
A NEW FRAMEWORK FOR 

MINIMISING HANDOVER IN 

MULTICAST MOBILITY 

 

 

 

 

 

Khanista  NAMEE 

 

 

 

 

 

 

Ph.D. Thesis       2015 



A NEW FRAMEWORK FOR 

MINIMISING HANDOVER IN 

MULTICAST MOBILITY  

 

 

Khanista  NAMEE 

 

 

School of Computing, Science and Engineering 

College of Science and Technology 

University of Salford, Salford, UK 

 

 

 

 

Submitted in Partial Fulfilment of the Requirements 

of the Degree of Doctor of Philosophy, 2015 



i 
 

TABLE OF CONTENTS 
 
 
TABLE OF CONTENTS     i 

LIST OF FIGURES     v 

LIST OF TABLES     vii 

ACKNOWLEDGEMENTS     viii 

LIST OF ABBREVIATIONS     ix 

ABSTRACT     xii 

 

Chapter 1 Introduction     1 

 

1.1 Background     1 

1.2 Research Aim     2 

1.3 Research Objectives     2 

1.4 Research Questions     2 

1.5 Contribution to Knowledge     3 

1.6 Overview of Research Methodology    3 

1.7 Structure of the Thesis     5 

 

Chapter 2 Literature Survey     6 

 

2.1 Introduction     6 

2.2 Multicast Delivery     6 

2.2.1 Benefit of Multicast Delivery    9 

2.2.2 Functions of Multicast Delivery    14 

2.3 Multicast Protocols in IP Networks    16 

2.3.1 MLD Protocol     17 

2.3.2 PIM Protocol     18 

2.4 Multicast Mobility in WiFi Network    19 

2.4.1 Overview of WiFi Network     19 

2.4.2 Mobility in WiFi Network     20 

 2.4.2.1 Mobile IPv6 Protocol    20 

 2.4.2.2 ICMPv6 Protocol     22 



ii 
 

2.4.3 Multicast Mobility in IPv6 WiFi Network    22 

       2.4.4 Multicast Mobility in UMTS Network    23 

2.5 Multicast Mobility Problems in WiFi Networks    24 

2.5.1 Multicast Mobility Problems    24 

2.5.2 Overview of Handover Problem    26 

 2.5.2.1 The Handover Process    27 

 2.5.2.2 Handover Decision Phase    28 

 2.5.2.3 Handover Implementation    30 

2.5.3 Handover within WiFi Networks    31 

2.5.4 Multicast Handover in Wireless Networks    32 

2.6 Summary     34 

 

Chapter 3 A New Framework for Muticast Mobility in WiFi Networks   36 

 

3.1 Introduction     36 

3.2 Network Architecture     36 

3.3 Protocol Overview     38 

3.4 Process Diagram     39 

       3.5 Modify Protocol Message     45 

3.5.1 PIM Protocol Message     45 

3.5.2 ICMP Message     46 

3.5.3 Mobile IP Message     46 

3.5.4 IGMP Message     47 

       3.6 Summary     48 

 

Chapter 4 A Framework Simulation in OPNET Modeler    49 

 

4.1 Introduction     49 

4.2 Network Simulation     49 

4.2.1 Basic Structure within OPNET Modeler    49 

4.3 Implementation of the Proposed Framework in OPNET Modeler    52 

4.3.1 Network Architecture     52 

4.3.2 Process Model     53 

4.3.2.1 Asking CoA in Advance Process    53 



iii 
 

4.3.2.2 Joining Multicast using CoA Address    55 

4.3.2.3 Re-join Multicast     56 

4.3.2.4 Keeping Multicast Route    57 

4.3.2.5 Store CoA address     58 

       4.4 Summary     61 

 

Chapter 5 Simulation Scenarios, Results and Evaluation    62 

 

5.1 Introduction     62 

5.2 Scenario 1: The Performance of Unicast and Multicast Mechanism   62 

5.2.1 Scenario 1: Scenario Description    62 

5.2.2 Scenario 1: Simulation Topology    63 

 5.2.3 Scenario 1: Simulation, Results and Evaluation 64 

5.3 Scenario 2: Simple Network   70 

5.3.1Scenario 2: Scenario Description      70 

5.3.2 Scenario 2: Simulation Topology      71 

 5.3.3 Scenario 2: Simulation, Results and Evaluation 72 

5.4 Scenario 3: Mobile IP and multicast Re-join 73 

5.4.1 Scenario 3: Scenario Description      73 

5.4.2 Scenario 3: Simulation, Results and Evaluation    73 

5.5 Scenario 4: Care of Address in advance 74 

5.5.1 Scenario 4: Scenario Description      74 

5.5.2 Scenario 4: Simulation, Results and Evaluation    75 

5.6 Scenario 5: Same Multicast Group     75 

5.6.1 Scenario 5: Scenario Description    75 

5.6.2 Scenario 5: Network Topology    76 

 5.6.3 Scenario 5: Simulation, Results and Evaluation 77 

5.7 Scenario 6: Multi-Hops      77 

5.7.1 Scenario 6: Scenario Description    77 

5.7.2 Scenario 6: Network Topology    78 

 5.7.3 Scenario 6: Simulation, Results and Evaluation 78 

5.8 Scenario 7: Handover      82 

5.8.1Scenario 7: Scenario Description    82 

5.8.2 Scenario 7: Network Topology    83 



iv 
 

 5.8.3 Scenario 7: Simulation, Results and Evaluation 83 

5.9 Scenario 8: Multiple Networks     85 

5.9.1Scenario 8: Scenario Description    85 

5.9.2 Scenario 8: Network Topology    86 

 5.9.3 Scenario 8: Simulation, Results and Evaluation 87 

5.10 Scenario 9: Complex Networks      88 

5.10.1 Scenario 9: Scenario Description    88 

5.10.2 Scenario 9: Network Topology    89 

 5.10.3 Scenario 9: Simulation, Results and Evaluation 90 

5.11 Scenario 9: Internet     90 

5.11.1 Scenario 10: Scenario Description    90 

5.11.2 Scenario 10: Network Topology    91 

 5.11.3 Scenario 10: Simulation, Results and Evaluation 92 

      

Chapter 6 Conclusion and Future Work        94 

 

6.1 Conclusion          94  

6.2 Recommendation for Future Work       95

     

APPENDICES     96 

REFERENCES     189 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 LIST OF FIGURES  

 

Figure 1-1 Research Methodology        3 

Figure 2-1 Comparison between Unicast, Broadcast and Multicast transmission  7 

Figure 2-2 Multicast delivery         8 

Figure 2-3 Multicast Tree          10 

Figure 2-4 Intra-domain routing protocols       16 

Figure 2-5 Mobile IPv6 Protocol        21 

Figure 2-6 Tunnel convergence problem       25 

Figure 3-1 Network Architecture         37 

Figure 3-2 Multicast Route         39 

Figure 3-3 Starting connection process       40 

Figure 3-4 Request CoA in advance process       42 

Figure 3-5 Request Multicast packets and keep route     43 

Figure 3-6 Handover process         44 

Figure 3-7 Join/Prune message format       45 

Figure 3-8 ICMP message format        46 

Figure 3-9 Mobile IP message format        47 

Figure 3-10 IGMP message format        48 

Figure 4-1 Basic Step for Creating Network Simulation     50 

Figure 4-2 Node Mode example        51 

Figure 4-3 Process Mode example        52 

Figure 4-4 the common network topology that use in this research    53 

Figure 4-5 Process Model: mobile_ip_mn       54 

Figure 4-6 The coding of “Reg_adv” state       55 

Figure 4-7 Process Model: IGMP host       56 

Figure 4-8 The coding of “JOIN_ADV” state      56 

Figure 4-9 The coding for re-join multicast       57 

Figure 4-10 Process Model: PIM-PM protocol      57 

Figure 4-11 The coding for keeping multicast route      58 

Figure 4-12 The coding of “store_FA&RE” state      59 

Figure 4-13 The coding of structure of CoA address list     60 

Figure 4-14 The coding of Binding Update multiple CoA address to home agent  61 



vi 
 

Figure 5-1 Scenario 1: Simulation Topology       64 

Figure 5-2 Throughputs between Route4 and Home Agent_Access point   65 

Figure 5-3 Load at Home Agent_A access point      66 

Figure 5-4 CPU Utilization at Home Agent_A access point      67 

Figure 5-5 Video traffic received at mobile node A compare with B   68 

Figure 5-6 Video traffic received at mobile node A      69 

Figure 5-7 Delay at mobile node A        70 

Figure 5-8 Scenario 2 : Network Topology       71 

Figure 5-9 Scenario 2 : Traffic Received at Mobile_Node_A    72 

Figure 5-10 Scenario 3 : Traffic Received at Mobile_Node_A    74 

Figure 5-11 Scenario 4 : Traffic Received at Mobile_Node_A    75 

Figure 5-12 Scenario 5 : Network Topology       76 

Figure 5-13 Scenario 5 : Traffic Received at Mobile_Node_A    77 

Figure 5-14 Scenario 6 : Network Topology       78 

Figure 5-15 Scenario 6 : Traffic Received at Mobile_Node_A    79 

Figure 5-16 Scenario 6 : Combined traffic Received at Mobile_Node_A   80 

Figure 5-17 is shown how much the extended protocols can reduce handover latency 

compared with standard protocols        81 

Figure 5-18 is shown how much the extended protocols can reduce packet delay compared 

with standard protocols         82 

Figure 5-19 Scenario 7 : Network Topology       83 

Figure 5-20 Scenario 7 : Traffic Received at Mobile_Node_A    84 

Figure 5-21 Scenario 7 : Packet Delay       85 

Figure 5-22 Scenario 8 : Network Topology       86 

Figure 5-23 Scenario 8 : Traffic Received at Mobile_Node_A    87 

Figure 5-24 Scenario 8 : Packet Delay       88 

Figure 5-25 Scenario 9 : Network Topology       89 

Figure 5-26 Scenario 9 : Traffic Received at Mobile_Node_A    90 

Figure 5-27 Scenario 10 : Network Topology      91 

Figure 5-28 Scenario 10 : Traffic Received at Mobile_Node_A    92 

Figure 5-29 Scenario 10 : Packet Delay       93 

 

 

 



vii 
 

LIST OF TABLES 

 

Table 2-1 A data rate and coverage area of wireless technologies    20 

 

 

 



viii 
 

ACKNOWLEDGEMENTS 
 
First of all, I would like to deliver my greatest appreciation to my supervisor, Prof. Nigel 

Linge, for all his support and guidance throughout the research period; without his support 

this research could not have been completed successfully. 

 

I would also like to thank the Thai government for providing me with the scholarships and 

living allowances in order to support my quest for a PhD degree. Appreciation would also be 

given to my office, King Mongkut’s University of Technology North Bangkok for granting 

me the study leave and the opportunity to further my studies in this PhD scholarship. 

 

I would also like to thank all the staff and members at CNTR (Computer Networking and 

Telecommunications Research) centre for all their support and suggestions. I have really 

enjoyed my time there with everyone. 

 

Last but not least, I would also like to express my gratitude to my family, parents and friends 

for their continuous patience and support throughout this period of study. 

 



ix 
 

LIST OF ABBREVIATIONS 
 
3G   Third Generation Wireless (Communications) 

3GPP   3rd Generation Partnership Project 

3GPP2   3rd Generation Partnership Project 2 

3GPP-PSS  3rd Generation Partnership Project – Packet Switched Streaming 

AP   Access Point 

AR   Access Router 

ASM   Any Source Multicast 

BCMCS  Broadcast and Multicast Service 

BGMP   Border Gateway Multicast Protocol  

BSC   Base Station Controller 

BTS   Base Station Transceiver System  

BU   Binding Update 

CBS   Cell Broadcast Service 

CBT   Core-Based Trees  

CDMA  Code-Division Multiple Access 

CN   Core Network 

CNTR    Centre of Networking and Telecommunication Research 

CoA   Care of Address 

CPU    Central Processor Units 

DMM   Distributed Mobility Management 

DMSP   Designated Multicast Service Provider 

DVMRP   Distance-Vector Multicast Routing Protocol 

EAP-AKA Extensible Authentication Protocol method for UMTS Authentication 

and Key Agreement 

EoS Economies of Scale 

FA Foreign Agent 

FMIP6   Fast Mobile IPv6 

fps   Frames per Second 

FSMs   Finite State Machines 

GGSN    Gateway GPRS Support Node 

GPRS   General Packet Radio Service 

GPS    Global Positioning System 



x 
 

GSM   Global System for Mobile Communications 

GTP   Generic Tunnelling Protocol 

HD   High Definition 

HDTV   High-definition TV 

HMIPv6  Hierarchical Mobile IPv6 

HoA    Home Address 

ICMP    Internet Control Message Protocol  

ICMPv6   Internet Control Message Protocol version 6 

IETF   Internet Engineering Task Force 

IG   Integration Gateway 

IGMP    Internet Group Management Protocol 

IGMPv2   Internet Group Management Protocol version 2 

IMS   Internetworking Management System 

IP   Internet Protocol 

IPv4   Internet Protocol version 4 

IPv6   Internet Protocol version 6 

ISHO   Inter-System Handover 

ITU-T International Telecommunications Union - Telecommunication 

Standardization Sector 

LMA Local Mobility Anchor 

MAC Media Access Control 

MAG Mobile Access Gateway 

MBMS Multimedia Broadcast/Multicast Service 

MBONE   Multicast Backbone 

Mbps  Megabit per second 

MDP  Markov Decision Process 

MIH  Media Independent Handover 

MIPv6   Mobile Internet Protocol version 6 

MLD   Multicast Listener Discovery 

MOM  Mobile Multicast Protocol  

MOSPF   Multicast Open Shortest Path First 

MPEG-2  Motion Picture Experts Group 2 

MPEG-4  Motion Picture Experts Group 4 

MR  Multicast Router 



xi 
 

MSP  Multicast Service Provider 

ND  Neighbour Discovery 

NIA  Network Interoperating Agent 

NS-2  Network Simulator version 2 

OMNET++  Objective Modular Network Testbed in C++ 

PIM   Protocol Independent Multicast 

PIM-DM   Protocol-Independent Multicast Dense Mode 

PIM-SM   Protocol-Independent Multicast Sparse Mode 

PMIPv6  Proxy Mobile IPv6 

PTM  Point to Multipoint 

PTP  Point to Point 

QoE   Quality of Experience 

QoS  Quality of Service 

RFC  Request for Comments 

RNC  Radio Network Controller 

RP  Rendezvous Point  

RSSI  Received Signal Strength Indicator 

SAP   Session Announcement Protocol 

SDTV    Standard-definition TV 

SGSN   Serving GPRS Support Node  

SIP   Session Initial Protocol 

SNMP   Simple Network Management Protocol 

SPT   Shortest Path Tree  

SSM   Source-Specific Multicast  

STP   Spanning Tree Protocol 

TCP/IP   Transmission Control Protocol / Internet Protocol 

TV  Television 

UMTS   Universal Mobile Telecommunications System 

UTRAN   UMTS Terrestrial Radio Access Network 

VoD   Video on Demand 

WiFi   Wireless Fidelity 



xii 
 

ABSTRACT 
 

 
Nowadays, mobile devices support a variety of multimedia applications such as live video, 

radio or online gaming. People spend their time on mobile devices for entertainment more 

and more via the internet. Due to the requirements of multimedia applications over wireless 

communication those applications require a huge bandwidth on the network to support them, 

which creates problems for the network provider. However, one pattern that is appropriate for 

the efficient delivery of multimedia messages is multicast delivery. 

 

Multicast services do, however, introduce challenges within the network when the recipients 

of the service are moving. Powerful multicast routing protocols are designed for static client 

IP addresses. Hence, when the mobile node changes the location, it introduces the problem of 

access network handover. Therefore, this is the aim of the research where a new framework 

will be developed for multicast mobility within WiFi network to reduce and provide smooth 

mobility when handover occurs. This research is focused on techniques to reduce handover 

latency, minimize packet loss and provide connection when a user moves between network 

zones. 

 

To achieve these aims, this designed framework lets mobile nodes send the message to 

register to foreign agents in advance for addressing IP address of the new zone and to 

establish the multicast tree earlier. Moreover, there are processes that keep the connection of 

the path alive. 

 

The framework is being simulated on OPNET Modeler for evaluating the performance in 

terms of handover latency time, the number of packet loss and so on. There are many 

scenarios that have been tested. According to the results, it shows that the new framework has 

reduced handover latency time around 60% on average and minimized packet delay 

approximately 0.7 - 150 ms on mobile node depending on network topology. This framework 

can provide IP address reconfiguration, binding update, joining multicast group and 

distribution path of multicast tree in advance. However, there are some overheads and cost 

that this framework has to pay for such as IP address database, increasing broadcast within 

networks and keeping connection path alive.     



1 
 

Chapter 1 Introduction 

1.1 Background 

Today’s mobile device supports a variety of multimedia applications such as live video, radio 

or online gaming. People spend their time on their devices for personal entertainment more 

and more. There are statistics which show that on average, people are spending 2.7 hours per 

day on the internet via smart phone [1].  

 

The smart phones are characterized by small screens, limited CPU power and memory. Due 

to the requirements of multimedia applications over wireless communication those 

applications require a huge amount of bandwidth from the network to support them, which 

creates problems for the network provider and also affects to QoE (Quality of Experience) of 

end user for multimedia services. 

 

However, one pattern that is appropriate for the efficient delivery of multimedia messages is 

multicast. For instance, transmitting live video data from a media server using multicast 

allows for a single data stream to be simultaneously sent to several users thereby offering a 

considerable bandwidth saving over sending multiple separate data streams. 

 

Multicast services do, however, introduce challenges within the network when the recipients 

of the service are moving. Current multicast routing protocol standards are designed for static 

client IP addresses. Not only does mobile node movement introduce the problem of access 

network handover, but also, when considering devices could result in them switching 

between access network hotspots. Support for this requires an efficient solution to be found 

for managing multicast services where mobile devices have the capability of operating over 

several different networks. 

 

Therefore, this research is investigating multicast mobility handover within WiFi networks. 

The aim of this PhD research is to propose a new method and framework that tries to provide 

smooth mobility in homogeneous networks such as within WiFi zones.    

 



2 
 

1.2 Research Aim 

The research has the aim to propose a new technique that provides efficient mobility for 

multicast services in WiFi networks. This research is focused on techniques to reduce 

handover latency, multicast address management and provide a connection when a user 

moves between networks. 

 

This research is focused on techniques to reduce handover latency, which comprises multicast 

handover delay, end-to-end delivery delay and to minimize packet loss. For multicast routing, 

the research will focus on how to maintain the multicast session for mobile nodes and 

manage multicast group memberships thereby also minimising packet delay. 

1.3 Research Objectives 

To achieve this research aim, four objectives have been acknowledged. These research 

objectives are: 

 

1. To understand, analyse and identify major issues in multicast mobility and focus on 

issues, which are related to the handover process. 

2. To propose the technique that can support multicast mobility when a mobile node 

changes the zone within WiFi network environments. 

3. Implement and evaluate, within a simulation environment, that part of the framework 

that handles WiFi zone handover. 

4. To publish the results of the research and write up a PhD thesis. 

1.4 Research Questions 

During the research process, the following key research questions will be addressed: 

 

1. How can we reduce latency time in a multicast stream when handover occurs? 

2. What performance advantages can be gained over existing schemes for mobile 

multicast delivery? 



3 
 

1.5 Contribution to Knowledge 

Designing a new framework for minimizing multicast mobility within WiFi networks by 

focusing on techniques to reduce handover latency, packet delay and maintain multicast 

services for mobile nodes. The key protocols that had been modified in the framework are 

Mobile IP, IGMP, PIM and ICMP protocols. The key novel features of this new framework 

are that firstly, mobile nodes register with each foreign network that is within range, secondly 

a Care of Addresses is obtained for each foreign network, thirdly that the associated multicast 

trees are established but finally, that the chosen foreign network and multicast tree is only 

activated once handover is confirmed.   In this way, the new framework is able to minimise 

handover delay and loss of connectivity when handover is taking place. 

1.6 Overview of Research Methodology 

 
 

 

 

 

   

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Research Methodology 

1. Reviewing previous literature. 

2. Studying the background knowledge and 
identifying the research question. 

  

4. Simulate the new strategy in Network 
Simulator Software. 

6. Analyze and evaluate the simulation. 

7. Modification to 
improve performance. 

3. Propose strategy to solve the problem within 
WiFi networks. 

5. Testing the results. 
 

8. Finalizing the framework and publishing the results in a thesis. 



4 
 

 

In order to complete this research, the following research methodology has been adopted as 

shown in Figure 1-1. 

 

The details of each step are described as follows: 

 

1. Reviewing previous literature – More than 150 research articles have been reviewed. At 

this stage, the researcher has gained more knowledge about the problems in multicast 

mobility, and the mechanism of handover.      

2. Studying the background knowledge and identifying the research question – The literature 

review confirms the importance and relevance of the research field and shows where gaps 

exist within the knowledge. These gaps then help to formulate the research question for this 

research.    

3. Propose strategy to solve the problem within WiFi networks – From the background 

knowledge, literature review, and research question it is then possible to start to propose and 

design a new framework for improving the performance and QoS guarantees of multicast 

mobility. 

4. Simulate the new strategy in network simulator software – The first stage of the framework 

will be evaluated for use within WiFi networks only. This allows the basic concepts of the 

framework to be evaluated and as necessary, modified.      

5. Testing the results – The detailed simulation results will allow the performance of the 

framework to be quantified and areas for improvement identified across a broad range of 

networking scenarios.    

6. Analyze and evaluate the simulation – The outputs from the simulation will be analysed in 

detail to assess performance and to compare to standard framework.    

7. Modification to improve performance – Depending upon the simulation results, further 

refinement and modification of the scheme will follow as necessary. 

8. Finalizing the framework and publishing the results in a thesis – The results of all of the 

simulation studies will allow for a final design to be confirmed and this, together with the 

contribution to knowledge of the research, will be presented within a PhD thesis. 



5 
 

1.7 Structure of the Thesis 

The rest of the thesis is organized in the following chapters.  

 

 Chapter 2 presents the literature review concentrating on the concept of the multicast, 

multicast mobility, multicast handover issues within wireless networks.  

 Chapter 3 presents the concept and theory idea design of the research, which is to 

combine network architecture, protocol overview, connection management and 

modified protocol message.  

 Chapter 4 consists of framework simulation details which have been implemented 

within OPNET Modeler. 

 Chapter 5 will present the network scenario, simulation result from OPNET Modeler 

software and performance evaluation. 

 Chapter 6 consists of conclusion and recommendations for further research.  

 

 

 



6 
 

Chapter 2 Literature Survey 

2.1 Introduction 

This chapter provides an introduction and a summary of the key literature that has been 

consulted for this research. Creating a framework to provide multicast services for mobile 

nodes in a wireless communication network is a challenging issue.  

 

The relevant published research has been surveyed in the fields of multicast delivery, 

multicast mobility and multicast handover within WiFi networks. This framework can 

support both IPv4 and IPv6 WiFi environments, so the key protocol information and literature 

review in this chapter will be discussed and focuses on IPv4 and IPv6 environments. 

 

This chapter begins with an overview of multicast delivery concept and protocols. It will then 

go on to a review of multicast mobility protocols and problems within WiFi networks. After 

that, the processes and problems of multicast handover are examined. Following this, details 

about multicast handover issues and approaches will be investigated. Finally, a brief summary 

is given for the chapter. 

  

2.2 Multicast Delivery 

In the IP network system there are three types of communication in a network: 

 

 Unicast Delivery – one source is sending a single transmission of data directly 

to one destination. 

 

 Broadcast Delivery – one source is sending the data to all destinations in the 

network. 

 

 Multicast Delivery – one source is sending the data to a select group of 

destinations. 



7 
 

 

In traditional computer networks, data is typically sent from a source node to a destination 

node known as unicast delivery, which is suitable for most applications in the network; 

alternatively, one source node can transmit a copy data to all end point destination nodes and 

then the destination nodes will decide if they want to use those data or not known as 

broadcast delivery. One benefit of broadcasting is that it reduces loads at source node from 

duplicating data that are sent for multiple destination nodes. The source node sends only one 

copy of the data to the broadcast address and then the network devices on the network will 

duplicate the data and transmit to cover the network. However, there are some kinds of 

application that need to send the same data to multiple destination nodes such as multipoint 

videoconferencing, online gaming and live TV. It will waste bandwidth on the network if it 

uses the process of unicast delivery to support those applications. Hence, the aim of multicast 

delivery is to deliver data packets between one source to multiple destinations more 

efficiently.   

 

 

 

Figure 2-1 Comparison between Unicast, Broadcast and Multicast transmission [2] 



8 
 

 

The concept of multicast delivery was introduced in the late 1980s by Stephen Deering [3, 4]. 

The idea is to transmit a single copy of IP packet to a group of destinations, which is 

identified by a same multicast IP address. A main factor in multicasting is bandwidth 

efficiency in the network. The multicast functions and protocols have evolved over time as 

refined in RFC 3376 [5], RFC 4604 [6] and so on.   

 

Multicast is the delivery of data packet to a group of user devices using a common IP 

multicast destination address. When a multicast tree is set up, the source starts sending IP 

datagram to the host group address. Then, the network devices take on the responsibility for 

sending the IP datagram to all destinations within multicast group. Multicast routers along the 

path are responsible for ensuring that datagrams are transmitted over the appropriate links to 

ensure they reach all hosts of the multicast group.  

 

The process of coping datagrams occurs only when paths diverge at a multicast router, thus 

reducing the bandwidth consumption on the network. Figure 2-2 is shown an example of 

multicast delivery in a TCP/IP (Transmission Control Protocol / Internet Protocol) network. 

The arrows represent the direction of multicast delivery packets that are sent to host B, host D 

and host E in the network. 

 

 

 

Figure 2-2 Multicast delivery [7] 

 



9 
 

In networking, the term multicast is synonymous with IP multicast. Multicast delivery is a 

technique for delivery datagrams from one source to multiple destinations over the network. 

The optimal distribution paths are created after the member in the multicast group joins in the 

multicast tree in real time. Multicast delivery technique and group management can support a 

large number of destination nodes without needing to know how many destination nodes 

there are. Multicast group requires the source node to send a request to join message only 

once, even if there are a large number of receive nodes to be sent. IP multicast has an efficient 

process to maintain the members within the multicast group.  

 

The model of the multicast group is known as an open and dynamic group. This means that, 

the source node can send multicast packets at any time when it is ready, with no need to 

announce, register or schedule transmission. The only one thing that the source node needs to 

know is a multicast address. Also, it is not necessary for the source node to know about group 

membership in advance. The host members in the multicast group can join or leave a 

multicast group at any time. However, source and destination multicast nodes can 

communicate to each other via IP multicast group address. Sources use the multicast IP 

address as the destination address in their sending data stream. Destination hosts use 

multicast IP address to notify the network device that they want to receive those packets that 

are sent to this multicast tree. However, the destination host has to send “join message” to be 

a member of the multicast group first.   

 

In order to deliver multicast data stream, the network creates a “multicast tree”. The 

multicast tree construction is begun with network devices close to the destination nodes and 

is thus receiver-driven. The multicast tree is built for that group once there are members in a 

particular IP multicast group and maintained by “multicast routing protocol”. There are 

several kinds of multicast routing protocol depending on the network. Also, each one of them 

has its own unique method and technique. More information about multicast routing 

protocols will be given in a later section.   

2.2.1 Benefits of Multicast Delivery 

The main benefit of multicast delivery is a reduced bandwidth requirement on the network, 

because this technique sends a single copy of data stream along any link that forms the route. 



10 
 

Live multimedia services such as video, radio, television etc., are delivered as multimedia 

streaming services. These services require large bandwidth allocations and if they are 

delivered as separate streams for each user, this will place huge demands on network 

resources. Hence, multicast delivery can help to control network traffic and reduce this 

problem [8]. This advantage is known as optimized performance, because multicast delivery 

eliminates traffic redundancy on the network. Figure 2-3 illustrates a multicast tree, which is 

represented in Figure 2-2. 

 

 

  

 

Figure 2-3 Multicast Tree 

 

Bandwidth requirements for multicast delivery are widely dependent on applications such as 

news, which requires around 10 kbps as a lightweight data. However, it will be up to 384 

kbps for delivery of video content and video streaming. Similarly, audio streaming will 

require a bandwidth of 48 to 64 kbps [9, 10], while low-quality video with audio will require 

a bandwidth up to 128 kbps [9].  

 



11 
 

Moreover, in 1994, a host in Japan was found to require a bandwidth over the entire MBONE 

(Multicast Backbone) of 650 kbps for video streaming. However, if compared with the 

bandwidth requirement for digital TV, there is a big difference. SDTV (Standard-definition 

TV), with MPEG-2 compression, will require 2-5 Mbps and 1.5-2 Mbps with MPEG-4 

compression. On the other hand, the bandwidth requirement for HDTV (High-definition TV) 

is increased about five times, 15-20 Mbps with MPEG-2 compression and 5-10 Mbps with 

MPEG-4 compression [11]. 

 

In addition, another advantage of multicast is enhanced efficiency by reducing loads on 

central media servers in terms of CPU (Central Processor Units) power, memory usage and 

protocol management. Network routers also only need to manage and maintain one data 

stream per multicast service [12]. However, routers do have the added burden of needing to 

maintain knowledge of which devices belong to which multicast tree and to manage routing 

along these trees. 

 

By using multicast delivery, video streaming application can offer a higher quality service 

because the load for single multicast delivery is less than multiple unicast delivery [13].  

 

The network bandwidth saving is the main point expected of multicast’s effect on the 

network. Hence, network providers normally must consider the cost of managing, 

maintaining and implementing multicast. However, the main factor is bandwidth. R. 

Chalmers and K. Almeroth [14] defined a metric to compare the performance between unicast 

and multicast delivery. The metric compares the total number of links traversed by unicast 

and multicast datagrams on a given network infrastructure. The metric refers to each links as 

a hop in the route path of a single multicast or unicast datagram. 

 

� = 1 −
��������� ����

������� ����
       (2.1) 

 

Where 

 

 Multicast hops are the total number of multicast links in the distribution link in the 

network. 

 Unicast hops are the total number of unicast hops in the network. 



12 
 

 � is the multicast metric which is a fraction in the range 0 ≤ � ≤ 1. 

 

� marks the percentage increase in the bandwidth utilization achieved by using multicast 

more than unicast delivery. For this metric if the value of � is zero, this means the number of 

hops is the same. If the � has a value of nearly one, it means the performance of using 

multicast delivery is higher compared to unicast. 

 

Due to the number of multicast members being dynamic, new nodes and destinations can join 

and leave the multicast group at will. This means the multicast group size always changes 

over time, especially in a real time application. J. Chuang and M. Sirbu [15] presented a cost 

function of path, which is related to equation 2.1 and defines a direct relationship between the 

hop counts and the size of multicast group. 

 

��

���
= �� (2.2) 

 

Where 

 

 �� is the total multicast distribution tree length 

 ��� is the average length of unicast routing path 

 N is the size of multicast group 

 k is the economies of scale (EoS) factor.  

 

The range of value k is between 0 and 1, which is the value of the slope of the graph 

relationship between normalized tree cost and multicast group size. For most of the 

topologies investigated in their experiment, which is in real and generated networks, it is 

shown that � ≈ �.�. 

 

Now assuming  ��� =
��

�
 will get: 

 

 � = � − ��      (2.3) 

 

Where 

 



13 
 

�= � − � ≈ �.� − � ≈ −�.�       (2.4) 

 

So 

 

� ≈ � − ���.�       (2.5) 

 

Equation 2.5 gives us an estimate for the multicast performance, which is based on the 

number of destination nodes in the multicast group.  

 

Another advantage of multicast is distributed application, as multicast makes multipoint 

applications possible. The example applications of multicast services are provided in the 

following. 

 

 Multimedia Conferencing 

 Online video/audio streaming 

 Interactive distance learning 

 Online TV 

 Group online gaming 

 Video on Demand (VoD) 

 Commercial stock exchanges 

 

However, a major problem with this kind of application is the lack of reliable delivery of data 

because multicast delivery is UDP protocol based, not TCP protocol. There are some 

multicast disadvantages such as [13]: 

 

 Best Effort Delivery: dropping packets are to be expected. Therefore, multicast 

applications should be designed accordingly and should not expect high reliability of 

packet transmission. Packet losing should be accepted on those applications. 

 

 Duplicate Packets: some multicast protocol techniques such as registers, 

asserts and STP transitions may result in the occasional production of duplicate 

datagrams. 

 



14 
 

 Same Video Stream: only one copy of multicast stream is sent to all users in 

the same multicast group, so every user receives the same data stream at the same 

time. Hence, individual users cannot choose the content they want, and also they 

cannot pause the video stream, rewind it or skip some parts. 

 

 Specific content: in the multicast network, it is more complicated to control the 

users’ access to specific streaming content because all users in the same group access 

the data at the same time. 

 

 Out of Order Delivery: as multicast is based on UDP protocol, some routing 

protocol techniques may also result in packets being out of order. Hence, multicast 

applications should be designed to solve the issue of out of order packets arriving. 

2.2.2 Functions of Multicast Delivery 

This section provides a brief overview of the important functions of multicast delivery. 

 

 Multicast Address Management: This function is about the assignment and the scope 

of multicast address.  

 

 Multicast Service Announcement and Discovery: These services allow destination 

hosts to discover the availability of multicast source. In TCP/IP network, the SAP (Session 

Announcement Protocol) protocol handles this function [16]. 

 

 Multicast Group Management: Handles the collection and maintenance members of 

the multicast group. In IPv4 network, IGMPv2 (Internet Group Management Protocol version 

2) protocol deals with this function. The counterpart in IPv6 network is MLD (Multicast 

Listener Discovery) protocol. 

 

 Multicast Routing: Multicast Routing protocols are responsible for the multicast tree 

for example to build and maintenance the multicast trees. Also they are connect multicast 

group members and for the forwarding of data stream on the multicast tree. A number of 

multicast routing protocols have been standardized such as MOSPF (Multicast Open Shortest 



15 
 

Path First), PIM-DM (Protocol-Independent Multicast Dense Mode), PIM-SM (Protocol-

Independent Multicast Sparse Mode), DVMRP (Distance-Vector Multicast Routing Protocol) 

and Core-Based Trees (CBT) [17]. 

 

 Reliable Multicast Transport: This function is to ensure the reliable delivery of 

multicast stream to a potentially large destination group. 

 

 Multicast Mobility: Multicast delivery mechanism designs for static receiver. 

However, the mobile source and destination moves create issues for delivering the multicast 

data such as how to keep connection, managing IP address in a new location and so on. 

Solving these problems is a big challenge. This research has investigated this function in 

some depth and proposed a new framework to achieve the required functionality of this 

function. 

 

According to multicast delivery, it is not only the way to send one message source to many 

destinations but also it can send from many sources to many destinations. Moreover, in a 

mobile environment this means the source could possibly move. In terms of a mobile source, 

these are divided into Any Source Multicast (ASM) and Source-Specific Multicast (SSM) 

[18]. 

 

 ASM is where a mobile node submits data to any source in a multicast tree via an ASM 

group and either creates the root of a source-specific shortest path tree (SPT) forwarding 

datagram to a rendezvous point (RP) or destinations, or it distributes packets directly down a 

shared tree. 

 

Source-Specific Multicast or SSM has been designed for multicast sources with static source 

addresses. Normally, the source addresses in a mobile node subscribed to an SSM group are 

directly used for route identification. However, the address of the SSM source possibly 

changes under mobility. So, mobile node implementations of SSM source filtering must be 

MIPv6 (Mobile Internet Protocol version 6) aware in the sense that a logical source identifier, 

which is HoA (Home Address), is correctly mapped to its current location represented by 

CoA (Care of Address) address. 



16 
 

2.3 Multicast Protocols in IP Networks 

The aim of this section is to review the standard protocols, which are related to the multicast 

services within the network. In a TCP/IP network, the protocol responsible for multicast 

group management is MLD protocol for IPv6 network and IGMP protocol for IPv4 network. 

Hence, in the next section MLD protocol will be the focus. 

 

Multicast routing protocols use algorithms to build multicast distribution trees. Each routing 

protocol is different in regards to how they share content, information and create paths [19]. 

Figure 2-4 is shown the classification of the intra-domain multicast protocols. 

 

  

 

Figure 2-4 Intra-domain routing protocols [20] 

 

A brief summary of these multicast routing protocols are as follows: 

 

 MOSPF: This protocol is an extension of the OSPF routing protocol in unicast 

delivery. The MOSPF protocol uses the link-state algorithm the same as OSPF to 

create the paths with minimum protocol traffic overhead [20]. Moreover, if the 

number of multicast groups and group member size increase the computational 

complexity of the link-state algorithm will increase also [21].   

Multicast 
Routing 

Protocols

Dense Mode

Link State MOSPF

Distance Vector

DVMRP

PIM-DM

Sparse Mode Shared Tree

PIM-SM

CBT



17 
 

 

 DVMRP: This protocol defined in 1988 by Waitzman, Partridge and Deering, 

was the first multicast routing protocol, which was deployed over the MBONE 

network [22]. This protocol is an extension of the RIP routing protocol in unicast 

delivery and extends to multicast network [21].  

 

 PIM: It is a popular multicast routing protocol standard in TCP/IP network. 

This research has modified the protocol in the framework. In the following section 

PIM protocol will be discussed in detail. 

 

 CBT: This protocol was defined in 1997 [23]; it is a shared tree protocol and 

cannot create a source-based tree. 

2.3.1 MLD Protocol 

Multicast data delivery comprises both local and global techniques in which local techniques 

are responsible for multicast group management. Global techniques are responsible for 

multicast routing. For LAN multicasting each node can choose whether it wants to receive 

multicast data or not. Multicast destination nodes will inform the network device that they 

want to receive data packets that are sent to the multicast group.  

 

This process is called a “join” and is controlled by the IGMP protocol in an IPv4 network and 

controlled by the MLD protocol in an IPv6 network. In this research, global mechanisms are 

managed by the PIM protocol (Protocol Independent Multicast), which is multicast routing 

protocol in intra-domain network. For local mechanisms we chose to work with MLD 

protocol [24]. 

 

The MLD protocol was defined in 2004 by [25]. There are two versions of the MLD protocol, 

which are MLD version 1 (MLDv1) and version 2 (MLDv2). In this research we concentrate 

on the MLDv2 protocol, which is used by IPv6 routers to discover the receivers who wanted 

to join in a multicast tree [12]. 

 



18 
 

Receiver nodes on a route keep an interface state for every IPv6 multicast address from 

which they want to receive data stream per interface [26]. The interface state on a receiver 

node contains a record including a filter mode and also source list for each multicast IP 

address [20]. 

2.3.2 PIM Protocol 

To support multicast communication, a multicast routing protocol is required. For this 

research we consider the PIM protocol because PIM is one of the most popular shared tree 

multicast routing protocols. There are two types of PIM protocol, namely PIM-DM, which 

was defined in 2005 [27] and used in environments where multicast trees are populated 

densely within the network. Another type is PIM-SM defined in 1998, which is better suited 

to sparsely populated networks.  

 

In this research we are focusing on the PIM-SM protocol because it is designed to support 

large region networks such as the internet. Sparse mode is activated when multicast groups 

are thinly populated across a large network region. This mode is designed for that situation. 

However, PIM-DM builds a separate source-based tree for every source, while a shared tree 

has been used for all sources within a multicast group. 

 

All multicast sources in the tree transmit all multicast stream traffic to the root, and then the 

root forwards the multicast traffic to all destination nodes in the network. Normally, multicast 

sources encapsulate their multicast data in unicast data packets addressed to the RP router 

within the multicast tree. When the RP receives those packets, the RP will decapsulate these 

packets and then forward them over the multicast delivery tree to all members in the 

multicast group [20]. 

 

Normally, destination hosts join a multicast tree by sending a join message towards the RP. 

The routers on the route towards the RP will store status information for the multicast group 

while passing the join request to the RP router, thereby building the multicast delivery tree in 

the direction of the new destination. 

 



19 
 

There are many control messages, which are used within the PIM-SM protocol. The PIM-SM 

message can show the following parts: 

 

 Bootstrap message 

 PIM-SM control-message encapsulation 

 Hello message 

 PIM-SM packet header 

 Encoded Unicast Address field 

 Join/Prune message 

 Encoded Group Address field 

 Candidate RP advertisement 

 Encoded Source Address field 

 Register message 

 Assert message 

 Register-Stop message 

2.4 Multicast Mobility in WiFi Network 

In this section, a review of mobility within the wireless network will be presented, including 

multicast mobile and related protocols.     

2.4.1 Overview of WiFi Network 

Wireless networks support different data rates and coverage area sizes. For example, 

IEEE802.11g supports a data rate of 54 Mbps but GPRS on 3G in practice only manages a 

data rate of around 9.6-384 kbps, such as specifying a minimum data rate of 144 kbps high 

mobility application like a car, while slow mobility like a pedestrian application requires 384 

kbps and up to 2 Mbps stationary applications. Typical network data rates are summarised in 

Table 2-1 [28]. 

 

 

 



20 
 

Table 2-1 A data rate and coverage area of wireless technologies [28] 

 

Network type Frequency Data Rate Coverage 

Bluetooth 
2.4 GHz ISM 

band 

Max 721 

kbps 
0.1-10m 

IEEE 802.11a 5 GHz 20 Mbps 50-300 m 

IEEE 802.11b 2.4 GHz 11 Mbps Up to 100 m 

IEEE 802.11g 2.4 GHz 54 Mbps 30-150 m 

IEEE 802.16 

(WiMAX) 
10-66 GHz 

Max 70 

Mbps 
Over 50 km 

IMT2000, UMTS 2 GHz 
Max 2 

Mbps 
30m-20km 

GPRS (GSM), 

EDGE (HSCSD) 

900, 1800, 

1900 MHz 

9.6-384 

kbps 
Up to 35 km 

 

2.4.2 Mobility in WiFi Networks 

In IPv6 wireless network, the protocol that provides mobility support is Mobile IPv6 

protocol, and this protocol will maintain the connection when the mobile node moves. Also, it 

includes the responsibility for the reachability of the mobile node and network, keeping 

records and IP address. So, in the next section the protocols that are related with mobility will 

be presented. 

2.4.2.1 Mobile IPv6 Protocol 

The mobile IPv6 protocol has been proposed by the IETF (Internet Engineering Task Force) 

to provide mobile support for hosts within IPv6 networks. In Mobile IP, a mobile node uses 

two IP addresses that are its home address and a care-of-address. The home address is a stable 

IP address assigned to a device and based on their point of network connection [29].  

 



21 
 

In contrast, the care-of-address is a temporary address provided for a 'foreign' network and 

this address will change as the device moves between different IP subnetworks. The care-of-

address in IPv6 network can be formed based on stateless or stateful mechanisms [30]. When 

the mobile node moves, it first forms a care-of-address based on the prefix of the foreign link. 

Then, the mobile node sends a Binding Update (BU) message to the home agent, which is its 

temporary care-of-address (CoA).  

 

After that, although the home agent wants to grant or deny the request from the mobile node, 

the home agent will send a registration message reply [31]. After the registration process is 

successful, any messages destined for the mobile node are intercepted by the home agent, 

which encapsulates the packets and tunnels them to the foreign agent. Then, the data streams 

are forwarded to the mobile node [32]. 

 

 

 

Figure 2-5 Mobile IPv6 Protocol 

 

Mobile IPv6 offers improvements in this process compared to Mobile IPv4. For example, 

Mobile IPv6 can eliminate the triangular routing issue and produces route optimization. 

Route optimization is the process that enables the correspondent node to reroute data stream 

on a direct path to mobile destination [33].  

 

Moreover, Mobile IPv6 includes embedded binding updates for the home agent and care-of-

address configuration for location updates. Additional security has also been incorporated 

such as authentication header processing to provide validation for mobile nodes [19]. 



22 
 

2.4.2.2 ICMPv6 Protocol   

The ICMPv6 (Internet Control Message Protocol version 6) protocol [34] is used to carry IP 

control messages for various purposes such as destination unreachable, time exceeded and 

parameter problem. In addition, ICMPv6 is defined to carry information between hosts, 

between routers, or between hosts and routers. 

 

There are two types of ICMPv6 message [35]: 

 

 ICMP error message 

The functions of ICMPv6 error messages are to report forwarding or delivery errors 

by either a router or the destination node. The ICMPv6 error messages consist of 

destination unreachable, packet too big, and parameter problem and so on. 

 

 ICMP informational message 

Informational messages provide simple diagnostic functions such as echo request, 

echo reply, and additional host functionality for example MLD and ND (Neighbour 

Discovery), which is a set of processes and messages that determine relationships 

between neighbouring devices.   

 

2.4.3 Multicast Mobility in IPv6 WiFi Network 

When a mobile node moves from one network to another network, it is a challenging problem 

to maintain reachability and transparency of a mobile node. In case of multicast wireless 

network, the scenario of handover is particularly challenging and serval issues emerge with 

most solutions due to the handover impacts.  

 

The main problem when the receivers move is multicast latency problem. Multicast latency 

problem, whenever an MN moves to a foreign network, the delay experienced by executing 

handover process.  

 

Moreover, if a Home Agent (HA) does not support multicast router functionalities, an MN 

have to discover other a multicast router (MR) and send notification by using MLD 



23 
 

(Multicast listener discovery) query/report messages including a request to join a multicast 

tree. In this case, the maximum query period of MLD is up to 125 seconds [36]. For some 

applications, this increased latency time is undesirable such as video conferencing. 

 

Run-liu, W and Yun-hui [37] proposed a multicast routing algorithm trying to reduce the cost 

of created multicast tree combines with Mobile IP. Also this algorithm tries to reduce the 

bandwidth of multicast data stream. For applying to large scale of wireless network and 

reducing join delay time in handover process. 

 

Holbrook, Cain and Haberman [38] proposed a new approach called the Mobile Multicast 

Protocol (MOM) in 2003. This approach introduces a new entity called the designated 

multicast service provider (DMSP) and uses a foreign agent entity. The main issue of this 

research is to reduce the duplicated multicast packets on home agent. However, it created the 

problem between the HA and FA networks. 

 

Figueiredo, Jeon and Aguiar [39] proposed the solution to reduce vertical handover by 

adapting a cross layer approach and IEEE 802.21 Media-Independent Handover. There is the 

process of selected FA links in the network. Also the process uses the single tunnel for 

completing the delivery process. 

2.4.4 Multicast Mobility in UMTS Network 

For 3G (UMTS) mobile networks, multicast can be delivered through IP multicast, MBMS 

(Multimedia Broadcast/Multicast Service) and CBS (Cell Broadcast Service). CBS is a 

standard that allows the delivery of messages to multiple users in both GSM and UMTS 

networks. Similarly, MBMS is a standard that is designed to support efficient multimedia 

broadcast and multicast delivery in GPRS and UMTS networks.  

 

With MBMS, there is provision for streaming services for the delivery of continuous 

multimedia data traffic. For CDMA2000 networks, there is the BCMCS standard for 

managing the capability to deliver broadcast and multicast services [20]. 



24 
 

2.5 Multicast Mobility Problems in WiFi 

Networks 

2.5.1 Multicast Mobility Problems 

Although the research area of multicast mobility has been a concern for about 10 years, there 

are numerous proposals but not yet a generally accepted standard solution. One reason for 

this is that the standard multicast protocol was designed for stationary nodes and not for 

mobility. The problem and challenge of multicast mobility can be divided into 3 categories 

[40]: 

 

 Multicast routing problems: due to the movement of mobile nodes and the source 

there are routing problems, such as: 

 

 Network inactivity: means when the foreign network the mobile node visited 

does not support multicast delivery. Hence, the mobile node has to stop receiving the 

multicast message. 

 

 Core placement: when the mobile node moves to a foreign network, the new 

route will be established. If the mobile node changes zone more often, the frequent handovers 

can lead to a situation that those multicast routers are off centre. That results in a possible 

non-optimality configured path. 

 

 Multicast Encapsulation/Decapsulation: a variety of methods are used for 

tunnels to keep connection between the mobile node and home network when the mobile 

node moves to foreign network.     

 

 Mobile receiver problems: In multicast routing when the MNs are moving, they need 

both efficient IP mobility management and multicast mechanisms to provide a seamless 

service. Hence, multicast mobility has many constraints that should be considered. It can be 

classified into: 



25 
 

 

 Packet loss: a mobile node may miss some multicast data because when it 

moves normal multicast packets will continue to be delivered to the home network for a short 

period of time. 

 

 Packet duplication: happens when the mobile node receives the packet from a 

different multicast router but from the same multicast tree. 

 

 Packet out of order: when handover occurs. 

 

 Tunnel convergence problem: the tunnel convergence problem is concerned 

with the delivery of multicast packets to mobile member nodes that are located in several 

foreign networks over bi-directional tunnels using Mobile IP. An MN receives multicast 

packets from a home agent, duplicated multicast packets are transmitted to over several 

tunnels and these become a problem [36]. 

 

 

 

Figure 2-6 Tunnel convergence problem [36] 

    

 Mobile source problems: In multicast mobility, it is not only the mobile node that can 

move. Multicast sources can also move. Consequently, the following aspects must be 



26 
 

considered:   

 

o Transparency: is a major problem when a multicast source moves. There is a 

problem with the CoA of the multicast source, because when a mobile source uses a 

new CoA as a multicast source address, it cannot send multicast messages 

immediately.  It has to wait until the mobile node explicitly notifies that CoA[41].   

 

o Reverse path forwarding (RPF): because it is specific to source location. 

 

o Packet loss. 

 

o Source active problem: because the multicast tree has to be reconstructed 

when the mobile source moves to the new network. 

2.5.2 Overview of Handover Problem 

Currently, there are several wireless technologies to provide ubiquitous information access to 

users when they are moving. A mobile device such as a smart phone offers multiple wireless 

network interfaces and can access these as it moves between different network environments. 

 

Typically, when a mobile device is within the building they receive signals from WiFi and 3G 

at the same time but choose WiFi for data services. However, when they move out of the 

building, they will be receiving only the 3G signal. The smart phone will, of course, 

automatically switch between these networks when WiFi connectivity is lost. 

 

For wireless networks, there are two types of handover that can occur in the network. 

 

Horizontal handover 

Horizontal handover is the process by which mobile devices switch from one cell to another 

cell within the same network technology; this will be called “intra-system handover”. 

 

Vertical handover 



27 
 

For vertical handover or “inter-system handover” the mobile device is switching between 

different network technologies; for example between 3G and WiFi. That means that vertical 

handover is different in several aspects such as data rate, bandwidth and frequency of 

operation. 

 

Moreover, vertical handover can be divided into two sub types, which are upward-vertical 

handover and downward vertical handover [20]. For example, the device moves from WiFi to 

3G. Downward vertical handover is a handover that disconnects from a cell providing 

broader coverage to a wireless overlay with a smaller cell size, and generally higher 

bandwidth per unit area such as from 3G to WiFi. 

2.5.2.1 The Handover Process   

One of the major problems of multicast mobility is the handover process which occurs 

between cells or between different technologies. The handover process can be divided into 

three phases [8],[28]. 

 

 Network Discovery or System Discovery: This phase is where the mobile node (MN) 

searches for reachable wireless networks, usually based upon values of received signal 

strength. 

 

 Handover decision:  These are the rules that determine when a mobile node should 

perform handover. A decision for vertical handover may depend on various parameters such 

as bandwidth, delay and transmitted power. 

 

 Handover Implementation or Handover Execution: This is the process by which a 

mobile node’s connection is rerouted from their existing network to a new network in a 

seamless manner. Mostly, it requires the network to transfer routing information about the 

mobile terminal.   

 

Recently, research has developed various techniques and approaches to deal with the 

multicast mobility process and handover at different layers of the network. Most of these 

strategies are based on a modification and implementation at the network layer for example 



28 
 

modifying the Mobile IP protocol [28,19,42]. Other approaches operate at the transport layer 

and at the application layer such as a modification to SIP (Session Initial Protocol) [43]. 

 

For the Network Discovery Phase, the MN must search for available reachable wireless 

networks. In this state most MNs should always keep all network interfaces on. However, 

keeping network interfaces on all of the time becomes a weakness because it consumes 

battery power without any benefit of delivering real data. 

 

In [8], the context information about a network is stored in the context awareness database. 

Many parameters are collected by system discovery and are dependent on the adopted 

network interface card within the MN. For instance, these could include signal RSSI 

(Received Signal Strength Indicator), bit rates, MAC (Media Access Control), etc.  

 

In addition, network monitoring systems adopt SNMP (Simple Network Management 

Protocol) to extract more relevant network information from all APs (Access Points) and ARs 

(Access Routers) in each subnet such as data transmission/receiving rate, network loading 

and multicast connections. 

2.5.2.2 Handover Decision Phase 

There are many research papers proposing strategies for making decisions about handover. 

We categorize these into three types: network-controlled handover, mobile-controlled 

handover and mobile-assisted handover. 

 

Network-controlled handover is when the network makes the handover decision for a 

mobile node. Shantidev Mohanty [45] proposed a novel architecture using the Network Inter-

operating Agent called NIA and Integration Gateway (IG) to integrate the 3G systems and 

WiFi networks of various providers. The IG functions as a traffic monitoring unit and 

seamless roaming module. 

 

In [42], mechanisms are presented for PMIPv6 (Proxy Mobile IPv6) by two multicast 

mobility listeners called LMA-MLM and MAG-MLM. Both listeners will be responsible for 

subscribing to the multicast group and receiving multicast packets on behalf of MNs in its 



29 
 

domain. The MAG-MLM uses a MAG (Mobile Access Gateway) to detect the detachment of 

the MN.  

The LMA-MLM uses a LMA (Local Mobility Anchor), which is responsible for maintaining 

the reachability of MNs by updating the binding cache and maintaining the tunnel to the 

MAG for packet delivery. Their process can achieve the whole multicast handover process 

without the involvement of the MN. However, the LMA-MLM still has to deal with the 

problem of encapsulation. 

 

Kim and Han [46] have proposed PMIP protocol with IP multimedia system. The protocol 

that they proposed naming PMIP-M protocol. The main idea of this protocol is the user can 

continue received multicast data stream even when they migrates in the new network which 

without IP multicast capability.   

 

Mobile-controlled handover is where the mobile node must take its own signal strength 

measurements and make the handover decision on its own. In [47], an algorithm is proposed 

based on the Markov decision process (MDP) formulation, which tries to maximise the 

expected total reward of a connection.  

 

Mobile-assisted handover is where the decision to handover is made by the mobile node and 

network in cooperation. In [43] a mobile QoS (Quality of Service) framework is proposed for 

heterogeneous IMS (Internetworking Management System) interworking by modifying SIP 

multicast. However, this method consumes network bandwidth and MNs need to reserve 

bandwidth. Park and Won [48] analyse about mobility management architecture such as MIP 

and PMIP protocol for avoiding any tunnels for multicast delivery in heterogeneous network. 

 

C. Wen et al. [8] proposed an integrated framework for MNs and core wireless networks by 

using a context-aware handover scheme. They periodically collect the parameters of various 

available network status reports and information about host application services. For 

example, the best one from a list of available access points is selected based on network 

conditions and user defined policies. The multicast connection management is then 

performed efficiently by a multicast agent in WiFi and 3G networks. Hence, the MNs can 

make handover decisions to activate the proper network interface switching to avoid 

discontinuities in the delivery of multimedia application services.   

 



30 
 

One thing that is important when the handover occurs is considering the handover metrics 

used to make the decision. There are many handover metrics that are used to indicate when 

handover should be performed:    

 

Connection cost 

For users, connection cost is a key consideration, especially when different network operators 

may create different billing schemes. Hence, it might affect the user’s choice of handover.   

  

Network-related parameters 

There are many network parameters used for making the decision such as bandwidth, load, 

network latency, traffic congestion, location information and so on. Moreover, that 

information is useful for load balancing across different networks and QoS [20].   

 

Application types 

For example, some multimedia applications require reliability in networks. Hence, different 

types of applications may require different levels of QoS determined by the percentage of lost 

packets or the delivered data rate. 

 

Battery power 

Battery power may be a significant factor for handover in some cases. Moreover, an MN with 

multiple interfaces must keep an interface active all the time but this consumes battery power 

even without receiving any data.  

2.5.2.3 Handover Implementation 

Several multicasting schemes have been proposed for mobile networks. In [44] they used the 

ISHO (inter-system handover) protocol and include the concept of a dynamic boundary area 

to support seamless roaming between different networks. However, this scheme requires the 

NIA and IG to be added into the network architecture. 

 

In addition, when an MN moves across to the new network, it is important to consider the 

associated security mechanisms. The security mechanisms of 3G-WiFi do not address the 

security of multicasting. However, for supporting a secure link for multicasting a framework 

of multicast key agreement by a modified EAP-AKA protocol has been presented [49]. Here 



31 
 

EAP-AKA is the Extensible Authentication Protocol method for UMTS Authentication and 

Key Agreement used for authentication in wireless networks. They are divided into two 

phases: Initial phase and Key refresh phase. The benefit of this technique is that it saves 

communication overhead, computation overhead and does not need a huge change for 

existing protocols [50].   

2.5.3 Handover within WiFi Networks 

For the WiFi-3G handoff process, [51] a method is proposed to reduce latency by using the 

ISHO (inter-system handover) protocol which includes the concept of a dynamic boundary 

area to support seamless roaming between different networks. However, most of this research 

tries to solve the problem in the network layer with others seeking to solve it by modifying 

the transport layer. For instance, in [52] a mobile QoS framework is proposed for 

heterogeneous IMS interworking by modifying SIP multicast. However, this method 

consumes network bandwidth and MNs need to reserve bandwidth. 

 

The handover procedure of Mobile IPv6 protocol can be expressed as 2 parts: L2 (link layer) 

handover latency and L3 (network layer) handover latency. The L2 handover consists of 

channel scanning process, authentication and association process. Generally, L2 handover 

latency is about 100 – 300 ms however it depends on the structure of network topology. For 

L3 handover latency in MIPv6 consists of two main parts: CoA configuration and Binding 

update. The process of CoA configuration is starting from Router discovery process until the 

MN obtained a new CoA. The Binding update procedure is about the MN inform HA and CA 

nodes about their new location which is new CoA address. Normally, handover latency of 

Mobile IPv6 is about 2000-3000 ms [53] this is why it is possible that MN can lose 

connection completely during handover process.    

 

Tien-Thinh Nguyen [54] had applied DMM (Distributed Mobility Management) concept with 

multicast mobility in IPv6 network by enable IP Multicast with MLD proxy function. 

However, the result show that when the mobile receiver moves, the network have to build the 

tunnel between source and destination. This is a case of tunnel convergence problem. Also it 

has a problem about service disruption and delay which cannot acceptable in some delay-

sensitive service. Moreover Nguyen and Bonnet [55] had been studying about load balancing 



32 
 

mechanism among LMAs (Local Mobility Anchor) to solve a bottleneck and single point of 

failure issues.       

2.5.4 Multicast Handover in Wireless Networks 

For streaming multimedia content in 3G network has been standardized under the 3GPP-PSS 

(3rd Generation Partnership Project – Packet Switched Streaming Standard) which is released 

in April 2001. The 3GPP-PSS are described presentation of information, the audio and video 

formats of that stream within complete protocol stack in IP layer [56]. In UMTS, the IMS 

was extended to include MBMS. The 3GPP MBMS has the following characteristics: 

 

 There is no immediate Layer 2 source-to-destination transition, resulting in transit of 

all multicast traffic at the GGSN. 

 

 As GGSNs commonly are regional, triangular routing, distant entities and 

encapsulation this may cause a significant degradation of efficiency. 

 

In 3GPP2 (3rd Generation Partnership Project 2) [57], the MBMS has been extended to the 

Broadcast and Multicast Service (BCMCS) [58], which on the routing layer operates very 

similar to MBMS. In both 3GPP (3rd Generation Partnership Project) and 3GPP2, multicast 

can be sent using either point-to-point (PTP) or point-to-multipoint (PTM) tunnels, and there 

is support for switching between PTP and PTM.  

 

A mobile multicast node may change its point of Layer 2 attachment within homogeneous 

access technologies (horizontal handover) or between heterogeneous links (vertical handover) 

[59]. In [60] has modified PIM-SM to support handover latency and keeping connection. By 

proposed multicast routing protocol named MC-PIM-SM by extended from PIM-SM protocol 

[61]. Mobility applications transport for MIH are required as an abstraction for Layer 2 

multicast service transfer in an Internet context [45] and are specified in [62].  

 

Functions required for MIH include: 

 

 Service context transfer. 



33 
 

 Service discovery. 

 Service invocation. 

 Service context transformation. 

 

In [63] is shown the amount of multicast packet loss, when handover occur at the mobile 

node in equation. Suppose ��
(����)

 is the amount of multicast packet loss for the base 

multicast handover procedure. Let �� denote the average multicast session arrival rate per 

second at the mobile node.  ��
(����)

 is obtained as 

 

��
(����)

= ���(�)���
(����)

      (2.6) 

 

Where E(S) is the average session length in packets 

 

This research will focus on mobile receiver problems and so methods to solve these problems 

have been proposed. The problem of achieving seamless mobile receiver multicast handover 

can be addressed by one of the following: 

 

 Home subscription-based solution: 

 

o Mobile IP Home Subscription or bi-directional tunnelling: this approach relies 

on the Mobile IP protocol and uses a local router in the home network as the multicast 

router for responses such as forwarding multicast group membership control messages 

to the mobile node even when it moves to a foreign network. However, tunnelling will 

create the process of encapsulation/ decapsulation and fragmentation problems. 

 

o Multicast encapsulation: that is encapsulation of multicast data packets to 

shield mobility and to enable access to remotely located data services such as from the 

home agent. 

 

 Remote subscription-based solution: by forcing the mobile node to re-initiate 

multicast distribution following handover. However, this technique cannot support session 

persistence under multicast source mobility. 

 



34 
 

o Agent assistance: there are many protocols that are proposed for agent-assisted 

handover for host-based mobility such as Fast MIPv6 (FMIP6) and Hierarchical 

MIPv6 (HMIPv6). 

 

o Network-based mobility management: Proxy MIPv6 (PMIPv6) [19] is 

multicast transparent in the sense that the MN experiences a point-to-point home link 

fixed at its LMA (Local Mobility Anchor). In [63] network based mobility 

management is deploying for the mobile nodes, also the tunnel between the LMA and 

itself for the MN. However, PMIPv6 still has a problem about MTU size from 

spanning tunnels at the receiver site. 

 

 Hybrid architectures: that tries to find the methods, which avoid the complexity at 

the internet core network. 

 

o Hybrid shared tree: [64] proposes the hybrid shared tree approach by 

introducing a mobility-agnostic multicast backbone on overlay. 

 

o Hierarchical local registration: the network model has proposed hierarchical 

and local registration. The registration consists of having a root FA (Foreign Agent) 

and lower FAs. The MN registers its CoA with the root FA. All the FAs exchange 

summary reports that consist of the common multicast group of interest on the lower 

levels. However, this approach required an extra cost to select multicast service 

provider (MSP) [65].   

 

 MLD Extensions: there are many methods by extended MLD message. Some of them 

modify an MN operating predictive handover such as FMIPv6. 

2.6 Summary 

The approach which is presented in this research aims to offer a smooth handover between 

the home network and the foreign network. The advantages of both home subscription-based 

and remote subscription-based solutions have been combined.  A modification has been 

offered which responds to problems posed by mobility. However, this framework does not 



35 
 

make use of bi-directional tunnelling, which means that the framework solves three 

problems: tunnel convergence, encapsulation / decapsulation overhead delay, and 

fragmentation problems. 

 

The concept of a remote subscription-based solution has been applied to this framework by 

creating a reserve route to neighbouring networks but kept in standby. The FMIP6 protocol 

also uses the remote subscription but it still suffers a short lost-connection time of MN. 

Moreover, this approach does not require multicast tree reconstruction as many previous 

methods do. The design detail of this framework will be described in the next section. 

 



36 
 

Chapter 3 A New Framework for 

Multicast Mobility in WiFi Networks 

3.1 Introduction 

This chapter presents the designed framework that was produced during this research. The 

chapter describes about network architecture, protocol overview and the details of protocol 

process step by step.  

3.2 Network Architecture 

In this research, there is a requirement for a system that provides support for research 

scenarios in WiFi networks that are connected through the internet. According to the real 

world, the WiFi network will combine with an IP wired infrastructure network with a 

gateway router to route data through to the internet. There are a variety of clients in the 

network such as PCs, laptops and mobile devices [66].  

 

Before starting to explain the detail in each process of the framework, it is first necessary to 

show the scope of the network architecture. Hence, in this chapter the network architecture 

being used in this research is described and shown in Figure 3-1. 

 



37 
 

 

Figure 3-1 Network Architecture 

 

Figure 3-1 is shown the stage which we consider WiFi to WiFi handover. 

 

 Here, the architecture comprises only WiFi networks that comprise: a media server 

which represents the source server, which is sending the multicast packets to mobile devices 

in the network. The rendezvous router is a central router in a multicast tree. 

 Border gateway router is a core router which is enabled for multicast delivery services 

and supports multicast routing protocols such as PIM (Protocol-Independent Multicast), 

MOSPF (Multicast Extensions to Open Shortest Path First), DVMRP (Distance Vector 

Multicast Routing Protocol) and so on. 

 Gateway router is a core router within a company network which is connected to both 

WiFi and wireline networks, providing Internet access and supporting multicast routing 

protocols. 

 Local router is a router that connects between a WiFi access point and other network 

devices in the local network. 

 WiFi access point provides localized wireless coverage. 



38 
 

 Mobile nodes with embedded WiFi interface roam within this network. 

3.3 Protocol Overview 

In this section we will describe the process by which the new proposed framework is 

designed to improve handover performance for multicast services. Procedures and protocols 

already exist for handling handover from one WiFi network to another. However, such 

protocols, of which mobile IP is a key example, achieve handover by firstly making contact 

with a new WiFi base station, obtaining a new IP address and then re-routing traffic to that 

new address through a modified multicast tree. Unfortunately this leads to a loss of 

connectivity and hence, service whilst this process is taking place.  Similarly, IGMP manages 

the distribution of multicast services through the establishment of a multicast tree which is 

maintained by the routers. When a mobile node, moves, this tree needs to be modified to 

accommodate the mobile node’s new location. This therefore leads to further delay which 

handover takes place. Our approach is to complete as much of the existing handover process 

as possible before the physical handover actually takes place. This therefore will minimise 

the actual handover delay at the expense of having to establish several connections to 

neighbouring networks, most of which may never be activated. 

 

The overall concept of our new framework is that a mobile node will use mobile IP but 

modified in such a way as to allow connectivity to multiple foreign networks. In so doing a 

mobile node will receive a Care of Address from each foreign network that is within range.  

These addresses are then used to compute multiple extensions to the existing multicast tree, 

which are then held in a standby mode until required. The standby route represented as a dash 

line in Figure 3-2 below. Once a mobile node actually completes handover by moving to a 

new WiFi base station, the Care of Address that has already been obtained and the associated 

change to the multicast tree are then activated with traffic being routed to that mobile node 

via this new route. 

 

Hence, establishing the Care of Address and determining the required modifications to the 

multicast tree in advance of needing them reduces the handover delay to one of switching 

between the route currently being used within the multicast tree and the new one. The goal is 

to achieve this through the minimal modification to existing protocols and procedures. In this 



39 
 

chapter it is shown how the new framework can be applied to a network that employs mobile 

IP and IGMP. 

 

 

 

Figure 3-2 Multicast Route 

3.4 Process Diagram 

In this section we will describe a process diagram of the proposed framework in details. From 

the Figure 3-3 until 3-6, the modified messages or processes in the proposed framework will 

be represented by underlining the text, while standard protocol process will be represented by 

normal text. 

 



40 
 

The outline of our process is as follows [67]: 

 

 The mobile device connects to the WiFi#1 as home network and receives a multicast 

data stream as usual. 

 The mobile device sends the message to join WiFi#2 as a foreign network in advance 

by modified Mobile IP protocol.    

 The mobile node uses its CoA address from WiFi#2 to establish a new multicast route 

with the same media server. 

 After it receives the multicast message from the second route, it disconnects the 

second route at a point along the path between its local router for WiFi#1 and the rendezvous 

router. 

 Local router of WiFi#2 network sends a modified PIM protocol message to keep its 

connection as a standby route. 

 If handover occurs then the modified ICMP protocol message will be sent to 

reconnect the second route. This will minimize handover delay because the second route has 

already been configured and just needs to switch from standby to active.    

 

Figure 3-3 is shown the initial steps of how a mobile node is able to register for receipt of a 

multicast stream being delivered by the media server. 

 

 

Figure 3-3 Starting connection process 

 

Details of this process are as follows: 



41 
 

 

1. The mobile node sends a DHCP Discover to its local access point by broadcasting in 

order to discover the DHCP server that can supply it with an IP address. 

2. In this case WiFi#1 will respond with a DHCP Offer including an IP address. 

3. If the mobile node accepts that IP address, the mobile node will send a DHCP Request 

message including that IP address back to the access point for confirmation. 

4. Access point WiFi#1 will send a DHCP ACK message back to the mobile and allow 

the mobile node access to the network. At this stage, the mobile node will has IP address for 

establish a connection to media server.  

5. Usually, if a local router is enabled for multicast delivery it will send an IGMP 

General Query every 60 seconds within the network. Hence, at this stage WiFi#1 will send an 

IGMP General Query message out to the mobile node [68]. 

6. In this scenario, the mobile node wants to connect to the multicast tree and so it will 

send an IGMP Membership Report, including the IP multicast address to which it wants to 

connect. 

7. The local router will then use its multicast routing protocol to connect to the 

appropriate multicast tree. In this case it will create a PIM-SM protocol message and send it 

to the gateway router within the WiFi#1 network. 

8. Since in this case the media server is outside the local network and on the internet, 

BGMP will be used by the gateway router to connect to the multicast tree. 

9. Once connected to the multicast tree, the mobile node will start to receive the 

multicast data stream.          

   

When a mobile node moves then in effect its position on the multicast tree moves or, in some 

cases, the multicast tree will need to be extended to accommodate the mobile nodes’ new 

location. Moving within a network also requires the mobile node to be issued with a care of 

address. Therefore, in order to improve handover efficiency, in our scheme we seek to obtain 

the care of address and modify the multicast tree ahead of the time when it is actually needed.   

 

 



42 
 

Mobile IP

Mobile IP

 

Figure 3-4 Request CoA address in advance process 

 

Figure 3-4 is shown the process of obtaining a care of address in advance from access point 

WiFi#2 as the mobile node is preparing to move away from access point WiFi#1. 

 

The procedure is described as follows: 

 

1. When the mobile node received a signal from foreign agent which is Local Router on 

WiFi#2 network in Figure 3-4, that implies the mobile node is in range of foreign agent. In 

the new framework, we designed that the mobile node will broadcast a Mobile IP Agent 

Solicitation Message every 30 seconds for registering to the new foreign agent. This process 

Mobile IP does not use a new packet type for agent solicitation, it uses the router solicitation 

packet of ICMP.  

2. After receiving Mobile IP Agent Solicitation Message, the local router (foreign agent) 

in the Wifi#2 network will send back an Agent Advertisement Message which includes the IP 

care of address (CoA) to the mobile node.  

3. If the mobile node accepts this address, the mobile node will send a Request message 

to confirm to the local router in WiFi#2 network that it wants to use this IP address. 

4. The local router will subsequently acknowledge this with an ACK message. At this 

stage, that means the mobile node had CoA address in advance before moving to WiFi#2 

network. Also it means the mobile node can use this IP address if it handover into WiFi#2 

network. 

5.  Normally, when a mobile node receives a CoA address it needs to register this with 



43 
 

its Home agent which, in this case, is the local router in WiFi#1 network. 

6. After the home agent stores the information in their database, it will send a 

Registration Reply to confirm to the mobile node. At this stage, the mobile node has two 

addresses; one is an IP address from its home agent and the other is the CoA address from the 

foreign agent.    

 

The next strategy is to establish a new multicast route from the foreign network to the 

multicast tree, the details of which are shown in Figure 3-5. 

 

 

 

Figure 3-5 Request Multicast packets and keep route 

 

The procedure is described as follows: 

 

1. Normally, the local router will broadcast an IGMP General Query to the client in their 

network which in this case is the local router in the WiFi#2 network. For querying that there 

is any client would like to join any multicast tree in network.   

2. If the mobile node wants to join the multicast tree it will send an IGMP Membership 

Report including the IP multicast address to the local router. In this framework the mobile 

node will use the CoA address to communicate. 

3. The local router will use the PIM-SM protocol to communicate with the gateway 

router in the WiFi#2 network for creating the route to multicast tree by connecting to 

rendezvous router. 

4. After joining the multicast tree, there is a multicast data stream from media server to 



44 
 

local router. However, at this stage, there are two routes connected to the same multicast tree 

but only one should be live. Therefore, we are proposing to modify the PIM-SM message to 

keep the route between the local router in the WiFi#2 network and the gateway router in a 

standby mode. 

         

Figure 3-6 is shown details of the process when the handoff process occurs. The idea is to 

change the route at the foreign agent from standby to active. Here the secondary route which 

has been established using the CoA needs to be switched from standby to active and the 

currently active route which uses the home address needs to be switched from active to 

standby. 

 

 

 

Figure 3-6 Handover process 

 

The procedure for achieving this is as follows: 

 

1. The local router in the WiFi#2 network will send a modified ICMP message to the 

gateway router to change mode from standby to action. This means that the new route for the 

multicast data stream is ready to connect. Moreover, this method should reduce handoff 

latency time.   

2. After that the mobile node will start to receive multicast data stream via the new route. 

3. The next step is to change the old route to standby mode by sending an ICMP change 

to Standby message to the gateway router in WiFi#1 network. 

4. At this stage we still keep the old route from media server to the local router in 

WiFi#1 network in case the mobile node moves back to the old network. However, it will 



45 
 

have setting timeout for delete route. 

3.5 Modified Protocol Message 

In this research, there are some protocol messages that have been modified to support our 

designing framework, which are: 

3.5.1  PIM Protocol Message 

The message that we have been modified in PIM protocol is “Join/Prune message”. The 

format of Join/Prune message is shown in Figure 3-7. This message modified for keeping 

status join/standby message information which sends between local router in WiFi#2 and 

rendezvous router in the process number 20 in the Figure 3-5. 

 

Figure 3-7 Join/Prune messages format [20] 



46 
 

3.5.2  ICMP Message 

The ICMP message has been modified and adapted for controlling and changing the status of 

a second route when the handover happened. In our framework when handover occurs, local 

router in WiFi#2 will send the message to change the status to become active as in process 

number 25 in Figure 3-6. After that, the mobile node can continuously receive the multicast 

message from multicast tree without rebuilding the tree. We modified ICMP to support this 

strategy. The 3-8 is shown the standard ICMP message. 

 

 

 

Figure 3-8 ICMP message format [35] 

3.5.3  Mobile IP Message 

The Mobile IP message is modified for sending to the local router in WiFi#2 network to ask 

for CoA address in advance. In process number 10 in Figure 3-4, we will modify an Agent 

solicitation Message of Mobile IP to ask for CoA address from local router in WiFi#2 

network by changing the flag H to active. The format of Mobile IP message is shown in 

Figure 3-9. 

 



47 
 

 

 

Figure 3-9 Mobile IP message format [32] 

3.5.4  IGMP Message 

In the designing framework, IGMP protocol has been modified to do a process of joining 

multicast tree for the second route before handover take place. This IGMP message will carry 

an “IGMP Membership Report” message as show in the process number 17 in Figure 3-5. 

The standard format of IGMP message is shown in Figure 3-10. 

 



48 
 

 

 

Figure 3-10 IGMP message format [6] 

3.6 Summary 

This chapter describes the network requirement, network architecture, the protocol process 

and modifying messages in detail. According to our goal we are trying to minimize the 

handover process in multicast mobile. The framework creates the reserve routes via 

neighbour zones, which are connected to the same multicast tree in advance. When handover 

occurs, the system only changes the status from standby to active and from active to standby 

mode.  

 

We predict this strategy can reduce handover latency time because the network already has 

reserve paths, which are connected to neighbour zones. The delay will become only the time 

for changing the status of the reserve route. Hence, the handover latency time will become 

the time from local router in WiFi#2 to be detected by the mobile node including sending 

ICMP message to change the status until mobile node receives the multicast message. If it is 

compared with the previous methods that have been proposed, this strategy avoids many 

problems such as reconstruction of the multicast tree, network inactivity because it knows the 

new route in advance, multicast encapsulation/decapsulation because this method does not 

use tunnelling and so on. 

 



49 
 

Chapter 4 A Framework Simulation in 

OPNET Modeler 

4.1 Introduction 

In this chapter will present about a designed framework which simulating on OPNET 

Modeler software. The research is simulating those techniques and designed processes on 

OPNET Modeler software which is a licensing at University of Salford. OPNET Modeler 

software is a network simulation software and solution. This software provides for 

application and network management issues.  

4.2 Network simulation 

For doing research in the network field, network simulation software is a very useful and 

important tool. As researchers or protocol designers have to design and testing the system in 

simulation software before using it in a real network. There are many network simulations 

that widely used in networking research such as OMNET++ (Objective Modular Network 

Testbed in C++), NS-2 (Network Simulator version 2) and QualNet [69].    

OPNET Modeler is generally used by researchers, developing protocol designers and so on. 

The OPNET software was funded in 1986 by Alain Cohen. OPNET stands for Optimizing 

Network Engineering Tools [70]. OPNET Modeler provides a comprehensive development 

environment which is powerful for instance simulation, data analysis, model design and etc. 

also it can support lot of technologies including local area network (LAN), mobile network, 

sensor network, wireless network and so on. 

4.2.1 Basic Structure within OPNET Modeler 

This is the workflow for OPNET Modeler. Normally, the researcher use these steps to build a 

network model, create the traffic, choose statistics and then run simulations. 



50 
 

 

 

 

Figure 4-1 Basic step for creating network simulation 

 

These 4 steps in Figure 4-1 consist of creating network environments which is including 

network devices and traffic, and then choose statistics that we want to study. Next step is run 

simulations. Finally, view and analyze the results. To complete these 4 steps, OPNET 

Modeler provides variety kinds of editor to support users as show below. 

 The Project Editor 

This is a main area of OPNET simulation. We use this area to create network topology, 

generate traffic within network and view the results via this editor. Moreover, this area still 

covers about choosing statistics and running simulations.  

 The Node Editor 

The user can define the behavior of each network object via “Node Editor”. In Node Editor 

of each model, the behavior is defined using different modules for example data storage, data 

creation, etc. A network object in OPNET Modeler is typically building up from multiple 

modules which define that object. The user can add their modules into the network object via 

Node Editor.     

 A Network Model in the Project Editor 

The OPNET Modeler let user to design and create any elements of network as they wish. For 

instance, user can create node, link model, process models and build packet formats. Also, 

the user can create filters and parameters that they want to analyze.  



51 
 

 Node Model 

 

Figure 4-2 Node Mode example  

 

 The Process Model Editor 

The OPNET Modeler let user design and creates their process models via the “Process 

Editor”. The user can start from create node model in Node Editor and then they can build 

process model, which control the functionality of that node mode.  

 Process Model 



52 
 

 

 

Figure 4-3 Process Mode example  

4.3 Implementation of the Proposed 

Framework in OPNET Modeler 

Due to the implementation of this research has been simulation environments and testing the 

performance of designing on OPNET Modeler software version 16.0 which is not supported 

multicast communication over IPv6 WiFi environment. Hence, the implementation and 

development of this thesis has been modifying based on IPv4 environment. However, the 

concept and designed of this framework can adapt to WiFi network both on IPv4 and IPv6 

Networks.   

4.3.1 Network Architecture 

Normally, the first thing that has to start network simulation is OPNET Modeler is to create 

network architecture. The common start network topology that is used in this research is 

shown in Figure 4-4. 



53 
 

 

 

Figure 4-4 the common network topology that is used in this research. 

  

4.3.2 Process Model 

Therefore, we have to create a network environment and add some processes into standard 

protocol. So, we have to deal with process model many times.   

4.3.2.1 Asking CoA in Advance process 

 
In the designed framework, a mobile node will send an Agent Solicitation Message to 

foreign agent to ask for a CoA in advance. This process happens via the Mobile IP 

protocol. However in OPNET Modeler, this method will happen by creating an extra 

state and adding into the process model of mobile_ip_mn. 



54 
 

    
 

Figure 4-5 Process Model: mobile_ip_mn 

 

Figure 4-5 is shown the Process Model of Mobile IP protocol within mobile node. To achieve 

the process of asking CoA in advance, state name “Reg_adv” have to be added. The coding 

of this state is shown in the Figure 4-6. 

 



55 
 

 

 

Figure 4-6 The coding of “Reg_adv” state 

 

4.3.2.2 Joining Multicast using CoA Address 

This process model has been called after the mobile node received CoA in advance and then 

tries to build another route to multicast tree by using CoA address. This stage has been 

extended from IGMP process model. To achieve this, we have to create a process state 

adding into IGMP process model name “JOIN_ADV” as is shown in Figure 4-7. The coding 

of process state is presented in Figure 4-8.   



56 
 

 

 

Figure 4-7 Process Model: IGMP host 

 

 

Figure 4-8 The coding of “JOIN_ADV” state 

 

4.3.2.3 Re-join Multicast 

 
When the mobile node has been realized that, now it is in a foreign agent. The process re-join 

will call multicast joining state in process model “ip_igmp_rte_grp” to send a message to join 

multicast group again.  

 

 



57 
 

      

Figure 4-9 the coding for re-join multicast 

 

4.3.2.4 Keeping Multicast Route 

After the mobile node created other multicast routes, the mobile node have to keep other 

routes become Standby mode, only one route at a time being Active mode. To achieve this 

goal, we modified Join/Prune message in PIM protocol to keep these multicast routes alive. 

The coding of this process state is shown in Figure 4-11. 

 

Figure 4-10 Process Model: PIM-SM protocol 

 



58 
 

 

Figure 4-11 The coding for keeping multicast route 

 

4.3.2.5 Store CoA addresses 

When the mobile node moves, the mobile node starts to receive CoA address along the path. 

However, in the large network which consists of many routers in different zones, the mobile 

node also receive multiple CoA address from foreign router. Hence, the mobile node needs to 

have a process of store and process multiple CoA addresses. To solve this issue, we had 

modified Mobile IP protocol to have the process of store and retrieve CoA address on the 

mobile node. We have created the state named “Store_FA&Re” state which is shown in 

Figure 4-5 to solve this issue. 

 



59 
 

 
 

Figure 4-12 the coding of “store_FA&Re” state 

 

State “store_FA&Re” has two processes of designed framework in there. That is keeping 

CoA from foreign router, and another process is retrieving CoA address. Some part of coding 

state is shown in Figure 4-12. 

 



60 
 

 
 

Figure 4-13 the coding of structure of CoA address list 

 

Figure 4-13 presents the coding of the process in “Store_FA&Re” state. This part is shown 

the structure of each CoA information that has been stored in the mobile node responsible by 

Mobile IP message.  

 

 

 



61 
 

 
 

Figure 4-14 the coding of Binding Update multiple CoA address to home agent 

 

Normally, the mobile node has to report every CoA address that received from foreign agent 

to home agent. Hence, in the framework the mobile node has to do the same but in advance. 

So, this process is part of reducing handover latency because the binding update process had 

been doing in advance before handover occur. The coding of this process is shown in Figure 

4-14. 

4.4 Summary 

This chapter presents the fundamentals of OPNET Modeler software, the implementation that 

has been made to achieve our designed framework, the state diagram, some coding of the 

process. The full coding of this research has been attached in Appendix B.  

 

However, some process of the designed framework, we do not need coding program. We can 

handle it by setting a value of attribute of the protocol such as IP parameter and wireless 

parameter. Also, the designed process setting a second multicast route to Standby/Active 

mode can be done by changing the parameter flag at gateway router.  

 



62 
 

Chapter 5 Simulation Scenarios, 

Results and Evaluation 

5.1 Introduction 

The previous chapter described the implementation of a framework, which is simulated using 

OPNET Modeler software. In order to evaluate the performance of the designed network 

framework, we have to simulate a network environment within network simulation software, 

as it is impossible to test the designed network in the real network environment. This chapter 

will present the simulation scenarios, results and evaluation performance of the framework 

from the research project comparing it with the standard network. In the area of computer 

networking research, OPNET Modeler software is widely and reliably used for testing, 

debugging and performance evaluation of extended protocol and developing networks. 

 

To prove that this framework can reduce handover latency and reduce packet delay within a 

wireless network, a variety of network scenarios have been produced. Some scenarios were 

created to measure robustness on the network, some of them for testing about scalability and 

so on. Every scenario will be compared with the standard network environment. 

 

 5.2 Scenario 1: The Performance of Unicast 

and Multicast Mechanism 

5.2.1 Scenario1: Scenario Description 

At first, we evaluated the performance of the unicast and multicast mechanism. The statistical 

parameters that we focused on are throughput in the links and load at wireless router. 

 

Normally, the streaming video formats can range from 128*120 pixels to beyond 1920*1080 

pixels for HD (High Definition) standards. The popular streaming video service such as 



63 
 

YouTube has 320*240 pixel resolution. For the video frame inter-arrival rates can be from 10 

up to 30 frames per second [37]. However, the higher the video resolution, the higher the raw 

video content size, so that means it will affect the bandwidth on the network and packet 

delays.  

 

In this simulation model, a media server that connects within the network exports the 

multicast streaming video traffic to the clients. The frame size of video is 128*120 pixels and 

the video frame inter-arrival rate is 10 frames/sec (fps). In the wireless network, there are four 

subnets and each subnet has only one wireless router. For the sake of simplicity, we consider 

that there is only one multicast group in the network. Also, there are fixed and mobile node 

clients in this scenario. During the simulation, clients can join or leave the multicast group at 

any time. 

 

5.2.2 Scenario1: Simulation Topology 

At the beginning, the network topology combines with wireline and wireless networks as 

presented in Figure 5-1. 

 



64 
 

 

Figure 5-1 Scenario 1: Simulation Topology 

 

In order to examine the performance, we have moved mobile node B and C to connect to the 

network via Home Agent_A access point. Hence the experiment at this stage is that the 

mobile nodes A, B and C are connected to Home Agent_A access point and are required to 

receive the data from the media server. 

5.2.3 Scenario1: Simulation Results and 

Evaluation 

In the simulation, all mobile nodes join the multicast group at 100 seconds and leave at the 

end of the simulation. During simulation time, we assume that all packets are delivered 



65 
 

correctly to all receivers without any disruptions to the service. The correlation between 

unicast and multicast are tested. The results are presented in Figure 5-2 and 5-3. 

 

 

 

Figure 5-2 Throughputs between Router4 and Home Agent_A access point 

 

We can observe from Figure 5-2 that, the throughput of multicast transmission is only one 

third compared with the throughput in the same links when multiple unicast transmission is 

used. This means that the bandwidth consumption increases. It is the most important benefit 

of the multicast data delivery. 

 



66 
 

 

 

Figure 5-3 Load at Home Agent_A access point 

 

Figure 5-3 is shown the load at Home Agent_A access point compared between unicast and 

multicast transmission in units of bits/sec. It can be seen from the data that multicast 

mechanism reduces traffic and load at access point. Figure 5-4 illustrates CPU utilization at 

access point. It is apparent from this graph that CPU utilization of unicast is higher than the 

multicast mechanism. This result may be explained by the fact that the access point of unicast 

has to process 3 unicast copies while multicast processes is concerned with only one set of 

data. However, the other processes such as encapsulate/ decapsulate packet, routing process 

and forwarding packet are still the same method. This can explain why CPU utilization of 

unicast differs from multicast by only 0.04 %.  

 

 

 



67 
 

 

 

Figure 5-4 CPU Utilization at Home Agent_A access point 

 

Another aspect that we examined was when a mobile node moves while receiving multicast 

data. From Figure 5-1, mobile node A requests to receive video multicast from the media 

server at 100 seconds. During the simulation, mobile node A moves in a counter-clockwise 

trajectory roaming through all four access points in the network (the path represented in a 

blue line in Figure 5-1). At 800s, the mobile node A leaves the multicast group. The other 

mobile nodes did not move and also received multicast data through the access point as in the 

figure. Figure 5-5 compares the video traffic received at mobile node A and B.   

 



68 
 

 

 

Figure 5-5 Video traffic received at mobile node A compared with B 

 

Figure 5-5 depicts clearly that mobile node B, which is a stationary node, continuously 

received the multicast traffic until the end of the simulation. On the other hand, mobile node 

A moves through all four access points, and when handover occurred the traffic received 

dropped significantly. 

 

In this case, it may completely disconnect the access point from the link layer. Thereafter, it 

needs to restart the process of performing an IP reconfiguration in the network layer and 

binding updates to home agent to its infrastructure. Until completion of all these operations 

the mobile node is likely to experience disruptions or disturbances of application, as the 

results of packet loss, jitter and delay increase. After the handover process is finished, the 

node will pick up multicast data again [47]. 

 

Thandoff  = TL2 + Tlocal-IP + TBU    (5-1) 

 

The TBU is Binding update latency time. In order to examine the multicast service continuity 



69 
 

during the mobile node mobility procedures, therefore we simulated the following scenario. 

From Figure 5-1 we move the mobile node D to connect to Home Agent _B access point. 

Now there is no client in Foreign_Router_1 subnet. The mobile node A still moves in the 

same path. The result of this scenario is shown in Figure 5-6. 

 

 

 

Figure 5-6 Video traffic received at mobile node A 

 

Figure 5-6 is shown that mobile node A did not receive the multicast traffic whilst connected 

to Foreign_Router_1 zone. This means that mobile node A did not re-join the multicast group 

during that time. The mobile node A only joins the multicast group once the simulation starts, 

which is in Home_Agent A zone. Moreover, the mobile node A will receive multicast traffic 

if that zone already has a member in the same multicast group. 

 



70 
 

 

 

Figure 5-7 Delay at mobile node A 

 

Figure 5-7 is shown the delay on mobile node A. It depicts clearly that the delay increased 

when the handover process happened. From this result it supports our idea that if we want to 

reduce the handover process time and also improve the performance, it should have the 

process of registering the multicast group in advance. 

5.3 Scenario 2: Simple Network 

5.3.1 Scenario2:  Scenario Description 

In the second scenario, we focused on multicast mobility handover occurring between 

modified framework and comparing with standard network environments. In this scenario we 

have included the process of multicast re-join in the design framework. Therefore, the aim of 

this scenario is to measure how much difference of re-join process affects the performance of 

the network. 



71 
 

 

5.3.2 Scenario 2: Network Topology 

 

The network topology of this scenario still combines the wireline and wireless network. 

There are two WiFi zones in this topology, which are Home Agent_A and Foreign_Router_1. 

In Home_Agent_A zone, Mobile_Node_A is a member in this zone. Mobile_Node_A 

receives multicast data from Media_Server, and then moves to the Foreign_Router_1 zone. 

During mobility, Mobile_Node_A still continuously receives multicast packets from the 

Media_Server. In this scenario, there is no function of Mobile IP protocol involved. Figure 5-

8 is shown the network topology of this scenario. 

 

 

 

Figure 5-8 Scenario 2: Network Topology 



72 
 

 

5.3.3 Scenario2: Simulation Results and 

Evaluation 

 

Figure 5-9 Scenario 2: Traffic received at Mobile_Node_A 

 

The first graph in Figure 5-9 is multicast data that has been received at Mobile_Node_A 

during the simulation. A gap in the graph happens when Mobile_Node_A moves from Home 

Agent_A to Foreign Router_1 networks. The result is shown that Mobile_Node_A completely 

lost connection when handover occurred. However, the modified framework has the multicast 

re-join process, so a joining message has been sent to Foreign Router_1. Mobile_Node_A can 

get back to receive multicast data until it leaves multicast group. What is interesting in this 

data is that there is not the multicast re-join process in the standard network, hence 

Mobile_Node_A cannot receive traffic when leaving from the home agent network.    



73 
 

5.4 Scenario 3: Mobile IP and multicast Re-

join 

5.4.1 Scenario3:  Scenario Description 

This scenario intends to inspect the effect of Mobile IP protocol when handover occurs. The 

infrastructure network of scenario 3 is still similar to the previous scenario. However, some 

parameters might change. In the modified framework, the Mobile IP protocol has been 

enabled. Also, there it still has the process of multicast re-join in this scenario. The result will 

be compared with the standard network. 

  

5.4.2 Scenario3: Simulation Results and 

Evaluation 

 

The blue graph in Figure 5-10 is the result of the video conferencing traffic that 

Mobile_Node_A received. It can be seen that it still has a gap of handover. However, the gap 

is narrower than in scenario 2 and does not completely lose the connection. This is because 

Mobile IP protocol has a mobility function to support connection. In the red graph, there are 

no functions of multicast re-join and Mobile IP was not enabled. Hence, the connection was 

completely lost in this case. 

  



74 
 

 

 

Figure 5-10 Scenario 3: Traffic received at Mobile_Node_A 

5.5 Scenario 4: Care of Address in Advance 

5.5.1 Scenario4:  Scenario Description 

This scenario focused on the advantage of the process of registering a CoA address in a 

foreign network in advance. The method can reduce the waiting time in the process of 

assigning IP address to the network membership. The network topology in this scenario is 

still the same in scenario 2.    

 



75 
 

5.5.2 Scenario4: Simulation Results and 

Evaluation 

 

 

Figure 5-11 Scenario 4: Traffic received at Mobile_Node_A 

 

The result is shown that when the foreign agent knows the new member node in advance, it 

helps to reduce the handover latency time on the network. Also, it increases the performance 

and throughput on the wireless network. The foreign router will establish the connection 

earlier, including the process of joining and distributing the multicast tree in advance. 

Furthermore, the method of binding update will happen before the handover occurs. 

5.6 Scenario 5: Same Multicast Group   

5.6.1 Scenario5:  Scenario Description 

 

The purpose of the current scenario was to determine the performance of the network when 

the foreign network is already a member of the multicast group. 



76 
 

 

      5.6.2 Scenario5:  Network Topology 

 

The network topology of this scenario is slightly different from the previous network. In this 

infrastructure, the foreign network already has a mobile node, which is a member of the 

multicast group that Mobile_Node_A wants to join. In Figure 5-12, Mobile_Node_B is 

already a member of the multicast group from the media server. 

    

 

 

Figure 5-12 Scenario 5: Network Topology 

 



77 
 

      5.6.3 Scenario5:  Simulation Results and 

Evaluation 

The graph below illustrates that if the foreign network is already a member of the multicast 

group the handover latency time will be reduced. This is because the new mobile node just 

deals with IP addressing and then picks up the multicast signal within the network. There are 

not any methods for multicast communication. 

   

 

 

Figure 5-13 Scenario 5: Traffic received at Mobile_Node_A 

5.7 Scenario 6: Multi-Hops   

5.7.1 Scenario 6:  Scenario Description 

In this scenario, we increase a distance between home and foreign network. This study set out 

to determine the effects of multi-hops on the handover latency and packet delay. 

 



78 
 

      5.7.2 Scenario 6:  Network Topology 

In the new topology, the foreign agent connects to Router_2. However, they are still 

connecting to the same multicast group. 

 

 

 

Figure 5-14 Scenario 6: Network Topology 

 

5.7.3 Scenario 6:  Simulation Results and 

Evaluation 

 



79 
 

 

 

Figure 5-15 Scenario 6: Traffic received at Mobile_Node_A 

 

The output result on Figure 5-15 is shown that the handover latency time slightly increases 

because the route path between both networks had changed. However, in this topology the 

foreign router connected to Router_2, which is one of the members of the multicast tree. 

Moreover, in this network, Router_2 is a Rendezvous point of the multicast tree. That is why 

the output result is only slightly different. 

 



80 
 

 

 

Figure 5-16 Scenario 6: Combined traffic received at Mobile_Node_A 

 

Figure 5-16 combines the graph in Figure 5-13 and 5-15 in order to compare the results. The 

aim of this graph is to examine how hop distance affects handover latency in our designed 

framework. It can be seen from the data in the graph that the handover latency time slightly 

increases in this network topology. 

 



81 
 

 

 

Figure 5-17 Is shown how much the extended protocols can reduce handover latency 

compared with standard protocols 

 

The graph above illustrates the comparison between the graphs in Figure 5-15, which is the 

result from the modified framework, compared to the result from the standard framework. In 

the graph the handover latency of extended protocols is 48 seconds and 120 seconds for 

standard protocols. What is interesting in this data is that in a standard framework, mobile 

node completely disconnects until the process of IP readdressing and joining multicast are 

finished. The results of this study indicate that the modified framework can reduce the 

handover latency 60% when compared with the standard network. 

 



82 
 

 

 

Figure 5-18 Is shown how much the extended protocols can reduce packet delay compared 

with standard protocols 

 

From the network topology in Figure 5-14, the purpose of the current study was to assess 

packet delay in both networks. The above Figure is shown comparison of the output result of 

packet end-to-end delay in terms of average. It is apparent from this graph that the packet 

delays in the modified framework are lower than the original framework. On average the 

modified framework can reduce packet delay by approximately 3.5 – 10 ms throughout the 

simulation.  

5.8 Scenario 7: Handover   

5.8.1 Scenario 7:  Scenario Description 

In this scenario, we increase a scale of network topology for testing performance of proposed 

framework when mobile node joins in many WiFi networks along the path. Also, this 

scenario has shown that the mobile node can discover and connect to the new network when 

the mobile node moves.  

 



83 
 

      5.8.2 Scenario 7:  Network Topology 

In this topology when the simulation starts, the Mobile_Node_A is a member of 

Home_Agent_A and receives multicast data from Media_server. Then Mobile_Node_A starts 

to move in the direction of the blue arrow from Foreign_Router_1 throughout 

Foreign_Router_4, as presented in Figure 5-19. 

 

 

 

Figure 5-19 Scenario 7: Network Topology 

 

5.8.3 Scenario 7: Simulation Results and 

Evaluation 

 



84 
 

 

 

Figure 5-20 Scenario 7: Traffic received at Mobile_Node_A 

 

As Figure 5-20 is shown, there is a significant difference between the two lines. The x-axes 

show the time in units of seconds. The y-axes represent traffic received in units of bytes/sec. 

From the graph above we can see that the proposed framework can significantly minimize 

handover latency more than the standard framework, especially when handover occurred 

between multi hops such as from Foreign_Router_1 to Foreign_Router_2 in Figure 5-19. In 

that time, the standard framework completely disconnects and has to restart every process 

from the beginning while Mobile_Node_A in the proposed framework can receive multicast 

traffic around 10,000 bytes/sec.  



85 
 

 

Figure 5-21 Scenario 7: Packet delay 

 

Figure 5-21 represents the end-to-end delay of all the data packets that are successfully 

received by the mobile node. The graph is shown value in terms of average. There is a clear 

trend of lower packet delay in the design framework throughout the simulation. Further 

analysis showed that the designed framework reduced packet delay by approximately 0.7-1.5 

ms in this scenario.  

5.9 Scenario 8: Multiple Networks  

5.9.1 Scenario 8:  Scenario Description 

In this scenario, we increase a group of WiFi zone to evaluate the performance of the 

proposed framework in the process of registering CoA address in the foreign network in 

advance. In this topology Mobile_Node_A will register the CoA address to all of the foreign 

agents in advance as soon as the mobile node moves into their coverage area. Moreover, this 

scenario will study how mobile nodes handle all CoA addresses after they are received.     

 



86 
 

      5.9.2 Scenario 8:  Network Topology 

In this topology when the simulation starts, the Mobile_Node_A is a member of 

Home_Agent_A and receives multicast data from Media_server. Then Mobile_Node_A starts 

to move with constant speed in the direction of the blue arrow from Home_Agent_A to 

Foreign_Router_2 and then moves to Foreign_Router_4, as presented in Figure 5-22. There 

are 7 WiFi zones in this scenario. 

 

 

 

Figure 5-22 Scenario 8: Network Topology 

 



87 
 

5.9.3 Scenario 8: Simulation Results and 

Evaluation 

 

 

Figure 5-23 Scenario 8: Traffic received at Mobile_Node_A 

 

The results, as shown in Figure 5-23, indicate that the proposed framework can reduce 

handover latency for the mobile node. Also, on the designed framework the mobile node 

continuously received multicast data and did not lose the connection as the standard 

framework does. In addition, this scenario confirms that the mobile node can store those CoA 

addresses from foreign agents and use them to connect to the multicast tree in advance. This 

method will help foreign routers establish the connection and distribute the multicast tree 

earlier.  



88 
 

 

 

Figure 5-24 Scenario 8: Packet delay 

 

The above figure represents the end-to-end delay on average at the mobile node. Further 

analysis showed that the designed framework reduced packet delay by approximately 1.5-40 

ms in this scenario.  

5.10 Scenario 9: Complex Networks  

5.10.1 Scenario 9:  Scenario Description 

To increase the reliability of the proposed framework, we created more groups of WiFi zone 

to evaluate the performance. Also, in order to study the effectiveness of registering the CoA 

address in an advance process, the mobile node should register only the foreign network that 

the mobile node is in the coverage area of. Hence, in this scenario the direction of the mobile 

node was changed during simulation.     



89 
 

5.10.2 Scenario 9:  Network Topology 

In this topology when the simulation starts, the Mobile_Node_A is a member of 

Home_Agent_A and receives multicast data from Media_server. Then Mobile_Node_A starts 

to move with constant speed in the direction of the blue arrow from Home_Agent_A to 

Foreign_Router_5 and then moves to Foreign_Router_6, until it stops at Foreign_Router_8 at 

the end of the simulation, as presented in Figure 5-25. 

 

 

 

Figure 5-25 Scenario 9: Network Topology 

 



90 
 

5.10.3 Scenario 9: Simulation Results and 

Evaluation 

 

 

Figure 5-26 Scenario 9: Traffic received at Mobile_Node_A 

 

The findings of the current network topology are consistent with the previous scenario that 

the proposed framework can minimize handover latency time. However, the performance of 

this framework depends on the structure and topology of the network. It can show that the 

framework can reduce handover latency time that happen in network and transport layer. But 

it is still create handover latency time that happen in data link layer. 

5.11 Scenario 10: Internet  

5.11.1 Scenario 10:  Scenario Description 

To increase the reliability of the proposed framework, we have applied our framework to the 



91 
 

internet. In this scenario, the network will be similar to scenario 9, however, Media server 

and all access points connect to each other and the multicast tree via the internet.      

5.11.2 Scenario 10:  Network Topology 

The network topology in this scenario is similar to that of scenario 9. The mobile node moves 

in the same direction. However, in this scenario the mobile node received multicast data from 

Media_server via the internet. In Figure 5-27, the IP cloud represents the internet. In the 

simulation we have created some traffic such as email, www, and ftp traffic etc. within the 

internet as random traffic to make it more like reality. Moreover, the aim of this scenario is to 

evaluate the performance of the designed framework when it is a part of the internet.  

 

 

Figure 5-27 Scenario 10: Network Topology 



92 
 

 

5.11.3 Scenario 10: Simulation Results and 

Evaluation 

 

 

Figure 5-28 Scenario 10: Traffic received at Mobile_Node_A 

 

The current result found that the traffic on the internet slightly affects handover latency time. 

However, the traffic on the internet directly affects multicast data received at the mobile node 

because there is traffic on the internet. The most interesting finding was that the proposed 

framework could be applied for using on the internet and it did not affect the performance.  



93 
 

 

 

Figure 5-29 Scenario 10: Packet Delay 

 

The above figure represents the end-to-end Packet delay of video conferencing on average at 

mobile node. The packet delay increased significantly when connected through the internet.  

Further analysis showed that the designed framework reduced packet delay approximately 80 

- 150 ms in this scenario.  



94 
 

Chapter 6 Conclusion and Future 
Work	

6.1 Conclusion 

In this thesis, a framework for supporting multicast mobility has been designed. The concept 

of this framework can support WiFi network both on IPv4 and IPv6 networks. The 

contribution of this thesis is to find the way to reduce handover latency time, which means 

including handover delay packet loss and jitter. 

 

However, from the output result on OPNET Medeler network simulation software in chapter 

5, it can be confirmed that the designed framework of this research achieves the aim of the 

research in this thesis. 

 

Those methods and processes within the designed framework are a key factor that can 

produce an output result for achieving the research aim that can be analysed and classified 

into: 

 

 Foreign agent arranges an IP address for a new mobile node before it becomes 

a member within the network. This way it helps the foreign agent to reduce the time 

for searching an available IP address on their database, including negotiation time 

between foreign router and new mobile node. It is affected from registering CoA in 

advance module.    

 As it knows a new mobile node member in advance the foreign router can 

establish a path to multicast group early. 

 The results of this research support the idea that when mobile node connected 

to the multicast tree early, the process of rebuild multicast tree can happen early also. 

This saves time for connecting to multicast tree. 

 Helps Mobile IP protocol to do the process of Binding update to home agent 

early. 

 The results of this investigation show that mobile node can use the new IP 

address to join multicast tree in advance due to already having the new IP address. 



95 
 

 Reduces time in the process of becoming a member in a new multicast group. 

	6.2 Recommendation for Future Work	

From this research, there are many things that can be improved, modified and developed for 

making this framework more powerful, such as: 

 

 Include the algorithm or process for predicting potential foreign agent in 

advance. This is to save the resource and bandwidth on the wireless network. Further 

work is required to establish this. 

 Design a new algorithm or method for finding higher performance of the 

foreign agent. 

 Find the way to store CoA address, in case of receiving lots of CoA in 

advance. 

 Improve the performance of framework in terms of robustness such as when 

there are lots of mobile nodes within the wireless network. 

 Increase the performance of framework in terms of scalability for supporting 

more mobile nodes. This is an important issue for future research. 

 Improve framework for supporting large scale multicast tree. 

 Improve framework for supporting a variety of applications and multimedia 

sizes. 

 Extend framework for supporting many-to-many delivery applications. Future 

studies on this topic are therefore recommended. 



96 
 

 

 

 

 

 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

Appendix A: Essential Kernel 
Procedures 

This appendix presents the most-used kernel procedures (KPs) and functions in OPNET 

Modeler. They are grouped by the following areas of functionality: 

 Attribute Access 

 

 Distributions 

 

 Dynamic Processes 

 

 Events and Time 

 

 Identification and Discovery 

 

 Interface Control Information (ICIs) 

 

 Interrupt Processing 

 

 Packet Generation and Processing 

 

 Statistic Recording 

 

Attribute Access Get or set attribute values. (Simulation attributes are “global” to the 

simulation model.) 

• op_ima_obj_attr_get_<type> –> completion code <type> = color, dbl, int32, objid, str, 

toggle 

• op_ima_obj_attr_set_<type> –> completion code <type> = color, dbl, int32, objid, str, 

toggle 

• op_ima_sim_attr_get_<type> –> completion code <type> = color, dbl, int32, str 

 

Distributions Load distributions by name; Obtain outcomes from loaded distributions. 

• op_dist_load (dist_name, dist_arg0, dist_arg1) –> distribution handle 

• op_dist_outcome (dist_ptr) –> outcome 

• op_dist_uniform (limit) –> outcome (between 0.0 and limit) 



98 
 

 

Dynamic Processes Create a new “child” process of a given type; Destroy a process. 

• op_pro_create (model_name, ptc_mem_ptr) –> process handle 

• op_pro_destroy_options (pro_handle, options) –> completion code Identify the current 

process. 

• op_pro_self () –> handle for this process Invoke another process (cause it to execute now). 

As an invoked process, get optional state that is passed. 

• op_pro_invoke (pro_handle, argmem_ptr) –> completion code 

• op_pro_argmem_access() –> argument pointer 

 

Events and Time  

 

Cancel an event. 

• op_ev_cancel (evhandle) –> completion code 

Obtain current simulation time. 

• op_sim_time () –> current simulation time in seconds 

Terminate simulation. 

• op_sim_end (line0, line1, line2, line3) –> (no return value) 

 

Identification and Discovery 

 

Find the containing object. 

• op_id_self () –> object ID of containing object 

Find the parent of an object. 

• op_topo_parent (child_objid) –> object ID of parent 

Find an object’s descendants in the hierarchy. 

• op_topo_child_count (parent_objid, child_type) –> number of children of specified type 



99 
 

• op_topo_child (parent_objid, child_type, child_index) –> object ID of the i’th child meeting 

criteria 

 

Find an object’s peers. “objmtype” is one of an enumerated set; “direction” is IN 

or OUT. Possible use: how many links am I connected to; then, give me the i’th 

link. 

• op_topo_assoc_count (objid, direction, objmtype) –> number of associations of given 

direction and type 

• op_topo_assoc (objid, direction, objmtype, index) –> object ID of the i’th association 

meeting the direction and type criteria 

 

Interface Control Information (ICIs) 

 

Create or destroy an ICI. 

• op_ici_create (fmt_name) –> new ICI 

• op_ici_destroy (iciptr)  –> (no return value) 

Get or set ICI attribute values. 

• op_ici_attr_get_<type>, <type> = dbl, int32, int64, ptr –> completion code 

• op_ici_attr_set_<type>, <type> = dbl, int32, int64, ptr –> completion code 

Associate an ICI with a particular interrupt. 

• op_ici_install (iciptr) –> previously installed ICI 

 

Interrupt Processing Schedule an interrupt for this object or another at a given time. 

Optionally pass a “code”. 

• op_intrpt_schedule_self (time, code) –> event handle for interrupt 

• op_intrpt_schedule_remote (time, code, mod_objid) –> event handle for interrupt 

 

Obtain various attributes of the current interrupt. 



100 
 

• op_intrpt_type () –> type (such as packet arrival, statistic change, self interrupt) 

• op_intrpt_strm () –> stream for packet arrivals 

• op_intrpt_ici () –> control information passed with an interrupt (arbitrary structure) 

 

Packet Generation and Processing 

Create, copy, or destroy a packet. 

• op_pk_copy (pkptr) –> pointer to new copy of packet 

• op_pk_destroy (pkptr) –> (no return value) 

 

Get or send a packet. (with optional delay) 

• op_pk_send_delayed (pkptr, outstrm_index, delay) –> (no return value) 

 

Get and set named fields of a packet. 

• op_pk_nfd_set_<type>, <type> = dbl, info, int32, int64, objid, pkid, pkt, ptr –> completion 

code 

• op_pk_nfd_get_<type>, <type> = dbl, int32, int64, objid, pkid, pkt, ptr –> completion code 

 

Get certain properties of a packet. 

• op_pk_creation_time_get (pkptr) –> simulation time at which packet was created 

• op_pk_total_size_get (pkptr) –> size of packet in bits (sum of field sizes) Insert or remove a 

packet from a specified subqueue. 

• op_subq_pk_remove (subq_index, pos_index) –> pointer to packet removed from the 

specified subqueue 

 

Statistic Recording Obtain a handle for a statistic, given its name. Type is Global or Local. 

 

Optionally specify an index when a single statistic name encompasses multiple independent 

time series. 



101 
 

• op_stat_reg (stat_name, stat_index, type) –> statistic handle 

 

Write a new value to a particular statistic. (new value is assumed to be recorded at the current 

time) 

• op_stat_write (stat_handle, value) –> (no return value) 

 

 

 

 



102 
 

Appendix B: C++ Code 

This appendix presents the source code of the research that had been developed in OPNET 
Modeler simulation software.  
 
/* This variable carries the header into the object file */ 
const char mobile_ip_mn_pr_c [] = "MIL_3_Tfile_Hdr_ 30A op_runsim_dev 7 
4F427647 4F427647 1 Khanista-PC Khanista 0 0 none none 0 0 none 0 0 0 0 0 0 0 
0 4871 6                                                                                                                        
"; 
#include <string.h> 
 
/* OPNET system definitions */ 
#include <opnet.h> 
 
/* Header Block */ 
 
#include "ip_rte_support.h" 
#include  "mobile_ip_support.h" 
#include  “ip_addr_v4.h” 
#include  “ip_mcast_support.h” 
#include  "mobility_support.h" 
#include  "ip_igmp_support.h" 
#include  "ip_pim_sm_support.h" 
#include  “udp_api.h” 
#include  “ip_icmp_pk.h” 
#include “ip_dgram_sup.h” 
#include "math.h" 
 
#define IP_PK    is_ip_pk 
#define REG_PK   is_reg_pk 
#define AD_RECEPTION  is_ad_reception 
#define HA_AD_RECEPTION  is_ha_ad_reception 
#define FA_AD_RECEPTION  is_fa_ad_reception 
#define SOLICITATION_TIME  is_solicitation_time 
#define VALID_FA_CANDIDATE is_valid_fa_candidate 
#define HA_TIMEOUT   is_ha_timeout 
#define FA_TIMEOUT   is_fa_timeout 
#define TIMEOUT   is_timeout 
#define RETRY    is_retry 
#define FA_REG_SUCCESS  is_fa_reg_success //Me 
#define HA_REG_SUCCESS  is_ha_reg_success //Me 
#define OUT_OF_RETRIES  is_out_of_retries 
#define  INVALID_REPLY  is_invalid_reply 
#define REREGISTER   is_reregister 
#define SWITCH_FA   is_switch_fa 
 
#define TIMER    is_timer //Me 
#define SOLICIT   is_solicit //Me 
 
#define MipC_MN_Rereg_Buffer 1.0 
 
#define MipC_MN_Solicit_Max_Interval 60.0 
#define  MipC_MN_Solicit_Min_Interval 1.0 



103 
 

 
#define  IP_DEFAULT_TTL   32 
#define  IPC_PIM_SM_RPF_TIMER_OFFSET 50 
#define  IPC_PIM_SM_NOT_BSR_CAND  0 
#define  IPC_PIM_SM_TOS   0 
#define  IPC_PIM_SM_DATA_RATE_TIMER 1 
#define  IPC_PIM_SM_START   2 
#define  IPC_PIM_SM_RPF_UPDATE  3 
#define  IPC_PIM_SM_SEND_JOIN_PRUNE_MSG 4 
#define  IPC_PIM_SM_DR_TIMEOUT_OFFSET  1000 
#define  IPC_PIM_SM_SEND_HELLO_MSG_OFFSET 2000 
 
/****** Transition Macros ******/ 
#define HELLO_MSG   (transition_code == 
IpC_Pim_Sm_Hello_Msg_Recvd) 
#define JOIN_PRUNE_MSG   (transition_code == 
IpC_Pim_Sm_Join_Prune_Msg_Recvd) 
#define DATA_PKT    (transition_code == 
IpC_Pim_Sm_Data_Pkt_Recvd) 
#define RTE_PLUS    (transition_code == IpC_Pim_Sm_Rte_Plus) 
#define RTE_MINUS    (transition_code == IpC_Pim_Sm_Rte_Minus) 
#define REGISTER_MSG   (transition_code == 
IpC_Pim_Sm_Register_Msg_Recvd) 
#define REGISTER_STOP_MSG  (transition_code == 
IpC_Pim_Sm_Register_Stop_Msg_Recvd) 
#define DATA_RATE_TIMER_EXPD (transition_code == 
IpC_Pim_Sm_Data_Rate_Timer_Expd) 
#define SEND_HELLO_MSG   (transition_code == 
IpC_Pim_Sm_Send_Hello_Msg) 
#define SEND_JOIN_PRUNE_MSG  (transition_code == 
IpC_Pim_Sm_Send_Join_Prune_Msg) 
#define DR_TIMEOUT   (transition_code == 
IpC_Pim_Sm_Dr_Timeout) 
#define RPF_UPDATE   (transition_code == 
IpC_Pim_Sm_RPF_Update) 
#define FAILURE_RECOVERY  (transition_code == 
IpC_Pim_Sm_Failure_Recovery) 
 
#define START_INTERRUPT   (invmode == OPC_PROINV_DIRECT) 
 
#define DELAY_TIMER_EXPD  (transition_code == 
IpC_Igmp_Host_Delay_Timer_Expd) 
#define REPORT_RECVD   (transition_code == 
IpC_Igmp_Host_Report_Recvd) 
#define QUERY_RECVD   (transition_code == 
IpC_Igmp_Host_Query_Recvd) 
#define LEAVE_GROUP   (transition_code == 
IpC_Igmp_Host_Leave_Grp) 
#define JOIN_GROUP   (transition_code == 
IpC_Igmp_Host_Join_Grp) 
 
#define ICMP_IP_PROCESS_INVOKE -1 
#define ECHO_REQUEST_GEN  (intrpt_type == OPC_INTRPT_SELF) && 
(pkt_from_ip == OPC_FALSE) 
#define ECHO_REQUEST_RCVD (icmp_message_type == IpC_Icmp_Echo_Request) 
#define ECHO_REPLY_RCVD     (icmp_message_type == IpC_Icmp_Echo_Reply) 
#define IP_ICMP_DEST_ADDR_UNSPECIFIED "0.0.0.0" 



104 
 

 
#define IPC_ICMP_ECHO_PKSIZE_BITS  64 
 
/****** Macro for Traces *******/ 
#define LTRACE_PIM_SM   (op_prg_odb_ltrace_active ("pim-sm") || 
op_prg_odb_trace_active ()) 
#define LTRACE_PIM_SM_ALL_BUT_DATA (op_prg_odb_ltrace_active ("pim-
sm_all_but_data")) 
#define LTRACE_PIM_SM_JOIN_PRUNE (LTRACE_PIM_SM || 
LTRACE_PIM_SM_ALL_BUT_DATA || op_prg_odb_ltrace_active ("pim-sm_join_prune")) 
#define LTRACE_PIM_SM_HELLO  (LTRACE_PIM_SM || 
LTRACE_PIM_SM_ALL_BUT_DATA || op_prg_odb_ltrace_active ("pim-sm_hello")) 
#define LTRACE_PIM_SM_TIMERS  (LTRACE_PIM_SM || 
LTRACE_PIM_SM_ALL_BUT_DATA || op_prg_odb_ltrace_active ("pim-sm_timers")) 
#define LTRACE_PIM_SM_DATA  (LTRACE_PIM_SM || 
op_prg_odb_ltrace_active ("pim-sm_data")) 
#define LTRACE_PIM_SM_FAIL_RECOVER (LTRACE_PIM_SM || 
op_prg_odb_ltrace_active ("pim-sm_fail_recover")) 
#define LTRACE_IGMP  (op_prg_odb_ltrace_active ("igmp") || 
op_prg_odb_trace_active ()) 
 
static Boolean   log_call_scheduled = OPC_FALSE; 
static int    ip_pim_sm_efficiency_mode = -1; 
 
/* Global RP lists. */ 
List*  bootstrap_rp_lptr = OPC_NIL; 
List*  auto_rp_lptr = OPC_NIL; 
Boolean boostrap_support = OPC_FALSE; 
Boolean auto_rp_agent_found = OPC_FALSE; 
static Log_Handle  ip_igmp_host_config_warn_loghndl; 
static Log_Handle  ip_igmp_host_lowlevel_error_loghndl; 
static Boolean  ip_igmp_host_loghndls_init = OPC_FALSE; 
 
typedef struct 
 { 
 int  interval; 
 int  retry; 
 int  req_lifetime; 
 } 
MipT_MN_Reg_Info; 
 
typedef enum 
 { 
 MipC_MN_Timer_Rereg, 
 MipC_MN_Timer_Agent, 
 MipC_MN_Timer_Solicit, 
 MipC_MN_Timer_Retry 
 } 
MipC_MN_Timer; 
 
typedef enum IpT_Icmp_Echo_Message_Type 
 { 
 IpC_Icmp_Unspec = -1,  
 IpC_Icmp_Echo_Reply = 0, 
 IpC_Icmp_Echo_Request = 8 
 } IpT_Icmp_Echo_Message_Type; 
 



105 
 

typedef struct 
 { 
 Stathandle  pkts_sent_stathandle; 
 Stathandle  pkts_rcvd_stathandle; 
 Stathandle  resp_time_stathandle; 
 } IpT_Icmp_Stats; 
 
typedef struct 
 { 
 IpT_Address  ip_grp_addr;  
 int   interface;  
 Evhandle  delay_timer_evh;   
 int   delay_timer_id;   
 Boolean  timer_on_flag;   
 int   unsolicit_msg_count;     
 Boolean  report_sent_flag;   
 } IpT_Igmp_Host_Grp_Elem; 
 
static Log_Handle  ip_igmp_host_config_warn_loghndl; 
static Log_Handle  ip_igmp_host_lowlevel_error_loghndl; 
static Boolean  ip_igmp_host_loghndls_init = OPC_FALSE; 
 
typedef struct 
 { 
 InetT_Address address; 
 double  lifetime; 
 int   pref_level; 
 IpT_Interface_Info *incoming_intf_ptr; 
 } 
MipT_MN_Agent_Info; 
 
typedef struct { 
  
 Evhandle expire_time;  
 Objid  DUID;   
 Objid  IAID;    
 unsigned char assign_type;   
  
 InetT_Address_Range  assignment;   /* Holds the v4 addr or 
v6 addr/prefix */ 
 InetT_Address   link_local_addr; /* The address used to 
unicast back to the client */ 
} DhcpT_Srv_Assignment; 
  
/* Function declarations. */ 
static void mip_mn_register (int, MipT_MN_Agent_Info, Boolean); 
static void mip_mn_agent_timer_update (double); 
static void mip_mn_tunneled_pk_stat_write (Packet*); 
static void mip_mn_agent_solicit_pk_send (void); 
static void mip_mn_agent_cache_update (MipT_MN_Agent_Info*, InetT_Address, 
double, int, MipT_Invocation_Info*); 
static void mip_mn_ip_pk_handle (MipT_Invocation_Info*); 
static void mip_mn_ad_packet_parse (Packet*, int*, int*, InetT_Address*, 
int*, int*); 
 
void dhcp_parse_msg(); 
int dhcp_msg_server_duid_match(PrgT_List* rcv_pkt_opts); 



106 
 

 
int dhcp_get_free_addr(int iface_index); 
int dhcp_get_free_prefix(int iface_index); 
int dhcp_get_iface_info_from_index(int index); 
 
static void mip_mn_agent_solicit_pk_send_adv (void);//me 
 
static void   ip_icmp_sv_init (void); 
static void   ip_icmp_ping_specs_parse (IpT_Icmp_Temp_Ping_Specs* 
ip_temp_ping_specs_ptr); 
static void   ip_icmp_initial_echo_requests_schedule (void); 
static Packet*  ip_icmp_echo_request_packet_create (int 
req_index);//Me 
static Packet*  ip_icmp_pkt_encapsulate (Packet* icmp_req_pkptr, int 
req_index); 
static void   ip_icmp_echo_reply_create (Packet* ip_dgram_pkptr, 
Packet* ip_icmp_pkptr, Packet* icmp_reply_pkptr); 
static void   ip_icmp_ip_process_invoke (Packet* ip_dgram_pkptr); 
EXTERN_C_BEGIN 
static void   ip_icmp_ip_process_invoker (void* state_ptr, int 
code);//Me 
EXTERN_C_END 
static void   ip_icmp_ip_process_invoke_schedule (Packet* 
ip_dgram_pkptr); 
static double  ip_icmp_reply_stats_update (Packet* icmp_reply_pkptr, 
int req_index); 
static void   ip_icmp_next_echo_request_schedule (int req_index); 
static void   ip_icmp_ping_stats_register (int stat_index, char* 
dest_host_name); 
static void   ip_icmp_sim_log_init (); 
static void   ip_icmp_ip_dgram_discard (Packet* ip_dgram_pkptr); 
EXTERN_C_BEGIN 
static void   ip_icmp_request_timeout (void *state_ptr, int 
index);//Me 
EXTERN_C_END 
static IpT_Icmp_Temp_Ping_Specs * 
    ip_icmp_ping_traffic_list_generate (Objid 
node_objid); 
static void   ip_icmp_dgram_fdstruct_update_for_reply 
(IpT_Dgram_Fields* ip_dgram_fd_ptr); 
 
static void   ip_pim_sm_do_init (void); 
static void   ip_pim_sm_rte_plus (void); 
static void   ip_pim_sm_data_pkt (void); 
static void   ip_pim_sm_join_prune_msg (void); 
static void   ip_pim_sm_data_rate_timer_expired (void); 
static void   ip_pim_sm_register_msg (void); 
static void   ip_pim_sm_register_stop_msg (void); 
static void   ip_pim_sm_hello_msg (void); 
static void   ip_pim_sm_rte_minus (void); 
static void   ip_pim_sm_rpf_update (void); 
static void   ip_pim_sm_fail_recover (void); 
 
/****** Procedures *************/ 
static void ip_igmp_host_sv_init (void); 
static IpT_Igmp_Host_Transition ip_igmp_host_get_transition_code (Packet** 
igmp_pkt_pptr, Boolean* is_gs_query_msg_ptr); 



107 
 

static IpT_Igmp_Host_Grp_Elem* ip_igmp_host_get_grp_elem (IpT_Address 
ip_grp_addr, int interface); 
static void ip_igmp_host_join_grp (IpT_Address ip_grp_addr, int interface); 
//Me: Joinning multicast group by using CoA address. 
static void ip_igmp_host_leave_grp (IpT_Address ip_grp_addr, int interface); 
static void  ip_igmp_host_start_timer_for_grp (IpT_Igmp_Host_Grp_Elem* 
grp_elem_ptr, double max_resp_time); 
static void  ip_igmp_host_start_timer_for_grps_on_intf (int interface, 
double max_resp_time); 
static void  ip_igmp_host_cancel_timer_for_grp (IpT_Igmp_Host_Grp_Elem* 
grp_elem_ptr); 
static void  ip_igmp_host_timer_expired (int timer_code); 
static IpT_Igmp_Host_Grp_Elem* ip_igmp_host_grp_elem_alloc (void); 
static void  ip_igmp_host_grp_elem_dealloc (IpT_Igmp_Host_Grp_Elem* 
grp_elem_ptr); 
static void  ip_igmp_host_error (const char* msg1, const char* msg2, 
const char* msg3); 
static void  ip_igmp_host_log_handles_init (void); 
static void  ip_igmp_host_log_found_no_grp_info (const char* 
ip_addr_str, int ip_intf_num); 
static void  ip_igmp_host_grp_info_print (List* grp_lptr, Boolean 
short_version); 
static void  ip_igmp_host_igmp_msgs_sent_stat_update (OpT_Packet_Size 
size); //Me 
 
EXTERN_C_BEGIN 
static void      
 ip_igmp_host_ip_process_invoke (void *state_ptr, int 
interface_to_send); 
EXTERN_C_END 
 
/* End of Header Block */ 
 
#if !defined (VOSD_NO_FIN) 
#undef BIN 
#undef BOUT 
#define BIN  FIN_LOCAL_FIELD(_op_last_line_passed) = __LINE__ - 
_op_block_origin; 
#define BOUT BIN 
#define BINIT FIN_LOCAL_FIELD(_op_last_line_passed) = 0; _op_block_origin 
= __LINE__; 
#else 
#define BINIT 
#endif /* #if !defined (VOSD_NO_FIN) */ 
 
/* State variable definitions */ 
typedef struct 
 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 MipC_Node_Type            mip_node_type                                   
; /* Type of MN I am (MN or MR) */ 
 MipT_Proc_Info*           proc_info_struct_ptr                            
; /* General info shared between parent and me */ 
 MipT_MN_Reg_Info          reg_info                                        
; /* registration information for this MN or MR */ 



108 
 

 InetT_Address             subnet_bcast_addr                               
; /* brodcast address of the mobile interface */ 
 InetT_Address             ha_address                                      
; /* IP address of the home agent interface */ 
 InetT_Address             home_address                                    
; /* local interface ip address */ 
 double                    time_to_reregister                              
; /* sim time for next registration */ 
 Evhandle                  reregister_timer_ehndl                          
; /* eventhandle for reregistration */ 
 int                       reg_id                                          
; /* identification for pending registration */ 
 int                       retry_counter                                   
; /* current number of registration retries */ 
 InetT_Address             agent_address                                   
; /* Current agent address serving me */ 
 Boolean                   direct_reg                                      
; /* direct with HA or indirect through FA */ 
 MipT_MN_Agent_Info        latest_fa_info                                  
; /* Last FA information on FA other than the currnt one */ 
 Evhandle                  agent_timer_ehndl                               
; /* event handle for agent timeouts */ 
 MipT_MN_Agent_Info        latest_ha_info                                  
; /* Latest info on the HA from advertisements */ 
 IpT_Rte_Module_Data*      module_data                                     
; /* node wide IP module info */ 
 Stathandle                tunneled_pk_rcvd_sec_sh                         
; 
 Stathandle       tunneled_bit_rcvd_sec_sh                        ; 
 Evhandle       solicit_timer_ehndl                             ;
 /* Event handle for sending solicitation packet. */ 
 Boolean       solicitation                                    ;
 /* Whether or not the MN/MR solicit when lost */ 
 int             solicit_count                                   ;
 /* number of times solicitation was sent out before getting an ad */ 
 Stathandle       irdp_sent_pkts_sh                               ; 
 Stathandle       irdp_sent_bits_sh                               ; 
 Objid             node_objid                                      ; 
 Boolean       simultaneous_binding                            ;
 /* Flag indicating if this MN/MR will be asking for HA to keep */ 
                                                                           
 /* simulatneous binding.                                       */ 
 Evhandle       reg_retry_timer_ehndl                           ;
 /* Event handle for registration retry in case of failure. */ 
 Stathandle       g_irdp_sent_bits_sh                             ; 
 Boolean       loopback_intf                                   ;
 /* flag indicating if this MN/MR is configured on the loopback 
interface */ 
 int             current_agent_pref_level                        ;
 /* preference level of the current FA */ 
 IpT_Interface_Info* current_roaming_intf                      ; 
 Boolean       default_gateway                                 ;
 /* Flag to indicate, have a default gateway setup */ 
 IpT_Address       last_default_addr                               ; 
 } mobile_ip_mn_state; 
 
typedef struct 



109 
 

 { 
 /* Internal state tracking for FSM */ 
 FSM_SYS_STATE 
 /* State Variables */ 
 Objid                 module_objid                                    ; 
 Objid                 node_objid                                      ; 
 OmsT_Pr_Handle     my_proc_handle                                  ; 
 Objid                 udp_objid                                       ; 
 IpT_Rte_Module_Data* ip_support_module_ptr                         ; 
 Ici*                 command_ici_ptr                                 ; 
 int                 num_dhcp_interfaces                             ;
 /* Number of interfaces DHCP will be listening on. */ 
 DhcpT_Srv_Interface* interfaces_config                             ;  
 int                   input_strm                                    ; 
 int                   output_strm                                   ; 
 InetT_Address      server_multicast_addr                   ;  // Me 
 DhcpT_Stathandles* global_stats                                  ; 
 DhcpT_Stathandles* local_stats                                  ; 
 int                   intrpt_code                                   ; 
 Boolean             logging                                      ;
 /* Boolean to indicate if global DHCP logging is turned on/off */ 
 Log_Handle            new_log_handle                                 ; 
 Log_Handle            renew_log_handle                               ; 
 Log_Handle            error_log_handle                               ; 
 Log_Handle            expire_log_handle                              ; 
 } dhcp_server_state; 
 
static enum  
 {IpC_Pim_Grp_Tbl_Grp_Addr = 0, IpC_Pim_Grp_Tbl_RP_Addr, 
 IpC_Pim_Grp_Tbl_Src_Addr, IpC_Pim_Grp_Type, 
 IpC_Pim_Grp_Tbl_In_Iface, IpC_Pim_Grp_Tbl_Out_Iface, 
 IpC_Pim_Grp_Tbl_Num_Columns  
 } IpC_Pim_Grp_Tbl_Table_Column_Index; 
 
typedef struct 
 { 
 OpT_Int8  pim_sm_status; 
 double  hello_period;   
 double  hello_holdtime;   
 IpT_Pim_Intf_Stat_Handle*  stat_handle_ptr; 
 Evhandle    hello_evhandle;   
 int priority; 
 } IpT_Pim_Intf; 
 
#define mip_node_type             op_sv_ptr->mip_node_type 
#define proc_info_struct_ptr      op_sv_ptr->proc_info_struct_ptr 
#define reg_info                  op_sv_ptr->reg_info 
#define subnet_bcast_addr         op_sv_ptr->subnet_bcast_addr 
#define ha_address                op_sv_ptr->ha_address 
#define home_address              op_sv_ptr->home_address 
#define time_to_reregister        op_sv_ptr->time_to_reregister //Me 
#define reregister_timer_ehndl    op_sv_ptr->reregister_timer_ehndl 
#define reg_id                    op_sv_ptr->reg_id 
#define retry_counter             op_sv_ptr->retry_counter 
#define agent_address             op_sv_ptr->agent_address 
#define direct_reg                op_sv_ptr->direct_reg 
#define latest_fa_info            op_sv_ptr->latest_fa_info 



110 
 

#define agent_timer_ehndl         op_sv_ptr->agent_timer_ehndl 
#define latest_ha_info            op_sv_ptr->latest_ha_info 
#define module_data               op_sv_ptr->module_data 
#define tunneled_pk_rcvd_sec_sh   op_sv_ptr->tunneled_pk_rcvd_sec_sh 
#define tunneled_bit_rcvd_sec_sh  op_sv_ptr->tunneled_bit_rcvd_sec_sh 
#define solicit_timer_ehndl       op_sv_ptr->solicit_timer_ehndl 
#define solicitation              op_sv_ptr->solicitation 
#define solicit_count             op_sv_ptr->solicit_count 
#define irdp_sent_pkts_sh         op_sv_ptr->irdp_sent_pkts_sh 
#define irdp_sent_bits_sh         op_sv_ptr->irdp_sent_bits_sh 
#define node_objid                op_sv_ptr->node_objid 
#define simultaneous_binding      op_sv_ptr->simultaneous_binding 
#define reg_retry_timer_ehndl     op_sv_ptr->reg_retry_timer_ehndl 
//Me 
#define g_irdp_sent_bits_sh       op_sv_ptr->g_irdp_sent_bits_sh 
#define loopback_intf             op_sv_ptr->loopback_intf 
#define current_agent_pref_level  op_sv_ptr->current_agent_pref_level 
#define current_roaming_intf      op_sv_ptr->current_roaming_intf 
#define default_gateway           op_sv_ptr->default_gateway 
#define last_default_addr         op_sv_ptr->last_default_addr 
 
#define module_objid              op_sv_ptr->module_objid 
#define node_objid                op_sv_ptr->node_objid 
#define my_proc_handle            op_sv_ptr->my_proc_handle 
#define udp_objid                 op_sv_ptr->udp_objid 
#define ip_support_module_ptr     op_sv_ptr->ip_support_module_ptr 
#define command_ici_ptr           op_sv_ptr->command_ici_ptr 
#define max_sol_tmout             op_sv_ptr->max_sol_tmout 
#define max_req_tmout             op_sv_ptr->max_req_tmout 
#define max_req_retries           op_sv_ptr->max_req_retries 
#define init_renew_tmout          op_sv_ptr->init_renew_tmout 
#define max_renew_tmout           op_sv_ptr->max_renew_tmout 
#define init_rebind_tmout         op_sv_ptr->init_rebind_tmout 
#define max_rebind_tmout          op_sv_ptr->max_rebind_tmout 
#define send_iface                op_sv_ptr->send_iface 
#define last_trans_id             op_sv_ptr->last_trans_id 
#define rapid_commit              op_sv_ptr->rapid_commit 
#define server_rapid_commit       op_sv_ptr->server_rapid_commit 
#define server_id                 op_sv_ptr->server_id 
#define srv_str                   op_sv_ptr->srv_str 
#define interfaces_config         op_sv_ptr->interfaces_config 
#define gateway_node              op_sv_ptr->gateway_node 
#define input_strm                op_sv_ptr->input_strm 
#define output_strm               op_sv_ptr->output_strm 
#define snd_pkt_ptr               op_sv_ptr->snd_pkt_ptr // Me 
#define snd_pkt_opts              op_sv_ptr->snd_pkt_opts // Me 
#define snd_msg_type              op_sv_ptr->snd_msg_type // Me 
#define rcv_pkt_ptr               op_sv_ptr->rcv_pkt_ptr  // Me 
#define rcv_pkt_opts              op_sv_ptr->rcv_pkt_opts // Me 
#define rcv_msg_type              op_sv_ptr->rcv_msg_type // Me 
#define rcv_msg_trans             op_sv_ptr->rcv_msg_trans // Me 
#define RTprev                    op_sv_ptr->RTprev 
#define expire_time               op_sv_ptr->expire_time 
#define rebind_time               op_sv_ptr->rebind_time 
#define retrans_count             op_sv_ptr->retrans_count 
#define intrpt_type               op_sv_ptr->intrpt_type 
#define intrpt_code               op_sv_ptr->intrpt_code 



111 
 

#define num_interfaces            op_sv_ptr->num_interfaces 
#define next_evh                  op_sv_ptr->next_evh 
#define server_multicast_addr     op_sv_ptr->server_multicast_addr 
//Me 
#define node_ll_addr              op_sv_ptr->node_ll_addr 
#define global_stats              op_sv_ptr->global_stats 
#define local_stats               op_sv_ptr->local_stats 
#define transaction_time          op_sv_ptr->transaction_time 
#define logging                   op_sv_ptr->logging 
#define new_log_handle            op_sv_ptr->new_log_handle 
#define renew_log_handle          op_sv_ptr->renew_log_handle 
#define error_log_handle          op_sv_ptr->error_log_handle 
#define expire_log_handle         op_sv_ptr->expire_log_handle 
#define server_inet_addr          op_sv_ptr->server_inet_addr 
 
 
 
/* These macro definitions will define a local variable called */ 
/* "op_sv_ptr" in each function containing a FIN statement. */ 
/* This variable points to the state variable data structure, */ 
/* and can be used from a C debugger to display their values. */ 
#undef FIN_PREAMBLE_DEC 
#undef FIN_PREAMBLE_CODE 
#define FIN_PREAMBLE_DEC mobile_ip_mn_state *op_sv_ptr; 
#define FIN_PREAMBLE_CODE \ 
  op_sv_ptr = ((mobile_ip_mn_state *)(OP_SIM_CONTEXT_PTR-
>_op_mod_state_ptr)); 
 
#undef FIN_PREAMBLE_DEC 
#undef FIN_PREAMBLE_CODE 
#define FIN_PREAMBLE_DEC dhcp_client_state *op_sv_ptr; 
#define FIN_PREAMBLE_CODE \ 
  op_sv_ptr = ((dhcp_client_state *)(OP_SIM_CONTEXT_PTR-
>_op_mod_state_ptr)); 
 
/* Function Block */ 
 
#if !defined (VOSD_NO_FIN) 
enum { _op_block_origin = __LINE__ + 2}; 
#endif 
 
/* Transitional Executives */ 
void SendMsg() 
 { 
 /* Build a DHCP message with 
  * appropriate options as determined by the nodes 
  * configuration, and send the packet to the well known 
  * DHCP multicast address. 
  */ 
 DhcpT_Opt*   tmp_dhcp_opt; 
 DhcpT_Cli_Assignment* iface_config; 
 double   retrans_time; 
 int    int_code; 
 PrgT_List_Cell*  list_cell_ptr; 
 int    oro_length  = 0; 
 Boolean   retrans_msg  = OPC_FALSE; 
 char    log_str[1000]; 



112 
 

  
 FIN(SendMsg()); 
  

/* Double check if a result of receiving a message from potentially 
many servers, if we've already sent a request to a particular server, 
then ignore this recent message if it's not from the server we sent the 
request to. */ 

 if (intrpt_type == OPC_INTRPT_STRM) 
  { 
  tmp_dhcp_opt = dhcp_optlist_get_opt(DHCPC_OPT_SERVERID, 
rcv_pkt_opts); 
  if(tmp_dhcp_opt->simple_data != server_id) 
   { 
   Discard(); 
   FOUT; 
   } 
  } 
 
 /* If retransmitting, determine if this is a normal retransmission, 
  * or if we are switching from a Renew phase to a Rebind phase.  If 
  * it is a normal retransmission, we only increment the retransmission 
  * count. 
  */ 
 if ((intrpt_type == OPC_INTRPT_SELF) && (intrpt_code == 
DHCPC_MSG_TIMEOUT)) 
  { 
  if((rebind_time == 0) || ((rebind_time > 0) && (op_sim_time() < 
rebind_time))) 
   { 
   retrans_count++; 
   retrans_msg = OPC_TRUE; 
 
   if(LTRACE_ACTIVE) 
    op_prg_odb_print_minor ("Client timed out waiting for 
response. Retransmitting..." , OPC_NIL); 
   } 
  else 
   { 
   snd_msg_type = DHCPC_MSG_REBIND; 
    
   sprintf(log_str, "Current server %s not responding to DHCP 
messages. " 
    "Sending Rebind message instead of Renew message to 
obtain service " 
    "from any available server.", srv_str); 
   LOG(renew_log_handle, log_str, PrgC_Log_Severity_Warning); 
   } 
  } 
  
 /* If we received an Advertise, increment the transaction ID and send a 
Request: */ 
 if ((intrpt_type == OPC_INTRPT_STRM) && (rcv_msg_type == 
DHCPC_MSG_ADVERTISE)) 
  { 
  snd_msg_type = DHCPC_MSG_REQUEST; 
  last_trans_id++; 
  } 



113 
 

   
 /* If our assignment is close to expiring, increment the transaction ID 
and send a Renew: */ 
 if ((intrpt_type == OPC_INTRPT_SELF) && (intrpt_code == 
DHCPC_ASSIGN_TIMEOUT)) 
  { 
  snd_msg_type = DHCPC_MSG_RENEW; 
  last_trans_id++; 
 
  sprintf(log_str, "Current assignment(s) getting stale. Initiating 
Renew " 
   "message exchange with current server %s", srv_str); 
  LOG(renew_log_handle, log_str, PrgC_Log_Severity_Information); 
  }  
  
 /* Now, determine the interval for the next retransmission attempt 
   Set the time :: Me*/ 
 
 if((snd_msg_type == DHCPC_MSG_SOLICIT) || (snd_msg_type == 
DHCPC_MSG_SOLICIT_RAPID)) 
  { 
  
  RTprev = dhcp_get_retrans_time(RTprev, DHCPC_TRP_SOL_TIMEOUT, 
max_sol_tmout);  
  retrans_time = op_sim_time() + RTprev; 
   
  int_code = DHCPC_MSG_TIMEOUT; 
  } 
  
 if(snd_msg_type == DHCPC_MSG_REQUEST) 
  { 
  if (retrans_count < max_req_retries) 
   { 
   RTprev = dhcp_get_retrans_time(RTprev, 
DHCPC_TRP_REQ_TIMEOUT, max_req_tmout); 
   retrans_time = op_sim_time() + RTprev; 
   int_code = DHCPC_MSG_TIMEOUT; 
   } 
  else 
   { 
   /* Immediately fallback to Solicit message by going back to 
"Begin" FSM state */ 
   op_intrpt_schedule_self(op_sim_time(), DHCPC_MSG_FALLBACK); 
   FOUT; 
   }   
  } 
  
 if(snd_msg_type == DHCPC_MSG_RENEW) 
  { 
  RTprev = dhcp_get_retrans_time(RTprev, init_renew_tmout, 
max_renew_tmout); 
  if((op_sim_time() + RTprev) > rebind_time) 
   { 
   /* Another scheduled retransmission would exceeded the 
Renew phase, so we must switch to the Rebind phase at the rebind_time */ 
   retrans_time = rebind_time; 
   } 



114 
 

  else 
   retrans_time = op_sim_time() + RTprev; 
   
  int_code = DHCPC_MSG_TIMEOUT; 
  } 
 
 if(snd_msg_type == DHCPC_MSG_REBIND) 
  { 
  RTprev = dhcp_get_retrans_time(RTprev, init_rebind_tmout, 
max_rebind_tmout); 
  if((op_sim_time() + RTprev) > expire_time) 
   { 
   /* Another scheduled retransmission would exceed the valid 
lifetime of the assignment.  */ 
   retrans_time = expire_time; 
   int_code = DHCPC_MSG_FALLBACK;    
   } 
  else 
   { 
   retrans_time = op_sim_time() + RTprev; 
   int_code = DHCPC_MSG_TIMEOUT; 
   } 
  } 
   
 /* Schedule the next timer self-interrupt: */ 
 if (op_ev_pending(next_evh)) 
  op_ev_cancel(next_evh); 
 next_evh = op_intrpt_schedule_self(retrans_time, int_code); 
 
 /* Now that we know we'll be sending a message (and not falling back, 
  * create the message): 
  */ 
 snd_pkt_ptr = dhcp_msg_create(snd_msg_type, last_trans_id); 
 snd_pkt_opts = dhcp_optlist_create(); 
  
 prg_list_insert(snd_pkt_opts, 
    dhcp_opt_create_id(DHCPC_OPT_CLIENTID, node_objid), 
     PRGC_LISTPOS_TAIL); 
  
 /* If the message have reached a server, include its Server ID, as long 
as this message is NOT a Rebind message: */ 
 if((server_id != 0) && (snd_msg_type != DHCPC_MSG_REBIND)) 
  prg_list_insert(snd_pkt_opts, 
      dhcp_opt_create_id(DHCPC_OPT_SERVERID, 
server_id), 
      PRGC_LISTPOS_TAIL); 
 /* If this message is a rapid commit Solicit, add the option: */ 
 if(snd_msg_type == DHCPC_MSG_SOLICIT_RAPID) 
  prg_list_insert(snd_pkt_opts, 
      dhcp_opt_create(DHCPC_OPT_RAPID_COMMIT), 
      PRGC_LISTPOS_TAIL); 
 
 /* Add an option for every interface we are requesting configuration 
info for: */ 
 if((snd_msg_type == DHCPC_MSG_REQUEST) || (snd_msg_type == 
DHCPC_MSG_RENEW) 
  || (snd_msg_type == DHCPC_MSG_REBIND) 



115 
 

  || (snd_msg_type == DHCPC_MSG_SOLICIT_RAPID)) 
  { 
  for(list_cell_ptr = prg_list_head_cell_get(&interfaces_config); 
   list_cell_ptr != PRGC_NIL; 
   list_cell_ptr = prg_list_cell_next_get(list_cell_ptr)) 
   { 
   iface_config = (DhcpT_Cli_Assignment 
*)prg_list_cell_data_get(list_cell_ptr); 
    
   if(iface_config->assign_type == DHCPC_ASSIGN_ADDR) 
    /* We're adding an option to request an address: */ 
    tmp_dhcp_opt = dhcp_opt_create(DHCPC_OPT_IA_NA); 
   else 
    /* We're adding an option to request a prefix: */ 
    tmp_dhcp_opt = dhcp_opt_create(DHCPC_OPT_IA_PD); 
 
   tmp_dhcp_opt->simple_data = iface_config->iface_index; 
    
    
   if(iface_config->configured == OPC_FALSE) 
    tmp_dhcp_opt->length = 12; 
   else 
    { 
    if(iface_config->assign_type == DHCPC_ASSIGN_ADDR) 
     tmp_dhcp_opt->length = 
DHCPC_OPT_IA_NA_DATA_LEN; 
    else 
     tmp_dhcp_opt->length = 
DHCPC_OPT_IA_PD_DATA_LEN; 
    } 
   /* Add this option to the total length count of the Option 
Request option: */ 
   oro_length += 2; 
    
   prg_list_insert(snd_pkt_opts, tmp_dhcp_opt, 
PRGC_LISTPOS_TAIL); 
   } 
 
  tmp_dhcp_opt = dhcp_opt_create(DHCPC_OPT_ORO); 
  tmp_dhcp_opt->length = oro_length; 
  prg_list_insert(snd_pkt_opts, tmp_dhcp_opt,
 PRGC_LISTPOS_TAIL); 
 
  } 
    
 /* Finalize the packet and send it to the UDP module for delivery.*/ 
 dhcp_msg_finalize(snd_pkt_ptr, snd_pkt_opts); 
 op_ici_install(command_ici_ptr); 
 op_pk_send(snd_pkt_ptr, output_strm); 
 op_ici_install(OPC_NIL); 
   
 /* Update the DHCP stats for the message type sent: */ 
 if(retrans_msg == OPC_TRUE) 
  dhcp_update_cli_stat(DHCPC_MSG_RETRANSMIT, 1); 
 else 
  /* If this is not a retransmission, reset the transaction time: 
*/ 



116 
 

  transaction_time = op_sim_time(); 
  
 dhcp_update_cli_stat(snd_msg_type, 1); 
   
 /* Free the received packet memory: */ 
 if(intrpt_type == OPC_INTRPT_STRM) 
  { 
  op_pk_destroy(rcv_pkt_ptr); 
  dhcp_optlist_destroy(rcv_pkt_opts); 
  } 
  
 FOUT; 
 } 
 
void Config() 
 { 
 /* Me:Once a mobile node has received a Reply message from access point 

  which includes address: CoA address, this function is called to 
configure the assignments on the nodes interfaces on mobile node. 

  */ 
 DhcpT_Opt*    dhcp_opt_ptr; 
 InetT_Address_Range* inet_range_ptr; 
 DhcpT_Cli_Assignment* assign_ptr; 
 int     timers_configured = OPC_FALSE; 
 int     new_addr  = 0; 
 int     new_prefix  = 0; 
 int     renew_addr  = 0; 
 int     renew_prefix = 0; 
 char  log_str[1000], tmp_str[100], val_str[100], val2_str[100]; 
 PrgT_List_Cell*   list_cell_opt_ptr; 
 PrgT_List_Cell*   list_cell_assign_ptr; 
 double    trans_delay; 
  
 PrgT_List    *dyn_assignment_lptr = OPC_NIL; 
 int     dyn_assignment_count = 0; 
 IpT_Dynamic_Assignment *dyn_assignment_ptr; 
 IpT_Dynamic_Assignment_Array *dyn_array_ptr; 
 IpT_Dynamic_Assignment_Type dyn_assignment_type; 
 int      default_route_action = 
DHCPC_DEFAULT_ROUTE_UNCHANGED; 
  
 Ici     *rcvd_ici_ptr; 
 InetT_Address   *rcvd_inet_address; 
  
 FIN(Config()); 
  

/* Me: Calculate the transaction delay for this message exchange:- some 
factor of assigning CoA address delay */ 

 trans_delay = op_sim_time() - transaction_time; 
 

/* Me: Get the server address from access point:- the address of 
foreign agent */ 

 rcvd_ici_ptr = op_ev_ici (op_ev_current ()); 
 op_ici_attr_get (rcvd_ici_ptr, "rem_addr", &rcvd_inet_address); 
  
 /* Cycle through the options to find the IA_NA and IA_PD options: */ 
 for(list_cell_opt_ptr = prg_list_head_cell_get(rcv_pkt_opts); 



117 
 

  list_cell_opt_ptr != PRGC_NIL; 
  list_cell_opt_ptr = prg_list_cell_next_get(list_cell_opt_ptr)) 
  { 
  dyn_assignment_type = IpC_Dynamic_Assignment_None; 
   
  dhcp_opt_ptr = (DhcpT_Opt 
*)prg_list_cell_data_get(list_cell_opt_ptr); 
   
  if((dhcp_opt_ptr->code != DHCPC_OPT_IA_NA) && (dhcp_opt_ptr->code 
!= DHCPC_OPT_IA_PD)) 
   continue; 
     
  if(dhcp_opt_ptr->simple_data2 == DHCPC_NO_ADDR_AVAIL) 
   { 
   /* If this option indicated no address available, skip it 
to go to the next option: */ 
   sprintf(log_str, "Option received from server %s indicated 
no address available.", srv_str); 
   LOG(error_log_handle, log_str, PrgC_Log_Severity_Notice); 
   continue; 
   } 
  else if(dhcp_opt_ptr->simple_data2 == DHCPC_NO_PREFIX_AVAIL) 
   { 
   /* If this option indicated no prefix available, skip it to 
go to the next option: */ 
   sprintf(log_str, "Option received from server %s indicated 
no prefix available.", srv_str); 
   LOG(error_log_handle, log_str, PrgC_Log_Severity_Notice); 
   continue; 
   } 
   
  /* Me: In this point, the mobile node received the valid address 
in the complex_data  */ 
  inet_range_ptr = (InetT_Address_Range *)(dhcp_opt_ptr-
>complex_data); 
   
  /* Me: Store all info for this particular assignment, have to 
check interface by cycling through the array of interfaces and comparing the 
interface index with the value we received as the IAID.*/ 
  for(list_cell_assign_ptr = 
prg_list_head_cell_get(&interfaces_config); 
   list_cell_assign_ptr != PRGC_NIL; 
   list_cell_assign_ptr = 
prg_list_cell_next_get(list_cell_assign_ptr)) 
   { 
   assign_ptr = (DhcpT_Cli_Assignment 
*)prg_list_cell_data_get(list_cell_assign_ptr); 
   if(assign_ptr->iface_index == dhcp_opt_ptr->simple_data) 
    break; 
   } 
  if(list_cell_assign_ptr == PRGC_NIL) 
   op_sim_end("Error while attempting to configure client:", 
      "Unable to determine interface for 
assignment.", OPC_NIL, OPC_NIL); 
 
   



118 
 

  /* Me: If mobile node already have an assignment on this 
interface, determine if it's a renewal,or a different assignment (potentially 
from a different server or access point). */ 
  if(assign_ptr->configured == OPC_TRUE) 
   { 
   if(inet_address_range_equal(&(assign_ptr->assignment), 
inet_range_ptr) != OPC_TRUE) 
    { 
    /* Me: Set the IP notification to update */ 
    dyn_assignment_type = 
IpC_Dynamic_Assignment_Addr_Update; 
     
    /* Me: Just for logging: */ 
    inet_address_range_print(val_str, &(assign_ptr-
>assignment)); 
    inet_address_range_print(val2_str, inet_range_ptr); 
    if(assign_ptr->assign_type == DHCPC_ASSIGN_ADDR) 
     sprintf(tmp_str, "address"); 
    else 
     sprintf(tmp_str, "prefix");     
    sprintf(log_str, "Received new %s assignment for %s: 
%s\n Old assignment: %s\n " 
     "New server: %s\n Lifetime: %d\n Transaction 
time: %f sec",  
     tmp_str, assign_ptr->iface_name, val2_str, 
val_str, srv_str, 
     dhcp_opt_ptr->simple_data2, trans_delay); 
    LOG(new_log_handle, log_str, 
PrgC_Log_Severity_Notice); 
   
    /* This is a different assignment from what we 
already have destroy the existing assignment before installing the new one:*/ 
    inet_address_range_destroy(&(assign_ptr-
>assignment)); 
    assign_ptr->assignment = inet_address_range_ptr_copy( 
          
 (InetT_Address_Range *)dhcp_opt_ptr->complex_data); 
     
    /* Me: Increment the count of configured 
addresses/prefixes CoAs: */ 
    if(dhcp_opt_ptr->code == DHCPC_OPT_IA_NA) 
     new_addr++; 
    else if(dhcp_opt_ptr->code == DHCPC_OPT_IA_PD) 
     { 
     new_prefix++; 
      
     /* Also inform IP that the default route will 
need to be updated */ 
     default_route_action = 
DHCPC_DEFAULT_ROUTE_UPDATE; 
     } 
 
    } 
   else 
    { 
   /* This is a successful renew of an existing assignment. */ 
   



119 
 

    /* No IP notification needed */ 
     
    /* For logging: */ 
    inet_address_range_print(val_str, &(assign_ptr-
>assignment)); 
    if(assign_ptr->assign_type == DHCPC_ASSIGN_ADDR) 
     sprintf(tmp_str, "address"); 
    else 
     sprintf(tmp_str, "prefix");     
    sprintf(log_str, "Renewing existing %s assignment for 
%s: %s\n " 
     "From server: %s\n Lifetime: %d\n Transaction 
time: %f sec", 
     tmp_str, assign_ptr->iface_name, val_str, 
srv_str, dhcp_opt_ptr->simple_data2, trans_delay); 
    LOG(renew_log_handle, log_str, 
PrgC_Log_Severity_Information); 
 
    /* Write appropriate stats: */ 
    if(dhcp_opt_ptr->code == DHCPC_OPT_IA_NA) 
     renew_addr++; 
    else if(dhcp_opt_ptr->code == DHCPC_OPT_IA_PD) 
     renew_prefix++; 
 
    } 
   } 
 
  /* If this interface has not yet been configured, then copy the 
option data containing the assignment into our local assignment array. 
   */ 
  if(assign_ptr->configured != OPC_TRUE) 
   { 
   /* Set IP notification to create a new assignment */ 
   if (assign_ptr->assign_type == DHCPC_ASSIGN_ADDR) 
    dyn_assignment_type = 
IpC_Dynamic_Assignment_Addr_Create; 
   else 
    dyn_assignment_type = 
IpC_Dynamic_Assignment_Prefix_Create; 
    
   assign_ptr->assignment = inet_address_range_ptr_copy( 
         
 (InetT_Address_Range *)dhcp_opt_ptr->complex_data); 
 
   /* For logging: */ 
   inet_address_range_print(val_str, &(assign_ptr-
>assignment)); 
   if(assign_ptr->assign_type == DHCPC_ASSIGN_ADDR) 
    sprintf(tmp_str, "address"); 
   else 
    sprintf(tmp_str, "prefix");     
   
  sprintf(log_str, "Obtained initial %s assignment for %s: %s\n " 
  "From server: %s\n Lifetime: %d\n Transaction time: %f sec", 
  tmp_str, assign_ptr->iface_name, val_str, srv_str, dhcp_opt_ptr-
>simple_data2, trans_delay); 
  LOG(new_log_handle, log_str, PrgC_Log_Severity_Information); 



120 
 

 
    
   /* Write appropriate stats: */ 
   if(dhcp_opt_ptr->code == DHCPC_OPT_IA_NA) 
    new_addr++; 
   else if(dhcp_opt_ptr->code == DHCPC_OPT_IA_PD) 
    { 
    new_prefix++; 
     
    /* Inform IP to set up a new default route */ 
    default_route_action = DHCPC_DEFAULT_ROUTE_ADD; 
    } 
   } 
   
  /* This interface is now configured: */ 
  assign_ptr->configured = OPC_TRUE;   
   
  /* Me : Set DHCP timers, the timers are only set once per 
message. The protocol allows for each individual assignment to have it's 
   *  own timers/expiration times. */ 
  if(timers_configured == OPC_FALSE) 
   {    
   /* Cancel any pending events: */ 
   if(op_ev_pending(next_evh)) { op_ev_cancel(next_evh); } 
   
   /* Store times needed to properly implement protocol 
timers: */ 
   expire_time = (op_sim_time()) + dhcp_opt_ptr->simple_data2; 
   rebind_time = (op_sim_time()) + (.8 * dhcp_opt_ptr-
>simple_data2); 
 
   /* Schedule the interrupt to start sending renews: */ 
   next_evh = op_intrpt_schedule_self( 
    op_sim_time() + (.5 * dhcp_opt_ptr->simple_data2), 
DHCPC_ASSIGN_TIMEOUT); 
    
   /* Reset the retransmission timer: */ 
   RTprev = 0; 
    
   timers_configured = OPC_TRUE; 
   } 
 
  /* Notify IP process of interface assignments: */ 
  if (dyn_assignment_type != IpC_Dynamic_Assignment_None) 
   { 
   /* - Build the IpT_Dynamic_Assignment structure */ 
   dyn_assignment_ptr = (IpT_Dynamic_Assignment *) 
op_prg_mem_alloc (sizeof (IpT_Dynamic_Assignment)); 
   dyn_assignment_ptr->assignment_type  = (assign_ptr-
>assign_type == DHCPC_ASSIGN_ADDR) ? IpC_Dynamic_Assignment_Addr_Create : 
IpC_Dynamic_Assignment_Prefix_Create; 
   dyn_assignment_ptr->intf_index    = 
assign_ptr->iface_index; 
   dyn_assignment_ptr->dynamic_addr_range  =  
    inet_address_range_ptr_copy (inet_range_ptr); 
   
   /* - Append to list of dynamic assignments */ 



121 
 

   if (dyn_assignment_lptr == OPC_NIL) 
    dyn_assignment_lptr = op_prg_list_create (); 
   op_prg_list_insert (dyn_assignment_lptr, 
dyn_assignment_ptr, OPC_LISTPOS_TAIL);    
   } 
   
  } 
  
 /* If we were unable to configure ANY interfaces, fallback to 
  * the begin state, after a waiting period.  Otherwise, calculate the 
  * total time of this transaction and record it in the stats. 
  */ 
 if(new_addr + new_prefix + renew_addr + renew_prefix == 0) 
  { 
  next_evh = op_intrpt_schedule_self(op_sim_time() + max_sol_tmout, 
DHCPC_MSG_FALLBACK); 
 
  sprintf(log_str, "The message from server %s did not contain any 
configuration information. " 
   "Soliciting service from any available server", srv_str); 
  LOG(error_log_handle, log_str, PrgC_Log_Severity_Error); 
  } 
 else 
  { 
  /* Record the stats for the number of addr/prefixes new or 
renewed, 
   * and the total transaction time: 
   */ 
  if(new_addr) 
   dhcp_update_cli_stat(DHCPC_COUNT_NEW_ADDR, new_addr); 
  if(new_prefix) 
   dhcp_update_cli_stat(DHCPC_COUNT_NEW_PREFIX, new_prefix); 
  if(renew_addr) 
   dhcp_update_cli_stat(DHCPC_COUNT_RENEW_ADDR, renew_addr); 
  if(renew_prefix) 
   dhcp_update_cli_stat(DHCPC_COUNT_RENEW_PREFIX, 
renew_prefix); 
   
  dhcp_update_cli_stat(DHCPC_TRANSACTION_DELAY, trans_delay); 
  } 
  
 /* Notify IP by sending a remote interrupt with all assignments: */ 
 if (dyn_assignment_lptr != OPC_NIL) 
  { 
  void *prev_state; 
  int i; 
   
  /* Remove an old default route */ 
  if (default_route_action == DHCPC_DEFAULT_ROUTE_UPDATE) 
   { 
   /* - Build the IpT_Dynamic_Assignment structure */ 
   dyn_assignment_ptr = (IpT_Dynamic_Assignment *) 
op_prg_mem_alloc (sizeof (IpT_Dynamic_Assignment)); 
   dyn_assignment_ptr->assignment_type  = 
IpC_Dynamic_Assignment_Default_Route_Add; 
   dyn_assignment_ptr->intf_index   = 
send_iface; 



122 
 

   dyn_assignment_ptr->dynamic_addr_range  = 
inet_address_range_create (server_inet_addr, 0); 
   
   /* - Append to list of dynamic assignments */ 
   op_prg_list_insert (dyn_assignment_lptr, 
dyn_assignment_ptr, OPC_LISTPOS_TAIL);     
   } 
   
  /* Add the default route if necessary */ 
  if (default_route_action >= DHCPC_DEFAULT_ROUTE_ADD) 
   { 
   /* Make the received address the new server address */ 
   server_inet_addr = inet_address_copy (*rcvd_inet_address); 
    
   /* - Build the IpT_Dynamic_Assignment structure */ 
   dyn_assignment_ptr = (IpT_Dynamic_Assignment *) 
op_prg_mem_alloc (sizeof (IpT_Dynamic_Assignment)); 
   dyn_assignment_ptr->assignment_type  = 
IpC_Dynamic_Assignment_Default_Route_Add; 
   dyn_assignment_ptr->intf_index   = 
send_iface; 
   dyn_assignment_ptr->dynamic_addr_range  = 
inet_address_range_create (server_inet_addr, 0); 
   
   /* - Append to list of dynamic assignments */ 
   op_prg_list_insert (dyn_assignment_lptr, 
dyn_assignment_ptr, OPC_LISTPOS_TAIL);  
   } 
   
  /* - Convert list of dynamic assignments to 
IpT_Dynamic_Assignment_Array */ 
  dyn_array_ptr = (IpT_Dynamic_Assignment_Array*) op_prg_mem_alloc 
(sizeof (IpT_Dynamic_Assignment_Array)); 
  dyn_array_ptr->assignment_count = op_prg_list_size 
(dyn_assignment_lptr); 
  dyn_array_ptr->assignments = (IpT_Dynamic_Assignment **) 
   op_prg_mem_alloc (dyn_array_ptr->assignment_count * sizeof 
(IpT_Dynamic_Assignment *)); 
   
  for (i = 0; i < dyn_array_ptr->assignment_count; i++) 
   { 
   dyn_array_ptr->assignments [i] = (IpT_Dynamic_Assignment *)  
    op_prg_list_remove (dyn_assignment_lptr,  
OPC_LISTPOS_HEAD); 
   } 
  
  /* - Set assignment array as event state */ 
  prev_state = op_ev_state_install (dyn_array_ptr, OPC_NIL); 
  
  /* - Schedule a remote interrupt for ip_dispatch */ 
  op_intrpt_schedule_remote (op_sim_time (), 
IPC_DYNAMIC_ASSIGNMENTS_INTRPT_CODE,  
   ip_support_module_ptr->module_id); 
   
  op_ev_state_install (prev_state, OPC_NIL); 
   
  /* Destroy the list structure */ 



123 
 

  prg_list_destroy (dyn_assignment_lptr, OPC_FALSE); 
  } 
  
 /* Free all memory associated with this packet: */ 
 op_pk_destroy(rcv_pkt_ptr); 
 dhcp_optlist_destroy(rcv_pkt_opts); 
  
 FOUT; 
 } 
 
void 
dhcp_get_packet(void) /* Me: When mobile node received DHCP message*/ 
 { 
   
 FIN(dhcp_get_packet());  
 /* Consume the packet from the input stream: */ 
 rcv_pkt_ptr   = op_pk_get(input_strm); 
 
 /* Parse the message to obtain values for the state variables: */ 
 dhcp_msg_parse(rcv_pkt_ptr, &rcv_msg_type, &rcv_msg_trans); 
 
 /* Get the options from the received packet: */ 
 op_pk_fd_get_ptr (rcv_pkt_ptr, DHCPC_PK_FIELD_OPTIONS, 
(void**)&rcv_pkt_opts); 
 
 /* If this is a Reply message with a Rapid Commit option 
  * change the received message type:*/ 
 if((rcv_msg_type == DHCPC_MSG_REPLY) 
  && (dhcp_optlist_get_opt(DHCPC_OPT_RAPID_COMMIT, rcv_pkt_opts)) 
!= OPC_NIL) 
  rcv_msg_type = DHCPC_MSG_REPLY_RAPID; 
  
 /* Update the local stats for the message type received: */ 
 dhcp_update_cli_stat(rcv_msg_type, 1); 
  
 FOUT; 
 } 
 
/* End of Function Block */ 
 
void 
dhcp_client (OP_SIM_CONTEXT_ARG_OPT) 
 { 
#if !defined (VOSD_NO_FIN) 
 int _op_block_origin = 0; 
#endif 
 FIN_MT (dhcp_client ()); 
 
  { 
  /* Temporary Variables */ 
  Objid cli_params_objid, timers_objid, timers_row_objid, objid1; 
  char tmp_str[TMP_STR_SIZE]; 
  char val_str[TMP_STR_SIZE]; 
  int  tmp_int; 
  double initial_solicit_delay; 
   
  /* IP address manipulations: */ 



124 
 

  InetT_Addr_Family addr_fam; 
   
  DhcpT_Opt* dhcp_opt_ptr; 
   
  /* End of Temporary Variables */ 
 
  FSM_ENTER ("dhcp_client") 
 
  FSM_BLOCK_SWITCH 
   { 
   /** state (Begin) enter executives **/ 
   FSM_STATE_ENTER_FORCED (0, "Begin", state0_enter_exec, 
"dhcp_client [Begin enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Begin enter 
execs]", state0_enter_exec) 
    { 
    /* Me: Initialize protocol related info that is reset 
every time we restart a Solicit message exchange:*/ 
    server_rapid_commit = OPC_TRUE; 
    retrans_count  = 0; 
    server_id   = 0; 
    RTprev    = 0; 
    rebind_time   = 0; 
    expire_time   = 0; 
    rcv_pkt_ptr   = OPC_NIL; 
    rcv_pkt_opts  = OPC_NIL; 
     
    /* Create the DHCP message to be sent: */ 
    if(Rapid_Commit) 
     snd_msg_type = DHCPC_MSG_SOLICIT_RAPID; 
    else 
     snd_msg_type = DHCPC_MSG_SOLICIT; 
     
  snd_pkt_ptr = dhcp_msg_create(snd_msg_type, last_trans_id++); 
     
    /* Initialize the DHCP options list to be sent: */ 
    snd_pkt_opts = dhcp_optlist_create(); 
     
    /* Always insert our Client ID in every message: */ 
    prg_list_insert(snd_pkt_opts, 
       
 dhcp_opt_create_id(DHCPC_OPT_CLIENTID, node_objid), 
        PRGC_LISTPOS_TAIL); 
     
    if(Rapid_Commit) 
     { 
     DhcpT_Opt*    tmp_dhcp_opt
 = OPC_NIL; 
     DhcpT_Cli_Assignment* iface_config = 
OPC_NIL; 
     int      oro_length 
 = 0; 
     int      rep; 
       
     /* Insert the Rapid Commit option: */ 
     prg_list_insert(snd_pkt_opts, 



125 
 

        
 dhcp_opt_create(DHCPC_OPT_RAPID_COMMIT), 
         PRGC_LISTPOS_TAIL); 
      
     /* Insert an option for every interface we're 
requesting configuration for: */ 
     for(rep = 0; rep < num_interfaces; rep++) 
      { 
      iface_config = (DhcpT_Cli_Assignment 
*)prg_list_access(&interfaces_config, rep); 
      if(iface_config->assign_type == 
DHCPC_ASSIGN_ADDR) 
       /* Requesting an address: */ 
       tmp_dhcp_opt = 
dhcp_opt_create(DHCPC_OPT_IA_NA); 
      else 
       /* Requesting a prefix: */ 
       tmp_dhcp_opt = 
dhcp_opt_create(DHCPC_OPT_IA_PD); 
     
           
 tmp_dhcp_opt->simple_data = iface_config->iface_index; 
        
      /* Set the length of this option: */ 
      tmp_dhcp_opt->length = 12; 
        
      /* Add this option to the total length 
count of the Option Request option: */ 
      oro_length += 2; 
        
      prg_list_insert(snd_pkt_opts, 
tmp_dhcp_opt, PRGC_LISTPOS_TAIL);  
      } 
      
     tmp_dhcp_opt = dhcp_opt_create(DHCPC_OPT_ORO); 
     tmp_dhcp_opt->length = oro_length; 
     prg_list_insert(snd_pkt_opts, tmp_dhcp_opt,
 PRGC_LISTPOS_TAIL);  
     } 
     
    dhcp_msg_finalize(snd_pkt_ptr, snd_pkt_opts); 
     
 /* Schedule a timer self-interrupt in case we need to retransmit: */ 
    RTprev = dhcp_get_retrans_time(RTprev, 
DHCPC_TRP_SOL_TIMEOUT, max_sol_tmout); 
    next_evh = op_intrpt_schedule_self(op_sim_time() + 
RTprev, DHCPC_MSG_TIMEOUT); 
     
    /* Me: Send the message to the multicast address, 
with an initial delay for this first Solicit message:*/ 
    initial_solicit_delay = 
op_dist_uniform(DHCPC_TRP_SOL_MAX_DELAY); 
    op_ici_install(command_ici_ptr); 
    op_pk_send_delayed(snd_pkt_ptr, output_strm, 
initial_solicit_delay); 
    op_ici_install(OPC_NIL); 
     



126 
 

     
    /* Log this initial transmission: */ 
    if(logging == OPC_TRUE) 
     { 
     op_prg_log_handle_severity_set(&new_log_handle, 
PrgC_Log_Severity_Information); 
     op_prg_log_entry_write_t(new_log_handle, 
op_sim_time() + initial_solicit_delay, 
      "Soliciting any server for new 
configuration information"); 
     } 
     
    /* Note this delayed transmission in the stats: */ 
    if(Rapid_Commit) 
     { 
     op_stat_write_t(global_stats-
>msg_count_solicit_rapid, 1.0, op_sim_time() + initial_solicit_delay); 
     op_stat_write_t(local_stats-
>msg_count_solicit_rapid, 1.0, op_sim_time() + initial_solicit_delay); 
     } 
    else 
     { 
     op_stat_write_t(global_stats-
>msg_count_solicit, 1.0, op_sim_time() + initial_solicit_delay); 
     op_stat_write_t(local_stats->msg_count_solicit, 
1.0, op_sim_time() + initial_solicit_delay);  
     } 
     
    /* Record the start time of this transaction: */ 
    transaction_time = op_sim_time(); 
    } 
    FSM_PROFILE_SECTION_OUT (state0_enter_exec) 
 
   /** state (Begin) exit executives **/ 
   FSM_STATE_EXIT_FORCED (0, "Begin", "dhcp_client [Begin exit 
execs]") 
 
   /** state (Begin) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("dhcp_client [Begin trans 
conditions]", state0_trans_conds) 
   FSM_INIT_COND (Rapid_Commit) 
   FSM_TEST_COND (!Rapid_Commit) 
   FSM_TEST_LOGIC ("Begin") 
   FSM_PROFILE_SECTION_OUT (state0_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 1, state1_enter_exec, ;, 
"Rapid_Commit", "", "Begin", "Wait_Reply", "tr_12", "dhcp_client [Begin -> 
Wait_Reply : Rapid_Commit / ]") 
    FSM_CASE_TRANSIT (1, 2, state2_enter_exec, ;, 
"!Rapid_Commit", "", "Begin", "Wait_Advertise", "tr_13", "dhcp_client [Begin 
-> Wait_Advertise : !Rapid_Commit / ]") 
    } 
  /*---------------------------------------------------------*/ 
 
 



127 
 

 
   /** state (Wait_Reply) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (1, "Wait_Reply", 
state1_enter_exec, "dhcp_client [Wait_Reply enter execs]") 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (3,"dhcp_client") 
 
   /** state (Wait_Reply) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (1, "Wait_Reply", "dhcp_client 
[Wait_Reply exit execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Reply exit 
execs]", state1_exit_exec) 
    { 
    intrpt_type = op_intrpt_type(); 
     
    if (intrpt_type == OPC_INTRPT_STRM) 
     { 
     dhcp_get_packet(); 
      
     if(server_id == 0) 
      { 
      /* If Mobile nodes have not yet 
discovered a server, remember this new server's identification:*/ 
      dhcp_opt_ptr = 
dhcp_optlist_get_opt(DHCPC_OPT_SERVERID, rcv_pkt_opts); 
      server_id = dhcp_opt_ptr->simple_data; 
      op_ima_obj_hname_get(server_id, srv_str, 
200);  
 /* Turn off rapid commit if the server didn't indicate support: */ 
     
 if(!(dhcp_optlist_get_opt(DHCPC_OPT_RAPID_COMMIT, rcv_pkt_opts))) 
       server_rapid_commit = OPC_FALSE; 
  
      } 
     } 
    else 
     intrpt_code = op_intrpt_code(); 
    } 
    FSM_PROFILE_SECTION_OUT (state1_exit_exec) 
 
   /** state (Wait_Reply) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Reply trans 
conditions]", state1_trans_conds) 
   FSM_INIT_COND (Rcv_Reply) 
   FSM_TEST_COND (Rcv_NonReply & !Rcv_Advertise) 
   FSM_TEST_COND (Msg_Tmout) 
   FSM_TEST_COND (Msg_Fail) 
   FSM_TEST_COND (Rcv_Advertise) 
   FSM_TEST_LOGIC ("Wait_Reply") 
   FSM_PROFILE_SECTION_OUT (state1_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 3, state3_enter_exec, Config();, 
"Rcv_Reply", "Config()", "Wait_Reply", "Idle", "tr_21", "dhcp_client 
[Wait_Reply -> Idle : Rcv_Reply / Config()]") 



128 
 

    FSM_CASE_TRANSIT (1, 1, state1_enter_exec, 
Discard();, "Rcv_NonReply & !Rcv_Advertise", "Discard()", "Wait_Reply", 
"Wait_Reply", "tr_24", "dhcp_client [Wait_Reply -> Wait_Reply : Rcv_NonReply 
& !Rcv_Advertise / Discard()]") 
    FSM_CASE_TRANSIT (2, 1, state1_enter_exec, 
SendMsg();, "Msg_Tmout", "SendMsg()", "Wait_Reply", "Wait_Reply", "tr_26", 
"dhcp_client [Wait_Reply -> Wait_Reply : Msg_Tmout / SendMsg()]") 
    FSM_CASE_TRANSIT (3, 0, state0_enter_exec, ;, 
"Msg_Fail", "", "Wait_Reply", "Begin", "tr_46", "dhcp_client [Wait_Reply -> 
Begin : Msg_Fail / ]") 
    FSM_CASE_TRANSIT (4, 1, state1_enter_exec, 
SendMsg();, "Rcv_Advertise", "SendMsg()", "Wait_Reply", "Wait_Reply", 
"tr_51", "dhcp_client [Wait_Reply -> Wait_Reply : Rcv_Advertise / 
SendMsg()]") 
    } 
  /*---------------------------------------------------------*/ 
 
   /** state (Wait_Advertise) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (2, "Wait_Advertise", 
state2_enter_exec, "dhcp_client [Wait_Advertise enter execs]") 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (5,"dhcp_client") 
 
   /** state (Wait_Advertise) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (2, "Wait_Advertise", "dhcp_client 
[Wait_Advertise exit execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Advertise 
exit execs]", state2_exit_exec) 
    { 
    intrpt_type = op_intrpt_type(); 
     
    if (intrpt_type == OPC_INTRPT_STRM) 
     { 
     dhcp_get_packet(); 
      
     if(server_id == 0) 
      { 
 /* If the mobile nodes have not yet discovered a server, remember this 
new server's identification:*/ 
      dhcp_opt_ptr = 
dhcp_optlist_get_opt(DHCPC_OPT_SERVERID, rcv_pkt_opts); 
      server_id = dhcp_opt_ptr->simple_data; 
      op_ima_obj_hname_get(server_id, srv_str, 
200); 
 /* Turn off rapid commit if the server didn't indicate support: */ 
     
 if(!(dhcp_optlist_get_opt(DHCPC_OPT_RAPID_COMMIT, rcv_pkt_opts))) 
       server_rapid_commit = OPC_FALSE; 
  
      } 
     } 
    else 
     intrpt_code = op_intrpt_code(); 
    } 
    FSM_PROFILE_SECTION_OUT (state2_exit_exec) 
 



129 
 

 
   /** state (Wait_Advertise) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Advertise trans 
conditions]", state2_trans_conds) 
   FSM_INIT_COND (Rcv_Advertise) 
   FSM_TEST_COND (Rcv_NonAdvertise) 
   FSM_TEST_COND (Msg_Tmout) 
   FSM_TEST_LOGIC ("Wait_Advertise") 
   FSM_PROFILE_SECTION_OUT (state2_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 1, state1_enter_exec, 
SendMsg();, "Rcv_Advertise", "SendMsg()", "Wait_Advertise", "Wait_Reply", 
"tr_16", "dhcp_client [Wait_Advertise -> Wait_Reply : Rcv_Advertise / 
SendMsg()]") 
    FSM_CASE_TRANSIT (1, 2, state2_enter_exec, 
Discard();, "Rcv_NonAdvertise", "Discard()", "Wait_Advertise", 
"Wait_Advertise", "tr_18", "dhcp_client [Wait_Advertise -> Wait_Advertise : 
Rcv_NonAdvertise / Discard()]") 
    FSM_CASE_TRANSIT (2, 2, state2_enter_exec, 
SendMsg();, "Msg_Tmout", "SendMsg()", "Wait_Advertise", "Wait_Advertise", 
"tr_19", "dhcp_client [Wait_Advertise -> Wait_Advertise : Msg_Tmout / 
SendMsg()]") 
    } 
 /*---------------------------------------------------------*/ 
 
   /** state (Idle) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (3, "Idle", state3_enter_exec, 
"dhcp_client [Idle enter execs]") 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (7,"dhcp_client") 
 
   /** state (Idle) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (3, "Idle", "dhcp_client [Idle exit 
execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Idle exit 
execs]", state3_exit_exec) 
    { 
    intrpt_type = op_intrpt_type(); 
     
    if (intrpt_type == OPC_INTRPT_STRM) 
     { 
     dhcp_get_packet(); 
     } 
    else 
     intrpt_code = op_intrpt_code(); 
    } 
    FSM_PROFILE_SECTION_OUT (state3_exit_exec) 
 
   /** state (Idle) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("dhcp_client [Idle trans 
conditions]", state3_trans_conds) 
   FSM_INIT_COND (Msg_Rcv) 
   FSM_TEST_COND (Assign_Tmout) 
   FSM_TEST_COND (Msg_Fail) 



130 
 

   FSM_DFLT_COND 
   FSM_TEST_LOGIC ("Idle") 
   FSM_PROFILE_SECTION_OUT (state3_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 3, state3_enter_exec, 
Discard();, "Msg_Rcv", "Discard()", "Idle", "Idle", "tr_27", "dhcp_client 
[Idle -> Idle : Msg_Rcv / Discard()]") 
    FSM_CASE_TRANSIT (1, 4, state4_enter_exec, 
SendMsg();, "Assign_Tmout", "SendMsg()", "Idle", "Wait_Reply_Conf", "tr_28", 
"dhcp_client [Idle -> Wait_Reply_Conf : Assign_Tmout / SendMsg()]") 
    FSM_CASE_TRANSIT (2, 0, state0_enter_exec, ;, 
"Msg_Fail", "", "Idle", "Begin", "tr_55", "dhcp_client [Idle -> Begin : 
Msg_Fail / ]") 
    FSM_CASE_TRANSIT (3, 3, state3_enter_exec, ;, 
"default", "", "Idle", "Idle", "tr_56", "dhcp_client [Idle -> Idle : default 
/ ]") 
    } 
  /*---------------------------------------------------------*/ 
   /** state (Wait_Reply_Conf) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (4, "Wait_Reply_Conf", 
state4_enter_exec, "dhcp_client [Wait_Reply_Conf enter execs]") 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (9,"dhcp_client") 
 
 
   /** state (Wait_Reply_Conf) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (4, "Wait_Reply_Conf", "dhcp_client 
[Wait_Reply_Conf exit execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Reply_Conf 
exit execs]", state4_exit_exec) 
    { 
    intrpt_type = op_intrpt_type(); 
     
    if (intrpt_type == OPC_INTRPT_STRM) 
     { 
     dhcp_get_packet(); 
      
     /* If mobile nodes have not yet discovered a 
server, or if we are in the Rebind phase,remember this new server's 
identification:*/ 
     if((server_id == 0) || (snd_msg_type == 
DHCPC_MSG_REBIND)) 
      { 
      dhcp_opt_ptr = 
dhcp_optlist_get_opt(DHCPC_OPT_SERVERID, rcv_pkt_opts); 
      server_id = dhcp_opt_ptr->simple_data; 
      op_ima_obj_hname_get(server_id, srv_str, 
200); 
 /* Turn off rapid commit if the server didn't indicate support: */ 
     
 if(!(dhcp_optlist_get_opt(DHCPC_OPT_RAPID_COMMIT, rcv_pkt_opts))) 
       server_rapid_commit = OPC_FALSE; 
  
      } 



131 
 

     } 
    else 
     intrpt_code = op_intrpt_code(); 
    } 
    FSM_PROFILE_SECTION_OUT (state4_exit_exec) 
 
   /** state (Wait_Reply_Conf) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_Reply_Conf trans 
conditions]", state4_trans_conds) 
   FSM_INIT_COND (Rcv_Reply) 
   FSM_TEST_COND (Rcv_NonReply) 
   FSM_TEST_COND (Msg_Tmout) 
   FSM_TEST_COND (Msg_Fail) 
   FSM_TEST_LOGIC ("Wait_Reply_Conf") 
   FSM_PROFILE_SECTION_OUT (state4_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 3, state3_enter_exec, Config();, 
"Rcv_Reply", "Config()", "Wait_Reply_Conf", "Idle", "tr_29", "dhcp_client 
[Wait_Reply_Conf -> Idle : Rcv_Reply / Config()]") 
    FSM_CASE_TRANSIT (1, 4, state4_enter_exec, 
Discard();, "Rcv_NonReply", "Discard()", "Wait_Reply_Conf", 
"Wait_Reply_Conf", "tr_32", "dhcp_client [Wait_Reply_Conf -> Wait_Reply_Conf 
: Rcv_NonReply / Discard()]") 
    FSM_CASE_TRANSIT (2, 4, state4_enter_exec, 
SendMsg();, "Msg_Tmout", "SendMsg()", "Wait_Reply_Conf", "Wait_Reply_Conf", 
"tr_34", "dhcp_client [Wait_Reply_Conf -> Wait_Reply_Conf : Msg_Tmout / 
SendMsg()]") 
    FSM_CASE_TRANSIT (3, 0, state0_enter_exec, 
Unconfig();, "Msg_Fail", "Unconfig()", "Wait_Reply_Conf", "Begin", "tr_50", 
"dhcp_client [Wait_Reply_Conf -> Begin : Msg_Fail / Unconfig()]") 
    } 
  /*---------------------------------------------------------*/ 
 
   /** state (Init) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED_NOLABEL (5, "Init", "dhcp_client 
[Init enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Init enter 
execs]", state5_enter_exec) 
    { 
    if (LTRACE_ACTIVE) 
     op_prg_odb_print_major ("DHCP Client: Begin 
simulation" , OPC_NIL); 
     
    /* Initialize some variables: */ 
    module_objid   = op_id_self(); 
    node_objid    = 
op_topo_parent(module_objid); 
    ip_support_module_ptr = ip_support_module_data_get 
(node_objid); 
    gateway_node   = 
ip_rte_node_is_gateway(ip_support_module_ptr); 
    last_trans_id   = 1; 
    server_inet_addr  = INETC_ADDRESS_INVALID; 
      
    prg_list_init(&interfaces_config); 



132 
 

     
     
    /* Determine if the nodes are logging DHCP: */ 
  op_ima_sim_attr_get(OPC_IMA_TOGGLE, "DHCP Logging", &logging); 
    if(LOGGING_ACTIVE) 
     { 
     new_log_handle = 
op_prg_log_handle_create(OpC_Log_Category_Protocol, "DHCP", "New 
Configuration", 100); 
     renew_log_handle = 
op_prg_log_handle_create(OpC_Log_Category_Protocol, "DHCP", "Renewal", 100); 
     error_log_handle = 
op_prg_log_handle_create(OpC_Log_Category_Protocol, "DHCP", "Protocol Error", 
100); 
     expire_log_handle = 
op_prg_log_handle_create(OpC_Log_Category_Protocol, "DHCP", "Expiration", 
100); 
     } 
     
    /* Register process in the Process Registry: */ 
  op_ima_obj_attr_get(module_objid, "process model", tmp_str); 
     
 my_proc_handle = oms_pr_process_register(node_objid, module_objid, 
     op_pro_self(), tmp_str); 
oms_pr_attr_set(my_proc_handle, 
     "protocol", OMSC_PR_STRING, "dhcp", 
     OPC_NIL); 
     
   /* Schedule a self interrupt to wait for lower layers */ 
    op_intrpt_schedule_self(op_sim_time(), 0); 
    } 
    FSM_PROFILE_SECTION_OUT (state5_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (11,"dhcp_client") 
 
   /** state (Init) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (5, "Init", "dhcp_client [Init exit 
execs]") 
 
   /** state (Init) transition processing **/ 
   FSM_TRANSIT_FORCE (8, state8_enter_exec, ;, "default", "", 
"Init", "Wait_0", "tr_19_0", "dhcp_client [Init -> Wait_0 : default / ]") 
  /*---------------------------------------------------------*/ 
 
   /** state (Wait_1) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (6, "Wait_1", state6_enter_exec, 
"dhcp_client [Wait_1 enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_1 enter 
execs]", state6_enter_exec) 
    { 
    op_intrpt_schedule_self(op_sim_time(), 0); 
    } 
    FSM_PROFILE_SECTION_OUT (state6_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (13,"dhcp_client") 



133 
 

 
 
   /** state (Wait_1) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (6, "Wait_1", "dhcp_client [Wait_1 
exit execs]") 
 
   /** state (Wait_1) transition processing **/ 
   FSM_TRANSIT_FORCE (9, state9_enter_exec, ;, "default", "", 
"Wait_1", "Wait_2", "tr_19_4", "dhcp_client [Wait_1 -> Wait_2 : default / ]") 
  /*---------------------------------------------------------*/ 
 
   /** state (Wait_3) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (7, "Wait_3", state7_enter_exec, 
"dhcp_client [Wait_3 enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_3 enter 
execs]", state7_enter_exec) 
    { 
    op_intrpt_schedule_self(op_sim_time(), 0); 
    } 
    FSM_PROFILE_SECTION_OUT (state7_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (15,"dhcp_client") 
 
   /** state (Wait_3) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (7, "Wait_3", "dhcp_client [Wait_3 
exit execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_3 exit 
execs]", state7_exit_exec) 
    { 
     
    /* Read in all of our attribute values: */ 
    op_ima_obj_attr_get(module_objid, "DHCPv6 Client 
Parameters", &cli_params_objid); 
    objid1 = op_topo_child(cli_params_objid, 
OPC_OBJTYPE_GENERIC, 0); 
     
     
    op_ima_obj_attr_get_str(objid1, "Sending Interface", 
TMP_STR_SIZE, val_str); 
    send_iface = 
dhcp_get_ipv6_table_index_from_name(val_str, ip_support_module_ptr); 
    if(send_iface == -1) 
     { 
     sprintf(tmp_str, "Unable to get interface index 
for interface '%s'", val_str); 
     op_sim_end("Error resolving interface index:", 
      tmp_str, OPC_NIL, OPC_NIL); 
     } 
    else 
     { 
   /* Remember the link layer address of this interface: */ 
     IpT_Interface_Info* ip_iface_elem_ptr = 
inet_rte_intf_tbl_access(ip_support_module_ptr, send_iface); 
     node_ll_addr = 
ip_rte_intf_link_local_addr_get(ip_iface_elem_ptr); 
     } 



134 
 

     
     
     
    op_ima_obj_attr_get(objid1, "Rapid Commit", 
&rapid_commit); 
     
    op_ima_obj_attr_get(objid1, "Timers", &timers_objid); 
    timers_row_objid = op_topo_child(timers_objid, 
OPC_OBJTYPE_GENERIC, 0); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Max 
Solicit Timeout", &max_sol_tmout); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Max 
Request Timeout", &max_req_tmout); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Max 
Request Retries", &max_req_retries); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Initial 
Renew Timeout", &init_renew_tmout); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Max 
Renew Timeout", &max_renew_tmout); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Initial 
Rebind Timeout", &init_rebind_tmout); 
    op_ima_obj_attr_get_int32(timers_row_objid, "Max 
Rebind Timeout", &max_rebind_tmout); 
     
    /* Create the ICI to be used with UDP: */ 
    command_ici_ptr = op_ici_create ("udp_command_inet"); 
     
    /* Create a receive port for this application: */  
    tmp_int = dhcp_connect_to_udp(DHCPC_PORT_CLIENT, 
module_objid, 
     &udp_objid, &input_strm, &output_strm, 
command_ici_ptr); 
     
    if (tmp_int != UDPC_IND_SUCCESS) 
     { 
     sprintf (tmp_str, "%d in response to 
CREATE_PORT command", tmp_int);  
     op_sim_end ("Error: process model dhcp received 
error", tmp_str, "", "");   
     } 
     
  /* Me: Since we are a client, mobile node will always send to the 
well known multicast address for DHCP servers.  Set this address on the ICI 
here: */ 
    addr_fam = InetC_Addr_Family_v6; 
    server_multicast_addr = 
inet_address_create(DHCPC_ADDR_ALL_AGENTS_AND_SERVERS, addr_fam); 
    op_ici_attr_set_ptr(command_ici_ptr, "rem_addr", 
&server_multicast_addr); 
     
  /* Me: For multicast to work, mobile node need a setting into the 
"strm_index" field of the UDP ici - this setting will eventually be written 
into the "multicast_major_port" of the IP layer ICI.*/ 
    op_ici_attr_set (command_ici_ptr, "strm_index", 
IPC_MCAST_ALL_MAJOR_PORTS); 
    server_multicast_addr = 
inet_address_create(DHCPC_ADDR_ALL_AGENTS_AND_SERVERS, addr_fam); 



135 
 

   /* Mobile node always send to the DHCP server port: */ 
    op_ici_attr_set (command_ici_ptr, "rem_port", 
DHCPC_PORT_SERVER); 
     
    /* Also, since we are a client, mobile node will 
always send using our link local address: */ 
    op_ici_attr_set (command_ici_ptr, "src_addr", 
&node_ll_addr); 
     
     
/* Build the list to contain configuration information for all existing 
interfaces. For both routers and hosts.*/ 
    if(gateway_node) 
     { 
     int  rep; 
     int  num_total_interfaces = 0; 
     Objid ip_group_objid, iface_info_objid, 
iface_row_objid; 
     Objid gaddr_info_objid, gaddr_row_objid; 
     DhcpT_Cli_Assignment * iface_config; 
       
     /* First get the total number of interfaces on 
this node.  We're only dealing with physical interfaces for now.*/ 
     op_ima_obj_attr_get(node_objid, "IPv6 
Parameters", &ip_group_objid); 
     objid1 = op_topo_child(ip_group_objid, 
OPC_OBJTYPE_GENERIC, 0); 
     op_ima_obj_attr_get(objid1, "Interface 
Information", &iface_info_objid); 
     num_total_interfaces = 
op_topo_child_count(iface_info_objid, OPC_OBJTYPE_GENERIC); 
     
     for (rep = 0; rep < num_total_interfaces; 
rep++) 
      { 
      
      iface_row_objid = 
op_topo_child(iface_info_objid, OPC_OBJTYPE_GENERIC, rep); 
       
      
      op_ima_obj_attr_get(iface_row_objid, 
"Global Address(es)", &gaddr_info_objid); 
      gaddr_row_objid = 
op_topo_child(gaddr_info_objid, OPC_OBJTYPE_GENERIC, 0); 
       
      /* Get the "Address": */ 
      op_ima_obj_attr_get_str(gaddr_row_objid, 
"Address", 100, val_str); 
      if(strstr(val_str, "DHCP")) 
       { 
       int  intf_table_index; 
       char iface_str [8]; 
        
 /* First confirm that the interface has been added into the interface 
table */ 
       op_ima_obj_attr_get_str 
(iface_row_objid, "Name", 7, iface_str); 



136 
 

        
       if ((intf_table_index = 
dhcp_get_ipv6_table_index_from_name (iface_str, ip_support_module_ptr)) == -
1) 
        { 
        char log_str [500]; 
         
   printf (log_str, "Interface %s has DHCP specified, but is 
not being used in the simulation. Confirm that it is connected, has a link-
local address, and no other global addresses are specified.", iface_str); 
        LOG(error_log_handle, 
log_str, PrgC_Log_Severity_Error); 
         
        continue; 
        } 
       else 
        { 
  /* This interface is using DHCP for either address or prefix 
assignment. */ 
        iface_config = 
(DhcpT_Cli_Assignment *)op_prg_mem_alloc(sizeof(DhcpT_Cli_Assignment)); 
        iface_config->configured = 
OPC_FALSE; 
        iface_config->iface_index = 
rep; 
        if(strstr(val_str, "Prefix 
Delegation")) 
         iface_config-
>assign_type = DHCPC_ASSIGN_PREFIX; 
        else 
         iface_config-
>assign_type = DHCPC_ASSIGN_ADDR; 
        
       
 op_ima_obj_attr_get_str(iface_row_objid, "Name", TMP_STR_SIZE, 
tmp_str); 
        iface_config->iface_name = 
prg_string_copy(tmp_str); 
        
       
 prg_list_insert(&interfaces_config, iface_config, PRGC_LISTPOS_TAIL); 
        } 
       } 
      } 
     } 
    else 
     { 
 /* Initialize the configuration data for only a single interface: */ 
     DhcpT_Cli_Assignment * iface_config = 
      (DhcpT_Cli_Assignment 
*)op_prg_mem_alloc(sizeof(DhcpT_Cli_Assignment)); 
     iface_config->configured = OPC_FALSE; 
     iface_config->iface_index = send_iface; 
     iface_config->assign_type = DHCPC_ASSIGN_ADDR; 
      
     iface_config->iface_name = prg_string_copy("N/A 
(single interface host)"); 



137 
 

      
     prg_list_insert(&interfaces_config, 
iface_config, PRGC_LISTPOS_TAIL); 
     } 
    num_interfaces = prg_list_size(&interfaces_config); 
     
    if(num_interfaces < 1) 
     { 
     LOG(error_log_handle, "No interfaces are 
requesting configuration information. " 
      "Exiting DHCP client.", 
PrgC_Log_Severity_Error); 
     op_pro_destroy(op_pro_self()); 
     } 
    /* Get the handles to the DHCP statistics: */ 
    global_stats = dhcp_get_global_stathandles(); 
    local_stats  = 
dhcp_get_local_stathandles(DHCPC_CLIENT); 
    } 
    FSM_PROFILE_SECTION_OUT (state7_exit_exec) 
 

/* Me: Register this address for multicast: */ 
     
 Inet_Address_Multicast_Register(server_multicast_addr, tmp_int, 
             
 DHCPC_PORT_SERVER, ip_support_module_ptr); 
 
   /** state (Wait_3) transition processing **/ 
   FSM_TRANSIT_FORCE (0, state0_enter_exec, ;, "default", "", 
"Wait_3", "Begin", "tr_19_2", "dhcp_client [Wait_3 -> Begin : default / ]") 
  /*---------------------------------------------------------*/ 
 
/** state (Wait_0) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (8, "Wait_0", state8_enter_exec, 
"dhcp_client [Wait_0 enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_0 enter 
execs]", state8_enter_exec) 
    { 
    op_intrpt_schedule_self(op_sim_time(), 0); 
    } 
    FSM_PROFILE_SECTION_OUT (state8_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (17,"dhcp_client") 
 
 
   /** state (Wait_0) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (8, "Wait_0", "dhcp_client [Wait_0 
exit execs]") 
 
 
   /** state (Wait_0) transition processing **/ 
   FSM_TRANSIT_FORCE (6, state6_enter_exec, ;, "default", "", 
"Wait_0", "Wait_1", "tr_19_3", "dhcp_client [Wait_0 -> Wait_1 : default / ]") 
 /*---------------------------------------------------------*/ 
 
 



138 
 

 
   /** state (Wait_2) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (9, "Wait_2", state9_enter_exec, 
"dhcp_client [Wait_2 enter execs]") 
    FSM_PROFILE_SECTION_IN ("dhcp_client [Wait_2 enter 
execs]", state9_enter_exec) 
    { 
    op_intrpt_schedule_self(op_sim_time(), 0); 
    } 
    FSM_PROFILE_SECTION_OUT (state9_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (19,"dhcp_client") 
 
   /** state (Wait_2) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (9, "Wait_2", "dhcp_client [Wait_2 
exit execs]") 
 
   /** state (Wait_2) transition processing **/ 
   FSM_TRANSIT_FORCE (7, state7_enter_exec, ;, "default", "", 
"Wait_2", "Wait_3", "tr_19_1", "dhcp_client [Wait_2 -> Wait_3 : default / ]") 
  /*---------------------------------------------------------*/ 
   } 
  FSM_EXIT (5,"dhcp_client") 
  } 
 } 
 
/* Undefine shortcuts to state variables to avoid */ 
#undef module_objid 
#undef node_objid 
#undef my_proc_handle 
#undef udp_objid 
#undef ip_support_module_ptr 
#undef command_ici_ptr 
#undef max_sol_tmout 
#undef max_req_tmout 
#undef max_req_retries 
#undef init_renew_tmout 
#undef max_renew_tmout 
#undef init_rebind_tmout 
#undef max_rebind_tmout 
#undef send_iface 
#undef last_trans_id 
#undef rapid_commit 
#undef server_rapid_commit 
#undef server_id 
#undef srv_str 
#undef interfaces_config 
#undef gateway_node 
#undef input_strm 
#undef output_strm 
#undef snd_pkt_ptr 
#undef snd_pkt_opts 
#undef snd_msg_type 
#undef rcv_pkt_ptr 
#undef rcv_pkt_opts 
#undef rcv_msg_type 



139 
 

#undef rcv_msg_trans 
#undef RTprev 
#undef expire_time 
#undef rebind_time 
#undef retrans_count 
#undef intrpt_type 
#undef intrpt_code 
#undef num_interfaces 
#undef next_evh 
#undef server_multicast_addr 
#undef node_ll_addr 
#undef global_stats 
#undef local_stats 
#undef transaction_time 
#undef logging 
#undef new_log_handle 
#undef renew_log_handle 
#undef error_log_handle 
#undef expire_log_handle 
#undef server_inet_addr 
 
#undef FIN_PREAMBLE_DEC 
#undef FIN_PREAMBLE_CODE 
 
#define FIN_PREAMBLE_DEC 
#define FIN_PREAMBLE_CODE 
 
VosT_Obtype 
_op_dhcp_client_init (int * init_block_ptr) 
 { 
 VosT_Obtype obtype = OPC_NIL; 
 FIN_MT (_op_dhcp_client_init (init_block_ptr)) 
 
 obtype = Vos_Define_Object_Prstate ("proc state vars (dhcp_client)", 
  sizeof (dhcp_client_state)); 
 *init_block_ptr = 10; 
 
 FRET (obtype) 
 } 
 
VosT_Address 
_op_dhcp_client_alloc (VosT_Obtype obtype, int init_block) 
 { 
#if !defined (VOSD_NO_FIN) 
 int _op_block_origin = 0; 
#endif 
 dhcp_client_state * ptr; 
 FIN_MT (_op_dhcp_client_alloc (obtype)) 
 
 ptr = (dhcp_client_state *)Vos_Alloc_Object (obtype); 
 if (ptr != OPC_NIL) 
  { 
  ptr->_op_current_block = init_block; 
#if defined (OPD_ALLOW_ODB) 
  ptr->_op_current_state = "dhcp_client [Init enter execs]"; 
#endif 
  } 



140 
 

 FRET ((VosT_Address)ptr) 
 } 
 
void 
_op_dhcp_client_svar (void * gen_ptr, const char * var_name, void ** 
var_p_ptr) 
 { 
 dhcp_client_state  *prs_ptr; 
 
 FIN_MT (_op_dhcp_client_svar (gen_ptr, var_name, var_p_ptr)) 
 
 if (var_name == OPC_NIL) 
  { 
  *var_p_ptr = (void *)OPC_NIL; 
  FOUT 
  } 
 prs_ptr = (dhcp_client_state *)gen_ptr; 
 
 if (strcmp ("module_objid" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->module_objid); 
  FOUT 
  } 
 if (strcmp ("node_objid" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->node_objid); 
  FOUT 
  } 
 if (strcmp ("my_proc_handle" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->my_proc_handle); 
  FOUT 
  } 
 if (strcmp ("udp_objid" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->udp_objid); 
  FOUT 
  } 
 if (strcmp ("ip_support_module_ptr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->ip_support_module_ptr); 
  FOUT 
  } 
 if (strcmp ("command_ici_ptr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->command_ici_ptr); 
  FOUT 
  } 
 if (strcmp ("max_sol_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->max_sol_tmout); 
  FOUT 
  } 
 if (strcmp ("max_req_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->max_req_tmout); 
  FOUT 



141 
 

  } 
 if (strcmp ("max_req_retries" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->max_req_retries); 
  FOUT 
  } 
 if (strcmp ("init_renew_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->init_renew_tmout); 
  FOUT 
  } 
 if (strcmp ("max_renew_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->max_renew_tmout); 
  FOUT 
  } 
 if (strcmp ("init_rebind_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->init_rebind_tmout); 
  FOUT 
  } 
 if (strcmp ("max_rebind_tmout" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->max_rebind_tmout); 
  FOUT 
  } 
 if (strcmp ("send_iface" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->send_iface); 
  FOUT 
  } 
 if (strcmp ("last_trans_id" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->last_trans_id); 
  FOUT 
  } 
 if (strcmp ("rapid_commit" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rapid_commit); 
  FOUT 
  } 
 if (strcmp ("server_rapid_commit" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->server_rapid_commit); 
  FOUT 
  } 
 if (strcmp ("server_id" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->server_id); 
  FOUT 
  } 
 if (strcmp ("srv_str" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (prs_ptr->srv_str); 
  FOUT 
  } 
 if (strcmp ("interfaces_config" , var_name) == 0) 



142 
 

  { 
  *var_p_ptr = (void *) (&prs_ptr->interfaces_config); 
  FOUT 
  } 
 if (strcmp ("gateway_node" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->gateway_node); 
  FOUT 
  } 
 if (strcmp ("input_strm" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->input_strm); 
  FOUT 
  } 
 if (strcmp ("output_strm" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->output_strm); 
  FOUT 
  } 
 if (strcmp ("snd_pkt_ptr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->snd_pkt_ptr); 
  FOUT 
  } 
 if (strcmp ("snd_pkt_opts" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->snd_pkt_opts); 
  FOUT 
  } 
 if (strcmp ("snd_msg_type" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->snd_msg_type); 
  FOUT 
  } 
 if (strcmp ("rcv_pkt_ptr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rcv_pkt_ptr); 
  FOUT 
  } 
 if (strcmp ("rcv_pkt_opts" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rcv_pkt_opts); 
  FOUT 
  } 
 if (strcmp ("rcv_msg_type" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rcv_msg_type); 
  FOUT 
  } 
 if (strcmp ("rcv_msg_trans" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rcv_msg_trans); 
  FOUT 
  } 
 if (strcmp ("RTprev" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->RTprev); 



143 
 

  FOUT 
  } 
 if (strcmp ("expire_time" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->expire_time); 
  FOUT 
  } 
 if (strcmp ("rebind_time" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->rebind_time); 
  FOUT 
  } 
 if (strcmp ("retrans_count" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->retrans_count); 
  FOUT 
  } 
 if (strcmp ("intrpt_type" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->intrpt_type); 
  FOUT 
  } 
 if (strcmp ("intrpt_code" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->intrpt_code); 
  FOUT 
  } 
 if (strcmp ("num_interfaces" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->num_interfaces); 
  FOUT 
  } 
 if (strcmp ("next_evh" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->next_evh); 
  FOUT 
  } 
 if (strcmp ("server_multicast_addr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->server_multicast_addr); 
  FOUT 
  } 
 if (strcmp ("node_ll_addr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->node_ll_addr); 
  FOUT 
  } 
 if (strcmp ("global_stats" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->global_stats); 
  FOUT 
  } 
 if (strcmp ("local_stats" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->local_stats); 
  FOUT 
  } 



144 
 

 if (strcmp ("transaction_time" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->transaction_time); 
  FOUT 
  } 
 if (strcmp ("logging" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->logging); 
  FOUT 
  } 
 if (strcmp ("new_log_handle" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->new_log_handle); 
  FOUT 
  } 
 if (strcmp ("renew_log_handle" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->renew_log_handle); 
  FOUT 
  } 
 if (strcmp ("error_log_handle" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->error_log_handle); 
  FOUT 
  } 
 if (strcmp ("expire_log_handle" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->expire_log_handle); 
  FOUT 
  } 
 if (strcmp ("server_inet_addr" , var_name) == 0) 
  { 
  *var_p_ptr = (void *) (&prs_ptr->server_inet_addr); 
  FOUT 
  } 
 *var_p_ptr = (void *)OPC_NIL; 
 
 FOUT 
 } 
 
static void /* Me: Joinning multicast tree by using CoA address*/ 
ip_igmp_host_join_grp (IpT_Address ip_grp_addr, int interface) 
 { 
 IpT_Igmp_Host_Grp_Elem*  grp_elem_ptr; 
 List*      ip_grp_intf_list_ptr; 
 Packet*      igmp_msg_pkptr; 
 Packet*      ip_dgram_pkptr; 
 char      msg0 [256], msg1 [256], msg2 [256]; 
 char      ip_addr_str [IPC_ADDR_STR_LEN]; 
 
 FIN (ip_igmp_host_join_grp (ip_grp_addr, interface)); 
 
 /* Generate a trace message */ 
 if (LTRACE_IGMP) 
  { 
  ip_address_print (ip_addr_str, ip_grp_addr); 



145 
 

  sprintf (msg0, "IP Group Address  :  %s", 
ip_addr_str); 
  sprintf (msg1, "IP Interface      :  %d", 
interface); 
  op_prg_odb_print_major ("Received a Join request from an 
application for: ", msg0, msg1, OPC_NIL); 
  } 
 
 /* Check if the group membership information for the given IP group 
address already exists */ 
 grp_elem_ptr = ip_igmp_host_get_grp_elem (ip_grp_addr, interface); 
 if (grp_elem_ptr == OPC_NIL) 
  { 
   
  grp_elem_ptr = ip_igmp_host_grp_elem_alloc (); 
 
  /* Set the fields of the data structure */ 
  grp_elem_ptr->ip_grp_addr = ip_address_copy (ip_grp_addr); 
  grp_elem_ptr->interface   = interface; 
 
  /* Until now only one application on this node has joined this 
group */ 
  grp_elem_ptr->num_of_apps = 1; 
 
  /* Assign a timer ID to this group's delay timer */ 
  grp_elem_ptr->delay_timer_id = timer_id++; 
 
  /* Initialize this field to the value of Robustness Variable 
attribute minus 1 */ 
  grp_elem_ptr->unsolicit_msg_count = robustness_variable - 1; 
 
  /* Since we are going to send an Unsolicited Membership Report 
message, set this field to OPC_TRUE*/       
    */ 
  grp_elem_ptr->report_sent_flag = OPC_TRUE; 
 
  /* Start the delay timer to send the next Unsolicited Membership 
Report message. */ 
   
  if (igmp_sim_efficiency == OPC_FALSE) 
   { 
   /* Set the delay timer to OPC_TRUE, as we are going to 
start */ 
   /* the timer for sending the next Unsolicited Report 
message */ 
   grp_elem_ptr->timer_on_flag = OPC_TRUE; 
 
   /* Start the delay timer */ 
   grp_elem_ptr->delay_timer_evh = op_intrpt_schedule_self 
(op_sim_time () +  
     unsolicited_report_interval, grp_elem_ptr-
>delay_timer_id); 
   } 
  else 
   { 
   /* Set the unsolicited messages count to zero */ 
   grp_elem_ptr->unsolicit_msg_count = 0; 



146 
 

   } 
 
  /** Add this group membership information to the corresponding 
list      **/ 
 
  /* Generate a trace message */ 
  if (LTRACE_IGMP) 
   { 
   ip_address_print (ip_addr_str, ip_grp_addr); 
   sprintf (msg0, "IP Group Address  :  %s", 
ip_addr_str); 
   sprintf (msg1, "IP Interface      :  %d", 
interface); 
   strcpy (msg2, "to the table, which is maintained by IGMP 
Host process."); 
   op_prg_odb_print_major ("Adding group membership 
information for: ", msg0, msg1, msg2, OPC_NIL); 
   } 
 
  /* Get the list for the interface on which this node has joined 
the group */  
  ip_grp_intf_list_ptr = (List *) op_prg_list_access 
(ip_grp_list_ptr, interface); 
 
  /* Add the group membership information data structure to the 
list        */ 
  op_prg_list_insert (ip_grp_intf_list_ptr, grp_elem_ptr, 
OPC_LISTPOS_TAIL); 
 
  /** Create and send an Unsolicited Membership Report message **/ 
 
  /* Generate a trace message */ 
  if (LTRACE_IGMP) 
   { 
   ip_address_print (ip_addr_str, ip_grp_addr); 
   sprintf (msg0, "IP Group Address  :  %s", 
ip_addr_str); 
   sprintf (msg1, "IP Interface      :  %d", 
interface); 
   op_prg_odb_print_major ("Sending an IGMP Unsolicited 
Membership Report message for: ", msg0, msg1, OPC_NIL); 
   op_prg_odb_print_major ("Starting Delay timer for the above 
group.", OPC_NIL); 
   } 
 
  /* Create an IGMP Report message  */ 
  igmp_msg_pkptr = ip_igmp_create_igmp_msg 
(IpC_Igmp_Membership_Report_Msg, 0, ip_grp_addr); 
 
  /* Update IGMP messages sent statistics */ 
  ip_igmp_host_igmp_msgs_sent_stat_update (op_pk_total_size_get 
(igmp_msg_pkptr)); 
 
  /* Create an IP datagram for transmitting the IGMP message */ 
  ip_dgram_pkptr = ip_igmp_create_ipdgram (igmp_msg_pkptr, 
ip_grp_addr); 
 



147 
 

  /* Schedule a procedure interrupt for the current simulation time 
to invoke the IP process */ 
  op_intrpt_schedule_call (op_sim_time (), interface, 
ip_igmp_host_ip_process_invoke, ip_dgram_pkptr); 
  } 
 else 
  { 
  /* Group membership information already exists. Another 
application on this node has joined */ 
 /* this group. Increment the num_of_apps field's value by one */ 
  grp_elem_ptr->num_of_apps++; 
  } 
 FOUT; 
 } 
 
static void /* Using IGMP protocol to leave multicast group*/ 
ip_igmp_host_leave_grp (IpT_Address ip_grp_addr, int interface) 
 { 
 IpT_Igmp_Host_Grp_Elem*  grp_elem_ptr;  
    List*     ip_grp_intf_list_ptr; 
 int     num_grp_elems, i; 
 Packet*    igmp_msg_pkptr; 
 Packet*    ip_dgram_pkptr; 
 char     ip_addr_str [IPC_ADDR_STR_LEN]; 
 char     msg0 [256], msg1 [256], msg2 [256]; 
 
 FIN (ip_igmp_host_leave_grp (ip_grp_addr, interface)); 
 /* Generate a trace message */ 
 if (LTRACE_IGMP) 
  { 
  ip_address_print (ip_addr_str, ip_grp_addr); 
  sprintf (msg0, "IP Group Address  :  %s", 
ip_addr_str); 
  sprintf (msg1, "IP Interface      :  %d", 
interface); 
  op_prg_odb_print_major ("Received a Leave request from an 
application for: ", msg0, msg1, OPC_NIL); 
  } 
 
 /* Get the list corresponding to the given interface */ 
 ip_grp_intf_list_ptr = (List *) op_prg_list_access (ip_grp_list_ptr, 
interface); 
 
    /* Determine the number of elements in the list */ 
 num_grp_elems = op_prg_list_size (ip_grp_intf_list_ptr); 
 
/* Access the group membership information data structure for the given */ 
 /* IP group address from the list      
    */ 
 for (i=0; i<num_grp_elems; i++) 
  { 
  /* Access ith element from the list */ 
  grp_elem_ptr = (IpT_Igmp_Host_Grp_Elem *) 
   op_prg_list_access (ip_grp_intf_list_ptr, i); 
 
/* If this is the list element we are looking for, break from the loop */ 
  if (ip_address_equal (grp_elem_ptr->ip_grp_addr, ip_grp_addr)) 



148 
 

   { 
   break; 
   } 
  } 
 
 /* Sanity check */  
 if (i == num_grp_elems) 
  { 
  /** The group membership information for the given group address 
and interface doesn't exist in the list **/ 
 
  /* Report a log message */ 
  ip_address_print (ip_addr_str, ip_grp_addr); 
  ip_igmp_host_log_found_no_grp_info (ip_addr_str, interface); 
 
  /* Generate a trace message */ 
  if (LTRACE_IGMP) 
   { 
sprintf (msg0, "IP Group Address  :  %s", ip_addr_str); 
sprintf (msg1, "IP Interface      :  %d", interface); 
strcpy (msg2, "doesn't exist in the list, which is maintained by IGMP Host 
process."); 
op_prg_odb_print_major ("Group membership information for: ", msg0, msg1, 
msg2, OPC_NIL); 
   } 
  } 
 else 
  { 
  /* An application on the node has left this group. Decrement 
num_of_apps field */ 
  grp_elem_ptr->num_of_apps--; 
  if (grp_elem_ptr->num_of_apps == 0) 
   { 
   /* Generate a trace message */ 
   if (LTRACE_IGMP) 
    { 
    ip_address_print (ip_addr_str, ip_grp_addr); 
    sprintf (msg0, "IP Group Address  : 
 %s", ip_addr_str); 
    sprintf (msg1, "IP Interface      : 
 %d", interface); 
    strcpy (msg2, "from the table, which is maintained by 
IGMP Host process."); 
    op_prg_odb_print_major ("Removing the group 
membership information for: ", msg0, msg1, msg2, OPC_NIL); 
    } 
 
   /* Remove the group membership information from the list */ 
   op_prg_list_remove (ip_grp_intf_list_ptr, i); 
 
   /* Cancel the delay timer for this group membership, if its 
running */ 
   if (grp_elem_ptr->timer_on_flag == OPC_TRUE) 
    { 
    op_ev_cancel (grp_elem_ptr->delay_timer_evh); 
    } 
 



149 
 

   /* If this is the last node to send a Report message, send 
a Leave message */ 
   if (grp_elem_ptr->report_sent_flag == OPC_TRUE) 
    { 
    /* Generate a trace message */ 
    if (LTRACE_IGMP) 
     { 
     ip_address_print (ip_addr_str, ip_grp_addr); 
     sprintf (msg0, "IP Group Address  : 
 %s", ip_addr_str); 
     sprintf (msg1, "IP Interface      : 
 %d", interface); 
     op_prg_odb_print_major ("Sending an IGMP Leave 
Group message for: ", msg0, msg1, OPC_NIL); 
     } 
 
    /* Create an IGMP Leave Group message */ 
    igmp_msg_pkptr = ip_igmp_create_igmp_msg 
(IpC_Igmp_Leave_Group_Msg, 0, grp_elem_ptr->ip_grp_addr); 
 
    /* Update IGMP messages sent statistics */ 
    ip_igmp_host_igmp_msgs_sent_stat_update 
(op_pk_total_size_get (igmp_msg_pkptr)); 
 
    /* Create an IP datagram to transmit the Leave group 
message */ 
    ip_dgram_pkptr = ip_igmp_create_ipdgram 
(igmp_msg_pkptr, ip_address_create (IPC_ALL_ROUTERS_MULTICAST_ADDR)); 
 
    /* Schedule a procedure interrupt for the current 
simulation time to invoke the IP process */ 
    op_intrpt_schedule_call (op_sim_time (), 
grp_elem_ptr->interface, &ip_igmp_host_ip_process_invoke, ip_dgram_pkptr); 
    } 
   ip_igmp_host_grp_elem_dealloc (grp_elem_ptr); 
   } 
  } 
 
 FOUT; 
 } 
 
static void 
mip_mn_register (int lifetime, MipT_MN_Agent_Info agent_info, Boolean direct) 
 { 
 IpT_Port_Info port_info; 
 double    retry_timer; 
 Ici*   reg_ici_ptr; 
 
 /** PURPOSE: Registers with home agent.**/ 
 /** REQUIRES: lifetime it is requesting and care of address to use.
 **/ 
 /** EFFECTS: An interrupt sent to the reg manager.**/ 
 FIN (mip_mn_register (lifetime, agent_info, direct)); 
  
 /* Create Ici for mobile IP module. */ 
 reg_ici_ptr = op_ici_create ("mobile_ip_reg_ici"); 
  



150 
 

 /* Set the foreign agent address for later reference. */ 
 agent_address = agent_info.address; 
 current_agent_pref_level = agent_info.pref_level; 
 current_roaming_intf = agent_info.incoming_intf_ptr; 
  
 /* Set the appropriate values on the ici. */ 
 op_ici_attr_set (reg_ici_ptr, "reg_type", MipC_Reg_Type_Req); 
 op_ici_attr_set (reg_ici_ptr, "home_address", inet_ipv4_address_get 
(home_address)); 
 op_ici_attr_set (reg_ici_ptr, "home_agent", inet_ipv4_address_get 
(ha_address)); 
 op_ici_attr_set (reg_ici_ptr, "lifetime_req", lifetime); 
 op_ici_attr_set (reg_ici_ptr, "dest_address", inet_ipv4_address_get 
(agent_address)); 
 op_ici_attr_set (reg_ici_ptr, "identification", ++reg_id); 
 op_ici_attr_set (reg_ici_ptr, "s", simultaneous_binding); 
  
 /* What is the type of the current registration? */ 
 if (direct) 
  { 
  /* Diect to the home agent. */ 
  direct_reg = OPC_TRUE; 
  op_ici_attr_set (reg_ici_ptr, "care_of_address", OPC_NIL); 
  } 
 else 
  { 
  direct_reg = OPC_FALSE; 
  op_ici_attr_set (reg_ici_ptr, "care_of_address", 
inet_ipv4_address_get (agent_address)); 
  } 
  
 /* Send the registrtation packet out. */ 
 op_ici_install (reg_ici_ptr); 
 op_intrpt_schedule_process (proc_info_struct_ptr->mip_reg_mgr_phndl, 
op_sim_time (), 0); 
 op_ici_install (OPC_NIL); 
  
 /* need to reset the default gateway to the agent, that are registering 
with. */ 
 port_info = ip_rte_port_info_from_tbl_index (module_data, 
ip_rte_intf_index_get (agent_info.incoming_intf_ptr)); 
  
 if (!default_gateway) 
  { 
  Ip_Cmn_Rte_Table_Entry_Add (module_data->ip_route_table, OPC_NIL, 
   IpI_Default_Addr, IpI_Default_Addr, 
agent_info.incoming_intf_ptr->addr_range_ptr->address, port_info,  
   0, IP_CMN_RTE_TABLE_UNIQUE_ROUTE_PROTO_ID 
(IPC_DYN_RTE_MOBILE_IP, IPC_NO_MULTIPLE_PROC), 0, OPC_NIL); 
   
  /* Cache info. */ 
  default_gateway = OPC_TRUE; 
  } 
 else 
  { 
  Ip_Cmn_Rte_Table_Entry_Update (module_data->ip_route_table, 
IpI_Default_Addr, IpI_Default_Addr,  



151 
 

   last_default_addr, IP_CMN_RTE_TABLE_UNIQUE_ROUTE_PROTO_ID 
(IPC_DYN_RTE_MOBILE_IP, IPC_NO_MULTIPLE_PROC), 
   agent_info.incoming_intf_ptr->addr_range_ptr->address, 
port_info, 0, OPC_NIL); 
  } 
  
 /* Cache info. */ 
 last_default_addr = ip_rte_intf_addr_get 
(agent_info.incoming_intf_ptr); 
 
 /*  need to schedule retry in case that do not get the answer back. */ 
 retry_timer = reg_info.interval * pow (2.0, (double) retry_counter); 
 if (retry_timer > (double) (reg_info.req_lifetime)) 
  { 
  retry_timer = (double) (reg_info.req_lifetime); 
  } 
  
 reg_retry_timer_ehndl = op_intrpt_schedule_self (op_sim_time () + 
retry_timer, MipC_MN_Timer_Retry); 
 retry_counter++; 
  
 if (MIP_TRACE) 
  { 
  op_prg_odb_print_major ("Trying registering with HA.", OPC_NIL); 
  } 
 
 FOUT; 
 } 
 
static void 
mip_mn_agent_timer_update (double new_lifetime) 
 { 
 /** PURPOSE: Update the timer for agent timeouts.**/ 
 /** REQUIRES: new lifetime value from the last agent ad. **/ 
 /** EFFECTS: timer event handle gets updated.**/ 
 FIN (mip_mn_agent_timer_update (new_lifetime)); 
  
 /* Cancel the current handle. */ 
 op_ev_cancel_if_pending (agent_timer_ehndl); 
  
 /* Schedule new one. */ 
 agent_timer_ehndl = op_intrpt_schedule_self (new_lifetime, 
MipC_MN_Timer_Agent); 
  
 FOUT; 
 } 
 
static Packet* /* Switch the Active/Standby mode. */ 
ip_icmp_echo_request_packet_create (int req_index) 
 { 
 Packet*   req_pkptr; 
 
  
 FIN (ip_icmp_echo_request_packet_create (req_index)); 
 
 /* Create an ICMP packet to switch Active/Standby mode.  */ 
 req_pkptr = op_pk_create_fmt ("ip_icmp_echo"); 



152 
 

 
 /* Set the "type" field to indicate that this is a */ 
 /* request packet.        */ 
 op_pk_nfd_set (req_pkptr, "type", IpC_Icmp_Echo_Request); 
 
 op_pk_nfd_set (req_pkptr, "identifier", req_index); 
 
 op_pk_nfd_set (req_pkptr, "sequence number", ping_specs_ptr 
[req_index].seq_number); 
 
 /* set the source node object id in the packet.    */ 
 op_pk_nfd_set (req_pkptr, "source module objid", (double) my_objid); 
 
/* Increment the sequence number for the next message send operation. */ 
 ping_specs_ptr [req_index].seq_number++; 
 
 if (ping_specs_ptr [req_index].ping_pattern_ptr->pkt_size > 0) 
  { 
   
  op_pk_bulk_size_set (req_pkptr, ping_specs_ptr 
[req_index].ping_pattern_ptr->pkt_size * 8); 
  } 
 
 FRET (req_pkptr); 
 } 
 
static void 
ip_icmp_request_timeout (void *state_ptr, int index)/* Me:Check timeout for 
the connection*/  
 { 
 IpT_Icmp_Ping_Specs*  ping_spec_ptr; 
 char     dest_host_name [OMSC_HNAME_MAX_LEN]; 
  
 FIN (ip_icmp_request_timeout (void *state_ptr, int index)); 
  
 /* Get the ping_spec_ptr from the state ptr. */ 
 ping_spec_ptr = (IpT_Icmp_Ping_Specs *)state_ptr; 
 
 oms_tan_hname_get (ping_spec_ptr->dest_objid, dest_host_name); 
 
 op_prg_log_entry_write (ip_icmp_timeout_log_handle, 
  "ERROR(S):\n" 
  " The echo request for destination (%s) \n" 
  " sent at (%.2f) seconds failed to \n" 
  " receive a response before the timeout \n" 
  " interval of (%.5f) seconds. \n" 
  "\n", 
   
  dest_host_name, ping_spec_ptr [index].start_time,  
  ping_spec_ptr [index].ping_pattern_ptr->timeout, ping_spec_ptr 
[index].ping_pattern_ptr->timeout); 
  
 FOUT; 
  
 } 
 
static void  



153 
 

ip_pim_sm_join_prune_msg (void) /* Me:Function Join/Standby message for 
keeping route */ 
 { 
 IpT_Pim_Sm_Rte_Entry*   rpt_rte_entry_ptr; 
 IpT_Pim_Sm_Rte_Entry*   rte_entry_ptr; 
 IpT_Address     rp_ip_addr; 
 IpT_Pim_Sm_Msg*    pim_sm_msg_ptr; 
 IpT_Pim_Sm_Join_Prune_Msg*  join_prune_msg_ptr; 
 IpT_Pim_Sm_Join_Prune_List_Elem* join_prune_lelem_ptr; 
 IpT_Pim_Sm_Join_Prune_Src*  join_prune_src_ptr; 
 int      i, j; 
 Boolean     send_join_prune = OPC_FALSE; 
  
 FIN (ip_pim_sm_join_prune_msg ()); 
  
 /* Fist check that PIM-SM is supported on the interface. */ 
 if (intf_array [pkt_recvd_intf].pim_sm_status == OPC_FALSE) 
  { 
  /* The interface does not support PIM-SM. */ 
   
  op_pk_destroy (pimsm_pkptr); 
  op_pk_destroy (ip_dgram_pkptr); 
 
  FOUT; 
  } 
  
 /* Obtain the Join/Prune message from the PIM-SM packet */ 
 op_pk_nfd_access (pimsm_pkptr, "message", &pim_sm_msg_ptr); 
 join_prune_msg_ptr = (IpT_Pim_Sm_Join_Prune_Msg *) pim_sm_msg_ptr-
>msg_ds_ptr; 
  
 if (ip_pim_sm_is_my_address (join_prune_msg_ptr-
>upstream_neighbor_addr) == OPC_TRUE) 
  { 
  /* Generate trace messages */ 
#ifndef OPD_NO_DEBUG 
  if (LTRACE_PIM_SM_JOIN_PRUNE) 
   { 
   char        ip_addr_str 
[IPC_ADDR_STR_LEN]; 
   char        info0 
[256], info1 [256]; 
   char        msg0 [256]; 
   ip_address_print (ip_addr_str, join_prune_msg_ptr-
>upstream_neighbor_addr); 
   sprintf (info0, "Upstream Neighbor Address : 
 %s", ip_addr_str); 
   sprintf (info1, "Number of Groups          : 
 %d", join_prune_msg_ptr->num_grps); 
   sprintf (msg0, "Received a PIM-SM Join/Prune message on 
interface, %d with: ", pkt_recvd_intf); 
   op_prg_odb_print_major (msg0, info0, info1, OPC_NIL); 
   } 
#endif 
  
 /* For each IP group in the list, process the Join and Prune list */ 
  for (i=0; i<join_prune_msg_ptr->num_grps; i++) 



154 
 

   { 
   /* Obtain ith element from the Join/Prune list */ 
   join_prune_lelem_ptr = (IpT_Pim_Sm_Join_Prune_List_Elem *) 
op_prg_list_access (join_prune_msg_ptr->join_prune_lptr, i); 
  
   /* Generate trace messages */ 
#ifndef OPD_NO_DEBUG 
   if (LTRACE_PIM_SM_JOIN_PRUNE) 
    { 
    char  info0 [256]; 
    char  grp_addr_str [IPC_ADDR_STR_LEN]; 
    ip_address_print (grp_addr_str, join_prune_lelem_ptr-
>grp_addr); 
    sprintf (info0, "IP Group Address  : 
 %s", grp_addr_str); 
    op_prg_odb_print_major ("Processing Join/Prune list 
in the PIM-SM Join/Prune message for the group: ", info0, OPC_NIL); 
    } 
#endif 
  
   /* Process each source in the Join list */ 
   for (j=0; j<join_prune_lelem_ptr->num_join_src; j++) 
    { 
    /* Obtain the jth element from the Join list */ 
    join_prune_src_ptr = (IpT_Pim_Sm_Join_Prune_Src *) 
op_prg_list_access (join_prune_lelem_ptr->join_src_lptr, j); 
  
    /* Generate trace messages */ 
#ifndef OPD_NO_DEBUG 
    if (LTRACE_PIM_SM_JOIN_PRUNE) 
     { 
     char       
 ip_addr_str [IPC_ADDR_STR_LEN]; 
     char       
 info0 [256], info1 [256], info2 [256]; 
     ip_address_print (ip_addr_str, 
join_prune_src_ptr->src_addr); 
     sprintf (info0, "Source IP Address  : 
 %s", ip_addr_str); 
     sprintf (info1, "WC-bit             : 
 %d", join_prune_src_ptr->wc_bit); 
     sprintf (info2, "RPT-bit            : 
 %d", join_prune_src_ptr->rpt_bit); 
     op_prg_odb_print_major ("Processing the 
following Source element in the Join list: ", info0, info1, info2, OPC_NIL); 
     } 
#endif 
  
    /* Get the route entry for this group */ 
    rte_entry_ptr = ip_pim_sm_mcast_rte_entry_get 
(join_prune_lelem_ptr->grp_addr, join_prune_src_ptr->src_addr, 
             
   join_prune_src_ptr->wc_bit); 
     
    /* Print out information about the route entry that 
was found. */ 
#ifndef OPD_NO_DEBUG 



155 
 

    ip_pim_sm_entry_exists_odb_print (rte_entry_ptr); 
#endif 
  
    if ((join_prune_src_ptr->wc_bit == OPC_TRUE) && 
(join_prune_src_ptr->rpt_bit == OPC_TRUE)) 
     { 
      
     if (rte_entry_ptr == OPC_NIL) 
      { 
       
      rte_entry_ptr = 
ip_pim_sm_rte_entry_wc_create (join_prune_src_ptr->src_addr, 
          
 join_prune_lelem_ptr->grp_addr); 
  
      /* Add this route entry to the multicast 
route table */ 
   ip_pim_sm_mcast_rte_entry_add (rte_entry_ptr, OPC_TRUE); 
  
      /* This case require a join/prune message 
to be sent. */ 
   send_join_prune = OPC_TRUE; 
      } 
  
     if (rte_entry_ptr->in_intf_addr != 
inet_ipv4_address_get (ip_dgram_fdptr->src_addr)) 
      ip_pim_sm_oif_table_add (rte_entry_ptr, 
pkt_recvd_intf, inet_ipv4_address_get (ip_dgram_fdptr->src_addr), 
       join_prune_msg_ptr->hold_time, 
OPC_FALSE); 
       
 ip_pim_sm_all_spt_rte_entries_out_intf_add (rte_entry_ptr, 
             
   pkt_recvd_intf, 
             
   inet_ipv4_address_get (ip_dgram_fdptr->src_addr), 
             
   join_prune_msg_ptr->hold_time, 
             
   OPC_FALSE, 
             
   join_prune_lelem_ptr->prune_src_lptr); 
     } 
    else if ((join_prune_src_ptr->wc_bit == OPC_FALSE) && 
(join_prune_src_ptr->rpt_bit == OPC_FALSE)) 
     { 
      
     if (rte_entry_ptr == OPC_NIL)  
      { 
      
      rp_ip_addr = ip_pim_sm_rp_addr_get 
(rp_hash_table_ptr, rp_lptr, join_prune_lelem_ptr->grp_addr, 
bsr_hash_mask_length); 
  
    /* If RP information is not found, its an error */ 
      if (rp_ip_addr == IPC_ADDR_INVALID) 
       { 



156 
 

       /* Report a log message */ 
      
 ipnl_protwarn_mcast_rp_unknown_log_add (join_prune_lelem_ptr->grp_addr, 
ip_module_data_ptr->node_id); 
       } 
   
      rpt_rte_entry_ptr = 
ip_pim_sm_mcast_rte_entry_get (join_prune_lelem_ptr->grp_addr, rp_ip_addr, 
OPC_TRUE); 
  
 rte_entry_ptr = ip_pim_sm_rte_entry_spt_create (join_prune_src_ptr-
>src_addr, join_prune_lelem_ptr->grp_addr, 
       rpt_rte_entry_ptr, OPC_FALSE); 
      if (rpt_rte_entry_ptr != OPC_NIL) 
       {      
 op_prg_list_elems_copy (rpt_rte_entry_ptr->out_intf_table_lptr, 
rte_entry_ptr->out_intf_table_lptr); 
       } 
  
   /* Add this route entry to the multicast route table */ 
      ip_pim_sm_mcast_rte_entry_add 
(rte_entry_ptr, OPC_FALSE); 
       
  /* This case requires sending a join/prune message.  */ 
      send_join_prune = OPC_TRUE; 
      } 
     else 
      { 
       
      if (rte_entry_ptr->rpt_flag == OPC_TRUE) 
       { 
       /* Clear the RPT-bit */ 
       ip_pim_sm_entry_clear_rpt_bit 
(rte_entry_ptr, OPC_FALSE); 
        
   /* This case requires sending a join/prune message */ 
       send_join_prune = OPC_TRUE; 
       } 
      } 
  
     if (inet_ipv4_address_get (ip_dgram_fdptr-
>src_addr) != rte_entry_ptr->in_intf_addr) 
      ip_pim_sm_oif_table_add (rte_entry_ptr, 
pkt_recvd_intf, inet_ipv4_address_get (ip_dgram_fdptr->src_addr), 
       join_prune_msg_ptr->hold_time, 
OPC_FALSE); 
     } 
    if (send_join_prune == OPC_TRUE) 
     ip_pim_sm_send_join_prune_msg (rte_entry_ptr, 
OPC_TRUE); 
     
    /* Reset the flag to FALSE.   */ 
    send_join_prune = OPC_FALSE; 
    } 
  
   /* Process each source in the Prune list */ 
   for (j=0; j<join_prune_lelem_ptr->num_prune_src; j++) 



157 
 

    { 
    /* Obtain the jth element from the Prune list */ 
    join_prune_src_ptr = (IpT_Pim_Sm_Join_Prune_Src *) 
op_prg_list_access (join_prune_lelem_ptr->prune_src_lptr, j); 
  
    /* Get the route entry for this group */ 
    rte_entry_ptr = ip_pim_sm_mcast_rte_entry_get 
(join_prune_lelem_ptr->grp_addr, join_prune_src_ptr->src_addr, 
             
   join_prune_src_ptr->wc_bit); 
  
    /* Generate trace messages */ 
#ifndef OPD_NO_DEBUG 
    if (LTRACE_PIM_SM_JOIN_PRUNE) 
     { 
     char       
 ip_addr_str [IPC_ADDR_STR_LEN]; 
     char       
 info0 [256], info1 [256], info2 [256]; 
     ip_address_print (ip_addr_str, 
join_prune_src_ptr->src_addr); 
     sprintf (info0, "Source IP Address  : 
 %s", ip_addr_str); 
     sprintf (info1, "WC-bit             : 
 %d", join_prune_src_ptr->wc_bit); 
     sprintf (info2, "RPT-bit            : 
 %d", join_prune_src_ptr->rpt_bit); 
     op_prg_odb_print_major ("Processing the 
following Source element in the Prune list: ", info0, info1, info2, OPC_NIL); 
     } 
#endif 
  
#ifndef OPD_NO_DEBUG 
    ip_pim_sm_entry_exists_odb_print (rte_entry_ptr); 
#endif 
  
    if ((join_prune_src_ptr->wc_bit == OPC_FALSE) && 
(join_prune_src_ptr->rpt_bit == OPC_TRUE)) 
     { 
 if (rte_entry_ptr == OPC_NIL) 
      { 
      /* Get the RP address for the group */ 
      rp_ip_addr = ip_pim_sm_rp_addr_get 
(rp_hash_table_ptr, rp_lptr, join_prune_lelem_ptr->grp_addr, 
bsr_hash_mask_length); 
  
    /* If RP information is not found, its an error */ 
      if (rp_ip_addr == IPC_ADDR_INVALID) 
       {  
 ipnl_protwarn_mcast_rp_unknown_log_add (join_prune_lelem_ptr->grp_addr, 
ip_module_data_ptr->node_id); 
       } 
    /* Get the (*, G) entry */ 
      rpt_rte_entry_ptr = 
ip_pim_sm_mcast_rte_entry_get (join_prune_lelem_ptr->grp_addr, rp_ip_addr, 
OPC_TRUE); 
  



158 
 

      if (rpt_rte_entry_ptr != OPC_NIL) 
       { 
       rte_entry_ptr = 
ip_pim_sm_rte_entry_spt_create (join_prune_src_ptr->src_addr,  
             
      join_prune_lelem_ptr->grp_addr, 
             
      rpt_rte_entry_ptr, 
             
      OPC_FALSE);  
        
       ip_pim_sm_entry_set_rpt_bit 
(rte_entry_ptr, OPC_FALSE); 
        
       rte_entry_ptr->in_intf = 
rpt_rte_entry_ptr->in_intf; 
       rte_entry_ptr->in_intf_addr = 
ip_address_copy(rpt_rte_entry_ptr->in_intf_addr); 
       op_prg_list_elems_copy 
(rpt_rte_entry_ptr->out_intf_table_lptr, rte_entry_ptr->out_intf_table_lptr); 
  
   /* Add this route entry to the multicast route table */ 
       ip_pim_sm_mcast_rte_entry_add 
(rte_entry_ptr, OPC_FALSE); 
       } 
      } 
     } 
  
    if (rte_entry_ptr != OPC_NIL) 
     { 
    
     if (op_prg_list_size (rte_entry_ptr-
>out_intf_table_lptr) == 0) 
      { 
    /* Check if the data timer should be reset. */ 
      if ((join_prune_src_ptr->wc_bit == 
OPC_FALSE) && (join_prune_src_ptr->rpt_bit == OPC_TRUE)) 
       { 
        
  ip_pim_sm_reset_data_timer (rte_entry_ptr, 
LTRACE_PIM_SM_JOIN_PRUNE); 
       } 
       
  /* Nothing more needs to be done.  Just continue.  */ 
      continue; 
      } 
      
ip_pim_sm_oif_table_remove (rte_entry_ptr->out_intf_table_lptr, 
pkt_recvd_intf, OPC_FALSE); 
      
     if ((join_prune_src_ptr->wc_bit == OPC_TRUE) && 
(join_prune_src_ptr->rpt_bit == OPC_TRUE)) 
      { 
      
 ip_pim_sm_all_spt_rte_entries_out_intf_remove (join_prune_lelem_ptr-
>grp_addr, pkt_recvd_intf, OPC_FALSE); 
      } 



159 
 

      
       
     if (op_prg_list_size (rte_entry_ptr-
>out_intf_table_lptr) == 0) 
      { 
     
      ip_pim_sm_send_join_prune_msg 
(rte_entry_ptr, OPC_FALSE); 
       
      if (((join_prune_src_ptr->wc_bit == 
OPC_FALSE) && (join_prune_src_ptr->rpt_bit == OPC_TRUE)) && 
       ((rte_entry_ptr->wc_flag == 
OPC_FALSE) && (rte_entry_ptr->rpt_flag == OPC_FALSE))) 
       { 
   /* Set the RPT bit to TRUE for this route entry. */ 
       ip_pim_sm_entry_set_rpt_bit 
(rte_entry_ptr, OPC_FALSE); 
        
   /* Set the SPT bit to FALSE for this route entry. */ 
       ip_pim_sm_entry_clear_spt_bit 
(rte_entry_ptr, OPC_FALSE); 
       } 
  
   /* Remove the route entry from the multicast route 
table,only if its is not a (S, G)RPT-bit entry */ 
      if (!((rte_entry_ptr->wc_flag == 
OPC_FALSE) && (rte_entry_ptr->rpt_flag == OPC_TRUE))) 
       { 
#ifndef OPD_NO_DEBUG 
       if (LTRACE_PIM_SM_JOIN_PRUNE) 
        { 
        op_prg_odb_print_major ("The 
Out Interface table size of the route entry became zero.", OPC_NIL); 
        } 
#endif 
ip_pim_sm_mcast_rte_entry_remove (rte_entry_ptr->grp_addr, rte_entry_ptr-
>src_addr, rte_entry_ptr->wc_flag); 
        
       continue; 
       } 
      } 
      
     if ((join_prune_src_ptr->wc_bit == OPC_FALSE) 
&& (join_prune_src_ptr->rpt_bit == OPC_TRUE)) 
      { 
      ip_pim_sm_reset_data_timer 
(rte_entry_ptr, LTRACE_PIM_SM_JOIN_PRUNE); 
      } 
     } 
    } 
   } 
  } 
  
 /* We no longer need the PIM-SM packet and the */ 
 /* IP datagram. Destroy them */ 
 op_pk_destroy (pimsm_pkptr); 
 op_pk_destroy (ip_dgram_pkptr); 



160 
 

  
 FOUT; 
 } 
 
static void 
mip_mn_tunneled_pk_stat_write (Packet* pk_ptr) 
 { 
 /** PURPOSE: Write statistic for tunneld packets received.**/ 
 FIN (mip_mn_tunneled_pk_stat_write (pk_ptr)); 
  
 /* Write the stats. */ 
 op_stat_write (tunneled_pk_rcvd_sec_sh, 1.0); 
 op_stat_write (tunneled_bit_rcvd_sec_sh, op_pk_total_size_get 
(pk_ptr)); 
 op_stat_write (tunneled_pk_rcvd_sec_sh, 0.0); 
 op_stat_write (tunneled_bit_rcvd_sec_sh, 0.0); 
  
 FOUT; 
 } 
 
static void 
mip_mn_agent_solicit_pk_send (void) 
 { 
 Packet*  solicit_pkptr; 
 double  solicit_interval; 
  
 /** PURPOSE: Send the ICMP agent solicitation packet.**/ 
 /** REQUIRES: none. **/ 
 /** EFFECTS: Packet will be given to IP to handle.**/ 
 FIN (mip_mn_agent_solicit_pk_send (void)); 
  
 /* Time to send out the solicitation. */ 
 solicit_pkptr = op_pk_create_fmt ("mobile_ip_irdp_solicit"); 
     
 /* Send the packet out. */ 
 module_data->ip_ptc_mem.child_pkptr = mip_sup_irdp_pkt_encapsulate  
  (solicit_pkptr, home_address, subnet_bcast_addr, 
IcmpC_Type_IRDP_Sol); 
     
 /* Record some stats. */ 
 op_stat_write (irdp_sent_pkts_sh, 1.0); 
 op_stat_write (irdp_sent_bits_sh, op_pk_total_size_get (module_data-
>ip_ptc_mem.child_pkptr)); 
 op_stat_write (g_irdp_sent_bits_sh, op_pk_total_size_get (module_data-
>ip_ptc_mem.child_pkptr)); 
 op_stat_write (g_irdp_sent_bits_sh, 0.0); 
     
 /* Invoke IP to handle the packet. */ 
 op_pro_invoke (proc_info_struct_ptr->ip_phndl, OPC_NIL); 
  
 /* Schedule the next transmission. */ 
 if (++solicit_count > 3) 
  { 
  solicit_interval = MipC_MN_Solicit_Min_Interval * pow (2.0, 
(double) (solicit_count - 3)); 
   
  if (solicit_interval > MipC_MN_Solicit_Max_Interval) 



161 
 

   { 
   solicit_interval = MipC_MN_Solicit_Max_Interval; 
   } 
  } 
 else 
  { 
  solicit_interval = MipC_MN_Solicit_Min_Interval; 
  } 
  
 solicit_timer_ehndl = op_intrpt_schedule_self (op_sim_time () + 
solicit_interval, MipC_MN_Timer_Solicit); 
  
 FOUT; 
 }    
 
static void 
mip_mn_agent_cache_update (MipT_MN_Agent_Info* agent_info, InetT_Address
 new_agent_address,  
 double life_time, int pref_level, MipT_Invocation_Info* 
invoke_info_ptr) 
 { 
 /** PURPOSE: Update Agent cache based on rule. (higher pref level or 
same or lower if the current one expired) **/ 
 /** REQUIRES: new FA address and its lifetime and pref level. **/ 
 /** EFFECTS: the cache will be updated if it matches the criteria.**/ 
 FIN (mip_mn_agent_cache_update (agent_info, new_agent_address, 
life_time, pref_level, invoke_info_ptr)); 
  
 if ((pref_level >= agent_info->pref_level) ||  
  (agent_info->lifetime < op_sim_time ()) || 
  inet_address_equal (agent_info->address, new_agent_address)) 
  { 
  /* Update the FA cache information. */ 
  agent_info->address = new_agent_address; 
  agent_info->lifetime = op_sim_time () + life_time; 
  agent_info->pref_level = pref_level; 
  agent_info->incoming_intf_ptr = ip_rte_intf_tbl_access  
   (module_data, invoke_info_ptr->rte_info_ici_ptr-
>intf_recvd_index); 
  } 
 
 FOUT; 
 } 
 
static void 
mip_mn_ip_pk_handle (MipT_Invocation_Info* invoke_info_ptr) 
 { 
 Prohandle tmp_phndl; 
 FIN (mip_mn_ip_pk_handle (invoke_info_ptr)); 
 
 /* See if there are any visiting MN with the address. */ 
 if (mip_sup_visitor_search_by_addr (proc_info_struct_ptr-
>node_visitor_list_lptr,  
  invoke_info_ptr->rte_info_ici_ptr->dest_addr, &tmp_phndl) == 
OPC_COMPCODE_SUCCESS) 
  { 
  /*  will let the FA agent to handle this packet. */ 



162 
 

  op_pro_invoke (tmp_phndl, invoke_info_ptr); 
  } 
 else 
  { 
  if ((inet_address_range_check (invoke_info_ptr->rte_info_ici_ptr-
>dest_addr,  
   &proc_info_struct_ptr->intf_info_ptr->inet_addr_range)) && 
   !inet_address_equal (invoke_info_ptr->rte_info_ici_ptr-
>dest_addr, home_address) && 
   !inet_address_equal (invoke_info_ptr->rte_info_ici_ptr-
>dest_addr, ha_address)) 
   { 
   /* This address falls in the same range but not for me.  
Destroy packet. */ 
   mip_sup_pk_cleanup (invoke_info_ptr); 
   } 
  else 
   { 
   if (current_roaming_intf) 
    { 
    if (current_roaming_intf == invoke_info_ptr-
>interface_ptr) 
     { 
     /* This is going out on the roaming interface. 
Send to the current agent. */ 
     if (inet_address_valid (agent_address)) 
      invoke_info_ptr->rte_info_ici_ptr-
>next_addr = agent_address; 
     } 
    else 
     { 
     /* Unknown address. Let IP handle it 
generically. */ 
     } 
    } 
   } 
  } 
  
 FOUT; 
 } 
     
static void 
mip_mn_ad_packet_parse (Packet* pkptr, int* h, int* f, InetT_Address* 
agent_addr, 
 int* lifetime, int* pref) 
 { 
 IpT_Address  tmp_addr; 
  
 /* Helper macro to parse information from the advertisement packet 
received. */ 
 FIN (mip_mn_ad_packet_parse (...)); 
  
 /* Access the information from the packet received. */ 
 op_pk_nfd_access (pkptr, "H", h); 
 op_pk_nfd_access (pkptr, "F", f); 
 op_pk_nfd_access (pkptr, "Agent Address", &tmp_addr); 
 op_pk_nfd_access (pkptr, "lifetime", lifetime); 



163 
 

 op_pk_nfd_access (pkptr, "Preference Level", pref); 
  
 /* Convert the V4 address to v6 for internal reference. */ 
 *agent_addr = inet_address_from_ipv4_address_create (tmp_addr); 
  
 FOUT; 
 } 
 
static void 
mip_mn_agent_solicit_pk_send_adv (void) /*Me: Sending Mobile IP to join in 
advance */ 
 { 
 Packet*  solicit_pkptr_adv; 
 double  solicit_interval; 
  
 /** PURPOSE: Send the ICMP agent solicitation packet.**/ 
 /** REQUIRES: none. **/ 
 /** EFFECTS: Packet will be given to IP to handle.**/ 
 FIN (mip_mn_agent_solicit_pk_send (void)); 
  
 /* Time to send out the solicitation. */ 
  
 usleep(10000000); // 10 secs 
 solicit_pkptr_adv = op_pk_create_fmt ("mobile_ip_irdp_solicit"); 
     
 /* Send the packet out. */ 
 module_data->ip_ptc_mem.child_pkptr = mip_sup_irdp_pkt_encapsulate  
  (solicit_pkptr_adv, home_address, subnet_bcast_addr, 
IcmpC_Type_IRDP_Sol); 
     
 /* Record some stats. */ 
 op_stat_write (irdp_sent_pkts_sh, 1.0); 
 op_stat_write (irdp_sent_bits_sh, op_pk_total_size_get (module_data-
>ip_ptc_mem.child_pkptr)); 
 op_stat_write (g_irdp_sent_bits_sh, op_pk_total_size_get (module_data-
>ip_ptc_mem.child_pkptr)); 
 op_stat_write (g_irdp_sent_bits_sh, 0.0); 
     
 /* Invoke IP to handle the packet. */ 
 op_pro_invoke (proc_info_struct_ptr->ip_phndl, OPC_NIL); 
  
 /* Schedule the next transmission. */ 
 if (++solicit_count > 3) 
  { 
  solicit_interval = MipC_MN_Solicit_Min_Interval * pow (2.0, 
(double) (solicit_count - 3)); 
   
  if (solicit_interval > MipC_MN_Solicit_Max_Interval) 
   { 
   solicit_interval = MipC_MN_Solicit_Max_Interval; 
   } 
  } 
 else 
  { 
  solicit_interval = MipC_MN_Solicit_Min_Interval; 
  } 
  



164 
 

 solicit_timer_ehndl = op_intrpt_schedule_self (op_sim_time () + 
solicit_interval, MipC_MN_Timer_Solicit); 
  
 FOUT; 
 } 
     
//me 
 
/* End of Function Block */ 
 
/* Undefine optional tracing in FIN/FOUT/FRET */ 
/* The FSM has its own tracing code and the other */ 
/* functions should not have any tracing.    */ 
#undef FIN_TRACING 
#define FIN_TRACING 
 
#undef FOUTRET_TRACING 
#define FOUTRET_TRACING 
 
#if defined (__cplusplus) 
extern "C" { 
#endif 
 void mobile_ip_mn (OP_SIM_CONTEXT_ARG_OPT); 
 VosT_Obtype _op_mobile_ip_mn_init (int * init_block_ptr); 
 void _op_mobile_ip_mn_diag (OP_SIM_CONTEXT_ARG_OPT); 
 void _op_mobile_ip_mn_terminate (OP_SIM_CONTEXT_ARG_OPT); 
 VosT_Address _op_mobile_ip_mn_alloc (VosT_Obtype, int); 
 void _op_mobile_ip_mn_svar (void *, const char *, void **); 
 
 
#if defined (__cplusplus) 
} /* end of 'extern "C"' */ 
#endif 
 
/* Process model interrupt handling procedure */ 
 
void 
mobile_ip_mn (OP_SIM_CONTEXT_ARG_OPT) 
 { 
#if !defined (VOSD_NO_FIN) 
 int _op_block_origin = 0; 
#endif 
 FIN_MT (mobile_ip_mn ()); 
 
  { 
  /* Temporary Variables */ 
  Boolean is_ip_pk = OPC_FALSE; 
  Boolean is_ad_reception = OPC_FALSE; 
  Boolean is_ha_ad_reception = OPC_FALSE; 
  Boolean is_fa_ad_reception = OPC_FALSE; 
  Boolean is_solicitation_time = OPC_FALSE; 
  Boolean is_valid_fa_candidate = OPC_FALSE; 
  Boolean is_ha_timeout = OPC_FALSE; 
  Boolean is_fa_timeout = OPC_FALSE; 
  Boolean is_timeout = OPC_FALSE; 
  Boolean is_retry = OPC_FALSE; 
  Boolean is_ha_reg_success = OPC_FALSE; 



165 
 

  Boolean is_fa_reg_success = OPC_FALSE; 
  Boolean is_reg_pk = OPC_FALSE; 
  Boolean is_out_of_retries = OPC_FALSE; 
  Boolean is_invalid_reply = OPC_FALSE; 
  Boolean is_reregister = OPC_FALSE; 
  Boolean is_switch_fa = OPC_FALSE; 
   
  Objid mip_reg_cfg_objid; 
  char ha_address_str[64]; 
  int  h_bit,f_bit, reply_code, lifetime_grant, tmp_reg_id,  
     irdp_lifetime, inv_mode, intrpt_code, 
pref_level; 
  Packet   *irdp_pkptr, *encap_pk_ptr; 
  InetT_Address  tmp_agent_address; 
  MipT_Invocation_Info* invoke_info_ptr; 
  Ici* reg_ici_ptr; 
  /* End of Temporary Variables */ 
 
 
  FSM_ENTER ("mobile_ip_mn") 
 
  FSM_BLOCK_SWITCH 
   { 
  /*---------------------------------------------------------*/ 
   /** state (Init) enter executives **/ 
   FSM_STATE_ENTER_FORCED_NOLABEL (0, "Init", "mobile_ip_mn 
[Init enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Init enter 
execs]", state0_enter_exec) 
    { 
    /* Access the parent memory. */ 
    proc_info_struct_ptr = (MipT_Proc_Info*) 
op_pro_parmem_access (); 
     
    /* Get the type of agent I am. (MN or MR)*/ 
    mip_node_type = proc_info_struct_ptr->node_type; 
     
    /* Access the module wide memory. */ 
    module_data = (IpT_Rte_Module_Data*) 
op_pro_modmem_access (); 
     
    /* Keep the subnet bcast address for later use. */ 
    subnet_bcast_addr = inet_rte_intf_broadcast_addr_get  
     (proc_info_struct_ptr->intf_info_ptr, 
InetC_Addr_Family_v4); 
     
    /* Parse the home agent interface address. */ 
    op_ima_obj_attr_get (proc_info_struct_ptr->cfg_objid, 
"Home Agent IP Address", 
     &ha_address_str); 
    ha_address = inet_address_create (ha_address_str, 
InetC_Addr_Family_v4); 
    if (inet_address_equal (ha_address, 
InetI_Invalid_v4_Addr)) 
     { 
     op_sim_end ("An invalid address was configured 
as Home Agent.","","",""); 



166 
 

     } 
     
    /* local interface address. */ 
    home_address = inet_rte_intf_addr_get 
(proc_info_struct_ptr->intf_info_ptr, InetC_Addr_Family_v4); 
    agent_address = InetI_Invalid_v4_Addr; 
     
    /* Parse the registration related information. */ 
    op_ima_obj_attr_get (proc_info_struct_ptr->cfg_objid, 
"Registration Parameters", 
     &mip_reg_cfg_objid); 
    mip_reg_cfg_objid = op_topo_child (mip_reg_cfg_objid, 
OPC_OBJTYPE_GENERIC, 0); 
     
    op_ima_obj_attr_get (mip_reg_cfg_objid, "Interval", 
&(reg_info.interval)); 
    op_ima_obj_attr_get (mip_reg_cfg_objid, "Retry", 
&(reg_info.retry)); 
    op_ima_obj_attr_get (mip_reg_cfg_objid, "Lifetime 
Request", &(reg_info.req_lifetime)); 
     
    /* Initialize state vars. */ 
    reg_id = 0; 
    retry_counter = 0; 
    latest_fa_info.address = InetI_Invalid_v4_Addr; 
    latest_fa_info.lifetime = 0.0; 
    latest_fa_info.pref_level = 0; 
    current_roaming_intf = OPC_NIL; 
     
    /* Register some stats. */ 
    tunneled_bit_rcvd_sec_sh = op_stat_reg ("Mobile 
IP.Tunneled Traffic Received (bits/sec)", OPC_STAT_INDEX_NONE, 
OPC_STAT_LOCAL); 
    tunneled_pk_rcvd_sec_sh = op_stat_reg ("Mobile 
IP.Tunneled Traffic Received (packets/sec)", OPC_STAT_INDEX_NONE, 
OPC_STAT_LOCAL); 
     
    /* Find out if  need to send out solicitation when 
lost. */ 
    op_ima_obj_attr_get (proc_info_struct_ptr->cfg_objid, 
"Agent Solicitation", 
     &solicitation); 
     
    /* See if I am configured on a loopback interface. */ 
    loopback_intf = ip_rte_intf_is_loopback 
(proc_info_struct_ptr->intf_info_ptr); 
     
    /* Schedule interrupt to send solicitation if 
enabled. */ 
    if (solicitation) 
     { 
     if (loopback_intf) 
      { 
      /*  will not solicitate if on a loopback 
interface. */ 
      op_sim_end ("Mobile IP currently cannot 
support solicitation when configured on loopback interface.", 



167 
 

       OPC_NIL, OPC_NIL, OPC_NIL); 
      } 
      
     /* Schedule an interrupt for the first 
solicitation. */ 
     solicit_count = 0; 
     solicit_timer_ehndl = op_intrpt_schedule_self 
(mip_sup_activation_time_calculate (), MipC_MN_Timer_Solicit); 
      
     /* Register some stats. */ 
     irdp_sent_pkts_sh = op_stat_reg ("Mobile 
IP.IRDP Traffic Sent (packets)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
     irdp_sent_bits_sh = op_stat_reg ("Mobile 
IP.IRDP Traffic Sent (bits)", OPC_STAT_INDEX_NONE, OPC_STAT_LOCAL); 
     g_irdp_sent_bits_sh = op_stat_reg ("Mobile 
IP.IRDP Traffic Sent (bits/sec)", OPC_STAT_INDEX_NONE, OPC_STAT_GLOBAL); 
     } 
     
    /* Find out if need to ask for simultaneous binding. 
*/ 
    op_ima_obj_attr_get (proc_info_struct_ptr->cfg_objid, 
"Simultaneous Binding Support", &simultaneous_binding); 
     
    /* Cache the node objid info. */ 
    node_objid = op_topo_parent (op_id_self ()); 
     
    /* To handle default gateway. */ 
    default_gateway = OPC_FALSE; 
      
    /* Animation. */ 
    if (op_sim_anim ()) 
     { 
     /* Initialize the view. */ 
     mip_sup_prepare_animation (); 
     } 
     
    } 
    FSM_PROFILE_SECTION_OUT (state0_enter_exec) 
 
   /** state (Init) exit executives **/ 
   FSM_STATE_EXIT_FORCED (0, "Init", "mobile_ip_mn [Init exit 
execs]") 
 
 
   /** state (Init) transition processing **/ 
   FSM_TRANSIT_FORCE (1, state1_enter_exec, ;, "default", "", 
"Init", "Lost", "tr_-1", "mobile_ip_mn [Init -> Lost : default / ]") 
  /*---------------------------------------------------------*/ 
 
   /** state (Lost) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (1, "Lost", state1_enter_exec, 
"mobile_ip_mn [Lost enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Lost enter 
execs]", state1_enter_exec) 
    { 
    /* Update the status for debugging. */  



168 
 

    mip_sup_mn_mr_status_update (node_objid, 
home_address, MipC_Mn_Mr_Status_Lost,  
     ha_address, agent_address); 
    } 
    FSM_PROFILE_SECTION_OUT (state1_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (3,"mobile_ip_mn") 
 
   /** state (Lost) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (1, "Lost", "mobile_ip_mn [Lost 
exit execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Lost exit 
execs]", state1_exit_exec) 
    { 
    /* Who invoked me? */ 
    op_pro_invoker (proc_info_struct_ptr->pro_hndl, 
&inv_mode); 
     
    if (inv_mode == OPC_PROINV_DIRECT) 
     { 
     /* one of those timer went off. */ 
     is_solicitation_time = OPC_TRUE; 
      
     if (op_intrpt_code () == MipC_MN_Timer_Solicit) 
      { 
      mip_mn_agent_solicit_pk_send (); 
      } 
     } 
    else 
     { 
     /* See if  are getting an IP packet. */ 
     invoke_info_ptr = (MipT_Invocation_Info*) 
op_pro_argmem_access (); 
     if (invoke_info_ptr != OPC_NIL) 
      { 
    /*  have an invocation from IP.  What kind thou? */ 
      switch (invoke_info_ptr->invocation_type) 
       { 
       case MipC_Invoke_Type_IRDP: 
        { 
    /*  have an IRDP packet.  But which kind thou? */ 
        if (invoke_info_ptr-
>irdp_type == IcmpC_Type_IRDP_Sol) 
         { 
    /*   do not want to deal with this packet. */ 
         mip_sup_pk_cleanup 
(invoke_info_ptr); 
          
         is_ip_pk = OPC_TRUE; 
         break; 
         } 
     
    /* This must be an advertisement from an agent. */ 
        op_pk_nfd_get 
(invoke_info_ptr->pk_ptr, "data", &irdp_pkptr); 



169 
 

        mip_mn_ad_packet_parse 
(irdp_pkptr, &h_bit, &f_bit, &tmp_agent_address, &irdp_lifetime, 
&pref_level); 
      
 /* For now, comaprison of the only address in the packet suffice. */ 
        if 
(inet_address_equal(tmp_agent_address, ha_address)) 
         { 
         if (loopback_intf) 
          { 
      /* This is not supported. */ 
          op_sim_end 
("MR/MN when configured on a loopback interface, cannot directly communicate 
with HA.", 
        OPC_NIL, OPC_NIL, OPC_NIL); 
          } 
            
       /* Ad from my home agent. */ 
        is_ad_reception = OPC_TRUE; 
             
    /* Initialize counter before start reg process. */ 
         retry_counter = 0; 
     
   /* Update the latest ha info structure for later. */ 
        
 mip_mn_agent_cache_update (&latest_ha_info, tmp_agent_address,  
          (double) 
irdp_lifetime, pref_level, invoke_info_ptr); 
          
      /* Deregister with HA. */ 
         mip_mn_register (0, 
latest_ha_info, OPC_TRUE); 
         
       /* Update timer for HA timeout. */ 
        
 mip_mn_agent_timer_update (latest_ha_info.lifetime); 
         } 
        else 
         { 
         if (f_bit) 
          { 
        /* A foreign agent ad. */ 
        is_ad_reception = OPC_TRUE; 
             
    /* Initialize counter before start reg process. */ 
        retry_counter = 0; 
           
    /* Update the latest fa info structure for later. */ 
         
 mip_mn_agent_cache_update (&latest_fa_info, tmp_agent_address,  
    (double) irdp_lifetime, pref_level, invoke_info_ptr); 
      
     /* Register with HA using the FA address. */ 
 mip_mn_register (reg_info.req_lifetime, latest_fa_info, OPC_FALSE); 
        
      /* Update timer for HA timeout. */ 



170 
 

         
 mip_mn_agent_timer_update (latest_fa_info.lifetime); 
          } 
         else 
          { 
/* cannot do anything with this agent who is only HA for other group. */ 
        is_ip_pk = OPC_TRUE; 
          } 
         } 
      /* Clean up solicitation if any. */ 
 if (solicitation && is_ad_reception) 
         { 
 op_ev_cancel_if_pending (solicit_timer_ehndl); 
         } 
      
        /* Clean up. */ 
 mip_sup_pk_cleanup (invoke_info_ptr);      
 op_pk_destroy (irdp_pkptr); 
        
 break; 
        } 
         
       case MipC_Invoke_Type_Tunnel_Check: 
        { 
        is_ip_pk = OPC_TRUE; 
         
   /*   should try to decapsulte packet if in MR mode. */ 
     if (mip_node_type == MipC_Node_Type_MR) 
         { 
 /*   will check first if this packet is tunneling other IP packet */ 
         if 
(mip_sup_ip_in_ip_decapsulate (invoke_info_ptr->pk_ptr, &encap_pk_ptr) 
          == 
OPC_COMPCODE_SUCCESS) 
          { 
       /* Sanity check on the packet */ 
           
     /* Invoke IP delayed to handle the packet */ 
         
 mip_sup_packet_send_to_ip (module_data, encap_pk_ptr);    
           
    /* Write stats for the received tunneled packet. */ 
         
 mip_mn_tunneled_pk_stat_write (invoke_info_ptr->pk_ptr); 
     
   /* Let IP caller know that   are handling the packet */ 
         
 mip_sup_pk_cleanup (invoke_info_ptr); 
          } 
         } 
         
        break; 
        } 
         
       case MipC_Invoke_Type_IP_Datagram: 
        { 
        is_ip_pk = OPC_TRUE; 



171 
 

/* The destination address that is going out on this interface when in MR 
mode should be forwarded to either HA or FA.  Whoever already registered or 
trying to. */ 
      if (mip_node_type == MipC_Node_Type_MR) 
         { 
     /* Handle packet if I am a MR. */ 
      mip_mn_ip_pk_handle (invoke_info_ptr); 
         } 
        else 
         { 
    /* Unknown address.  Send to the current agent. */ 
      if (inet_address_valid (agent_address)) 
          invoke_info_ptr-
>rte_info_ici_ptr->next_addr = agent_address; 
         } 
      
        break; 
        } 
       } /* switch (invoke_info_ptr-
>invocation_type) */ 
      } 
     else 
      { 
      /* Registration arrival. */ 
      op_ici_destroy (op_intrpt_ici ()); 
      is_reg_pk = OPC_TRUE; 
      } 
     } 
    } 
    FSM_PROFILE_SECTION_OUT (state1_exit_exec) 
 
   /** state (Lost) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Lost trans 
conditions]", state1_trans_conds) 
   FSM_INIT_COND (IP_PK) 
   FSM_TEST_COND (SOLICITATION_TIME) 
   FSM_TEST_COND (REG_PK) 
   FSM_TEST_COND (AD_RECEPTION) 
   FSM_TEST_LOGIC ("Lost") 
   FSM_PROFILE_SECTION_OUT (state1_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 1, state1_enter_exec, ;, 
"IP_PK", "", "Lost", "Lost", "tr_8", "mobile_ip_mn [Lost -> Lost : IP_PK / 
]") 
    FSM_CASE_TRANSIT (1, 1, state1_enter_exec, ;, 
"SOLICITATION_TIME", "", "Lost", "Lost", "tr_32", "mobile_ip_mn [Lost -> Lost 
: SOLICITATION_TIME / ]") 
    FSM_CASE_TRANSIT (2, 1, state1_enter_exec, ;, 
"REG_PK", "", "Lost", "Lost", "tr_36", "mobile_ip_mn [Lost -> Lost : REG_PK / 
]") 
    FSM_CASE_TRANSIT (3, 4, state4_enter_exec, ;, 
"AD_RECEPTION", "", "Lost", "Pending registration", "tr_1", "mobile_ip_mn 
[Lost -> Pending registration : AD_RECEPTION / ]") 
    } 
  /*---------------------------------------------------------*/ 



172 
 

 
   /** state (At home) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (2, "At home", state2_enter_exec, 
"mobile_ip_mn [At home enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [At home enter 
execs]", state2_enter_exec) 
    { 
    /* Update the status for debugging. */  
    mip_sup_mn_mr_status_update (node_objid, 
home_address, MipC_Mn_Mr_Status_Home,  
     ha_address, agent_address); 
    } 
    FSM_PROFILE_SECTION_OUT (state2_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (5,"mobile_ip_mn") 
 
 
   /** state (At home) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (2, "At home", "mobile_ip_mn [At 
home exit execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [At home exit 
execs]", state2_exit_exec) 
    { 
    /* Who invoked me? */ 
    op_pro_invoker (proc_info_struct_ptr->pro_hndl, 
&inv_mode); 
     
    if (inv_mode == OPC_PROINV_DIRECT) 
     { 
     /* one of those timer went off. */ 
     is_ha_timeout = OPC_TRUE; 
      
     if (MIP_TRACE) 
      { 
      op_prg_odb_print_major ("Trying 
reregister for timeout occurred.", OPC_NIL); 
      } 
     } 
    else 
     { 
     /* See if   are getting an IP packet. */ 
     invoke_info_ptr = (MipT_Invocation_Info*) 
op_pro_argmem_access (); 
     if (invoke_info_ptr != OPC_NIL) 
      { 
    /*   have an invocation from IP.  What kind thou? */ 
      switch (invoke_info_ptr->invocation_type) 
       { 
       case MipC_Invoke_Type_IRDP: 
        { 
    /*   have an IRDP packet.  But which kind thou? */ 
        if (invoke_info_ptr-
>irdp_type == IcmpC_Type_IRDP_Sol) 
         { 
    /*   do not want to deal with this packet. */ 



173 
 

         mip_sup_pk_cleanup 
(invoke_info_ptr); 
          
         is_ip_pk = OPC_TRUE; 
         break; 
         } 
     
    /* This must be an advertisement from an agent. */ 
        is_ad_reception = OPC_TRUE; 
     
   /*   have an agent advertisement.  But which kind thou? */ 
        op_pk_nfd_get 
(invoke_info_ptr->pk_ptr, "data", &irdp_pkptr); 
        mip_mn_ad_packet_parse 
(irdp_pkptr, &h_bit, &f_bit, &tmp_agent_address, &irdp_lifetime, 
&pref_level); 
       
 /* For now, comaprison of the only address in the packet suffice. */ 
        if 
(inet_address_equal(tmp_agent_address, ha_address)) 
         { 
         if (loopback_intf) 
          { 
      /* This is not supported. */ 
          op_sim_end 
("MR/MN when configured on a loopback interface, cannot directly communicate 
with HA.", 
           OPC_NIL, 
OPC_NIL, OPC_NIL); 
          } 
     
       /* Ad from my home agent. */ 
        
    /* Update the latest ha info structure for later. */ 
        
 mip_mn_agent_cache_update (&latest_ha_info, tmp_agent_address,  
          (double) 
irdp_lifetime, pref_level, invoke_info_ptr); 
            
      /* Update timer for HA timeout. */ 
        
 mip_mn_agent_timer_update (latest_ha_info.lifetime); 
         } 
        else 
         { 
         if (f_bit) 
          { 
        /* A foreign agent ad. */ 
          
    /* Update the latest fa info structure for later. */ 
         
 mip_mn_agent_cache_update (&latest_fa_info, tmp_agent_address,  
           (double) 
irdp_lifetime, pref_level, invoke_info_ptr);       
          } 
         else 
          { 



174 
 

/* cannot do anything with this agent who is only HA for other group. */ 
          } 
         } 
         
        /* Clean up. */ 
        mip_sup_pk_cleanup 
(invoke_info_ptr); 
        op_pk_destroy (irdp_pkptr); 
           
        break; 
        } 
           
        case 
MipC_Invoke_Type_Tunnel_Check: 
        { 
        is_ip_pk = OPC_TRUE; 
         
   /*   should try to decapsulte packet if in MR mode. */ 
        if (mip_node_type == 
MipC_Node_Type_MR) 
         { 
 /*   will check first if this packet is tunneling other IP packet */ 
         if 
(mip_sup_ip_in_ip_decapsulate (invoke_info_ptr->pk_ptr, &encap_pk_ptr) 
          == 
OPC_COMPCODE_SUCCESS) 
          { 
      /* Sanity check on the packet */ 
           
     /* Invoke IP delayed to handle the packet */ 
         
 mip_sup_packet_send_to_ip (module_data, encap_pk_ptr);   
    
 /* Write stats for the received tunneled packet. */ 
         
 mip_mn_tunneled_pk_stat_write (invoke_info_ptr->pk_ptr); 
     
  /* Let IP caller know that   are handling the packet */ 
         
 mip_sup_pk_cleanup (invoke_info_ptr); 
          } 
         } 
         
        break; 
        } 
            
       case MipC_Invoke_Type_IP_Datagram: 
        { 
        is_ip_pk = OPC_TRUE; 
         
        /* The destination address 
that is going out on this interface when in MR mode should be forwarded to 
either HA or FA.  Whoever already registered or trying to. */ 
      if (mip_node_type == MipC_Node_Type_MR) 
         { 
       /* Handle packet if I am a MR. */ 
      mip_mn_ip_pk_handle (invoke_info_ptr); 



175 
 

         } 
        else 
         { 
    /* Unknown address.  Send to the current agent. */ 
  invoke_info_ptr->rte_info_ici_ptr->next_addr = agent_address; 
         } 
        
        break; 
        } 
       }/* switch (invoke_info_ptr-
>invocation_type) */ 
      } 
     else 
      { 
      /* Registration arrival. */ 
      op_ici_destroy (op_intrpt_ici ()); 
      is_reg_pk = OPC_TRUE; 
      } 
     } 
    } 
    FSM_PROFILE_SECTION_OUT (state2_exit_exec) 
 
   /** state (At home) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [At home trans 
conditions]", state2_trans_conds) 
   FSM_INIT_COND (HA_TIMEOUT) 
   FSM_TEST_COND (IP_PK) 
   FSM_TEST_COND (AD_RECEPTION) 
   FSM_TEST_COND (REG_PK) 
   FSM_TEST_LOGIC ("At home") 
   FSM_PROFILE_SECTION_OUT (state2_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 5, state5_enter_exec, ;, 
"HA_TIMEOUT", "", "At home", "Check FA cache", "tr_5", "mobile_ip_mn [At home 
-> Check FA cache : HA_TIMEOUT / ]") 
    FSM_CASE_TRANSIT (1, 2, state2_enter_exec, ;, 
"IP_PK", "", "At home", "At home", "tr_9", "mobile_ip_mn [At home -> At home 
: IP_PK / ]") 
    FSM_CASE_TRANSIT (2, 2, state2_enter_exec, ;, 
"AD_RECEPTION", "", "At home", "At home", "tr_26", "mobile_ip_mn [At home -> 
At home : AD_RECEPTION / ]") 
    FSM_CASE_TRANSIT (3, 2, state2_enter_exec, ;, 
"REG_PK", "", "At home", "At home", "tr_35", "mobile_ip_mn [At home -> At 
home : REG_PK / ]") 
    } 
  /*---------------------------------------------------------*/ 
 
   /** state (Away) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (3, "Away", state3_enter_exec, 
"mobile_ip_mn [Away enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Away enter 
execs]", state3_enter_exec) 
    { 
    /* Update the status for debugging. */  



176 
 

    mip_sup_mn_mr_status_update (node_objid, 
home_address, MipC_Mn_Mr_Status_Foreign,  
     ha_address, agent_address); 
    } 
    FSM_PROFILE_SECTION_OUT (state3_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (7,"mobile_ip_mn") 
 
   /** state (Away) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (3, "Away", "mobile_ip_mn [Away 
exit execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Away exit 
execs]", state3_exit_exec) 
    { 
    /* Who invoked me? */ 
    op_pro_invoker (proc_info_struct_ptr->pro_hndl, 
&inv_mode); 
     
    if (inv_mode == OPC_PROINV_DIRECT) 
     { 
     /* one of those timer went off. */ 
     intrpt_code = op_intrpt_code (); 
     switch (intrpt_code) 
      { 
      case MipC_MN_Timer_Agent: 
       { 
       is_fa_timeout = OPC_TRUE; 
       break; 
       } 
        
         case MipC_MN_Timer_Rereg: 
       {   
       is_reregister = OPC_TRUE; 
       break; 
       } 
      } 
      
     if (MIP_TRACE) 
      { 
      op_prg_odb_print_major ("Trying 
reregister for timeout occurred.", OPC_NIL); 
      } 
     } 
    else 
     { 
     /* See if   are getting an IP packet. */ 
     invoke_info_ptr = (MipT_Invocation_Info*) 
op_pro_argmem_access (); 
     if (invoke_info_ptr != OPC_NIL) 
      { 
      /*   have an invocation from IP.  What 
kind thou? */ 
      switch (invoke_info_ptr->invocation_type) 
       { 
       case MipC_Invoke_Type_IRDP: 
        { 



177 
 

   /*   have an IRDP packet.  But which kind thou? */ 
        if (invoke_info_ptr-
>irdp_type == IcmpC_Type_IRDP_Sol) 
         { 
    /*   do not want to deal with this packet. */ 
         mip_sup_pk_cleanup 
(invoke_info_ptr); 
          
         is_ip_pk = OPC_TRUE; 
         break; 
         } 
     
    /* This must be an advertisement from an agent. */ 
        op_pk_nfd_get 
(invoke_info_ptr->pk_ptr, "data", &irdp_pkptr); 
        mip_mn_ad_packet_parse 
(irdp_pkptr, &h_bit, &f_bit, &tmp_agent_address, &irdp_lifetime, 
&pref_level); 
     
 /* For now, comaprison of the only address in the packet suffices. */ 
        if 
(inet_address_equal(tmp_agent_address, ha_address)) 
         { 
         if (loopback_intf) 
          { 
       /* This is not supported. */ 
          op_sim_end 
("MR/MN when configured on a loopback interface, cannot directly communicate 
with HA.", 
           OPC_NIL, 
OPC_NIL, OPC_NIL); 
          } 
     
      /* Ad from my home agent. */ 
         is_ha_ad_reception = 
OPC_TRUE; 
          
    /* Initialize counter before start reg process. */ 
         retry_counter = 0; 
     
    /* Update the latest ha info structure for later. */ 
        
 mip_mn_agent_cache_update (&latest_ha_info, tmp_agent_address,  
          (double) 
irdp_lifetime, pref_level, invoke_info_ptr); 
     
      /* Deregister with HA. */ 
         mip_mn_register (0, 
latest_ha_info, OPC_TRUE); 
            
       /* Update timer for HA timeout. */ 
        
 mip_mn_agent_timer_update (latest_ha_info.lifetime); 
         } 
        else 
         { 
         if (f_bit) 



178 
 

          { 
        /* A foreign agent ad. */ 
          if 
(current_agent_pref_level < pref_level) 
           { 
  /* New FA agent advertising has higher preference.  Switch. */ 
          
 is_switch_fa = OPC_TRUE; 
           } 
          else 
           { 
          
 is_fa_ad_reception = OPC_TRUE; 
           } 
           
      /* Update the FA cache information. */ 
         
 mip_mn_agent_cache_update (&latest_fa_info, tmp_agent_address,  
           (double) 
irdp_lifetime, pref_level, invoke_info_ptr);       
           
     /* Check to see if it is the same agent. */ 
          if 
(inet_address_equal (agent_address, tmp_agent_address)) 
           { 
       /* Update timer for FA timeout. */ 
          
 mip_mn_agent_timer_update (op_sim_time () + (double) irdp_lifetime); 
           } 
          } 
         else  
          { 
/* cannot do anything with this agent who is only HA for other group. */ 
          is_ip_pk = 
OPC_TRUE; 
          } 
         } 
      
        /* Clean up. */ 
        mip_sup_pk_cleanup 
(invoke_info_ptr); 
        op_pk_destroy (irdp_pkptr); 
     
        break; 
        } 
         
       case MipC_Invoke_Type_Tunnel_Check: 
        { 
        is_ip_pk = OPC_TRUE; 
         
   /*   should try to decapsulte packet if in MR mode. */ 
        if (mip_node_type == 
MipC_Node_Type_MR) 
         { 
 /*   will check first if this packet is tunneling other IP packet */ 
         if 
(mip_sup_ip_in_ip_decapsulate (invoke_info_ptr->pk_ptr, &encap_pk_ptr)  



179 
 

          == 
OPC_COMPCODE_SUCCESS) 
          { 
       /* Sanity check on the packet */ 
           
     /* Invoke IP delayed to handle the packet */ 
         
 mip_sup_packet_send_to_ip (module_data, encap_pk_ptr);  
           
    /* Write stats for the received tunneled packet. */ 
         
 mip_mn_tunneled_pk_stat_write (invoke_info_ptr->pk_ptr); 
     
   /* Let IP caller know that   are handling the packet */ 
         
 mip_sup_pk_cleanup (invoke_info_ptr); 
          } 
         } 
         
        break; 
        } 
            
       case MipC_Invoke_Type_IP_Datagram: 
        { 
        is_ip_pk = OPC_TRUE; 
         
        /* The destination address 
that is going out on this interface when in MR mode should be forwarded to 
either HA or FA.  Whoever already registered or trying to. */ 
      if (mip_node_type == MipC_Node_Type_MR) 
         { 
       /* Handle packet if I am a MR. */ 
      mip_mn_ip_pk_handle (invoke_info_ptr); 
         } 
        else 
         { 
    /* Unknown address.  Send to the current agent. */ 
         invoke_info_ptr-
>rte_info_ici_ptr->next_addr = agent_address; 
         } 
        
        break; 
        } 
       }/* switch (invoke_info_ptr-
>invocation_type) */ 
      } 
     else 
      { 
      /* Reg packet arrival. */ 
      op_ici_destroy (op_intrpt_ici ()); 
      is_reg_pk = OPC_TRUE; 
      } 
     } 
    } 
    FSM_PROFILE_SECTION_OUT (state3_exit_exec) 
 
 



180 
 

   /** state (Away) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Away trans 
conditions]", state3_trans_conds) 
   FSM_INIT_COND (FA_TIMEOUT || REREGISTER || SWITCH_FA) 
   FSM_TEST_COND (IP_PK) 
   FSM_TEST_COND (FA_AD_RECEPTION) 
   FSM_TEST_COND (REG_PK) 
   FSM_TEST_COND (HA_AD_RECEPTION) 
   FSM_TEST_LOGIC ("Away") 
   FSM_PROFILE_SECTION_OUT (state3_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 5, state5_enter_exec, ;, 
"FA_TIMEOUT || REREGISTER || SWITCH_FA", "", "Away", "Check FA cache", 
"tr_4", "mobile_ip_mn [Away -> Check FA cache : FA_TIMEOUT || REREGISTER || 
SWITCH_FA / ]") 
    FSM_CASE_TRANSIT (1, 3, state3_enter_exec, ;, 
"IP_PK", "", "Away", "Away", "tr_10", "mobile_ip_mn [Away -> Away : IP_PK / 
]") 
    FSM_CASE_TRANSIT (2, 3, state3_enter_exec, ;, 
"FA_AD_RECEPTION", "", "Away", "Away", "tr_27", "mobile_ip_mn [Away -> Away : 
FA_AD_RECEPTION / ]") 
    FSM_CASE_TRANSIT (3, 3, state3_enter_exec, ;, 
"REG_PK", "", "Away", "Away", "tr_37", "mobile_ip_mn [Away -> Away : REG_PK / 
]") 
    FSM_CASE_TRANSIT (4, 4, state4_enter_exec, ;, 
"HA_AD_RECEPTION", "", "Away", "Pending registration", "tr_45", "mobile_ip_mn 
[Away -> Pending registration : HA_AD_RECEPTION / ]") 
    } 
  /*---------------------------------------------------------*/ 
 
   /** state (Pending registration) enter executives **/ 
   FSM_STATE_ENTER_UNFORCED (4, "Pending registration", 
state4_enter_exec, "mobile_ip_mn [Pending registration enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Pending 
registration enter execs]", state4_enter_exec) 
    { 
    /* Update the status for debugging. */  
    mip_sup_mn_mr_status_update (node_objid, 
home_address, MipC_Mn_Mr_Status_Pending,  
     ha_address, agent_address); 
    } 
    FSM_PROFILE_SECTION_OUT (state4_enter_exec) 
 
   /** blocking after enter executives of unforced state. **/ 
   FSM_EXIT (9,"mobile_ip_mn") 
 
 
   /** state (Pending registration) exit executives **/ 
   FSM_STATE_EXIT_UNFORCED (4, "Pending registration", 
"mobile_ip_mn [Pending registration exit execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Pending 
registration exit execs]", state4_exit_exec) 
    { 
    /* Who invoked me? */ 



181 
 

    op_pro_invoker (proc_info_struct_ptr->pro_hndl, 
&inv_mode); 
     
    if (inv_mode == OPC_PROINV_DIRECT) 
     { 
     /* one of those timer went off. */ 
     is_timeout = OPC_TRUE; 
     } 
    else 
     { 
     /* See if   are getting an IP packet. */ 
     invoke_info_ptr = (MipT_Invocation_Info*) 
op_pro_argmem_access (); 
     if (invoke_info_ptr != OPC_NIL) 
      { 
    /*   have an invocation from IP.  What kind thou? */ 
      switch (invoke_info_ptr->invocation_type) 
       { 
       case MipC_Invoke_Type_IRDP: 
        { 
    /*   have an IRDP packet.  But which kind thou? */ 
        if (invoke_info_ptr-
>irdp_type == IcmpC_Type_IRDP_Sol) 
         { 
     /*   do not want to deal with this packet. */ 
         mip_sup_pk_cleanup 
(invoke_info_ptr); 
          
         is_ip_pk = OPC_TRUE; 
         break; 
         } 
     
    /* This must be an advertisement from an agent. */ 
        is_ad_reception = OPC_TRUE; 
       
   /*   have an agent advertisement.  But which kind thou? */ 
        op_pk_nfd_get 
(invoke_info_ptr->pk_ptr, "data", &irdp_pkptr); 
        mip_mn_ad_packet_parse 
(irdp_pkptr, &h_bit, &f_bit, &tmp_agent_address, &irdp_lifetime, 
&pref_level); 
         
 /* For now, comaprison of the only address in the packet suffice. */ 
        if 
(inet_address_equal(tmp_agent_address, ha_address)) 
         { 
         if (loopback_intf) 
          { 
       /* This is not supported. */ 
          op_sim_end 
("MR/MN when configured on a loopback interface, cannot directly communicate 
with HA.", 
           OPC_NIL, 
OPC_NIL, OPC_NIL); 
          } 
     
    /* Update the latest ha info structure for later. */ 



182 
 

        
 mip_mn_agent_cache_update (&latest_ha_info, tmp_agent_address,  
          (double) 
irdp_lifetime, pref_level, invoke_info_ptr); 
          
 /* Check if   are currently trying to register directly with HA. */ 
         if (!direct_reg) 
          { 
         
 op_ev_cancel_if_pending (reg_retry_timer_ehndl); 
        /* Deregister with HA. */ 
          mip_mn_register 
(0, latest_ha_info, OPC_TRUE); 
          } 
     
       /* Update timer for HA timeout. */ 
        
 mip_mn_agent_timer_update (latest_ha_info.lifetime); 
         } 
        else 
         { 
         if (f_bit) 
          { 
      /* Update the FA cache information. */ 
         
 mip_mn_agent_cache_update (&latest_fa_info, tmp_agent_address,  
           (double) 
irdp_lifetime, pref_level, invoke_info_ptr);       
           
     /* Check to see if it is the same agent. */ 
          if 
(inet_address_equal (agent_address, tmp_agent_address)) 
           { 
       /* Update timer for FA timeout. */ 
          
 mip_mn_agent_timer_update (op_sim_time () + (double) irdp_lifetime); 
           } 
          } 
         else 
          { 
/* cannot do anything with this agent who is only HA for other group. */ 
          } 
         } 
         
        /* Clean up. */ 
        mip_sup_pk_cleanup 
(invoke_info_ptr); 
        op_pk_destroy (irdp_pkptr); 
     
        break; 
        } 
        
       case MipC_Invoke_Type_Tunnel_Check: 
        { 
        is_ip_pk = OPC_TRUE; 
         
   /*   should try to decapsulte packet if in MR mode. */ 



183 
 

        if (mip_node_type == 
MipC_Node_Type_MR) 
         { 
 /*   will check first if this packet is tunneling other IP packet */ 
         if 
(mip_sup_ip_in_ip_decapsulate (invoke_info_ptr->pk_ptr, &encap_pk_ptr) 
          == 
OPC_COMPCODE_SUCCESS) 
          { 
       /* Sanity check on the packet */ 
           
     /* Invoke IP delayed to handle the packet */ 
         
 mip_sup_packet_send_to_ip (module_data, encap_pk_ptr);   
    
   /* Write stats for the received tunneled packet. */ 
         
 mip_mn_tunneled_pk_stat_write (invoke_info_ptr->pk_ptr); 
           
          /* Let IP caller 
know that   are handling the packet */ 
         
 mip_sup_pk_cleanup (invoke_info_ptr); 
          } 
         } 
         
        break; 
        } 
         
       case MipC_Invoke_Type_IP_Datagram: 
        { 
        is_ip_pk = OPC_TRUE; 
         
        /* The destination address 
that is going out on this interface when in MR mode should be forwarded to 
either HA or FA.  Whoever already registered or trying to. */ 
        if (mip_node_type == 
MipC_Node_Type_MR) 
         { 
   /* Handle packet if I am a MR. */ 
         mip_mn_ip_pk_handle 
(invoke_info_ptr); 
         } 
        else 
         { 
    /* Unknown address.  Send to the current agent. */ 
         invoke_info_ptr-
>rte_info_ici_ptr->next_addr = agent_address; 
         } 
       
        break; 
        } 
       } /* switch (invoke_info_ptr-
>invocation_type) */ 
      } 
     else 
      { 



184 
 

      /* Registration packet arrival. */ 
      is_reg_pk = OPC_TRUE; 
      } 
     } 
    } 
    FSM_PROFILE_SECTION_OUT (state4_exit_exec) 
 
   /** state (Pending registration) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Pending registration 
trans conditions]", state4_trans_conds) 
   FSM_INIT_COND ( REG_PK) 
   FSM_TEST_COND (TIMEOUT) 
   FSM_TEST_COND (AD_RECEPTION) 
   FSM_TEST_COND (IP_PK) 
   FSM_TEST_LOGIC ("Pending registration") 
   FSM_PROFILE_SECTION_OUT (state4_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 6, state6_enter_exec, ;, " 
REG_PK", "", "Pending registration", "Handle registration", "tr_15", 
"mobile_ip_mn [Pending registration -> Handle registration :  REG_PK / ]") 
    FSM_CASE_TRANSIT (1, 7, state7_enter_exec, ;, 
"TIMEOUT", "", "Pending registration", "Handle timeout", "tr_19", 
"mobile_ip_mn [Pending registration -> Handle timeout : TIMEOUT / ]") 
    FSM_CASE_TRANSIT (2, 4, state4_enter_exec, ;, 
"AD_RECEPTION", "", "Pending registration", "Pending registration", "tr_28", 
"mobile_ip_mn [Pending registration -> Pending registration : AD_RECEPTION / 
]") 
    FSM_CASE_TRANSIT (3, 4, state4_enter_exec, ;, 
"IP_PK", "", "Pending registration", "Pending registration", "tr_11", 
"mobile_ip_mn [Pending registration -> Pending registration : IP_PK / ]") 
    } 
  /*---------------------------------------------------------*/ 
 
   /** state (Check FA cache) enter executives **/ 
   FSM_STATE_ENTER_FORCED (5, "Check FA cache", 
state5_enter_exec, "mobile_ip_mn [Check FA cache enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Check FA cache 
enter execs]", state5_enter_exec) 
    { 
    /* See if   can use the cached FA information. */ 
    if (inet_address_valid (latest_fa_info.address)) 
     { 
     if (latest_fa_info.lifetime > op_sim_time () ) 
      { 
    /* Initialize counter before start reg process. */ 
      retry_counter = 0; 
     
    /* Register with the latest advertised FA. */ 
      mip_mn_register (reg_info.req_lifetime,  
       latest_fa_info, OPC_FALSE); 
       
      /* Update the timer timeout. */ 
      if (!HA_TIMEOUT && !FA_TIMEOUT) 
       { 
    mip_mn_agent_timer_update (latest_fa_info.lifetime); 



185 
 

       } 
      else 
       { 
      /* cannot cancel the current event. */ 
 agent_timer_ehndl = op_intrpt_schedule_self (latest_fa_info.lifetime,  
        MipC_MN_Timer_Agent); 
       } 
         
      is_valid_fa_candidate = OPC_TRUE; 
      } 
     } 
     
    if (!is_valid_fa_candidate) 
     { 
     if (solicitation) 
      { 
   /* Schedule an interrupt to send solicitation packet. */ 
  op_intrpt_schedule_self (op_sim_time (), MipC_MN_Timer_Solicit); 
      } 
     
   /* Cancel reregister timer first. */ 
    op_ev_cancel_if_pending (reregister_timer_ehndl); 
      
     if (op_sim_anim ()) 
      { 
      /* Erase the existing tunnel. */ 
      mip_sup_draw_tunnel (node_objid, 
ha_address, ha_address, ((mip_node_type == MipC_Node_Type_MR) ? OPC_TRUE : 
OPC_FALSE)); 
      } 
     } 
     
    } 
    FSM_PROFILE_SECTION_OUT (state5_enter_exec) 
 
   /** state (Check FA cache) exit executives **/ 
   FSM_STATE_EXIT_FORCED (5, "Check FA cache", "mobile_ip_mn 
[Check FA cache exit execs]") 
 
   /** state (Check FA cache) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Check FA cache trans 
conditions]", state5_trans_conds) 
   FSM_INIT_COND (!VALID_FA_CANDIDATE) 
   FSM_TEST_COND (VALID_FA_CANDIDATE) 
   FSM_TEST_LOGIC ("Check FA cache") 
   FSM_PROFILE_SECTION_OUT (state5_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 1, state1_enter_exec, ;, 
"!VALID_FA_CANDIDATE", "", "Check FA cache", "Lost", "tr_6", "mobile_ip_mn 
[Check FA cache -> Lost : !VALID_FA_CANDIDATE / ]") 
    FSM_CASE_TRANSIT (1, 4, state4_enter_exec, ;, 
"VALID_FA_CANDIDATE", "", "Check FA cache", "Pending registration", "tr_7", 
"mobile_ip_mn [Check FA cache -> Pending registration : VALID_FA_CANDIDATE / 
]") 
    } 



186 
 

  /*---------------------------------------------------------*/ 
 
   /** state (Handle registration) enter executives **/ 
   FSM_STATE_ENTER_FORCED (6, "Handle registration", 
state6_enter_exec, "mobile_ip_mn [Handle registration enter execs]") 
    FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Handle 
registration enter execs]", state6_enter_exec) 
    { 
    /* Access ICI from mobile ip module. */ 
    reg_ici_ptr = op_intrpt_ici (); 
     
    /* Get the ICI values. */ 
    op_ici_attr_get (reg_ici_ptr, "reply_code", 
&reply_code); 
    op_ici_attr_get (reg_ici_ptr, "lifetime_grant", 
&lifetime_grant); 
    op_ici_attr_get (reg_ici_ptr, "identification", 
&tmp_reg_id); 
     
    if (tmp_reg_id == reg_id) 
     { 
     /* Did it go through? */ 
     if ((reply_code == MipC_Reg_Reply_Code_Accept) 
||  
      (reply_code == 
MipC_Reg_Reply_Code_Accept_No_Simultaneous_Binding)) 
      { 
      /* Cancel the retry timer first. */ 
      op_ev_cancel_if_pending 
(reg_retry_timer_ehndl); 
     
      if (direct_reg) 
       { 
       is_ha_reg_success = OPC_TRUE; 
      
       if (MIP_TRACE) 
        { 
        op_prg_odb_print_major 
("Registering directly with HA successful.", OPC_NIL); 
        } 
        
       if (op_sim_anim ()) 
        { 
        /* Draw tunnel to the HA. */ 
        mip_sup_draw_tunnel 
(node_objid, ha_address, agent_address, ((mip_node_type == MipC_Node_Type_MR) 
? OPC_TRUE : OPC_FALSE)); 
        } 
       } 
      else 
       { 
       is_fa_reg_success = OPC_TRUE; 
        
      /* Cancel reregister timer first. */ 
       op_ev_cancel_if_pending 
(reregister_timer_ehndl); 
      



187 
 

       /* Update the lifetime. */ 
       time_to_reregister = op_sim_time () 
+ (double) lifetime_grant - MipC_MN_Rereg_Buffer; 
       reregister_timer_ehndl = 
op_intrpt_schedule_self (time_to_reregister,  
        MipC_MN_Timer_Rereg); 
     
       if (MIP_TRACE) 
        { 
        op_prg_odb_print_major 
("Registering via a FA successful.", OPC_NIL); 
        } 
        
       if (op_sim_anim ()) 
        { 
      /* Draw tunnel to the HA through FA. */ 
        mip_sup_draw_tunnel 
(node_objid, ha_address, agent_address, ((mip_node_type == MipC_Node_Type_MR) 
? OPC_TRUE : OPC_FALSE)); 
        } 
       } 
      } 
     else 
      { 
      /* have to retry. */ 
      if (retry_counter <=  reg_info.retry) 
       { 
       is_retry = OPC_TRUE; 
       } 
      else 
       { 
       op_ev_cancel_if_pending 
(reg_retry_timer_ehndl); 
       is_out_of_retries = OPC_TRUE; 
       } 
      } 
     } 
    else 
     { 
     /* Identification mismatch. */ 
     is_invalid_reply = OPC_TRUE; 
     } 
     
    /* Clean up. */ 
    op_ici_destroy (reg_ici_ptr); 
    } 
    FSM_PROFILE_SECTION_OUT (state6_enter_exec) 
 
   /** state (Handle registration) exit executives **/ 
   FSM_STATE_EXIT_FORCED (6, "Handle registration", 
"mobile_ip_mn [Handle registration exit execs]") 
 
   /** state (Handle registration) transition processing **/ 
   FSM_PROFILE_SECTION_IN ("mobile_ip_mn [Handle registration 
trans conditions]", state6_trans_conds) 
   FSM_INIT_COND (FA_REG_SUCCESS) 
   FSM_TEST_COND (OUT_OF_RETRIES) 



188 
 

   FSM_TEST_COND (RETRY || INVALID_REPLY) 
   FSM_TEST_COND (HA_REG_SUCCESS) 
   FSM_TEST_LOGIC ("Handle registration") 
   FSM_PROFILE_SECTION_OUT (state6_trans_conds) 
 
   FSM_TRANSIT_SWITCH 
    { 
    FSM_CASE_TRANSIT (0, 3, state3_enter_exec, ;, 
"FA_REG_SUCCESS", "", "Handle registration", "Away", "tr_2", "mobile_ip_mn 
[Handle registration -> Away : FA_REG_SUCCESS / ]") 
    FSM_CASE_TRANSIT (1, 5, state5_enter_exec, ;, 
"OUT_OF_RETRIES", "", "Handle registration", "Check FA cache", "tr_12", 
"mobile_ip_mn [Handle registration -> Check FA cache : OUT_OF_RETRIES / ]") 
    FSM_CASE_TRANSIT (2, 4, state4_enter_exec, ;, "RETRY 
|| INVALID_REPLY", "", "Handle registration", "Pending registration", 
"tr_18", "mobile_ip_mn [Handle registration -> Pending registration : RETRY 
|| INVALID_REPLY / ]") 
    FSM_CASE_TRANSIT (3, 2, state2_enter_exec, ;, 
"HA_REG_SUCCESS", "", "Handle registration", "At home", "tr_44", 
"mobile_ip_mn [Handle registration -> At home : HA_REG_SUCCESS / ]") 
    } 
  /*---------------------------------------------------------*/ 
 
 
 
 

 



189 
 

REFERENCES 

[1] Media Post, 

http://www.mediapost.com/publications/?fa=Articles.showArticle&art_aid=122460, 

2011. 

[2] Cisco (2013). IP Multicast Technology Overview., IP Multicast: PIM Configuration 

Guide, Cisco IOS XE Release 3S (pp.1-23). Retrieved from 

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipmulti_pim/configuration/xe-3s/imc-

pim-xe-3s-book/imc_tech_oview.html 

[3] S. Deering, “Host extensions for IP multicasting,” RFC1112, Internet Engineering Task 

Force, August 1989. 

[4] Host extensions for IP multicasting, RFC 988, available from: http://www.rfc-

editor.org/rfc/rfc988.txt, cited on 20 October 2013 

[5] Internet Group Management Protocol, Version3, RFC 2236, available from: 

http://www.rfc-editor.org/rfc/rfc3376.txt, cited on 20 October 2013 

[6] Using Internet Group Management Protocol Version3 (IGMPv3) and Multicast Listener 

Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast, RFC 4604, 

available from: http://www.rfc-editor.org/rfc/rfc4604.txt, cited on 20 October 2013 

[7] H3C - Technical Support & Documents - 09 - IP Multicast Volume, 

http://www.h3c.com/portal/Technical_Support___Documents/Technical_Documents/Rout

ers/H3C_SR6600_Series_Routers/Configuration/Operation_Manual/H3C_SR6600_OM-

Release_2315(V1.09)/09/201011/701616_1285_0.htm 

[8] C. Wen, C. Wu, and W. Lee, “A context-aware handover scheme and all-ip mobile 

multicast service for heterogeneous wireless networks,” IEEE Proc. International 

Conference Ultra Modern Telecommunications & Workshops (ICUMT’09), pp. 1-7, Oct. 

2009. 

http://www.mediapost.com/publications/?fa=Articles.showArticle&art_aid=122460
http://www.rfc-editor.org/rfc/rfc988.txt
http://www.rfc-editor.org/rfc/rfc988.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc4604.txt


190 
 

[9] D. Minoli, IP Multicast with Applications to IPTV and Mobile DVB-H. John Wiley and 

Sons, Canada: 2008. 

[10] MBone: Multicasting Tomorrow’s Internet,  

http://www.savetz.com/mbone/ch3_6.html 

[11] CRU, Global FTTX developments fibre reaching closer to the home, News: ICF, issue 

59, September 2007. 

[12] A. Benslimane, Multimedia Multicast on the Internet, ISTE Ltd, UK: 2007. 

[13] Wes, S. (2006). Video over IP: A Practical Guide to Technology and Applications. 

Focal Press. 

[14] Chalmers, R. C., & Almeroth, K. C. (2000). Developing a Multicast Metric. In 

Proceedings of IEEE Globecom 2000, San Francisco, California, USA. 

[15] Chuang, J., & Sirbu, M. (1998). Pricing Multicast Commuincation: A Cost Based 

Approach. In Proceeding of INET’98, Geneva, Switzerland. 

[16] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, 

Internet Engineering Task Force, April 1998. 

[17] A. Mihailovic, M. Shabeer, and A.H. Aghvami, “Multicast for mobility protocol 

(mmp) for emerging internet networks,” Proc. 11th IEEE International Symposium on 

Personal, Indoor and Mobile Radio Communication (PIMRC2000), pp. 327-333, Sep. 

2000. 

[18] T. Schmidt, M. Waehlisch and G. Fairhurst, “Multicast Mobility in Mobile IP version 

6 (MIPv6),” RFC5757, February 2010. 

[19] J. Guan, Y. Qin, S. Gao, and H. Zhang, “The performance analysis of multicast in 

proxy mobile ipv6,” Proc. ICCTA2009, 2009. 

[20] R. Rummler, A. Gluhak, and A.H. Aghvami, Multicast in Third-Generation Mobile 

Networks: Services, Mechanisms and Performance. John Wiley and Sons, UK: 2009. 

[21] H. Gossain, C. de Morais Cordeiro and P. Agrawal, “Multicast: Wired to Wireless,” 

IEEE Communications Magazine, June 2002. 

http://www.savetz.com/mbone/ch3_6.html


191 
 

[22] D. Waitzman, C. Partridge and S Deering, “Distance Vector Multicast Routing 

Protocol,” RFC 1075, Internet Engineering Task Force, November 1988. 

[23] A. Ballaedie, “Core Based Trees (CBT version 2) Multicast Routing – Protocol 

Specification,” RFC 2189, Internet Engineering Task Force, September 1997. 

[24] K.Chi, C. Tseng and T. Huang, “IP Multicast Support in Mobile Interworks,” Journal 

of Computers: 1-21, 2006. 

[25] P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig, J. Mahdavi, G. 

Montenegro, J. Touch and L. Wood, “Advice for Internet SubnetworkDesigners,” RFC 

3819, Internet Engineering Task Force, July 2004. 

[26] T. C. Schmidt, M. Wahlisch, “Roaming Real-Time Applications – Mobility Services 

in IPv6 Networks,” Proceeding TERENA Networking Conference, 2003. 

[27] A. Adams, J. Nicholas and W. Siadak, “Protocol Independent Multicast – Dense Mode 

(PIM-DM): Protocol Specification (revised),” RFC 3973, Internet Engineering Task 

Force, January 2005. 

[28] F. Siddiqui and S. Zeadally, “Mobility management across hybrid wireless networks: 

trends and challenges,” Computer Communication., vol. 29, pp. 1363-1385, 2006. 

[29] J. Korhonen, U. N. Teliasonera, and V. D. Azaire, “Service Selection for Mobile 

IPv6,” RFC5149, February 2008. 

[30] D. Johnson, C. Perkins and J. Arkko, “Mobility support in IPv6,” RFC 3775, June 

2004. 

[31] T. C. Schmidt, M. Wahlisch, “Performance Analysis of Multicast Mobility in a 

Hierarchical Mobile IP Proxy Environment,” the TERENA Networking Conference, 

2004. 

[32] H. Soliman, Mobile IPv6: Mobility in a Wireless Internet, Addison-Wesley, USA: 

2004. 



192 
 

[33] V. Chikarmane, C. L. Williamson, R. B. Bunt and W. L. Mackrell, “Multicast support 

for mobile hosts using Mobile IP: Design issues and proposed architecture,” Mobile 

Networks and Applications Baltzer Science Publishers BV 3: 365-379, 1998. 

[34] B. Balavenkatesh, K. A. B. Krishnan, S. Ramkumar, V. B. Hency, and D. Sridharan, 

“Enhancement of qos of voip over heterogeneous networks by improving handover speed 

and throughput,” Proc. IEEE International Conference on Advances in Computing, 

Control, and Telecommincation Technologies, pp. 840-844, 2009. 

[35] A. Conta and S. Deering, “Internet Control Message Protocol (ICMPv6) for the 

Internet Protocol version 6 (IPv6) Specification,” RFC2463, Dec 1998. 

[36] S. Jeon, N. Kang, and Y. Kim, “Mobility management based on proxy mobile ipv6 for 

multicasting services in home networks,” IEEE Trans. On Consumer Electronics, pp. 

1227-1232, Jun. 2009. 

[37] W. Run-liu, and Y. Yun-Hui, “Mobile IP Multicast Routing Algorithm by Using Super 

Node Set,” 2012 Fourth International Conference on Computational and Information 

Sciences (ICCIS), August 2012. 

[38] H. Holbrook, B. Cain and B. Haberman, “Using IGMPv3 and MLDv2 for Source-

Specific Multicast,” Inter Draft, October 2003. 

[39] S. Figueiredo, S. Jeon and R.L. Aguiar, “Empowering IP Multicast for Multimedia 

Delivery over Heterogeneous Mobile Wireless Networks,” 2014 IEEE Conference on 

Computer Communication Workshops (INFOCOM WKSHPS), May 2014. 

[40] I. Romdhani, M. Kellil, and H. Lach, “IP mobile multicast,” IEEE communications 

surveys, volume6, No.1, 2004. 

[41] P. Savola, “IPv6 multicast deployment issues,” Internet draft, February 2004. 

[42] Y. LI, W. Chen, L. Su, D. Jin, and L. Zeng, “Proxy mobile ipv6 based multicast 

listener mobility architecture,” Proc. IEEE Wireless Communications and Networking 

Conference (WCNC2009), IEEE press, Apr. 2009. 



193 
 

[43] S. Yang and W. Chen, “Sip multicast-based mobile quality-of-service support over 

heterogeneous ip multimedia subsystem,” IEEE trans. Mobile Computing., vol. 7, pp. 

1297-1310, November 2008. 

[44] S. Mohanty, “A new architecture for 3g and wlan integration and inter-system 

handover management,” Wireless Netw., vol. 12, pp. 733-745, 2006. 

[45] T. Melia, Ed, "Mobility Services Transport: Problem Statement", RFC 5164, Internet 

Engineering Task Force, March 2008. 

[46] Y. Kim, and S. Han, “Proxy Mobile IP Extension for Mobile Multimedia Multicast 

Services,” 6th IEEE Consumer Communications and Networking Conference (CCNC), 

January 2009. 

[47] E. Stevens-Navarro, V. W.S. Wong, and Y. Lin, “A vertical handover decision 

algorithm for heterogeneous wireless networks,” Proc. IEEE Wireless Communication 

and Networking Conference (WCNC’07), IEEE Press, Mar. 2007. 

[48] S. Park, Y. Won, J. Kim, I. Jung, S. Jo, W. Ryu and J. Chae, “A Network-Based 

Mobile Multicast Framework for Heterogeneous IP-Based Network,” 2013 International 

Conference on Information Science and Applications (ICISA), June 2013. 

[49] C. Chen, S. Wang, Y. Tsai, and H. Chen, “A framework of multicast key agreement 

for distributed user on 3g-wlan,” Proc. IEEE 5th International Joint Conference on INC, 

IMS and IDC, pp. 2062-2068, 2009. 

[50] J. Lee and T. Ernst, “Fast PMIPv6 Multicast Handover Procedure for Mobility-

Unaware Mobile Nodes,” 2011 IEEE 73rd Vehicular Technology Conference (VTC 

Spring), 2011. 

[51] S. Mohanty, “A new architecture for 3g and wlan integration and inter-system 

handover management,” Wireless Netw., vol. 12, pp. 733-745, 2006. 

[52] S. Yang and W. Chen, “Sip multicast-based mobile quality-of-service support over 

heterogeneous ip multimedia subsystem,” IEEE trans. Mobile Computing., vol. 7, pp. 

1297-1310, November 2008. 



194 
 

[53] Y.Y. An, B.H. Yae, K.W. Lee, Y.Z. Cho, and W. Y. Jung, “Reduction of handover 

latency using MIH services in MIPv6,” Proc. 20th International Conference on Advanced 

Information Networking and Applications (AINA’06), 2006. 

[54] T. Nguyen, “On the Efficiency of Dynamic Multicast Mobility Anchor Selection in 

DMM: Use Cases and Analysis,” 2014 IEEE International Conference Communications 

(ICC), 2014. 

[55] T. Nguyen and C. Bonnet, “Load Balancing Mechanism for Proxy Mobile IPv6 

networks: An IP Multicast perspective,” 2014 International Conference on Computing, 

Networking and Communications (ICNC), February 2014. 

[56] Amitabh, K. (2010). Implementing Mobile TV; 2nd Edition. Focal Press. 

[57] 3GPP2, “IP Network Architecture Model for CDMA2000 Spread Spectrum Systems,” 

Technical Report S.R0037, 3rd Generation Parnership Project 2 (3GPP2), 2002. 

[58] A. Alexiou, C. Bouras and A. Papazois, “An Efficient Mechanism for UMTS 

Multicast Routing,” Mobile Network Appl, Springer 15:802-815, 2010. 

[59] L. Wang, S. Gao and J. Guan, “Multicast Source Mobility Support Schemes in 

PMIPv6 Networks,” 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), 2013. 

[60] Y. Baddi and E. Kettani, “MC-PIM-SM: Multicast routing protocol PIM-SM with 

Multiple Cores Shared tree for Mobile IPv6 Environment,” 2012 2nd International 

Conference on Innovative Computing Technology (INTECH), September 2012. 

[61] "Draft IEEE Standard for Local and Metropolitan Area Networks: Media Independent 

Handover Services", IEEE LAN/MAN Draft IEEE P802.21, July 2007. 

[62] T. Melia, Ed., Bajko, G., Das, S., Golmie, N., and JC. Zuniga, "IEEE 802.21 Mobility 

Services Framework Design (MSFD)", RFC 5677, Internet Engineering Task Force, 

December 2009. 

[63] J. Lee, T. Ernst, D. Deng and H. Chao, “Improved PMIPv6 Handover Procedure for 

Consumer Multicast Traffic,” IET Communications, volume:5, Issue: 15, page: 2149 – 

2156, 2011. 



195 
 

[64] M. Waehlisch and T.C. Schmidt, “Between underlay and overlay: on deployable, 

efficient, mobility-agnostic group communication services,” Internet Research,17(5), pp. 

519-534. November 2007. 

[65] H. Omar, T. Saadawi and M. Lee, “Multicast support for Mobile-IP with Hierarchical 

Local Registration Approach,” 3rd ACM Wireless mobile multimedia, Boston, 2000. 

[66] K. Namee and N. Linge, “A Framework of Multicast Mobility in Heterogeneous 

Networks”, Proceeding of the 11th Annual Postgraduate Symposium on the Convergence 

of Telecommunications, Networking and Broadcasting (PGNet2010), Liverpool UK, 

pp.32-36, 2010. 

[67] K. Namee, and N. Linge, “Designing a Protocol to Support Multicast Mobility in IPv6 

Network”, Proceeding of the 12th Annual Postgraduate Symposium on the Convergence 

of Telecommunications, Networking and Broadcasting (PgNet2011), Liverpool UK, June 

2011. 

[68] A. Helmy, “A multicast-based protocol for ip mobility support,”  Proc. Networked 

Group Communication (NGC2000), pp. 49-58, 2000. 

[69] ITU-T Recommendation, “G.114 - one-way transmission time,” Telecommunication 

union standardization sector of ITU, May 2003. 

[70] Zheng, L., &Hongji, Y. (2012). Unlocking the Power of OPNET Modeler. Cambridge 

University Press. 


	1_Cover_Hardbound
	2_Contents_Hardbound
	3_Acknowledgements_Hardbound
	4_Abbreviations_Hardbound
	5_ABSTRACT_Hardbound
	6_Chapter 1 Introduction_Hardbound
	1.1 Background
	1.2 Research Aim
	1.3 Research Objectives
	1.4 Research Questions
	1.5 Contribution to Knowledge
	1.6 Overview of Research Methodology
	1.7 Structure of the Thesis

	7_Chapter 2 Literature Survey_Hardbound
	2.1 Introduction
	2.2 Multicast Delivery
	2.2.1 Benefits of Multicast Delivery
	2.2.2 Functions of Multicast Delivery
	2.3 Multicast Protocols in IP Networks
	2.3.1 MLD Protocol
	2.3.2 PIM Protocol
	2.4 Multicast Mobility in WiFi Network
	2.4.1 Overview of WiFi Network
	2.4.2 Mobility in WiFi Networks
	2.4.2.1 Mobile IPv6 Protocol
	2.4.2.2 ICMPv6 Protocol  
	2.4.3 Multicast Mobility in IPv6 WiFi Network
	2.4.4 Multicast Mobility in UMTS Network
	2.5 Multicast Mobility Problems in WiFi Networks
	2.5.1 Multicast Mobility Problems
	2.5.2 Overview of Handover Problem
	2.5.2.1 The Handover Process  
	For the Network Discovery Phase, the MN must search for available reachable wireless networks. In this state most MNs should always keep all network interfaces on. However, keeping network interfaces on all of the time becomes a weakness because it consumes battery power without any benefit of delivering real data.
	2.5.2.2 Handover Decision Phase
	2.5.2.3 Handover Implementation
	2.5.3 Handover within WiFi Networks
	2.5.4 Multicast Handover in Wireless Networks
	2.6 Summary

	8_Chapter 3 A New Framework for MulticastMobilityInWiFiNetworks_Hardbound
	3.1 Introduction
	3.2 Network Architecture
	3.3 Protocol Overview
	3.4 Process Diagram
	3.5 Modified Protocol Message
	3.5.1  PIM Protocol Message
	3.5.2  ICMP Message
	3.5.3  Mobile IP Message
	3.5.4  IGMP Message
	3.6 Summary

	9_Chapter 4 A Framework Simulation in OPNET Modeler_Hardbound
	4.1 Introduction
	4.2 Network simulation
	4.2.1 Basic Structure within OPNET Modeler
	4.3 Implementation of the Proposed Framework in OPNET Modeler
	4.3.1 Network Architecture
	4.3.2 Process Model
	4.4 Summary

	10_Chapter 5 Simulation ScenariosResultEvaluation_Hardbound
	5.1 Introduction
	5.2.1 Scenario1: Scenario Description
	5.2.2 Scenario1: Simulation Topology
	5.2.3 Scenario1: Simulation Results and Evaluation
	5.3 Scenario 2: Simple Network
	5.3.1 Scenario2:  Scenario Description
	5.3.2 Scenario 2: Network Topology
	5.3.3 Scenario2: Simulation Results and Evaluation
	5.4 Scenario 3: Mobile IP and multicast Re-join
	5.4.1 Scenario3:  Scenario Description
	5.5 Scenario 4: Care of Address in Advance
	5.5.1 Scenario4:  Scenario Description
	5.5.2 Scenario4: Simulation Results and Evaluation
	5.6 Scenario 5: Same Multicast Group  
	5.6.1 Scenario5:  Scenario Description
	      5.6.2 Scenario5:  Network Topology
	      5.6.3 Scenario5:  Simulation Results and Evaluation
	5.7 Scenario 6: Multi-Hops  
	5.7.1 Scenario 6:  Scenario Description
	      5.7.2 Scenario 6:  Network Topology
	5.7.3 Scenario 6:  Simulation Results and Evaluation
	5.8 Scenario 7: Handover  
	5.8.1 Scenario 7:  Scenario Description
	      5.8.2 Scenario 7:  Network Topology
	5.8.3 Scenario 7: Simulation Results and Evaluation
	5.9 Scenario 8: Multiple Networks 
	5.9.1 Scenario 8:  Scenario Description
	      5.9.2 Scenario 8:  Network Topology
	5.9.3 Scenario 8: Simulation Results and Evaluation
	5.10 Scenario 9: Complex Networks 
	5.10.1 Scenario 9:  Scenario Description
	5.10.2 Scenario 9:  Network Topology
	5.10.3 Scenario 9: Simulation Results and Evaluation
	5.11 Scenario 10: Internet 
	5.11.1 Scenario 10:  Scenario Description
	5.11.2 Scenario 10:  Network Topology
	5.11.3 Scenario 10: Simulation Results and Evaluation

	11_Chapter 6 Conclusion and Future Work_Hardbound
	6.1 Conclusion
	 6.2 Recommendation for Future Work

	12_Appendix_Hardbound
	13_Appendix B_Hardbound
	14_References_Hardbound
	REFERENCES


