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ABSTRACT 

 

Bayesian networks are becoming an increasingly important area for research and have been 

proposed for real world applications such as medical diagnoses, image recognition, and fraud 

detection. In all of these applications, accuracy is not sufficient alone, as there are costs 

involved when errors occur. Hence, this thesis develops new algorithms, referred to as cost-

sensitive Bayesian network algorithms that aim to minimise the expected costs due to 

misclassifications. The study presents a review of existing research on cost-sensitive learning 

and identifies three common methods for developing cost-sensitive algorithms for decision 

tree learning. These methods are then utilised to develop three different algorithms for 

learning cost-sensitive Bayesian networks:  (i) an indirect method, where costs are included 

by changing the data distribution without changing a cost-insensitive algorithm; (ii) a direct 

method in which an existing cost-insensitive algorithm is altered to take account of cost; and 

(iii) by using Genetic algorithms to evolve cost-sensitive Bayesian networks.  

This research explores new algorithms, which are evaluated on 36 benchmark datasets and 

compared to existing cost-sensitive algorithms such as MetaCost+J48, and MetaCost+BN as 

well as an existing cost-insensitive Bayesian network algorithm. The obtained results exhibit 

improvements in comparison to other algorithms in terms of cost, whilst still maintaining 

accuracy. In our experiment methodology, all experiments are repeated with 10 random trials, 

and in each trial, the data divided into 75% for training and 25% for testing. The results show 

that: (i) all three new algorithms perform better than the cost-insensitive Bayesian learning 

algorithm on all 36 datasets in terms of cost; (ii) the new algorithms, which are based on 

indirect methods, direct methods, and Genetic algorithms, work better than MetaCost+J48 on 

29, 28,  and 31 out of the 36 datasets respectively in terms of cost; (iii) the algorithm that 

utilise an indirect method performs well on imbalanced data compared to our two algorithms 

on 8 out of the 36 datasets in terms of cost; (iv) the algorithm that is based on a direct method 

outperform  the new algorithms on 13 out of 36 datasets in terms of cost; (v) the evolutionary 

version of the algorithm is better than the other algorithms, including the use of the direct and 

indirect methods, on 24 out of the 36 datasets in terms of both costs and accuracy; (vi) all 

three new algorithms perform better than the MetaCost+BN on all 36 datasets in terms of 

cost. 
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Chapter 1: Introduction  

 

This chapter presents the thesis introduction and methodology. Section 1.1 provides an 

introduction of classification algorithms and Bayesian network algorithms. Section 1.2 

presents the problem definition and the motivation for study. Section 1.3 presents the 

research questions, while Section 1.4 describes the research methodology that used. Section 

1.5 explains the research hypothesis, aims and objectives and finally, Section 1.6 outlines the 

structure of the thesis. 

 

1.1 Introduction 

Classification is one of the most important methods in data mining, which plays an essential 

role in data analysis and pattern recognition, and requires the construction of a classifier. A 

classifier can predict the class label for an unseen instance from a set of attributes. As 

Friedman (1997) states:  

“The induction of classifiers from datasets of pre-classified instances is a central 

problem in machine learning”.  

Many methods and algorithms have been introduced to enable systems to learn classification 

models, such as decision trees, decision graphs, Bayesian networks, neural networks, and 

decision rules. In the last decade, graphical models have become one of the most popular 

tools to structure uncertain knowledge. Bayesian Networks are becoming an increasingly 

important area of research and are applied in several fields of artificial intelligence (Pourret et 

al., 2008; Kenett, 2012). There are a range of names used for probabilistic networks, 

including: belief networks, knowledge maps, probabilistic causal networks, causal networks, 

or probabilistic networks, causal probabilistic networks, Bayesian networks, Probabilistic 

Cause-Effect Models, and Probabilistic Influence Diagrams (Pearl, 1988). One of the most 

powerful characteristics of Bayesian networks is their ability to update the beliefs of each 

random variable via bi-directional propagation of new information through the whole 

structure. 
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An important feature of Bayesian networks is the way it propagates the impact of new 

evidence, providing each node with a belief vector that is consistent with the axioms of 

probability theory (Pearl, 1988; 2014). For example, the diagram in Figure 1.1 shows a 

simple example, presented by Pearl (2014), to model an alarm problem with a Bayesian 

network: if somebody calls you and informs you that your alarm has gone off, you might 

think there is a burglar in your home, and you will go to your home directly. On your way, if 

you hear a radio announcement that there was an earthquake nearby, you might reconsider 

given that the earthquake may have caused the alarm. In particular, from this information, the 

BNs can propagate the impact of evidence from effect to cause (Radio Earthquake), then 

from cause to effect (Earthquake  Alarm), and then again from effect to cause (Alarm  

Burglary). In this figure, A represents Alarm and B represents Burglary, the impact of the 

evidence from the Radio announcement will be to update the beliefs so that AB less 

credible. 

 

 

 

 

 

 

Figure 1.1: Propagation and the impact of evidences (Pearl, 1988; 2014). 

 

Over the last few years, Bayesian networks have become very popular. Bayesian networks 

and their algorithms are explained by Pearl (2001), who won the Association for Computing 

Machinery Turing Award in 2012. Moreover, Bayesian networks have been successfully 

applied in different areas to create consistent probabilistic representations of uncertain 

knowledge in several fields, including: medical diagnosis (Spiegelhalter et al., 1989; 

Heckerman et al., 1995), image recognition (Booker and Hota, 2013), language 

understanding (Charniak and Goldman,1989), search algorithms (Hansson and Mayer, 1989). 

In particular, the book by Pourret et al. (2008) and Kenett (2012) describes 21 applications of 

Bayesian networks to illustrate their wide range of applications in clinical decision support, 

A 
Alarm  Burglary  

 
Radio  

announcement 
 Earthquake   

B 
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complex genetic models, crime risk factor analysis, inference problems in forensic science, 

terrorism risk management, credit rating of companies, and enhancing human recognition. 

  

In machine learning algorithms, several studies have mentioned that, learning processes 

should take account of the costs involved in decision-making (Breiman et al., 1984; 

Turney,1995, 2000; Zadrozny, and Elkan, 2001). Turney (2000) lists the kind of costs that 

should be considered, such as cost of misclassification, the cost of test, the computational 

cost, data acquisition cost, active learning cost, human computer interaction cost, and cost of 

teacher. Amongst these, the misclassification cost is one of the most important. In fact, 

misclassification cost happens when, the examples that belong to negative class are classified 

to positive class (FP; classifying a negative example as positive), or the examples that belong 

to positive class are classified to negative class (FN; classifying a positive example as 

negative). For example, in a credit card fraud detection application, if the system classifies a 

transaction of a customer as a non-fraud when fraud has occurred, it is likely to result in 

financial loss. In contrast, if a system classifies a transaction as a fraud when it is not the 

costs would involve some further checks before proceeding with the transaction.   

This observation has led to many recent studies focusing on cost-sensitive learning 

algorithms. Historically, most of the cost-sensitive algorithms developed have focussed on 

learning decision trees, with a recent survey comparing over 50 algorithms (Lomax and 

Vadera, 2013). In contrast, little attention has been paid to developing cost-sensitive Bayesian 

networks (Gao, et al., 2008; Nashnush and Vadera 2014; Jiang and Wang, 2014; Kong et al. 

2014). Hence, the main focus of this thesis is to study whether it is possible to develop a new 

machine learning algorithm to learn Bayesian Networks that can perform cost-sensitive 

classifications. 

 

1.2 Motivation 

Inductive learning techniques have been used successfully to build classifiers and obtain good 

prediction results in a number of applications, including Customer Target Marketing 

(Rygielski et al., 2002), Medical Disease Diagnosis (Cios and Moore, 2002), Supervised 

Event Detection (Zhang et al., 2010), Multimedia Data Analysis (Kantardzic, 2011), 

Biological Data Analysis (Bishop, 2006), and Social Network Analysis (Aggarwal,2014). In 
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particular, in traditional machine learning classification algorithms such as decision tree 

induction, neural networks, Bayesian networks, the aim is to build a model using a training 

set, and then use the model for classifying unseen cases. Figure 1.2 shows such an example, 

where some training data is used as input to a learning algorithm, which classifies whether 

there has been a fraudulent transaction. Historically, most of these techniques only focus on 

predicting correct results and maximising accuracy. More recently, as mentioned above, there 

has been recognition that costs play an important role and should be taken into account when 

developing classification algorithms. In particular, in real world applications, one should take 

into consideration misclassification costs (Turney,2000). 

 

 

 

 

 

 

 

 

 

Figure 1.2: How cost-insensitive classification algorithms work (Fan et al., 2002). 

 

Cost-sensitive learning is a type of learning in data mining that takes account of costs such as 

misclassification costs, test costs, or any other costs into consideration (Turney, 2000), and 

aims to minimize total costs by treating the different classification errors differently (Ling et 

al., 2006). On the other hand, cost-insensitive learning, does not take the misclassification 

costs into consideration and focuses on accuracy only.  

Therefore, the performance of any AI application should be balanced between accuracy and 

cost, as through accuracy alone is not enough. In particular, in real world problems, the data 

is imbalanced, where the most expensive errors tend to be associated with the rare cases, 

while the most cheapest errors tend to be associated with the frequent cases, and  a learner 

will learn from very highly skewed data, thus, a cost-insensitive classifier that aims to 
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increase the accuracy will be biased to classify instances to most frequent case (He and 

Garcia, 2009). The following examples illustrate the need to take account of costs: 

 To detect a fraudulent customer, the cost of misclassifying a customer who commits 

fraud (rare class) is greater than the cost of misclassifying a customer who is non-

fraudulent (common class). 

 Also, in a medical application, the cost of misclassifying a patient who has cancer is 

greater than the cost of misclassifying a patient who does not have cancer.  

 

In these types of domain, building a classifier that does not consider the cost of 

misclassification is unlikely to perform well because it will be biased towards the instances 

under the category of the frequent class, which will result in producing a useless classifier. 

Thus, cost-sensitive learning algorithms that take costs into consideration and deal with 

different types of cost differently are essential (Charles and Victor, 2008). 

 

Hence, a number of authors, who recognised the need for taking account of costs, have 

focussed on developing cost-sensitive decision tree learning algorithms, including : Cost-

Minimization (Pazzani et al., 1994), Decision Tree with Minimal Costs (Ling et al., 2004), 

EG2 (Núñez, 1991), CS-ID3 (Tan and Schlimmer, 1989), IDX (Norton 1989), CS-C4.5 

(Frietas et al., 2007), CSNL (Vadera, 2010). All of these algorithms use the cost directly 

during the algorithm process. In contrast, some of the algorithms use the cost indirectly, 

before and after using the algorithm, such as Costing (Zadrozny et al., 2003b), C4.5CS (Ting, 

2002), MaxCost (Margineantu and Dietterich, 2003), MetaCost (Domingos, 1999), 

CostSensitiveClassifier (CSC) (Witten and Frank, 2005),and AdaCost (Fan et al., 1999).  

 

Although Bayesian networks have been successfully applied, there has been little, but no 

research on optimising them for cost-sensitive learning. Hence, this thesis explores the 

potential for learning Bayesian networks for cost-sensitive classification.    

 

1.3 Research aims and objectives  

The primary hypothesis of this research is that, it is possible to develop an algorithm to learn 

cost-sensitive Bayesian networks, which are more cost-effective on average than current 
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algorithms, including existing cost-sensitive decision learning tree algorithms, existing cost-

sensitive Bayesian network learning algorithms, and existing cost-insensitive Bayesian 

network learning algorithms. 

To check this hypothesis, this research aims to develop methods that learn Bayesian networks 

that take account of misclassification costs and then utilise empirical methods to assess the 

extent to which the hypothesis is true. The specific research objectives are: 

1. To review the background of Bayesian networks learning algorithms, and analyse the 

types of this algorithm. 

2. To review the literature on cost-sensitive learning, analyse the most significant issues 

in current cost-sensitive learning algorithms, and identify the strategies used. 

3. To develop new cost-sensitive Bayesian network learning algorithms that aim to 

overcome the issues identified, and are based on methods of cost-sensitive learning 

algorithms such as direct, indirect, and optimization methods. 

4. To evaluate the new algorithms against existing cost-sensitive algorithms and measure 

performance, and compare the algorithms in terms of accuracy, and cost 

minimization. 

 

 

1.4 Research questions 

Given the above aims and objectives, the following key questions need to be addressed when 

attempting to design algorithms to learn Bayesian networks that take account of costs. In 

relation to the research aims and objectives, each question is answered in Section 1.3:  

 

Q1. How can a learning Bayesian algorithm involve misclassification costs? 

This question is answered in objectives 1, 2 and 3 by analysing Bayesian networks 

algorithm, and based on the methods that used to involve costs into decision trees 

algorithms. Hence, the new Bayesian networks algorithms can involve 

misclassification costs in three different methods; direct, indirect, and optimization 

method.    

 

Q2. At which stage should Bayesian networks include these costs: before construction, 

during construction, during learning parameters or after final construction? 

This question is addressed in objectives 1, 2 and 3 by analysing the steps of existing 
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Bayesian networks algorithm (learning structure, and learning parameters), and based 

on the ways that used in cost-sensitive decision trees algorithms. Hence, new 

Bayesian networks algorithms can include misclassification cost before construction 

by using sampling approach; or during learning structure and parameters by using 

amending approach.  

 

Q3. How can the costs be balanced against the need to maintain the accuracy rate? 

This question is answered in objectives 3, and 4 by including the costs in the right 

place without changing the performance of the algorithms then evaluate these 

algorithms against existing cost-insensitive and sensitive algorithms.  

 

Q4. What are the weaknesses of existing cost-sensitive Bayesian algorithms? 

This question is addressed in objectives 2 by analysing the most significant issues in 

current cost-sensitive Bayesian networks algorithms.  

 

 

1.5 Research methodology 

This section describes the research methodology that used in this research, and shows the 

outline of the methodology adopted in this thesis. As Rajasekar et al. (2006) describe, there 

is a difference between research methods, and research methodology. Essentially, research 

methods represent all the methods, procedures, and schemas, which are used by a researcher 

during a research study. For example, these methods might be collecting and sampling data, 

using some hypotheses, and finding a solution to a problem. Also, any research that is based 

on experiments requires collection of facts, measurements, hypotheses, and observations, 

and these are called scientific research methods. Given the nature of this thesis, which is 

focussed on objective quantitative measures (Rajasekar et al., 2006; Kothari, 2011), this 

PhD research uses the quantitative research methodology because it is based on testing new 

hypotheses.  

 

The main phases of the research methodology used in this study are shown in Figure 1.3, 

where these phases are followed to achieve the research objectives: 
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1. Starting with reviewing the background of Bayesian networks. The objective 1 can be 

achieved in this phase.  

2. Identify the alternative cost-sensitive methods by studying the literature review of 

existing cost-sensitive algorithms that based on three methods; indirect; direct, and 

optimization method. Where, the objective 2 can be achieved in this phase.  

3. Design new algorithms that aim to minimize misclassification costs, these algorithms 

are based on three methods that show in phase 2.  

4.  Implement  CS-BN algorithms, where, this study used the open source algorithms in the 

data mining system WEKA, which were developed by Hall et al. (2009). The algorithms 

are implemented in java NetBeans. 

5. The empirical evaluation methodology adopted to split the datasets into 75% for training 

and 25% for testing, and to apply the algorithms10 times randomly with 16 

misclassification costs from 1 to 4 for each class label. Then, the average performance 

of each algorithm with standard errors are calculated 10 times (Gurland and Tripathi, 

1971). 

6. Test and analyse the algorithm’s performance and reliability; to test the algorithms, 

benchmark datasets from UCI repository datasets (Asuncion and Newman, 2007) have 

been used to simulate problems of cost-insensitive algorithms. 

7. The algorithms are modified to improve the performance. These algorithms are 

modified throughout the study, feedback from the supervisor, examiners, assessments, 

conferences, and journals have been taken into account. Hence, the objectives 3 can be 

achieved in phases 3 ,4, 5,6, and 7. 

8. Evaluate the algorithms and compare them with existing cost-sensitive and insensitive 

algorithms such as MetaCost+J48, MetaCost+BN, and cost-insensitive Bayesian 

networks algorithm. Hence, the objectives 4 can be achieved in this phases. 
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Figure 1.3: Research methodology. 

 

1.6 Thesis organisation 

The thesis is organised into six chapters, set out as follows:  

Chapter 1: Thesis introduction and methodology 

This chapter presents a brief introduction to the research, introducing the reader to the 

problem statement and motivation, potential contribution, research methodology, research 

hypothesis, aims and objectives.   

 

8. Evaluate the algorithms and compare them with 

existing cost-sensitive and insensitive algorithms 

CS-BN via sampling 

Changing data 

distribution using  

(Folk theorem) 

CS-BN via amending  

Modifying statistical measurements in BN algorithm  

 During learning BN structure by changing 

MDL measurement 

 During Learn BN parameters by changing 

probability estimation . 

CS-BN via Genetic 

Algorithms  

By using Gas, create BN 

structures and choose the 

best one that has minimum 

fitness function cost 

1.  Reviewing Bayesian network algorithms 

2.  Identify the alternative cost-sensitive methods  

 

 Cost-sensitive based on direct methods. 

 Cost-sensitive based on indirect methods. 

 Cost-sensitive based on optimization method. 

 

 

4.  Developing and implementing CS-BN algorithms on 

Java NetBeans, based on using WEKA open source 

6.  Test and analyse the algorithm’s performance and 

reliability. 
 

7. Modification to 

improve 

performance 

3. Design new algorithms that aim to minimize costs of BN algorithm 

5. Apply the most affective empirical evaluation method, 

75% training, %25 testing; that repeated 10 times. 
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Chapter 2: Background on Bayesian networks 

This chapter presents the basic of data classification process, the background to Bayesian 

network learning algorithms and basic laws of probabilities. It shows types of Bayesian 

network algorithms with examples, how they learn a BNs structure, and how they learn the 

parameters. 

 

Chapter 3: Survey of existing cost-sensitive algorithms  

This chapter includes a survey of existing cost-sensitive learning algorithms; it shows the 

categories of cost-sensitive learning algorithms, direct, indirect, and optimization algorithms, 

and literature review in cost-sensitive Bayesian network algorithms. 

 

Chapter 4: The development of cost-sensitive Bayesian network learning  

This chapter presents the development of three new algorithms for learning cost-sensitive 

Bayesian networks; these algorithms based on, (i) indirect methods by changing the data 

distribution to reflect the costs, (ii) direct methods by amending an existing algorithm, (iii) 

optimization method by using Genetic algorithms to create a BN structures that has minimum 

fitness function cost. 

 

Chapter 5: An empirical evaluation of the new algorithms for learning cost-sensitive 

Bayesian networks 

This chapter presents a comprehensive empirical evaluation, including a comparison with 

existing cost-sensitive/ insensitive learning algorithms, and finally, evaluating and analysing 

their performance by using the average cost and accuracy rates as measurements. 

 

Chapter 6: Conclusions and future works  

This chapter summarises the aims of this work and concludes with the achievements, 

including reflections on the extent to which the research objectives have been met and future 

developments that may be necessary. 

 

Bibliography: It presents all the references in this thesis. 

 

Appendix: It presents real examples to learn BNs, and class implementations diagrams  of our 

java code. 
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Chapter 2: Background on Bayesian Networks 

 

This chapter presents an overview of Bayesian networks and the basic laws of probabilities. 

Section 2.1 describes the basics of the data classification process. Section 2.2 presents an 

overview of Bayesian networks, while Section 2.3 presents the principles of Bayesian 

networks such as probability, and inference. Section 2.4 presents algorithms for learning 

Bayesian networks. Finally, a summary of the chapter is presented in Section 2.5. 

 

2.1 Data Classification  

Data mining is an active research area involving the development and analysis of algorithms 

for extracting interesting knowledge and patterns from real-world datasets and summarizing 

it into useful information (Witten and Frank, 2005). Classification is one of the most 

important methods in data mining which plays an important role in data analysis, pattern 

recognition, and decision making (Aggarwal, 2014).   

 

Classification requires the construction of a model that can be used to predict a class label for 

an unseen instance from a set of attributes. Classification algorithms attempt to learn the 

relationship between a set of variables (features) and a class label (target variable). In 

particular, classification algorithms learn from training instances to construct a model; where 

each instance is associated with a known class label. Then, in a testing phase, the model can 

be used to assign  labels to unlabelled test instances (Aggarwal, 2014). Figure 2.1 shows how 

the classification process can be divided into two steps: 

 

i. Model construction: training data is used to create a model, where the model is 

represented in some forms such as classification rules, decision trees, Bayesian 

networks, or mathematical formulae. 

 

ii. Model usage: the model is used for classifying unseen or unknown instances, and 

estimating the accuracy of the model based on the known class label of test instance. 
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Figure 2.1: Classification process (Han et al., 2015). 

  

Classification algorithms have been used in several applications, such as: customer target 

marketing (Rygielski et al., 2002), medical disease diagnosis (Cios and Moore, 2002), 

supervised event detection (Zhang et al., 2010), multimedia data analysis (Kantardzic, 2011), 

biological data analysis (Bishop, 2006), and social network analysis (Aggarwal, 2014). There 

are several techniques used for data classification such as:  

 Decision trees algorithms that use a decision tree that is learned from labelled training 

instances (Quinlan, 1986).  

 Rule-based algorithms for classifying examples using a collection of ”if -then” rules 

(Cohen,1995). 

 Instance based algorithms that perform classification using only specific instances 

(Aha et al., 1991). 

 Neural networks algorithms that use a computational model based on biological 

neural networks (Funahashi, 1989). 
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 Bayesian networks algorithms that are statistical classifiers and are based on Bayes 

theorem (Pearl, 1988; 2014). 

This thesis focuses on Bayesian networks, and hence the following sections describe the 

foundation for Bayesian networks. Section 2.2 provides an introduction to the main concept, 

Section 2.3 describes the main principles of probabilities used when performing 

classification, and Section 2.4 describes algorithms that learn Bayesian networks.  

 

2.2 Overview of Bayesian networks  

Bayesian networks, which were invented in 1988 by Judea Pearl, changed the focus of AI 

from logic to probability. In the last decade, Bayesian networks have become one of the most 

popular tools to structure uncertain knowledge. Indeed, Bayesian networks have been 

successfully used in a number of fields including medical diagnostic systems (Spiegelhalter et 

al., 1989; Heckerman et al., 1995), in NASA AutoClass project for data analysis and control 

the space shuttle (Morris, 2003), Fraud detection systems(Maes et al., 2002), and Speech 

recognition systems (Zweig and  Russell, 1998).  

A Bayesian network can be used as a classifier by computing a posterior probability of a set 

of labels given the observable features and the classifier classifies new instance according to 

the probability of the class label (Sebe et al., 2005). In particular, a Bayesian network 

classifier aims to find the class that has the highest probability given an observed case 

(Salama and Freitas, 2013). According to Heckerman (2008) Bayesian networks have several 

advantages for data modelling. Firstly, the model of BNs encodes dependencies among all 

nodes and it can handle situations where some data entries are missing. Secondly, Bayesian 

statistical methods offer an efficient and principled approach for avoiding the overfitting of 

data. Thirdly and finally, Bayesian networks do not need to determine the full joint 

distributions, which will be described later in Section 2.3, as they merely determine local 

conditional distributions and the network can automatically represent the joint distribution. 

Bayesian networks are powerful tools for knowledge representation and inference that encode 

dependence and independence relationships between variables. In particular, a Bayesian 

network model is a probabilistic model that represents variables (continues or discrete) of 

data as nodes, and the correlations between these nodes represents the joint probability 

distribution between variables (nodes). Obviously, the edges between nodes represent 
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(in)dependence between nodes that will be described later in Section  2.3.1). Where a direct 

edge represents the direct influence between nodes (statistical dependency), while an indirect 

edge of nodes that are not connected, represents the indirect influence between nodes 

(statistical conditional independency) (Corani et al., 2012), where direct and indirect 

influence will be described later in Section 2.3.2.2. 

 

More specifically, in BNs’ structures each node has a set of values, and the relationship 

between the node and its parents is defined by a conditional probability table (CPT). This 

table determines the probabilities of the values between a stated node given its parents. For 

example, Figure 2.2 shows a simple fraud detection Bayesian network, with CPTs of 

fraudulent transactions which are more likely to happen when the card holder is travelling 

abroad because tourists are targets for thieves, as travel and fraud are causes for foreign 

purchase. Invariably, travel explains foreign purchase, thus is evidence against fraud, while 

the network has three nodes, representing Travel, Fraud, and Foreign purchase, respectively. 

The travel node, as being a parent node has a prior probability table that indicates the chances 

of someone travelling to be 0.05 and not travelling to be 0.95. Additionally, the table for the 

Fraud node shows the probability of fraud given values of its parent node, Travel. Thus, the 

probability of fraud for someone travelling is 0.01, and 0.002 if it is not travelling. While, the 

probability of no fraud for someone travelling is 0.99, and 0.998 if not travelling. This is very 

similar to the Foreign Purchase node.  

 

 

 

 

 

 

 

 

Figure 2.2: A simple Bayesian network for fraud detection (Ezawa and Schuermann, 2015) 

Given such a network, it can be used to update when evidence is made available. For 

example, if one knows that a person is travelling (Travel is True), the probabilities of Fraud 

 

 

Travel True False 

True 0.01 0.99 

False 0.002 0.998 

 

Fraud 

 
Foreign purchase 

True False 

0.05 0.95 

 

Travel 

Travel Fraud True False 

True True 0.90 0.10 

False True 0.10 0.90 

True False 0.90 0.10 

False False 0.01 0.99 
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given Travel to be true and false become 0.01 and 0.99 respectively. Also, the Foreign 

Purchase node is updated to 0.90, and 0.10 when the Foreign Purchase are true and false 

respectively.  

 

2.3 Principles of Bayesian networks 

This section describes the key principles of Bayesian networks, while, Section 2.3.1 

summarises some definitions from probability theory including Bayes rule which is central to 

Bayesian networks, and also presents the notions of dependence and independence. Section 

2.3.2 explains the basic of BNs, also how the information is propagated in BNs, and shows 

how to use statistical inference based on the Bayes rule to update the probability for a 

hypothesis as evidence is acquired. 

  

2.3.1 Definitions from probability theory 

This section describes the basic laws of probabilities and shows how to calculate the 

probability distribution between two events based on whether they are dependent or 

independent events. A probability function P(A) of an event A, represents the density 

function of A, while, a joint probability P(A,B) is the probability of two events, A and B, 

occurring together at the same time.  

 

2.3.1.1 Dependency events 

Formally, if two events are dependent, namely they do influence each other in any way, then: 

  𝑃(𝐴, 𝐵) =  𝑃(A ∩ B) =  P(A)  ∗  P(B after A)           (2.1)  where A, and B are dependent  

In particular, if the two events are considered dependent, then the outcome of the one event 

depends on the probability of the other event )Ben‐Gal, 2007). For example, if one has a bag 

that contains 4 balls green, 2 balls red, and 1 ball blue, where in each time we have to choose 

one ball without replacement, then each event is dependent on the other events as illustrated 

in Figure 2.3, and according to equation (2.1) the probability of choosing green and red is: 

P(Green, Red) =  P(Green)  ∗ P(Red after Green) =  
4

7
 ∗   

2

6
=  

8

42
 = 0.19 
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Figure 2.3: Illustration of three dependency events (Sawaal, 2015). 

 

2.3.1.2 Independency events 

Formally, if two events are independent, namely they do not influence each other in any way, 

then: 

𝑃(𝐴, 𝐵) =  P(A)  ∗  P(B)                   (2.2)  where A, and B are independent 

 

If the two events are considered independent, then subsequently each can occur individually 

and the outcome of one event does not rely on the other. Hence, this will occur if the fact A 

occurring does not affect the probability of B occurring (Ben‐Gal, 2007). For example, this 

can be noted if one has 2 events; choosing a random card from 5 cards, and rotating a wheel 

has 8 parts, where both of events are independent. According to equation (2.2), the 

probability of choosing card number 10 and rotating a wheel on part 6 is:  

P(Card 10, Wheel on 6) =  
1

5
∗   

1

8
=  

1

40
 = 0.025 

 

 

 

 

 

 

Figure 2.4: Illustration of two independency events (Sawaal, 2015). 

 

P(green)= 4/7 

P(Red)= 2/7 

P(blue)= 1/7 

P(green)= 3/6 

P(Red)= 2/6 

P(blue)= 1/6 

After choosing green 

without replacement 

 

 

P( card ,  wheel ) =         1/5          X                    1/8      =         1/40 
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2.3.1.3 Conditional probability 

If two events are dependent, then we have to use the concept of conditional probability. 

Conditional probability is the probability of an event (A) occurring, given that another event 

(B) has already occurred. The conditional probability reduces the sample space of giving the 

outcome. Formally, conditional probability can be defined by: 

P(A|B) =  
P(A ,B)

P(B)
               (2.3)     where A, and B are dependent.    

    P(A|B) =  P(A)               (2.4)    where A, and B are independent.  

 

 

 

 

 

Figure 2.5: Conditional probability example (Kountz et al., 2011). 

Bayes’s theorem was introduced by Thomas Bayes (1701 - 1761) and represents how the 

conditional probability of a set of possible causes for given an observed outcome. In 

particular, this theorem is used for statistical inference (Bolstad, 2013), and it is stated 

mathematically as: 

𝑃(𝐴|𝐵) =  
𝑃(B|A)𝑃(A)

𝑃(𝐵)
                         (2.5) 

Where:  

 A and B are events, and B is observed. 

 P(A) is  prior probability 

 P(B) is observed probability. 

 P(B|A) is a likelihood probability; the conditional probability of B given that A is true. 

 P(A|B) is a posterior probability; the conditional probability of A given that B is true, it 

reflects the belief about the hypothesis after B has been observed. 

 

For example, to calculate the probability of someone who has brown hair and given female, 

when given the Table 2.1: 

 

Given B, so what is 

the probability of A?  

P(A|B) is reduced the space of given outcome ,so giving B  

we now just care about probability of A occurring inside of B 

 

A            B 
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Total = 11 Female Male 

Brown hair 3 4 

Blond hair 2 2 

Table 2. 1: Joint probability example. 

 

P(Brown hair |Female) =  
P(Brown hair ∩ Female)

P(Female)
=  

3
11⁄

5
11⁄

 =  
3

5
= 0.6 

2.3.2 Bayesian networks structure  

This section presents the concept of Bayesian networks; where Section 2.3.2.1 shows how to 

use BNs model joint distributions of a set of variables, and how BNs use conditional 

probabilities between nodes (variables) to compute the probability of events. It presents the 

Chain theorem which is used to calculate the joint probability distribution over sets of 

random variables in the BNs structure. Section 2.3.2.2 demonstrates how to use Bayes’s 

theorem to enable inference when certain pieces of evidence are available to answer queries 

and update beliefs.  

 

2.3.2.1 Bayesian networks basics 

A Bayesian network is a probabilistic model that represents variables (continues or discrete) 

of data as nodes in a Directed Acyclic Graph (DAG), and the relationships between these 

nodes represents the joint probability distribution between nodes. Edges between nodes 

represent the direct correlations between variables (Corani et al., 2012). For example, if we 

have two nodes {A, B} are present with the edge from node A to node B, being relevant, then 

A has a direct influence on B, where these directed edges between the nodes represent 

probabilistic dependencies among the corresponding random variables. In fact, BNs represent 

a model of the joint probability distribution of n random variables X = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛}, 

and the edges in a network represent the conditional (in)dependencies among the nodes. 

Whereas, each node has a set of values with the parent nodes, and it gives the probability of 

the variable represented by the node in a conditional probability table (CPT). This table 

determines the probability of all parents of a node which are affected by other nodes; where 

the CPT is computed from data and it represents the frequency of events in dataset. In 

addition, CPTs will be described later in BNs parameter learning, Section 2.4.3. 

http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Directed_acyclic_graphs
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Formally, a Bayesian network is represented as DAG that encodes a joint probability 

distribution over a set of random variables X. This shows as a pair of graph G and parameters 

  B=<G, >, where G is a DAG of n random variables 𝑋 = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛}, and the 

graph G encodes independence assumptions; each variable 𝑥𝑖 is independent of its non-

descendants given its parents in G. While,  represents the set of parameters between the 

nodes. In particular, a parameter of each node  𝑥𝑖 in 𝑋, is represented as 𝑃(𝑥𝑖|𝑥𝑖
), where 𝑥𝑖

 

is the set of parents of node 𝑥𝑖. More precisely, a BN uses a chain theorem to calculate the 

joint probability distribution over sets of random variables, as demonstrated in equation (2.6). 

It is best to let a BN be a Bayesian network over variables,  𝑋 = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛}, as the 

BN specifies a unique joint probability distribution P(X) given by the product of all 

conditional probability tables specified in the BN (Schum, 2001). Given that, by definition, 

each node 𝑥𝑖 has a conditional probability distribution with its parent 𝑃(𝑥𝑖|𝑥𝑖
), and the 

chain rule can be used to define the joint distribution as follows: 

𝑃(𝑥1, 𝑥2 , 𝑥3, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑥𝑖
)          

𝑖=𝑛

𝑖=1

(2.6) 

For example, the network in Figure 2.2 (the Fraud example), can be used to model the joint 

distribution and to find what is the probability if someone is travelling, and will not receive a 

fraudulent transaction, and he will make foreign purchases. P( Travel=True, Fraud=False, 

Foreign Purchase=True) = P(Travel)*P(Fraud|Travel)*P(Foreign purchase| Travel,Fraud) = 

0.05 * 0.99 * 0.90= 0.0445 . 

More precisely, inference in a Bayesian network involves updating the probabilities of nodes’ 

given evidence and is described in the following section.   

 

2.3.2.2 Bayesian inference  

In a Bayesian network structure, some variables can be observed, where these observations 

can update the new information in the structure, and the process of conditioning is called 

inference, where it involves the propagation or revision of probabilities on the domain of the 

structure. In particular, there are four types of inference, which are based on query, and 

evidence nodes. To illustrate the types of inference, it is necessary to consider Figure 2.6 

which is a modified version of the so-called “Asia” problem (Lauritzen and Spiegelhalter, 

1988) that is also one of the examples used in a Bayesian networks tool known as Netica . 
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This network model is part of the lung cancer problem and can be used in scenarios, such as 

with a patient who visits a doctor with breathing difficulties (known as Dyspnoea) and is 

worried that he has lung cancer. A  doctor also knows that other relevant information that 

increase the chances of cancer such as pollution, and smoking,  as well as, a positive X-ray 

would indicate lung cancer. Consequently, through this scenario, there are four types of 

inference, as shown in Figure 2.7; where E is evidence node, and Q is query node: 

 

 

 

 

 

 

Figure 2.6: BNs’ structure of lung cancer problem using Netica. 

i.   Diagnostic inferences (inference from effect to cause): This type of inference starts 

from effects to causes, and occurs in the opposite direction to the arcs, from effects to 

causes. For instance, in the above example, if one observes Dyspnoea, then, as illustrated 

in Figure 2.7(a), evidence propagates from symptoms Dyspnoea to Cancer, and then up 

to Pollution and Smoker, the results in propagation down from cancer to X-Rays 

(Korband and Nicholson, 2010). Comparatively, the process of going up from a child to 

its parents is illustrated in Figure 2.7(a). 

ii. Causal inferences (inference from cause to effect): This type of inference starts from 

cause to effects as illustrated in Figure 2.7(b) where evidence is provided that a person 

smokes, then this is propagated down the arrows, from Smoker to Cancer, then to 

X_Rays and Dyspnea. The change in the probability of Cancer also results in 

propagation up to Pollution. Whereas, the process of going down from a parent to 

children, as illustrated in Figure 2.7(b), is known as causal inference. 

iii. Intercausal inferences (inference between cause and common effects): This type of 

inference starts from cause to cause through effects, where both causes are independent 

of each other as illustrated in Figure 2.7(c), where evidence is provided that a person 

smokes, and this is propagates down the arrows, from Smoker to Cancer and then  

propagated up to pollution.  The change in the probability of Cancer is subsequently 

affected through the results in propagation up to Pollution.  Whereas, the process of 
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going from a parent to parent through its children as illustrated in Figure 2.7(c), is known 

as intercausal inference. 

iv. Mixed Inferences: This type of inference is mixed between different types of inferences, 

where any node might be a query or piece of evidence, thus this inference can combine 

the above types of inference, as shown in Figure 2.7(d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Types of inferences 
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2.4 Learning Bayesian networks 

A Bayesian network can be used as a classifier by computing the posteriori probability of a 

set of labels given the observable features (Pearl, 1988), where to build a complete BN 

classifier, there are two aspects to constructing a BN (Neapolitan, 2004):  

 learning the graphical structure (topology), which studies the qualitative part and 

how to find a graphical relationships between the variables. 

 

 learning the parameters (conditional probability estimation), which studies how to 

quantify the relationships and how to determine the extent of the relationship between 

the variables and takes the form of a table that represents the conditional probabilit ies 

between a node and in its parents in  CPT.  

 

2.4.1 Bayesian network structure learning 

Several algorithms have been developed to learn the structure of a Bayesian network. One of 

the first methods was due to Chow and Liu (1968), who introduced an algorithm for learning 

a Bayesian tree based on approximating the joint distribution of a set of attributes by using 

the distributions that involving no more than pairs of attributes as shown in Figure 2.8(a). 

Duda and Hart (1973) and Langley et al. (1992) proposed an algorithm for learning a simpler 

structure known as a Naïve Bayes structure, where all attributes are represented as 

independent nodes that have one parent node which represents the class (Langley 1992). 

Figure 2.8(b) shows an example Naïve Bayes network, where, a Naïve Bayes classifier 

assumes conditional independence of the features given the class, and it is easy to construct 

and it has been used as a classifier for many years, especially where the features are not 

strongly correlated. Pearl (1988) developed an algorithm to learn singly-connected graphs, 

which are Directed Acyclic Graphs (DAGs) where any two nodes have at most one unique 

path between them as shown in Figure 2.8(c). More recently, Friedman et al. (1997) have 

developed a natural extension to the Naïve Bayes classifier and the Chow-Liu algorithm, 

where they introduce the Tree Augmented Naïve-Bayes (TAN) structure. In contrast to Naïve 

Bayes, where the assumption is that all attributes are independent, a TAN can model all 

dependencies between attributes by allowing the attributes to form a tree. Thus in a TAN 

structure, the correlations between attributes can be captured by adding additional edges 
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between attributes as shown in Figure 2.8(d). Given that a TAN improves upon Naïve Bayes 

by avoiding its conditional independence assumptions, avoids the computational overhead of 

a general Bayesian network, and has been shown to be an effective classifier (Friedman et al., 

1997), thus, we adopt TANs in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Bayesian network structures. 

 

Historically, many Bayesian network structure learning algorithms have been developed, 

these algorithms generally fall into three approaches (Cheng and Greiner 1999): 

 Scoring-and-search-based approach: find the BNs that maximizes score (Cooper and 

Herskovits,1992; Heckerman et al., 1995, Chickering, 2002). 

 Constrain-based approach (CI-based approach): it called also Conditional 

Independent based algorithms, where it based on data by selecting for each variable a 

set of candidate parents (Spirtes et al., 1993; Cheng et al., 1997). 

 Hybrid approach: that combines both of these approaches together to learn a BN 

structure. 

 

  

 

(a)  Chow-Liu tree 

(c)  Directed Acyclic Graphs (d)  Tree Augmented Naïve-Bayes 

(b)  Naïve Bayes 
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Figure 2.9 presents a diagram that shows some references under each category and is 

followed by a description of the main categories (Carvalho, 2009; Cheng and Greiner, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Bayesian network structure learning approaches. 

 

2.4.1.1 Scoring-and-search-based approach 

The task of finding a structure of a Bayesian network that describes the observed data is 

difficult and time-consuming, and has been shown to be an NP-complete problem 

(Chickering1996, 2004). Practically, when the search space is extremely large, the search 
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procedure will spend a lot of time examining unreasonable candidate structures, where the 

search space represents all the possible BNs structures. For example, Table 2.1 shows all 

possible structures of directed acyclic graphs (DAGs) given the number of variables (nodes) 

in the domain. Thus, when the number of nodes are large, then the number of possible DAGs 

are extremely large. Robinson (1973, 1977) derived the following efficiently computable 

recursive function to determine the number of possible structures that contain n nodes: 

𝑓(𝑛) =  ∑ (−1)𝑖+1𝐶𝑖
𝑛2𝑖(𝑛−𝑖)𝑓(𝑛 − 𝑖)               (2.7)𝑛

𝑖=1     

Where, n represents the number of variables, and 𝐶𝑖
𝑛  is (

𝑛
𝑖
)=  

𝑛!

𝑖 !    (𝑛−𝑟)!
 

Number of 

variables 

in 

structure 

Number of the possible BN 

structures 

All possible BN structures 

1 1  

2 3  

3 25  

4 543  

5 29,281  

6 3,781,503  

7 1,138,779,265  

8 78,370,2329,343  

9 1,213,442,454,842,881  

10 4,175,098,976,430,598,100  

Table 2.2: Number of BN structures based on number of nodes (Laskey, 2015). 

 

Cooper (1990) argued that given this is an NP-hard problem, we need to find "approximate 

solutions". The first attempts at finding approximate solutions were by Chow-Liu (1968) who 

developed branching algorithms to learn Bayesian trees. Dagum and Luby (1993) showed 

that even finding approximate solutions is NP-hard, thus they introduced a new method that 

restricted the possible parents of each node. After that, Dasgupta (1999) introduced 2-

polytrees (a singly connected network) which is also NP-hard. Finally, heuristic search 

methods have been proposed for addressing the problem of learning BNs in polynomial-time. 
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The scoring-and-search-based approach uses heuristic search algorithms to learn Bayesian 

network structures with respect to a goodness of fit score (Cheng and Greiner 1999). 

Heuristic search methods are based on two steps: 

 Using search methods to build the structure: fundamentally, there are several types of 

search algorithms such as greedy hill climbing, simulated annealing, Genetic algorithm, Tabu 

search, best first search, K2 algorithm, etc (Cooper and Herskovits, 1992). Most learning 

algorithms employ different search methods but the same search space. However, each search 

algorithm is based on a set of search operators; these operators are used to transfer a BN structure 

from one state to another state, such as arc addition, arc deletion, and arc reversion. As shown in 

Figure 2.10, starting from an initial network structure, one can apply the search operators (without 

introducing a cycle) to create the set of candidate neighbouring structures. A scoring or evaluation 

function can then be used to aid the selection of the next state as part of the search process, then 

the structure that has the highest score is selected (Vandel et al., 2012). 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Set of operators (Vandel et al., 2012). 

 

 Using scoring functions to evaluate each structure: score functions use to aid the search 

process to evaluate the structure. The scoring-and-search based approach starts from an 

initial random structure and moves to its neighbours by using the transition operators (as 

illustrated in Figure 2.10) to suggest new structures. The scoring function is used as an 

evaluation function and the search continued until no further improvement can be 

obtained. Figure 2.11 illustrated the idea where there are two nodes and a link is added 

resulting in an improved score. 
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Figure 2.11: Model selection that maximize the score given data (Meek, 2015) 

 

As shown in Figure 2.9, scoring functions are divided into two groups: Bayesian scoring 

functions and information-theoretic scoring functions (Heckerman et al., 1995), which are 

described below. 

 

i. Bayesian Scoring functions are based on calculating the posterior probability using Bayes 

theorem and include two functions, both based on Bayesian Dirichlet (BD) functions 

(Heckerman et al., 1995). These functions are BDe where 'e' is for likelihood-equivalence 

(Heckerman, et al., 1995) and BDeu where ‘u’ denotes uniform joint distribution (Buntine, 

1991). 

 

ii. Information-theoretic scoring functions are based on the view that the best models are 

those that are the most succinct at representing the data, where the data is compressed  into 

a shorter message length. Two common measures are the Log Likelihood (LL) score 

(Fisher, 1997; 1922) and the Minimum Description Length (MDL) (Rissanen, 1978), both 

of which have been shown to be effective in a number of studies (Friedman, 1997) and 

described in more detail below. 

 

 

o The Log Likelihood (LL) score 

Several authors have described how the log likelihood measure can be used to assess the 

extent to which a given Bayesian network that represents data distribution. The following 

description is taken from Grossman and Domingos (2004) to analyse the LL score 

function. Consider a training set D={𝑋1, … , 𝑋𝑛}, the goal is to find the Bayesian network 

B that best representation the joint distribution P(X|) where  are parameters where, 

 

Data d 
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the likelihood of  having parameters  given the data 𝑋𝑖 is defined by (Grossman and 

Domingos, 2004) as: 

𝐿(|𝑋1, … , 𝑋𝑛) =  ∏ 𝑃(𝑋𝑖|)

𝑛

𝑖=1

 

Then, applying the natural log function, because, logs reduce potential for underflow in 

numerical analysis, due to very small likelihoods.  

log   𝐿(|𝑋1, … , 𝑋𝑛) =  ∑ log 𝑃(𝑋𝑖|)

𝑛

𝑖=1

 

From which the maximum likelihood estimator 𝑀𝐿𝐸
^    is defined as: 

𝑀𝐿𝐸
^ = 𝑎𝑟𝑔  𝑚𝑎𝑥 ∑ 𝑙𝑜𝑔 𝑃(𝑋𝑖|)

𝑛

𝑖=1

 

In particular, choosing the parameter value that makes the data actually observed as 

likely as possible. 

𝐿𝐿(|𝐷) =  ∑ log 𝑃(𝑋𝑖|)

𝑛

𝑖=1

 

The log-likelihood in BNs of n nodes, and m values of each node can be expressed in the 

following way (Campos, 2006): 

𝐿𝐿(𝐵|𝐷) = 𝐿𝐿(𝑋𝑖|𝑋𝑗) =  ∑ ∑    𝑁𝑖𝑗  ∗ log (
𝑁𝑖𝑗

𝑁𝑗
) 

𝑚

𝑗=1

𝑛

𝑖=1

         (2.8) 

The log-likelihood function when node 𝑋𝑖 takes its parent 𝑋𝑗 is shown in equation (2.8), 

where  𝑁𝑖𝑗 is the number of instances in the data D that has the intersection between node 

values i, and j, and 𝑁𝑗 is the number of all instances in data D that has j value. As an 

example, consider the simple Bayesian network to explain the concept of LL score 

function is shown in the Appendix B1. 

The LL score can quickly learn complete network structures, but it cannot provide a 

useful representation of the independence assumptions of the learned network (Campos, 

2006). That is, this score is extremely specific but it cannot give a good structure if the 

model is over trained, obviously, the model becomes too specific because it adds too 

many links. Therefore, several theoretic scoring functions have been introduced to 
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devolp LL and avoid overfitting by limiting the number of parents per network variable, 

and by using some penalization factor over the LL score, such as the MDL function 

described below. 

 

o Minimum Description Length (MDL) 

The Minimum Description Length score (MDL) (Rissanen, 1978) is a formalization of 

Occam's razor: 

"The best hypothesis for a given set of data is the one that leads to the best compression of 

the data." 

Rissanen (1978) introduced the MDL score and his idea was based on how to reduce each 

model to bits. He stated that if the sender takes a set of observations dataset as input, then 

encodes these observations and sends a message that contains all the information about the 

model to a receiver, the receiver should be able to decode the message and produce the 

original message using the model. A good model will be one that is of minimal length. 

More precisely, suppose that: D is a set of observations dataset, B a Bayesian model that is 

used to describe D, L(B) represents the length of the code in bits necessary to encode the 

model B, and L(D|B) represents the length of the data D encoded using the Bayesian 

model B (Ramos, 2006). Where,  the total length of the message is presented in equation 

(2.9), which includes the  length  required to represent the network L(B) plus the length 

necessary to represent the data given the network L(D|B) (Friedman and Goldszmidt, 

1998). 

𝐿 = 𝐿(𝐷|𝐵) +  𝐿(𝐵)             (2.9) 

In particular, the first part L(D|B) is the log likelihood score function LL(B|D)that 

described in equation (2.8), where it represents how many bits are needed to describe D 

when encoded with B. While, the second part of equation (2.9), namely L(B), represents 

the number of bits used to represent and encode the model B and its parameters  . It 

called penalization factor, can be expressed in the following way (Campos, 2006): 

𝐿(𝐵) =  
log 𝑁

2
||             (2.10) 

Where || represents the number of parameters    in the network B, and N is the total 

number of instances in data D.  In particular, when L(B) is 0, then the MDL will be equal 

http://en.wikipedia.org/wiki/Occam%27s_razor
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
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to LL score. Figure 2.12 illustrates this for Bayesian networks in which the first part 

represents the log likelihood function, and the second part represents proportionality factor 

of MDL score that shows in equation (2.10). 

 

 

 

 

 

 

Figure 2.12: Illustration of the concept of data compression in MDL (Rish, 2015). 

 

The MDL scoring function of a network B given a training dataset D, is written as 

MDL(B|D) (Friedman, 1997; Neapolitan, 2004),is given by: 

𝑀𝐷𝐿(𝐵|𝐷) =  𝐿𝐿(𝑋𝑖|𝑋𝑗) = ∑ ∑ 𝑁𝑖𝑗 ∗  log(
𝑁𝑖𝑗

𝑁𝑖
)

𝑚

𝑗=1

𝑛

𝑖=1

−
log 𝑁

2
|| 

𝑀𝐷𝐿(𝐵|𝐷) = 𝐿𝐿(𝐵|𝐷) −  
log 𝑁

2
||          (2.11) 

The literature also contains two variations of the MDL score: 

o The Akaike Information Criterion (AIC), (Akaike, 1974), where the penalization 

factor = 2 || as : 

𝐴𝐼𝐶 (𝐵|𝐷) = 2 𝐿𝐿(𝐵|𝐷) −  2  ||            (2.12) 

 

o The Bayesian Information Criterion (BIC), (Schwarz,  1978) which takes the form: 

𝐵𝐼𝐶(𝐵|𝐷) = 2 𝐿𝐿(𝐵|𝐷) − log 𝑁 ||       (2.13) 

 

All of the above score functions have different characteristics (Friedman and Goldszmidt, 

1998; Campos, 2006) which can be summarised as follows: 

 

 

DL(Model)  LL(Data|model) 

      
 <9.7  0.6  8  14 18> 
 <0.2  1.3  5  ??  ??>   
 <1.3  2.8  ??  0  1 > 
 <??   5.6  0   10 ??> 
       ………………. 

||
2

log
),|(log)|( 

N
GDPDBMDL
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In particular, the LL score function is not suitable for learning the structure of Bayesian 

networks, because it requires an exponential number of parameters, and that will lead to 

have a high variance, and poor prediction (overfitting problem). To address this problem, 

the AIC, BIC, and MDL measures use some penalization factor over the LL score. 

According to Maimon and Rokach(2005), AIC score penalises the LL(B|D) with a term 

that increases linearly with the number of parameters || of the model B. However, the 

AIC score does not lead to a consistent estimation when the model is unknown(Maimon 

and Rokach, 2005), because it is based on the implicit assumption that || remains 

constant when the size of the example increases as shown in equation (2.12), obviously, it 

does not include the number of examples N. In contrast,  the BIC measure  includes the 

number of examples as shows in equation (2.13), though this can also lead to  problems 

when  N is large, since the variance term in the mean squared error expression will be 

negligible (Maimon and Rokach, 2005). On the other hand, the MDL score aims to resolve 

this problem, and according to (Friedman, 1997), MDL avoids overfitting the data, by 

regulating the number of parameters learned and results in learning a structure that reflects 

the distribution better. 

All of the above score functions can be used on any Bayesian network structures such as 

DAG, CL tree, TAN,... etc, to find high scoring structures for a given dataset D. (Cooper 

and Herskovits, 1992; Heckerman,1997). 

 

2.4.1.2 Conditional independent-based approach 

This approach is also called the constraint based approach. It selects  for each variable a set 

of candidate parents and encodes a group of conditional  independent relationships among 

them, according to the concept of d-separation (Pearl, 1988) which assess whether two 

variables are independent given other variables (see Appendix A for further details). This 

approach uses statistical tests functions such as chi-squared test (𝑥2 test) (Rayner and Best, 

1989; Zibran, 2007), mutual information test (Shannon and Weaver, 1949; Cover and 

Thomas 2012), these tests use to find the conditional independence relationships among the 

attributes and uses these relationships as constraints to construct a BN. The Conditional 

Independent-based approach can lead to a simple Naïve Bayes structure of the kind described 

in Section 2.4.1 and illustrated in Figure 2.8(b). 
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2.4.1.3 Hybrid approach  

This approach combine both of score-search approach and constraint approach together to 

learn the structure of a BN. Two such algorithms include learning as Chow-Liu tree (Chow 

and Liu, 1968), and  Tree Augmented Naïve-Bayes networks TANs (Friedman et al.,1997).  

. 

2.4.1.3.1 Chow-Liu tree  

Chow and Liu (1968) describe a procedure for constructing a Bayesian tree from data 

(also called a CL tree). The procedure constructs an approximation of the Bayesian 

network using information function, where the original algorithm used Mutual 

Information (MI) function, but it can be used on any score functions or conditional 

independent function thus, this algorithm is hybrid. In particular, it uses only O(𝑁2) 

pair wise dependency calculations, where N is the number of nodes (Cheng and Greiner 

1999). The CL algorithm can be summarised in five steps (Friedman et al., 1997): 

 

 Step 1:Compute Mutual Information: 

Consider a graph G = (V, E), let V denotes a set of discrete random variables, 

V={X1, X2, X3,…,Xn}, where E is a set of edges. First the marginal distributions of both 

P(Xi, Xj) =
Nij

N
 and P (Xi)= 

Nij

N
  are computed from the data, where i, j belong to V. 

Then, use these marginals to  compute the mutual information values of all  n(n-1)/2 

pairwise mutual information gains 𝑀𝐼(Xi, Xj), where i={1,2,3,...,n-1}, and 

j={i+1,,...,n}and i<j. Mutual Information calculated as  shown in equation (2.14). 

𝑀𝐼(𝑋𝑖 , 𝑋𝑗) =  ∑ ∑ 𝑃(𝑋𝑖, 𝑋𝑗)    ∗   log
𝑃(𝑋𝑖 , 𝑋𝑗)

𝑃(𝑋𝑖)𝑃(𝑋𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=0

  , where i ≠ j        (2.14) 

 

 Step2: Build a complete undirected graph:   

A complete undirected graph is then built, where the edges between Xi, and Xj are set to 

a weight corresponding to the mutual information MI(Xi, Xj).  

 

 Step3: Apply (MWST) algorithm: 

A maximal spanning tree is then obtained using a Maximum Weight Spanning Tree 

(MWST) algorithm (Cormen et al., 1990). Maximum weight dependence tree is 

constructed branch by branch as shown in example in Figure 2.13, where it uses 
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MI(Xi,Xj) as the weight for edge (Xi,Xj), for all i,j  V, and i ≠ j. 

 

 

Figure 2.13: How MWST finds a tree with the greatest total weight (Hong, 2007).  

 

Step4: Convert to directed tree: 

Convert undirected tree into a directed tree by choosing any node a root node and 

setting the directions of the links to be outward from it.  

Where, as simple CL tree shows in Figure 2.8(a), and a real example in Appendix B 

shows how this procedure works, Figure B1.7 represents a simple Chow-Liu tree 

(directed tree). 

 

2.4.1.3.2 Tree Augmented Naïve-Bayes (TAN) structure 

The TAN classifier was introduced by Friedman et al. (1997), as an extension of Naïve 

Bayes networks by allowing the attributes to form a tree to represent the dependencies 

among the attributes, and relaxing the independence assumptions (Cheng and Greiner 

2001). Figure 2.8(d) shows a TAN structure where each node has two parents, a class 

node and another node. A TAN is unlike a Naïve Bayes network since it can model all 

dependencies between variables; in particular, it is a less restricted structure than Naïve 

Bayes by allowing one parent per variable in addition to the class. A TAN is formed by 

calculating the maximum weight spanning tree algorithm using the Chow-Liu 

algorithm. Friedman et al.(1997) argue that the drawback of using LL score function, 

stems from that it does not work well when the number of instances is limited, as was 

described previously in Section 2.4.1.1. Thus, Friedman et al. (1997) suggested the use 

of a restricted log likelihood function that is called conditional log likelihood (CLL) 

function (Spiegelhalter et al., 1993). Their suggestions were based on the assumption 

that by maximising the conditional log likelihood, it is possible to learn a model that 

best approximates the conditional probability of class C given the attribute values. 

Therefore, Friedman et al. (1997) conclude that the model that maximises this CLL 
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function yields the best classifier. Friedman et al. (1997) developed the following 

algorithm for learning TANs based on the MDL as score function instead of MI 

function: 

Step 1: Compute Conditional Information: 

Consider a graph G = (V, E), let V denotes a set of discrete random variables, 

V={X1, X2, X3,…,Xn, 𝐶},  where E is a set of edges, and the edges (Xi, Xj) between tree 

represent the weight of MDL between (Xi, Xj) based on class node C. In particular, the 

first step is applying MDL that based on conditional log likelihood CLL score function 

to obtained a maximum weight dependence tree. Where the weight between nodes 

(Xi, Xj) represents the difference between MDL dependent nodes as MDL(𝑋𝑖|𝑋𝑗 , 𝐶), and 

MDL dependent class as MDL(𝑋𝑖|𝐶), as shown in the Appendix B example B1.3. MDL 

dependent nodes, and MDL dependent class are calculated as shown in equations 

(2.15), and (2.16) respectively. 

    𝑀𝐷𝐿(𝑋𝑖|𝑋𝑗  , 𝐶) = ∑ ∑ ∑ 𝑁𝑖𝑗𝑘  𝑙𝑜𝑔 (
𝑁𝑖𝑗𝑘  

𝑁𝑗𝑘
)

𝑘=1

𝑚

𝑗=1

 −  
log 𝑁

2
|| 

𝑛

𝑖=1

  (2.15) 

           𝑀𝐷𝐿(𝑋𝑖| 𝐶) = ∑ ∑ 𝑁𝑖𝑘  𝑙𝑜𝑔 (
𝑁𝑖𝑘  

𝑁𝑘
)

𝑘=1

 −   
log 𝑁

2
||           (2.16) 

𝑛

𝑖=1

 

Where  𝑁𝑖𝑗𝑘  is the number of instances in the data D that has the intersection between 

node values i, j, and class k. While, 𝑁𝑗𝑘 is the number of all instances in data D that has 

the intersection between node j, and class node k. Also, 𝑁𝑖𝑘 is the number of instances 

in the data D that has the intersection between node i, and class node k. While,  𝑁𝑘 is 

the number of all instances in data D of class k. Where,  are parameters, and N 

number of all instances in the data D.  

 

Step2: Build a complete undirected graph: 

Construct an undirectedcomplete graph between all the attributes (excluding class 

variable), where the edge weight is calculated from previous step.  
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Step3: Apply (MWST) algorithm: 

Build a maximum weighted spanning tree by running a Maximum Weight Spanning 

Tree (MWST) algorithm (Cormen et al., 1990). 

 

Step4: Convert to directed tree: 

Convert the resulting undirected tree to a directed tree by choosing a root node and 

setting the direction of all edges to be outward from it. 

 

Step5: Add the class label as root: 

Construct a TAN model by adding a class label node as root for dependency tree; 

adding an arc from C to all  𝑋𝑖. 

Clear example will be show in Appendix B1, to illustrate how to learn TAN structure 

based on the algorithm steps. In comparison to the other approaches described above,  

Friedman et al. (1997) point out that: 

 Learning TANs involves no process of searching.  

 TANs are more robust than Naïve Bayes; because they are based on relaxing the 

independence assumptions. 

 TAN algorithm can be learned in polynomial time; thus, it is faster than other 

BNs. 

 TAN classifier is more accurate; because it is based on maximising the restricted 

weight between nodes that yields to an improved classification process.  

 Based on the experiments of Friedman et al.(1997), the learning procedures of 

TAN are guaranteed to find the optimal tree structure.  

 

2.4.2 Bayesian network parameter learning 

After learning the structure of a Bayesian network, the next step aims to learn the 

parameters; that is the conditional probabilities between nodes and their parents which can 

be viewed as a Conditional Probability Tables (CPTs). A conditional probability table 

represents the dependency between variables. For example, Figure 2.14  shows a dependency 

between two nodes ‘cancer disease’ and ‘test’, with the prior probability of ‘having cancer’ 

being present is 5% and ‘not having cancer’ being absent is 95%. The extent of the 
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dependency is quantified by the CPT, which for example, indicates that the probability of test 

being positive is 75% if cancer is present. 

 

 

 

 

 

Figure 2.14: A simple BNs model with CPTs. 

 

To obtain these probabilities, a Simple Estimator (SE) is used and takes the form given by 

equation (2.17) (Bouckaert, 2004 ). 

P(𝑋𝑖|𝑋𝑗) =     
𝑁𝑖𝑗  +   α

N   +   (α ∗ n𝑋𝑖
)

         (2.17)      

Where, 𝑋𝑗 is parent of 𝑋𝑖  after learn structure, 𝑁𝑖𝑗 represents the number of the events 

𝑋𝑖 , and parent node 𝑋𝑗 occurring together in the data; N is the total number of examples of 

parent node 𝑋𝑗. While, n𝑋𝑖
 is the number of values of node 𝑋𝑖. Where, α = 0.5 represents the 

initial count on each value to avoid 0. For example, to illustrate the Simple Estimator SE, 

suppose we have Table 2.3 from play-tennis dataset that represents as:  

Outlook Wind 

Sunny FALSE 

Sunny TRUE 

overcast TRUE 

rainy TRUE 

rainy TRUE 

rainy TRUE 

overcast TRUE 

sunny FALSE 

rainy FALSE 
Table 2.3: A simple play-tennis dataset with two attributes. 

 

 
Cancer 

disease Test 

Test 

disease + - 

Present 75% 4% 

Absent 25% 96% 

 

Cancer disease 

present 5% 

absent 95% 
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Then the simple estimator estimates of the probability it is sunny and windy which happened 

one time is: P(Outlook = ′Sunny′ |Wind = ′True′ ) =    
1+0.5

6+(3∗0.5)
 =  0.2 

With the same way the simple estimator is used to estimate all the attribute values between 

the nodes in the structure and save the values into CPTs as shown in Figure 2.15. 

 

 

 

 

 

 

Figure 2.15: A simple network structure for the play-tennis dataset and the associated CPTs.  

 

After learning the Bayesian network from a dataset (structure, and parameters), it can be used 

as a classifier to classify new instances, as shown in Appendix B, in Figure B1.8, where real 

dataset has been applied on WEKA software to show how TAN structure learned from play-

tennis dataset and how it learned parameters, then how it used as classifier. 

 

2.5 Summary  

In summary, this chapter has presented the background on Bayesian networks. It described 

the data classification processes, and the types of classification algorithms such as decision 

trees, neural networks, and Bayesian networks classification algorithms. Then, it presented 

the principles of Bayesian network algorithms that are based on probability theory. Moreover, 

it outlined inference in Bayesian networks, and how to update the probabilities of nodes 

given evidence. An illustrative examples were given to demonstrate type of inference. In 

addition, the chapter has discussed how to learn Bayesian networks (structure and 

parameters). It presents three approaches that are based on some functions to learn Bayesian 

structures: Scoring-and-search-based approach, constrain-based approach, and Hybrid 

approach. Furthermore, this chapter presented the main Bayesian structures that are used in 

this research which are Chow-Liu tree, and Tree Augmented Naïve-Bayes. 

True False 

0.65 0.35 

 

 Sunny Rainy overcast 
 

True 0.2 0.567 0.333 

False 0.556 0.333 0.111 

 

Outlook 

Wind 
True 

False 

 

Sunny 

Rainy 

overcast 
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The following chapter presents a survey of existing cost-sensitive algorithms, and  discusses 

the  differences between existing cost-sensitive algorithm. 
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Chapter 3: Survey of Existing Cost-Sensitive Algorithms 

 

This chapter presents a survey of approaches to cost-sensitive learning. As mentioned in 

Chapter 1, most of the existing research on cost-sensitive learning has focussed on decision 

tree learning and the aim of this chapter is to describe the strategies adopted with a view to 

adopting them for developing algorithms for learning cost-sensitive Bayesian networks. 

Section 3.1 describes cost-insensitive algorithms, Section 3.2 describes existing cost-sensitive 

algorithms. Section 3.3 describes the literature review in cost-sensitive Bayesian network 

algorithms. Section 3.4 presents a brief summary of this chapter. 

 

3.1 Cost-insensitive learning algorithms  

The classification task aims to distinguish instances in a dataset into known categories, called 

classes, in accordance to specific attribute values. The induction of classifiers from datasets 

of pre-classified instances is perceived to be a major challenge (Friedman, 1998). Thus, many 

methods and algorithms have been introduced as classifiers such as: decision trees, Bayesian 

networks, and neural networks. Most of these early machine learning algorithms, focused on 

maximizing accuracy, and assumed that costs for misclassification error remain equal 

(Mitchell, 1997). Early machine learning algorithms, now termed Cost-insensitive learning 

algorithms, focused on maximizing accuracy but did not take any type of costs into account 

(Mitchell, 1997). The measure accuracy is defined as given in equation (3.1) and denotes the 

proportion of correctly classified instances.  

Several authors have noted that cost-insensitive learning is not adequate for practical 

applications (Turney, 2000; Vadera and Nechab, 1995; Domingos, 1999). For example, in 

medical diagnosis applications, the cost of a false positive (FP) includes unnecessary 

treatment and unnecessary worry while the cost of false negative (FN) error includes 

postponed treatment or failure to treat; and death or injury (Santos-Rodríguez et al., 2009). In 

fraud detection applications, a false positive (FP) error can lead to resources being wasted 

investigating non-frauds and reducing the benefits; while a false negative (FN) error such as a 

failure to detect fraud could be very expensive (Phua et al., 2006).
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Hence, in recent years, a significant level of attention has been paid to cost-sensitive learning 

algorithms, including making accuracy-based learners cost-sensitive (Lomax and Vadera, 

2013). Thus, many cost sensitive approaches are designed to reduce the cost of 

misclassifications rather than the number of misclassified examples. 

 

3.2 Cost-sensitive learning algorithms  

Cost-sensitive learning algorithms take costs into consideration and aim to minimize costs 

(Elkan, 2001). In particular, there is a cost involved in the learning process, where, the cost is 

very important in the classification process. The word cost is used to describe the term in a 

very abstract sense, where cost has different measurement units, such as monetary units 

(dollars), temporal units (seconds), or abstract units of utility (Turney, 2000). Cost should not 

only be a physical entity that could be measured, as cost sometimes includes time wasted, and 

loss of a patient's life, such as misclassifying a patient with cancer as having no cancer. As 

well as misclassification costs, Turney (1995) points out that test costs are also an important 

consideration. For example, in medical diagnosis applications, a blood test has a cost, so if 

the misclassification cost of diagnosis a patient is £10 and test cost is £2; so the 

misclassification cost is greater than the test cost, in this case, it is worthwhile to pay test 

costs because that seem to have some predictive value. On the other hand, if misclassification 

costs less than test costs, then there is no point in doing test costs.  

The following example illustrates the use of a cost-matrix to calculate accuracy and costs. 

Table 3.1 presents an example cost-matrix C, where C(i, j) is the cost of predicting an 

example to be in class i when it is actually in class j. 

 

Predicting class 

Actual class 

Actual Positive Actual Negative 

Predicting Positive TP=0 FP=£1 

Predicting Negative FN=£50 TN=0 

Table 3.1: A cost matrix for two-class problems 

A classification scheme, when applied to some data, will lead to outcomes that are correct or 

incorrect instances, resulting in what is known as a confusion matrix. For example, suppose 

we have two different classifiers, a decision tree classifier and a Bayesian network classifier. 

Applying these classifiers to the Breast cancer dataset and evaluating the supplied test set in 

the models may give the confusion matrixes in Table 3.2 (a) and (b) respectively. 
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Predicting class 

Actual class 

Actual no cancer Actual cancer 

no cancer 193 8 

cancer 62 23 

Table 3.2: (a): Outcomes from decision tree classifier (J48) on the Breast cancer dataset. 

 

 

Predicting class 

Actual class 

Actual no cancer Actual cancer 

no cancer 173 28 

cancer  59 26 

Table 3.2: (b) Outcomes from Bayesian network classifier (TAN) on the Breast cancer dataset. 

 

Given the outcomes in Tables 3.2(a) and 3.2(b), we can compute the accuracy and 

misclassification costs of the two classifiers as using the following measures: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
     (3.1) 

       𝐶𝑜𝑠𝑡 =  ∑ 𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖   ∗  𝐶𝑜𝑠𝑡 (𝑖, 𝑗)                            (3.2)

𝑘

𝑖=1

 

Where, k is the number of classes, 𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖    is the number of class i 

examples that are misclassified, and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of misclassifying examples of class 

i when j is given. Using these equations, we obtain the following accuracies and costs for the 

decision tree classifier (DT) and the Bayesian network classifier (BN):  

DT Accuracy =
193+23 

286 
=75.52%, and DT misclassification costs=£50*62 +£1*8 = £3108 

BN Accuracy =
173+26 

286 
=69.58%, and BN misclassification costs=£50*59 +£1*28 = £2978 

 

Thus, in this example, applying the Bayesian network classifier will entail less costs than 

applying the decision tree classifier on the Breast cancer dataset. 

 

3.2.1 Cost sensitive algorithms categories 

As illustrated by the previous example in Section 3.2, a good cost-sensitive classifier should 

be able to predict the class of an example that leads to the lowest expected cost (Elkan, 2001), 
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where the expectation is computed after applying the classifier by using the expected cost 

function  (Zadrozny and Elkan,2001), as given in equation (3.3) . Assume that (i, j) represents 

2 classes in cost matrix C, if i=j then the prediction is correct, while if i≠ j the prediction is 

incorrect. The expected cost of classifying an instance x into true class i, can be expressed as: 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡(𝑥, 𝑖) = ∑  𝑃(𝑗|𝑥) ∗  𝐶𝑜𝑠𝑡(𝑖, 𝑗)  

𝑘

𝑗=1

                (3.3) 

Where, k is the number of classes; 𝑃(𝑗|𝑥) represents the probability estimation of classifying 

the instance x into class j; and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of misclassifying class i when j is given; 

obviously the cost of predicting x to class i when the true class of x is j.  

 

Several authors have categorised cost-sensitive induction algorithms differently. According to 

Zadrozny et al. (2003b) cost-sensitive classifiers can be divided into two categories: Black 

Box and Transparent Box. Black box methods use a classifier as closed box without changing 

its behaviour and can work for any classifier. On the other hand, transparent box methods 

require knowledge of the particular learning algorithm and are based on changing the 

algorithm to include costs. Ling and Sheng (2010) use the terms direct methods, and indirect 

methods, where direct method includes cost directly during building a cost sensitive learning 

algorithm; introducing and utilizing misclassification costs into the learning algorithms. 

While, indirect method includes cost before or after applying the algorithm; by pre-

processing the training data, or post-processing the output of a cost-insensitive learning 

algorithm. As well as these methods, a further category involves using evolutionary 

algorithms. The literature search identified several methods under these categories which are 

presented in Figure 3.1 and described below.
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Figure 3.1: Cost-sensitive learning categories

Cost-sensitive classification algorithm categories 

Algorithms that use of 

optimization method  
Algorithms that use direct 

method 

Algorithms that use indirect 
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[Tan and Schlimmer 1989] 

[Ting, 1998; 2002] 
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[Norton, 1989] 
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[Liu ,2007] 
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[Qin et al., 2004] 
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SMOTE [Chawla, 2011] 
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. 

3.2.1.1 Algorithms that use direct methods 

A key step in decision tree learning algorithm is selecting the next attribute of the decision 

tree, which is done by using a measure (Quinlan, 1979) such as information gain that is based 

on computing the difference between entropy of classification before and after an attribute’s 

value is known. The following equations define how this is computed for a class C and 

attribute A: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶) =  ∑ −𝑃(𝑐)  ∗   log2 𝑃(𝑐)

𝑐∈𝐶𝑙𝑎𝑠𝑠

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑡𝑡) =  ∑ 𝑃(𝑎) ∗  ∑ −𝑃(𝑎|𝑐)  ∗   log2 𝑃(𝑎|𝑐)

𝑐∈𝐶𝑙𝑎𝑠𝑠𝑎∈𝐴𝑡𝑡

 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴   =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑡𝑡)         (3.4)  

Where, c is a class value, and 𝑎 is an attribute value of A and 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴 is the information 

gain of the attribute A. The attribute that results in the highest information gain is used as the 

next attribute and the process repeated recursively until a stopping condition, such as a 

certain proportion of examples belonging to the same class is reached. However, this 

selection measure does not take account of costs. Hence, several algorithms have been 

introduced to include costs by amending the statistical measurement; or by modifying and 

utilizing the cost directly during the decision procedure (Lomax and Vadera, 2013).   

 

i.  Algorithms that amend the information theoretic measure 

As mentioned in Section 3.2, the main two costs are: test costs and costs of 

misclassification. Test costs can be included by amending the selection measure to include 

the cost of a test. Algorithms using this approach include EG2 (Núñez, 1991), CS-ID3 

(Tan and Schlimmer, 1989), IDX (Norton 1989), and CS-C4.5 (Freitas et al., 2007). These 

algorithms adapt the information theoretic measure by developing a cost based attribute 

selection measure, called the Information Cost Function for an attribute A  (𝐼𝐶𝐹𝐴): 

                 𝐸𝐺2 ∶                            𝐼𝐶𝐹𝐴 =  
2𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴−   1

(𝐶𝑜𝑠𝑡𝐴    +    1)⍵         (3.5) 
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𝐶𝑆 − 𝐼𝐷3 ∶                   𝐼𝐶𝐹𝐴 =  
(𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴)2

𝐶𝑜𝑠𝑡𝐴
 

𝐼𝐷𝑋 ∶                           𝐼𝐶𝐹𝐴 =  
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴

𝐶𝑜𝑠𝑡𝐴
 

𝐶𝑆 − 𝐶4.5:                  𝐼𝐶𝐹𝐴 =  
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴

(𝐶𝑜𝑠𝑡𝐴  ɸ𝐴 )ɷ
 

All of these include the cost of attribute (𝐶𝑜𝑠𝑡𝐴), they take account of the information 

gained. EG2 and CS-C4.5 also use a user provided parameter ω that varies the extent of 

the bias, while ɸ𝐴in CS-C4.5 represents a risk factor of delayed tests; where there is a 

delay in the result of a test; for example, in a medical diagnosis a doctor sends a blood test 

to a laboratory, and the result might be delayed.  

A natural way of amending such algorithms to take account of the cost of 

misclassifications is to modify equation (3.4) by altering the class probability P(i) so that it 

takes account of the relative costs of misclassification.  In general: 

Probabilityi ∶ Pi    =  
Ni

N
                  (3.6) 

Where 𝑁𝑖  is the number of examples of class i, and N is the total number of example, 

Breiman et al. (1984) introduced a method that modified this prior probability with altered 

probability as shown in equation (3.7) to take account of costs by weighting each prior Pi 

by the relative cost of misclassifying examples of class i; (Cost ratio𝑖). 

Altered Probability  𝑖 =   Cost ratio𝑖 ∗ (
Ni

N
)      (3.7) 

Cost ratio𝑖 =
cost of missclassifiaction of  class i

𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠
=

cost (i, j)

∑ cost (i, j)𝑘
𝑗=1

       (3.8) 

Where, Cost ratio𝑖 represents the cost ratio of class i; the cost proportion of class i to the 

total costs. For example, form cost matrix that is represented in Table 3.1 shows the cost 

ratio of positive class=50/51= 0.98, while, the cost ratio of negative class=1/51= 0.02. 

Also, Ni is the number of examples in class i, while N is the total number of examples.  

 

As given in equation (3.7), this is the altered probability measure that can then be used in 

the information gain measure and the rest of the algorithm can remain unchanged. Ting 

(1998, 2002) also uses to modify the estimated probability of class i as shown in equation 
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(3.9). According to Pazzani et al. (1994) modified the estimated probability in GINI index 

measure (Breiman et al., 1984), and introduced new algorithm called GINI Altered priors. 

Altered GINI = 1 − ∑(Altered Probability  𝑖)
2

𝑘

𝑖=1

              (3.9) 

 

ii. Algorithms that utilize the cost directly 

Instead of adapting the information gain to include costs, there are other algorithms which 

utilize the cost of misclassification and test costs directly as selection criteria. This 

category utilizes both costs during learning from the training data, where for each attribute 

in turn, the data is partitioned on that attribute’s values. Then for each of the subsequent 

subsets created, the cost of errors is computed and then the sum of the costs of all these 

subsets is calculated to select the attribute that has minimum costs. Examples of 

algorithms that take this approach include Cost-Minimization (Pazzani et al., 1994), 

Decision Tree with Minimal Costs (Ling et al., 2004), Decision Trees with Minimal Cost 

under Resources Constrain (Qin et al., 2004), CSTree (Ling et al., 2006), and PM (Liu, 

2007). For example in Cost-Minimization (Pazzani et al., 1994) without considering 

information gain, the attribute that results in the lowest misclassification costs is selected 

next (Pazzani et al.,1994). 

 

3.2.1.2 Algorithms that use indirect methods 

These methods include a cost as a separate stage in the learning process, and includes 

techniques such as Sampling, Relabeling, Weighting, Thresholding, and meta methods 

(bagging and boosting). These methods can be applied before or after applying an existing 

accuracy based classifier and are described below. 

 

3.2.1.2.1 Sampling  

Sampling, also called stratification, it is used to amend the distribution of the data to reflect 

the costs of misclassification.The algorithms that are based on sampling, change the 

frequency of the data instances in the training set according to their costs. Sampling was used 
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to convert an insensitive cost learning process to sensitive cost learning by increasing the 

number of costly class examples or reducing the number of non-costly class examples to 

reflect their importance in cost sensitive learning process. 

 Imbalanced data 

Imbalanced datasets occur where one class is rare while the other classes are frequent. It 

is often the case that the cost of misclassifying a rare example is significantly higher than 

a more frequent example (Suna et al., 2006). For instance, to detect a fraudulent customer, 

the cost of misclassifying a customer who commits fraud is greater than the cost of 

misclassifying a customer who is non-fraudulent. Figure 3.2 illustrates an imbalanced 

problem in two classes.  

 

   

 

 

 

Figure 3.2: Imbalanced dataset . 

 

In imbalanced datasets, building a classifier that does not consider the cost of 

misclassification, does not perform well because it is biased to classify most of the 

instances under the category of frequent class, which will result in producing 

misclassifying rare instances; obviously instances that belong to the rare class will be 

misclassified more than the ones belonging to the frequent class. Hence, sampling works 

with very highly skewed data (imbalanced data), because it aims to reduce the number of 

misclassification errors by using some mechanisms in order to provide a new data 

distribution that reflects misclassification cost (He and Garcia, 2009). However, several 

studies (Weiss and Provost, 2001; Laurikkala, 2001; Estabrooks, 2004) have found that a 

base classifier can improve its performance by balancing an imbalanced dataset (He and 

Garcia, 2009). 
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class 
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 Folk theorem: 

The key to using a sampling for cost-sensitive learning is a result known as the Folk 

theorem (Zadrozny et al., 2003a; Bailey and Elkan, 1994; Elkan, 2001). This theorem 

can be applied on any cost-insensitive classifier to turn it into a cost-sensitive classifier 

by changing the data distribution to reflect the costs. Zadrozny et al. (2003a) states that 

"if the new examples are drawn from the old distribution, then optimal error rate 

classifiers for the new distribution are optimal cost minimizes for data drawn from 

original distribution". Formally, Zadrozny et al. (2003a) presents this change in the 

distribution as follows: 

𝐷′(x, y, c) =
C

Ex,y,c~D[c]
D(x, y, c)            (3.10) 

Where, the new distribution D' = factor * Old distribution D; x is the input space to a 

classifier; y is the binary that represents output space to a classifier; and C is the 

misclassification cost (Zadrozny et al., 2003a). Technically, the optimal error rate 

classifier from D' is the optimal minimizing cost from data which has been drawn from 

the original distribution  D. Obviously, Zadrozny  et al. (2003b) introduced a new 

sampling method based on the Folk theorem; they show that it is possible to change the 

distribution of the data to reflect the cost ratio. For example, consider a dataset, where 

the number of examples in class 1 is N1, and class 2 is N2, and the cost of misclassifying 

class 1 is C1, and class 2 is C2. Then, the new data distribution of N1 and N2 will be 

changed as shown in equation 3.11: 

𝑁1
′

𝑁2
′   =    

𝑁1 ∗   𝐶1

𝑁2  ∗  𝐶2
                (3.11) 

Since, this theorem creates a new distribution from the old distribution by multiplying 

the old distribution with a factor proportional to the relative cost of each example  the 

new distribution will be adapted with that cost. Therefore, this method makes a classifier 

get an expected cost minimization on the original distribution, and in the worst case this 

method can guarantee the classifier to give a good approximate cost minimization for 

any new sample. 

In particular, there are several methods of sampling which correspond to all types of 

sampling, which are called (a) Sampling-with-replacement; it works by changing the data 
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distribution and taking random examples from a population, then returning these 

examples back into the population; where these examples can be selected more than one 

time, as shown in Figure 3.3(a). Hence, Zadrozy et al. (2003a) argue that using sampling 

with replacement can lead to overtraining because the duplication of examples, also all 

selected examples are not independent. On the other hand, (b)Sampling without 

replacement works by taking random examples from a population, then putting thes 

examples aside the population; where these examples can be selected one time, as shown 

in Figure 3.3(b). Hence, sampling without replacement insures that all examples in new 

distribution are drawn independently from old distribution, as a result, this type of 

sampling leads to an over-fitting problem (Zadrozny et al., 2003a). 

 

 

 

 

 

 

 

 

 

Figure 3.3: Sampling with / without replacement (WIKIbooks, 2015) 

 

There are several methods for changing the distribution, including (Zadrozny et al., 2003a): 

i. Over-sampling: this method of sampling increases and duplicates the number of rare 

class examples, without changing the frequent class examples. A potential problem 

with this method is over-fitting, because the minority class decision region becomes 

very specific, and will not be able to work accurately on the testing data. Also, 

increasing the number of training examples leads to increasing the learning time (Weiss 

et al., 2007). 

 

ii. Under-sampling: this method of sampling reduces the number of frequent class 

examples (the majority class), while keeping the original population of the minority 

 

𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧               𝐒𝐚𝐦𝐩𝐥𝐞𝐬 

(a) Sampling with replacement                 (b) Sampling without replacement 

 

http://www.google.co.uk/url?sa=i&rct=j&q=sampling+with+replacement&source=images&cd=&cad=rja&docid=O0Qx6F3kPDFqeM&tbnid=FANcmxlO7Uy9mM:&ved=0CAUQjRw&url=http://en.wikibooks.org/wiki/Probability/Combinatorics&ei=hz8AUvPPJ8qR0AXa0oCADQ&bvm=bv.50165853,d.d2k&psig=AFQjCNEpn0-DaJCQmrq6g3HtYOaMB5Jo6A&ust=1375834121726524
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class. The problem with this method is that it can discard potentially useful instances, 

leading to misclassifying them (Weiss et al., 2007).  

 

iii.  Cost-proportionate rejection sampling: although, over and under-sampling methods 

give good results on some datasets, they do not work very well on others. Therefore, 

(Zadrozny et al., 2003b) proposed an alternative method based on rejection sampling, 

called cost-proportional rejection sampling. This sampling method avoids the over-

fitting problem, and aims to minimize classification error. It works as the following 

steps:  

 Drawing examples independently from the distribution as shown in equation (3.10). 

 Then accepting the example with probability proportional to c/z, where z is chosen as 

the maximum cost of misclassifying an example, and c is the misclassification cost. 

Otherwise reject the example.  

 Then using a learning classifier on the new distribution examples. 

 

This sampling method will produce an approximately cost-minimizing classifier. In 

fact, the sample size of the new distribution is smaller than the original distribution 

because testing each example on that factor c/z will reject some examples. Hence, the 

time required for learning a classifier is much smaller (Zadrozny et al., 2003b). 

iv. Cost-proportionate rejection sampling with aggregation (Costing): the Costing 

algorithm has been introduced by Zadrozny et al. (2003b), is based on different runs of 

cost-proportionate rejection sampling method described above, thus this method creates 

different training samples (distributions) in a very short time. Zadrozny et al. (2003b) 

utilize this feature to devise an ensemble learning algorithm (bagging) based on 

repeatedly performing cost-proportion rejection sampling from the original distribution 

D to produce multiple sample sets (new distributions){D1, D2, D3….Dm}. Figure 3.4 

illustrates the Costing algorithm, which works as the following steps: 

 Run cost-proportionate rejection sampling from the original sample (distribution) D, by 

accepting examples with probability c/z , then the new sample (distribution) will be 

created  Di , where, i=1 to m. 

 Then, using a cost–insensitive classifier to learn a model from the new distribution Di .  
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 Repeat the first, and the second steps m times, finally, getting several new samples 

={D1, D2 , D3…Dm}, and several models. 

 The output classification is based on the average over all the models. 

The goal in using averaging is to improve the performance of the classifier, and that 

gives approximate minimization of the classification error. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Costing algorithm based on Cost-proportionate rejection sampling with aggregation. 

 

Several literature reviews show different sampling methods, where some of them amend the 

number of negative examples (over-sampling); some of them change the number of positive 

examples (under-sampling); a few of them use the SMOTE (Synthetic Minority Over-

Sampling Technique) algorithm that tackles the imbalanced problem by generating 

synthetic minority class examples (Chawla, 2002). Kubat and Matwin (1997) used one side 

selection by under-sampling the majority class, while keeping the original population of the 

minority class. In addition, CSRoulette (Sheng and Ling, 2007) is similar to Costing, except 

that Costing uses cost proportional rejection sampling, while CSRoulette is based on the 

cost proportional roulette sampling.  

 

Drummond and Holte (2003) demonstrated that under-sampling outperforms over-sampling 

for imbalanced class distribution and unknown cost ratio, and their experiments show that 
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this is because the over-sampling has little sensitivity to changes in the misclassification cost 

than under-sampling. Furthermore, Maloof (2003) compared cost-sensitive learning methods 

to sampling, but found that cost-sensitive learning, over-sampling and under-sampling 

performed nearly identically.  

3.2.1.2.2 Thresholding 

Thresholding is a very simple cost-sensitive learning method and is applicable to any 

classifiers such as decision tree, neural network, and Naïve Bayes. It can convert a cost 

insensitive learning classifier to a cost-sensitive learning classifier. Thresholding is the 

process for searching for the best threshold and predicting the testing set according to the 

optimal threshold. In fact, this method is based on a threshold to classify examples into 

positive or negative if the cost-insensitive classifiers can produce probability estimations. It 

works by selecting a threshold, which is probability estimated on training instances that 

minimizes the misclassification cost, then, uses that threshold for predicting testing instances 

(Sheng and Ling, 2006). Sheng and Ling (2006) divided thresholding methods into two 

categories, theoretical thresholding, and adjusted thresholding as the following: 

 

 Theoretical thresholding 

In particular, Elkan (2001) used the theoretical threshold to determine the optimal 

decision for reducing the expected cost. This method can be achieved by multiply the 

number of negative (Frequent) examples in the training to rebalancing the training 

dataset. A target probability threshold P' is defined and would be achieved 

correspond to a given probability P, where P is a theoretical threshold for making an 

optimal decision on classifying instances into rare examples. Therefore, the number of 

frequent examples should be multiplied by equation (3.12):  

p′

1 − p′
  

1 − P

P
                (3.12) 

More precisely, to rebalance datasets, it is typically P= 0.5. Thus, the number of 

frequent examples will be multiplied with just
𝑃′

1−𝑃′
 where it is equal to  

𝐹𝑁

𝐹𝑃
 . 

Consequently, Elkan (2001) used this theorem to reduce a cost, by multiplying  

𝐹𝑁 (𝑓𝑎𝑙𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡)

𝐹𝑃 (𝑓𝑎𝑙𝑠𝑒 𝑟𝑎𝑟𝑒)
  with the number of negative examples (frequent class). 

Mathematically, his theorem changes the number of frequent examples without 
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duplicating or discarding any of the rare examples. This type of threshold makes the 

optimal decision for classifying instances into positive class (rare class). 

 

 Adjusted thresholding 

Sheng and Ling (2006) suggest this type of threshold, where this thresholding searches 

for the best probability estimated on the training instances, then uses it for future 

predictions of testing instances; and if the test instance with predicted probability above 

or equal to this threshold is classified as positive (rare class); otherwise as negative 

(frequent class). The function of the threshold represents the misclassification cost 

function as given in equation (3.13). 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑎𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)    (3.13) 

More precisely, to choose the best threshold, one only needs to calculate all the 

misclassification costs for each possible probability estimates on the training examples, 

then we will get the curve of the thresholds as shown in Figure 3.5, finally choosing the 

best threshold that minimizes the total misclassification cost which is the valley point in 

the curve.  

 

 

 

 

Figure 3.5: The best threshold is the point that gives minimum cost (Sheng and Ling, 2006). 

 

Experimentally, Sheng and Ling (2006) show that adjusted threshold is highly 

effective. On the other hand, theoretical and adjusted thresholding is best when the cost 

ratio is large. As a result, the only problem in the adjusted threshold is that it is time 

consuming to search for the best threshold. 

3.2.1.2.3 Weighting  

This category is based on assigning a weight, which is based on a misclassification cost, to 

each example to reflect its importance. For example, if the cost of the misclassification for 
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class i is 4, and the cost of the misclassification for class j is 1, then a weight of 4 is assigned 

to examples of class i and a weight of 1 to the examples of class j is 1. Thus, more weight is 

given to those examples with the higher misclassification cost. Hence, an error-based learner 

that uses weights can use this information to concentrate on important examples. 

 

One such algorithm is C4.5CS (Ting, 1998; 2002), which is similar to the GINI Altered priors 

method (described above in Section 3.2.1.1), except that GINI Altered priors does not use the 

weights when pruning. Where pruning is a process of removing nodes or sub-trees aimed at 

reducing the effect of statistical noise or variation that may be based on a training set. Other 

algorithms that use this idea include MaxCost and AvgCost (Margineantu and Dietterich, 

2003). However, both MaxCost and AvgCost have been designed to solve multi-class 

problems, where MaxCost uses the worst or maximum cost of misclassifying an example of a 

given class; which is the maximum value within the column representing the actual class in a 

cost matrix. While AvgCost calculates the average cost of misclassifying an example, which 

can be obtained by computing the average cost of the values in the column representing the 

actual class value. The following equations summarise theses three weighting methods: 

     C4.5CS:              weightj = Cost (j)
Nj

∑ Cost(i,j)∗ Ni
k
i=1

      (3.14) 

MaxCost ∶       weightj =  Max     1≤i≤k Cost(i, j) 

   AvgCost ∶          weightj =
∑      Cost(i, j)k

i=1 ,i≠j

(k − 1)
 

Where, Cost(j) is the misclassification cost of class j, and k is the number of classes, in the 

multi-class cost matrix when i is predicting the column and j is the correcting column (actual 

class). 

3.2.1.2.4 Relabeling 

Relabeling involves considering whether the class of training or the testing instance should be 

changed to reflect the costs of misclassification (Michie et al., 1994). The relabeling method 

can be divided into two categories: relabeling the training instances and relabeling the test 

instances: 

 Relabeling the training instances: such as MetaCost (Domingos, 1999), which will be 

described in section 2.3.1.2.5. 
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 Relabeling the testing instances: such as in CostSensitiveClassifier(CSC) (Witten and 

Frank, 2005), by predicting the class with a minimum expected misclassification cost, 

rather than the most occurred class. Performance can often be improved by using a 

Bagged classifier to improve the probability estimates of the base classifier, that will 

be described in section 2.3.1.2.5. 

 

3.2.1.2.5 Ensemble learning methods  

Ensemble learning combines multiple independent models with the aim of producing better 

classifiers. The ensemble learning approach depends on learning from a single model base 

learner and then the predictions of those base learners are combined by using voting, 

weighting or averaging. In the data mining WEKA software, the ensembles method is called 

meta-learners, which is based on taking a learning algorithm as the base learner, and creating 

a new learning algorithm. Practically, there are two approaches to ensemble learning: 

bagging, and boosting, which are described below:  

 

i. Bagging  

Bagging, introduced by Breiman (1996), involves three steps: 

 Creating m ensembles (booststrap samples); by drawing n examples randomly re-

sampling the training data with replacement from the original data. 

 Applying a specific learning algorithm (base learner) independently to the different 

samples to generate different models. 

 The different models are aggregated by using the average in the case of regression, 

and voting in the case of classification; by combining the m resulting models using a 

simple majority vote, to predict an unseen instance. 

Thus, bagging also called Bootstrap aggregating. Examples of cost-sensitive bagging 

algorithms include MetaCost (Domingos, 1999), which uses relabeling, 

CostSensitiveClassifier (Witten and Frank, 2005), Costing (Zadrozny, 2003a; 2003b) 

which was described above in Section 3.2.1.2.1. In particular, the idea with MetaCost 

is summarized by the Figure 3.6, MetaCost has the following four steps: 

1. Generate n samples with replacement from the training data. 

2. Apply the base learner on each sample to produce n classifiers. 
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3. Estimate the expected cost of misclassification, and relabel each example of 

the training data with a new class label that minimizes the expected cost. 

4. Finally, use the base leaner on the relabelled training data to generate a cost-

sensitive classifier. 

 

Figure 3.6: The MetaCost system (Domingos, 1999)1 

 

Also, the other type of bagging is CostSensitiveClassifier (Witten and Frank, 2005), 

which can belong to weighting or relabeling methods as well. CostSensitiveClassifier is 

a meta classifier that makes its base classifier cost-sensitive, two methods can be used 

to introduce the cost: 

o Weighting: By reweighting training instances according to the total cost assigned to 

each class.  

o Relabeling: By relabeling the test instances; predicting the class with minimum 

expected misclassification cost, rather than the most occurred class. Performance can 

often be improved by using a Bagged classifier to improve the probability estimates 

of the base classifier. 

 

 

ii. Boosting  

Boosting was introduced by Schapire (1999) and in response to a question posed by 

Kearns (1988) “Can a set of weak learners create a single strong learner?". The process 

of boosting is carried out in a sequential manner in different turns, and at the end of each 

                                                             
1
Figure taken from (Vadera, 2010). 
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turn, the weights are adjusted to reflect the importance of the instances for the next 

learning turn. The boosting approach is based on reweight training data. It involves 

creating a number of hypotheses  ℎ𝑡 and then combining them to form a more accurate 

composite hypothesis. The following four steps summarise the boosting process:  

 Weight each example in the training dataset; by giving a higher weight to examples 

that have higher misclassification costs, and lower weights to examples that have a 

low cost.   

 Applying a classifier with the new weights.  

 Checking the example on the classifier, to see whether the predicted class matches 

the actual class and change the weight of the examples by increasing the weights of 

misclassified examples, after that the new weights are passed to the next of boosting. 

 After many iterations and using the first three steps; combine the different 

hypotheses and determine the final prediction class; which is a strong learner that is 

well correlated with the true classification.  

One of the earliest examples of the use of boosting is AdaBoost (Adaptive Boosting) 

(Freund and Schapire, 1996) which used an accuracy based learner to generate an 

improving sequence of hypotheses. AdaBoost starts the boosting process by assigning 

unit weights to each example. Then in each sequential trial, increases the weight of 

misclassified examples and decreases the weight of the other examples; it assigns the 

same weight in the first turn which is 1/N, where N is the total number of instances, 

then the weight changes over different classification turns according to 

misclassification errors. After many sequential trials, it combines these hypotheses to 

perform final the classification, which is based on selecting the class that results in the 

maximum weighted vote as illustrated in Figure 3.7. Schapire (1999) introduced 

equation (3.15) to form a more accurate composite hypothesis, as shown in Figure 3.8:    

 

 

 

 

Figure 3.7: Illustration of boosting method (UCSD, 2015). 

 

http://www.google.co.uk/url?sa=i&rct=j&q=ada+boost&source=images&cd=&cad=rja&docid=9KL43A5jte-28M&tbnid=IgEnE0RrtKj00M:&ved=0CAUQjRw&url=http://neuralfrontier.wordpress.com/tag/adaboost/&ei=q2D-UZbdI_Cc0wXu14CYBw&bvm=bv.50165853,d.d2k&psig=AFQjCNGQl31rmai7FTm_bpuw9L3kAop2uQ&ust=1375711766394795
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𝑓(𝑥) =  ∑ ∝𝑡    ℎ𝑡

𝑇

𝑡=1

(𝑥)        (3.15) 

Where ∝𝑡 represents the extent of the weight given to ℎ𝑡(𝑥) in each time t.  

 

 

 

 

 

 

 

Figure 3.8: Cost-sensitive boosting (composite hypothesis ) (UCSD, 2015). 

There are several studies that use boosting and modify the weight rules to take account 

of costs, including AdaCost (Fan et al., 1999), Cost-UBoost (Ting and Zheng, 1998a), 

and GBSE (Abe et al., 2004). Whereas, AdaCost uses the cost of misclassifications to 

update the training distribution by assigning high initial weights to costly examples, 

then increases the weights of costly misclassifications more but decreases the weights 

of correct classification less. 

 

3.2.1.3 Algorithms that use optimization methods 

Genetic algorithms (GAs) have been utilized by several authors to learn cost-sensitive 

decision trees. One of the first studies was by Turney (1995), who developed ICET 

(Inexpensive Classification with Expensive Test) which uses GAs to evolve decision trees in 

order to minimize both test costs and misclassification costs. ICET uses a genetic pool that 

consists of genes representing the cost of attributes (CA), biases 𝝎 (parameter used to control 

the amount of weight which should be given to the cost), and parameters CF (parameters used 

to indicate the level of pruning by C4.5). These parameters are used in a version of C4.5 to 

generate trees, where the information gain measure as shown in equation 3.4 is replaced with 

an Information Cost Function (𝐼𝐶𝐹𝐴) for an attribute A (that modifies the information gain  

formula to include costs and is adopted from EG2 (Nunez 1991) as shown in equation (3.5). 

 

ℎ2 ℎ𝑡 

t 

𝑓(𝑥) = ∑ ∝𝑡    ℎ𝑡

𝑇

𝑡=1

(𝑥) 

ℎ1 
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Thus in ICET, trees are not represented in a genetic pool directly, but are actually learnt using 

the genes as parameters for a decision tree learner that uses EG2’s cost function, instead of an 

information gain, to generate a decision tree for each individual, as shown in Figure 3.9. 

Following this process, all of these decision trees are evaluated using expected costs as a 

fitness function, and a new pool is produced using mutation and cross over. This process is 

repeated 50 times and the fittest tree returned.  

 

 

 

 

 

 

 

Figure 3.9: The ICET System (Turney1995)2. 

In contrast, Omielan and Vadera (2012) developed ECCO (Evolutionary Classifier with Cost 

Optimization) that functions directly through a pool of decision trees that is represented by 

the genes as bits of string, which are used to construct the decision trees. Their comparison 

with ICET suggests that ECCO is more cost-sensitive and effective than ICET.  

 

3.3 Literature review of research on cost-sensitive Bayesian network 

algorithms 

Historically, most of the cost-sensitive algorithms developed have focussed on learning 

decision trees, with a recent survey comparing over 50 algorithms (Lomax and Vadera, 

2013). In contrast, little attention has been paid to developing cost-sensitive Bayesian 

networks, which are (Gao et al., 2008; Nashnush and Vadera 2014; Jiang et al., 2014; Kong 

et al., 2014). This section presents a literature review of research aimed at developing 

algorithms that learn cost sensitive Bayesian networks. 

The first attempt was in (2008), when Gao, Wang, and Cheng introduced a cost sensitive loss 

function for estimating parameters. As described in Chapter 2 in Section 2.4.1 (Bayesian 

network structure learning), one approach to learning Bayesian networks is to perform a 

                                                             
2 Figure taken from (Vadera,  2010). 
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search that optimizes a score function such as MDL (Rissanen, 1978), AIC (Akaike, 1974), 

BIC (Schwarz, 1978), and these functions do not include costs. Thus, Gao et al., (2008) 

suggested amending the cost-insensitive objective function to include costs. The cost-

insensitive Log-Likelihood loss function, described in Section 2.4.1.1, takes the form from 

extended probability, which represents as an equation (3.16) instead of normal probability; in 

particular, to include the cost, the value P(𝑋𝑖|𝑋𝑗)  is extended to: 

𝑃(𝑋𝑖|𝑋𝑗)−𝐶𝑜𝑠𝑡(3−𝑘,   𝑘)                 (3.16) 

Where, 𝑋𝑖, 𝑎𝑛𝑑 𝑋𝑗 are two nodes in a BN, and k represents the number of a class label, where 

they focused on two class problems; when k=2. Thus, Gao et al. (2008) amended the function 

in equation (2.8) to the following Cost Sensitive Loss function (CSL): 

CSL(𝑋𝑖|𝑋𝑗) =  − ∑ ∑ ∑ 𝐶𝑜𝑠𝑡(3 − 𝑘,   𝑘) ∗  log 𝑃(𝑋𝑖|𝑋𝑗)

k 

k=1

𝑚

𝑗=1

n

i=1

      (3.17) 

Where, 𝐶𝑜𝑠𝑡(3 − 𝑘,   𝑘) is the cost of misclassifying an instance. The new cost-sensitive 

Bayesian networks algorithms are applied during the learning structure, but they do not 

amend the probably during the learning of the parameters. In addition, their new cost-

sensitive Bayesian networks algorithms are evaluated by comparing their algorithms with 

existing cost-insensetive algorithms. Experimentally, they carry out an empirical evaluation 

of this  method on a two class problem, and it shows that cost-sensitive Bayesian networks 

with cost sensitive loss function are effective compared with the cost in-sensitive Bayesian 

networks. 

However, they do not evaluate their work with existing cost-sensitive algorithms like 

MetaCost or other cost-sensitive classifier, so the claim is not fully substantiated. 

More recently, Jiang et al. (2014) used an instance weighting method inspired by the 

approach used by Ting (2002). Where, they modify the probability estimate that is used in 

learning parameters (that described in Section 2.4.2 in equation (2.17)) by incorporating the 

instance weights (that described in Section 3.2.1.2.3 in equation (3.14)). The weights they 

adopt are presented in equation 3.18: 

𝑃𝑤(𝑋 | 𝐶𝑗) =   
Wj ∗    (𝑁𝑗+1)

∑  𝑊𝑖∗ 𝑁𝑖   +  n𝑋
k
i=1

     (3.18)           

http://en.wikipedia.org/wiki/Hirotugu_Akaike
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Where, 𝑊𝑗 is the weight of class j instances; k is the number of class labels; n𝑋 is the number 

of values of node 𝑋. These weights, which include costs, are utilized during estimating the 

probabilities (i.e., parameters). Their results shows that the performance of cost-sensitive 

Bayesian networks is good when the cost ratio is large. However, they change the probability 

at the last stage during learning parameters after learning the structure so do not take account 

of costs when learning  the structure. Also, their experiments have been compared with the 

original BN classifier, but not with other cost-sensitive classifiers such as MetaCost classifier 

(Domingos, 1999). In addition, their experiments are based on just four cost ratios which are 

{2,5,10,and 15}. 

    

The most recent research in this field uncovered in the literature search is by Kong et al. 

(2014). They developed a cost-sensitive Bayesian network classifier, and then applied it on 

real-world rock burst prediction examples. Their algorithm is based on the concept of 

adjusting thresholds (described in Section 3.2.1.2.2) due to Sheng and Ling (2006). This 

algorithm starts by learning a cost-insensitive Bayesian network structure from a training 

dataset. Then, each instance in the testing set is classified to the class label that minimizes the 

expected cost. This cost-sensitive classifier provides a simple effective method for rock burst 

prediction. Their approach is compared with the usual cost-insensitive Bayesian network 

classifier but they do not compare it with other cost-sensitive methods. 

Table 3.3 summarises the literature review and contrasts the different methods for learning 

cost-sensitive Bayesian network algorithms discussed in this chapter. 
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Authors Approach Aims Weakness 

(Gao et 

al.,2008).  

Direct methods 

by amending the 

LL loss 

function.  

Include 

misclassification 

costs during 

learning 

structure, it aims 

to minimize the 

misclassification 

costs. 

 They do not use the same cost to learn 

parameters of a structure.  

 They do not evaluate their work with 

existing cost-sensitive algorithms 

like MetaCost or other cost-sensitive 

classifier. 

 They used constant cost matrix 1:5 

(Jiang et al., 

2014) 

Modify the 

simple  estimate 

of a probability 

by using a 

weighting 

method to 

weight instances  

Reweight 

instances 

according to the 

misclassification 

cost. 

 They do not include any costs when 

learning structure.  

 They do not compare their 

experiments with other cost-sensitive 

classifiers. 

 Their experiments are based on just 

four cost ratios which 

are:{2,5,10,and 15}.  

Kong et al., 

2014). 

 

 

Adjusted 

thresholding  

Aims to 

minimizing the 

misclassification  

cost. 

 Their approach is compared with the 

usual cost-insensitive Bayesian 

network classifier but they do not 

compare it with other cost-sensitive 

methods 

 Their   experiments are on a specific 

application (rock burst prediction 

examples). 

Table 3.3: Summary of the literature review of cost-sensitive Bayesian network algorithms. 

 

3.4 Summary 

 This chapter has presented a comprehensive survey of existing cost-sensitive learning 

algorithms. The chapter started by defining the difference between cost-insensitive 

algorithms, and cost-sensitive algorithms.    
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The survey was in two parts. The first part is, the field of cost-sensitive decision tree learning, 

was surveyed by many different algorithms and approaches. In particular, it revealed that 

cost-sensitive decision tree algorithms are based on three methods; direct methods, indirect 

methods, and the use of optimization methods.  

The second part of the survey focused surveying cost-sensitive Bayesian networks. This 

showed that there are just three studies aimed at addressing this problem, all of which are 

very recent when compared to the studies on decision trees. These methods were contrasted 

and summarised in Table 3.3. 

In the next chapter, new cost-sensitive Bayesian network learning algorithms will be 

proposed based on the types of approaches uncovered when developing cost-sensitive 

decision trees.  
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Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms 

 

In the previous chapter, it was noted that three different strategies have been used for 

developing cost-sensitive decision tree learning algorithms: (i) direct method, (ii) indirect 

method, and (iii) optimization methods. Hence, in this chapter we describe how these 

strategies are used to develop cost-sensitive Bayesians network algorithms. Section 4.1 

presents the use of an indirect method to develop a new algorithm for learning cost-sensitive 

Bayesian networks using sampling approach. Section 4.2 develops a new algorithm for 

learning cost-sensitive Bayesian networks by using a direct method to amend an existing 

cost-insensitive algorithm to include costs directly into algorithm’s process. Section 4.3 

presents the development of a new cost-sensitive Bayesian networks algorithm based on 

using Genetic algorithms. Section 4.4 presents a discussion and summary about the proposed 

algorithms in this chapter. 

 

4.1 Learning cost-sensitive Bayesian networks via a sampling approach 

This section presents the use of an indirect method to develop a new cost-sensitive Bayesian 

networks learning algorithm by using a sampling approach to take account of 

misclassification costs. As described in Section 3.2.1.2, indirect methods do not change the 

learning process of a classifier but use the classifier as a black box.  

The approach used is based on a Folk theorem that introduced by Zadrozny et al. (2003a) and 

Elkan (2001) that was described in Chapter 3, in Section 3.2.1.2.1. This theorem draws a new 

distribution from the old distribution, according to misclassification costs to change the data 

distribution and obtain an optimal cost-minimization from the original distribution. In 

particular, the data distribution can be changed to reflect the costs (see equation (3.10), and 

(3.11) in Chapter 3 for a description). 

The Folk theorem can be used to create a new distribution from the old distribution by 

multiplying the old distribution with a factor proportional to the relative cost of each 

example. For example, consider the hepatitis dataset, which has 32 instances in the class 

“Die” (class distribution 20%), and 123 instances in the class “Live” (class distribution 80%). 

Given the imbalance in examples for the two classes, an accuracy based classifier will always 
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be biased to the most common class, that is “Live”, though misclassifying examples of class 

“die” is more serious. The Folk theorem can be used to address this kind of situation. 

Suppose the misclassification costs are 4:1 for “Die”: “Live” respectively. Then, using 

equation (3.4) to change the data distribution, thus, the new distribution of class “Die”=4*32 

= 128 instances (class distribution 50%); while the new distribution of class “Live” =1*123 = 

123 instances (class distribution 50%). Figure 4.1 summarised the steps of using sampling 

approach with hepatitis dataset example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1: Illustration of sampling approach steps with hepatitis dataset. 

 

Folk theorem draws a new distribution from the old distribution, according to cost 

proportions to change the data distribution and obtain optimal cost-minimization from the 
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original distribution. Figure 4.2 presents our new algorithm that called Cost-Sensitive 

Bayesian Network (CS-BN) algorithm via sampling approach. 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 4.2: CS-BN algorithm using sampling. 

 

The main steps of this algorithm are: 

Step 1: The data are split into a training set and testing set. The training set uses 75% of the 

original data, while the testing set uses 25% of the original data3. 

Step 2: The distribution of the data is altered to take account of costs. The Folk theorem is 

used to change the data distributions (as described in Chapter 3 in equation 3.11). For 

example, as we described above, in the hepatitis dataset, where the number of examples that 

belong to class “Die”, and “Live” are 32, and 132 respectively, the old distribution is 20%: 

80%  respectively.   If the relative costs that used in Chapter 3, Table 3.1 are £50:£1, the Folk 

theorem can be used to change the distribution as follows: 

For class “Die”= (50*32)/((50*32)+(1*132)= 1,600/1,732=0.92  

For class “Live”= (1*132)/(50*32)+(1*132)= 132/1,732 = 0.08 

Thus, the number of class “Die” to class “Live” will be changed to 1,600 to 132 respectively, 

and the distribution will be 92% to 8% respectively.  

                                                             
3 Other ways of splitting the data could, of course be adopted without affecting the principles of the approach. 

CS-BN via sampling approach (indirect method) 

 

1. Divide dataset into 75% of instances for training, and 25% for 

testing.  

2. Change the training data distribution according to the 

misclassification cost in each class: 

N1
′

N2
′   =    

N1 ∗   C1

N2  ∗  C2
 

3. Learn the TAN structure and its parameters. 

4. Evaluate the TAN on the original test set distribution. 
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There are different methods that can be used to sample the data and redistribute the data. 

During our research, we used two methods, under-sampling and over-sampling as described 

in Section 3.2.1.2.1. When the new proportion is less than the original proportion, under-

sampling (without replacement) is used to delete some of the examples in the frequent class. 

On the other hand, if the new class proportion is greater than the original class proportion, 

over-sampling (with replacement) is used to randomly select new instances which belong to 

the rare class, and hence increase the number of examples. In particular, Elkan (2001), and 

Zedrzony (2003a) mentioned that, this method is the most affected method that used to reflect 

misclassification costs; where using under-sampling to delete some of unimportant examples 

, and using oversampling to duplicate some of important examples. 

Step 3: Once the data is redistributed, Friedman et al.’s (1997) algorithm is used to learn Tree 

Augmented Bayesian Networks, (as given in Section 2.4.1.3.2). 

Step 4: The learned TAN is evaluated using the testing data from the original distribution.  

The measures used are the accuracy and expected cost (as given in Section 3.2 in equations 

(3.1) and (3.2)). 

 

4.2 Learning cost-sensitive Bayesian networks via an amending approach  

This section presents a direct method to developing cost-sensitive Bayesian network 

algorithm by amending an existing cost-insensitive algorithm. 

The approach adopted is motivated by the use of direct methods for developing cost sensitive 

decision tree learning algorithms, which described in Chapter 3, Section 3.2.1.1. In particular, 

a key step in decision tree learning is to select the criteria used for the next node of the 

decision tree. Early decision tree induction algorithms that focused on accuracy used a 

measure based on information theory to select the splitting criteria. For example, ID3 and 

C4.5 (Quinlan, 1979) are based on calculating the gain in information achieved by each of the 

attributes if these were chosen for the split and choosing the attribute which maximizes this 

gain. Thus, an obvious way of adapting these algorithms is to adapt this measure to take 

account of costs. For example, Breiman et al.(1984)  modify the class probabilities P(i), that 

are used in the information gain measure, and replace that probability with the altered 

probability as shown in equation (4.1) where the probability P(i) is weighted by the relative 

𝐂𝐨𝐬𝐭 𝐫𝐚𝐭𝐢𝐨𝐢 as follows:  
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Altered Probability i =   Cost ratioi ∗ (
Ni

N
)  , 𝑤ℎ𝑒𝑟𝑒  Cost ratioi  =

cost (i, j)

∑ cost(i, j)k
j

      (4.1) 

Where, Ni is the number of examples in class i, while N is the total number of examples. 

Cost ratioi represents the ratio of the cost of class i to the total costs, k is the number of 

classes, where this equation are applicable in just two class problems. For example, for the 

cost matrix in Table 3.1, the cost ratio for the positive class is 50/51, while, the cost ratio for 

the negative class is 1/51.  

Pazzani et al. (1994), also use this approach but for a different splitting criteria known as the 

GINI index. Figure 4.3 illustrates this idea when there are two classes C1, and C2, and each 

class given particular attribute values AttV1 and AttV2. Initially, two classes have an equal 

chance of occurring (i.e. probability of 0.5) and are altered to have probabilities of 0.75 and 

0.25 respectively, to reflect a misclassification cost ratio of  3:1.  

 

Figure 4.3: An illustration of the altered probability. 

 

Our algorithm called Cost-Sensitive Bayesian Network  (CS-BN) algorithm via amending 

approach is based on the following  question, “how can a similar approach be used for 

amending an existing Bayesian network learning algorithm?“ . As mention in Section 2.4.1.1 

learning a Bayesian network structure requires searching for the best network according to a 

score function. Many scoring criteria have been described, including the minimum 

description length (MDL) which is defined by equation (2.11) (see Chapter 2, Section 2.4.1.1 

for more details). As described in Section 2.4.1.3.2, a key step of existing algorithms is to 

compute the Minimum Description Length (MDL) while learning the Bayesian network 

structure. Hence, by analogy with the approach take for decision trees, where the information 
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theoretic measure was modified, the modification made to develop our new algorithm is to 

change the original MDL measure. We make two amendments: (i) when learning the 

structure of a Bayesian network, in MDL equation because this equation can determined the 

strongest links between nodes, also it is the key step of Bayesian networks algorithm, and (ii) 

when learning the parameters of the structure, in simple estimator equation because this 

equation can determined the relationships between nodes, also, by analog with what others 

have done in decision tree, where some researches are based on amending the probability 

estimation to include the costs .These amendments are described in Section 4.2.1 and 4.2.2 

respectively. 

 

4.2.1 Amending the formula for learning the structure 

First, the Log-likelihood factor that is used in the MDL measure in Chapter 2, in 

equation (2.8), is amended to take account of costs. The modification made is to 

multiply each part of the information measurement with the cost ratio of a class, and the 

new Log Likelihood function LL(𝑋𝑖|𝑋𝑗) is as shown in equation (4.2). 

 

𝐿𝐿(𝑋𝑖|𝑋𝑗) = ∑ ∑ ∑ p(𝑋𝑖  , 𝑋𝑗)    log (
p(𝑋𝑖  , 𝑋𝑗)

p(𝑋𝑗)
)

2

k=1

∗  Cost ratio  k

𝑚

j=1

𝑛

𝑖=1

     (4.2) 

Where, K is the number of class labels, n, and m represent the order of connected 

nodes. While p(𝑋𝑖 , 𝑋𝑗) represents the probabilities of events 𝑋𝑖  , 𝑋𝑗 happened in D. 

While, Cost ratio k  is the ratio of misclassifying class k over the total costs, as 

described in equation (4.3). 

Cost ratiok  =
cost k

Total costs
      (4.3) 

4.2.2 Amending the formula for learning parameters  

Secondly, the parameter estimator that described in Chapter 2, Section 2.4.2 in equation 

(2.17) is modified to reflect misclassification costs by modifying the conditional 

probability of each node given its parent. That is, instead of using the simple estimator 

of probability we weight it by the cost ratio:  
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P(xi | πxi , 𝐶k ) =  Cost ratio k ∗   
p(xi , πxi  , 𝐶k) + α

p(πxi) +  (α ∗ n𝑋𝑖
)

   (4.4 )  

Where, xiis the node that is connected with its parents (class label 𝐶k, and another 

parent πxi); nxi is the number of the possible values of node xi. While, α = 0.5 

represents the initial count on each value to avoid 0. 

These amendments lead to the algorithm presented in Figure 4.4, and described in detail  

below; Where the first : 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: CS-BN algorithm using the amending approach. 

This new algorithm was implemented in Java NetBeans using the data mining software 

WEKA open source to help in the development and implementation. Also, an empirical 

CS-BN via amending approach (direct method) 

1. Compute new conditional LL information between each pair of 

attributes (nodes) based on class label, and include cost ratios for 

each class in the calculation: 

 

∑ ∑ ∑ p(x, y, Classk) log
p(x, y, Classk)

p(y, Classk)

2

k

m

y

∗     Cost ratio  k

n

x

 

2. Build a complete undirected graph between each pair of attributes 

(nodes) without class node. 

3. Using the Maximum Weight Spanning Tree algorithm, to maximize the 

information gained about the classification weighted by the cost of 

misclassification obtain a tree. 

4. Convert the tree to a directed tree. 

5. Add the class label as root for all attributes (nodes). 

6. Learn the parameters for each node with its parents by using the new 

probability estimation that includes misclassification costs. 

𝑝𝑐(𝑋| 𝑌, 𝐶𝐾) =  Cost ratio  k ∗  
𝑃(x, y, Ck) + α

𝑃(y, Ck) +  (α ∗ n𝑋)
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comparison with existing algorithms (standard Bayesian networks approaches; 

MetaCost+BN, and MetaCost+J48. This is presented in Chapter 5: an empirical evaluation of 

the new algorithms for learning cost-sensitive Bayesian networks. In our experiment, we use 

the same original statistical formula (Friedman et al., 1997), but we change the formula to 

include the cost ratio of each class, by multiplying each part of information measure with cost 

ratio of class. The main steps of this algorithm are: 

Step 1: Compute Conditional Information 

The first step is calculates the information between each node and all other nodes, by using 

MDL score that based on the new Likelihood function LL(B|D)  that is given  in equation 

(4.2).  

Step2: Build a complete undirected graph 

An undirected graph is constructed, where the nodes are the attributes of data and the edges 

represents the information (dependencies) between nodes. The weights on the edges represent 

the extent of the dependencies, adjusted by the relative cost as calculated in Step 1. 

 

Step3: Apply (MWST) algorithm 

Find a maximal weight spanning tree between nodes by running a maximum-weight spanning 

tree (MWST) algorithm (Cormen et al., 1990) to obtain undirected graph.  

 

Step4: Convert to directed tree 

The undirected graph is converted to a directed graph by choosing the root of the first 

maximum connection in the previous step, then adding a direction to the next connection if it 

does not lead to a cycle. This process is repeated until all the nodes have been considered. 

 

Step5: Add the class label as root 

The class label node is added as the parent (root) node for all nodes.  

With these 5 steps the Tree Augmented Naive Bayes structure will be created. 

 

Step6: Learn the parameters 

After creating the structure of a TAN, the last step is to learn the parameters for each node 

with its parents by using equation (4.4). 
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4.3 Learning cost-sensitive Bayesian networks via Genetic algorithms 

This section develops an algorithm for learning cost-sensitive Bayesian networks that utilizes 

Genetic algorithm, where the genes are utilized to represent the links between the nodes in 

Bayesian networks, and the expected cost is used as a  fitness function. 

 

4.3.1 Encoding tree augmented networks  

The structure of a TAN can be viewed as a directed graph which can be represented as an 

adjacency matrix A. Where an element A(i,j) is set to "1" if node j is a parent of node i, and 

set to "0" if there is no links between node j  and  node i. Figure 4.5 illustrates the idea, where 

node a0 has two parents which are a2 and a4, and hence A(0,2)=A(0,4)=1; while it does not 

have any links with a1and a3 so A(0,1)=A(0,3)=0. 

 

 

 

 

 

 

 

 

Figure 4.5: An illustration of how TAN classifier represents the genes. 

 

To generate the initial pool of TAN trees for a GA involves three steps: firstly, generating the 

adjacency matrix randomly; secondly, testing the adjacency matrix to ensure that  it denotes a 

valid TAN, and if not to make it a TAN; and thirdly, converting the adjacency matrix to a 

linear string of bits that can be used by a GA. These three steps are described and illustrated 

below: 

 Firstly, when generating the initial population or following mutation or cross 

over, it is possible to obtain an illegal TAN as shown in Figure 4.6 (a).  

 

 

 

 

 

a0 

 

Create structure of TAN classifier form bits 

of Genes (individual) 

Individual represents the links between 

attributes: a1,a2,a3, and a4(class label) 
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 Secondly, to make sure we have legal TANs, we check the following three conditions: 

i. There must be no immediate circularity on each node, where a node i is a 

parent of itself. If this is the case, then A(i,i) is set to zero as illustrated figure 

4.6 (b) : 

 

 

 

 

 

 

 

ii. By definition, for a TAN; the class node must have no parents, and all the 

other nodes must have the class node as a parent and one other parent that is 

chosen from the other nodes. If this is not the case, then this is corrected by 

making sure the class node is added as a parent, and one of the other nodes is 

chosen randomly as the other parent, where, Figure 4.6 (c) illustrates the 

idea. 

 

 

 

 

 
a4 

a3 

a0 

a1 

a2 

0 0 1 1 0 

1 1 0 0 0 
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1 1 0 0 1 

0 1 0 0 0 

 

Parent(j) a0    a1   a2    a3    a4 

illegal adjacency matrix 

A(child , parent ) 

Child(i) 

         a0 

         a1 

         a2 

         a3 

         a4 

Figure 4.6 (a):  An illegal TAN structure, created from adjacency matrix A(child, parent) in  CS-BN via GAs 

 

 

Figure 4.6(b): There is no circular on each node A(i, i) =0 in CS-BN via GAs 
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iii. There is no circular path emanating from any node. If circularities are detected, 

they are corrected by selecting one of the links in the cycle at random and 

removing it, as illustrated in Figure 4.6(d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6(d): Testing all paths on adjacency matrix and break. 

 Thirdly, given an adjacency matrix representing a valid TAN, it can be converted to a 

string of bits by arranging it row by row as illustrated in Figure 4.5. 

 

4.3.2 Fitness Function 

As well as the representation, there are two more ingredients required to use a GA, namely 

a fitness function and the operators required for generating offspring. To generate the 

offspring, the standard selection, mutation and crossover operators are used together with 

the above steps for correcting illegal offspring. The fitness function used in this algorithm 

is the expected cost (that described in Chapter 3, equation (3.3)), it can be expressed as: 
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Figure 4.6 (c):  Each node has 2 parents (class node and other node), except class node.  
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝐶𝑜𝑠𝑡(𝑖, 𝑗)     𝑃(𝑗|𝑥)

𝑘

𝑗=1

                      (4.5) 

Where, k is the number of classes; P(j|x) represents the probability estimation of classifying 

the instance x into class j; and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of  misclassifying class j; the cost of 

predicting x to class i when the true class of x is j.  

 

4.3.3 Evolving the populations 

Once the fitness is evaluated, the next generation is evolved using crossover and mutation 

randomly as illustrated in Figure 4.7. This process is repeated 20 times and the TAN with 

least expected cost is selected, where, this number has been chosen based on our experiments, 

because the optimal tree will be found before 20 trails.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Evolving the populations. 
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These steps lead to the algorithm presented in Figure 4.8. We called this algorithm CS-BN via 

GAs, it has been implemented in Java netbeans based on BNs algorithms which available in 

the WEKA system (Witten and Frank, 2005). The implementation is described Appendix C 

and the code is included in the accompanying CD. An empirical comparison with existing 

algorithms, such as use of MetaCost+J48; MetaCost+BN and standard Bayesian networks is 

presented in Chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: CS-BN algorithm using Genetic algorithms. 

CS-BN via Genetic algorithm: 

 

1. Divide data into 2 sets: 75% training, and 25% testing. 

And divide training data into 2 sets: 50% sub_training, 

and 25% sub_testing.  
𝑆𝑢𝑏𝑡𝑟𝑎𝑖𝑛 = 50% , 𝑆𝑢𝑏𝑡𝑒𝑠𝑡 =  25%, 𝑎𝑛𝑑 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 =  25% 

  

// where, 𝑆𝑢𝑏𝑡𝑟𝑎𝑖𝑛 is used for parameters learning, 𝑆𝑢𝑏𝑡𝑒𝑠𝑡 is 

used for evaluation fitness function and 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 is 

used for the final evaluation 

 

2. // Initialize 

ind =1 // ind is the number of individual 

 

K =1  // K is the number of generation 

 

𝑃𝑘  is a population of individuals, ind=1To 50. randomly 

generated individuals[ind] 

 

Call 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧_𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝒌 (𝑷𝑲, 𝑺𝒖𝒃𝒕𝒓𝒂𝒊𝒏, 𝑺𝒖𝒑𝒕𝒆𝒔𝒕) 

 

3. // other generations k=2 to 20 

do 

 { 

a. Select the first individual (the best) from previous 

generation 𝑃𝐾−1and copy it into the current generation 
𝑃𝐾 
 

b. Apply mutation and cross over randomly on the first 

half of the previous generation 𝑃𝐾−1, ind = 2 to 25 , 

then Insert the new individuals in the current 

generation 𝑃𝐾 

 

c. Generate the other individuals in the current 

generation randomly 𝑃𝐾 , ∀i = 26 to 50 

 

Call   𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧_𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝒌 (𝑷𝑲, 𝑺𝒖𝒃𝒕𝒓𝒂𝒊𝒏, 𝑺𝒖𝒑𝒕𝒆𝒔𝒕) 

 

K=K+1;  // next generation 

} While (K <= 20) 

 

4. //Final, getting the fitness TAN(fitness individual) 

from the last generation  𝑃20. 

 

5. Evaluate the best TAN from step 4, by using 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 

set, to get the results (accuracy, and cost). 

Evaluation generation function: 

 

Evaluation_Generationk (PK, D1, D2) 

{ 

ind = 1   ∀  ind = 1  to 50 

do 

{  

Step 1: Check the individual[ind] 

 

IF (ind does not followed TAN’s 

Rule) 

Then change the individual[ind] 

randomly by breaking the 

circularity in the TAN. 

 

Else   continue   

 

Step 2:Build 𝑇𝐴𝑁𝑖𝑛𝑑 structure from  

the individual[ind] 

 

Step 3:Learn parameters of 𝑇𝐴𝑁𝑖𝑛𝑑 

using𝐷1 

 

Step 4: Evaluate the 𝑇𝐴𝑁𝑖𝑛𝑑 using𝐷2 

        Compute Fitness function. 

Where,  

Fitness function = error costs 

ind=ind+1; 

} While (ind<= 50) 

 

𝑃𝐾 = Sort the current generation PK 

according to the fitness function; 

using Ascending sort for all 

individuals in population 𝑃𝐾 

 

Return (𝑃𝐾). 

} 

 



Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms 

 

76 
 

The main steps of this algorithm are summarised as follows: 

Step 1: Splitting data: Randomly divide the dataset into 3 parts:  

Sub-training = 50% used for parameter learning.  

Sub-testing= 25% used for evaluation the fitness function.  

Testing = 25% used for final evaluation (evaluate on the best individual or TAN structure). 

 

Step 2: Randomly create the first generation: The initial population is generated 

randomly, which is comprised of individuals with random links between attributes(nodes). 

 

Step 3: Check that individuals represent valid TANs: Checks that there are no circular 

paths, where each node should has just one parent, and the class label is the main parent 

for all nodes (as illustrated in Figures 4.6). 

 

Step 4: Create TAN structures: After checking each individual follows the TAN’s rules, 

each individual is converted to a TAN structure (as illustrated in Figure 4.5). 

 

Step 5: Learn parameters: After getting the structure for each individual, 25% of the 

sub-training data is used to learn the parameters for each of the 50 TANs in the population. 

This is done by using the simple estimator (Freidman et al., 1997) given in equation (2.17) 

that was described in Section 2.4.3. 

 

Step 6: Evaluation stage: The 25% of the sub-testing data is used to evaluate the fitness 

function for each TAN structure, where, the fitness function that represents expected 

misclassification costs for each structure. 

 

Step 7: Get the next generation:  The next generation is initialised as follows: 

o individual[0] is filled with the best individual that has minimum cost in the previous 

generation which is the first individual in the previous generation as illustrated in 

Figure  4.7. 

o individual[1,..,25] are selected from the best individuals in the previous generation 

(from individual 2 to individual 25) after using the mutation and crossover operators 

from the previous generation, as shown in Figure 4.7.  
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o individuals[26,..,49] are generated randomly, as illustrated in Figure 4.7. 

 

Step 8: Get the fitness Bayesian tree: After repeating the whole procedure 20 times, the 

best TAN structure is obtained with minimum expected costs from the last generation. 

 

Step 9: Evaluating the fitness structure: Finally, the TAN is evaluated using the 25% 

testing data.  
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Figure 4. 9: Nine steps to illustrate the main idea of CS-BN via GAs. 
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4.4 Summary  

In this chapter, three new algorithms were developed and presented: 

 A cost-sensitive Bayesian network algorithm via the sampling approach, which is based on 

indirect methods as described in Chapter 3, Section 3.2.1.2. 

 A cost-sensitive Bayesian network algorithm via the amending approach, which is based 

on direct methods as described in Chapter 3, Section 3.2.1.1. 

 A cost-sensitive Bayesian network algorithm via Genetic algorithms, which is based on 

optimizing methods as described in Chapter 3, Section 3.2.1.3. 

 In this chapter, each algorithm is illustrated in pseudocode, and figures, and then, each 

algorithm is described in detail and summarised in steps. The algorithms have been 

implemented in the Java based on existing algorithms that available in WEKA system, with 

an outline of the classes diagram which are presented in Appendix C. 

In the next chapter, an empirical evaluation of the new algorithms for learning cost-sensitive 

Bayesian networks will be presented including the results obtained through the experimental 

evaluation. 
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Chapter 5: An Empirical Evaluation of the New Algorithms for 

Learning Cost-Sensitive Bayesian Networks 

 

Chapter 4 developed three approaches to learning cost-sensitive Bayesian network which are: 

(i) cost-sensitive Bayesian networks using a sampling approach, (ii) cost-sensitive Bayesian 

networks using an amending approach, and (iii) cost-sensitive Bayesian networks using the 

genetic algorithms. This chapter presents the results of an empirical evaluation in order to 

examine these algorithms and compare their performance with existing cost-sensitive 

algorithms, such as MetaCost+J48, and MetaCost+BN, and with cost-insensitive Bayesian 

network algorithms such as Tree Augmented Naive Bayes. This chapter is organised as 

follows: Section 5.1 presents the results of an empirical comparison; Section 5.2 provides a 

discussion of the outcomes of the empirical evaluation; and finally, Section 5.3 presents a 

summary of the findings of the evaluation. 

 

5.1 Empirical comparison results 

As explained before, this research develop new cost-sensitive Bayesian network algorithms 

that take account of misclassification costs, aim to minimise error costs while maintaining the 

accuracy. This section utilises the empirical methods to assess the extent to which the 

proposed methods have achieved this aim.  

The algorithms that chosen for comparison include: 

 A cost insensitive Bayesian network based on TAN (Friedman et al., 1997) to provide 

a base line comparison with Bayesian networks that do not aim to minimise costs as 

described in earlier in Chapter 2 Section 2.4.1.3.2.   

 A cost-sensitive decision tree learner that uses a meta learner MetaCost+J48 

(Domingos, 1999), that described in Chapter 3, Section 3.2.1.2.5, in Figure 3.6. 

 A cost-sensitive Bayesian network learner that uses a meta learner MetaCost+BN 

(Domingos, 1999) as described earlier in Chapter 3 in Section 3.2.1.2.5, in Figure 3.6. 
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All of these algorithms are implemented in the open source data mining software package 

WEKA (Hall et al., 2009) and they have been adapted to include misclassification costs in 

their evaluations. 

 

5.1.1 Datasets  

In this research, we applied our experiments to 36 datasets, which are available from the UCI 

Machine Learning Repository, (Asuncion and Newman, 2007).  These datasets have been 

widely used  for benchmarking by many  researchers with different methods and come from 

different domains such as physical, medical, and social sciences,…, etc, and have different 

characteristics as summarised in Table 5.1. Where, Bayesian networks algorithm deal with 

just nominal attributes and if the attributes are continues which have no pure intervals such as 

an age attribute, then, Bayesian network algorithm uses a supervised discretization filter to 

discretize those attributes to nominal attributes as a pre-processing step (Fayyed and lrani, 

1993) then deal with the nominal attributes. Figure 5.1 shows that continuous attributes can 

be cut into many cutting interval points according to class label yes, and no. 

 

 

 

Figure 5.1: Discretising data (Fayyed and lrani, 1993). 

Then, the frequent nominal values is used to calculate the MDL equation during learning 

structure (that described in Chapter 2, equation (2.11)), and uses the frequent of nominal 

values in CPT during learning parameters (that described in Chapter 2, equation (2.17)).   
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Number 
of data 

Dataset Class 
distribution 

Instances Attributes Type of attributes 

1 Adult (76 : 24) 48842= (37155,11687) 14 5 continuous   

2 Australian Credit Approval (56 : 44) 690=(383, 307) 15 5 continuous   

3 Bank ( 54 : 46 ) 600=(362, 274) 11 2 continuous   

4 Breast Cancer (70 : 30) 286=(201,85) 9 All nominal 

5 
Bupa liver disorder 

(58 : 42) 345=(200, 145) 7 6 continuous   

6 Cars (73 : 27) 406=(285, 107) 8 All continuous   

7 
Cleveland disease 

(54 : 46) 303=(165,138) 13 5 continuous   

8 
Crx 

(56 : 44) 689=(382,307) 16 6 continuous   

9 Cylinder Band (58 : 42) 540 =(312,228) 39 17 continuous   

10 Diabetes (65 : 35) 768=(500,268) 8 7 continuous   

11 German credit (70 : 30) 1000=(700,300) 20 7 continuous   

12 Gymexamg (70 : 30) 2500=(1755,745) 20 11 continuous   

13 Haberman (74 : 26) 306=(225,81) 3 2 continuous   

14 Hepaties (97 : 23) 155=(32, 123) 19 6  continuous   

15 
Horse Colic 

(63 : 37) 368=(214,152) 22 14 continuous   

16 Horse (66:34) 370=(215,153) 28 8 continuous   

17 Hoslem (78:22) 189=(147,42) 14 13 continuous   

18 Hypo (95 : 5) 3163=(3012,151) 25 7 continuous   

19 IonoSphere (64 : 36) 351=(225,126) 34 23 continuous   

20 kr-vs-kp (52 : 48) 3196=(1669,1527 ) 36 All nominal 

21 Labor (65 : 35) 57=(37,20) 16 8 continuous   

22 Monks (50 : 50) 556=(278,278) 7 All nominal 

23 Mushroom (52 : 48) 8124=(4208,3916) 21 All nominal 

24 Musk (52 : 48) 476=(207,269) 168 166 continuous   

25 pima_diabetes (57 : 43) 768=(500,268) 8 All continuous   

26 Sick (94 : 6) 2800=(171, 2629) 29 7 continuous   

27 Sonar (53 : 47) 280=(111,97) 60 All continuous   

28 Spambase (61 : 39) 4601=(2788,1813) 57 All continuous   

29 SPECT Heart (59 : 41) 267=(157,110) 22 All nominal 

30 Statlog Heart (56 : 44) 270=(150,120) 13 All continuous   

31 Supermarket (64 : 36) 4627=(2948,1679) 216 All nominal 

32 Tic-Tac-Toe (65 : 35) 958=(626,332) 9 All nominal 

33 Unbalanced (99 : 1) 856=(844,12) 32 All continuous   

34 Vote (61 : 39) 435=(267,168) 16 All nominal 

35 Weather (64 : 36) 14=(9,5) 5 All continuous   

36 Wisconsin Cancer (66 : 34) 699=(458,241) 10 All continuous   

Table 5.1: The main characteristics of datasets used in the comparisons 

Experimentally, in this research we use binary classification datasets (i.e. positive and 

negative class), because, in two class problems it is easier to analysis the misclassification 

errors and see the differences between correctly classified and incorrectly classified instances, 

because the cost is opposite to each other. Also, most of research have carry on two class 

problems (Zadrozny et al., 2003b; Margineantu and Dietterich, 2003), thus, in our 

experiments we used datasets with two class label.  
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In addition, in our experiments, we use a wide range of misclassification costs where the cost 

matrix adopts 16 cost ratios for class1 : class2 as [4:1,4:2,4:3,4:4, 3:1,.., 1:4]. For example, 

Table 5.2 illustrates that the cost of misclassifying a class C1 as C2 is 4 while 

misclassification class C2 as C1 is 1. 

 Actual class 

C1 C2 

C1 0 1 

C2 4 0 

Table 5.2: Cost matrix of two class labels C1=4, C2=1 

 

The evaluation is carried out using the three methods developed in this thesis: (i) cost-

sensitive Bayesian networks via sampling  approach based on indirect methods, (ii) cost-

sensitive Bayesian networks via amending an existing algorithm  based on direct methods, 

and (iii) cost-sensitive Bayesian networks via Genetic algorithms.  

 

5.1.2 Experiment methodology 

The experiment methodology that is used in our research is shown in Figure 5.2. In our 

experiment methodology, all experiments are repeated with 10 random trials and the results 

report the averages together with the standard errors. 
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Figure 5.2: The experiment methodology 

The final results will be the average cost to classify testing examples, which represent the 

expected costs of error examples in the testing set. Also, the final result will include the 

average of the percentage accuracy; this assesses how many of the examples in the testing set 

have been classified correctly. This methodology has been used for all experiments described 

in this thesis. In our experiments, we used the algorithms which are available in WEKA open 

source (Hall et al., 2009), then we write our algorithms with Java language, where these 

algorithms are implemented with (class implementation) which are illustrated in Appendix C. 

The following subsections present the results from each of the three approaches developed. 
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5.1.3 Experiments  

In this section we evaluate our three algorithms that described in Chapter 4. Table 5.3 

summarises the results of three experiments, which compares our proposed algorithms with 

the existing algorithms: (1) Original Bayes network (which is their implementation of TAN 

(Friedman et.al, 1997), version 8). (2) MetaCost+J48 as the base classifier (which is their 

implementation of C4.5 version 8) (Domingos, 1999), and (3) MetaCost+TAN. Where, Table 

5.3 displays the results in form mean squared error ± Standard errors observed for the 

algorithms. It presents the results for each of the 36 datasets and highlights the result with the 

lowest cost for each dataset. Figure 5.3 presents the expected costs when each algorithm is 

applied on the datasets in the form of bar charts, and Figure 5.4 presents the accuracy across 

different datasets. To make the comparisons in Table 5.3 more easy, three font colours have 

been used, blue font to determine the first winner, red for the second winner and green for the 

third winner. Also, we used bold font to determine the lowest cost and highest accuracy for 

each dataset. Where, all the results have been compiled into a dataset and used as input to the 

statistical software package SPSS in order that analysis can be performed on it. 
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Dataset 

 
CS-BN via Genetic algorithm CS-BN via sampling approach CS-BN via amending approach MetaCost+J48 MetaCost+BN 

 

Original BN 

Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy  Cost Accuracy 

Adult 3450.9 ± 15.4 84.01 ± 0.17 3618.8 ± 25.5 79.39 ± 0.08 3353.7 ± 18.2 80.05 ± 0.11 3781.6 ± 25.8 81.86 ± 0.13 3622.2 ± 28.66 79.57 ± 0.12 4581.8 ± 23.0 86.11 ± 0.07 

Australian Credit  43.6 ± 3.76 90.18 ± 0.77 43.8 ± 3.32 84.56 ± 0.73 43.8 ± 3.52 84.2 ± 0.78 45.7 ± 3.56 85.74 ± 0.78 54.6 ± 2.49 81.36 ± 0.69 67.1 ± 2.8 84.79 ± 0.4 

Bank 72.4 ± 4.99 81.49 ± 0.82 70.8 ± 3.15 58.85 ± 1.57 71.6 ± 2.9 59.32 ± 1.16 79.5 ± 4.4 55.2 ± 2.42 73.1 ± 2.45 57.5 ± 1.44 111.0 ± 3.13 72.03 ± 1.05 

Breast Cancer 36.4 ± 1.33 81.0 ± 0.48 49.5 ± 2.0 46.0 ± 1.8 55.8 ± 2.62 55.0 ± 1.77 52.9 ± 2.68 61.29 ± 0.89 52.8 ± 2.64 54.14 ± 1.9 58.8 ± 3.13 71.29 ± 1.72 

Bupa liver disorder 51.8 ± 1.8 46.51 ± 0.72 50.1 ± 0.1 42.09 ± 0.23 50.0 ± 0.0 41.86 ± 0.0 56.0 ± 2.78 58.6 ± 1.51 51.8 ± 1.8 41.51 ± 0.35 133.1 ± 7.27 57.91 ± 0.23 

Cars 0.0 ± 0.0 100.0 ± 0.0 0.9 ± 0.6 99.3 ± 0.4 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.4 ± 0.4 99.88 ± 0.12 0.4 ± 0.4 99.88 ± 0.12 

Cleveland disease 24.0 ± 1.65 87.2 ± 1.0 27.2 ± 1.15 78.93 ± 0.76 29.4 ± 2.28 79.6 ± 1.29 29.7 ± 1.51 74.4 ± 0.88 29.5 ± 2.34 77.47 ± 1.08 32.4 ± 1.56 82.4 ± 0.59 

Crx 48.2 ± 2.9 89.41 ± 0.63 47.0 ± 4.04 83.55 ± 0.93 50.8 ± 3.61 84.14 ± 1.05 38.5 ± 3.2 85.56 ± 0.76 51.7 ± 3.4 81.12 ± 1.12 62.2 ± 3.2 86.98 ± 0.85 

Cylinder Band 59.9 ± 3.09 81.49 ± 0.9 87.2 ± 5.15 68.73 ± 1.22 92.8 ± 4.57 73.51 ± 0.85 77.0 ± 0.0 42.54 ± 0.0 93.7 ± 5.44 71.49 ± 1.13 98.5 ± 5.12 74.85 ± 1.04 

Diabetes 90.2 ± 3.78 61.41 ± 1.28 87.4 ± 4.69 68.53 ± 1.01 85.9 ± 3.33 66.49 ± 0.75 100.0 ± 4.59 70.1 ± 0.73 88.3 ± 4.19 68.06 ± 0.89 126.1 ± 5.57 76.07 ± 0.69 

German credit 138.0 ± 4.61 79.0 ± 0.69 137.6 ± 3.53 55.4 ± 0.88 128.9 ± 4.66 67.76 ± 0.98 157.2 ± 6.41 64.24 ± 1.34 138.2 ± 5.78 66.32 ± 0.87 187.1 ± 6.88 72.92 ± 0.98 

Gymexamg 438.0 ± 0.0 29.35 ± 0.0 438.0 ± 0.0 29.35 ± 0.0 438.0 ± 0.0 29.35 ± 0.0 566.4 ± 11.6 46.39 ± 0.87 438.0 ± 0.0 29.35 ± 0.0 728.0 ± 0.0 70.65 ± 0.0 

Haberman 53.6 ± 1.18 54.93 ± 2.57 52.3 ± 1.51 33.87 ± 1.48 51.1 ± 2.2 51.87 ± 2.19 51.3 ± 2.72 63.6 ± 1.57 57.8 ± 1.74 52.53 ± 1.34 73.3 ± 1.72 71.07 ± 0.87 

Hepaties 6.9 ± 1.2 91.54 ± 1.08 13.2 ± 1.32 78.46 ± 1.63 12.8 ± 1.7 82.56 ± 1.66 18.7 ± 1.94 78.21 ± 1.76 14.0 ± 1.44 83.33 ± 1.59 15.0 ± 1.69 84.62 ± 1.62 

Horse Colic 27.7 ± 1.44 85.54 ± 0.97 42.9 ± 2.06 71.3 ± 1.75 44.7 ± 2.74 76.52 ± 1.43 45.8 ± 2.8 79.57 ± 1.2 45.3 ± 2.68 73.26 ± 1.54 45.4 ± 2.77 80.65 ± 1.19 

Horse  29.0 ± 3.12 82.97 ± 1.37 39.8 ± 1.9 72.09 ± 1.24 46.4 ± 3.69 72.09 ± 1.6 61.0 ± 0.0 32.97 ± 0.0 51.6 ± 3.47 63.41 ± 1.95 50.3 ± 3.4 76.37 ± 1.2 

Hoslem 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 1.5 ± 1.07 98.04 ± 1.31 0.0 ± 0.0 100.0 ± 0.0 

Hypo 9.6 ± 0.9 99.23 ± 0.09 18.3 ± 2.61 98.31 ± 0.2 18.1 ± 1.38 98.19 ± 0.17 10.6 ± 1.59 99.41 ± 0.08 18.3 ± 2.61 98.31 ± 0.2 21.8 ± 2.69 97.94 ± 0.2 

IonoSphere 12.6 ± 1.22 94.83 ± 0.57 20.8 ± 2.05 89.89 ± 1.03 24.3 ± 2.1 89.66 ± 0.82 28.6 ± 2.58 86.09 ± 1.47 27.9 ± 2.58 88.97 ± 0.96 26.9 ± 3.45 89.77 ± 1.12 

kr-vs-kp 106.6 ± 4.66 93.88 ± 0.34 134.1 ± 5.14 84.68 ± 0.45 146.9 ± 2.73 84.2 ± 0.18 139.0 ± 5.83 92.29 ± 0.24 171.0 ± 4.76 83.12 ± 0.41 171.0 ± 4.76 83.12 ± 0.41 

Labor 1.3 ± 0.6 97.14 ± 1.17 4.3 ± 0.72 84.29 ± 2.56 4.1 ± 1.04 85.71 ± 2.61 5.6 ± 0.64 81.43 ± 1.9 4.6 ± 1.02 84.29 ± 2.56 5.8 ± 1.58 86.43 ± 2.49 

Monks 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 32.9 ± 1.46 76.16 ± 1.06 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 

Mushroom 0.0 ± 0.0 100.0 ± 0.0 4.9 ± 1.91 99.94 ± 0.03 1.6 ± 0.88 99.98 ± 0.01 0.0 ± 0.0 100.0 ± 0.0 3.2 ± 1.16 99.96 ± 0.01 2.8 ± 1.2 99.97 ± 0.01 

Musk 23.4 ± 3.67 93.08 ± 1.02 22.8 ± 2.43 88.46 ± 1.32 22.7 ± 3.25 92.91 ± 0.85 19.7 ± 8.31 93.42 ± 2.35 33.3 ± 5.47 86.67 ± 1.8 24.2 ± 3.89 91.88 ± 1.18 

Pima diabetes 90.9 ± 3.1 68.12 ± 0.93 94.3 ± 4.06 58.17 ± 1.86 91.1 ± 3.18 67.07 ± 0.97 101.4 ± 4.73 70.16 ± 1.21 110.6 ± 3.62 75.55 ± 0.72 122.3 ± 4.25 75.24 ± 0.84 

sick 35.6 ± 2.1 97.6 ± 0.11 41.7 ± 3.9 96.94 ± 0.17 41.7 ± 2.86 96.9 ± 0.15 25.6 ± 2.45 98.09 ± 0.13 41.7 ± 3.9 96.94 ± 0.17 39.4 ± 2.6 97.58 ± 0.06 

Sonar 25.8 ± 2.31 80.38 ± 1.34 29.5 ± 2.22 65.77 ± 1.46 32.4 ± 2.07 70.0 ± 1.12 32.8 ± 3.72 66.92 ± 2.72 32.8 ± 2.17 66.92 ± 2.16 35.5 ± 2.11 74.42 ± 1.77 

Spambase 214.9 ± 6.84 93.12 ± 0.2 172.8 ± 7.43 92.76 ± 0.16 197.9 ± 8.09 92.9 ± 0.15 182.8 ± 9.24 91.29 ± 0.28 234.4 ± 6.44 91.95 ± 0.17 230.5 ± 8.55 92.27 ± 0.2 

SPECT Heart 35.8 ± 1.73 76.21 ± 1.08 42.2 ± 2.77 56.97 ± 2.5 37.0 ± 1.83 64.85 ± 1.35 40.3 ± 2.96 64.39 ± 1.52 39.2 ± 2.04 63.79 ± 1.18 53.5 ± 3.68 68.48 ± 1.55 

Statlog Heart 24.9 ± 1.77 85.91 ± 0.96 23.4 ± 1.93 79.55 ± 1.89 24.5 ± 2.09 82.42 ± 1.2 24.6 ± 2.9 77.27 ± 1.88 26.4 ± 1.13 74.09 ± 0.94 26.7 ± 1.41 84.09 ± 1.04 

Supermarket 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 1668.0 ± 0.0 63.55 ± 0.0 

Tic-Tac-Toe 127.7 ± 3.59 80.34 ± 0.48 124.6 ± 2.05 52.92 ± 0.59 110.3 ± 2.73 64.19 ± 0.49 98.6 ± 5.63 79.83 ± 0.9 130.1 ± 4.03 57.46 ± 0.92 166.2 ± 4.22 77.25 ± 0.62 

Unbalanced 8.0 ± 0.0 99.05 ± 0.0 7 ± 0.35 97.62 ± 0.17 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0 

Vote 6.2 ± 1.05 96.73 ± 0.32 11.2 ± 0.94 94.58 ± 0.27 10.9 ± 1.08 95.42 ± 0.45 11.3 ± 1.88 94.49 ± 0.63 15.7 ± 1.61 92.34 ± 0.76 15.7 ± 1.87 93.46 ± 0.44 

Weather 0.0 ± 0.0 100.0 ± 0.0 2.4 ± 0.37 40.0 ± 4.44 2.4 ± 0.37 40.0 ± 4.44 2.4 ± 0.37 40.0 ± 4.44 2.6 ± 0.58 33.33 ± 7.03 2.6 ± 0.69 63.33 ± 7.78 

Wisconsin Cancer 4.0 ± 0.83 98.02 ± 0.29 5.5 ± 0.87 97.15 ± 0.36 5.4 ± 0.96 97.38 ± 0.34 11.8 ± 1.39 95.41 ± 0.49 7.0 ± 1.34 97.15 ± 0.34 8.4 ± 1.27 97.21 ± 0.38 

Table 5.3: Comparison between CS-BN algorithms and existing algorithms  
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Figure 5.3: Expected cost of CS-BN algorithms and existing algorithms 
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Figure 5.4: Accuracy of CS-BN algorithms and existing algorithms 

 

5.1.3.1 Experiment 1: CS-BN using the sampling approach 

In this experiment, we evaluate the CS-BN via sampling approach described in Chapter 4 

Section 4.1 that based on changing the data distribution to reflect the cost. These experiments 

show that: 

(i) The numbers of misclassifications of the rare class (often the more expensive class) 

are always less than the number of misclassifications of frequent class in all datasets. 

Thus, sampling has the intended effect since it is minimizing the cost by duplicate 

rare instances and deleting some of frequent instances according to misclassification 

costs. Thus, this will increase the numbers of misclassifications of the frequent class 

and decrease the number of misclassifications of the rare class. For example, in the 

breast cancer dataset, a false positive error means unnecessary treatment; 

unnecessary worry, while, a false negative error means postponed treatment or 

failure to treat; death or injury. Figure 5.5 shows how cost-sensitive CS-BN via 

sampling approach decreases the average number of rare class (FN) in the breast 

cancer data comparing with existing Bayesian network algorithm as shown in Table 

5.4. Thus, it would enable a clinician to review such cases and avoid missing 

0

20

40

60

80

100

120
A

d
u

lt

A
u

st
ra

lia
n

 C
re

d
it

 A
p

p
ro

va
l

B
an

k

B
re

as
t 

C
an

ce
r

B
u

p
a 

liv
e

r 
d

is
o

rd
er

C
ar

s

C
le

ve
la

n
d

 d
is

e
as

e

C
rx

C
yl

in
d

e
r 

B
an

d

D
ia

b
et

e
s

G
e

rm
an

 c
re

d
it

G
ym

ex
am

g

H
ab

e
rm

an

H
ep

at
ie

s

H
o

rs
e

 C
o

lic

H
o

rs
e

H
o

sl
e

m

H
yp

o

Io
n

o
Sp

h
e

re

kr
-v

s-
kp

La
b

o
r

M
o

n
ks

M
u

sh
ro

o
m

M
u

sk

P
im

a 
d

ia
b

et
e

s

si
ck

So
n

ar

Sp
am

b
as

e

SP
EC

T 
H

e
ar

t

St
at

lo
g 

H
ea

rt

Su
p

e
rm

ar
ke

t

Ti
c-

Ta
c-

To
e

U
n

b
al

an
ce

d

V
o

te

W
ea

th
er

W
is

co
n

si
n

 C
an

ce
r

Accuracy of classifiers

Accuracy of CS-BN via GA Accuracy of CS-BN via Sampling Accuracy of CS-BN via amending

Accuracy of MC+J48 Accuracy of MC+BN Accuracy of BN



Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks 

  

 

89 
 

potential cases of cancer that need treatment. In contrast, when the cost is decreased 

then the accuracy will be decreased because, sampling approach aims to minimize 

the costs by decreasing the number of more expensive class FN, even if the number 

of cheap class is increased FP. Thus, that will decrease the accuracy because some of 

unimportant instances are misclassified. For example, in Table 5.4, in the first trial, 

the cost, and accuracy of the CS-BN via sampling will be:  Cost= 3*4 + 1* 38=50   

and accuracy = 29/ 70 =%41.42 

While, the cost and accuracy of the original BN will be: Cost= 3*14 + 1*11 = 67 

and accuracy= 45/70 =%64.28 

Calculating the cost and accuracy are based on equations (3.1, and 3.2). 

CS-BN via Sampling  approach 

            

Original BN 

No. of 

rare 

(FN) 

No. of 

frequent 

(FP) 

Expected 

cost 

Accuracy No. of 

rare 

(FN) 

No. of 

frequent 

(FP) 

Expected 

Cost 

Accuracy 

3 38 50 %41.42 14 11 67 %64.28 

1 37 41 %45.71 10 4 44 %80 

1 45 49 %46.0 14 10 66 %65.71 

3 29 41 %54.29 12 9 57 %70 

4 35 51 %44.29 15 7 67 %68.57 

3 38 50 %41.42 12 6 54 %74.28 

3 38 50 %41.42 15 7 67 %68.57 

4 35 51 %44.29 9 5 41 %80 

3 29 41 %54.29 13 6 58 %72.85 

6 33 57 %44.29 15 7 67 %68.57 

Table 5.4: The results of CS-BN via sampling and original BN algorithm for the breast cancer 

dataset. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Misclassification error if experiment 1 for breast cancer dataset  

(ii) Sampling followed by use of the TAN classifier, yields good results on most 

datasets; especially if the data are very highly skewed towards one class. 
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Unbalanced dataset has the proportion of rare class at 1% (number of active 

instances 12) while the frequent class is 99% (number of inactive instances 844), and 

if the cost of rare class is 8 and the cost of frequent class is 1, then the new 

distribution will be 11% (Active instances= 96): 89% (inactive instances = 844) 

instead of 1%: 99% . In particular, increasing the number of rare class examples 

means increased rare instances, which are very expensive. Therefore, after changing 

the distribution, the learner will build the Bayesian tree classifier based on the new 

distribution, and as the result of the experiment, the classifier will classify the new 

instances and take into consideration the rare instances.  

(iii)  CS-BN algorithm via sampling apprach works better when the data distribution has 

the same pattern. This means the data instances are similar and there is little 

diversity. When instances are very similar, sampling will duplicate similar instances 

or still have similar instances even when the instances are removed, such as, 

Hoslem, and monks datasets. In particular, the performance of this method will be 

very good when the original data distribution has low variation, because all instances 

are spread out around the centre (mean) of a dataset, and there are few outlier 

instances, as shown in Figure 5.6(a). However, the performance of this method will 

not be good when the original data distribution are widespread, because lots of 

outlier instances are spread out far from the centre of the dataset, and there are lots 

of outlier instances as shown in Figure 5.6(b).  

 

 

 

 

    
      (a) Low variation, attribute variables are similar                   (b) High variation, attribute variables are diverse 

Figure 5.6: WEKA a pre-process stage shows the similarity and diversity of attribute variables 

For example, in the Cars dataset, all instances have the same pattern, and therefore, 

sampling approach will work very well in these datasets because it will duplicate 

some similar instances or remove some of the similar instances. Experimentally, 

sampling approach changes the data distribution by increasing the instances that 

 

outlier instances 

 

outlier instances 
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belong to class label when these instances are similar. As a result, the classifier will 

predict these instances correctly, and thus, this algorithm gives less expected cost 

compared with original Bayesian network. On the other hand, in these types of data 

such as Crx, and Cylinder Band data distribution, the sampling approach will not 

work very well because the data distribution are highly varied, and using sampling 

approach might duplicate some of the unimportant instances, or delete some of the 

important ones.  

(iv) Overall, CS-BN using the sampling approach outperforms MetaCost+BN, and the 

original algorithm in terms of minimising cost in all datasets. In particular, to 

compute the class probability estimates, the MetaCost algorithm uses votes upon 

which class probabilities are produced by bagging are based on a measure of the 

variance of BN learner on a particular example. As a result, we find that the 

classifier that has high variance as shown in Figure 5.6(b), the base learner is less 

stable in a particular example, as Green (2010) mentioned that "in MetaCost 

algorithm the variance is not the same as the class probability". Variance describes 

how widely data of BN base learner on a particular instance are spread out about the 

center of a dataset. The class probability is produced by the ensemble, which is the 

fraction of trained classifiers that predict that particular class (Margineantu, 2000). 

For example, if a base learner has learned to classify a particular instance that has a 

true probability of being in class 1 of 60%, each classifier in the ensemble may 

predict class 1 resulting in a class probability estimate of 100%, where there is 40% 

belonging to class 2. For this reason, the bagging is not a good choice for estimating 

class probabilities (Margineantu, 2002; Green, 2010). Therefore, MetaCost+BN 

performs less well on the datasets than other costing sensitive algorithms. 

(v) CS-BN via sampling outperforms MetaCost+DT algorithm on most of the datasets. 

MetaCost+J48 algorithm may work better on some datasets such as Tic-Tac-Toe, 

Crx, Cylinder Band; when the decision trees obtained with J48 give better results 

than the original BN in terms of accuracy.  

(vi) As shown in Figure 5.4, the accuracy of the CS-BN via sampling approach is similar 

or slightly less than the accuracy of original BN.  
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5.1.3.2  Experiment 2: CS-BN using the amending approach 

In this experiment, we evaluate the CS-BN via amending approach described in Chapter 4 

Section 4.2 where we include misclassification costs into the Bayesian tree (TAN) learning 

process by changing the formula for Minimum Description Length MDL (Rissanen, 1978) to 

include misclassification costs. In particular, we include costs during both learning structure 

as described in Section 4.2.1 and learning parameters as described in Section 4.2.2. The main 

findings from these results are: 

(i) The number of misclassifications of the rare class (more expensive) in this approach 

is always less than the number of misclassifications of rare class in the original TAN 

algorithm. Therefore, the new algorithm gives a better result in terms of costs 

compared to the original Bayesian network learning algorithm.  

 

Figure 5.7: Misclassification error if experiment 2 for breast cancer dataset 

(ii) In experiment 2, our algorithm works better than MetaCost+BN in all datasets for the 

same reason explained in experiment 1, that the higher the variance, the less accurate 

the estimate of the conditional probabilities. Where, this experiment gives similar 

results in some datasets that have the same pattern; similar instances such as Cars, 

Hoslem, and monks. 

(iii) CS-BN via amending outperforms MetaCost+DT algorithm on most of the datasets. 

But MetaCost+DT algorithm may work better on some datasets, when, the decision 

trees obtained with J48 give better results than the original BN in terms of accuracy 

such as Crx, Cylinder, and Tic-Tac-Toe datasets. In particular, if the cost insensitive 

decision trees (J48) are better than the existing BN in terms of accuracy, then 

MetaCost+j48 is more likely to be better than MetaCost+BN, and CS-BN via the 

amending approach, and MetaCost+BN.  
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(iv) As shown in Figure 5.4, the accuracy of the cost-sensitive version is similar or slightly 

less than the accuracy of the original BN, and the level of sacrifice is not as 

significant as reported in studies that use similar approaches for learning cost-

sensitive decision trees (Jiang et al., 2014). 

 

5.1.3.3 Experiment 3: CS-BN using Genetic algorithms 

This section presents an empirical evaluation of CS-BN using genetic algorithm, which is 

carried out by using 75% of the data for training and 25% for testing. The 75% of training 

data is further subdivided to two parts: 50% is used for learning the parameters and 25% is 

used for assessing the fitness function (see Chapter 4, Section 4.3 for more details). These 

experiments show that: 

 

(i) Overall, CS-BN via Genetic algorithms outperforms MetaCost+J48, and 

MetaCost+BN in terms of minimizing cost, while simultaneously increasing 

accuracy. For example, on the Adult dataset, the average cost and accuracy of our 

algorithm is 3450.9 and 84% respectively while for MetaCost+BN these are 36220.2 

and 79.75% respectively. The accuracy of the CS-BN version is better than other 

classifiers, including the original accuracy based version of TAN, because this 

algorithm chooses the best cost and accuracy in each trial, then sorts the Bayesian 

networks according to the best fitness that has minimum cost and maximum accuracy 

as described in Chapter 4, Section 4.3. 

(ii) This algorithm aims to minimise cost according to the fitness function, which uses 

the misclassification cost just in the evaluation step in the fitness function (expected 

cost); obviously, it does not include the misclassification cost when creating a BN, 

but in each trial the algorithm chooses the best BN (that has minimum 

misclassification cost); where the minimum misclassification cost means minimum 

of FN and FP together, so the weight given to the accuracy of FN and FP will be 

similar, not like other cost sensitive algorithms that aim to minimise FN. For 

example, in breast cancer dataset as shown in Figure 5.8, where it shows the results 

of misclassification costs between existing algorithms, obtained as an average of 10 

random trials. 
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Figure 5.8: CS-BN via GA reduces the number of misclassification error for the Breast Cancer  

dataset. 

(iii)This algorithm will take a long time, when the data has lots of attributes, because this 

algorithm generates the Bayesian tree randomly, thus, the search space will be very 

large if the data has lots of attributes, such as the spambase data where the number of 

attributes is 53. As a result, searching for the fittest TAN will take longer. In contrast, 

it will work very well if the data has a low number of attributes such as diabetes 

dataset where the number of attributes is 9. In particular, many researches have 

suggested feature selection methods to reduce the dimensional of the data (Dash and 

Liu, 1997; Dash and Liu, 1997). If the data has lots of features in this case one of the 

feature selection methods should be used to reduce the training time.  

(iv) Several authors have reported significant issues with the performance of learning 

algorithms on imbalanced datasets, and hence as well as the above experiments, we 

also carried out experiments to examine the performance of algorithms on four 

imbalanced datasets as cost ratios are increased. Figure 5.9 shows the results, 

obtained as an average of 10 random trials, and as the cost ratio of misclassification 

of one class over another is increased from 50 to 400. The results for these datasets 
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show that our algorithm performs better than the MetaCost classifier when the cost of 

misclassifications is increased. 

 

 

 

 

 

 

 

 

 

 

Figure 5. 9: Misclassification costs in the cost ratio range 50 to 400 in CS-BN via GA 

 

5.2 Comparison of the three algorithms developed 

As we mentioned in Chapter 1, there are many types of classification algorithms, and there is 

no such thing as the best algorithm, because it depends on type of data and the pattern of data 

as well (Wolpert, 1995). To make the comparisons in Table 5.3 more easy, three colours have 

been used, the blue font to determine the first winner, the red for the second winner and the 

green for the third winner, where the results show that CS-BN via GA is the best algorithm in 

term of accuracy and cost. As shown in Table 5.3, CS-BN via GA wins 24 times, then the 

CS-BN via amending  has good results in terms of cost, where it wins 13 times. From the 

algorithms developed, the CS-BN via sampling approach is the relatively least effective with 

8 wins. All algorithms have the same results on 4 datasets that is because they have the 

greatest results, which are Supermarket, Monks, Hoslem, and Gymexamg. However, in term 

of accuracy the CS-BN via GA is win for the most of cases; for (26 times), even if the cost 

was worst.  
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5.3 Summary 

This chapter has presented an empirical evaluation of the three new algorithms developed in 

Chapter 4. The results show that the algorithms CS-BN via sampling, and CS-BN via 

amending have a similar pattern of results when compared with existing cost-sensitive 

algorithms, but CS-BN via GAs has a different pattern of results. For both CS-BN via 

sampling and via amending, the numbers of misclassifications of the rare class (more 

expensive) FN are always less than the number of misclassifications of frequent class FP in 

all datasets. While in CS-BN via GAs the number of FN are nearly similar to FP as shown in 

Figure 5.8. 

 

All three new algorithms outperform the cost-insensitive Bayesian network algorithm for all 

the datasets in terms of minimising cost. They are also better than the existing cost-sensitive 

Bayesian networks algorithm, MetaCost+BN, in terms of cost. On the other hand, when  the 

cost in-sensitive decision tree learning algorithm,  J48  is better than the existing BN in terms 

of accuracy, then MetaCost+j48 is more likely to be better than MetaCost+BN and our 

algorithms, which happens on four datasets in average; though it is worth noting that our 

algorithms outperform MetaCost+J48 on 32 out of the 36 datasets. In term of 

misclassification cost, the best algorithm is CS-BN via GAs, then via amending then via 

sampling approach.  The accuracy of both algorithms CS-BN via sampling, and via amending  

is similar though slightly less than the original accuracy based version of TAN, while CS-BN 

via GAs  performs better results than all other algorithms in term of accuracy and cost as 

well. 

 

In the next chapter, a conclusion that summarises the achievements made in this research and 

how the research objectives have been addressed will be presented, with the results obtained 

through the experimental evaluations. 
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Chapter 6:  Conclusions and Future Work 

 

This chapter presents the conclusions of this study: Section 6.1 presents a summary of the 

context and motivation, Section 6.2 revisits the objectives and reflects critically on the extent 

to which the objectives are met, and Section 6.3 presents limitations and possible areas for 

future work.  

 

Through the past decade, the problem of developing algorithms that can induce cost-sensitive 

classifiers has become a significant challenge. Thus, cost-sensitive learning algorithms have 

received increasing attention in most real world applications. The majority of research studies 

on cost-sensitive learning algorithms have focused on the induction of decision trees with 

either direct amendments to existing algorithms or the use of indirect methods such as 

bagging and boosting (Lomax and Vadera, 2013). Bayesian networks have been shown to be 

an effective classifier with a number of useful characteristics, and hence, an obvious question 

stems from whether or not Bayesian networks can result in classifiers that perform better 

when it comes to minimising costs of misclassification?. However, existing Bayesian network 

algorithms that are designed to minimise misclassification errors do not take misclassification 

costs into consideration. As a consequence, this study has explored whether or not it is 

possible to develop cost-sensitive Bayesian networks. Overall, three algorithms were 

developed by analogy with the strategies used for developing cost-sensitive decision trees:  

(i) Cost-sensitive Bayesian networks via a sampling approach, based on using 

indirect methods to change the distribution of examples to reflect the costs of 

misclassification. 

(ii) Cost-sensitive Bayesian networks via an amending approach, which involves 

amending the minimum description length measure used in constructing a 

network. 

(iii) Cost-sensitive Bayesian networks via a Genetic algorithm, based on the use of 

genetic algorithms to construct a Bayesian Network that aims to minimise costs of 

misclassification. 
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The primary hypothesis of the present research stated that it would be possible to develop 

algorithms to learn cost-sensitive Bayesian networks, which on average are more cost-

effective than current algorithms; including cost-sensitive decision learning tree algorithms 

such as: MetaCost+J48; cost-sensitive Bayesian networks which are available in WEKA (i.e. 

MetaCost+BN); or existing cost-insensitive Bayesian network learning algorithms (TAN). To 

evaluate this hypothesis, the research aimed to develop methods that analyse Bayesian 

networks that take account of misclassification costs and then utilise the empirical methods to 

assess the extent to which the hypothesis is true.  

In this final chapter, a summary of how the research objectives have been addressed is 

provided in Section 6.1 with details of the achievements and main contributions from this 

research. Additionally, the limitations of the developed algorithms and directions for future 

work are presented in Section 6.2.  

 

6.1 The research objectives revisited  

This section presents the research objectives, as well as reviewing the extent to which they 

have been achieved and contributions made. The specific research objectives that were 

written in Chapter 1 are as follows: 

 To review the background of Bayesian networks learning algorithms, and analyse 

the types of this algorithm: a survey of the foundation of Bayesian networks algorithms 

and the basic laws of probability were described in Chapter 2, Moreover, it presented 

how to learn the structure of Bayesian networks and their parameters.  

 To review the literature on cost-sensitive learning, analyse the most significant 

issues in current cost-sensitive learning algorithms, and identify the strategies and 

methods that used: a survey of approaches to cost-sensitive learning was presented in 

Chapter 3, as a comprehensive literature review of the most appropriate methods that 

could be employed for developing cost-sensitive algorithm. Cost-sensitive algorithms 

were divided into three categories: direct methods, indirect methods, or optimisation 

methods. Most of the research to date has focused on developing cost-sensitive decision 

trees, while only three recent studies have developed algorithms for learning cost-

sensitive Bayesian networks as described in Chapter 3. Therefore, the current study has 
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aimed to explore the development of algorithms for learning Bayesian networks for cost-

sensitive classification.  

 

 To develop new cost-sensitive Bayesian network learning algorithms that aim to 

overcome the identified issues, which are based on direct, indirect, and optimisation 

methods: new cost-sensitive Bayesian network algorithms have been developed and 

described in Chapter  4, which are:  

 

i. Cost-sensitive Bayesian network algorithm based on the indirect method via 

sampling approach. 

ii. Cost-sensitive Bayesian network algorithm based on the direct method via an 

amending approach. 

iii. Cost-sensitive Bayesian network algorithm based on the optimisation method 

via Genetic algorithms. 

 

All of the algorithms mentioned above aim to minimise the misclassification cost, whilst  

maintaining accuracy. 

 

 To evaluate the new algorithms against existing cost-sensitive algorithms and 

measure performance, and compare the algorithms in terms of accuracy, and cost 

minimisation:  Chapter 5 presents the results of an empirical evaluation. This was 

undertaken in order to examine these algorithms and compare their performance with 

existing cost-sensitive algorithms, such as MetaCost+j48, and MetaCost+BN, and cost-

insensitive Bayesian networks algorithms (Tree Augmented Naive Bayes). These 

alternatives algorithms have been implemented using Java based in the WEKA open 

source system. The algorithms have been evaluated through the use of 36 benchmark 

datasets, which have been studied previously by several researchers through different 

methods that have come from different domains. The evaluation was carried out using 16 

cost ratios for two class labels [1:1,1:2,1:3,1:4, 2:1,2:2.., 4:4]. The experimental 

methodology used involved carrying out 10 random trials, and in each trial, the data was 

divided into 75% training and 25% testing. Through this, the results reported the averages 

together with the standard errors. 
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Furthermore, the results of an empirical comparison have been analysed in Chapter 5. 

Overall, the summary of the findings from these results show that: 

 

(i) The three cost-sensitive Bayesian network algorithms outperform cost-insensitive 

Bayesian network algorithms in terms of cost in all datasets.  

 

(ii) Algorithms, CS-BN via sampling, and CS-BN via amending have the same pattern as 

cost-sensitive algorithms MetaCost+BN. Indeed, CS-BN via sampling, and CS-BN via 

amending minimise cost and maintain the accuracy, as the number of misclassified rare 

class FN is less than the number of misclassified frequent class FP in most cases. 

 

(iii) CS-BN via GA has a different pattern from other cost-sensitive algorithms, where it has 

been demonstrated this algorithm minimises cost and maintains good accuracy, because 

the number of misclassified rare class FN is similar to the number of misclassified 

frequent class FP in most of cases. 

 

(iv) CS-BN via sampling works well when the original data distribution is very skewed. 

Where the data is biased to one class, this algorithm can function very well following 

the changes in the data distribution to reflect the misclassification costs, and increase 

the number of rare class instances. Thus, it is then possible to make these instances 

(rare instances) more important for classification than other instances. Comparing with 

MetaCost+j48, the performance of CS-BN via the sampling approach performs well in 

29 out of the 36 datasets in terms of cost, and it performs well compared to the use of 

MetaCost+BN in all datasets in terms of cost. Through comparison of the current three 

algorithms, the performance of CS-BN via the sampling approach performs well in only 

8 out of the 36 datasets in terms of cost. 

 

(v) CS-BN via the amending approach works better than existing cost-sensitive algorithms 

as MetaCost+BN in all datasets, while comparing with MetaCost+j48 it performs well 

in 28 out of 36 datasets. In particular, by comparing the current three algorithms, the 

performance of CS-BN via amending approach performs well in 13 out of the 36 

datasets in terms of cost. 
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(vi) Comparing with MetaCost+j48, CS-BN via Genetic algorithms gives good results in 31 

out of 36 datasets. While, CS-BN via GAs is better than our other algorithms in 24 out 

of the 36 datasets in terms of both costs and accuracy, and also performs better than 

MetaCost+BN for all the datasets in terms of cost and accuracy.  

 

(vii) The accuracy of CS-BN via sampling, and CS-BN via amending is similar, although 

slightly less than the original accuracy based version of TAN, while CS-BN via GAs 

creates better results than all the other algorithms in terms of accuracy and cost as well. 

 

 

6.2 Limitations and future work  

The research has developed new cost-sensitive Bayesian network algorithms that aim to 

minimise the misclassification costs and which have been evaluated on 36 datasets that have 

a binary class label. The work presented has some limitations, which can be the subject of 

future works, including: 

1. Dealing with two classes: all the experiments are performed on two class data; where 

the data that are used typically did not have more than two class label. 

 

2. Using misclassification cost: all the developed algorithms are aimed to minimizing 

cost of misclassifications, but not test costs, which described on Section 3.2.  

 

3. Time consuming in CS-BN via GAs for high dimensional data: if the data has lots 

of features, then the experiment 3 (CS-BN via GAs) will spend lots of time to find the 

optimal tree thus the training time will be long. 

Therefore, there are several aspects that could be developed in the future, which include the 

following: 

1. Generality of the algorithms: Although the developed algorithms were applied 

successfully for several datasets that have two class labels, there are certain 

limitations of these algorithms where they cannot be applied into datasets that have 

more than two class labels. Therefore, in additional future work, these algorithms 

could be developed to work on more than two class labels. 
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2. Dealing with test costs: Although the algorithms from the current study have aimed 

to minimise misclassification costs, they do not consider test costs. In particular, these 

algorithms can be extended in the future to include test costs when learning the 

structure of Bayesian networks.  

 

In conclusion, the main contribution of this study is that three new algorithms for learning 

cost-sensitive Bayesian networks have been developed and evaluated. The evaluation of the 

algorithms shows advances in terms of minimising cost, with the CS-BN via GA performing 

the best. The comparison of the different methods, both existing and the new ones developed 

in this thesis, advance our knowledge of their relative merits.
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Appendix A 

 

A1: Connections in a BN structure 

The inference process in Bayesian networks is based on d-separation concepts (Preal, 1993); 

where two sets of nodes are conditionally independent given a set of evidence. The structure 

of the graph represents the conditional independence relations, as Pearl in (1988) stated: 

“Each variable is conditionally independent of all its non-descendants given the value of all 

its parents”. 

Where, the concept of d-separation determines the minimum amount of information needed 

to process a query during the exact inference in a Bayesian network, it decides which 

conditional independence relations are implied by a directed acyclic graph of the Bayesian 

network. For example, in Figure A1.1 when C is known, then A and B are conditional 

independents given C. When one says A and B are d-separated by a set of evidence, for C 

every undirected path from A to B is “blocked” (Pearl, 1988). 

There are three types of connections between nodes, which allow the transfer of information 

through the nodes. These connections help to follow how a change of certainty in one node 

may change the certainty of other nodes (Kjaerulff and Madsen, 2008). Thus, there are 4 

types of connections in any BNs’ structure. 

i. Causal chain (Serial connection) 

Two nodes in a path connected as Tail to Head, where, in Figure A1.1, where both of A, 

and B are dependent if C is unknown; while, both of A, and B are conditional 

independent given C, when C is known.  
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Figure A1.1:  Blocking Tail- Head path (serial connection)  

 

Figure A1.1:  Blocking Tail- Head path (serial connection)  
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ii. Common causes (Diverging connection) 

Two nodes in a path as "Tail to Tail", as illustrated in Figure  A1.2, where both of A, and 

B are dependent if C is unknown, while, both of A, and B are conditional independent 

given C when Z is known. 

 

 

 

iii. Common effects (Convergence connection) 

Two nodes in a path are "Head to Head", as illustrated in Figure A1.3 where both of A, 

and B are conditional dependent if C or any of its descendants are known. While, both of 

A, and B are independent when C or any of its descendants are unknown (Kjaerulff and 

Madsen, 2008).   

 

 

 

 

  

 

A2: Example to illustrate Propagation of information in the Alarm 

problem   

This part describes how the information flows in a Bayesian network, by using the Alarm 

problem example (Pearl, 1988). Figure A2.1 presents the alarm example (Pearl 1988) and its 

representation in Netica, which is a software for Bayesian networks (Norsys, 2015). The 

alarm problem is stated as follows (Pearl 1988): Mr. Holmes is working in his office when he 

receives a phone call from his neighbour Dr. Watson who tells him that Holmes’ burglar 

alarm has gone on; where a burglary or earthquake make the alarm goes on, John or Mary 

also call to report the alarm. 

 

 

 

 

Figure A1.2:  Blocking  Tail - Tail path (Diverging connection )  

 

Figure A1.2:  Blocking  Tail - Tail path (Diverging connection )  

A 

 

A 

B 

 

B 

C 

 

C 

....... 
 

....... 

A 

 

A 

B 

 

B 

C 

 

C 

 

 

 

 

 

 

....... 
 

....... 

Figure A1.3:   Opening Head- Head path (Convergence connection )  

 

Figure A1.3:   Opening Head- Head path (Convergence connection )  
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From the graph above, the Burglary and Earthquake events are dependent on Alarm events, 

while both the Burglary and Earthquake events are independent of each other. In particular, 

there are three methods to connect the nodes in a BN and these connections represent the 

conditional connections in a Bayesian Network. In particular, there are three types of 

connection that exist in this part between variables in the alarm problem: 

 

i.  Serial connection 

If the Alarm is not evidence, then both calls (Burglary and Mary’s) are dependent and  

knowing that Burglary=yes would increase the belief on Mary calls= yes, as shown in Figure 

A2.2(a). In contrast, if the Alarm node is observed, then that would increase the belief of both 

calls from the Burglary and Mary, but if knowing that burglary has taken place, then that 

would not change the belief on Mary’s call because the path is closed, as shown in Figure 

A2.2( b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1:  Alarm network (pearl, 1988). 

 

Figure A2.1:  Alarm network (pearl, 1988). 
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ii. Diverging connection 

If the Alarm is not evidence then both John and Mary called  dependently and knowing one 

of them would increase the belief on the other one, as shown in Figure A2.3 (a). On the other 

hand, if the Alarm node is observed, that would change the belief of both John and Mary 

calling, although if there was further knowledge that John’s call  had taken place then that 

would not increase the belief on Mary’s call, as shown if Figure A2.3 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.3:  Diverging connection 

 

Figure A2.3 :  Diverging connection 
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 (b) - Alarm is observed  Figure A2.2: Serial connection in alarm problem 

 

Figure A2.2 Serial connection in alarm problem 
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iii. Converging connection  

As shown in Figure A2.4 (a), when the Alarm or its parent (Mary calls and John calls) is not 

observed then both of Burglar and Earthquake are independent. On the other hand, as shown 

in Figure A2.4 (b) when node C or any of its descendant as D is observed then A and B are 

conditionally dependent; where, observing C or its descendent as D opens the information 

path between A, and B. For example, if the Alarm node that is observed went on, then that 

would increase the belief of both a burglary and earthquake, and through further knowledge 

that there has been a burglary, then that would decrease the belief of an earthquake, because 

both the burglary and earthquake are dependent when the Alarm is observed, as show in 

Figure A2.4 (b). 
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Appendix B 

 

B1: Example of learning a TAN using the play-tennis dataset 

This appendix presents an example to illustrate Friedman et al.’s (1997) algorithm for 

learning TANs, which was presented in Chapter 2, Section 2.4.1.3.2. Table B1.1 presents the 

play-tennis training dataset that is used to illustrate the steps of the algorithm. There are two 

major parts: learning the structure and then calculating the parameters, which are illustrated 

on the data chart below. 

  

 

Table B1.1: Play-tennis training datasets  

 

i. Learn TAN Structure  

Learning the TAN structure involves the following steps: 

 

Step 1: Compute Conditional Information 

The first step calculates the information between two nodes based on the class node by 

using the MDL score that is presented in equations (2.15), and (2.16), which is based on the 

LL function that is given in equation (2.8). Moreover, the MDL score should be calculated 

between: 

 MDL(𝑋𝑖|𝐶): each node in the network and class node (dependent class). 

 MDL(𝑋𝑖|𝑋𝑗 , 𝐶): each pair of nodes in the network, without class node 

(dependent nodes).  
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 The weight between each pair of nodes represents the difference between 

MDL dependent nodes, and MDL dependent class. 

 

1) Calculate the MDL dependent class: This represents the score between a selected 

node and class node. For example, if the selected node is ‘outlook’, and the class node 

is ‘play’, then to calculate MDL(outlook, play) one needs to calculate LL function 

initially as presented  in equation (2.8):  

LL(outlook| play) = ∑ ∑ P(outlook, play) 𝑙𝑜𝑔 (
𝑃(outlook, play)  

𝑃( play)
)

2

𝑘=1

3

𝑖=1

 

Where, i represents the selected node values, the ‘outlook’ has (sunny, overcast, and 

rainy), and k represents the number of attributed values of the class node, which are 

(yes, no). From the data in Table B1.1 the results will be:  

LL(outlook| play) =  −7.524  

Then, calculate MDL for the dependent class function, as given in equation (2.11): 

MDL(outlook| play) = 𝐿𝐿(outlook, play) −
𝑙𝑜𝑔 𝑁

2
 |𝐵| 

Where, N is the number of all instances in the data, it comes to 9 in this example. |B| 

is the number of parameters = number of selected node values * number of class 

values.  

MDL(outlook|play) = −7.524 −
𝑙𝑜𝑔  (9)

2
∗ |3 ∗ 2|= -11.918 

 

 

 

 

Figure B1.1: Score between ‘outlook’ and class node 

 

2) Calculate MDL dependent nodes: This represents the score between a selected node 

and another node based on the class node. For example, when the selected node is 

‘outlook’, and the another node is ‘windy’ based on the class label ‘play’. Then, to 

calculate MDL(outlook|windy, paly), one needs to calculate the LL function initially, 

as given  in equation (2.8):  
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LL(outlook|wind, play)

= ∑ ∑ ∑ P(outlook, windy, play) 𝑙𝑜𝑔 (
𝑃(outlook, windy, play)  

𝑃(windy, play)
)

2

𝑘=1

2

𝑗=1

3

𝑖=1

 

Where, i represents the selected node values, the ‘outlook’ has (sunny, overcast, and 

rainy), j represents the attributes values of another node ‘wind’, which are (false, and 

true), and k represents the number of attributed values of the class node, which are 

(yes, no). From the data in Table B1.1 the results will be:  

LL(outlook|windy, play) =  −5.5452  

Then, calculate MDL for the  dependent nodes, as given in equation (2.11): 

MDL(outlook|windy, paly) = 𝐿𝐿(outlook, windy, paly) −
𝑙𝑜𝑔 𝑁

2
 |𝐵| 

Where, N is the number of all instances in data, 9 is the amount in this example.  |B| is 

the number of parameters = number of selected node values ∗ number of cardinality 

values. 

MDL(outlook|windy, play) = −5.5452 −
𝑙𝑜𝑔  (9)

2
∗ |3 ∗ 4|= -14.33 

 

 

 

 

 

 

Figure B1.2: Score between ‘outlook’ and ‘wind’ based on class node 

 

3) Calculate the weight: The weight or the dependency between two nodes represents 

as the difference between the dependent nodes’ score, and dependent class score as 

demonstrated in: 

Weight (outlook, windy)= MDL(outlook|wind, paly) −  MDL(outlook| paly) 
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Figure B1.3: weight between ‘outlook’ and ‘wind’ node 

 

Then, do the first step for all other nodes, as after that it will be possible to acquire  the 

weights between all pairs, as shown in Figure B1.4. Also, the arcs between the nodes 

represent weight (dependency) between these nodes. 

 

 

    

 

 

 

 

 

 

 

Figure B1.4: weight (dependency) between all pairs 

Step2: Build a complete undirected graph: An undirected graph is constructed, where the 

edges are the dependency (weight) between the nodes, as shown in Figure B1.5. 

 

 

 

 

 

 

 

Figure B1.5: undirected graph 
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Step3: Apply (MWST) algorithm: Find a maximal spanning tree between nodes by running a 

maximum-weight spanning tree (MWST) algorithm (Cormen et al., 1990), Figure B1.6 

shows how the MWST finds the tree with the greatest total weight.   

 

 

 

 

 

 

 

Figure B1.6: How MWST finds the tree with the greatest total weight in play- tennis 

dataset 

 

Step4: Convert to directed tree: The undirected graph is converted to a directed graph by 

choosing the root of the first maximum connection in the previous step, which is 

‘temperature’, then adding a direction to the next connection if it does not lead to a cycle.  

 

 

 

 

 

 

 

Figure B1.7: Directed tree 

 

Step5: Add the class label as root: The class label node ‘play’ is added as the parent (root) 

node for all attributes, to get the TAN structure, as shown in Figure B1.8. 

 

ii. Learn parameters 

Once the structure of a TAN has been learned, a simple estimator is used for estimating the 

conditional probability tables of the TAN (Bouckaert, 2004). Obviously, the last step is to 

learn the parameters for each node with its parent by using equation (2.17):   
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P(𝑋𝑖|𝑋𝑗) =     
𝑁𝑖𝑗   +   α

N   +   (α ∗ n𝑋𝑖
)
            

Where, α = 0.5 represents the initial count on each value to avoid 0, and n𝑋𝑗
 represents the 

number of attributes value of node 𝑋𝑖. For example, in Figure B1.8, in a CPT to learn the 

parameter between node ‘temperate=hot’ given ‘play=yes’, is calculated as: 

 

P(‘temperate = hot’ | ‘play = yes’ ) =     
P(‘temperate = hot’ , ‘play = yes’)   +   0.5

P(play = yes)    +  (0.5 ∗ 3)
 

P(‘temperate = hot’ | ‘play = yes’ ) =     
1  +   0.5

5   +   (0.5 ∗ 3)
 =  

1.5

6.5
= 0.231 

Figure B1.8 illustrates learning structure and parameters of TAN on play-tennis dataset. 
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Figure B1.8: Learning structure and parameters of TAN from play-tennis dataset 

Outlook temperature humidity Windy Play 

Overcast Mild high True ? 

 

 

 

 

 

 
Testing  data 

 

Testing  data 

Training data 

 

Training data Learn Structure 

 

Learn Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learn parameters 

 

Learn parameters 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

126 
 

B2: Example of using a TAN as a classifier for the play-tennis dataset 

Figure B2.1 shows how a TAN classifier classifies the testing data to the class label 

Play={yes, no} that has the highest posterior probability. Clearly, after learning the structure 

and parameters as shown  in Figure B1.8, the TAN classifier can be used to classify each 

instance in the testing set according to the class label  Play={yes, no} that has the highest 

posterior probability as: 

o Testing P(play=yes)  
= P(play=yes) * P(temp=mild| play=yes) *P(humidity= high | temp= mild, play=yes) * 
P(outlook=overcast| humidity= high, play=yes) *  P(wind= true | humidity=high , 

play=yes). 
 

= 0.55 ∗  0.231 ∗  0.75 ∗ 0.429 ∗  0.167    =0.64. 

 

o Testing P(play=No)   

= P(play=No) * P(temp=mild| play=No) * P(humidity= high | temp= mild, play=No) * P( 

outlook=Overcast| humidity= high, play=No) * P(wind= True | humidity=high, play=No) 

= 0.45 ∗  0.273  ∗  0.75 ∗ 0.111 ∗   0.375    =  0.36. 

 

As a result, TAN classifier will classify testing instance to class ‘yes’ because it 

has the highest posterior probability as shown in Figure B2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2.1 : The result of TAN classifier to play-tennis testing data. 

 

Figure B2.1 : The result of TAN classifier to play-tennis testing data. 
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Appendix C 

 

C1:  Summary of Implementation and Class Diagrams  

Class diagram is a graphical way to illustrate the relationships between classes in an object-

oriented system. In particular, we used UML (Unified Modelling Language) tool to draw the 

relationships between classes, where UML is type of diagram that shows the code classes, 

attributes, methods, and the relationship between the classes. Figure C1.5 shows the class 

diagram of our code by using Dia software to draw the relationships between the classes. In 

particular, the top level of these classes have been implemented and described as: 

 

Main class : is the class has all the initial values such as costs, and data, and folds. his class is 

using to call all other classes also, all the results is returned to this class, where this class uses 

all the following classes: 

1. Splitting: this class is used to splitting a data into two parts; 75% for training, and 

25% for testing. As shown in Figure C1.1, the Main class calls 

splitting.splitting_data(Data) method to split the data into two datasets Training, and 

Testing data. 

 

 

 

2. Classifier1_CS-BN via Sampling: this class is used to implement a Bayesian network 

by using sampling approach, this class has a class called Folk theorem, which uses to 

calculate the new training  data distribution as described in Chapter 4, in Section 4.1. 

Where, the Main class calls these methods: 

Figure C1.1 : Implementation of class “Splitting”  

 

Figure C1.1 : Implementation of class “Splitting”  
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o Change_new_distribution(N1,N2): this method calls Sampling(Training, Cost1,Cost2) 

method to calculate the new data distribution as given in Chapter 3, equation (3.11). 

𝑁1′

𝑁2′
=

𝐶1∗𝑁1 

𝐶2∗𝑁2
 

o BN_Sampling(Folk_data,Cost1,Cost2): this method is used to apply the existing 

Bayesian network classifier (TAN) on the new distribution (Folk_data),  to obtain the 

expected cost and accuracy of that classifier. 

 

 

 

3. Classifier2_CS-BN via Amending:  this class is used to implement our new algorithm 

that based on amending approach, that described in Section 4.2. Where, the this class 

uses methods in these classes: 

 

3.1 Amending_BN_Structuer: it is used to learn the BN structure by calling method    

My_BN_Structures(); where this class is inheritance from original Bayesian 

network classifier in WEKA  (weka.classifiers.bayes.BayesNet), but there are some 

changes on the MDL score function of WEKA class 

(weka.classifiers.bayes.search.local.scoreable.MDL). Also, there are some changes 

on class (weka.classifiers.bayes.search.local.TAN), these changes are based on 

calculate cost ratio from class Cost_Ratio class: 

o Cost_Ratio : it is used to calculate the cost ratio between misclassification costs 

as described in Chapter 4, equation (4.3) by using method called Ration(Cost1, 

Cost2) Cost_ratio(2) =
cost 1

cost 1+ cost 2
   ;   Cost_ratio(1) =

cost 2

cost 1+ cost 2
      

 

 

Figure C1.2: Implementation of class “Classifier1_CS-BN via Sampling” 

 

Figure C1.2: Implementation of class “Classifier1_CS-BN via Sampling” 
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3.2 Amending_parameters: it is used to learn the parameters of a BN, where this class 

is inheritance from original simple estimator class in WEKA  

(weka.classifiers.bayes.net.estimate) but there are some changes on the parameter 

estimator as presented in equation (4.4). Where the Amending_parameters class 

calls method my_parameter_estimator() that uses to calculate our new estimator; 

where this method uses: 

o Cost_Ratio class to calculate the cost ratio for each class label as shown above . 

 

Finally, after learn structure and parameters, the BN_Amending(Training, Cost1, Cost2) 

method used to calculate  the last results which are  expected cost and accuracy.  

Figure C1.3 : Implementation of class “Amending_BN_Structuer” 

 

Figure C1.3 : Implementation of class “Amending_BN_Structuer” 



 

130 
 

 

 

 

 

4. Classifier3_CS-BN via GA: it is used to implement our third classifier by using 

Genetic algorithm, that described in Section 4.3. First, the Main Class calls  methods 

called Splitting_data(Data), and Splitting_training(Tranining), in Splitting class; to 

split the data into three parts Sup_training, Sup_testing, and Testing. Then, 

Classifier3_CS-BN via GA class uses some methods in other classes as: 

 

 

Figure C1.4: Implementation of class “Amending_parameters” 

 

Figure C1.4: Implementation of class “Amending_parameters” 

Figure C1.5: Implementation of class “Classifier3_CS-BN via GA” 

 

Figure C1.5: Implementation of class “Classifier3_CS-BN via GA” 
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4.1 Check_indivadual : this class is used to create and check if the generation 

tree has the same TAN’s rules, by using three methods: 

o Creat_random_indvidual(): to generate a random adjacency matrix 

Binary_indivadual_array[][], as shown in Chapter 4, Figure 4.6(a). 

o Check_No_Circula(): to check if there are no any circulars between 

nodes that represents as adjacency matrix, as shown in Figure 4.6(b), 

and Figure 4.6(d). 

o Chack_1Parent(): to check if each node has just 1 parent and other 

parent (class node) in adjacency matrix. 

 

4.2 Evaluate_Generations: this class is used to learn parameters of BN, and 

evaluate all individuals in the generation on the fitness function, by using 

three methods: 

o Learn_parameters_Suptrain(Population_arry[][][]): this method is used to 

learn parameters of the learned BN for each individual in a population, by 

using simple estimator that described in Chapter 2, Section 2.4.2. 

o Validation_SuptestingOn_indvs(Population_arry[][][],Sup_testing):this 

method is used to evaluate each TAN (individual) and calculate the expected 

cost(fitness function), and the accuracy for each tree.  

o Sort_Fitness&Accuracy(Fitness[],Accuracy[]): this method is used to sort all 

the individuals  according to minimum cost and maximum accuracy .  

 

This class has GA-operators class, that is used to create the next 

generation by using three methods: 

 Selection(Population_array[][][]): it is used to select the best 25 

individuals from the previous population in the array, as shown in Figure 

(4.7). 

 Mutation(indivadual): used randomly to exchange a bit in the individual.   

 Cross_over(Two_indivaduals[][2]): it is used randomly to cross over 

two individuals, as shown in Figure (4.7).  
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4.3 Final_Evaluation_the_best_indivadual: this class is used as the last step in 

this algorithm, to evaluate testing set on the best fitness structure. Where, it 

uses two method: 

o Learn_parameters_train(Best _individual[][]): this method is used 

to learn the parameters of the best Bayesian structure on the 

Training dataset.  

o Evaluate_testingOn_The_best_indvs(Testing): This method is used 

to evaluate the best Bayesian structure on the Testing dataset to 

obtain the last results expected cost and accuracy.  

 

5. MC+BN: it is used to call the existing MetaCost classifier based on existing TAN 

classifier.  

6. MC+j48: it is used to call the existing MetaCost classifier based on existing decision 

tree classifier.  

7. Original BN: it is used to call the original TAN classifier, to find the performance of 

the algorithm.  

8. Results_in10_Folds: this class is used to collected the performance of all the previous 

algorithm in 10 folds, and to get the average of each algorithm.  

9. Write_in excel-sheet: it is used as the last stage to write all the results of all 

algorithms into an excel sheet.  

Figure C1.6 shows the classes diagram of top level of all classes that used in our code the 

classes diagram by using Dia software. 
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Figure C1.6: The classes diagram by using Dia software 

 

 

Figure C1.6: The classes diagram by using Dia software 



 

134 
 

C2: Attached DVD, with all the results in excel sheets.  

 

 

 


