

DEVELOPMENT OF NEW COST-SENSITIVE

BAYESIAN NETWORK LEARNING

ALGORITHMS

Eman Bashir Nashnush

SCHOOL OF COMPUTING, SCIENCE AND ENGINEERING,

INFORMATICS RESEARCH CENTRE, COLLEGE OF SCIENCE AND

TECHNOLOGY, UNIVERSITY OF SALFORD, UK

Submitted in Fulfilment of the Requirements of the Degree of Doctor of

Philosophy, November 2015

i

TABLE of CONTENTS

TABLE of CONTENTS ... i

LIST of FIGURES .. iv

LIST of TABLES .. vi

LIST of ABBREVIATIONS and SYMBOLS ..vii

ACKNOWLEDGMENTS ... viii

LIST of PUBLICATIONS..ix

ABSTRACT ... x

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.2 Motivation ... 3

1.3 Research aims and objectives .. 5

1.4 Research questions .. 6

1.5 Research methodology .. 7

1.6 Thesis organisation .. 9

Chapter 2: Background on Bayesian Networks ... 11

2.1 Data Classification .. 11

2.2 Overview of Bayesian networks ... 13

2.3 Principles of Bayesian networks ... 15

2.3.1 Definitions from probability theory ... 15

2.3.1.1 Dependency events .. 15

2.3.1.2 Independency events ... 16

2.3.1.3 Conditional probability ... 17

2.3.2 Bayesian networks structure ... 18

2.3.2.1 Bayesian networks basics ... 18

2.3.2.2 Bayesian inference ... 19

2.4 Learning Bayesian networks ... 22

2.4.1 Bayesian network structure learning ... 22

2.4.1.1 Scoring-and-search-based approach ... 24

2.4.1.2 Conditional independent-based approach .. 31

2.4.1.3 Hybrid approach ... 32

2.4.1.3.1 Chow-Liu tree .. 32

ii

2.4.1.3.2 Tree Augmented Naïve-Bayes (TAN) structure ... 33

2.4.2 Bayesian network parameter learning ... 35

2.5 Summary ... 37

Chapter 3: Survey of Existing Cost-Sensitive Algorithms ... 38

3.1 Cost-insensitive learning algorithms ... 38

3.2 Cost-sensitive learning algorithms.. 40

3.2.1 Cost sensitive algorithms categories .. 41

3.2.1.1 Algorithms that use direct methods .. 44

3.2.1.2 Algorithms that use indirect methods ... 46

3.2.1.2.1 Sampling .. 46

3.2.1.2.2 Thresholding .. 52

3.2.1.2.3 Weighting .. 53

3.2.1.2.4 Relabeling .. 54

3.2.1.2.5 Ensemble learning methods ... 55

3.2.1.3 Algorithms that use optimization methods ... 58

3.3 Literature review of research on cost-sensitive Bayesian network algorithms 59

3.4 Summary ... 62

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms .. 63

4.1 Learning cost-sensitive Bayesian networks via a sampling approach 63

4.2 Learning cost-sensitive Bayesian networks via an amending approach 66

4.2.1 Amending the formula for learning the structure .. 68

4.2.2 Amending the formula for learning parameters... 68

4.3 Learning cost-sensitive Bayesian networks via Genetic algorithms ... 71

4.3.1 Encoding tree augmented networks .. 71

4.3.2 Fitness Function .. 73

4.3.3 Evolving the populations ... 74

4.4 Summary ... 79

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian

Networks ... 80

5.1 Empirical comparison results ... 80

5.1.1 Datasets .. 81

5.1.2 Experiment methodology .. 83

5.1.3 Experiments .. 85

5.1.3.1 Experiment 1: CS-BN using the sampling approach ... 88

5.1.3.2 Experiment 2: CS-BN using the amending approach ... 92

5.1.3.3 Experiment 3: CS-BN using Genetic algorithms ... 93

iii

5.2 Comparison of the three algorithms developed ... 95

5.3 Summary ... 96

Chapter 6: Conclusions and Future Work .. 97

6.1 The research objectives revisited ... 98

6.2 Limitations and future work ... 101

References .. 103

Appendix A .. 114

A1: Connections in a BN structure ... 114

A2: Example to illustrate Propagation of information in the Alarm problem............................... 115

Appendix B .. 119

B1: Example of learning a TAN using the play-tennis dataset ... 119

B2: Example of using a TAN as a classifier for the play-tennis dataset .. 126

Appendix C .. 127

C1: Summary of Implementation and Class Diagrams.. 127

C2: Attached DVD, with all the results in excel sheets. ... 134

iv

LIST of FIGURES

Figure 1.1: Propagation and the impact of evidences (Pearl, 1988; 2014). .. 2

Figure 1.2: How cost-insensitive classification algorithms work (Fan et al., 2002). 4

Figure 1.3: Research methodology. .. 9

Figure 2.1: Classification process (Han et al., 2015). .. 12

Figure 2.2: A simple Bayesian network for fraud detection (Ezawa and Schuermann, 2015) 14

Figure 2.3: Illustration of three dependency events (Sawaal, 2015). ... 16

Figure 2.4: Illustration of two independency events (Sawaal, 2015). .. 16

Figure 2.5: Conditional probability example (Kountz et al., 2011). ... 17

Figure 2.6: BNs’ structure of lung cancer problem using Netica. .. 20

Figure 2.7: Types of inferences .. 21

Figure 2.8: Bayesian network structures. .. 23

Figure 2.9: Bayesian network structure learning approaches. ... 24

Figure 2.10: Set of operators (Vandel et al., 2012). .. 26

Figure 2.11: Model selection that maximize the score given data (Meek, 2015)................................ 27

Figure 2.12: Illustration of the concept of data compression in MDL (Rish, 2015). 30

Figure 2.13: How MWST finds a tree with the greatest total weight (Hong, 2007). 33

Figure 2.14: A simple BNs model with CPTs. .. 36

Figure 2.15: A simple network structure for the play-tennis dataset and the associated CPTs............ 37

Figure 3.1: Cost-sensitive learning categories .. 43

Figure 3.2: Imbalanced dataset .. 47

Figure 3.3: Sampling with / without replacement (WIKIbooks, 2015) .. 49

Figure 3.4: Costing algorithm based on Cost-proportionate rejection sampling with aggregation. 51

Figure 3.5: The best threshold is the point that gives minimum cost (Sheng and Ling, 2006). 53

Figure 3.6: The MetaCost system (Domingos, 1999).. 56

Figure 3.7: Illustration of boosting method (UCSD, 2015). .. 57

Figure 3.8: Cost-sensitive boosting (composite hypothesis) (UCSD, 2015). 58

Figure 3.9: The ICET System (Turney1995). ... 59

Figure 4. 1: Illustration of sampling approach steps with hepatitis dataset. 64

Figure 4.2: CS-BN algorithm using sampling. .. 65

Figure 4.3: An illustration of the altered probability. .. 67

Figure 4.4: CS-BN algorithm using the amending approach. .. 69

Figure 4.5: An illustration of how TAN classifier represents the genes. .. 71

Figure 4.6: Testing all paths on adjacency matrix and break. .. 73

v

Figure 4.7: Evolving the populations. .. 74

Figure 4.8: CS-BN algorithm using Genetic algorithms. .. 75

Figure 4. 9: Nine steps to illustrate the main idea of CS-BN via GAs. .. 78

Figure 5.1: Discretising data (Fayyed and lrani, 1993). .. 81

Figure 5.2: The experiment methodology ... 84

Figure 5.3: Expected cost of CS-BN algorithms and existing algorithms .. 87

Figure 5.4: Accuracy of CS-BN algorithms and existing algorithms ... 88

Figure 5.5: Misclassification error if experiment 1 for breast cancer dataset 89

Figure 5.6: WEKA a pre-process stage shows the similarity and diversity of attribute variables 90

Figure 5.7: Misclassification error if experiment 2 for breast cancer dataset 92

Figure 5.8: CS-BN via GA reduces the number of misclassification error for the Breast Cancer

dataset. .. 94

Figure 5. 9: Misclassification costs in the cost ratio range 50 to 400 in CS-BN via GA 95

vi

LIST of TABLES

Table 2. 1: Joint probability example. .. 18

Table 2.2: Number of BN structures based on number of nodes (Laskey, 2015). 25

Table 2.3: A simple play-tennis dataset with two attributes. ... 36

Table 3.1: A cost matrix for two-class problems .. 40

Table 3.2: Outcomes from decision tree classifier (J48) on the Breast cancer dataset. 41

Table 3.3: Summary of the literature review of cost-sensitive Bayesian network algorithms. 62

Table 5.1: The main characteristics of datasets used in the comparisons ... 82

Table 5.2: Cost matrix of two class labels C1=4, C2=1 .. 83

Table 5.3: Comparison between CS-BN algorithms and existing algorithms 86

Table 5.4: The results of CS-BN via sampling and original BN algorithm for the breast cancer dataset.

 ... 89

file:///C:/Users/ENash_000/Desktop/After-corrections%20thesis/DEVELOPMENT%20OF%20NEW%20COST-SENSITIVE%20BAYESIAN%20NETWORK%20LEARNING%20ALGORITHMS-(Eman-13-1-2016).docx%23_Toc440449954

vii

LIST of ABBREVIATIONS and SYMBOLS

AI Artificial Intelligence

BD Bayesian Dirichlet

BDe Bayesian Dirichlet likelihood-equivalence

BDeu Bayesian Dirichlet likelihood-equivalence uniform joint distribution

BNs Bayesian Networks

CI Conditional Probability Tables

CL tree Chow-Liu tree

CLL Conditional log likelihood

CSC

CS-BN

CostSensitiveClassifier

Cost-sensitive Bayesian networks

DT Decision tree

ECCO Evolutionary Classifier with Cost Optimization

FN False Negative

FP False Positive

GAs Genetic Algorithms

ICET Inexpensive Classification with Expensive Test

LL Log-Likelihood

MC+BN MetaCost classifier used Bayesian network algorithm TAN as base classifier

MC+J48 MetaCost classifier used decision tree algorithm J48 as base classifier.

MDL Minimum Description Length

MI Mutual Information

MWST Maximum Weight Spanning Tree

SE Simple Estimator

TANs Tree Augmented Naïve-Bayes networks

TN True Negative

TP True Positive

UML Unified Modelling Language

 Bayesian parameters

G Graph

P(j|x) The probability estimation of classifying the instance x into class j

Cost(i, j) The cost of misclassification of class i

ICFA Information Cost Function for an attribute A

 xi
 Parents of node xi

viii

ACKNOWLEDGMENTS

First of all, I would like to thank ”ALLAH ALMIGHTY” who has given me the strength,

patience and knowledge to continue and finish my PhD journey which started as an idea and

led to a four-year-long study process. It would not have been possible to write this PhD thesis

without the help and support of the kind people around me, to only some of whom it is

possible to divulge particular mention here. I would like to express my deepest sense of

gratitude to my great supervisor Professor Sunil Vadera for his assistance, support and

feedback during this research, as well as his help in pointing me in the right direction. After

four years of patience and hard work, my dream has really come true following his support.

Therefore, I need to state that the congratulation compliments which I may receive should be

extended to him.

Special thanks to my fabulous family, especially my parents, sisters, and brothers who have

pushed themselves to the extreme ends to ensure that I continue my education to the highest

level. I have a special feeling of gratitude towards my husband, who formed my vision and

encouraged me in achieving my goal, through continued patience at all times. I wish to record

my special thanks and gratitude to my wonderful daughters Ranim and Ratil and to my

delightful son Mohammed, for being there for me throughout the entire doctorate programme.

Truly, without their love and support, I would not have reached this point in my life and this

PhD research work would not have been possible.

I would like to extend a huge, warm thanks to my friends, Dr. Haya Alshehri, Dr. Rabea

Elmazuzi, and Dr. Majda Elferjani; they were always by my side during difficult situations

and they have always supported and encouraged me.

Last but not least, I would like to acknowledge and thank everyone who helped me with good

advice during the course of my research work.

ix

LIST of PUBLICATIONS

External Publications

Nashnush, E. and Vadera, S. (2014). Cost-Sensitive Bayesian Network Learning Using

Sampling. In Recent Advances on Soft Computing and Data Mining. Springer International

Publishing, pp. 467-476.

Nashnush, E. (2014). Cost-Sensitive Bayesian Network algorithms . Libya Higher Education

Forum. “A Vision for the Future”. http://libyaed.com/ . 5 - 6 June 2014, London.

Nashnush, E. and Vadera, S. (2014). Learning Cost-Sensitive Bayesian Networks via Direct

and Indirect Methods. Integrated Computer-Aided Engineering Journal, (in process, it has

been submitted on 30 September 2014).

Nashnush, E. and Vadera, S. (2015). EBNO: An Algorithm for Evolving Cost-Sensitive

Bayesian Networks. ACM journal on Knowledge Discovery from Data (TKDD), (in process,

it has been submitted on 28 April 2015).

Internal Publications

Nashnush, E. and Vadera, S. (2012). Cost-Sensitive / Insensitive Learning algorithms. 3rd

Computing Science and Engineering Post Graduate Conference, Salford University, UK.

Nashnush, E. and Vadera, S. (2013). Direct and indirect approaches for learning cost-

sensitive Bayesian network. 4th Computing Science and Engineering Post Graduate

Conference, Salford University, UK.

*Nashnush, E. and Vadera, S. (2013). Cost-Sensitive Bayesian Network Learning Algorithm.

Salford Postgraduate Annual Research Conference 2013 (SPARC 2013), 5-6 Jun 2013,

University of Salford, UK.

Nashnush, E. and Vadera, S. (2013). Cost-Sensitive Bayesian Network learning using

Sampling approach. Dean’s Annual Research Showcase, Poster and abstract. Salford

University, UK.

Nashnush, E. and Vadera, S. (2015). Three approaches for Cost-sensitive Bayesian Network

algorithm. A Three Minute Thesis at the 2015 Salford Postgraduate Annual Research

Conference (SPARC 2015), Salford University, UK.

Nashnush, E. and Vadera, S. (2015). Using Genetic Algorithms to optimize Tree Augmented

Naïve Bayes classifier. Dean’s Annual Research Showcase. Poster and abstract. University of

Salford, UK.

* This poster was selected by delegates as the best poster in the conference and was awarded first prize.

http://libyaed.com/
http://tkdd.acm.org/

x

ABSTRACT

Bayesian networks are becoming an increasingly important area for research and have been

proposed for real world applications such as medical diagnoses, image recognition, and fraud

detection. In all of these applications, accuracy is not sufficient alone, as there are costs

involved when errors occur. Hence, this thesis develops new algorithms, referred to as cost-

sensitive Bayesian network algorithms that aim to minimise the expected costs due to

misclassifications. The study presents a review of existing research on cost-sensitive learning

and identifies three common methods for developing cost-sensitive algorithms for decision

tree learning. These methods are then utilised to develop three different algorithms for

learning cost-sensitive Bayesian networks: (i) an indirect method, where costs are included

by changing the data distribution without changing a cost-insensitive algorithm; (ii) a direct

method in which an existing cost-insensitive algorithm is altered to take account of cost; and

(iii) by using Genetic algorithms to evolve cost-sensitive Bayesian networks.

This research explores new algorithms, which are evaluated on 36 benchmark datasets and

compared to existing cost-sensitive algorithms such as MetaCost+J48, and MetaCost+BN as

well as an existing cost-insensitive Bayesian network algorithm. The obtained results exhibit

improvements in comparison to other algorithms in terms of cost, whilst still maintaining

accuracy. In our experiment methodology, all experiments are repeated with 10 random trials,

and in each trial, the data divided into 75% for training and 25% for testing. The results show

that: (i) all three new algorithms perform better than the cost-insensitive Bayesian learning

algorithm on all 36 datasets in terms of cost; (ii) the new algorithms, which are based on

indirect methods, direct methods, and Genetic algorithms, work better than MetaCost+J48 on

29, 28, and 31 out of the 36 datasets respectively in terms of cost; (iii) the algorithm that

utilise an indirect method performs well on imbalanced data compared to our two algorithms

on 8 out of the 36 datasets in terms of cost; (iv) the algorithm that is based on a direct method

outperform the new algorithms on 13 out of 36 datasets in terms of cost; (v) the evolutionary

version of the algorithm is better than the other algorithms, including the use of the direct and

indirect methods, on 24 out of the 36 datasets in terms of both costs and accuracy; (vi) all

three new algorithms perform better than the MetaCost+BN on all 36 datasets in terms of

cost.

1

Chapter 1: Introduction

This chapter presents the thesis introduction and methodology. Section 1.1 provides an

introduction of classification algorithms and Bayesian network algorithms. Section 1.2

presents the problem definition and the motivation for study. Section 1.3 presents the

research questions, while Section 1.4 describes the research methodology that used. Section

1.5 explains the research hypothesis, aims and objectives and finally, Section 1.6 outlines the

structure of the thesis.

1.1 Introduction

Classification is one of the most important methods in data mining, which plays an essential

role in data analysis and pattern recognition, and requires the construction of a classifier. A

classifier can predict the class label for an unseen instance from a set of attributes. As

Friedman (1997) states:

“The induction of classifiers from datasets of pre-classified instances is a central

problem in machine learning”.

Many methods and algorithms have been introduced to enable systems to learn classification

models, such as decision trees, decision graphs, Bayesian networks, neural networks, and

decision rules. In the last decade, graphical models have become one of the most popular

tools to structure uncertain knowledge. Bayesian Networks are becoming an increasingly

important area of research and are applied in several fields of artificial intelligence (Pourret et

al., 2008; Kenett, 2012). There are a range of names used for probabilistic networks,

including: belief networks, knowledge maps, probabilistic causal networks, causal networks,

or probabilistic networks, causal probabilistic networks, Bayesian networks, Probabilistic

Cause-Effect Models, and Probabilistic Influence Diagrams (Pearl, 1988). One of the most

powerful characteristics of Bayesian networks is their ability to update the beliefs of each

random variable via bi-directional propagation of new information through the whole

structure.

Chapter 1: Introduction

2

An important feature of Bayesian networks is the way it propagates the impact of new

evidence, providing each node with a belief vector that is consistent with the axioms of

probability theory (Pearl, 1988; 2014). For example, the diagram in Figure 1.1 shows a

simple example, presented by Pearl (2014), to model an alarm problem with a Bayesian

network: if somebody calls you and informs you that your alarm has gone off, you might

think there is a burglar in your home, and you will go to your home directly. On your way, if

you hear a radio announcement that there was an earthquake nearby, you might reconsider

given that the earthquake may have caused the alarm. In particular, from this information, the

BNs can propagate the impact of evidence from effect to cause (Radio Earthquake), then

from cause to effect (Earthquake Alarm), and then again from effect to cause (Alarm

Burglary). In this figure, A represents Alarm and B represents Burglary, the impact of the

evidence from the Radio announcement will be to update the beliefs so that AB less

credible.

Figure 1.1: Propagation and the impact of evidences (Pearl, 1988; 2014).

Over the last few years, Bayesian networks have become very popular. Bayesian networks

and their algorithms are explained by Pearl (2001), who won the Association for Computing

Machinery Turing Award in 2012. Moreover, Bayesian networks have been successfully

applied in different areas to create consistent probabilistic representations of uncertain

knowledge in several fields, including: medical diagnosis (Spiegelhalter et al., 1989;

Heckerman et al., 1995), image recognition (Booker and Hota, 2013), language

understanding (Charniak and Goldman,1989), search algorithms (Hansson and Mayer, 1989).

In particular, the book by Pourret et al. (2008) and Kenett (2012) describes 21 applications of

Bayesian networks to illustrate their wide range of applications in clinical decision support,

A
Alarm Burglary

Radio

announcement
 Earthquake

B

Chapter 1: Introduction

3

complex genetic models, crime risk factor analysis, inference problems in forensic science,

terrorism risk management, credit rating of companies, and enhancing human recognition.

In machine learning algorithms, several studies have mentioned that, learning processes

should take account of the costs involved in decision-making (Breiman et al., 1984;

Turney,1995, 2000; Zadrozny, and Elkan, 2001). Turney (2000) lists the kind of costs that

should be considered, such as cost of misclassification, the cost of test, the computational

cost, data acquisition cost, active learning cost, human computer interaction cost, and cost of

teacher. Amongst these, the misclassification cost is one of the most important. In fact,

misclassification cost happens when, the examples that belong to negative class are classified

to positive class (FP; classifying a negative example as positive), or the examples that belong

to positive class are classified to negative class (FN; classifying a positive example as

negative). For example, in a credit card fraud detection application, if the system classifies a

transaction of a customer as a non-fraud when fraud has occurred, it is likely to result in

financial loss. In contrast, if a system classifies a transaction as a fraud when it is not the

costs would involve some further checks before proceeding with the transaction.

This observation has led to many recent studies focusing on cost-sensitive learning

algorithms. Historically, most of the cost-sensitive algorithms developed have focussed on

learning decision trees, with a recent survey comparing over 50 algorithms (Lomax and

Vadera, 2013). In contrast, little attention has been paid to developing cost-sensitive Bayesian

networks (Gao, et al., 2008; Nashnush and Vadera 2014; Jiang and Wang, 2014; Kong et al.

2014). Hence, the main focus of this thesis is to study whether it is possible to develop a new

machine learning algorithm to learn Bayesian Networks that can perform cost-sensitive

classifications.

1.2 Motivation

Inductive learning techniques have been used successfully to build classifiers and obtain good

prediction results in a number of applications, including Customer Target Marketing

(Rygielski et al., 2002), Medical Disease Diagnosis (Cios and Moore, 2002), Supervised

Event Detection (Zhang et al., 2010), Multimedia Data Analysis (Kantardzic, 2011),

Biological Data Analysis (Bishop, 2006), and Social Network Analysis (Aggarwal,2014). In

Chapter 1: Introduction

4

particular, in traditional machine learning classification algorithms such as decision tree

induction, neural networks, Bayesian networks, the aim is to build a model using a training

set, and then use the model for classifying unseen cases. Figure 1.2 shows such an example,

where some training data is used as input to a learning algorithm, which classifies whether

there has been a fraudulent transaction. Historically, most of these techniques only focus on

predicting correct results and maximising accuracy. More recently, as mentioned above, there

has been recognition that costs play an important role and should be taken into account when

developing classification algorithms. In particular, in real world applications, one should take

into consideration misclassification costs (Turney,2000).

Figure 1.2: How cost-insensitive classification algorithms work (Fan et al., 2002).

Cost-sensitive learning is a type of learning in data mining that takes account of costs such as

misclassification costs, test costs, or any other costs into consideration (Turney, 2000), and

aims to minimize total costs by treating the different classification errors differently (Ling et

al., 2006). On the other hand, cost-insensitive learning, does not take the misclassification

costs into consideration and focuses on accuracy only.

Therefore, the performance of any AI application should be balanced between accuracy and

cost, as through accuracy alone is not enough. In particular, in real world problems, the data

is imbalanced, where the most expensive errors tend to be associated with the rare cases,

while the most cheapest errors tend to be associated with the frequent cases, and a learner

will learn from very highly skewed data, thus, a cost-insensitive classifier that aims to

Chapter 1: Introduction

5

increase the accuracy will be biased to classify instances to most frequent case (He and

Garcia, 2009). The following examples illustrate the need to take account of costs:

 To detect a fraudulent customer, the cost of misclassifying a customer who commits

fraud (rare class) is greater than the cost of misclassifying a customer who is non-

fraudulent (common class).

 Also, in a medical application, the cost of misclassifying a patient who has cancer is

greater than the cost of misclassifying a patient who does not have cancer.

In these types of domain, building a classifier that does not consider the cost of

misclassification is unlikely to perform well because it will be biased towards the instances

under the category of the frequent class, which will result in producing a useless classifier.

Thus, cost-sensitive learning algorithms that take costs into consideration and deal with

different types of cost differently are essential (Charles and Victor, 2008).

Hence, a number of authors, who recognised the need for taking account of costs, have

focussed on developing cost-sensitive decision tree learning algorithms, including : Cost-

Minimization (Pazzani et al., 1994), Decision Tree with Minimal Costs (Ling et al., 2004),

EG2 (Núñez, 1991), CS-ID3 (Tan and Schlimmer, 1989), IDX (Norton 1989), CS-C4.5

(Frietas et al., 2007), CSNL (Vadera, 2010). All of these algorithms use the cost directly

during the algorithm process. In contrast, some of the algorithms use the cost indirectly,

before and after using the algorithm, such as Costing (Zadrozny et al., 2003b), C4.5CS (Ting,

2002), MaxCost (Margineantu and Dietterich, 2003), MetaCost (Domingos, 1999),

CostSensitiveClassifier (CSC) (Witten and Frank, 2005),and AdaCost (Fan et al., 1999).

Although Bayesian networks have been successfully applied, there has been little, but no

research on optimising them for cost-sensitive learning. Hence, this thesis explores the

potential for learning Bayesian networks for cost-sensitive classification.

1.3 Research aims and objectives

The primary hypothesis of this research is that, it is possible to develop an algorithm to learn

cost-sensitive Bayesian networks, which are more cost-effective on average than current

Chapter 1: Introduction

6

algorithms, including existing cost-sensitive decision learning tree algorithms, existing cost-

sensitive Bayesian network learning algorithms, and existing cost-insensitive Bayesian

network learning algorithms.

To check this hypothesis, this research aims to develop methods that learn Bayesian networks

that take account of misclassification costs and then utilise empirical methods to assess the

extent to which the hypothesis is true. The specific research objectives are:

1. To review the background of Bayesian networks learning algorithms, and analyse the

types of this algorithm.

2. To review the literature on cost-sensitive learning, analyse the most significant issues

in current cost-sensitive learning algorithms, and identify the strategies used.

3. To develop new cost-sensitive Bayesian network learning algorithms that aim to

overcome the issues identified, and are based on methods of cost-sensitive learning

algorithms such as direct, indirect, and optimization methods.

4. To evaluate the new algorithms against existing cost-sensitive algorithms and measure

performance, and compare the algorithms in terms of accuracy, and cost

minimization.

1.4 Research questions

Given the above aims and objectives, the following key questions need to be addressed when

attempting to design algorithms to learn Bayesian networks that take account of costs. In

relation to the research aims and objectives, each question is answered in Section 1.3:

Q1. How can a learning Bayesian algorithm involve misclassification costs?

This question is answered in objectives 1, 2 and 3 by analysing Bayesian networks

algorithm, and based on the methods that used to involve costs into decision trees

algorithms. Hence, the new Bayesian networks algorithms can involve

misclassification costs in three different methods; direct, indirect, and optimization

method.

Q2. At which stage should Bayesian networks include these costs: before construction,

during construction, during learning parameters or after final construction?

This question is addressed in objectives 1, 2 and 3 by analysing the steps of existing

Chapter 1: Introduction

7

Bayesian networks algorithm (learning structure, and learning parameters), and based

on the ways that used in cost-sensitive decision trees algorithms. Hence, new

Bayesian networks algorithms can include misclassification cost before construction

by using sampling approach; or during learning structure and parameters by using

amending approach.

Q3. How can the costs be balanced against the need to maintain the accuracy rate?

This question is answered in objectives 3, and 4 by including the costs in the right

place without changing the performance of the algorithms then evaluate these

algorithms against existing cost-insensitive and sensitive algorithms.

Q4. What are the weaknesses of existing cost-sensitive Bayesian algorithms?

This question is addressed in objectives 2 by analysing the most significant issues in

current cost-sensitive Bayesian networks algorithms.

1.5 Research methodology

This section describes the research methodology that used in this research, and shows the

outline of the methodology adopted in this thesis. As Rajasekar et al. (2006) describe, there

is a difference between research methods, and research methodology. Essentially, research

methods represent all the methods, procedures, and schemas, which are used by a researcher

during a research study. For example, these methods might be collecting and sampling data,

using some hypotheses, and finding a solution to a problem. Also, any research that is based

on experiments requires collection of facts, measurements, hypotheses, and observations,

and these are called scientific research methods. Given the nature of this thesis, which is

focussed on objective quantitative measures (Rajasekar et al., 2006; Kothari, 2011), this

PhD research uses the quantitative research methodology because it is based on testing new

hypotheses.

The main phases of the research methodology used in this study are shown in Figure 1.3,

where these phases are followed to achieve the research objectives:

Chapter 1: Introduction

8

1. Starting with reviewing the background of Bayesian networks. The objective 1 can be

achieved in this phase.

2. Identify the alternative cost-sensitive methods by studying the literature review of

existing cost-sensitive algorithms that based on three methods; indirect; direct, and

optimization method. Where, the objective 2 can be achieved in this phase.

3. Design new algorithms that aim to minimize misclassification costs, these algorithms

are based on three methods that show in phase 2.

4. Implement CS-BN algorithms, where, this study used the open source algorithms in the

data mining system WEKA, which were developed by Hall et al. (2009). The algorithms

are implemented in java NetBeans.

5. The empirical evaluation methodology adopted to split the datasets into 75% for training

and 25% for testing, and to apply the algorithms10 times randomly with 16

misclassification costs from 1 to 4 for each class label. Then, the average performance

of each algorithm with standard errors are calculated 10 times (Gurland and Tripathi,

1971).

6. Test and analyse the algorithm’s performance and reliability; to test the algorithms,

benchmark datasets from UCI repository datasets (Asuncion and Newman, 2007) have

been used to simulate problems of cost-insensitive algorithms.

7. The algorithms are modified to improve the performance. These algorithms are

modified throughout the study, feedback from the supervisor, examiners, assessments,

conferences, and journals have been taken into account. Hence, the objectives 3 can be

achieved in phases 3 ,4, 5,6, and 7.

8. Evaluate the algorithms and compare them with existing cost-sensitive and insensitive

algorithms such as MetaCost+J48, MetaCost+BN, and cost-insensitive Bayesian

networks algorithm. Hence, the objectives 4 can be achieved in this phases.

Chapter 1: Introduction

9

Figure 1.3: Research methodology.

1.6 Thesis organisation

The thesis is organised into six chapters, set out as follows:

Chapter 1: Thesis introduction and methodology

This chapter presents a brief introduction to the research, introducing the reader to the

problem statement and motivation, potential contribution, research methodology, research

hypothesis, aims and objectives.

8. Evaluate the algorithms and compare them with

existing cost-sensitive and insensitive algorithms

CS-BN via sampling

Changing data

distribution using

(Folk theorem)

CS-BN via amending

Modifying statistical measurements in BN algorithm

 During learning BN structure by changing

MDL measurement

 During Learn BN parameters by changing

probability estimation .

CS-BN via Genetic

Algorithms

By using Gas, create BN

structures and choose the

best one that has minimum

fitness function cost

1. Reviewing Bayesian network algorithms

2. Identify the alternative cost-sensitive methods

 Cost-sensitive based on direct methods.

 Cost-sensitive based on indirect methods.

 Cost-sensitive based on optimization method.

4. Developing and implementing CS-BN algorithms on

Java NetBeans, based on using WEKA open source

6. Test and analyse the algorithm’s performance and

reliability.

7. Modification to

improve

performance

3. Design new algorithms that aim to minimize costs of BN algorithm

5. Apply the most affective empirical evaluation method,

75% training, %25 testing; that repeated 10 times.

Chapter 1: Introduction

10

Chapter 2: Background on Bayesian networks

This chapter presents the basic of data classification process, the background to Bayesian

network learning algorithms and basic laws of probabilities. It shows types of Bayesian

network algorithms with examples, how they learn a BNs structure, and how they learn the

parameters.

Chapter 3: Survey of existing cost-sensitive algorithms

This chapter includes a survey of existing cost-sensitive learning algorithms; it shows the

categories of cost-sensitive learning algorithms, direct, indirect, and optimization algorithms,

and literature review in cost-sensitive Bayesian network algorithms.

Chapter 4: The development of cost-sensitive Bayesian network learning

This chapter presents the development of three new algorithms for learning cost-sensitive

Bayesian networks; these algorithms based on, (i) indirect methods by changing the data

distribution to reflect the costs, (ii) direct methods by amending an existing algorithm, (iii)

optimization method by using Genetic algorithms to create a BN structures that has minimum

fitness function cost.

Chapter 5: An empirical evaluation of the new algorithms for learning cost-sensitive

Bayesian networks

This chapter presents a comprehensive empirical evaluation, including a comparison with

existing cost-sensitive/ insensitive learning algorithms, and finally, evaluating and analysing

their performance by using the average cost and accuracy rates as measurements.

Chapter 6: Conclusions and future works

This chapter summarises the aims of this work and concludes with the achievements,

including reflections on the extent to which the research objectives have been met and future

developments that may be necessary.

Bibliography: It presents all the references in this thesis.

Appendix: It presents real examples to learn BNs, and class implementations diagrams of our

java code.

11

Chapter 2: Background on Bayesian Networks

This chapter presents an overview of Bayesian networks and the basic laws of probabilities.

Section 2.1 describes the basics of the data classification process. Section 2.2 presents an

overview of Bayesian networks, while Section 2.3 presents the principles of Bayesian

networks such as probability, and inference. Section 2.4 presents algorithms for learning

Bayesian networks. Finally, a summary of the chapter is presented in Section 2.5.

2.1 Data Classification

Data mining is an active research area involving the development and analysis of algorithms

for extracting interesting knowledge and patterns from real-world datasets and summarizing

it into useful information (Witten and Frank, 2005). Classification is one of the most

important methods in data mining which plays an important role in data analysis, pattern

recognition, and decision making (Aggarwal, 2014).

Classification requires the construction of a model that can be used to predict a class label for

an unseen instance from a set of attributes. Classification algorithms attempt to learn the

relationship between a set of variables (features) and a class label (target variable). In

particular, classification algorithms learn from training instances to construct a model; where

each instance is associated with a known class label. Then, in a testing phase, the model can

be used to assign labels to unlabelled test instances (Aggarwal, 2014). Figure 2.1 shows how

the classification process can be divided into two steps:

i. Model construction: training data is used to create a model, where the model is

represented in some forms such as classification rules, decision trees, Bayesian

networks, or mathematical formulae.

ii. Model usage: the model is used for classifying unseen or unknown instances, and

estimating the accuracy of the model based on the known class label of test instance.

Chapter 2: Background on Bayesian Networks

12

Figure 2.1: Classification process (Han et al., 2015).

Classification algorithms have been used in several applications, such as: customer target

marketing (Rygielski et al., 2002), medical disease diagnosis (Cios and Moore, 2002),

supervised event detection (Zhang et al., 2010), multimedia data analysis (Kantardzic, 2011),

biological data analysis (Bishop, 2006), and social network analysis (Aggarwal, 2014). There

are several techniques used for data classification such as:

 Decision trees algorithms that use a decision tree that is learned from labelled training

instances (Quinlan, 1986).

 Rule-based algorithms for classifying examples using a collection of ”if -then” rules

(Cohen,1995).

 Instance based algorithms that perform classification using only specific instances

(Aha et al., 1991).

 Neural networks algorithms that use a computational model based on biological

neural networks (Funahashi, 1989).

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Testing Data
Classifier

(Model)
Unseen Data

(Jeff, Professor, 4)

Tenured?

2- Use the
model in

prediction

1- Model
construction

Classification

Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier

(Model)

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Testing
Data

Chapter 2: Background on Bayesian Networks

13

 Bayesian networks algorithms that are statistical classifiers and are based on Bayes

theorem (Pearl, 1988; 2014).

This thesis focuses on Bayesian networks, and hence the following sections describe the

foundation for Bayesian networks. Section 2.2 provides an introduction to the main concept,

Section 2.3 describes the main principles of probabilities used when performing

classification, and Section 2.4 describes algorithms that learn Bayesian networks.

2.2 Overview of Bayesian networks

Bayesian networks, which were invented in 1988 by Judea Pearl, changed the focus of AI

from logic to probability. In the last decade, Bayesian networks have become one of the most

popular tools to structure uncertain knowledge. Indeed, Bayesian networks have been

successfully used in a number of fields including medical diagnostic systems (Spiegelhalter et

al., 1989; Heckerman et al., 1995), in NASA AutoClass project for data analysis and control

the space shuttle (Morris, 2003), Fraud detection systems(Maes et al., 2002), and Speech

recognition systems (Zweig and Russell, 1998).

A Bayesian network can be used as a classifier by computing a posterior probability of a set

of labels given the observable features and the classifier classifies new instance according to

the probability of the class label (Sebe et al., 2005). In particular, a Bayesian network

classifier aims to find the class that has the highest probability given an observed case

(Salama and Freitas, 2013). According to Heckerman (2008) Bayesian networks have several

advantages for data modelling. Firstly, the model of BNs encodes dependencies among all

nodes and it can handle situations where some data entries are missing. Secondly, Bayesian

statistical methods offer an efficient and principled approach for avoiding the overfitting of

data. Thirdly and finally, Bayesian networks do not need to determine the full joint

distributions, which will be described later in Section 2.3, as they merely determine local

conditional distributions and the network can automatically represent the joint distribution.

Bayesian networks are powerful tools for knowledge representation and inference that encode

dependence and independence relationships between variables. In particular, a Bayesian

network model is a probabilistic model that represents variables (continues or discrete) of

data as nodes, and the correlations between these nodes represents the joint probability

distribution between variables (nodes). Obviously, the edges between nodes represent

Chapter 2: Background on Bayesian Networks

14

(in)dependence between nodes that will be described later in Section 2.3.1). Where a direct

edge represents the direct influence between nodes (statistical dependency), while an indirect

edge of nodes that are not connected, represents the indirect influence between nodes

(statistical conditional independency) (Corani et al., 2012), where direct and indirect

influence will be described later in Section 2.3.2.2.

More specifically, in BNs’ structures each node has a set of values, and the relationship

between the node and its parents is defined by a conditional probability table (CPT). This

table determines the probabilities of the values between a stated node given its parents. For

example, Figure 2.2 shows a simple fraud detection Bayesian network, with CPTs of

fraudulent transactions which are more likely to happen when the card holder is travelling

abroad because tourists are targets for thieves, as travel and fraud are causes for foreign

purchase. Invariably, travel explains foreign purchase, thus is evidence against fraud, while

the network has three nodes, representing Travel, Fraud, and Foreign purchase, respectively.

The travel node, as being a parent node has a prior probability table that indicates the chances

of someone travelling to be 0.05 and not travelling to be 0.95. Additionally, the table for the

Fraud node shows the probability of fraud given values of its parent node, Travel. Thus, the

probability of fraud for someone travelling is 0.01, and 0.002 if it is not travelling. While, the

probability of no fraud for someone travelling is 0.99, and 0.998 if not travelling. This is very

similar to the Foreign Purchase node.

Figure 2.2: A simple Bayesian network for fraud detection (Ezawa and Schuermann, 2015)

Given such a network, it can be used to update when evidence is made available. For

example, if one knows that a person is travelling (Travel is True), the probabilities of Fraud

Travel True False

True 0.01 0.99

False 0.002 0.998

Fraud

Foreign purchase

True False

0.05 0.95

Travel

Travel Fraud True False

True True 0.90 0.10

False True 0.10 0.90

True False 0.90 0.10

False False 0.01 0.99

Chapter 2: Background on Bayesian Networks

15

given Travel to be true and false become 0.01 and 0.99 respectively. Also, the Foreign

Purchase node is updated to 0.90, and 0.10 when the Foreign Purchase are true and false

respectively.

2.3 Principles of Bayesian networks

This section describes the key principles of Bayesian networks, while, Section 2.3.1

summarises some definitions from probability theory including Bayes rule which is central to

Bayesian networks, and also presents the notions of dependence and independence. Section

2.3.2 explains the basic of BNs, also how the information is propagated in BNs, and shows

how to use statistical inference based on the Bayes rule to update the probability for a

hypothesis as evidence is acquired.

2.3.1 Definitions from probability theory

This section describes the basic laws of probabilities and shows how to calculate the

probability distribution between two events based on whether they are dependent or

independent events. A probability function P(A) of an event A, represents the density

function of A, while, a joint probability P(A,B) is the probability of two events, A and B,

occurring together at the same time.

2.3.1.1 Dependency events

Formally, if two events are dependent, namely they do influence each other in any way, then:

 𝑃(𝐴, 𝐵) = 𝑃(A ∩ B) = P(A) ∗ P(B after A) (2.1) where A, and B are dependent

In particular, if the two events are considered dependent, then the outcome of the one event

depends on the probability of the other event)Ben‐Gal, 2007). For example, if one has a bag

that contains 4 balls green, 2 balls red, and 1 ball blue, where in each time we have to choose

one ball without replacement, then each event is dependent on the other events as illustrated

in Figure 2.3, and according to equation (2.1) the probability of choosing green and red is:

P(Green, Red) = P(Green) ∗ P(Red after Green) =
4

7
 ∗

2

6
=

8

42
 = 0.19

Chapter 2: Background on Bayesian Networks

16

Figure 2.3: Illustration of three dependency events (Sawaal, 2015).

2.3.1.2 Independency events

Formally, if two events are independent, namely they do not influence each other in any way,

then:

𝑃(𝐴, 𝐵) = P(A) ∗ P(B) (2.2) where A, and B are independent

If the two events are considered independent, then subsequently each can occur individually

and the outcome of one event does not rely on the other. Hence, this will occur if the fact A

occurring does not affect the probability of B occurring (Ben‐Gal, 2007). For example, this

can be noted if one has 2 events; choosing a random card from 5 cards, and rotating a wheel

has 8 parts, where both of events are independent. According to equation (2.2), the

probability of choosing card number 10 and rotating a wheel on part 6 is:

P(Card 10, Wheel on 6) =
1

5
∗

1

8
=

1

40
 = 0.025

Figure 2.4: Illustration of two independency events (Sawaal, 2015).

P(green)= 4/7

P(Red)= 2/7

P(blue)= 1/7

P(green)= 3/6

P(Red)= 2/6

P(blue)= 1/6

After choosing green

without replacement

P(card , wheel) = 1/5 X 1/8 = 1/40

Chapter 2: Background on Bayesian Networks

17

2.3.1.3 Conditional probability

If two events are dependent, then we have to use the concept of conditional probability.

Conditional probability is the probability of an event (A) occurring, given that another event

(B) has already occurred. The conditional probability reduces the sample space of giving the

outcome. Formally, conditional probability can be defined by:

P(A|B) =
P(A ,B)

P(B)
 (2.3) where A, and B are dependent.

 P(A|B) = P(A) (2.4) where A, and B are independent.

Figure 2.5: Conditional probability example (Kountz et al., 2011).

Bayes’s theorem was introduced by Thomas Bayes (1701 - 1761) and represents how the

conditional probability of a set of possible causes for given an observed outcome. In

particular, this theorem is used for statistical inference (Bolstad, 2013), and it is stated

mathematically as:

𝑃(𝐴|𝐵) =
𝑃(B|A)𝑃(A)

𝑃(𝐵)
 (2.5)

Where:

 A and B are events, and B is observed.

 P(A) is prior probability

 P(B) is observed probability.

 P(B|A) is a likelihood probability; the conditional probability of B given that A is true.

 P(A|B) is a posterior probability; the conditional probability of A given that B is true, it

reflects the belief about the hypothesis after B has been observed.

For example, to calculate the probability of someone who has brown hair and given female,

when given the Table 2.1:

Given B, so what is

the probability of A?

P(A|B) is reduced the space of given outcome ,so giving B

we now just care about probability of A occurring inside of B

A B

Chapter 2: Background on Bayesian Networks

18

Total = 11 Female Male

Brown hair 3 4

Blond hair 2 2

Table 2. 1: Joint probability example.

P(Brown hair |Female) =
P(Brown hair ∩ Female)

P(Female)
=

3
11⁄

5
11⁄

 =
3

5
= 0.6

2.3.2 Bayesian networks structure

This section presents the concept of Bayesian networks; where Section 2.3.2.1 shows how to

use BNs model joint distributions of a set of variables, and how BNs use conditional

probabilities between nodes (variables) to compute the probability of events. It presents the

Chain theorem which is used to calculate the joint probability distribution over sets of

random variables in the BNs structure. Section 2.3.2.2 demonstrates how to use Bayes’s

theorem to enable inference when certain pieces of evidence are available to answer queries

and update beliefs.

2.3.2.1 Bayesian networks basics

A Bayesian network is a probabilistic model that represents variables (continues or discrete)

of data as nodes in a Directed Acyclic Graph (DAG), and the relationships between these

nodes represents the joint probability distribution between nodes. Edges between nodes

represent the direct correlations between variables (Corani et al., 2012). For example, if we

have two nodes {A, B} are present with the edge from node A to node B, being relevant, then

A has a direct influence on B, where these directed edges between the nodes represent

probabilistic dependencies among the corresponding random variables. In fact, BNs represent

a model of the joint probability distribution of n random variables X = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛},

and the edges in a network represent the conditional (in)dependencies among the nodes.

Whereas, each node has a set of values with the parent nodes, and it gives the probability of

the variable represented by the node in a conditional probability table (CPT). This table

determines the probability of all parents of a node which are affected by other nodes; where

the CPT is computed from data and it represents the frequency of events in dataset. In

addition, CPTs will be described later in BNs parameter learning, Section 2.4.3.

http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Directed_acyclic_graphs

Chapter 2: Background on Bayesian Networks

19

Formally, a Bayesian network is represented as DAG that encodes a joint probability

distribution over a set of random variables X. This shows as a pair of graph G and parameters

 B=<G, >, where G is a DAG of n random variables 𝑋 = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛}, and the

graph G encodes independence assumptions; each variable 𝑥𝑖 is independent of its non-

descendants given its parents in G. While, represents the set of parameters between the

nodes. In particular, a parameter of each node 𝑥𝑖 in 𝑋, is represented as 𝑃(𝑥𝑖|𝑥𝑖
), where 𝑥𝑖

is the set of parents of node 𝑥𝑖. More precisely, a BN uses a chain theorem to calculate the

joint probability distribution over sets of random variables, as demonstrated in equation (2.6).

It is best to let a BN be a Bayesian network over variables, 𝑋 = {𝑥1, 𝑥2 , 𝑥3, … . , 𝑥𝑛}, as the

BN specifies a unique joint probability distribution P(X) given by the product of all

conditional probability tables specified in the BN (Schum, 2001). Given that, by definition,

each node 𝑥𝑖 has a conditional probability distribution with its parent 𝑃(𝑥𝑖|𝑥𝑖
), and the

chain rule can be used to define the joint distribution as follows:

𝑃(𝑥1, 𝑥2 , 𝑥3, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑥𝑖
)

𝑖=𝑛

𝑖=1

(2.6)

For example, the network in Figure 2.2 (the Fraud example), can be used to model the joint

distribution and to find what is the probability if someone is travelling, and will not receive a

fraudulent transaction, and he will make foreign purchases. P(Travel=True, Fraud=False,

Foreign Purchase=True) = P(Travel)*P(Fraud|Travel)*P(Foreign purchase| Travel,Fraud) =

0.05 * 0.99 * 0.90= 0.0445 .

More precisely, inference in a Bayesian network involves updating the probabilities of nodes’

given evidence and is described in the following section.

2.3.2.2 Bayesian inference

In a Bayesian network structure, some variables can be observed, where these observations

can update the new information in the structure, and the process of conditioning is called

inference, where it involves the propagation or revision of probabilities on the domain of the

structure. In particular, there are four types of inference, which are based on query, and

evidence nodes. To illustrate the types of inference, it is necessary to consider Figure 2.6

which is a modified version of the so-called “Asia” problem (Lauritzen and Spiegelhalter,

1988) that is also one of the examples used in a Bayesian networks tool known as Netica .

Chapter 2: Background on Bayesian Networks

20

This network model is part of the lung cancer problem and can be used in scenarios, such as

with a patient who visits a doctor with breathing difficulties (known as Dyspnoea) and is

worried that he has lung cancer. A doctor also knows that other relevant information that

increase the chances of cancer such as pollution, and smoking, as well as, a positive X-ray

would indicate lung cancer. Consequently, through this scenario, there are four types of

inference, as shown in Figure 2.7; where E is evidence node, and Q is query node:

Figure 2.6: BNs’ structure of lung cancer problem using Netica.

i. Diagnostic inferences (inference from effect to cause): This type of inference starts

from effects to causes, and occurs in the opposite direction to the arcs, from effects to

causes. For instance, in the above example, if one observes Dyspnoea, then, as illustrated

in Figure 2.7(a), evidence propagates from symptoms Dyspnoea to Cancer, and then up

to Pollution and Smoker, the results in propagation down from cancer to X-Rays

(Korband and Nicholson, 2010). Comparatively, the process of going up from a child to

its parents is illustrated in Figure 2.7(a).

ii. Causal inferences (inference from cause to effect): This type of inference starts from

cause to effects as illustrated in Figure 2.7(b) where evidence is provided that a person

smokes, then this is propagated down the arrows, from Smoker to Cancer, then to

X_Rays and Dyspnea. The change in the probability of Cancer also results in

propagation up to Pollution. Whereas, the process of going down from a parent to

children, as illustrated in Figure 2.7(b), is known as causal inference.

iii. Intercausal inferences (inference between cause and common effects): This type of

inference starts from cause to cause through effects, where both causes are independent

of each other as illustrated in Figure 2.7(c), where evidence is provided that a person

smokes, and this is propagates down the arrows, from Smoker to Cancer and then

propagated up to pollution. The change in the probability of Cancer is subsequently

affected through the results in propagation up to Pollution. Whereas, the process of

Chapter 2: Background on Bayesian Networks

21

going from a parent to parent through its children as illustrated in Figure 2.7(c), is known

as intercausal inference.

iv. Mixed Inferences: This type of inference is mixed between different types of inferences,

where any node might be a query or piece of evidence, thus this inference can combine

the above types of inference, as shown in Figure 2.7(d).

Figure 2.7: Types of inferences

 E Q

Causal Inferences

Evidenc

e

……

Evidence

Q E

Diagnostic inferences

……

(c): Intercausal Inferences

Q E

E

Mixed Inferences

E E Q

…..

 (d): Mixed Inferences

 (b): Causal inferences. (a): Diagnostic inferences

Chapter 2: Background on Bayesian Networks

22

2.4 Learning Bayesian networks

A Bayesian network can be used as a classifier by computing the posteriori probability of a

set of labels given the observable features (Pearl, 1988), where to build a complete BN

classifier, there are two aspects to constructing a BN (Neapolitan, 2004):

 learning the graphical structure (topology), which studies the qualitative part and

how to find a graphical relationships between the variables.

 learning the parameters (conditional probability estimation), which studies how to

quantify the relationships and how to determine the extent of the relationship between

the variables and takes the form of a table that represents the conditional probabilit ies

between a node and in its parents in CPT.

2.4.1 Bayesian network structure learning

Several algorithms have been developed to learn the structure of a Bayesian network. One of

the first methods was due to Chow and Liu (1968), who introduced an algorithm for learning

a Bayesian tree based on approximating the joint distribution of a set of attributes by using

the distributions that involving no more than pairs of attributes as shown in Figure 2.8(a).

Duda and Hart (1973) and Langley et al. (1992) proposed an algorithm for learning a simpler

structure known as a Naïve Bayes structure, where all attributes are represented as

independent nodes that have one parent node which represents the class (Langley 1992).

Figure 2.8(b) shows an example Naïve Bayes network, where, a Naïve Bayes classifier

assumes conditional independence of the features given the class, and it is easy to construct

and it has been used as a classifier for many years, especially where the features are not

strongly correlated. Pearl (1988) developed an algorithm to learn singly-connected graphs,

which are Directed Acyclic Graphs (DAGs) where any two nodes have at most one unique

path between them as shown in Figure 2.8(c). More recently, Friedman et al. (1997) have

developed a natural extension to the Naïve Bayes classifier and the Chow-Liu algorithm,

where they introduce the Tree Augmented Naïve-Bayes (TAN) structure. In contrast to Naïve

Bayes, where the assumption is that all attributes are independent, a TAN can model all

dependencies between attributes by allowing the attributes to form a tree. Thus in a TAN

structure, the correlations between attributes can be captured by adding additional edges

Chapter 2: Background on Bayesian Networks

23

between attributes as shown in Figure 2.8(d). Given that a TAN improves upon Naïve Bayes

by avoiding its conditional independence assumptions, avoids the computational overhead of

a general Bayesian network, and has been shown to be an effective classifier (Friedman et al.,

1997), thus, we adopt TANs in this study.

Figure 2.8: Bayesian network structures.

Historically, many Bayesian network structure learning algorithms have been developed,

these algorithms generally fall into three approaches (Cheng and Greiner 1999):

 Scoring-and-search-based approach: find the BNs that maximizes score (Cooper and

Herskovits,1992; Heckerman et al., 1995, Chickering, 2002).

 Constrain-based approach (CI-based approach): it called also Conditional

Independent based algorithms, where it based on data by selecting for each variable a

set of candidate parents (Spirtes et al., 1993; Cheng et al., 1997).

 Hybrid approach: that combines both of these approaches together to learn a BN

structure.

(a) Chow-Liu tree

(c) Directed Acyclic Graphs (d) Tree Augmented Naïve-Bayes

(b) Naïve Bayes

Chapter 2: Background on Bayesian Networks

24

Figure 2.9 presents a diagram that shows some references under each category and is

followed by a description of the main categories (Carvalho, 2009; Cheng and Greiner, 1999).

Figure 2.9: Bayesian network structure learning approaches.

2.4.1.1 Scoring-and-search-based approach

The task of finding a structure of a Bayesian network that describes the observed data is

difficult and time-consuming, and has been shown to be an NP-complete problem

(Chickering1996, 2004). Practically, when the search space is extremely large, the search

NB
Naïve Bayes

(Duda and Hart,
1974)

Bayesian

scoring

functions

Information-

theoretic

scoring

functions

BD

(Heckerman et al.,

1995)

BDe

(Heckerman et al.,

1995)

BDeu

(Buntine, 1991)

LL

 (Fisher , 1997; 1922)

MDL

(Rissanen 1978)

AIC

(Akaike, 1974)

BIC
 (Schwarz, 1978)

Chi-squared test
(Rayner and Best,

1989)

 Mutual Information test
(Shannon and Weaver

1949)

Bayesian tree

(Chow and Liu, 1968)

TAN
Tree Augmented Naïve
Bayes (Friedman et al.,

1997)

BNs

Bayesian networks

(Preal,1988)

Bayesian network structure learning approaches

2.4.1.3 Hybrid

approach

Structure

2.4.1.2 Conditional

(In)dependent- based

approach

Functions Structure

2.4.1.1 Scoring-and-search- based

approach

Structure Functions

http://en.wikipedia.org/wiki/Hirotugu_Akaike

Chapter 2: Background on Bayesian Networks

25

procedure will spend a lot of time examining unreasonable candidate structures, where the

search space represents all the possible BNs structures. For example, Table 2.1 shows all

possible structures of directed acyclic graphs (DAGs) given the number of variables (nodes)

in the domain. Thus, when the number of nodes are large, then the number of possible DAGs

are extremely large. Robinson (1973, 1977) derived the following efficiently computable

recursive function to determine the number of possible structures that contain n nodes:

𝑓(𝑛) = ∑ (−1)𝑖+1𝐶𝑖
𝑛2𝑖(𝑛−𝑖)𝑓(𝑛 − 𝑖) (2.7)𝑛

𝑖=1

Where, n represents the number of variables, and 𝐶𝑖
𝑛 is (

𝑛
𝑖
)=

𝑛!

𝑖 ! (𝑛−𝑟)!

Number of

variables

in

structure

Number of the possible BN

structures

All possible BN structures

1 1

2 3

3 25

4 543

5 29,281

6 3,781,503

7 1,138,779,265

8 78,370,2329,343

9 1,213,442,454,842,881

10 4,175,098,976,430,598,100

Table 2.2: Number of BN structures based on number of nodes (Laskey, 2015).

Cooper (1990) argued that given this is an NP-hard problem, we need to find "approximate

solutions". The first attempts at finding approximate solutions were by Chow-Liu (1968) who

developed branching algorithms to learn Bayesian trees. Dagum and Luby (1993) showed

that even finding approximate solutions is NP-hard, thus they introduced a new method that

restricted the possible parents of each node. After that, Dasgupta (1999) introduced 2-

polytrees (a singly connected network) which is also NP-hard. Finally, heuristic search

methods have been proposed for addressing the problem of learning BNs in polynomial-time.

A

A B A B A B

.

.

.

.

.

.

.

A B c25 structures A B c

A B c A B c A B c

Chapter 2: Background on Bayesian Networks

26

The scoring-and-search-based approach uses heuristic search algorithms to learn Bayesian

network structures with respect to a goodness of fit score (Cheng and Greiner 1999).

Heuristic search methods are based on two steps:

 Using search methods to build the structure: fundamentally, there are several types of

search algorithms such as greedy hill climbing, simulated annealing, Genetic algorithm, Tabu

search, best first search, K2 algorithm, etc (Cooper and Herskovits, 1992). Most learning

algorithms employ different search methods but the same search space. However, each search

algorithm is based on a set of search operators; these operators are used to transfer a BN structure

from one state to another state, such as arc addition, arc deletion, and arc reversion. As shown in

Figure 2.10, starting from an initial network structure, one can apply the search operators (without

introducing a cycle) to create the set of candidate neighbouring structures. A scoring or evaluation

function can then be used to aid the selection of the next state as part of the search process, then

the structure that has the highest score is selected (Vandel et al., 2012).

Figure 2.10: Set of operators (Vandel et al., 2012).

 Using scoring functions to evaluate each structure: score functions use to aid the search

process to evaluate the structure. The scoring-and-search based approach starts from an

initial random structure and moves to its neighbours by using the transition operators (as

illustrated in Figure 2.10) to suggest new structures. The scoring function is used as an

evaluation function and the search continued until no further improvement can be

obtained. Figure 2.11 illustrated the idea where there are two nodes and a link is added

resulting in an improved score.

 C

X2 X1

Add arc Delete arc Reverse arc

c

X2 X1

c

X2 X1

C

X2 X1

Chapter 2: Background on Bayesian Networks

27

Figure 2.11: Model selection that maximize the score given data (Meek, 2015)

As shown in Figure 2.9, scoring functions are divided into two groups: Bayesian scoring

functions and information-theoretic scoring functions (Heckerman et al., 1995), which are

described below.

i. Bayesian Scoring functions are based on calculating the posterior probability using Bayes

theorem and include two functions, both based on Bayesian Dirichlet (BD) functions

(Heckerman et al., 1995). These functions are BDe where 'e' is for likelihood-equivalence

(Heckerman, et al., 1995) and BDeu where ‘u’ denotes uniform joint distribution (Buntine,

1991).

ii. Information-theoretic scoring functions are based on the view that the best models are

those that are the most succinct at representing the data, where the data is compressed into

a shorter message length. Two common measures are the Log Likelihood (LL) score

(Fisher, 1997; 1922) and the Minimum Description Length (MDL) (Rissanen, 1978), both

of which have been shown to be effective in a number of studies (Friedman, 1997) and

described in more detail below.

o The Log Likelihood (LL) score

Several authors have described how the log likelihood measure can be used to assess the

extent to which a given Bayesian network that represents data distribution. The following

description is taken from Grossman and Domingos (2004) to analyse the LL score

function. Consider a training set D={𝑋1, … , 𝑋𝑛}, the goal is to find the Bayesian network

B that best representation the joint distribution P(X|) where are parameters where,

Data d

Chapter 2: Background on Bayesian Networks

28

the likelihood of having parameters given the data 𝑋𝑖 is defined by (Grossman and

Domingos, 2004) as:

𝐿(|𝑋1, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|)

𝑛

𝑖=1

Then, applying the natural log function, because, logs reduce potential for underflow in

numerical analysis, due to very small likelihoods.

log 𝐿(|𝑋1, … , 𝑋𝑛) = ∑ log 𝑃(𝑋𝑖|)

𝑛

𝑖=1

From which the maximum likelihood estimator 𝑀𝐿𝐸
^ is defined as:

𝑀𝐿𝐸
^ = 𝑎𝑟𝑔 𝑚𝑎𝑥 ∑ 𝑙𝑜𝑔 𝑃(𝑋𝑖|)

𝑛

𝑖=1

In particular, choosing the parameter value that makes the data actually observed as

likely as possible.

𝐿𝐿(|𝐷) = ∑ log 𝑃(𝑋𝑖|)

𝑛

𝑖=1

The log-likelihood in BNs of n nodes, and m values of each node can be expressed in the

following way (Campos, 2006):

𝐿𝐿(𝐵|𝐷) = 𝐿𝐿(𝑋𝑖|𝑋𝑗) = ∑ ∑ 𝑁𝑖𝑗 ∗ log (
𝑁𝑖𝑗

𝑁𝑗
)

𝑚

𝑗=1

𝑛

𝑖=1

 (2.8)

The log-likelihood function when node 𝑋𝑖 takes its parent 𝑋𝑗 is shown in equation (2.8),

where 𝑁𝑖𝑗 is the number of instances in the data D that has the intersection between node

values i, and j, and 𝑁𝑗 is the number of all instances in data D that has j value. As an

example, consider the simple Bayesian network to explain the concept of LL score

function is shown in the Appendix B1.

The LL score can quickly learn complete network structures, but it cannot provide a

useful representation of the independence assumptions of the learned network (Campos,

2006). That is, this score is extremely specific but it cannot give a good structure if the

model is over trained, obviously, the model becomes too specific because it adds too

many links. Therefore, several theoretic scoring functions have been introduced to

Chapter 2: Background on Bayesian Networks

29

devolp LL and avoid overfitting by limiting the number of parents per network variable,

and by using some penalization factor over the LL score, such as the MDL function

described below.

o Minimum Description Length (MDL)

The Minimum Description Length score (MDL) (Rissanen, 1978) is a formalization of

Occam's razor:

"The best hypothesis for a given set of data is the one that leads to the best compression of

the data."

Rissanen (1978) introduced the MDL score and his idea was based on how to reduce each

model to bits. He stated that if the sender takes a set of observations dataset as input, then

encodes these observations and sends a message that contains all the information about the

model to a receiver, the receiver should be able to decode the message and produce the

original message using the model. A good model will be one that is of minimal length.

More precisely, suppose that: D is a set of observations dataset, B a Bayesian model that is

used to describe D, L(B) represents the length of the code in bits necessary to encode the

model B, and L(D|B) represents the length of the data D encoded using the Bayesian

model B (Ramos, 2006). Where, the total length of the message is presented in equation

(2.9), which includes the length required to represent the network L(B) plus the length

necessary to represent the data given the network L(D|B) (Friedman and Goldszmidt,

1998).

𝐿 = 𝐿(𝐷|𝐵) + 𝐿(𝐵) (2.9)

In particular, the first part L(D|B) is the log likelihood score function LL(B|D)that

described in equation (2.8), where it represents how many bits are needed to describe D

when encoded with B. While, the second part of equation (2.9), namely L(B), represents

the number of bits used to represent and encode the model B and its parameters . It

called penalization factor, can be expressed in the following way (Campos, 2006):

𝐿(𝐵) =
log 𝑁

2
|| (2.10)

Where || represents the number of parameters in the network B, and N is the total

number of instances in data D. In particular, when L(B) is 0, then the MDL will be equal

http://en.wikipedia.org/wiki/Occam%27s_razor
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression

Chapter 2: Background on Bayesian Networks

30

to LL score. Figure 2.12 illustrates this for Bayesian networks in which the first part

represents the log likelihood function, and the second part represents proportionality factor

of MDL score that shows in equation (2.10).

Figure 2.12: Illustration of the concept of data compression in MDL (Rish, 2015).

The MDL scoring function of a network B given a training dataset D, is written as

MDL(B|D) (Friedman, 1997; Neapolitan, 2004),is given by:

𝑀𝐷𝐿(𝐵|𝐷) = 𝐿𝐿(𝑋𝑖|𝑋𝑗) = ∑ ∑ 𝑁𝑖𝑗 ∗ log(
𝑁𝑖𝑗

𝑁𝑖
)

𝑚

𝑗=1

𝑛

𝑖=1

−
log 𝑁

2
||

𝑀𝐷𝐿(𝐵|𝐷) = 𝐿𝐿(𝐵|𝐷) −
log 𝑁

2
|| (2.11)

The literature also contains two variations of the MDL score:

o The Akaike Information Criterion (AIC), (Akaike, 1974), where the penalization

factor = 2 || as :

𝐴𝐼𝐶 (𝐵|𝐷) = 2 𝐿𝐿(𝐵|𝐷) − 2 || (2.12)

o The Bayesian Information Criterion (BIC), (Schwarz, 1978) which takes the form:

𝐵𝐼𝐶(𝐵|𝐷) = 2 𝐿𝐿(𝐵|𝐷) − log 𝑁 || (2.13)

All of the above score functions have different characteristics (Friedman and Goldszmidt,

1998; Campos, 2006) which can be summarised as follows:

DL(Model) LL(Data|model)

 <9.7 0.6 8 14 18>
 <0.2 1.3 5 ?? ??>
 <1.3 2.8 ?? 0 1 >
 <?? 5.6 0 10 ??>
 ……………….

||
2

log
),|(log)|(

N
GDPDBMDL

http://en.wikipedia.org/wiki/Hirotugu_Akaike

Chapter 2: Background on Bayesian Networks

31

In particular, the LL score function is not suitable for learning the structure of Bayesian

networks, because it requires an exponential number of parameters, and that will lead to

have a high variance, and poor prediction (overfitting problem). To address this problem,

the AIC, BIC, and MDL measures use some penalization factor over the LL score.

According to Maimon and Rokach(2005), AIC score penalises the LL(B|D) with a term

that increases linearly with the number of parameters || of the model B. However, the

AIC score does not lead to a consistent estimation when the model is unknown(Maimon

and Rokach, 2005), because it is based on the implicit assumption that || remains

constant when the size of the example increases as shown in equation (2.12), obviously, it

does not include the number of examples N. In contrast, the BIC measure includes the

number of examples as shows in equation (2.13), though this can also lead to problems

when N is large, since the variance term in the mean squared error expression will be

negligible (Maimon and Rokach, 2005). On the other hand, the MDL score aims to resolve

this problem, and according to (Friedman, 1997), MDL avoids overfitting the data, by

regulating the number of parameters learned and results in learning a structure that reflects

the distribution better.

All of the above score functions can be used on any Bayesian network structures such as

DAG, CL tree, TAN,... etc, to find high scoring structures for a given dataset D. (Cooper

and Herskovits, 1992; Heckerman,1997).

2.4.1.2 Conditional independent-based approach

This approach is also called the constraint based approach. It selects for each variable a set

of candidate parents and encodes a group of conditional independent relationships among

them, according to the concept of d-separation (Pearl, 1988) which assess whether two

variables are independent given other variables (see Appendix A for further details). This

approach uses statistical tests functions such as chi-squared test (𝑥2 test) (Rayner and Best,

1989; Zibran, 2007), mutual information test (Shannon and Weaver, 1949; Cover and

Thomas 2012), these tests use to find the conditional independence relationships among the

attributes and uses these relationships as constraints to construct a BN. The Conditional

Independent-based approach can lead to a simple Naïve Bayes structure of the kind described

in Section 2.4.1 and illustrated in Figure 2.8(b).

Chapter 2: Background on Bayesian Networks

32

2.4.1.3 Hybrid approach

This approach combine both of score-search approach and constraint approach together to

learn the structure of a BN. Two such algorithms include learning as Chow-Liu tree (Chow

and Liu, 1968), and Tree Augmented Naïve-Bayes networks TANs (Friedman et al.,1997).

.

2.4.1.3.1 Chow-Liu tree

Chow and Liu (1968) describe a procedure for constructing a Bayesian tree from data

(also called a CL tree). The procedure constructs an approximation of the Bayesian

network using information function, where the original algorithm used Mutual

Information (MI) function, but it can be used on any score functions or conditional

independent function thus, this algorithm is hybrid. In particular, it uses only O(𝑁2)

pair wise dependency calculations, where N is the number of nodes (Cheng and Greiner

1999). The CL algorithm can be summarised in five steps (Friedman et al., 1997):

 Step 1:Compute Mutual Information:

Consider a graph G = (V, E), let V denotes a set of discrete random variables,

V={X1, X2, X3,…,Xn}, where E is a set of edges. First the marginal distributions of both

P(Xi, Xj) =
Nij

N
 and P (Xi)=

Nij

N
 are computed from the data, where i, j belong to V.

Then, use these marginals to compute the mutual information values of all n(n-1)/2

pairwise mutual information gains 𝑀𝐼(Xi, Xj), where i={1,2,3,...,n-1}, and

j={i+1,,...,n}and i<j. Mutual Information calculated as shown in equation (2.14).

𝑀𝐼(𝑋𝑖 , 𝑋𝑗) = ∑ ∑ 𝑃(𝑋𝑖, 𝑋𝑗) ∗ log
𝑃(𝑋𝑖 , 𝑋𝑗)

𝑃(𝑋𝑖)𝑃(𝑋𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=0

 , where i ≠ j (2.14)

 Step2: Build a complete undirected graph:

A complete undirected graph is then built, where the edges between Xi, and Xj are set to

a weight corresponding to the mutual information MI(Xi, Xj).

 Step3: Apply (MWST) algorithm:

A maximal spanning tree is then obtained using a Maximum Weight Spanning Tree

(MWST) algorithm (Cormen et al., 1990). Maximum weight dependence tree is

constructed branch by branch as shown in example in Figure 2.13, where it uses

Chapter 2: Background on Bayesian Networks

33

MI(Xi,Xj) as the weight for edge (Xi,Xj), for all i,j V, and i ≠ j.

Figure 2.13: How MWST finds a tree with the greatest total weight (Hong, 2007).

Step4: Convert to directed tree:

Convert undirected tree into a directed tree by choosing any node a root node and

setting the directions of the links to be outward from it.

Where, as simple CL tree shows in Figure 2.8(a), and a real example in Appendix B

shows how this procedure works, Figure B1.7 represents a simple Chow-Liu tree

(directed tree).

2.4.1.3.2 Tree Augmented Naïve-Bayes (TAN) structure

The TAN classifier was introduced by Friedman et al. (1997), as an extension of Naïve

Bayes networks by allowing the attributes to form a tree to represent the dependencies

among the attributes, and relaxing the independence assumptions (Cheng and Greiner

2001). Figure 2.8(d) shows a TAN structure where each node has two parents, a class

node and another node. A TAN is unlike a Naïve Bayes network since it can model all

dependencies between variables; in particular, it is a less restricted structure than Naïve

Bayes by allowing one parent per variable in addition to the class. A TAN is formed by

calculating the maximum weight spanning tree algorithm using the Chow-Liu

algorithm. Friedman et al.(1997) argue that the drawback of using LL score function,

stems from that it does not work well when the number of instances is limited, as was

described previously in Section 2.4.1.1. Thus, Friedman et al. (1997) suggested the use

of a restricted log likelihood function that is called conditional log likelihood (CLL)

function (Spiegelhalter et al., 1993). Their suggestions were based on the assumption

that by maximising the conditional log likelihood, it is possible to learn a model that

best approximates the conditional probability of class C given the attribute values.

Therefore, Friedman et al. (1997) conclude that the model that maximises this CLL

Chapter 2: Background on Bayesian Networks

34

function yields the best classifier. Friedman et al. (1997) developed the following

algorithm for learning TANs based on the MDL as score function instead of MI

function:

Step 1: Compute Conditional Information:

Consider a graph G = (V, E), let V denotes a set of discrete random variables,

V={X1, X2, X3,…,Xn, 𝐶}, where E is a set of edges, and the edges (Xi, Xj) between tree

represent the weight of MDL between (Xi, Xj) based on class node C. In particular, the

first step is applying MDL that based on conditional log likelihood CLL score function

to obtained a maximum weight dependence tree. Where the weight between nodes

(Xi, Xj) represents the difference between MDL dependent nodes as MDL(𝑋𝑖|𝑋𝑗 , 𝐶), and

MDL dependent class as MDL(𝑋𝑖|𝐶), as shown in the Appendix B example B1.3. MDL

dependent nodes, and MDL dependent class are calculated as shown in equations

(2.15), and (2.16) respectively.

 𝑀𝐷𝐿(𝑋𝑖|𝑋𝑗 , 𝐶) = ∑ ∑ ∑ 𝑁𝑖𝑗𝑘 𝑙𝑜𝑔 (
𝑁𝑖𝑗𝑘

𝑁𝑗𝑘
)

𝑘=1

𝑚

𝑗=1

 −
log 𝑁

2
||

𝑛

𝑖=1

 (2.15)

 𝑀𝐷𝐿(𝑋𝑖| 𝐶) = ∑ ∑ 𝑁𝑖𝑘 𝑙𝑜𝑔 (
𝑁𝑖𝑘

𝑁𝑘
)

𝑘=1

 −
log 𝑁

2
|| (2.16)

𝑛

𝑖=1

Where 𝑁𝑖𝑗𝑘 is the number of instances in the data D that has the intersection between

node values i, j, and class k. While, 𝑁𝑗𝑘 is the number of all instances in data D that has

the intersection between node j, and class node k. Also, 𝑁𝑖𝑘 is the number of instances

in the data D that has the intersection between node i, and class node k. While, 𝑁𝑘 is

the number of all instances in data D of class k. Where, are parameters, and N

number of all instances in the data D.

Step2: Build a complete undirected graph:

Construct an undirectedcomplete graph between all the attributes (excluding class

variable), where the edge weight is calculated from previous step.

Chapter 2: Background on Bayesian Networks

35

Step3: Apply (MWST) algorithm:

Build a maximum weighted spanning tree by running a Maximum Weight Spanning

Tree (MWST) algorithm (Cormen et al., 1990).

Step4: Convert to directed tree:

Convert the resulting undirected tree to a directed tree by choosing a root node and

setting the direction of all edges to be outward from it.

Step5: Add the class label as root:

Construct a TAN model by adding a class label node as root for dependency tree;

adding an arc from C to all 𝑋𝑖.

Clear example will be show in Appendix B1, to illustrate how to learn TAN structure

based on the algorithm steps. In comparison to the other approaches described above,

Friedman et al. (1997) point out that:

 Learning TANs involves no process of searching.

 TANs are more robust than Naïve Bayes; because they are based on relaxing the

independence assumptions.

 TAN algorithm can be learned in polynomial time; thus, it is faster than other

BNs.

 TAN classifier is more accurate; because it is based on maximising the restricted

weight between nodes that yields to an improved classification process.

 Based on the experiments of Friedman et al.(1997), the learning procedures of

TAN are guaranteed to find the optimal tree structure.

2.4.2 Bayesian network parameter learning

After learning the structure of a Bayesian network, the next step aims to learn the

parameters; that is the conditional probabilities between nodes and their parents which can

be viewed as a Conditional Probability Tables (CPTs). A conditional probability table

represents the dependency between variables. For example, Figure 2.14 shows a dependency

between two nodes ‘cancer disease’ and ‘test’, with the prior probability of ‘having cancer’

being present is 5% and ‘not having cancer’ being absent is 95%. The extent of the

Chapter 2: Background on Bayesian Networks

36

dependency is quantified by the CPT, which for example, indicates that the probability of test

being positive is 75% if cancer is present.

Figure 2.14: A simple BNs model with CPTs.

To obtain these probabilities, a Simple Estimator (SE) is used and takes the form given by

equation (2.17) (Bouckaert, 2004).

P(𝑋𝑖|𝑋𝑗) =
𝑁𝑖𝑗 + α

N + (α ∗ n𝑋𝑖
)

 (2.17)

Where, 𝑋𝑗 is parent of 𝑋𝑖 after learn structure, 𝑁𝑖𝑗 represents the number of the events

𝑋𝑖 , and parent node 𝑋𝑗 occurring together in the data; N is the total number of examples of

parent node 𝑋𝑗. While, n𝑋𝑖
 is the number of values of node 𝑋𝑖. Where, α = 0.5 represents the

initial count on each value to avoid 0. For example, to illustrate the Simple Estimator SE,

suppose we have Table 2.3 from play-tennis dataset that represents as:

Outlook Wind

Sunny FALSE

Sunny TRUE

overcast TRUE

rainy TRUE

rainy TRUE

rainy TRUE

overcast TRUE

sunny FALSE

rainy FALSE
Table 2.3: A simple play-tennis dataset with two attributes.

Cancer

disease Test

Test

disease + -

Present 75% 4%

Absent 25% 96%

Cancer disease

present 5%

absent 95%

Chapter 2: Background on Bayesian Networks

37

Then the simple estimator estimates of the probability it is sunny and windy which happened

one time is: P(Outlook = ′Sunny′ |Wind = ′True′) =
1+0.5

6+(3∗0.5)
 = 0.2

With the same way the simple estimator is used to estimate all the attribute values between

the nodes in the structure and save the values into CPTs as shown in Figure 2.15.

Figure 2.15: A simple network structure for the play-tennis dataset and the associated CPTs.

After learning the Bayesian network from a dataset (structure, and parameters), it can be used

as a classifier to classify new instances, as shown in Appendix B, in Figure B1.8, where real

dataset has been applied on WEKA software to show how TAN structure learned from play-

tennis dataset and how it learned parameters, then how it used as classifier.

2.5 Summary

In summary, this chapter has presented the background on Bayesian networks. It described

the data classification processes, and the types of classification algorithms such as decision

trees, neural networks, and Bayesian networks classification algorithms. Then, it presented

the principles of Bayesian network algorithms that are based on probability theory. Moreover,

it outlined inference in Bayesian networks, and how to update the probabilities of nodes

given evidence. An illustrative examples were given to demonstrate type of inference. In

addition, the chapter has discussed how to learn Bayesian networks (structure and

parameters). It presents three approaches that are based on some functions to learn Bayesian

structures: Scoring-and-search-based approach, constrain-based approach, and Hybrid

approach. Furthermore, this chapter presented the main Bayesian structures that are used in

this research which are Chow-Liu tree, and Tree Augmented Naïve-Bayes.

True False

0.65 0.35

 Sunny Rainy overcast

True 0.2 0.567 0.333

False 0.556 0.333 0.111

Outlook

Wind
True

False

Sunny

Rainy

overcast

Chapter 2: Background on Bayesian Networks

38

The following chapter presents a survey of existing cost-sensitive algorithms, and discusses

the differences between existing cost-sensitive algorithm.

39

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

This chapter presents a survey of approaches to cost-sensitive learning. As mentioned in

Chapter 1, most of the existing research on cost-sensitive learning has focussed on decision

tree learning and the aim of this chapter is to describe the strategies adopted with a view to

adopting them for developing algorithms for learning cost-sensitive Bayesian networks.

Section 3.1 describes cost-insensitive algorithms, Section 3.2 describes existing cost-sensitive

algorithms. Section 3.3 describes the literature review in cost-sensitive Bayesian network

algorithms. Section 3.4 presents a brief summary of this chapter.

3.1 Cost-insensitive learning algorithms

The classification task aims to distinguish instances in a dataset into known categories, called

classes, in accordance to specific attribute values. The induction of classifiers from datasets

of pre-classified instances is perceived to be a major challenge (Friedman, 1998). Thus, many

methods and algorithms have been introduced as classifiers such as: decision trees, Bayesian

networks, and neural networks. Most of these early machine learning algorithms, focused on

maximizing accuracy, and assumed that costs for misclassification error remain equal

(Mitchell, 1997). Early machine learning algorithms, now termed Cost-insensitive learning

algorithms, focused on maximizing accuracy but did not take any type of costs into account

(Mitchell, 1997). The measure accuracy is defined as given in equation (3.1) and denotes the

proportion of correctly classified instances.

Several authors have noted that cost-insensitive learning is not adequate for practical

applications (Turney, 2000; Vadera and Nechab, 1995; Domingos, 1999). For example, in

medical diagnosis applications, the cost of a false positive (FP) includes unnecessary

treatment and unnecessary worry while the cost of false negative (FN) error includes

postponed treatment or failure to treat; and death or injury (Santos-Rodríguez et al., 2009). In

fraud detection applications, a false positive (FP) error can lead to resources being wasted

investigating non-frauds and reducing the benefits; while a false negative (FN) error such as a

failure to detect fraud could be very expensive (Phua et al., 2006).

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

40

Hence, in recent years, a significant level of attention has been paid to cost-sensitive learning

algorithms, including making accuracy-based learners cost-sensitive (Lomax and Vadera,

2013). Thus, many cost sensitive approaches are designed to reduce the cost of

misclassifications rather than the number of misclassified examples.

3.2 Cost-sensitive learning algorithms

Cost-sensitive learning algorithms take costs into consideration and aim to minimize costs

(Elkan, 2001). In particular, there is a cost involved in the learning process, where, the cost is

very important in the classification process. The word cost is used to describe the term in a

very abstract sense, where cost has different measurement units, such as monetary units

(dollars), temporal units (seconds), or abstract units of utility (Turney, 2000). Cost should not

only be a physical entity that could be measured, as cost sometimes includes time wasted, and

loss of a patient's life, such as misclassifying a patient with cancer as having no cancer. As

well as misclassification costs, Turney (1995) points out that test costs are also an important

consideration. For example, in medical diagnosis applications, a blood test has a cost, so if

the misclassification cost of diagnosis a patient is £10 and test cost is £2; so the

misclassification cost is greater than the test cost, in this case, it is worthwhile to pay test

costs because that seem to have some predictive value. On the other hand, if misclassification

costs less than test costs, then there is no point in doing test costs.

The following example illustrates the use of a cost-matrix to calculate accuracy and costs.

Table 3.1 presents an example cost-matrix C, where C(i, j) is the cost of predicting an

example to be in class i when it is actually in class j.

Predicting class

Actual class

Actual Positive Actual Negative

Predicting Positive TP=0 FP=£1

Predicting Negative FN=£50 TN=0

Table 3.1: A cost matrix for two-class problems

A classification scheme, when applied to some data, will lead to outcomes that are correct or

incorrect instances, resulting in what is known as a confusion matrix. For example, suppose

we have two different classifiers, a decision tree classifier and a Bayesian network classifier.

Applying these classifiers to the Breast cancer dataset and evaluating the supplied test set in

the models may give the confusion matrixes in Table 3.2 (a) and (b) respectively.

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

41

Predicting class

Actual class

Actual no cancer Actual cancer

no cancer 193 8

cancer 62 23

Table 3.2: (a): Outcomes from decision tree classifier (J48) on the Breast cancer dataset.

Predicting class

Actual class

Actual no cancer Actual cancer

no cancer 173 28

cancer 59 26

Table 3.2: (b) Outcomes from Bayesian network classifier (TAN) on the Breast cancer dataset.

Given the outcomes in Tables 3.2(a) and 3.2(b), we can compute the accuracy and

misclassification costs of the two classifiers as using the following measures:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜. 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3.1)

 𝐶𝑜𝑠𝑡 = ∑ 𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖 ∗ 𝐶𝑜𝑠𝑡 (𝑖, 𝑗) (3.2)

𝑘

𝑖=1

Where, k is the number of classes, 𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑖 is the number of class i

examples that are misclassified, and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of misclassifying examples of class

i when j is given. Using these equations, we obtain the following accuracies and costs for the

decision tree classifier (DT) and the Bayesian network classifier (BN):

DT Accuracy =
193+23

286
=75.52%, and DT misclassification costs=£50*62 +£1*8 = £3108

BN Accuracy =
173+26

286
=69.58%, and BN misclassification costs=£50*59 +£1*28 = £2978

Thus, in this example, applying the Bayesian network classifier will entail less costs than

applying the decision tree classifier on the Breast cancer dataset.

3.2.1 Cost sensitive algorithms categories

As illustrated by the previous example in Section 3.2, a good cost-sensitive classifier should

be able to predict the class of an example that leads to the lowest expected cost (Elkan, 2001),

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

42

where the expectation is computed after applying the classifier by using the expected cost

function (Zadrozny and Elkan,2001), as given in equation (3.3) . Assume that (i, j) represents

2 classes in cost matrix C, if i=j then the prediction is correct, while if i≠ j the prediction is

incorrect. The expected cost of classifying an instance x into true class i, can be expressed as:

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡(𝑥, 𝑖) = ∑ 𝑃(𝑗|𝑥) ∗ 𝐶𝑜𝑠𝑡(𝑖, 𝑗)

𝑘

𝑗=1

 (3.3)

Where, k is the number of classes; 𝑃(𝑗|𝑥) represents the probability estimation of classifying

the instance x into class j; and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of misclassifying class i when j is given;

obviously the cost of predicting x to class i when the true class of x is j.

Several authors have categorised cost-sensitive induction algorithms differently. According to

Zadrozny et al. (2003b) cost-sensitive classifiers can be divided into two categories: Black

Box and Transparent Box. Black box methods use a classifier as closed box without changing

its behaviour and can work for any classifier. On the other hand, transparent box methods

require knowledge of the particular learning algorithm and are based on changing the

algorithm to include costs. Ling and Sheng (2010) use the terms direct methods, and indirect

methods, where direct method includes cost directly during building a cost sensitive learning

algorithm; introducing and utilizing misclassification costs into the learning algorithms.

While, indirect method includes cost before or after applying the algorithm; by pre-

processing the training data, or post-processing the output of a cost-insensitive learning

algorithm. As well as these methods, a further category involves using evolutionary

algorithms. The literature search identified several methods under these categories which are

presented in Figure 3.1 and described below.

43

Figure 3.1: Cost-sensitive learning categories

Cost-sensitive classification algorithm categories

Algorithms that use of

optimization method
Algorithms that use direct

method

Algorithms that use indirect

method

[Tan and Schlimmer 1989]

[Ting, 1998; 2002]

[Frietas et al., 2007]

[Davis et al., 2006]

[Nunez 1991]

[Norton, 1989]

1989]

[Liu ,2007]

CS-ID3

IDX

EG2

CSGai

n
CS-C4.5

C4.5CS

PM

PM

GINI Altered priors [Pazzani et al., 1994]

Cost-Minimization [Pazzani et al., 1994]

 Decision Tree with Minimal Costs

[Ling et al., 2004]

Decision Trees with Minimal Cost

under Resources Constrain

[Qin et al., 2004]

CSTree [Ling et al., 2006a]

Sampling

Thresholding

Relabeling

Weighting

cost-proportional rejection

sampling[Zadrozny et al., 2003a]

X1

optimal cost-sensitive classifier [Elkan, 2001]

SMOTE [Chawla, 2011]

Costing [Zadrozny et al.,

2003b]

Theoretical thresholding [Elkan,2001]

Adjusted thresholding [Sheng and Ling, 2006]

C4.5CS [Ting, 1998;2002]

MaxCost[Margineantu and Dietterich, 2003]

AvgCost[Margineantu and Dietterich, 2003]

GINI Altered priors [Pazzani et al., 1994]

MetaCost [Domingos, 1999]

CostSensitiveClassifier [Witten and Frank, 2005]

Ensemble learning

Bagging

Boosting

MetaCost [Domingos, 1999]

CostSensitiveClassifier [Witten and Frank, 2005]

C Costing [Zadrozny, 2003b]

AdaBoost[Freund and Schapire, 1996]

AdaCost [Fan et al., 1999]

Cost-UBoost [Ting and Zheng, 1998a]

GBSE [Abe et al., 2004]

ICET [Turney,1995]

]]

ECCO [Omielan and

Vadera, 2012]

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

44

.

3.2.1.1 Algorithms that use direct methods

A key step in decision tree learning algorithm is selecting the next attribute of the decision

tree, which is done by using a measure (Quinlan, 1979) such as information gain that is based

on computing the difference between entropy of classification before and after an attribute’s

value is known. The following equations define how this is computed for a class C and

attribute A:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶) = ∑ −𝑃(𝑐) ∗ log2 𝑃(𝑐)

𝑐∈𝐶𝑙𝑎𝑠𝑠

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑡𝑡) = ∑ 𝑃(𝑎) ∗ ∑ −𝑃(𝑎|𝑐) ∗ log2 𝑃(𝑎|𝑐)

𝑐∈𝐶𝑙𝑎𝑠𝑠𝑎∈𝐴𝑡𝑡

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐶) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑡𝑡) (3.4)

Where, c is a class value, and 𝑎 is an attribute value of A and 𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴 is the information

gain of the attribute A. The attribute that results in the highest information gain is used as the

next attribute and the process repeated recursively until a stopping condition, such as a

certain proportion of examples belonging to the same class is reached. However, this

selection measure does not take account of costs. Hence, several algorithms have been

introduced to include costs by amending the statistical measurement; or by modifying and

utilizing the cost directly during the decision procedure (Lomax and Vadera, 2013).

i. Algorithms that amend the information theoretic measure

As mentioned in Section 3.2, the main two costs are: test costs and costs of

misclassification. Test costs can be included by amending the selection measure to include

the cost of a test. Algorithms using this approach include EG2 (Núñez, 1991), CS-ID3

(Tan and Schlimmer, 1989), IDX (Norton 1989), and CS-C4.5 (Freitas et al., 2007). These

algorithms adapt the information theoretic measure by developing a cost based attribute

selection measure, called the Information Cost Function for an attribute A (𝐼𝐶𝐹𝐴):

 𝐸𝐺2 ∶ 𝐼𝐶𝐹𝐴 =
2𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴− 1

(𝐶𝑜𝑠𝑡𝐴 + 1)⍵ (3.5)

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

45

𝐶𝑆 − 𝐼𝐷3 ∶ 𝐼𝐶𝐹𝐴 =
(𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴)2

𝐶𝑜𝑠𝑡𝐴

𝐼𝐷𝑋 ∶ 𝐼𝐶𝐹𝐴 =
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴

𝐶𝑜𝑠𝑡𝐴

𝐶𝑆 − 𝐶4.5: 𝐼𝐶𝐹𝐴 =
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛𝐴

(𝐶𝑜𝑠𝑡𝐴 ɸ𝐴)ɷ

All of these include the cost of attribute (𝐶𝑜𝑠𝑡𝐴), they take account of the information

gained. EG2 and CS-C4.5 also use a user provided parameter ω that varies the extent of

the bias, while ɸ𝐴in CS-C4.5 represents a risk factor of delayed tests; where there is a

delay in the result of a test; for example, in a medical diagnosis a doctor sends a blood test

to a laboratory, and the result might be delayed.

A natural way of amending such algorithms to take account of the cost of

misclassifications is to modify equation (3.4) by altering the class probability P(i) so that it

takes account of the relative costs of misclassification. In general:

Probabilityi ∶ Pi =
Ni

N
 (3.6)

Where 𝑁𝑖 is the number of examples of class i, and N is the total number of example,

Breiman et al. (1984) introduced a method that modified this prior probability with altered

probability as shown in equation (3.7) to take account of costs by weighting each prior Pi

by the relative cost of misclassifying examples of class i; (Cost ratio𝑖).

Altered Probability 𝑖 = Cost ratio𝑖 ∗ (
Ni

N
) (3.7)

Cost ratio𝑖 =
cost of missclassifiaction of class i

𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠
=

cost (i, j)

∑ cost (i, j)𝑘
𝑗=1

 (3.8)

Where, Cost ratio𝑖 represents the cost ratio of class i; the cost proportion of class i to the

total costs. For example, form cost matrix that is represented in Table 3.1 shows the cost

ratio of positive class=50/51= 0.98, while, the cost ratio of negative class=1/51= 0.02.

Also, Ni is the number of examples in class i, while N is the total number of examples.

As given in equation (3.7), this is the altered probability measure that can then be used in

the information gain measure and the rest of the algorithm can remain unchanged. Ting

(1998, 2002) also uses to modify the estimated probability of class i as shown in equation

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

46

(3.9). According to Pazzani et al. (1994) modified the estimated probability in GINI index

measure (Breiman et al., 1984), and introduced new algorithm called GINI Altered priors.

Altered GINI = 1 − ∑(Altered Probability 𝑖)
2

𝑘

𝑖=1

 (3.9)

ii. Algorithms that utilize the cost directly

Instead of adapting the information gain to include costs, there are other algorithms which

utilize the cost of misclassification and test costs directly as selection criteria. This

category utilizes both costs during learning from the training data, where for each attribute

in turn, the data is partitioned on that attribute’s values. Then for each of the subsequent

subsets created, the cost of errors is computed and then the sum of the costs of all these

subsets is calculated to select the attribute that has minimum costs. Examples of

algorithms that take this approach include Cost-Minimization (Pazzani et al., 1994),

Decision Tree with Minimal Costs (Ling et al., 2004), Decision Trees with Minimal Cost

under Resources Constrain (Qin et al., 2004), CSTree (Ling et al., 2006), and PM (Liu,

2007). For example in Cost-Minimization (Pazzani et al., 1994) without considering

information gain, the attribute that results in the lowest misclassification costs is selected

next (Pazzani et al.,1994).

3.2.1.2 Algorithms that use indirect methods

These methods include a cost as a separate stage in the learning process, and includes

techniques such as Sampling, Relabeling, Weighting, Thresholding, and meta methods

(bagging and boosting). These methods can be applied before or after applying an existing

accuracy based classifier and are described below.

3.2.1.2.1 Sampling

Sampling, also called stratification, it is used to amend the distribution of the data to reflect

the costs of misclassification.The algorithms that are based on sampling, change the

frequency of the data instances in the training set according to their costs. Sampling was used

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

47

to convert an insensitive cost learning process to sensitive cost learning by increasing the

number of costly class examples or reducing the number of non-costly class examples to

reflect their importance in cost sensitive learning process.

 Imbalanced data

Imbalanced datasets occur where one class is rare while the other classes are frequent. It

is often the case that the cost of misclassifying a rare example is significantly higher than

a more frequent example (Suna et al., 2006). For instance, to detect a fraudulent customer,

the cost of misclassifying a customer who commits fraud is greater than the cost of

misclassifying a customer who is non-fraudulent. Figure 3.2 illustrates an imbalanced

problem in two classes.

Figure 3.2: Imbalanced dataset .

In imbalanced datasets, building a classifier that does not consider the cost of

misclassification, does not perform well because it is biased to classify most of the

instances under the category of frequent class, which will result in producing

misclassifying rare instances; obviously instances that belong to the rare class will be

misclassified more than the ones belonging to the frequent class. Hence, sampling works

with very highly skewed data (imbalanced data), because it aims to reduce the number of

misclassification errors by using some mechanisms in order to provide a new data

distribution that reflects misclassification cost (He and Garcia, 2009). However, several

studies (Weiss and Provost, 2001; Laurikkala, 2001; Estabrooks, 2004) have found that a

base classifier can improve its performance by balancing an imbalanced dataset (He and

Garcia, 2009).

Feature

class

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

48

 Folk theorem:

The key to using a sampling for cost-sensitive learning is a result known as the Folk

theorem (Zadrozny et al., 2003a; Bailey and Elkan, 1994; Elkan, 2001). This theorem

can be applied on any cost-insensitive classifier to turn it into a cost-sensitive classifier

by changing the data distribution to reflect the costs. Zadrozny et al. (2003a) states that

"if the new examples are drawn from the old distribution, then optimal error rate

classifiers for the new distribution are optimal cost minimizes for data drawn from

original distribution". Formally, Zadrozny et al. (2003a) presents this change in the

distribution as follows:

𝐷′(x, y, c) =
C

Ex,y,c~D[c]
D(x, y, c) (3.10)

Where, the new distribution D' = factor * Old distribution D; x is the input space to a

classifier; y is the binary that represents output space to a classifier; and C is the

misclassification cost (Zadrozny et al., 2003a). Technically, the optimal error rate

classifier from D' is the optimal minimizing cost from data which has been drawn from

the original distribution D. Obviously, Zadrozny et al. (2003b) introduced a new

sampling method based on the Folk theorem; they show that it is possible to change the

distribution of the data to reflect the cost ratio. For example, consider a dataset, where

the number of examples in class 1 is N1, and class 2 is N2, and the cost of misclassifying

class 1 is C1, and class 2 is C2. Then, the new data distribution of N1 and N2 will be

changed as shown in equation 3.11:

𝑁1
′

𝑁2
′ =

𝑁1 ∗ 𝐶1

𝑁2 ∗ 𝐶2
 (3.11)

Since, this theorem creates a new distribution from the old distribution by multiplying

the old distribution with a factor proportional to the relative cost of each example the

new distribution will be adapted with that cost. Therefore, this method makes a classifier

get an expected cost minimization on the original distribution, and in the worst case this

method can guarantee the classifier to give a good approximate cost minimization for

any new sample.

In particular, there are several methods of sampling which correspond to all types of

sampling, which are called (a) Sampling-with-replacement; it works by changing the data

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

49

distribution and taking random examples from a population, then returning these

examples back into the population; where these examples can be selected more than one

time, as shown in Figure 3.3(a). Hence, Zadrozy et al. (2003a) argue that using sampling

with replacement can lead to overtraining because the duplication of examples, also all

selected examples are not independent. On the other hand, (b)Sampling without

replacement works by taking random examples from a population, then putting thes

examples aside the population; where these examples can be selected one time, as shown

in Figure 3.3(b). Hence, sampling without replacement insures that all examples in new

distribution are drawn independently from old distribution, as a result, this type of

sampling leads to an over-fitting problem (Zadrozny et al., 2003a).

Figure 3.3: Sampling with / without replacement (WIKIbooks, 2015)

There are several methods for changing the distribution, including (Zadrozny et al., 2003a):

i. Over-sampling: this method of sampling increases and duplicates the number of rare

class examples, without changing the frequent class examples. A potential problem

with this method is over-fitting, because the minority class decision region becomes

very specific, and will not be able to work accurately on the testing data. Also,

increasing the number of training examples leads to increasing the learning time (Weiss

et al., 2007).

ii. Under-sampling: this method of sampling reduces the number of frequent class

examples (the majority class), while keeping the original population of the minority

𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐒𝐚𝐦𝐩𝐥𝐞𝐬

(a) Sampling with replacement (b) Sampling without replacement

http://www.google.co.uk/url?sa=i&rct=j&q=sampling+with+replacement&source=images&cd=&cad=rja&docid=O0Qx6F3kPDFqeM&tbnid=FANcmxlO7Uy9mM:&ved=0CAUQjRw&url=http://en.wikibooks.org/wiki/Probability/Combinatorics&ei=hz8AUvPPJ8qR0AXa0oCADQ&bvm=bv.50165853,d.d2k&psig=AFQjCNEpn0-DaJCQmrq6g3HtYOaMB5Jo6A&ust=1375834121726524

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

50

class. The problem with this method is that it can discard potentially useful instances,

leading to misclassifying them (Weiss et al., 2007).

iii. Cost-proportionate rejection sampling: although, over and under-sampling methods

give good results on some datasets, they do not work very well on others. Therefore,

(Zadrozny et al., 2003b) proposed an alternative method based on rejection sampling,

called cost-proportional rejection sampling. This sampling method avoids the over-

fitting problem, and aims to minimize classification error. It works as the following

steps:

 Drawing examples independently from the distribution as shown in equation (3.10).

 Then accepting the example with probability proportional to c/z, where z is chosen as

the maximum cost of misclassifying an example, and c is the misclassification cost.

Otherwise reject the example.

 Then using a learning classifier on the new distribution examples.

This sampling method will produce an approximately cost-minimizing classifier. In

fact, the sample size of the new distribution is smaller than the original distribution

because testing each example on that factor c/z will reject some examples. Hence, the

time required for learning a classifier is much smaller (Zadrozny et al., 2003b).

iv. Cost-proportionate rejection sampling with aggregation (Costing): the Costing

algorithm has been introduced by Zadrozny et al. (2003b), is based on different runs of

cost-proportionate rejection sampling method described above, thus this method creates

different training samples (distributions) in a very short time. Zadrozny et al. (2003b)

utilize this feature to devise an ensemble learning algorithm (bagging) based on

repeatedly performing cost-proportion rejection sampling from the original distribution

D to produce multiple sample sets (new distributions){D1, D2, D3….Dm}. Figure 3.4

illustrates the Costing algorithm, which works as the following steps:

 Run cost-proportionate rejection sampling from the original sample (distribution) D, by

accepting examples with probability c/z , then the new sample (distribution) will be

created Di , where, i=1 to m.

 Then, using a cost–insensitive classifier to learn a model from the new distribution Di .

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

51

 Repeat the first, and the second steps m times, finally, getting several new samples

={D1, D2 , D3…Dm}, and several models.

 The output classification is based on the average over all the models.

The goal in using averaging is to improve the performance of the classifier, and that

gives approximate minimization of the classification error.

Figure 3.4: Costing algorithm based on Cost-proportionate rejection sampling with aggregation.

Several literature reviews show different sampling methods, where some of them amend the

number of negative examples (over-sampling); some of them change the number of positive

examples (under-sampling); a few of them use the SMOTE (Synthetic Minority Over-

Sampling Technique) algorithm that tackles the imbalanced problem by generating

synthetic minority class examples (Chawla, 2002). Kubat and Matwin (1997) used one side

selection by under-sampling the majority class, while keeping the original population of the

minority class. In addition, CSRoulette (Sheng and Ling, 2007) is similar to Costing, except

that Costing uses cost proportional rejection sampling, while CSRoulette is based on the

cost proportional roulette sampling.

Drummond and Holte (2003) demonstrated that under-sampling outperforms over-sampling

for imbalanced class distribution and unknown cost ratio, and their experiments show that

2

Data1 Data m Data2

Model1 Model2 Model m

Model Combiner Final result

Training Data

Learner Learner Learner

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

52

this is because the over-sampling has little sensitivity to changes in the misclassification cost

than under-sampling. Furthermore, Maloof (2003) compared cost-sensitive learning methods

to sampling, but found that cost-sensitive learning, over-sampling and under-sampling

performed nearly identically.

3.2.1.2.2 Thresholding

Thresholding is a very simple cost-sensitive learning method and is applicable to any

classifiers such as decision tree, neural network, and Naïve Bayes. It can convert a cost

insensitive learning classifier to a cost-sensitive learning classifier. Thresholding is the

process for searching for the best threshold and predicting the testing set according to the

optimal threshold. In fact, this method is based on a threshold to classify examples into

positive or negative if the cost-insensitive classifiers can produce probability estimations. It

works by selecting a threshold, which is probability estimated on training instances that

minimizes the misclassification cost, then, uses that threshold for predicting testing instances

(Sheng and Ling, 2006). Sheng and Ling (2006) divided thresholding methods into two

categories, theoretical thresholding, and adjusted thresholding as the following:

 Theoretical thresholding

In particular, Elkan (2001) used the theoretical threshold to determine the optimal

decision for reducing the expected cost. This method can be achieved by multiply the

number of negative (Frequent) examples in the training to rebalancing the training

dataset. A target probability threshold P' is defined and would be achieved

correspond to a given probability P, where P is a theoretical threshold for making an

optimal decision on classifying instances into rare examples. Therefore, the number of

frequent examples should be multiplied by equation (3.12):

p′

1 − p′

1 − P

P
 (3.12)

More precisely, to rebalance datasets, it is typically P= 0.5. Thus, the number of

frequent examples will be multiplied with just
𝑃′

1−𝑃′
 where it is equal to

𝐹𝑁

𝐹𝑃
 .

Consequently, Elkan (2001) used this theorem to reduce a cost, by multiplying

𝐹𝑁 (𝑓𝑎𝑙𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡)

𝐹𝑃 (𝑓𝑎𝑙𝑠𝑒 𝑟𝑎𝑟𝑒)
 with the number of negative examples (frequent class).

Mathematically, his theorem changes the number of frequent examples without

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

53

duplicating or discarding any of the rare examples. This type of threshold makes the

optimal decision for classifying instances into positive class (rare class).

 Adjusted thresholding

Sheng and Ling (2006) suggest this type of threshold, where this thresholding searches

for the best probability estimated on the training instances, then uses it for future

predictions of testing instances; and if the test instance with predicted probability above

or equal to this threshold is classified as positive (rare class); otherwise as negative

(frequent class). The function of the threshold represents the misclassification cost

function as given in equation (3.13).

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑎𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) (3.13)

More precisely, to choose the best threshold, one only needs to calculate all the

misclassification costs for each possible probability estimates on the training examples,

then we will get the curve of the thresholds as shown in Figure 3.5, finally choosing the

best threshold that minimizes the total misclassification cost which is the valley point in

the curve.

Figure 3.5: The best threshold is the point that gives minimum cost (Sheng and Ling, 2006).

Experimentally, Sheng and Ling (2006) show that adjusted threshold is highly

effective. On the other hand, theoretical and adjusted thresholding is best when the cost

ratio is large. As a result, the only problem in the adjusted threshold is that it is time

consuming to search for the best threshold.

3.2.1.2.3 Weighting

This category is based on assigning a weight, which is based on a misclassification cost, to

each example to reflect its importance. For example, if the cost of the misclassification for

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

54

class i is 4, and the cost of the misclassification for class j is 1, then a weight of 4 is assigned

to examples of class i and a weight of 1 to the examples of class j is 1. Thus, more weight is

given to those examples with the higher misclassification cost. Hence, an error-based learner

that uses weights can use this information to concentrate on important examples.

One such algorithm is C4.5CS (Ting, 1998; 2002), which is similar to the GINI Altered priors

method (described above in Section 3.2.1.1), except that GINI Altered priors does not use the

weights when pruning. Where pruning is a process of removing nodes or sub-trees aimed at

reducing the effect of statistical noise or variation that may be based on a training set. Other

algorithms that use this idea include MaxCost and AvgCost (Margineantu and Dietterich,

2003). However, both MaxCost and AvgCost have been designed to solve multi-class

problems, where MaxCost uses the worst or maximum cost of misclassifying an example of a

given class; which is the maximum value within the column representing the actual class in a

cost matrix. While AvgCost calculates the average cost of misclassifying an example, which

can be obtained by computing the average cost of the values in the column representing the

actual class value. The following equations summarise theses three weighting methods:

 C4.5CS: weightj = Cost (j)
Nj

∑ Cost(i,j)∗ Ni
k
i=1

 (3.14)

MaxCost ∶ weightj = Max 1≤i≤k Cost(i, j)

 AvgCost ∶ weightj =
∑ Cost(i, j)k

i=1 ,i≠j

(k − 1)

Where, Cost(j) is the misclassification cost of class j, and k is the number of classes, in the

multi-class cost matrix when i is predicting the column and j is the correcting column (actual

class).

3.2.1.2.4 Relabeling

Relabeling involves considering whether the class of training or the testing instance should be

changed to reflect the costs of misclassification (Michie et al., 1994). The relabeling method

can be divided into two categories: relabeling the training instances and relabeling the test

instances:

 Relabeling the training instances: such as MetaCost (Domingos, 1999), which will be

described in section 2.3.1.2.5.

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

55

 Relabeling the testing instances: such as in CostSensitiveClassifier(CSC) (Witten and

Frank, 2005), by predicting the class with a minimum expected misclassification cost,

rather than the most occurred class. Performance can often be improved by using a

Bagged classifier to improve the probability estimates of the base classifier, that will

be described in section 2.3.1.2.5.

3.2.1.2.5 Ensemble learning methods

Ensemble learning combines multiple independent models with the aim of producing better

classifiers. The ensemble learning approach depends on learning from a single model base

learner and then the predictions of those base learners are combined by using voting,

weighting or averaging. In the data mining WEKA software, the ensembles method is called

meta-learners, which is based on taking a learning algorithm as the base learner, and creating

a new learning algorithm. Practically, there are two approaches to ensemble learning:

bagging, and boosting, which are described below:

i. Bagging

Bagging, introduced by Breiman (1996), involves three steps:

 Creating m ensembles (booststrap samples); by drawing n examples randomly re-

sampling the training data with replacement from the original data.

 Applying a specific learning algorithm (base learner) independently to the different

samples to generate different models.

 The different models are aggregated by using the average in the case of regression,

and voting in the case of classification; by combining the m resulting models using a

simple majority vote, to predict an unseen instance.

Thus, bagging also called Bootstrap aggregating. Examples of cost-sensitive bagging

algorithms include MetaCost (Domingos, 1999), which uses relabeling,

CostSensitiveClassifier (Witten and Frank, 2005), Costing (Zadrozny, 2003a; 2003b)

which was described above in Section 3.2.1.2.1. In particular, the idea with MetaCost

is summarized by the Figure 3.6, MetaCost has the following four steps:

1. Generate n samples with replacement from the training data.

2. Apply the base learner on each sample to produce n classifiers.

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

56

3. Estimate the expected cost of misclassification, and relabel each example of

the training data with a new class label that minimizes the expected cost.

4. Finally, use the base leaner on the relabelled training data to generate a cost-

sensitive classifier.

Figure 3.6: The MetaCost system (Domingos, 1999)1

Also, the other type of bagging is CostSensitiveClassifier (Witten and Frank, 2005),

which can belong to weighting or relabeling methods as well. CostSensitiveClassifier is

a meta classifier that makes its base classifier cost-sensitive, two methods can be used

to introduce the cost:

o Weighting: By reweighting training instances according to the total cost assigned to

each class.

o Relabeling: By relabeling the test instances; predicting the class with minimum

expected misclassification cost, rather than the most occurred class. Performance can

often be improved by using a Bagged classifier to improve the probability estimates

of the base classifier.

ii. Boosting

Boosting was introduced by Schapire (1999) and in response to a question posed by

Kearns (1988) “Can a set of weak learners create a single strong learner?". The process

of boosting is carried out in a sequential manner in different turns, and at the end of each

1
Figure taken from (Vadera, 2010).

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

57

turn, the weights are adjusted to reflect the importance of the instances for the next

learning turn. The boosting approach is based on reweight training data. It involves

creating a number of hypotheses ℎ𝑡 and then combining them to form a more accurate

composite hypothesis. The following four steps summarise the boosting process:

 Weight each example in the training dataset; by giving a higher weight to examples

that have higher misclassification costs, and lower weights to examples that have a

low cost.

 Applying a classifier with the new weights.

 Checking the example on the classifier, to see whether the predicted class matches

the actual class and change the weight of the examples by increasing the weights of

misclassified examples, after that the new weights are passed to the next of boosting.

 After many iterations and using the first three steps; combine the different

hypotheses and determine the final prediction class; which is a strong learner that is

well correlated with the true classification.

One of the earliest examples of the use of boosting is AdaBoost (Adaptive Boosting)

(Freund and Schapire, 1996) which used an accuracy based learner to generate an

improving sequence of hypotheses. AdaBoost starts the boosting process by assigning

unit weights to each example. Then in each sequential trial, increases the weight of

misclassified examples and decreases the weight of the other examples; it assigns the

same weight in the first turn which is 1/N, where N is the total number of instances,

then the weight changes over different classification turns according to

misclassification errors. After many sequential trials, it combines these hypotheses to

perform final the classification, which is based on selecting the class that results in the

maximum weighted vote as illustrated in Figure 3.7. Schapire (1999) introduced

equation (3.15) to form a more accurate composite hypothesis, as shown in Figure 3.8:

Figure 3.7: Illustration of boosting method (UCSD, 2015).

http://www.google.co.uk/url?sa=i&rct=j&q=ada+boost&source=images&cd=&cad=rja&docid=9KL43A5jte-28M&tbnid=IgEnE0RrtKj00M:&ved=0CAUQjRw&url=http://neuralfrontier.wordpress.com/tag/adaboost/&ei=q2D-UZbdI_Cc0wXu14CYBw&bvm=bv.50165853,d.d2k&psig=AFQjCNGQl31rmai7FTm_bpuw9L3kAop2uQ&ust=1375711766394795

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

58

𝑓(𝑥) = ∑ ∝𝑡 ℎ𝑡

𝑇

𝑡=1

(𝑥) (3.15)

Where ∝𝑡 represents the extent of the weight given to ℎ𝑡(𝑥) in each time t.

Figure 3.8: Cost-sensitive boosting (composite hypothesis) (UCSD, 2015).

There are several studies that use boosting and modify the weight rules to take account

of costs, including AdaCost (Fan et al., 1999), Cost-UBoost (Ting and Zheng, 1998a),

and GBSE (Abe et al., 2004). Whereas, AdaCost uses the cost of misclassifications to

update the training distribution by assigning high initial weights to costly examples,

then increases the weights of costly misclassifications more but decreases the weights

of correct classification less.

3.2.1.3 Algorithms that use optimization methods

Genetic algorithms (GAs) have been utilized by several authors to learn cost-sensitive

decision trees. One of the first studies was by Turney (1995), who developed ICET

(Inexpensive Classification with Expensive Test) which uses GAs to evolve decision trees in

order to minimize both test costs and misclassification costs. ICET uses a genetic pool that

consists of genes representing the cost of attributes (CA), biases 𝝎 (parameter used to control

the amount of weight which should be given to the cost), and parameters CF (parameters used

to indicate the level of pruning by C4.5). These parameters are used in a version of C4.5 to

generate trees, where the information gain measure as shown in equation 3.4 is replaced with

an Information Cost Function (𝐼𝐶𝐹𝐴) for an attribute A (that modifies the information gain

formula to include costs and is adopted from EG2 (Nunez 1991) as shown in equation (3.5).

ℎ2 ℎ𝑡

t

𝑓(𝑥) = ∑ ∝𝑡 ℎ𝑡

𝑇

𝑡=1

(𝑥)

ℎ1

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

59

Thus in ICET, trees are not represented in a genetic pool directly, but are actually learnt using

the genes as parameters for a decision tree learner that uses EG2’s cost function, instead of an

information gain, to generate a decision tree for each individual, as shown in Figure 3.9.

Following this process, all of these decision trees are evaluated using expected costs as a

fitness function, and a new pool is produced using mutation and cross over. This process is

repeated 50 times and the fittest tree returned.

Figure 3.9: The ICET System (Turney1995)2.

In contrast, Omielan and Vadera (2012) developed ECCO (Evolutionary Classifier with Cost

Optimization) that functions directly through a pool of decision trees that is represented by

the genes as bits of string, which are used to construct the decision trees. Their comparison

with ICET suggests that ECCO is more cost-sensitive and effective than ICET.

3.3 Literature review of research on cost-sensitive Bayesian network

algorithms

Historically, most of the cost-sensitive algorithms developed have focussed on learning

decision trees, with a recent survey comparing over 50 algorithms (Lomax and Vadera,

2013). In contrast, little attention has been paid to developing cost-sensitive Bayesian

networks, which are (Gao et al., 2008; Nashnush and Vadera 2014; Jiang et al., 2014; Kong

et al., 2014). This section presents a literature review of research aimed at developing

algorithms that learn cost sensitive Bayesian networks.

The first attempt was in (2008), when Gao, Wang, and Cheng introduced a cost sensitive loss

function for estimating parameters. As described in Chapter 2 in Section 2.4.1 (Bayesian

network structure learning), one approach to learning Bayesian networks is to perform a

2 Figure taken from (Vadera, 2010).

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

60

search that optimizes a score function such as MDL (Rissanen, 1978), AIC (Akaike, 1974),

BIC (Schwarz, 1978), and these functions do not include costs. Thus, Gao et al., (2008)

suggested amending the cost-insensitive objective function to include costs. The cost-

insensitive Log-Likelihood loss function, described in Section 2.4.1.1, takes the form from

extended probability, which represents as an equation (3.16) instead of normal probability; in

particular, to include the cost, the value P(𝑋𝑖|𝑋𝑗) is extended to:

𝑃(𝑋𝑖|𝑋𝑗)−𝐶𝑜𝑠𝑡(3−𝑘, 𝑘) (3.16)

Where, 𝑋𝑖, 𝑎𝑛𝑑 𝑋𝑗 are two nodes in a BN, and k represents the number of a class label, where

they focused on two class problems; when k=2. Thus, Gao et al. (2008) amended the function

in equation (2.8) to the following Cost Sensitive Loss function (CSL):

CSL(𝑋𝑖|𝑋𝑗) = − ∑ ∑ ∑ 𝐶𝑜𝑠𝑡(3 − 𝑘, 𝑘) ∗ log 𝑃(𝑋𝑖|𝑋𝑗)

k

k=1

𝑚

𝑗=1

n

i=1

 (3.17)

Where, 𝐶𝑜𝑠𝑡(3 − 𝑘, 𝑘) is the cost of misclassifying an instance. The new cost-sensitive

Bayesian networks algorithms are applied during the learning structure, but they do not

amend the probably during the learning of the parameters. In addition, their new cost-

sensitive Bayesian networks algorithms are evaluated by comparing their algorithms with

existing cost-insensetive algorithms. Experimentally, they carry out an empirical evaluation

of this method on a two class problem, and it shows that cost-sensitive Bayesian networks

with cost sensitive loss function are effective compared with the cost in-sensitive Bayesian

networks.

However, they do not evaluate their work with existing cost-sensitive algorithms like

MetaCost or other cost-sensitive classifier, so the claim is not fully substantiated.

More recently, Jiang et al. (2014) used an instance weighting method inspired by the

approach used by Ting (2002). Where, they modify the probability estimate that is used in

learning parameters (that described in Section 2.4.2 in equation (2.17)) by incorporating the

instance weights (that described in Section 3.2.1.2.3 in equation (3.14)). The weights they

adopt are presented in equation 3.18:

𝑃𝑤(𝑋 | 𝐶𝑗) =
Wj ∗ (𝑁𝑗+1)

∑ 𝑊𝑖∗ 𝑁𝑖 + n𝑋
k
i=1

 (3.18)

http://en.wikipedia.org/wiki/Hirotugu_Akaike

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

61

Where, 𝑊𝑗 is the weight of class j instances; k is the number of class labels; n𝑋 is the number

of values of node 𝑋. These weights, which include costs, are utilized during estimating the

probabilities (i.e., parameters). Their results shows that the performance of cost-sensitive

Bayesian networks is good when the cost ratio is large. However, they change the probability

at the last stage during learning parameters after learning the structure so do not take account

of costs when learning the structure. Also, their experiments have been compared with the

original BN classifier, but not with other cost-sensitive classifiers such as MetaCost classifier

(Domingos, 1999). In addition, their experiments are based on just four cost ratios which are

{2,5,10,and 15}.

The most recent research in this field uncovered in the literature search is by Kong et al.

(2014). They developed a cost-sensitive Bayesian network classifier, and then applied it on

real-world rock burst prediction examples. Their algorithm is based on the concept of

adjusting thresholds (described in Section 3.2.1.2.2) due to Sheng and Ling (2006). This

algorithm starts by learning a cost-insensitive Bayesian network structure from a training

dataset. Then, each instance in the testing set is classified to the class label that minimizes the

expected cost. This cost-sensitive classifier provides a simple effective method for rock burst

prediction. Their approach is compared with the usual cost-insensitive Bayesian network

classifier but they do not compare it with other cost-sensitive methods.

Table 3.3 summarises the literature review and contrasts the different methods for learning

cost-sensitive Bayesian network algorithms discussed in this chapter.

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

62

Authors Approach Aims Weakness

(Gao et

al.,2008).

Direct methods

by amending the

LL loss

function.

Include

misclassification

costs during

learning

structure, it aims

to minimize the

misclassification

costs.

 They do not use the same cost to learn

parameters of a structure.

 They do not evaluate their work with

existing cost-sensitive algorithms

like MetaCost or other cost-sensitive

classifier.

 They used constant cost matrix 1:5

(Jiang et al.,

2014)

Modify the

simple estimate

of a probability

by using a

weighting

method to

weight instances

Reweight

instances

according to the

misclassification

cost.

 They do not include any costs when

learning structure.

 They do not compare their

experiments with other cost-sensitive

classifiers.

 Their experiments are based on just

four cost ratios which

are:{2,5,10,and 15}.

Kong et al.,

2014).

Adjusted

thresholding

Aims to

minimizing the

misclassification

cost.

 Their approach is compared with the

usual cost-insensitive Bayesian

network classifier but they do not

compare it with other cost-sensitive

methods

 Their experiments are on a specific

application (rock burst prediction

examples).

Table 3.3: Summary of the literature review of cost-sensitive Bayesian network algorithms.

3.4 Summary

 This chapter has presented a comprehensive survey of existing cost-sensitive learning

algorithms. The chapter started by defining the difference between cost-insensitive

algorithms, and cost-sensitive algorithms.

Chapter 3: Survey of Existing Cost-Sensitive Algorithms

63

The survey was in two parts. The first part is, the field of cost-sensitive decision tree learning,

was surveyed by many different algorithms and approaches. In particular, it revealed that

cost-sensitive decision tree algorithms are based on three methods; direct methods, indirect

methods, and the use of optimization methods.

The second part of the survey focused surveying cost-sensitive Bayesian networks. This

showed that there are just three studies aimed at addressing this problem, all of which are

very recent when compared to the studies on decision trees. These methods were contrasted

and summarised in Table 3.3.

In the next chapter, new cost-sensitive Bayesian network learning algorithms will be

proposed based on the types of approaches uncovered when developing cost-sensitive

decision trees.

63

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

In the previous chapter, it was noted that three different strategies have been used for

developing cost-sensitive decision tree learning algorithms: (i) direct method, (ii) indirect

method, and (iii) optimization methods. Hence, in this chapter we describe how these

strategies are used to develop cost-sensitive Bayesians network algorithms. Section 4.1

presents the use of an indirect method to develop a new algorithm for learning cost-sensitive

Bayesian networks using sampling approach. Section 4.2 develops a new algorithm for

learning cost-sensitive Bayesian networks by using a direct method to amend an existing

cost-insensitive algorithm to include costs directly into algorithm’s process. Section 4.3

presents the development of a new cost-sensitive Bayesian networks algorithm based on

using Genetic algorithms. Section 4.4 presents a discussion and summary about the proposed

algorithms in this chapter.

4.1 Learning cost-sensitive Bayesian networks via a sampling approach

This section presents the use of an indirect method to develop a new cost-sensitive Bayesian

networks learning algorithm by using a sampling approach to take account of

misclassification costs. As described in Section 3.2.1.2, indirect methods do not change the

learning process of a classifier but use the classifier as a black box.

The approach used is based on a Folk theorem that introduced by Zadrozny et al. (2003a) and

Elkan (2001) that was described in Chapter 3, in Section 3.2.1.2.1. This theorem draws a new

distribution from the old distribution, according to misclassification costs to change the data

distribution and obtain an optimal cost-minimization from the original distribution. In

particular, the data distribution can be changed to reflect the costs (see equation (3.10), and

(3.11) in Chapter 3 for a description).

The Folk theorem can be used to create a new distribution from the old distribution by

multiplying the old distribution with a factor proportional to the relative cost of each

example. For example, consider the hepatitis dataset, which has 32 instances in the class

“Die” (class distribution 20%), and 123 instances in the class “Live” (class distribution 80%).

Given the imbalance in examples for the two classes, an accuracy based classifier will always

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

64

be biased to the most common class, that is “Live”, though misclassifying examples of class

“die” is more serious. The Folk theorem can be used to address this kind of situation.

Suppose the misclassification costs are 4:1 for “Die”: “Live” respectively. Then, using

equation (3.4) to change the data distribution, thus, the new distribution of class “Die”=4*32

= 128 instances (class distribution 50%); while the new distribution of class “Live” =1*123 =

123 instances (class distribution 50%). Figure 4.1 summarised the steps of using sampling

approach with hepatitis dataset example.

Figure 4. 1: Illustration of sampling approach steps with hepatitis dataset.

Folk theorem draws a new distribution from the old distribution, according to cost

proportions to change the data distribution and obtain optimal cost-minimization from the

Bayesian classifier

Classification results considering

misclassification costs

 Step one

 Step three

Step two
Sampling approach

Using Folk theorem to change the
class distribution according to

misclassification costs

20%
80%

Original data distribution

Distribution of C1=20%
Distribution of C2=80%

50%50%

New data distribution

Distribution of C1=50%

Distribution of C2=50%

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

65

original distribution. Figure 4.2 presents our new algorithm that called Cost-Sensitive

Bayesian Network (CS-BN) algorithm via sampling approach.

Figure 4.2: CS-BN algorithm using sampling.

The main steps of this algorithm are:

Step 1: The data are split into a training set and testing set. The training set uses 75% of the

original data, while the testing set uses 25% of the original data3.

Step 2: The distribution of the data is altered to take account of costs. The Folk theorem is

used to change the data distributions (as described in Chapter 3 in equation 3.11). For

example, as we described above, in the hepatitis dataset, where the number of examples that

belong to class “Die”, and “Live” are 32, and 132 respectively, the old distribution is 20%:

80% respectively. If the relative costs that used in Chapter 3, Table 3.1 are £50:£1, the Folk

theorem can be used to change the distribution as follows:

For class “Die”= (50*32)/((50*32)+(1*132)= 1,600/1,732=0.92

For class “Live”= (1*132)/(50*32)+(1*132)= 132/1,732 = 0.08

Thus, the number of class “Die” to class “Live” will be changed to 1,600 to 132 respectively,

and the distribution will be 92% to 8% respectively.

3 Other ways of splitting the data could, of course be adopted without affecting the principles of the approach.

CS-BN via sampling approach (indirect method)

1. Divide dataset into 75% of instances for training, and 25% for

testing.

2. Change the training data distribution according to the

misclassification cost in each class:

N1
′

N2
′ =

N1 ∗ C1

N2 ∗ C2

3. Learn the TAN structure and its parameters.

4. Evaluate the TAN on the original test set distribution.

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

66

There are different methods that can be used to sample the data and redistribute the data.

During our research, we used two methods, under-sampling and over-sampling as described

in Section 3.2.1.2.1. When the new proportion is less than the original proportion, under-

sampling (without replacement) is used to delete some of the examples in the frequent class.

On the other hand, if the new class proportion is greater than the original class proportion,

over-sampling (with replacement) is used to randomly select new instances which belong to

the rare class, and hence increase the number of examples. In particular, Elkan (2001), and

Zedrzony (2003a) mentioned that, this method is the most affected method that used to reflect

misclassification costs; where using under-sampling to delete some of unimportant examples

, and using oversampling to duplicate some of important examples.

Step 3: Once the data is redistributed, Friedman et al.’s (1997) algorithm is used to learn Tree

Augmented Bayesian Networks, (as given in Section 2.4.1.3.2).

Step 4: The learned TAN is evaluated using the testing data from the original distribution.

The measures used are the accuracy and expected cost (as given in Section 3.2 in equations

(3.1) and (3.2)).

4.2 Learning cost-sensitive Bayesian networks via an amending approach

This section presents a direct method to developing cost-sensitive Bayesian network

algorithm by amending an existing cost-insensitive algorithm.

The approach adopted is motivated by the use of direct methods for developing cost sensitive

decision tree learning algorithms, which described in Chapter 3, Section 3.2.1.1. In particular,

a key step in decision tree learning is to select the criteria used for the next node of the

decision tree. Early decision tree induction algorithms that focused on accuracy used a

measure based on information theory to select the splitting criteria. For example, ID3 and

C4.5 (Quinlan, 1979) are based on calculating the gain in information achieved by each of the

attributes if these were chosen for the split and choosing the attribute which maximizes this

gain. Thus, an obvious way of adapting these algorithms is to adapt this measure to take

account of costs. For example, Breiman et al.(1984) modify the class probabilities P(i), that

are used in the information gain measure, and replace that probability with the altered

probability as shown in equation (4.1) where the probability P(i) is weighted by the relative

𝐂𝐨𝐬𝐭 𝐫𝐚𝐭𝐢𝐨𝐢 as follows:

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

67

Altered Probability i = Cost ratioi ∗ (
Ni

N
) , 𝑤ℎ𝑒𝑟𝑒 Cost ratioi =

cost (i, j)

∑ cost(i, j)k
j

 (4.1)

Where, Ni is the number of examples in class i, while N is the total number of examples.

Cost ratioi represents the ratio of the cost of class i to the total costs, k is the number of

classes, where this equation are applicable in just two class problems. For example, for the

cost matrix in Table 3.1, the cost ratio for the positive class is 50/51, while, the cost ratio for

the negative class is 1/51.

Pazzani et al. (1994), also use this approach but for a different splitting criteria known as the

GINI index. Figure 4.3 illustrates this idea when there are two classes C1, and C2, and each

class given particular attribute values AttV1 and AttV2. Initially, two classes have an equal

chance of occurring (i.e. probability of 0.5) and are altered to have probabilities of 0.75 and

0.25 respectively, to reflect a misclassification cost ratio of 3:1.

Figure 4.3: An illustration of the altered probability.

Our algorithm called Cost-Sensitive Bayesian Network (CS-BN) algorithm via amending

approach is based on the following question, “how can a similar approach be used for

amending an existing Bayesian network learning algorithm?“ . As mention in Section 2.4.1.1

learning a Bayesian network structure requires searching for the best network according to a

score function. Many scoring criteria have been described, including the minimum

description length (MDL) which is defined by equation (2.11) (see Chapter 2, Section 2.4.1.1

for more details). As described in Section 2.4.1.3.2, a key step of existing algorithms is to

compute the Minimum Description Length (MDL) while learning the Bayesian network

structure. Hence, by analogy with the approach take for decision trees, where the information

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

68

theoretic measure was modified, the modification made to develop our new algorithm is to

change the original MDL measure. We make two amendments: (i) when learning the

structure of a Bayesian network, in MDL equation because this equation can determined the

strongest links between nodes, also it is the key step of Bayesian networks algorithm, and (ii)

when learning the parameters of the structure, in simple estimator equation because this

equation can determined the relationships between nodes, also, by analog with what others

have done in decision tree, where some researches are based on amending the probability

estimation to include the costs .These amendments are described in Section 4.2.1 and 4.2.2

respectively.

4.2.1 Amending the formula for learning the structure

First, the Log-likelihood factor that is used in the MDL measure in Chapter 2, in

equation (2.8), is amended to take account of costs. The modification made is to

multiply each part of the information measurement with the cost ratio of a class, and the

new Log Likelihood function LL(𝑋𝑖|𝑋𝑗) is as shown in equation (4.2).

𝐿𝐿(𝑋𝑖|𝑋𝑗) = ∑ ∑ ∑ p(𝑋𝑖 , 𝑋𝑗) log (
p(𝑋𝑖 , 𝑋𝑗)

p(𝑋𝑗)
)

2

k=1

∗ Cost ratio k

𝑚

j=1

𝑛

𝑖=1

 (4.2)

Where, K is the number of class labels, n, and m represent the order of connected

nodes. While p(𝑋𝑖 , 𝑋𝑗) represents the probabilities of events 𝑋𝑖 , 𝑋𝑗 happened in D.

While, Cost ratio k is the ratio of misclassifying class k over the total costs, as

described in equation (4.3).

Cost ratiok =
cost k

Total costs
 (4.3)

4.2.2 Amending the formula for learning parameters

Secondly, the parameter estimator that described in Chapter 2, Section 2.4.2 in equation

(2.17) is modified to reflect misclassification costs by modifying the conditional

probability of each node given its parent. That is, instead of using the simple estimator

of probability we weight it by the cost ratio:

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

69

P(xi | πxi , 𝐶k) = Cost ratio k ∗
p(xi , πxi , 𝐶k) + α

p(πxi) + (α ∗ n𝑋𝑖
)

 (4.4)

Where, xiis the node that is connected with its parents (class label 𝐶k, and another

parent πxi); nxi is the number of the possible values of node xi. While, α = 0.5

represents the initial count on each value to avoid 0.

These amendments lead to the algorithm presented in Figure 4.4, and described in detail

below; Where the first :

Figure 4.4: CS-BN algorithm using the amending approach.

This new algorithm was implemented in Java NetBeans using the data mining software

WEKA open source to help in the development and implementation. Also, an empirical

CS-BN via amending approach (direct method)

1. Compute new conditional LL information between each pair of

attributes (nodes) based on class label, and include cost ratios for

each class in the calculation:

∑ ∑ ∑ p(x, y, Classk) log
p(x, y, Classk)

p(y, Classk)

2

k

m

y

∗ Cost ratio k

n

x

2. Build a complete undirected graph between each pair of attributes

(nodes) without class node.

3. Using the Maximum Weight Spanning Tree algorithm, to maximize the

information gained about the classification weighted by the cost of

misclassification obtain a tree.

4. Convert the tree to a directed tree.

5. Add the class label as root for all attributes (nodes).

6. Learn the parameters for each node with its parents by using the new

probability estimation that includes misclassification costs.

𝑝𝑐(𝑋| 𝑌, 𝐶𝐾) = Cost ratio k ∗
𝑃(x, y, Ck) + α

𝑃(y, Ck) + (α ∗ n𝑋)

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

70

comparison with existing algorithms (standard Bayesian networks approaches;

MetaCost+BN, and MetaCost+J48. This is presented in Chapter 5: an empirical evaluation of

the new algorithms for learning cost-sensitive Bayesian networks. In our experiment, we use

the same original statistical formula (Friedman et al., 1997), but we change the formula to

include the cost ratio of each class, by multiplying each part of information measure with cost

ratio of class. The main steps of this algorithm are:

Step 1: Compute Conditional Information

The first step is calculates the information between each node and all other nodes, by using

MDL score that based on the new Likelihood function LL(B|D) that is given in equation

(4.2).

Step2: Build a complete undirected graph

An undirected graph is constructed, where the nodes are the attributes of data and the edges

represents the information (dependencies) between nodes. The weights on the edges represent

the extent of the dependencies, adjusted by the relative cost as calculated in Step 1.

Step3: Apply (MWST) algorithm

Find a maximal weight spanning tree between nodes by running a maximum-weight spanning

tree (MWST) algorithm (Cormen et al., 1990) to obtain undirected graph.

Step4: Convert to directed tree

The undirected graph is converted to a directed graph by choosing the root of the first

maximum connection in the previous step, then adding a direction to the next connection if it

does not lead to a cycle. This process is repeated until all the nodes have been considered.

Step5: Add the class label as root

The class label node is added as the parent (root) node for all nodes.

With these 5 steps the Tree Augmented Naive Bayes structure will be created.

Step6: Learn the parameters

After creating the structure of a TAN, the last step is to learn the parameters for each node

with its parents by using equation (4.4).

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

71

4.3 Learning cost-sensitive Bayesian networks via Genetic algorithms

This section develops an algorithm for learning cost-sensitive Bayesian networks that utilizes

Genetic algorithm, where the genes are utilized to represent the links between the nodes in

Bayesian networks, and the expected cost is used as a fitness function.

4.3.1 Encoding tree augmented networks

The structure of a TAN can be viewed as a directed graph which can be represented as an

adjacency matrix A. Where an element A(i,j) is set to "1" if node j is a parent of node i, and

set to "0" if there is no links between node j and node i. Figure 4.5 illustrates the idea, where

node a0 has two parents which are a2 and a4, and hence A(0,2)=A(0,4)=1; while it does not

have any links with a1and a3 so A(0,1)=A(0,3)=0.

Figure 4.5: An illustration of how TAN classifier represents the genes.

To generate the initial pool of TAN trees for a GA involves three steps: firstly, generating the

adjacency matrix randomly; secondly, testing the adjacency matrix to ensure that it denotes a

valid TAN, and if not to make it a TAN; and thirdly, converting the adjacency matrix to a

linear string of bits that can be used by a GA. These three steps are described and illustrated

below:

 Firstly, when generating the initial population or following mutation or cross

over, it is possible to obtain an illegal TAN as shown in Figure 4.6 (a).

a0

Create structure of TAN classifier form bits

of Genes (individual)

Individual represents the links between

attributes: a1,a2,a3, and a4(class label)

0000010001100001000110100

A(0,j)A(1,j)A(2,j)A(3,j) ...A(n, n)

................Ann

0 0 1 0 1

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

Parent(j) a0 a1 a2 a3 a4

Adjacency matrix

A(i, j)

Child(i)

 a0

 a1

 a2

 a3

 a4

a4

a2

a3
a1

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

72

 Secondly, to make sure we have legal TANs, we check the following three conditions:

i. There must be no immediate circularity on each node, where a node i is a

parent of itself. If this is the case, then A(i,i) is set to zero as illustrated figure

4.6 (b) :

ii. By definition, for a TAN; the class node must have no parents, and all the

other nodes must have the class node as a parent and one other parent that is

chosen from the other nodes. If this is not the case, then this is corrected by

making sure the class node is added as a parent, and one of the other nodes is

chosen randomly as the other parent, where, Figure 4.6 (c) illustrates the

idea.

a4

a3

a0

a1

a2

0 0 1 1 0

1 1 0 0 0

0 1 1 0 1

1 1 0 0 1

0 1 0 0 0

Parent(j) a0 a1 a2 a3 a4

illegal adjacency matrix

A(child , parent)

Child(i)

 a0

 a1

 a2

 a3

 a4

Figure 4.6 (a): An illegal TAN structure, created from adjacency matrix A(child, parent) in CS-BN via GAs

Figure 4.6(b): There is no circular on each node A(i, i) =0 in CS-BN via GAs

Remove circulars on all

nodes
a1

a2

a4

a0

a3

0 0 1 1 0

1 1 0 0 0

0 1 1 0 1

1 1 0 0 1

0 1 0 0 0

Parent(j) a0 a1 a2 a3 a4
Child(i)

a0
 a1
 a2
 a3
 a4

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

73

iii. There is no circular path emanating from any node. If circularities are detected,

they are corrected by selecting one of the links in the cycle at random and

removing it, as illustrated in Figure 4.6(d).

Figure 4.6(d): Testing all paths on adjacency matrix and break.

 Thirdly, given an adjacency matrix representing a valid TAN, it can be converted to a

string of bits by arranging it row by row as illustrated in Figure 4.5.

4.3.2 Fitness Function

As well as the representation, there are two more ingredients required to use a GA, namely

a fitness function and the operators required for generating offspring. To generate the

offspring, the standard selection, mutation and crossover operators are used together with

the above steps for correcting illegal offspring. The fitness function used in this algorithm

is the expected cost (that described in Chapter 3, equation (3.3)), it can be expressed as:

0 0 1 1 0

1 0 0 0 0

0 1 0 0 1

1 1 0 0 1

0 1 0 0 0

a3 a1

a2

a4

a0

Parent(j) a0 a1 a2 a3 a4
child(i)

 a0
 a1
 a2
 a3
 a4

Figure 4.6 (c): Each node has 2 parents (class node and other node), except class node.

 check paths from node: (0):

check paths from node: (2):

a3

a1

a0 a1 a2 a0

break one of links randomly

a0 a1 a2 a0 a1 a2

0 0 1 0 1

1 0 0 0 1

0 1 0 0 1

1 0 0 0 1

0 0 0 0 0

Parent(j) a0 a1 a2 a3

a4
Child(i)
 a0
 a1
 a2
 a3
 a4

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

74

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝐶𝑜𝑠𝑡(𝑖, 𝑗) 𝑃(𝑗|𝑥)

𝑘

𝑗=1

 (4.5)

Where, k is the number of classes; P(j|x) represents the probability estimation of classifying

the instance x into class j; and 𝐶𝑜𝑠𝑡(𝑖, 𝑗) is the cost of misclassifying class j; the cost of

predicting x to class i when the true class of x is j.

4.3.3 Evolving the populations

Once the fitness is evaluated, the next generation is evolved using crossover and mutation

randomly as illustrated in Figure 4.7. This process is repeated 20 times and the TAN with

least expected cost is selected, where, this number has been chosen based on our experiments,

because the optimal tree will be found before 20 trails.

Figure 4.7: Evolving the populations.

One point Crossover operator

0010 1000 0000 1000

 0100 0000 0001 0100

0010 1000

0001 0100

 0000 1000 0100 0000

 B- One point mutation operator

 One gene Mutation operator

0010 1000 0010 1000 001010000000 1000

C- One gene mutation operator

Generation 1. …… .Generation 19

000100101

11001001

000100101

0010010011

10000111

111001010

01010111

100010011

100010101

A- Generations representation

Select the best individual

Select the best

50% of

individuals, and

apply (Mutation/

crossover)

operators

randomly

 Generate the

50% of

individuals

randomly

Generation (0)

 individual 0
individual 1
individual 2

individual 49

.

.

.

00010001001

00011010010

10000010001

.

10000010001

00010001001

00011010010
01000110001

00010010010

1100010001

10010001100

The best individual has

minimum expected

cost, and it represents

the TAN structure

.

.

.

Generation (1)

Generation (19)

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

75

These steps lead to the algorithm presented in Figure 4.8. We called this algorithm CS-BN via

GAs, it has been implemented in Java netbeans based on BNs algorithms which available in

the WEKA system (Witten and Frank, 2005). The implementation is described Appendix C

and the code is included in the accompanying CD. An empirical comparison with existing

algorithms, such as use of MetaCost+J48; MetaCost+BN and standard Bayesian networks is

presented in Chapter 5.

Figure 4.8: CS-BN algorithm using Genetic algorithms.

CS-BN via Genetic algorithm:

1. Divide data into 2 sets: 75% training, and 25% testing.

And divide training data into 2 sets: 50% sub_training,

and 25% sub_testing.
𝑆𝑢𝑏𝑡𝑟𝑎𝑖𝑛 = 50% , 𝑆𝑢𝑏𝑡𝑒𝑠𝑡 = 25%, 𝑎𝑛𝑑 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = 25%

// where, 𝑆𝑢𝑏𝑡𝑟𝑎𝑖𝑛 is used for parameters learning, 𝑆𝑢𝑏𝑡𝑒𝑠𝑡 is

used for evaluation fitness function and 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 is

used for the final evaluation

2. // Initialize

ind =1 // ind is the number of individual

K =1 // K is the number of generation

𝑃𝑘 is a population of individuals, ind=1To 50. randomly

generated individuals[ind]

Call 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧_𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝒌 (𝑷𝑲, 𝑺𝒖𝒃𝒕𝒓𝒂𝒊𝒏, 𝑺𝒖𝒑𝒕𝒆𝒔𝒕)

3. // other generations k=2 to 20

do

 {

a. Select the first individual (the best) from previous

generation 𝑃𝐾−1and copy it into the current generation
𝑃𝐾

b. Apply mutation and cross over randomly on the first

half of the previous generation 𝑃𝐾−1, ind = 2 to 25 ,

then Insert the new individuals in the current

generation 𝑃𝐾

c. Generate the other individuals in the current

generation randomly 𝑃𝐾 , ∀i = 26 to 50

Call 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧_𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝒌 (𝑷𝑲, 𝑺𝒖𝒃𝒕𝒓𝒂𝒊𝒏, 𝑺𝒖𝒑𝒕𝒆𝒔𝒕)

K=K+1; // next generation

} While (K <= 20)

4. //Final, getting the fitness TAN(fitness individual)

from the last generation 𝑃20.

5. Evaluate the best TAN from step 4, by using 𝑇𝑒𝑠𝑡𝑖𝑛𝑔

set, to get the results (accuracy, and cost).

Evaluation generation function:

Evaluation_Generationk (PK, D1, D2)

{

ind = 1 ∀ ind = 1 to 50

do

{

Step 1: Check the individual[ind]

IF (ind does not followed TAN’s

Rule)

Then change the individual[ind]

randomly by breaking the

circularity in the TAN.

Else continue

Step 2:Build 𝑇𝐴𝑁𝑖𝑛𝑑 structure from

the individual[ind]

Step 3:Learn parameters of 𝑇𝐴𝑁𝑖𝑛𝑑

using𝐷1

Step 4: Evaluate the 𝑇𝐴𝑁𝑖𝑛𝑑 using𝐷2

 Compute Fitness function.

Where,

Fitness function = error costs

ind=ind+1;

} While (ind<= 50)

𝑃𝐾 = Sort the current generation PK

according to the fitness function;

using Ascending sort for all

individuals in population 𝑃𝐾

Return (𝑃𝐾).

}

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

76

The main steps of this algorithm are summarised as follows:

Step 1: Splitting data: Randomly divide the dataset into 3 parts:

Sub-training = 50% used for parameter learning.

Sub-testing= 25% used for evaluation the fitness function.

Testing = 25% used for final evaluation (evaluate on the best individual or TAN structure).

Step 2: Randomly create the first generation: The initial population is generated

randomly, which is comprised of individuals with random links between attributes(nodes).

Step 3: Check that individuals represent valid TANs: Checks that there are no circular

paths, where each node should has just one parent, and the class label is the main parent

for all nodes (as illustrated in Figures 4.6).

Step 4: Create TAN structures: After checking each individual follows the TAN’s rules,

each individual is converted to a TAN structure (as illustrated in Figure 4.5).

Step 5: Learn parameters: After getting the structure for each individual, 25% of the

sub-training data is used to learn the parameters for each of the 50 TANs in the population.

This is done by using the simple estimator (Freidman et al., 1997) given in equation (2.17)

that was described in Section 2.4.3.

Step 6: Evaluation stage: The 25% of the sub-testing data is used to evaluate the fitness

function for each TAN structure, where, the fitness function that represents expected

misclassification costs for each structure.

Step 7: Get the next generation: The next generation is initialised as follows:

o individual[0] is filled with the best individual that has minimum cost in the previous

generation which is the first individual in the previous generation as illustrated in

Figure 4.7.

o individual[1,..,25] are selected from the best individuals in the previous generation

(from individual 2 to individual 25) after using the mutation and crossover operators

from the previous generation, as shown in Figure 4.7.

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

77

o individuals[26,..,49] are generated randomly, as illustrated in Figure 4.7.

Step 8: Get the fitness Bayesian tree: After repeating the whole procedure 20 times, the

best TAN structure is obtained with minimum expected costs from the last generation.

Step 9: Evaluating the fitness structure: Finally, the TAN is evaluated using the 25%

testing data.

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

78

Figure 4. 9: Nine steps to illustrate the main idea of CS-BN via GAs.

Step 2

Step 1

Testing data
25%

data evaluation

Choose the best fitness

function solution

Step 7

Step 8

 Next generations

Testing data 25%

Finally, Fittest Bayesian tree

After 1,000 trials choose the best

solution; that has minimum

missclassification cost

Next generation by Apply Genetic operators

(Mutation -Crossover- Selection)

1. Keep the best solution from previous generation as

[the first individual 0] in the current generation.

2. Select the best 25 individuals (the best half) from

previous generation.

3. Apply Crossover- Mutation operators randomly; on

the best 25 individuals from the previous generation,

and keep them as [individual 1 to 24] in the current

generation.

4. Generate the other half [individual 25 to 49] from

current generation randomly to cover all the search

space.

5. Go to create structure.

Figure 4. 7 shows this stage

Sub-Testing 25%

Evaluation stage (Fitness function)
Evaluate each structure (individual), using Sup-Testing

dataset, calculate Fitness function (misclassification cost),
and sort them according to minimum cost.

2

0

3 1
2

0
3

1

Cost0=3 Cost 1=17 Cost 49=28

Training data

75%
Step 6

Step 3

Step 4

Step 5

Sub-Training 50%

Create Structures

Create structures of TAN classifier from each

individual in current generation

Learn parameters

Learn parameters from each Structure, using

Sup-Training dataset

First Generation

Generate Initial population randomly

individual 0
individual 1
individual 2

individual49

.

.

.

.

001100000111
110100100001
000010001110

00100111011

START

of generations=20
of individual=50
of trial= 1,000

First Generation

Check TAN‘s rule

No circular, one parent node, and other parent

is a class label.

2

0

3 1 2

0
3

1

.............

.............

individual0 individual 1 individual 49

Step 4

Step 3

Step 9

Chapter 4: Cost-Sensitive Bayesian Network Learning Algorithms

79

4.4 Summary

In this chapter, three new algorithms were developed and presented:

 A cost-sensitive Bayesian network algorithm via the sampling approach, which is based on

indirect methods as described in Chapter 3, Section 3.2.1.2.

 A cost-sensitive Bayesian network algorithm via the amending approach, which is based

on direct methods as described in Chapter 3, Section 3.2.1.1.

 A cost-sensitive Bayesian network algorithm via Genetic algorithms, which is based on

optimizing methods as described in Chapter 3, Section 3.2.1.3.

 In this chapter, each algorithm is illustrated in pseudocode, and figures, and then, each

algorithm is described in detail and summarised in steps. The algorithms have been

implemented in the Java based on existing algorithms that available in WEKA system, with

an outline of the classes diagram which are presented in Appendix C.

In the next chapter, an empirical evaluation of the new algorithms for learning cost-sensitive

Bayesian networks will be presented including the results obtained through the experimental

evaluation.

80

Chapter 5: An Empirical Evaluation of the New Algorithms for

Learning Cost-Sensitive Bayesian Networks

Chapter 4 developed three approaches to learning cost-sensitive Bayesian network which are:

(i) cost-sensitive Bayesian networks using a sampling approach, (ii) cost-sensitive Bayesian

networks using an amending approach, and (iii) cost-sensitive Bayesian networks using the

genetic algorithms. This chapter presents the results of an empirical evaluation in order to

examine these algorithms and compare their performance with existing cost-sensitive

algorithms, such as MetaCost+J48, and MetaCost+BN, and with cost-insensitive Bayesian

network algorithms such as Tree Augmented Naive Bayes. This chapter is organised as

follows: Section 5.1 presents the results of an empirical comparison; Section 5.2 provides a

discussion of the outcomes of the empirical evaluation; and finally, Section 5.3 presents a

summary of the findings of the evaluation.

5.1 Empirical comparison results

As explained before, this research develop new cost-sensitive Bayesian network algorithms

that take account of misclassification costs, aim to minimise error costs while maintaining the

accuracy. This section utilises the empirical methods to assess the extent to which the

proposed methods have achieved this aim.

The algorithms that chosen for comparison include:

 A cost insensitive Bayesian network based on TAN (Friedman et al., 1997) to provide

a base line comparison with Bayesian networks that do not aim to minimise costs as

described in earlier in Chapter 2 Section 2.4.1.3.2.

 A cost-sensitive decision tree learner that uses a meta learner MetaCost+J48

(Domingos, 1999), that described in Chapter 3, Section 3.2.1.2.5, in Figure 3.6.

 A cost-sensitive Bayesian network learner that uses a meta learner MetaCost+BN

(Domingos, 1999) as described earlier in Chapter 3 in Section 3.2.1.2.5, in Figure 3.6.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

81

All of these algorithms are implemented in the open source data mining software package

WEKA (Hall et al., 2009) and they have been adapted to include misclassification costs in

their evaluations.

5.1.1 Datasets

In this research, we applied our experiments to 36 datasets, which are available from the UCI

Machine Learning Repository, (Asuncion and Newman, 2007). These datasets have been

widely used for benchmarking by many researchers with different methods and come from

different domains such as physical, medical, and social sciences,…, etc, and have different

characteristics as summarised in Table 5.1. Where, Bayesian networks algorithm deal with

just nominal attributes and if the attributes are continues which have no pure intervals such as

an age attribute, then, Bayesian network algorithm uses a supervised discretization filter to

discretize those attributes to nominal attributes as a pre-processing step (Fayyed and lrani,

1993) then deal with the nominal attributes. Figure 5.1 shows that continuous attributes can

be cut into many cutting interval points according to class label yes, and no.

Figure 5.1: Discretising data (Fayyed and lrani, 1993).

Then, the frequent nominal values is used to calculate the MDL equation during learning

structure (that described in Chapter 2, equation (2.11)), and uses the frequent of nominal

values in CPT during learning parameters (that described in Chapter 2, equation (2.17)).

64 65 68 69 70 71 72 75 80 81 83 85

Yes No Yes Yes Yes No No
Yes

Yes
Yes

No Yes Yes No

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

82

Number
of data

Dataset Class
distribution

Instances Attributes Type of attributes

1 Adult (76 : 24) 48842= (37155,11687) 14 5 continuous

2 Australian Credit Approval (56 : 44) 690=(383, 307) 15 5 continuous

3 Bank (54 : 46) 600=(362, 274) 11 2 continuous

4 Breast Cancer (70 : 30) 286=(201,85) 9 All nominal

5
Bupa liver disorder

(58 : 42) 345=(200, 145) 7 6 continuous

6 Cars (73 : 27) 406=(285, 107) 8 All continuous

7
Cleveland disease

(54 : 46) 303=(165,138) 13 5 continuous

8
Crx

(56 : 44) 689=(382,307) 16 6 continuous

9 Cylinder Band (58 : 42) 540 =(312,228) 39 17 continuous

10 Diabetes (65 : 35) 768=(500,268) 8 7 continuous

11 German credit (70 : 30) 1000=(700,300) 20 7 continuous

12 Gymexamg (70 : 30) 2500=(1755,745) 20 11 continuous

13 Haberman (74 : 26) 306=(225,81) 3 2 continuous

14 Hepaties (97 : 23) 155=(32, 123) 19 6 continuous

15
Horse Colic

(63 : 37) 368=(214,152) 22 14 continuous

16 Horse (66:34) 370=(215,153) 28 8 continuous

17 Hoslem (78:22) 189=(147,42) 14 13 continuous

18 Hypo (95 : 5) 3163=(3012,151) 25 7 continuous

19 IonoSphere (64 : 36) 351=(225,126) 34 23 continuous

20 kr-vs-kp (52 : 48) 3196=(1669,1527) 36 All nominal

21 Labor (65 : 35) 57=(37,20) 16 8 continuous

22 Monks (50 : 50) 556=(278,278) 7 All nominal

23 Mushroom (52 : 48) 8124=(4208,3916) 21 All nominal

24 Musk (52 : 48) 476=(207,269) 168 166 continuous

25 pima_diabetes (57 : 43) 768=(500,268) 8 All continuous

26 Sick (94 : 6) 2800=(171, 2629) 29 7 continuous

27 Sonar (53 : 47) 280=(111,97) 60 All continuous

28 Spambase (61 : 39) 4601=(2788,1813) 57 All continuous

29 SPECT Heart (59 : 41) 267=(157,110) 22 All nominal

30 Statlog Heart (56 : 44) 270=(150,120) 13 All continuous

31 Supermarket (64 : 36) 4627=(2948,1679) 216 All nominal

32 Tic-Tac-Toe (65 : 35) 958=(626,332) 9 All nominal

33 Unbalanced (99 : 1) 856=(844,12) 32 All continuous

34 Vote (61 : 39) 435=(267,168) 16 All nominal

35 Weather (64 : 36) 14=(9,5) 5 All continuous

36 Wisconsin Cancer (66 : 34) 699=(458,241) 10 All continuous

Table 5.1: The main characteristics of datasets used in the comparisons

Experimentally, in this research we use binary classification datasets (i.e. positive and

negative class), because, in two class problems it is easier to analysis the misclassification

errors and see the differences between correctly classified and incorrectly classified instances,

because the cost is opposite to each other. Also, most of research have carry on two class

problems (Zadrozny et al., 2003b; Margineantu and Dietterich, 2003), thus, in our

experiments we used datasets with two class label.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

83

In addition, in our experiments, we use a wide range of misclassification costs where the cost

matrix adopts 16 cost ratios for class1 : class2 as [4:1,4:2,4:3,4:4, 3:1,.., 1:4]. For example,

Table 5.2 illustrates that the cost of misclassifying a class C1 as C2 is 4 while

misclassification class C2 as C1 is 1.

 Actual class

C1 C2

C1 0 1

C2 4 0

Table 5.2: Cost matrix of two class labels C1=4, C2=1

The evaluation is carried out using the three methods developed in this thesis: (i) cost-

sensitive Bayesian networks via sampling approach based on indirect methods, (ii) cost-

sensitive Bayesian networks via amending an existing algorithm based on direct methods,

and (iii) cost-sensitive Bayesian networks via Genetic algorithms.

5.1.2 Experiment methodology

The experiment methodology that is used in our research is shown in Figure 5.2. In our

experiment methodology, all experiments are repeated with 10 random trials and the results

report the averages together with the standard errors.

Predicted

class

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

84

Figure 5.2: The experiment methodology

The final results will be the average cost to classify testing examples, which represent the

expected costs of error examples in the testing set. Also, the final result will include the

average of the percentage accuracy; this assesses how many of the examples in the testing set

have been classified correctly. This methodology has been used for all experiments described

in this thesis. In our experiments, we used the algorithms which are available in WEKA open

source (Hall et al., 2009), then we write our algorithms with Java language, where these

algorithms are implemented with (class implementation) which are illustrated in Appendix C.

The following subsections present the results from each of the three approaches developed.

75%

25%

DATA

Choose 75% training and 25% testing randomly for each fold

For each fold insert cost matrix adopts 16 cost ratios for class1 : class2

Train

Train

Train

Train

Train

Train

Train

Test

ng Test

ng

Train

Train

Train

Test

ng

Test

ng

Test

ng

Test

ng

Test

ng

Test

ng

Test

ng

 Test

ng

Fold 1 Fold 3 Fold 4 Fold 6 Fold 7 Fold 9 Fold 8 Fold 10 Fold 5 Fold 2

The average of cost and accuracy of 10 folds to get the final result

Actual

Class

4:4

....

1:1 1:1

Calculate the average of cost and accuracy on

16 misclassification costs

Calculate the average of cost and accuracy on

16 misclassification costs

Actual

Class

Actual

Class

Actual

Class

Actual

Class

Actual

Class

 Predicted

class

C1 C2

C1 0 1

C2 1 0

 1:2

 Predicted

class

C1 C2

C1 0 1

C2 2 0

 Predicted

class

C1 C2

C1 0 4

C2 4 0

 Predicted

class

C1 C2

C1 0 1

C2 1 0

 1:2

 Predicted

class

C1 C2

C1 0 1

C2 2 0

 Predicted

class

C1 C2

C1 0 4

C2 4 0

 4:4

….

.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

85

5.1.3 Experiments

In this section we evaluate our three algorithms that described in Chapter 4. Table 5.3

summarises the results of three experiments, which compares our proposed algorithms with

the existing algorithms: (1) Original Bayes network (which is their implementation of TAN

(Friedman et.al, 1997), version 8). (2) MetaCost+J48 as the base classifier (which is their

implementation of C4.5 version 8) (Domingos, 1999), and (3) MetaCost+TAN. Where, Table

5.3 displays the results in form mean squared error ± Standard errors observed for the

algorithms. It presents the results for each of the 36 datasets and highlights the result with the

lowest cost for each dataset. Figure 5.3 presents the expected costs when each algorithm is

applied on the datasets in the form of bar charts, and Figure 5.4 presents the accuracy across

different datasets. To make the comparisons in Table 5.3 more easy, three font colours have

been used, blue font to determine the first winner, red for the second winner and green for the

third winner. Also, we used bold font to determine the lowest cost and highest accuracy for

each dataset. Where, all the results have been compiled into a dataset and used as input to the

statistical software package SPSS in order that analysis can be performed on it.

86

Dataset

CS-BN via Genetic algorithm CS-BN via sampling approach CS-BN via amending approach MetaCost+J48 MetaCost+BN

Original BN

Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy Cost Accuracy

Adult 3450.9 ± 15.4 84.01 ± 0.17 3618.8 ± 25.5 79.39 ± 0.08 3353.7 ± 18.2 80.05 ± 0.11 3781.6 ± 25.8 81.86 ± 0.13 3622.2 ± 28.66 79.57 ± 0.12 4581.8 ± 23.0 86.11 ± 0.07

Australian Credit 43.6 ± 3.76 90.18 ± 0.77 43.8 ± 3.32 84.56 ± 0.73 43.8 ± 3.52 84.2 ± 0.78 45.7 ± 3.56 85.74 ± 0.78 54.6 ± 2.49 81.36 ± 0.69 67.1 ± 2.8 84.79 ± 0.4

Bank 72.4 ± 4.99 81.49 ± 0.82 70.8 ± 3.15 58.85 ± 1.57 71.6 ± 2.9 59.32 ± 1.16 79.5 ± 4.4 55.2 ± 2.42 73.1 ± 2.45 57.5 ± 1.44 111.0 ± 3.13 72.03 ± 1.05

Breast Cancer 36.4 ± 1.33 81.0 ± 0.48 49.5 ± 2.0 46.0 ± 1.8 55.8 ± 2.62 55.0 ± 1.77 52.9 ± 2.68 61.29 ± 0.89 52.8 ± 2.64 54.14 ± 1.9 58.8 ± 3.13 71.29 ± 1.72

Bupa liver disorder 51.8 ± 1.8 46.51 ± 0.72 50.1 ± 0.1 42.09 ± 0.23 50.0 ± 0.0 41.86 ± 0.0 56.0 ± 2.78 58.6 ± 1.51 51.8 ± 1.8 41.51 ± 0.35 133.1 ± 7.27 57.91 ± 0.23

Cars 0.0 ± 0.0 100.0 ± 0.0 0.9 ± 0.6 99.3 ± 0.4 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.4 ± 0.4 99.88 ± 0.12 0.4 ± 0.4 99.88 ± 0.12

Cleveland disease 24.0 ± 1.65 87.2 ± 1.0 27.2 ± 1.15 78.93 ± 0.76 29.4 ± 2.28 79.6 ± 1.29 29.7 ± 1.51 74.4 ± 0.88 29.5 ± 2.34 77.47 ± 1.08 32.4 ± 1.56 82.4 ± 0.59

Crx 48.2 ± 2.9 89.41 ± 0.63 47.0 ± 4.04 83.55 ± 0.93 50.8 ± 3.61 84.14 ± 1.05 38.5 ± 3.2 85.56 ± 0.76 51.7 ± 3.4 81.12 ± 1.12 62.2 ± 3.2 86.98 ± 0.85

Cylinder Band 59.9 ± 3.09 81.49 ± 0.9 87.2 ± 5.15 68.73 ± 1.22 92.8 ± 4.57 73.51 ± 0.85 77.0 ± 0.0 42.54 ± 0.0 93.7 ± 5.44 71.49 ± 1.13 98.5 ± 5.12 74.85 ± 1.04

Diabetes 90.2 ± 3.78 61.41 ± 1.28 87.4 ± 4.69 68.53 ± 1.01 85.9 ± 3.33 66.49 ± 0.75 100.0 ± 4.59 70.1 ± 0.73 88.3 ± 4.19 68.06 ± 0.89 126.1 ± 5.57 76.07 ± 0.69

German credit 138.0 ± 4.61 79.0 ± 0.69 137.6 ± 3.53 55.4 ± 0.88 128.9 ± 4.66 67.76 ± 0.98 157.2 ± 6.41 64.24 ± 1.34 138.2 ± 5.78 66.32 ± 0.87 187.1 ± 6.88 72.92 ± 0.98

Gymexamg 438.0 ± 0.0 29.35 ± 0.0 438.0 ± 0.0 29.35 ± 0.0 438.0 ± 0.0 29.35 ± 0.0 566.4 ± 11.6 46.39 ± 0.87 438.0 ± 0.0 29.35 ± 0.0 728.0 ± 0.0 70.65 ± 0.0

Haberman 53.6 ± 1.18 54.93 ± 2.57 52.3 ± 1.51 33.87 ± 1.48 51.1 ± 2.2 51.87 ± 2.19 51.3 ± 2.72 63.6 ± 1.57 57.8 ± 1.74 52.53 ± 1.34 73.3 ± 1.72 71.07 ± 0.87

Hepaties 6.9 ± 1.2 91.54 ± 1.08 13.2 ± 1.32 78.46 ± 1.63 12.8 ± 1.7 82.56 ± 1.66 18.7 ± 1.94 78.21 ± 1.76 14.0 ± 1.44 83.33 ± 1.59 15.0 ± 1.69 84.62 ± 1.62

Horse Colic 27.7 ± 1.44 85.54 ± 0.97 42.9 ± 2.06 71.3 ± 1.75 44.7 ± 2.74 76.52 ± 1.43 45.8 ± 2.8 79.57 ± 1.2 45.3 ± 2.68 73.26 ± 1.54 45.4 ± 2.77 80.65 ± 1.19

Horse 29.0 ± 3.12 82.97 ± 1.37 39.8 ± 1.9 72.09 ± 1.24 46.4 ± 3.69 72.09 ± 1.6 61.0 ± 0.0 32.97 ± 0.0 51.6 ± 3.47 63.41 ± 1.95 50.3 ± 3.4 76.37 ± 1.2

Hoslem 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 1.5 ± 1.07 98.04 ± 1.31 0.0 ± 0.0 100.0 ± 0.0

Hypo 9.6 ± 0.9 99.23 ± 0.09 18.3 ± 2.61 98.31 ± 0.2 18.1 ± 1.38 98.19 ± 0.17 10.6 ± 1.59 99.41 ± 0.08 18.3 ± 2.61 98.31 ± 0.2 21.8 ± 2.69 97.94 ± 0.2

IonoSphere 12.6 ± 1.22 94.83 ± 0.57 20.8 ± 2.05 89.89 ± 1.03 24.3 ± 2.1 89.66 ± 0.82 28.6 ± 2.58 86.09 ± 1.47 27.9 ± 2.58 88.97 ± 0.96 26.9 ± 3.45 89.77 ± 1.12

kr-vs-kp 106.6 ± 4.66 93.88 ± 0.34 134.1 ± 5.14 84.68 ± 0.45 146.9 ± 2.73 84.2 ± 0.18 139.0 ± 5.83 92.29 ± 0.24 171.0 ± 4.76 83.12 ± 0.41 171.0 ± 4.76 83.12 ± 0.41

Labor 1.3 ± 0.6 97.14 ± 1.17 4.3 ± 0.72 84.29 ± 2.56 4.1 ± 1.04 85.71 ± 2.61 5.6 ± 0.64 81.43 ± 1.9 4.6 ± 1.02 84.29 ± 2.56 5.8 ± 1.58 86.43 ± 2.49

Monks 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0 32.9 ± 1.46 76.16 ± 1.06 0.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

Mushroom 0.0 ± 0.0 100.0 ± 0.0 4.9 ± 1.91 99.94 ± 0.03 1.6 ± 0.88 99.98 ± 0.01 0.0 ± 0.0 100.0 ± 0.0 3.2 ± 1.16 99.96 ± 0.01 2.8 ± 1.2 99.97 ± 0.01

Musk 23.4 ± 3.67 93.08 ± 1.02 22.8 ± 2.43 88.46 ± 1.32 22.7 ± 3.25 92.91 ± 0.85 19.7 ± 8.31 93.42 ± 2.35 33.3 ± 5.47 86.67 ± 1.8 24.2 ± 3.89 91.88 ± 1.18

Pima diabetes 90.9 ± 3.1 68.12 ± 0.93 94.3 ± 4.06 58.17 ± 1.86 91.1 ± 3.18 67.07 ± 0.97 101.4 ± 4.73 70.16 ± 1.21 110.6 ± 3.62 75.55 ± 0.72 122.3 ± 4.25 75.24 ± 0.84

sick 35.6 ± 2.1 97.6 ± 0.11 41.7 ± 3.9 96.94 ± 0.17 41.7 ± 2.86 96.9 ± 0.15 25.6 ± 2.45 98.09 ± 0.13 41.7 ± 3.9 96.94 ± 0.17 39.4 ± 2.6 97.58 ± 0.06

Sonar 25.8 ± 2.31 80.38 ± 1.34 29.5 ± 2.22 65.77 ± 1.46 32.4 ± 2.07 70.0 ± 1.12 32.8 ± 3.72 66.92 ± 2.72 32.8 ± 2.17 66.92 ± 2.16 35.5 ± 2.11 74.42 ± 1.77

Spambase 214.9 ± 6.84 93.12 ± 0.2 172.8 ± 7.43 92.76 ± 0.16 197.9 ± 8.09 92.9 ± 0.15 182.8 ± 9.24 91.29 ± 0.28 234.4 ± 6.44 91.95 ± 0.17 230.5 ± 8.55 92.27 ± 0.2

SPECT Heart 35.8 ± 1.73 76.21 ± 1.08 42.2 ± 2.77 56.97 ± 2.5 37.0 ± 1.83 64.85 ± 1.35 40.3 ± 2.96 64.39 ± 1.52 39.2 ± 2.04 63.79 ± 1.18 53.5 ± 3.68 68.48 ± 1.55

Statlog Heart 24.9 ± 1.77 85.91 ± 0.96 23.4 ± 1.93 79.55 ± 1.89 24.5 ± 2.09 82.42 ± 1.2 24.6 ± 2.9 77.27 ± 1.88 26.4 ± 1.13 74.09 ± 0.94 26.7 ± 1.41 84.09 ± 1.04

Supermarket 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 727.0 ± 0.0 36.45 ± 0.0 1668.0 ± 0.0 63.55 ± 0.0

Tic-Tac-Toe 127.7 ± 3.59 80.34 ± 0.48 124.6 ± 2.05 52.92 ± 0.59 110.3 ± 2.73 64.19 ± 0.49 98.6 ± 5.63 79.83 ± 0.9 130.1 ± 4.03 57.46 ± 0.92 166.2 ± 4.22 77.25 ± 0.62

Unbalanced 8.0 ± 0.0 99.05 ± 0.0 7 ± 0.35 97.62 ± 0.17 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0 8.0 ± 0.0 99.05 ± 0.0

Vote 6.2 ± 1.05 96.73 ± 0.32 11.2 ± 0.94 94.58 ± 0.27 10.9 ± 1.08 95.42 ± 0.45 11.3 ± 1.88 94.49 ± 0.63 15.7 ± 1.61 92.34 ± 0.76 15.7 ± 1.87 93.46 ± 0.44

Weather 0.0 ± 0.0 100.0 ± 0.0 2.4 ± 0.37 40.0 ± 4.44 2.4 ± 0.37 40.0 ± 4.44 2.4 ± 0.37 40.0 ± 4.44 2.6 ± 0.58 33.33 ± 7.03 2.6 ± 0.69 63.33 ± 7.78

Wisconsin Cancer 4.0 ± 0.83 98.02 ± 0.29 5.5 ± 0.87 97.15 ± 0.36 5.4 ± 0.96 97.38 ± 0.34 11.8 ± 1.39 95.41 ± 0.49 7.0 ± 1.34 97.15 ± 0.34 8.4 ± 1.27 97.21 ± 0.38

Table 5.3: Comparison between CS-BN algorithms and existing algorithms

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

87

0.282

0.259

0.489

0.52

0.601

0

0.32

0.285

0.447

0.471

0.554

0.71

0.714

0.176

0.301

0.32

0

0.011

0.145

0.136

0.094

0

0

0.199

0.474

0.051

0.497

0.189

0.543

0.377

0.64

0.542

0.04

0.059

0

0.024

0.297

0.259

0.48

0.707

0.581

0.01

0.362

0.278

0.652

0.458

0.55

0.71

0.697

0.338

0.466

0.478

0

0.023

0.238

0.169

0.308

0

0.002

0.196

0.493

0.078

0.568

0.153

0.639

0.354

0.64

0.528

0.0381

0.103

0.802

0.032

0.277

0.258

0.485

0.796

0.58

0

0.391

0.301

0.693

0.45

0.515

0.71

0.681

0.327

0.485

0.508

0

0.024

0.28

0.185

0.292

0

0

0.193

0.476

0.059

0.623

0.175

0.562

0.37

0.64

0.467

0.04

0.102

0.802

0.031

0.31

0.271

0.537

0.757

0.651

0

0.395

0.228

0.57

0.523

0.629

0.914

0.684

0.479

0.499

0.67

0

0.014

0.329

0.175

0.401

0.238

0

0.169

0.532

0.037

0.632

0.162

0.658

0.373

0.64

0.417

0.04

0.105

0.802

0.069

0.298

0.325

0.495

0.754

0.601

0.004

0.392

0.306

0.698

0.463

0.551

0.71

0.772

0.359

0.494

0.566

0.033

0.023

0.321

0.216

0.329

0

0.001

0.285

0.579

0.078

0.63

0.208

0.594

0.398

0.64

0.552

0.04

0.146

0.868

0.04

0.378

0.399

0.751

0.841

1.544

0.004

0.434

0.367

0.736

0.661

0.749

1.17

0.979

0.386

0.494

0.552

0

0.028

0.309

0.216

0.415

0

0.001

0.207

0.64

0.056

0.683

0.204

0.809

0.404

1.46

0.703

0.04

0.147

0.866

0.047

Adult

Australian Credit Approval

Bank

Breast Cancer

Bupa liver disorder

Cars

Cleveland disease

Crx

Cylinder Band

Diabetes

German credit

Gymexamg

Haberman

Hepaties

Horse Colic

Horse

Hoslem

Hypo

IonoSphere

kr-vs-kp

Labor

Monks

Mushroom

Musk

Pima diabetes

sick

Sonar

Spambase

SPECT Heart

Statlog Heart

Supermarket

Tic-Tac-Toe

Unbalanced

Vote

Weather

Wisconsin Cancer

Cost of misclassification Cost of CS-BN via GA

Cost of CA-BN via Sampling approach

Cost of CS-BN via Amending approach

Cost of MC+J48

Cost of MC+BN

Cost of BN

Figure 5.3: Expected cost of CS-BN algorithms and existing algorithms

88

Figure 5.4: Accuracy of CS-BN algorithms and existing algorithms

5.1.3.1 Experiment 1: CS-BN using the sampling approach

In this experiment, we evaluate the CS-BN via sampling approach described in Chapter 4

Section 4.1 that based on changing the data distribution to reflect the cost. These experiments

show that:

(i) The numbers of misclassifications of the rare class (often the more expensive class)

are always less than the number of misclassifications of frequent class in all datasets.

Thus, sampling has the intended effect since it is minimizing the cost by duplicate

rare instances and deleting some of frequent instances according to misclassification

costs. Thus, this will increase the numbers of misclassifications of the frequent class

and decrease the number of misclassifications of the rare class. For example, in the

breast cancer dataset, a false positive error means unnecessary treatment;

unnecessary worry, while, a false negative error means postponed treatment or

failure to treat; death or injury. Figure 5.5 shows how cost-sensitive CS-BN via

sampling approach decreases the average number of rare class (FN) in the breast

cancer data comparing with existing Bayesian network algorithm as shown in Table

5.4. Thus, it would enable a clinician to review such cases and avoid missing

0

20

40

60

80

100

120
A

d
u

lt

A
u

st
ra

lia
n

 C
re

d
it

 A
p

p
ro

va
l

B
an

k

B
re

as
t

C
an

ce
r

B
u

p
a

liv
e

r
d

is
o

rd
er

C
ar

s

C
le

ve
la

n
d

 d
is

e
as

e

C
rx

C
yl

in
d

e
r

B
an

d

D
ia

b
et

e
s

G
e

rm
an

 c
re

d
it

G
ym

ex
am

g

H
ab

e
rm

an

H
ep

at
ie

s

H
o

rs
e

 C
o

lic

H
o

rs
e

H
o

sl
e

m

H
yp

o

Io
n

o
Sp

h
e

re

kr
-v

s-
kp

La
b

o
r

M
o

n
ks

M
u

sh
ro

o
m

M
u

sk

P
im

a
d

ia
b

et
e

s

si
ck

So
n

ar

Sp
am

b
as

e

SP
EC

T
H

e
ar

t

St
at

lo
g

H
ea

rt

Su
p

e
rm

ar
ke

t

Ti
c-

Ta
c-

To
e

U
n

b
al

an
ce

d

V
o

te

W
ea

th
er

W
is

co
n

si
n

 C
an

ce
r

Accuracy of classifiers

Accuracy of CS-BN via GA Accuracy of CS-BN via Sampling Accuracy of CS-BN via amending

Accuracy of MC+J48 Accuracy of MC+BN Accuracy of BN

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

89

potential cases of cancer that need treatment. In contrast, when the cost is decreased

then the accuracy will be decreased because, sampling approach aims to minimize

the costs by decreasing the number of more expensive class FN, even if the number

of cheap class is increased FP. Thus, that will decrease the accuracy because some of

unimportant instances are misclassified. For example, in Table 5.4, in the first trial,

the cost, and accuracy of the CS-BN via sampling will be: Cost= 3*4 + 1* 38=50

and accuracy = 29/ 70 =%41.42

While, the cost and accuracy of the original BN will be: Cost= 3*14 + 1*11 = 67

and accuracy= 45/70 =%64.28

Calculating the cost and accuracy are based on equations (3.1, and 3.2).

CS-BN via Sampling approach

Original BN

No. of

rare

(FN)

No. of

frequent

(FP)

Expected

cost

Accuracy No. of

rare

(FN)

No. of

frequent

(FP)

Expected

Cost

Accuracy

3 38 50 %41.42 14 11 67 %64.28

1 37 41 %45.71 10 4 44 %80

1 45 49 %46.0 14 10 66 %65.71

3 29 41 %54.29 12 9 57 %70

4 35 51 %44.29 15 7 67 %68.57

3 38 50 %41.42 12 6 54 %74.28

3 38 50 %41.42 15 7 67 %68.57

4 35 51 %44.29 9 5 41 %80

3 29 41 %54.29 13 6 58 %72.85

6 33 57 %44.29 15 7 67 %68.57

Table 5.4: The results of CS-BN via sampling and original BN algorithm for the breast cancer

dataset.

Figure 5.5: Misclassification error if experiment 1 for breast cancer dataset

(ii) Sampling followed by use of the TAN classifier, yields good results on most

datasets; especially if the data are very highly skewed towards one class.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

FN of CS-BN FN of BN

`

m
is

sc
la

ss
if

ia
ct

io
n

Er
ro

r

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

90

Unbalanced dataset has the proportion of rare class at 1% (number of active

instances 12) while the frequent class is 99% (number of inactive instances 844), and

if the cost of rare class is 8 and the cost of frequent class is 1, then the new

distribution will be 11% (Active instances= 96): 89% (inactive instances = 844)

instead of 1%: 99% . In particular, increasing the number of rare class examples

means increased rare instances, which are very expensive. Therefore, after changing

the distribution, the learner will build the Bayesian tree classifier based on the new

distribution, and as the result of the experiment, the classifier will classify the new

instances and take into consideration the rare instances.

(iii) CS-BN algorithm via sampling apprach works better when the data distribution has

the same pattern. This means the data instances are similar and there is little

diversity. When instances are very similar, sampling will duplicate similar instances

or still have similar instances even when the instances are removed, such as,

Hoslem, and monks datasets. In particular, the performance of this method will be

very good when the original data distribution has low variation, because all instances

are spread out around the centre (mean) of a dataset, and there are few outlier

instances, as shown in Figure 5.6(a). However, the performance of this method will

not be good when the original data distribution are widespread, because lots of

outlier instances are spread out far from the centre of the dataset, and there are lots

of outlier instances as shown in Figure 5.6(b).

 (a) Low variation, attribute variables are similar (b) High variation, attribute variables are diverse

Figure 5.6: WEKA a pre-process stage shows the similarity and diversity of attribute variables

For example, in the Cars dataset, all instances have the same pattern, and therefore,

sampling approach will work very well in these datasets because it will duplicate

some similar instances or remove some of the similar instances. Experimentally,

sampling approach changes the data distribution by increasing the instances that

outlier instances

outlier instances

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

91

belong to class label when these instances are similar. As a result, the classifier will

predict these instances correctly, and thus, this algorithm gives less expected cost

compared with original Bayesian network. On the other hand, in these types of data

such as Crx, and Cylinder Band data distribution, the sampling approach will not

work very well because the data distribution are highly varied, and using sampling

approach might duplicate some of the unimportant instances, or delete some of the

important ones.

(iv) Overall, CS-BN using the sampling approach outperforms MetaCost+BN, and the

original algorithm in terms of minimising cost in all datasets. In particular, to

compute the class probability estimates, the MetaCost algorithm uses votes upon

which class probabilities are produced by bagging are based on a measure of the

variance of BN learner on a particular example. As a result, we find that the

classifier that has high variance as shown in Figure 5.6(b), the base learner is less

stable in a particular example, as Green (2010) mentioned that "in MetaCost

algorithm the variance is not the same as the class probability". Variance describes

how widely data of BN base learner on a particular instance are spread out about the

center of a dataset. The class probability is produced by the ensemble, which is the

fraction of trained classifiers that predict that particular class (Margineantu, 2000).

For example, if a base learner has learned to classify a particular instance that has a

true probability of being in class 1 of 60%, each classifier in the ensemble may

predict class 1 resulting in a class probability estimate of 100%, where there is 40%

belonging to class 2. For this reason, the bagging is not a good choice for estimating

class probabilities (Margineantu, 2002; Green, 2010). Therefore, MetaCost+BN

performs less well on the datasets than other costing sensitive algorithms.

(v) CS-BN via sampling outperforms MetaCost+DT algorithm on most of the datasets.

MetaCost+J48 algorithm may work better on some datasets such as Tic-Tac-Toe,

Crx, Cylinder Band; when the decision trees obtained with J48 give better results

than the original BN in terms of accuracy.

(vi) As shown in Figure 5.4, the accuracy of the CS-BN via sampling approach is similar

or slightly less than the accuracy of original BN.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

92

5.1.3.2 Experiment 2: CS-BN using the amending approach

In this experiment, we evaluate the CS-BN via amending approach described in Chapter 4

Section 4.2 where we include misclassification costs into the Bayesian tree (TAN) learning

process by changing the formula for Minimum Description Length MDL (Rissanen, 1978) to

include misclassification costs. In particular, we include costs during both learning structure

as described in Section 4.2.1 and learning parameters as described in Section 4.2.2. The main

findings from these results are:

(i) The number of misclassifications of the rare class (more expensive) in this approach

is always less than the number of misclassifications of rare class in the original TAN

algorithm. Therefore, the new algorithm gives a better result in terms of costs

compared to the original Bayesian network learning algorithm.

Figure 5.7: Misclassification error if experiment 2 for breast cancer dataset

(ii) In experiment 2, our algorithm works better than MetaCost+BN in all datasets for the

same reason explained in experiment 1, that the higher the variance, the less accurate

the estimate of the conditional probabilities. Where, this experiment gives similar

results in some datasets that have the same pattern; similar instances such as Cars,

Hoslem, and monks.

(iii) CS-BN via amending outperforms MetaCost+DT algorithm on most of the datasets.

But MetaCost+DT algorithm may work better on some datasets, when, the decision

trees obtained with J48 give better results than the original BN in terms of accuracy

such as Crx, Cylinder, and Tic-Tac-Toe datasets. In particular, if the cost insensitive

decision trees (J48) are better than the existing BN in terms of accuracy, then

MetaCost+j48 is more likely to be better than MetaCost+BN, and CS-BN via the

amending approach, and MetaCost+BN.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

M
is

cl
as

si
fi

ca
ti

o
n

 C
o

st

Folds

CS-BN via amending approach

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

M
is

cl
as

si
fi

ca
ti

o
n

 C
o

st

Folds

Original BN

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

93

(iv) As shown in Figure 5.4, the accuracy of the cost-sensitive version is similar or slightly

less than the accuracy of the original BN, and the level of sacrifice is not as

significant as reported in studies that use similar approaches for learning cost-

sensitive decision trees (Jiang et al., 2014).

5.1.3.3 Experiment 3: CS-BN using Genetic algorithms

This section presents an empirical evaluation of CS-BN using genetic algorithm, which is

carried out by using 75% of the data for training and 25% for testing. The 75% of training

data is further subdivided to two parts: 50% is used for learning the parameters and 25% is

used for assessing the fitness function (see Chapter 4, Section 4.3 for more details). These

experiments show that:

(i) Overall, CS-BN via Genetic algorithms outperforms MetaCost+J48, and

MetaCost+BN in terms of minimizing cost, while simultaneously increasing

accuracy. For example, on the Adult dataset, the average cost and accuracy of our

algorithm is 3450.9 and 84% respectively while for MetaCost+BN these are 36220.2

and 79.75% respectively. The accuracy of the CS-BN version is better than other

classifiers, including the original accuracy based version of TAN, because this

algorithm chooses the best cost and accuracy in each trial, then sorts the Bayesian

networks according to the best fitness that has minimum cost and maximum accuracy

as described in Chapter 4, Section 4.3.

(ii) This algorithm aims to minimise cost according to the fitness function, which uses

the misclassification cost just in the evaluation step in the fitness function (expected

cost); obviously, it does not include the misclassification cost when creating a BN,

but in each trial the algorithm chooses the best BN (that has minimum

misclassification cost); where the minimum misclassification cost means minimum

of FN and FP together, so the weight given to the accuracy of FN and FP will be

similar, not like other cost sensitive algorithms that aim to minimise FN. For

example, in breast cancer dataset as shown in Figure 5.8, where it shows the results

of misclassification costs between existing algorithms, obtained as an average of 10

random trials.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

94

Figure 5.8: CS-BN via GA reduces the number of misclassification error for the Breast Cancer

dataset.

(iii)This algorithm will take a long time, when the data has lots of attributes, because this

algorithm generates the Bayesian tree randomly, thus, the search space will be very

large if the data has lots of attributes, such as the spambase data where the number of

attributes is 53. As a result, searching for the fittest TAN will take longer. In contrast,

it will work very well if the data has a low number of attributes such as diabetes

dataset where the number of attributes is 9. In particular, many researches have

suggested feature selection methods to reduce the dimensional of the data (Dash and

Liu, 1997; Dash and Liu, 1997). If the data has lots of features in this case one of the

feature selection methods should be used to reduce the training time.

(iv) Several authors have reported significant issues with the performance of learning

algorithms on imbalanced datasets, and hence as well as the above experiments, we

also carried out experiments to examine the performance of algorithms on four

imbalanced datasets as cost ratios are increased. Figure 5.9 shows the results,

obtained as an average of 10 random trials, and as the cost ratio of misclassification

of one class over another is increased from 50 to 400. The results for these datasets

Folds Folds

Folds Folds

Misclassification

costs

Misclassification

costs
Misclassification

costs

Misclassification

costs

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

95

show that our algorithm performs better than the MetaCost classifier when the cost of

misclassifications is increased.

Figure 5. 9: Misclassification costs in the cost ratio range 50 to 400 in CS-BN via GA

5.2 Comparison of the three algorithms developed

As we mentioned in Chapter 1, there are many types of classification algorithms, and there is

no such thing as the best algorithm, because it depends on type of data and the pattern of data

as well (Wolpert, 1995). To make the comparisons in Table 5.3 more easy, three colours have

been used, the blue font to determine the first winner, the red for the second winner and the

green for the third winner, where the results show that CS-BN via GA is the best algorithm in

term of accuracy and cost. As shown in Table 5.3, CS-BN via GA wins 24 times, then the

CS-BN via amending has good results in terms of cost, where it wins 13 times. From the

algorithms developed, the CS-BN via sampling approach is the relatively least effective with

8 wins. All algorithms have the same results on 4 datasets that is because they have the

greatest results, which are Supermarket, Monks, Hoslem, and Gymexamg. However, in term

of accuracy the CS-BN via GA is win for the most of cases; for (26 times), even if the cost

was worst.

Chapter 5: An Empirical Evaluation of the New Algorithms for Learning Cost-Sensitive Bayesian Networks

96

5.3 Summary

This chapter has presented an empirical evaluation of the three new algorithms developed in

Chapter 4. The results show that the algorithms CS-BN via sampling, and CS-BN via

amending have a similar pattern of results when compared with existing cost-sensitive

algorithms, but CS-BN via GAs has a different pattern of results. For both CS-BN via

sampling and via amending, the numbers of misclassifications of the rare class (more

expensive) FN are always less than the number of misclassifications of frequent class FP in

all datasets. While in CS-BN via GAs the number of FN are nearly similar to FP as shown in

Figure 5.8.

All three new algorithms outperform the cost-insensitive Bayesian network algorithm for all

the datasets in terms of minimising cost. They are also better than the existing cost-sensitive

Bayesian networks algorithm, MetaCost+BN, in terms of cost. On the other hand, when the

cost in-sensitive decision tree learning algorithm, J48 is better than the existing BN in terms

of accuracy, then MetaCost+j48 is more likely to be better than MetaCost+BN and our

algorithms, which happens on four datasets in average; though it is worth noting that our

algorithms outperform MetaCost+J48 on 32 out of the 36 datasets. In term of

misclassification cost, the best algorithm is CS-BN via GAs, then via amending then via

sampling approach. The accuracy of both algorithms CS-BN via sampling, and via amending

is similar though slightly less than the original accuracy based version of TAN, while CS-BN

via GAs performs better results than all other algorithms in term of accuracy and cost as

well.

In the next chapter, a conclusion that summarises the achievements made in this research and

how the research objectives have been addressed will be presented, with the results obtained

through the experimental evaluations.

97

Chapter 6: Conclusions and Future Work

This chapter presents the conclusions of this study: Section 6.1 presents a summary of the

context and motivation, Section 6.2 revisits the objectives and reflects critically on the extent

to which the objectives are met, and Section 6.3 presents limitations and possible areas for

future work.

Through the past decade, the problem of developing algorithms that can induce cost-sensitive

classifiers has become a significant challenge. Thus, cost-sensitive learning algorithms have

received increasing attention in most real world applications. The majority of research studies

on cost-sensitive learning algorithms have focused on the induction of decision trees with

either direct amendments to existing algorithms or the use of indirect methods such as

bagging and boosting (Lomax and Vadera, 2013). Bayesian networks have been shown to be

an effective classifier with a number of useful characteristics, and hence, an obvious question

stems from whether or not Bayesian networks can result in classifiers that perform better

when it comes to minimising costs of misclassification?. However, existing Bayesian network

algorithms that are designed to minimise misclassification errors do not take misclassification

costs into consideration. As a consequence, this study has explored whether or not it is

possible to develop cost-sensitive Bayesian networks. Overall, three algorithms were

developed by analogy with the strategies used for developing cost-sensitive decision trees:

(i) Cost-sensitive Bayesian networks via a sampling approach, based on using

indirect methods to change the distribution of examples to reflect the costs of

misclassification.

(ii) Cost-sensitive Bayesian networks via an amending approach, which involves

amending the minimum description length measure used in constructing a

network.

(iii) Cost-sensitive Bayesian networks via a Genetic algorithm, based on the use of

genetic algorithms to construct a Bayesian Network that aims to minimise costs of

misclassification.

Chapter 6: Conclusions and Future Work

98

The primary hypothesis of the present research stated that it would be possible to develop

algorithms to learn cost-sensitive Bayesian networks, which on average are more cost-

effective than current algorithms; including cost-sensitive decision learning tree algorithms

such as: MetaCost+J48; cost-sensitive Bayesian networks which are available in WEKA (i.e.

MetaCost+BN); or existing cost-insensitive Bayesian network learning algorithms (TAN). To

evaluate this hypothesis, the research aimed to develop methods that analyse Bayesian

networks that take account of misclassification costs and then utilise the empirical methods to

assess the extent to which the hypothesis is true.

In this final chapter, a summary of how the research objectives have been addressed is

provided in Section 6.1 with details of the achievements and main contributions from this

research. Additionally, the limitations of the developed algorithms and directions for future

work are presented in Section 6.2.

6.1 The research objectives revisited

This section presents the research objectives, as well as reviewing the extent to which they

have been achieved and contributions made. The specific research objectives that were

written in Chapter 1 are as follows:

 To review the background of Bayesian networks learning algorithms, and analyse

the types of this algorithm: a survey of the foundation of Bayesian networks algorithms

and the basic laws of probability were described in Chapter 2, Moreover, it presented

how to learn the structure of Bayesian networks and their parameters.

 To review the literature on cost-sensitive learning, analyse the most significant

issues in current cost-sensitive learning algorithms, and identify the strategies and

methods that used: a survey of approaches to cost-sensitive learning was presented in

Chapter 3, as a comprehensive literature review of the most appropriate methods that

could be employed for developing cost-sensitive algorithm. Cost-sensitive algorithms

were divided into three categories: direct methods, indirect methods, or optimisation

methods. Most of the research to date has focused on developing cost-sensitive decision

trees, while only three recent studies have developed algorithms for learning cost-

sensitive Bayesian networks as described in Chapter 3. Therefore, the current study has

Chapter 6: Conclusions and Future Work

99

aimed to explore the development of algorithms for learning Bayesian networks for cost-

sensitive classification.

 To develop new cost-sensitive Bayesian network learning algorithms that aim to

overcome the identified issues, which are based on direct, indirect, and optimisation

methods: new cost-sensitive Bayesian network algorithms have been developed and

described in Chapter 4, which are:

i. Cost-sensitive Bayesian network algorithm based on the indirect method via

sampling approach.

ii. Cost-sensitive Bayesian network algorithm based on the direct method via an

amending approach.

iii. Cost-sensitive Bayesian network algorithm based on the optimisation method

via Genetic algorithms.

All of the algorithms mentioned above aim to minimise the misclassification cost, whilst

maintaining accuracy.

 To evaluate the new algorithms against existing cost-sensitive algorithms and

measure performance, and compare the algorithms in terms of accuracy, and cost

minimisation: Chapter 5 presents the results of an empirical evaluation. This was

undertaken in order to examine these algorithms and compare their performance with

existing cost-sensitive algorithms, such as MetaCost+j48, and MetaCost+BN, and cost-

insensitive Bayesian networks algorithms (Tree Augmented Naive Bayes). These

alternatives algorithms have been implemented using Java based in the WEKA open

source system. The algorithms have been evaluated through the use of 36 benchmark

datasets, which have been studied previously by several researchers through different

methods that have come from different domains. The evaluation was carried out using 16

cost ratios for two class labels [1:1,1:2,1:3,1:4, 2:1,2:2.., 4:4]. The experimental

methodology used involved carrying out 10 random trials, and in each trial, the data was

divided into 75% training and 25% testing. Through this, the results reported the averages

together with the standard errors.

Chapter 6: Conclusions and Future Work

100

Furthermore, the results of an empirical comparison have been analysed in Chapter 5.

Overall, the summary of the findings from these results show that:

(i) The three cost-sensitive Bayesian network algorithms outperform cost-insensitive

Bayesian network algorithms in terms of cost in all datasets.

(ii) Algorithms, CS-BN via sampling, and CS-BN via amending have the same pattern as

cost-sensitive algorithms MetaCost+BN. Indeed, CS-BN via sampling, and CS-BN via

amending minimise cost and maintain the accuracy, as the number of misclassified rare

class FN is less than the number of misclassified frequent class FP in most cases.

(iii) CS-BN via GA has a different pattern from other cost-sensitive algorithms, where it has

been demonstrated this algorithm minimises cost and maintains good accuracy, because

the number of misclassified rare class FN is similar to the number of misclassified

frequent class FP in most of cases.

(iv) CS-BN via sampling works well when the original data distribution is very skewed.

Where the data is biased to one class, this algorithm can function very well following

the changes in the data distribution to reflect the misclassification costs, and increase

the number of rare class instances. Thus, it is then possible to make these instances

(rare instances) more important for classification than other instances. Comparing with

MetaCost+j48, the performance of CS-BN via the sampling approach performs well in

29 out of the 36 datasets in terms of cost, and it performs well compared to the use of

MetaCost+BN in all datasets in terms of cost. Through comparison of the current three

algorithms, the performance of CS-BN via the sampling approach performs well in only

8 out of the 36 datasets in terms of cost.

(v) CS-BN via the amending approach works better than existing cost-sensitive algorithms

as MetaCost+BN in all datasets, while comparing with MetaCost+j48 it performs well

in 28 out of 36 datasets. In particular, by comparing the current three algorithms, the

performance of CS-BN via amending approach performs well in 13 out of the 36

datasets in terms of cost.

Chapter 6: Conclusions and Future Work

101

(vi) Comparing with MetaCost+j48, CS-BN via Genetic algorithms gives good results in 31

out of 36 datasets. While, CS-BN via GAs is better than our other algorithms in 24 out

of the 36 datasets in terms of both costs and accuracy, and also performs better than

MetaCost+BN for all the datasets in terms of cost and accuracy.

(vii) The accuracy of CS-BN via sampling, and CS-BN via amending is similar, although

slightly less than the original accuracy based version of TAN, while CS-BN via GAs

creates better results than all the other algorithms in terms of accuracy and cost as well.

6.2 Limitations and future work

The research has developed new cost-sensitive Bayesian network algorithms that aim to

minimise the misclassification costs and which have been evaluated on 36 datasets that have

a binary class label. The work presented has some limitations, which can be the subject of

future works, including:

1. Dealing with two classes: all the experiments are performed on two class data; where

the data that are used typically did not have more than two class label.

2. Using misclassification cost: all the developed algorithms are aimed to minimizing

cost of misclassifications, but not test costs, which described on Section 3.2.

3. Time consuming in CS-BN via GAs for high dimensional data: if the data has lots

of features, then the experiment 3 (CS-BN via GAs) will spend lots of time to find the

optimal tree thus the training time will be long.

Therefore, there are several aspects that could be developed in the future, which include the

following:

1. Generality of the algorithms: Although the developed algorithms were applied

successfully for several datasets that have two class labels, there are certain

limitations of these algorithms where they cannot be applied into datasets that have

more than two class labels. Therefore, in additional future work, these algorithms

could be developed to work on more than two class labels.

Chapter 6: Conclusions and Future Work

102

2. Dealing with test costs: Although the algorithms from the current study have aimed

to minimise misclassification costs, they do not consider test costs. In particular, these

algorithms can be extended in the future to include test costs when learning the

structure of Bayesian networks.

In conclusion, the main contribution of this study is that three new algorithms for learning

cost-sensitive Bayesian networks have been developed and evaluated. The evaluation of the

algorithms shows advances in terms of minimising cost, with the CS-BN via GA performing

the best. The comparison of the different methods, both existing and the new ones developed

in this thesis, advance our knowledge of their relative merits.

103

References

Abe, N., Zadrozny, B., and Langford, J. (2004). An iterative method for multi-class cost-

sensitive learning. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM. pp. 3-11.

Aggarwal, C. C. (2014). Data Classification: Algorithms and Applications. CRC Press.

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.

Machine learning, 6(1), pp.37-66.

Akaike, H. (1974). A new look at the statistical model identification. Automatic Control,

IEEE Transactions on, 19(6), pp. 716-723.

Asuncion, A., and Newman, D. (2007). UCI machine learning repository. Available at:

http://archive.ics.uci.edu/ml/ (last accessed 25 October 2015).

Ben‐Gal, I. (2007). Bayesian networks. Encyclopedia of statistics in quality and reliability.

Wiley Online Library. Available at:

http://onlinelibrary.wiley.com/doi/10.1002/9780470061572.eqr089/full (last accessed 25

October 2015).

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Bolstad, W. M. (2013). Introduction to Bayesian statistics. John Wiley & Sons.

Booker, L. B., and Hota, N. (2013). Probabilistic reasoning about ship images. In the Second

Annual Conference on Uncertainty in Artificial Intelligence, University of Pennsylvania,

Philadelphia, PA. arXiv preprint arXiv:1304.3078.

Bouckaert, R. R. (2004). Bayesian network classifiers in weka. Department of Computer

Science, University of Waikato.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and

regression trees. CRC press.

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the Seventh

conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. pp.

52-60.

Campos, L. M. (2006). A scoring function for learning bayesian networks based on mutual

information and conditional independence tests. The Journal of Machine Learning Research,

7, pp. 2149-2187.

http://archive.ics.uci.edu/ml/
http://onlinelibrary.wiley.com/doi/10.1002/9780470061572.eqr089/full

104

Carvalho, A. M. (2009). Scoring functions for learning Bayesian networks. Inesc-id Tec. Rep.

Charniak, E., and Goldman, R. P. (1989). A Semantics for Probabilistic Quantifier-Free First-

Order Languages, with Particular Application to Story Understanding. In the Eleventh

International Joint Conference on Artificial Intelligence, Detroit, Michigan, USA. In IJCAI

,Vol. 89, pp. 1074-1079.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE:

synthetic minority over-sampling technique. Journal of artificial intelligence research,

pp.321-357.

Cheng, J., and Greiner, R. (1999). Comparing Bayesian Network Classifiers. UAI 1999,

pp.101-108.

Cheng, J., and Greiner, R. (2001). Learning bayesian belief network classifiers: Algorithms

and system. In Advances in Artificial Intelligence. Springer Berlin Heidelberg. pp. 141-151.

Cheng, J., Bell, D.A. and Liu, W. (1997). An algorithm for Bayesian belief network

construction from data. In Proceedings of AI & STAT’97, Florida, pp.83-90.

Chickering, D.M .(2002).Optimal Structure Identification with Greedy Search. Journal of

Machine Learning Research 3 , pp. 507-554.

Chow, C. K., and Liu, C.N. (1968). Approximating discrete probability distributions with

dependence trees, IEEE Transactions on Information Theory IT-14 (3), pp, 462–467.

Cios, K. J., and Moore, G. W. (2002). Uniqueness of medical data mining. Artificial

intelligence in medicine, 26(1), pp. 1-24.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the twelfth

international conference on machine learning . pp. 115-123.

Cooper, G.F. and Herskovits, E. (1992). A Bayesian Method for the induction of

probabilistic networks from data. Machine Learning, pp. 309-347.

Corani, G., Antonucci, A., and Zaffalon, M. (2012). Bayesian networks with imprecise

probabilities: theory and application to classification. In Holmes, D. E., Jain, L. C. (Eds),

Data Mining: Foundations and Intelligent Paradigms (Volume 1: Clustering, Association

and Classification), Springer-Verlag, Berlin, pp. 49–93.

Cormen , T. H. Leiserson, C. E. and Rivest. R. L. (1990). Introduction to Algorithms. MIT

Press, Cambridge, MA.

Cover, T. M., and Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Greiner:Russell.html
http://www.informatik.uni-trier.de/~ley/db/conf/uai/uai1999.html#ChengG99
http://www.idsia.ch/~zaffalon/#Bayesian networks with imprecise probabilities: theory and application to classification
http://www.idsia.ch/~zaffalon/#Bayesian networks with imprecise probabilities: theory and application to classification

105

Dash, M., and Liu, H. (1997). Feature selection for classification. Intelligent data analysis,

1(1), 131-156.

Dasgupta, S. (1999).Learning polytrees. In Proceedings of the Fifteenth conference on

Uncertainty in artificial intelligence , pp. 134-141.

Davis,Jj. V., Jungwoo, H. and Rossbach, C. J. (2006). Cost-sensitive decision tree learning

for forensic classification. In Proceedings of 17th European Conference on Machine

Learning (ECML), LNCS 4212, Springer, pp.622-629.

Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive. In

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM New York, NY, USA, pp. 155–164.

Drummond, C., and Holte, R. C. (2003). C4. 5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II

(Vol. 11).

 Duda, R.O., and Hart.P.E.(1973). Pattern classification and scene analysis. (Vol. 3). New

York: Wiley.

Elkan, C. (2001). The foundations of cost-sensitive learning. In International joint conference

on artificial intelligence. LAWRENCE ERLBAUM ASSOCIATES LTD. Vol. 17, No. 1, pp.

973-978.

Estabrooks, A. Jo, T. and Japkowicz, N. (2004). A Multiple Resampling Method for Learning

from Imbalanced Data Sets. Computational Intelligence, vol. 20, pp. 18-36.

Ezawa, K. J., and Schuermann, T. (2015). Practice of Bayesian Networks Data Mining Lab 4.

Available at : http://www.engr.uvic.ca/~seng474/lab4.ppt . (last accessed 25 October 2015).

Fan, W., Chu, F., Wang, H., and Yu, P. S. (2002). Pruning and dynamic scheduling of cost-

sensitive ensembles. In Proceedings of the National Conference on Artificial Intelligence.

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;. pp. 146-151.

Fan, W., Stolfo, S. J., Zhang, J., and Chan, P. K. (1999). AdaCost: misclassification cost-

sensitive boosting. In ICML . pp. 97-105.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical

or Physical Character, pp. 309-368.

Fisher, R. A. (1997). On an absolute criterion for fitting frequency curves. Statistical Science,

pp. 39-41.

Freitas, A., Costa-Pereira, A., and Brazdil, P. (2007). Cost-sensitive decision trees applied to

http://www.engr.uvic.ca/~seng474/lab4.ppt

106

medical data. In Data Warehousing and Knowledge Discovery (pp. 303-312). Springer Berlin

Heidelberg.

Freund, Y., and Schapire, R.E. (1996). Experiments with a new boosting algorithm. 13th

International Machine Learning workshop then conference, Bari, Italy, pp. 148-156.

Friedman, N., Geiger ,D., and Goldszmidt, M. (1997). Bayesian Network Classifiers.

Machine Learning, 29(2-3), pp. 131–163.

Friedman, N., & Goldszmidt, M. (1998). Learning Bayesian networks with local structure. In

Learning in graphical models. Springer Netherlands. pp. 421-459.

Funahashi, K. I. (1989). On the approximate realization of continuous mappings by neural

networks. Neural networks, 2(3), pp.183-192.

Gao, Y., Wang, Z., and Chen, Y. (2008). Cost-Sensitive Parameters Estimation Method of

Bayesian Networks. In Wireless Communications, Networking and Mobile Computing, 2008.

WiCOM'08. 4th International Conference on IEEE. pp. 1-4.

Green, M. T. (2010). A comparison of methods for learning cost-sensitive classifiers.

Gurland, J., and Tripathi, R. C. (1971). A simple approximation for unbiased estimation of

the standard deviation. The American Statistician, 25(4), pp. 30-32.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The

WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1),

pp.10-18.

Han, J., Kamber, M., and Pei, J. (2015). Data Mining: Concepts and Techniques. University

of Illinois at Urbana-Champaign & Simon Fraser University. (last accessed 25 October

2015)

Hansson, O., and Mayer, A. (1989). Decision-theoretic control of search in BPS. In

Proceedings of the AAAI Symposium on AI and Limited Rationality.

He, H., and Garcia, E. (2009). Learning from imbalanced data. Knowledge and Data

Engineering, IEEE Transactions on, 21(9), pp. 1263-1284.

Heckerman, D. (1997). Bayesian networks for data mining. Data mining and knowledge

discovery, 1(1), pp. 79-119.

Heckerman, D. (2008). A Tutorial on Learning with Bayesian Networks. Jonathan Paranada,

Probability and Statistics. pp. 33-82.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine learning, 20(3),pp. 197-243.

Heckerman, D., Mamdani, A., and Wellman, M. P. (1995). Real-World Applications of

107

Bayesian Networks. Communications of the ACM, 38(3), pp. 24-68.

Hong, S. A.(2007). Structure Learning in Bayesian Networks (mostly Chow-Liu). Available

athttp://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0

CCgQFjACahUKEwjJhLf5xOrIAhWDOBQKHcJ0ACs&url=http%3A%2F%2Fwww.cs.cm

u.edu%2F~guestrin%2FClass%2F15781%2Frecitations%2Fr10%2F11152007chowliu.pdf&u

sg=AFQjCNHQq6-qLRPTjYHzII0JleiwkWVsPQ . (last accessed 29 October 2015).

Hui, L. (2015). Class Imbalance vs. Cost-Sensitive Learning. University of Ottawa.

http://webcache.googleusercontent.com/search?q=cache:yESJnS6VXlEJ:https://www.site.uot

tawa.ca/~nat/Courses/csi5388/Presentations/ClassImbalanceVs.CostSensitiveLearning.ppt+&

cd=1&hl=en&ct=clnk&gl=uk .(last accessed 28 Oct 2015).

Jiang, L., Li, C., and Wang, S. (2014). Cost-sensitive Bayesian network classifiers. Pattern

Recognition Letters, 45, pp. 211-216.

Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms. John Wiley

& Sons.

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished manuscript, 45, 105.

Kenett, R. S. (2012). Applications of Bayesian networks. Available at SSRN 2172713.

Kjaerulff, U. B., and Madsen, A. L. (2008). Bayesian networks and influence diagrams.

Springer Science+ Business Media, 200, 114.

Kong, G., Xia, Y., and Qiu, C. (2014). Cost-Sensitive Bayesian Network Classifiers and

Their Applications in Rock Burst Prediction. In Intelligent Computing Theory . Springer

International Publishing. pp. 101-112.

Kothari, C. R. (2011). Research methodology: Methods and techniques. New Age

International.

Kountz, B., Miryala, A., Scarlett, K., and Zell, Z.(2011). Bayes Rule, conditional probability,

independence. Available at:

https://controls.engin.umich.edu/wiki/index.php/File:Contengency_table.jpg. (last accessed

25 October 2015).

Kohavi, R., and John, G. H. (1997). Wrappers for feature subset selection. Artificial

intelligence, 97(1), 273-324.

Kubat, M. and Matwin, S. (1997). Addressing the Curse of Imbalanced Training Sets: One

Sided Selection. In Proceedings of the Fourteenth International Conference on Machine

Learning, pages 179-186, Nashville, Tennesse. Morgan Kaufmann.

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0CCgQFjACahUKEwjJhLf5xOrIAhWDOBQKHcJ0ACs&url=http%3A%2F%2Fwww.cs.cmu.edu%2F~guestrin%2FClass%2F15781%2Frecitations%2Fr10%2F11152007chowliu.pdf&usg=AFQjCNHQq6-qLRPTjYHzII0JleiwkWVsPQ
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0CCgQFjACahUKEwjJhLf5xOrIAhWDOBQKHcJ0ACs&url=http%3A%2F%2Fwww.cs.cmu.edu%2F~guestrin%2FClass%2F15781%2Frecitations%2Fr10%2F11152007chowliu.pdf&usg=AFQjCNHQq6-qLRPTjYHzII0JleiwkWVsPQ
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0CCgQFjACahUKEwjJhLf5xOrIAhWDOBQKHcJ0ACs&url=http%3A%2F%2Fwww.cs.cmu.edu%2F~guestrin%2FClass%2F15781%2Frecitations%2Fr10%2F11152007chowliu.pdf&usg=AFQjCNHQq6-qLRPTjYHzII0JleiwkWVsPQ
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&ved=0CCgQFjACahUKEwjJhLf5xOrIAhWDOBQKHcJ0ACs&url=http%3A%2F%2Fwww.cs.cmu.edu%2F~guestrin%2FClass%2F15781%2Frecitations%2Fr10%2F11152007chowliu.pdf&usg=AFQjCNHQq6-qLRPTjYHzII0JleiwkWVsPQ
http://webcache.googleusercontent.com/search?q=cache:yESJnS6VXlEJ:https://www.site.uottawa.ca/~nat/Courses/csi5388/Presentations/ClassImbalanceVs.CostSensitiveLearning.ppt+&cd=1&hl=en&ct=clnk&gl=uk
http://webcache.googleusercontent.com/search?q=cache:yESJnS6VXlEJ:https://www.site.uottawa.ca/~nat/Courses/csi5388/Presentations/ClassImbalanceVs.CostSensitiveLearning.ppt+&cd=1&hl=en&ct=clnk&gl=uk
http://webcache.googleusercontent.com/search?q=cache:yESJnS6VXlEJ:https://www.site.uottawa.ca/~nat/Courses/csi5388/Presentations/ClassImbalanceVs.CostSensitiveLearning.ppt+&cd=1&hl=en&ct=clnk&gl=uk
https://controls.engin.umich.edu/wiki/index.php/File:Contengency_table.jpg

108

Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers. In AAAI

(Vol. 90), pp. 223-228.

Laskey K. B. (2015). Bayes Nets. Available at http://www.bayesnets.com/ .(last accessed 27

October 2015).

Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class

distribution. Springer Berlin Heidelberg, pp. 63-66.

Lauritzen, S. L., and Spiegelhalter, D. J. (1988). Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal Statistical

Society. Series B (Methodological), pp. 157-224.

Ling, C. X., and Sheng, V. S. (2010). Cost-sensitive learning. In Encyclopedia of Machine

Learning .Springer US. pp. 231-235.

Ling, C. X., Sheng, V. S., and Yang, Q. (2006). Test strategies for cost-sensitive decision

trees. Knowledge and Data Engineering, IEEE Transactions on, 18(8), pp.1055-1067.

Ling, C. X., Yang, Q., Wang, J., and Zhang, S. (2004). Decision trees with minimal costs. In

Proceedings of the twenty-first international conference on Machine learning .ACM. p. 69.

Ling, C., Sheng, V., and Yang, Q. (2006). Test strategies for cost-sensitive decision trees.

IEEE Transactions on Knowledge and Data Engineering, 18(8), pp. 1055-1067.

Liu, X. (2007). A New Cost-Sensitive Decision Tree with Missing Values. Asian Journal of

Information Technology, 6(11), pp.1083–1090.

Lomax, S., and Vadera, S. (2013). A survey of cost-sensitive decision tree induction

algorithms. ACM Computing Surveys (CSUR), 45(2), 16.

Maes, S., Tuyls, K., Vanschoenwinkel, B., and Manderick, B. (2002). Credit card fraud

detection using Bayesian and neural networks. In Proceedings of the 1st international naiso

congress on neuro fuzzy technologies.

Maimon, O., and Rokach, L. (2005). Data mining and knowledge discovery handbook.

(Vol.2). New York: Springer.

Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal

and unknown. In ICML-2003 workshop on learning from imbalanced data sets II. Vol. 2, pp.

2-1.

Margineantu, D. (2000). On class probability es- timates and cost-sensitive evaluation of

classifiers. In Workshop Notes, Workshop on Cost-Sensitive Learning, International Con-

ference on Machine Learning.

http://www.bayesnets.com/

109

Margineantu, D., and Dietterich, T. (2003). A wrapper method for cost-sensitive learning via

stratification. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1102

(last accessed 25 October 2015).

Meek, C. (2015).An Overview of Learning Bayes Nets From Data. Microsoft Research.

Available at http://research.microsoft.com/en-us/people/meek/ .(last accessed 26 October

2015).

Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994). Machine learning, neural and

statistical classification.

Mitchell, T. M. (1997). Does machine learning really work?. AI magazine, 18(3), 11.

Morris, R. D. (2003). Bayesian Research at the NASA Ames Research Center,

Computational Sciences Division.

Nashnush, E., and Vadera, S. (2014). Cost-Sensitive Bayesian Network Learning Using

Sampling. In Recent Advances on Soft Computing and Data Mining .Springer International

Publishing. pp. 467-476.

Neapolitan, R. E. (2004). Learning bayesian networks (Vol. 38). Upper Saddle River:

Prentice Hall.

Norsys software Coper. (2015). Available at https://www.norsys.com/netica.html . (last

accessed 25 October 2015).

Norton, S. W. (1989). Generating Better Decision Trees. Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence. IJCAI-89, 20-26 August 1989,

Detroit,Michigan, USA, pp. 800-805.

Núñez, M. (1991). The use of background knowledge in decision tree induction. Machine

learning, 6(3), pp. 231-250.

Omielan, A., and Vadera, S. (2012). ECCO: A New Evolutionary Classifier with Cost

Optimisation. School of computing ,Scince and Engininring, University of Salford , Salford

M5 4WT,UK , pp.1.

P. Dagum and M. Luby.(1993). Approximating probabilistic inference in Bayesian belief

networks is NPhard. Artificial Intelligence, vol. 60, pp. 141-153.

Pazzani, M., Merz, C., Murphy, P., Ali, K., Hume, T., and Brunk, C. (1994). Reducing

misclassification costs. In Proceedings of the 11th International Conference on Machine

Learning. New Brunswick, New Jersey, USA, pp. 217–225.

Pearl, J. (1988). Embracing causality in formal reasoning . In AAAI, Artificial Intelligence,

35, pp. 259-271.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.1102
http://research.microsoft.com/en-us/people/meek/
https://www.norsys.com/netica.html

110

Pearl, J. (1988; 2014). Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann.

Pearl, J. (1993). Belief networks revisited. Artificial intelligence, 59(1), pp.49-56.

Pearl, J. (2001). Bayesianism and causality, or, why I am only a half-Bayesian. In

Foundations of bayesianism . Springer Netherlands, pp. 19-36.

Phua, C., Lee, V., Smith, K., and Gayler, R. (2010). A comprehensive survey of data mining-

based fraud detection research. arXiv preprint arXiv:1009.6119.

Pourret, O., Naim, P., and Marcot, B. (2008). Bayesian Networks: A practical Guide to

applications (Vol. 73). John Wiley & Sons.

Qin, Z., Zhang , S., Zhang, C. (2004). Cost-sensitive decision trees with multiple cost scales.

Proceedings of the 17th Austrailian Joint Conference on Artificial Intelligence, December 4-

6th Cairns, LNAI 3339, Springer-Verlag, Berlin, G. I. Webb and X Yu (Eds),pp. 380-390.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), pp. 81-106.

Quinlan, J. R. (1979). Discovering rules by induction from large collections of examples.

Expert Systems in the micro electronic age, D Michie (Ed.), Edinburgh University Press,

pp.168-201.

Rajasekar, S., Philominathan, P., and Chinnathambi, V. (2006). Research methodology. arXiv

preprint physics/0601009.). Available at: https://www.scribd.com/deleted/6949151 .(last

accessed 25 October 2015)

Ramos, A. A. (2006). The minimum description length principle and model selection in

spectropolarimetry. The Astrophysical Journal, 646(2), 1445.

Rayner , J.C. W. and Best, D.J.(1989). Smooth Tests of Goodness of Fit. Oxford University

Press, Inc., ISBN 0-19-505610-8.

Rish, I.(2015).Advances in Bayesian Learning, Learning and Inference in Bayesian

Networks. IBM T.J. Watson Research Center.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), pp. 465-471.

Robinson, R.W.(1973). Counting labeled acyclic digraphs, in F.Harary (Ed.), New

Directions in the Theory of Graphs, Academic Press, New York, pp. 239-273.

Robinson, R.W.(1977). Counting unlabeled acyclic digraphs, in C.H.C. Little (Ed.),

Combinatorial Mathematics V, volume 622 of Lecture Notes in Mathematics, Springer-

Verlag, Australia, pp. 28-43.

https://www.scribd.com/deleted/6949151

111

Rygielski, C., Wang, J. C., and Yen, D. C. (2002). Data mining techniques for customer

relationship management. Technology in society, 24(4), pp. 483-502.

Salama, K. M., and Freitas, A. A. (2013). Learning Bayesian network classifiers using ant

colony optimization. Swarm Intelligence, 7(2-3), pp. 229-254.

Santos-Rodríguez, R., García-García, D., and Cid-Sueiro, J.(2009). Cost-sensitive

classification based on Bregman divergences for medical diagnosis. In Machine Learning and

Applications, ICML, pp. 551-556.

Sawaal. (2015). Available at: http://www.sawaal.com/probability-questions-and-answers/a-

bag-contains-2-red-3-green-and-2-blue-balls-two-balls-are-drawn-at-random-what-is-the-

probability-_3271 . (last accessed 25 October 2015).

Schapire, R. E. (1999). A brief introduction to boosting. In Proceedings of the 16th

International Joint Conference on Artificial Intelligence, IJCAI99, July 31 – August 6, City

Conference Centre, Stockholm, Sweden, Vol. 2,pp. 1401- 1406.

Schapire, R. E. and Singer, Y. (1999). Improved Boosting Algorithms Using Confidence-

Rated Predictions. Machine Learning 37, (3), pp. 297-336.

Schum, D. A. (2001). The evidential foundations of probabilistic reasoning. Northwestern

University Press.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2), pp.

461-464.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 6(2),

pp.461-464.

Sebe, N. ,Cohen, I., and Garg, T.S. (2005). Machine Learning in Computer Visison. Huang,

Springer Verlag, ISBN 1-4020-327, pp.4-9.

Shannon, C.E. and Weaver, W. (1949). The mathematical theory of communication.

University of Illinois Press, Urbana, Illinois.

Sheng, V. S., and Ling, C. X. (2006). Thresholding for making classifiers cost-sensitive. In

Proceedings of the national conference on artificial intelligence. (Vol. 21, No. 1, p. 476).

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

Spiegelhalter, D. J., Franklin, R., and Bull, K. (1989). Assessment, Criticism, and

Improvement of Imprecise Probabilities for a Medical Expert System. In Proceedings of the

Fifth Conference on Uncertainty in Artificial Intelligence, pp. 285-294.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search (Vol.

81). MIT press.

http://www.sawaal.com/probability-questions-and-answers/a-bag-contains-2-red-3-green-and-2-blue-balls-two-balls-are-drawn-at-random-what-is-the-probability-_3271
http://www.sawaal.com/probability-questions-and-answers/a-bag-contains-2-red-3-green-and-2-blue-balls-two-balls-are-drawn-at-random-what-is-the-probability-_3271
http://www.sawaal.com/probability-questions-and-answers/a-bag-contains-2-red-3-green-and-2-blue-balls-two-balls-are-drawn-at-random-what-is-the-probability-_3271

112

Statistical Visual Computing Lab. UCSD. (2015).

http://www.svcl.ucsd.edu/projects/sop_boost/ . (Last accessed 25 October 2015).

Suna, Y., Kamela,S. M., Andrew K.C.Wongb, K., Wang, Y.(2006). Cost-sensitive boosting

for classification of imbalanced data, Electrical and Computer Engineering Department,

University of Waterloo, Waterloo, Ontario, Canada.

Tan , M. and Schlimmer, J. (1989). Cost-Sensitive Concept Learning Of Sensor Use in

Approach and Recognition. Proceedings of the 6th International Workshop on Machine

Learning. ML-89, Ithaca, New York, pp. 392-395.

Ting, K. and Zheng, Z.(1998a). Boosting cost-sensitive trees. Lecture Notes in Computer

Science, 1532, pp. 244–255.

Ting, K. and Zheng, Z.(1998b). Boosting Trees for Cost-Sensitive Classifications. In

Machine Learning: ECML-98 10th European Conference on Machine Learning, Chemnitz,

Germany. Springer, pp. 190-195.

Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. Knowledge

and Data Engineering, IEEE Transactions on, 14(3),pp. 659-665.

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic

decision tree induction algorithm. Journal of artificial intelligence research, pp. 369-409.

Turney, P.(2000). Types of Cost in Inductive Concept Learning. Workshop on Cost-Sensitive

Learning at the 17th International Conference on Machine Learning (WCSL at ICML-2000),

Stanford University, California, pp. 15-21.

Vadera, S. (2010). CSNL: A cost-sensitive non-linear decision tree algorithm. ACM

Transactions on Knowledge Discovery from Data (TKDD), Vol 4, Issue 2, Article 6, pp. 1-

25.

Vandel, J., Mangin, B., and Givry, S. (2012). New local move operators for Bayesian

network structure learning. Proceedings of PGM-12, Granada, Spain.

Weiss, G. M., and Provost, F. (2001). The effect of class distribution on classifier learning: an

empirical study. Rutgers Univ.

Weiss, G. M., McCarthy, K., and Zabar, B. (2007). Cost-sensitive learning vs. sampling:

Which is best for handling unbalanced classes with unequal error costs?. In DMIN , pp. 35-

41.

WIKIbooks. (2015). Open books for an open word Probability/Combinatorics. Available at

https://en.wikibooks.org/wiki/Probability/Combinatorics .(last accessed 31 October 2015)

Witten, I. H., and Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann.

http://www.svcl.ucsd.edu/projects/sop_boost/
https://en.wikibooks.org/wiki/Probability/Combinatorics

113

Wolpert, DH. (1996).The Lack of A Priori Distinctions Between Learning Algorithms.

Neural Computation. pp.1341-1390

Zadrozny, B., and Elkan, C. (2001). Learning and making decisions when costs and

probabilities are both unknown. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining , ACM, pp. 204-213.

Zadrozny, B., Langford, J., and Abe, N. (2003b). Cost-sensitive learning by cost-

proportionate example weighting. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on IEEE. pp. 435-442.

Zadrozny, B., Langford, J., and Abe, N. (2003a). A simple method for cost-sensitive learning.

Zhang, Y., Meratnia, N., and Havinga, P. (2010). Outlier detection techniques for wireless

sensor networks: A survey. Communications Surveys & Tutorials, IEEE, 12(2), pp.159-170.

Zibran, M. F. (2007). Chi-Squared test of independence. Department of Computer Science,

University of Calgary, Alberta, Canada.

Zweig, G., and Russell, S. (1998). Speech recognition with dynamic Bayesian networks.

AAAI, p.173.

114

Appendix A

A1: Connections in a BN structure

The inference process in Bayesian networks is based on d-separation concepts (Preal, 1993);

where two sets of nodes are conditionally independent given a set of evidence. The structure

of the graph represents the conditional independence relations, as Pearl in (1988) stated:

“Each variable is conditionally independent of all its non-descendants given the value of all

its parents”.

Where, the concept of d-separation determines the minimum amount of information needed

to process a query during the exact inference in a Bayesian network, it decides which

conditional independence relations are implied by a directed acyclic graph of the Bayesian

network. For example, in Figure A1.1 when C is known, then A and B are conditional

independents given C. When one says A and B are d-separated by a set of evidence, for C

every undirected path from A to B is “blocked” (Pearl, 1988).

There are three types of connections between nodes, which allow the transfer of information

through the nodes. These connections help to follow how a change of certainty in one node

may change the certainty of other nodes (Kjaerulff and Madsen, 2008). Thus, there are 4

types of connections in any BNs’ structure.

i. Causal chain (Serial connection)

Two nodes in a path connected as Tail to Head, where, in Figure A1.1, where both of A,

and B are dependent if C is unknown; while, both of A, and B are conditional

independent given C, when C is known.

.......

.......

A

A

B

B

C

C

.......

.......

A

A

B

B

C

C

Figure A1.1: Blocking Tail- Head path (serial connection)

Figure A1.1: Blocking Tail- Head path (serial connection)

115

ii. Common causes (Diverging connection)

Two nodes in a path as "Tail to Tail", as illustrated in Figure A1.2, where both of A, and

B are dependent if C is unknown, while, both of A, and B are conditional independent

given C when Z is known.

iii. Common effects (Convergence connection)

Two nodes in a path are "Head to Head", as illustrated in Figure A1.3 where both of A,

and B are conditional dependent if C or any of its descendants are known. While, both of

A, and B are independent when C or any of its descendants are unknown (Kjaerulff and

Madsen, 2008).

A2: Example to illustrate Propagation of information in the Alarm

problem

This part describes how the information flows in a Bayesian network, by using the Alarm

problem example (Pearl, 1988). Figure A2.1 presents the alarm example (Pearl 1988) and its

representation in Netica, which is a software for Bayesian networks (Norsys, 2015). The

alarm problem is stated as follows (Pearl 1988): Mr. Holmes is working in his office when he

receives a phone call from his neighbour Dr. Watson who tells him that Holmes’ burglar

alarm has gone on; where a burglary or earthquake make the alarm goes on, John or Mary

also call to report the alarm.

Figure A1.2: Blocking Tail - Tail path (Diverging connection)

Figure A1.2: Blocking Tail - Tail path (Diverging connection)

A

A

B

B

C

C

.......

.......

A

A

B

B

C

C

.......

.......

Figure A1.3: Opening Head- Head path (Convergence connection)

Figure A1.3: Opening Head- Head path (Convergence connection)

A

A

B

B

C

C

.......

.......

A

A

B

B

C

C

.......

.......

.

.

.

.

.

.

116

From the graph above, the Burglary and Earthquake events are dependent on Alarm events,

while both the Burglary and Earthquake events are independent of each other. In particular,

there are three methods to connect the nodes in a BN and these connections represent the

conditional connections in a Bayesian Network. In particular, there are three types of

connection that exist in this part between variables in the alarm problem:

i. Serial connection

If the Alarm is not evidence, then both calls (Burglary and Mary’s) are dependent and

knowing that Burglary=yes would increase the belief on Mary calls= yes, as shown in Figure

A2.2(a). In contrast, if the Alarm node is observed, then that would increase the belief of both

calls from the Burglary and Mary, but if knowing that burglary has taken place, then that

would not change the belief on Mary’s call because the path is closed, as shown in Figure

A2.2(b).

Figure A2.1: Alarm network (pearl, 1988).

Figure A2.1: Alarm network (pearl, 1988).

117

ii. Diverging connection

If the Alarm is not evidence then both John and Mary called dependently and knowing one

of them would increase the belief on the other one, as shown in Figure A2.3 (a). On the other

hand, if the Alarm node is observed, that would change the belief of both John and Mary

calling, although if there was further knowledge that John’s call had taken place then that

would not increase the belief on Mary’s call, as shown if Figure A2.3 (b).

Figure A2.3: Diverging connection

Figure A2.3 : Diverging connection

 (a) - Alarm is not observed

 (a) - Alarm is not observed

 (b) - Alarm is observed

 (b) - Alarm is observed

C is not observed (Open path)

C is not observed (Open path)

A

A

C

C

B

B

C is observed (close path)

C is observed (close path)

A

A

B

B

C

C

 (a) - Alarm is not observed

 (a) - Alarm is not observed

 (b) - Alarm is observed

 (b) - Alarm is observed Figure A2.2: Serial connection in alarm problem

Figure A2.2 Serial connection in alarm problem

C is observed (close path)

C is observed (close path)

A

A

B

B

C

C

A

A

C

C

B

B

C is not observed (Open path)

C is not observed (Open path)

118

iii. Converging connection

As shown in Figure A2.4 (a), when the Alarm or its parent (Mary calls and John calls) is not

observed then both of Burglar and Earthquake are independent. On the other hand, as shown

in Figure A2.4 (b) when node C or any of its descendant as D is observed then A and B are

conditionally dependent; where, observing C or its descendent as D opens the information

path between A, and B. For example, if the Alarm node that is observed went on, then that

would increase the belief of both a burglary and earthquake, and through further knowledge

that there has been a burglary, then that would decrease the belief of an earthquake, because

both the burglary and earthquake are dependent when the Alarm is observed, as show in

Figure A2.4 (b).

..

..

.

..

..

.

.
.
.

.

.

.

A

A

B

B

C

C D

D

C or its descendent is not observed (close path)

C or its descendent is not observed (close path)

.
.
.

.

.

.

A

A

B

B

C

C D

D

C or its descendent is observed (open path)

C or its descendent is observed (open path)

 (a) - Alarm is not observed

 (a) - Alarm is not observed

 (b) - Alarm is observed

 (b) - Alarm is observed

Figure A2.4: Diverging connection

Figure A2.4 : Diverging connection

119

Appendix B

B1: Example of learning a TAN using the play-tennis dataset

This appendix presents an example to illustrate Friedman et al.’s (1997) algorithm for

learning TANs, which was presented in Chapter 2, Section 2.4.1.3.2. Table B1.1 presents the

play-tennis training dataset that is used to illustrate the steps of the algorithm. There are two

major parts: learning the structure and then calculating the parameters, which are illustrated

on the data chart below.

Table B1.1: Play-tennis training datasets

i. Learn TAN Structure

Learning the TAN structure involves the following steps:

Step 1: Compute Conditional Information

The first step calculates the information between two nodes based on the class node by

using the MDL score that is presented in equations (2.15), and (2.16), which is based on the

LL function that is given in equation (2.8). Moreover, the MDL score should be calculated

between:

 MDL(𝑋𝑖|𝐶): each node in the network and class node (dependent class).

 MDL(𝑋𝑖|𝑋𝑗 , 𝐶): each pair of nodes in the network, without class node

(dependent nodes).

120

 The weight between each pair of nodes represents the difference between

MDL dependent nodes, and MDL dependent class.

1) Calculate the MDL dependent class: This represents the score between a selected

node and class node. For example, if the selected node is ‘outlook’, and the class node

is ‘play’, then to calculate MDL(outlook, play) one needs to calculate LL function

initially as presented in equation (2.8):

LL(outlook| play) = ∑ ∑ P(outlook, play) 𝑙𝑜𝑔 (
𝑃(outlook, play)

𝑃(play)
)

2

𝑘=1

3

𝑖=1

Where, i represents the selected node values, the ‘outlook’ has (sunny, overcast, and

rainy), and k represents the number of attributed values of the class node, which are

(yes, no). From the data in Table B1.1 the results will be:

LL(outlook| play) = −7.524

Then, calculate MDL for the dependent class function, as given in equation (2.11):

MDL(outlook| play) = 𝐿𝐿(outlook, play) −
𝑙𝑜𝑔 𝑁

2
 |𝐵|

Where, N is the number of all instances in the data, it comes to 9 in this example. |B|

is the number of parameters = number of selected node values * number of class

values.

MDL(outlook|play) = −7.524 −
𝑙𝑜𝑔 (9)

2
∗ |3 ∗ 2|= -11.918

Figure B1.1: Score between ‘outlook’ and class node

2) Calculate MDL dependent nodes: This represents the score between a selected node

and another node based on the class node. For example, when the selected node is

‘outlook’, and the another node is ‘windy’ based on the class label ‘play’. Then, to

calculate MDL(outlook|windy, paly), one needs to calculate the LL function initially,

as given in equation (2.8):

outlook

outlook

play

play

-11.918

-11.918

121

LL(outlook|wind, play)

= ∑ ∑ ∑ P(outlook, windy, play) 𝑙𝑜𝑔 (
𝑃(outlook, windy, play)

𝑃(windy, play)
)

2

𝑘=1

2

𝑗=1

3

𝑖=1

Where, i represents the selected node values, the ‘outlook’ has (sunny, overcast, and

rainy), j represents the attributes values of another node ‘wind’, which are (false, and

true), and k represents the number of attributed values of the class node, which are

(yes, no). From the data in Table B1.1 the results will be:

LL(outlook|windy, play) = −5.5452

Then, calculate MDL for the dependent nodes, as given in equation (2.11):

MDL(outlook|windy, paly) = 𝐿𝐿(outlook, windy, paly) −
𝑙𝑜𝑔 𝑁

2
 |𝐵|

Where, N is the number of all instances in data, 9 is the amount in this example. |B| is

the number of parameters = number of selected node values ∗ number of cardinality

values.

MDL(outlook|windy, play) = −5.5452 −
𝑙𝑜𝑔 (9)

2
∗ |3 ∗ 4|= -14.33

Figure B1.2: Score between ‘outlook’ and ‘wind’ based on class node

3) Calculate the weight: The weight or the dependency between two nodes represents

as the difference between the dependent nodes’ score, and dependent class score as

demonstrated in:

Weight (outlook, windy)= MDL(outlook|wind, paly) − MDL(outlook| paly)

outlook

outlook

play

play
-14.33

-14.33

windy

windy

122

Figure B1.3: weight between ‘outlook’ and ‘wind’ node

Then, do the first step for all other nodes, as after that it will be possible to acquire the

weights between all pairs, as shown in Figure B1.4. Also, the arcs between the nodes

represent weight (dependency) between these nodes.

Figure B1.4: weight (dependency) between all pairs

Step2: Build a complete undirected graph: An undirected graph is constructed, where the

edges are the dependency (weight) between the nodes, as shown in Figure B1.5.

Figure B1.5: undirected graph

-

-

 -2.42

 -2.42

outlook

outlook

windy

windy

=

=

 outlook

outlook

-14.33

-14.33

play

play
windy

windy

 -11.918

 -11.918

outlook

outlook

play

play

0 -1.55

 -1.55

outlook

outlook

humidity

humidity

 -4.56

 -4.56

outlook

outlook

temperatu

re

temperatu

re

 -2.42

 -2.42

outlook

outlook

windy

windy

 -2.42

 -2.42

temperat

ure

temperat

ure

windy

windy

 1.22

1.22

temperat

ure

temperat

ure

humidity

humidity

 -0.74

 -0.74

humidity

humidity

windy

windy

-0.74

-0.74
Humidity

0010 1000

Humidity
0010 1000

windy

windy
 -4.56

 -4.56

 -1.55

 -1.55

-2.42

-2.42
1.22

0100 0000 0001
0100

1.220100 0000
0001 0100

-2.42

0010 1000 0000
1000

-2.4200101000

00001000

outlook

outlook

temperature

temperature

123

Step3: Apply (MWST) algorithm: Find a maximal spanning tree between nodes by running a

maximum-weight spanning tree (MWST) algorithm (Cormen et al., 1990), Figure B1.6

shows how the MWST finds the tree with the greatest total weight.

Figure B1.6: How MWST finds the tree with the greatest total weight in play- tennis

dataset

Step4: Convert to directed tree: The undirected graph is converted to a directed graph by

choosing the root of the first maximum connection in the previous step, which is

‘temperature’, then adding a direction to the next connection if it does not lead to a cycle.

Figure B1.7: Directed tree

Step5: Add the class label as root: The class label node ‘play’ is added as the parent (root)

node for all attributes, to get the TAN structure, as shown in Figure B1.8.

ii. Learn parameters

Once the structure of a TAN has been learned, a simple estimator is used for estimating the

conditional probability tables of the TAN (Bouckaert, 2004). Obviously, the last step is to

learn the parameters for each node with its parent by using equation (2.17):

-2.42

-2.42

windy

windy

1.22

1.22

-2.42

-2.42

 -

4.56

 -

4.56

 -1.55

 -1.55

Humidity

Humidity

outlook

outlook

temperatu

re

temperatu

re

-

0.74

-

0.7

4

-2.42

-2.42

windy

windy

1.22

1.22

-2.42

-2.42

 -

4.56

 -

4.56

 -1.55

 -1.55

Humidity

Humidity

outlook

outlook

temperatu

re

temperatu

re

-

0.74

-

0.74

-2.42

-2.42

windy

windy

1.22

1.22

-2.42

-2.42

 -

4.56

 -

4.56

 -1.55

 -1.55

Humidity

Humidity

outlook

outlook

temperatu

re

temperatu

re

-

0.74

-

0.74

temperature

temperature

windy

windy

outlook

outlook

Humidity

Humidity

124

P(𝑋𝑖|𝑋𝑗) =
𝑁𝑖𝑗 + α

N + (α ∗ n𝑋𝑖
)

Where, α = 0.5 represents the initial count on each value to avoid 0, and n𝑋𝑗
 represents the

number of attributes value of node 𝑋𝑖. For example, in Figure B1.8, in a CPT to learn the

parameter between node ‘temperate=hot’ given ‘play=yes’, is calculated as:

P(‘temperate = hot’ | ‘play = yes’) =
P(‘temperate = hot’ , ‘play = yes’) + 0.5

P(play = yes) + (0.5 ∗ 3)

P(‘temperate = hot’ | ‘play = yes’) =
1 + 0.5

5 + (0.5 ∗ 3)
 =

1.5

6.5
= 0.231

Figure B1.8 illustrates learning structure and parameters of TAN on play-tennis dataset.

125

Figure B1.8: Learning structure and parameters of TAN from play-tennis dataset

Outlook temperature humidity Windy Play

Overcast Mild high True ?

Testing data

Testing data

Training data

Training data Learn Structure

Learn Structure

Learn parameters

Learn parameters

126

B2: Example of using a TAN as a classifier for the play-tennis dataset

Figure B2.1 shows how a TAN classifier classifies the testing data to the class label

Play={yes, no} that has the highest posterior probability. Clearly, after learning the structure

and parameters as shown in Figure B1.8, the TAN classifier can be used to classify each

instance in the testing set according to the class label Play={yes, no} that has the highest

posterior probability as:

o Testing P(play=yes)
= P(play=yes) * P(temp=mild| play=yes) *P(humidity= high | temp= mild, play=yes) *
P(outlook=overcast| humidity= high, play=yes) * P(wind= true | humidity=high ,

play=yes).

= 0.55 ∗ 0.231 ∗ 0.75 ∗ 0.429 ∗ 0.167 =0.64.

o Testing P(play=No)

= P(play=No) * P(temp=mild| play=No) * P(humidity= high | temp= mild, play=No) * P(

outlook=Overcast| humidity= high, play=No) * P(wind= True | humidity=high, play=No)

= 0.45 ∗ 0.273 ∗ 0.75 ∗ 0.111 ∗ 0.375 = 0.36.

As a result, TAN classifier will classify testing instance to class ‘yes’ because it

has the highest posterior probability as shown in Figure B2.1.

Figure B2.1 : The result of TAN classifier to play-tennis testing data.

Figure B2.1 : The result of TAN classifier to play-tennis testing data.

127

Appendix C

C1: Summary of Implementation and Class Diagrams

Class diagram is a graphical way to illustrate the relationships between classes in an object-

oriented system. In particular, we used UML (Unified Modelling Language) tool to draw the

relationships between classes, where UML is type of diagram that shows the code classes,

attributes, methods, and the relationship between the classes. Figure C1.5 shows the class

diagram of our code by using Dia software to draw the relationships between the classes. In

particular, the top level of these classes have been implemented and described as:

Main class : is the class has all the initial values such as costs, and data, and folds. his class is

using to call all other classes also, all the results is returned to this class, where this class uses

all the following classes:

1. Splitting: this class is used to splitting a data into two parts; 75% for training, and

25% for testing. As shown in Figure C1.1, the Main class calls

splitting.splitting_data(Data) method to split the data into two datasets Training, and

Testing data.

2. Classifier1_CS-BN via Sampling: this class is used to implement a Bayesian network

by using sampling approach, this class has a class called Folk theorem, which uses to

calculate the new training data distribution as described in Chapter 4, in Section 4.1.

Where, the Main class calls these methods:

Figure C1.1 : Implementation of class “Splitting”

Figure C1.1 : Implementation of class “Splitting”

128

o Change_new_distribution(N1,N2): this method calls Sampling(Training, Cost1,Cost2)

method to calculate the new data distribution as given in Chapter 3, equation (3.11).

𝑁1′

𝑁2′
=

𝐶1∗𝑁1

𝐶2∗𝑁2

o BN_Sampling(Folk_data,Cost1,Cost2): this method is used to apply the existing

Bayesian network classifier (TAN) on the new distribution (Folk_data), to obtain the

expected cost and accuracy of that classifier.

3. Classifier2_CS-BN via Amending: this class is used to implement our new algorithm

that based on amending approach, that described in Section 4.2. Where, the this class

uses methods in these classes:

3.1 Amending_BN_Structuer: it is used to learn the BN structure by calling method

My_BN_Structures(); where this class is inheritance from original Bayesian

network classifier in WEKA (weka.classifiers.bayes.BayesNet), but there are some

changes on the MDL score function of WEKA class

(weka.classifiers.bayes.search.local.scoreable.MDL). Also, there are some changes

on class (weka.classifiers.bayes.search.local.TAN), these changes are based on

calculate cost ratio from class Cost_Ratio class:

o Cost_Ratio : it is used to calculate the cost ratio between misclassification costs

as described in Chapter 4, equation (4.3) by using method called Ration(Cost1,

Cost2) Cost_ratio(2) =
cost 1

cost 1+ cost 2
 ; Cost_ratio(1) =

cost 2

cost 1+ cost 2

Figure C1.2: Implementation of class “Classifier1_CS-BN via Sampling”

Figure C1.2: Implementation of class “Classifier1_CS-BN via Sampling”

129

3.2 Amending_parameters: it is used to learn the parameters of a BN, where this class

is inheritance from original simple estimator class in WEKA

(weka.classifiers.bayes.net.estimate) but there are some changes on the parameter

estimator as presented in equation (4.4). Where the Amending_parameters class

calls method my_parameter_estimator() that uses to calculate our new estimator;

where this method uses:

o Cost_Ratio class to calculate the cost ratio for each class label as shown above .

Finally, after learn structure and parameters, the BN_Amending(Training, Cost1, Cost2)

method used to calculate the last results which are expected cost and accuracy.

Figure C1.3 : Implementation of class “Amending_BN_Structuer”

Figure C1.3 : Implementation of class “Amending_BN_Structuer”

130

4. Classifier3_CS-BN via GA: it is used to implement our third classifier by using

Genetic algorithm, that described in Section 4.3. First, the Main Class calls methods

called Splitting_data(Data), and Splitting_training(Tranining), in Splitting class; to

split the data into three parts Sup_training, Sup_testing, and Testing. Then,

Classifier3_CS-BN via GA class uses some methods in other classes as:

Figure C1.4: Implementation of class “Amending_parameters”

Figure C1.4: Implementation of class “Amending_parameters”

Figure C1.5: Implementation of class “Classifier3_CS-BN via GA”

Figure C1.5: Implementation of class “Classifier3_CS-BN via GA”

131

4.1 Check_indivadual : this class is used to create and check if the generation

tree has the same TAN’s rules, by using three methods:

o Creat_random_indvidual(): to generate a random adjacency matrix

Binary_indivadual_array[][], as shown in Chapter 4, Figure 4.6(a).

o Check_No_Circula(): to check if there are no any circulars between

nodes that represents as adjacency matrix, as shown in Figure 4.6(b),

and Figure 4.6(d).

o Chack_1Parent(): to check if each node has just 1 parent and other

parent (class node) in adjacency matrix.

4.2 Evaluate_Generations: this class is used to learn parameters of BN, and

evaluate all individuals in the generation on the fitness function, by using

three methods:

o Learn_parameters_Suptrain(Population_arry[][][]): this method is used to

learn parameters of the learned BN for each individual in a population, by

using simple estimator that described in Chapter 2, Section 2.4.2.

o Validation_SuptestingOn_indvs(Population_arry[][][],Sup_testing):this

method is used to evaluate each TAN (individual) and calculate the expected

cost(fitness function), and the accuracy for each tree.

o Sort_Fitness&Accuracy(Fitness[],Accuracy[]): this method is used to sort all

the individuals according to minimum cost and maximum accuracy .

This class has GA-operators class, that is used to create the next

generation by using three methods:

 Selection(Population_array[][][]): it is used to select the best 25

individuals from the previous population in the array, as shown in Figure

(4.7).

 Mutation(indivadual): used randomly to exchange a bit in the individual.

 Cross_over(Two_indivaduals[][2]): it is used randomly to cross over

two individuals, as shown in Figure (4.7).

132

4.3 Final_Evaluation_the_best_indivadual: this class is used as the last step in

this algorithm, to evaluate testing set on the best fitness structure. Where, it

uses two method:

o Learn_parameters_train(Best _individual[][]): this method is used

to learn the parameters of the best Bayesian structure on the

Training dataset.

o Evaluate_testingOn_The_best_indvs(Testing): This method is used

to evaluate the best Bayesian structure on the Testing dataset to

obtain the last results expected cost and accuracy.

5. MC+BN: it is used to call the existing MetaCost classifier based on existing TAN

classifier.

6. MC+j48: it is used to call the existing MetaCost classifier based on existing decision

tree classifier.

7. Original BN: it is used to call the original TAN classifier, to find the performance of

the algorithm.

8. Results_in10_Folds: this class is used to collected the performance of all the previous

algorithm in 10 folds, and to get the average of each algorithm.

9. Write_in excel-sheet: it is used as the last stage to write all the results of all

algorithms into an excel sheet.

Figure C1.6 shows the classes diagram of top level of all classes that used in our code the

classes diagram by using Dia software.

133

Figure C1.6: The classes diagram by using Dia software

Figure C1.6: The classes diagram by using Dia software

134

C2: Attached DVD, with all the results in excel sheets.

