for ADP and thrombin, have 

demonstrated a contribution to halt platelet activation pathway and to prevent the 

occurrence of thrombotic diseases (Jennings, 2009, Dorsam and Kunapuli, 2004). 

1.4 Cancer and the alteration of the cell cycle 

From the beginning of cell development to the mature cell life cycle, there is a natural 

mechanism to maintain the balance and harmony between cell division and cell death. Such 

arrangements are tightly controlled by  intricate genetic control systems, which play roles in 

the responses to various growth signals, growth-inhibiting signals, and death signal (Lodish, 

2008). The failure of the mechanisms that control cell growth and proliferation is a key 

factor in cancer. The main factor affecting a cell’s ability to escape the cellular regulation is 

genetic damage, which is very often related to the effects of tumour-promoting chemicals, 

hormones, and virus (Lodish, 2008). 

To date, there are three broad classes of gene that have been identified to be related to the 

development of cancer. The first class is known as proto-oncogenes (for example: ERBB2 in 
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breast cancer (Révillion et al., 1998), c-myc in leukaemia (Allen et al., 2014), and myc in lung 

cancer (Larsen et al., 2015)) that usually promote normal cell growth. When mutations 

occur in these types of genes, they can transform into oncogenes, which have limited 

control of their function and have a tendency to be excessively active in promoting cell 

growth. The second class of genes are tumours-suppressor genes (for example: KRAS and 

p53 (Aguda, 2014)), which are important in restraining cell growth. In normal conditions, 

these genes work as surveillance genes that detect any genetic errors produced during cell 

duplication, and prevent the cells further progress in the cell cycle process by sending the 

cells into arrest. Any mutations that occur in these genes may halt their normal function, 

thus allowing the unregulated cells to continue their proliferation and survival. The third 

class are known as caretaker genes (for example: BRCA1 and BRCA2 (Venkitaraman, 2002)), 

that normally protect the integrity of the genome. The mutation of the caretaker genes can 

lead to the accumulation of mutation in the affected genes. Overall, these three classes of 

genes are crucial in regulating cell proliferation and the cell cycle, programmed cell death or 

apoptosis, and encoding protein for DNA repair (Lodish, 2008) 

1.4.1 Carcinogenesis 

The uncontrolled growth of cells that leads to the formation of an undifferentiated group of 

cells is known as tumours. The cells possess a tendency to be cancerous when they show a 

metastatic ability to invade and spread to the other parts of body tissue through blood or 

lymphatic circulation. This condition is very often followed by the formation of secondary 

malignant mass of tumours, which are usually located far away from the primary mass. This 

stage is known as cancer, which defines the condition or group of diseases arising from 

uncontrolled cell growth, which express a high speed of growth and metastatic ability. 
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No exact conclusion has been made to explain the main causes of cancer, as it is such a 

complex process. The development of this disease is known as carcinogenesis, which can be 

separated into three distinct phases: initiation, promotion, and progression (Gescher et al., 

1998). The initiation of cancer starts when normal cells are exposed to a carcinogen, for 

example, ultraviolet (UV) light, a virus, or carcinogenic compounds. This exposure might 

cause cellular changes, such as DNA alteration, gene mutation, and cell damage. As a result, 

normal cells may undergo irreversible transformation into an abnormal cell (initiated cell). 

At this point, the newly transformed cell population is harmless and may remain as benign 

tumour without any further development to a cancerous state. Yet it can be enhanced in 

terms of cellular proliferation and genetic changes. In certain circumstances, the initiated 

cell may go through a promotion and progression process. Promotion is a reversible process 

involving clonal expansion of initiated cells induced by mutagens. Promotion and 

progression stages allow the propagation of cellular damage inflicted by initiation, resulting 

in the proliferation of the damaged-cell to become a malignant or cancerous tumour. The 

overall process of carcinogenesis can take a decades or more to move on to a more 

cancerous stage (Pitot, 1993). 

Hanahan and Weinberg (2011) mentioned six important hallmarks in cancer development, 

as shown in Figure 1.7, which are derived from the initial changes in the physiology of 

normal cells. In order to promote the malignant growth, all of these hallmarks have to 

interact with each other. In normal cells, proliferation takes place by the stimulation from 

appropriate growth factors. On the contrary, cancer cells develop the ability for self-

sufficiency in growth signals through the action of oncogenes, for example, the Ras 

Pathway, that produces a large amount of mutated growth-stimulating proteins (Becker et 

al., 2003). 
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In order to escape the growth-inhibiting mechanism, cancer cells have to possess the 

insensitivity to anti-growth signals. As discussed in many publications, the dominant 

checkpoint response for DNA damage is during late G1 phase. For example, through the 

retinoblastoma (RB) protein restriction pathway (Kastan and Bartek, 2004). Mutation in the 

RB gene leads to the disruption of the checkpoint response and allows the cancer cells to 

escape the anti-growth signal (Giacinti and Giordano, 2006). Furthermore, cancer cells have 

to escape programmed cell-death or apoptosis. This ability is conveyed by the mutation of 

tumour suppressor genes, for example: p53 and BCL2 genes (Cory and Adams, 2002). 

Consequently, these three properties of cancer cells allow the abnormal cells to continue to 

proliferate in an uncontrolled manner. In order to maintain a limitless replication potential, 

cancer cells develop a mechanism to maintain telomere length either by activating the gene 

coding for telomerase or by the exchange of sequence information between chromosomes 

(Blasco et al., 1997). Along with the increase of cell number and the size of cancer mass, 

sufficient blood supply is also needed to ensure that every single cell is able to grow further. 

Therefore, cancer cells must be able to trigger angiogenesis, the process of the growth of 

new capillary blood vessels from the existing vasculature. Although the mechanism is not 

well understood, a number of oncogenes are thought to be causative for the onset of 

angiogenesis, for example p53 and RAS, and therefore responsible for building-up of the 

cancer vascular supply (Rak and Yu, 2004).  

The main difference between a tumour and cancerous cells is that cancer cells have invasion 

and metastatic ability. There are three properties exhibited by cancer cells, which are crucial 

in the metastatic ability: decreased cell adhesion, increased cell motility, and the production 

of proteases that degrade the extracellular matrix and basal lamina (Becker et al., 2003). 
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Down regulation of E-cadherin, a transmembrane glycoprotein encoded by CDH1 gene, 

which plays a key role in maintaining cell-cell adhesion, has been reported to be involved in 

the invasion and metastatic ability of cancer cells (Huiping et al., 1999) (Liu and Chu, 2014).  

 

 

Figure 1.7 – The six hallmark of cancer 

The initiation of cancer starts from gene mutation which causes the affected cells to develop a 
sustaining proliferative signalling and escape growth suppressor signals. This event enables the cells 
to grow rapidly in an uncontrolled manner, as well as to possess the ability to escape apoptosis or 
cell death. Furthermore, the mutations can also give rise to the dysfunction of replication enzymes, 
which causes cancer cells to have limitless replication ability. Cancer cells also express a self-
controlled angiogenesis capacity and exhibit the ability for invasion and metastasis (Hanahan and 
Weinberg, 2011) 

1.4.2 Cell cycle 

With regard to the mammalian cellular reproductive system, cell division is a crucial process 

to replenish essential cells that are restricted to a certain lifespan. The process must be 
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carried out to a high level of accuracy, involving cell duplication that requires the precise 

partitioning of genetic material and other cellular components to daughter cells. Any errors 

that occur may lead to loss of genetic stability, which will have a serious effect on cell 

survival. As mentioned earlier, DNA mutation and gene alteration play a major role in the 

development of malignancy and, therefore, a failure to safeguard the cell division process 

may result in the accumulation of genetic instability, which may ultimately increase the cells 

vulnerability to genetic transformation. Accordingly, cells have evolved cell-duplication 

strategies that includes redundant safeguards to prevent errors or to correct them (DeVita, 

2011), in order to prevent any  replication errors  from being carried on into the next stage 

of cell division, which will be inherited to the daughter cells. 

The overall processes of the cell cycle is divided into four distinct phases, according to 

Howard and Pelc (1951),  that are eventually referred to as GAP1 (G1 phase), synthetic 

phase (S-phase), GAP2 (G2 phase), and mitosis (M-phase). The observations made by these 

investigators showed that the division of the cell is a series of events that do not occur 

continuously, but in fact, contain a specific checkpoint that marks the transition from one 

phase to the subsequent phase. When an error occurs, the safeguard mechanism will 

automatically stop the cell cycle through the checkpoint-inspection process that prevents 

the cell division to be continued and. As a result, this may give rise to cell rest and the 

activation of the auto-destruction mechanism, which is known as apoptosis (Hartwell and 

Weinert, 1989).  

The crucial part of the genetic material partitioning events occurs from the early phase of 

the cell cycle, the S-phase, when a single round of DNA synthesis is taking place. The 

preceding and subsequent phases, G1 and G2, are the intervals in which all information 
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from internal and external environment is integrated, and provide important clues to 

determine whether the cell cycle is able to proceed into the next phase.  

Mitosis phase (M-phase) indicates the final genetic material division to be inherited to the 

upcoming daughter cells. This process itself is subdivided into five phases: prophase, 

prometaphase, metaphase, anaphase, and telophase. During prophase, when most of the 

membranous internal compartments of the cells are disassembled and dispersed, the 

chromatids (replicated chromosomes from S-phase) are condensed into paired-compact 

rods, followed by the assembly of the bipolar microtubule spindles. At this stage, most of 

the protein biosynthesis largely ceases. In prometaphase, chromosomes form bivalent 

attachments to the spindle, which drives them to the cellular equator. Metaphase is 

indicated by the proper alignment of the paired chromatids on the spindle. During 

anaphase, the paired sister chromatids lose their interconnected cohesion, thus allowing 

the tension from microtubule forces separates the chromatids and pulls them to the 

opposite poles of the cells. The final process is telophase, when the nuclei and other 

membrane structures reassemble, the chromosomes decondense, and protein synthesis 

resumes. At the end of M-phase, the two daughter cells that contain a complete set of 

genetic materials pull apart and separated, and this process in known as a cytokinesis 

(DeVita, 2011). 

As mentioned earlier, mammalian cells have developed a safeguard mechanism to protect 

cells from mutation as a result of any errors during cell division. Numerous studies over the 

last three decades have discovered pivotal regulators of the cell cycle, which are known as 

cyclin-dependent kinases (CDKs) (Suryadinata et al., 2010). This group of enzymes are 

binary, proline-directed, serine-threonine-specific protein kinases that consist of a catalytic 
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subunit, or CDK, that has little if any intrinsic enzymatic activity and a requisite positive 

regulatory subunit known as a cyclin (DeVita, 2011). The structure of CDKs is similar to that 

of other protein kinases and, likewise, CDKs promote cell cycle progression by 

phosphorylating critical downstream substrates to alter their activity. Interestingly, there is 

a difference of the CDKs regulatory functions between unicellular and higher organism. In 

unicellular organism, the cell cycle is regulated by a single CDK protein, coupled with several 

different cyclins, which are expressed at different cell cycle phases (Moser and Russell, 

2000, Sherr and Roberts, 2004). On the contrary, in eukaryotic cells, this function is brought 

about by different CDKs that associated with different cyclins. 

 

 

Figure 1.8 – Cyclin-dependent kinase (CDK) functions in the cell cycle.  

The cell cycle represents the process of cell division is divided into four phases; DNA synthesis (S) 
phase, mitosis (M) phase, and two gap (G1 and G2) phases. In mammalians, the regulatory function 
of the cell cycle is carried out by a number of different CDKs and cyclins (Suryadinata et al., 2010). 



36 
 

A number of studies conducted on mammalian cells have shown some combination of CDKs 

and cyclins to be associated with certain phases of the cell cycle. As shown in figure 5, the D-

type cyclins in association with CDK4 and CDK6 are expressed during the progression of G1 

phase, and important for the transition from G1 to S phase (Peters, 1994). The E-type cyclin 

in complex with CDK2 is expressed during the transition of G1 to S-phase, and extends into 

early S-phase (Hwang and Clurman, 2005). Cyclin A-CDK2 complex is expressed at the early 

S-phase until the boundary of S/G2 phase (Pagano et al., 1992). Cyclin A is also known to be 

associated with CDK1, formerly known as CDC2, and is important during the G2 phase 

progression. Finally, cyclin B activates CDK1 during the progression of the cell cycle from G2 

phase to enter M-phase, and lasts until the complex is degraded during anaphase (DeVita, 

2011). Given the importance of cyclin–CDKs in mediating cell cycle progression, these 

kinases are tightly regulated at several levels to ensure that cell cycle progression occurs 

only under appropriate circumstances when cell division is required (Suryadinata et al., 

2010).  

When errors are detected at a certain point in the cell cycle, the CDKs play a role in the 

control mechanism used to detect and prevent the upcoming DNA mutation, which may 

lead to a danger impact of the cell life cycle, by halting cell cycle progression or by initiating 

programmed cell death (apoptosis) (Collins et al., 1997). In normal cells, the early 

degradation of cyclin B-CDK1 complex upon the incomplete DNA replication or DNA damage 

will activate the so-called ‘DNA structure checkpoints’ to prevent cyclin B-CDK1 activation 

leading to the inhibition of mitosis (Castedo et al., 2002). In neoplastic cells, this function is 

noticeably disrupted. Moreover, a report written by Hwang and Clurman (2005) explains 

that the deregulated effect of Cyclin E-CDK2 complex in cancer cell causes the genomic 

instability, centrosome amplification, prolonged S phase, and shortened G1 phase.  
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As mentioned earlier, the general processes in cancer development involves a disconnection 

between the phases within cell cycle. Consequently, cell proliferation takes place in the 

absence or with minimum supervision from normal regulatory machinery, which is 

supposed to instruct a cell to adhere, differentiate, or to die. As a summary, the entire 

combination of altered properties increases the possibility of cancer development. 

1.4.3 Anticancer 

Discovery of anticancer drugs has become one of the main areas of interest in 

pharmacological research. During the last few years, the development of natural-product-

based drugs has risen significantly, this can, in part, be attributed to the new technologies in 

natural product isolation and purification, combinatorial synthesis and high-throughput 

screening (Nobili et al., 2009). Among all the anticancer agents being discovered or 

developed over the last few decades, more than 70% are derived from natural products, 

derived from various sources, including plants, animals, microorganisms, and marine-origin 

organisms (Newman and Cragg, 2007). Some examples of naturally derived compounds with 

confirmed anticancer property are: Vincristine, irinotecan, etoposide and paclitaxel (plants 

source); actinomycin D, mitomycin C, bleomycin, doxorubicin and l-asparaginase (microbial 

source); cytarabine (marine source).  

Anticancer drugs exert a specific mechanism of action to attack certain points in cancer 

replication and/or metabolism process. Below are several mechanisms of anticancer 

therapy that are commonly used as targets for anticancer drugs:  
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1.4.3.1 Tubulin-binding agent 

Microtubules are important components of the cell cytoskeleton and are required for 

various cellular functions including intracellular trafficking of vesicle and organelles, cellular 

motility and mitotic chromosome segregation (Risinger et al., 2009). In cell replication, 

microtubules play a crucial role in forming the mitotic spindle for transporting the 

chromosomes to separate the poles of the upcoming daughter cells. Accordingly, the failure 

of microtubule function during this event leads to the disruption of cell division due to the 

unsuccessful alignment of daughter chromosomes and their bipolar attachment to the 

mitotic spindle, resulting in mitotic arrest during the metaphase/anaphase transition. In 

normal condition, all of these consecutive events will lead to the activation of apoptosis 

cascade. Hence, one of the target events of anti-cancer drugs is to interfere with the 

microtubules function (Jordan and Wilson, 2004, Hadfield et al., 2003). In performing their 

function, microtubules should be in a dynamic equilibrium state with tubulin heterodimers 

that consist of one molecule of α-tubulin and one molecule of β-tubulin. During 

polymerization, the heterodimers link together to form protofilaments (Nobili et al., 2009). 

There are several factors controlling the equilibrium of the heterodimers, one of them is 

microtubule-associated proteins (MAPs), which have become the main target for 

microtubule-disrupting agents (Itoh and Hotani, 1994). Vinca alkaloids (vincristine, 

vinblastine, and vinflunine), cryptophycins, and taxens (abraxane, doxataxel, 

docosahexaenoic acid (DHA)-paclitaxel) are some of the natural-product derived anti-cancer 

agents, that mainly work by disturbing microtubules dynamic. They have shown a high 

activity towards  a spectrum of haematological and lymphatic neoplasms, as well as in 

several solid tumours such as breast cancer, ovarian, and lung cancer (Nobili et al., 2009). 
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1.4.3.2 Topoisomerase inhibitor 

The DNA topoisomerases are nuclear enzymes that reduce torsional tension in supercoiled 

DNA, allowing selected regions of DNA to become sufficiently untangled and relaxed to 

allow the replication, recombination, repair and transcription to take place (Nobili et al., 

2009). There are two groups of topoisomerases; topoisomerase I and topoisomerase II. The 

earlier is the enzyme that catalyses the opening of closed circular and supercoiled DNA, by 

cutting and subsequent ligation of one strand of double helix DNA. Topoisomerase II 

enzymes create a temporary double-stranded breakage of the DNA structure to allow a 

subsequent passage of a second intact DNA duplex through the break (Berger et al., 1996). 

Accordingly, the mechanism of action of topoisomerase inhibitor agents in cancer therapy is 

by preventing the enzymes for functioning, thus alter the DNA replication, chromosome 

condensation, and chromosome segregation, which will lead to the failure of cell cancer 

division (Hande, 2008). To date, there are a number of natural-product-derived anticancer 

agents available, which act as either inhibitors of topoisomerase I (irinotecan and 

topotecan) or topoisomerase II (etoposide, teniposide, doxorubicin, and epirubicin) (Hande, 

1998) . 

1.4.3.3 Chemoprotective agents 

Chemoprevention is an anticancer approach to counteract cancer development, targeting 

specific phases during carcinogenesis in order to delay, arrest or reverse the process of 

cancer progression (Sporn and Suh, 2000). This approach is considered as an alternative way 

for cancer therapy, which is suggested to reduce the morbidity and mortality of cancer 

(Gescher et al., 1998). Therefore, chemoprotective agents have become one of the anti-

cancer modalities that counteract tumour progression.   
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According to which phase in the carcinogenic process they exert their protective effect, 

chemoprotective agents fall into three categories: inhibitor preventing the formation of 

carcinogens, tumour blocking agents, and tumour suppressor agents (Wattenberg, 1985). 

The agents inhibiting carcinogen formation prevent the generation of carcinogen, and 

therefore, are considered to be the first line of cancer prevention modality. One example is 

ascorbic acid, which prevents the formation of nitroso carcinogen from its precursor amines 

or amides, which is initiated by the exposure to high level of nitrate (Mirvish, 1975). 

Blocking agents interfere the initiation stage of carcinogenesis, which is probably related to 

their role in reducing the accumulation of mutation. Although the mechanism of action of 

cancer prevention is still poorly understood, in general, there are three main mechanism of 

action have been reported (Wattenberg, 1985). First, it works by inhibiting the activation of 

carcinogens to the active form, which is capable to initiate carcinogenic. Such activity is 

shown by ellagic acid by preventing the production of the carcinogenic form of 

benzo[a]prene, one of the highly carcinogenic substances (Wood et al., 1982). The second 

route is by enhancing the detoxification of the existing carcinogens. The third mechanism is 

by scavenging the reactive form of carcinogens. 

Tumour suppressing agent acts by suppressing the expression of neoplasia in cells 

previously exposed to carcinogenic agents (Wattenberg, 1985) and, accordingly, is targeting 

the promotion and progression phases  during cancer development. There are several 

possible mechanisms of tumour suppression as described by Gescher et al. (1998) including 

scavenging oxygen radicals, modulation of arachidonic acid metabolism and alteration of 

signal transduction pathway, inhibition of oncogene activity, and modulation of hormonal 

and growth factor activity.  
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As mentioned previously, most of the known substances exerting chemoprotective activity 

are derived from natural sources, some of which are naturally occurring constituents of food 

(Wattenberg, 1985). Some examples are ascorbic acid, tocopherols, and gallic acid, which 

showed the activity to prevent the formation of carcinogens. Moreover, phenols (ellagic 

acid, ferulic acid, and caffeic acid), flavonoids and coumarin have been reported to be a 

potent tumour blocking agents. Retinoid acid, genistein, and curcumin are of most studied 

food-naturally-occurring substances, which showed the effect of tumour suppression agents 

(Gescher et al., 1998). Hence, the accumulated knowledge of mechanism of action of 

chemoprotective agents and other anti-cancer agents, most of which originate from natural 

sources has attracted a lot of interest of researchers to further explore and elucidate the 

naturally available substances for the discovery of new and better anticancer agents.  

1.5 Malaria 

Malaria is one of the life-threatening transmissible diseases in human caused by the 

introduction of Plasmodium parasites into the bloodstream to infect red blood cells. The 

transmission is brought about by the bite of the infected female Anopheles mosquito 

(Abdalla and Pasvol, 2004). The most common symptom of the disease are acute periodic 

febrile episodes which usually appear between seven to fifteen days after the infective 

mosquito bite (WHO, 2014). There are four Plasmodium species that cause malaria in 

humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and 

Plasmodium ovale. Among these species, Plasmodium falciparum and Plasmodium vivax are 

the most common causes. The severe and deadliest malaria manifestation is caused by 

Plasmodium falciparum, attributed to the rapid rate of reproduction and the ability to 

sequester in small blood vessel (Murambiwa et al., 2011, Trampuz et al., 2003). 
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The malaria parasite is a eukaryotic organism, which is unique in a number of respects. Due 

to the nature of the plasmodium life cycle, that takes place in two different hosts involving 

several distinct stages of life, it is difficult to perform such a complete parasite life cycle 

culture in the laboratory. As a eukaryotic cell, they possess similar properties to those of 

higher organisms. However, the parasites' chromosomes are very small and do not 

condense into typical rod-shaped stainable structures during mitosis and miosis. The other 

special characteristic of plasmodium is that all cells during the entire life cycle, apart from 

the zygote and possible the ookinete stages, contain the haploid number (14) of 

chromosomes, which gives the parasites a distinct variety in terms of the size of the 

chromosomes that range from 800 kilobases (kb) to 3500 kb in length. Thus, these unique 

characteristics offer interesting opportunities for therapeutic intervention yet  they require 

the uses of special techniques in order to study various aspects of the disease, including in 

the search of new anti-malarial agents, in order to increase the control over this infectious 

and deadly disease (Reeve and Black, 2001).  

1.5.1 Plasmodium life cycle  

The Plasmodium parasites are inoculated into the bloodstream when the infected 

anopheles mosquito takes a blood meal (Figure 1.9). At this stage, the parasites are called 

sporozoites, a motile infective form, which will be circulating in the blood flow and enter 

hepatocytes within an hour after inoculation. Hereafter, they begin to divide into 

exoerythrocytic merozoites form. Plasmodium vivax and Plasmodium ovale may remain in 

quiescent stage in hepatocytes as a dormant form, which is known as hypnozoites, while 

Plasmodium falciparum does not undergo this dormant stage. Once merozoites leave the 
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liver, they enter erythrocytes to start the asexual multiplication  part of the life cycle 

(Winzeler, 2008).  

In the red blood cells, merozoites develop into early trophozoites, characterized by a ring 

form. Afterward, the parasites begin to divide into many daughter merozoites and, at this 

stage, the trophozoites are called schizonts. The symptoms of the disease begin once the 

asexual parasite multiplies in red blood cells. In Plasmodium falciparum and Plasmodium 

vivax life cycle, the duration of the erythrocytic life cycle stage usually a period of 48 hours 

which is started when the merozoites enter the erythrocytes, followed by parasites 

development into trophozoites, and finally parasites division into schizonts. Eventually, the 

erythrocytes burst and the parasite releases around 20 new merozoites into the 

bloodstream, which subsequently invade intact erythrocytes to start new erythrocytic 

phases of life cycle (Trampuz et al., 2003) 

After several life cycles, some of the merozoites may develop into immature gametocytes 

forming the precursors of male and female gametes. This form is ready for further 

transmission through the female Anopheles mosquito bite that takes up the gametocytes 

along with the blood meal and enters the mosquito gut. The gametocytes start their sexual 

reproductive cycle through the fusion of male and female gametocytes to form an ookinete. 

Subsequently, this fertilized motile zygote of plasmodium develops into sporozoites, travels 

to the salivary gland of the infected mosquito. The parasites will remain in a quiescent stage 

in the salivary gland until a later time and ready to start a new life cycle in a new human 

host when the mosquito is taking its subsequent blood meal. Figure 1.9 below illustrates the 

sexual and asexual plasmodium life cycle. 
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Figure 1.9 – Plasmodium life cycle 

Hundreds of sporozoites are injected into one human bloodstream by the bite of Anopheles 
mosquito. The parasites migrate to the liver to form pacytophorous vacuoles in hepatocytes. 
Afterward, they can undergo two life cycle stages; one is to remain dormant as a hypnozoite form 
(P.vivax or P.ovale), the second fate is the production of thousands of merozoites. At the latter 
stage, they will leave the hepatocyte to quickly invade the red blood cells, allowing the parasites to 
replicate in an erythrocytic life cycle. This cycle corresponds to the periodic fever and chills of the 
malarial symptoms, due to the erythrocytes rupture, which releases merozoites into the 
bloodstream, which either will infect intact erythrocytes or differentiate into gametocytes. At the 
latter stage, the gametocytes will be taken up by mosquito via the blood meal, subsequently 
entering the mosquito gut to start the sexual life cycle of Plasmodium (Winzeler, 2008) 

1.5.2 Pathogenesis and proteins involved  

Malaria pathogenesis is a complex process, which cannot be represented by one single 

scheme. The progression of the symptoms varies from simple asymptomatic infection, 

which may develop into periodic febrile episodes, and at the later stage may lead to a 

severe condition with metabolic acidosis, severe anaemia or cerebral malaria (Clark and 

Schofield, 2000). There are several factors affecting the clinical outcome of malaria infection 

that falls into three categories: parasite factors, host factors, and geographic and social 

factors (WHO, 2013). Parasite factors, such as the ability of the plasmodium to develop 
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resistance to malarial drug, the quick rate of multiplication, the various invasion pathways, 

have become the main interest of the research for the development of anti-malarial drugs. 

The aims of these studies are to overcome the drawback of existing drugs for better 

effectiveness and efficacy of the anti-malarial agents, expanding their knowledge for better 

understanding of the pathogenesis of the disease, as well as searching for new candidates 

for anti-malarial drugs. 

As a result of many studies over the years, on malaria pathogenesis, a number of proteins 

have been explained to have an important role in various stages of malarial infection. In the 

event of parasitic inoculation into the blood stream, circumsporozoite (CS) protein and 

thrombospondin-related adhesive protein (TRAP) mediate the sporozoites invasion into 

hepatocytes (Miller et al., 2002). During parasitic invasion into erythrocytes, the merozoites 

must recognise and bind receptors on the surface of erythrocyte via the ligand-receptor 

interaction. Accordingly, there are several parasite proteins, which act as ligands, such as 

Plasmodium falciparum erythrocyte-binding antigen (EBA)-175, erythrocyte-binding ligand 

(EBL)-1, and EBA-140 that bind erythrocyte receptors glycophorine A (GPA), glycophorine B 

(GPB), and glycophorine C (GPC) respectively (Gaur et al., 2004). Duffy-Binding-like (DBL) 

family was found on Plasmodium vivax only, which invades Duffy blood group positive  

phenotypes (Zimmerman et al., 1999).  

Red blood cells infected with Plasmodium falciparum express the Falciparum erythrocyte 

membrane protein 1 (PfEMP1), which mediates the parasitic binding to various host 

receptors. Such binding explains the mechanism of plasmodium parasitic binding to the 

endothelial cells of various organs, thus allowing parasitic adhesion and invasion to 

placenta, brain, and microvasculature. The identified target receptors for PfEMP1 are 
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chondroitin sulphate A (CSA), CD36, intercellular adhesion molecule 1 (ICAM-1). Therefore 

these proteins are crucial for the development of severe malaria, they are recognized as the 

main proteins, which plays central role in the parasite pathogenesis.  

After the parasites engagement with the surface of erythrocytes, they must undergo apical 

orientation. To do so, the plasmodium apical end, which is marked by the presence of 

membrane bound organelles, must face the erythrocyte surface. This orientation is essential 

for the formation of a parasite-erythrocyte connecting junction to allow the merozoites 

invasion into the erythrocyte (Gaur and Chitnis, 2011). When merozoite surface molecules 

recognize the erythrocyte surface receptor, it activates the parasites intracellular signalling 

pathway. As a result, the event induces the release of essential molecules from the apical 

organelles and initiates the actin-myosin reorganization that allows the parasites to invade 

the erythrocytes. This signalling cascade is initiated by phosphoinositide, cyclic AMP, and 

calcium-dependent mechanism (Miller et al., 2002).  

The pro-inflammatory response, as well as the corresponding mediators such as nitric oxide 

(NO), is also one of the important factors in malaria pathogenesis. Clark and Cowden (1999) 

proposed that the sequestered parasites in the blood vessel induce the inflammatory 

response that releases inflammatory mediators such as NO. There is a strong relationship 

between high plasma levels of NO and the severity of malaria, which has been debated to 

be related with inflammatory cytokines such as tumour-necrosis factor (TNF) and interferon 

γ (IFN-γ). Some reports have reviewed the involvement of parasites toxins such as 

glycosylphosphatidylinositol (GPI), apoptosis of pro-inflammatory T cells, and malarial-

related antibodies such as MSP1, in the pathogenesis of malaria (Miller et al., 2002). 

Nevertheless, the physiological significance of this evidence remains to be proved.  
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1.5.3 Anti-malarial drugs 

The aim of malaria drug therapy is the treatment of the patient, combined with blocking the 

infectivity of the parasite to the vector by exploiting differences in metabolism of the 

plasmodium parasite and host. Currently-available anti-malarial drugs act as blood 

schizonticidal, which explains why the drugs that attack the blood forms of the parasites, 

and/or gametocidal were the drugs kill the sexual form of the parasites. However, due to 

the development of drug resistance by the malaria parasites, which commonly occurs during 

the gametocyte stage, malaria therapy is now mainly targeted at the inhibition of  

gametogenesis by a combination of schizonticidal and gametocytocidal drugs to avert  

malaria transmission (Murambiwa et al., 2011). 

The mechanism of action of these drugs varies depending on which pathway of plasmodium 

metabolism they are targeting. The first anti-malarial agent, quinine, derived from Cinchona 

plant, disrupts plasmodium membrane integrity and cause cell lysis, leading to 

autodigestion of the released parasites. Some of the quinine-related drugs possess different 

modes of action, for example, chloroquine and primaquine that act via the inhibition of 

haem degradation and inhibition of protein transport, respectively. Artemisinin, originated 

from the Chinese traditional plant Artemisia annua L (Abdin et al., 2003) and its derivatives 

act as anti-malarial agent through the production of free radicals that ultimately lead to 

haemolysis and lysis of infected cells. Antifolate agents are also used in malaria eradication. 

The mechanism of action of antifolate derivatives are by the inhibition of enzymes essential 

for folate metabolism; dihydrofolate reductase and dihydropteroate synthase (Murambiwa 

et al., 2011).  
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Artemisinin-based combination therapy (ACTs), is recommended by WHO as the first-line 

treatment for treating malaria caused by Plasmodium falciparum, due to higher risk and 

incidence of drug resistance with artemisinin monotherapy. Chloroquine comes as the first-

line drug of choice of malaria treatment in an area where Plasmodium vivax is endemic. 

However, the effectiveness of the treatment is decreasing due to the development of 

resistance in most parts of the world (WHO, 2013).  

The goal of anti-malaria chemotherapy research is to find a drug that has both anti- 

recrudescence and blood schizocintocidal activity with minimal side effects. Early treatment 

with effective anti-malarial drugs is the main life-saving intervention; however, the 

treatment is threatened by the growing resistance of the parasites, especially Plasmodium 

falciparum. Hence, the therapeutic life of widely used anti-malarial agents, such as 

sulphodoxine-pyrimethamine (SP) and amodiaquine, one or the malaria treatments 

recommended by WHO, also appear to be limited due to an increase in parasitic resistance 

around the world. Accordingly, the search for effective, safe, and affordable new anti-

malarial drugs has become a worldwide challenge. Natural products are a promising source 

of new compounds with anti-malarial properties. Historically the most significant 

achievements in anti-malarial treatment was made through the discovery of plant-derived 

natural compounds: Artemisinin and Quinine.  

1.6 The method for the discovery of plant-derived natural products 

A large number of herbal manuscripts have been written that explain how plants were 

prepared and applied as traditional medicines, while some traditional prescriptions were 

transmitted by word of mouth through the generations. In general, the parts of the plant 

used as medicine were treated by simple galenical preparations to obtain impure crude 
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extracts in the form of liquid, semisolid or powder prior to oral or external administration 

(Evans et al., 2009).  

In the modern era, exploration of the active compounds contained in the traditionally-

known medicinal plants has become of interest in drug development research. Many 

sophisticated methods are currently available, especially in separation, spectroscopic and 

bioassay techniques, as the consequence of the growing demand for natural product 

research. The strategy of natural product isolation has shifted from ‘old-fashioned 

approach’ based on a straightforward-crude-extraction, to the modern day ‘bioassay-guided 

isolation’ method. The old approach uses phytochemical methods concerned with the 

organic substances accumulated by plants, which means that the main interest of study was 

on the chemical structures, biosynthesis/metabolism, the natural distribution and the 

biological functions of these substances. Although both approaches may begin with the 

ethnopharmacological information, such as traditional used medicines, the emphasize of 

the new approach is focused on the screening of the bioactivity of the active compound(s), 

aimed  at the isolation and identifying the ‘lead’ compound(s) responsible for the bioactivity 

(Seidel, 2006). As described in Figure 1.10, the active compound(s) derived from plants are  

discovered through a series of extraction, isolation and purification processes, which is 

directed by repeating tests for biological activity before moving on to the next steps of the 

protocol. This method has been applied in a number of drug discovery research papers, 

most of which were exploring plant-derived natural products (Sudha and Srinivasan, 2014, 

Rashid et al., 2014).  

Following the identification of the molecular structure of the active compound responsible 

the bioactivity, the next question is to determine the actual mechanism responsible for the 



50 
 

biological effects. There are several ways of identifying the biological-mechanism of actions 

of newly identified drugs which are commonly used in many laboratories including genomics 

and proteomics studies that are focused on observing the changes of gene and proteins 

expressions. Once the question is answered, in vivo assay and toxicological studies will be 

performed before entering the clinical trial phase for further pharmaceutical production 

process (Sarker et al., 2006)  

 

Figure 1.10 – Bioassay-guided natural product discovery process 

The new approach to the discovery of natural compounds applies early screening for the biological 
activity of the crude extracts. The extraction, fractionation, isolation, and purification of the active 
compound(s) are guided by in-vitro bioassay, which means only the biologically-active fractions will 
enter the next stage of the process (Sarker et al., 2006) .  
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1.6.1 Extraction 

Extraction is a process by which the substances contained in the plant material are 

separated using a particular solvent through a standard procedure (Handa, 2008). There are 

several typical steps in the extraction of plants. The first step is size reduction of dried plant 

materials. The main purpose of this step is to break the cell wall to ensure that all plant 

structures are exposed to the solvent. It also increases the materials surface area, which 

raises the transfer rate of soluble components from plant to the solvent. The next step is the 

treatment with the selective solvents to extract the desired components, followed by the 

filtration of the extract to eliminate the bulk materials. Finally, the extract is subjected to a 

concentration and drying process to remove the solvent in order to obtain dried crude 

extract (Sarker et al., 2006). 

The solvent extracts the soluble molecules and leaves the insoluble material behind. Prior to 

the extraction step, the handling of plant material is important as a starting point of natural 

product isolation. Plant tissues should be prepared in a way to minimize the risk of 

contamination and losing the valuable active compounds, or the chemical changes of the 

constituents. In most cases, drying of plant tissues is considered to be the best way to 

preserve the plant material and suitable for long storage of the samples (Harborne, 1998). 

The drying process must be carried out in a controlled condition to avoid too many chemical 

changes during the process (Seidel, 2006). The next step is grinding the plant material to 

improve the subsequent extraction. This process significantly increases the surface area as 

well as facilitating the penetration of solvents into the plant cells. 

As mentioned earlier, plant extracts consist of complex mixtures of substances. 

Consequently, initial treatment is needed in order to eliminate, at least, some of the 
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unwanted biomass, contaminants, or inert material from the plant to be extracted. This also 

helps to prevent enzymatic oxidation or hydrolysis occurring, particularly when extracting 

from fresh plant materials. This is typically achieved by immersing the plant materials in 

alcohol and can be used as the start of the extraction process. 

The selection of the procedures and solvents for extraction of the particular components 

from a plant primarily depends on the nature of the desired molecules. For example, if the 

suspected component is a non-polar molecule, then a non-polar solvent should be used, and 

vice versa for polar solutes. For the isolation of thermolabile components, heat exposure 

should be avoided, and therefore, cold extraction procedures are preferred. However, 

despite the nature of the desired components, solvent characteristics also need to be 

carefully considered. The solvent has to be easily removed from the extract by simple 

procedures, such as evaporation or distillation. Therefore, highly recoverable solvents are 

preferred. Other factors such as physical and chemical properties of the solvents have to be 

taken into consideration as they may affect the effectiveness and efficiency of the 

extraction procedure.  

Table 1.2 shows several solvents that are commonly used for plant extraction and their 

properties. Plant material is extracted using the principal of ‘like dissolves like’. For example, 

nonpolar solvents are used to extract lipophilic compounds (alkanes, fatty acids, sterols, 

pigments, waxes, some terpenoids, alkaloids, and coumarin), while polar solvents are used 

to extract polar compounds (flavonoid, glycosides, tannins, and alkaloids) (Seidel, 2006). 

Solvent polarity is qualitatively described as the capacity of one solvent for solvating 

dissolved charged or dipolar species. It is generally measured quantitatively by the dielectric 

constant (or relative permittivity Ɛr), dipole moment (µ), or the sum of all molecular 
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properties responsible for all interaction forces between solvent and salute molecules 

(Reichardt, 1988). Dielectric constant measures the solvent’s tendency to partly cancel the 

field strength of the electric field of a charged particle immersed in it, which then compared 

to the field strength of the charged particle in a vacuum (Malmberg and Maryott, 1956). 

Dipole moment, shows the charge separation in a molecule: the greater the difference in 

electronegativity of bonded atoms, the larger the dipole moment. Reichardt (1988) 

mentions the polarity index, which is empirically derived from spectroscopic measurements 

of the solvents. The index values are in the range of 0 to 1, from the non-polar to polar 

solvents. For the purpose of isolating unknown substances from one plant, particularly using 

the bioassay-guided extraction approach, utilisation of solvents from a distinct range of 

polarity will beneficial in the screening for the active components of  extracts. Moreover, 

the solvent polarity might provide an important clue to the characteristics of the active 

components responsible for the bioactivity. 

Table 1.2 – List of solvents for plant extraction 

Solvent Boling Point Dielectric 
constant 

Dipole 
Moment 

Polarity 
Index 

Hexane 69°C 2.02 0 0.009 

Diethyl ether 35°C 4.3 1.15 0.117 

Ethyl acetate 77°C 6.02 1.78 0.228 

Chloroform 61°C 4.81 1.04 0.259 

Dichloromethane 40°C 9.1 1.6 0.309 

Acetone 56°C 21 2.88 0.355 

Acetonitrile 82°C 37.5 3.92 0.46 

n-Butanol 118°C 18 1.63 0.602 

Ethanol 79°C 24.55 1.69 0.654 

Methanol 65°C 33 1.7 0.762 

Water 100°C 80 1.85 1 
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There are several procedures for solvent extraction, which are commonly applied in plant 

extraction, such as decoction, infusion, percolation maceration and Soxhlet extraction. 

These procedures rely on the principle of solid-liquid extraction, as the plant material is 

placed in contact with a particular solvent to allow the diffusion of solvent into the cells. 

Thereafter, the solvent will dissolve the substances of the plant cells. Finally, yield-

containing solvent has to diffuse out of the cells to enrich the extracted metabolites (Seidel, 

2006). According to Handa (2008), plant extraction can be carried out in three ways; cold 

aqueous extraction (infusion, percolation and maceration), hot aqueous extraction 

(decoction and percolation) and organic solvent extraction (maceration and Soxhlet 

extraction). Certain treatments, such as heat exposure and evaporation, might cause the 

loss or degradation of the plant constituents. Therefore, the choice of extraction procedure 

needs to be carefully considered. 

1.6.1.1 Infusion and decoction 

Infusion and decoction are simple natural product preparations by using water to dissolve 

the desired component from one plant material. Infusion is prepared by immersing the 

crude plant material (fresh or dried preparations) for a short period of time with cold or 

boiling water. In the decoction process, plant material is boiled in a certain proportion of 

water for a defined period of time, this is suitable for extracting heat-stable constituents 

(Handa, 2008). These methods work by dissolving the readily soluble constituents of the 

plant, however the rest of plant substances remain in the residual crude plant material 

(marc). 
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1.6.1.2 Maceration 

This procedure is performed by immersing the pulverised plant material in a particular 

solvent in a closed container at room temperature. During the extraction process, 

occasional or constant stirring is given to increase the speed of extraction. The substances 

diffuse out of the plant cells into the enriched extract, until equilibrium is achieved. The 

exhausted extract is separated from the marc by filtration. Fresh solvent is subsequently 

added to the marc and the extraction process is repeated several times to ensure maximum 

extraction yield. After the exhaustion point is achieved, all extracts-containing filtrates are 

pooled together and the solvent is evaporated to obtain the crude extract.  

The disadvantages of this method are that it is time-consuming, requires a large volume of 

solvent, and lacks a yield of compounds that are poorly soluble at room temperature. 

However, this is considered as the best option to extract the thermolabile substances 

(Seidel, 2006, Handa, 2008) 

1.6.1.3 Percolation 

Percolation is performed by placing the grounded and pulverised plant material to soak in a 

percolator. The basic principle of this method is similar as maceration, however, the 

decanting and filtration of the exhausted extract-containing solvent is no longer needed. A 

percolator is a cylinder or container with a tap equipped with a filter at the bottom part, to 

allow the solvent to percolate slowly (dropwise) out of the percolator. As for maceration, 

successive extraction can also be done by refilling the percolator with fresh solvent. 

The drawback of percolation mainly relies on the structure of the equipment. Fine powder 

and plant material which swells excessively may clog the percolator, and the material is not 
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distributed homogenously in the container. This problem results in the incomplete 

extraction which leads to the low amount of the yield produced (Handa, 2008). 

1.6.1.4 Soxhlet extraction 

This method is known as hot continuous extraction by using a special Soxhlet apparatus 

system. The finely ground plant material is placed in a cellulose thimble, a porous bag made 

of strong filter paper, which is inserted into an extraction chamber on the top of a collecting 

flask beneath the reflux condenser. When the solvent in the collection flask is heated, the 

vapours start to condense when they get into contact with the reflux condenser. The 

condensed solvent will drip into the thimble containing the plant material. The liquid in the 

thimble chamber is filled up to the certain level and then siphons into the collection flask. 

This process is continuous and stopped only when the extraction reaches an exhausted 

point as the solvent from the siphoned tube turns clear without any dissolved extraction 

material.  

This method has the advantages due to the continuous extraction process. As the 

solubilized-metabolites-containing solvent empties into the collection flask, fresh solvent is 

re-condensed and extracts the plant material in the thimble in a continuous way. Therefore, 

this method is less time-and-solvent consuming than the previous methods. Nevertheless, 

as the extract is exposed to the constant heat at the boiling point of solvent used, 

thermolabile compounds might be damaged during the extraction process. Consequently, 

Soxhlet extraction will give more benefit in extracting thermostable components. Generally, 

the solvents of choice for Soxhlet extraction must have a relatively low boiling point to 

prevent the decomposition of the compounds. Thus, water, as the boiling point is at 100 ˚C, 

is not suitable for this method. 
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1.6.2 Isolation and purification 

Plant extract is a mixture of complex molecules which have different physical, chemical and 

biological properties. It is almost impossible to obtain pure molecules with only one 

isolation procedure. Several isolations protocols are usually applied to isolate single 

compounds and are specifically developed based on the nature of the compound to be 

isolated. Isolating secondary metabolites from plants, as one of the potential sources of 

natural products, is usually a complex and time-consuming process. Hence, good initial 

sample preparation might make these processes easier. Filtration is one of the simplest 

sample preparations, particularly for eliminating particulate and insoluble materials by using 

various filtration methods such as filter paper, special membranes with controlled pore size 

or short silica gel columns (Hostettmann et al., 1986). Fractionation is considered as the 

next step of sample preparation, aimed at the separation of the extracted components into 

discrete fractions of similar properties, such as polarity or molecular size. The crude extract 

is separated by various chromatography techniques to attain a few large fractions, in order 

to avoid the spreading of the target compound over so many fraction (Sarker et al., 2006) 

Chromatography is one of the most powerful techniques in the isolation and purification of 

natural products. In general, this method is divided into two categories based on the 

complexity of the techniques. The simple and older methods are categorized as classical 

chromatographic techniques, which include thin layer chromatography (TLC), preparative 

thin layer chromatography (PTLC), open column chromatography (CC) and flash 

chromatography (FC). The latest methods are known as modern chromatography 

techniques, which include High-Performance thin-layer chromatography (HPLTC) and High-

Performance Liquid Chromatography (HPLC). 



58 
 

Analytical and preparative HPLC methods are utilised to optimise the separation and 

purification system. Analytical HPLC gives a general estimate of a relative proportion of the 

compounds in the crude extract as well as developing a strong mobile phase system for 

optimum resolution of chromatographic separation. There are three important parameters 

that influence the resolution, namely the capacity factor (K’), selectivity (α), and column 

efficiency (N), which will be critically observed and manipulated to achieve well-resolved 

peaks of separation. The correlation between these parameters and the resolution of the 

separation (R) is shown as follows: 

R = ¼ (α-1)/α x √N x K’/ (K’+1) 

As a general rule, K’ is relatively easy to be manipulated by varying the mobile phase 

composition. Every 10% modification of the composition will result in a 2-3 times change in 

K’ value (Mellwig and Jakobs, 1980). 

Selection of isolation protocols for a known molecule can be carried out on the basis of its 

physical and chemical properties such as molecular size, stability, solubility, charge, and 

acid-base properties. However, it would be more difficult to identify such properties if the 

target compound is an unknown molecule. In this case, the nature of the crude extracts, in 

particular the solvents used in the extraction, becomes an important factor to be 

considered. It is also worthwhile carrying out analytical chromatography techniques, in 

order to determine a general profile for the extracts.  

1.6.3 Structure elucidation 

The final step of plant extraction is to conclusively identify the molecule that is responsible 

for a given pharmacological effect. This is often thought as the bottleneck of natural product 

isolation due to the complexity of procedures that are often needed to obtain sufficient 
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purity of compounds. Several advanced spectroscopic techniques used in obtaining chemical 

information of natural products include mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) spectroscopy. In general, MS provides information in relative to the 

molecular mass, molecular formula and chemical structure. NMR gives further useful data 

on the identity of the molecular structure of purified compounds. NMR  is capable of 

differentiating molecules with the same molecular mass or molecular formula as well as 

discerning constitutional and geometric isomers (Bobzin et al., 2000). The protons in 

molecule appear as an NMR signal and this provides information on the proton environment 

and coupling partners. Therefore this technique is capable of differentiating molecules with 

the same molecular mass or molecular formula as well as discerning constitutional and 

geometric isomers (Bobzin et al., 2000) 

1.7 Specific aims and objectives of the research 

Although the biological effects of Phyllanthus niruri L have been intensively studied, there is 

no comprehensive review available so far, which explains the whole story of the screening, 

isolation, identification of active compounds, and detailed elucidation the mechanism of 

action. Accordingly, this project conducted a screening of the effects of various extracts of 

Phyllanthus niruri L for their activities as anti-platelet aggregation, anti-cancer, and anti-

malaria, which had previously raised significant interest of many researchers, in order to 

identify a number of therapeutically important extracts. Once identified the extracts of 

interest were further explored to isolate and identify the compound(s) which were 

responsible for the observed activities. The elucidation of possible mechanisms of action of 

the activity was also studied in this report using a LC MS/MS proteomics approach. The data 
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obtained from this project has added significantly to our understanding of therapeutic 

natural products derived from Phyllanthus niruri L.  

The main aim of this project, however, is the development of new drugs from natural 

products derived from Phyllanthus niruri L, which will be achieved by the following protocol: 

1. Screening of the activity Phyllanthus niruri L extracts as the anti-cancer, anti-malaria, 

and anti-platelet compounds. 

2. Isolation and identification of the active compounds contained in the extracts that 

possesses the biological effect. 

3. Elucidating of the mechanism of action of the active compound linked with biological 

activity.  

1.8 Research methodology 

Extraction and purification of Phyllanthus niruri L compounds are followed by bioassays. 

Several variations in methodology were used in this study including: 

1. The extraction of the whole plant of Phyllanthus niruri L.  

Complex molecules contained in Phyllanthus niruri L were extracted from the 

biomass by solvent extraction.  

2. Biological assay 

The crude extracts and isolated compounds were tested in vitro against cancer cells, 

plasmodium growth, and platelet aggregation by employing appropriate biological 

assays in order to investigate their potential therapeutic activities.  
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3. Isolation of active compounds  

Several isolation processes were used in order to obtain active component (s) that 

possessed biological activity including analytical and preparative HPLC. 

4. Structure elucidation 

Identification of the isolated compounds is the key stage in natural product drug 

discovery. This was achieved by applying a number of spectroscopic methods. 

5. Data analysis 

The proteomics data used to elucidate the mechanism of action of new compounds 

were analysed using various computer software packages, including statistical and 

proteomics software. 

 



  Chapter 2
Research Methodology 
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2.1 Materials 

Powdered extract of Phyllanthus niruri L was obtained from PT Haldin Pacific Semesta, 

Jakarta, Indonesia. Product specification is shown in Appendix 1. The powder was prepared 

by drying and grinding the plant leaves, resulting in a fine yellowish powder. For the initial 

extraction process, a number of solvents were used. Methanol, ethanol, hexane and 

chloroform were purchased from Fisher Scientific, Loughborough, UK.  

Whole blood for platelet aggregation assay and anti-malarial testing was obtained from 

National Health Service (NHS) Blood and Transplant, Manchester, UK. Reagents for platelet 

aggregation assay were ADP, collagen, adenosine, fibrinogen, Prostaglandin-E1, 4- (2-

Hydroxyethyl) piperazine-1-ethanesulfonic acid, N- (2-Hydroxyethyl) piperazine-N′- (2-

ethanesulfonic acid) or HEPES, Ethylene-bis (oxyethylenenitrilo) tetraacetic acid or ETGA, 

and apyrase. All of these reagents were purchased from Sigma-Aldrich, Dorset, UK. Blood 

counts were measured by automated haematology Analyzer PocH-100i, Sysmex 

Corporation, Kobe, Japan. Speedy-Diff complete kit for blood smear staining was purchased 

from Clin-Tech, Guildford, UK. 

Cell culture media (RPMI 1640) were obtained from Lonza, Belgium. Fetal Bovine Serum 

(FBS), L-Glutamine (100x) and trypsin EDTA (1x) were purchased from Biosera, Belgium. 

Dimethylsulfoxide (DMSO) was purchased from Fisher Scientific, Loughborough, UK. 

Phosphate buffered saline (PBS), Ethylendiaminetetraacetic acid (EDTA), thiazolyl blue 

tetrazolium bromide, propidium iodide solution, and SYBR Green® I nucleic acid stains were 

purchased from Sigma-Aldrich, Dorset, UK. Cell culture flasks were obtained from Fisher 

Scientific, Leicestershire, UK. 96-wells Microplates were purchased from Greiner bio-one, 

Stonehouse, UK. Multiskan FC® microplate photometer was obtained from Thermo 
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Scientific, Massachusetts, United States. Flow cytometry was performed by using the BD 

FACSVerseTM flow cytometer from BD Bioscience, Oxford, UK. 

Human Caucasian lung large cell carcinoma (COR-L23), human acute T lymphoblastic 

leukaemia (MOLT-4), human Caucasian chronic myelogenous leukaemia (K562), and mouse 

embryonic fibroblast (3T3) cell lines were obtained from the cell culture laboratory of the 

Centre for Biochemistry, Drug Design and Cancer Research, University of Salford, UK. For 

antimalarial assay, Plasmodium falciparum strain K1 was kindly provided by Dr Niroshini 

Nirmalan, University of Salford, Manchester, UK.  

Diaion HP-20 resin was obtained from Mitsubishi Chemical Corp, Japan. A GraceSmart 

Reverse Phase column for analytical HPLC was obtained from Grace, Columbia, United 

States. Preparative HPLC used a Hyperclone ODS column from Phenomenex, Macclesfield, 

UK. Acetonitrile, triflouroacetic acid, and other HPLC mobile phase were purchased from 

Sigma-Aldrich, Dorset, UK. All reagents used for HPLC were of analytical grade. The HPLC 

system was purchased from Agilent Technologies, Santa Clara, United States. 

Electrophoresis consumables including acrylamide, Tris base, glycine, DL-dithiothreitol 

(DTT), 2-Merchaptoethanol, ammonium persulfate (APS), and sodium dodecyl sulphate 

(SDS) were obtained from Sigma-Aldrich, Dorset, UK. Protein quantification assay was kit 

was using the 2-D quant kit from GE Healthcare Life Sciences, Buckinghamshire, UK. 

Immobilized pH gradient (IPG) strips (pH 3-10), Bio-Safe™ Coomassie Stain, Bio-Lyte broad 

range carrier ampholytes (pH 3–10), protein standards (SDS-PAGE and IEF standards), and 

the electrophoresis instruments (1D and 2D electrophoresis systems) were obtained from 

Bio-Rad Laboratories, Hertfordshire, UK.  
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Otherwise stated, all other chemicals and material such as sodium chloride, ammonium 

bicarbonate, and potassium hydrogen carbonate were purchased from Sigma Aldrich, 

Dorset, UK. 

2.2 Extraction of Phyllanthus niruri L extracts 

2.2.1 Maceration 

The method of choice for the extraction of the crude extracts in this study was cold 

extraction, or maceration. As described in section 1.6.1.2, the advantage of using this 

method is to yield more substances in the extract because all of the thermolabile and 

thermostable components are preserved. Despite the large amount of solvent needed and 

longer time for extraction, maceration gives a benefit in extracting unknown compounds for 

screening their biological activities.  

In order to develop the standard procedure of the extraction method, each batch of plant 

extraction used equal amounts of plant material and extraction solvent, as well as the 

extraction time. Consequently, exhausting point was not necessarily achieved. By doing so, 

the final yield obtained from different solvent used could be compared one to another.  

Dried powder of Phyllanthus niruri L was extracted by maceration using solvents of different 

polarities. Hexane and chloroform are of nonpolar solvents used for the extraction, whereas 

the polar solvents used were methanol, ethanol, and water. For each solvent extraction, 100 

grams (g) of the plant powder were immersed into 200 millilitre (ml) of solvent and was left 

overnight to allow the solvent extracts the soluble molecules from plant material. During 

this period, occasional stirring was given. After 24 hours, the solvent was separated from 

the insoluble plant material by filtration. The residual plant material was subsequently 
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immersed in a 200 ml of fresh solvent and this process was repeated three times. On the 

third day, all filtrate was pooled together and resulted in a 600ml of solvents containing the 

extracted metabolites. 

2.2.2 Solvent removal 

The next step of following solvent extraction was to separate the yield from the extractant 

which was performed by evaporation using a rotary evaporator followed by freeze drying. 

The earlier step is aimed at reducing the amount of solvent from the extract, which was 

performed under reduced pressure using IKA RV 10 digital rotary evaporator system (IKA 

Werke GmbH & Co, Germany) at a temperature below 40 ˚C to minimize the degradation of 

thermolabile components (Seidel, 2006). Finally, all extracts were freeze-dried to remove all 

residual organic and aqueous mixtures from the extracts and yield a completely-dry crude 

extracts. Dried extracts were stored in an airtight container at -20 ˚C before use.  

2.3 Screening for anticancer activity 

As briefly explained in section 1.2.3, the current study started with the screening of the 

biological activities of Phyllanthus niruri L as anti-cancer, antimalarial, and antiplatelet.  

2.3.1 Cancer cell culture 

2.3.1.1 Cell lines 

Three cell lines were used for the anti-cancer test of the crude extracts; human acute T 

lymphoblastic leukaemia (MOLT-4), human Caucasian chronic myelogenous leukaemia 

(K562), and human Caucasian lung cell carcinoma (COR-L23). For the cytotoxicity test, 

mouse embryonic fibroblast cells (3T3) were used. All cell lines used were grouped into 



67 
 

adherent cells (COR-L23 and 3T3 cell lines) and suspension cells (MOLT-4 and K562). All cell 

lines were cultured in culture medium containing 90% (v/v) RPMI 1640, 2mM L-glutamine, 

and 10% (v/v) Fetal Bovine Serum (FBS). To prevent bacterial infection during cell culturing, 

50 IU/ml penicillin and 50µg/ml streptomycin were added into the media. Additional 

reagents or materials needed for performing cell culture or anti-cancer test of Phyllanthus 

niruri L extracts were sterilized by autoclaving, or filtered through a sterile 0.2µm filter. The 

cells were cultured in 25 cm2 sterile flasks and incubated at 37 ˚C, in an atmosphere of 95 % 

air and 5% CO2. All procedures during cell culture were performed in a class II biological 

safety cabinet and, in addition, all precautions were carefully taken to prevent the 

occurrence of any aspects of contamination (Markovic and Markovic, 1998). 

2.3.1.2 Recovery of frozen cell lines 

All cell stocks were kept in a 0.5 ml aliquot of cell suspension in a medium containing 10% 

(v/v) concentration of DMSO at a -80 ˚C environment or in liquid nitrogen (-196 ˚C), which is 

suitable for a long term storage. Prior to the regular culturing procedure, the cells were 

recovered from the frozen condition and prevented from the toxic effect of DMSO. At a 

concentration of more than 4%, DMSO induced monolayer disruption and an alteration of 

cell-to-cell tight junctional complexes, whereas at higher concentration (more than 10%), 

DMSO will disturb cell membrane permeability (Da Violante et al., 2002). Accordingly, cell 

aliquots were quickly thawed in a 30 ˚C waterbath after removal from the -80 ˚C condition. 

Immediately after the ice crystal had melted, the cell suspension was transferred into a flask 

containing pre-warmed medium. By doing so, the containing DMSO was diluted to a lower 

concentration that is tolerable for the cells and without giving any deleterious effects. 

Subsequently, the cell suspension was incubated at a 37 ˚C incubator with 5% CO2 
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environment for a minimum of one passage to allow the cells to recover and achieve the 

optimum conditions for the anti-cancer test by MTT assay and protein extraction. 

2.3.1.3 Maintaining the optimal condition of cell culture 

The cells were monitored regularly to ensure the cell viability as well as to observe if there 

were any sign of contaminants. The colour and turbidity of media were monitored, as well 

as cell morphology and cell density. In conditions where the cell population was too dense, 

the media environment became acidic, and nutrient was depleted, cell culture grew which 

led to cell detachment and death. Therefore, when the cell suspension had reached sub-

confluent condition or 70-80% confluency, the medium was changed to replenish the 

nutrient supply, restore the optimum conditions for cell growth, as well as to restore the cell 

density back to optimum condition for cell growth (Macleod and Landon, 2004). 

To maintain the healthy growth of cells, the culture required regular subculture, the 

procedure in which the sub-confluent culture was split into a fresh medium. Generally, the 

subculture of the cells was performed every three days to ensure that the cells did not 

overgrow. Subculturing was also referred as harvesting because at this stage, cells are ready 

for further biological assays. 

2.3.1.4 Subculturing adherent cell lines  

Adherent cell lines grow by adhering to a plastic wall of the culture flask, which acts as the 

substrate, and proliferate as a monolayer of cells. As the first step of the subculture, the old 

medium was removed from the flask, followed by subsequent washing of the interior 

surface of the flask to remove the remaining medium and non-viable cells. Sterile phosphate 

buffer saline (PBS) was used in this step. A sterile 0.5 ml trypsin solution at 0.25% (w/v) 

concentration was added to the flask, which then was incubated in a 37 ˚C incubator for 2-3 
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minutes until the cells have detached. Trypsin is a proteolytic enzyme that breaks the cell-

substrate and cell-cell bonds, which then results in cell detachment and creates a single-cell 

suspension. Subsequently, 4.5 ml of fresh medium was added into the flask, which 

eventually diluted the enzyme and halted the proteolytic activity. At this stage, healthy cells 

were ready for harvesting for further MTT and protein extraction (see section 2.3.2 and 

2.3.3). Although the cell lines used in this study had different rate of cell growth, as a 

general rule, a split ratio of 1:5 was used for routine culture COR-L23 and, due to the fast 

rate of cell growth, split ratio used for 3T3 cell line was 1:50. 

2.3.1.5 Subculturing suspension cell lines 

Suspension cell lines grow as suspended cells in the medium, therefore subculturing does 

not require trypsinization step. The whole volume of cell suspension was transferred into a 

sterile universal bottle for subsequent centrifugation at 1500 rpm for 5 minutes to spin 

down all cultured cells. The spent medium was carefully pipetted and discarded, and a fresh 

medium was added into the cell pellet. At this stage, healthy cells were ready for harvesting 

for further MTT and protein extraction (see section 2.3.2 and 2.3.3). After homogenization 

the cell pellet into the medium by several times pipetting, the cell suspension was then split 

at a ratio of 1:10.  

2.3.1.6 Cryopreservation of cell stocks 

As mentioned in section 2.3.1.2, the cell stocks were stored at an extreme low temperature 

(below -80°C) with several conditions to maintain the cell viability. The important feature is 

to ensure that cells are in optimum condition without any feasible contaminants. For 

adherent or monolayer cells, the cultured cells were detached by trypsinization, followed by 

addition of fresh media to inactivate trypsin activity. Subsequently, for adherent and 
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suspension cells, the suspension was centrifuged at 1500 rpm for 5 minutes to obtain cell 

pellet, then a freeze-cold medium containing 10% (v/v) DMSO was added to re-suspend the 

cells at a concentration of approximately 107 cells/ml. DMSO is another crucial element in 

the cell cryopreservation, that acts as a cryoprotective agent which prevents the formation 

of ice crystal and fragmentation of the cell membrane. The final suspension of cells stock 

was aliquoted in several cryovials. To prevent the formation of intracellular ice crystal which 

causes cell lysis upon cell thawing, the cryovials were placed overnight in a cryocontainer 

containing isopropyl alcohol, which slowly reduced the cell temperature at a cooling rate of 

1˚C/min when it was stored in a -80 ˚C freezer. This treatment is necessary to allow water 

from the intracellular environment to diffuse out of the cells thus inhibit the ice crystal 

formation. When the final temperature of -70 ˚C to 80 ˚C was achieved, cell were 

transferred to -80 ˚C freezer or liquid nitrogen storage tank. 

2.3.2 MTT colorimetric Assay 

MTT assay was first described by Mosmann (1983) who introduced a colorimetric assay for 

measuring cell viability, which therefore is used as a method for cell proliferation and 

cytotoxicity assay. The basic principle of this assay is based on the ability of living and 

metabolically-active cells to reduce MTT (3, (4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tertrazolium bromide) salt to formazan product. MTT is soluble in water and, after being 

cleaved by the activity of mitochondrial enzymes, is converted to an insoluble crystal-form 

purple formazan by the cleavage of the tetrazolium ring.  

Healthy cells, which had been sub-cultured at least once and subsequently reached 70-80% 

confluency were ready for the MTT assay. Cells density of the single cell suspension (from 

section 2.3.1.4 for adherent cells and section 2.3.1.5 for suspension cells) was adjusted to 
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reach a final density of cell at 104 cells/ml. Into each well of a sterile 96-wells microplate, 

100 µl cell suspension was added. The template for the anti-cancer assay of the extracts is 

shown in Figure 2.1. The cells were then incubated at a temperature of 37 ˚C with 5% CO2. 

After 24 hours incubation, cells were examined macroscopically and microscopically to 

ensure that there were no signs of contamination and the cells were healthy. Subsequently, 

100 µl extracts of Phyllanthus niruri L, which had been diluted with a complete media (and 

previously dissolved in DMSO to reach a maximal final concentration in the culture 

suspension of 1%) and filtered by a 0.2µm sterile filter, was added into corresponding wells. 

The concentration of the extract was prepared in a serial dilution according to the 

microplate template, which started with a negative control in the first well (row A) and 

doubled each level down until it reached the highest concentration in row H (Figure 2.1). 

The assay was performed in triplicate for each extract tested. Cis-platinum, a known anti-

cancer drug was used as a positive control.  

 

Figure 2.1 – The template of MTT assay for anti-cancer test 
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Afterward, the plates were incubated to allow the cell proliferation with or without the 

presence of the tested compounds. After five days of incubation, the plates were taken out 

from the incubator and 50µl of MTT solution at a concentration of 5 mg/ml was added into 

each well. The plates were then kept in the incubator for the next 3-4 hours until the purple 

crystals of formazan salt were produced, followed by removing the media through gentle 

aspiration of the liquid, leaving the crystals at the bottom of the wells. Subsequently ,200 µl 

DMSO was added into each well to dissolve the formazan crystal, followed by the reading of 

the absorbance of the formazan solution in microplate reader, at the test wavelength of 450 

nanometre (nm) (OD1) and reference wavelength at 690nm (OD2).  

The results were expressed as the value of optical density (OD) generated from OD1 

subtracted from OD2, which represented the amount of the purple formazan crystal 

formation after elimination of the background reading generated from the DMSO, 

remaining media or the microplate plastic base. The calculation of cell viability on each well 

of the corresponding column on the plate is performed by the following equation: 

Cell viability (%) = OD0/ODn x 100% 

Where OD0 is the OD from the negative control (row A) and ODn is the OD of the 

corresponding well. The mean value of cell viability from each extracts were then plotted on 

a graph and used for calculation of the 50% inhibitory concentration (IC50) of each tested 

extract. 
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2.3.3 Determination of apoptosis by flow cytometry 

One of the most common features of apoptotic cells is the reduction of cellular DNA as the 

result of the fragmentation of DNA from the activity of endonucleases. Accordingly, the 

measurement of DNA contents of the cultured cancer cells has been intensively used as one 

of the methods to observe the efficacy of the anti-cancer drugs to induce cell death 

(Darzynkiewicz et al., 1992, Armania et al., 2013). In this study, propidium iodide (PI) flow 

cytometric assay was used as a method to determine the cell cycle arrest or apoptosis 

points within the cell cycle by staining the cellular DNA with PI as described by Riccardi and 

Nicoletti (2006). Propidium Iodide is known as a fluorochrome that binds the nucleic acids 

and emits fluorescence emission that is proportional to the DNA content.  

To perform the analysis, cultured cells were prepared according to the method described in 

section 2.3.1.4 and 2.3.1.5 for adherent and suspension cell lines, respectively, and treated 

with the extracts of Phyllanthus niruri L. After certain days of incubation, the cells were 

harvested by centrifugation (previously trypsinised for adherent cells only) and removing 

the medium without disturbing the cell pellet. A 500 µL fresh medium was added to 

resuspend pellet, followed by 4.5 ml of 70% (v/v) cold ethanol to fix the cell samples. After 

incubation at -20 ˚C for 30 minutes, the cells were spun down at 1500 rpm for 5 minutes, 

followed by subsequent washing with 5 ml of PBS. The pellet was resuspended in 1 ml of 

DNA staining solution containing 20 µg/ml PI and 0.2 mg/ml RNAse A (Sigma-Aldrich, Dorset, 

UK). The cell solution was incubated for at least 30 minutes in the dark at room temperature 

before analysing by Partec CyFlow ML (Sysmex UK Limited, UK). The reading was performed 

by 488 nm laser line for excitation to measure red fluorescence (peak at > 600nm) using side 

scatter parameter. The reading from 20,000 events was collected to examine the 
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hypodiploid and diploid DNA peaks. The hypodiploid peak corresponds to the apoptotic cells 

in sub-G1 phase, whereas the narrow diploid peak represents the normal DNA of cells in the 

G0/G1 cell-cycle phase.  

2.4 Screening for anti-malaria activity 

2.4.1 Malaria parasite culture 

Multidrug resistant Plasmodium falciparum strain K1 was used in this study through a 

regular cultivation and maintenance of continuous culture using standard technique for 

plasmodium culture (Doolan, 2002, Hyde, 1993). Unless otherwise stated, all procedures 

during the parasite culture were performed in a class II biological safety cabinet. 

2.4.1.1 Preparation of the erythrocytes  

Human erythrocytes are the main component of complete medium of plasmodium 

parasites; type O+ is commonly used for the culture as it is more compatible with other 

blood groups. The anti-coagulated whole blood from the blood bank must be stored at 4 ˚C 

in salinized bottles and can be used up to 1 month after blood donation. To prepare the 

erythrocytes, the whole blood was centrifuged at 2500 rpm for 5 minutes and the bottom 

layer of red blood cells was separated from the plasma and buffy coat of leucocytes. The 

clear plasma and the leukocytes were carefully pipetted out. Thereafter, the washed 

erythrocytes were resuspended in an equal volume of sterile RPMI 1640-HEPES with 0.3 g/l 

L-glutamine and re-centrifuged. This process was repeated two to three times to ensure the 

minimal contamination of other blood cells. Finally, the remaining packed red cells were 

resuspended in a volume of complete medium (section 2.4.1.2) at a final concentration of 

50% haematocrit. 
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2.4.1.2 Preparation of the complete culture medium 

Culture medium for parasites culture was RPMI 1640 supplemented with 24mM N-2-

hydroxthylpiperazine-N’-2-ethane-sulfonic acid (HEPES), 0.3g/L L-glutamine (Gibco Life 

Technologies, UK) with the addition 50 mg/ml hypoxanthine, 4g/L glucose, 50mg/L 

gentamycin, and 10% (w/v) Albumin bovine serum fraction V (Sigma-Aldrich, Dorset, UK). 

The medium was stored at 4 ˚C until required.  

2.4.1.3 Recovery of the frozen parasites 

Parasites stocks were kept frozen in liquid nitrogen and, prior to cultivation, quickly thawed 

by leaving the cryovials in a 37 ˚C waterbath. The content of the cryovials was transferred 

into sterile 1.5ml eppendorf tubes and the parasites were spun down by centrifugation at 

12.000 rpm for 1 minute. The supernatant was discarded, following by the addition of 1ml 

of sterile 10% (v/v) sorbitol in PBS to draw the glycerol out of the cells, allowing the 

parasites to recover and ready for cultivation. After 1 minute of incubation, the parasites 

was centrifuged to discard the supernatant and subsequently washed in 5% (v/v) sorbitol in 

PBS. The centrifugation was repeated to discard the supernatant. Finally, the parasites were 

resuspended in 1 ml of complete medium. For the initial cultivation after recovery from 

frozen state, the washed parasites suspension was combined with 0.5ml freshly washed 

erythrocytes and 10ml of complete media, then proceed to the culture procedure as 

described in section 2.4.1.4. The newly cultured parasites required about 1 week with 1-2 

subculture before returning to normal growth rate (Doolan, 2002) 

2.4.1.4 Culture procedure 

The cultivation of plasmodium parasites in complete media is typically started at 

parasitemia of 0.5% in 0.1-1% haematocrit. The medium and haematocrit stock were pre-
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warmed before using. To determine the parasitemia prior to subculturing, the existing 

plasmodium culture was checked by manual counting infected blood as described in section 

2.4.1.5.  

To perform the subculture, the flask containing parasitized blood was gently transferred in 

the sterile cabinet to prevent dislodging of blood from the layer on the floor of the culture 

flask. The medium was carefully removed from the flask by pipetting the medium out from 

the bottom corner to prevent the removal of the infected blood. By removing approx. 9-10 

ml of medium, the remaining blood in the flask was at a concentration of approx. 50% 

haematocrit. After measuring the parasitemia level, the culture was diluted with fresh 

washed red blood cells to bring back the parasitemia to the level of 0.1-1%. Subsequently, 

the culture was transferred into a new flask with the addition of fresh complete medium 

added to give a 5% final haematocrit. Afterwards, a mixture of gas containing 5% CO2, 5% O2, 

and 90% N2 (BOC Limited, UK) was passed into the flask for approx. 15 seconds, and the 

culture was subsequently incubated in the 37 ˚C incubator (Lee culture safe touch 190 CO2, 

Lee Limited, UK).  

Cultures were regularly checked to observe the parasitemia level. The parasite growth will 

be distressed if the parasitemia level is more than 30%. Accordingly, the medium was 

changed on a regular basis, which was performed every 2-3 days. The infected bloods tend 

to form a layer on the floor of the flask, thus the old medium could be carefully pipetted out 

from the above layer to minimize the disturbance of the settled blood cells and replaced by 

fresh pre-warmed medium. 
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2.4.1.5 Thin blood smear 

The blood smear was taken from a culture flask prior to subculturing or further antimalarial 

assay to measure the parasitemia level and observe the stage of parasitemia. 10 µl of red 

blood cell suspension were pipetted out of the flask and transferred to the surface of a 

clean microscope slide. The blood drop was thinly smeared across the surface of the slide to 

create a monolayer of well-spaced red blood cells for easy counting of the parasitemia level. 

After the blood smear dried, the slide was fixed in 100% methanol by irrigation method. The 

slides were left at room temperature to dry. Giemsa staining was used to stain the blood 

film by covering the slide with a sufficient volume of the staining for a minimum of 20 

minutes. To remove the excess Giemsa stain, the slide was briefly washed under a gentle 

stream of running water for approx. 20 seconds. After air-drying, the blood smear was 

examined using a Leica DM 500compound microscope and a 100x objective lens. Calculating 

the parasitemia level was performed by counting 100-200 red blood cells per field of view 

and noting individual red blood cells containing parasites. The parasitemia was obtained 

from the average number of infected red blood cells from a minimum of three field of view. 

2.4.1.6 Cryopreservation of plasmodium 

The parasites culture were allowed to reach a 15-20% parasitemia level and brought to 50% 

haematocrit. The parasites were spun down by centrifugation at 3400 rpm for 5 minutes. 

Subsequently, the pellet was resuspended in the complete medium, and 0.5 ml of the 

suspension was divided in cryovials. Equal volume of 20% (v/v) DMSO was added into each 

tube which then immediately immersed in liquid nitrogen. 
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2.4.2 Flow-cytometry-based analysis of plasmodium drug sensitivity 

The method used in this project was a fluorescence-based assay by the detection of the 

fluorescence signals arising from the parasites DNA when stained with SYBR green, a 

fluorescent DNA binding dye that binds all double-stranded DNA. The quantification of the 

measurement results was achieved by flow cytometry, by which the high-throughput 

individual cell sorting is allowed.  

Plasmodium sensitivity assay was a modification of the method described by Karl et al. 

(2009). From the 25ml culture flask, plasmodium culture at 0.5% parasitemia and 5% 

haematocrit was transferred into a 96-well plate with a final volume of 200 µl/well. A stock 

with the maximum dose was prepared for each extract by dissolving samples with DMSO 

with the precaution that the final DMSO concentration in the culture well must not exceed a 

1% final concentration. A set of serial dilution of Phyllanthus niruri L extracts were prepared 

in complete culture medium without hypoxanthine. Following the seeding of the 

plasmodium culture in the 96-well plates, the extract samples were added into the 

corresponding wells. All experiments, including the negative control, were performed in 

triplicate.  

After 72 hours incubation, the content of each of microplate well was transferred into clean 

eppendorf tubes and centrifuged at 3400 rpm for 90 seconds. Subsequently, the pellet was 

washed carefully with PBS for 2-3 times. The pellet was then resuspended in 2.5 x SYBR 

Green® I in PBS and incubated in the dark at room temperature for 20 minutes. Samples 

were then centrifuged at 3400 rpm for 90 seconds, the supernatant was removed and the 

pellet was resuspended in 250µL of 1% (v/v) paraformaldehyde in PBS for cell fixation. After 

a 30 minutes fixation at 4 ˚C, the samples were washed twice with PBS and kept at 4 ˚C 
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protected from light before being analysed on a FACS Verse flow cytometer system (BD 

Biosciences, Oxford, UK). The reading was performed by 497 nm laser line for excitation to 

measure green fluorescence (peak at 520 nm) against side scatter and forward scatter 

parameters. The reading from 50,000 events was collected to examine DNA peaks in mono-

nucleated and multi-nucleated parasites. 

2.5 Screening for anti-platelet activity 

2.5.1 Isolation of washed platelet 

Blood obtained from the blood centre was prevented from the coagulation by the addition 

of acid citrate dextrose (ACD) containing 85mM sodium citrate, 65mM citric acid, and 

110mM dextrose.  The isolation of platelets was conducted by the differential centrifugation 

method as described by Májek et al. (2010). Citrated whole blood was centrifuged at 1250 

rpm for 15 minutes to obtain platelet rich plasma (PRP). Prostaglandin E1 (PGE1) was added 

at final concentration of 1 μM, then incubated at 37°C for 10 minutes, followed by 

subsequent centrifugation at 2500 rpm for 10 minutes. The platelet pellet was resuspended 

in a Ca2+ free Tyrode’s buffer (140 mM NaCl, 3 mM KCl, 12 mM NaHCO3, 0.4 mM NaH2PO4, 2 

mM MgCl2, 5.6 mM glucose; pH 6.2) in the addition of 1 μM prostaglandin E1 (PGE1) and 

centrifuged at 2500 rpm for 10 minutes and the supernatant was carefully removed and 

discarded. The platelet pellet was then resuspended in a Tyrode’s buffer (140 mM NaCl, 3 

mM KCl, 12 mM NaHCO3, 0.4 mM NaH2PO4, 1 mM MgCl2, 2 mM CaCl2, 5.6 mM glucose; pH 

7.4) to give a standard platelet suspension (SPS) with a final concentration of 1-3 × 108 

cells/ml. An automated haematology analyser PocH-100i (Sysmex Corporation, Kobe, Japan) 
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was used to count the platelet numbers. Unless otherwise stated, all procedures were 

performed at room temperature.  

2.5.2 Platelet aggregation assay 

This assay was performed using the basic principle of measuring the changes of light 

transmission through resting and aggregated platelets suspensions in a 96-wells microplate. 

The method previously described by Bednar et al. (1995) allows a simultaneous 

measurement of multiple samples in a relatively short period of time.  

 The SPS previously prepared according to section 2.5.1 and incubated at 37 ˚C prior to the 

aggregation test to maintain platelet function. The samples were divided into three groups; 

treatment, negative control, and positive control. Each group was repeated in triplicate. 

Crude extracts (5 µl) were added to each well of treatment group. Subsequently, 100 µl of 

SPS was transferred into each well, including all control groups wells and the samples left at 

room temperature for 15 minutes. Into each corresponding well, excluding the negative 

controls, 5 µl of platelet agonist was added. Immediately thereafter, the first absorbance 

reading were taken with a 405 nm filter using Multiskan FC microplate photometer (Thermo 

Scientific, Massachusetts, United States), and the timer was started to record the 

aggregation time. After the first reading, the plate was continuously agitated at 1000 rpm 

and subsequent readings were recorded at 1 minute intervals. The aggregation data was 

collected at 405nm for 10 minutes at room temperature. Platelet aggregation was 

calculated by subtracting the final reading from the initial reading collected from the same 

well. Data normalisation was performed by comparing it with the maximum response from 

the corresponding platelet agonists controls. 
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2.5.3 Platelet activation and protein extraction 

Platelet activation for protein extraction was conducted according to the method described 

by Májek et al. (2010). The SPS, as previously prepared, was divided into a 1 ml aliquots. The 

compound to be tested was added into one sample group designated as the P group, 

whereas the resting platelets and platelet-agonist activated platelets were designated as R 

and A groups, respectively. After incubation of the samples at 37°C for 30 min, the agonists 

were added to the P and A tubes, followed by agitation of the tubes at 1000 rpm to initiate 

platelet activation and aggregation. The resting platelets group (R samples) were left 

untreated as negative controls. Ten minutes after aggregation induction, a four times 

volume of cold acetone was added into all tubes, including the resting platelets, and the 

samples left for 2 hours at -20 ˚C  to precipitate total proteins. The protein pellet was spun 

down by centrifugation at 13.000 rpm for 10 minutes and the supernatant discarded. The 

platelet proteins were stored at -80 ˚C until further proteomics analysis (as described in 

section 2.8). 

2.6 Identification of the active compound 

Isolation and identification of the active compounds were conducted according to the 

guidance of the bioassay-guided isolation protocol as previously described. Briefly, the 

active extract was separated by column chromatography, followed by bioassay test to 

determine which fractions were most likely to contain the active substances. Furthermore, 

the compounds were isolated and purified by HPLC technique, and finally analysed by 

spectrometry technique to identify their molecular structures.  
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2.6.1 Fractionation of the active extract 

The bioactive extracts were further purified by column chromatography using HP-20 

absorbent resin with successive elution using  different concentrations of methanol, 

according to the protocol described by Iizuka et al. (2007). HP-20 is a styrene-divinylbenzene 

based resin used for the capture of hydrophobic compounds. The size of the particles range 

from 250 to 850μm and the average pore size is 260 Å. The resin was prepared in a column 

according to the instruction from the manufacture. Briefly, 20 g of resin was immersed in 

100% methanol for 15 minutes with occasional stirring. The solvent was removed by 

decanting and replaced with an equal amount of distilled water and the resin slurry was 

allowed to stand for another 15 minutes. The resin slurry was loaded onto a 50 cm x 1.5 cm 

column, and allowed to settle down to give an approximate bed volume of 50 cm2. 

Subsequently, 2 g of dried extract was dissolved in a small amount of distilled water and 

applied onto the column. The column was eluted with a methanol gradient starting with 

100% water, followed by 80% (v/v) methanol, and finally 100% methanol. Fractions from the 

column were collected, and the solvent removed by evaporation and freeze drying as 

described in section 2.2.2.  

2.6.2 Isolation and purification of the active compound by HPLC 

Fractions obtained from the previous separation process were subjected to further 

fractionation and purification procedure by a high performance liquid chromatography 

(HPLC). For analytical  reverse phase HPLC, a C18 5u GraceSmart Reverse Phase column, 250 

mm in length and 2.1 mm internal diameter was used (Grace, Columbia, United States), 

while a Hyperclone ODS column, 250 x 21.1 mm, 5µm, (Phenomenex) was used for the 

preparative scale separations. The mobile phase for analytical and preparative HPLC was a 
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mixture of acetonitrile and 0.5% (v/v) trifluoroacetic acid in water.  Mobile phase 

compositions of 0.5% TFA:acetonitrile were 85:12 and 88:12 were used  in the initial 

separation process, gradient and isocratic system were exercised for the analytical scale. 

Prior to injection onto the column, samples were dissolved in 30% (v/v) methanol and 

filtered with a 0.2 µm syringe filter. Conditions were optimised on the analytical column and 

the mobile phase that produced the best separation was applied in the preparative HPLC 

separations. The eluent was monitored by UV detection at 254nm and the data was 

recorded using a PicoLog ACD software (Pico technology Ltd, Cambridge, UK). 

2.6.3 Molecular structure identification 

2.6.3.1 Infrared (IR) spectroscopy 

Infrared spectrum of the compound was measured using Nicolet iS10 Fourier transform 

infrared (FTIR) spectrometer (Thermo Scientific, Massachusetts, United States) according to 

the manufacturer’s protocol. The IR spectra was identified and analysed by OMNIC Spectra 

software provided in the spectrometer system. 

2.6.3.2 NMR spectrometry 

NMR experiments were performed using Bruker AV400 NMR spectrometer in the NMR 

laboratory of Salford Analytical Services centre. Samples were dissolved in deuterated 

DMSO (DMSO-d6) and filtered through a cotton wool pugged Pasteur pipette and then 

placed in 5mm NMR tubes (Norell, United States). A very small amount of tetramethylsilane 

(TMS) was added to the sample solution to be used to reference the 1H and 13C spectra. 

Therefore all resonance assigned are relative to TMS. The NMR experiments were analysed 

using “TopSpin” software under automation controlled by “iconnmr”. The 1D 1H and 13C 
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NMR experiments were carried out. In addition, homo and heteronuclear 2D experiments, 

COrrelated SpectroscopY with gradients (g-COSY) and Heteronuclear Multiple-Quantum 

Correlation (HMQC) spectra were also acquired. All pulse sequences used were standards 

used in Bruker instruments.  

2.6.3.3 Mass spectrometry 

Samples of small molecular weight natural products were sent to Intertek Analytical 

Services, Blackley, Manchester for accurate mass analysis. Waters ZQ detector integrated 

with Waters 265 Alliance HPLC system (Waters Corp, Milford, MA) was used for the 

experiment. Prior to the injection to the HPLC system, the sample was dissolved in 50% (v/v) 

acetonitrile in water. Typically volume injected is 10ul of approximately 1mg/ml. The eluent 

was 9:1 ACN/water at 0.15ml/min and 2 second scans were acquired over the range m/z 

100 to 1500 in positive and negative ion modes. The sample was introduced into an 

electrospray (ES) ionization source to ionize the molecules at atmospheric pressure. The 

ions were separated according to their mass-to-charge ratio. The separated ions were 

detected by the detector which then amplified the signals and sent the spectra to the 

Waters Empower software for further MS analysis 

2.7 Analysis of platelet membrane glycoprotein receptors by flow cytometry 

In this study, CD61 was used as the primary platelet marker due to its interaction with 

integrin β3 chains, which are abundantly expressed on the platelet surface. To observe 

platelet activation with or without the presence of the antiplatelet agent, the activated-

platelet marker used were GPIIb/IIIa marker (PAC-1) and P-selectin marker (CD62P) that 

recognize the glycoprotein complexes of activated platelet.  
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The procedure for the platelet preparation and immunofluorescence staining of activated 

and resting platelets were in accordance with the manufacturer protocols (BD Bioscience, 

Oxford, UK). Platelets were isolated from citrated-anticoagulated whole blood by 

centrifugation at 1250 rpm for 10 minutes to obtain the PRP, followed by further 

centrifugation at 2500 rpm for 10 minutes after the addition of 1 µl prostaglandin E1 (PGE1). 

Subsequently, the isolated platelets were washed twice in PBS and then resuspended in PBS 

to obtain the platelet suspension, which was divided into three groups; resting, ADP-

activated, and corilagin-pretreated prior to ADP activation. The dose of ADP was 25 µM, and 

the corilagin was added at the final concentration of 100 µg/ml. Subsequently, 2% of 

formaldehyde was added, to fix the platelets, and samples incubated at room temperature 

for 30 minutes, followed by two-times PBS washing to remove the remaining fixative agent.  

The immunofluorescent staining with fluorescent-labelled monoclonal platelet antibodies 

panel (CD61 PE, PAC-1 FITC, and CD62P APC) was conducted by pipetting 100µl of each of 

the platelet samples into an eppendorf tube and adding 30 µl of the antibody mixture, 

followed by the incubation in the dark at room temperature for 30 minutes. The unbound 

antibodies were removed by washing using PBS followed by centrifugation at 2500 rpm for 

5 minutes. This step was repeated twice and the final platelet pellets were resuspended in 

500 µl of PBS before the analysis with FACS Verse flow cytometer system (BD Biosciences, 

Oxford, UK).  The reading was performed by 488 nm and 640 nm laser lines for excitation to 

measure the fluorescence emission of Fluorescein/FITC (peak at 518 nm), Phycoerythrin/PE 

(peak at 578 nm), and Allophycocyanin/APC (peak at 660 nm). The reading from 100,000 

events was collected to examine the antibodies peaks. 
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2.8 Proteomics analysis 

Proteomics studies in this thesis were performed by the analysis of isolated proteins under 

three different conditions; untreated, stimulated, and with the presence of the isolated 

compounds. 

2.8.1 Two-dimensional gel electrophoresis  

The protein samples were resuspended in sample buffer (7 M urea, 2 M thiourea, 4% w/v 

CHAPS, 65 mM DTT, 1.5% v/v ampholytes, and a trace of bromophenol blue) and 

centrifuged at 13,000 rpm for 1 hour. The clear protein containing supernatant was 

collected and the undissolved pellet was discarded. Protein was quantified using 2D Quant 

Kit according to the manufacturer’s protocol.  

To load the protein sample into the IPG strips, 125 µl of the sample (containing 150 µg 

protein) was pipetted along the channel of rehydration tray, followed by the application of 

the IPG (7 cm) strip onto the sample. The strips were incubated at room temperature for at 

least 16 hours to allow the complete rehydration of the strips. The proteins were 

subsequently separated according to their isoelectric points using the Protean IEF System 

(Bio-Rad Laboratories, Hertfordshire, UK). The isoelectric focusing (IEF) condition were 100 

V for 40 min, 200 V for 20 min, 450 V for 15 min, 750 V for 15 min, reaching 2000 V in 10 

min, for a total of 4000 Vh (max 0.125 mA and 0.125 W per strip). Following the IEF, the 

strips were equilibrated in DTT buffer (6 M urea, 50 mM Tris pH 6.8, 2% (w/v) SDS, 1% w/v 

DTT, 30% (v/v) glycerol, containing a trace of bromophenol blue) for 20 minutes. The strips 

were then transferred to a iodoacetamide buffer (6 M urea, 50 mM Tris pH 6.8, 2% w/v SDS, 

2.5% w/v iodoacetamide, 30% v/v glycerol, and a trace of bromophenol blue) for further 20 

minutes. 
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The second separation of the proteins was performed by SDS-PAGE (sodium dodecyl 

sulphate polyacrylamide gel electrophoresis) using a 12% polyacrylamide gel (1mm thick). 

The IPG strip was placed on the SDS polyacrylamide gel and sealed with 0.5 % (w/v) agarose 

overlay. The gels were then placed in the electrophoresis tank filled with Laemmli running 

buffer (1 g/l SDS, 14.4 g/l glycine, and 3 g/l Tris pH 8.3) run at a constant voltage of 200V. 

The electrophoresis was stopped before the bromophenol blue dye reached the lower level 

of the gel. The gels were stained with Coomassie blue and scanned with GS-800 Calibrated 

Densitometer (Bio-Rad Laboratories, Hertfordshire, UK) to obtain 16-bit grayscale pictures. 

2.8.2 Coomassie blue staining 

After electrophoresis, the gels were gently removed from the glass slab, transferred into a 

suitable container, and washed briefly with distilled water to remove the remaining buffer. 

Gels were initially stained with Coomassie blue 0.1% (w/v) in fixative solution (40% (v/v) 

methanol and 10% (v/v) acetic acid. Destaining was achieved using several changes of 

destaining solution (20% (v/v) methanol and 7% (v/v) acetic acid. 

2.8.3 Image analysis  

The gel images were analysed using the ImageJ software (Rasband, W.S., ImageJ, U. S. 

National Institutes of Health, Bethesda, Maryland, USA, 1997-2014).The 2D gels were 

examined with the aid of suitable ImageJ plugins, following a protocol as described by 

Natale (2011); including bUnwarpJ and Watershed. The earlier plugin was used to align the 

images with a reference image, in order to remove the spatial distortion of the images 

resulting from dye-front deformation and run time differences, whereas the latter plugin 

performed the spot detection on the images. All data was normalised and statistically 

analysed by Anova test.  
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2.8.4 Label-free protein quantitation and proteomics analysis 

Label-free quantitative proteomics analysis is a proteomics platform based on the 

observation that the intensity of the MS spectrum is linearly proportional to the 

concentration of the ion being detected. (Levin et al., 2007) .  

The isolated platelet proteins samples (section 2.5.3) were quantified and the 

concentrations were adjusted to obtain an equal amount of protein between all samples.  

To perform tryptic digestion, 50 µl of each sample was washed using 0.05% (w/v) RapiGest 

washing solution (Waters Corporation, USA) in 50 nM ammonium bicarbonate. 

Subsequently, the samples were reduced using 100 mM dithiothreitol (DTT) at 60°C for 15 

minutes and alkylated at 25°C for 45 minutes in the presence of 200 mM iodoacetamide. 

Proteolytic digestion was performed overnight, using sequencing grade trypsin (Promega, 

USA) at a ratio of 1:50 (w/w) in a 37°C incubator. The digested proteins were hydrolysed by 

the addition of TFA at 37°C, before being vortexed and subsequently centrifuged at 13.000 

rpm for 30 min.  

The separation and subsequent mass spectrometry analysis of the tryptic peptides was 

performed according to the protocol described by Rodriguez-Suarez et al. (2013). Briefly, 1D 

nanoscale LC separation was performed with a nanoAcquity system (Waters Corporation, 

USA), employing a symmetry C18 5µm pre-column (20 cm x 180 µm) and a BEH C18 1.7 µm 

analytical RP column (20 cm x 75 µm). Mobile phase used were water (A) and acetonitrile 

(B) containing 0.1% (v/v) formic acid. After desalting and preconcentration, peptides were 

eluted from the pre-column to the analytical column and separated with a gradient of 3-

40% mobile phase B over 90 min at a flow rate of 300 nl/min, followed by a 10 min column 
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rinse with 90% mobile phase B at a flow rate of 300 nl/min and a constant temperature of 

35°C.  

Mass spectrometry analysis of the complex peptide mixtures was performed using SYNAPT 

G2-S HDMS mass spectrometer (Waters, Manchester UK), operated in a data-independent 

manner coupled with ion mobility (HDMSE). The analysis was performed in electrospray 

ionization mode with nominal resolution >20,000 FWHM. The experiment was programmed 

to step between low energy (4 eV) and elevated (14-40 eV) collision energies on the Triwave 

collision cell, using a scan time of 0.9 s per function over 50-2000 m/z. All samples were 

analysed in triplicate. Alignment of precursor and product ions by drift and retention time 

aids peptide identification by assignment of product ions to parent ions during data 

processing and database searching.  

Protein identifications and quantification information were obtained using PROGENESIS QI 

by searching UNIPROT human database. Datasets of protein were investigated to assess the 

biological role, molecular function, and cellular localization by the aid of PANTHER 

classification system (Mi et al., 2013). Finally, pathway analysis was conducted by the aid of 

Panther pathway analysis and Reactome analysis tools.  



90 
 

 

Figure 2.2 – Workflow of the proteomics study 

Quantitative proteomics study is performed using a label-free method. Digested platelet proteome is 
separated using nanoAcquity UPLC, followed by mass spectrometry analysis by SYNAPG2 and 
SYNAPT G2S HDMS. The resulting MS spectra is analysed using Progenesis QI for protein 
identification and quantification, followed by further overrepresentation and pathway analysis by 
PANTHER and REACTOME software. 

  



91 
 

2.9  Statistical approach 

2.9.1 Calculation of IC50 value 

Data from MTT colorimetric assays (section 2.3.2), SYBR green flow cytometry assays 

(section 2.4.2), and platelet aggregation assays (section 2.5.2), was further analysed using 

Graphpad prism 5.0 (GraphPad Software, San Diego California USA). For data 

normalisation, the largest value in the data set corresponds to 100% and the smallest 

corresponds to 0%. Log-transformed drug concentrations were plotted against the dose 

response and the IC50 values were determined using non-linear regression.  

2.9.2 Statistical analysis 

All data set was analysed using Graphpad prism 5.0. Data were presented as mean ± 

standard mean error (SEM). Statistical analysis was performed by two-way ANOVA test with 

Bonferroni’s multiple comparison post-test. A p-value of < 0.05 was considered statistically 

significant.  



  Chapter 3
Extraction of the Crude 

Extracts 
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3.1 Introduction 

The extraction of the plant was carried out by the maceration method as described in 

section 2.2.1., in order to preserve most of the constituents contained in Phyllanthus niruri 

L. Having suggested that this plant contains a plentiful amount of secondary metabolites, 

which encompasses distinct physical and chemical properties, as well as to be able to 

maximise the quality of the yielding crude extract, the extraction process must be able to 

minimise the possibility of losing the active substances due to various confounding factors. 

Some of the most common problems in natural product extraction are the excessive heat 

(i.e., during Soxhlet extraction), which may cause the degradation of thermolabile 

components and the evaporation of the volatile compounds during the solvent removal to 

yield a solvent-free crude extract.  

To address the former issue, this study implemented a basic solvent extraction method, or 

maceration, that relies solely on the capability of the solvents used to disrupt the cell wall of 

the plant, diffuse into the cells, solubilize the intracellular metabolites, and diffuse out into 

the enriched extractant. Accordingly, this procedure does not apply any other additional 

treatments to the plant material, which might potentially affect the stability of the 

secondary metabolites being extracted. However, as the extraction rate is limited to a 

certain point where equilibrium between the extractants and plant cells has been achieved, 

several changes of fresh solvent were needed.  

Seidel (2006) determined that total extraction is commonly carried out by a polar organic 

solvent (ethanol, methanol, or an aqueous alcoholic mixture) targeting to extract a maximal 

amount of compounds, this can be attributed to the solvents' ability to increase cell wall 

permeability, facilitating the efficient extraction of large amounts or polar and medium-to-
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low polarity constituents. In addition, the use of less-polar solvents (hexane and chloroform) 

is beneficial for the extraction of a group of relatively non-polar substances i.e., lipid and 

terpenoids (Harborne, 1998). 

3.2 Result 

3.2.1 Characteristics of the plant material 

The starting material of Phyllanthus niruri L plant was obtained from the healthy leaves, 

which were prepared by the air-drying and grinding into a fine powder. The product was 

packed in an airtight container to maintain optimal conditions during shipping. The physical 

characteristics of the product were a dry yellowish-brown powder and an approximate 8% 

moisture content. The physical appearance of the plant material is shown in Figure 3.1 and 

comprehensive information of the plant material is available in (Appendix 1). In compliance 

with the standard requirement for the production of herbal preparations, the plant material 

had been previously screened by the manufacturer for the presence of substances, which 

might affect the purity of the product or serve as hazardous contaminants. The result of the 

analysis is summarized in the Table 3.1.  

Microbiological screening shows the absence of Escherichia coli (E. coli) and salmonella in 

the plant material. Total plate count (TPC) number, which represented the total aerobic and 

mesophilic microorganism colonies (including bacteria, yeast and mould fungi) grown from a 

sample of plant material on an agar plate at 30 ˚C, was less than 5000 colony forming unit 

per unit weight (cfu). These numbers were found to be far below the control limit for a 

herbal remedy agreed by the European commission (Pharmacopoeia, 2002); not more than 

105 cfu/g for bacteria and 105 cfu/g for fungi based on TPC method, and should be free from 
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E. coli and salmonella (Kolb, 1999). The quantitative tests had shown that the concentration 

of aflatoxins, heavy metals (arsenic, lead, cadmium, and mercury) and pesticide residues 

contained in the plant material were also within the acceptable limits for herbal medicines 

and products regulation, according to the world health organization (WHO, 2007). Overall, 

the plant material used in this study for further process of extraction, purification, and 

biological assay procedure is of acceptable condition.  

Table 3.1 – Compositions of the impurities of Phyllanthus niruri L powder 

Contaminants Concentration 

Microbial contamination   

  Total plate count (TPC) < 5.000 cfu1/g 

  Yeast and mould < 100 cfu/g 

  Coliform none 

  Escherichia coli none 

  Salmonella  none 

Toxic metal contamination   

  Lead (Pb) < 10 ppm2 

  Cadmium (Cd) < 0.3 ppm 

  Arsenic (As) < 10 ppb3 

  Mercury (Hg) < 0.5 ppm 

Toxin   

  Total aflatoxin < 20 ppb 

Pesticides   

  Organophosphate and organochlorine < 5 ppb 

 

The method for the detection of each contaminant was performed according to the Quality Control 
Methods for Medicinal Plant Material (WHO, 1998). (1Coloni forming unit, 2part per million, 3part per 
billion). 
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3.2.2 Characteristic of the yielding extracts 

Typical weights of the extracts, obtained with the different solvents used, were 18.7 g in the 

water extract, 5.2 g in the methanol extract, 4.7 g in the ethanol extract, 1.3 g in the 

chloroform extract, and 0.8 g for the hexane extract. Table 3.2 explains the physical 

appearance of each extract, and the yield compared to the initial weights of starting plant 

material. Figure 3.1 shows the pictures of each step of the extraction procedure. The 

starting material of Phyllanthus niruri L powder was the yellowish-brown powder on the top 

part of the Figure 3.1.  

After three consecutive days of maceration with water, methanol, ethanol, hexane, and 

chloroform, the extractant and the plant residue (marc) were separated by filtration. The 

intensity of each filtrate decreased from water, methanol, ethanol, chloroform, and hexane. 

Water extraction was found to leave insignificant amount of residue as the plant powder 

was almost completely dissolved in water. The marc left from methanol extraction gave a 

compact appearance with a darker colour. The appearance of other marc; from ethanol, 

hexane, and chloroform, were relatively similar to the starting material.  

Table 3.2 – Extraction yield 

Extraction solvent Extract yield (w/w) Extract description 

Water 18.7% Brown, dry flake consistency 

Methanol 5.2% Dark brown, thick consistency 

Ethanol 4.7% Dark green, thick consistency 

Hexane 0.8% Light green, viscous oil consistency 

Chloroform 1.3% Dark green, flakes and oil-like consistency 
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Figure 3.1 – The physical appearance of each phase of Phyllanthus niruri L extraction. 

The maceration was started with the powder of Phyllanthus niruri L leaves. The filtrate from the water extraction was a dark-brown extractant that yielded 
a brown-and-flakes-appearance dry extract. Methanol extraction yielded a thick crude extract from the evaporation of a yellowish filtrate with a reduced 
amount of marc compared to the starting material. Ethanol, chloroform, and hexane maceration resulted in clear light green filtrates and yielded a dark-
green, light green, and greenish crude extracts. 
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3.2.3  Initial screening of the crude extracts constituents 

Preliminary analysis of the constituents of the crude extracts is useful as an exercise to 

identifying the possible phytochemical groups contained in each preparation. In this study, a 

series of phytochemical screens was performed on each extract using various methods 

previously described by Harborne (1998). The result revealed the presence of saponin, 

alkaloid, flavonoid, tannin, amino acid, and carbohydrate. Steroid, triterpenoid, and 

glycoside were not detected in all extracts. Water and methanol extracts contained more 

groups of compounds, while the chloroform extracts contained the least constituents. 

Table 3.3 – Phytochemical screening of Phyllanthus niruri L extracts 

    
Water 
extract 

Methanol 
extract 

Ethanol 
extract 

Hexane 
extract 

Chloroform 
extract 

Saponin           

  Foam test + + - + - 

Alkaloid           

  Wagner's test + + + + + 

Flavonoid           

  Ferric chloride + + - - - 

Tannin           

  Gelatine test + +       

  Bromine water test + + + + + 

Amino acid           

  Ninhydrin test + + + + + 

Carbohydrate           

  Benedict test + + + - - 

Steroid/Triterpenoids           

  Liebermann-Burchard's test - - - - - 

  Salkawaski's test - - - - - 

Glycoside           

  Keller Killiani's test - - - - - 
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The ultraviolet absorption spectra of the extracts was measured from a solution consisting 

of a dilution of the crude extracts with the extraction solvents. To remove the background 

reading, the spectra were measured against the corresponding solvent. Due to the nature of 

the colour of the extracts, the wavelength range for the measurement was set from 200 to 

700 nanometre (nm) to cover all the possible occurring plant pigment's spectral range 

(Harborne, 1998).  

The spectra recorded major wavelength maxima at 205-210 nm and 268-280 nm on all 

extracts, and also wavelength minima at 248-258 nm. In the chloroform extract, the 205-

210 nm wavelength maxima was comprised of multiple peaks instead of the finely resolved 

peak, this is due to chloroform’s strong absorption in the 200-260 nm region. Although all 

spectra showed similar absorption of the UV region, the presence of additional  bands 

within these regions is an indication of the occurrence of any of numerous compounds such 

as tannins (280 nm), quercetins (255 and 366 nm), phenolics (255 and 365 nm), flavonoids 

(325 nm) and so on (Nakweti et al., 2013). In addition, there was a single peak occurred in 

the region of 460 nm on water, methanol, and hexane extracts; which was relatively intense 

in the latter extract. This peak might correspond to chlorophyll and carotenoid, organic 

pigments produced by plants, which provides the green and yellow colour presented on the 

extracts, respectively. (Harborne, 1998). Taken together, the spectra indicated the richness 

of the constituents within the crude extracts.  
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Figure 3.2 – Ultraviolet absorption spectrum of Phyllanthus niruri L extract. 

Water and methanol extracts showed wavelength maxima at 210, 268, and 460 mm and minima at 
248 and 460nm. Ethanol extracts wavelength maxima were at 210 and 270 NM; minima at 250 NM. 
Hexane extract spectrum had wavelength maxima at 209, 275, and 460 nm, and minima at 255 and 
460 nm. Chloroform extracts showed a noise peak at 200-220 NM, wavelength maxima at 240 and 
282 NM, and wavelength minima at 258 nm.  

Water Extract Methanol Extract 

Ethanol Extract Hexane Extract 

Chloroform Extract 
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Infrared (IR) spectra were recorded for all extracts to measure the absorbance of the 

infrared frequencies caused by the vibrations (stretching and bending) of particular bonds 

presence in each extract. The spectra were collected between wavelength numbers of 4000 

and 600 cm-1 for all extracts.  

Water, methanol and ethanol extract exhibited a broad band in the region from 3600 – 3000 

cm-1, which was absent on the other two extracts spectra (hexane and chloroform). Such 

band is attributed to the stretching frequency of O-H and N-H bonds presented in the 

containing molecules of the extracts. In the region of 1607 – 1607 cm-1, a peak of medium 

intensity occurred (in water, methanol, and ethanol extracts) which might be related to the 

vibration of N-H bond in addition to a C-N stretching band in the region from 1080 – 1040 

cm-1. Accordingly, the occurring peaks were attributed to the presence of aliphatic 

functional groups such as amine groups in the extracts. Moreover, the IR absorption above 

3000 cm-1 suggested that the compound is likely to be unsaturated as it contains C=C or 

aromatic bonds (Coates, 2000). 

In general, the IR absorbances recorded in the region below 1500 cm-1 represented the 

characteristics of what is known as the fingerprint region due to the vibration of bonds of 

specific functional groups. Three crude extracts (water, methanol, and ethanol) exhibited 

several peaks within the region of 1420-1370 cm-1 and 1170-1150 cm-1 that are 

characteristic of S=O bond stretching, thus suggesting the presence of the organic sulphate 

groups. In the region of 1350-1250 cm-1, specific peaks caused by P=O bond vibrations were 

found, in the same spectra, which suggested the presence of organic phosphates. Spectra 

from hexane and chloroform extracts showed several absorbance peaks in the region 

around 1270-1250 cm-1, which can be attributed to Si-methyl group vibration, and in the 



102 
 

region from 900-800 cm-1 due to Si-H vibration. Such bands possibly showed the occurrence 

of silicone organic compounds as one of the constituents in ethanol and hexane extracts. 

Within the frequency in the spectrum of ethanol, hexane, and chloroform extracts, there 

was a strong and intense peak within the region of 1705-1660 cm-1, which was attributed to 

C=O bond stretching. There was another peak at around 1440-1395 cm-1 region that 

occurred due to C-O bond vibration which, together with the former peak, might be 

assigned to the ketone, general ester, and carboxylic acid groups in the extract.  
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Figure 3.3 – FTIR spectrum of water extract 

 

Table 3.4 – Infrared absorption of water extracts. 

Frequency (cm-1) Assignment* 

3253 N-H stretching, O-H stretching 

2937 C-H stretching 

1607 N-H deformation 

1335 P=O stretching 

1237 P=O stretching 

1147 S=O stretching 

1076 C-N stretching 

*The possible assignment of the IR frequencies was performed according to Coates (2000) 
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Figure 3.4 – FTIR spectrum of methanol extract 

 

Table 3.5 – Infrared absorption of methanol extract 

Peak Frequency (cm-1) Assignment* 

3237 N-H stretching, O-H stretching 

2980 C-H stretching  

1605 N-H deformation 

1443 S=O stretching 

1342 P=O stretching 

1202 S=O stretching 

1148 S=O stretching 

1073 C-N stretching 

*The possible assignment of the IR frequencies was performed according to Coates (2000) 
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Figure 3.5 – FTIR spectrum of ethanol extract 

 

Table 3.6 – Infrared absorption of ethanol extract 

Peak Frequency (cm-1) Assignment* 

3344 N-H stretching, O-H stretching 

2919 C-H stretching  

2850 C-H stretching  

1705 C=O stretching 

1605 N-H deformation 

1451 C-O stretching 

1376 C-O stretching 

1310 P=O stretching, C-O stretching 

1228 P=O stretching, C-O stretching 

1202 S=O stretching 

1167 S=O stretching 

*The possible assignment of the IR frequencies was performed according to Coates (2000) 
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Figure 3.6 – FTIR spectrum of hexane extract 

 

Table 3.7 – Infrared absorption of hexane extract 

Peak Frequency (cm-1) Assignment* 

2958 C-H stretching 

2922 C-H stretching 

2852 C-H stretching 

1727 C=O stretching 

1453 N-H deformation 

1379 C-O stretching 

1260 Si-methyl group vibration 

1073 C-N stretching 

864 Si-H deformation  

*The possible assignment of the IR frequencies was performed according to Coates (2000) 
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Figure 3.7 – FTIR spectrum of chloroform extract 

 

Table 3.8 – Infrared absorption of chloroform extract 

Peak Frequency (cm-1) Assignment* 

2962 C-H stretching 

2916 C-H stretching 

2849 C-H stretching 

1707 C=O stretching 

1412 C-O stretching 

1258 Si-methyl group vibration 

1080 C-N stretching 

863 Si-H deformation  

*The possible assignment of the IR frequencies was performed according to Coates (2000) 
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3.3 Discussion 

As previously explained in section 1.1, natural products extracted from plants contain 

complex mixtures of secondary metabolites, which generally refer to a small molecules 

(usually with molecular weight less than 2000 Dalton) synthesized by an organism as a result 

of an overflow metabolism under certain environmental conditions, such as nutrient 

limitation, shunt metabolism products during idiophase, and the production of defence 

mechanism molecules. As a consequence, they cover a wide range of organic compound 

types, many of which are found to be useful in drug discovery research due to their 

pharmacological or biological activities.  

The extraction procedure determines both the quantity and quality of the crude extracts 

obtained from each extraction solvent (Markom et al., 2007). In this study, maceration using 

water, methanol, ethanol, hexane, and chloroform brings about a range of crude extract 

with yields ranging from 18.7 % (water extract) to 0.8 % (hexane extract). This result is in 

line with a work conducted by Markom and co-workers, which performed Soxhlet extraction 

using organic and aqueous solvents to obtain various crude extracts from Phyllanthus niruri 

L. The authors reported that the yield was high when using water and polar-solvents 

(ethanol and methanol), however the yield was significantly decreased when non-polar 

solvents was used (hexane and petroleum ether). Although by introducing continuous heat 

during Soxhlet extraction to achieve the solvent’s boiling point which increase solvent’s 

transfer rate to the active site of the plant’s matrix, these authors argued that heat has 

minimum contribution for the solvent governing the extraction of salute or the quantity of 

the yielding extract (Markom et al., 2007). Therefore, provided that the basis of the range of 

yield can be attributed more significantly to the solvent polarity, and the highest yield was 
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obtained from water, it can be concluded that the major constituents of Phyllanthus niruri L 

are of hydrophilic or water-soluble compounds, as previously indicated by Markom and co-

workers (2007).  

Each solvent tends to extract different group of compounds, however it may not be 

selective for extraction of single compounds. Therefore, crude extract is more likely be a 

mixture of compounds derived from a plant’s matrix consisting of a variety of substances, 

which comprise all material needed for a plant’s physiological processes, or merely present 

as secondary metabolites. From the physical observation on the crude extracts, water, 

methanol, and ethanol extracts were brown to dark-green in colour, which can be attributed 

to the presence of polar plant-pigments such as chlorophyll. The extracts obtained using the 

less-polar solvents resulted in lower extract yields (1.3% for chloroform and 0.8% for 

hexane), and the colour was observed to be lighter green to yellow. The yellowish colour 

can be attributed to the presence of non-polar pigments such as carotenoid.  

Phyllanthus niruri L has been widely studied with regards to its phytochemical constituents. 

Nekwati and co-workers (2013) reported that, from thin layer chromatography (TLC) and 

HPLC analysis, Phyllanthus niruri L aerial extracts showed a positive result for the presence 

of phenols, flavonoids, tannins, saponin, steroids, and lipids. Furthermore, the extracts 

obtained from Soxhlet extraction, as reported by Okoli and co-workers (2009), gave positive 

reactions for alkaloids, carbohydrate, flavonoids, glycosides, saponin, steroids and tannins. 

Phytochemical-analysis presented in this thesis demonstrated a few variation compared to 

the literatures. Our results confirmed the presence of saponin, alkaloid, flavonoid, tannin, 

and carbohydrate, however showed negative result for steroid/triterpenoids and glycosides. 

The variation in results from the phytochemical tests might be a result from at least three 
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possible factors. Geographical location of where the plant material was cultivated has 

become one of the important factors. This is due to differences in environmental condition, 

e.g. soil composition and average temperature, which alter the secondary metabolic 

pathways and affect the extract yield composition (Nakweti et al., 2013). The second 

potential factor is the extraction procedure by which the crude extracts were obtained. In 

this case, non-exhaustive maceration based on a variable periods of extraction. This could 

easily cause a partial extraction which may yield a limited amount of extracted substances, 

thus leaving some proportion of natural compounds within the plant material. However, in 

spite of this limitation, the quality of the extracted components will be benefited from the 

maceration method as it is more likely to preserve the molecular structure of the 

constituents. The last feasible factor affecting the variability of the plant extracts 

composition is the sensitivity of the techniques used for the phytochemical analysis. The 

positive result is solely determined by the chemical reaction of the tested compounds with 

particular reagents, which give specific physical characteristics such as precipitation or 

colour changes. Consequently, the positive reaction might not be visible for those 

compounds that are present in a trace amounts.  

In order to address the latter factor, further investigation of the substances from the crude 

extracts was performed by utilising the absorbance of the visible and UV light to identify 

plant constituents. The value of UV and visible spectra in identifying unknown constituents 

is obviously related to the complexity of the spectrum and to the general position of the 

wavelength maxima. As presented in Figure 3.2, all extracts exhibited major bands within 

the range of wavelength in which the UV absorptions for most of the organic compounds 

fall such as tannins, quercetin, phenolics, and flavonoids (Harborne, 1998). The occurrence 

of the peaks in the region of 400-500 nm might suggest the presence of plant pigments, 
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such as chlorophylls and carotenoids, which were likely to be responsible for the colour of 

the crude extracts. Unlike the other phytochemical analysis methods, the absence of certain 

peaks in the UV spectra might provide useful information, such as an indication of the 

presence of lipids, organic acids, amino acids, or sugars (Harborne, 1998).  

Furthermore, IR spectrum measurements were also used for the screening of the extracts' 

constituents, as it is known as a simple yet sensitive technique in evaluating the presence of 

certain kinds of chemical bonds thus useful in identifying the functional groups present in 

samples. It is frequently used in phytochemical studies as a fingerprinting device for 

comparing natural compounds with the synthetic samples, or for comparing the purified 

natural compound with a known standard (Harborne, 1998). The method is also extensively 

used to evaluate the purity of the compounds or the presence of contaminants as the result 

of the complex extraction and purification procedures. The absorbance of the IR light by 

organic molecules corresponded to the energy required to cause the stretching or bending 

of the molecular bonds within the molecule. Different kinds of bonds require specific 

amounts of energy to initiate such molecular vibrations and accordingly, absorbed different 

frequencies of the IR radiation. Consequently, the absorption peaks plotted in the spectra 

reflect the types of chemical bonds present in the molecules. 

The complexity of the spectra, as shown from the water extract spectra presented in this 

study, suggests the abundance of the many different metabolites. As the crude extracts 

were isolated from a natural entity, hydrocarbon groups are present as the main 

component and reason for the complexity of the extracts constituents.  Absorption above 

3000 cm-1 is likely to be unsaturated because it might contain C=C or aromatic groups. 

Absorption below 3000 (with main absorption at approx. 2935 and 2860 cm-1) provides an 
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indication of the presence of aliphatic groups. Accordingly, the IR spectra suggest the 

presence of aliphatic hydrocarbon in all extracts, whereas the aromatic groups are likely to 

be exclusively present in the water, methanol, and ethanol extracts. In addition, the peaks 

observed in the region of 1700 and 1500 cm-1 indicate the assignment of the aromatic 

groups on the ethanol extracts. The broad peaks in the region of 3600-3000 cm-1 (Figure 3.3, 

Figure 3.4, and Figure 3.5) could be assigned to N-H and O-H stretching or additionally may 

indicate the presence of aromatic groups. Moreover, the bands at 2800-3000 cm-1 

demonstrate the presence of C-H stretching. Such peaks are sharp and strong on the 

ethanol and hexane extracts; with lower intensities on chloroform extract. Thus, these 

bands indicate the presence of the aliphatic hydrocarbon groups in the ethanol, hexane and 

chloroform extracts.  

Within the region of 1900 – 1600 cm-1, all extracts exhibited several peaks, which can be 

assigned to C=C, C=N, and C=O stretching, thus suggest the presence of several functional 

groups (Coates, 2000); carboxylic acid (1725-1700 cm-1) and amine groups (1650 - 1550cm-1) 

in all extracts; ketone (1725-1705 cm-1 and 1690-1675 cm-1) in water, methanol and ethanol 

extracts; aldehyde (1740-1725 cm-1 and 1700 - 1690 cm-1) in ethanol, hexane, and 

chloroform extracts; ester (1750-1725 cm-1) in hexane and chloroform extracts. Numerous 

organic compounds have multiple banding patterns in the region 1150-950 cm-1 as the in-

plane C-H bending vibrations of aromatic compounds typically occur in this region, and can 

exist as complex band structure (multiple, well-defined bands). They tend not to be 

diagnostic for many compounds because of the conflict and overlap with other functional 

group absorptions, including some skeletal (backbone) vibration (Coates, 2000).  



113 
 

The crude extracts consist of a complex mixture of substances, which made it impossible to 

assign its absolute constituents by these initial screening procedures alone. However, the IR 

spectra have suggested the presence of many specific classes of secondary metabolites 

within the extract. Within the fingerprint region, IR spectra presented in this study indicated 

the presence of nitrogen in all extracts. Moreover, the presence of sulphur and 

phosphorous spectrum was found in water, methanol and ethanol extracts, while a silicon 

spectrum was presence in hexane and chloroform extracts. Samali and co-workers (2012) 

reported the mineral content of Phyllanthus niruri L, including sodium, calcium, potassium, 

magnesium and phosphorous. These elements  are known as the main components of 

plant’s micronutrients, which concentration in plant’s matrix is proportional to the soil’s 

content (Epstein, 2001). 

In conclusion, the maceration extraction of Phyllanthus niruri L plant, using various solvents 

with different ranges of polarity, resulted in a different yield of extracts. The major 

constituents of the plant are shown to be of hydrophilic and polar compounds. Water and 

methanol extracts yield the higher amount of crude extracts, which give positive results for 

numerous classes of organic compounds, including alkaloid, saponin, flavonoid, tannin, 

amino acid, and carbohydrate. Nevertheless, the presence of other organic compounds such 

as steroid, lipid, and glycosides still cannot be discounted in these solvent extracts as the UV 

and IR spectra suggested the occurrence of a number of functional groups related to those 

compounds. Overall, the data presented here provides confirmatory evidence of the rich 

mixture of constituent within the Phyllanthus niruri L plant that could potentially play an 

important role in the biological and therapeutic properties previously observed with this 

plant. 



  Chapter 4
The Screening of Biological 

Activities of the Crude Extracts  
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4.1 Introduction 

Pharmaceutical properties of the crude extracts isolated from Phyllanthus species have 

been reported many times in the literature. Phyllanthus niruri L is a widely distributed 

species in the Phyllanthus family and has certainly become one of the most widely used 

natural remedies in the world. The traditional use of this plant covers a wide range of 

therapeutic applications, including the treatment of gallbladder stones, management of 

airway diseases, and as a painkiller and antidiabetic remedy (Calixto et al., 1998). 

Predictably, it has drawn the interest of many scientists interested in exploring its biological 

properties. This has resulted in a number of publications, which prove the presence of 

medical activities of several crude extracts obtained from Phyllanthus niruri L. There has 

been intensive research conducted into the activity on the hepatobiliary system, which 

demonstrates the hepatoprotective effect of this plant (Syamasundar et al., 1985, 

Bhattacharjee and Sil, 2006, Sabir and Rocha, 2008, Manjrekar et al., 2008), and the antiviral 

properties towards hepatitis B virus (Venkateswaran et al., 1987). Moreover, the extracts 

demonstrate strong potency in the inhibition of renal stone formation (Freitas et al., 2002, 

Campos and Schor, 1999, Nishiura et al., 2004), glucose and lipid lowering activity (Okoli et 

al., 2010, Khanna et al., 2002). 

However, most of the reports are focused on exploring particular extracts, with only a few 

explorations having been made to examine the biological effects of a wider variety of crude 

extracts. For example, the inhibitory activity of Phyllanthus niruri L against malaria parasites, 

in which a number of scientists have reported the activity of alcoholic, dichloromethane, 

and aqueous extracts in the inhibition of plasmodium growth (Totte et al., 2001, Subeki et 

al., 2005, Mustofa et al., 2007). Another example is a study conducted by Sharma and co-
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workers (2009) that demonstrated the anti-tumour activity of an alcoholic extract, based on 

in vitro assays that showed a significant reduction in  cancer cell growth. Although the above 

findings have suggested the efficacy of Phyllanthus niruri L as anti-malarial and anti-cancer 

agent, little has been done to accurately determine the nature of the active components 

within these extracts. This may in part be due to the complexity in the component mixtures 

within the crude extracts being tested. There has also been an increasing interest in the 

exploration of the effect of Phyllanthus niruri L on the vascular system. This was initiated by 

Iizuka et al. (2007) who conducted a study on the vasorelaxant and  the antiplatelet effects 

of the alcoholic extracts.  

This chapter is focused on the screening of the activities of the crude extracts from 

Phyllanthus niruri L towards a number of biological systems. The study begins with anti-

malarial screening as an investigation of their impact on the parasite growth, followed by a 

discussion of plant extracts inhibitory effects against the growth of cancerous cells, and 

finally the activity towards platelet aggregate formation. Finally a discussion will be 

presented to provide an overview on the possible mechanisms of action of each measured 

biological activity. 

In addition, as the crude extracts consist of a mixture of unknown substances, the report 

provides data of the cytotoxicity of each extract, which is important in determining the 

safety of the extract in a living cell. This complies with the NIH requirements for a good 

candidate of natural product which must show selective and strong potency for abnormal 

cell/biological process and at the same time have a protective or a minimal effect on the 

normal cell/metabolic pathways.  
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4.2 Result 

4.2.1 Anti-malarial screening 

The anti-malarial test of the crude extracts used in this study adopted the method for drug 

susceptibility determination by the SYBR Green flow cytometry assay (Karl et al., 2009), as 

previously described in section 2.4.2. The method allows the evaluation of plasmodium 

falciparum parasite viability (strain K1) when cultured in complete media containing 5% 

haematocrit (section 2.4.1.2). The nature of the assay, which requires a small volume of 

sample, allows for high-throughput screening of various crude extracts by performing all 

tests at the same time in a 96-well microplate. Accordingly, it was possible to maintain 

relatively similar conditions whilst performing the assay. The test was initiated when the 

parasites entered the ring shape stage of their life cycle. All extracts were dissolved in DMSO 

to ensure the complete dissolution, which were then diluted in PBS to achieve the desired 

final concentration. The DMSO concentration was carefully calculated in order to maintain 

the acceptable concentration which was safe for the parasite growth.  

Flow cytometry analysis was conducted upon the staining of all samples. Gating strategy 

was applied for a dot plot of forward scatter (FSC) versus side scatter (SSC) to obtain the red 

blood cell (RBC) population, and FSC against the fluorescence reading to enable the 

differentiation of parasites according to the life stages they were in. As the assay was 

started during the mono-nucleated ring stage of the parasite life cycle, after 72 hours, they 

would have completed one life cycle and entered the next stage to trophozoite and multi-

nucleated schizont forms. Accordingly, the red blood cell (RBC) in which the parasites had 

progressed into the latter stage should give intense fluorescence emission compared to 

those containing the mono-nuclear ring forms, as illustrated in Figure 4.1 below:  
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Figure 4.1 – Comparisons of uninfected and parasitized RBC using SYBR green flow 
cytometric assay 

A dot plot of forward light scatter (FSC) versus side scatter (A), and FSC versus SYBR Green dye 
fluorescence (excitation and emission maxima at 494 and 521, respectively) showed (B) uninfected 
and (C) infected cultures. The gating strategy was performed to capture the RBC population (P1) and 
differentiate the mononuclear and multinuclear stages (inset) of the plasmodium life cycle. 

B 

A 

C 
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An initial screening was conducted on all plant extracts using the highest dose of 200 µg/ml 

which was diluted in a serial manner to achieve a minimum concentration of 12.5 µg/ml. 

The data produced from triplicate tests on each dose, were statistically analysed and 

presented as a graph in Figure 4.2. The result showed that all extracts inhibited plasmodium 

falciparum strain K1 proliferation at the highest dose of 200 µg/ml. Interestingly, water and 

methanol extract, significantly inhibited the parasite growth at all dose used. While the 

untreated parasites reached a parasitemia level of 1.82±0.07 %, the administration of water 

extract and ethanol extract, even at the lowest dose of 12.5 µg/ml, showed a complete 

inhibition of the parasite development (the parasitemia level was 0.08±0.5% and 

0.05±0.01% for water and methanol, respectively). Given that the assay was started at an 

initial parasitemia level of 0.5%, the result suggested that the extracts might not only be 

halting the proliferation of the plasmodium but also reducing the parasite level in the RBC. 

The other extracts, namely ethanol, chloroform, and hexane extracts, expressed a lesser 

dose-dependent inhibitory effect. These extracts demonstrated a total inhibitory activity at 

a doses starting from 50 µg/ml (parasitemia level of 0.07±0.01%) and 200 µg/ml 

(parasitemia level of 0.04±0.01) for ethanol and chloroform extracts, respectively. The latter 

extract was found to show good plasmodium growth inhibitory potency at the maximal dose 

200 µg/ml which halted the parasites proliferation at a 0.9±0.1 % parasitemia level.  
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Figure 4.2 – Anti-malarial screenings of Phyllanthus niruri L extracts 

The experiment for antiplasmodial test was conducted using five serial doses started from the 
lowest to the highest: 12.5, 25, 50, 100, and 200 µg/ml. The data were obtained from a triplicate test 
resulted in a panel of a 72-hours-incubation of parasitemia level after the administration of the 
crude extracts. The result for each extracts, presented as the average of the replication tests and the 
standard error of the mean (SEM) from each dose given. 
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As previously mentioned, the extracts were added to the continuous plasmodium culture 

when the parasites were entering the RBC in the mononuclear ring forms. As expected, after 

72 hours of incubation, the untreated or control group had undergone a complete cycle and 

started the next phase of the second round of their life cycle. Figure 4.3 to Figure 4.7 

illustrate that each control group expressed an equal level of mono-nuclear and 

multinuclear parasites, which was supported by the flow cytometry FCS-Fluorescence dot-

plot of infected RBC (figure 18), showing a similar amount of population amongst the 

parasites population. From the overall results, the administration of Phyllanthus niruri L 

extracts at the maximum dose (200 µg/ml) into the plasmodium culture had significantly 

inhibited the erythrocytic development of the parasites through the extensive eradication of 

the schizont form from the RBC. It was shown by the low level of the multinuclear 

parasitemia level of all treatment groups (0.06± 0.02 for hexane, 0.02±0.01 for chloroform, 

0.01± 0.01 for ethanol, 0.01± 0.01 for methanol, and 0.01± 0.00 for water extracts 

respectively). This data indicate the toxic effect of all extracts on the plasmodium growth. 

With the exception of chloroform, other extracts also exhibited similar activity on the 

mononuclear (ring) stage of the parasites, which strengthened the evidence for the toxic 

effects of the water, methanol, ethanol, and hexane extracts against the plasmodium 

parasites at the highest concentration of 200µg/ml.  
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Figure 4.3 – Dose response of hexane extract on plasmodium life stages 

 (A) The result of the mononuclear (ring/trophozoite) and multinuclear (schizont) forms of the 
parasites was obtained from the average (AV) of triplicate tests for control and dosed groups. The 
data of each group was presented as mononuclear/multinuclear AV with the standard error of the 
mean (SEM). (B) Mono/multinuclear ratios of parasites life stages at different doses. 
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Figure 4.4 – Dose response of chloroform extract on plasmodium life stages 

The result of the mononuclear (ring/trophozoite) and multinuclear (schizont) forms of the parasites 
was obtained from the average (AV) of a triplicate test for control and dosed groups. The data of 
each group was presented as mononuclear/multinuclear AV with the standard error of the mean 
(SEM). 

 

 

Figure 4.5 – Dose response of ethanol extract on plasmodium life stages 

The result of the mononuclear (ring/trophozoite) and multinuclear (schizont) forms of the parasites 
was obtained from the average (AV) of a triplicate test for control and dosed groups. The data of 
each group was presented as mononuclear/multinuclear AV with the standard error of the mean 
(SEM). 
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Figure 4.6 – Dose response of methanol extract on plasmodium life stages 

The result of the mononuclear (ring/trophozoite) and multinuclear (schizont) forms of the parasites 
was obtained from the average (AV) of a triplicate test for control and dosed groups. The data of 
each group was presented as mononuclear/multinuclear AV with the standard error of the mean 
(SEM). 

 

Figure 4.7 – Dose response of water extract on plasmodium life stages 

The result of the mononuclear (ring/trophozoite) and multinuclear (schizont) forms of the parasites 
was obtained from the average (AV) of a triplicate test for control and dosed groups. The data of 
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each group was presented as mononuclear/multinuclear AV with the standard error of the mean 
(SEM). 

The ratio of mono/multi-nuclear population (M ratio) was used to predict the inhibition 

point of the erythrocytic parasite development cycle. Such values were obtained by 

comparing the average parasitemia of the culture groups which succeeded in undergoing a 

complete life cycle, shown by the parasitemia level exceeding the initial concentration when 

the treatments were given. Only the hexane group provided complete ratios on all doses, 

and the result suggested a significant increase of mono/multinuclear ratio with the dose as 

shown in Figure 4.3. This data indicated that the extracts reduced the rate of parasite 

multiplication and caused their failure to enter the latter stage of its life cycle. 

The differences in the 50% maximal inhibitory concentrations (IC50) of all extracts were 

extensive. The IC50 values were obtained from plotting a dose response curve as illustrated 

in Figure 4.8. The greatest potency was demonstrated by methanol extract with an IC50 of 

1.6 µg/ml, whereas chloroform displayed the lowest efficacy of the inhibition with an IC50 of 

141 µg/ml. Hexane IC50 values could not be calculated as the maximum concentration the 

extract did not reach a half of the maximum inhibitory concentration. In summary, the 

effectiveness of the crude extracts to restrain parasite growth, from the most to the least 

potent activity was methanol > water > ethanol > chloroform > hexane (IC50 values were 1.6 

µg/ml, 9.6 µg/ml, 25 µg/ml, and 141 µg/ml, respectively).  
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Figure 4.8 – Representative dose response curve of ethanol, methanol, and water extracts 

The parasites were treated at ring stage and analysed after 72 hours. The IC50 values were calculated 
from a series of dose-response data by plotting extract concentration (in x axis) versus parasite 
growth (in y axis). Data was normalised so that the smallest parasite growth corresponded to 0% and 
the largest growth corresponded to 100%. With the aid of Graphpad prism 5.0, log-transformed drug 
concentrations were plotted against the dose response and the IC50 values were determined using 
non-linear regression. 

B 
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4.2.2 Anti-cancer screening 

In the screening of the anti-cancer property of Phyllanthus niruri L, all extracts were tested 

on three cell lines; human Caucasian lung large cell carcinoma (COR-L23), human acute T 

lymphoblastic leukaemia (MOLT-4), and human Caucasian chronic myelogenous leukaemia 

(K562). The COR-L23 cell line is an epithelial derived line, which grows as adherent cells, 

whereas the other cell lines grow as suspension cells. Based on an MTT assay, the viable 

cells were counted as a percentage of purple formazan crystals absorbance. This assay was 

used to investigate the potential cytotoxic effects of Phyllanthus niruri L extracts on 

different cell lines, after treatment with an increasing concentration from 2 µg/ml up to 125 

µg/ml for five days incubation. The impact of the extracts on cell growth is presented in 

Figure 4.9 -Figure 4.13, and the cytotoxicity was recorded as IC50 (µg/ml) values as shown in 

Table 4.1 and Table 4.2.  

The results showed that Phyllanthus niruri L extracts effectively inhibited the growth of COR-

L23 and MOLT-4 in a dose-dependent manner, with an IC50 range from 27.47 ± 1.25 to 61.41 

± 3.06 µg/ml and 42.21 ± 4.98 to 97.06 ± 18.29 µg/ml, respectively. The inhibitory activities 

of each extract against COR-L23 from the highest to the lowest was chloroform > water > 

methanol > and ethanol, whilst towards MOLT-4 cell line the extracts activity was methanol 

> chloroform > hexane > and ethanol. Phyllanthus niruri L extracts appear to show some 

inhibitory activities against K562 cell line. The inhibitory effects were lower than that against 

the other cell lines, with the IC50 range from 120.19 ± 8.48 to 256.55 ± 26.22 µg/ml (hexane 

> methanol > ethanol > and chloroform). These data showed that Phyllanthus niruri L 

extracts have the potential anti-cancer effect towards COR-L23 and MOLT-4, however have 

limited activity against K562 cell line, thus  suggested that the extracts were selectively toxic 
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against the cell line tested. In comparison, growth inhibition of methanol extract on MOLT-4 

(IC50 value 42.21 ± 4.98 µg/ml) and COR-L23 (IC50 value 48.92 ± 0.52 µg/ml) was more 

effective than K-562 cell line (IC50 value 139.28 ± 19.02 µg/ml). Another example, water 

extract demonstrated inhibitory effect towards COR-L23 (IC50 value 47.48 ± 1.33 µg/ml), 

however showed no activities against MOLT-4 and K562 cell lines. Among all extracts, 

methanol extract demonstrated the strongest cytotoxicity with a low IC50 values for all cell 

lines tested.  

 

 

Figure 4.9 – Cytotoxic effect of different concentrations of hexane extract on cancer cell 
lines.  

Data on the graph represent the percentage of the viable cells from three experiments (n=3) as 
mean ± SEM. Statistical analysis was performed using two-way ANOVA with Bonferronis’s multiple 
comparison post-test. (*) indicates the significant difference of each treated-cell lines with the 
corresponding control group (p < 0.01).  
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Figure 4.10 – Cytotoxic effect of different concentration of chloroform extract on cancer 
cell lines  

Data on the graph represent the percentage of the viable cells from three experiments (n=3) as 
mean ± SEM. Statistical analysis was performed using two-way ANOVA with Bonferronis’s multiple 
comparison post-test. (*) indicates the significant difference of each treated-cell lines with the 
corresponding control group (p < 0.01). 
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Figure 4.11 – Cytotoxic effect of different concentration of ethanol extract on cancer cell 
lines  

Data on the graph represent the percentage of the viable cells from three experiments (n=3) as 
mean ± SEM. Statistical analysis was performed using two-way ANOVA with Bonferronis’s multiple 
comparison post-test. (*) indicates the significant difference of each treated-cell lines with the 
corresponding control group (p < 0.01). 
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Figure 4.12 – Cytotoxic effect of different concentration of methanol extract on cancer cell 
lines 

Data on the graph represent the percentage of the viable cells from three experiments (n=3) as 
mean ± SEM. Statistical analysis was performed using two-way ANOVA with Bonferronis’s multiple 
comparison post-test. (*) indicates the significant difference of each treated-cell lines with the 
corresponding control group (p < 0.01). 
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Figure 4.13 – Cytotoxic effect of different concentration of water extract on cancer cell 
lines  

Data on the graph represent the percentage of the viable cells from three experiments (n=3) as 
mean ± SEM. Statistical analysis was performed using two-way ANOVA with Bonferronis’s multiple 
comparison post-test. (*) indicates the significant difference of each treated-cell lines with the 
corresponding control group (p < 0.01). 
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Table 4.1 – IC50 values of Phyllanthus niruri L extracts on cancer cell lines 

Extract 
IC50 (± SD) 

MOLT4 COR-L23 K562 

Water >500 µg/ml 47.48 ± 1.33 µg/ml >500 µg/ml 

Methanol 42.21 ± 4.98 µg/ml 48.92 ± 0.52 µg/ml 139.28 ± 19.02 µg/ml 

Ethanol 97.06 ± 18.29 µg/ml 61.41 ± 3.06 µg/ml 148.51 ± 10.81 µg/ml 

Hexane 89.57 ± 3.60 µg/ml >500 µg/ml 120.19 ± 8.48 µg/ml 

Chloroform 85.08 ± 8.57 µg/ml 27.47 ± 1.25 µg/ml 256.55 ± 26.22 µg/ml 

Cisplatin 1.16 ± 0.27 µM 0.33 ± 0.04 µM 0.43 ± 0.03 µM 

 

The IC50 values obtained that the Phyllanthus niruri L extracts significant anti-proliferative 

activities on the MOLT4, COR-L23, and K562 cancer cell lines. It is however also important to 

investigate the potential cytotoxicity effects that the extracts might have on the growth of 

normal cell lines. Accordingly, an MTT assay was performed using Balb/c 3T3 cell lines to 

observe the cytotoxicity effects of Phyllanthus niruri L extracts. The 3T3 is a fibroblast cell 

line that has been widely used for this purpose in the past. The results, as shown in Table 

4.2, indicated that water, methanol, and ethanol extracts did not show any significant 

cytotoxic effect on normal cells. The standard anti-cancer drug cisplatin was included and, 

as expected, the IC50 it exhibited confirmed that the cisplatin had significant cytotoxic 

effect on 3T3 cell line, unlike the plant extracts. Among all extracts, hexane extract showed 

some inhibitory effect on the growth of 3T3 cells with an IC50 value 555.30 ± 86.61 µg/ml, 

however this value is categorised as minimal toxicity to normal cell line (Lee et al., 2011). In 

contrast, chloroform extract demonstrated a toxic effect to the normal cells (IC50 value 

164.3 ± 8.4 µg/ml), which appear to be comparable to its activity against cancer cell lines.  
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Table 4.2 – IC50 values of Phyllanthus niruri L extracts on normal cell line 

Extract 
3T3 Cell line 

IC50 (± SD) 

Water 
 

>1000 µg/ml 
 

Methanol 
 

>1000 µg/ml 
 

Ethanol 
 

>1000 µg/ml 
 

Hexane 
 

555.30 ± 86.61 µg/ml 
 

Chloroform 
 

164.3 ± 8.4 µg/ml 
 

Cisplatin 
 

1.6 ± 0.1 µM   

 

 

To determine the effect of the Phyllanthus niruri L on cancer cell cycle, control flow-

cytometry based-cell cycle analysis assay was conducted on MOLT4 cells. The cell line was 

used due to the similar range of IC50 value obtained from all Phyllanthus niruri L extracts 

tested. In this case, the water extract was excluded from the test, due to the insignificant 

inhibitory effect it had shown towards MOLT4 cells. To perform the assay, MOLT4 cells were 

treated with extracts at their respective IC50 values for 24, 48, and 72 hours before analysis 

by flow cytometry. Gating strategy was applied to examine the cells life cycle stage (Figure 

4.14). The results presented in Figure 4.15 show the kinetics of the distribution of the 

population of cells according to their stage in cell cycle phases.  

As shown in Figure 4.15, changes in cell distribution within the phases of the cell cycle were 

observable even after 24 hours of treatment. Phyllanthus niruri L extracts demonstrated 

growth arrest at the S-phase and remained evident after 72 hours of treatment. After 24 

hours incubation, untreated cells reached a total population of 37.5 ± 1.2 % in G1-phase, 

41.1 ± 1.1 % in S-phase, and 21.5 ± 0.5 % in G2/M-phase. In the presence of Phyllanthus 
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niruri L extracts, the range of cell population percentage was 53.8 ± 2.0 to 56.0 ± 1.0 % in 

G1-phase, 13.8 ± 1.0 to 22.4 ± 2.4 % in S-phase, and 21.6 ± 2.0 to 32.3 ±2.5 % in G2/M-

phase. After 72 hours incubation in the presents of the extracts, the distribution of cell 

population was 38.4 ± 1.7 to 49.5 ± 0.9% in G-phase, 21.2 ± 1.0 to 8.3 ±0.7% in S-phase, and 

36.0 ± 1.7 to 53.3 ± 1.5 % in G2/M-phase.  

Ethanol extract treatment of MOLT-4 cells showed a lower overall percentage in S-phase cell 

in a time-dependent manner from 16.5±1.3% after 24 hours to 13.9±1.0% after 72 hours 

incubation. This was accompanied by an accumulation of cells in the G1-phase after 72 

hours of treatment (the cells percentage was 49.5 ± 0.9%),  

For the chloroform extract, an S-phase arrest was evident after 24 hours of treatment (cell 

percentage was 22.4 ± 2.4%). However, cell population after 72-hours treatment with 

chloroform extract demonstrated a comparable result to the control group (cell population 

was 21.2 ± 1.0 % in S-phase). Nevertheless, MOLT-4 cells treated with chloroform extract 

showed an inhibition effect on cell percentage in G2/M-phase (36.0 ± 1.7 %).  

Among all extracts tested on MOLT-4 life cycle, methanol and hexane exerted a significant 

inhibition effect during S-phase. After 24 hours incubation, cells treated with methanol and 

ethanol extracts demonstrated a lower percentage of cell populations in S-phase; 13.8 ± 1.0 

% for methanol and 14.1 ± 0.8 % for hexane extract. Following the 72-hour treatment of 

MOLT-4 cells with methanol and hexane extracts, the S-phase was significantly decreased. 

The final percentage of S-phase cells from the control group was 21.1±1.1%, whereas 

methanol and ethanol extract treated cell populations were 9.1±0.7% and 8.3±0.7%, 

respectively. The percentage of G2/M-phase population increased from 32.3±2.5% to 

51.4±1.5% for methanol extract treated cells and 31.3±2.0 to 53.3±1.5% for the hexane 
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extract, accompanied by a decrease of G1 phase cell. The results indicated that the cells 

were arrested at G2/M-phase at 24 hours and this remained evident after 72 hours of 

treatment. Interestingly, for methanol extract treated cells, the cell cycle at 48-hour 

treatment demonstrated a similar pattern as the untreated control cells. This finding 

suggested at some point, the arrested cells passed the G1-arrest and succeeded in 

advancing to DNA synthesis at the S-phase, however ultimately they failed to complete the 

G2/M-phases, which lead to cell division failure due to the cytostatic effect of the methanol 

extract on the cell growth.  

 

Figure 4.14 – Cell cycle analysis and gating strategy on flow cytometry 

A Propidium iodide Histogram of the gated MOLT-4 cells distinguishes cells at G1, S, and G2/M cycle 
phases.  
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Figure 4.15 – The kinetics of cell cycle distribution of Phyllanthus niruri L extracts treated 
MOLT4 cells. 

The percentage of Phyllanthus niruri L extracts-treated cells at A) G1, B) S, and C) G1/M phases of 
MOLT4 cells at different time intervals of treatment (24, 48, and 72 hour). Data on the graph 
represent the percentage of the viable cells from three experiments (n=3) as mean ± SEM. 
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4.2.3 Antiplatelet screening 

In order to perform a screen for antiplatelet aggregation effects of Phyllanthus niruri L crude 

extracts, we utilized a 96-wells microplate-based assay system that was introduced by 

Bednar et al. (1995). Compared with the commonly used ‘gold standard’ assay of platelet 

aggregometry, the former method is superior in term of its capability to analyse a large 

numbers of samples in a single assay run,  with a small amounts of sample. Indeed, 

screening of anti-platelet activity of unknown platelet-modulating agents requires a robust 

and high-throughput assay. For that reason, this assay is considered to be the most suitable 

method, in addition to the advantages resulting from its rapidity and sensitivity. Moreover, 

this assay can also overcome additional drawbacks of a standard platelet aggregrometer, 

such as time-consuming measurement and a requirement for more specialised equipment 

(Moran et al., 2006). 

In this study, the whole blood sample supplies from the blood bank (as mentioned in section 

1.2) might be varied in term of its age, time required for blood withdrawal, processing and 

delivery until they were ready for the assay. Certainly, platelet function is the key factor in 

monitoring the anti-aggregation, and ensuring that platelets were still functioning to 

perform the aggregation was crucial. Considering that platelet tends to deteriorate and lose 

its activity over time, a preliminary assessment for monitoring platelet aggregation function 

over a series of time points since blood withdrawal was conducted. The main objective of 

this initial test was to optimise and standardise blood sample conditions for maximum 

platelet activity. This was done in order to obtain a usable blood sample and to ensure that 

the platelets were still functioning, before embarking on the anti-platelet studies of the 

Phyllanthus niruri L extracts. 
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The maximum response of platelet aggregate formation upon the addition of 10 µM 

adenosine diphosphate (ADP), a platelet agonist, is shown in Figure 4.16. The figure 

illustrates the various maximum responses of platelet aggregation relative to the age of 

blood. The data shows that, whilst the maximum response was achieved when fresh blood 

(day 0) was used, the platelet aggregation of 1-day and 2-days old blood were also 

significant and applicable for the purpose of the test. Nevertheless, after three days, platelet 

function seemed to have deteriorated significantly and was effectively unusable as it started 

to show insignificant responses when compared with the controls.  

Furthermore, the effect of the temperature on platelet storage and platelet aggregation was 

also monitored in this preliminary test. The data shown in Figure 4.17 suggested that 

platelet function is preserved when the blood was kept at room temperature. The result 

also indicated that storing the blood at -8 ˚C did not conserve platelet function and, on the 

contrary, tended to diminish the platelet’s ability to form platelet aggregates.  

Data from the initial assessment suggested that platelet aggregation is still observable when 

using blood sample from the age of up to two days old. Therefore, the limit of blood age 

obtained from the blood bank for the anti-platelet screening was set accordingly. Moreover, 

to avoid further deterioration of platelet function, it is crucial to perform the aggregation 

test immediately after the sample arrived in the laboratory and to store the blood at room 

temperature before needed.  
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Figure 4.16 – Maximum response of platelet aggregation over time 

Aggregation response of platelets isolated from a different age of blood sample; fresh blood (0 day), 
1 day, 2 days, and 3 days old. Platelet aggregation was induced by the addition of ADP at a final 
concentration of 10 µM and continuous shaking at 1000 rpm. Changes in absorbance were 
monitored at 405nm. First reading was taken before the agonist was added; the second reading was 
taken after 10 minutes. Data on the graph represent the maximum response of platelet aggregation 
from four replicates of the experiment (n=4) as means ± SEM. Statistical analysis was performed 
using two-way ANOVA with Bonferroni's multiple comparison post-test, (*) indicates the significant 
difference of control compared with ADP from each group of blood age (p < 0.01) 

 

Figure 4.17 – The effect of the temperature on platelet aggregation. 

Blood samples were kept at room temperature and -8 degree Celsius. Platelet aggregation was 
induced by adding ADP as a platelet agonist at a final concentration of 10 µM. Data shown on each 
bar represent the maximum response of platelet aggregation from four replicates of the experiment 
(n=4) as mean ± SEM.  
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Platelet aggregation tests were next performed to monitor the extent of platelet aggregate 

formation in the presence and absence of Phyllanthus niruri L crude extracts. Water, 

methanol, ethanol, chloroform, and hexane extracts at a concentration of 250 µg/ml were 

added into platelet suspension. In this assay, adenosine as a known platelet-aggregation 

inhibitor was included to compare the exposed inhibitory effect. Platelet aggregation was 

induced by addition of ADP at a concentration of 50 µM, and the absorbance was recorded 

in  1-minute intervals for a total of 10-minutes.  

The results, as shown in Figure 4.18, illustrate the relative ability of the crude plant extracts 

to inhibit ADP-induced platelet aggregation. Maximum responses of aggregation traces 

were demonstrated by platelet aggregation induced by ADP without any addition of 

adenosine/plant extracts, which is a classic pattern of the biphasic aggregation curve (inset) 

showing the primary and secondary wave of platelet aggregation. In the presence of 

adenosine, the extent of the aggregation trace was decreased, and this was accompanied by 

the disappearance of the second wave of aggregation.  

The graph of platelet aggregation traces in Figure 4.18 indicated that Phyllanthus niruri L 

extracts exerted an inhibitory effect on ADP-induced platelet aggregation. The extent of the 

inhibition shown methanol, ethanol, and chloroform extracts were relatively similar to 

adenosine, whilst hexane expressed a relatively lower effect on the platelet aggregation. 

Surprisingly, water extract greatly diminished platelet aggregate formation, as the traces of 

aggregation was very close to that shown by the untreated resting platelets (control group). 

Moreover, the aggregation curves in the presence of the extracts also indicated the 

disappearance of the secondary wave of platelet aggregation.  
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Figure 4.18 – Platelet aggregation response in the presence of Phyllanthus niruri L extracts 

Platelet aggregation responses are shown as the changes of absorbance (at 405nm) after the 
addition of ADP, as a platelet agonists, and adenosine or Phyllanthus niruri L extracts, as platelet 
aggregation antagonists. The first reading was taken after 30 second of ADP addition, followed by 
every minute reading up to 10 minutes. Platelet counts were set up to 1.5 x 108 cells/ml. ADP 
concentration was 10µM, Adenosine concentration was 50µM and each extract concentration was 
250µg. Data points on the graph represent the mean ± SEM of eight replicates of the experiment 
(n=8). (Control-Isolated platelets without the addition of agonist or antagonist, ADP-Platelet 
aggregation induced by ADP without the presence of adenosine/extracts, 
Water/Hexane/Chloroform/Ethanol/Methanol-Platelet aggregation induced by ADP with the 
presence of Phyllanthus niruri L extracts. Inset: the biphasic platelet aggregation curve.  
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The percentage of the inhibition is shown in Figure 4.19, as a measure of the extent of 

platelet-aggregation inhibition of Phyllanthus niruri L extracts. The value was calculated by 

the following equation: 

Inhibition (%) = (1-B/A) x 100 

where A represents the changes of absorbance after 10 minutes aggregation induced by 

ADP, and B is the changes of absorbance of platelet aggregates with the presence of 

adenosine or extracts. Figure 4.19 indicates a strong inhibitory activity of Phyllanthus niruri L 

extracts. The water extract exhibited the highest inhibitory potency (80.5±3.7%), followed 

by methanol extract (54.0±2.8%). Other extracts exhibited a lower inhibitory effect with 

inhibition value of 46.2±2.7 for chloroform extract, 44.4±17.1% for hexane, and 41.7±21.4% 

for ethanol extract. Overall, the antiplatelet aggregation effect of Phyllanthus niruri L 

extracts was similar to that displayed by adenosine (47.0±2.3%). 

 

 

Figure 4.19 – Inhibition of platelet aggregation 

Data points on the graph represent the mean ± SEM of eight replicates of the experiment (n=8). 
Platelet aggregation was induced by ADP at a concentration of 10µM, and the extract concentration 
was 250µg. Data points on the graph represent the mean ± SEM of eight replicates of the 
experiment (n=8).   
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4.3 Discussion 

4.3.1 Anti-malarial activity 

The fact that the majority of effective drugs available to date actually originated from plants 

has given an assertive view that natural products have played a dominant role in drug 

discovery and development for many years. One important example is the discovery of the 

first and most potent anti-malarial drug, quinine, a compound isolated from the bark of 

Cinchona species, which has remain in use today for treating malaria, and has initiated the 

synthesis of many theraupeutic derivatives. In this study, Phyllanthus niruri L as one the 

richest sources of natural entities originated from plants, has been subjected to an 

investigation of its biological activities, in order to seek lead compounds for further 

development into definite drug candidates. Screening for medicinal properties of the crude 

extracts of Phyllanthus niruri L, as one of the well-known herbal remedy, has become a 

crucial step in the drug discovery process.  

In this investigation, we have determined the anti-malarial effects of five crude extracts 

obtained from the leaves of Phyllanthus niruri L. For determination of the efficacy of the 

given extracts, Basco and co-workers (1994) introduced a criteria for considering the 

antiplasmodial activity of extracts isolated from many plant species,  which has been 

adopted in this report. The IC50 values below 10 µg/ml were classified as good potency, IC50 

value within the range from 10-50 µg/ml were identified as moderate potency, IC50 from 50-

100 µg/ml were known as low potency, and those whose IC50 exceeding 100 µg/ml was 

considered to have no effect on the plasmodial growth. From the data presented in this 

study, four extracts out of five tested possess anti-malarial activity; however they show a 

varied pattern of inhibitory potency. Water and methanol extracts were found to express 
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the highest potency in inhibiting plasmodium growth. Moderate anti-malarial potency was 

showed by the ethanol extract, whereas chloroform extract exhibited the lowest activity. 

Various crude extracts originated from a diverse source of other plants species have been 

thoroughly explored and tested against plasmodium parasites. Batista and co-workers 

(2009) reported that various extracts from at least 60 species of higher plants within the 

group of 34 plant families had been tested against chloroquine-resistant and chloroquine 

sensitive plasmodium strains. From more than a hundred extracts showing the inhibitory 

effect on the parasite growth, methanol extract were identified as the one most frequently 

containing the highest levels of inhibitory activity in the anti-malarial assay and to express 

significant antiplasmodial potency for chloroquine-resistant and chloroquine-sensitive 

strains (IC50 values from 1-79 µg/ml). In the same review, water, ethanol, chloroform, 

hexane extracts were found to be less frequently identified as the source of the most potent 

inhibitory compounds. Nevertheless, the latter extracts did exhibited some activity against 

plasmodium parasites. In accordance with our result, the methanol extract inhibitory 

activity was the greatest among others tested thus indicated that, from the plant containing 

anti-malarial substances, the compound (s) responsible for anti-malarial activity tend to be 

enriched in the crude extract obtained by methanol extraction. At this stage, the candidates’ 

chemical groupings for the anti-malarial agents are as yet inconclusive, considering that the 

crude extracts were more likely to consist of a diversity of secondary metabolites. 

Moreover, the variety of active constituents present in this extract may benefit its anti-

malarial activity as the substances might show some potentiating synergy effects on the 

other constituents. One example of this was seen with a class of flavonoids isolated from 

Artemisia annua which were not effective as anti-malarial agent when administrated alone, 
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however it significantly enhanced the antiplasmodial effect of artemisinin, the well-known 

anti-malarial agent that was originally found from the same plant (Saxena et al., 2003). 

Natural compounds obtained from plants which have shown anti-malarial activity are 

classified into two general categories : alkaloid and non-alkaloid natural products (Batista et 

al., 2009). The alkaloid group is exclusive due to the extensive number of compounds it 

consists of. The latter group encompasses several classes, namely terpenes, limonoids, 

flavonoids, chromones, xanthones, antraquinones, and other related compounds. Quinine 

and artemisinin, the famous anti-malarial agents isolated from plants, are included in the 

previously mentioned groups; alkaloid and sesquiterpene, respectively. The other essential 

groups are included but not limited to flavonoids and xanthones, triterpenoids, quinones. 

Recently, several miscellaneous compounds isolated from a number of plants, which are not 

of the above classes of compound, have been reported. Saxena and co-workers (2003) has 

highlighted at least 127 alkaloids, 18 quassinoids, 23 sesquiterpenes, 27 triterpenoids, 21 

flavonoids/xanthones, nine quinones, 25 miscellaneous compounds that were either 

isolated or originated from plant extracts. The above data, to date, support the fact that 

ethnopharmacological approaches have been proven to be more productive for the search 

of new candidates of anti-malarial agents.  

From a number of published works on the chemical constituent of Phyllanthus niruri L, 

Bagalkotkar and co-workers (2006) concluded that several compounds isolated from the 

crude extracts of this plant are listed as natural compounds showing anti-malarial 

properties. The first one is catechin (Batista et al., 2009), a phenolic compound that is 

reported as one of flavonoid found in Phyllanthus niruri L. Three terpenes; limonene, p-

Cymene, and lupeol; are of antiplasmodium inhibitory secondary metabolites isolated from 
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this plant. Limonene and lupeol were found to inhibit the erythrocytic development of the 

chloroquine-resistant plasmodium falciparum strains (Batista et al., 2009). Moreover, 

securinine was found as one of alkaloid contained in Phyllanthus niruri L. The latter 

compound showed an activity in inhibiting the growth of K1 strain Plasmodium falciparum. 

The activity was argued to be related to the presence of unsaturated α,β-carbonyl that 

undergoes a reaction with nucleophilic sites in the parasite DNA molecules, causing the 

inhibition of parasite growth (Batista et al., 2009). A bioassay-guided fractionation of 

aqueous extracts from the whole plant of Phyllanthus niruri L has led to the isolation of 1-O-

galloyl-6-O-luteoyl-α-D-glucose, that exhibited a strong inhibitory action against 

Plasmodium falciparum growth with an IC50 of 1.4 µg/ml, β-glucogallin with an IC50 of 4.6 ± 

0.4 µg/ml ,  3-O-β-d-glucopyranosyl-(2→1)-O-β-d-xylopyranoside with an IC50 of 11.0 ± 1.3 

µg/ml, β-glucogallin, β-sitosterol with an IC50 of 32.0  ± 3.7 µg/ml, and gallic acid with an IC50 

of 14.8 ± 1.9 µg/ml (Subeki et al., 2005). 
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Figure 4.20 – Chemical structure of anti-plasmodial compounds from Phyllanthus niruri L 

According to phytochemical screening results as previously described in section 3.2.3, water 

and methanol extracts were positive for alkaloid, flavonoids, saponin, amino acid, and 

carbohydrate but negative for steroid/triterpenoids and glycoside. The results in this thesis 

demonstrate slight differences with results being reported elsewhere regarding the 

phytochemical constituents of Phyllanthus niruri L, attributed to variation in the 

geographical location of the plant source, extraction method, and phytochemical analysis 

technique (Section 3.3). The alkaloid contained in Phyllanthus niruri L (e.g. securinine), 

flavonoids (e.g. catechin) and glucose (e.g. 1-O-galloyl-6-O-luteoyl-α-D-glucose) groups 

might be of important and responsible for the anti-malarial efficacy of water and methanol 

extracts seen in this study. The ethanol extract that showed negative result for flavonoids, 

according to the data presented in Table 3.3, was more likely to contain less active 

compounds which are responsible for the anti-malarial activity and as the consequence, 

presented a lower inhibitory activity compared to the other plant extracts.  

Catechin  

Limonene  p-Cymene  

Lupeol 

Securinine 
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4.3.2 Anti-cancer activity 

Cancer is one of the major causes of worldwide mortality and has become a huge medical 

problem due to the nature of the disease, which stems from uncontrolled growth of highly 

mutated cells. This disease is extremely hard to manage owing to a wide range of types of 

tumours, which show various responses to existing chemotherapy agents and treatment 

regimes (Tang et al., 2010). Despite the growing of cancer cell resistance to existing anti-

cancer drugs, undesirable effects might occur from chemotherapy such as vomiting, nausea, 

and alopecia. These symptoms are the result of the high toxicity of typical anti-cancer drugs, 

which are supposedly targeting the mutagenic and highly differentiated cells, however the 

selectivity is not perfect as many of normal cells also similarly affected by the drugs. Bone 

marrow elements, gastrointestinal mucosa, epithelial and hair follicles are of regenerating 

tissues possessing high proliferative capacity, and thereby endure most of the toxic effects 

of antineoplastic agents. Herbal and plant-derived medicines have become a new hope in 

modern society as a natural alternative to traditional chemotherapy, which are expected to 

kill cancerous cells with  less potential harmful side effects (Newman and Cragg, 2007). 

In the present study, Phyllanthus niruri L extracts were seen to display a range of cytotoxic 

effect on human Caucasian lung large cell carcinoma (COR-L23), human acute T 

lymphoblastic leukaemia (MOLT-4), and human Caucasian chronic myelogenous leukaemia 

(K562). As a comparison, growth inhibition of Phyllanthus niruri L extracts on COR-L23 and 

MOLT-4 cell lines was shown to be more effective than on K562. The result showed that 

methanol extract exhibited high cytotoxicity for both COR-L23 and MOLT-4 cells. Towards 

COR-L23 cells, our data demonstrated that chloroform extract exhibited the strongest 

toxicity with the lowest IC50. Interestingly, based on the IC50 values, water extract of 
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Phyllanthus niruri L was only effective on COR-L23 while showing insignificant activity 

towards the growth of the other cell lines.  

The efficacy of Phyllanthus species in inhibiting the growth of cancer cells, with no toxic 

effect towards normal cell lines, has been reported in the literatures (Tang et al., 2010, Lee 

et al., 2011). Lee and co-workers (2011) reported that methanol and water extracts of four 

Phyllanthus species (Phyllanthus amarus, Phyllanthus niruri, Phyllanthus urinaria and 

Phyllanthus watsonii)  displayed cytotoxicity on adherent cells, human lung carcinoma cells 

(A549) and breast cancer cells (MCF-7), with an ability to inhibit the migration and adhesion 

of the cancer cells. This ability of Phyllanthus species is suggested to be associated with the 

presence of polyphenol compounds in its extracts (Lee et al., 2011). Moreover, Phyllanthus 

species were reported to exhibit anticancer effects against leukaemia cells, for examples on 

HL-60 and Dalton lymphoma cells, possibly by inducing apoptosis activities on these cell 

lines (Harikumar et al., 2009, Huang et al., 2004). Marten-Talcott and co-workers (2003) 

mentioned in their report on MOLT-4 cell line study that quercetin and ellagic acid, 

polyphenols containing in Phyllanthus niruri L, demonstrated a synergistic influence in the 

induction of MOLT-4 apoptosis. In accordance with these earlier studies, our initial results 

have provided an insight of anticancer activities of Phyllanthus niruri L against COR-L23 and 

MOLT-4 cell lines. 

Based on the IC50 values in this present study, Phyllanthus niruri L showed a lower 

cytotoxicity on K562 cells, compared to other cell lines tested. K562 cells is known as a 

multidrug resistance (MDR) cell line, which was reported to demonstrate resistance to 

existing chemotherapy agents, such as vincristine and imatinib (Rumjanek et al., 2001, 

Pocaly et al., 2008). The resistance of K562 cells was probably due to the expression of the 
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multidrug transporter, P-glycoprotein, which reduce the cytotoxic effect of a given 

anticancer drugs by pumping out the drugs out of the cells, thus providing the cancer cells 

the ability to resist even lethal dose of cytotoxic drugs (Lehne, 2000). Our study 

demonstrated that hexane extract of Phyllanthus niruri L showed the highest potency to 

inhibit the growth of K562 cells with an IC50 of 120.19 ± 8.48 µg/ml, followed by methanol 

and ethanol extracts at an IC50 of 139.29 ± 19.02 µg/ml and 148.51 ± 10.81 µg/ml, 

respectively. Leite and co-workers (2006) tested hexane extract of Phyllanthus amarus, a 

closely-related species to Phyllanthus niruri L, on vincristine-resistant K562 cell lines. The 

authors suggested the potential action of Phyllanthus amarus to reverse the K562 cells 

resistance on anticancer chemotherapy. Therefore, similar finding in this study indicated the 

impact of active constituents in hexane extract towards K562 cell lines. Sakkrom and co-

workers (2010) isolated two triterpenoids, gliochidone and lupeol, hexane extract of one of 

Phyllanthus species, Phyllanthus taxodiifolius beille. The authors suggested that these active 

compounds were responsible for the inhibition of the proliferation of both sensitive and 

resistance K562 cell lines (Sakkrom et al., 2010). However, the clear mechanism of the 

inhibitory effect is still not understood.  

The variation in the efficacy of Phyllanthus niruri L extracts against COR-L23, MOLT4, and 

K562 is due to the differences of the bioactive substances present in each extract. As 

previously explained, phytochemical studies of Phyllanthus niruri L showed a rich mixtures 

of compounds including alkaloid, flavonoid, tannin, and terpenes (Bagalkotkar et al., 2006). 

Based on data presented in the previous chapter, all extracts showed positive reaction for 

alkaloid and tannin, thus might be implicated in the observed cytotoxic effects. Flavonoids 

were only found in the water and methanol extracts; whereas ethanol, hexane and 

chloroform extracts FITR spectra indicated the presence of hydrocarbon groups that might 
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be due to a trace of terpenoids in the crude extracts. The differences in the type of 

compounds found in each of the crude extracts might contribute to the variety of the 

cytotoxic effects seen in this study. Moreover, the presented data suggests that the 

methanol extract of Phyllanthus niruri L expresses the most evident cytotoxic activity 

compared to the other four extracts.  

Among others, flavonoids, known as polyphenol compounds ubiquitously in plants, have 

been widely reported as promising anti-cancer agents. A number of studies based on 

laboratory experiments, epidemiological investigations, and human clinical trials suggested 

that flavonoids have significant effects on cancer treatment (Ren et al., 2003). Alkaloids and 

tannin are of important chemical compounds isolated from medicinal plants that exhibit 

antiproliferation effects on various types of cancer lines, some of which have already been 

successfully developed into anti-cancer drugs (Li et al., 2003, Lu et al., 2012).  

Terpenes consist of a large and varied classes of hydrocarbons that are abundant in plants. 

Terpenes can exist as hydrocarbons or have oxygen-containing compounds such as hydroxyl, 

carbonyl, ketone or aldehyde groups. After chemical modification of terpenes, the resulting 

compounds are referred to as terpenoids (Paduch et al., 2007). Limonene and lupeol are of 

terpenoids present in Phyllanthus niruri L which are reported to express anti-cancer 

properties. Limonene anti-cancer activity may be associated with selective inhibition of the 

post-translational isoprenylation of oncoprotein p21ras and other small GTP binding 

proteins, which may alter intracellular organization leading to cell death (Crowell et al., 

1991). 

One of the challenges in the discovery of effective chemotherapy in cancer treatment is that 

cancer cells have the ability to escape a programmed cell death or apoptosis. Many drugs 
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have failed to show efficacy against tumour cells because of this unique ability. Therefore, 

one of the mode of actions of anti-cancer drugs is aimed the reactivation of this mechanism 

of cell death mechanism. The cell cycle is a continuous process of the control of cell growth 

and proliferation. This process is tightly regulated by stringent checkpoints that are applied 

to each cell cycle phase to avoid any errors in the overall development of cells. Thus, the cell 

cycle could serve as a target for anti-cancer agents to halt the uncontrolled proliferation of 

cancer cells and to initiate them into undergoing apoptosis. (Tang et al., 2010) . In normal 

mammalian cells, M-phase usually lasts less than an hour while the S-phase is typically 

about 6-8 hours in length. Cells usually spend most of their time in growth phase between 

divisions, or in known as interphase which typically occupies about 95% of the cycle. In 

contrast, the length of G1 and G1 is quite variable; G2 is shorter than G1 and more uniform 

in duration. Synthesis of DNA during S-phase and cell division into two daughter cells 

happening in M-phase are the main features of cell cycle progression. G2 phase allows cells 

to repair errors occurring during DNA replication, whereas the G1 phase represents the 

period of cell preparation for the subsequent DNA duplication. Moreover, progression 

through the cell cycle is controlled by CDKs as previously described in section2.4.2.  

The leading checkpoint involved in preventing cells with damaged DNA from proceeding 

through the cell cycle is known as the DNA damaged checkpoint. This checkpoint is capable 

of monitoring DNA damage and halting the cell cycle at various time points, including late 

G1-, S-, and late G2-phases, by impeding the formation of different Cdk-cyclin complexes. A 

protein called p53 is known as ‘guardian of the genome’. Phosphorylation of p53 prevents it 

from interacting with mouse double minute 2 homolog (mdm2) protein, which would 

otherwise mark p53 for destruction. ATM-catalysed phosphorylation of p53 therefore 

protects it from degradation and leads to a built-up of p53 in the presence of damaged DNA. 
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The accumulation of p53 in turn activates two types of events; cell arrest and cell death. P53 

has the ability to act as the transcription factor of specific genes, including the gene coding 

for p21, which halts cell cycle progression causing the cells to enter the arrest stage. The 

other fate of damaged cells upon the activation of p53 protein is the activation of a group of 

genes coding proteins involved in triggering cell death by apoptosis. Some of the proteins 

promote apoptosis by binding to and inactivating a normally occurring inhibitor of apoptosis 

known as Bcl-2 protein (Becker et al., 2003).  

Based on the data presented in this study, ethanol and chloroform extracts exhibited a G1-

phase arrest after 72 hour treatment, indicating their activity in halting the cell progression 

into DNA synthesis. Both extracts therefore disrupt the cell cycle by S-phase arrest, leading 

to cell death by apoptosis/necrosis, although the S-phase arrest caused by the chloroform 

extract was not as pronounced as ethanol extract. One of the key target of the G1 

restriction point is the Rb protein, which controls the expression of genes whose products 

are needed for moving through the restriction point and into S-phase. Phosphorylation of 

Rb protein, which remains bound to the inactive-E2F molecules which keep the genes from 

being activated, abolish its ability to bind to E2F. This event is initiated by growth factors 

through the activation of the Ras pathway. Therefore, chloroform and ethanol extracts may 

interfere with the protein synthesis in MOLT4 during G1-phase, thus halting their 

progression from G1 to S-phase during the cell cycle. Another possible mechanism of cell 

cycle arrest is due to inactivation of the phosphorylation of cdc25A/cdc25C-cdc2 via ataxia 

telangiectasia mutated (ATM) - checkpoint kinase 2 (Chk2) activation (Agarwal et al., 2006). 

Such mode of action was seen after treatment of cells with by Gallic acid, one of the 

constituents of Phyllanthus niruri L, which induced G1-phase arrest and further apoptosis in 

cancer cells lines. Gallic acid also exhibited a selective induction of Cip1/P21 which might be 



155 
 

responsible in its roles in initiating cell cycle arrest. Moreover, Gallic acid-treated cancer 

cells showed a decrease in the level of CDK4, CDK6, and CDK2, which are essential to cell 

cycle progression by phosphorylation of Rb protein to release the transcription factor E2F, 

thus suggesting another possible mode of action of G1-phase cell cycle arrest seen with 

Phyllanthus niruri L extracts (Agarwal et al., 2006). Tang and co-workers (2010) suggested 

the alteration of protein synthesis of cancer cells treated with Phyllanthus extracts may 

correspond to the inhibitory effect of mdm2 protein, which halts the cell growth and 

induces apoptosis by the elevation of p21, Bax, and Rb protein levels.  

Another important natural compound possessing anti-cancer effects, isolated from 

Phyllanthus niruri L, is a flavonoid known as Quercetin. Quercetin has been reported to 

express in-vitro inhibitory effect towards human lung cancer and human leukaemia (Ren et 

al., 2003). Suh and co-workers (2010) reported that quercetin caused G1/S-phase cell arrest 

accompanied by down regulation of cyclin D1, followed by apoptosis of the cancer cells 

which was induced by gradual activation of caspase-3 and the cleavage of Poly (ADP-Ribose) 

Polymerase (PARP).  

 

Figure 4.21 – Chemical structure of quercetin 

 

Quercetin  
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In this study, methanol and hexane extracts exerted growth arrest on treated MOLT4 cells 

by the accumulation of cells at G2/M phase at the end of 72 hour treatment. The finding 

implies that the extracts may impede the protein synthesis during the G2 phase, thus halting 

the progression of cell cycle into M-phase and subsequent division into daughter cells. In 

other study, Lee et al. (2006) observed the anti-cancer effect of quercetin towards human 

leukaemia cells, by inhibiting cell cycle progression through G2/M phase arrest and by 

inducing caspase dependent apoptotic cell death. Furthermore, prolonged incubation of 

quercetin was reported to induce the G2/M arrested cells progression into cell death, which 

might explain a possible mechanism by which the methanol extract induce the S-phase 

arrest. Upon the treatment with methanol extract used in this study, the cells exerted a 

temporary G1-phase arrest and succeeded to progress into the S-phase after 48 hours of 

treatment. However, when the cells were treated for more than 48 hours, the population in 

the S-phase underwent apoptosis. Long-term growth arrest has been reported to be 

induced by cisplatin, a commonly used anti-cancer drug, by the clustering of Fas/CD95 in the 

plasma membrane leading to mitotic failure and premature aging of the cancer cell (Nobili 

et al., 2009). Moreover, the S-phase arrest demonstrated by the treatment of MOLT-4 cells 

with Phyllanthus niruri L extracts might corresponded to the inhibition of DNA 

topoisomerase II or the inhibition of cdc25 enzymes that leads to the activation of caspases. 

High level of caspase-3 and caspase-7 activities were detected in cell treated with 

Phyllanthus niruri L extracts suggesting the involvement of mitochondrial pathway in 

apoptosis (Tang et al., 2010), that could serve as one of key factor in their affect towards the 

cell cycle arrest and apoptosis.  

Taken together, the presented data indicated the capability of Phyllanthus niruri L extracts 

to interfering with the proliferation of cancer cells from leukaemia and lung cancer cell lines 
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in a selective manner. The selectivity was marked by the evident cytotoxic effects towards 

cancer cell lines, yet protective towards normal cell lines (de Araújo Júnior et al., 2012). 

Although the actual underlying mode of actions of Phyllanthus niruri L against COR-L23, 

MOLT4, and K562 has not been elucidated, this initial finding demonstrated the cytostatic 

effect of the Phyllanthus niruri L extracts through the modulation of cell cycle, thus partially 

explaining their mode of activity. 

4.3.3 Antiplatelet activity 

Undesirable platelet aggregation is a key underlying mechanism in thrombotic diseases such 

as myocardial infarct and stroke, hence preventing the incidence of platelet aggregate 

formation has become an important target of anti-thrombotic agents. In the early 1960s, 

(Born and Cross) introduced a fundamental base of optical aggregatory, later known as 

‘Born aggregrometer’ which led to the discovery of the first-known antiplatelet agents, 

including adenosine. Soon after, an important discovery was made, which introduced aspirin 

as the first antiplatelet drug, and is still used in the prevention of coronary and cerebral 

thrombosis. Thereafter, a big leap was made from an extensive study, which uncovered 

platelet aggregation pathways that made possible the discovery of several antiplatelet drugs 

employing distinct modes of action in halting platelet aggregation. Aspirin inhibited platelet 

function by the irreversible blockade of cyclooxygenase-1 (COX-1). Clopidogrel and 

ticlopidine are some of the drugs that target ADP receptors on the platelet surface, 

dipyridamole showed a synergetic affect with adenosine as it inhibits the uptake of 

adenosine by platelet, whilst others altered arachidonic acid metabolism in platelets (Born 

and Patrono, 2006). However, starting from the early of 1980 until recently, there seems to 

have been slow progress in the development of platelet aggregation inhibitors, with only 
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four new chemical entities being discovered so far. Incidentally most of these are derived 

from natural products (Newman and Cragg, 2012). Some of the new antiplatelet agents, 

including an inhibitor for platelet membrane glycoproteins GPIIb/IIIa, are currently in phase 

2 or phase 3 of the clinical trial.  

In this study, we tested the inhibitory effects of Phyllanthus niruri L extracts on ADP-induced 

platelet aggregation. ADP is one of important platelet agonist and is naturally stored in the 

dense granules of resting platelets. ADP causes several intracellular responses in platelets 

including the inhibition of adenyl cyclase, formation of inositol triphosphate, mobilisation of 

intracellular calcium stores, rapid calcium influx, and the activation of phospholipase A2 (Jin 

et al., 1998). When exposed to external ADP, platelets change their shape from smooth 

discs to speculated spheres leading to a series of platelet aggregation events involving the 

activation of platelet membrane receptors for ADP (P2Y1 and P2Y12), the release of granule 

contents, and the synthesis of TXA2. However, it has been revealed the platelet activation 

initiated by ADP is reversible. When ADP levels are not sufficient to maintain platelet 

aggregates formation, platelet activation is disrupted, resulting in the recovery of platelets 

into their resting state. The formed aggregates then lose their adhesiveness and, finally the 

breakdown of platelet aggregates occurs. In our preliminary study, ADP demonstrated its 

potency to induce platelet aggregation, using a dose slightly higher than the threshold for 

ADP-induced platelet aggregation based on the standard assay aggregrometer, which is 

within the range of 1-7.5 µM. Bednar and co-workers (1995) who introduced the 96-well 

microplate platelet aggregation assay used in this study, showed that ADP at a dose of 1 to 

10 µM was able to induce an observable aggregation traces. However, the higher end of the 

dose range was chosen in this study as it exerted the highest response with little decline on 

platelet aggregates traces over the time.  
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In performing its main function as a surveillance cell in haemostasis, platelets must have a 

fully functioning activity to initiate the platelet aggregation reactions. Based on our 

preliminary test, fresh platelets appeared to have the highest aggregation response when 

exposed to the external ADP compared with older platelets (1 to 3 days old). The result 

suggested that blood age is a crucial factor of the platelet aggregation function, indicated by 

the fact that 1-2 days old platelets exhibited lower aggregation response and the 3-days old 

platelets lost the most of its aggregation ability. The similar results were reported by 

Thompson et al. (1984), based on the study of baboon’s platelet, which concluded that 

young platelets at the age of 2 days are still able to form platelet aggregates. Our 

preliminary result of platelet aggregation suggested that although fresh platelets are 

favourable for monitoring the platelet function the usage of stored blood sample is possible, 

with the conditions that (1) blood age is not more than two days and (2) blood sample is 

stored at room temperature.  

Based on the initial screening for antiplatelet activity in this study, Phyllanthus niruri L 

extracts showed a remarkable inhibitory effect on platelet aggregation induced by ADP. The 

result indicates that the water extract possesses the stronger anti-platelet activity followed 

by methanol, which inhibiting more than 50% of platelet aggregate formation, compared 

with the maximum aggregation induced by ADP. The other extracts, which were ethanol, 

chloroform, and hexane, inhibited platelet aggregation with similar potency to that shown 

by adenosine. Adenosine was used as a positive control as its activity in inhibiting platelet 

aggregation has been widely recognised. Adenosine’s mechanism of action is believed to be 

due  the alteration of adenylate cyclase leading to an increase in the concentration of cAMP, 

and the inhibition of calcium influx as well as the release of intracellular calcium stores (Paul 

et al., 1990). 
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Furthermore, the aggregation curve in the presence of Phyllanthus niruri L extracts did not 

show a secondary wave of platelet aggregation compared with the biphasic curve normally 

seen to arise from ADP-induced platelet aggregation. The initial changes in platelet 

aggregation caused a decrease of light transmittance followed by a primary wave of 

aggregation. The second wave arises from the release of platelet granule contents including 

fibrinogen, serotonin, TXA2, and ADP with potentiate the initial aggregation response (Zhou 

and Schmaier, 2005). The finding indicated that the active compounds contained in the 

crude extracts might be able to prevent platelet release reactions, thus might be related 

with the inhibitory activity.  

Despite this initial finding, the possible mechanism of action of the antiplatelet effect is still 

far from being determined. Water and methanol soluble compounds contained in 

Phyllanthus niruri L plant might be responsible for the antiplatelet potency. Furthermore, 

the relative amount of the active compound within these mixtures must also be taken into 

consideration when comparing relative activities of crude mixtures. However, they are a 

useful indicator when comparing initial activity data of antiplatelet properties possessed by 

Phyllanthus niruri L.  



  Chapter 5
Focusing on the Antiplatelet 

Activity of Phyllanthus niruri L  
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5.1 Introduction 

The initial screening results have confirmed that Phyllanthus niruri L extracts expressed a 

substantial biological activity in hindering parasites and cancer cells growth, as well as in 

inhibition of platelet aggregation. The finding also suggested that the water and methanol 

extracts were the most active extracts which showed the highest potency for the biological 

effects. Based on data presented in section 3.2 , the yield weight of the water and methanol 

extracts are higher, relative to the starting plant material. Therefore, the result indicates 

that amongst all extracts used, water and methanol extracts might contain the most active 

substances responsible for the biological effects as anti-malarial, anti-cancer, and 

antiplatelet. And it is also suggested that the active compounds might be of polar 

compounds and hence more soluble in water and/or methanol. 

The volume of work required to identify both the active components from the extract and 

to elucidate their mechanisms of action in all three medical areas chosen in this thesis 

would be a vast undertaking. Hence a decision was made to focus on Phyllanthus niruri L 

antiplatelet effects as this has been less widely studied and the need for new therapeutics in 

thrombotic diseases is great. The efficacy of the water and methanol extracts towards in-

vitro platelet aggregation was evident; the former extract showed that ADP-induced platelet 

aggregation was halted at about more than 80%, in addition to the fact that both extracts 

showed an inhibitory potency which surpassed the potency of adenosine, a well-known 

antiplatelet agent. Furthermore, the need for a new and safe antiplatelet drug is emerging 

due to a slow progress of new antiplatelet drug discovery during the period of the last 30 

years. With regards to natural-derived antiplatelet agent, although some progress has been 

made which revealed the antiplatelet properties of some herbal remedies, kitchen spices, 

and dietary sources (Samuels, 2005), the investigation of the active constituents, expressing 
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the antiplatelet activity, isolated from Phyllanthus niruri L is very limited. Accordingly, having 

revealed the strong antiplatelet potency of Phyllanthus niruri L extract showed by water and 

methanol extracts, the next chapters will focus on further exploration of the extracts with 

the final aim of the isolation of the active compounds responsible for the antiplatelet 

activity.  

As previously mentioned in section 3.2, the relative amount of the biologically-active 

materials within the crude extracts is the crucial factor affecting the activities. Water is a 

polar solvent that is superior in term of it safety and low toxicity and, accordingly, is used 

widely in herbal remedy preparation such as decoction or infusion. However, it conveys 

some disadvantages for solvent extraction processes due to the high boiling point which 

risks of losing the thermolabile compounds, and the extraction of a bulk of unwanted plant 

biomass in the crude extract as most of plants materials are particularly water soluble. 

Based on the observation of the residual plant material (marc) after a non-exhaustive 

maceration (chapter 4.2.2), water extraction left insignificant remaining marc thus indicating 

that Phyllanthus niruri L plant material is  water soluble. As the means of plant extraction is 

a process of separation of plant constituents from the plant material, water extract might 

not show a distinct properties and biological activities compared with the starting material, 

which is obviously consists of a large number of substances. Therefore, it would not provide 

an initial purification step and lead to prolonged separation and isolation process. 

Therefore, for the purpose of isolation of active compounds, water extraction is rarely used 

as the initial extraction step for the bioassay-guided isolation protocol (Sarker et al., 2006).  

For this reason, a mixture of water and a miscible organic solvent was included as one of the 

initial extraction solvents used in the protocol for isolation of the antiplatelet agent(s) from 

Phyllanthus niruri L. This might be beneficial in the initial purification  of the active 
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compounds from the plant material, in addition to simplifying further isolation (Sarker et al., 

2006). A research group from japan in 2002 were first to publish antiplatelet effect 

associated with an extract from Phyllanthus niruri L. They reported that a 50% (v/v) ethanol 

extract demonstrated some inhibition effect on in-vitro platelet aggregation at a 

concentration of 1.5mg/ml (Moriyama et al., 2002). A few years later in 2007, the same 

research group isolated methyl brevifolincarboxylate from the 50% (v/v) methanol extract 

that exhibited a strong of antiplatelet effect (Iizuka et al., 2007). Accordingly, in our study, 

the latter proportion of water relative with methanol or 50% (v/v) methanol was also used 

as an initial extraction solvent for Phyllanthus niruri L. Finally, the 50% (v/v) methanol 

extract, together with water and methanol extracts, was used as the initial starting extracts 

used to purify and identify the active antiplatelet compounds present in Phyllanthus niruri L. 

5.2 Result 

5.2.1 Identification of the most active extract 

The extraction of 100 g of Phyllanthus niruri L with 50% (v/v) methanol extract yielded 12.75 

g of crude extract or 12.75% (w/w) relative to the starting plant material. The yield is greater 

than the yield obtained when Phyllanthus niruri L was extracted by methanol alone (the 

yield was 5.2 %). The result of the first test for identifying the most active extract using the 

solvent system is shown in Figure 5.1. In this test, ADP-induced platelet aggregation, with 

and without the presence of the crude extracts at a final concentration of 250 µg/ml, was 

observed. Figure 5.1 shows that Phyllanthus niruri L extracts were able to inhibit ADP-

induced platelet aggregation. The highest inhibition was demonstrated by 50% (v/v) 

methanol extract which almost completely halted the formation of platelet aggregates (the 

percentage of the inhibition was 98.0±1.1%). Water and methanol extracts inhibitory 



165 
 

activities were 78.3±0.5% and 63.6±1.3%, respectively, on the ADP-induced platelet 

aggregation.  

 

Figure 5.1 – Platelet aggregation inhibition of water, methanol, and 50% methanol 
extracts. 

The platelet aggregation was monitored for 10 minutes after the addition of ADP at a final 
concentration of 25 µM with and without the addition of crude extracts at 250 µg/ml. The traces of 
platelet aggregation are shown in (A) and the extent of the inhibition is shown in (B). Each data point 
on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

5.2.2 Fractionation of the most active extract 

The above finding indicated that the 50% (v/v) methanol extract contained substances 

responsible for the most active antiplatelet effect, further purification of the active 

components contained in this 50% (v/v) methanol extract was therefore initiated.  As 

previously described in section 2.6.2, fractionation is an initial separation process, aiming to 

obtain various discrete fractions containing compounds of similar polarities or molecular 

sizes. For this purpose, the dried 50% (v/v) extract was dissolved in 30% (v/v) methanol and 

passed through a column of HP-20 by a successive elution of water, 80% (v/v) methanol, and 

100% methanol. The yield weight relative to the amount of 50% (v/v) extract loaded onto 

the column was 54.25% (w/w) for water fraction, 11.35% (w/w) for 80% (v/v) methanol 

fraction, and 0.47% (w/w) for 100% methanol fraction. Subsequently, the three fractions 
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were tested against platelet aggregation using the final dose of 125 µg/ml. After the initial 

fractionation of the crude extracts, the active compounds were expected to be 

concentrated in one of the separated fractions and therefore the dose used in the second 

phase of antiplatelet assays is lower than that for the initial aggregation test.  

The result are presented in Figure 5.2 and showed that the 80% (v/v) methanol elution is 

the most active fraction, which demonstrated an inhibitory level of 82.3±3.3%. The other 

fractions showed a lower activity with an inhibition level of 27.3±1.7% (water fraction) and 

15.1±5.3 (100% methanol fraction). It is suggested that the active substances responsible for 

the antiplatelet activity are accumulated within the 80% (v/v) methanol fraction, whilst the 

unwanted substances were dispersed into the water and 100% methanol fractions. This 

bioassay-guided preliminary fractionation narrowed down the isolation process by revealing 

the most active fraction. The 80% (v/v) methanol fraction, separated from 50% (v/v) 

methanol was then analysed further in this chapter. 

 

Figure 5.2 – Second phase platelet aggregation test for the eluted fractions 

The fractions from an HP-20 column chromatography were tested for the inhibitory activity towards 
platelet aggregation induced by ADP (25 µM). The fractions were added at a final concentration of 
125 µg/ml. The traces of platelet aggregation are shown in (A) and the extent of the inhibition is 
shown in (B). Each data point on the graph represents the mean ± SEM of three replicates of the 
experiment (n=3). 
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5.2.3 The exploration of the antiplatelet activity of the most active fraction 

5.2.3.1 The optimisation of platelet agonists 

Prior to separation and fractionation process, the 80% (v/v) methanol fraction (designated 

as P5M) was challenged against platelet aggregation induced by different platelet agonists 

that represented different pathway of platelet aggregation initiation. For this purpose, in 

addition to ADP, several other agonists were used; thrombin, collagen, epinephrine, and 

arachidonic acid.  

The doses of the agonists used were optimised to obtain the ideal dose for performing the 

aggregation test. The result of the dose optimisation is presented in Figure 5.4 - Figure 5.8. 

According to the graph in Figure 5.4 - Figure 5.8, the optimum doses were: 15 µM ADP, 62.5 

µg/ml collagen, 1 NIH U/ml thrombin, 250 µg/ml arachidonic acid (AA), and 5µM 

epinephrine. Furthermore, DMSO was used to prepare P5M solution prior to the addition 

into platelet suspension. To obtain the acceptable dose, at which the DMSO presence has 

no significant alteration on platelet functions, an initial test was conducted. The results are 

shown in Figure 5.3, which suggested that at a concentration from 0.5% (v/v), DMSO 

showed an inhibition effect on platelet function. This result was taken into consideration 

when preparing P5M solution by setting a maximum acceptable final concentration of 

DMSO at a 0.25% (v/v). 
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Figure 5.3 – The effect of DMSO on resting platelet 

DMSO was added to the resting platelet suspension prior to the induction of aggregation by 
horizontal shaking at 1000 rpm. The changes of absorbance were recorded for 10 minutes (A), and 
compared with resting platelet absorbance at the end of the observation (B). Statistical analysis was 
performed using two-way ANOVA with Bonferronis’s multiple comparison post-test. Significant 
difference is shown by (*) for p < 0.05 and (**) for p < 0.01, which represented the difference 
between DMSO-treated and control groups. The result suggested that at a dose starting from 0.5% 
and above, the changes of absorbance of platelet showed no significant difference with resting 
platelet, suggesting that platelet function started to be altered. At a lower dose of DMSO, platelet 
showed some responses on the physical stimulation, thus causing the initial activation of platelets. 
Based on this finding, the maximum concentration of DMSO used for the assay was less than 0.25%.  
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Figure 5.4 – Optimization of ADP dose. 

Platelet aggregation was induced by a various dose ADP. The traces of platelet aggregation are 
shown in (A) and the extent of the maximum aggregation responses is shown in (B). Each data point 

on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

 

Figure 5.5 – Optimization of collagen dose. 

Platelet aggregation was induced by a various dose of collagen. The traces of platelet aggregation 
are shown in (A) and the extent of the maximum aggregation responses is shown in (B). Each data 

point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 
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Figure 5.6 – Optimization of epinephrine dose. 

Platelet aggregation was induced by a various dose of epinephrine. The traces of platelet 
aggregation are shown in (A) and the extent of the maximum aggregation responses is shown in (B). 
Each data point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

 

 

Figure 5.7 – Optimization of arachidonic acid dose. 

Platelet aggregation was induced by a various dose of arachidonic acid. The traces of platelet 
aggregation are shown in (A) and the extent of the maximum aggregation responses is shown in (B). 
Each data point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 
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Figure 5.8 – Optimization of thrombin dose. 

Platelet aggregation was induced by a various dose of thrombin. The traces of platelet aggregation 
are shown in (A) and the extent of the maximum aggregation responses is shown in (B). Each data 

point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

5.2.3.2 The effect of P5M on platelet aggregation induced by different agonists 

The inhibitory effect of the presence of P5M on the aggregation induced by distinct platelet 

agonists is shown in Figure 5.10. Data obtained shows the inhibitory potency of P5M 

towards platelet aggregation induced by various agonists, from the strongest to the weakest 

activity in the following order was AA-thrombin-epinephrine-collagen-ADP. The extent of 

the inhibition was 83.9±3.0% for AA, 80.8±1.3% for thrombin, 79.7±4.6 for epinephrine, 

73.1±5.3% for collagen, and 72±1.2% for ADP-induced platelet aggregation.  

The traces of aggregation were recorded for 10 minutes as presented in Figure 5.10. In the 

presence of P5M, the formation of platelet aggregate, induced by various agonists, was 

significantly halted (Figure 5.9). The finding suggested that P5M inhibited platelet 

aggregation, irrespective of the aggregating agents used.  The inhibition effect of P5M was 

greater in platelet aggregation induced by AA, which expressed a relatively low aggregation 

effect. In addition to this, as presented in Figure 5.10, AA significantly inhibited the first 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 2 3 4 5 6 7 8 9 10

A
b

so
rb

an
ce

 a
t 

4
0

5
n

m

Time (min)

Thrombin

Thrombin 1 NIH U/ml

Thrombin 0.5 NIH U/ml

Thrombin 0.25 NIH U/ml

Thrombin 0.125 NIH U/ml

Thrombin 0.063 NIH U/ml

Thrombin 0.031 NIH U/ml

Thrombin 0.016 NIH U/ml

0

10

20

30

40

50

60

70

80

90

100

M
ax

im
u

m
 r

e
sp

o
n

se
 (

%
)



172 
 

wave of platelet aggregation in which initiation of platelet activation takes place. As each 

agonist initiates platelet activation using different receptors and signalling mechanisms, the 

result may demonstrate the tendency of P5M to alter events and intermediates in AA-

induced activation cascade.  

 

 

Figure 5.9 – Inhibition effect of P5M on of platelet aggregation induced by various 
agonists 

The extents of platelet aggregation induced by various agonists is shown in graph above, with the 
presence of 125ug/ml of P5M. The agonists used for inducing platelet aggregation were in a 
concentration of 15 µM ADP, 62, 5 µg/ml collagen, 1 NIH U/ml thrombin, 250 µg/ml arachidonic acid 
(AA), and 5µM epinephrine. Each data point on the graph represents the mean ± SEM of three 
replicates of the experiment (n=3). 
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Figure 5.10 – Platelet aggregation induced by various agonist in the presence of P5M 

Platelet aggregation was monitored every minute for a total of 10 minutes observation. The 
aggregation was induced by 15 µM ADP, 62.5 µg/ml collagen, 1 NIH U/ml thrombin, 250 µg/ml 
arachidonic acid (AA), and 5µM epinephrine. Each graph (A-E) showed the traces of platelet 
aggregation with and without the presence of 125 µg/ml P5M. Each data point on the graph 
represents the mean ± SEM of three replicates of the experiment (n=3) 
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5.3 Discussion 

Researchers working on phytochemicals are often met with the challenge of the solvent 

extraction of plant materials as the initial step on the isolation of the active compounds 

responsible for the biological activities (Sarker et al., 2006). Several considerations must be 

taken into account at every step involved including, biological testing, and chromatographic 

preparation. When attempting the isolation of known compounds, the features of the 

molecule provide general data of the desired substances, including the solubility, stability, 

and molecular size. However, isolation of unknown compounds does not provide such basic 

information, which is crucial for determining the methods and solvents for the plant 

extraction. In this situation, bioassay-guided isolation is considered as the ideal protocol for 

isolation of the biologically-active substances contained in the plant material, as previously 

explained in section 1.6. 

The first step of the bioassay-guided protocol adopted in this study was the extraction of 

Phyllanthus niruri L plant material, in order to determine the most active extract possessing 

antiplatelet activity. As the nature of the target compound(s) is unidentified, the extraction 

was started using a various solvents of distinct polarity, in order to cover a wide-range of 

extracted substances. From the result previously discussed in section 3.2, the highest 

amount of Phyllanthus niruri L extract yield was obtained from water and methanol 

extraction, thus suggesting that the most extractable components contained in this plant 

are of polar substances. When water was added in methanol to obtain 50% (v/v) methanol 

for extraction solvent, the extract yield increased, compare to methanol extraction, because 

both polar and less polar compounds might be extracted together (Markom et al., 2007). 

The initial bioassay test on the crude extracts indicated the hydrophilicity of the active 



175 
 

constituent responsible for the antiplatelet activities, which was demonstrated by the high 

potency of water and methanol extracts in inhibiting in-vitro ADP-induced platelet 

aggregation (chapter 3.3). From the data presented in this chapter, the anti-aggregation 

effect of P5M was greater compare to water and methanol extracts. At this step, an initial 

hypothesis was made, based on the preliminary finding, that the active compounds 

responsible for the antiplatelet activity are relatively polar and hydrophilic.  

According to Markom et al. (2007), in order for a compound to dissolve in a particular 

solvent, the solubility parameters of both substances must be similar. The authors 

highlighted the important role of solvent polarity (dipole moment), in addition to other 

parameters including hydrogen bonding, electrostatic bonding, and conformational 

(dihedral angle). Moreover, Markom and co-workers stipulated that the solubility of one 

compound in the solvent can be roughly estimated according to its functional groups. For 

example, when the components contain carboxylic acid and hydroxyl groups, their solubility 

in water tends to be higher due to hydrogen bonding between the solvent and salute. 

Components containing carboxylic acid, ketone and ester groups have the ability to donate 

electron (nucleophilic), thus can interact with both aqueous and alcoholic solvents. Whilst 

the less polar components, such as ether, require less polar solvents (Markom et al., 2007). 

Given that most of natural products have more than one functional group, the containing 

active compounds in Phyllanthus niruri L responsible for the antiplatelet effect can be 

selectively soluble in water and methanol, as shown in this study.  

Prior to the isolation of natural products, several preparation and clean-up steps were 

required to selectively remove interfering components, such as some classes of lipids and 

plant pigments (Sarker et al., 2006, Sticher, 2008). As previously described, based on the 
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phytochemical analysis in section 3.2, water and methanol extracts consist of a number of 

classes of compounds including saponin, alkaloid, flavonoid, tannin, amino acid, and 

carbohydrate. The clean-up process can be carried out using a number of chromatography 

techniques, which is not only beneficial in separating a bulk of contaminants from the 

compounds of interest but also in accumulating the active compounds in one fraction 

(Markom et al., 2007). The findings of the bioassay test in this study indicated that the pre-

fractionation step has removed some of the unwanted substances and, moreover, resulted 

in the concentration of the target compounds in the 80% (v/v) fraction. After fractionation 

with a continuous elution using a HP-20 column, it is more likely that the water fraction 

mostly consist of carbohydrates and related polyphenols, whilst the methanol fraction 

consist of aromatics glycosides (Sarker et al., 2006).  

DMSO is previously reported to affect platelet function by halting the shear-induced 

adherence of human platelet which is suggested to be attributed to its ability to alter COX-1 

activity (Asmis et al., 2010). In this present study, a trace of DMSO was present in the 

platelet suspension when performing the platelet aggregation test. This condition is 

unavoidable as the crude extract used is mostly soluble in DMSO. Therefore, a preliminary 

test was conducted to monitor DMSO effects towards platelet aggregation induced by a 

given physical stimulation. The result showed that at a concentration of 2.5% (v/v) or lower, 

DMSO presence did not alter platelet activation. This finding provides the evidence that the 

presence of a trace of DMSO does not affect the platelet function and, accordingly, is 

acceptable for the platelet aggregation assay.  

Platelet aggregation is a result of multiple events involving intercellular signal transmission 

through various cellular process and biochemical pathways. Extensive studies on the 

mechanism of platelet aggregation has revealed that the outer surface of platelet 
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membrane expresses a number of receptors that play a central role in the initiation of 

platelet activation, which commonly occurs after exposure to physical or chemical 

stimulation. Platelet activation is initiated by various agonists that utilises a protein-related 

signalling cascade, to release protein and non-protein granule content, bring about 

cytoskeleton protein phosphorylation, and modification of a number of platelet proteins 

(Hoffbrand and Moss, 2011, Zufferey et al., 2012). Physiological platelet agonists, including 

ADP, collagen, epinephrine, thrombin, and AA, activate the platelet signalling system 

through binding to specific protein receptors on the membrane of platelet and, in turn, lead 

to platelet aggregation. 

The data produced in this study shows that the isolated platelets are actively responsive to 

the stimulation of the agonists, causing the formation of platelet aggregates. Arachidonic 

acid (AA) is released from platelet phospholipid present in granules and membranes of 

resting platelets. AA is known as a potent platelet agonist which induces platelet 

aggregation through the synthesis of thromboxane A2 (TXA2) by the activity of 

cyclooxygenase and thromboxane synthase. Addition of AA in isolated platelet causes a 

sudden increase of oxygen consumption and TXA2 synthesis, which then activates its 

receptor on the platelet surface, induces further mobilized calcium from platelet internal 

storage and rearrangement of platelet cytoskeleton, leading to platelet aggregation (Parise 

et al., 1984).  

Thrombin, in physiological conditions, is generated locally by vascular endothelial upon 

damage of the vascular wall. Through its binding with thrombin-specific receptors, PAR1 and 

PAR2, thrombin activates its receptors by binding and cleaving the amino terminal of these 

receptors, which in turn initiates the signal transduction events required for optimal platelet 

activation (Brass, 2003). Likewise AA, thrombin is known as a strong agonist that, in 
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physiological condition, mainly function in the amplification of platelet aggregation. Their 

activity in platelet aggregation is considered as an irreversible reaction, which contributes to 

their great potency. In comparison to the ADP-induced aggregation which shows a biphasic 

aggregation curve (previously explained in section 3.2), AA and thrombin induce a sudden 

increase and single peak pattern platelet aggregation curve, as shown in aggregation traces 

(Figure 5.10). When their concentration is not adequate to induce platelet aggregation, 

thrombin and AA enhances the effect of biological agonists released from initial activation 

and causes indirect effect of stimulation. Our data showed that P5M, significantly prevented 

platelet aggregates formation induced by AA and thrombin, thus provides further evidence 

of antiplatelet activities of Phyllanthus niruri L.  

ADP and epinephrine were confirmed in this study as two weak agonists that inhibit the 

activity of adenyl cyclase. Two ADP receptors, P2Y1 and P2Y12, and the epinephrine 

receptor (α2 -adrenergic receptor) are responsible in platelet activation and shape change. 

Although they have the ability to stabilise platelets aggregation, ADP and epinephrine are 

considered as weak platelet agonists because the granule secretion that enhance further 

platelet activation, is strongly dependent to platelet aggregation (Charo et al., 1977). There 

are two major collagen receptors that have been identified, GPIa-IIa ((α2 β1 integrin) and 

GPVI which contribute to platelet adhesion and stimulate the activation of signalling 

cascades. Overall, all of these agonists work in synergy to initiate platelet activation and 

aggregation. Differences in the effect of these agonists with and without the Phyllanthus 

niruri L extracts will provide useful information on the mechanism of action of the 

containing active compounds.  

The Inhibition of platelet aggregation induced by different agonists in the presence of P5M 

has provided further evidence of the powerful effect of Phyllanthus niruri L in hampering 



179 
 

the signalling cascades involved in platelet activation. The effectiveness of the inhibition 

may well correspond to the mechanism-of-action of the given anti-platelet agents. ADP, 

epinephrine, collagen thrombin and AA cause initial platelet activation and the release of 

granular content which further enhances the initial events of activation. P5M, which is 

believed to contain more concentrated-quantity of the active compounds, has 

demonstrated a strong potency in preventing the manifestation of aggregating platelets 

and, provided convincing evidence of its capacity to alter more than one route of signalling 

during platelet activation. It is also important to highlight that the early inhibitory effect was 

obvious in AA-stimulated platelet activation. Arachidonic acid exposure to platelets triggers 

platelet prostaglandin metabolism by the activation of enzymatic reaction that generate 

TXA2, thus leading to the forming of platelets aggregates. Given that P5M significantly halts 

the initiation of the primary wave of platelet aggregation, inhibition of TXA2 synthesis may 

be considered as one of P5M inhibitory pathways. As an initial conclusion, although the 

mechanism of action of various platelet aggregation agents differ from one agonist to 

another, the findings might imply that P5M acts by blocking a common step shared by these 

agonists. Nevertheless, the broad ranging inhibitory effect of P5M towards platelet 

aggregation, when activated by different agonist, also indicates that the active compound 

(s) in Phyllanthus niruri L. hinder the overall signal transmission in platelet activation and 

aggregation.  

  



  Chapter 6
The Separation of P5M by 
High Performance Liquid 
Chromatography (HPLC) 
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6.1 Introduction 

Based on the data presented in the previous chapter, the next step is the separation of P5M, 

as the most active fraction, for the elucidation of the active compounds responsible for the 

antiplatelet activity demonstrated by Phyllanthus niruri L plant. In this study, analytical and 

preparative high performance liquid chromatography (HPLC) was employed. The pre-

fractionated sample, P5M, still contains a considerable amount of secondary metabolites 

and requires an optimum and suitable HPLC parameters for the separation. Iizuka and co-

workers have introduced an HPLC parameters used for the separation of several medicinal 

plant extracts, including Phyllanthus niruri L, which has brought this group to a discovery of 

methyl brevifolincarboxylate that expressed some antiplatelet properties (Iizuka et al., 2006, 

2007). The parameter described in one of their publications was used as a starting point for 

performing the optimisation of the solvent system in the analytical HPLC used in this study. 

This system was then used for upscaling to the preparative scale, with some modifications 

that will be explained later in this chapter.  

The next section in this chapter will present the results from the antiplatelet bioassay tests 

on the isolated compound(s) to reveal which are the most active and therefore the best 

candidate for development as new antiplatelet agent derived from Phyllanthus niruri L 

plant.  

6.2 Result 

6.2.1 Analytical HPLC for the optimization of the solvent system 

As an initial step in the separation process, analytical HPLC was performed on the plant 

material, 50% (v/v) methanol extract, and P5M samples. The aims of this analysis was to 
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evaluate the complexity of the mixture of compounds contained within these samples.  The 

separations were conducted by injecting an equal amount of sample onto the C-18 

analytical HPLC column. The similar amount of sample was eluted isocratically using mobile 

phase consisted of 0.5 (v/v)% TFA in water:acetonitrile (85:15 v/v) at a flow rate of 0.5 

ml/min. The elution was recorded at 254 nm for 25 minutes and the result is shown in 

Figure 6.1.  

The chromatogram of Phyllanthus niruri L plant material (as shown in Figure 6.1-A) 

displayed several major peaks within the first 5 minutes of the separation (retention time of 

2.2min, 2.7min, 3.4 min, 4.2min, and 5.2 min). There were also two major peaks at a 

retention time of 13.0 min and 14.7 min. The peaks were similar to those produced from the 

50% (v/v) methanol extract and P5M HPLC analysis. From the 50 % (v/v) methanol 

chromatogram (shown in Figure 6.1-B), the peak height at a retention time of 2.7 min  and 

13.0  min showed a decline, relative to the other major peaks on the same chromatogram, 

thus suggesting that their quantity within methanol extract is lower, compared with that in 

the Phyllanthus niruri L plant material. The chromatogram of P5M separation (Figure 6.1-C) 

showed that the early eluting peaks, ranging from 0 min to 4.8 minutes in retention time, 

were certainly because of sample overloading and no separation was achieved. However, 

from visual observation, the other peak retention times corresponded to those displayed on 

plant material, 50% (v/v) methanol extract chromatograms. The above finding indicates 

that, the major peaks eluted within the first 25 minutes, between Phyllanthus niruri L plant 

material, 50% (v/v) methanol crude extract, and pre-fractionated P5M, showed differences 

in the quantity of some major peaks. Nevertheless, given that the chromatograms were 

produced from the separation of the same amount of samples, the data suggested that the 
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amounts of active substances in P5M, relative to the plant starting material is increased and, 

accordingly, may correspond to the increase of its antiplatelet activity. 

The same HPLC condition was used for comparing the HPLC separation profile of water 

fraction, 80% (v/v) fraction (P5M), and 100% methanol fractions, which were obtained from 

the separation of 50% (v/v) methanol extract. Based on this presented chromatograms, 

shown in Figure 6.1, the separation of the water fraction resulted in a number of significant 

peaks. In accordance with the previous results presented in section 5.2.2, water fraction 

showed no inhibitory activities on platelet aggregation. Therefore, it is more likely that the 

peaks seen in these samples resulted from some interfering materials or contaminants. On 

the contrary, the 100% methanol fraction only produced a few minor peaks with an absence 

of any noticeable major peaks, suggesting that the latter elution condition used did not 

bring about significant elution and substances remained on the column.   
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Figure 6.1 – HPLC chromatogram of Phyllanthus niruri L plant material, crude extract, and 
pre-fractioned extract. 

The column used was a reverse-phase C-18 GraceSmart analytical column, 250mm length x 2.1mm 
i.d., and 5µm particle diameter. An isocratic Mobile phase of 0.5% (v/v) TFA in water: acetonitrile 
(85:15 v/v) was used at a flow rate of 0.5 ml/min. The injection volume was set at 10µl and the 
concentration of sample was 50 mg/ml. The chromatograms were recorded from the HPLC 
separation of (A) Phyllanthus niruri L plant material, (B) 50 (v/v) methanol extract, and (C) P5M, at 
254nm for 25 minutes. The corresponding peaks that showed differences were marked by (*) and 
(#). 
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Figure 6.2 – HPLC chromatogram of water, P5M, and 100% methanol fractions 

The HPLC column was a reverse-phase C-18 GraceSmart analytical column, 250mm length x 2.1mm 
i.d., and 5µm particle diameter. An isocratic Mobile phase of 0.5% (v/v)TFA in water: acetonitrile 
(85:15 v/v) at a flow rate of 0.5 ml/min was used. The injection volume was set at 10µl and the 
concentration of sample was 10 mg/ml. The chromatograms were recorded from the analytical HPLC 
separation of (A) Water fraction, (B) P5M, and (C) 100% Methanol fraction, at 254nm for 25 minutes. 

  

mVolts 

C 

B 

A 

Time (min) 

C 



186 
 

The next step was the optimisation of the HPLC parameters for the separation of P5M. As a 

guideline, a previous solvents system described by Iizuka et al. (2007) was used. In this 

study, three HPLC solvent systems were used to elute P5M off from the analytical column. 

The elution was read in 254 nm UV detector and recorder for 90 minutes. The first system is 

an isocratic elution using a mobile phase of 0.5%(v/v) TFA in water:acetonitrile (88:12 (v/v) , 

the second is a gradient HPLC run using 0.5% (v/v)TFA in water:acetonitrile with a ratio of 

85:15 to 88:12 (v/v) in 90 minutes , and the last solvent system is an isocratic HPLC elution 

using a 85:15 (v/v) ratio of water: acetonitrile containing 0.5%(v/v) TFA.  

From the chromatograms displayed in Figure 6.3, HPLC separations of P5M using 0.5% (v/v) 

TFA in water:acetonitrile (88:12 (v/v) resulted in longer elution time. The chromatogram 

contained well-separated peaks, however it demonstrated the tendency of peak 

broadening. The use of gradient HPLC run with increasing acetonitrile concentration (from 

12% to 15% (v/v)) brought about faster elution time, however, resulted partial separation of 

the adjacent peaks and peak broadening, which was more obvious with peaks at longer 

retention times. As a consequence, it reduces the selectivity of the HPLC analysis and 

produces a poorer separation.  

The last HPLC system using isocratic run (85:15 (v/v) ratio of water: acetonitrile) produced a 

better separation with sharp symmetrical peaks, in addition to a relatively fast elution time. 

Therefore, the latter solvent system was chosen for larger scale preparative HPLC in this 

study. 
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Figure 6.3 – HPLC chromatogram of P5M separation using different solvent system 

The HPLC column was a reverse-phase C-18 GraceSmart analytical column, 250 mm length x 2.1mm 
i.d., and 5µm particle diameter. The solvent systems were: (A) an isocratic Mobile phase of 0.5% 
(v/v) TFA in water: acetonitrile (85:15 v/v), (B) a gradient of 0.5% (v/v) TFA in water:acetonitrile from 
a ratio of 85:15 to 88:12 (v/v) for 90 minutes, and (C) an isocratic mobile phase of 0.5% (v/v) TFA in 
water:acetonitrile (85:15 v/v). The injection volume was set at 10µl and the concentration of sample 
was 10 mg/ml. The chromatograms were recorded at 254 nm for 90 minutes.   
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6.2.2 Preparative HPLC for the separation of P5M 

Following the analytical HPLC experiment, a preparative scale reverse-phase 

chromatography was performed using a C-18 column, 250 mm in length, 21.1 mm internal 

diameter, and 5µm particle size. The HPLC elution used was an isocratic mobile phase 

consisted of 0.5% TFA in water:acetonitrile (85:15 v/v), at a flow rate of 8ml/ min for the 

period of 90 minutes. As a result, 11 fractions, named as G1-G11, were collected and pooled 

together according to their retention time as shown in Figure 6.4. All fractions were 

evaporated and freeze dried. The yield weights, relative to the amount of P5M injected into 

the column, and the physical appearance of each fraction are shown in Table 6.1. Each 

group represented a candidate for the active compound isolated from Phyllanthus niruri L.  

From Figure 6.4, G1, G2, and G3 are the major component peaks showing retention times of 

2, 15, and 17 minutes, respectively. The yields were higher when compared with the other 

minor peaks in the chromatogram. The smallest peak was found at the end of the 

chromatogram, at a retention time of 85 minutes, but yielded a dried material with a 

relative weight percentage of 0.6%. 
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Figure 6.4 – HPLC chromatogram of P5M separated with preparative column 

The preparative HPLC of P5M was performed using a reverse-phase C-18 Hyperclone column, 250 x 
21.1 mm (length x i.d.), 5µm particle size, and an isocratic mobile phase composed of 0.5% (v/v) TFA 
in water:acetonitrile (85:15 v/v), at a flow rate of 8 ml/ min for the period of 90 minutes. The 
injection volume was set at 1 ml and the concentration of the sample was 100 mg/ml. The 
chromatogram was recorded at 254 nm.  
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Table 6.1 – The weight, retention time, and physical appearance fractions from P5M 

Group of fractions Retention time (min) Yield % (w/w) Dried fractions 

1 (G1) 2 4.4% 

 

2 (G2) 15 6.8% 

 

3 (G3) 17 3.8% 

 

4 (G4) 20 1.6% 

 

5 (G5) 25 1.9% 

 

6 (G6) 29 1.8% 

 

7 (G7) 33 1.5% 

 

8 (G8) 36 0.8% 
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Group of fractions Retention time (min) Yield % (w/w) Dried fractions 

9 (G9) 41 0.9% 

 

10 (G10) 46 2.3% 

 

11 (G11) 85 0.1% 

 

 

6.2.3 Identification of the most active fraction 

The next step was performing the bioassay test on all fractions obtained from preparative 

HPLC separation to identify the peaks which contained antiplatelet activity. The aggregation 

test was performed by monitoring the inhibitory effect on ADP-induced platelet aggregation 

with the addition of each of the isolated fraction (G1-G11) at a concentration of 100 µg/ml. 

The results from this antiplatelet bioassay revealed that out of the 11 groups of fractions, 

only four exhibited inhibitory effects towards platelet aggregate formation. As presented in 

Figure 6.5, the fractions that showed antiplatelet activity were G1, G2, G3, and G6. 

According to their aggregation traces, the inhibitory potency from the highest to the lowest 

order was G2 > G6 > G3 > G1. Furthermore, their antiplatelet efficacy compared to 

adenosine is shown in Figure 6.6. The data indicated that G2 and G6 displayed high 

inhibitory potency towards platelet aggregation with inhibition potency of 80 ± 3.4% for G2 

and 628 ± 7.2% for G6, supported by the fact that their antiplatelet efficacy surpass the 

aggregation inhibition demonstrated by adenosine. 
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Figure 6.5 – Aggregation traces of the ADP-induced platelet aggregation with the presence 
of the active compounds  

The traces of platelet aggregation were monitored for 10 minutes after the addition of ADP at a final 
concentration of 15 µM, with the addition of 100 µg/ml of the isolated fractions: G1, G2, G3, and G6. 
Each data point was the percentage of the maximum response calculated by comparing it with the 
maximum response showed by ADP-induced platelet aggregation with the absence of the isolated 
compounds.  
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Figure 6.6 – The inhibition potency towards ADP-induced platelet aggregation 

Platelet aggregation was monitored for 10 minutes after the addition of ADP at a final concentration 
of 15 µM, following the addition of 50 µM of adenosine, at 100 µg/ml G1, G2, G3, and G6 into the 
platelet suspension. Each data point on the graph represents the mean ± SEM of the inhibition 
percentage from three replicates of the experiment (n=4). 
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6.3 Discussion 

Latif (2005) described the HPLC technique as a robust, versatile, and usually rapid technique 

by which compounds from complex mixture can be purified. Accordingly, the use of HPLC, in 

analytical and preparative scale, has become a mainstay in the isolation of most classes of 

natural products derived from plants. The main differences between HPLC and other kinds 

of low-pressure column chromatographic systems are the consistency and size of the 

particles in the stationary phase. These factors play a crucial factor in the separation of two 

or more natural compounds, which often have closely-related similar properties (Sarker et 

al., 2006, Latif, 2005). HPLC is also used for the separation of those classes of natural 

products that are non-volatile (e.g. higher terpenoids, phenolics, alkaloids, lipids and sugars 

(Harborne, 1998).  

The selection of the stationary and mobile phases used in the isolation of natural products 

by HPLC usually depends upon the type of compound to be purified. However, the solvent 

used in the initial extraction of material from plant are the best guidance for the method 

selection and, as such, the polarity of the compound mixture is a major deciding factor as to 

which the HPLC method is used (Latif, 2005). The previous data presented in section 5.2 

showed that methanolic fraction (P5M) was the most active extract which demonstrated 

the antiplatelet activity. The finding indicates that the compounds contained in it, that are 

responsible for the antiplatelet activity, might be of polar substances. Solvent extraction is 

usually follow the rule of like-dissolve-like, where the solubility of salute-solvents of similar 

polarity can be high (Reichardt and Welton, 2011). This information was used as the 

baseline for the selection of HPLC separation employed in this study.  
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Between the two HPLC systems, the reverse-phase system is superior in separating a 

relatively-polar substances such as, carbohydrates, amino acids, alkaloids, and tannins. 

Whereas the application of normal phase HPLC is limited to the separation of water-

insoluble fractions, such as aromatic compounds. Because reverse phase HPLC lends itself 

well to the purification of most classes of natural product, it became the technique of choice 

when analysing and attempting to purify the complex mixture obtained from plants, 

especially when the identity of the compounds of interest is unknown (Latif, 2005). 

Moreover, within the natural product research, the reverse-phase octadecyl-bonded silica 

(C-18) columns are still widely used for compound isolation and purification (Bucar et al., 

2013).  

From the period of 2000-2007, Sticher (2008) reported that methanol-water mixtures were 

the most commonly used reverse-phase HPLC mobile phase for the isolation of natural 

compounds. Recently, the solvent choice has shifted to mixtures of water-acetonitrile which 

are now widely employed in HPLC-based natural products isolation (Bucar et al., 2013). 

From the period of 2008-2012, Bucar and co-workers have summarized that more than 50% 

of natural products isolation by HPLC separation, published within that period of time, used 

an acetonitrile-water mixture instead of methanol-water mixture. The authors reported that 

water-acetonitrile mixture, from a ratio range of 75:25 to 0:100 (v/v), has successfully 

separated several classes of natural products, including glycosides, lignans, flavonoids, 

triterpenes, saponins, and terpenoids, and it is also applicable in the isolation of some 

classes of fatty acids (Bucar et al., 2013). Acetonitrile is superior compared to other alcoholic 

solvents for HPLC due to its characteristics; low UV cut off point which is an advantage for 

UV detection, lower viscosity thus reduces back pressure and often results in slightly better 
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peak shape, and finally stronger elution strength attributed to a low polarity relative to 

other alcoholic solvents.  

The ionic state of the compounds and the stationary phases are critical for producing 

efficient and reproducible chromatography. It is important to supress compound ionization 

and to control the degree of ionisation of the free unreacted silanol groups on the outer 

surface of the stationary phase. For this purpose, the addition of a small amount of acid can 

be a great help in achieving good chromatography separation (ion-pair reagent). Later, the 

acid can be easily removed from the collected fraction by freeze drying (Latif, 2005). In this 

study, the acid used was triflouroacetic acid at a concentration of 0.5% (v/v).  

For the isolation of natural products, analytical and preparative chromatography can be 

found in many publication (Sticher, 2008). Analytical HPLC is commonly used at the earlier 

stages, prior to the isolation and purification of the active compounds using the preparative 

scale. Analytical HPLC produces a chromatographic profile of the extract, which provides 

valuable information on the mixture complexity, as well as the estimation of the quantity of 

each major peak within the sample. In term of the quantity of the isolated compounds 

obtained, the aim of the semi- or preparative HPLC is to produce milligrams of yields for 

each species of mixture. Preparative HPLC might be able to isolate micrograms to grams 

quantity of compounds, which is necessary for performing biological activity tests (Latif, 

2005). 

From data presented in this chapter, the analytical HPLC chromatograms has provided an 

evidence for the hypothesis described in section 5.3, that several compounds were 

selectively extracted and enriched in the 50% (v/v) methanol extract, some of which might 

be responsible for the antiplatelet activity. Previous phytochemical studies on Phyllanthus 
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species revealed that the alcoholic extracts are rich in tannins, flavonoids, alkaloids, 

reducing sugar, and glycosides (Tripathi et al., 2006, Khatoon et al., 2006). These findings 

also correspond to Phyllanthus niruri L phytochemical analysis results produced in this study 

(section 3.2.3). Claeson and co-workers (1998) reported that plant extracts yielded from 

50% alcoholic solvent extraction are usually rich in ubiquitous polyphenols. In 2007, 

Markom and co-workers  studied the solvent effect for the extraction and purification 

hydrolysable tannins from Phyllanthus niruri L. These authors reported that gallic acid and 

ellagic acid concentrations were higher in the water extract, whilst corilagin concentration 

decreased with the addition of ethanol in water as the extraction solvents used (Markom et 

al., 2007). From the results of analytical HPLC separation of water and ethanolic extracts, 

using a reverse-phase C18 colomn and a mixture of acid in water: acetonitrile (8:22 v/v), the 

researchers recorded that the hydrolysable tannins eluted from Phyllanthus niruri L extracts, 

from the earlier to the last eluted in a following order were gallic acid-corilagin-ellagic acid 

(Markom et al., 2007). The elution times of the compounds is mainly determined by their 

preference to interact with the solvent used. For example, components containing 

carboxylic acid and hydroxyl groups (such as gallic acid) prefer to be eluted by water due to 

hydrogen binding between solvent and salute, whilst the presence of ketone and ester 

groups within the compounds provides an ability to react with both water and alcohols. The 

pre-fractionating step conducted in this study is important for separating the containing 

substances in a few fractions of similar properties, in order to reveal the most active fraction 

expressing antiplatelet activities. The findings in this study suggested that pre-functionated 

step has concentrated the active compounds in P5M, an 80 % (v/v) methanol fraction of the 

50%(v/v) extract, and has eliminated some of the inactive substances, which probably 

consist of some classes of carbohydrate or aromatic hydrocarbon groups.  
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The optimisation of the solvent system from an HPLC method, as reported by Iizuka and co-

workers (2007), suggested that the isocratic reverse-phase HPLC separation employing a 

solvent system containing 0.5%(v/v) TFA in water:acetonitrile (at a ratio of 85:15 v/v) 

provides a good separation of Phyllanthus niruri L pre-fractioned extract. The separation 

showed fast elution times and sharp- and relatively-symmetrical peaks, using the solvent 

system as described above. As the function of separation, rapid elution time and good peaks 

resolution are of crucial factors in developing an HPLC system (Snyder et al., 2012). 

When the separation is scaled up to preparative HPLC, P5M was resolved into at least 11 

distinct groups of fractions according to the peaks showed in the chromatogram, these were 

named as G1-G11. Amongst all fractions, G1-3 and G6 demonstrated an ability to inhibit 

platelet aggregation and, moreover, G2 and G6 appear to be the most active fractions 

expressing antiplatelet effect. Finally, given that every single peak represents the 

occurrence of individual compound separated from P5M, the finding has provided a strong 

indication of the existence of more than one compound, contained in Phyllanthus niruri L 

plant that is responsible for the antiplatelet activity. 

 



  Chapter 7
Identification of the Active 

Compounds 
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7.1 Introduction 

The separation of the 50% (v/v) methanolic extract of Phyllanthus niruri L resulted in the 

isolation of four compounds, which are able to inhibit in-vitro platelet aggregation. The 

isolated compounds, named as G1, G2, G3, and G4, might be the final active compounds 

responsible for the antiplatelet activity of Phyllanthus niruri L when the purity level is 

sufficient to identify their molecular structure. The evaluation of a substance purity level can 

be accomplished by analytical HPLC using a similar column by which the compound was first 

separated from the crude extract, with a variable concentration of solvent to separate the 

target compound from the possible disconcerting contaminants according to the difference 

in column retention. Obtaining the appropriate level of purity is essential for assuring the 

biological activity of the potential candidates of the active compounds, as well as for a high 

success rate of the molecular structure elucidation. In this chapter, the resulting 

chromatogram from analytical HPLC of G1, G2, G3, and G6 will be presented and discussed 

accordingly. The data will be accompanied by a series of spectroscopy experiments, 

including IR, NMR and MS spectra, aiming at the identification of the compounds 

responsible for the antiplatelet activity.  

Prior to the determination of their molecular structure, additional assessment is needed to 

measure the efficacy of antiplatelet activity, as well as to provide preliminary information on 

the possible mode of action of their antiplatelet effects.  
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7.2 Result 

7.2.1 Determination of the IC50 of the isolated compounds 

The initial antiplatelet bioassays conducted on the isolated compounds has identified G1, 

G2, G3, and G6 as the active compounds isolated from Phyllanthus niruri L, which exerted 

inhibitory effects on platelet aggregation. Based on the data presented in section 7.2.3, 

platelet demonstrated various aggregation response upon ADP stimulation in the presence 

of each compound at a dose of 100 µg/ml. This finding has provided a qualitative range of 

the antiplatelet activities of the isolated compounds, and their inhibitory potency was 

further quantified to show their efficacies as antiplatelet compounds. Additional platelet 

aggregation tests were conducted using the same dose of ADP (25 µM) to stimulate the 

platelets, in the presence of a series of dose of each compound, which were added into the 

platelet suspension prior to ADP stimulation. Subsequently, platelet aggregation was 

recorded under continuous agitation for 10 minutes and data recorded at intervals of 1 

minute.  

The resulting data from platelet aggregation response curves, presented in Figure 7.1 - 

Figure 7.4, indicated that the lowest dose expressing the maximum inhibitory response is 

shown by the G2 fraction, which completely abolished the ADP-induced aggregation at a 

dose of 62.5 µg/ml. At the same dose, G6 also exhibited a prominent inhibitory activity by 

halting 77± 14.43% of the aggregation response. Finally, the G3 and G1 expressed a lower 

inhibition effects, by inhibiting total platelet aggregation at a dose of 125 and 250 µg/ml, 

respectively.  

Furthermore, the above data was used to calculate the half maximum inhibitory dose (IC50) 

of each compound. The calculated IC50 values are presented in Table 7.1. The data showed a 
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remarkably low IC50 values of G2 (31.91±1.86 µg/ml) and G6 (43.35±6.44 µg/ml), which 

confirmed their strength in altering platelet aggregate formation. Among all compounds, 

the efficacy of G3 is relatively moderate with an IC50 of 77.68±6.44 µg/ml, whereas the 

lowest inhibitory activity was expressed by G1 with an IC50 value of 179.9±2.67 µg/ml. 

Considering the complexity of Phyllanthus niruri L constituents which resulted in distinct 

separated fractions, it is interesting to re-evaluate the effect of the other fractions towards 

platelet aggregation, in order to compare the overall results and obtain the general figures 

of their antiplatelet properties. The results are displayed in Figure 7.5, which showed a 

range of platelet aggregation responses when 100 µg/ml of each dried fraction were added. 

Among all fractions tested, G5 and G7 showed partial inhibitory responses, with a lower 

potency compared with that shown by the active compounds (G1, G2, G3, and G6). In the 

presence of 100 µg/ml of dried fraction, maximum platelet aggregation responses were 

78.57 ± 14.29 % and 92.86 ± 18.90 % for G5 and G7, respectively. Their activity can be due 

to the effects of active compounds which present in a lower concentration within these 

fractions. Interestingly, the addition of G9 fraction caused an increase on ADP-induced 

platelet aggregation formation. In the presence of 100 µg/ml of G2 fraction, the maximum 

aggregation response was 150 ± 12.37%. The pro-aggregation effect shown by G9 might be 

due to the synergism effects of its containing compounds with ADP. The other fractions (G4, 

G8, and G10) showed no inhibitory activity towards ADP stimulation. At the same dose 

given, platelet aggregation responses were relatively unaffected by the presence of G4, G8, 

and G10. 
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Figure 7.1 – Dose response of G1 

Platelet aggregation was induced by addition of 25 µM ADP. The aggregation traces (A) were 
recorded for 10 minutes to observe the response to G1. The extent of aggregation Inhibition 
response (B) showed by each given dose was compared with ADP as the positive control. Each data 
point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

 

Figure 7.2 – Dose response of G2 

Platelet aggregation was induced by addition of 25 µM ADP. The aggregation traces (A) were 
recorded for 10 minutes to observe the response to G2. The extent of aggregation Inhibition 
response (B) showed by each given dose was compared with ADP as the positive control. Each data 
point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 
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Figure 7.3 – Dose response of G3 

Platelet aggregation was induced by addition of 25 µM ADP. The aggregation traces (A) were 
recorded for 10 minutes to observe the response to G3. The extent of aggregation Inhibition 
response (B) showed by each given dose was compared with ADP as the positive control. Each data 
point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 

 

 

Figure 7.4 – Dose response of G6 

Platelet aggregation was induced by addition of 25 µM ADP. The aggregation traces (A) were 
recorded for 10 minutes to observe the response to G6. The extent of aggregation Inhibition 
response (B) showed by each given dose was compared with ADP as the positive control. Each data 
point on the graph represents the mean ± SEM of three replicates of the experiment (n=3). 
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Table 7.1 – Compounds concentration required to inhibit 50% of human platelet 
aggregation induced by ADP 

 

 

Fraction

G1 179.90 ± 2.67

G2 31.91 ± 1.86

G3 77.68 ± 6.44

G6 43.35 ± 5.13

IC50 ± SEM (µg/ml)
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Figure 7.5 – Platelet aggregation response in the presence of the less-active isolated 
compounds 

Platelet aggregation was induced by addition of 25 µM ADP. The traces of aggregation (A) were 
recorded for 10 minutes to observe the responses to a series of isolated compounds (G4, G5, G7, G8, 
G9, G10). The maximum aggregation response (B) showed by each given dose was compared with 
ADP as the positive control. Each data point on the graph represents the mean ± SEM of three 
replicates of the experiment (n=3). 
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7.2.2 Microscopic analysis of platelet aggregates 

In order to monitor platelet activation and aggregation responses with and without the 

presence of the antiplatelet agents, we observed the occurrence of platelet aggregates 

upon a given stimulation, by microscopic observation of aggregating platelets in a giemsa-

stained thin blood film. The blood slide was prepared from a sample of whole blood, before 

and after platelet aggregation stimulation. This conventional method provided strong 

evidence of discernible platelet activation and aggregation, in addition to being able to show 

the quantity of platelet aggregates generated. As a haemostasis surveillance agent, platelets 

are highly responsive to even a slight stimulation, hence early platelet aggregation might 

occur upon blood withdrawal procedures (e.g. venipuncture and anticoagulant used). Based 

on the microscopic observation of fresh platelet preparation as illustrated in Figure 7.6, 

untreated platelets might show some signs of platelet activation, which causes platelets to 

have irregular shapes with the protrusion of several pseudopodia. However, platelet 

population in resting state should be solitary without any sign of platelet aggregates. On the 

contrary, after ADP-activation, there was no single platelet can be seen in the blood film, 

because all of the platelet populations had attached to each other resulting in the 

accumulation of platelet aggregates, as seen in Figure 7.6.  

The microscopic observation of whole blood aggregation induced by addition of 25 µM ADP, 

after the incubation with each of the isolated compounds, is summarized in Table 7.2. The 

result indicated that the presence of G2, G3, and G6 demonstrated a significant alteration of 

platelet aggregation, which was evident from the appearance of solitary-inactivated 

platelets (> 10 solitary platelets per field of view), within the population of dendritic-form 

and activated platelets (as illustrated in Figure 7.7). It was also shown by the decrease in 
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platelet aggregate formation, relative to the ADP-activated as the positive control. Amongst 

the compounds tested, G2 was found to strongly inhibit platelet activation in this assay, due 

to the relatively high amount of round-shaped platelets seen on the slides. This indicated 

that most of the platelets remained in their initial inactive state. The findings confirmed the 

previous results from the 96-well plate aggregation assay that G2, G3, and G6 are able to 

inhibit platelets from being activated by ADP. This microscopic observation might provide an 

indication of the point within the platelet aggregation pathway, by which these active 

compounds initiate their inhibitory activity towards platelet aggregation. 

In line with the results from the aggregation assays, G1 showed a partial inhibitory effect on 

ADP-induced platelet aggregation, as seen in the results in Table 7.2. In the presence of G1, 

the formation of platelet aggregate was reduced, however all platelets were still activated 

by the addition of ADP, causing the platelets to transform in to dendritic appearance with 

long pseudopodia. The latter result suggested that G1 is not effective in the early inhibition 

of platelet activation, however it might work on the inhibition of the later events of platelet 

aggregation. Nevertheless, the overall data presented in Table 7.2 indicated the treatment 

of platelet with the isolated compounds prior to ADP-induced platelet activation shows a 

discernible inhibitory effect on platelet aggregation.  
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Figure 7.6 – Thin blood smear of resting and aggregated platelets 

Blood slides were prepared before (resting platelets) and after the addition of 25 µM ADP to 
stimulate whole blood platelet aggregation (aggregated platelets). Platelet populations amongst the 
resident red blood cells were shown by arrows. Single round platelets were seen in the resting 
platelets slide. The clumping platelets forming a mass of platelet aggregate was shown in the second 
slide. 



210 
 

Table 7.2 – Microscopic observation of the whole blood platelet aggregation  

  Platelet morphology Solitary platelet population Platelet aggregates 

Untreated All or the platelets have a round shape, some 
appear with cytoplasmic protrusion 

Solitary platelets > 10 
platelets per field of view 

 (-) 

ADP Activated Round platelets (-), all of the platelets have the 
dendritic appearance with long pseudopodia 

Clumping as a mass of 
platelet aggregate, no 
solitary platelet 

All platelets form 
aggregates 

G1-pretreated ADP-
activated 

All of the platelets appeared in a dendritic 
appearance, round platelet with cytoplasmic 
protrusion were not seen (-) 

Solitary platelets 1-5 
platelets per field of view 

 (+++) 

G2-pretreated ADP-
activated 

Most of the platelet showed a dendritic 
appearance with long pseudopodia. Round platelet 
with cytoplasmic appearance (+++).  

Solitary platelets > 10 
platelets per field of view 

 (++) 

G3-pretreated ADP-
activated 

Most of the platelets show a dendritic appearance 
with long pseudopodia. Round platelet with 
cytoplasmic appearance (++).  

Solitary platelets > 10 
platelets per field of view 

 (++) 

G6-pretreated ADP-
activated 

Most of the platelets show a dendritic appearance 
with long pseudopodia. Round platelet with 
cytoplasmic appearance (++).  

Solitary platelets > 10 
platelets per field of view 

 (++) 

The blood smears were prepared from an untreated whole blood sample which showed the appearance of resting platelet and ADP activated whole blood 
sample (at a concentration of 25µM) to describe the platelet condition upon activation. For the treated group, a dose of 100 µg/ml of each compound was 
added into the blood sample prior to the activation with ADP. Continuous agitation was given at 1000 rpm for 10 minutes to ensure that the maximum 
aggregation level was achieved. The platelet morphology, solitary platelet population, and level of platelet aggregates were observed and compared with 
the condition of resting and activated platelets.  
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Aggregate size measurement is beneficial in the observation of small platelet clumps, 

particularly when a weak agonist such as ADP is employed to induce platelet activation. In 

the evaluation of the efficacy of antiplatelet agent, platelet aggregate size might provide 

useful information in monitoring their inhibitory effect, for example the ability to alter the 

proportion of the aggregates before and after the treatment with the antiplatelet drug. In 

this study, the aggregate size evaluation was performed by manually counting all formed 

platelet clumps. The platelet aggregate sizes were divided into three categories as described 

by Ozaki et al. (1994), which separate them according to the diameter and or the relative 

number of the platelets accretion forming the aggregate mass.  

The resulting data, presented in Figure 7.7, demonstrated that the medium-sized aggregates 

(76±3%) were found to be dominant between the other platelet aggregate population 

(15±3% and 9±1% for small- and large-sized platelet aggregates, respectively) generated 

upon ADP stimulation. After the treatment with the isolated compounds, the composition of 

aggregate population were shifted towards the small-sized aggregates with a slight change 

in medium- and large-sized aggregate percentage. The incubation with G2, G3, and G6 has 

evidently increased the small-sized aggregate population more than two-times fold to 

30±2%, 33±2%, and 40±3%, respectively. Moreover, the decrease of medium-sized 

aggregate population is seen, accompanied by the decline of large-sized aggregate 

population (Figure 7.7). 

This data suggested that the compounds might act in preventing the development of 

platelet aggregation and further platelets recruitment after platelet activation, which leads 

to the arrest of platelet clumps in the early stage of aggregating. 
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Interestingly, the response to the treatment with G1 was found to have a greater effect 

which was shown by a significant decline of medium- and large-sized aggregates, 

accompanied by more than threefold rise of small-sized population (49±1%), relative to the 

ADP-activated platelets. This finding, in accordance with the previous data, indicates that 

the accumulation of aggregate population might be a result from the activation of platelets 

by ADP which then failed to proceed to the complete aggregate formation due to the 

inhibitory action of G1.  
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Figure 7.7 – The composition of platelet aggregates size after the treatment with the 
isolated compounds 

Platelet aggregation was induced by 25 µM ADP with a continuous shaking at 1000 rpm for 10 
minutes. The inhibition was by the treatment of blood sample with 100 µg/ml of G1, G2, G3, or G6. 
In the graph (above), platelet aggregates were measured and divided into three categories (Ozaki et 
al., 1994). Each data points represents a mean and SEM of three replicates of samples (n=3). As 
illustrated in the diagrams of platelet aggregation (below), small-sized aggregates (A) are platelet 
clumps with diameter less than 20 µm or consist of 3-10 platelets; medium-sized (B) is diameter 
between 20-100 µm or consist of 10-100 platelets; large-sized aggregates (C) were platelet clumps 
with diameter larger than 100 µm or consists of more than 100 platelets. The significant difference 
of each data point from every single group was compared with ADP (*p < 0.001, #p < 0.05). 
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7.2.3 Purity analysis of the isolated compounds 

Assessing the purity of a medicinal compound is important in the discovery phase, especially 

when one biological effect is claimed as its therapeutic property. After undertaken several 

bioassay tests at each stage of extraction, fractionation, and separation procedures, the 

efficacy of G1, G2, G3, and G6 are evident in inhibiting platelet aggregation. However, as it 

has always been a big challenge to isolate pure substances from a mixture of crude plant 

extracts. The purity of the isolated compounds needs to be evaluated before moving 

forward in the elucidation of molecular structure and further biological activity tests. 

Indeed, the process of identification and characterisation of the molecular structure is 

highly influenced by the purity level. To address this, an analysis was performed by 

analytical HPLC using the similar parameters by which the compounds were initially isolated, 

using an isocratic mobile phase containing 0.5% (v/v) TFA in water:acetonitrile at a ratio of 

85:15 (solvent A). For the second analysis, the composition of solvent used was 0.5% (v/v) 

TFA in water:acetonitrile at a ratio of 88:12 (solvent B). The resulting HPLC chromatograms 

of each compound are shown in Figure 7.8. 

The G1 HPLC chromatogram using solvent A showed unresolved peaks with retention times 

of 4.02 min (peak 1) and 4.71 min (peak 2). When G1 was eluted with solvent B, two major 

peaks were eluted at 5.28 min and 5.71 min. Further peaks analysis using IGOR Pro software 

(Wavemetrics, Lake Oswego, OR, USA) indicated that G1 might contain more than one 

substance (Figure 7.9), and the major peak purity level was 84.71 to 87.36%. The HPLC 

chromatogram of G3 and G6 presented in Figure 7.8 (A) showed that there was one single 

peak on each chromatogram, from HPLC elution using solvent A. The finding might have 

given a false indication of the purity of G3 and G6, however, when they were analysed using 
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solvent B, the peaks are shown to split into two major peaks. The G3 peaks eluted at 7.1 and 

8.76 min, whereas G6 HPLC analysis showed two peaks seen at 6.93 and 7.96 min. 

Furthermore, the analysis data in Figure 7.11 and Figure 7.12 suggested that, similar to G1, 

the latter compounds might consist of two or more substances, whose separation were 

improved when using a lower percentage of acetonitrile. Moreover, amongst other 

compounds, the purity of G3 was the poorest as shown by two adjacent peaks that appear 

to have a relatively similar abundance (41.68% and 39.52%). 

The HPLC analysis of G2 was shown to produce a consistent result. As shown in the 

chromatogram in Figure 7.8 (A), one major peak was eluted at 4.81 min preceded by a 

smaller contaminant peak. The peak produced by the HPLC analysis was sharp and narrow 

when solvent A was used. From the second chromatogram of G2 HPLC analysis using solvent 

B, the peak was eluted at 6.43 min, with one small peak at a retention time of 4.71 min. The 

separation was found to be improved with the latter solvent system and yielded a slight 

increase on the purity of the major peak from 90.21 to 93.03% (Figure 7.10). However the 

occurrence of peak broadening might affect the separation result, especially when the 

solvent system is to be used for the preparative scale. Finally, the overall data from the 

HPLC chromatogram analysis (Figure 7.8-Figure 7.12) showed the occurrence of peak 0 with 

considerable variation on its abundance within the isolated compounds. When they were 

separated by using solvent A, as shown In G1 chromatogram, the relative amount of peak 0 

was 15.29%, in G2 the percentage was 9.79%, while in G6 the relative abundance was 

8.23%. The lowest amount of peak 0 was found in G3 which show only 2.45% abundance, 

when separated using solvent A. The above data indicated peak 0 as the common 

contaminant present within all of the isolated compounds. 
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Figure 7.8 – HPLC chromatograms for of the isolated compounds using different solvent 
composition 

The HPLC column was a reverse-phase C-18 GraceSmart analytical column, 250 mm length x 2.1mm 
i.d., and 5µm particle diameter. The solvent systems were: (A) an isocratic mobile phase of 0.5%TFA: 
acetonitrile (88:15), (B) an isocratic mobile phase of 0.5%TFA: acetonitrile (88:12). The flow rate was 
0.5ml/min. The chromatograms were recorded at 254 nm for 20 minutes.  
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Figure 7.9 – G1 HPLC chromatogram analysis 

The chromatogram was analysed by IGOR Pro (Gomez et al., 2002) by calculating the best-fit average 
of each peak (top) for measuring the peak area (bottom). The percentage of each peak area is 
relative to the total peak is shown in the graph (bottom). The solvent systems were: (A) an isocratic 
mobile phase of 0.5%TFA: acetonitrile (88:15), (B) an isocratic mobile phase of 0.5%TFA: acetonitrile 
(88:12). 

G1 (Solvent B) 

Peak 0 : 5.9% 

Peak 1: 6.75% 

Peak 2: 87.36% 

G1 (Solvent A) 

Peak 0: 15.29% 

Peak 1: 84.71% 
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Figure 7.10 – G2 HPLC chromatogram analysis 

The chromatogram was analysed by IGOR Pro (Gomez et al., 2002) by calculating the best-fit average 
of each peak (top) for measuring the peak area (bottom). The percentage of each peak area is 
relative to the total peak are shown in the graph (bottom). The solvent systems were: (A) an 
isocratic mobile phase of 0.5%TFA: acetonitrile (88:15), (B) an isocratic mobile phase of 0.5%TFA: 
acetonitrile (88:12). 

G2 (Solvent A) 

Peak 0 : 9.79% 

Peak 1: 90.21% 

G2 (Solvent B) 

Peak 0 : 6.97% 

Peak 1 : 93.03% 
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Figure 7.11 – G3 HPLC chromatogram analysis 

The chromatogram was analysed by IGOR Pro (Gomez et al., 2002) by calculating the best-fit average 
of each peak (top) for measuring the peak area (bottom). The percentage of each peak area is 
relative to the total peak are shown in the graph (bottom). The solvent systems were: (A) an 
isocratic mobile phase of 0.5%TFA: acetonitrile (88:15), (B) an isocratic mobile phase of 0.5%TFA: 
acetonitrile (88:12). 
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Peak 0: 2.45% 
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Peak 1: 4.6% 
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Figure 7.12 – G6 HPLC chromatogram analysis 

The chromatogram was analysed by IGOR Pro (Gomez et al., 2002) by calculating the best-fit average 
of each peak (top) for measuring the peak area (bottom). The percentage of each peak area is 
relative to the total peak are shown in the graph (bottom).  
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7.2.4 Identification of the molecular structure  

The structure of the compounds was initially identified by NMR analysis and confirmed by 

comparison with spectral data available in the literature. However, due to the low purity 

level of G1, G3, and G6, the NMR spectra were difficult to analyse. Hence, making it difficult 

to identify the target compounds.  

The identification of the molecular structure of G2 was possible, the purity was displayed in 

Figure 7.10, and assignment of resonances was based on 1H and 13C 1D and 2D NMR. Based 

on the 1D 1H NMR and13C NMR spectra, as well as 2D COSY and HMQC spectra, the 

molecular structure of G2 is assigned as [3,5-dihydroxy-2- (3,4,5-trihydroxybenzoyl)oxy-6-[ 

(3,4,5-trihydroxybenzoyl) oxymethyl] oxan-4-yl] 3,4,5-trihydroxybenzoate, also known as 

Corilagin. And its structure is presented in Figure 7.13 . The spectral details and their 

assignments on the molecular structure are shown in Figure 7.14 and Figure 7.17. The NMR 

data was confirmed by comparison with spectral data available in the literature (Colombo et 

al., 2009). The data produced in this study is identical with several reported spectra on 

corilagin structural identification. The melting point of G2 was not determined as it did not 

reach the melting stage when the temperature given has reached 200 ˚C, which is similar to 

what has been stated in several documentations of corilagin’s physical properties. From 

mass spectrometry spectra (available in the appendices), the most intense peak recorded at 

m/z 634 matches the molecular weight of C27H22O18, thus suggested the compound present 

in G2 as corilagin (Nawwar et al., 1994). Finally, as a final confirmation, commercial corilagin 

was purchased and used as standard in the analytical HPLC analysis. The comparison 

between G2 and the corilagin analytical curve, as presented in Figure 7.18, showed the 

identical retention time between the two eluted peaks; 4.79 for G2 and 4.78 for corilagin 
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standard. The linearity of the analytical HPLC result served as a strong evidence of an 

identical characteristic of the samples, thus gives a strong validation data for the assignment 

of G2 as corilagin.  

 

 

 

Figure 7.13 – Structure of corilagin isolated from 50% (v/v) methanol extract  
of Phyllanthus niruri L  

Corilagin molecular structure is C27H22O18 with molecular weight of 634.45 g/mol. 
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Figure 7.14 – Molecular structure identification of G2 based on 1D 1H NMR data 

Region on 1H NMR spectrum of G2 is displayed in (A) and the list of the spectra is presented in (B). 
The assignment of the spectra is shown in (C) (Golotvin et al., 2006)  

  

B 

 No. Atom Exp. Shift (ppm) Multiplet 

1 3 3.86 M12 

2 14<''> 3.94 M11 

3 23 4.2 M10 

4 14<'> 4.25 M09 

5 13 4.35 M08 

6 4 4.59 M07 

7 27 5.77 M06 

8 36 5.83 M05 

9 2 6.2 M04 

10 22 6.49 M03 

11 12 6.56 M02 

12 42 7.01 M01 

13 38 7.01 M01 

 

C 

A 



224 
 

 

Figure 7.15 – Molecular structure identification of G2 based on 1D 13C NMR data 

Region on 13C NMR spectrum of G2 is displayed in (A) and the list of the spectra is presented in (B). 
The assignment of the spectra is shown in (C) (Golotvin et al., 2006)  

 

  

C 

No. Atom Exp. Shift (ppm)  
No. Atom Exp. Shift (ppm) 

1 23 62.38  
15 7 124.08 

2 14 64.18  
16 20 135.59 

3 3 71.9  
17 10 135.72 

4 13 76.58  
18 40 139.19 

5 4 77.84  
19 19 144.16 

6 2 92.35  
20 21 144.49 

7 22 106.25  
21 9 144.96 

8 12 107.1  
22 11 145.04 

9 42 109.18  
23 41 145.79 

10 38 109.18  
24 39 145.79 

11 18 115.72  
25 25 165 

12 8 116  
26 6 166.93 

13 37 118.89  
27 16 167.28 

14 17 123.25  
   

 

B 

A 
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Figure 7.16 – Molecular structure identification of G2 based on 2D COSY data 

The region of the COSY spectrum with the highlighted cross peaks is shown in (A) and the list of 
corresponding chemical shift is given in (B). The predicted molecular structure showing the cross 
peaks positions, is demonstrated in (C) (Simpson et al., 2004) . 

 

No. 

F2 
Atom 

F1 
Atom 

F2 
(ppm) 

F1 
(ppm) 

1 2 3 6.2 3.86 

2 27 3 5.76 3.86 

3 14<'> 14<''> 4.24 3.93 

4 13 14<'> 4.35 3.93 

5 4 23 4.58 4.2 

6 13 23 4.34 4.23 

7 36 23 5.83 4.2 

 
B C 

A 
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Figure 7.17 – Molecular structure identification of G2 based on 2D HMQC data 

The region of the HMQC spectrum with the highlighted cross peaks are shown in (A) and the list of 
corresponding chemical shift are given in (B). The predicted molecular structure showing the cross 
peaks positions, is demonstrated in (C) (Simpson et al., 2004) .  

No. 

F2 
Atom 

F1 
Atom 

F2 
(ppm) 

F1 
(ppm) 

1 2 2 6.21 91.91 

2 3 3 3.89 70.84 

3 4 4 4.6 77.18 

4 12 12 6.57 105.73 

5 13 13 4.36 75.83 

6 14<"> 14 3.95 63.37 

7 14<'> 14 4.25 63.59 

8 22 22 6.5 105.73 

9 23 23 4.22 61.78 

10 38 42 7.02 108.67 

 
C B 

A 
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Figure 7.18 – HPLC chromatogram of G2 and corilagin standard 

The HPLC column was a reverse-phase C-18 GraceSmart analytical column, 250 mm length x 2.1mm 
i.d., and 5µm particle diameter. The solvent system used was an Isocratic mobile phase consisted of 
0.5%TFA in water: acetonitrile (88:12 v/v). The flow rate was 0.5ml/min. The chromatograms were 
recorded at 254 nm for 20 minutes.  
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7.3 Discussion 

Four fractions were isolated from 50% (v/v) methanol extract of Phyllanthus niruri L, namely 

G1,G2, G3 and G6, which showed a profound inhibitory effects on in-vitro platelet 

aggregation. The nature of their isolation protocol has indicated the relative high polarity 

and hydrophilicity of the compounds. Following an extensive literature review, we have 

found several published papers that have mentioned a number of secondary metabolites, 

isolated from Phyllanthus niruri L, with demonstrated biological activities that are related to 

platelet functions.  

One of the main constituents of Phyllanthus niruri L extract are phenolics compounds, which 

cover a wide range of plant substances including flavonoids, phenolic acids, and tannins 

(Harborne, 1998, De Souza et al., 2002). Phenolic compounds have one or more hydroxyl 

groups attached directly to an aromatic ring. Their molecular structures exhibit some 

similarities with several key biological effectors and signal molecules, which correspond to 

their ability to modulate cellular physiology at the biochemical and molecular levels (Vattem 

and Shetty, 2005). 

One of the phenolic constituents that ubiquitously occurs in this plant are flavonoid 

(Bagalkotkar et al., 2006, Calixto et al., 1998). Flavonoids have been reported to show 

inhibitory effect on platelet aggregation, which is suggested to be dependent on the 

inhibition of the cyclooxygenase pathway, involving their antioxidant activities that have 

previously been extensively studied (Sheu et al., 2004, Pignatelli et al., 2000, Pignatelli et al., 

2006).  

Rutin, a flavonol glycoside is a common phenolic secondary metabolites that is known as a 

constituent of Phyllanthus niruri L (Bagalkotkar et al., 2006). Rutin has shown the ability to 
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inhibit platelet aggregation induced by collagen, thrombin, and arachidonic acid. In 

accordance with collagen-induced platelet aggregation, the inhibitory effect is suggested to 

be initiated by inactivation of phospholipase C, leading to the inhibition of protein kinase C 

activation and thromboxane A2 formation. Furthermore, rutin also inhibited the 

phosphorylation of P47, a major substrate for protein kinase C in platelets, and intracellular 

ca2+ mobilisation in collagen-activated platelets (Sheu et al., 2004).  

       

Figure 7.19 –Chemical structure of flavonoids from Phyllanthus niruri L. 

Furthermore, catechin and quercetin were also reported as antiplatelet flavonoids, which 

were able to inhibit collagen-induced platelet aggregation and platelet adhesion to collagen. 

Their effect was significantly greater when they were administrated together as a 

combination therapy, thus suggesting the synergism effect among flavonoids. Such 

combinations strongly suppressed collagen-induced hydrogen peroxide production, calcium 

Rutin  

Quercetin  

Catechin  



230 
 

mobilisation, and 1,2,3-inositol triphosphate formation (Pignatelli et al., 2000). Hydrogen 

peroxide is generated during platelet activation induced by collagen which, in turn, may 

stimulate platelet aggregation via Ca2+ mobilization (Del Principe et al., 1991). The above 

finding indicated that quercetin and catechin inhibited platelet function by virtue of their 

antioxidant activity, which was evident from the fact that the inhibition of hydrogen 

peroxide production is more significant than its direct inhibition of platelet aggregation. 

However, it is postulated that flavonoid inhibitory effect on platelet aggregation is partial, as 

it cannot completely inhibit platelet aggregation (Pignatelli et al., 2000). The synergism 

effect of quercetin and catechin also effectively reduced platelet recruitment via inhibition 

of PKC-dependant NADPH oxidase activation, leading NO-mediated platelet glycoprotein 

GPIIb/IIIa down-regulation (Pignatelli et al., 2006). NO produced by stimulated platelet, 

modestly inhibited platelet activation but markedly inhibits additional platelet recruitment, 

thus explaining its function in the regulation of platelet recruitment into a growing 

thrombus. Within the intact blood vessel, NO is produced by vascular endothelial cells and 

plays a role in preventing platelet adhesion to the vessel wall, which take place via collagen 

receptors (Freedman et al., 1997). Moreover, NO also prevent platelet activation by 

selectively inhibiting the expression of platelet surface glycoproteins; P-selectin (alpha-

granule protein), CD63 (lysosomal protein), and the GPIIb-IIIa complex (fibrinogen receptor) 

(Michelson et al., 1996) .  

However, studies on flavonoid single therapy for preventing platelet aggregation were 

found to be contradictory. One study conducted by Janssen et al. (1998) concluded that 

quercetin had no effect on ADP-induced platelet aggregation, based on an in-vitro test on 

human platelet  aggregation. The aggregatory effect shown was dose-dependent and 

seemed to show no significant effect in-vivo, when given alone, towards haemostatic 
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parameters upon treatment of animal subject with quercetin (Janssen et al., 1998). In 

another study, catechin exhibited a potent inhibitory effect on platelet aggregation 

stimulated with ADP, epinephrine, and arachidonic acid, with a dose-dependent manner. 

The inhibitory activity was believed to be attributed to catechins ability to protect platelets 

from peroxidative stress (Neiva et al., 1999). 

Terpenes are also present in Phyllanthus niruri L. The term ‘terpenoid’ covers a range of 

plant substances that have common biosynthetic origin, based on the isoprene molecule, 

and generally are lipid soluble. Limonene is a known as natural cyclic terpene, and as one of 

the aromatic compounds found as a Phyllanthus niruri L constituents. Limonene exhibited 

the ability to directly bind to A2A receptor in a selective manner, thus suggested its role as a 

ligand and agonist for adenosine A2A receptors. In addition, limonene was found to elicit 

concurrent metabolic changes after the activation of a signalling pathway mediated A2A 

receptor, including the upsurge of cytosolic cAMP concentration, protein kinase A 

activation, and the rise of cytosolic calcium concentration (Park et al., 2011). The platelet 

surface is rich in adenosine A2A receptors and their activation results in the accumulation of 

cAMP, which is responsible for preventing excessive platelet activation, in response to 

various stimuli, including ADP and collagen (Haskó et al., 2008). In addition, p-cymene, 

another terpene occurring in Phyllanthus niruri L has been reported to express some 

cardiovascular effects based on an in-vivo animal study, although it produced no significant 

inhibition of ADP-induced platelet-aggregation (EH et al., 2003). Lupeol, showed anti-

arthritic activity and also maintenance of platelet count number in arthritic rat, which 

suggested its protective effect on platelets (Saratha and Subramanian, 2012).  
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Figure 7.20 – Chemical structure of terpenenes from Phylanthus niruri L. 

Recently, methyl brevifolincarboxylate, a coumarin derivative isolated from the leaves of 

Phyllanthus niruri L, was the first active compounds derived from Phyllanthus niruri L, which 

has been reported to show an inhibitory effect on ADP-induced platelet aggregation. The 

activity was stated to be attributable to a decrease in Ca2+ concentration in platelets, 

however the absolute mode of action is remain unclear (Iizuka et al., 2007). Based on the 

above study, this compound has been listed on the database of Chemical Entities of 

Biological Interest (ChEBI) as one of the chemical entities act as platelet aggregation 

inhibitor (Hastings et al., 2013).  

 Some lignans from Phyllanthus niruri L were reported to act as an antagonist for platelet 

activating factor (PAF), which has been considered as the mode of action by which they 

exhibit the anti-inflammatory response (Bagalkotkar et al., 2006). Niranthin, isolated from 

this plant, showed a significant inhibitory effect on PAF-induced paw enema formation in 

mice and selectively reduced PAF binding to its receptors (Kassuya et al., 2006). Platelet 

activating factor (PAF) is a lipid mediator that is known for its ability to cause platelet 

aggregation through its binding with the specific receptors, platelet activating factor 

receptor (PAFR), which abundantly present on the surface of platelets. To aid its aggregation 

inducer effects, the administration of PAF antagonist has shown a specific inhibition effect 

Limonene p-Cymene Lupeol 
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on PAF-induced platelet aggregation in rabbit platelet suspension (Terashita et al., 1983). 

Therefore, providing evidence that niranthin might alter PAF binding to its receptors on the 

platelet surface, this might also be one of the possible compounds responsible for 

Phyllanthus niruri L antiplatelet activity. 

 

    

Figure 7.21 – Chemical structure of niranthin and methyl brevifolincarboxylate 

To conclude, some of phenolics and terpenes which naturally occur as secondary 

metabolites of Phyllanthus niruri L have demonstrated activity in inhibiting platelet 

aggregation, based on a number of previously published reports. Before the final elucidation 

of the definite molecular structures, we may speculate that the isolated compounds 

possessing the antiplatelet effect presented in this study, might fall into one or both classes 

of phytochemicals. However, according to the nature of their extraction and isolation 

procedure, it is more likely that G1, G2, G3, and G6 are one of the phenolic compounds 

which are relatively water-soluble and hydrophilic.  

Surprisingly, we found that in the presence of G9, platelet aggregation responses surpassed 

the effect of that seen when ADP is administrated alone. This finding is parallel to one study 

by Cliffton et al. (1965) that reported ellagic acid, as one of a well-known constituents of 

Niranthin Methyl brevifolincarboxylate 
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Phyllanthus niruri L, which showed a disparate influence towards platelet aggregation. 

Ellagic acid expressed thrombogenic effects, presumably by activating coagulation factor XII 

which is also known as Hageman factor, leading to the activation of the coagulation cascade 

via the intrinsic pathway (Cliffton et al., 1965). Intravenous administration of ellagic acid was 

reported to induce in-vivo platelet stimulation, eliciting a decline in the level of plasma 

fibrinogen, reduction in platelet numbers, and an increase of the activated partial 

thromboplastin time (Damas and Remacle-Volon, 1987). In addition, several phenolic 

compounds, including geraniin, corilagin, and gallic acid, exhibited the ability of NO 

scavenging activity which is mainly due to the presence of free hydroxyl group. As 

mentioned earlier, NO has weak antiplatelet activity through the modulation of platelet 

recruitment and alteration of platelets adhesion. Therefore, such may be the underlying 

mechanism of platelet aggregation stimulation caused by phenolic compounds. Although 

the present preliminary screening did not provide additional information on all possible 

modes of action, the finding might indicate that G9 can be the platelet-agonist naturally 

present in Phyllanthus niruri L, which is most likely to be of the phenolic family of 

compounds.            

Antiplatelet activity of plant derived natural compounds is defined as being of high potency 

when the maximal inhibitory response is achieved at a relatively low concentration. 

Moriyama and co-workers (2009) stipulated that when an isolated fraction of plant extract 

expressed maximal inhibitory effect at a dose range of 70-130 µg/ml, it can be considered as 

an effective antiplatelet compound. This present study exposed that G2 and G6 elicited their 

maximal response at a dose of 62.5 µg/ml that, according to Moriyama et al. (2009), can be 

classified as highly potent inhibitory effect. The G3, which showed its maximal response at a 

dose of 125 µg/ml, is considered as an effective agent for inhibiting platelet aggregation. 
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Finally, G1 demonstrated maximal inhibitory effect at a higher dose, 250 µg/ml, hence 

suggested G1 as a weak antiplatelet compound.  

 

Figure 7.22 – Chemical structure of geraniin, ellagic acid, and gallic acid. 

The inhibitory patterns of each fraction are shown in Table and Figure 7.7. Manual 

macroscopic observation recorded that, in common, all treated ADP-activated platelet 

demonstrated a decrease on total platelet clumps deposit, which clearly verified the 

inhibitory effect. In accordance with the potency of each compound, G2 was perceived to 

greatly prevent platelet activation and further platelet aggregation, evident from the 

abundance of solitary activated-platelets, in addition to the frequent number of residing 

resting platelets. Moreover, G3 and G6 treatments demonstrated comparable inhibitory 

effect, however the majority singled-populated platelet were already being activated rather 

than remain in the resting state. Furthermore, the weak effects of G1 could be seen from 

Gallic acid 

Geraniin 

Ellagic acid 
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the occurrence of highly activated platelets displaying dendritic shape with extensive 

pseudopodia, in addition to the absence of solitary platelets. 

Following platelet stimulation, the development of platelet aggregates is largely influenced 

by the recruitment of neighbouring platelets onto the activated and primarily-aggregated 

platelets, linked together via fibrinogen bridging through the activation of GPIIb/IIIa as the 

main receptor of fibrinogen. This event can be inhibited by such mechanism where the 

receptor affinity towards fibrinogen is affected or the expression of the receptors on the 

platelet surface upon platelet activation is reduced. The data presented on Figure 7.7 

showed that, macroscopically, G2, G3, and G6 inhibited platelet aggregate development, 

after platelet aggregation stimulation by ADP. This finding is marked by the high number of 

solitary activated-platelets, relative to resting platelet, in addition to the decrease of 

medium- and large-sized platelet aggregates formation. Accordingly, the effect might 

indicate that the alteration of GPIIb/IIIa function to recruit and link the platelets together is 

affected by the presence of the compounds. One early assumption can be made that the 

effect might correspond to the inhibition of cyclooxygenase pathway as demonstrated by a 

number of plant-derived natural flavonoids, which is as one of the main constituent of 

Phyllanthus niruri L secondary metabolites. It has been proposed that rutin, quercetin, and 

catechin serve their antiplatelet activity through the inhibition of thromboxane A2 synthesis 

resulting from the inactivation of PKC enzyme, leading to NO-mediated GPIIb/IIIa down-

regulation (Sheu et al., 2004, Pignatelli et al., 2000, Pignatelli et al., 2006). The overall events 

hamper ADP-activated platelets recruitment and inhibit the development of larger platelet 

clumps. 
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Moreover, the synergy effect of flavonoid combinations that effectively reduce platelet 

recruitment, but are partially effective in inhibiting platelet aggregation is reported by 

Pignatelli et al. (2000). This might provide an explanation of the antiplatelet activity shown 

by impure fractions; G1, G3, and G6. The effect of G1 on platelet aggregate demonstrated 

that small-sized and medium-sized aggregates were significantly decreased, indicated that 

the modest inhibitory effect is most likely due to the inhibition of platelet aggregation 

without significant alteration of platelet activation by ADP. 

The Isolation and purification of pure natural substances are problematic and has been the 

bottleneck of the overall process of the discovery of medicinal active compounds, attributed 

to the complexity of the naturally-occurring secondary metabolites in plants. Very often in 

small-scale natural product isolation, an exhausting and time-consuming separation and 

purification process occurs that, at the end, yields a small amount of compound with 

relatively low levels of purity. Jaki and co-workers (2008) investigated the purity-activity 

relationships of natural products and suggested that at a purity level above 90%, the 

biological activity is relatively constant without significant interference effect from the 

disconcerting contaminants. The presented analytical HPLC data showed that amongst all of 

the active compounds, G2 purity range was 90.21 to 93.03% , thus indicated that the 

antiplatelet effect was probably solely due to the compound’s ability to suppress platelet 

activation and aggregation. When purity is less than 90%, there is a reasonable possibility of 

the interactions between one or more existing component. In this case we might not be able 

to conclude whether the final antiplatelet effects demonstrated by G1, G3, and G6 arose 

from synergism or the antagonism effect of the containing materials.  
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The structure of G2 was identified on the basis of its NMR and MS spectra, in comparison 

with data available in the literature (Jikai et al., 2002). From the 1H NMR spectrum, 13 

proton resonances were assigned, which consisted of four aromatic protons (6.5-7.1 ppm) 

and nine aliphatic protons (3.5-6.5 ppm). The 13C NMR spectrum exhibited 27 carbon 

resonances, including six aliphatic carbons in the region from 60 to 95 ppm and 18 aromatic 

carbons in the region from 100-150 ppm. This data indicated that G2 contained three 

aromatic rings, one glucose moiety and a highly oxygenated carbon skeleton. By taking the 

connectivity of 2D COSY and HMQC spectra into account, in addition to the MS spectra that 

showed molecular ions at m/z 657[M+Na]+ and 633[M-H]- inferring to molecular weight of 

634, the identity of G2 was corilagin, with the molecular formula of C27H22O18 was proven 

(Jikai et al., 2002). According to HPLC analysis, the compound present in a purity > 93% 

compared to the standard compound.  

Corilagin, also known as beta-1-O-galloyl-3,6- (R)-hexahydroxydiphenoyl-D-glucose, is one of 

the novel hydrolysable tannins, which has been found in a number of medicinal plants, 

including in Phyllanthus niruri L (Markom et al., 2007, Colombo et al., 2009, Ishimaru et al., 

1992). The biological activities of the corilagin isolated from a diversity of medicinal plants, 

has been reported in many literatures. Its pharmacological properties encompass a range of 

therapeutic effects including anti-inflammatory (Okabe et al., 2001, Dong et al., 2010, Zhao 

et al., 2008, Gambari et al., 2012), anti-oxidative (Kinoshita et al., 2007), anti-cancer (LU et 

al., 2005, Hau et al., 2010, Ming et al., 2013), and hepatoprotective (Kinoshita et al., 2007). 

With regards to its activity on cardiovascular system, there is only a limited published report 

available to date, particularly in accordance with its inhibitory effect on platelet aggregation. 

In 1995, Cheng and co-workers reported the antihypertensive effect of corilagin in the 

spontaneous hypertensive rat. They suggested the role of the reduction of noradrenalin 
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release or direct vasorelaxation, as its mode of action in lowering rat blood pressure. Years 

later, in the investigation for anti-thrombotic agents, Chinese traditional medicine 

researchers were the first to investigate corilagin activity on rat carotid artery patency 

status. The result indicated that corilagin, in dose-dependent manner, inhibited type 1 

plasminogen activator inhibitor (PAI-1) in rat plasma or platelet related substances, and also 

increase tissue-type plasminogen activator (tPA) (Shen et al., 2003) . One year later, the 

same research group tested a fraction, containing 60% corilagin from Phyllanthus urinaria, 

towards thrombosis and coagulation system in rat. The result showed that the fraction 

reduced the relative weight of thrombus generated in the rat vena cava, which was 

suggested owing to the suppression of activated platelets binding to neutrophils (Shen et 

al., 2004). Although the antithrombotic activity might not be merely from corilagin, due to 

the level of impurity it contains. Corilagin’s role in hampering platelets-leukocytes adhesion 

were further reported by (Hongxiang et al., 2009), in addition to its anti-oxidant properties 

(Zhao et al., 2008), which has been discussed as the underlying mechanisms for corilagin in 

preventing the progress of atherosclerosis (Duan et al., 2005). Recently, from a study in rat 

arterial thrombosis, Hongxiang et al. (2009) was the first to disclose corilagin activity in 

inhibiting ADP- or PAF-induced platelet aggregation in a concentration dependant manner, 

with the IC50 of 115.6 and 264.8 µM, respectively. Although, a contradictive result was 

reported previously by Shen et al. (2003) that corilagin had no influence on rabbit platelet 

aggregation.  

Altogether, the above findings have given an indication of corilagin as cardiovascular 

protective agent by the antihypertensive, anti-thrombotic, as well as the antiplatelet effects 

(WeiGang et al., 2008). Nevertheless, the above evidences still have some restraints as, 

firstly, all experiments were based on animal-studies without further verification on human-
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based laboratory tests and, secondly, the natural sources from which the corilagin was 

isolated, were not clearly stated. Consequently, the variations on the subject of the 

experiments and the source of the tested compounds might result in the deviation of the 

end result. For example, the conflicting effect of corilagin towards platelet aggregation.  

In this present study, corilagin was isolated from the separation of methanolic extract of 

Phyllanthus niruri L, through a multistep extraction procedure of fractionation and 

separation procedures, guided by platelet aggregation test using human platelet. As the 

result, corilagin, with the purity level of 93.03%, have shown a strong potency in inhibiting 

in-vitro ADP-induced human-platelet aggregation with the IC50 of 31.91 µg/ml (or 50 µM). In 

comparison with the previously reported data, our results have demonstrated a coherent 

finding by the virtue of bioassay-guided isolation protocols, and verified the antiplatelet 

effect of corilagin. Therefore, to our knowledge, this present study was the first to discover 

the activity of corilagin isolated from Phyllanthus niruri L activity as a potent antiplatelet 

agent, based on an in-vitro human platelet aggregation test. 



  Chapter 8
Elucidation of the Mechanism 

of Action of Corilagin as 
Antiplatelet Agent 
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8.1 Introduction  

Corilagin, an ellagitanin isolated from the methanolic extract of Phyllanthus niruri L, has 

demonstrated a significant inhibitory activity towards human platelet aggregation, which 

was verified by a series of data presented in the previous chapters. The finding has provided 

a strong indication of the efficacy of this natural compound as a new source of antiplatelet 

agents. Furthermore, it is essential to uncover the fundamental basis of the inhibitory 

mechanism, by which corilagin affects the platelet function. Accordingly, further 

experimental tests were conducted, aiming at the elucidation of the mechanism of action of 

corilagin in inhibiting ADP-induced platelet aggregation. The study in this chapter is 

essentially in two parts: first, the evaluation of the involvement of platelet membrane 

receptors and, secondly, the proteomics study to observe platelet proteins alteration during 

platelet aggregation activation/inhibition events.  

Platelet surface receptors cover a number of membrane glycoproteins, which are crucial in 

the platelet activation cascade, leading to platelet aggregation to form the primary platelet 

plug (George, 2000). Glycoprotein IIIa, also known as CD61, is one of the major platelet 

membrane receptors that ubiquitously presents in resting platelet. Accordingly, it has been 

widely used as platelet marker in flow-cytometry based platelet studies. CD61 is a 90-110 

kDa member of the beta integrin family, which binds non-covalently with the alpha integrin 

CD41, to form GPIIb/IIIa (CD41/CD61) upon platelet activation. In this study, the observation 

of GPIIIa was made by capturing this membrane protein using a CD61 monoclonal antibody.  

Furthermore, to evaluate the involvement of platelet membrane receptor in the inhibitory 

mechanism of corilagin towards platelet activation, PAC-1 and CD62P were used. PAC-1 

specifically recognises the GPIIb/IIIa complex on the activated platelet, which appears at an 
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approximate number of 45,000 to 50,000 receptors on the surface upon activation. The 

alteration of PAC-1 expression on the activated-platelet surface provides an indication of 

the involvement of GPIIb/IIIa inhibition during platelet activation. The analysis of CD62P 

expression was conducted to identify corilagin’s effect on platelet granule secretion. CD62P  

monoclonal antibody reacts with 140 kDa platelet adhesion membrane glycoprotein 

receptor, P-selectin, which is stored in the platelets alpha-granules and rapidly transported 

to the plasma membrane following platelet activation (Stenberg et al., 1985a). 

Platelet activation and the aggregation cascade encompass a wide range of platelet proteins 

alterations. This study comprehensively describes the proteins involved in the platelet 

functions, which are affected by the addition of corilagin upon ADP-induced platelet 

aggregation. To do so, a proteomics approach was used including 2D gel electrophoresis and 

label-free LC MS/MS platelet proteins analysis. The 2D electrophoresis was performed to 

visually separate platelet proteins, in order to gain a comparison of protein level between 

the samples. The LC MS/MS quantitative analysis was conducted using a free-label protein 

quantification method, followed by platelet signalling pathway analysis using a web-based 

PANTHER and REACTOME pathway analysis tools. Finally, the ultimate goal of this chapter is 

aiming at identifying the potential target proteins for corilagin in inhibiting platelet 

aggregation, which is required to strengthen the corilagin pharmacological activity as a 

natural-sourced antiplatelet agent.  
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8.2 Result 

8.2.1 Inhibitory response towards different platelet stimulation 

In the previous section, corilagin was shown to have a strong potency as an inhibitor ADP-

induced platelet stimulation. As a result, the evaluation of corilagin’s inhibitory effects on 

platelet aggregation following different agonist stimulation is necessary in order to further 

determine the mechanism of action of the inhibitory response. Platelet aggregation tests, 

induced by difference agonists, were conducted with and without the presence of corilagin 

at dose of 100 µg/ml. The doses of each agonist were 62.5 µg/ml collagen, 1 NIH U/ml 

thrombin, 250 µg/ml arachidonic acid (AA), and 5µM epinephrine. Figure 8.1 shows the 

corilagin effects on platelet aggregation induced by various agonists. The result 

demonstrated that corilagin exhibited inhibitory effects on platelet aggregate formation, 

regardless the agonist used to induce platelet aggregation. The inhibitory potency of 

corilagin, from the strongest to the weakest, in the following order AA – thrombin – 

epinephrine – collagen.  
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Figure 8.1 – Inhibition effect of corilagin on of platelet aggregation induced by various 
agonists 

The bars in the graph shows the maximum platelet aggregation response stimulated by agonists only 
(A) or in the presence of corilagin at a concentration of 100ug/ml (B).  The agonists used for inducing 
platelet aggregation were in a concentration of 62.5 µg/ml collagen, 1 NIH U/ml thrombin, 250 
µg/ml arachidonic acid, and 5µM epinephrine.  Each data point on the graph represents the mean ± 
SEM of three replicates of the experiment (n=3). The significant difference between each group and 
the corresponding control group is shown by (*) for p < 0.05 and (**) p < 0.01. 

8.2.2 Analysis of CD61 expression in the presence of corilagin 

Prior to the analysis, a gating strategy was employed to determine the platelet population in 

the samples, as shown in Figure 60. Initially, unstained resting platelets from whole blood 

sample were analysed using flow cytometry, to visualise the area where platelet population 

was located within the cytograms (Figure 8.2-A). A similar approach of was used for purified 

platelets used, as shown in Figure 8.2-B.  

To observe the ubiquitous platelet surface marker expression in the event of the inhibition 

of ADP-induced platelet aggregation by corilagin, a simultaneous analysis of CD61 

expression in the isolated platelet samples obtained from resting, ADP-activated, and 

corilagin-treated ADP-activated platelets was performed. As presented in Figure 8.3 (A), the 

result demonstrated a significant difference between CD61 expression on resting and ADP-

activated platelets. In resting conditions, the platelet population tends to express a high 
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quantity of the CD61 positive platelets (91.4 ± 2.1%), whereas ADP-activated platelets 

demonstrated a deterioration of the receptor expression (33.6 ± 6.1%) with more than half 

of platelet population devoid of all measurable CD61 expression. CD61, also known as 

integrin β3 (GPIIIa), is a 105 kDa transmembrane platelet glycoprotein. GPIIIa foms a 

GPIIb/IIIa complex, in association with GPIIb, which facilitates platelet adhesion and 

aggregation following platelet activation by ADP. GPIIb/IIIa complex reacts with fibrinogen, 

vWF and thrombospondin, thus play a crucial role for the development of platelet 

aggregate. The reduction in CD61 expression on the activated platelets is associated with 

the formation and activation of GPIIb/IIIa complex on the surface of stimulated platelets, 

which is dependant to the extracellular calcium concentration (Shattil et al., 1985). The 

presence of corilagin halted the loss of platelet surface CD61 expression following ADP-

induced platelet activation (the percentage of platelets with CD61 (+) is 51.5 ± 9.5%), as 

shown in the graph presented in Figure 8.3 (B).  
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Figure 8.2 – An illustration of gating strategy to show platelets population  
in flow cytometry 

Resting platelets analysis in flow cytometry using forward (FSC) and side (SSC) scatter approach. 
Unstained whole blood (Top figure) showing platelet population (A), by employing logarithmic scale 
on FSC and SSC, is used to separate platelets and RBC/WBC populations (2). For the analysis of 
platelet membrane glycoproteins upon ADP activation with/without the presence of Corilagin, 
isolated platelets are used. The gating strategy is presented in the second figure (B) which shows a 
relatively pure platelet population (3).  
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Figure 8.3 – Surface antigen CD61 expression 

The expression of platelet marker CD61 in resting platelet is illustrated in figure (A) showing two 
populations of platelets with a negative and positive CD61 expression, noted as population 1 and 2 
respectively. Figure (B) presents the changes of the proportion of cells with CD61 expression upon 
platelet activation induced by ADP with and without the presence of Corilagin. The statistical 
analysis is performed by two-way ANOVA test with Bonferroni’s correction to compare the treated 
samples to resting platelets. The P value for (**) is < 0.001, and for (*) is <0.01. 
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8.2.3 Analysis of platelet activation markers in the presence of corilagin 

PAC-1 and CD62P expressions on platelets surface were analysed to evaluate corilagin’s 

effects on ADP-activated platelets. PAC-1 specifically recognises the activated GPIIb/IIIa 

complex on the surface of stimulated platelet. CD62P is known as platelet P-selectin, a 

platelet surface protein that is released from platelet granules following platelet activation 

and aggregation. Flow cytometry analysis on these platelet activation markers are shown in 

Figure 8.4 and Figure 8.5.  The results showed that resting platelets lack the expression of 

these activation markers, evident from a platelet population showing PAC1 (-) and CD62P (-) 

expression of 91.8 ± 1.6%. Following ADP-activation, a significant rise in PAC-1 and CD62P 

expression occurred, from only 1.0 ± 0.8% on resting platelets to 29.6 ± 8.1% on ADP-

activated platelets. As shown in data from Figure 8.5, platelet population expressing PAC-1 

(+) and CD62P (+) was halted by the presence of corilagin, which reduced the percentage to 

13.0 ±7.6%. This the finding provides an initial indication of the possible involvement of 

GPIIb/IIIa inhibition in the overall mechanism of antiplatelet effects attributed to corilagin. 

Interestingly, when the analysis is expanded towards CD62P expression, an aberrant effect 

caused by corilagin was observed. In the presence of corilagin, ADP-activated platelets tend 

to express high population of platelets with PAC-1(+) and CD62P (-) as shown in region LR 

and a lower percentage of PAC-1 (-) and CD62P (+) as shown in region UL (Figure 8.5). The 

data presented here demonstrated that corilagin diminished CD62P expression on ADP-

activated platelets. Given that CD62P on the platelet surface is present as a result of the 

secretion of platelet granules, it is suggested that corilagin inhibits the increase of CD62P by 

the inhibition of the release of granule contents, particularly the dense granules in which a 

majority of the P-selectin is stored.  
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Upon platelet activation by ADP stimulation, the expression of CD61 as the marker for β 

subunit of GPIIb/IIIa receptors in platelet surfaces was diminished, accompanied by a 

significant increase of the total PAC-1 (GPIIb/IIIa complex) expression (the percentage of 

CD61 and total PAC-1 expression are 33.6 ± 6.1% and 49.7 ± 6.7%, respectively). The 

addition of corilagin prior to ADP activation caused an increase in CD61 expression up to 

51.5 ± 9.5%. However, the flow cytometry analysis showed total PAC-1 expression on ADP-

activated platelet surface was not affected by corilagin (44.8 ± 7.8%). In overall, the results 

indicated that corilagin has no significant inhibitory effects on the initial activation of 

GPIIb/IIIa complex. Nevertheles, from the resulted data, corilagin activities on ADP-activated 

platelet probably involve the inhibition of platelet release reaction and platelet aggregation 

amplification that, in turn, prevents further development of platelet aggregate.  
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Figure 8.4 – Two parameter flow cytometry analysis of PAC-1 and CD62P expression 

The gating strategy is employed to determine the expression of platelet activation markers PAC-1 
and CD62P. Four quadrant regions are displayed; (UL) is the region of platelets with PAC-1 (-) and 
CD62P (+), (LL) representing platelet population with PAC-1 (-) and CD62P (-), (LR) is the region of 
platelet population with PAC-1 (+) and CD62 (-), and (UR) representing platelet population with PAC-
1 (+) and CD62P (+).  
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Figure 8.5 – The comparison of the expression of PAC-1 and CD62P. 

The statistical analysis is performed by two-way ANOVA test with Bonferroni’s correction to 
compare the treated samples with resting platelets. The P value for (**) is < 0.001, and for (*) is 
<0.01. 
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8.2.4 Analysis of platelet proteome by 2D gel electrophoresis 

Following the initial observations of corilagin activity on the platelet membrane 

glycoproteins, the study was further expanded towards the analysis of the platelet 

proteome to reveal proteomics alteration during the inhibitory mechanism. The initial 

mechanistic observations were made from 2D SDS PAGE gel (pI 3-10 region) analysis of the 

platelet proteome under three different condition ; resting, ADP-activated, and ADP-

activated in the presence of corilagin. The experiment produced nine gels of three replicate 

for each group of platelet protein samples as illustrated in Figure 8.6. 

All spots showed in the 2D gels were identified and analysed by imageJ software, according 

to a procedure described by Natale (2011). All scanned gels images were aligned and 

normalised using bUnwarpJ plugin to solve the problem of spatial distortion and due to run-

time differences and dye-front deformation. The detection of the spots was performed by 

the Watershed plugin provided in imageJ software, on the inverted grayscale gel images 

which contained bright particles on dark background. To prevent over-segmentation, due to 

the noise, the images were filtered by using 3.0 radius Gaussian blurring. The parameters 

used for the watershed were 4 directions diagonal connectivity, and a range of grayscale 

value from 0 to 230, with object/background binary display. The analysis detected 462 spots 

that were labelled as presented in Figure 8.7 (top figure). The volume of each spot was 

analysed and measured as a function of spot density, which then normalised by dividing by 

the total volume of all spots on the corresponding image.  

The results of 2D gel analysis demonstrated that, in the presence of corilagin upon ADP-

activation, 24 protein spots showed a lower density compared with that seen in ADP-

activated platelet protein samples (the differential spots are shown as red spots in the 
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bottom image on Figure 8.7 ). Furthermore, the result showed three protein spots that 

expressed a higher density, on ADP-activated platelet proteome in the presence of corilagin 

(shown as green spots on Figure 8.7). Among all of these differential proteins, most of them 

were found within the pI range of 4 to 7, this is the typical range of where platelet proteins 

have been identified so far (García et al., 2004) 
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Figure 8.6 – Image of 2D SDS PAGE electrophoresis of platelet proteins in different 
condition; resting, ADP-activated, and corilagin-treated ADP activated. 
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Figure 8.7 – 2D gel electrophoresis analysis 

2D gel figures shows the identified spots. The red and green marked spots related to the proteins 
which shows a decrease and increase of intensities visualised on the 2D gels, when the platelets are 
treated with Corilagin before ADP stimulation. The analysis was performed using imageJ software 
according to the protocol described by Natale (2011). Quantitative comparison of spot intensities 
was calculated by ANOVA test with p value < 0.05. Expression profile as a function of spot density 
volume and their standard deviations for (A) resting platelets, (B) ADP-activated platelets, and (C) 
ADP-activated platelets with the presence of Corilagin, are illustrated on the inset figures. Gel areas 
containing the same spot from each group are shown below the density volume values. 

  

pH 

M
o

le
cu

la
r 

w
ei

gh
t 

(k
D

a)
 

1 

2 

3 

4 

5 

6 
7 

8

9 10 

11 
12 

13 

14 
15 

16 
17 18 

19 

20 

21 

22 23 

24 25 
26 

A B C

Spot 15 

A B C

Spot 3 



257 
 

The identification of the differential spots was performed according to the procedure 

described by Lemkin and Thornwall (1999). The molecular weight (MW) and pI of each spot 

were matched with the 2D electrophoretic gels reference map of human proteome from 

SWISS-2DPAGE. From the analysis, 21 differential proteins were tentatively identified as 

listed in Appendix 4. The identified proteins were next used as the data input for pathway 

analysis using Reactome pathway database to discover the pathways in which the proteins 

are most likely involved. Rectome pathway analysis of the identified differential proteins 

showed four proteins, out of 21 proteins, were explicitly involved in platelet activation and 

aggregation pathway.   Interestingly, the pathway analysis results suggested that corilagin’s 

action in inhibiting platelet signalling includes the alteration of the platelet degranulation 

pathway and the inhibition of cytoplasmic Ca2+ intake. This finding provides a hint to the 

possible route of corilagin activity in inhibiting platelet aggregation, which possibly 

correlates with the inhibition of platelet secretion and calcium pathway, as illustrated in 

Figure 8.8. 

Table 8.1 – Pathway analysis 2D gels 

Pathway name Total 
protein 

Protein 
population  

P 
value 

 FDR 

Platelet activation, signalling and 
aggregation 

4 2% 
< 
0.001 

 
2 % 

Platelet degranulation 4 5% 
< 
0.001 

 
< 1 % 

Response to elevated platelet cytosolic 
Ca2+ 

4 5% 
< 
0.001 

 
< 1 % 
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Figure 8.8 – Response to elevated platelet cytosolic Ca2+ 

Platelets activation lead to the release of platelet granule contents including the alpha granules and 
secretory granule components. This overall events take place in response to elevated platelet 
cytosolic Ca2+ concentration. Reactome pathway analysis shows that Corilagin suppresses the 
expression of several proteins involved in the platelet degranulation process (indicated by yellow 
boxes). Platelet granules proteins found to be less-abundance are P02787, P00747, P04075, and 
P02679. The result suggested that Corilagin may act in the inhibition of platelet degranulation.  
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8.2.5  Label-free platelet protein quantification 

8.2.5.1 Platelet proteome classification 

Separation of platelet protein in two-dimension gel electrophoresis has provided general 

figures on the alteration of platelet proteome, as the effects of corilagin on platelet 

activation induced by ADP. However, although 2D-gel electrophoresis were able to visualise 

the separation of platelet proteins, which were separated according to their isoelectric 

points and molecular weight, this protein separation method still has several constraints, 

particularly when sensitivity and accuracy of protein identification, as well as protein 

quantification, is needed for more accurate platelet pathway analysis.   The most common 

drawback of 2-D gel electrophoresis is that it usually only shows the most abundant 

proteins. Consequently, the low-abundance proteins that might be of importance in the 

platelet aggregation events might not be identified. Moreover, 2D-PAGE separation is 

limited by gel concentration and protein size, which means basic and membrane bound 

proteins cannot be well separated by 2D-PAGE.  

Consequently, we conducted mass spectrometry platelet proteins analysis using a SYNAPT 

G2-S HDMS mass spectrometer (Waters, Manchester UK) in order to obtain a broader 

picture of platelet proteome changes during corilagin inhibition of ADP-induced platelet 

aggregation events.  The complex peptide mixture, upon tryptic digestion, was analysed in 

mass spectrometry using data-independent acquisition approach. The produced MS spectra 

was further analysed using PROGENESIS QI software, which performed the peak 

identification, followed by protein identification and protein quantification by searching 

SWISSPROT human database. Three different conditions of platelet total proteome were 

analysed; resting, ADP-activated, and ADP-activated in the presence of corilagin. Analysis of 
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the MS data identified 83132 distinct features within the data, which representing the peaks 

on the MS spectra. A total of 33714 peptides were identified, which related to 2468 

quantifiable proteins were identified. Principal component analysis (PCA), was performed to 

obtain a simplified data visualisation, in order to observe the variation between sample 

groups. The PCA results, shown in Figure 8.10, showed a clear differentiation between three 

groups of sample; resting, ADP-activated, and ADP-activated in the presence of corilagin; at 

the feature and protein levels of the data sets.  

Furthermore, in order to obtain a general figure of the whole platelet proteome identified in 

this study, gene ontology analysis was undertaken through PANTHER classification systems 

(Mi et al., 2013), using the list of all identified proteins as data input (2468 proteins).  The 

analysis identified 2307 proteins, which were classified into several categories according to 

the protein and gene database available in PANTHER classification system. Figure 8.10 

showed the functional classification of the identified platelet protein. The molecular 

function classification according to the PANTHER database (Figure 8.10 A) showed that the 

majority of the identified platelet proteins are categorised as enzyme-related proteins 

(43%),  which are related to platelet signalling processes, i.e. G-protein modulators, small 

GTPases, guanyl-nucleotide exchange factors, phosphatases, and kinases. Binding proteins 

have a total share of 30% of all of the identified proteins, which include calcium ion binding, 

receptor binding, and cytoskeletal binding proteins. A closer look at the proteins cellular 

process (Figure 8.10 B) showed 23% of the identified proteins were related to platelet 

metabolism process, which is intimately coupled to platelet activation response, one 

example was the proteins related to ATP turnover in platelet cytoplasm (Holmsen, 1985). A 

total of 11% and 10% were related to cellular movement/organization and cell 

communication process, respectively. The rest of the identified proteins were distributed to 
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other platelet biological functions, including transport (10%), response to stimulus (4%), and 

adhesion process (3%).  

The distribution of proteins localisation (Figure 8.10 C) showed that the majority of the 

identified platelet proteins were located in platelet cytoplasm (33%). The cytoplasmic 

proteins mainly contribute to platelet metabolism, signalling, and vesicular transport. 

Interestingly, 21% of the total proteins were located in platelet cytoskeleton structures, 

which cover actins and microtubules, tubulins, cytoplasmic filaments, and pseudopodia 

protrusions. Moreover, platelet proteins specifically related to platelet activation process 

are found in platelet macromolecular complex (14%), plasma membrane (13%), or as 

content of platelet granules secretions (6%). The latter platelet proteins groups, together 

with those related to platelet signalling pathway, are of the greatest interest in the context 

of platelet activation event and, therefore, might be affected by a given antiplatelet agent 

to prevent the formation of platelet aggregates.  
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Figure 8.9 – PCA analysis of platelet proteome HDMSE data sets at the feature and protein 
levels 

The PCA biplot showing the differentiation of the resting (blue), ADP-activated (purple), and 
Corilagin-treated ADP-activated platelet at the regulated feature and peptide levels. 
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Figure 8.10 – Functional classification of platelet proteome 

Pie chart representing the 2307 platelet proteins identified in this study distributed into the 
following categories: (A) molecular function, (B) cellular process, (C) sub-cellular localization. 
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8.2.5.2 Quantitative proteomics analysis 

The analysis was started by the analysis of all quantifiable proteins using PROGENESIS QI 

software. The parameters used were p value < 0.05 for determining the significant 

difference, and maximum fold ≥2 of the increase/decrease in protein levels. From the 

analysis, 659 differential proteins were identified (noted as group A). Next, the data was 

divided into two groups of proteins; the first category was the proteins which were more 

abundant in the ADP-activated proteome (noted as group B), and the latter group was the 

proteins that were more abundant in the ADP-activated platelet with the presence of 

corilagin (noted as group C). For the ease of further data classifications and analysis, the 

differential platelet proteins is noted as group A, while group B and group C represented the 

proteins which are more abundant in ADP-activated platelet, in the absence and in the 

presence of corilagin, respectively. The quantitative analysis returned with a total number of 

338 of group B proteins and 321 of group C proteins. 

Furthermore, protein subset data was enriched by conducting an over-representation 

analysis using PANTHER statistical over-representation test, to compare platelet proteome 

during ADP-activation with and without the presence of corilagin, relative to platelet 

proteome in resting state. The enrichment analysis used a threshold value of 5% maximum 

false discovery rate (FDR) and p value < 0.05 for selection of proteins. Based on the analysis 

result as shown in Figure 8.11, it was seen that the signalling, adhesion, and junctional 

proteins were over-represented in group B. The finding indicated that corilagin contributed 

to the alteration of the expression profile of platelet proteins, which are related to signalling 

and adhesion processes during the ADP-activation event, i.e. G-protein coupled receptors 

and G-protein modulators, platelet glycoproteins (including integrin alpha-IIb/beta-3 and P-
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selectin), and Ras/Rho-related proteins. On the other hand, the proteins related to platelet 

cellular movement and organisation, metabolism, and cellular transport appeared to be less 

important during platelet aggregation inhibition by corilagin. The data presented in Figure 

8.11 showed that protein over-representations of group C were relatively comparable to 

group A, as the standard figure of total platelet proteome.  

Moreover, although the proteins representation of group C was found to be less significant 

compare to group B proteins, plasma membrane-origin proteins were over-represented in 

group C. This finding suggested the influence of corilagin to the over-representation of 

plasma membrane proteins, for example voltage-gated and ligand-gated ion channels, 

which are of crucial factors in the platelet activation pathway.  
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Figure 8.11 – Over-representation analysis of platelet proteome  

The chart shows each category of the functional classification of the proteins found in platelet 
proteome (group A). The other bars on the chart represent the proteins that is abundance in platelet 
proteome of ADP-activated alone (group B) or in the presence of Corilagin (group C). The cut-off 
value of the up- and down-regulated proteins are the maximum fold of ≥ 2 with a p value < 0.05. The 
relative over-representation of platelet proteins, relative to the resting state, is marked as (+) when 
the total number proteins found in a group is higher that the resting state, and (-) when the value is 
lower.   
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8.2.6 Platelet signalling pathway analysis 

The earlier analysis has revealed several possible routes for the inhibitory mechanism of 

corilagin towards platelet activation and aggregation. The experimental data generated 

from membrane glycoprotein analysis, 2D-gel electrophoresis platelet proteins expression, 

and the quantitative analysis of platelet proteome using a label-free proteomics approach 

have shown an enriched subset of proteins, whose expressions were increase/decrease in 

the presence of corilagin in ADP-activated platelet. All of the identified proteins might be 

involved in corilagin inhibitory action during platelet activation and aggregation events. A 

comprehensive analysis of the protein functions was performed using pathway analysis 

software to gain a deeper insight into the mechanism of inhibition. This was done by 

employing the qualitative and quantitative information generated from Progenesis QI as 

data input for the freely available Panther and Reactome software (The flow chart of the 

analysis is available in the appendix section). 

Initially, subset data of protein lists, obtained from quantitative proteomic analysis in 

section 8.2.5.2; group A (659 proteins), group B (338 proteins), and group C (321 proteins) 

were used as the data input for Panther pathway analysis tools. The analysis was performed 

by uploading the protein list to PANTHER gene analysis tools, which automatically searched 

for the matched protein IDs within the PANTHER protein library (more detailed on PANTHER 

infrastructure and protocol is available in the appendix). The search resumed a total number 

of 587(group A), 303 (group B), and 284 (group C) protein hits. Next, each identified 

proteins were automatically annotated according to the pathways they are involved in. The 

respective pathways were then statistically analysed for their over-representation, resulted 

in a list of the possible pathways involved for corilagin to inhibit platelet aggregation. 
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Moreover, the resulted pathway list were filtered by using a minimum of 3 fold enrichment 

and p value < 0.05 for the enrichment of data output (Huang et al., 2009). When subset data 

group A were used as data input, the PANTHER pathway analysis results demonstrated 46 

proteins are registered as the components of one of more signalling pathways. Out of the 

total number above, 28 proteins are listed in the subset data group B, while the other 18 

proteins came from data subset C (complete protein list is available in the appendix). The 

enriched pathways list is shown in Table 8.2, which demonstrated the possible pathways 

involved in corilagin mechanism of action.  

Moreover, pathway analysis using subset data B showed 5 pathways significantly involved in 

corilagin mode of action. The analysis using subset data C did not show any significant result 

from PANTHER pathway analysis. Group B showed the differential proteins which were 

more abundant in ADP-activated, compare with that seen in protein samples from ADP-

activated platelet in the presence of corilagin, thus  represented the proteins which were 

down-regulated by corilagin during ADP-activation events (Table 8.2). Group C, on the 

contrary, represented platelet proteins that were up-regulated in the presence of corilagin, 

upon platelet activation by the addition of ADP.  Therefore, the finding suggested corilagin 

activities in inhibiting platelet aggregation involve the alteration of ADP-activated platelet 

protein expressions. The inhibitory effects shown by corilagin are probably due to in the 

inhibition of protein expression caused by ADP-activation.  

Based on PANTHER pathway analysis results, integrin and G-protein signalling pathways 

appeared as the main routes for corilagin in inhibiting ADP-induced platelet aggregation. 

This involves several platelet proteins including the G-proteins, membrane integrin alpha, 

and phosphatases, which were down-regulated in the presence of corilagin. A closer look at 



269 
 

each of the proteins involved revealed that the expression of a number of platelet-

activation proteins was also suppressed when corilagin was present during ADP-stimulation. 

The proteins involved including Guanine nucleotide-binding protein (G-protein) subunit 

alpha and subunit beta, phospholipase C, protein kinases, and 1-phosphatidylinositol 4,5-

bisphosphate phosphodiesterase, which are known to hold a key role in platelet activation 

and signalling mediated by G-protein-coupled receptors or GPCRs. Among all of the 

subfamilies of G-proteins, platelets express Gq, G12/G13, Gi/Gz, and Gs that, apart from the 

latter protein, are coupled to the receptors for agonists that induce platelet activation. ADP, 

the agonist used in this study, activates platelet via its receptors on platelet surface, such as 

P2Y12 and P2Y1. These receptors are known as GPCRs that stimulate platelet activation via 

Gq-coupled (P2Yi) and Gi-coupled (P2Y12). Gq activation transmits the downstream signals 

by its interaction and stimulation of platelet phospholipase C (PLC) which, in turn, lead to 

GPCR-stimulated platelet granule secretion, activation of platelet integrins, and platelet 

aggregation (Li et al., 2010). Given that the level of these proteins were lower following 

corilagin treatment of ADP activated platelet, this finding suggested that platelet activation 

via G-protein signalling route might be impaired in the presence of corilagin.  
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Table 8.2 – Pathway over-representation test of ADP-activated proteins  
with the presence of corilagin 

Pathway 
Total 
Protein 

Population 
% 

Fold 
Enrichment 

P-value 

EGF receptor signalling pathway 13 2.2 3.39 < 0.01 

Integrin signalling pathway 15 2.6 3.18 < 0.05 

VEGF signalling pathway 8 1.4 > 5 < 0.05 

Oxytocin receptor mediated signalling 
pathway 

7 2.3  > 5 < 0.01 

Histamine H1 receptor mediated 
signalling pathway 

6 2.0  > 5 < 0.01 

5HT2 type receptor mediated 
signalling pathway 

7 2.3  > 5 < 0.01 

Heterotrimeric G-protein signalling 
pathway-Gq alpha and Go alpha 
mediated pathway 

9 3.0  > 5 < 0.01 

Thyrotropin-releasing hormone 
receptor signalling pathway 

6 2.0  > 5 < 0.01 

Muscarinic acetylcholine receptor 1 
and 3 signalling pathway 

6 2.0  > 5 < 0.01 

Gonadotropin releasing hormone 
receptor pathway 

12 4.0 3.79 < 0.05 

Endothelin signalling pathway 7 2.3  > 5 < 0.05 

Parkinson disease 7 2.3  > 5 < 0.05 

Pathway enrichment analysis was conducted using PANTHER pathway analysis tool using subset data 
A from qualitative and quantitative proteomics analysis. Fold enrichment measures the magnitude 
of enrichment compare to human genome. Fold enrichment > 3 was considered as significant. The 
population percentage is the total number of proteins involved in a given term divided by the total 
number of input proteins. P-values examine the significance of gene-term enrichment. P value <0.05 
was considered significant. The diagram of each pathway is available in the appendices. 

 
  



271 
 

PANTHER proteome analysis has given an insight into the platelet signalling pathways that 

might be impaired by corilagin treatment upon ADP-induced platelet aggregation events. 

However, the scope of pathways shown by PANTHER pathway analysis is usually well 

defined in metabolic pathway, but much less in regulatory pathways. For example, PANTHER 

was able to categorise the down-regulated proteins, as the effect of corilagin on ADP-

activated platelet, into the possible corresponding pathways. However PANTHER pathway 

tool did not show explicitly the influence of the proteins or the pathways they involved in on 

platelet activation and subsequent aggregation cascade. To address this issue, a second 

pathway analysis was conducted using REACTOME pathway analysis tool. This approach 

provides a direct link with the protein expression in the platelet activation pathways, serves 

as an additional tool to verify the previous pathway analysis results.  

To perform the analysis, subset data group A, showing 659 differential proteins generated 

from Progenesis QI quantitative analysis, was used as a data input for Reactome expression 

analysis tool. The output was filtered by searching for platelet-related pathways with an 

entities p value < 0.05. The result demostrated 25 pathways and sub-pathways, showing the 

haemostasis pathway as the top leading platelet regulatory hierarchy (as presented in Table 

8.3). Furthermore, as seen in Figure 8.12, corilagin actions included regulation of protein 

expression in ADP-induced platelet activation, signaling and aggregation pathways, which 

probably involve thrombin signalling trough PARs receptor, signal amplification, platelet 

aggregation, PIP2 hydrolysis and response to elevated platelet cytosolic Ca2+. 

REACTOME pathway analysis results showed that corilagin demonstrated a direct inhibition 

towards ADP signalling through P2Y1 and P2Y12 receptors, thrombin signalling through 

PARs, and G-protein signalling cascade (as shown in diagrams in Figure 8.13). With regard to 
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the involvement of G-protein signalling in corilagin mode action, as previously indicated in 

PANTHER pathway analysis result, REACTOME analysis output showed corilagin activities 

involve the down-regulation of G alpha (z), G alpha (12/13), and G alpa (q) signalling events. 

As previously mentioned, these sub-families of G-proteins are expressed on platelets and 

crucial in platelet activation events. Moreover, corilagin also affected platelet PIPs 

metabolism, which is a key factor in platelet aggregation cascade.  

Within the pathways related to platelet internal milieu, corilagin was found to prevent the 

increase of platelet intracellular calcium, potentially attributed to the inhibition of SNARE 

formation in ADP-activated platelets. As described in Figure 8.14, the rise of platelet 

cytosolic Ca2+ levels following platelet activation resulted in platelet degranulation, which in 

turn allows the release of platelet granules and cytosolic contents. Therefore, the result of 

this study demonstrated that protein involved in platelet alpha granules release and overall 

cytosolic proteins expression was down-regulated, thus suggesting that corilagin specifically 

influences platelet calcium homeostasis during platelet activation and aggregation events.  

In the previous section, our result has demonstrated that corilagin reduced the level of 

platelet transformation from spherical shape into irregular and long-psedoposi shapes, 

following ADP activation. In line with this finding, REACTOME pathway analysis results 

showed that corilagin interfered with protein expression involved in PINCH ILK parvin 

complex signalling cascade, which controls platelet cytoskeletal rearrangement. Therefore, 

this finding might explain corilagin possible mode of action in the regulation of platelet 

cytoskeletal remodelling upon ADP activation.  
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Table 8.3 – Pathway list from REACTOME pathway analysis  

Pathway name 
Protein 
population 

P value FDR 

Disinhibition of SNARE formation 40% < 0.01 < 10% 

Regulation of cytoskeletal remodelling and cell 
spreading by IPP complex components 

25% < 0.01 < 10% 

Localization of the PINCH-ILK-PARVIN complex to 
focal adhesions 

25% < 0.05 < 20% 

ADP signalling through P2Y purinoceptor 1 16% < 0.01 < 1% 

Thromboxane signalling through TP receptor 13% < 0.01 < 10% 

Thrombin signalling through proteinase 
activated receptors (PARs) 

13% < 0.01 < 1% 

G alpha (z) signalling events 11% < 0.01 < 1% 

Prostacyclin signalling through prostacyclin 
receptor 

11% < 0.01 < 10% 

ERK/MAPK targets 10% < 0.01 < 10% 

ADP signalling through P2Y purinoceptor 12 9% < 0.01 < 10% 

Synthesis of IP3 and IP4 in the cytosol 8% < 0.05 < 10% 

G-protein activation 7% < 0.05 < 10% 

Prolonged ERK activation events 7% < 0.05 < 10% 

Synthesis of PIPs at the plasma membrane 6% < 0.05 < 20% 

Ca2+ pathway 5% < 0.01 < 10% 

Platelet homeostasis 5% < 0.01 < 10% 

Cell surface interactions at the vascular wall 5% < 0.01 < 10% 

G-protein mediated events 5% < 0.05 < 20% 

Platelet activation, signalling and aggregation 4% < 0.01 < 1% 

G beta:gamma signalling through PI3Kgamma 4% < 0.05 < 20% 

G alpha (12/13) signalling events 4% < 0.05 < 10% 

G-protein beta:gamma signalling 4% < 0.05 < 20% 

GPVI-mediated activation cascade 4% < 0.05 < 20% 

G alpha (q) signalling events 3% < 0.01 < 10% 

Haemostasis 3% < 0.01 < 1% 
All enriched proteins were used as the input data for pathway analysis using Reactome pathway analysis. Protein 
population represents the relative entities of proteins that are common between the submitted data set and the 
corresponding pathway. The p value is the result of the statistical test for over-representation of the proteins found in the 
corresponding pathway. False discovery rate (FDR) is the corrected over-representation probability. 
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Figure 8.12 – Haemostasis pathway 

The diagram highlighting the proteins found to be down regulated in haemostatic pathway (bottom 
figure) and the sub-pathway of platelet activation (top figure). The level of protein expression was 
shown by a coloured-standard bar on the left side of the figure, showing a range from dark blue (for 
the down-regulated) to light yellow (up-regulated). Within the platelet activation and aggregation 
pathway showed in the top figure, platelet proteins of five sub-pathways are found to be down-
regulated in the presence of Corilagin; thrombin signalling trough PARs receptor, signal 
amplification, platelet aggregation, PIP2 hydrolysis and response to elevated platelet cytosolic Ca2+.  
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Figure 8.13 – ADP and thrombin activation pathway 

Protein expression analysis highlighting the proteins which are down-regulated by the ADP-
activation in the presence of Corilagin (A). The similar effect are observed on thrombin activation 
pathway that also involving the activation of G-proteins for transmitting the activation stimulus into 
platelet’s internal milieu.  
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Figure 8.14 – Response to elevated platelet cytosolic calcium 

The process begins with the activation of Phospholipase C (PLC) on platelet membrane that 
stimulates the second messengers of the phosphatidylinositol pathway that, in turn, results in a rise 
of intracellular calcium and activation of Protein Kinase C (PKC). The diagram shows down-regulated 
proteins (in blue-highlight boxes) upon platelet aggregation in the presence of Corilagin. The finding 
suggested the inactivation of PLC enzyme thus prevents the cleavage of PIP2 to form the second 
messenger, PIP3 and DAG, which regulates calcium channels.  
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8.3 Discussion 

Various agonists stimulate initiation of platelet aggregation via their specific receptors on 

the surface of the platelet membrane. The intracellular signalling messages mediated by the 

agonist-receptor binding leads to platelet cytoskeleton rearrangement, cytoplasmic ion 

exchange, and the release of granule contents. From data presented in the previous 

chapters, this current study has revealed the profound inhibitory activity of corilagin in 

platelets aggregation, which was measurable in a dose dependent manner. This inhibitory 

activity was based on the in-vitro platelet aggregation assay and microscopic observation of 

the platelets morphology upon ADP-stimulation. In the presence of corilagin, the 

aggregation response was significantly impeded with the evident of the occurrence of 

round-shaped solitary platelets, which lack of platelet population with dendritic appearance 

with long pseudopodia.  

Platelet activation is macroscopically marked by the dramatic transformation of platelet 

morphology from discoid to irregular spherical shape, and is an immediate response to the 

signalling cascade transmitted from the activation of various platelet membrane proteins. 

Alpha and beta integrin subunits are important members of platelet membrane proteins, 

and are expressed on the platelet surface as heterodimers. The extracellular domains of 

these protein are larger than the intracellular parts (known as cytoplasmic tail), with a single 

transmembrane segment connecting the inner and outer part of the integrins. The main 

function of these proteins is to connect the extracellular matrix (ECM) to actin and 

cytoskeleton in platelet cytoplasm, as well as transmitting biochemical signals across the 

plasma membrane (outside-inside signalling). Moreover, the cytoskeletal linkages enable 

the integrin to regulate platelet shape and mediate adhesion. Upon platelet activation, 



278 
 

Integrin beta subunit directly binds to specific actin-binding proteins, i.e. talin, vanculin, and 

actin, which act as adaptor proteins for the cytoplasmic cytoskeleton filaments. Flow 

cytometry analysis of platelet membrane proteins in this current study showed that 

corilagin increased the expression of integrin beta-3 (CD61) on the surface of ADP-activated 

platelets, suggesting the alteration of integrin beta-3 binding to its related adaptor proteins 

and further signal transmission. The cytoplasmic tail of the integrin alpha, although not 

directly linked to the adapter proteins, binds the signalling adapter proteins, i.e. paxillin, and 

such binding is important in regulating spreading and stress fibre formation (Calderwood et 

al., 2000). It has been reported that the lack of integrin alpha expression appears to increase 

direct interaction of the cytoplasmic tail of integrin beta with cytoskeleton. In this study, 

platelet proteome analysis showed that the treatment of platelets with corilagin increased 

the expression of integrin alpha-6 and alpha-3, suggesting a high level of unbound-integrin 

alpha that might contribute to the inhibition of platelet cytoskeletal reorganisation. 

Moreover, the finding demonstrated the increase in the expression of filamin B, an adaptor 

protein anchoring the heterodimer alpha/beta integrin to actin-cytoskeleton (Xu et al., 

1998), which indicates the presence of free adhesive proteins without any interactions with 

the activated integrins. Filamin is known as one of central elements in the platelet 

membrane skeleton, presents in platelet as filamin A and B and links with the free N-

terminal of integrin cytoplasmic tail. Each of filamin A and B has two binding sites for the 

GPIb chain of the VWF receptor (GPIb-IX-V complex) and their interaction is of great 

importance in strengthening the linkages of the membrane cytoskeleton to the plasma 

membrane. Filamin attaches to  F-actin and takes part in building up the platelet actin 

filament system, involving several small GTPases and various signalling molecules. 

Therefore, the reduction of filamin binding has a strong correlation with the inhibition of 
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integrin-mediated platelet signalling, as well as platelet cytoskeletal rearrangement, 

pseudopodia protrusion, and shape changes (Cranmer and Jackson, 2003). Finally, the 

finding is coherent with the low level of cytoskeletal proteins expressed on the corilagin-

treated platelet proteome, including Crk-like protein, tubulin alpha-1C chain, LIM and 

senescent cell antigen-like-containing domain protein 1, and alpha-parvin. The later protein 

has been reported to interact with other platelet proteins to form the PINCH-ILK-PARVIN 

complex which functions in signal transduction from ECM, to regulate cytoskeletal 

remodelling and cell spreading (Wu, 2004). 

One of the central receptors in platelet aggregation is the GPIIb/IIIa (αIIbβ3-integrin), which is 

abundantly expressed on the platelet surface and is immediately activated following platelet 

activation. On resting platelets, this integrin is in its non-active state, with a low affinity 

towards ligands such as fibrinogen, VWF, or vibronectin (George, 2000). Interaction 

between platelet agonists and their receptors initiates the so-called inside-out signalling 

cascade that initiate the conversion of GPIIb/IIIa from a low-affinity to a high-affinity for 

ligands binding (Shattil et al., 1998). The data presented here shows that corilagin has no 

measurable activity towards GPIIb/IIIa activation, suggesting that this integrin receptor has 

undergone a conformational change and activated in a way that further impeded platelets 

aggregation. Therefore, it might be postulated that corilagin works on the alteration of the 

avidity modulation of GPIIb/IIIa, this implies activity role in the interaction between the 

activated integrin and the related ligands (Shattil et al., 1998) and, in turn, prevents platelet 

aggregation. Figure 8.15 illustrates the possible route on the platelet integrin-signalling 

cascade that are affected by addition of corilagin. In accordance with the presented data, 

the figure shows corilagin’s role in the alteration of the inside-out signalling mechanism 
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during platelet activation events, which may be attributed to the inhibition of platelet 

cytoskeletal and conformational modifications. 

 

 

Figure 8.15 – Corilagin role in platelet inside-out signalling mechanism 

Binding of ADP and its receptors (P2Y12 and P2Y1) initiates the activation of complex signalling cascade. The 
commencement of the active GPIIb/IIIa on platelet surface occurs through the structural changes in the 
integrins (affinity modulation), thus exposes the binding sites for the soluble ligands and turns GPIIb/IIIa into a 
high-affinity state. The signals form the agonists also induce platelet cytoskeletal rearrangement which causes 
the clustering of the activated GPIIb/IIIa. The latter event greatly enhances the ligand-binding affinity of 
GPIIb/IIIa. This study reveals that corilagin demonstrates a modest inhibition activity on GPIIb/IIIa affinity 
modulation, however it significantly prevents cytoskeletal modification and platelet conformational changes 
upon ADP-activation.  

 

Platelet inside-out signalling is triggered by a number of excitatory agonists via linkages with 

two types of platelet membrane receptors; adhesion molecules and G-protein coupled 

receptors. ADP, epinephrine, thrombin, and TxA2 interact with the later membrane 

receptors, whereas the other agonist, i.e. Collagen and VWF, which is normally exposed on 

the surface of wounded vascular endothelial cells, induced platelet activation reactions via 

adhesion molecular complexes; i.e. GPIa-IIa and GPIb-IX-V complex. Collagen, and other 

platelet adhesion molecules, induce platelet signal transmission through Src family kinases 

(SFKs), phosphoinositide 3-kinases (PI3Ks), and immunoreceptor tyrosine-based activation 

motif (ITAM) signalling pathway (Li et al., 2010). Platelet aggregation cascade initiated 
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through agonists binding to G-protein coupled receptors (GPCRs) involves three distinct G 

protein-mediated signalling mechanisms that are stimulated by the activation of three types 

of G-proteins; Gi, Gq, and G13. ADP initiates platelet aggregation through its receptors 

P2Y12 and P2Y1, each of which binds to Gi and Gq types of platelet GPCRs, respectively 

(Offermanns, 2006a). Thrombin and TxA2 mainly activates Gq and G12/13 to induce full 

platelet aggregation via their specific GPCRs; protease-activated receptors PAR1/PAR4 and 

TxA2 receptor (TP), respectively. Epinephrine, although its activity is mainly in amplifying the 

effect of other agonists or stimuli, induces platelet reactions by its binding to the α2A-

adrenergic receptor (Offermanns, 2006a). Although various membrane receptors initiate 

platelet activation via different receptor-binding mechanisms, at a downstream level they all 

share common intracellular signalling events. Based on the data presented in the previous 

chapter, corilagin showed a significant inhibitory effect towards platelet aggregation 

induced by various agonists. This implies that it not only prevents the formation of final 

platelet aggregates but also suggests that corilagin might act by disrupting a common 

intracellular cascade 

Based on the reactome pathway analysis, inhibition of G-protein pathways were suggested 

as one of the possible mechanism of the corilagin inhibitory mechanism towards platelet 

aggregation. The results showed a significant decrease in G-proteins and G-protein 

regulatory molecules expression, including Guanine nucleotide-binding proteins, G-protein 

coupled receptor kinase 4, and Regulator of G-protein signalling-18. ADP activation, which 

was used as platelet agonist in this study, and subsequent platelet aggregation is initiated 

via GPCR. Corilagin prevented the further G-protein signalling cascade, which was proven by 

the low-expression of proteins involved in the signal transmission. Moreover, other platelet 

agonists will also activate G-protein signalling cascades because all mediators can, in turn, 
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release or generate GPCRs ligands such as TxA2, ADP, and thrombin. Therefore, this finding 

might explain the great potency shown by corilagin in inhibiting platelet aggregation, 

irrespective to platelet agonists used to initiate the platelet activation. 

Agonists binding to Gq-coupled receptors results in the activation of phospholipase C (PLC), 

which in turn catalyses the generation of a second messenger through the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) via the cleavage of phosphodiester bond to 

release inositol trisphosphate (IP3) and diacylglycerol (DAG) (Li et al., 2010). In common, the 

majority of platelet agonists share the latter route in initiating complete platelet 

aggregation. IP3 is responsible for the release Ca2+ from platelet dense tubular system and 

the increase of intracellular Ca2+ level, while DAG activates platelet protein kinase C (PKC). 

The data presented here demonstrated a decrease in the expression of 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta (PLCβ) on corilagin-treated 

platelet proteome, thus indicating the inhibition of PLC activity during ADP-stimulation in 

the presence of corilagin. The finding is consistent with another result that shows the low 

level of PKCs expression, as the consequence of the alteration of the production of DAG and 

IP3. The above result has provided evidence of corilagin activity to impair the Gq-mediated 

signalling cascade upon platelet activation. Gq has been suggested to play a crucial role in 

ADP-induced platelet shape change by stimulating calcium contractile signalling (Li et al., 

2010) and, accordingly, it is possible that IP3 production is also hampered as corilagin has 

shown the activity to impair platelet conformational changes upon ADP-activation.  

In the case of other platelet G-proteins, Gi-mediated signalling brings about the activation of 

phosphoinositide 3-kinases (PI3Ks) and subsequent regulation Rap1b, a small GTPase 

responsible for mediating integrin activation (Li et al., 2010). Proteome analysis results 
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demonstrated that corilagin has no significant activity towards the expression of Gi-

signalling proteins. Given that GPIIb/IIIa, the main integrin responsible for platelet 

aggregation, has not been affected by corilagin, it is unlikely that Gi-mediated GPCR 

signalling is involved in the mechanism of action of corilagin. Likewise, G13-mediated GPCR 

signalling activates the small G-protein RhoA, which, upon activation, enhances platelet 

cytoskeletal contraction leading to platelet shape change and granule secretion (Aslan et al., 

2013). The expression of RhoA-related proteins, Rho GTPase-activating protein 26, is 

decreased with the presence of corilagin. However, it is found that Rho-related GTP-binding 

protein RhoB expression is increased, thus indicating a counteracting effect in Rho-mediated 

cytoskeletal regulation. Although human cells express a number of Rho GTPase proteins, 

RhoA is the most highly expressed Rho isoform in platelets which is directly activated by 

GPCRs (Aslan and McCarty, 2013). RhoB, which is also related with platelet function, mainly 

exerts an activity in PDGF-mediated membrane trafficking. Taken together, G13-mediated 

signalling might be partially affected by corilagin.  

Platelet responses to all agonists, at a downstream level, result in the secretion of granule 

contents. This reaction is seen as the key factor for the amplification and further 

development of platelet aggregates. Among all platelet secretory granules, α-granules 

contain the major adhesion proteins, i.e. fibrinogen, VWF, and TSP1. This secretory granule 

also contains the mitogenic factors (PDGF, VEGF, TGFβ), coagulation factors, and protease 

inhibitors proteins (protein C, PAI-1, TFPI). Moreover, various glycoproteins, P-selectin and 

GPIIb/IIIa are exclusively localised on alpha-granule membrane (Stenberg et al., 1985a). 

Dense granules mostly store platelet secondary agonists pool, such as ADP and serotonin, 

and platelet membrane receptors, including P-selectin (Israels et al., 1992). The contents of 

the later granule enhance the initial agonist stimulation and generate the activation of the 
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whole pathways of platelet activation and aggregation cascade. From the results of the 

analysis of platelet membrane receptors (section 8.2.3), the presence of corilagin during 

platelet stimulation by ADP significantly halted the expression of P-selectin, which 

suggesting the inhibition of platelet degranulation reaction. This finding is further supported 

by platelet proteome analysis results, which demonstrated a low level of platelet-secreted 

protein expression, particularly alpha granule contents, including coagulation factor VIII, 

platelet basic proteins, and septin-5, as the effect of corilagin treatment. The finding 

suggests that corilagin might counteract the ADP stimulation effects to induce further 

platelet aggregation, by interrupting the platelet degranulation process. 

One of the major components in platelet aggregation is the increase in the intracellular Ca2+ 

concentration, as the downstream effects of platelet activation stimulation by agonists. The 

calcium pathway is central to the cytoskeletal rearrangement and platelet degranulation 

that, as discussed earlier, generate the growing platelet plug and further coagulation. The 

rise of cytoplasmic Ca2+ level is primarily initiated by the activation of PLC and the 

generation of second messenger, IP3 and DAG. In ADP-induced platelet aggregation, this 

reaction is regulated by the activation of PLCβ via P2Y1-mediated Gq activation, although it 

has also been reported that ADP binding to P2Y12 receptor might lead to PLCγ activation 

(Varga-Szabo et al., 2009). In the earlier section, It has been discussed that corilagin 

decreases PLCβ expression, thereby resulting in the inhibition of IP3 and DAG production, 

which causes further alteration of the downstream effects. The main source of platelet free 

cytoplasmic Ca2+ arises from the organelle release of the stored Ca2+ pool and Ca2+ entry 

from extracellular compartment. Endoplasmic reticulum (ER) is known as the major source 

among all platelet intracellular stores. IP3 mediates calcium release from ER through its 

binding to IP3 receptors (IP3Rs) on the ER membrane surface, which themselves are Ca2+ 
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permeable ion channels, allowing free calcium release from ER inner compartment. The 

elevation of Ca2+
 concentration, in turn, causes the opening of Ca2+ channels on the platelet 

membrane, known as store-operated calcium (SOC) channel, to allow Ca2+
 influx (Varga-

Szabo et al., 2009). In addition to the SOC entry, further Ca2+ entry is mediated by DAG via 

the activation of the so-called non-store-operated calcium (non-SOC) channel, which is 

known as transient receptor potential channel 6 (TRPC6) (Berridge et al., 2003). In summary, 

while IP3 is known to evoke Ca2+ release from intracellular stores and regulate indirect Ca2+ 

entry, DAG is known to directly activate Ca2+ channels in the plasma membrane, although it 

has been argued that DAG might also mediate SOC entry in platelet (Varga-Szabo et al., 

2009). Although the elevation of Ca2+ is related to various steps in platelet activation, at the 

end, it contributes in regulating platelet shape change and degranulation, which are 

inhibited by corilagin as demonstrated from the results in this study. Accordingly, as 

corilagin decreases the level of protein involved in the upstream and downstream events of 

platelet Ca2+ pathway, the overall result suggested that inhibition of intracellular Ca2+ rise 

might be one of the possible mechanisms of the antiplatelet effect of corilagin.  

In summary, this current study has revealed several important clues in explaining the mode 

of action by which corilagin exert its inhibitory activity towards in-vitro platelet aggregation, 

as is illustrated in Figure 8.16. One important finding demonstrated that corilagin altered G-

protein signalling pathway in a selective manner by impeding Gq-protein cascade. Corilagin 

might act through G13-mediated signalling, however it shows no significant effect on Gi-

mediated signalling pathway. Eventually, corilagin inhibits platelet shape changes and 

granule secretion, which is suggested to take place by the inhibition of the rise of 

intracellular Ca2+ level due to the inactivation of PLC. Although corilagin shows no inhibitory 

effect on the initial activation of platelet glycoprotein, GPIIb/IIIa, the findings suggest that 
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the interaction between activated integrin and the related ligands is affected, which results 

in the inhibition of further amplification of platelet aggregation. Taken together, this study 

has confirmed the antiplatelet activity of corilagin and explained its coherent mode of 

actions, which support the application of corilagin as a natural-sourced antiplatelet agent. 
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Figure 8.16 – Proposed mechanism of corilagin action 

ADP stimulation initiates a multistep signalling cascade of G-protein coupled receptors. In 

the present of Corilagin, the overall downstream signal leading to platelet aggregation is 

affected. Inactivation of phospholipase Cβ (PLCβ) causes the inhibition of inositol-3-

phosphate (IP3) and diacylglycerol (DAG) production, leading to the suppression of Ca2+ 

release from endoplasmic reticulum (ER) and Ca2+ influx from extracellular compartment. 

Intracellular free Ca2+ depletion prevent the subsequent reactions upon platelet activation, 

platelet shape change and granule secretion. Consequently, Corilagin treatment causes 

platelet aggregation to take place. Given that the glycoprotein receptors and integrin 

cascade are less affected by Corilagin, it is suggested that the inhibition of calcium pathway 

might be the possible mechanism of Corilagin in inhibiting platelet aggregation 

(Discontinuous boxes shows proteins/events which are affected by Corilagin; orange 

coloured represents the inhibition effect, while green coloured represents possible 

inhibition effect).    



  Chapter 9
Conclusion 
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In the field of drugs discovery and development, natural products have proven to be a rich 

source of therapeutic compounds. Over the last 30 years, there is a great number natural-

derived new drug discovered, mainly as a result of intense studies conducted by 

pharmaceutical company and academia. Higher plants have been the most-explored natural 

source, which is mainly attributed to their abundance and ethnopharmacological use all 

over the world. However, despite great interest in the investigation of plants as new 

candidates of natural products, many plant sources and their constituents remain 

untouched. In addition, the number of plant-derived secondary metabolites discovered to 

date are still far from exhausted. 

Phyllanthus niruri L is one of the most well-known medicinal plants and has been widely 

used in many countries as a traditional medicine remedy. Its medicinal properties cover 

various symptoms and diseases, including respiratory and abdominal disturbance, renal 

stone elixir, infection, and bleeding disorder. Consequently, a number of research projects 

has been conducted in order to reveal the pharmacological activities of Phyllanthus niruri L, 

and have produced a considerable number of reports that mentioned its pharmacological 

effect. Nevertheless, the rich constituents of this plant are yet to be comprehensively 

studied, particularly with regard to the nature of the biological activities that the 

compounds have.  

To address the above issues, the main focus of this study is on the exploration of 

Phyllanthus niruri L to pursue the search for new candidate of natural compound. This was 

done through a bioassay-guided isolation protocol. Initially, the plant was extracted using 

maceration technique to obtain soluble containing materials, as the main constituents of 

the crude extracts. The plant extracts were tested against plasmodium, cancer cell lines, and 
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platelet aggregation. Upon the initial screening, further isolation procedures were 

performed using advance chromatography technique, in order to purify the most-active 

substances that represent the final candidate natural product. This study also conducted 

further bioassay and proteomics studies, in an effort to identify the fundamental principles 

of the mechanism of action of the isolated compounds. 

Initial bioassay tests conducted on the Phyllanthus niruri L extracts indicated its potency as 

antiplasmodial, anti-cancer, as well as anti-platelet agent. Water and methanol extracts 

were proven to express the highest potency in inhibiting plasmodium growth, by lowering 

the rate of parasites multiplication, which lead to the failure to enter the later stages of 

parasites life cycle. This activity might be related to anti-malarial substances, such as 

catechin, terpenes, and securinine. With regards to its anti-cancer effect, Phyllanthus niruri L 

extracts showed a significant cytotoxic effect on human Caucasian lung large cell carcinoma 

(COR-L23), human acute T lymphoblastic leukaemia (MOLT-4), and human Caucasian chronic 

myelogenous leukaemia (K562). This biological effect is thought to be attributed to 

methanol-soluble compounds, possibly including classes of flavonoids and terpenes, by 

interfering cancer cells progression from G1 to S and from G2 to M phase during cell cycle. 

Accordingly, the anticancer effect might be attributed to the alteration of DNA synthesis and 

further protein synthesis within the cancer cells. Although Phyllanthus niruri L extracts 

demonstrated a strong activity in inhibiting plasmodium and cell cancer growth, the extracts 

are proven to have no cytotoxic effect on normal fibroblast cell line.  

The screening for antiplatelet activity has demonstrated that Phyllanthus niruri L extracts 

exert a strong potency in inhibiting in-vitro platelet aggregation. The water extract was 

found to show the highest potency, followed by methanol and ethanol extracts. When 
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platelet aggregation is induced by ADP, Phyllanthus niruri L extracts suppress the second 

wave of platelet aggregation response, thus indicating a capability to prevent platelet 

granule release reaction and further amplification of platelet aggregation. Stimulation of 

platelets by different agonists has further confirmed the antiplatelet activity of this plant. 

Platelet aggregation induced by collagen, epinephrine, arachidonic acid, and thrombin was 

significantly inhibited, in the presence of the 50 % (v/v) methanol extract of Phyllanthus 

niruri L. Having found the remarkable potency of this plant in inhibiting platelet aggregation, 

this study is funnelled towards exploring the antiplatelet activity in order to discover the 

new antiplatelet compound. 

From the methanolic extract, the multistep platelet bioassay-guided isolation protocol 

resulted in the isolation of corilagin, or beta-1-O-galloyl-3,6- (R)-hexahydroxydiphenoyl-D-

glucose from the plant. Corilagin is known as one of the novel hydrolysable tannins, which is 

found in a number of medicinal plants. Until recently, only a few studies have reported its 

antiplatelet properties and little progress has been made with regards to the exploration of 

corilagin activity on human platelets. Moreover, all the past studies are limited to animal-

study based platelet test. Therefore, to our knowledge, this present study was the first to 

discover the activity of corilagin isolated from Phyllanthus niruri L with activity as a potent 

antiplatelet agent, based on an in-vitro human platelet aggregation test. In addition to this, 

the isolation process also discovered at least three other candidates for the new active 

compounds, which possess antiplatelet property. However, due to the low purity level, this 

study could not elucidate their molecular structure at this time.  

The investigation of the mechanism of action of corilagin suggests that upon ADP activation, 

platelet aggregates formation is greatly impaired. The inhibitory effect was initiated by the 
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inactivation of PLCβ, leading to the inhibition of the production of IP3 and DAG. The low 

levels of IP3 and DAG in the platelets cytoplasm results in the inhibition of Ca2+ release from 

endoplasmic reticulum and Ca2+ intake from extracellular environment. Calcium signalling is 

an important pathway in platelet activation, secretion, and aggregation. The low level of 

intracellular Ca2+ concentration, in turn, prevents platelet granule secretion and platelet 

cytoskeletal reorganization. Because most of platelet agonists are located in platelet dense 

granules and release to the extracellular matrix amplifies the aggregation response, the 

inhibition of granule secretion leads to the inhibition of platelet aggregation. In summary, 

the corilagin inhibitory mechanism is suggested to work through the inhibition of platelet 

degranulation, which is likely to be related to the regulation of platelet cytosolic Ca2+ 

concentration.  

In summary, this study has investigated scientific evidence for corilagin activity as anti-

platelet. To our knowledge, this study is the first to demonstrate the antiplatelet activity of 

corilagin, isolated from Phyllanthus niruri L. Moreover, the mechanism of action of corilagin 

was also elucidated, by using proteomics analysis of platelet proteome, which was never 

been reported elsewhere. Finally, the result produced in this study might be additional 

reference in natural product research and will contribute to the further study of anti-

platelet drug discovery. 
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Appendices 

 

Appendix 1 – Product specification of Phyllanthus niruri L plant material 
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Appendix 2 – Blood order approval letter 
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Appendix 3 - Mass spectrometry spectra from G2 fraction 
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Appendix 4 - Differential platelet proteins during platelet activation induced by ADP in the presence of corilagin, identified from 2D SDS 
PAGE 

 

Protein Description Accession ID Spot ID * MW (kDa) pI Protein function** 

Beta-1B-glycoprotein P02790 9 72 5.59 Regulation of Stat1 protein 

Calreticulin P27797 12 58 3.7 Calcium homeostasis 
Catalase P04040 15 54 7.52 Protects cells from the toxic effects of hydrogen 

peroxide  18 49 7.73 
CCAAT/enhancer-binding protein zeta Q03701 5 115 4.5 Stimulates transcription from the HSP70 promoter 
Complement C3 P01024 10 70 6.6 Activation of the PLC, MAPK and AKT signalling 

pathways 
Epidermal growth factor receptor P00533 1 151 5.93 Receptor tyrosine kinase binding ligands 
Fibrinogen gamma chain  P02679 16 48 5.56 The primary components of blood clots 

Fructose-bisphosphate aldolase A P04075 22 37 7.8 Plays role in glycolysis 
Glyceraldehyde-3-phosphate 
dehydrogenase 

P04406 23 37 7.9 Plays role in glycolysis 

Guanine nucleotide-binding protein-
like 3 

Q9BVP2 2 65 6.47 GTP catabolic process 

Haptoglobin P00738 21 37 5.8 intercellular tight junction disassembly 
Hemoglobin subunit alpha P69905 25 10 9.2 Oxygen transport 
Hemoglobin subunit alpha P69905 26 11 9.4 Oxygen transport 
Immunoglobulin heavy chain gamma P99006 6 110 6.5 Antigen binding 

P99006 19 51 9.02 
P99008 3 37.5 7.32 

Immunoglobulin heavy chain mu P99009 17 48 6.15 Antigen binding 
Immunoglobulin light chain P99007 24 25 7.8 Antigen binding 

Plasminogen P00747 7 112 6.68 Cleaves fibrin, thrombospondin and VWF factor 
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Protein Description Accession ID Spot ID * MW (kDa) pI Protein function** 

Prelamin-A/C P02545 13 60 7.1 Plays role in chromatin organization 
Protein disulfide-isomerase A3 P30101 14 52 5.66 Play role in signal transduction 
Serotransferrin P02787 8 80 6.63 Iron binding transport proteins 
Spectrin beta chain P11277 4 234 6 Major constituent of the cytoskeletal network 
T-complex protein 1 subunit zeta P40227 11 58 6.21 Folding of actin and tubulin 
Unknown Unknown 20 45 8.3 Unknown 
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Appendix 5 - PANTHER classification system 

The PANTHER (protein annotation trough evolutionary relationship) is a comprehensive 

web-based system that combines gene function, ontology, pathways and statistical analysis 

tools. PANTHER infrastructure consist of three modules; PANTHER protein library (yellow 

box), pathways module (dark green), and tool suite module (blue box). The library system 

consists of genes from 82 complete genomes, organised in PANTHER families and 

subfamilies, each of which is represented by a phylogenetic tree, a multiple sequence 

alignment (MSA) and hidden Markov statistical models (HMMs). Each family or subfamily is 

also annotated with ontology term (GO and PANTHER protein class term). PANTHER 

pathway module contains 176 expert-curated pathways (curated manually to connect all 

pathways to individual proteins in in the protein library). PANTHER website tool suite 

included gene analysis tools, which enables users to query data and classify genes and 

protein, and also to visualise, analyse and interpret large-scale gene function analysis (Mi et 

al., 2013)  
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Appendix 6 - Pathway analysis flow chart  
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Appendix 7 - Platelet proteins involved in the enriched pathways from Panther pathway 
over-representation analysis 

Protein Description Accession 
ID 

Subset 
data 

Phosphatidylinositol 4-phosphate 3-kinase C2 domain-
containing subunit beta 

O00750 B 

Thyroglobulin P01266 B 

Protein kinase C beta type P05771 B 

Insulin receptor P06213 B 

Tyrosine-protein kinase Yes P07947 B 

Heat shock 70 kDa protein 1A/1B P08107 B 

Tyrosine-protein kinase Fgr P09769 B 

Secretogranin-2 P13521 B 

Protein kinase C alpha type P17252 B 

Protein kinase C eta type P24723 B 

Proteasome subunit alpha type-2 P25787 B 

Mitogen-activated protein kinase 3 P27361 B 

Guanine nucleotide-binding protein subunit alpha-11 P29992 B 

Phosphatidylethanolamine-binding protein 1 P30086 B 

G protein-coupled receptor kinase 4 P32298 B 

Tyrosine-protein kinase FRK P42685 B 

Tyrosine-protein kinase FRK P42685 B 

Crk-like protein P46109 B 

LIM and senescent cell antigen-like-containing domain protein 1 P48059 B 

Guanine nucleotide-binding protein G (I)/G (S)/G (T) subunit 
beta-2 

P62879 B 

Voltage-dependent L-type calcium channel subunit alpha-1D Q01668 B 

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase 
beta-4 

Q15147 B 

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-
1 

Q4KWH8 B 

Histone acetyltransferase KAT2B Q92831 B 

Septin-5 Q99719 B 

Tubulin alpha-1C chain Q9BQE3 B 

Guanine nucleotide-binding protein subunit beta-4 Q9HAV0 B 

Regulator of G-protein signalling 18 Q9NS28 B 

Alpha-parvin Q9NVD7 B 

Rho GTPase-activating protein 26 Q9UNA1 B 

Filamin-B O75369 C 

Phosphatidylinositol 4-phosphate 3-kinase C2 domain-
containing subunit gamma 

O75747 C 

Serine/threonine-protein kinase D3 O94806 C 

Tyrosine-protein kinase Lck P06239 C 

Laminin subunit beta-1 P07942 C 

Integrin alpha-M P11215 C 

Neurofibromin P21359 C 



321 
 

Protein Description Accession 
ID 

Subset 
data 

Integrin alpha-6 P23229 C 

Integrin alpha-3 P26006 C 

Signal transducer and activator of transcription 3 P40763 C 

Signal transducer and activator of transcription 1-alpha/beta P42224 C 

Tyrosine-protein kinase Blk P51451 C 

Rho-related GTP-binding protein RhoB P62745 C 

Mitogen-activated protein kinase kinase kinase 9 P80192 C 

Dynamin-1 Q05193 C 

Mitogen-activated protein kinase 14 Q16539 C 

Serine/threonine-protein kinase N3 Q6P5Z2 C 

Mitogen-activated protein kinase kinase kinase 4 Q9Y6R4 C 
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Appendix 8 - Platelet proteins found in the enriched pathways from REACTOME protein expression analysis 

Protein description Uniprot 
Accession 

Up/Down 
regulated 

Protein function Reference 

Superoxide dismutase P00441 Down Destroys radicals which are normally produced within the cells and 
which are toxic to biological systems 

 

Coagulation factor VIII P00451 Down Factor VIII, along with calcium and phospholipid, acts as a cofactor 
for factor IXa when it converts factor X to the activated form 

 

Phosphatidylinositol 4-phosphate 3-
kinase C2 domain-containing 
subunit beta 

O00750 Down Phosphorylates PtdIns and PtdIns4P with a preference for PtdIns. 
Does not phosphorylate PtdIns (4,5)P2.  

(Arcaro et al., 1998) 

Platelet basic protein P02775 Down In vitro released from activated platelet alpha-granules, play role in 
prostaglandin E2 secretion 

(Piccardoni et al., 1996) 

Protein kinase C beta type P05771 Down Platelet activation, Response to elevated platelet cytosolic Ca2+ (Kang et al., 2001) 

Tyrosine-protein kinase Yes P07947 Down Non-receptor protein tyrosine kinase that is involved in cell-cell 
adhesion and cytoskeleton remodeling 

(Huang et al., 1991) 

Heat shock 70 kDa protein 1A/1B P08107 Down actively involved in integrin-mediated platelet adhesion (Bastos-Amador et al., 2012) 
(Gear et al., 1997) 

Tyrosine-protein kinase Fgr P09769 Down Contributes to platelet activation through a direct interaction with 
GPVI 

(Pestina et al., 1997) 
(Severin et al., 2012) 

Insulin receptor P06213 Down Receptor tyrosine kinase which mediates the pleiotropic actions of 
insulin 

(Hajek and Joist, 1992) 

Secretogranin-2 P13521 Down May contribute to thrombosis formation (Coppinger et al., 2004) 

Protein kinase C alpha type P17252 Down Play role in the regulation of calcium-induced platelet aggregation (Tabuchi et al., 2003) 

Protein kinase C eta type P24723 Down Play role in platelet activation (reactome) (Lee et al., 2010) 

Proteasome subunit alpha type-2 P25787 Down multicatalytic proteinase complex which is characterized by its 
ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent 
to the leaving group at neutral or slightly basic pH  

 

Mitogen-activated protein kinase 3 P27361 Down play role in platelet granule secretion (Flevaris et al., 2009) 

Guanine nucleotide-binding protein 
subunit alpha-11 

P29992 Down Involved as modulators or transducers in various transmembrane 
signalling systems in G-coupled receptor pathway 

(Xiang et al., 2012) 



323 
 

Protein description Uniprot 
Accession 

Up/Down 
regulated 

Protein function Reference 

Phosphatidylethanolamine-binding 
protein 1 

P30086 Down Play role in MAPK ERK activation (Heijnen et al., 1999) (Zhao et al., 
2011) 

G protein-coupled receptor kinase 4 P32298 Down Specifically phosphorylates the activated forms of G protein-
coupled receptors. Inhibited by heparin 

(Villar et al., 2009) 

Tyrosine-protein kinase FRK P42685 Down Mediator for MAPK signalling partway (Whitmarsh and Davis, 1996) 

Crk-like protein P46109 Down may be involved in the reorganization of the cytoskeleton 
during normal platelet aggregation 

(Oda et al., 1996) (Best et al., 
2001) 

LIM and senescent cell antigen-like-
containing domain protein 1 

P48059 Down Adapter protein in a cytoplasmic complex linking beta-integrins 
to the actin cytoskeleton. Highly expressed in platelet 

(Chen et al., 2007) (Dittrich et al., 
2008) 

Guanine nucleotide-binding protein 
G (I)/G (S)/G (T) subunit beta-2 

P62879 Down  G protein involved as a modulator or transducer in plateket 
transmembrane signalling system. 

(Brass et al., 1987) 

Voltage-dependent L-type calcium 
channel subunit alpha-1D 

Q01668 Down mediate the entry of calcium ions into excitable cells and are 
also involved in a variety of calcium-dependent processes 

(Doyle and Rüegg, 1985) 
(Zschauer et al., 1988) (Nelson et 
al., 1990) 

1-phosphatidylinositol 4,5-
bisphosphate phosphodiesterase 
beta-4 

Q15147 Down The production of the second messenger molecules 
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). 
Mostly found in retina 

(Alvarez et al., 1995) 

1-phosphatidylinositol 4,5-
bisphosphate phosphodiesterase 
eta-1 

Q4KWH8 Down The production of the second messenger molecules 
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) 

(Hwang et al., 2005) 

Histone acetyltransferase KAT2B Q92831 Down   

Septin-5 Q99719 Down In platelets, found in areas surrounding alpha-granules. 
Associated with a complex containing STX4 and may play role in 
platelet secretion 

(Dent et al., 2002) (Zahedi et al., 
2007) 

Tubulin alpha-1C chain Q9BQE3 Down Tubulin is the major constituent of platelet microtubules. (Ikeda and Steiner, 1979) 

     
Guanine nucleotide-binding protein 
subunit beta-4 

Q9HAV0 Down Involved as modulators or transducers in various transmembrane 
signalling systems in G-coupled receptor pathway 

(Brass et al., 1987) 
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Regulator of G-protein signalling 18 Q9NS28 Down Inhibits signal transduction by increasing the GTPase activity of G 
protein alpha subunits thereby driving them into their inactive GDP-
bound form 

(Gagnon et al., 2002) 

Alpha-parvin Q9NVD7 Down Plays a role in the reorganization of the actin cytoskeleton and cell 
adhesion. 

(Legate et al., 2006) (Honda 
et al., 2013) 

Rho GTPase-activating protein 26 Q9UNA1 Down GTPase-activating protein for RHOA and CDC42 (Aslan et al., 2013) (Tapon 
and Hall, 1997) (Moon and 
Zheng, 2003) 

Filamin-B O75369 Up Anchors various transmembrane proteins to the actin cytoskeleton. 
The intracellular domain of GpIba associates with the platelet 
cytoskeleton by a direct interaction filamin. 

(Xu et al., 1998) 

Phosphatidylinositol 4-phosphate 3-
kinase C2 domain-containing 
subunit gamma 

O75747 Up Generates phosphatidylinositol 3-phosphate (PtdIns3P) and 
phosphatidylinositol 3,4-bisphosphate (PtdIns (3,4)P2) that act as 
second messengers 

(Rozycka et al., 1998) 

Serine/threonine-protein kinase D3 O94806 Up Converts transient diacylglycerol (DAG) signals into prolonged 
physiological effects, downstream of PKC 

(Hayashi et al., 1999) 

Tyrosine-protein kinase Lck P06239 Up Involved in signalling events that drive cytoskeletal reorganization 
and active endocytosis of plasma proteins by circulating platelets 

(Pestina et al., 1997) 

Laminin subunit beta-1 P07942 Up Contributes to platelet activation through a direct interaction with 
GPVI 

(Colognato and Yurchenco, 
2000) (Inoue et al., 2006) 

Integrin alpha-M P11215 Up Platelet adhesion to leucocytes (Pierce et al., 1986) (Santoso 
et al., 2002) 

Neurofibromin P21359 Up Stimulates the GTPase activity of Ras, actin cytoskeleton 
organization 

(Ballester et al., 1990) 

Integrin alpha-6 P23229 Up Integrin alpha-6/beta-1 is a receptor for laminin on platelets (Catimel et al., 1991) 
(Lewandrowski et al., 2006) 

Integrin alpha-3 P26006 Up Receptor for laminin and collagen (Yamada and Sekiguchi, 
2013) 

Signal transducer and activator of 
transcription 3 

P40763 Up Facilitates a crosstalk between proinflammatory cytokine and 
hemostasis/thrombosis signals in platelets 

(Chen et al., 2013) (Zhou et 
al., 2013) (Tibbles et al., 
2001) 
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Signal transducer and activator of 
transcription 1-alpha/beta 

P42224 Up Facilitates a crosstalk between proinflammatory cytokine and 
hemostasis/thrombosis signals in platelets 

(Tibbles et al., 2001) 

Tyrosine-protein kinase Blk P51451 Up B lymphoid tyrosine kinase; May function in a signal transduction 
pathway that is restricted to B-lymphoid cells. Mediator for MAPK 
signalling partway 

(Bolen et al., 1992) 

Rho-related GTP-binding protein 
RhoB 

P62745 Up regulators of the platelet cytoskeleton and platelet function (Aslan et al., 2013) 

Mitogen-activated protein kinase 
kinase kinase 9 

P80192 Up An essential component of the MAP kinase signal transduction 
pathway 

(Kramer et al., 1996) 

Dynamin-1 Q05193 Up Microtubule-associated force-producing protein involved in 
producing microtubule bundles. Involved in receptor-mediated 
endocytosis 

(Lemmon and Ferguson, 
2000) 

Mitogen-activated protein kinase 14 Q16539 Up An essential component of the MAP kinase signal transduction 
pathway 

(Zahedi et al., 2007) 

Serine/threonine-protein kinase N3 Q6P5Z2 Up Converts transient diacylglycerol (DAG) signals into prolonged 
physiological effects, downstream of PKC 

(Oishi et al., 1999) 

Mitogen-activated protein kinase 
kinase kinase 4 

Q9Y6R4 Up Component of a protein kinase signal transduction cascade. 
Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK 
pathway.  

(Takekawa et al., 1997) 

 


