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Abstract 

The occurrence of discoloured drinking water at customers’ taps, which is mainly caused 

by the deposition and release of iron (Fe) and manganese (Mn) in water distribution 

networks (WDNs), is a major concern for both customers and water companies. Increased 

concentrations of Fe and Mn in WDNs can lead to penalisation by the Drinking Water 

Inspectorate (DWI) and Water Services Regulation Authority in England and Wales 

(Ofwat). These high concentration levels can cause aesthetic problems such as giving 

water an unpleasant metallic taste and staining of laundry. It has also been found that 

increased Mn concentrations in drinking water can reduce intellectual function of children.  

 

Despite efforts by water companies to comply with standards for drinking water, they 

continue to receive customer complaints related to water discolouration. Currently, most 

water companies identify high-discolouration-risk regions in WDNs by either selecting 

areas in the network with high concentrations of Fe and Mn from their routine sampling, or 

using data obtained from customer complaints related to discolouration. However, these 

risk assessment methods are imprecise, because only few selected nodes are sampled and 

not all customers who experience water discolouration complain. Moreover, considering 

that the water mains in England and Wales span approximately 315,000 km, monitoring Fe 

and Mn concentrations will always be a difficult and expensive task. It is therefore 

imperative for water companies to gain a practical understanding of the processes and 

mechanisms that lead to water discolouration, and to develop a model to identify the high-

risk areas in WDNs so that remedial measures can be effectively implemented. 

 

The factors that influence Fe and Mn accumulation from post-treatment to customers’ taps 

through WDNs can be categorised into physical, chemical and biological. However, to 

date, researchers have only studied these factors partially or separately, but never in 

combination. None of the current models are able to predict discolouration/Fe and Mn 

accumulation potential for every node in WSZs using chemical, biological, and 

hydraulic/physical variables. This study took a holistic approach in investigating these 

factors. A five-year data set comprising of 36 water quality, hydraulic, and pipe-related 

variables covering 176 different district metered areas (DMAs) were analysed to identify 

relevant variables that influence Fe and Mn accumulation potential. Customer complaint 

data were also investigated for seasonal trends. Majority of the DMAs (67.44%) showed 
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significant peaks in customer complaints during summer. These spikes may be attributed 

to increased water consumption and warmer water temperatures during this period. An 

artificial neural network (ANN) model was developed using relevant variables identified 

through the data analysis. The model could predict Fe and Mn accumulation potential 

values for every node in a given water supply zone (WSZ). From the risk maps generated 

by the ANN model, it was observed that most of the regions in the network with high Fe 

and Mn accumulation potential also had high levels of customer complaints related to 

discolouration. Although the ANN model could predict Fe and Mn accumulation potential 

failures in WSZs, its black-box nature made it difficult to explain the causes of the failures, 

unless they were manually investigated. 

 

To overcome the limitation in the ANN model, a fuzzy inference system (FIS) was 

developed to predict Fe and Mn accumulation potential for every node in WDNs and also 

capture the chemical, biological and physical processes as water travels through the 

network. The rules and weights of the rules for the FIS were calibrated using a genetic 

algorithm. The FIS is also able to determine the causes of the Fe and Mn accumulation 

potential failures. The ability of the developed models in this research to predict and 

indicate the causes of high Fe and Mn accumulation potential at the node level make them 

a unique and practical tool to detect high risk nodes in all regions in WDNs, including  

regions which have not been sampled. Both models could be of great benefit to water 

resource engineers and drinking water supply companies in managing water discolouration. 

They could also be used to investigate variables that influence physical, chemical and 

biological processes in WDNs. 
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CHAPTER 1: Introduction 

1.1 Overview 

Safe drinking water is essential for sustaining human life. An adequate, safe, and 

accessible supply of water should be available to everyone for both domestic and 

commercial use. According to the World Health Organization (WHO), safe drinking water 

is water that does not present any significant risk to human health over a lifetime of 

consumption, including different sensitivities that may occur during various life stages 

(WHO, 2006). In addition, safe drinking water should be aesthetically pleasing with 

respect to appearance, taste, and odour. Furthermore, it should not contain harmful 

concentrations of chemicals or pathogenic microorganisms (Australian National Health 

and Medical Research Council & Australian National Resource Management Ministerial 

Council [ANHMRC & ANRMMC], 2004). Although access to safe drinking water is 

considered a basic human right, more than one-sixth of the world’s population lack reliable 

access to such water, with this problem being predominant in developing countries (WHO 

& UNICEF, 2006).  

 

Although drinking water in developed countries is relatively safe, there are a number of 

issues that need to be addressed. Two main types of contaminant are considered to make 

drinking water unsafe. The first type, which is known as ‘primary contaminants’, include 

contaminants such as lead, copper (Cu), and nitrates which may have adverse health 

effects. The second type, known as ‘secondary contaminants’, include contaminants such 

as iron (Fe), manganese (Mn), and aluminium (Al) which can cause drinking water 

aesthetic problems such as unpleasant odour, taste, water discolouration, and staining of 

laundry. Increased Fe and Mn in drinking water, which is the main cause of discolouration, 

have long been considered to be an aesthetic problem. However, research by Wasserman et 

al. (2006) on increased Mn in drinking water indicated it can cause more than the 

traditional aesthetic issues. Increased concentrations of Fe and Mn can also lead to 

compliance failures, customer complaints, and loss of customers’ confidence in drinking 

water companies. Unlike discolouration, compliance failures may not be visible to the eyes, 

but are assessed using analytical methods.  
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Several researchers have tried to develop models to predict discolouration in water 

distribution networks (WDNs). However, most of these models use only hydraulic or 

physical variables that influence discolouration in making predictions. Current drinking 

water discolouration risk models found in literature include the use of chemical, biological, 

or hydraulic/physical variables in making predictions; but not used in combination. As a 

result, these models are unable to capture all of the processes and mechanisms that 

influence discolouration/Fe and Mn accumulation. There is therefore the need for water 

companies to have a model that will use all the relevant variables to identify high-risk 

regions in WDNs, indicate the causes of failures in these regions, and if possible, find 

solutions to these problems. In this research, a comprehensive study on the processes that 

influence the accumulation of Fe and Mn particles in WDNs was conducted. Using 

relevant chemical, biological, and hydraulic/physical variables, models were developed to 

help drinking water companies to predict areas in WDNs with high-risk of Fe and Mn 

accumulation potential. 

 

 

1.2 General problem statement 

Fe is a naturally occurring element that is found in certain rocks and soils, and it 

constitutes approximately 5% by weight of the earth’s crust. It is the fifth most abundant 

element in the earth’s crust (Gschneidner, 1996). Unsurprisingly, a study conducted by 

Boxall, Skipworth and Saul (2003) on flushing samples collected in the UK identified Fe 

and Mn as the first and second most common water contaminants, respectively, 

irrespective of the pipe material in WDNs. A related study by Slaats (2002) showed that 

gradual accumulation of Fe and Mn particles in WDNs is the most common cause of water 

discolouration. Although elements such as silicon, calcium (Ca), Al, and Cu as well as 

organic compounds, can also cause water discolouration, they are not as prevalent as Fe 

and Mn (Teasdale, O’Halloran, Doolan, & Hamilton, 2007).  

 

1.2.1 Health and aesthetic problems 

Fe and Mn in drinking water have long been considered to cause only aesthetic problems; 

that is, they are secondary contaminants that have little or no adverse health effects. In fact, 

low concentrations of Mn and Fe are known to be essential for human health (Swistock, 

Sharpe, & Robillard, 2001). Although only low concentrations of Fe and Mn enter WDNs 
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after the treatment process, years of accumulation in distribution systems, as well as 

periodic re-release in significant quantities, and other adsorbed compounds associated with 

the deposits can result in more than the traditional aesthetic issues. For example, 

Wasserman et al. (2006) investigated the relationship between increased concentrations of 

Mn in drinking water and reduced intellectual functions of children.  

 

High concentrations of Mn and Fe in WDNs can also give water an unpleasant medicinal 

or metallic taste (Swistock et al., 2001). Studies have attributed red-brown, yellow, yellow-

brown, and brown colours of drinking water to corrosion of Fe (Yarra Valley Water, 1998). 

Black water has been attributed to excess concentrations of Mn and biofilms stripping (Sly, 

Hodgkinson, & Arunpairojana, 1990; Yarra Valley Water, 1998). This discoloured water 

could also lead to similarly coloured stains on laundry and porcelain, thereby prompting 

numerous customer complaints. Vegetables cooked with Fe-contaminated water become 

dark and look unappetizing, and Fe or Mn bacteria can cause black-brown slimy masses 

inside toilet tanks (Herman, 1996).  

 

In response to these known issues, water companies have adopted expensive and 

sophisticated risk-based management systems for monitoring discolouration in WDNs. 

However, despite their efforts to comply with drinking water standards, they continue to 

receive customer complaints related to water quality. In this research, a customer 

complaint is defined as a record of a customer complaining directly to the water company 

regarding incidents such as discolouration, metallic taste, or slime. These complaints 

significantly undermine customers’ confidence in water companies. An analysis of 

customer complaints related to the quality of water supplied by a UK water company over 

a five-year period showed that 34% and 7% of the complaints are related to discolouration 

and other aesthetic problems, respectively (Cook, Boxall, Hall, & Styan, 2005). Customers 

evaluate water quality by taste, sight, and smell. However, most substances that can be 

evaluated by human senses are secondary contaminants, and are often harmless 

(Department of Human Services & Department of Natural Resources and Environment, 

2000). In fact, some of the highest health risks of water are attributed to substances that 

cannot be perceived by human senses (for example, bacteria and dissolved organic 

compounds). Although customer complaints are a good indicator of water quality, using 

them alone can be misleading, as not all customers complain. Nevertheless, they can be 
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very useful for predicting discolouration/Fe and Mn accumulation potential in WDNs 

when used in combination with other chemical, biological, and physical variables. 

  

1.2.2 Compliance problems 

High concentrations of Fe and Mn in WDNs can lead to compliance failures. The DWI has 

set the maximum concentration levels (MCLs) of Fe and Mn in drinking water to 200 and 

50 µg/L, respectively. In general, water companies set post-treatment targets of Fe and Mn 

to approximately 3% of their respective MCLs. They do so to reduce the concentrations of 

Fe and Mn entering WDNs, thereby leading to reduced deposition. However, irrespective 

of how effective water is treated, very low concentrations of Fe and Mn may still enter the 

network from water treatment plants and gradually accumulate on the inner surface of pipe 

walls within WDNs. During hydraulic events, such as high flows created by bursts in 

water mains or high diurnal consumption of drinking water, these accumulated particles 

may be dislodged from the pipe walls, cause discolouration, and subsequently end up at 

customers’ taps.  

 

1.2.3 Financial losses 

In April 2010, the Water Services Regulation Authority in England and Wales (Ofwat) 

introduced the Service Incentive Mechanism (SIM). This mechanism rates the 

performance of water companies based on customer satisfaction, and either rewards or 

penalises them. In view of this, it has become extremely important for water companies to 

reduce the number of customer complaints caused by drinking water discolouration. Water 

companies also receive fines from the DWI if the concentrations of Fe and Mn exceed 

their respective MCLs. 

 

The deposits of Fe and Mn in WDNs can clog pipelines and decrease water pressure, 

thereby requiring more energy to pump water through the network. Furthermore, these 

deposits can increase pumping and rehabilitation costs (Vreeburg & Boxall, 2007). 

Moreover, the corrosion of iron pipes is an important chemical process in water 

discolouration. For this reason, several water companies have spent substantial amount of 

money replacing iron pipes with polyvinyl chloride (PVC) pipes, with the aim of 

decreasing discolouration in WDNs. However, customers still experience some 

discolouration in areas that are entirely networked with PVC pipes, although they do not 

corrode over time as they do not react with air and water (Vreeburg, 2007). A study by 
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Cerrato, Reyes, Alvarado and Dietrich (2006) indicated that this observation could be 

attributed to the deposition dynamics in PVC pipes. They observed that the Mn deposits on 

the walls of PVC pipes were loose because of their exceptionally smooth walls; as a result, 

were subjected to sloughing and discolouration under smaller shear forces than in iron 

pipes.  

 

In a related study, Cook (2007) investigated plastic, asbestos cement, cast iron, epoxy lined, 

and cement and bitumen lined pipes, and observed no correlation between customer 

complaints related to water discolouration and these pipe types. Boxall et al. (2003) 

reported that, irrespective of the pipes used in WDNs, Fe and Mn were the first and second 

most common water contaminants, respectively. This result indicates that there are other 

factors in addition to pipe material that cause Fe and Mn particles to accumulate in WDNs. 

 

1.2.4 Modelling difficulties 

The processes influencing the accumulation and release of Fe and Mn in WDNs are highly 

complex, unpredictable, not fully understood, and difficult to model mathematically. The 

concentrations of Fe and Mn frequently change with time and space as water moves from 

the treatment plant to customers. The variability of source materials, hydraulics, biological 

and chemical reactions that occur within a network contribute towards creating a very 

complex environment that is difficult to understand.  

 

Moreover, increased treatment costs, increased pumping and rehabilitation costs, fines, and 

sophisticated risk-based management systems are costing water companies significant 

amount of money. There is therefore an urgent need for water companies to not only gain a 

practical understanding of the processes and mechanisms that lead to compliance failures 

and discolouration, but also devise a comprehensive strategy to deal with such events. 

Water companies worldwide are urgently looking for solutions to prevent the above-

described problems. Furthermore, there is also a strong need for a model that can predict 

the risk of Fe and Mn accumulation potential based on not only physical and hydraulic 

variables, but in combination with chemical variables and variables that influence 

biological processes. 
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1.3 Knowledge gaps 

Water companies have to deal with two main problems: regulatory compliance failures and 

discolouration events, both of which can lead to penalisation and loss of confidence by 

customers, as well as concerns regarding potential health impacts. While discolouration 

can be detected by human eyes and prompts customers to complain, Fe and Mn 

compliance failures are assessed using analytical methods, because they cannot be detected 

by sight. Currently, many drinking water companies identify regions with high-risk of 

discolouration/Fe and Mn failures by either selecting areas in the network with high Fe and 

Mn concentrations from their random sampling, or by using customer complaints data due 

to water discolouration. These methods can be ineffective for two reasons. First, the large 

sizes of water supply zones (WSZs) make it difficult and expensive to monitor Fe and Mn 

concentrations. With about 315,000 km of water mains across England and Wales, it will 

be impossible to sample every node in large WSZs. Hence, regions which have high Fe 

and Mn concentrations that are not sampled will not be detected. Secondly, studies in the 

United Kingdom have shown that only 30% of customers that experienced discoloured 

water actually complained (Ewan & Williams, 1986). Similarly, a study conducted by 

Roseth and Rock (2003) in Melbourne, Australia, indicated that only 15% of customers 

who experienced water discolouration complained. These studies show that certain regions 

in WSZs with high discolouration risk/Fe and Mn accumulation potential will go 

undetected because complaints are not reported. Using Fe and Mn concentrations and 

customer complaints to identify regions with high-risk of discolouration or failures of Fe 

and Mn is desirable. However, a model that can predict the risk of Fe and Mn 

accumulation potential in every region in WDNs and indicate the causes of this risk will be 

more beneficial.  

 

Hydraulic distance from source of water supply is a very important variable that influences 

Fe and Mn accumulation which has not been investigated thus far. It is the distance taken 

for water to travel from a source of water supply to a given node within a WDN. In general, 

the further water travels through WDNs, the more chlorine dissipates. This increases 

microbial growth, which increases biological oxidation of Fe and Mn, and subsequently 

increases Fe and Mn accumulation potential. 
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A number of discolouration risk assessment tools have been developed by researchers. 

They include the Particle Sediment Model (PSM) (Wu et al., 2003), Discolouration Risk 

Analysis Tool (DRAT) (Boxall & Husband, 2005), Resuspension Potential Method (RPM) 

(Vreeburg, Schaap, & van Dijk, 2004a), Discolouration Risk Modelling approach (DRM) 

(Dewis & Randall-Smith, 2005), Discolouration Propensity Model (DPM) (McClymont et 

al., 2011), and Pressure-dependent Analysis (PDA) model (Seyoum & Tanyimboh, 2014). 

Most of these models deal exclusively with the risk of discolouration based on 

physical/hydraulic variables such as water velocity, turbidity, shear stress, water age, 

turbopherosis, and pipe material. Very little research has been conducted on Fe and Mn 

accumulation on the inner surface of pipe walls. More importantly, none of the developed 

models are able to predict discolouration/Fe and Mn accumulation potential for every node 

in WSZs using chemical, biological, and hydraulic/physical variables. 

 

Fe and Mn may be present in different complex species and compounds as well as in 

solution or particulate forms. They may also be loosely present within the water mains, or 

adhered to the inner surface of pipe walls. In this research, Fe and Mn were studied from 

the point of view of accumulation rather than from discolouration. The accumulation of Fe 

and Mn on the inner surface of pipe walls is influenced by the following factors:  

(a) chemical reactions 

(b) microbiological activity, and  

(c) physical or hydraulic processes within the network.  

Studies in this area have thus far mainly focused on the following issues: 

1. Discolouration, with little research carried out to understand what factors affect 

accumulation and compliance problems. 

2. The above mentioned factors have been investigated by researchers independently, 

rather than in combination. 

 



 

 

 

 

Figure 1.1 The Fe and Mn accumulation potential model
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To date, researchers have only studied these factors partially or separately, but never in 

combination. Clearly, there is a limitation in their attempt to unravel the complex process 

of accumulation. In this research, the focus was on studying Fe and Mn accumulation 

potential holistically rather than independently. However, in order to study the factors that 

influence Fe and Mn accumulation potential holistically and estimate the combined effect 

on deposition dynamics, it is imperative to understand their influence both individually and 

in association. Here, the challenge is to correlate Fe and Mn accumulation potential with 

the relevant chemical, biological, and physical/hydraulic variables. A diagram of the 

developed model showing how all the variables were correlated with Fe and Mn 

accumulation potential is presented in Fig. 1.1. Chapters 2, 4, 5, and 6 discuss the effect of 

each of the variables on the accumulation of Fe and Mn in detail. 

  

As mentioned above, this study took a holistic approach in investigating the factors that 

influence the accumulation of Fe and Mn particles from post-treatment to customers’ taps 

through WDNs. This approach is important because continuous deposition due to these 

factors will lead to compliance failures, and eventually result in discolouration during 

hydraulic events such as opening of fire hydrants during fire extinguishing exercises and 

increased flow caused by increased water consumption. Mitigating the former problem 

will clearly mitigate the latter, as the two problems are directly linked. The ability of the 

developed models in this research to predict and indicate the causes of high Fe and Mn 

accumulation potential at the node level make them a unique and practical tool to guide 

drinking water companies in managing discolouration. These models can help in the 

maintenance of water mains, the development of cleaning protocols, and the development 

of operational and management strategies for water distribution at the national and 

international levels.  

 

1.4 Aim and objectives 

The main aim of this study is to develop cost-effective models to predict Fe and Mn 

accumulation potential using relevant chemical, biological, and hydraulic/physical factors 

that aid accumulation process in WDNs. These models will take a holistic approach to 

correlate Fe and Mn accumulation potential with relevant variables such as aluminium, 

alkalinity, free chlorine residual, pipe material, and maximum daily shear stress at nodes. 

The specific objectives are as follows: 
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1 To prepare a comprehensive literature review to find gaps in knowledge and identify 

variables other researchers have used that potentially influence Fe and Mn 

accumulation in WDNs.  

2 To develop a model to extract/compute required physical/hydraulic variables such as 

hydraulic distance from source of water supply, maximum daily shear stress at node, 

water age, pipe age, and pipe material. 

3 To analyse the hydraulic/physical and post treatment water quality data with the 

objective of identifying relevant variables that influence Fe and Mn accumulation in 

WDNs. Each of the variables will be studied in depth and as a complete system in 

order to understand the processes that lead to the accumulation of Fe and Mn in 

WDNs. 

4 To develop risk assessment models using artificial intelligence techniques to predict 

Fe and Mn accumulation potential in WDNs. The developed risk assessment tools 

should be able to generate risk maps to help water resource engineers and drinking 

water companies to identify high-risk regions in WDNs. 

5 To develop risk assessment models that would be able to indicate the causes of high-

risk of Fe and Mn accumulation potential in order for water companies to find 

possible solutions to reduce it, since a reduction in Fe and Mn accumulation potential 

will reduce discolouration as the two are directly linked. 

 

 

1.5 Thesis organisation 

Chapter 1 presents the general overview of the research topic, general problems statement, 

knowledge gaps, and the aim and objectives of this research. 

 

Chapter 2 presents a comprehensive literature review that identifies relevant variables that 

influence Fe and Mn accumulation in WDNs. In this chapter, the chemical, biological and 

hydraulic/physical processes that lead to Fe and Mn accumulation were discussed, and 

different models for predicting drinking water discolouration in WDNs were reviewed. 

 

Chapter 3 presents a critical review on artificial intelligence based methods of modelling. 

This chapter reviews some applications of artificial neural network (ANN) models and 

fuzzy inference systems (FISs) in water resources. 
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Chapter 4 presents how a five-year customer complaint data were collated to identify 

suitable WSZs with low, medium and high customer complaints for analysis. The 

customer complaints data were investigated for seasonal trends. Also, a five-year post-

treated water quality data set from the selected WSZs were analysed to identify relevant 

variables that influence Fe and Mn accumulation. The EPANET software was extended to 

extract/compute relevant hydraulic/physical variables. Each of the variables was studied in 

depth and as a complete system to understand the processes that lead to the accumulation 

of Fe and Mn in WDNs. 

 

Chapter 5 shows how the ANN models were developed using the identified relevant 

variables to predict Fe and Mn accumulation potential in WDNs. The risk maps generated 

by the models were compared with maps of customer complaints due to water 

discolouration to investigate whether there were any correlations. 

 

Chapter 6 presents two FISs developed using relevant variables that influence Fe and Mn 

accumulation potential in WDNs. The first FIS developed, the hierarchical rule-based 

expert FIS, uses expert knowledge to formulate rules and assigned weights to them in 

making its predictions. While the second FIS, the hierarchical data-driven FIS, uses 

genetic algorithm to optimise the rules and weights of the rules in making its predictions. 

The developed FISs are able to indicate the causes of high-risk of Fe and Mn accumulation 

potential. 

 

Finally, the conclusion from this research and recommendations for future work are 

presented in Chapter 7. 
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CHAPTER 2: Literature Review 

 

2.1 Introduction 

The MCLs of Fe and Mn set by the DWI were discussed in Chapter 1. The need for 

drinking water companies to understand the processes and mechanisms that lead to Fe and 

Mn accumulation will also be discussed. The variables that influence accumulation can be 

grouped into three categories: (a) chemical variables such as alkalinity and chlorine that 

represents the chemical reactions within a WDN; (b) variables that influence biological 

processes such as phosphorus (P) and organic carbon that aid the accumulation; and (c) 

physical variables such as the age of pipes, shear stress, and water age. Because a 

significant percentage of customer complaints are related to water discolouration, more 

studies need to be conducted to tackle this problem. However, as mentioned in Chapter 1, 

water companies are striving for a better and practical understanding of the processes and 

mechanisms that lead to accumulation of Fe and Mn in WDNs, which thus far, have only 

attracted limited research. 

 

In this chapter, a comprehensive literature review would be conducted to identify relevant 

variables that influence Fe and Mn accumulation from post-treatment, through the WDNs 

to customers’ taps. The chemical, biological, and physical processes that lead to Fe and 

Mn accumulation would also be discussed. The following sections present a critical review 

of published literature in this field. Section 2.2 discusses studies on sediment accumulation 

in WDNs. A review of four main theories on the formation of discoloured water is 

presented in Section 2.3. Section 2.4 focuses on discolouration risk models. Finally, the 

summary of this chapter is presented in Section 2.5  

 

 

2.2 Factors that influence sediment accumulation in water distribution 

networks 

The accumulation of sediments in WDNs can be attributed to several factors, most of 

which are interrelated. These include complex physical, chemical and/or biological 

processes. Linking the particles found in a WDN to a particular discolouration source can 

be a very difficult task because of the numerous potential sources and the complex layout 
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of pipe networks (Gauthier, Gérard, Portal, Block, & Gatel, 1999). In an attempt to link 

particles of iron oxide deposits found in several PVC pipes, Gauthier et al. (1996) 

suggested they are likely to have travelled a considerable distance through the pipe 

network because they could not have originated in the PVC pipes themselves. The 

following sections review the factors that influence sediment accumulation in WDNs. 

 

2.2.1 Influence of chemical variables on sediment accumulation 

2.2.1.1 Iron 

Fe can exist in aquatic systems (natural waters and their sediments) in several oxidation 

states: metallic iron (Fe), ferrous iron (Fe
2+

), and ferric iron (Fe
3+

). The oxidation state in 

which Fe exists in a particular aquatic system and the redox reactions (chemical oxidation-

reduction reactions) in which it participates depend on the presence or absence of oxidising 

agents such as dissolved oxygen (DO) and chlorine. Fe can also be oxidised by some 

microorganisms (Sly, Hodgkinson, & Arunpairojana, 1988). Fe
3+

 is stable in oxygenated 

water but is usually insoluble in the particle and colloidal forms. On the other hand, Fe
2+

 is 

thermodynamically unstable in oxygenated water but is generally soluble (Teasdale et al., 

2007). The source of Fe in drinking water is either from the ferrous pipes in WDNs or 

from the source of water supply after treatment.  

 

2.2.1.2 Manganese 

The chemistry of Mn is complex. It exists in several species with different oxidation states 

(Kohl & Medlar, 2006). Mn causes household problems only when it occurs in its 

particulate or oxidised form. In its soluble form, Mn is not visible to the human eye 

(United States Environmental Protection Agency [USEPA], 1994). Chemically, Mn occurs 

in all oxidation states between 0 and +7, with +2, +4, and +7 being more environmentally 

and biologically important (USEPA, 1994). Mn salts in the +2 and +7 states are chemically 

the most stable. Mn
2+

 and Mn
7+

 are soluble, whereas Mn
4+

 is insoluble (oxidised form, 

manganic dioxide). Mn is most stable in its +2 oxidation state, hence, most naturally 

occurring Mn is in the form of dissolved Mn
2+

 (American Water Works Association, 1999; 

USEPA, 2009). The next most common species is the particulate state; Mn
4+

. At 

concentrations as low as 0.02 mg/L, Mn
2+

 compounds in solution form undergo oxidation 

in the presence of chlorine, DO, or bacteria to form black precipitates that get encrusted on 

pipe walls in WDNs (Bean, 1974). Mn has complicated redox kinetics, hence it is very 

difficult to chemically oxidise in pH environments typical of raw water (pH 6–8). It often 
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persists in soluble forms despite unfavourable thermodynamics. It has been reported that 

redox (Eh) and pH conditions do not completely explain the Mn distribution in 

groundwater (Homoncik, MacDonald, Heal, Ó Dochartaigh, & Ngwenya, 2010). Mn can 

also exist in the +3 state; however, this state is very unstable and usually reverts to the +2 

state. Mn compounds in +5 states are not very common (American Water Works 

Association, 1999; Kohl & Medlar, 2006; USEPA, 2009). 

 

2.2.1.3 Aluminium 

Aluminium (Al) is the most abundant metallic element on the earth, comprising 

approximately 8% of the earth’s crust (Gschneidner, 1996). Al salts such as alum are often 

used as coagulants during water treatment to reduce organic matter, colour, turbidity, and 

microorganism levels (WHO, 2006). Al is insoluble in water under neutral conditions (pH 

6–9), except when it is in a complex organic form (Molot & Dillon, 2003). In the solution 

form, Al can exist as either an inorganic (Al
3+

, Al(OH)
2+

, AlF
2+

) or complex dissolved 

organic carbon compound, with the latter being dominant in WDNs (Schintu, Meloni, & 

Contu, 2000). Increase in Al causes the formation of amorphous Al(OH)3, which adsorbs 

Mn particles in WDNs (Wang et al., 2012). 

 

2.2.1.4 Copper 

Copper (Cu) can also cause water discolouration. Excessive concentration of Cu in 

drinking water can cause green or blue stains on household fittings. Cu mainly enters 

WDNs as a result of Cu salts which are used in reservoirs for algae control. They also 

enter WDNs from corrosion of Cu pipes (Cruse, 1971). Cu usually exists in the +1 and +2 

oxidation states in solution form. Cu
+
 and Cu

2+
 species may form mineral precipitates such 

as carbonates, hydroxides, oxides, and phosphates. High pH usually limits the solubility of 

these species (American Water Works Association, 1999).  

 

2.2.1.5 Organic matter 

A study conducted by Gauthier, Barbeau, Milette, Block and Prevost (2001) showed that 

organic matter constitutes 40–76% of the total suspended solids in WDNs. In general, 

because such solids are of low density, they can be transported over large distances in 

WDNs if they are not deposited on the pipe walls.  
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2.2.1.6 pH of water  

pH is a numeric scale ranged between 0 and 14 used to specify the acidity or alkalinity of 

an aqueous solution. Lower values of pH are more acidic, while higher values are more 

alkaline. Generally, increase in pH from 7 to 9 in WDNs has been found to increase pipe 

weight loss and corrosion rate (Stumm, 1960). However, the release of corrosion by-

products decreases at higher pH (Hidmi, Gladwell, & Edwards, 1994). A contrasting study 

by Kashinkunti, Metz, DeMarco and Hartmann (1999) indicated that pipe weight loss and 

iron concentration decrease as pH increases from 8.5 to 9.2. 

 

2.2.1.7 Alkalinity 

Alkalinity is the ability of a solution to neutralize acids to the equivalence point of 

carbonate or bicarbonate. An increase in alkalinity helps to increase buffer capacity, thus 

keeping the pH of drinking water stable. Increase in alkalinity of water generally reduces 

pipe weight loss and corrosion rates (Kashinkunti et al., 1999). A study conducted by 

Kashinkunti et al. (1999) showed that customer complaints due to water discolouration 

were reduced when the alkalinity was maintained at 60 mg CaCO3/L. In a related study, 

Naylor, Nicholas, Murry and Roddy (1993) investigated the effects of alkalinity and pH on 

the corrosivity of water and found that when alkalinity was higher than 50 mg CaCO3/L, 

corrosion reduced within pH range of 7.5–8. Research by Gray (1994) also indicated that 

soft waters with alkalinity less than 50 mg CaCO3/L are more likely to cause corrosion. A 

comprehensive research by Benjamin, Sontheimer and Leroy (1996) on the corrosion of 

iron and steel pipes and iron scale formation showed that in a low alkaline environment, 

the iron scales formed were thick (~2–3 cm), loose, and dark orange-brown in colour. 

These scales could easily be cracked or scraped off. On the other hand, the scales formed 

in a high alkaline environment were thin (≤1 mm), fairly uniform, hard, and tightly bound 

to the metal surface. 

 

2.2.1.8 Dissolved oxygen    

DO refers to the oxygen present in water. Corrosion rates generally increase with 

increasing DO concentration (Gedge, 1992). A study by Seo, Jung, Lee and Gee (1998) 

showed that the deterioration of drinking water is mainly caused by the corrosion of pipes 

in WDNs, and that DO concentration is the main factor that caused increased corrosion. 

During corrosion, DO serves as an electron acceptor (see Eqn. 2.1), and it oxidises ferrous 

iron (Fe
2+

) (see Eqn. 2.2) or iron scales (see Eqns. 2.3 & 2.4), (McNeill, 2000). 
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Fe +  0.5O 2  + H2O →  Fe2+  +  2OH−                                                             (2.1) 

  Fe2+ +  0.25O 2  + 0.5H2O  +  2OH−  →  Fe(OH)3                                         (2.2) 

3FeCO 3 +  0.5O 2  →  Fe 3O 4  +  3CO2                                                                (2.3) 

4Fe 3O 4 +  O 2 →  6Fe 2O 3                                                                                      (2.4) 

 

2.2.2 Influence of chemical processes on sediment accumulation 

Raw water comprises of natural organic matter and various elements in different states, 

such as soluble ions, colloids, and particulates, which can contribute to water 

discolouration in WDNs if they are not removed during the treatment process. Coagulant 

chemicals such as aluminium sulphate (alum), ferric sulphate and ferric chloride can pass 

some residual amounts of contaminants into the distribution system (Teasdale et al., 2007). 

The changes in water chemistry caused by the treatment process and constant interaction 

of chemical variables such as DO, pH, alkalinity, and chlorine can influence Fe and Mn 

accumulation within pipes. There are a number of chemical processes enumerated by 

various researchers that aid Fe and Mn accumulation in pipes. Out of these, three major 

chemical processes, namely, chemical oxidation, corrosion, and sorption contribute 

significantly to the accumulation process. The following sections describe the chemical 

processes that influence the accumulation of sediments in WDNs. 

 

2.2.2.1 Chemical oxidation 

As water travels through WDNs, soluble Fe and Mn in the WDNs from the source of water 

supply undergo chemical oxidation. Chemical oxidation of Fe and Mn occurs when soluble 

Fe
2+

 and Mn
2+

 are converted to insoluble Fe
3+

 and Mn
4+

, respectively, in the presence of an 

oxidising agent (Sly et al., 1990; Teasdale et al., 2007). Wallace and Campbell (1991) 

listed some oxidising agents that can oxidise Fe and Mn in order of effectiveness (from 

weakest to strongest) as: hypochlorite ion, chlorine dioxide, chlorine, hypochlorous acid, 

permanganate ion, hydrogen peroxide, ozone, and hydroxyl free radical.  

 

Water utilities often add gaseous chlorine (Cl2), chlorine oxidise, or hypochlorite to 

drinking water to protect it from harmful organisms or pathogens. Chlorination is the most 

commonly used method of disinfecting drinking water. Cl2 undergo hydrolysis in drinking 

water by the reaction in Eqn. 2.5a. The hypochlorous acid (HOCl) formed from Eqn. 2.5a 
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is a weak acid which subsequently dissociates aqueous solution by the reaction in Eqn. 

2.5b. Chlorine mainly exists at low, medium, and high pH as Cl2, HOCl, and ClO
-

(hypochlorite), respectively (Deborde & Von Gunten, 2008). 

 

𝐶𝑙2 + 𝐻2𝑂 ⇌ 𝐻𝑂𝐶𝑙 + 𝐶𝑙− +  𝐻+                                        (2.5𝑎) 

 

𝐻𝑂𝐶𝑙 ⇌ 𝐶𝑙𝑂− +  𝐻+                                                      (2.5𝑏) 

 

In general, chlorine oxidises faster and over a wider range of pH with Fe than with Mn 

(Odell, Cyr, & Prather, 1998). Chlorine dioxide is sometimes also used by water 

companies as a disinfectant because it is effective in the reduction of trihalomethanes 

(Wallace & Campbell, 1991). Equations 2.6a and 2.6b show how chlorine dioxide oxidises 

Fe
2+

 and Mn
2+

 to insoluble Fe
3+

 and Mn
4+

, respectively. Usually, the reaction takes place 

within two to three seconds (Knocke et al., 1990). A detailed review on disinfection of 

drinking water is presented in Section 2.2.3.3. 

 

𝐹𝑒2+ +  𝐶𝑙𝑂2 +  3𝐻2𝑂 →  𝐹𝑒(𝑂𝐻)3 + 𝐶𝑙𝑂2
− +  3𝐻+                                                 (2.6a) 

𝑀𝑛2+ +  2𝐶𝑙𝑂2 +  2𝐻2𝑂 →  𝑀𝑛𝑂2 + 𝐶𝑙𝑂2
− +  4𝐻+                                                   (2.6b) 

 

2.2.2.2 Corrosion processes 

Corrosion is a natural process that cannot be prevented but can be controlled. Corrosion of 

cast iron pipes is the most common cause of drinking water discolouration (DWI, 2007). It 

causes three main problems: (1) pipe mass is lost in the form of iron-bearing scales or 

soluble iron, (2) accumulated scales in pipes decrease the water capacity and increase the 

head loss, and (3) the release of soluble or particulate iron causes water discolouration and 

other aesthetic problems (McNeill, 2000).  

 

For corrosion to occur, an anode, cathode, electrolyte, and metallic path are required. 

Oxidation and reduction reactions occur at the anode and cathode, respectively. Corrosion 

primarily occurs on the pipe wall with the anodic release of ferrous iron from iron metal 

(see Eqn. 2.7). 

 

𝐹𝑒 →  𝐹𝑒2+  +  2𝑒−                                                                     (2.7) 
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If the water has a higher pH, then the anodic reaction produces a surface film of ferric 

oxide (see Eqn. 2.8).  

 

2𝐹𝑒 + 3𝐻2𝑂 →  𝐹𝑒2𝑂3 +  6𝐻+  +  6𝑒−                                        (2.8) 

 

If DO is present in the system, reduction occurs at the cathode (see Eqn. 2.9). The 

hydroxyl ions cause the pH to increase, thus increasing the corrosion rate. 

 

𝑂2  + 2𝐻2𝑂 +  4𝑒−  →  4𝑂𝐻−                                      (2.9) 

 

2.2.2.3 Formation of scales 

Fe
2+

 is usually soluble in drinking water; however, it can also form small amounts of 

siderite (FeCO3), which is deposited on pipe walls (Peng et al., 2010). Fe
3+

 forms insoluble 

oxides and hydroxides such as goethite (α-FeOOH), magnetite (Fe3O4), and hematite (α-

Fe2O3) that can also precipitate and deposit on pipe walls (Gerke, Maynard, Schock, & 

Lytle, 2008; Sarin et al., 2004).  

 

2.2.2.4 Influence of sorption variables on sediment accumulation 

Sorption is a physical and chemical process by which adsorption and absorption take place 

simultaneously. A research study conducted by (Wang et al., 2012) on the adsorption of 

Mn
2+

 with amorphous Al(OH)3 showed that adsorption mainly took place when the pH of 

drinking water was above 7.5. They observed that adsorption of Mn
2+

 with amorphous 

Al(OH)3 was enhanced by co-existing of high concentrations of cations such as Ca
2+

 and 

Mg
2+

 due to the effects of co-precipitation contributed by newly formed CaCO3 and 

Mg(OH)2 on other solids. They also found that dissolved organic matter, especially humic 

acid (HA), enhanced adsorption of Mn
2+

. They observed that the adsorptive capacity of 

Mn
2+

 with amorphous Al(OH)3 were enhanced by the following co-existing substances 

listed in order of strength, from strong to weak as: HA, Mg
2+

, and Ca
2+

. 

 

2.2.2.5 Pipe age 

The age of pipes in WDNs has a significant effect on corrosion. The accumulation of 

corrosion by-products and suspended particles over years can reduce pipe diameter, 

increase roughness, and cause water discolouration. A contrasting research by (McNeill, 
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2000) however showed that corrosion rates are higher in newer pipes but soon stabilises as 

scales build up on the pipe walls. 

 

2.2.3 Influence of biological processes on sediment accumulation 

2.2.3.1 Biofilms 

The biological processes that lead to water discolouration are very complicated. Microbial 

growth may lead to the formation of biofilms in WDNs. Biofilms are microorganisms that 

get attached to pipe walls and then multiply to form slime layers. Every WDN is 

susceptible to microbial growth and the resultant formation of biofilms, irrespective of the 

purity of water, type of pipe material, or presence of a disinfectant (National Research 

Council, 2005). Several definitions for biofilms have been published. USEPA (2002) 

defines biofilms as a complex mixture of microbes and organic and inorganic material 

accumulated amidst a microbial-produced organic polymer matrix attached to the pipe wall. 

Decho (2000) defines biofilms as aggregates of microorganisms such as mixed populations 

of bacteria, fungi, protozoa, algae, and higher organisms in the food chain such as 

nematodes and larvae. Biofilms that have Fe- and Mn-oxidising bacteria may contain high 

concentrations of inorganic content such as sediments, scales, and corrosion deposits 

(Cooperative Research Centre for Water Quality and Treatment [CRCWQT], 2005). 

 

Biofilms can cause many problems. They can damage industrial equipment such as heat 

exchangers and cooling towers, and this can lead to inefficient energy transfer, energy loss, 

increased fluid friction, and corrosion (Xiong & Liu, 2010). Bacterial growth may 

contribute to pipe corrosion, increased demand for disinfectants, and nitrification reactions. 

They may also cause aesthetic problems such as giving water an unpleasant taste and 

odour (Servais, Laurent, & Randon, 1995; USEPA, 2009). Studies have shown that Fe and 

Mn deposition increases with microbial activity. As a result of cell death and flow 

dynamics, biofilms may release entrapped Fe and Mn into the bulk flow (Deines et al., 

2010; Ginige, Wylie, & Plumb, 2011). The demand of biofilms for oxygen means that they 

may release, for example, Fe
2+

 during periods of extended anoxic conditions (Sarin et al., 

2004).  

 

Generally, increased flow velocity exhibits a negative correlation with the biofilms 

attached to a pipe wall (Donlan & Pipes, 1986). However, studies conducted by Becker 

(1998) showed that biofilms formed under higher flow velocities are often thinner but 
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firmer. Turbulent flow may cause shearing of biofilms from the pipe wall, causing bacteria 

to enter the water flow. Studies have also shown that suspended bacteria found in WDNs 

are produced by the detachment of biofilms from pipe walls, and not by the growth of 

organisms (Haudidier et al., 1988; van der Wende, Characklis, & Smith, 1989). A study 

conducted by Sly et al. (1998) showed that water velocity strongly influenced the nature of 

the biofilm in the early stages of microorganism development. They found that biofilms 

formed at higher velocities are more likely to accumulate Fe and Mn particles, and 

therefore, such biofilms are more likely to cause water discolouration. 

 

Over 90% of the biomass in WDNs is present as biofilms on pipe walls (Deines et al., 

2010; Flemming, 1998). The presence of organic carbon in water or on the pipe wall 

enhances biofilm production (van der Kooij, 2002). Biofilms have been found to enhance 

the accumulation of Fe and Mn particles, as well as calcium carbonate and other inorganic 

debris from the bulk flow (Geldreich, 1996). Furthermore, some microbes may oxidise Fe 

and Mn and increase their retention time in the network, whereas others may enhance the 

abiotic release of Fe from corrosion scales in the pipe (Cerrato et al., 2010). Recently, 

Ginige et al. (2011) showed that seasonal influence may affect biofilm production: 

production increased during the summer and autumn, whereas, during cooler periods, dead 

cells detached from pipe walls, together with the flow dynamics, increased water 

discolouration through the release of Fe and Mn particles into the bulk flow. 

 

2.2.3.2 Biological oxidation of iron and manganese 

Biofilms in WDNs contain a variety of microorganisms; however, only a few that oxidise 

Mn and Fe contribute to water discolouration. Such bacterial species have been identified 

by Sly et al. (1998) and LeChevallier, Babcock, & Lee (1987), and are listed in Table 2.1. 

Certain microorganisms such as Crenothrix, Flavobactium, Pseudomonas, Leptothrix 

discophora, and Clonothrix have been found to oxidise soluble Fe
2+

 and Mn
2+

 to insoluble 

Fe
3+

 and Mn
4+

, respectively, thereby increasing the deposition in WDNs (LeChevallier et 

al., 1987; Sly et al., 1988; Vigliotta et al., 2007). Bacillus spp. have been found to reduce 

Mn to +4 or +2 state, whereas Clostridium sp., Escherichia coli, and Enterobacter 

aerogenes reduce insoluble Fe
3+

 to soluble Fe
2+

 (Cerrato et al., 2006; Emde, Smith, & 

Facey, 1992). 
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Table 2.1 Bacterial species found in WDNs that oxidise manganese and/or iron 

Bacterial Species  Manganese Iron 

Arthrobacter
1
 Yes No 

Bacillus
1
 Yes No 

Enterobacter
1
 No Yes 

Flavobacterium
1
 Yes Yes 

Hyphomicrobium
2
  Yes Yes 

Metallogenium
1
 Yes No 

Micrococcus
1
 Yes No 

Pedomicrobium
2
 Yes Yes 

Pseudomonas
1
 Yes Yes 

1
 LeChevallier et al. (1987), 

2
 Sly et al. (1988) 

 

2.2.3.3 Factors that influence biofilm formation 

The factors that influence biofilm formation differ slightly in every network. The 

spatiotemporal non-uniformity of biofilms and several interrelated factors that lead to their 

growth make it very difficult to determine the dominant factor. Some potential factors that 

can influence the formation of biofilm are discussed below. 

 

Availability of nutrients:  

Biofilm bacteria need bioavailable forms of nutrients for growth in order to remain in 

WDNs. They require carbon, nitrogen, and phosphorus, with carbon being required in the 

greatest proportion. Some researchers have suggested a carbon:nitrogen:phosphorus ratio 

of 100:10:1 as being suitable for bacterial growth (CRCWQT, 2005). Trace amounts of 

some other nutrients are also required for the growth of biofilms, but these have not been 

investigated (LeChevallier, 1990). As bacteria mainly consume organic carbons, reducing 

the concentration of this nutrient can limit biofilm growth. 

 

Disinfectants:  

Chlorine, chlorine dioxide, and ozone are the three main primary disinfectants used by 

water companies to kill or prevent the growth of microorganisms in drinking water. 

Although drinking water is treated with these primary disinfectants before it is pumped 

through WDNs to consumers, its quality degrades with time as it travels through the 

network. To mitigate this problem, water in WDNs is treated with secondary disinfectants. 

The main secondary disinfectant used by water companies to treat drinking water is 

chloramine. Chloramine is obtained by adding ammonia to chlorine. The different types of 
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chloramine include monochloramine, dichloramine, trichloramine, and organic 

chloramines. The reactions that occur during the formation of chloramines are shown in 

Eqns. 2.10 – 2.12. At pH greater than 7.5, the chemical reaction that leads to the formation 

of monochloramine is dominant. When pH is between 4.5 and 5.0, the chemical reaction 

that leads to the formation of dichloramine occurs. Trichloramine is formed when pH is 

below 5 (Teasdale et al., 2007).  

 

𝑁𝐻4 + 𝐻𝑂𝐶𝑙 →  𝑁𝐻2𝐶𝑙 + 𝐻2𝑂 +  𝐻+                                                    (2.10) 

                                                       Monochloramine 

𝑁𝐻2𝐶𝑙 + 𝐻𝑂𝐶𝑙 →  𝑁𝐻𝐶𝑙2  +  𝐻2𝑂                                                              (2.11) 

                                                       Dichloramine 

𝑁𝐻𝐶𝑙2 + 𝐻𝑂𝐶𝑙 →  𝑁𝐶𝑙3  +  𝐻2𝑂                                                              (2.12) 

                                                       Trichloramine 

 

The type and concentration of disinfectant used can affect bacteria growth and biofilm 

formation in WDNs. It has been reported that increasing chlorine levels reduces biofilm 

formation (Gauthier et al., 1996; LeChevallier et al., 1987). Monochloramine has several 

advantages when used as a secondary disinfectant. It is the most common secondary 

disinfectant used for treating drinking water (USEPA, 2009). It is very effective because it 

does not dissipate quickly and provides longer-lasting protection (Teasdale et al., 2007). It 

is considered to be a less effective biocide for free cells, but it remains stable over a long 

duration. In addition, it better penetrates thick residuals and is less reactive. However, the 

effect of monochloramine on attached cells is very difficult to measure (USEPA, 2009; 

Zhang & DiGiano, 2001). 

  

Temperature:  

Although it is difficult to control the temperature of water in WDNs, it is a very important 

variable that influences bacterial growth rates (Ginige et al., 2011). Temperatures above 

15°C promote bacterial growth. In addition, high temperatures can strongly influence the 

treatment plant efficiency, disinfection efficiency, and corrosion rates (LeChevallier, 1990; 

CRCWQT, 2005). 
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Water age:  

The age of water in a WDN is the time taken for the treated water to travel from the source 

of water supply to a given node in the WDN. It may range from a few seconds to several 

days. The water age in a WDN depends on its mode of operation as well as physical 

variables such as the flow rate, pipe size, configuration, and amount of storage. WDNs 

with high flow rates and small pipe sizes will have a lower water age than those with low 

flow rates in large pipe sizes (National Research Council, 2005). 

 

2.2.4 Influence of physical and hydraulic variables on sediment accumulation 

Many studies have focused on the effects of physical variables on sediment accumulation 

(Vreeburg & Boxall, 2007). These variables can be grouped into (i) pipe-related variables 

such as the pipe material, pipe age, and pipe cleaning process, and (ii) hydraulic variables 

such as the water velocity, shear stress, diurnal variation, and turbophoresis (Vreeburg & 

Boxall, 2007). Boxall, Skipworth and Saul (2001) indicated that shear stress is the primary 

cause of sediment conditioning and re-release in pipe networks. Similarly, the pipe 

cleaning process employed may remove corroded pipe wall material in iron pipes, which 

may lead to further corrosion and scaling. Some of these variables and processes that 

influence sediment accumulation are discussed in the following sections.  

 

2.2.4.1 Flow velocity 

Studies have shown that flow velocity influences the accumulation process in pipes. In the 

Netherlands, a flow velocity of 1.5 m/s has been mandated to clean water mains. For self-

cleaning, the velocities should be at least 0.4 m/s (Blokker & Vreeburg, 2005; van Boomen 

& Vreeburg, 1999). In the UK, the values range from 0.7 m/s for a 50-mm pipe to 1.3 m/s 

for a 200-mm pipe. Numerous laboratory and field studies have revealed that the 

generation of material layers is influenced by the range of daily flow patterns, with greater 

variability reducing material accumulation (Husband, Boxall, & Saul, 2008). 

 

2.2.4.2 Shear stress 

Ackers, Brandt and Powell (2001) recognised the importance of shear stress in the 

mobilisation of sediment, and recommended a value of 2.5 N/m
2
 for complete flushing of 

material from pipe walls. Later, Boxall et al. (2001) developed the Prediction of 

Discolouration events in Distribution Systems (PODDS) model based on effective shear 

stress criteria. Boxall and Saul (2005) conducted extensive field studies on discolouration, 
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and concluded that deposition occurs in cohesive sediment layers and that conditioning 

shear stress is a function of the peak daily shear stress. Sly et al. (1988) studied biofilm 

development in WDNs, and observed that biofilms developed at a velocity of 0.5 m/s 

actively oxidised and deposited Mn, but those developed at 0.01 m/s did not affect Mn. 

Prince, Ryan and Goulter (2003) conducted continuous monitoring of turbidity and flow in 

WDNs, and their analysis of this data, along with customer complaint data and operations 

data, revealed that the largest proportion of turbidity spikes occurred during events that 

created abnormally high water velocities. Boxall and Prince (2006) analysed a large-

diameter asbestos cement main, and proposed a minimum shear stress value of 1.12 N/m
2
 

for effective flushing. Husband and Boxall (2011) suggested that an ultimate shear stress 

of 1.2–1.8 N/m
2
 is sufficient for the complete removal of sediment layers from plastic 

pipes. For rough iron pipes, no ultimate layer bonding strength was found for the flushing 

forces attained. 

 

2.2.4.3 Turbophoresis 

Turbophoresis is the tendency of a particle to move from a more turbid region to a less 

turbid one. In pipe flows, this means that particles move from the bulk flow toward the 

pipe wall, where they attach to cohesive layers. Vreeburg and Boxall (2007) carried out 

experimental investigations which indicated that, at low velocities, sediment accumulation 

occurs in the lower half of pipes (i.e. gravity settlement). At higher velocities, they 

observed that turbulence forces dominated the gravitational forces and influenced the 

accumulation process. Their experimental observations showed that turbophoresis forces 

exceeded gravitational force at velocities greater than 0.14 m/s.  

 

2.2.4.4 Pipe material 

Pipe material is an important variable that can influence sediment accumulation. Based on 

the material, pipes can be divided into ferrous and non-ferrous pipes. Studies have shown 

that networks that mainly use ferrous pipes are more prone to discolouration events 

because of corrosion (Cook et al., 2005). Contrary to the common belief that networks 

with plastic pipes are less prone to discolouration, recent studies have shown that deposits 

on plastic pipe walls are looser because of the smooth pipe surface, and are thus subject to 

sloughing under smaller shear forces compared to iron pipes (Cerrato et al., 2006; Husband 

& Boxall, 2011). This means that discolouration can also occur in regions of WDNs that 

are entirely networked with PVC pipes. 
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2.2.4.5 Pipe condition 

Pipe condition strongly influences sediment accumulation, and, in turn, the risk of 

discolouration. Studies on flushing by Boxall et al. (2003) suggested that high turbidity 

levels occur during flushing operations in pipes that are in poor condition, because these 

pipes have not been cleaned or rehabilitated. Cook et al. (2005) studied the structural 

integrity of WDNs and water quality using pipe properties such as the burst frequency, 

diameter, age, and daily conditioning shear stress. They observed that DMAs with higher 

burst rates had fewer customer complaints related to discolouration; however, the inverse 

was not necessarily true. They attributed this to the cleaning effect of the bursts and 

leakages in removing deposits from pipes. 

 

2.2.4.6 Pipe cleaning 

Pipes can be cleaned by using various methods to flush accumulated sediment. The three 

most commonly used methods are water flushing, water/air scouring, and 

swabbing/pigging. The complete removal of all materials from pipes is only possible by 

using more abrasive methods such as swabbing and pigging. However, these methods can 

increase corrosion in ferrous pipes. Where established corrosion layers can effectively 

protect the underlying ferrous material aggressive cleaning methods can expose this 

underlying surface, which will then start to corrode more rapidly, thus generating material 

on the pipe wall and releasing ferrous ions into the bulk fluid (Slaats, 2002). 

 

2.2.4.7 Water pressure 

When water pressure in pipes with leakages is very low or negative, there is a high-risk 

that contaminants will be introduced into WDNs. Contaminants can enter the system 

through broken or cracked pipes, and also during or after maintenance and repair 

(Kirmeyer, Friedman, Martel, & Howie, 2001). Pipes are normally depressurised during 

repair or when hydrants are being used for extinguishing fires (Sadiq, Kleiner, & Rajani, 

2007). At such times, backflow often occurs, causing water discolouration. During 

backflow, contaminated water (organic or inorganic particles) from factories, hospitals, 

and domestic water tanks flows back into WDNs (Prince, 2008). A study by Seyoum and 

Tanyimboh (2014) showed that a reduction in water pressure increases water age, and 

subsequently decreases water quality. 
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2.3 Water discolouration theories 

There are several published theories on the formation of discoloured water. However, there 

are four main theories that researchers have used to explain how discoloured water is 

formed. These are the deposition and re-suspension theory, mobilisation theory, cohesion 

and erosion theory, and adhesion and striping theory. The following sections review these 

four theories. 

 

2.3.1 Deposition and re-suspension theory 

The deposition and re-suspension theory is based on the movement of non-cohesive, 

discrete, relatively large particles in river systems. The diameter of particles in river 

systems ranges from about 60 mm (gravels) to 0.2 mm (sand). The relatively large sizes of 

the particles make gravitational force dominant in the deposition and re-suspension process. 

This process also depends on physical properties of the particles, such as shape, specific 

gravity, and concentration (Boxall et al., 2001; Gauthier et al., 1996; Walski, 1991). If the 

force due to the flow of water acting on the deposited particles exceeds the gravitational 

and frictional forces, the particles will become entrained. The deposition and re-suspension 

process is cyclic in nature. It starts from the transportation of particles stage, goes through 

the deposition stage, erosion stage, and then again to the transportation stage. Figure 2.1 

illustrates the deposition and re-suspension process in discoloured water formation.  

 

 

Figure 2.1 Deposition and re-suspension process in discoloured water formation 

 

Unlike particles in river systems, particles in WDNs are very small. A large proportion of 

the particles found in WDNs are known to be less than 50 μm in diameter (Prince, 2008). 
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This means that gravitational force acting on particles will not be dominant in WDNs. 

Therefore, the deposition and re-suspension theory may not properly explain the formation 

of discoloured water in WDNs. Deposited particles in WDNs may be as a result of some 

other forces or mechanisms other than gravitational force. 

 

2.3.2 Generation and mobilisation theory 

Smith, Bisset, Colbourn, Hold and Lloyd (1997) and Boxall et al. (2001) used the 

generation and mobilisation theory to explain the formation of discoloured water in 

unlined cast iron pipes. In this theory, deposition occurs from corrosion of the unlined cast 

iron pipes. They observed that, in certain instances, the rate of Fe particles formed through 

corrosion was greater than its deposition rate. The deposited fine Fe particles were 

described by Boxall et al. (2001) as cohesive layers. When flow velocity or shear stress 

increases, deposited particles become mobilised and are transported together with 

suspended colloids to cause discolouration. Unlike the deposition and re-suspension 

process, the generation and mobilisation process is not cyclic. It starts with the generation 

of particles stage, goes through the mobilisation stage, and ends with the transportation of 

particles stage. It is assumed that the mobilised particles are not re-suspended. This 

assumption is inaccurate because mobilised particles do not remain in suspension forever. 

Figure 2.2 illustrates the generation and mobilisation process in discoloured water 

formation. 

 

 

Figure 2.2 Generation and mobilisation theory in discoloured water formation 

 

2.3.3 Cohesion and erosion theory 

In the cohesion and erosion theory, particles cohere in layers and are deposited on the 

inner surface of pipe walls. Cohesion occurs as a result of biological,electro-chemical, 

and/or van der Waals forces that exist within the particles. If the shear stress applied on the 

surface walls exceeds these forces, the particles in the cohesive layers are eroded, causing 

discolouration to occur (Ackers et al., 2001; Boxall & Saul, 2005). The cohesion and 
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erosion process in discoloured water formation is illustrated in Fig. 2.3. Although water 

particles in WDNs are likely to undergo cohesion, the cohesion and erosion theory does 

not explain how particles adhere to the inner walls of pipes. Sorption, which was adopted 

in this study to explain this process, better explains particle deposition on pipe walls 

because it takes into account both the adsorption and absorption of particles. 

 

 

Figure 2.3 Cohesion and erosion process in discoloured water formation 

  

2.3.4 Adhesion and stripping theory 

Areas in the WDNs with very low shear stress, such as dead ends and redundant loops, are 

more susceptible to the formation of Fe and Mn oxide coatings, amorphous Al(OH)3, 

biofilms, or scales from corrosion on the inner surface of pipe walls (Sly et al., 1990; 

Smith et al., 1997; Wang et al., 2012). The loose particles adhere to the scales or biofilms. 

During high flow events such as increased water consumption or opening of fire hydrants, 

the adhered particles on the pipe walls are stripped and mobilised to cause water 

discolouration. Figure 2.4 illustrates the adhesion and stripping theory in discoloured water 

formation. The adhesion and stripping theory may not properly explain the formation of 

discoloured water because it does not take into account the cohesion of particles in WDNs.  
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Figure 2.4 Adhesion and stripping theory in discoloured water formation 

 

 

2.4 Discolouration risk models 

Discolouration can be described as the mobilisation of sediment particles accumulated on 

pipe walls in WDNs. The characteristics of these sediment particles, such as their size, 

density, origin, and composition, vary greatly from one network to another. Sediment 

particles include organic and inorganic materials contained in the source water (Ellison, 

2003; Gauthier et al., 2001; Lin & Coller, 1997; Slaats, 2002; Vreeburg, Schaap, & van 

Dijk, 2004b) or chemicals such as carbon, coagulants, and bio-particles from filters that 

are added to the water at the treatment plant (Boxall et al., 2003; Gauthier et al., 1999). To 

a certain extent, pipe corrosion, lining erosion, biofilm growth, and chemical reactions in 

WDNs may also produce sediments (Huck & Gagnon, 2004; LeChevallier et al., 1987; Sly 

et al., 1990; Walski, 1991). The external intrusion of contaminants during pipe 

rehabilitation and repair may also be a contributing factor (Prince, Goulter, & Ryan, 2001; 

Slaats, 2002). Sediments from the above-described sources are deposited on the inner 

surface of pipe walls in WDNs. Once deposited, these materials can be dislodged by 

excessive hydraulic forces produced by hydraulic events such as pipe burst, pipe flushing, 

and valve operations. 

 

Early studies on discolouration were mainly based on collecting samples at different 

locations in WDNs. However, advanced measurements, loggings, and communication 

technologies over the past two decades mean that instruments are now available for 



 

30 

 

monitoring pressure, flow, and turbidity continuously and simultaneously at multiple 

locations. Variations in these variables can therefore be recorded to identify factors that 

influence discolouration events. The recorded data have been used to develop techniques 

to assist water companies identify and quantify discolouration risks in WDNs (Vreeburg, 

1996; Vreeburg & Boxall, 2007). As mentioned in Chapter 1, many studies have been 

undertaken on the influence of various processes and mechanisms on water discolouration. 

However, they have been studied independently, rather than in combination. A number of 

researchers have published analytical tools to predict discolouration in the water industry. 

Some of these tools are reviewed in the following sections. 

 

2.4.1 Prediction of Discolouration events in Distribution Systems model 

The Prediction of Discolouration events in Distribution Systems (PODDS) model, also 

known as the cohesive transport model (CTM), is a computer-based discolouration model 

developed by Boxall et al. (2001) with the Pennine Water Group (PWG) at the University 

of Sheffield, UK. This model can predict the discolouration (turbidity) response to 

hydraulic changes in WDNs. PODDS is an extension of EPANET; a graphical software 

developed by the United States Environmental Protection Agency (USEPA). Boxall et al. 

hypothesised that sediment accumulation in WDNs occurs in layers, where each layer is 

conditioned according to the daily shear stress applied on it. The shear stress in a pipe is 

the force acting on an area of pipe wall perpendicular to the direction of flow. It can be 

mathematically expressed as Eqn. 2.13. The model uses the fundamental principle that 

discolouration is caused by mobilisation of layers of cohesive material attached to pipe 

walls. With this premise, the authors developed the PODDS model by incorporating the 

concepts of cohesive transport theory, which was developed to characterise the erosion of 

cohesive estuarine sediment.  

 

τ =  ρ𝑤gRhSo                                                                      (2.13) 

 

where Rh = hydraulic radius; So = hydraulic gradient; τ = boundary shear stress;  

ρw = density of water; and g= gravity. 

 

The PODDS model considers each cohesive layer to have a discolouration potential that 

corresponds to the strength of that layer. According to this model, the discolouration 

potential of layers away from the pipe boundary increases as their layer strength decreases. 
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This implies that a lower force is required to dislodge the top layer than the layers below it. 

The ultimate strength of the layers is theorised as being equal to the daily peak shear stress 

experienced within each pipe.  

 

 

Figure 2.5 Representation of layer strength versus stored turbidity volume 

 

The relationship between the strength of the layer and the stored turbidity volume (layer 

thickness) is expressed mathematically as Eqn. 2.14. A graphical representation of the 

relationship is presented in Fig. 2.5. From the graphs it can be observed that layers that 

have increased stored turbidity volume have reduced shear stress. The strength of the 

cohesive layer is determined by the shear stress applied within each pipe at constant peak 

daily flow. This means that the layer state is dependent on the daily shear stress generated 

by network hydraulic conditions. Therefore, sections of the pipe network that are subject to 

low daily peak shear stress, such as dead end pipes, redundant loops, oversized pipes, and 

zone boundaries, will have higher discolouration potential because low hydraulic forces 

can dislodge the attached material layers.  

 

τs =  
CT

b′Cb′ − CTmax

 kp
                                                               (2.14) 

 

where kp = gradient of layer strength in PODDS model; τs = current layer strength; 

CT = stored turbidity volume of layer; CTmax = Maximum turbidity potential;  
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and b’ = power term to set for first order relationship. 

 

In an undisturbed system without any unusual flow, the developed cohesive layers are at 

their maximum discolouration potential as conditioned by the maximum daily peak flow 

rate. However, if there is an increase in the network demand (for example, due to 

operational activities or hydraulic events such as pipe bursts), this may disturb the 

prevailing equilibrium conditions and exert shear stress that exceed the conditioned shear 

stress on these cohesive layers. This may cause mobilisation of the cohesive sediment, 

which may subsequently lead to discolouration. Equation 2.15 is used to describe the 

mobilisation of cohesive sediment when exposed to a disturbing hydraulic force. 

 

Rt = Ps(τ −  τs)f′
                                                                          (2.15) 

 

where τ = applied shear stress; f’ = power term; Ps = gradient term; and  

Rt = rate of release of sediment by the excess shear stress.  

 

The incremental change turbidity resulting from this erosion can be evaluated as: 

 

∆N =  
RtAs

Q
                                                                                    (2.16) 

 

where As = pipe surface area affected; Q = flow rate; and ΔN = change in turbidity. 

 

The model is calibrated by measuring the flow rate and turbidity response of a system to a 

predicted flow rate and turbidity response. The variables used to describe the relationship 

between the strength of the cohesive layer and its discolouration potential are then 

optimised to achieve this calibration (Boxall et al., 2001). 

 

The PODDS model does not take into account the decrease in the concentration of 

particles as they re-accumulate on the pipe wall during regeneration. The model’s inability 

to address re-accumulation of mobilised particles makes it inaccurate, because particles do 

not remain suspended forever after they are entrained (Prince, 2008). Furthermore, because 

the model uses the assumptions of quasi-steady state modelling within EPANET, it does 

not use dynamic shear stress in its computations (Prince, 2008). The PODDS model does 
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not explicitly consider either the source of the material that is deposited or the mechanisms 

and processes that contribute to sediment accumulation. Furthermore, the empirical 

variables in the model need to be established through calibration before applying the 

model to a different hydraulic event in that section of the pipe. Because the mechanisms 

and processes that lead to discolouration are highly complex, the transfer of calibrated 

parameters from one system to another is questionable. Therefore, to use the model 

effectively, a table of these parameters needs to be established by conducting field trials 

covering a wide range of hydraulic and network conditions (Prince, 2008). Since the 

PODDS model only uses physical/hydraulic variables to make predictions, it may not 

properly explain the formation of discoloured water in WDNs. 

 

2.4.2 Particle Sediment Model 

The Particle Sediment Model (PSM), developed by Wu et al. (2003) at the Cooperative 

Research Centre, can be used to predict sediment accumulation in water distribution 

systems. PSM uses flow distribution in networks and inlet sediment concentrations to 

predict the mass of sediment deposited on pipe walls. It takes into account the gravitational 

settlement of sediment particles and the affinity between pipe walls and the sediment 

particles. The calculation of sediment accumulation in the distribution system is based on 

two mechanisms, namely, settling of particles under gravity and deposition of particles on 

pipe walls due to particle-wall surface interaction. 

 

Under settling of particles under gravity mechanism, particles in the pipe are considered to 

be in one of three states:  

(i) when the flow velocity exceeds the particle critical velocity, particles are 

subject to re-suspension,  

(ii) when the flow velocity is below a certain limit, particles can settle, and  

(iii) when the flow velocity is between the limits in (i) and (ii), particles will move 

upstream without settlement or re-suspension of material from pipe walls. 

 

Experimental studies using a single loop pipe network were performed to demonstrate the 

deposition of particles on pipe walls due to particle-wall surface interaction. The results 

indicated that particles began to settle at velocities as high as 0.3 m/s, which contradicts 

the observations made by Boxall et al. (2003). This phenomenon was attributed to the 

attachment of sediment to pipe walls due to van der Waals forces. A set of equations was 
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proposed to predict the sediment concentration and model the process of sediment 

deposition on pipe walls (see Eqns. 2.17–2.19). These semi-empirical equations were 

obtained based on experimental data collected using a laboratory pipe network. Different 

pipe materials (mainly PVC and cast iron cement lined), sediment types, sediment 

concentrations, and flow regimes were used to generate the data. 

 

∂Cs

∂t
=  −∝c (Cs − C∞)                                                                      (2.17) 

Cw =  β𝑐 . C∞                                                                              (2.18) 

Mw

Lp
=  Cw

1

4
πdp

2 =  𝐵𝑐C∞

1

4
πdp

2                                                     (2.19) 

 

where Cs = concentration of particles in suspension; αc = decay coefficient; 

Cw = mass of particles attached to the wall per unit weight of water;  

Bc = wall mass coefficient; dp = pipe diameter;  

C∞ = final steady state concentration of particles in suspension; and  

Mw/Lp = mass of particles attached to the wall per unit of pipe length. 

 

PSM is an extension of investigations reported by Grainger et al. (2002), and is therefore 

subject to the limitations of their study. Grainger et al (2002) observed that because PSM 

was developed under laboratory conditions, the diurnal flows from the experimental setup 

did not replicate diurnal flows in real live WDNs. The model is yet to be validated with 

field data. Furthermore, PSM does not include chemical and biological variables. 

Therefore, the model may not properly explain the formation of discoloured water in 

WDNs.  

 

2.4.3 Discolouration Risk Analysis Tool 

Boxall and Husband (2005) developed a DMA-level tool, Discolouration Risk Analysis 

Tool (DRAT), for ranking pipes in order of their discolouration risk. This methodology of 

calculating risk is based on the PODDS theory. The tool was developed to help operational 

managers plan cleaning programmes. In this risk-based approach, a series of automated 

events are simulated and pipes ranked according to their simulated discolouration risk. The 

tool was then used to identify networks or specific pipes that present a potential 

discolouration risk. The predictions by the tool were only partially successful. The 
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localised variability in hydraulics and the difficulties in determining actual conditioning 

and mobilising shear stress could not all be incorporated into the hydraulic model. As a 

result, there were discrepancies between the measured and the modelled risk assessment. 

Because DRAT uses PODDS theory to compute the risk, it also has the limitations of 

PODDS model discussed in Section 2.4.1.  

 

2.4.4 Re-suspension Potential Method 

Re-suspension Potential Method (RPM) was developed by Vreeburg et al. (2004a) with 

Kiwi Water Research in the Netherlands. It is based on measurements of the capability of 

sediment within the distribution system to re-suspend using a standard flushing procedure. 

The pipes for which discolouration risks were assessed had minimum lengths of 315 m. To 

create hydraulic disturbance in a given pipe, a fire hydrant was opened to increase the 

velocity by an additional 0.35 m/s above the actual velocity and maintain for 15 minutes. 

Turbidity was continuously monitored and measured until it returns to its original level.  

 

 

Figure 2.6 Turbidity trace results from the RPM test 

 

A typical result of RPM is shown in the graph in Fig. 2.6. It consists of four regions that 

are used to rank discolouration risk. The first region, which comprises of the base level 

turbidity, is the level preceding the hydraulic disturbance. It is used to estimate the time for 

the turbidity to return to its initial level. The second region corresponds to the initial 

increasing turbidity during the first 5 minutes after the fire hydrant is opened. The third 
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region corresponds to the development of turbidity during the last 10 minutes after the fire 

hydrant is opened, whereas the last region corresponds to the resettling time. The resettling 

time is the time taken for turbidity to return to its initial level after the fire hydrant is 

closed. The discolouration risk ranking was done based on the maximum and average 

turbidity of the first 5 and last 10 minutes of the disturbance, and during the resettling time. 

(Vreeburg et al., 2004a, 2004b; Wricke et al., 2007).  

 

A limitation of the RPM is that because it is mainly applied to pipes with large diameters 

between 100 and 150 mm, the difference in shear stress caused by increase in uniform 

velocity is insignificant. Consequently, changes in the hydraulic regime only cause a small 

increase in shear stress, which will be insufficient to raise turbidity levels for customers to 

complain (Vreeburg et al., 2004a). RPM uses only turbidity and water velocity as variables. 

Therefore, it may not be able to make good predictions in real live WDNs, where the 

formation of discoloured water is influenced by other hydraulic, chemical, and biological 

variables.  

 

2.4.5 Discolouration Risk Modelling Approach 

Discolouration Risk Modelling approach (DRM) is a risk assessment tool developed by 

Dewis and Randall-Smith (2005) in conjunction with Yorkshire Water and the Ewan 

Group. It generates a discolouration performance score for each pipe in WDNs, thus 

enabling operations managers and asset planners to make informed decisions. The 

propensity of each pipe to give rise to discolouration is expressed as a combination of the 

likelihood and consequence of either the pipe’s failure in the entire network or a failure 

elsewhere that causes discolouration. The likelihood is assessed based on the pipes’ 

tendency to burst, potential to cause discolouration, and sensitivity to flow changes that 

could cause discolouration. On the other hand, the consequence is assessed by the number 

of customers who could, potentially, be affected. The variables used in predicting the 

discolouration risk in DRM include pipe material, pipe age, rehabilitation history, and the 

history of Fe or Mn discharge. These variables are arranged in the form of a risk tree 

(based on standard fault tree analysis methodologies), with some modifications to suit the 

application. The hierarchical structure of the tree describes the dependencies between the 

variables and weights allocated to each node within the tree (Bhagwan, 2009; Dewis & 

Randall-Smith, 2005). A typical structure of the tree is shown in Fig. 2.7.  

 



 

37 

 

 

Figure 2.7 A hierarchical structure of the tree of the DRM 

 

A limitation of DRM is that it assumes chemical and biological factors are insignificant in 

the formation of water discolouration, and therefore uses only hydraulic and pipe related 

variables for its predictions. However, as discussed in Sections 2.2.2 and 2.2.3, many 

researchers have found that chemical and biological factors significantly contribute to the 

formation of discoloured water. 

 

2.4.6 Discolouration Propensity Model 

The Discolouration Propensity Model (DPM), which is a replacement to the DRM, uses 

the CTM proposed by Boxall et al. (2001) to predict discolouration risk. It was developed 

by McClymont, Keedwell, Savic and Randall-Smith (2010) in association with Mouchel. 

DPM uses CTM to calculate the volume of deposited material, which is measured as 

turbidity (expressed in Nephelometric Turbidity Units, NTU). Furthermore, the model can 

also be used to calculate the volume of material mobilised in a given specific hydraulic 

event in the network such as valve closure and pipe bursts. It then ranks DMAs based on 

their ability to store discolouration-causing material. DPM also uses the EPANET software 

to calculate the dynamic hydraulic conditions of each network. A shear stress equation is 

then used to calculate each pipe’s daily conditioning shear stress, which is subsequently 

used to assess the relative risks of pipes within a DMA. The daily conditioning shear stress 

values are obtained based on the hydraulic gradient values calculated by EPANET 

(McClymont et al., 2010, 2011). The implementation of DPM is based upon the shear 
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stress equations outlined in the PODDS model (see Eqns. 2.13-2.16). The results obtained 

from DPM in a case study network are shown in Table 2.2. The score for each DMA is 

calculated by summing the total potentially stored material of all pipes in each DMA and 

normalised by the total length of pipe in the DMA. The DPM is subject to the limitations 

of the PODDS model indicated in Section 2.4.1 because it uses CTM in its computations. 

 

Table 2.2 Results from DPM case study ordered by DPM score from best to worse 

DMA 

Length Normalised 

Potential (DPM Score) 

NTU Rank 

(Relative) 

548            3.429 × 10
5
 1 

551            5.276 × 10
5
 2 

550            19.608 × 10
5
 3 

549            100.908 × 10
5
 4 

547            261.094 × 10
5
 5 

 

 

2.4.7 Pressure-dependent Analysis (PDA) model  

Seyoum and Tanyimboh (2014) developed a Pressure-dependent Analysis (PDA) model 

which is integrated with a water quality model at the University of Strathclyde, UK. PDA, 

which is an extension to EPANET 2 known as EPANET-PDX, was used to investigate the 

effect of a range of hydraulic pressure conditions on water quality variables such as water 

age, concentration of chlorine and concentration of the disinfection by-product; 

trihalomethanes (THMs). The Epanet-PDX was developed by integrating a demand 

function given in Eqn. 2.20 into a global gradient algorithm. For detailed information on 

the PDA model, refer to Seyoum and Tanyimboh (2014). 

 

 

 Qi(Hi) =  Qi
req exp (ϵi + θiHi)

1 +  exp (ϵi +  θiHi)
                                            (2.20) 

 

where Qi = demand at node i; Qi
req

 = required supply at node i; Hi = head at node i; and 

ϵ and θ = parameters to be calibrated with relevant field data. 

 

Simulations were performed using data from two WSZs obtained from a drinking water 

company in the UK. Graphs of water quality variables were plotted at various pressure 

conditions. At normal pressure, the Demand Satisfaction Ratio (DSR) was 100%. DSR is 
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the ratio of the flow available to the flow required. At pressure-deficient condition, DSR 

was less than or equal to 75%. They observed that under pressure-deficient conditions, 

water age and THM concentration increased, whereas the chlorine concentration decreased 

(see Fig. 2.8). Conversely, at normal pressure conditions, lower water age and THM levels, 

and higher chlorine concentrations were observed. This is because, generally, low pressure 

in WDNs reduces flow velocity, which causes water age and chlorine depletion to increase, 

and subsequently increases the formation of THMs. The PDA model is a very useful tool 

for predicting water quality in WSZs. However, the model could be improved by adding 

pipe-related variables such as pipe material and pipe age, and variables that influence 

biological processes such as phosphorus and carbon. 

 

 

Figure 2.8 Graphs of water quality variables plotted at various pressure conditions 

Seyoum and Tanyimboh (2014) 
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2.4.8 Other discolouration risk models 

Walski and Draus (1996) proposed a method for modelling turbidity in water during mains 

flushing operations. They observed that the amount of turbidity generated during mains 

flushing is proportional to the velocity generated in the water main during flushing. 

Samples were collected at 10 minutes intervals during the flushing operation. They 

observed that the measured turbidity was high during the initial period, but gradually 

reduced. Using these measured values, Walski and Draus (1996) proposed an empirical 

relationship between the turbidity and velocity. They concluded that the amount of 

turbidity generated during the flushing operation is influenced by the amount of material 

deposited in the mains since the previous discolouration event.  

 

Ackers et al. (2001) proposed equations for sediment transport in closed conduits by 

extending their work on sediment transport in rivers. The Ackers–White equations were 

derived for uniform sediments transport in rivers. However, when particles of different 

sizes and densities are present, their settling behaviour cannot be explained by uniform 

sediment flow theories. Therefore, applying these equations, which are characterised by 

sediments having varying particle size distributions to WDNs will not yield desirable 

results. 

 

Based on the cohesive transport theory, Boxall et al. (2001) proposed a mathematical 

model for predicting discolouration due to hydraulic events in WDNs. From a series of 

experiments and field studies, they observed that the sizes of particles present in sediment 

samples were not sufficiently large for gravity settlement. This implies that the hydraulic 

forces and mechanisms exert sufficiently large forces to keep the sediment particles in 

suspension and inhibit gravity settlement. From these observations, they concluded that 

mechanisms other than gravity settling forces caused particle discolouration in WDNs.  

 

Husband et al. (2008) performed laboratory experiments to investigate drinking water 

discolouration in WDNs. Their model is based on the hypothesis that discolouration is 

caused by the erosion and transport of fine particles, mainly Fe and Mn, which are attached 

to the pipe walls. The model is also based on the hypothesis that particles are arranged in 

cohesive layers which gradually build up over a period of time and are conditioned by the 

daily flow pattern within the system. Erosion takes place when there are changes in shear 

stress on the walls. Graphs of turbidity against shear stress for dynamic and steady state 
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flow indicated an increase in turbidity response and an increase in boundary shear stress. 

They also observed a positive correlation between Fe concentration and shear stress. From 

these relationships, they suggested that the mobilisation of accumulated materials is 

influenced by daily shear stress, with greater variability reducing material accumulation. 

 

 

2.5 Summary 

A comprehensive literature review on drinking water discolouration models and the factors 

that influence the formation of drinking water discolouration showed that researchers have 

only studied each of the factors that influence Fe and Mn accumulation either partially or 

separately, but never in combination. Some of the variables identified to influence 

discolouration/Fe and Mn accumulation include pH, DO, shear stress, water age, carbon, 

nitrogen, pipe material, alkalinity, temperature, and Al. Most of the water discolouration 

models reviewed only used physical/hydraulic variables mainly in predicting drinking 

water discolouration. Hence, they do not capture some relevant factors that influence the 

formation of discoloured water in WDNs, and therefore may not properly explain the 

processes and mechanisms that lead to Fe and Mn accumulation. 
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CHAPTER 3: Artificial Intelligence Based Methods 

 

3.1 Introduction  

In Chapter 2, a comprehensive literature review was prepared to identify relevant variables 

that influence Fe and Mn accumulation in WDNs. In addition, various drinking water 

discolouration models were reviewed. In this chapter, a literature review on artificial 

intelligence based methods of modelling will be conducted. The remaining sections of this 

chapter are organised as follows: Section 3.2 presents a historical background of ANNs, 

explains what they are, and compares them with conventional models. This section also 

discusses how ANNs are currently being applied in water resources and in other 

disciplines. In addition, the section also gives a critical review on the various types of 

ANNs. Section 3.3 presents a critical review on FISs. It reviews fuzzy set concepts and 

fuzzy inference process. The section also gives some benefits and limitations of FIS, and 

reviews some applications of FISs in water resources. Section 3.4 gives a review on 

genetic algorithm. Finally, the summary of this chapter is presented in Section 3.5. 

 

 

3.2 Artificial neural networks 

There are some problems that human brains can solve, that mathematical formulae or 

computer algorithms cannot solve. This category of problems can be solved by learning 

from previous examples. The ability of the human brain to adapt and learn from a given set 

of data makes it possible to solve such problems. Artificial Neural Network (ANN) is an 

artificial intelligence (AI) based method of modelling that attempts to mimic the learning 

processes of the human brain by developing complex mathematical relationships from a 

given set of data (Smith, 1993). In view of this, ANNs do not need a detailed formulation 

of the underlying processes in their computations. Even though ANNs are very powerful 

tools, and are sometimes regarded as the future of computing, some researchers are 

reluctant to apply then because of their black-box nature. While conventional (traditional) 

models try to explain the underlying modelling processes, ANN models on the other hand 

are more data-driven and rely heavily on the data that describes the dependent and 

independent variables. 
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3.2.1 Historical background of artificial neural networks 

ANN was first introduced in the 1940s by Warren McCulloch, a neurophysiologist, and 

Walter Pitts, a young mathematician (McCulloch & Pitts, 1943). Since then, it has been 

through a long period of development. Pitts and McCulloch (1947) indicated how ANN 

could perform abstraction by learning generalised rules from specific instances. They 

applied this concept on recognition of spatial patterns and classification tasks. Hebb (1949) 

proposed the Hebbian rule which explained the adaptation of neuron in the brain during 

the learning process. However, he could not verify this rule because of lack of neurological 

research.  

 

In the 1950s, researchers started building computer models of ANNs by combining 

psychological and biological insight. The world’s first neurocomputer (the Snark) was 

designed and built by Marvin Minsky in 1951 as part of his PhD research. Although the 

Snark operated well from a technical point of view, it was never implemented (Minsky, 

1954). In 1958, Frank Rosenblatt, a neurobiologist who is referred by many researchers as 

the father of neurocomputing, developed the first successful neurocomputer (the Mark I 

perceptron) at Cornell University. This neurocomputer was capable of using a perceptron 

learning algorithm to recognise characters by means of a 20 × 20 pixel image sensor 

(Rosenblatt, 1958). Nevertheless, this was limited by the perceptron’s inability to classify 

patterns that are not linearly separable in the input space. 

 

After the successful invention of the neurocomputer and digital computers, there was an 

explosion of research on neural networks in the 1960s. Researchers started to move from 

logic circuits to machine learning. Widrow and Hoff (1960) introduced the ADAptive 

LInear Neuron (ADALINE), which has an advantage over perceptron learning because of 

its ability to learn and adapt to new data. ADALINE was the first neural network to solve a 

real-world problem. It was then used in most analogue telephones to adaptively filter and 

eliminate echo in real time. The activation function of ADALINE is linear, which limits its 

applicability to only linearly separable problems. ADALINE is currently used 

commercially as adaptive equalizers in telephone lines (Rogers & Kabrinsky, 1991).  

 

Although Werbos (1974) developed a learning procedure to train ANNs known as back-

propagation of errors, it was not used until after a decade. Little research was conducted on 

neural networks until the mid-1980s because of lack of high-performance computing 
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systems. The PDP Research Group (1986) used the back-propagation algorithm with 

multi-layer perceptrons to solve non-linear separable problems. From that time, the 

application of ANNs in water resource engineering has almost been explosive. ANNs have 

moved from being a mere research tool to a powerful tool for solving real-world problems. 

In 1987, the first Institute of Electrical and Electronic Engineering (IEEE) international 

conference on neural networks attracted more than 1800 attendees. The following section 

gives some applications of ANNs in water resources. 

 

3.2.2 Applications of artificial neural network in water resources 

In recent years, ANNs have been successfully applied in a broad range of areas including 

science, engineering, telecommunication, technology, and business (Widrow, Rumelhard, 

& Lehr, 1994). Some specific applications include remote sensing, stock trading, speech 

and handwriting recognition, face recognition, e-mail spam filtering, credit scoring, fraud 

detection, and medical diagnosis. ANNs have also been used in environmental engineering 

to develop hydrological models, taking advantage of their ability to capture and learn both 

linear and complex non-linear relationships from modelling data, especially in situations 

where the underlying physical relationships are not fully understood (Lingireddy & Brion, 

2005).  

 

Maier and Dandy (1996) used a back-propagation ANN model to obtain a 14-day forecast 

of the salinity of the Murray River in South Australia. The K-fold cross-validation method 

was used to validate the model. The average absolute percentage errors for the model 

ranged from 5.3–7.0%, indicating the model gave good prediction. This model could help 

save money, because high salinity levels in the Murray River cost consumers in Adelaide 

approximately $US22 million per year in damages (Maier & Dandy, 1996). The model 

could be further improved by using an optimisation technique to fine-tune the number of 

hidden neurons and layers to obtain appropriate numbers to use during the training process. 

 

Aafjes, Verberne, Hendrix and Vingerhoeds (1997) used a combination of expert systems 

and ANN to predict water consumption at Friesland, Netherlands. They used a two-year 

data set which included independent variables such as hourly precipitation, global 

radiation, temperature, and air pressure. The day of the week and past holidays were also 

used as independent variables. The dependent variable was hourly water consumption. 

They also used a traditional statistical-based model, auto regressive integrated moving 
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average (ARIMA) to make water consumption predictions from the same data. They 

observed that the ANN model gave better predictions than the ARIMA model. 

 

A number of factors can contribute to drinking water discolouration. One of them is the 

dissipation of residual chlorine (a chemical that kills microorganisms or prevents their 

growth), which eventually leads to increased biological oxidation. Rodriguez, West, 

Powell and Serodes (1997) used ANN and traditional first-order modelling approach to 

predict residual chlorine in WDNs. They observed that the ANN model gave better 

predictions than the first-order model.  

 

Many researchers have also used ANNs to predict raw water quality (DeSilets, Golden, 

Wang, & Kumar, 1992; Zhang & Stanley, 1997). Knowledge of the concentrations of 

incoming raw water quality variables such as turbidity, Fe, Mn, water colour, and coliform 

bacteria in advance is very important in drinking water treatment process, because it 

enables water utilities to optimise the treatment process to prevent inadequate or over-

treatment of the raw water. For instance, insufficient chlorination in the treatment process 

can increase microbial re-growth, and subsequently cause waterborne diseases like typhoid 

fever, cholera, and hepatitis A. Over-chlorination can lead to an increase in customer 

complaints due to the taste and smell of chlorine. Zhang and Stanley (1997) developed a 

back-propagation ANN model that uses a five-year data set consisting of variables such as 

river flow rate, precipitation, and turbidity to forecast raw water colour. The ability of this 

ANN model to deal with multiple complex nonlinear input variables makes it an 

improvement on other conventional models. The model was able to reasonably predict all 

the peaks and recognise 355 out of 365 patterns. ANNs have also been used to forecast 

turbidity and colour removal through enhanced coagulation (Stanley, Baxter, Zhang, & 

Shariff, 2000), predict source water salinity (DeSilets et al., 1992), and forecast the dose of 

alum and polymers required for coagulation (Mirsepassi, Cathers, & Dharmappa, 1995).  

 

Gautam (1999) used an auto-regression neural network (ARNN) model to predict the level 

of Lake Ijsselmeer at North Holland. The input variables for the model were wind speed, 

discharge of the lake, daily low tide water level, and water level of the sea. Data from two 

seasons were divided into two and used to train and verify the ARNN model. Figure 3.1 

shows a graph of the observed (target) and predicted water levels by the ARNN model. 
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From the graph it was observed that the model was able to predict most of the peak levels 

of the lake. 

 

 

Figure 3.1 Graph of the observed (target) and predicted water levels by the ARNN model 

Gautam (1999) 

 

Lint and Vonk (1999) developed an ANN model to predict water levels in reservoirs for 

South Holland Province Water Authority because the expert system they had previously 

used gave inaccurate results. The water authority needed to know the water levels of the 

reservoirs 24 hours in advance in order to optimise the pumping of water from high-level 

reservoirs to low-level reservoirs during night, when energy costs are cheaper. The input 

variables used for the model were pump status, precipitation, water level, and temperature 

at hourly intervals for the preceding 12 hours. Other input variables required by the model 

were one-hour-in-advance predicted temperature and precipitation. The output variable 

was 24-hours-in-advance water level of reservoirs at time steps of one hour. The model 

was able to predict water level with a coefficient of determination value of 0.71. In a 

related study, Raman and Sunilkumar (1995) used multivariate auto-regression (MAR) and 

an ANN model to predict monthly reservoir inflows at two sites in Kerala, India, namely, 

Mangalam and Pothundy reservoirs. A data set from the two reservoirs over a 14-year 

period was used to train and test the model. The four input variables used were two 

consecutive normalised monthly inflow values for each of the reservoirs. Table 3.1 shows 

the mean of the historic and generated inflow series by the ANN and MAR models. 

Comparing the two models, they observed that the ANN model generated better results 

than the MAR model. 
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Table 3.1 Mean of the historic and generated inflow series by the ANN and MAR models  

          Mangalam reservoir             Pothimdy reservoir 

Month 

Mean 

Historic data 

ANN 

model 

MAR 

model 

Mean 

Historic data 

ANN 

model 

MAR 

model 

January 1.254 1.397 1.412 4.57 4.123 5.464 

February 0.641 0.643 0.962 0.91 0.808 1.088 

March 0.2 0.21 0.178 0.503 0.443 0.578 

April 0.413 0.392 0.641 0.531 0.489 0.901 

May 0.898 0.744 1.199 0.836 0.848 0.752 

June 12.528 12.507 13.19 8.519 8.594 9.668 

July 24.275 24.416 23.131 15.543 15.616 15.691 

August 24.452 24.091 24.432 15.615 15.148 14.457 

September 10.63 10.324 11.323 5.14 5.134 5.124 

October 9.644 9.993 7.998 4.18 4.029 4.072 

November 5.633 5.787 4.929 4.683 4.268 4.627 

December 1.477 1.778 1.88 4.479 4.633 4.486 

 

 

3.2.3 How artificial intelligence models differ from traditional models 

Despite the fact that models play an important role in water resource engineering, it is 

often very difficult to simulate the behaviour of natural systems. This is partly because of 

the complex non-linear nature of their data, and also the interactions that occur within 

many natural systems are poorly understood. Furthermore, water resource data often have 

skewed distributions, inter-related independent variables, and discontinuous functions, 

making traditional modelling methods difficult or impossible (Lingireddy & Brion, 2005). 

Therefore, AI computing approaches such as ANNs, Bayesian networks, and fuzzy logic 

have been used in recent year in simulations, forecasting, and predictions, especially in 

cases where traditional models fail. For example, image and speech recognition problems 

can be solved using AI models. However, they are beyond the scope of traditional models 

 

Although AI models are increasingly being applied in water resource engineering, they are 

still viewed with scepticism by some researchers that use conventional statistical or 

mathematical models, due to their black-box nature (Kingston, 2006). While traditional 

(‘white-box’) models are seen as pre-supposed mechanism which are derived from prior 

understanding, some researchers have argued that ANNs should no more be viewed as 

black-box. Recently, some researchers have proposed various rule extraction algorithms 

from ANNs to explain or understand how the networks solve problems (Augasta & 
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Kathirvalavakumar, 2012; Bhalla, Bansal, & Gupta, 2012; Setiono, Baesens, & Mues, 

2008). These rules can be grouped into three main methods: decompositional, pedagogical, 

and eclectic. In the decompositional methodology, rules are generated by inspecting the 

weights of each neuron in each layer. In the pedagogical technique, rules are formulated 

from the empirical analysis of the input-output pattern. Finally, in the eclectic 

methodology, rules are formulated from a combination of some elements of both 

decompositional and pedagogical methodologies (Bologna, 2001). 

 

Traditional models make their computations using rules, formulae, and concepts. However, 

the underlying processes of many real-world problems are too complex to explain. 

Traditional models are ideal for solving numeric and analytic problems such as computing 

head losses due to friction in pipes using Hazen–William and Chezy–Manning equations, 

simulating water flows and water age (residence time) in pipes, and using hydrological 

transport models in flood forecasting. AI models make their predictions by learning 

relationships and patterns from the modelling data. In view of this, it is important to train 

every neural network with modelling data before it can be used to make predictions. 

 

3.2.4 Structure of Artificial Neural Network 

Because ANNs try to emulate the learning process of the human brain, it is a good idea to 

first look at the structure and mechanisms of the brain. The full mechanism of the brain 

remains a mystery, however some aspects of its functions are known. As neuroscience 

research advances and provides a better understanding of how the human brain works, 

researchers will engineer better solutions to problems that traditional methods of modelling 

cannot solve. The human brain has the ability to learn from examples, retain knowledge, 

and adapt to different conditions. This is normally referred to as experience. Humans 

acquire knowledge and build experience over time. For example, the brain is able to 

recognise familiar faces. Similarly, olfactory sensory neurons send messages to the brain 

to identify different types of smell. Although computers are very good at performing 

complex computations, they are very poor at recognising even simple patterns. Many 

animals have better pattern recognition capabilities than current computers. 

 

The human brain is made up of many cells, of which neuron cells are the main functional 

units. Unlike other cells in the human body, neurons do not die and cannot be replaced, 

although they increase in size until they are around 18 years of age. However, neurons in 
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the brain can divide and form new cells during foetal development and early infancy 

(Williams & Herrup, 1988). It is estimated that the average human brain is made up of 

approximately 100 billion neurons and 100 trillion synapses of connections (Williams & 

Herrup, 1988). A lower estimate of 69 billion neurons has been published by Herculano-

Horzel (2009). Each neuron is able to connect to about 200,000 other neurons. Neurons 

constitute three main components: dendrites (branched, arm-like filaments attached to the 

cell body which carry electrical signals to the cell body), cell body (containing the nucleus), 

and axons (very long slender projections which carry information away from the cell body). 

Figure 3.2 shows a schematic representation of a neuron cell. Basically, information is 

transmitted to and from the brain through a complex electro-chemical process. A 

schematic diagram of the flow of information from three neighbouring neurons is shown in 

Fig. 3.3. The arrows in the diagram show the flow of information from one neuron to 

another. The arrows pointing towards the dendrites indicate the signals received from 

sensory organs which are then transmitted to the neurons. Signals are also transmitted 

between neurons via the axons to the dendrites of other neurons through a special 

membrane called the synapse (highlighted by circles). 

 

 

Figure 3.2 Schematic diagram of a neuron cell 
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Figure 3.3 Schematic diagram of the flow of information from one neuron to another 

 

3.2.5 Classification of Artificial Neural Networks 

Researchers have classified ANNs in several ways. However, there are two common types 

of classifications that are often seen in literature. In the first type of classification, ANNs 

are categorised according to the arrangement of neurons and connection patterns. Neural 

networks in this type of classification can be further grouped into three categories, namely: 

feed-forward neural networks, feedback neural networks, and self-organised maps 

(Lobbrecht, Dibike, & Solomatine, 2002). Figure 3.4 shows a tree diagram of classification 

by arrangement of neurons and connection patterns. In the second classification, neural 

networks are classified according to their learning algorithm. They can be further 

categorised as ANNs with supervised learning algorithms (where networks learn from 

known input data to fit known output data) and ANNs with unsupervised learning 

algorithms (where networks organise known input data without any desired output data). 

Typical examples of supervised learning algorithms include back-propagation, ADALINE, 

and Boltzmann machines; whereas examples of unsupervised learning algorithms include 

counter-propagation, Hopfield networks, and adaptive resonance theory (Lobbrecht et al., 
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2002). In the following sections, Back-propagation algorithm is discussed in detail as this 

method will be used in this research. Whereas other ANNs such as Radial basis, 

Boltzmann machine and Self-organising map ANNs are discussed briefly. For detailed 

information on these methods, the reader may refer to the book by Patterson (1996). 

 

 

Figure 3.4 Classification of ANNs by arrangement of neurons and connection patterns 

 

3.2.5.1 Back-propagation neural networks 

Back-propagation neural network is a feed-forward neural network first introduced by 

Bryson and Ho (1969) for optimisation. However, it gained recognition after Rumelhart, 

Hinton and Williams (1986) used it in their research on learning procedures. Back-

propagation neural networks are currently the most commonly used algorithm for training 

ANNs. The robust nature of back-propagation neural networks make them able to solve a 

broad range of problems. Some applications include weather prediction, speech 

recognition, water quality prediction, and credit scoring. Unlike the early single-layered 

ANNs (for example, ADALINE), which had a limitation of being able to solve only linear 

separable problems, back-propagation neural networks are able to solve both linear and 

non-linear separable problems. 
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A three-layered back-propagation neural network consisting of an input, hidden, and 

output layer will be used to explain the computations of the back-propagation algorithm 

(see Fig. 3.5). There is no limit to the number of hidden layers of a neural network. 

However, most problems require only one or two hidden layers. It is important to use an 

appropriate number of hidden neurons in back-propagation neural networks. Too many 

hidden neurons will cause overfitting; thus memorising the training data set instead of 

learning to generalise the trends within the data. Overfitted models have poor prediction 

performance. In contrast, if the hidden nodes are not enough, it can result in underfitting. 

Underfitted models have reduced learning capabilities and are too simple to solve 

problems. 

 

 

Figure 3.5 A three layered back-propagation neural network 

 

Back-propagation neural networks requires known data for both the input and output nodes 

to make its computations. In view of this, it is classified as a supervised learning ANN. It 

also requires a differentiable activation function. Back-propagation neural networks 

operate in two modes, namely, the mapping and learning mode. During the mapping mode, 

input and target vectors are presented to the network, whereas weights and biases are 

randomly or specifically assigned to each of the connections during the learning mode. A 

bias is a constant that allows the activation function to be transformed either to the left or 

right during the learning process in order to bring the predicted vector close to the target 
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vector. The objective of back-propagation during the training process is to capture the 

underlining functional relationship between the input vector and the target vector, and 

reduce the error between the predicted and target vectors.  

 

To explain the back-propagation process, let us use the i
th

, j
th

, and k
th

 node in the input, 

hidden, and output layers of the neural network, respectively for the computations. NI, NJ, 

and NK are the number of nodes in the input, hidden and output layers, respectively The 

input node passes a value (xi) from the input vector to all the nodes in the hidden layer. 

The j
th

 hidden node then computes the weighted sum of the input values based on its 

weight (wij) (see Eqn. 3.1). The net output of the hidden node (hj) is computed using a 

sigmoidal activation function (see Eqn. 3.2). Similarly, each of the output nodes receives 

inputs from the hidden nodes. The weighted sum of the k
th

 output node from the hidden 

nodes based on its weight (wjk) is given in Eqn. 3.3. The net output of the output node (zk) 

is computed using Eqn. 3.4. The error is calculated using Eqn. 3.5 to test whether predicted 

values are close to the target (measured) values. If the computed error is greater than a 

tolerance value, the error is back-propagated through the network. New weights and biases 

are then re-assigned and updated using a chain rule and an optimisation method known as 

gradient descent. The whole process is done iteratively to minimise the error and 

subsequently move the predicted values closer to the target values. The back-propagation 

process can be summarised in the following steps: 

 

Step 1: Calculation of the net input of the j
th

 hidden node 

If an input vector X = (x1, x2, x3,…xNI) is applied to the input nodes, then the net input of the 

j
th

 hidden node (sumj) is defined as the weighted sum of the connection from i
th

 input node 

to the j
th

 hidden node plus a bias term (bj) applied to the hidden layer. It is mathematically 

expressed as: 

 

𝑠𝑢𝑚𝑗 =  ∑ 𝑤𝑖𝑗𝑥𝑖

𝑁𝐼

𝑖 = 1

+  𝑏𝑗                                                                      (3.1) 

 

where w = connection weight; NI = the number of input nodes (i = 1, 2, …, I); and 

wij = connection between the i
th

 and j
th

 node 
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Step 2: Calculation of the net output of the j
th

 hidden node 

The net output of the j
th

 hidden node (hj) is computed using a sigmoidal activation function 

as follows: 

 

ℎ𝑗 =  
1

1 +  𝑒−𝑠𝑢𝑚𝑗
                                                                          (3.2) 

 

Step 3: Calculation of the weighted sum of the j
th

 hidden node to the k
th

 output node  

The weighted sum of the k
th

 output node from the hidden nodes based on its weight (wjk) is 

expressed as the weighted sum of the connection from j
th

 hidden node to the k
th

 output 

node plus a bias term. This can be calculated as follows: 

 

𝑠𝑢𝑚𝑘 =  ∑ 𝑤𝑗𝑘ℎ𝑗

𝐽

𝑗 = 1

+  𝑏𝑘                                                                                    (3.3) 

 

where NJ = the number of hidden nodes (j = 1, 2, …, NJ);  

 

Step 4: Calculation of the net output of the k
th

 output node 

The net output of the k
th

 output node (zk) is computed using a sigmoidal activation function 

as: 

 

ℎ𝑘 =  
1

1 +  𝑒−𝑠𝑢𝑚𝑘
                                                                          (3.4) 

 

where bk = bias term applied to the output layer; zk = the net output of the k
th

 node; and 

wjk = connection between the j
th

 and k
th

 node.  

 

Step 5: Evaluation of the performance 

The calculated error (E) is used to test the performance of the model. This can be 

expressed mathematically as: 
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                                                                 (3.5) 

 

where N = the number of records (examples or data points) in the data set;  

NK = the number of output nodes (k = 1, 2, …, NK); and 

𝑌𝑛𝑘
𝑃𝑟𝑒𝑑 = predicted output of k

th
 node (output node) for n

th
 data sample. 

 

Step 6: Weight adjustment 

If the computed error is greater than a tolerance value, the error is back-propagated 

through the network and new weights are assigned. Using any of the gradient based 

optimisation methods (such as Levenberg–Marquardt method or Scaled conjugate gradient; 

see Section 3.2.6) the weights can be adjusted as follows 

 

∆𝑤(𝑖𝑡𝑟) =  −𝜂
𝜕𝐸

𝜕𝑤
+  𝜇𝛻𝑤(𝑖𝑡𝑟 − 1)                                                                                   (3.6) 

 

where η = learning rate. This is a parameter that ranges between zero and one that controls 

how fast a neural network learns. ANNs with low learning rates takes longer to train than 

those with high learning rates; Δw= change in weight;  

μ = momentum value. This is a parameter that ranges between zero and one which is used 

to speed up convergence and maintain generalisation performance. An ANN without a 

momentum has a high risk of getting stuck in a local minimum; and  

itr = iteration number. Iteration is the act of repeating a process with the aim of 

approaching a desired target. 

 

3.2.5.2 Radial basis function neural networks 

The application of radial basis function (RBF) in ANNs was initially introduced by 

Broomhead and Lowe (1988) at the Royal Signals and Radar Establishment. RBF neural 

networks are a type of feed-forward network which usually have three layers (single input, 

hidden, and output layers). Unlike other feed-forward neural networks, they cannot have 

more than one hidden layer. Even though RBF neural networks can use functions such as 

multiquadric and inverse multiquadric function as activation functions, the Gaussian 
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function is commonly used in this network. Each of the neurons in the hidden layer 

contains a Gaussian function which stores a prototype of one of the input vectors that is 

being classified. The ability of these functions to interpolate multi-dimensional scattered 

data makes them very useful. RBF networks can be trained faster than other multi-layered 

neural networks if there are not too many input variables (Hwang & Bang, 1997). They are 

able to efficiently approximate complex functions or data with a single hidden layer; a task 

that requires multiple hidden layers for back-propagation neural networks (Poggio & 

Girosi, 1990). However, RBF neural networks cannot model networks with many input 

variables (Lobbrecht et al., 2002). 

 

Conceptually, RBF neural networks make predictions quite similar to how K-Nearest 

Neighbour models make prediction. They perform classification by measuring the input’s 

similarity to examples from the training set. As an example, let us consider a RBF neural 

network which stores class A prototype as a class after training the network. When the 

network is presented with a new input, each neuron computes the Euclidean distance 

between the input and its prototype, and output a value between zero and one. If the input 

is equal to class A prototype, the output of that RBF neuron will return a value one and 

therefore classified as class A, since they are similar. As the Euclidean distance between 

the input and prototype grows, the output of that RBF neuron reduces exponentially 

towards zero. A diagram showing the centre and width of a RBF is presented in Fig. 3.6. 

 

 

Figure 3.6 Radial basis function 
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Figure 3.7 RBF network with NI inputs, NJ hidden neurons, and NK outputs 

 

RBF neural networks are sometimes referred to as hybrid neural networks, because they 

use both supervised and unsupervised learning algorithms in their computations. The 

unsupervised algorithm determines the centres and width of the RBF, while the supervised 

algorithm computes the weights. A diagram showing a RBF network with NI inputs, NJ 

hidden neurons, and NK outputs is presented in Fig 3.7. The algorithm for training these 

types of networks can be summarised as follows: 

i. The net input (sj) of the hidden neuron (j) from the input vector X = (x1, x2, 

x3,…xNI) is calculated as:  

𝑠𝑗 = [𝑥1𝑤1,𝑗
ℎ , 𝑥2𝑤2,𝑗

ℎ … 𝑥𝑖𝑤𝑖,𝑗
ℎ … . 𝑥𝑁𝐼𝑤𝑁𝐼,𝑗

ℎ ]                                          (3.7) 

where NI = number of input neurons; j = index of hidden neurons; 

𝑤𝑖,𝑗
ℎ  = input weight between input neuron i and hidden neuron j in at the hidden 

layer h; and xi = i
th

 input neuron.   

ii. Define the number of clusters Ecl, where each cluster is represented a hidden 

neuron. Determine the centres of the clusters using an unsupervised learning 

algorithm (clustering technique). This is calculated as: 
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𝑐𝑗 =  
1

𝐸𝑐𝑙
∑ 𝑥𝑒

𝐸𝑐𝑙

𝑒=1

                                                                      (3.8) 

 where cl = centre of cluster; Ecl = total number of clusters; and xe = e
th

 cluster. 

iii. Calculate the width of the radial centre of each of the hidden neurons.  

This is calculated as: 

𝜎 =  
1

𝑁
∑‖𝑥𝑖 − 𝑐𝑙 ‖

𝑁

𝑖=1

                                                                     (3.9) 

where N = the number of training samples in the cluster;  

xi = the i
th

 training samples in the cluster; and σ = width of the radial centre. 

iv. Compute the output from the hidden neurons. The output of the hidden neuron j 

is calculated as:  

𝜑𝑗(𝑠𝑗) =  𝑒𝑥𝑝 (−
‖𝑠𝑗 − 𝑐𝑙𝑗‖

2

𝜎𝑗
)                                                              (3.10) 

where φl(.) = the Gaussian activation function for hidden neuron j. 

v. Compute the output from the output neurons. The output neuron k is calculated 

as: 

 

𝑜𝑘 =  ∑ 𝜑
𝑗
(𝑠

𝑗
)

𝑁𝐽

𝑗=1

𝑤𝑗,𝑘 +  𝑤𝑘                                               (3.11) 

where m = index that denotes the output neuron m;   

ok = output from the output neuron; 𝑤𝑘 = the bias weight of output unit k; 

                  𝑤𝑗,𝑘= the weight between hidden neuron j; and output neuron k. 

vi. Calculate the error between the computed output and the target. 

vii. If the computed error is greater than a tolerance limit, adjust the variables in the 

RBF neural network and repeat the above steps until the stopping criterion is 

met. 

 

3.2.5.3 Recurrent neural networks 

Recurrent neural networks (RNNs) are a type of feedback ANN in which the units contain 

at least one connection to form a directed cycle. The units in RNNs can either be fully 

connected (Fig. 3.8(a)) or partially connected (Fig. 3.8(b)). In partially connected RNNs, 

only some of the units are connected concurrently. Whereas in fully connected RNNs, all 

the units are connected concurrently making it impossible to apply a back-propagation 
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algorithm. The feedback connection feature in RNNs makes them dynamic, thus enabling 

it to solve both continuous and discrete time-dependent problems. For a partially 

connected RNN, selecting an appropriate number of layers and hidden nodes is very 

important prior to training the network. Partially connected RNNs can be trained using 

population-based methods such as evolutionary algorithms and particle swarm 

optimisation. These methods have the ability to perform both the parameter learning and 

structure learning simultaneously during the training process (Shin & Xu, 2009).  

 

 

Figure 3.8 The architecture of a: (a) fully connected and (b) partially connected RNN 

 

Some applications of RNN include learning formal grammar, music composition and 

speech recognition. Despite their versatility, they have some limitations: it is sometimes 

very difficult to determine a suitable architecture, number of units, and number of time 

lags. These difficulties in choosing optimal properties can result in poor predictions from 

RNNs (Lobbrecht et al., 2002). For detailed information on RNN, the reader may refer to 

the book by Patterson (1996). 

 

3.2.5.4 Boltzmann machine 

Boltzmann machine is a stochastic RNN that was first developed by Ackley, Hinton and 

Sejnowski (1985). Its mode of operation is quite similar to that of Hopfield network. They 

both have fully connected networks that are trained by minimising their energy state. 

However, the network topology of Boltzmann machine differs from that of Hopfield 

network. The neurons in Boltzmann machine have hidden neurons, whereas there are no 

hidden neurons in Hopfield network. In a Boltzmann machine, neurons are grouped into 
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input, hidden, and output neurons. Figure 3.9 shows a schematic diagram of Boltzmann 

machine with 3 hidden nodes (grey circle) and 4 visible nodes (white circle). To train a 

Boltzmann machine, the network is run from a high temperature and decreased gradually 

to a low temperature using Eqn. 3.12. The network repeatedly cycles through the states 

until it reaches a steady state. This process is known as simulated annealing. The 

Boltzmann machine has a relatively slower learning rate compared to back-propagation 

ANN. It is also sometimes difficult to adjust the temperature and determining the 

equilibrium state during the simulated annealing process.    

 

𝑝𝑖 =  
1

[1 + 𝑒𝑥𝑝 (
∆𝐸𝑖

𝑇𝐵𝑜𝑙𝑡
)]

                                                                       ( 3.12) 

 

where pi = probability of the i
th

 neuron; TBolt = temperature; and ∆E = global energy. 

 

 

Figure 3.9 Graphical representation of Boltzmann machine 

 

3.2.5.5 Self-organising maps 

Self-organising maps (SOMs) were developed by Kohonen (1990), and are therefore 

sometimes referred to as Kohonen networks. SOMs can be divided into two, namely, 

adaptive resonance theory (ART) and self-organising feature maps (SOFM). The ART 

uses an unsupervised learning algorithm that takes an input vector which consists of one-
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dimensional array of values and transfers it to its best match in a recognition field. It has 

the ability to recognise previously learnt categories or create new categories if it is 

presented with new analogue or binary input vectors. SOFMs use unsupervised learning 

algorithm to project high-dimensional data to a one-, two-, or three-dimensional data space 

(known as maps) while preserving key features of the input space. SOFMs consist of an 

input layer, connection weights, and an output layer. Figure 3.10 shows the structure of a 

SOFM. The generated maps have reduced dimensions of groupings of similar data items. 

SOFMs are instrumental in solving problems with high-dimensional data. Such problems 

cannot be solved by humans, as we cannot visualise data with high dimensions. Some 

applications of SOMs include pattern recognition, clustering, speech recognition, and 

market segmentation (for example, grouping customers according to their buying criteria). 

An advantage of SOMs is that the output results can be easily understood and interpreted, 

but a major drawback is that they require many data to develop meaningful clusters (Sonali, 

2014).  

 

 

Figure 3.10 Graphical representation of a self-organising feature map 

 

Unlike other ANNs, SOFMs use a neighbourhood function which does not change the 

topological features of the input space. They transform data in two main modes: through 

vector quantisation to train the input data, and a mapping for the classification. The 

learning algorithm for SOFM is listed below: 
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i. Assign random weights to the network. The connection weight between the 

input neuron i at the input layer and neuron k at the output layer can be 

expressed as: 

𝑊𝑖 = {𝑤𝑖,𝑘: 𝑖 = 1, … , 𝑁𝐼;  𝑘 = 1, … , 𝑁𝐾}                                       (3.13) 

where NI = number of neurons in input layer; and 

NK = total number of neurons output layer 

ii. Assign the input vectors (patterns) to the network. The input vector X is given 

as:  

𝑋 = {𝑥𝑖:  𝑖 = 1, … , 𝑁𝐼}                                                       (3.14) 

iii. Select the best matching (winning) node. This is done by calculating the 

Euclidean distance (E) between the input vector X and the weight vector Wi for 

each neuron i using Eqn. 3.15. The node with the shortest Euclidean distance is 

selected as the winning node. This node exhibits the greatest similarity with the 

input vector. 

𝐸(𝑋)  =  √∑(𝑥𝑖 −  𝑤𝑖𝑘 )2

𝑁𝐼

𝑖=1

                                                 (3.15) 

iv. The winning node and its neighbouring nodes are updated using Eqn. 3.16. 

This equation adjusts the weight of the winning node and its neighbours 

towards the input vectors in order to preserve the topology of the map.  

 

𝑤𝑖𝑘(𝑁𝑇 + 1) = 𝑤𝑖𝑘(𝑁𝑇) +  η(𝑁𝑇)𝐹(𝑁𝐶, 𝑟∗)[𝑥𝑖 − 𝑤𝑖𝑘(𝑁𝑇)]                (3.16) 

 

where NT = number of iterations; F(NC, r
*
) = neighbourhood function;  

NC = number of cycles; η = learning rate with a value between 0 and 1 that 

controls how fast the SOFM learns; r
*
 = neighbourhood radius;  

𝑤𝑖𝑘(𝑁𝑇 + 1) = new connection weight between the input node i and output  

                      node k; and 

 𝑤𝑖𝑘(𝑁𝑇) = old connection weight between the input neuron i and output  

                  node k. 

v. Repeat steps ii.–iv. until a stable network configuration is attained. 
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3.2.6 Training of artificial neural networks 

ANNs have three important components; namely, connection weights, summation function 

(aggregate function), and transfer function. The ANN receives one or more inputs, and 

multiplies each input by its connection weight. These weights are numerical values that are 

initially randomly assigned to each node, and are then adjusted during the training process. 

In ANN modelling, training is the process whereby the connection weights are adjusted 

until the predicted values are close to the measured values. This adjustment makes some of 

the independent variables more significant than others in the prediction of the dependent 

variable. The products of each input and connection weight are aggregated and passed 

through an activation (transfer) function. The activation function of a node defines the 

output node for a given set of input data.  

 

The three most commonly used activation functions during the training process in ANNs 

are the sigmoid (logistic), hyperbolic (tanh), and linear activation functions (Zeng, 1999). 

Figure 3.11 shows graphs of these functions. The sigmoid activation function is the most 

widely used activation function (Ozkan & Erbek, 2003). It takes any input value and 

returns an output value between 0 and 1. If an ANN has more than one hidden layer, the 

output values serve as input values to the output layer, which is transformed again using a 

transfer function into output values between 0 and 1. A mathematical representation of the 

sigmoid activation function is shown in Eqn. 3.17. The hyperbolic activation function is 

the second most popular activation function (Ozkan & Erbek, 2003). This function takes 

the input values and returns output values in the range [-1, +1]. Equation 3.18 shows a 

mathematical representation of the hyperbolic activation function. A mathematical 

representation of the linear activation function is presented in Eqn. 3.19. This function 

gives an output that is linearly proportional to the input. As a result, it is unable to solve 

non-linear problems. This was one of the limitations of the early ANN models.    

   

𝑦𝑜 =
1

1 + 𝑒−𝑥𝑖𝑛
                                                                                ( 3.17) 

𝑦𝑜 =
𝑒𝑥𝑖𝑛 − 𝑒−𝑥𝑖𝑛

𝑒𝑥𝑖𝑛 +  𝑒−𝑥𝑖𝑛
                                                                                 (3.18) 

𝑦𝑜 = 𝑚𝑠𝑥𝑖𝑛                                                                                          ( 3.19) 

   where ms = slope of the line; xin = input neuron; and yo = output neuron. 
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Figure 3.11 (a) Sigmoid (b) Hyperbolic and (c) Linear activation function 

 

ANNs use optimisation algorithms to optimise connection weights and biases. 

Optimisation help to minimise the error in the objective function. Some common objective 

functions are mean square error (MSE) and sum of square error (SSE). There are several 

optimisation algorithms that can be used to optimise ANNs. They include the Levenberg–

Marquardt (LM) algorithm, which updates weights and biases according to LM non-linear 

optimisation; scaled conjugate gradient back-propagation, which updates weights and bias 

values based on the scaled conjugate gradient method; and Bayesian regulation back-

propagation, which also uses LM optimisation to update weights and biases. Other 

customised optimisation algorithms have been developed to improve the performance of 

ANNs. These include the artificial bee colony algorithm (Shah, Ghazali, Nawi, & Deris, 
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2012), hybrid particle swarm optimization–back-propagation (Zhang, Lok, & Lyu, 2007), 

and particle swarm optimisation (Mendes, Cortez, Rocha, & Neves, 2002). 

 

3.2.6.1 Levenberg–Marquardt algorithm 

The LM algorithm is used to solve non-linear least squares problems in non-linear and 

ANN models. It has the ability to find solutions to problems even if it starts very far off the 

final minimum. LM algorithm can be presented mathematically as shown in Eqn. 3.20. It 

is able to switch between two algorithms; the Gauss–Newton algorithm and the gradient 

descent algorithm during the training process. If the combination coefficient µk is very 

small (approaching zero), Eqn. 3.20 approximates to Gauss–Newton algorithm which is 

represented by Eqn. 3.21. On the other hand, if µk is very large, it can be interpreted as the 

learning coefficient in the gradient descent method. Equation 3.20 then approximates to 

Eqn. 3.22 and uses the gradient descent method.    

 

𝑤𝑘+1 =  𝑤𝑘 − (𝐽𝑀𝑘
𝑇𝐽𝑀𝑘 +  𝜇𝑘𝐼𝑚)−1𝐽𝑀𝑘𝑒𝑘                                                         (3.20) 

 

𝑤𝑘+1 =  𝑤𝑘 − (𝐽𝑀𝑘
𝑇𝐽𝑀𝑘)−1𝐽𝑀𝑘𝑒𝑘                                                         (3.21) 

 

𝑤𝑘+1 =  𝑤𝑘 −
1

𝜇𝑘
𝑔𝑟𝑎𝑑𝑘                                                              (3.22) 

 

where µk = a positive integer known as combination coefficient; Im = identity matrix;                               

grad = gradient, which is the first-order derivative of the total error function; 

JM = Jacobian matrix; e = training error; k = the index of iteration; w = weight vector; and 

T
 = transposition. 

 

3.2.6.2 Scaled conjugate gradient algorithm 

The scaled conjugate gradient algorithm was developed by (Moller, 1993) to avoid the 

time-consuming line search methods of optimisation. This algorithm chooses the search 

direction and the step size by using information from second order approximation. An 

algorithm for scaled conjugate gradient algorithm is presented in Algorithm 3.1 
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Algorithm 3.1 Scaled conjugate gradient algorithm 

a. Choose the initial weight vector w1 and set k = 1 

𝑝1 =  𝑟1 =  −𝐸′(𝑤1)                                                            (3.23)  

where k = index of the iteration; r1 = initial steepest descent direction  

p1 = initial search direction; w1 = initial weight vector; 

E(w) = global error function that depends on all the weights and biases; and 

E’(w) = the gradient of the global error function.  

b. Calculation of the second-order derivative δk during the k
th

 iteration is given by: 

𝛿𝑘 =  𝑝𝑘
T𝐸′′(𝑤𝑘)𝑝𝑘                                                                (3.24) 

where 
T
 = transposition; pk = search direction during the k

th
 iteration; and 

wk = weight vector during the k
th

 iteration. 

c. Calculate the step size αk: 

𝜇𝑘 = 𝑝𝑘
𝑇𝑟𝑘                                                                  (3.25𝑎) 

𝛼𝑘 =
𝜇𝑘

𝛿𝑘
                                                                  (3.25𝑏) 

where rk = steepest descent direction during the k
th

 iteration. 

d. Update the weight vector 

𝑤𝑘+1 =  𝑤𝑘 + ∝𝑘 𝑝𝑘                                                         (3.26) 

𝑟𝑘+1 =  −𝐸′𝑤𝑘+1                                                            (3.27) 

e. If mod Nitr = 0, then  

       restart algorithm 

       𝑝𝑘+1 =   𝑟𝑘+1                                                                                                           (3.28) 

else 

      𝛽𝑘 =  
|𝑟𝑘+1|2−𝑟𝑘+1 𝑟𝑘

𝜇𝑘
                                                                                                (3.29) 

 

where 1 ≤ k ≤ Nitr; and Nitr = number of iterations. 

f. If rk ≠ 0 then 

      Set k = k +1 and go to step b 

Else  

     Terminate and return wk+1 as desired minimum.  

(Moller, 1993)  
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3.2.6.3 K-fold cross-validation 

There are several types of ANN models that can be used to solve different types of 

problems. Each has its own advantages and disadvantages. For instance, RBF neural 

networks are not able to model networks with many input variables (Lobbrecht et al., 

2002). Despite the versatility of recurrent neural networks, it is sometimes very difficult to 

choose optimal parameters, which may result in poor predictions (Lobbrecht et al., 2002). 

The Hopfield networks also have the limitation of not being able to converge if too many 

patterns are stored (Lippmann, 1987). Back-propagation neural networks are one of the 

most commonly used ANNs. They are very flexible to use. Some advantages of back-

propagation neural networks listed by Priddy and Paul (2005) are: 

 They are easy to use and implement. 

 They can solve a wide range of problems. 

 They have the ability to solve complex non-linear problems. 

 

In ANN modelling, the data are generally partitioned into training, validation, and testing 

sets. During the training process, ANNs usually require large amounts of training data to 

capture variations in the entire search space. This helps to prevent the model from 

overfitting, i.e. memorising the training data instead of learning to generalise the trends in 

them. There are two main reasons why overfitting occurs in ANNs: either the training data 

set is too small, or the input and hidden nodes are too many.  

 

Fields such as aviation, marine benthic ecology, and disease diagnosis often have limited 

data sets. Under such circumstances, the scarcity of data often results in biased partitions. 

When this occurs, the training data set may not have enough data to make a generalisation. 

Since the data set used for the model development in this research was relatively small, it 

was very important to have a suitable approach for dividing the data into training, 

validation, and testing sets while still maintaining a high level of confidence in the results. 

A number of researchers have used different ANN methods to solve problems with small 

data sets. Li, Chen and Lin (2003) combined the functional virtual population method with 

an ANN model to solve dynamic manufacturing problems with small data sets. Mao, Zhu, 

Zhang and Chen (2006) also proposed a posterior probability technique that estimates 

missing data in small data sets used for ANN modelling. K-fold cross-validation is the 

most common method used to form unbiased partitions of small-sized data sets. This 
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method has been successfully applied by researchers in a broad range of disciplines, 

including biological sciences, chemistry, and water resource engineering, in instances 

where the modelling data set is small (Shahriari & Shahriari, 2014; Singh & Gupta, 2012; 

Zhang, Wang, Ji, & Phillips, 2014).  

 

In the K-fold cross-validation, the data set used in the modelling is randomly divided into 

K distinct equal subsets. K-1 subsets are used for the training, while the remaining subset 

is used to validate the performance of the ANN model. The process is repeated K times, 

each time using a different K subset to validate the performance of the model, while using 

the remaining K-1 subsets to train it. The model performance indicator (objective function), 

root mean square error (RMSE) is averaged across the K trials for both the training and 

validation data sets as suggested by Hanrahan (2011). A diagram to illustrate how the 

training and validation subsets were divided and applied in the model is presented in Fig. 

3.12. 

 

 

Figure 3.12 Schematic depiction of the K-fold cross-validation method 

 

Just like any other methodology, K-fold cross-validation has its own benefits and 

limitations. An advantage of this method is its ability to reduce lucky and unlucky splits 

(biased partitions) by using each of the randomly partitioned subsets for training and 

validation exactly once. Since the model has to be run K times, it can be slow and requires 

considerably high computational resources to train the network.  
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3.2.7 Advantages and disadvantages of artificial neural networks 

Researchers have created the impression that ANNs can solve every problem. This 

misconception has caused disappointments if users fail to obtain good results from ANNs. 

Just like any other model, ANNs offer a number of advantages and limitations. These 

include the following: 

 

3.2.7.1 Advantages of artificial neural networks 

 They can detect linear or complex non-linear relationships between independent 

and dependent variables (Hinton, 1992). This is a distinct advantage over 

traditional statistical methods. 

 They can learn from observed examples by adjusting their internal weights to 

reduce the error between the desired output and the actual output. The three major 

algorithms used by ANNs for learning are supervised learning, unsupervised 

learning and reinforcement learning.  

 

3.2.7.2 Disadvantages of artificial neural networks 

 They are frequently referred to as black-boxes because it is difficult to understand 

their internal operation. 

 They require considerable computational resources to simulate. 

 They are prone to overfitting, which may lead to poor predictive performance. 

Overfitting occurs when a model memorises training data instead of learning to 

generalise from trends.  

 They require a large amount of data to train, validate and test a model. 

 

 

3.3 Fuzzy inference system 

Fuzzy logic is a kind of logical system that deals with reasoning that is approximate rather 

than crisp or precise. It can be used to translate sophisticated statements from natural 

language (qualitative knowledge) into mathematical formalisms (numerical reasoning). 

Fuzzy logic is useful for finding precise solutions from vague, ambiguous, or uncertain 

data (McNeill & Thro, 1994). Instead of mathematically modelling complex data, fuzzy 

logic incorporates rules that include words such as ‘IF’, ‘AND’, and ‘THEN’. 

 



 

70 

 

3.3.1 Historical background of fuzzy inference system 

It is believed that the first person to use fuzzy logic was Gautama Buddha. He was born in 

about 563 BC, and is the founder of Buddhism. His philosophy was full of grey statements 

(what the Western world would describe as contradictions). He believed that a statement 

could be both true and false at the same time. In other words, something can be X and not-

X simultaneously. Some 200 years later, Buddha’s philosophy was sharply refuted by a 

Greek scholar, Aristotle. Aristotle believed there were no grey areas in things pertaining to 

the world. He believed that they were either true or false, black or white, hot or cold, X or 

not-X. These two philosophies spread independently. Buddhism was accepted by Indians, 

whereas Aristotle’s philosophy was accepted by Greek scholars, and later by the Western 

world. Aristotle’s philosophy was later proofed by logic and accepted by scientists. He is 

credited with the development of formal logic (Degnan, 1994), and it is therefore 

sometimes referred to as Aristotelian logic or binary logic.    

 

Aristotelian logic ruled the Western world for over 2,000 years. During this time, the 

scientific community found it very difficult to embrace the concept of uncertainty or fuzzy 

reasoning. They believed uncertainties were detrimental, and should be avoided as much 

as possible. In the late 19
th

 century, scientists began to realise that some problems could 

not be addressed by crisp theories and laws that did not consider uncertainty. For example, 

they found that Newtonian mechanics could not solve problems at the molecular level. As 

a result, they started replacing Newtonian mechanics with statistical mechanics, which 

could be explained by probability theory; a theory that captures some level of uncertainty 

(Ross, 2010). In 1923, Jan Lukasiewicz, a Polish philosopher and logician who many 

regard as one of the most important historians of logic, introduced the theorem of multi-

valued logic. He established a relationship between his theorem and the traditional 

Aristotelian logic (Lukasiewicz, 1963). 

 

During the early 20
th

 century, probability theory was the leading concept for describing 

uncertainty. However, this theory was challenged by Max Black, a British-American 

philosopher who lectured at Cornell University. In 1937, he published a paper on 

vagueness in which he proposed a logic for vague terms (Black, 1937). In 1965, Lotfi 

Askar Zadeh, a professor in electrical engineering, developed a continuous-valued logic 

which he termed fuzzy set theory (Zadeh, 1965). Unlike Aristotelian logic and probability 

theory, fuzzy logic was able to address several uncertainties. This was a significant step 
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towards solving problems with uncertainties. Zadeh is credited with the invention of fuzzy 

logic. In fuzzy set theory, the sets consist of members that have various levels of belonging, 

known as memberships. These memberships are defined over a universe of discourse 

called membership functions (Zadeh, 1965).    

   

After Zadeh’s introduction of fuzzy set theory, a number of researchers have made 

significant contributions to the development of fuzzy logic. One of the significant 

contributions is the industrial application of fuzzy logic in engineering systems control. 

Ebrahim H. Mamdani, a British professor who lectured at Imperial College, was the first to 

apply fuzzy logic in this area. He showed how fuzzy logic can be used to control dynamic 

plants (Mamdani, 1974). Sugeno (1985) introduced a similar fuzzy model to Mamdani’s 

model to control systems. Sugeno’s model is still in use today, and is regarded as one of 

the suitable tools for modelling non-linear systems. The main difference between these two 

models is that the output of Mamdani’s model is a fuzzy set, whereas the output 

membership function of Sugeno’s model is linear.  

 

3.3.2 Fuzzy set concepts 

In mathematics, a fuzzy set is a set with elements that have varying degrees of membership. 

This concept directly contradicts with crisp sets, where the elements in their set have full 

membership. A crisp set is defined by a bivalent truth function which assigns a value of 

either 0 or 1 to each element of the universe of discourse. This means that an element is 

either a full member of a set or is not at all. Some examples of crisp sets are: a set of odd 

numbers or set of even numbers. In such sets, the boundaries are precisely defined. Hence, 

it is easy to determine which set a given element belongs to.  

 

In real life, there are many instances where judgement or evaluation of information cannot 

be precise. In such instances, there are ambiguity and uncertainty in the evaluation. For 

example, it will be difficult to precisely define the boundaries of a class of intelligent 

students. This is because the word intelligent is relative; what someone may classify as 

intelligent, another may classify as not intelligent. Fuzzy sets provide a mathematical way 

of representing this uncertainty by allowing partial memberships with intermediate values 

between 0 and 1. The following definitions explain the basis of fuzzy set operations. 
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Membership function 

A membership function µA(x) in a fuzzy set A is a curve that defines how each element x in 

the universe of discourse U is mapped to a membership value between 0 and 1 for all x∈U. 

The membership function is maximum when µA(x) =1 and minimum when µA(x) = 0. At 

the maximum or minimum value, the fuzzy set becomes a crisp set. 

 

Intersection 

The intersection of two fuzzy sets A and B denoted by 𝐴 ∩ 𝐵 for all elements of x in the 

universe of discourse U is defined by Eqn. 3.30. 

 

  𝐴 ∩ 𝐵 =  𝜇A∩B(𝑥) = 𝑚𝑖𝑛[ 𝜇A(𝑥), 𝜇B(𝑥)]                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑈                         (3.30) 

 

Union 

The union of two fuzzy sets A and B denoted by 𝐴 ∪ 𝐵 for all elements of x in the universe 

of discourse U is defined by Eqn. 3.31. 

 

  𝐴 ∪ 𝐵 = 𝜇A∪B(𝑥) = 𝑚𝑎𝑥[ 𝜇A(𝑥), 𝜇B(𝑥)]                  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑈                        (3.31) 

 

Compliment 

The complement of the fuzzy set A is denoted by �̅� for all elements of x in the universe of 

discourse U is defined by Eqn. 3.32. 

 

�̅� =  𝜇𝐴(𝑥) = 1 − 𝜇𝐴(𝑥)             𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑈                               (3.32) 

 

Equal sets 

Two fuzzy sets A and B are said to be equal if  𝜇A(𝑥) = 𝜇B(𝑥) for all elements of x in the 

universe of discourse U. 

 

Subset 

A fuzzy set A is a subset of a fuzzy set B if 𝜇A(𝑥) ≤ 𝜇B(𝑥) for all elements of x in the 

universe of discourse U. 
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Empty set 

A fuzzy set A is said to be empty if 𝜇A(𝑥) = 0 for all elements of x in the universe of 

discourse U. 

 

De Morgan’s laws 

De Morgan’s laws states that the negation of a conjunction of two fuzzy sets A and B is the 

disjunction of the negations of the sets, and the negation of a disjunction in the sets is a 

conjunction of the negations of the sets. The laws can be expressed as: 

 

𝐴 ∩ 𝐵 =  𝐴  ∪  𝐵                                                        (3.33) 

 

𝐴 ∪ 𝐵 =  𝐴  ∩  𝐵                                                        (3.34) 

 

Commutative laws 

Two fuzzy sets A and B are said to be commutative if:  

 

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴                                                      (3.35) 

 

𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴                                                      (3.36) 

 

Distributive laws 

Three fuzzy sets A, B and C are said to be distributive if:  

(𝐴 ∪ 𝐵)  ∪ 𝐶 = 𝐵 ∪ (𝐴 ∪ 𝐶)                                                      (3.37) 

 

(𝐴 ∩ 𝐵)  ∩ 𝐶 = 𝐵 ∩ (𝐴 ∩ 𝐶)                                                      (3.38) 

 

3.3.3 Types of fuzzy membership functions 

A membership function in a fuzzy set defines the degree to which an element in the 

universe of discourse maps to a membership value between 0 and 1. The horizontal axis 

defines an input variable or element, and the vertical axis represents the value of the 

membership function. Membership functions are used to map non-fuzzy inputs to fuzzy 

outputs and vice versa. The following sections discuss some types of fuzzy membership 

functions that can be represented in fuzzy sets.  
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3.3.3.1 Triangular membership function 

The elements x in a triangular membership function µ(x) is specified by three parameters 

(A, B, and C), where (A < B <C). Figure 3.13 shows a triangular membership function 

with parameters A = 2, B = 5, and C = 8.  It can be mathematically expressed as: 

  

𝜇(𝑥) =  𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒(𝑥; 𝐴, 𝐵, 𝐶) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝐴

𝐵 − 𝐴
,
𝐶 − 𝑥

𝐶 − 𝐵
) , 0 )         (3.39) 

 

 

Figure 3.13 Triangular membership function 

 

3.3.3.2 Trapezoidal membership function 

The elements x in a trapezoidal membership function µ(x) can be specified by four 

parameters (A, B, C, and D), where (A ≤ B ≤ C ≤ D). Figure 3.14 shows a trapezoidal 

membership function with parameters A = 2, B = 3, C = 7, and D = 8.  The membership 

function can be represented mathematically as: 

 

𝜇(𝑥) = 𝑡𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑(𝑥; 𝐴, 𝐵, 𝐶, 𝐷) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝐴

𝐵 − 𝐴
, 1,

𝐷 − 𝑥

𝐷 − 𝐶
) , 0 )                  (3.40) 
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Figure 3.14 Trapezoidal membership function 

 

3.3.3.3 Gaussian membership function 

The elements x in a Gaussian membership function µ(x) is specified by two parameters (C 

and σ). The parameters σgau and c represent the centre and width of the function, 

respectively. Figure 3.15 shows a Gaussian membership function with parameters σ = 1 

and C = 5.  The function can be represented mathematically as: 

 

𝜇(𝑥) =  𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥; 𝜎, 𝐶) = 𝑒
(

−(𝑥−𝐶)2

2𝜎2 )
                                               (3.41) 

 

 

 

Figure 3.15 Gaussian membership function 

 

3.3.3.4 Generalised bell membership function 

The elements x in a generalised bell membership function µ(x) is specified by three 

parameters (A, B, and C). The parameter C represents the centre and width of the function. 
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Parameters a and c are used to adjust the width of the curve, whereas B is used to control 

the slope. Figure 3.16 shows generalised bell membership function with parameters A = 2, 

B = 3, and C = 4.  The function can be represented mathematically as: 

 

𝜇(𝑥) =  𝑏𝑒𝑙𝑙(𝑥; 𝐴, 𝐵, 𝐶) =
1

1 +  |
𝑥 − 𝐶

𝐴 |
2𝐵                                             (3.42) 

 

 

 

Figure 3.16 Generalised bell membership function 

 

3.3.3.5 Sigmoidal membership function 

The elements x in a sigmoidal membership function µ(x) is specified by two parameters (A 

and C). The parameter C represents the centre of the function. The parameter A controls 

the slope of the membership function. Figure 3.17 shows a sigmoidal membership function 

with parameters A = 2 and C = 5.  The function can be represented mathematically as: 

 

𝜇(𝑥) =  𝑠𝑖𝑔(𝑥; 𝐴, 𝐶) =
1

1 +  𝑒[−𝐴(𝑥−𝐶)]
                                            (3.43) 
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Figure 3.17 Sigmoidal membership function 

 

3.3.4 Fuzzy inference process 

Fuzzy inference is the process where fuzzy logic is used to map a given input to an output. 

The mapping is done based on expert knowledge of the system from which decisions can 

be made. The three main types of fuzzy inference methods are the Sugeno fuzzy inference, 

Mamdani fuzzy inference, and Tsukamoto fuzzy inference. Mamdani fuzzy inference is 

the most common fuzzy model used today. Its process can be performed in six main steps: 

Step 1: Formation of fuzzy rules  

Step 2: Fuzzification of input variables 

Step 3: Application of fuzzy operator 

Step 4: Implication 

Step 5: Aggregation 

Step 6: Defuzzification 

 

3.3.4.1 Formation of fuzzy rules 

 Fuzzy logic tries to mimic human control logic by using descriptive language in its 

operations just like human operators. Rule-based expert systems translate expert 

knowledge written in natural language into fuzzy rules. Instead of mathematically 

modelling complex data, they use rules with simple statements made up of words such as 

‘IF’, ‘AND’ and ‘THEN’. These rules are expressed in syntax such as: 

IF ‘x is A’ AND ‘y is B’ THEN ‘z is C’ 

The expressions ‘x is A’ and ‘y is B’ are known as the antecedents, whereas the expression 

‘z is C’ is known as the consequent. The input variables are x and y, and the output 

variable is z. A, B and C are the linguistic values. Each linguistic value is defined by a 

membership function in the universe of discourse. Some examples of fuzzy rules are: 
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If temperature is COLD then turn heating on HIGH. 

If temperature is LOW then turn heating on OFF. 

 

3.3.4.2 Fuzzification of input variables 

Fuzziffication is the process of transforming crisp numeric input values into fuzzy values 

of appropriate fuzzy sets through membership functions. An output fuzzified value 

between 0 and 1 is returned irrespective of the value of the crisp input variable. Figure 

3.18 shows a membership function curve, µ(x), which describes the fuzzy set ‘temperature 

is cosy’. After fuzzyfying the crisp value of temperature at 27 ºC, a value of 0.66 was 

obtained. 

 

 

Figure 3.18 Fuzzification of input variable temperature 

 

3.3.4.3 Application of fuzzy operator 

If the antecedent of the fuzzy rule has more than one linguistic set, the fuzzy operator 

AND or OR is used to combine the fuzzy membership values. The fuzzy linguistic sets, 

“temperature is cosy” and “humidity is high” will be used to demonstrate the application 

of the fuzzy operator AND. Figure 3.19 shows membership function curves, µ(x) and µ(y), 

which describes the input variables temperature and humidity, respectively. The linguistic 

sets “temperature is cosy” and “humidity is high” gave results of 0.66 and 0.34, 

respectively after fuzzification. Applying the AND operator defined in Eqn.3.30, the value 

0.34 is selected as the antecedents of the fuzzy rule. 
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Figure 3.19 Illustration of the fuzzy operator AND 

 

3.3.4.4 Application of the Mamdani minimum implication method 

The Mamdani minimum implication method specifies how the membership function of the 

output linguistic variable is truncated. The AND or OR operator can be used in the 

implication process depending on the logic required to solve the problem. Figure 3.20 

illustrates how the AND operator was used to truncate the output linguistic variable 

‘climate’. Using the AND operator defined in Eqn.3.30, the output linguistic variable is 

truncated where the fuzzified value is minimum (µ(z)=0.34). 

 

 

Figure 3.20 Illustration of the implication method 

 

3.3.4.5 Aggregation 

Figure 3.21 shows a diagram to illustrate the Mamdani inference system process. From the 

figure, membership function curves µ(x), µ(y), and µ(z) are used to describe the input 

variables temperature, humidity, and climate, respectively. The fuzzy rules, “If 

temperature is not cosy then climate is harsh”, “If temperature is cosy AND humidity is 

high then climate is liveable”, and “If temperature is cosy AND humidity is LOW then 

climate is comfortable” will be used to demonstrate the aggregation method. The process 
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of combining the output sets of each of the rules into the single fuzzy set is known as 

aggregation. Depending on the logic required to solve a given problem, the ‘max’, ‘sum’, 

or ‘probabilistic or’ function can be applied in the aggregation process. In this example, 

the ‘max’ function was used for illustration. The aggregated output set is the union (sum) 

of the output sets of each of the rules. The aggregated output set was obtained using Eqn. 

3.31.  

 

 

Figure 3.21 Illustration of the Mamdani inference system process 
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3.3.4.6 Defuzzification 

Defuzzification is the final step of the FIS process. It is the process of converting the 

aggregated fuzzy output sets into a crisp value. There are several ways a fuzzy output can 

be defuzzified to a crisp value. The appropriate method of difuzzification to choose 

depends on a number of factors, including computational efficiency, shape of membership 

functions and the type of model being developed. For example, the centroid method will 

be more appropriate to use in quantitative models (van Leekwijck & Kerre, 1999), whereas 

the middle of maximum (MOM) will be more appropriate in qualitative models (Saletic, 

Velasevic, & Mastorakis, 2002). Other methods of defuzzification include the weighted 

average, bisector, smallest of maximum (SOMax), and largest of maximum (LOM) 

method.  

 

In the weighted average method of defuzzification, each membership function in the 

output is weighted by its respective membership values. This method is frequently used in 

fuzzy applications because it is computationally fast. However, it has the disadvantage of 

not being able to process asymmetrical membership functions. This method can be 

mathematically expressed as: 

 

𝑧∗ =  
∑ 𝜇𝐶(𝑧̅). 𝑧̅

∑ 𝜇𝐶(𝑧̅)
                                                              (3.44) 

 

where 𝑧̅ = the centroid of each of the symmetrical membership functions; 

Σ = the algebraic summation; and z* = defuzzified crisp value. 

 

The bisector method of defuzzification divides the output aggregated membership function 

into two equal areas. The vertical line that divides the membership function into two equal 

areas corresponds to the deffuzzified crisp value. The bisector method sometimes gives the 

same results as the centroid method. This method of defuzzification is computationally fast 

and gives good results in fuzzy sets with symmetrical membership functions. However, it 

gives inaccurate results in fuzzy sets with asymmetrical membership functions (Ginart, 

Sanchez, Links, & Back, 2002). 

 

MOM method of defuzzification, also known as the mean of maximum, takes the means of 

the points where the membership functions are at their maximum. This method is 
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computationally efficient. The SOMax method of defuzzification takes the smallest of the 

points (i.e. the leftmost point) where the membership functions are at maximum. The LOM 

method of defuzzification takes the largest of the points (i.e. the rightmost point) where the 

membership functions are at maximum. 

 

The centroid method, which is also known as the centre of gravity (CoG) method, which is 

the most common technique of defuzzification, was developed by (Sugeno, 1985). The 

CoG method was used to defuzzify the aggregated fuzzy output sets as shown in Fig. 3.21. 

It computes a crisp value representing the centre of gravity of the aggregated fuzzy output 

sets. It can be mathematically expressed as Eqn. 3.45. A crisp defuzzified crisp value of 

5.52 was obtained after using the CoG method. This indicates that when temperature is 27 

ºC and humidity is 70 %, then climate is liveable. 

 

𝑧∗ =  
∫ 𝜇𝐶(𝑧). 𝑧d𝑧

∫ 𝜇𝐶(𝑧)d𝑧
                                                              (3.45) 

 

where z* = the defuzzified crisp value which is the vertical line through the centre of 

gravity. 

 

3.3.5 Application of fuzzy inference system in water resources 

Ever since the emergence of fuzzy logic, it has been criticised for several reasons. Some 

researchers have opposed its application because of a natural reluctance to embrace new 

technology, especially when the change is seen as revolutionary (Bouslama & Ichikawa, 

1992). Others have been sceptical about fuzzy logic applications because they believe 

probability theory is able to solve problems that have all kinds of uncertainties. Some even 

believe that fuzzy logic is probability theory in disguise, while others think probability 

theory is the only sensible method to solve problems with uncertainty (Ibrahim, 2004). It 

would have been ideal for the critics of fuzzy logic to first check whether its objectives 

were being achieved before criticising it. The objectives are to let computers reason like 

humans, and to enable linguistic computing (computing with words). Although these 

objectives have not been fully achieved, some level of success has clearly been attained. It 

is important for critics to realise that fuzzy logic models, like any other model, cannot 

solve every problem. They have their own limitations, therefore, alternate methods of 

modelling should be used if they are unable to solve a given problem (Ibrahim, 2004). 
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In recent years, fuzzy logic has been increasingly applied in water resource engineering. 

Sadiq, Kleiner and Rajani (2004) used a combination of fuzzy techniques and an analytic 

hierarchy process (AHP) to develop a tree-based structure that predicts the risk of water 

quality failure in WDNs. They defined the risk of each item that contributes to the failure 

using fuzzy numbers to capture fuzziness in the qualitative linguistic definitions. However, 

their hierarchical model did not include sorption; an important process that contributes to 

water discolouration. Moreover, the fuzzy rules for their model were formulated using 

expert knowledge. Consequently, it may not give accurate predictions on new WDNs. In a 

related study, Kord and Ashgari Moghaddam (2014) applied both fuzzy logic and kriging 

models in the evaluation of ground water quality using variables such as pH, iron, total 

dissolved solids, and electrical conductivity. The outputs of the predicted drinking water 

quality were categorised as ‘not acceptable’, ‘desirable’, and ‘acceptable’. They observed 

that the fuzzy model gave better predictions than the kriging model. 

 

A hierarchic fuzzy logic model with 550 formulated rules was used by Gharibi et al. (2012) 

to develop a water index that measures the quality of drinking water supplied to dairy 

cattle from Karun River, Iran. Their model was trained on a four-year database consisting 

of 20 relevant input variables from 2007–2010. The relevant input variables included 

biochemical oxygen demand, temperature, turbidity, faecal coliform, dissolved oxygen, 

total dissolved solids, alkalinity, arsenic, and lead. Biochemical oxygen demand is very 

important variable in water quality modelling because it measures the quantity of oxygen 

used by microorganisms. The results from the model indicated that the water from Karun 

River had a low to medium water quality score. This fuzzy model could be very useful for 

assessing the quality of drinking water supplied to dairy cattle. The model’s prediction 

accuracy could have been improved if hydraulic variables were incorporated. 

 

Islam, Sadiq, Rodriguez and Francisque (2013) used a fuzzy-based model to assess raw 

water quality at Clayburn watershed in British Columbia, Canada. Their proposed model 

estimated pollutants loads discharged from various land uses such as highways/roads, 

agriculture, livestock, forests, and pasture land. After carrying out monthly and yearly 

analyses from the predicted results, they observed that highways/roads, and agriculture had 

an adverse impact on water quality, whereas forest gave the best water quality. The model 

can help water resource engineers to make informed land use decisions to improve water 

quality. 
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Chang et al. (2014) developed a quick and reliable model using neuro-fuzzy logic to 

estimate arsenic concentrations in Huang Gang Creek, Taiwan, which is a mix of stream 

water and hot springs. Input variables used in developing the model included one-month 

antecedent rainfall, nitrite nitrogen, temperature, DO, and Pb. Observations from their 

model indicated that lower temperatures, higher nitrite-nitrogen concentrations, and higher 

one-month antecedent rainfall resulted in high arsenic concentrations. This model could be 

used in the management of arsenic pollution in rivers and streams. 

 

3.3.6 Benefits and limitations of fuzzy inference system 

FIS is a very important tool in fuzzy set theory since it has the ability to automate system 

control and make decision analysis. However, like every good tool it may not be able to 

solve every problem. Hence, it has its own advantages and disadvantages. The following 

section summarises some advantages and disadvantages of FIS. 

 

3.3.6.1 Benefits of fuzzy inference system 

 It is cheaper to use than most traditional methods of modelling. Even though some 

traditional methods of modelling can give more precise results than FIS, they may 

be too costly or time intensive to model. Precision is expensive, but may not be 

always necessary. In other words, it may not be necessary to obtain an exact result 

when an estimated result from FIS is sufficient. 

 It can express natural language as fuzzy logic rules. By so doing, complex 

problems can be converted into simpler problems using these rules. 

 It can use expert knowledge in formulating fuzzy rules to perform tasks such as 

target tracking, systems control and water quality prediction. 

 It can be used to solve highly complex problems which analytic or numeric 

formulations cannot solve. Some problems are too complex to use conventional 

functions to define their causes and effects. 

 Fuzzy logic is easy to learn and use. 

 Its tolerance nature enables modelling with imprecise and inaccurate data. 

  

3.3.6.2 Limitations of fuzzy inference system 

 As the system’s complexity increases, more rules become necessary. As a result, 

combining these rules to obtain a good solution becomes increasingly difficult. 
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 A substantial amount of time is required to correctly tune the membership 

functions and adjust the rules in order to obtain accurate predictions. 

 FIS may not be suitable for solving problems that require high level precision 

solutions. For instance, fuzzy logic cannot be used to determine the ballistic 

trajectory of a missile intended to hit a target from a long range. 

 

 

3.4 Genetic algorithm 

3.4.1 Overview genetic algorithm 

Over the years, humans have gradually developed artificial intelligence that enables us to 

predict natural phenomena such as rainfall, temperature, snow, and the causes of diseases. 

Since 1980s, they have been increased research in artificial intelligence in the area of 

neural networks (imitates the human brain), fuzzy inference system (emulates human 

imprecise reasoning), and evolutionary algorithm (mimics evolution). Genetic algorithm is 

the most common evolutionary algorithm used by researchers. It is a global optimisation 

algorithm that was introduced by Holland (1975) at the University of Michigan. As the 

name indicates, genetic algorithm uses the natural phenomenon of evolution to find a 

solution to a problem by iteratively selecting fit candidates from a population of solution 

candidates to create offspring. This is repeated for several generations, each time creating 

offspring that are fitter than their parents. This algorithm is sometimes referred to as 

“survival of the fittest” because for each generation, fitter candidates are selected from a 

population for crossover (mating). 

 

Traditional methods of optimisation are slower in finding solutions to problems that have 

complex search space. Conversely, genetic algorithm is suitable for solving computational 

problems that usually have a number of possible solutions. Its computational parallelism 

functionality makes it able to simultaneously search for different solutions to a problem in 

an efficient way. It requires little information to effectively search through poorly 

understood search space. 

 

3.4.2 Mechanism of genetic algorithm 

Figure 3.22 shows the six main steps in the genetic algorithm process. These steps include 

the encoding of chromosomes, initialisation of the population, evaluation of the objective 
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function, selection of chromosomes, crossover, and mutation. The last three steps are 

referred to as the genetic operators. The following sections present in detail the steps in the 

genetic algorithm process. 

 

 

Figure 3.22 The genetic algorithm process 

 

3.4.2.1 Encoding of chromosomes 

Living organisms are made up of cells. Each of these cells consists of one or more 

chromosomes (strings of DNA). A chromosome consists of many identifiable subunits 

known as genes. In genetic algorithm, chromosome refers to a candidate solution encoded 

as a bit string. The bit strings encoded in a particular parameter are referred to as genes. A 

collection of chromosome is known as population. There are two methods of encoding in 

genetic algorithm. In the first method, binary encoding, the encoded bit strings in 

chromosomes are presented in binary strings of 0s and 1s. This method is often used for 

solving function optimisation problems. Figure 3.23 (a) shows some example of 

chromosomes with binary encoding. The second method, permutation encoding, is often 
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used for solving sequencing or ordering problems. The strings in the chromosomes of this 

method consist of numbers ranging from 1 to n numbers (see Fig. 3.23 (b)).  

 

 
Figure 3.23 Examples of (a) chromosomes with binary encoding and (b) chromosomes 

with permutation encoding 

 

3.4.2.2 Population initialisation 

Population initialisation is a very important step in the genetic algorithm process. Using 

bias initial population can reduce convergence speed or the performance of the model 

(Rahnamayan, Tzihoosh, & Salama, 2007). If there is no information about a solution to 

the problem, the parent population before the first generation is usually generated 

randomly. Randomly generated techniques such as pseudo-random number generator or 

chaotic number generator can be used to generate random numbers within the range 

defined in the chromosomes. 

 

3.4.2.3 Objective function evaluation 

Objective function is a function used to evaluate the performance of individuals in the 

population. In minimisation problems, an individual chromosome in the problem domain 

that has the lowest numerical value is the fittest, whereas in maximisation problems an 

individual with the highest numerical value is the fittest. An example of an objective 

function f(.) is given in Eqn. 3.46. To evaluate the objective function, the bit string in the 

chromosome is translated to a real number yreal and substituted into the objective function. 

The value returned by the objective function is known as the fitness value of the candidate 

solution. 

 

𝑓(𝑦𝑟𝑒𝑎𝑙) = 𝑦𝑟𝑒𝑎𝑙 + |sin (32 ∗ 𝑦𝑟𝑒𝑎𝑙)|,                0 ≤ 𝑦𝑟𝑒𝑎𝑙  ≤  𝜋                         (3.46) 
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3.4.2.4 Selection 

After the evaluation of the objective function, the selection operator is used to eliminate 

the worst chromosomes due to the low fitness value and select two healthy parents for the 

generating of new offspring. The most common selection method in genetic algorithm is 

the rank-based selection scheme. This method ranks fitness value for each chromosome 

and select the healthy parent chromosomes for crossover. 

 

3.4.2.5 Crossover 

The crossover operator is applied to the selected healthy parent chromosomes to produce 

offspring. Crossover operators for binary strings differ from permutation strings. In 

permutation strings, it is a requirement that each element appears only once in the string, 

whereas elements in binary strings can repeat itself. The three main crossover operators 

used in genetic algorithm are the standard one-point crossover, one-point order crossover, 

and heuristic crossover. Figure 3.24 illustrates how the standard one-point crossover is 

applied to binary strings. In this figure, two new offspring are formed by swapping 

elements in the tail parts of the strings (seventh to ninth position in the string).  

 

 

Figure 3.24 Illustration of standard one-point crossover for binary strings 

 

Figure 3.25 shows how the one-point order crossover is applied to permutation strings. 

From the figure, a crossover point is selected to divide the parent strings. After the 

crossover, the head part of Parent B becomes the head part of Offspring A and the head 

part of Parent A becomes the head part of Offspring B. The strings in the tail part of Parent 

A are reordered in the order of the appearance in Parent B and become the tail part of 

Offspring B. Similarly, the strings in the tail part of Parent B are reordered in the order of 

the appearance in Parent A and become the tail part of Offspring A. 
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Figure 3.25 Illustration of standard one-point crossover for permutation strings 

 

Heuristic crossover method uses the fitness values of the two parent chromosomes (Parent 

1 and Parent 2) with numerical representation to determine the direction of the search. The 

offspring generated is placed in a line drawn between the two parents, nearer the parent 

with the better fitness value. If Parent 1 has the better fitness value than Parent 2, then the 

offspring is generated by the following equation: 

 

𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑃𝑎𝑟𝑒𝑛𝑡 2 + 𝐶𝑅𝑎𝑡𝑖𝑜 ∗ (𝑃𝑎𝑟𝑒𝑛𝑡 1 − 𝑃𝑎𝑟𝑒𝑛𝑡 2)                           (3.47) 

 

where CRatio = the crossover ratio (usually a uniform random number) which specify how 

far the offspring is from the parent with a better fitness value. 

 

3.4.2.6 Mutation 

Mutation is a genetic operator that is used to maintain genetic diversity from one 

generation to another generation and prevents premature convergence of the genetic 

algorithm. It enables the genetic algorithm to search a broader space. Bitwise mutation and 

Gaussian mutation are mutation methods often used in genetic algorithm. In the bitwise 

mutation process, some elements in the solution string are randomly selected and inverted. 

Figure 3.26 illustrates how elements in the solution binary String A at positions 3, 6, and 

are inverted to form a new binary String B. 

 

 
 

Figure 3.26 Illustration of bitwise mutation for binary strings 
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In the Gaussian mutation method, a random number (RANDGaussian) is taken from a 

Gaussian distribution with mean 0 to each entry of the parent vector. The standard 

deviation of the Gaussian distribution is determined by the parameters ‘Scale’ and ‘Shrink’. 

The parameter ‘Scale’ represents variance of mutation during the first generation, whereas 

the parameter ‘Shrink’ represents Amount of shrink in the mutation in successive 

generations. The equation for calculating ‘Scale’ and mutation is given by Eqns. 3.48 and 

3.49, respectively. 

 

𝑆𝑐𝑎𝑙𝑒 = 𝑆𝑐𝑎𝑙𝑒 −  𝑆ℎ𝑟𝑖𝑛𝑘 ∗ 𝑆𝑐𝑎𝑙𝑒 ∗ (
𝐶𝑢𝑟𝑟𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)                 (3.48) 

 

𝑀𝑢𝑡𝑎𝑡𝑒𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = 𝐶ℎ𝑟𝑜𝑠𝑜𝑚𝑒 + 𝑆𝑐𝑎𝑙𝑒 ∗ 𝑅𝐴𝑁𝐷𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛             (3.49) 

 

 

3.5 Summary 

A critical review on AI-based methods of modelling in this chapter showed that these 

methods have the capability of learning from data and also able to cope well with 

uncertainties in data. They are also able to model data which have complex non-linear 

relationships between the independent and dependent variables. Given the complex nature 

of the processes that lead to the formation of Fe and Mn accumulation/water discolouration 

in WDNs, AI-based methods of modelling such as ANNs and FISs may be more 

appropriate to solve these types of problems. 
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CHAPTER 4: Data Acquisition and Exploratory Data 

Analysis 

4.1 Introduction 

In order to understand the processes and mechanisms that lead to Fe and Mn compliance 

failures, it is necessary to identify the relevant variables that influence Fe and Mn 

deposition in WDNs. In Chapter 2, studies by other researchers were reviewed to identify 

relevant variables that influence Fe and Mn accumulation. However, there are other 

important variables such as hydraulic distance from source of water supply and variation 

of daily shear stress which also influence Fe and Mn accumulation that have not been 

investigated thus far. In this chapter, a five-year customer complaint data set was collated 

with the objective of identifying WSZs with low, medium, and high levels of customer 

complaints for further analysis. Fourteen WSZs were selected for this analysis. A five-year 

data set comprising 37 chemical and biological water quality variables from the selected 

WSZs was analysed to identify relevant variables that influence Fe and Mn accumulation. 

EPANET was extended to extract relevant hydraulic and pipe-related variables such as 

maximum shear stress, average water age, pipe type, and pipe age from the network files 

of the WSZs. The computed hydraulic variables were also analysed to determine their 

effect on Fe and Mn accumulation. In subsequent chapters, the relevant variables identified 

will be used to develop models for predicting Fe and Mn accumulation potential. The 

remaining sections of this chapter are arranged as follows. The data collection methods for 

this research are presented in Section 4.2. Section 4.3 explains how the data were prepared 

for this study. The methodology for identifying relevant variables is presented in Section 

4.4. The results are presented and discussed in Sections 4.5–4.8. Finally, the summary of 

this chapter is presented in Section 4.9.  
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4.2 Data collection 

In this study, a five-year data set comprising 37 water quality variables covering 14 water 

supply zones (WSZs), consisting of 176 different DMAs, provided by an industrial partner 

was analysed. Customer complaints data for the WSZs covering the same period and study 

area were also provided by the drinking water company. The 37 water quality variables are 

listed in Table 4.2. In the context of this research, the sites of interest included WSZs with 

high, medium, and low levels of customer complaints in order for the models to capture all 

levels of discolouration and to remove any form of bias. The 14 WSZs used for the 

research had the following customer complaints levels: WSZ10, WSZ1, and WSZ8 had 

low customer complaints; WSZ7, WSZ5, WSZ6, WSZ11, and WSZ3 had medium 

customer complaints; and WSZ2, WSZ12, WSZ14, WSZ13, WSZ4, and WSZ9 had high 

customer complaints. The WSZs were selected from regions around Blackburn, Bolton, 

and Liverpool. 

 

 

4.3 Data preparation  

The existence of outliers in data sets is likely to have deleterious effects on models. 

Outliers can cause significant misinterpretations in statistical estimates in parametric or 

nonparametric tests (Zimmerman, 1998). They can also decrease normality, which 

eventually leads to Type I error (incorrect rejection of a true null hypothesis) and Type II 

error (failure to reject a false null hypothesis) (Zimmerman, 1994). In view of this, both 

transformed/normalised and untransformed/unnormalised data were used to develop the 

models in this research. It is important to remove all outliers because they can skew the 

distribution of data, which can lead to inaccurate model predictions. However, some 

researchers believe that outliers should not be removed, because extreme values do exist 

and are not always errors. It has been argued that removing outliers which are not caused 

by errors is a way of manipulating data to obtain better results, and can prevent models 

from predicting extreme values (Deyo, 2010; Osborne & Overbay, 2004).  

 

4.3.1 Customer complaints data 

Water companies worldwide currently use analysis of customer complaints data as the 

primary method of identifying areas in WDNs with high-risk of discolouration (Prince et 

al., 2003). A simple ‘rule of thumb’ used by Sly et al. (1990) is that, if Mn and/or Fe levels 

rise(s) above their respective MCLs of 50 µg/L and 200 µg/L, customer complaints 
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increase. For the purpose of this study, only customer complaints data relating to 

discoloured water and slime were reviewed. This is because increased Fe and Mn 

concentrations are known to cause drinking water discolouration and leave slimy masses 

inside sinks and toilet tanks (Boxall et al., 2003; Herman, 1996; Slaats, 2002). Using 

ArcGIS, the addresses where customers complained were geocoded to X, Y hydraulic file 

coordinates and assigned to their nearest respective nodes in the WSZs.  

 

The raw water quality data received from the drinking water company included other 

customer complaints that were not relevant for this research. Since increased Fe and Mn 

concentrations are associated with discoloured water and black-brown slimy masses inside 

toilet tanks and sinks, only customer complaints data relating to discoloured water and 

slime were reviewed. The customer complaints data were exported into a Microsoft Access 

database. The Structured query language (SQL) code to retrieve customer complaints data 

relating to discoloured water and slime from the Microsoft Access database is given in 

Appendix K.  

 

Since highly populated DMAs have a higher propensity for more customers to complain, 

there is the need to remove any population bias. For this purpose, the customer complaints 

data were normalised by dividing it with the number of properties (service connections) in 

each DMA and multiplying it by 1000. This removed any form of bias caused by the 

differences in DMA populations. This procedure is used by many water utilities (Prince et 

al., 2003). The customer complaints per 1000 properties can be mathematically expressed 

as:  

 

QCC per 1000 =
Quarterly customer complaints × 1000

NPDMA
                  (4.1)  

 

where QCC = quarterly customer complaints; and  

NPDMA = number of properties in a DMA. 

 

4.3.2 Water quality variables 

The water quality data provided by the drinking water company were sampled at different 

frequencies. Water quality variables with low sampling frequencies could not be 

investigated, because there were insufficient data from these variables to make analysis. 
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The street/house addresses of the sampled water quality variables were recorded. Using 

ArcGIS, the addresses were geocoded to X, Y hydraulic file coordinates and assigned to 

their nearest respective nodes in the WSZs. The geocoding was done by the drinking water 

company.  

 

The initial five-year post-treated water quality data and the five-year customer complaints 

data obtained from the drinking water company were provided in Microsoft Excel format. 

The data were exported into a Microsoft Access database to undergo data preparation. 

Microsoft Excel and Microsoft Access have their own strengths and weaknesses. 

Databases are more efficient for aggregating data (for example, calculating monthly 

customer complaint numbers and yearly averages of Fe concentrations). The relational 

database nature of Microsoft Access enables two or more tables to be joined. For instance, 

the customer complaints table can be joined to the water quality table to determine the 

relationships between water quality variables and customer complaints. SQL makes 

interacting with and retrieving data from Microsoft Access databases flexible and very 

easy. The SQL code to retrieve and merge the hydraulic data from the hydraulic table and 

the yearly averages of Fe and Mn from the water quality table for WSZ2 is given in 

Appendix L. Microsoft Excel has an advantage of being able to give different graphical 

representations of data for analysis.  

 

Outliers, which are extreme data points that deviate significantly from other data points, 

were removed from the data set. The method of detecting outliers by Smith and Subandoro 

(2007) was used in this research. This method classifies data which are more than five 

standard deviations from the mean as outliers. Mathematically, a data point (Xdata) is 

classified as an outlier if: 

 

|𝑋𝑛 −  �̅�  | > 5𝜎                                                     (4.2) 

 

where Xn = n
th

 data point; �̅� = mean of the data points; and  

σ = standard deviation of the data points.  
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Figure 4.1 Distribution of (a) untransformed Mn data with outliers (b) logarithmic 

transformed Mn data with outliers 

 

(a) 

(b) 
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The data set used for model development consisted of approximately 0.5% outliers. Figure 

4.1 shows the distribution of the untransformed and logarithmic transformed Mn data with 

outliers. The presence of these outliers in the data set could have been due to data entry 

errors, measurement errors, instrument failure, sampling errors, or contaminants 

introduced into WDNs from pipe bursts. They could also have come from deposited 

particulates after sudden increase in flow due to pipe bursts or the opening of fire hydrants 

during flushing operations and fire extinguishing exercises. All outliers were removed 

from the data set to prevent any disproportionate strong influence on the ANN models’ 

predictions. 

 

4.3.3 Hydraulic and pipe-related variables 

4.3.3.1 Maximum daily shear stress at node  

To investigate the influence of shear stress on Fe and Mn accumulation potential, the 

EPANET software was extended to extract all pipe and node variables. From the software, 

the shear stress was computed every 15 minutes for 24 hours for each pipe in the network, 

and the maximum daily shear stress for each pipe was recorded. The maximum daily shear 

stress in a pipe can be mathematically expressed as Eqn. 4.3. This equation for calculating 

hydraulic shear stress in pipes was adopted from PODDS model (see Section 2.4.1 for 

more details). Because shear stress has a pipe property, a methodology was devised to 

calculate the maximum daily shear stress at each node. The maximum daily shear stress at 

a given node was calculated by summing the maximum daily shear stress of the pipes 

connected to the node, and dividing it with the number of pipes connected to that node. 

This can be mathematically expressed as Eqn. 4.4. 

 

𝜏 =  
𝜌𝑤𝑔𝑑𝑝𝐻

4𝐿𝑝
                                                                                        (4.3) 

𝜏̅ =  
∑ 𝜏𝑗

𝑁𝑃
𝑗=1

𝑁𝑃
                                                                        (4.4) 

 

where  τj = maximum daily shear stress of a pipe j connected at a node;  

ρw = density of water; g = acceleration due to gravity; H = head loss; Lp = length of pipe; 

𝜏̅ = maximum daily shear stress at the node; dp = diameter of pipe; and  

NP = number of pipes connected to the node. 
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4.3.3.2 Variation of daily shear stress at node 

The diurnal variation in WDNs due to the continuous variation of drinking water demand 

causes the shear stress in pipes to vary from time to time. The shear stress acting on the 

walls at peak demand times is higher than that at off-peak times. The EPANET software 

was extended to compute the variation of daily shear stress in each pipe every 15 minutes 

for 24 hours. The variation of daily shear stress was calculated using the formula: 

 

𝜏𝑠 = √ 
∑  (𝜏𝑘 −  𝜏𝑎𝑁𝑇

𝑘=1  )2

𝑁𝑇 − 1
                                                 (4.5)  

 

where τ
a
 = mean daily shear stress in a pipe; NT = number of time intervals; 

τk = daily shear stress at the k
th

 time interval; and  

τ
s
 = variation of daily shear stress of a pipe. 

 

The variation of daily shear stress in pipes was converted to variation of daily shear stress 

at nodes by summing the value in each pipe connected to the node and dividing it by the 

number of pipes connected to it. It is expressed mathematically as: 

 

𝜏̅𝑠 =  
∑ 𝜏𝑗

𝑠𝑁𝑃
𝑗=1  

𝑁𝑃
                                                                                   (4.6)  

 

where �̅�𝑠 = variation of daily shear stress at node. 

 

4.3.3.3 Water age 

The age of water in WDNs, often referred to as residence time, is the time taken for treated 

water to travel from the treatment plant to a given node. This is a vital variable that can 

help to determine the extent of disinfectant loss in WDNs. It may range from a few 

seconds to several weeks. The EPANET software was used to compute the water age for 

all the nodes in the network after 72 hours of simulation. 

 

4.3.3.4 Hydraulic distance from source of water supply 

Hydraulic distance from source of water supply is the distance travelled by water from the 

source of water supply to a given node within a WDN. To measure this variable, the 
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EPANET software was extended to calculate the hydraulic distance of each node from the 

source of water supply. The program makes use of two main algorithms; namely, Particle 

Backtracking Algorithm (PBA) and Shortest Route Algorithm (SRA). 

 

The PBA was adopted from that developed by Shang, Uber and Polycarpou (2002), and 

was modified to suit this model. PBA can track particle movements in water from any 

node in a WDN to the source(s) of the water supply. PBA uses Lagrangian time-driven 

method which runs in reverse time for its computations; that means it runs opposite to the 

hydraulic simulation time. Furthermore, it is able to trace all the flow paths and their 

corresponding time delays between any given node and the source(s) of water supply. 

However, for the purpose of this research, only the flow paths were needed to compute the 

hydraulic distance from the source of water supply. A detailed algorithm with and without 

multiple storage tanks has been published by (Shang et al., 2002).  

 

Under the assumption of first-order chlorine decay reaction, the PBA developed by Shang 

et al. (2002) models output concentrations as a variable depending on input concentrations, 

network hydraulics, and physical characteristics of the pipe network (see Eqn. 4.7). For a 

single water quality source, PBA describes the output concentration (c) as a linear function 

of the input source strength (cs) for the travel paths (hydraulic paths) between a given 

source node and output node as follows:  

 

𝑐(𝑇) =  ∑ 𝛾𝑘𝑐𝑘(𝑇 − 𝑡𝑘)

𝑁𝑇𝑃

𝑘=1

                                                                (4.7) 

 

where NTP = number of travel paths between a given input and output node;  

T = output time; ck = water quality source input; 

𝛾𝑘= impact coefficient for travel paths k, which is the sensitivity of output concentration to 

path input concentration. This takes into account chlorine decay in pipes and storage tanks, 

and flow mixture at junctions; c = water quality output concentration; and  

tk = time delay for travel path k. 

 

Figure 4.2 is a simple pipe with steady hydraulic conditions that illustrates how PBA 

works. Although PBA is able to trace flow paths and computes their corresponding time 
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delays in WDNs with multiple water sources (storage tanks), for simplicity, a pipe with no 

storage tank will be used to illustrate how it works. The same concept can be used in 

networks with multiple storage tanks. The following parameters need to be defined in 

order to explain the PBA process: 

 

us = upstream node; ds = downstream node; Lp = length of pipe;  

µ’ = positive flow velocity directed from upstream to downstream;  

x’ = the position of the particle along the pipe; t’ = particle travel time;  

γ = unitless impact coefficient; k = composite first-order decay coefficient; 

T’ = initial algorithm time of the current hydraulic period. 

 

 

Figure 4.2 Illustration of particle backtracking algorithm in a single pipe without tank 

 

At the beginning of the PBA, the algorithm time is initialised to zero in a single pipe (see 

Fig 4.2). The particle (water parcel) is transported (backtracked) in the network in reverse 

time. The parameters t and γ are then updated until the particle reaches the upstream node 

us or the algorithm time equals the beginning of the hydraulic period (i.e. equals T). If the 

particle reaches the upstream node, and the node at the upstream is not the source node, 

then it is split among all inflows. On the other hand, if the algorithm time equals the 

beginning of the hydraulic period, the flow conditions are updated. Algorithm 4.1 shows 

how the particle is backtracked in a single pipe during a single hydraulic period. 

 

Algorithm 4.1 Algorithm to backtrack a particle in a single pipe during a hydraulic period 

1. Compute the time (δt’) the particle remains in the pipe and the current hydraulic 

condition. 

If µ(T’-t’) < x (i.e. the particles is still in the pipe) then 

   δt’ = T’-t’ 

  Else if the particles has reached upstream node d then 
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   δt’ = x’/µ’ 

  End if 

2. Update the parameters of the particle 

 x’ = x’ - µ’δt’ 

 t’ = t’ + δt’ 

 γ = γ exp(-k δt’)   

3. If the particle reaches upstream node before time T’ then 

Split the particles into different path flows. 

 End if 

 

The SRA uses graphshortestpath, which is a Matlab in-built function, to find the shortest 

paths and all possible paths from each node to all the source of water supply 

(reservoirs/tanks). Whereas the PBA was used to find the hydraulic paths and determine 

which of the reservoirs/tanks supplied the nodes with water. If there is only one source of 

water supply and the PBA indicates that there is a hydraulic path between the source of 

water supply and the node, the distance between them is recorded as the hydraulic distance 

from source of water supply. However, if there is more than one source of water supply to 

a node, their average hydraulic distances to the node are computed and record as the 

hydraulic from source of water supply. The flow chat and source code for calculating the 

hydraulic distance from source of water supply to the nodes are presented in Fig 4.3 and 

Appendix D, respectively. 
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Figure 4.3 Flow chart for calculating the hydraulic distance  

 

4.3.3.5 Pipe material 

Each pipe material was assigned a value in the range between zero and one and termed 

pipe material index. Plastic materials were given values very close to zero, while ferrous 

materials were given values close to one. Pipe materials were arranged from low to high in 

the following order of susceptibility to corrosion: Polyethylene (PE) → Polyvinyl Chloride 

(PVC) → High Density Polyethylene (HDPE) → Asbestos Cement (AC) → Ductile Iron 

(DI) → Steel (ST) → Cast Iron (CI). There were a few missing pipe material data in the 

hydraulic files. The table compiled by Bhave (1991), which lists pipe materials and their 
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corresponding range of roughness values, was used to estimate these missing data (see 

Table 4.1). Pipe roughness has a strong correlation with pipe material (Bhave, 1991). For 

instance, pipe materials such as CI and DI are known to have higher roughness values than 

PE and PVC. Pipe roughness also depends on pipe age. As pipe age increases, the 

accumulation of sediments and corrosion by-products on the inside of the pipe walls also 

increases. This causes the pipe roughness to increase, which eventually leads to a reduction 

in the pipe’s inner diameter (Christensen, 2009). From Table 4.1, pipe roughness values 

for uncoated CI ranged from 0.15–0.6 mm. Therefore, new uncoated CI pipes were given 

values close to 0.15 mm, whereas old uncoated CI pipes were given values close to 0.6 

mm. 

 

Table 4.1 List of pipe materials and their corresponding range of pipe roughness values 

Pipe material  Pipe roughness (mm) 

Asbestos cement  0.015 - 0.03  

Bitumen/Cement lined  0.03 

Wrought iron  0.03 - 0.15  

Galvanised/Coated cast iron  0.06 - 0.3  

Uncoated cast iron  0.15 - 0.6  

Ductile iron  0.03 - 0.06  

Uncoated steel  0.015 - 0.06  

Coated steel  0.03 - 0.15  

Concrete  0.06 - 1.5  

Plastic, PVC, PE  0.02 - 0.05  

Glass fibre  0.06 

Brass, cooper, lead  0.003 

                                (Bhave, 1991) 

 

4.3.3.6 Pipe age  

Pipe age data were provided by the water company. However, a few of them were missing 

in the network files. A Matlab program was written to extract the age of all pipes in the 

network. Where the pipe age data were missing, the pipe roughness was used to estimate 

the missing data. Pipe roughness was used because it is known to have a strong correlation 

with pipe age (Christensen, 2009). Linear regression models were developed to estimate 

the missing pipe age data for each pipe material using their respective pipe roughness 

values for each of the WSZs under investigation. Figure 4.4 (a) and (b) show sample 

graphs of the linear regression models used to estimate pipe age for CI and DI pipes, 

respectively, in WSZ1 and WSZ2. A Coefficient of determination (R
2
) value of 0.69 and 
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0.63 observed for the models for estimating CI and DI indicates it predicts reasonably well. 

Substituting the values of pipe roughness, slope of the regression line, and intercept term 

into the equations in Fig. 4.4 (a) and (b), the pipe age can be estimated. The algorithm for 

estimating missing pipe age data is presented in Appendix M. 

 

  

Figure 4.4 Linear regression models used to estimate pipe age for CI and DI pipes 

 

Since the water quality variables were sampled at the nodes, pipe age, which has a pipe 

property, was converted to a node property in order to make analysis with other variables 

with node properties possible. This was done by summing the pipe ages of pipes connected 

to a given node and dividing it with the number of pipes connected to it (similar to Eqn. 

4.4).  

 

 

4.4 Analytical Methods 

4.4.1 Spearman’s rank correlation  

Unlike the Pearson correlation, Spearman's rank correlation is a nonparametric measure 

that is used to determine correlation between two variables that may have linear or 

nonlinear (monotonic) relationship (Cohen, 1988; Puth, Neuhäuser, & Ruxton, 2015). 

Spearman’s correlation coefficient, rs, is a measure of how two variables correlate with 

each other. It can have a positive or negative value between 0 and 1. A positive value of rs 

indicates a positive correlation between the two variables, whereas a negative value of rs 

indicates an inverse relation between the variables. The classification of the strength of rs 
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is subjective; thus, it depends on the type of data and the purpose of the study. While an rs 

value of ±0.7 may be classified as high in clinical research, it may be regarded as medium 

or low in a research in aeronautics. For this research, because Fe and Mn depend on many 

variables, some of which are interrelated, high values of R were not expected. Therefore, 

the classification by Cohen (1988) where |rs| > 0.5 was classified as strong correlation, 0.3 

≤ |rs| ≤ 0.5 as moderate correlation and 0 < |rs| < 0.3 as weak correlation was adopted. The 

equation for calculating rs is given as: 

 

𝑟𝑠 = 1 − 
6 ∑ 𝐷𝐹𝑖

2𝑛𝑠
𝑖=1

𝑛𝑠(𝑛𝑠
2 − 1)

                                                                    (4.8) 

 

where ns = the number of pairs of values in the sample; and 

DFi = the difference between ranks of values in i
th

 pair.   

 

The aim of this study is not to predict any variable, but to understand the influence of 

chemical and biological processes on Fe and Mn accumulation in WDNs. In view of this, 

Spearman’s rank correlation analysis was performed at the DMA level. Fe was used as the 

dependent variable, and was plotted against each of the 36 water quality variables 

(dependent variables) in turn. Similarly, Mn was also plotted against each of the 36 water 

quality variables. When computing rs for a given pair of variables in a given DMA, it is 

important to compare its value with those from other DMAs for the same pair of variables. 

This will give an idea as to whether the two variables are significantly correlated or are 

correlated by chance. Figure 4.5 shows selected plots to illustrate strong, moderate, and 

weak correlations between Fe (and Mn) and some water quality variables. 

 

The percentages of graphs at the DMA level with negative or positive correlations of Fe 

and Mn against the water quality variables were also determined. The knowledge of how 

an independent variable negatively or positively correlates with a dependent variable is 

very important because it helps in the formulation of fuzzy rules in FISs. Details of the 

formation of fuzzy rules are presented in Sections 3.3.4.1 and 6.3.4 
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Figure 4.5 Plots showing ((a) and (b)) strong, ((c) and (d)) moderate, and ((e) and (f)) 

weak correlations between Fe (and Mn) and selected water quality variables 

 



 

106 

 

4.4.2 Linear regression 

Regression models have been applied in almost every field of study, including economics, 

medicine, political science, sociology, and psychology. They have also been extensively 

used in water resource engineering. Some of the research done in water resource 

engineering includes the work of Murdoch and Shanley (2006), who used segmented 

regression analysis to assess water quality trends. Rajendra Prasad, Sadashivaiah and 

Ranganna (2011) used a regression model to predict total dissolved solids based on 

electrical conductivity values, while Christensen, Rasmussen and Ziegler (2002) developed 

a real-time water-quality monitoring model that uses regression analysis to estimate 

nutrient and bacteria concentrations in Kansas Streams, USA. Joarder, Raihan, Alam and 

Hasanuzzaman (2008) conducted research that used a linear regression equation to predict 

ground water quality with variables such as electrical conductivity, calcium, and dissolved 

solids. 

 

Despite extensive use of regression models in the past few decades, they have been 

superseded by sophisticated models with strong learning capabilities, such as ANN and 

neuro-fuzzy logic models because of their learning capabilities. Also, the requirement that 

the variables of most regression models must be continuous and normally distributed 

makes them inappropriate to use on some data. 

 

Pearson’s correlation coefficient, R, was used to determine any existing correlations 

between customer complaints and selected water quality variables. The equation for 

calculating R is given as: 

 

𝑅 =  
∑ ((𝑋𝑖 −  𝑋)(𝑌𝑖 −  �̅�))𝑠𝑝

𝑖=1

√∑ (𝑋𝑖 −  �̅�)2𝑠𝑝
𝑖=1

∑ (𝑌𝑖 −  �̅�)2 𝑛
𝑖=1

                                                    (4.9) 

 

where R = Pearson’s correlation coefficient; X = independent variable;  

Y = dependent variable;  �̅� and �̅� are the mean of X and Y, respectively; and  

sp = the number of observations. 

 

R is a measure of how well a model is likely to make predictions of future outcomes. In a 

positive correlation, as the values of predictive variable increase, values of determinant 
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variable also increase. On the other hand, an inverse or negative correlation occurs when 

the values of predictive variable increase and the values of the determinant variable 

decrease. R, whether positive or negative, range in strength from strong to weak between 0 

and 1. For this research, the classification of R given by Rodgers and Nicewander (1988) 

was adopted. In their research, they classified |R| > 0.5 as strong correlation, 0.3 ≤ |R| ≤ 0.5 

as moderate correlation and 0 < |R| < 0.3 as weak correlation. 

 

 

4.5 Analysis of chemical variables 

Attributing the causes of Fe and Mn accumulation in WDNs to a particular factor can 

sometimes be very difficult, because the factors that contribute to the accumulation process 

are complex and interrelated. Some water companies use the following rule of thumb to 

explain the causes of Fe and Mn accumulation: 

 If the Fe/Mn ratio is <10, then biological oxidation is the cause; 

 If the Fe/Mn ratio is > 20, then corrosion is the cause; 

 If the Fe/Mn ratio is between 10 and 20, then the interpretation is uncertain 

(Teasdale et al., 2007). 

The following sections present the analysis of chemical variables that contribute to Fe and 

Mn accumulation. 

 

4.5.1 Chemical oxidation analysis 

Table 4.2 shows the percentages of Fe (and Mn) graphs for the 36 different water quality 

variables at the DMA level that exhibited positive or negative correlations. It was observed 

that 71.28% of graphs had positive correlations between Mn and temperature; whereas 

65.00% of graphs had positive correlations between Fe and temperature. The positive 

correlations observed is due to the vital role temperature plays in the chemical oxidation of 

soluble Fe
2+

 and Mn
2+

 to insoluble Fe
3+

 and Mn
4+

, respectively, in WDNs. This result 

echoes that of a study by Van Benschoten, Lin and Knocke (1992), who observed that 

increase in temperature increases corrosion rates and the rates of chemical oxidation of Fe 

and Mn. Table 4.3 shows the percentage of graphs with strong, moderate and weak 

correlations between Fe (and Mn) and 36 water quality variables. It was observed that 

37.96 and 47.20% of the graphs exhibited strong correlations when temperature was 

plotted against Fe and Mn, respectively. 
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Many researchers have reported that an increase in pH increases chemical oxidation and 

corrosion rates in iron pipes (Hidmi et al., 1994; Kashinkunti et al., 1999; Stumm, 1960). 

However, it was observed from Table 4.3 that there were poor correlations between Fe 

(and Mn) and pH. This could be due to the low variation in pH observed in the data. The 

average and standard deviation values of pH observed in the data were 7.25 and 0.3, 

respectively. As the pH was fairly constant, it did not have any significant influence on 

chemical oxidation or corrosion rates in iron pipes. The low variation in pH was expected 

because the water under investigation is for drinking purposes.  

 

From Table 4.2, it was observed that a very high percentage (94.59 %) of graphs had 

positive correlations when Fe was plotted against Mn. Similarly, it was observed from 

Table 4.3 that a very high percentage (72.51 %) of the graphs had strong correlations when 

Fe was plotted against Mn. It was also observed from the data set that, whenever there 

were Fe failures, Mn also failed. Unsurprisingly, researchers have found several 

similarities between Fe and Mn. Both Fe and Mn can be chemically oxidised by oxidising 

agents such as dissolved oxygen and free chlorine residual (FCR) (Knocke et al., 1990; 

Odell et al., 1998). Furthermore, they can be biologically oxidised by microorganisms such 

as Crenothrix, Flavobactium, and Enterobacter aerogenes (LeChevallier et al., 1987; Sly 

et al., 1988).  

 

From Table 4.2, it was observed that 64.71% of the regression graphs of Mn against 

alkalinity (AKLA) showed negative correlation. Similarly, 70.65% of the graphs of Fe 

against alkalinity were negatively correlated. Increasing alkalinity causes Fe and Mn 

concentrations to decrease, because increasing alkalinity increases the buffer capacity of 

the water and also helps to form calcium or magnesium carbonate layers within the 

distribution network, thereby reducing corrosion rates. These results conform to a study by 

Kashinkunti et al. (1999) on alkalinity. They observed in their study that fewer customer 

complaints regarding water discolouration (which is mainly caused by increased Fe and 

Mn concentrations) were received when the alkalinity concentration was maintained at a 

high value of 60 mg CaCO3/L. Studies by Naylor et al. (1993) also showed that corrosion 

reduces when alkalinity concentrations are higher than 50 mg CaCO3/L.  

 



 

109 

 

Table 4.2 Percentages of graphs that exhibited positive or negative correlation when Fe 

(and Mn) was plotted against selected water quality variables 

  Mn Fe 

Variable 
% Positive 

Correlation 

% Negative 

Correlation 

% Positive 

Correlation 

% Negative 

Correlation 

Alkalinity 35.29 64.71 29.35 70.65 

Al* 79.61 20.39 77.90 22.10 

Ammonia 55.68 44.32 60.05 39.95 

Sb* 76.45 23.55 41.65 58.35 

As* 45.92 54.08 55.40 44.60 

Benzo(b)fluoranthene 59.61 40.39 62.07 37.93 

Bromodichloromethane 81.24 18.76 72.95 27.05 

Calcium hardness 74.82 25.18 40.87 59.13 

Ca* 73.17 26.83 42.58 57.42 

Chloride 69.95 30.05 33.59 66.41 

Total residual chlorine   40.79 59.21 31.13 68.87 

Colour 72.55 27.45 75.29 24.71 

Conductivity 59.76 40.24 42.61 57.39 

Cu* 43.69 56.31 42.04 57.96 

Dibromochloromethane 61.08 38.92 36.06 63.94 

FCR 38.64 61.36 33.08 66.92 

Fe* 94.59 5.41 - - 

Pb* 52.18 47.82 55.01 44.99 

Mg* 73.98 26.02 54.83 45.17 

Magnesium hardness 72.51 27.49 45.15 54.85 

Mn* - - 94.59 5.41 

Ni* 43.27 56.73 44.06 55.94 

Nitrite 37.43 62.57 36.39 63.61 

Nitrate 38.01 61.99 41.26 58.74 

Nitrite plus Nitrate 42.09 57.91 40.71 59.29 

Total Oxidised Nitrogen 41.74 58.26 39.30 60.70 

pH 53.31 46.69 48.04 51.96 

P* 70.02 29.98 63.42 36.58 

Na* 76.61 23.39 65.43 34.57 

Tetrachloroethane 66.07 33.93 60.19 39.81 

Temperature 71.28 28.72 65.00 35.00 

Tribromomethane 54.55 45.45 45.75 54.25 

THM 81.03 18.97 65.35 34.65 

Trichloromethane 75.25 24.75 69.07 30.93 

Trichloroethane 65.55 34.45 62.75 37.25 

Turbidity 78.80 21.20 82.30 17.70 

* These are measured totals; e.g. Fe* contains (Fe
2+

 and Fe
3+

). 
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Table 4.3 Percentage of graphs with strong, moderate and weak correlations when Fe (and 

Mn) was plotted against selected water quality variables 

  Correlation Strength of Fe (%) Correlation Strength of Mn (%) 

Variable Strong Moderate Weak Strong Moderate Weak 

Alkalinity 49.56 25.32 25.12 40.67 30.01 29.32 

Al* 40.23 29.80 29.97 45.52 29.95 24.53 

Ammonia 26.02 27.08 46.90 24.46 25.73 49.81 

Sb* 25.23 25.00 49.77 36.17 45.82 18.01 

As* 27.46 30.76 41.78 25.06 35.81 39.13 

Benzo(b)fluoranthene 42.67 25.93 31.40 25.03 30.33 44.64 

Bromodichloromethane 15.46 48.23 36.31 35.26 33.58 31.16 

Calcium hardness 28.23 29.4 42.37 32.24 29.89 37.87 

Ca 30.86 27.46 41.68 35.45 27.52 37.03 

Chloride ions 26.19 20.46 53.35 38.55 41.84 19.61 

Total residual chlorine   18.67 23.81 57.52 21.42 29.57 49.01 

Colour 31.53 32.09 36.38 27.14 29.44 43.42 

Conductivity 35.26 22.77 41.97 32.51 20.49 47.00 

Cu* 15.91 29.16 54.93 13.99 27.41 58.6 

Dibromochloromethane 19.84 21.48 58.68 21.37 35.06 43.57 

FCR 35.29 39.07 25.64 31.26 29.47 39.27 

Fe* - - - 72.51 22.77 4.72 

Hardness Total as CaCO3 29.49 18.26 52.25 32.19 30.05 37.76 

Pb* 17.91 18.01 64.08 16.59 24.90 58.51 

Mg* 28.05 28.43 43.52 28.94 29.68 41.38 

Magnesium hardness 26.55 27.28 46.17 28.2 25.19 46.61 

Mn 72.51 22.77 4.72 - - - 

Ni* 21.83 19.65 58.52 23.99 27.52 48.49 

Nitrite 17.23 22.15 60.62 19.17 27.00 53.83 

Nitrate 28.69 21.68 49.63 24.84 20.08 55.08 

Nitrite plus Nitrate 22.38 19.53 58.09 28.87 20.04 51.09 

Total Oxidised Nitrogen 33.93 19.57 46.5 31.82 28.00 40.18 

pH 19.26 23.60 57.14 12.91 17.85 69.24 

P* 23.56 30.12 46.32 28.88 35.95 35.17 

Na* 24.91 31.85 43.24 21.00 30.40 48.60 

Tetrachloroethane 35.79 25.03 39.18 41.28 25.67 33.05 

Temperature 37.96 28.29 33.75 47.20 23.24 29.56 

Tribromomethane 29.85 21.62 48.53 30.17 20.07 49.76 

THM 58.65 25.46 15.89 64.89 21.36 13.75 

Trichloromethane 62.40 20.68 16.92 70.65 15.63 13.72 

Trichloroethane 53.45 21.89 24.66 28.90 25.85 45.25 

Turbidity 42.40 23.56 34.04 38.22 26.91 34.87 

* These are measured totals; e.g. Fe* contains (Fe
2+

 and Fe
3+

). 
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4.5.2 Corrosion analysis 

Corrosion is known to be one of the most common causes of drinking water discolouration 

(DWI, 2007). There are several similarities between corrosion and chemical oxidation. 

Increase in FCR, dissolved oxygen, and hardness cause both corrosion and chemical 

oxidation to increase. Also, increased corrosion and chemical oxidation levels causes Fe 

concentrations to increase. On the other hand, increase in alkalinity decreases both 

corrosion and chemical oxidation. The main difference between corrosion and chemical 

oxidation is that chemical oxidation occurs in all types of pipes, whereas corrosion mainly 

occurs in ferrous pipes. The source of Fe in ferrous pipe mainly comes from the inner 

surface of the ferrous pipe walls. The age of ferrous pipes in WDNs also has a significant 

effect on corrosion. The accumulation of corrosion by-products over many years can 

reduce pipe diameter and cause water to discolour. Knowing the causes of increased Fe 

concentrations in drinking water will determine the kind of solution drinking water 

companies will provide. 

 

A graph of Fe (and Mn) concentrations against pipe material index for most of the WSZs 

showed that, generally, ferrous pipe materials had higher Fe and Mn concentrations than 

non-ferrous pipe materials (see Fig. 4.6 (a) and 4.6 (b)). Similarly, it was observed that 

most WSZs had high Fe and Mn concentrations with increasing pipe age (see Fig. 4.6 (c) 

and 4.6 (d)). These observations conform to studies by Cook et al. (2005) and Cerrato et al. 

(2006), who found that networks with mainly ferrous pipes are more prone to 

discolouration due to corrosion. 
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Figure 4.6 Variation of Fe (and Mn) with pipe material index and pipe age 

 

4.5.3 Sorption variables analysis 

From table 4.2, a high percentage of the graphs (77.90 and 79.61 %) exhibited positive 

correlations when Fe and Mn were plotted against Al, respectively. Residual amounts of 

Al enter the distribution system as a result of the coagulant, aluminium sulphate 

(Alum/Al2(SO4)3). Alum is added to raw water for the removal of particulates, dissolved 

substances, and colloids as part of the drinking water treatment process. Increased alum 

concentration may result in the formation of amorphous Al(OH)3, a compound that 

numerous researchers have found to have sorption capabilities (Dayton & Basta, 2005; 

Wang et al., 2012). The high percentage of positive correlations could be due to the 

sorption of Fe and Mn on amorphous Al(OH)3. 
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4.6 Analysis of variables affecting biological processes 

It was observed that 65.00% of the graphs exhibited positive correlation when Fe was 

plotted against water temperature (see Table 4.2). Similarly, 71.28% of the graphs 

exhibited positive correlation when Mn was plotted against water temperature. The 

positive correlations can be attributed to the fact that increase in water temperature 

increases bacterial growth rates and biological oxidation of soluble Fe
2+

 and Mn
2+

 to 

insoluble Fe
3+

 and Mn
4+

, respectively, in WDNs.  

 

From Table 4.2, it was observed that significant percentages of graphs exhibited positive 

correlation when Fe (and Mn) was plotted against the organic variables 

bromodichloromethane, dibromochloromethane, and THM. This could be due to the 

reaction of FCR with natural organic matter (NOM) when chlorine dissipates. When 

chlorine decays, it reacts with NOM to form toxic disinfection by-products such as 

bromodichloromethane, dibromochloromethane, and THM. Furthermore, when chlorine 

decays, it increases biological oxidation (thus, increases Fe and Mn accumulation). This 

observation conforms to studies by Di Cristo, Esposito and Leopardi (2013) and Seyoum 

and Tanyimboh (2014), who observed that low FCR concentrations generally correspond 

to high THM levels in drinking water. Although these organic variables had significant 

positive correlations with Fe (and Mn), they could not be used in the ANN models and the 

FISs developed in Chapters 5 and 6, respectively, because they were not sampled 

frequently. 

 

Although FCR is an oxidising agent and was expected to chemically oxidise Fe and Mn. 

However, it was observed that significant percentages (66.92 and 61.36 %) of graphs 

exhibited negative correlation when Fe (and Mn) was plotted against FCR, respectively 

(see Table 4.2). This could be due to the fact that high concentrations of FCR kill bacteria 

that help to biologically oxidise Fe and Mn in the distribution system. Numerous studies 

have shown that water colour is an indirect measure of total organic carbon (TOC), the 

main nutrient for bacteria (Effler, Schafran, & Driscoll, 1985; Evans, 1988; Gorham, 

Underwood, Martin, & Ogden, 1986). Since high levels of TOC influence biofilm 

formation, it explains why significant percentages of graphs exhibited positive correlation 

when Fe was plotted against colour (75.29 %) and Mn against colour (72.55 %).  
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Further investigations on variables that influence biological processes were carried out by 

plotting Fe and Mn against FCR for all 176 DMAs. The graph of Fe against FCR showed 

that there were a significant number of Fe failures (concentrations exceeded the MCL of 

200 µg/l) when FCR was less than 0.8 mg/l (see Fig. 4.7). However, there were no Fe 

failures when FCR exceeded 0.8 mg/l. Likewise, a graph of Mn against FCR showed that 

there were a significant number of Mn failures (concentrations exceeded the MCL of 50 

µg/l), but no failures when FCR was greater than 0.8 mg/l (see Fig. 4.8). This could be an 

indication that most of the oxidation that occur within the distribution system could be 

microbial induced and that free chlorine residual concentrations above 0.8mg/L were able 

to kill or reduce the growth of Fe- and Mn-oxidising bacteria and hence prevented them 

from oxidising soluble Fe
2+

 and Mn
2+

 to Fe
3+

 and Mn
4+

 precipitates, respectively. FCR is 

needed in the water distribution system to deactivate the growth of microorganisms and 

preserve water quality. 

 

 

Figure 4.7 Variation of Fe with free chlorine residual for all 176 DMAs 
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Figure 4.8 Variation of Mn with free chlorine residual for all 176 DMAs 

 

 

4.7 Customer complaints analysis 

Quarterly customer complaints were plotted against some selected water quality variables 

at the DMA level and their Pearson’s correlation coefficient were determined. The 

percentages of graphs that exhibited positive correlation when quarterly customer 

complaints were plotted against quarterly averages of water quality variables are presented 

in Table 4.4. The top three percentages of graphs observed were Mn, Fe and Al were 65.67, 

58.82, and 55.74%, respectively. This explains why these three variables have all been 

used as Key Performance Indicators (KPIs) in customer complaints studies (Bernal, 

Cardenoso, Fabrellas, Matia, & Salvatella, 1999; Ewan & Williams, 1986; Gauthier et al., 

1999). 

 



 

116 

 

Table 4.4 Percentages of graphs that exhibited positive correlation when quarterly 

customer complaints were plotted against quarterly average water quality variables 

Variable 

%Positive 

Correlation 

%Negative 

Correlation 

Mn 65.67 34.33 

Fe 58.82 41.18 

pH 52.17 47.83 

Turbidity 55.74 44.26 

FCR 52.44 47.56 

Total residual chlorine   54.88 45.12 

Al 57.63 42.37 

 

Table 4.5 Percentage of graphs with different levels of correlation when quarterly 

customer complaints were plotted against quarterly average water quality variables 

Variable 

%Strong 

Correlation 

%Moderate 

Correlation 

%Weak 

Correlation 

Mn 38.81 20.90 40.30 

Fe 33.82 19.12 47.06 

pH 13.04 28.99 57.97 

Turbidity 36.07 18.03 45.9 

FCR 13.41 35.37 51.22 

Total residual chlorine   14.63 36.59 48.78 

Al 33.90 22.03 44.07 

  

From Table 4.5, it was observed that the top four strongest correlations between quarterly 

customer complaints and quarterly average water quality variables were Mn, turbidity, Al, 

and Fe. Although these four variables have been used as KPIs in customer complaints 

studies, they had relatively low correlations. The weak correlation strength exhibited by 

the customer complaints data with some of the water quality variables could be due to a 

number of factors. First, it could be attributed to the numerous and interrelated water 

quality variables that causes water discolouration. Secondly, it could be due to the effect of 

physical and hydraulic variables that also contribute to water discolouration. Finally, some 

customers tend not to complain, even when they are dissatisfied with water quality. A 

survey conducted by Sydney Water, Australia, indicated that only 7% of customers that 

experienced aesthetically unpleasant water over a 12 month period complained (Roseth, 

2002). In a related survey at South East Water in Melbourne, Australia, only 15% of 

customers who experienced water discolouration complained (Roseth & Rock, 2003). A 

study conducted by Ewan and Williams (1986) in the UK showed that only around 30% of 

customers that experienced discoloured water actually complained. Evins, Liebeschuetz 
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and Williams (1990) also pointed out in their research that if customers do not complain, it 

does not always imply water quality standards are good. In a related study, Chadderton, 

Christensen and Henry-Unrath (1992) noted that customer complaints could be misleading 

in that a single discolouration event at a DMA could lead to multiple customer complaints. 

This could consequently send incorrect signals of high-risk of water discolouration at that 

DMA. However, with all the above shortcomings, it is advisable for water companies to 

carry out some preliminary analysis of customer complaints data along with water quality 

data to gain insight into network deposition dynamics. 

 

 

 

Figure 4.9 Seasonal variations of customer complaints in DMAs 

 

In the UK, temperatures are relatively high during the second and third quarters of the year, 

whereas they are very low during the first and fourth quarters. High temperatures promote 

bacterial growth, which causes biological oxidation from soluble Fe and Mn to insoluble 

precipitates in WDNs. High temperatures also cause chemical oxidation of Fe and Mn. 

Unsurprisingly, analysis of customer complaints data showed that, in total, 116 out of the 
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176 DMAs exhibited clear seasonal variations of customer complaints, with peaks during 

the second and third quarters of the year. Figure 4.9 shows seasonal variation of customer 

complaints for two DMAs. The high number of customer complaints during this period 

could also be attributed to high water consumption. Water companies normally experience 

high demand for water during the second and third quarters of the year. This excess 

demand causes increased flow velocity and shear stress, which dislodges accumulated Fe 

and Mn from the pipe walls, causing water discolouration. Although customer complaints 

is a good KPI for water discolouration, the variable and subjective nature of the manner in 

which customers complain make using it alone for making predictions sometimes 

misleading. 

 

4.8 Analysis of hydraulic variables 

4.8.1 Analysis of maximum daily shear stress at node 

Fe and Mn concentrations were plotted against the maximum daily shear stress at nodes 

for each of the WSZs (see Figs. 4.10 (a), (b) and 4.11 (a), (b)). Low maximum daily shear 

stress regions were found in sections of the pipe network that have dead ends and 

redundant loops, whereas high maximum daily shear stress regions were mainly found in 

trunk mains and regions with high water demand. From these graphs, it was observed that 

areas with high maximum daily shear stress had low Fe and Mn concentrations. This is 

because Fe and Mn precipitates are unable to accumulate on the pipe walls under these 

high hydraulic conditions. This observation echoes that of a study by Boxall et al. (2001). 

They observed that, in general, high shear stress regions are subject to low accumulation 

potential. These regions also have low water age; as a result, biological oxidation of 

soluble Fe
2+

 and Mn
2+

 to insoluble Fe
3+

 and Mn
4+

, respectively, is minimal. In contrast, it 

was observed that regions with low daily maximum shear stress had high concentrations of 

Fe and Mn. This is because the shear stress exerted on the pipe walls in these regions are 

not high enough to dislodge any deposits of Fe, Mn, or biofilms. This condition creates a 

conducive environment for sorption to take place and also the accumulation of Fe and Mn 

particles. Low shear stress causes water age to be increased in these regions. These 

stagnant conditions promote the growth of bacteria, increase biological oxidation and 

result in the deterioration of water quality. Low shear stress regions are generally subjected 

to high Fe and Mn accumulation. 
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From Figs. 4.10 (c) and 4.11 (c), it was also observed that regions with high maximum 

daily shear stress had low turbidity, whereas regions with low maximum daily shear stress 

had high turbidity. This observation conforms to a research by Boxall et al. (2001, 2003), 

who suggested that discolouration materials are more likely to accumulate in networks 

subjected to low conditioning daily shear stress than networks with high conditioning daily 

shear stress. This means that pipes with low conditioning shear stress have higher 

discolouration potential than pipes with high conditioning shear stress.  

 

Regions with high maximum daily shear stress had low FCR, whereas regions with low 

maximum daily shear stress had high FCR (see Figs. 4.10 (d) and 4.11 (d)). This is 

because low maximum daily shear stress regions mostly occur at dead ends, where water 

age is very high and chlorine dissipation is quite rapid. Since FCR helps to kill or reduce 

microbial growth, regions with low concentrations of FCR are more susceptible to 

biological oxidation of Fe and Mn than regions with high FCR. This results in high Fe and 

Mn concentrations in chlorine dissipated regions.   

 

It can also be seen that most regions with low maximum daily shear stress also have high 

Al concentrations, whereas regions with high maximum daily shear stress have low Al 

concentrations  (see Figs. 4.10 (e) and 4.11 (e)). Regions with high Al concentration tend 

to form amorphous Al(OH)3 in WDNs, a compound that numerous researchers have 

identified to have sorption capabilities (Dayton & Basta, 2005; Wang et al., 2012). The 

amorphous Al(OH)3 tends to adsorb and absorb Fe and Mn particles, and accumulates on 

pipe walls, resulting in high concentrations of Fe and Mn. 
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Figure 4.10 Variation of water quality variables with maximum daily shear stress 
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Figure 4.11 Variation of water quality variables with maximum daily shear stress  
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have low disturbance in the WDNs. This condition makes Fe and Mn particles deposit or 

attach to the walls (sorption) easily without being dislodged. Hence, Fe, Mn, and Al have 

high concentrations in regions with low variation of daily shear stress. Conversely, nodes 

with high variation of daily shear stress generally have high disturbance in the WDNs. 

Hence, Fe, Mn, and Al particles in these regions are not able to accumulate on the pipe 

walls. This results in low concentrations of these water quality variables in these regions. 

In general, pipes with high variation of daily shear stress have low Fe and Mn 

accumulation potential, whereas pipes with low variation of daily shear stress have high Fe 

and Mn accumulation potential.  

 

 
 

  

Figure 4.12 Variation of water quality variables with variation of daily shear stress 
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(see Fig. 4.12 (c)). The high turbidity levels in regions with low variation of daily shear 

stress are due to the high tendency of sediments to be deposited on the pipe walls under 

these conditions. In regions with low variation of daily shear stress, unexpected events 

such as high flows created by water mains bursts or opening of fire hydrants can increase 

variation of daily shear stress. This causes loose sediments to be re-suspended, and 

subsequently lead to increased turbidity levels. In contrast, sediments are unable to 

accumulate on pipe walls in regions with high variation of daily shear stress. This is 

because the high shear stress experienced in these regions does not allow the deposited or 

attached sediments to pile up before they are dislodged from the pipe walls.  

 

4.8.3 Analysis of water age  

Water age is a very important variable that influences water quality within the distribution 

system. Figure 4.13 shows the distribution of water age after 72 hours of simulation at 

WSZ2. It was observed that high water ages were predominantly found in regions with 

dead ends and redundant loops from the distribution of water age in all WSZs. The water 

age in a WDN also depends on its mode of operation and physical variables such as the 

flow rate, pipe size, configuration, water demand, system design, and amount of storage. 

WDNs with high flow rates and small pipe sizes will have a lower water age. Water 

quality problems associated with water age include poor taste, bad odour, increased 

microbial growth, discolouration, and increased water temperature.  

 

As water travels through WDNs, it goes through a number of bio-chemical processes. 

When drinking water stagnates in the network, chlorine dissipates, water temperature 

increases, and its quality degrades. This means regions with high water age create a 

conducive environment for microbial growth. Researchers have found that microorganisms 

such as Crenothrix, Flavobactium, Pseudomonas, Leptothrix discophora, and Clonothrix 

are able to biologically oxidise soluble Fe and Mn to insoluble Fe and Mn (LeChevallier, 

1987; Sly et al., 1988). These bacteria assist in the formation of biofilms on the pipe walls. 

The Fe and Mn precipitates formed are easily attached to these gelatinous biofilms. This 

causes regions with high water age to often have high Fe and Mn concentrations. The 

design of WDNs can help reduce water discolouration due to increased water age. It is 

recommended that dead ends be prevented or looped, reservoir turnover be increased, 

oversized mains be reduced, and stagnant zones be routinely flushed. 
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Figure 4.13 The distribution of water age after 72 hours of simulation at WSZ2 
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4.8.4 Analysis of hydraulic distance from source of water supply 

Figure 4.14 shows a gradual increase in Fe and Mn concentrations as hydraulic distance 

from source of water supply increases. In general, the further water travels through WDNs, 

the higher the water age and the more chlorine is dissipated. Because chlorine is a 

disinfectant, it suppresses or kills Fe- and Mn-oxidising bacteria, preventing the biological 

oxidation of soluble Fe and Mn to insoluble Fe and Mn. Hence, regions with shorter 

hydraulic distances from source of water supply have lower Fe and Mn concentrations. In 

contrast, regions with longer hydraulic distances from source of water supply have lower 

concentrations of FCR. This increases microbial growth, which causes biological oxidation 

of Fe and Mn, and subsequently leads to increased Fe and Mn concentrations.  

  

 

 

Figure 4.14 Variation of Fe (and Mn) with hydraulic distance in WSZ2 
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4.9 Summary 

After analysing the five-year data set, the findings indicate that alkalinity is a very 

important variable in drinking water for reducing discolouration. It was observed that 

increase in alkalinity lowered both Fe and Mn concentrations. Alkalinity serves as a buffer 

that prevents large variations in pH; a variable when in excess can increase chemical 

oxidation. Furthermore, high concentrations of alkalinity help to form protective layers of 

calcium or magnesium carbonate within WDNs, which reduces corrosion rates. 

 

Both Fe and Mn showed high positive correlations with Al. This finding is a probable 

consequence of residual amounts of Al entering the WDNs after the raw water has been 

treated with the coagulant Al2(SO4)3. When these residual amounts occur in high 

quantities, amorphous Al(OH)3 can be formed, a compound that has been found to have 

sorption capabilities. This subsequently leads to the sorption of Fe and Mn particles on 

amorphous Al(OH)3.  

 

The seasonal trend of customer complaints observed with peaks during the second and 

third quarters of the year could be due to high temperatures. High temperatures are known 

to enhance biological and chemical oxidation of Fe and Mn. They could also be due to 

excess consumption of water during this period. Increased water consumption increases 

water velocity, dislodges accumulated Fe and Mn particles from the pipe walls and 

subsequently leads to water discolouration. 

 

It was observed for all the DMAs in this study that when FCR concentrations were above 

0.8mg/L, neither Fe nor Mn concentrations exceeded their respective MCLs. This indicates 

that most of the oxidation within the distribution system may be microbial induced, and 

that FCR concentrations above 0.8mg/L were able to kill or reduce the growth of Fe- and 

Mn-oxidising bacteria. The highly correlated variables observed in this study can be used 

to develop AI-based methods like ANNs, FIS, Bayesian networks and neuro-fuzzy models 

to estimate the risk of Fe and Mn compliance failures in WDNs.  
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CHAPTER 5: Artificial Neural Network Model for 

Predicting Accumulation Potential 

5.1 Introduction 

Understanding the processes that influence water discoloration and identifying the regions 

in WDNs that have high-risks of Fe and Mn accumulation are of paramount importance to 

all drinking water companies. Despite their efforts to comply with drinking water 

standards, water utilities continue to experience compliance failures and receive customer 

complaints related to water quality. Given the non-linear relation of water quality variables 

and the complex interactions that occur within them, AI-based methods may prove most 

effective for modelling water discoloration. This chapter describes the development of two 

different ANN models, based on the relevant variables that were identified in Chapters 2 

and 4. The first model, ANN(t), uses relevant hydraulic, water quality, and pipe-related 

variables to make its predictions. The second model, ANN(t,ѱ), uses relevant hydraulic, 

pipe-related, and yearly averaged water quality variables to make its predictions. The 

remaining sections of this chapter are arranged as follows: Section 5.2 describes how the 

data was transformed prior to the development of the models. These data processing steps 

were carried out for both the input and output data. Section 5.3 presents how the measured 

Fe and Mn accumulation potential was calculated. Section 5.4 describes the development 

of the two ANN models. Specifically, it discusses the tuning of the model parameters and 

the determination of relevant input variables. The ANN(t) model results and discussion are 

presented in Section 5.5. This model was used to investigate the relationship between Fe 

and Mn accumulation potential and input variables. It was also used as a sensitivity 

analysis tool to further reduce the number of relevant variables identified in Chapter 4. 

Section 5.6 presents the results and discussion for the ANN(t,ѱ). This model was used to 

predict Fe and Mn accumulation potential for every node in a given WDN. In addition, the 

model generated risk maps using the predicted Fe and Mn accumulation potential values. 

These risk maps were compared with maps of customer complaints related to water 

discoloration, to determine if any correlations existed. Finally, the summary of this chapter 

are presented in Section 5.7. The developed models can be very useful in helping water 

resource engineers to identify WDN regions with high discoloration risk. 
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5.2 Data transformation 

After removing outliers from the data set in Chapter 4, the data was transformed before 

using it to develop the ANN models. Data transformation is a very important step in ANN 

model development. The success of the ANN model is highly dependent on how 

effectively the input and output data are represented. Transforming or scaling the raw input 

data may also improve model prediction.  

 

It has been suggested in the past that input data used in ANN modelling do not require 

transformation (Grissom, 2000). However, some researchers have found that transforming 

both the input and output data helps to improve the performance of ANN models (Bowden 

et al., 2003; Shi, 2000). The three main types of data transformation researchers use are 

linear transformation, mathematical functions, and statistical standardisation (Bowden, 

Dandy, & Maier, 2005). Linear transformation is the most commonly used transformation 

technique in ANN modelling. Usually, the data are transformed to values between 0 and 1 

or -1 and 1. This is done to ensure that variables with small input ranges are not dwarfed 

by variables with large input ranges in the ANN training process. Mathematical functions 

such as logarithm and the square root can also be used to transform data with positive 

values (Bowden et al., 2005). In the statistical standardisation technique, the mean is 

subtracted from the measured value, and the result is divided by the standard deviation. 

These techniques of transforming data are sometimes referred to as normalisation.  

 

Data transformation is very important in ANN development because it can improve 

models’ predictions and reduce their computation time. However, some researchers are 

reluctant to accept this concept (Grissom, 2000; Rothery, 1988). They argue that 

transformed data do not always revert back to their original untransformed form when 

inverse transformation techniques are applied. Research on clinical trials conducted by 

Grissom (2000) showed that the means of transformed data can sporadically reverse the 

difference of the means of the original untransformed data. Though this can sometimes be 

disturbing, it should not dissuade researchers from normalising their data, as the benefits 

generally outweigh the disadvantages. 

 

Some ANNs give better results if the data used for modelling is linearly transformed, 

whereas others tend to give improved results if the data is transformed by mathematical 
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functions such as logarithm or square root. In ANNs such as SOMs, it is important to 

linearly transform the modelling data between zero and one, because larger input data 

dwarf the contributions of smaller input data, resulting in improper classification 

(Anderson & McNeill, 1992). Transforming the data helps to convert skewed distributed 

data to normal distributed form in order to minimise the effect of extreme values. It also 

helps to provide a smooth mapping of input data to output data in the training process of 

ANNs. 

 

In this research, the guidelines provided by Howell (2007) and Tabachnik and Fidell (2007) 

on how to select the best normalisation method for a given set of data were followed. The 

models were developed using both transformed and untransformed data. The two 

transformation methods used were linear transformation and logarithmic transformation. 

Using the linear transformation technique, all the data for each variable were transformed 

between zero and one by the following equation: 

 

𝑌𝑖 =  (
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥  −  𝑋𝑚𝑖𝑛
)                                                   (5.1) 

 

where Xi and Yi are raw value and transformed value of sample i, respectively; and Xmin 

and Xmax are minimum and maximum raw values of the variable, respectively. 

 

Before using the logarithmic transformation technique, a normality test was performed on 

both the input and output data. Only variables with skewed data were normalised because 

it was unnecessary to transform data that were already normally distributed. The threshold 

value for skewness is subjective (Hair et al., 1998). However, as a rule of thumb, the 

skewed cut-off points suggested by Hair et al. (1998), whereby values greater than 1 or 

less than -1 are considered as skewed, were used to normalise the data. The formula used 

in the logarithmic transformation is given in Eqn. 5.3. Figure 5.1 shows graphs of the 

distribution of turbidity levels before and after normalisation. Before the normalisation, the 

distribution of turbidity levels was negatively skewed with a skewness value of 1.59. 

However, this was reduced to -0.09 after the normalisation. The skewness of a set of data 

can be computed as: 
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𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑠𝑝
∑ (

𝑋𝑖 − �̅�

𝜎
)

3𝑠𝑝

𝑖=1

                              (5.2) 

𝑌𝑖 = 𝑙𝑜𝑔10( 𝑋𝑖)                                                                             (5.3) 

 

where σ = standard deviation; sp = sample size; X = sample data; and �̅� = sample mean.  

 

 

Figure 5.1 Distribution of turbidity data (a) before and (b) after normalisation 

 

5.3 Calculation of measured Fe and Mn accumulation potential 

Fe and Mn accumulation occurs in WDNs when they are chemically or biologically 

oxidised to form insoluble Fe and Mn. The higher the concentrations of Fe and Mn, the 

more accumulation will occur on the pipe walls. As discussed in Chapter 1, research study 

conducted by Boxall et al. (2003) on flushing samples collected in the UK identified Fe 

and Mn as the first and second most common water contaminants, irrespective of pipe 

material used in WDNs. Related studies conducted by Bowden, Dandy and Maier (2003) 

and Slaats (2002) showed that gradual accumulation or sudden increase of Fe and Mn 

particles in WDNs were the most common causes of water discolouration. It was also 

observed from the data used for the modelling that Fe had a strong positive correlation 

with Mn in all the WSZs. 94.59% of the graphs exhibited positive correlation when Mn 

was plotted against Fe at the DMA level (Table 4.2). Also, 72.51% of the graphs exhibited 

strong correlation when Mn was plotted against Fe at the DMA level (Table 4.3). Figure 

5.2 shows sample plots of Fe against Mn at the DMA level. Similar correlations can be 
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observed in other DMAs. In most cases, when there are Fe failures, there are also Mn 

failures. In view of the above mentioned similarities between Fe and Mn, Fe and Mn 

accumulation potential was used as the output variable for the ANN models. When the 

concentrations of Fe and Mn exceed their respective MCLs, they are more likely to cause 

discolouration and reduce intellectual function of children (Boxall et al., 2003; Wasserman 

et al., 2006). It was therefore derived by normalising Fe and Mn with their respective 

MCLs of 200 and 50 µg/L permitted by the DWI and then aggregated. It was normalised 

to prevent Fe from dwarfing the contribution of Mn, as they have different magnitudes of 

concentrations that cause water to discolour. Equation 5.4 shows how it was calculated. 

  

𝐹𝑒 𝑎𝑛𝑑 𝑀𝑛 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
𝐹𝑒

200
+  

𝑀𝑛

50
                                       (5.4) 

 

  

  

Figure 5.2 Correlation between Fe and Mn at district metered area (a) DMA4-08 (b) 

DMA7-03 (c) DMA8-03 (d) DMA9-17 
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A cumulative frequency curve of the measured Fe and Mn accumulation potential for all 

the WSZs is presented in Fig. 5.3. The measured data were obtained from WSZs with all 

levels of customer complaints to allow the model to capture all levels of discolouration and 

remove any form of bias.  It was observed that the 90
th

 percentile defines the inflection 

point in Fe and Mn accumulation potential (which corresponded to the value 0.25 of the 

measured Fe and Mn accumulation potential) and therefore values above the 90
th

 

percentile were subsequently classified as high-risk. 

 

 

Figure 5.3 Cumulative frequency curve of the measured Fe and Mn accumulation 

potential 

 

The percentage of customer complaints due to drinking water discolouration per property 

in the WSZ with the highest customer complaints was also used to further substantiate this 

upper limit. Customer complaints was used because Fe and Mn are known to be the main 

causes of drinking water discolouration as indicated in Chapter 1 (Boxall et al., 2003; 

Slaats, 2002).  

 

𝑃𝐶𝐶 =  
𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑆𝑍

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑊𝑆𝑍 
× 100                 (5.5) 

 

Where PCC = percentage of customer complaints per number of properties in the WSZ. 
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The above calculation of PCC (
543

17602 
× 100 = 3.08 %) in Eqn. 5.5 is performed for WSZ 

with the highest complaint. However, because only 30% of customers that experience 

drinking water discolouration in the UK actually complain, therefore, the percentage of 

customer complaints per property was multiplied by a factor of 3.333 (=100/30) to obtain 

the approximate number of complaints (3.08% * 3.333  ≈ 10%). In view of this, the top 

10% of all the measured Fe and Mn accumulation potential values (values above 90
th

 

percentile) were classified as high-risk. Although there is no clear-cut explanation for 

using 70th percentile as the lower limit of the medium-risk classification, it was observed 

from a number of trial runs that the 70
th

 percentile provided better classification results. 

Therefore, measured Fe and Mn accumulation potential values between 70
th

 and 90
th

 

percentile were classified as medium-risk and below 70
th

 percentile as low-risk, 

respectively.  

 

It would have been ideal to use monthly or quarterly averages of water quality variables as 

inputs for the developed models because customer complaints and concentrations of Fe 

and Mn exhibit seasonal variations. However, because some of the water quality variables 

were not sampled frequently, yearly averages of water quality variables were computed at 

each node and used as input variables.  

 

 

5.4 Model development 

As indicated in Chapter 3, ANNs are a form of artificial intelligence method of modelling 

that attempt to emulate the learning process of the human brain. They have the ability to 

learn from past information, retain knowledge, and adapt to different conditions. In the 

learning process, the input and output data are trained by adjusting the connection weights 

between the neurons iteratively. ANN models are similar to multiple non-linear regression 

models, since they can both solve non-linear problems (Nakhaei & Irannajad, 2013). 

However, ANNs are more flexible and can solve more complex problems. Unlike 

conventional models, ANN models are data-driven and rely heavily on the quality and 

quantity of the data that describes the input and output variables. Although ANNs have 

many advantages (see Chapter 2), they require a large amount of data to train the network. 

This limitation can be overcome by carefully selecting the data for training to represent the 

entire population.   
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In this research, two different ANN models were developed using the relevant variables 

identified in Chapter 4 to predict the Fe and Mn accumulation potential. The first model, 

ANN(t), uses relevant hydraulic, water quality, and pipe-related variables to make its 

predictions. The input variables for this model include measured water quality variables 

such as alkalinity, P, turbidity, and hardness. They also include hydraulic variables such as 

the maximum daily shear stress at node, variation of daily shear stress at node after 24 

hours of simulation, and average water age at node after 72 hours of simulation. The 

ANN(t) model can be used as a sensitivity analysis tool to determine the effect of the input 

variables on Fe and Mn accumulation potential. 

 

The second model, ANN(t,ѱ), uses pipe-related, hydraulic and yearly averaged water 

quality variables to make its predictions. This model can be used as a risk assessment tool 

to predict Fe and Mn accumulation potential for every node in a given WSZ. The same 

hydraulic and physical variables were used to develop both models. However, some 

assumptions were made in obtaining the input water quality variables for the ANN(t,ѱ) 

model. In order to predict the Fe and Mn accumulation potential for every node, a base 

data set of the measured data for all the nodes is required. Although the hydraulic and 

pipe-related variables had base data for all the nodes, it was impossible to have water 

quality data for all nodes in the network. This is because the large sizes of WSZs make 

drinking water companies unable to sample every node. In fact, there are some parts of the 

WSZs that were seldom sampled. 

 

From the five-year water quality data, it was observed that the standard deviations for the 

majority of variables within each DMA were small. This is because nodes in the DMAs 

are in close proximity to each other. Hence, their bio-chemical conditions were similar. 

With the exception of a few water quality variables in WSZ1 and WSZ3, which exhibited 

high standard deviations because of multiple water supply sources, the remaining water 

quality variables had small standard deviations. It was therefore assumed that, at any given 

time, the concentrations of chemical variables and variables that influence biological 

processes in a given DMA were approximately the same. With this assumption, the water 

quality variables at each node in a DMA were obtained by calculating yearly averages of 

these variables within that DMA. It would have been ideal to have monthly or quarterly 

averages as input water quality variables. However, it was impossible because they were 

not sampled frequently and there would have been many missing data if they were used.  
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A feed-forward back-propagation neural network was used to develop both the ANN(t) 

and ANN(t,ѱ) models. They are regarded as feed-forward neural networks because they 

require both input and output data for prediction. The ANN(t) model consists of input, 

hidden, and output layers. The input and output layers comprise at least one input and 

output node, respectively, and the hidden layer(s) contains the hidden nodes. Although 

there is no limit to the number of hidden layers, it was observed in this research that the 

optimal number of hidden layers for the developed models was two. Individual models 

were developed for each WSZ using their respective measured data. Using the combined 

measured data for all five WSZs, another model was developed. Figure 5.4 shows a 

diagram of the developed multi-layered ANN model.  

 

 

Figure 5.4 The developed ANN(t) model 

 

In this study, K-fold cross-validation method described in Section 3.2.6 was used to 

develop the models. The data was divided into (K-folds) 5-folds. 15% of the data were 

randomly selected for testing the model before applying the 5-fold cross-validation method 

on the remaining 85% of the training and validation data. This means that 80% of the 
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remaining data was used to train the model and 20% for validation. The process was 

repeated five times, each time with different subsets to train and validate the model. 

 

In this study, the LM back-propagation algorithm (trainlm) described in Section 3.2.6 was 

used to optimise the weights and biases of the ANNs. LM is the fastest back-propagation 

algorithm, and is usually the preferred choice of supervised algorithm for most researchers 

(Vinay, Vinay, & Ravindra, 2014). However, this procedure requires more computer 

memory than other back-propagation algorithms. The algorithm updates the connection 

weights using LM optimisation.  

 

Back-propagation algorithm can be divided into two phases. The first phase involves the 

forward-propagation of the training patterns and the backward-propagation of the output 

activation through the network. The second phase adjusts the connection weights. At the 

beginning of the training process, the network is initialised by assigning random weights 

and biases to the connections. Using the summation function and the sigmoid activation 

function, the net output of the hidden nodes and output nodes is calculated. The LM 

algorithm is then applied to calculate new weights and biases to minimise the error 

between the predicted output values and the measured output values at the output layer. If 

the error computed is greater than a tolerance value or the other stopping criteria have not 

been met, the error is back-propagated through the network. The process is repeated by 

assigning different weights and biases, recalculating, and updating them until the stopping 

criteria are reached. The stopping criteria are constraint parameters that ensure the training 

process does not go on indefinitely. The algorithm for the ANN models is presented as a 

flow chart in Fig. 5.5. 
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Figure 5.5 Flow chart showing the algorithm for the ANN(t) model 
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5.4.3 Tuning of the ANN(t) model parameters 

Building a back-propagation ANN involves the specification of a number of parameters, 

including choosing the relevant input variables and selecting an appropriate number of 

hidden nodes and layers. It also involves choosing an appropriate learning algorithm and 

activation function, and the tuning of the network parameters. Selecting the best 

combination of these parameters can be a difficult and time consuming task. The following 

sections describe how the ANN(t) model was developed and the optimum network 

parameters were obtained during the training process.   

 

5.4.3.1 Selection of relevant input variables 

The selection of appropriate input variables is very important for the development of any 

type of model because it reduces the cost of collecting unwanted data and improves model 

performance. In ANNs, the inclusion of inappropriate input variables can mislead the 

training algorithm, which may result in sub-optimal solutions instead of global optimal 

solutions. 

 

In Chapter 4, statistical analyses on water quality data were performed to identify the 

variables that influence Fe and Mn accumulation. Variables which exhibited high 

correlations with Fe and Mn were selected as relevant variables. Using these relevant 

variables, an ANN(t) model was developed. The ANN(t) model attempts to learn the 

complex process of Fe and Mn accumulation by taking a holistic approach to combine all 

the relevant parameters. This model also serves as a tool to further reduce the number of 

relevant input variables identified in Chapter 4, while maintaining acceptable performance 

in the prediction of Fe and Mn accumulation potential. Initially, all the relevant variables 

were used as independent variables. A windows-based user-friendly software was then 

developed using the ANN equations to help fine-tune the model by selecting the most 

significant variables that influenced Fe and Mn accumulation potential.   
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Figure 5.6 Relationship between Fe and Mn accumulation potential and arsenic 

 

Five different ANN(t) models (software) were developed for each of the five WSZs using 

their respective data. A sixth software was developed using the combined data from all the 

WSZs. From the software, an input variable value was varied to find its effect on Fe and 

Mn accumulation potential, while all other variables were kept constant at their respective 

average values. Since the variables that contribute to the accumulation of Fe and Mn may 

vary slightly for every WSZ, the procedure was repeated for each WSZ. This procedure 

was also used for the software developed using the combined data from all the WSZs. The 

variation of variables values that did not have significant effect on the predicted Fe and Mn 

accumulation potential were removed from the network. For example, Fig. 5.6 shows the 

relationship between Fe and Mn accumulation potential and arsenic in WSZ1 and WSZ2. 

Constant relationships between arsenic and Fe and Mn accumulation potential were 

observed as shown in the prediction profiler graphs. This shows that arsenic did not have a 

significant relation with Fe and Mn accumulation potential. Hence, it was removed from 

the model. Similarly, prediction profiler graphs showing the relationship between Fe and 

Mn accumulation potential and lead (Pb) concentration in WSZ1 and WSZ2 is shown in 

Fig 5.7. From the graphs, it was also observed that Pb made insignificant contribution to 

Fe and Mn accumulation potential. Therefore, Pbwas also removed from the model. The 

network was rebuilt with a reduced number of input variables each time removing the 

insignificant variables until an acceptable performance was obtained. 
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Figure 5.7 Relationship between Fe and Mn accumulation potential and lead 

 

After training the network, the variables that significantly influenced Fe and Mn 

accumulation were grouped into three categories:  

(a) Chemical variables contributing to the chemical reactions within a WDN; namely, Al, 

alkalinity, turbidity, hardness, calcium, FCR, and colour.  

(b) Variables that influence biological processes; namely, P, colour, average water age, 

FCR, and turbidity. 

(c) Physical/hydraulic variables; namely, maximum daily shear stress at a node, variation 

of daily shear stress at a node, hydraulic distance from source of water supply to a node, 

pipe age, and pipe material index. 

  

Some of the variables were classified under more than one category. For instance, FCR is a 

chemical variable because chlorine is an oxidising agent. Hence, it has a significant 

influence on chemical oxidation. FCR can also be classified as a variable that influence 

biological process because it is a disinfectant. Therefore, an increase in its concentration 

can help reduce the formation of biofilms and biological oxidation (USEPA, 2009). A 

detailed analysis of the effect of each of the variables on Fe and Mn accumulation is 

presented in Section 5.5.3.  
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5.4.3.2 Choosing the appropriate number of hidden nodes and layers 

Selecting an appropriate number of hidden nodes and layers is very important in the ANN 

development process. Too many neurons and hidden layers tend to increase 

computation/training time and cause the model to memorise the input data, whereas 

models with too few neurons and hidden layers may not give accurate predictions. Using 

an inappropriate number of hidden neurons and layers may lead to over- or under-fitting of 

the models (Sheela & Deepa, 2013). Many researchers have used trial-and-error 

approaches to select the optimum number of hidden neurons and layers in ANNs (Devi, 

Rani, & Prakash, 2012; Sheela & Deepa, 2013). A disadvantage of using trial-and-error 

methods is that they can be time consuming if a large number of trials are required.   

 

Various heuristic methods for choosing the optimum number of hidden neurons and layers 

in ANNs have been proposed. Jinchuan and Xinzhe (2008) proposed a heuristic method in 

which the optimum number of hidden neurons is dependent on the number of inputs, 

outputs, sample size, and complexity of the network architecture. They derived a formula 

for calculating the optimum number of hidden neurons (NJ) as follows: 𝑁𝐽 = (𝑁𝐼 +

 √𝑠𝑝 )/𝑁𝐿, where NL is the number of hidden layers, NI is the number of input neurons, 

and sp is the sample size. Shibata and Ikeda (2009) used the formula 𝑁𝐽 = √𝑁𝐼 ∗ 𝑁𝐾 to 

estimate the optimal number of hidden neurons. Hunter, Yu, Pukish III, Kolbusz and 

Wilamowski (2012) developed a heuristic method for calculating the optimum number of 

hidden nodes. They used the formulae 𝑁𝐽 = 𝑁𝐼 + 1, 𝑁𝐽 = 2𝑁𝐼 + 1 and 𝑁𝐽 = 2𝑁𝐼 + 1 to 

calculate hidden nodes of MLP networks, bridged MLP networks and fully connected 

cascade ANNs, respectively. Although these proposed methods are useful, there is no 

guarantee that they give the optimum number of neurons and hidden layers. Instead, they 

should be used as guidelines in choosing an appropriate number of hidden nodes and 

layers. 

 

With these guidelines, an ANN was developed to predict Fe and Mn accumulation 

potential while simultaneously varying the number of hidden nodes and layers. The 

maximum number of training epochs was set to its default value of 1000. To ensure 

reliability of the ANN model predictions, it was run 30 times for each combination of 

number of hidden nodes and layers, and the performance of the model was then averaged. 

Initially, the program was run with a single layer using varying hidden nodes between 1 
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and 15. Thereafter, it was run by varying the number of hidden nodes in the first layer 

(between 1 and 15) and the second layer (between 3 and 8) simultaneously. The algorithm 

for choosing the appropriate number of hidden nodes and layers is presented in Appendix 

N. The performance indicators (RMSE and classification accuracy (CA)) were averaged 

after 30 runs. A small RMSE and large CA denote better model predictions. The 

combination of the number of hidden nodes and layers that resulted in the best model 

performance was selected as the optimum parameter value for the model. Table 5.1 

presents the average performance of the ANN(t) model with various combinations of 

hidden nodes in the first layer and four nodes in the second layer using the test data set for 

WSZ2 after 30 runs. The best performance was obtained with five and four hidden nodes 

in the first and second hidden layers, respectively (in bold).  

 

Table 5.1 Average performance of the ANN(t) model on the testing data set for WSZ2  

Average RMSE 

on testing data 

set 

Average CA on 

testing data set 

(%) 

Hidden nodes 

in 1
st
 layer 

Hidden nodes 

in 2
nd

 layer 

0.1404 56.85 1 4 

0.1416 58.47 2 4 

0.1620 52.10 3 4 

0.1395 58.47 4 4 

0.1309 59.23 5 4 

0.1492 55.06 6 4 

0.1527 50.62 7 4 

0.1389 59.19 8 4 

0.1612 54.26 9 4 

0.1510 57.00 10 4 

0.1602 53.45 11 4 

0.1524 58.09 12 4 

0.1501 56.55 13 4 

0.1469 57.90 14 4 

0.1547 53.41 15 4 

 

 

5.4.3.3 Choosing the appropriate activation function 

The choice of activation function can have a significant effect on the performance of ANN 

models. Selecting an appropriate activation function in ANNs can be quite challenging for 

new users. The nature of the training data will influence the choice of activation function. 

For non-linear, separable data, using a linear activation function can result in poor model 

prediction. A sigmoid or hyperbolic function is more appropriate in such cases. The three 
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functions discussed in Section 3.2.6 were used to develop separate models. From the 

results, it was observed that the sigmoid activation function produced the best model 

performance since it had the least (0.1258) RMSE value and the highest CA value (61.54). 

Although more or less similar model performance was achieved using either hyperbolic or 

sigmoidal activation function, over all using sigmoidal function provided slightly better 

results. Therefore, the sigmoidal activation function was selected for further analysis.  

Table 5.2 presents the average performance of the ANN(t) model in modelling WSZ2 with 

the three different activation functions. 

 

Table 5.2 Average performance of the ANN(t) model using three different activation 

functions for WSZ2 

 Sigmoid activation 

function 

Linear activation 

function 

Hyperbolic 

activation function 

Average RMSE on testing 

data set 

0.1258 0.1746 0.1307 

Average CA on testing 

data set (%) 
61.54 51.89 61.41 

 

5.4.3.4 Tuning of network parameters  

The network was rebuilt with the sigmoid activation function and the optimum number of 

hidden nodes and layers. All the other parameters were kept constant at their default values 

except the parameter to be tuned. The model was then run 30 times for each varying range 

of values of the parameter being tuned. The model’s performance indicators were then 

averaged. This was done to ensure consistency of the model’s predictions. The first 

parameter tuned was the minimum gradient magnitude, which is a constraint parameter 

that causes the training process to stop if the performance gradient falls below a specified 

value. As the gradient approaches this value, the change in error will be insignificant and 

the network performance will stop improving. From Table 5.3, it was observed that the 

model gave the best average performance on the testing data set when the minimum 

gradient magnitude was 1 × 10
-5

 (in bold) for WSZ2. The network was then rebuilt with 

the optimum value of the minimum gradient. The remaining parameters were tuned in 

turns using the same procedure until the best possible performance of the model on the 

testing data set was obtained. The algorithm for tuning the network parameters is presented 

in Appendix O.  
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Table 5.3 Average performance of the ANN(t) model on the testing data set using 

different minimum gradient values for WSZ2 

Average RMSE on 

testing data set 

Average CA on testing 

data set (%) 

Minimum gradient 

magnitude 

0.1244 59.37    0.01 

0.1290 62.43  0.001 

0.1256 60.81             0.0001 

0.1235 62.06 1E-05 

0.1253 60.54 1E-06 

0.1294 61.01 1E-07 

0.1278 59.67 1E-08 

0.1296 60.90 1E-09 

0.1271 60.21 1E-10 

0.1386 62.17 1E-11 

 

After updating the network with the optimum minimum gradient magnitude, the learning 

rate parameter was tuned by running the model with varying values of it from 0.001 to 0.3. 

This parameter controls the speed at which the neural network learns (converges). If the 

learning rate is too high, the objective function diverges. As a result, the ANN will not be 

able to learn from the data. On the other hand, if the learning rate is too small the model 

takes a long time to converge to a solution. The best average performance on the testing 

data was observed when the learning rate value was 0.1 for WSZ2 (see Table 5.4). The 

network was then updated with the optimum values of the learning rate. 

 

Table 5.4 Average performance of the ANN(t) model on the testing data set using 

different learning rate values for WSZ2 

Average RMSE on 

testing data set 

Average CA on testing 

data set (%) 

Learning 

rate 

0.1205 62.69 0.001 

0.1318 58.95 0.008 

0.1320 62.58 0.005 

0.1264 63.13 0.01 

0.1307 61.90 0.08 

0.1267 62.92 0.05 

0.1205 63.19 0.1 

0.1326 61.95 0.15 

0.1355 60.04 0.2 

0.1239 61.67 0.3 
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The initial training gain (Mu) is used to increase or decrease the step-size of the training 

process. It is used to prevent the ANN from converging at a local minimum. A high initial 

Mu helps the ANN to converge faster. However, high values can lead to overshooting the 

local minimum. A very low initial Mu does not also guarantee the avoidance of the system 

being trapped in local minimum and can slow down the training process. The Mu factor 

was tuned by running the model with varying values of it between 1E-05 to 0.5. From 

Table 5.5, it was observed that the model gave the best average performance on the testing 

data set for WSZ2 when initial Mu was 0.001 (in bold). 

 

Table 5.5 Average performance of the ANN(t) model on the testing data set using 

different initial Mu values for WSZ2 

Average RMSE on 

testing data set 

Average CA on testing 

data set (%) 
Initial Mu 

0.1195 64.60          1E-05 

0.1249 60.01          5E-05 

0.1204 63.72         0.0001 

0.1173 65.33           0.001 

0.1196 61.69             0.01 

0.1250 58.26          0.04 

0.1223 62.22          0.08 

0.1208 58.40            0.1 

0.1186 60.05           0.2 

0.1260 57.72           0.5 

 

The parameters Mu increase and Mu decrease factors were used to control the 

weights during the training process. After updating the ANN(t) model with values 

of already tuned parameters, the model was run with various values of Mu increase 

factor. Table 5.6 shows that the best average performance of the ANN(t) model on 

the testing data set for WSZ2 was attained when Mu increase factor was set to 10 

(in bold). The network was rebuilt with the optimum Mu increase factor and run 30 

times with various values of Mu decrease factor. From Table 5.7 it was observed 

that the best average performance of the ANN(t) model on the testing data set for 

WSZ2 was obtained when Mu decrease factor was 0.001 (in bold). The network 

was then updated with the optimum value. 
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Table 5.6 Average performance of the ANN(t) model on the testing data set using 

different Mu increase factor values for WSZ2 

Average RMSE on 

testing data set 

Average CA on testing 

data set (%) 

Mu increase 

factor 

0.1263 59.33 0.01 

0.1185 64.72  0.1 

0.1220 60.05     1 

0.1213 63.20     3 

0.1208 65.16     7 

0.1176 65.45   10 

0.1190 65.39   15 

0.1305 60.01   20 

0.1211 63.50   30 

0.1260 61.56   50 

 

Table 5.7 Average performance of the ANN(t) model on the testing data set using 

different Mu decrease factor values for WSZ2 

Average RMSE on 

testing data set 

Average CA on testing 

data set (%) 

Mu decrease 

factor 

0.1154 65.82        0.001 

0.1170 65.10 0.01 

0.1268 63.76 0.05 

0.1264 62.02 0.08 

0.1281 59.28   0.1 

0.1181 63.86 0.12 

0.1203 64.44 0.15 

0.1228 61.79 0.2 

0.1270 58.63 0.5 

0.1235 59.50    1 

 

 

LM back-propagation algorithm was used in the model until this point in the tuning 

process. Using all the tuned parameters, the network was rebuilt with a different 

optimisation algorithm, the scaled conjugate gradient backpropagation, to compare its 

performance with the LM back-propagation algorithm. This algorithm updates weights and 

biases based on the scaled conjugate gradient method (Hsieh, 2008). Tables 5.7 and 5.8 

show that the average testing classification accuracy reduced from 65.82 to 59.37 when the 

scaled conjugate gradient back-propagation algorithm was used to train the network. It was 

also observed that the average RMSE increased from 0.1154 to 0.1268. These results 

indicate that the LM back-propagation algorithm gives better predictions than scaled 
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conjugate gradient back-propagation algorithm with the data used for the modelling. Table 

5.9 shows all the tuned parameter values used in the ANN(t) model for WSZ2. The results 

of the tuned parameters for the remaining WSZs are presented in Appendix P. 

 

Table 5.8 Average performance of the ANN(t) model on the testing data set using the 

scaled conjugate gradient backpropagation algorithm for WSZ2 

  

Performance indicator 

Scaled conjugate gradient 

backpropagation 

Average RMSE on testing data set 0.1268 

Average CA on testing data set (%)   59.37 

 

 

Table 5.9 The tuned ANN(t) model parameter values for WSZ2 

Name Tuned value Description of parameter 

Show             5 The display of epochs within display 

Epochs       1000 The maximum number of iteration 

Goal               0 Performance goal 

Min_grad  1.00E-05 Minimum gradient magnitude  

Mu       0.001 Initial Mu 

Mu_inc           10 Mu increase factor 

Mu_dec       0.001 Mu decrease factor  

η           0.1 Learning rate 

1
st
 layer nodes             5 The number of nodes in 1

st
 layer 

2
nd

  layer nodes             4 The number of nodes in 2
nd

 layer 

Sigmoid activation function  The activation functions used in the model 

Levenberg–Marquardt 

algorithm  

Optimisation algorithm used in the model 

 

  

5.4.4 Training of the artificial neural network models ANN(t,ѱ)  

The methodology used in developing the ANN(t,ѱ) model, is similar to the ANN(t) model. 

The same method was used in training and tuning the network parameters. The main 

difference between them is how water quality variables were calculated. The ANN(t) 

model uses the actual water quality variables (not averaged) for modelling, whereas the 

ANN(t,ѱ) model makes its prediction using yearly averages water quality variables as 

input variables for every node in the WSZ. In view of this, the ANN(t) model is unable to 

make predictions in regions where water quality variables were not sampled. However, 

base data were available at every node for all pipe-related variables and hydraulic variables 



 

148 

 

  6
2
 

for the ANN(t,ѱ) model. The pipe-related variables used were pipe age and pipe material 

index, whereas the hydraulic variables were maximum daily shear stress at node after 24 

hours of simulation, average water age at node after 72 hours of simulation, variation of 

daily shear stress at node after 24 hours of simulation and hydraulic distance from source 

of water supply. 

 

The ANN(t,ѱ) model is able to predict yearly Fe and Mn accumulation potential for each 

node. A matlab program was written to plot the risk maps for the predicted Fe and Mn 

accumulation potential as well as customer complaints due to discolouration. The 

generated risk maps can visually show the distribution of Fe and Mn accumulation 

potential in WSZs. The source code for the program is given in Appendix F. 

 

  

5.5 Results and discussion of the ANN(t) models 

Six different ANN(t) models were developed to investigate the effect of individual input 

variables on Fe and Mn accumulation potential. The user-friendly software developed 

using the models made it easy to investigate the effect of the input variables by simply 

changing the values in the text box of the software. Prediction profiler graphs of Fe and 

Mn accumulation potential against individual input variables were plotted. The effect of 

combined model variables on Fe and Mn accumulation potential were also investigated. 

 

5.5.1 Performance indicators for the ANN(t) models 

Different evaluation measures can be adopted in evaluating the performance of ANN 

models. Coefficient of determination (R
2
), CA, RMSE, mean square error (MSE), and sum 

of square error (SSE) have all been used as performance indicators in ANNs. It is a good 

research practice to use more than one performance measure to determine the accuracy of 

a model. In this research, CA and RMSE were used to evaluate the models’ prediction 

accuracy. The RMSE is a measure of the difference between the predicted values of a 

model and its measured values. The equation for calculating RMSE is given in Eqn. 5.7. 

Since Fe and Mn accumulation potential has no units of measurement, RMSE also has no 

units of measurement. The smaller the RMSE value, the better the predictive power of the 

model. 
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𝑅𝑀𝑆𝐸 =  √
1

𝑠𝑝
∑(𝑌𝑖 −  𝑋𝑖)2 

𝑠𝑝

𝑖=1

                                                          (5.7) 

 

As indicated in Section 5.3, the output variable, Fe and Mn accumulation potential, was 

classified as high, medium and low. Confusion matrices (contingency tables) were used to 

represent the predicted results of these classifiers in a clean and unambiguous way. CA is 

widely used in confusion matrices to determine prediction accuracy of the various 

classifiers (Valverde-Albacete, 2014). The overall CA of a model is the percentage ratio of 

the number of samples correctly predicted by the model to the total number of samples. 

The formula for calculating this performance indicator is given in Eqn. 5.8. In general, 

higher classification accuracy signifies better model performance. However, this is not 

always the case because it is possible for a model to have a high CA even if it is unable to 

correctly predict a single value in a particular class. This problem is known as the accuracy 

paradox. To ensure that the developed models were not exhibiting accuracy paradox, the 

percentage of each correctly predicted class was computed. Equations (5.9)–(5.11) were 

used to calculate the percentage for the low, medium, and high classes, respectively. 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐶𝐴 =
𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                          (5.8) 

 

𝐶𝐴 (𝑙𝑜𝑤) =
𝐿𝑜𝑤 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑤 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                        (5.9) 

 

𝐶𝐴 (𝑚𝑒𝑑𝑖𝑢𝑚) =
𝑀𝑒𝑑𝑖𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                      (5.10) 

 

𝐶𝐴 (ℎ𝑖𝑔ℎ) =
𝐻𝑖𝑔ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100                       (5.11) 

 

 

5.5.2 Performance of the ANN(t) models 

Six ANN(t) models were developed using the untransformed data with and without 

outliers. Five of the models used their respective WSZ data for training, whereas the sixth 

model used combined data from all five WSZs for training. The best performance values 
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for each model are presented in Tables 5.10–5.12. For comparison purposes, the models 

were also developed using logarithmic transformed data and the linear transformed data. 

Table 5.10a shows the performance of ANN(t) model results when untransformed data 

with outliers was used for training. The low CAs and high RMSE values observed in the 

testing data sets indicate that the model does not predict well. In view of this, all models in 

this research were developed using data without outliers. 

 

Table 5.10a Performance of the ANN(t) models using untransformed data with outliers  

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 75.65 79.43 83.49 87.95 76.59 72.34 

Overall Testing CA (%) 56.49 50.09 49.59 57.49 45.95 53.49 

Training CA - low (%) 79.26 83.24 87.34 92.56 80.97 76.28 

Training CA - medium (%) 63.27 80.64 76.52 88.55 78.52 70.18 

Training CA - high (%) 60.94 70.52 80.06 75.88 69.39 65.33 

Testing CA - low (%) 61.49 55.34 60.00 63.91 58.24 70.54 

Testing CA - medium (%) 57.27 51.79 20.00 50.00 42.61 60.00 

Testing CA - high (%) 50.86 42.83 40.00 55.07 45.00 0.00 

Training RMSE 0.0458 0.0375 0.0354 0.0394 0.0421 0.0974 

Validation RMSE 0.0648 0.8497 0.0708 0.0958 0.0819 0.1277 

Testing RMSE 0.2491 0.1854 0.2084 0.2064 0.1954 0.2328 

Training data points 153 142 69 168 160 692 

Validation data points 38 36 17 42 40 173 

Testing data points 33 30 16 35 34 148 

 

 

Table 5.10b presents the performance of ANN(t) model results when untransformed data 

was used for training. The high CA and low RMSE values observed in the testing data sets 

when each of the individual WSZ data was used for training shows that the predicted 

values are similar to the measured values. This indicates that the model is likely to predict 

Fe and Mn accumulation potential reasonably well on new data sets.  
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Table 5.10b Performance of the ANN(t) models with untransformed data  

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 80.54 77.51 96.43 81.82 97.42 74.52 

Overall Testing CA (%) 75.76 73.33 75.00 65.71 85.29 74.32 

Training CA - low (%) 89.34 83.16 97.22 91.34 98.90 90.35 

Training CA - medium (%) 69.27 72.73 95.82 60.00 83.33 30.34 

Training CA - high (%) 84.29 66.67 90.57 70.97 71.43 38.37 

Testing CA - low (%) 76.00 83.33 85.71 76.92 93.55 88.18 

Testing CA - medium (%) 60.00 55.56 0.00 25.00 0.00 35.71 

Testing CA - high (%) 100.00 66.67 100.00 40.00 100.00 30.00 

Training RMSE 0.0312 0.0211 0.0128 0.0362 0.0216 0.0841 

Validation RMSE 0.0384 0.0516 0.0183 0.0425 0.0364 0.0818 

Testing RMSE 0.1209 0.1012 0.1111 0.1452 0.0410 0.0792 

Training data points 148 135 67 159 156 665 

Validation data points 37 34 17 39 38 167 

Testing data points 33 30 16 35 34 148 

  

 

For better predictions, ANNs require large data sets that have been sampled adequately 

from the entire search space in order to have sufficient instances from which to make a 

generalisation. In other words, they require large data sets to improve their prediction 

capabilities. Contrary to this notion, it was observed that the ANN model that used the 

combined data from all five WSZs for prediction gave relatively poor results as shown by 

the testing CA and RMSE values in Table 5.10b. This could be due to not having enough 

instances of data to represent the entire search space from the combined data. It could also 

be due to the fact that Fe and Mn accumulation occur under slightly different conditions 

for each WSZ. Therefore, combining the data sets confused the training process, resulting 

in relatively poor predictions. 

 

Figure 5.8 shows the confusion matrix for the untransformed testing data set after 

predictions from the ANN(t) model for WSZ1. The model correctly predicted 3 out of 3 

(100%) high-risk values, 3 out of 5 (60%) medium-risk values, and 19 out of 25 (76%) 

low-risk values. The overall CA of 75.76% for the testing data set suggests the ANN(t) 

model for WSZ1 will make good predictions when applied on new data sets.  
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                                                                          Predicted 

  
Low Medium High 

Low  19 4 2 

Medium 2 3 0 

High 0 0 3 

 

Figure 5.8 Testing data confusion matrix from the ANN(t) model for WSZ1 when 

untransformed data was used for training 

  

Table 5.11 Performance of the ANN(t) models with logarithmic transformed data 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 75.68 79.88 95.24 85.86 97.42 77.88 

Overall Testing CA (%) 72.73 63.33 87.5 65.71 88.24 70.27 

Training CA - low (%) 91.80 85.26 97.22 96.06 99.45 92.35 

Training CA - medium (%) 51.02 75.00 90.91 55.00 66.67 41.38 

Training CA - high (%) 21.43 70.00 0.00 83.87 71.43 38.37 

Testing CA - low (%) 92.00 61.11 100.00 76.92 96.77 88.18 

Testing CA - medium (%) 20.00 66.67 0.00 25.00 0.00 21.43 

Testing CA - High (%) 0.00 66.67 0.00 40.00 0.00 10.00 

Training RMSE 0.0759 0.1195 0.0450 0.1162 0.0486 0.2139 

Validation RMSE 0.1504 0.1675 0.0595 0.2395 0.0672 0.2195 

Testing RMSE 0.2462 0.2747 0.0993 0.2606 0.2091 0.2522 

Training data points 148 136 67 158 156 666 

Validation data points 37 33 17 40 38 166 

Testing data points 33 30 16 35 34 148 

 

Table 5.11 presents the results from the ANN(t) models when logarithmic transformed 

data was used for training. It was observed that the ANN(t) models that used 

untransformed data for training gave better predictions than the ANN(t) models that used 

logarithmic transformed data. Although the ANN(t) model for WSZ1 gave a moderately 

high overall CA of 72.73% on the testing data set, however, the testing CA for high-risk 

was 0%. This means the model was unable to predict high-risk values of Fe and Mn 

accumulation potential. Similarly, the ANN(t) model using combined WSZ data for 
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training correctly classified only 10% of high-risk Fe and Mn accumulation potential. 

These poor performances could be due to some of the transformed data not reverting back 

to their original untransformed form when the logarithmic inverse was applied to the 

predicted results. Grissom (2000) and Rothery (1988) experienced similar results when 

they inverse-transformed the means of the transformed data to an untransformed scale. 

Because inverse-transformation of the transformed data does not always revert back to its 

original untransformed form, some researchers are reluctant to transform their data 

(Grissom, 2000). 

 

Table 5.12 Performance of ANN(t) models with linear transformed data 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 85.96 84.02 97.62 83.84 90.72 77.40 

Overall Testing CA (%) 72.73 73.33 75.00 82.86 85.29 75.68 

Training CA - low (%) 90.98 89.58 98.61 96.85 95.58 93.84 

Training CA - medium (%) 87.76 81.40 90.91 50.00 50.00 42.76 

Training CA - high (%) 35.71 70.00 100.00 74.19 88.83 20.93 

Testing CA - low (%) 76.00 77.78 85.71 96.15 93.55 91.82 

Testing CA - medium (%) 60.00 66.67 0.00 25.00 0.00 32.14 

Testing CA - high (%) 66.67 66.67 100.00 60.00 100.00 20.00 

Training RMSE 0.0861 0.0697 0.0010 0.1037 0.0753 0.1413 

Validation RMSE 0.1222 0.1194 0.0533 0.1486 0.1565 0.1751 

Testing RMSE 0.2108 0.2025 0.2184 0.2660 0.2602 0.2319 

Training data points 148 136 67 159 155 666 

Validation data points 37 33 17 39 39 166 

Testing data points 33 30 16 35 34 148 

 

The results of the ANN(t) models when linear transformed data was used for training are 

presented in Table 5.12. It can be observed that the models using individual WSZs for 

prediction gave better results than the model using the combined data. The model for the 

combined data predicted only 20% of the high-risk values of Fe and Mn accumulation 

potential. It was observed that the ANN(t) models that used linear transformed data for 

prediction gave slightly better results than the ANN(t) models that used logarithmic 

transformed data. However, the models that used untransformed data for prediction gave 

the best results and were subsequently used to develop the software.  

 

5.5.3 Effect of individual model variables on Fe and Mn accumulation potential  

To investigate the effect of changes in input variables on the output variable, a user-

friendly and cost-effective software was developed to predict Fe and Mn accumulation 
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potential. The software takes different input variable values and predicts Fe and Mn 

accumulation potential. It can also be used as a sensitivity tool to determine the 

relationship between input variables and Fe and Mn accumulation potential. It was 

developed using Microsoft Visual Basic. The source code for the software is given in in 

Appendix B.  

 

To plot the prediction profiler graphs, all input variables were kept at their default (average) 

values, except the variable which its sensitivity was being determined. The values of the 

input variable which its sensitivity was being tested was varied a number of times and the 

predicted Fe and Mn accumulation potential values were recorded. Using these input 

variable and predicted values, prediction profiler graphs were plotted. These graphs show 

the correlation between each of the input and output variables.  

 

As mentioned previously, measured values of Fe and Mn accumulation potential above the 

90
th

 percentile of the combined data were classified as high-risk, those between the 70
th

 

and 90
th

 percentile as medium-risk, and those below the 70
th

 percentile as low-risk. The 

90
th

 and 70
th

 percentiles correspond to Fe and Mn accumulation potential values of 0.25 

and 0.15, respectively. In this research, all WSZs were classified using these ranges.  

 

Keeping all the input variables constant at their respective default values, Al concentration 

values were varied while their corresponding Fe and Mn accumulation potential values 

were computed. Profiler prediction graphs were then plotted from the values. From the 

graphs in Fig. 5.9, it can be observed that increasing Al concentration generally increases 

Fe and Mn accumulation potential. Al enters WDNs as a result of aluminium salt 

Al2(SO4)3 (alum) which is used as a coagulant during the water treatment process to reduce 

organic matter, colour, turbidity, and microorganism levels (WHO, 2006). Increase in Al 

concentration would result in the formation of amorphous Al(OH)3; a compound that has 

sorption capabilities (Dayton & Basta, 2005; Wang et al., 2012). The increase in Fe and 

Mn accumulation potential could be attributed to the sorption of Fe and Mn on amorphous 

Al(OH)3. Although Al concentrations exhibited a positive correlation with Fe and Mn 

accumulation potential in both WSZ1 and WSZ3, it was observed that it was a more 

significant parameter in the latter WSZ. 
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Figure 5.9 Relationship between Fe and Mn accumulation potential and aluminium 

  

The prediction profiler graphs of the models for WSZ1 and WSZ5 in Fig. 5.10 show 

negative correlations between Fe and Mn accumulation potential and Ca concentration. 

This may be due to the formation of calcium carbonate (CaCO3) in the presence of DO in 

the WDNs. Increase in CaCO3 concentration increases alkalinity levels and subsequently 

causes Fe and Mn accumulation potential to reduce. This finding conforms to the research 

on alkalinity conducted by Naylor et al. (1993) and Kashinkunti et al., (1999). Kashinkunti 

et al., (1999) observed that fewer customer complaints regarding water discolouration were 

received when the alkalinity was maintained at 60 mg CaCO3/L, whereas Naylor et al. 

(1993) found that alkalinity above 50 mg CaCO3/L reduced corrosion within the a pH 

range of 7.5–8. Furthermore, CaCO3 serves as a corrosion inhibitor by forming protective 

scales on the inner walls of ferrous pipes. These scales can form films thick enough to 

prevent drinking water from coming into direct contact with ferrous pipes in WDNs and 

subsequently reduce Fe failures.  
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Figure 5.10 Relationship between Fe and Mn accumulation potential and calcium 

 

FCR has a dual effect on Fe and Mn accumulation potential. Since FCR is an oxidising 

agent, moderately high concentrations can chemically oxidise soluble Fe
2+

 and Mn
2+

 to 

insoluble Fe
3+

 and Mn
4+

. Also, because it is a disinfectant, a moderately high concentration 

of FCR helps to kill Fe- and Mn-oxidising bacteria. This subsequently prevents or reduces 

biological oxidation of Fe and Mn in WDNs. The prediction profiler graphs in Fig. 5.11 (a) 

and (b) have similar characteristics, but differ in values of Fe and Mn accumulation 

potential. Both graphs have negative correlation when biological oxidation of Fe and Mn is 

dominant and positive correlation when chemical oxidation of Fe and Mn is dominant. 

High values of Fe and Mn accumulation potential were observed when FCR 

concentrations were below 0.8 mg/L. This is because low concentrations of FCR promotes 

microbial growth and increases biological oxidation of Fe and Mn in that range. This 

finding conforms to the observations made in the analysis of Fe and Mn with FCR in 

Section 4.6, where it was observed that whenever FCR concentrations were below 0.8 

mg/L, there were many Fe and Mn failures. The concentrations of FCR within this range 

are however not strong enough to cause chemical oxidation. 

 

The gradual increase in Fe and Mn accumulation potential observed when FCR exceeds 

0.8 and 0.6 mg/L in graphs in Fig 5.11 (a) and (b) respectively, is due to the dominant 

effect of chemical oxidation of Fe and Mn in the WDNs. Also, the relatively high 

concentrations of FCR help to reduce microbial growth and decrease biological oxidation. 
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Due to the dual effect of FCR, water resource engineers should be careful when choosing 

the optimal value of chlorine, since high concentration of it can give drinking water a very 

strong odour and unpleasant taste, whereas low concentration of it deteriorate water quality 

(Teasdale et al., 2007). 

 

  

Figure 5.11 Relationship between Fe and Mn accumulation potential and FCR 

 

Several studies have shown that total organic carbon (TOC) concentrations are strongly 

correlated with colour (Effler et al., 1985; Evans, 1988; Gorham et al., 1986). Colour was 

used as an indirect measure of TOC because there were no data available for it. TOC has 

often been used by researchers as a measure to appraise the potential formation of biofilms 

because increased levels of it in the drinking water enhance biofilm formation (van der 

Kooij, 2002). The strong positive correlation between TOC and biofilm formation is 

because the bacteria responsible for the formation of biofilms mainly use carbon as a 

bioavailable form of nutrient (CRCWQT, 2005). Unsurprisingly, the prediction profiler 

graphs in Fig 5.12 show a strong positive correlation between Fe and Mn accumulation 

potential and colour.  
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Figure 5.12 Relationship between Fe and Mn accumulation potential and colour 

  

Figure 5.13 illustrates the highly positive correlation between hardness and Fe and Mn 

accumulation potential in the models for WSZ1 and WSZ5. Hardness is a measure of total 

dissolved minerals, mainly Ca and Mg. However, dissolved ions such as Fe, Mn, Al, and 

zinc may also contribute to hardness (WHO, 2011b). This explains the reason for the 

positive correlation observed in the prediction profiler graphs. Usually water with hardness 

in the range between 0–60 mg/L is classified as soft, 60–120 mg/L as moderately hard, and 

above 120 mg/L as hard (WHO, 2011b). Although hardness does not pose any harmful 

threats to human health, it can cause many domestic and industrial problems. They can 

cause the breakdown of boilers and cooling towers, leave deposits of lime scale in kettles 

and water heaters and difficulties in lathering soap because of the formation of the 

complex Ca
2+

 and Mn
2+

 compounds. 
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Figure 5.13 Relationship between Fe and Mn accumulation potential and hardness 

 

A highly positive correlation was observed between Fe and Mn accumulation potential and 

turbidity, as shown in Fig. 5.14. Turbidity in WDNs is caused by suspended inorganic or 

organic matter, which tends to block the transmission of light through water. 

Microorganisms such as Fe- and Mn-oxidising bacteria attach themselves to these 

suspended particles. High turbidity levels therefore enhance microbial growth, increase 

biofilm formation, and subsequently cause the biological oxidation of Fe and Mn. 

Furthermore, high levels of turbidity enhance biological oxidation by serving as a shield to 

inhibit microorganisms from disinfection (WHO, 2011a). The high positive correlation 

could also be due to the condition of the pipes in WDNs, as suggested by Boxall et al. 

(2003). In their studies on flushing, they found that WDNs with low discolouration risks 

(turbidity levels) were regularly cleaned or rehabilitated, whereas WDNs with high 

turbidity levels were as a result of poor pipe conditions, i.e. lack of cleaning or 

rehabilitation. Years of sediment accumulation, including Fe and Mn precipitates, causes 

high Fe and Mn accumulation potential and turbidity levels. 
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Figure 5.14 Relationship between Fe and Mn accumulation potential and turbidity 

 

The prediction profiler graphs in Fig. 5.15 show that, in general, Fe and Mn accumulation 

potential increases with hydraulic distance from source of water supply. However, Fig 17 

(a) shows a gradual decrease in Fe and Mn accumulation potential when hydraulic distance 

from source of water supply exceeds 4,000 m. This gradual decrease could be due to the 

effect of other contributing variables to Fe and Mn accumulation potential. In general, the 

further water travels through a WDN, the higher the water age and the more chlorine 

dissipates within the system. Since chlorine is a disinfectant, it suppresses the growth of 

Fe- and Mn-oxidising bacteria, preventing the biological oxidation of soluble Fe and Mn to 

insoluble Fe and Mn. Hence, regions with short hydraulic distance from source of water 

supply have low Fe and Mn concentrations. In contrast, regions with long hydraulic 

distances from source usually have low concentrations of FCR. This increases microbial 

growth, which causes biological oxidation of Fe and Mn and subsequently leads to 

increased Fe and Mn accumulation potential. Similar relationships between Fe and Mn 

accumulation potential and the input variables for the remaining WSZs are presented in 

Appendix Q. 

 

Another reason why regions with long hydraulic distance from source of water supply also 

have high values of Fe and Mn accumulation potential could be due to the low flow rates 

and velocities in pipes experienced at the periphery of WDNs. In general, peripheries of 

WDNs have long hydraulic distance from source of water supply, low flows, low 
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velocities as well as low shear stress. As found by Boxall et al. (2001), lower conditioning 

daily shear stress will result in a higher accumulation of Fe, Mn, and other particles in 

pipes.  

 

  

Figure 5.15 Relationship between Fe and Mn accumulation potential and hydraulic 

distance from source of water supply 

 

5.5.4 Effect of some combined model variables on Fe and Mn accumulation potential  

After varying the values of individual variables to determine their effects on Fe and Mn 

accumulation potential, various combinations of variables were grouped by properties and 

varied to also find their effect on it. Computations were performed using extreme values of 

the combined variables that are known to either increase or decrease Fe and Mn 

accumulation potential. Keeping all other variables at their constant default (average) 

values, variables that are known to influence biological oxidation were varied. Initially, Fe 

and Mn accumulation potential were computed with values of variables that are known to 

reduce biological oxidation. Fig 5.16 (a) shows the variable values known to influence 

biological oxidation and the predicted value (highlighted by red ovals) in the developed 

software. The Fe and Mn accumulation potential were then computed with values of 

variables that are known to increase biological oxidation (see Fig 5.16 (b)). It was 

observed that Fe and Mn accumulation potential increased from 0.10 (low-risk) to 0.36 

(high-risk). This is an indication of how significant biological oxidation is in WSZ1.  
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With the exception of FCR which reduces biological oxidation as its concentration 

increases, the other variables; colour, P and average water age all increase with increasing 

biological oxidation. Researchers have identified TOC (colour) and P as significant 

bioavailable forms of nutrients that bacteria in WDNs need for growth and reproduction 

(CRCWQT, 2005). This explains why high levels of these variables increase biological 

oxidation. As average water age increases, residual chlorine decreases and the quality of 

water deteriorates, which creates a conducive environment for bacteria growth in the 

network. Increased average water age can give water poor taste and bad odour. Conversely, 

increasing FCR concentration reduces biological oxidation because it is a disinfectant 

which kills the oxidation bacteria. 

 

   (a)                                                                       (b) 

 

Figure 5.16 Screen shots of the developed software to show the effect of biological 

oxidation on Fe and Mn accumulation potential in WSZ1 

 

Fe and Mn accumulation potential were computed with values of chemical variables that 

are known to reduce chemical oxidation (see Fig 5.17 (a)). The same computations were 

made with chemical parameters that are known to increase chemical oxidation (see Fig 
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5.17 (b)). The increase in predicted Fe and Mn accumulation potential value from 0.06 

(low-risk) to 0.47 (high-risk) indicates the importance of chemical oxidation in WSZ5. 

Unlike corrosion which occurs mainly in cast iron pipes, chemical oxidation takes place in 

almost all types of pipes. Chemical oxidation of Fe and Mn occurs when soluble Fe
2+

 and 

Mn
2+

 from the source of water supply are converted to insoluble Fe
3+

 and Mn
4+

 in the 

presence of oxidising agents such as DO and FCR. Increase in alkalinity levels is known to 

generally reduce chemical oxidation, whereas increase in both FCR and hardness generally 

increase chemical oxidation. 

 

   (a)                                                                       (b) 

 

Figure 5.17 Screen shots of the developed software to show the effect of chemical 

oxidation on Fe and Mn accumulation potential in WSZ5 

 

Corrosion, which is the most common cause of drinking water discolouration, mainly 

occurs in regions of WDNs with cast iron pipes. For corrosion to take place, an oxidising 

agents has to come in contact with the inner surface of the cast iron pipes to oxidise Fe. 

Generally, increase in FCR concentration and pipe age increases corrosion rates in cast 
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iron pipes (Knocke et al., 1990). Conversely, increase in Ca concentration reduces 

corrosion rates in cast iron pipes. Keeping the values of all other variables in the model 

constant at their default values, Fe and Mn accumulation potential were computed with 

chemical values that are known to reduce corrosion. The model gave a prediction of 0.08 

(low-risk) (Fig 5.18 (a)). On the other hand, when it was computed with chemical 

parameter values that are known to increase corrosion, the model’s prediction was 0.71 

(high-risk) (Fig 5.18 (b)). The high predicted value shows that corrosion is very significant 

in the prediction of Fe and Mn accumulation potential in WSZ4. 

 

(a)                                                                           (b) 

 

Figure 5.18 Screen shots of the developed software to show the effect of corrosion on Fe 

and Mn accumulation potential in WSZ4 

 

Increase in Al, colour and hardness concentrations are known to generally increase 

sorption (Wang et al., 2012). When low values of these variables were used to predict Fe 

and Mn accumulation potential keeping all other variables at their constant default values, 
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the model’s prediction was 0.04 (low-risk) (see Fig 5.19 (a)). However, when the values of 

sorption variables were increased with the other variables values still constant, the model’s 

prediction was 0.90 (high-risk) (see Fig 5.19 (b)). The high predicted value could be due to 

the attachment of Fe and Mn particles on amorphous Al(OH)3 and other sorption 

parameters. This also indicates that sorption is an important process that influences Fe and 

Mn accumulation in WSZ1. 

 

(a)                                                                          (b) 

 

Figure 5.19 Screen shots of the developed software to show the effect of sorption on Fe 

and Mn accumulation potential in WSZ1 

 

The variables variation of daily shear stress at node and maximum daily shear stress at 

node have similar characteristics. Both variables negatively correlate with Fe and Mn 

accumulation. Low values of these variables are likely to be found in regions with dead 

ends and redundant loops in WDNs. These regions are more susceptible to increased 

microbial growth and discolouration. On the other hand, high values of the variables are 

likely to be found on trunk mains and regions with high water demand. Running the model 

with high values of variation of daily shear stress and maximum daily shear stress while 
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keeping the other parameters at constant at their respective default values gave a predicted 

Fe and Mn accumulation value of 0.09 (low-risk). Whereas a predicted Fe and Mn 

accumulation value of 0.22 (medium-risk) was obtained when the model was run with low 

values of variation of daily shear stress and maximum daily shear stress (see Fig. 5.20). 

This observation conforms to research by Boxall et al. (2001, 2003), who suggested that 

discolouration materials are more likely to accumulate in networks that are more subjected 

to low conditioning daily shear stress than networks with high conditioning daily shear 

stress. 

 

(a)                                                                           (b) 

 

Figure 5.20 Screen shots of the developed software to show the effect of shear stress on Fe 

and Mn accumulation potential in WSZ2 
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5.6 Results and discussion of the ANN(t,ѱ) models 

Due to the enormous sizes of WSZs, it is almost impossible to sample every node. One of 

the dilemmas drinking water companies face is to estimate the concentrations of Fe and 

Mn at nodes that have not been sampled. If they are wrongly estimated, they may give 

misleading results, which will subsequently lead to making incorrect analyses and drawing 

wrong conclusions. As mentioned in Section 5.4, unlike the ANN(t) models, the ANN(t,ѱ) 

models requires base data for every node in the WSZs to make predictions. The 

assumptions given in Section 5.4 were used to estimate the base data of yearly average 

water quality variables within each DMA as input variables for the ANN(t,ѱ) models. 

However, the same pipe-related and hydraulic input variables used in the ANN(t) models 

were also used to develop the ANN(t,ѱ) models. 

 

Although the ANN(t) models gave slightly better predictions of Fe and Mn accumulation 

potential because there were no assumptions made in obtaining the base data, it could not 

make predictions for every node in WSZs. ANN(t) are more useful in investigating the 

correlation between the input and output variables. Contrary to this, ANN(t,ѱ) models are 

able to predict Fe and Mn accumulation potential for every node as well as generate risk 

maps for the WSZs.  

 

5.6.1 Performance of the ANN(t,ѱ) models 

The ANN(t,ѱ) models developed also use CA and RMSE as performance indicators for the 

evaluation of the models. Six models were developed; five of the models used their 

respective WSZs data sets for the modelling, whereas the last model used the combined 

data sets from all the five WSZs for the modelling. The models were developed using 

linear transformed data, logarithmic transformed data, and untransformed data. The models 

gave poor predictions when the linear transformed data was used for the modelling (see 

Table 5.13). They could not predict high-risk values of Fe and Mn accumulation potential 

on the testing data sets very well. This could be due to distortions in the predicted values 

during the back-transformation.  
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Table 5.13 Performance of the ANN(t,ѱ) models with linear transformed data 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 68.10 85.40 85.21 72.66 92.13 75.49 

Overall Testing CA (%) 62.79 65.85 61.54 53.33 91.49 68.66 

Training CA - low (%) 90.26 95.17 92.44 90.00 99.18 93.62 

Training CA - medium (%) 31.58 61.70 50.00 39.53 23.08 28.95 

Training CA - high (%) 4.76 76.47 0.00 37.21 0.00 14.29 

Testing CA - low (%) 86.67 83.33 80.00 62.96 100.00 90.28 

Testing CA - medium (%) 12.50 33.33 0.00 58.33 0.00 16.13 

Testing CA - high (%) 0.00 50.00 0.00 0.00 0.00 11.54 

Training RMSE 0.2097 0.1236 0.1105 0.1529 0.1830 0.1886 

Validation RMSE 0.2126 0.1280 0.1661 0.2147 0.1874 0.2095 

Testing RMSE 0.2668 0.2111 0.2802 0.2538 0.2763 0.2534 

Training data points 185 180 114 205 214 901 

Validation data points 47 46 28 51 53 225 

Testing data points 43 41 26 45 47 201 

 

Table 5.14 presents the performance of the ANN(t,ѱ) models when untransformed data 

were used for the modelling. From the results obtained, it was observed that the models 

that used individual WSZs data for modelling outperformed the models that used the 

combined data sets from all the five WSZs. Unlike the ANN(t) models which gave good 

predictions when untransformed data was used for the modelling, it was observed that the 

ANN(t,ѱ) models gave relatively poor predictions when untransformed data was used for 

the modelling. This is because the yearly averaged water quality variable values that were 

used to develop the ANN(t,ѱ) models were highly skewed. This resulted in making the 

models difficult to converge at their respective global minimum and subsequently gave 

poor performances. 
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Table 5.14 Performance of the ANN(t,ѱ) models with untransformed data 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 70.69% 73.01% 92.96% 67.19% 94.01% 73.45% 

Overall Testing CA (%) 67.44% 65.85% 65.38% 57.78% 82.98% 65.67% 

Training CA - low (%) 79.87 86.21 98.32 80.00 98.37 89.06 

Training CA - medium (%) 59.65 34.04 63.64 30.23 38.46 23.78 

Training CA - high (%) 33.33 70.59 100.00 53.49 55.56 38.53 

Testing CA - low (%) 76.67 78.26 85.00 74.07 90.70 83.33 

Testing CA - medium (%) 62.50 33.33 0.00 41.67 0.00 19.35 

Testing CA - high (%) 20.00 66.67 0.00 16.67 0.00 23.08 

Training RMSE 0.0307 0.0302 0.0170 0.0622 0.0600 0.1034 

Validation RMSE 0.0491 0.0593 0.0201 0.0549 0.0856 0.0622 

Testing RMSE 0.1413 0.1132 0.1324 0.1270 0.1476 0.1115 

Training data points 185 181 114 205 214 901 

Validation data points 47 45 28 51 53 225 

Testing data points 43 41 26 45 47 201 

 

Table 5.15 presents the performance of the ANN(t,ѱ) models using logarithmic 

transformed data for the modelling. Again, it was observed that the models that used their 

respective individual WSZs data for the modelling gave better predictions than the model 

that used the combined data from the five WSZs. The combined model was able to predict 

only 23.08% of high-risk Fe and Mn accumulation potential. As explained in Section 5.5.2, 

this could be due to not having enough instances of data to represent the entire search 

space from the combined five WSZs or due to the formation of Fe and Mn accumulation 

under slightly different conditions for each WSZ. It was also observed that some of the 

model for the individual WSZs predicted well than others. For instance, the model for 

WSZ2 gave very good predictions, classifying 77.78% of the high-risk Fe and Mn 

accumulation potential values. This may be because the nodes where the water quality 

variables were sampled were uniformly distributed throughout the network. This made the 

yearly average concentrations of the water quality parameters at the DMA level a true 

representation at the node level in that DMA. On the other hand, if the nodes where the 

water quality variables were sampled are not well distributed at the DMA level, taking the 

yearly average concentrations of the water quality parameters may not be a true 

representation of every node in that DMA. 

 

From Table 5.15, it was observed that the five models that used their individual WSZs 

logarithmic transformed data sets for the modelling had relatively low RMSE and high CA 

compared to the models that used untransformed and linear transformed data for modelling. 
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This implies that the models that used logarithmic transformed data for the modelling are 

more likely to predict Fe and Mn accumulation potential reasonably well on new data sets, 

and were therefore used in generating the risk maps in this research. 

 

Table 5.15 Performance of the ANN(t,ѱ) models with logarithmic transformed data 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall Training CA (%) 73.71 79.65 95.07 79.61 95.13 76.29 

Overall Testing CA (%) 74.42 68.29 73.08 69.67 85.11 66.67 

Training CA - low (%) 85.71 88.97 96.64 85.88 99.59 90.43 

Training CA - medium (%) 61.40 57.45 86.36 64.19 77.46 38.82 

Training CA - high (%) 19.05 70.59 100.00 70.47 75.56 26.53 

Testing CA - low (%) 86.67 73.91 95.00 85.19 90.70 83.33 

Testing CA - medium (%) 62.50 44.44 0.00 46.82 57.46 25.81 

Testing CA - high (%) 20.00 77.78 0.00 62.29 65.57 23.08 

Training RMSE 0.1792 0.1463 0.0765 0.1539 0.1660 0.2350 

Validation RMSE 0.1795 0.2065 0.0870 0.1828 0.2113 0.2523 

Testing RMSE 0.2502 0.2191 0.1499 0.2722 0.2805 0.2726 

Training data points 185 181 114 205 213 901 

Validation data points 47 45 28 51 54 225 

Testing data points 43 41 26 45 47 201 

 

 

                                                                          Predicted 

  
Low Medium High 

Low  17 5 1 

Medium 3 4 2 

High 0 2 7 

Figure 5.21 Testing data confusion matrix after predictions from the ANN(t,ѱ) model for 

WSZ2 using logarithmic data 

 

Figure 5.21 shows the confusion matrix of the untransformed testing data after predictions 

from the ANN(t) model for WSZ2. The model correctly predicted 17 out of 23 (77.78 %) 

high-risk values, 4 out of 9 (44.44 %) medium-risk values and 19 out of 25 (73.91 %) low-
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risk values. The overall classification accuracy of 68.29% on the testing data set indicates 

that the ANN(t) model for WSZ2 is a good model which will make good predictions on 

new data sets.  

 

It was observed from Table 5.15 that the models for WSZ1 and WSZ3 could correctly 

classify only 20 and 0 %, respectively of the high-risk values of Fe and Mn accumulation 

potential from the testing data set. This poor performance was due to the numerous sources 

of water supplied to these two WSZs. As a result of this, a few water quality variables 

values from these two WSZs had large variations and high standard deviations in each 

DMA. The water quality variables from the two WSZs may not have been well represented 

using the assumption that yearly average water quality variables at the nodes in each of the 

DMAs were approximately the same. In view of this, a multiple linear regression model 

was used to predict the measured water quality variables values at every node in each 

DMA for WSZ1 and WSZ3 in order to capture the variations. A multiple linear regression 

is a linear statistical technique that is used to establish a linear relationship between a 

dependent variable and several independent variables (Agha & Alnahhal, 2012). It can be 

mathematically expressed as: 

  

𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝑛𝑋𝑛 +  𝜖                                              (5.12)   

 

where Y = dependent variable; X = set of independent variables;  

βn = n
th

 regression coefficient; and ε = error term. 

 

To predict the value of the yearly average water quality variable at a given node, the 

independent variables used were the yearly average water quality variable of the DMA 

where the node is being estimated, maximum daily shear stress at the node, variation of 

daily shear stress at the node, hydraulic distance from source of water supply to the node, 

pipe age, pipe material index, and yearly average water quality variable in that DMA. For 

example, to estimate the yearly average turbidity level (independent variable) at a node in 

DMA1-12, known data of the independent variables from the DMA are used to develop a 

multiple linear regression model. The multiple linear regression model for estimating 

yearly average turbidity level at a given node can be mathematically expressed as Eqns. 

5.13. An R
2
 of 0.86 was obtained for this model (see Table 5.16).  The sample size for the 

data of each DMA used for the regression model was approximately 35. Tables 5.16 and 
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5.17 show the coefficient of determination values after using multiple linear regression to 

estimate water quality data at every node in each DMA for WSZ1 and WSZ3, respectively.  

 

Table 5.16 Coefficient of determination values after using multiple linear regression to 

estimate water quality data at every node in each DMA for WSZ1 

DMA / 

Variable 

DMA

1-01 

DMA

1-02 

DMA

1-05 

DMA

1-06 

DMA

1-07 

DMA

1-08 

DMA

1-10 

DMA

1-11 

DMA

1-12 

Al* 0.58 0.88 0.27 0.48 0.99 0.30 0.54 0.38 0.89 

Ca* 0.43 0.82 0.52 0.52 0.99 0.62 0.67 0.30 0.90 

FCR 0.48 0.50 0.29 0.72 0.98 0.18 0.53 0.29 0.66 

Colour 0.81 0.74 0.34 0.36 0.99 0.23 0.43 0.58 0.90 

P* 0.61 0.89 0.43 0.65 0.82 0.45 0.54 0.49 0.77 

Turbidity 0.34 0.66 0.38 0.54 0.69 0.42 0.30 0.73 0.88 

Alkalinity 0.87 0.77 0.29 0.23 0.71 0.42 0.24 0.50 0.92 

Hardness Total 

as CaCO3 0.42 0.84 0.50 0.53 0.98 0.64 0.64 0.30 0.86 

* These are measured totals. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑙𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑎𝑡 𝑎 𝑛𝑜𝑑𝑒

= −0.1022 +  0.1708(𝑝𝑖𝑝𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑑𝑒𝑥) + 0.0035(𝑝𝑖𝑝𝑒 𝑎𝑔𝑒)

− 0.0126(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑡𝑒𝑟 𝑎𝑔𝑒) + 0.3873(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑎𝑖𝑙𝑦 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑎 𝑛𝑜𝑑𝑒)

− 3.7927(𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑎𝑖𝑙𝑦 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑎 𝑛𝑜𝑑𝑒)

+ 0.0001(ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦)

+  1.0893(𝑦𝑒𝑎𝑟𝑙𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑎𝑡 𝐷𝑀𝐴)                                                        (5.13) 

  

Table 5.17 The coefficient of determination values after using multiple linear regression to 

estimate water quality data at every node in each DMA for WSZ3 

Variable / DMA DMA3-04 DMA3-05 DMA3-08 DMA3-09 

Al* 0.95 0.36 0.59 0.34 

Ca* 0.63 0.58 0.48 0.64 

FCR 0.36 0.24 0.87 0.5 

Colour 0.8 0.33 0.72 0.29 

P* 0.6 0.26 0.43 0.53 

Turbidity 0.42 0.42 0.47 0.66 

Alkalinity 0.51 0.16 0.27 0.72 

Hardness Total as CaCO3 0.63 0.63 0.52 0.64 

* These are measured totals. 
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Table 5.18 presents the performance of the ANN(t,ѱ) models when hydraulic, pipe-related, 

and estimated water quality data from the multiple linear regression model was used for 

the ANN modelling. It was observed that the predicted percentage of high-risk values of 

Fe and Mn accumulation potential from the testing data in WSZ1 improved from 20% to 

66.42%. Similarly, the predicted percentage of high-risk values of Fe and Mn 

accumulation potential from the testing data in WSZ3 improved from 0% to 100%. These 

results indicate that, for WSZs with many sources of water supply, the model is able to 

predict high-risk values of Fe and Mn accumulation potential better when the input water 

quality variables for every node are estimated using multiple linear regression than 

assuming that yearly average water quality variable values at every node within each of the 

DMAs were approximately the same. 

 

Table 5.18 The performance of the ANN(t,ѱ) models using pipe-related, hydraulic and 

estimated water quality data from the multiple linear regression model 

Performance indicator WSZ1 WSZ3 

Overall Training CA (%) 79.26 85.17 

Overall Testing CA (%) 77.74 76.64 

Training CA - low (%) 89.39 94.76 

Training CA - medium (%) 74.73 79.91 

Training CA - high (%) 69.58 75.82 

Testing CA - low (%) 86.47 71.43 

Testing CA - medium (%) 77.85 60.00 

Testing CA - high (%) 66.42 100.00 

Training RMSE 0.1591 0.0251 

Validation RMSE 0.1642 0.0569 

Testing RMSE 0.2349 0.1140 

Training data points 185 114 

Validation data points 47 28 

Testing data points 43 26 

 

 

5.6.2 Risk indexes for the ANN(t,ѱ) models 

Risk management has been successfully applied in several areas including corporate 

finance, project management, medicine, and engineering. Hubbard (2009) defines risk 

management as “the identification, assessment, and prioritisation of risks, followed by 

coordinated and economical application of resources to minimise, monitor, and control the 

probability and/or impact of unfortunate events”. In risk management, the potential of 
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unfortunate events likely to occur are identified and steps are taking to eliminate or reduce 

the impact of these likely events.  

 

Every WDN has some level of risk of Fe and Mn failures in some regions in the network. 

Failure to identify or ignoring these high-risk regions will cause more Fe and Mn particles 

to accumulate on the pipe walls in the network, which will eventually lead to 

discolouration, customer complaints and Fe and Mn failures. Since the evaluation of risk is 

not a one-time process, but continuous, and the monitoring of water quality variables in the 

network is an expensive and laborious task, there is the need to devise a cost-effective 

method of identifying the high-risk regions.  

 

The developed ANN(t,ѱ) models can predict and classify various levels (high, low and 

medium) of Fe and Mn accumulation potential in WDNs. However, to effectively monitor 

the risk levels of each WSZ, there is a need to develop a risk index to quantify these levels. 

As explained in Section 5.3, the top 10% of all measured Fe and Mn accumulation 

potential values were classified as high-risk. If more than 10% of the predicted Fe and Mn 

accumulation potential by the model are high in a given WSZ, that WSZ is classified as a 

high-risk WSZ. If the predicted high values by the model in a WSZ are between 5 and 

10% of all the model’s predictions, it is classified as medium-risk WSZ. Finally, if the 

predicted high values by the model in a WSZ are less than 5% of all the model’s 

predictions, it is classified as low-risk WSZ.  

 

Table 5.19 presents the results of risk levels of five WSZs between the year 2005 and 2009 

generated by the ANN(t,ѱ) models. From the results, it was observed that the risk levels of 

some WSZs were not constant. For instance, from 2005 to 2006, the risk level of WSZ1 

reduced from medium to low, and from 2008 to 2009 the risk level of WSZ4 increased 

from low to high. There are a number of reasons why these risk levels varied. It could be 

due to months of accumulation of Fe and Mn particles or network cleaning through 

flushing to remove accumulated sediments. 
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Table 5.19 Risk levels of five WSZs between 2005 and 2009 generated by the ANN(t,ѱ) 

models at the WSZ level 

WSZ \ Year 2005 2006 2007 2008 2009 

WSZ1 Medium Low Low Low Low 

WSZ2 High High High High High 

WSZ3 Low Medium High Medium Medium 

WSZ4 High Medium High Low High 

WSZ5 Low Low Low Low Low 

 

 

Although it is good to identify risk at the WSZ level, it is even better to identify risk at the 

DMA level. This is because a few high-risk DMAs often cause WSZs to be classified as 

high-risk. For example, WSZ2 was categorised as a high-risk WSZ in 2006 (see Table 5.19) 

at the WSZ level. However, the risk levels of WSZ2 in 2006 generated by the model at the 

DMA level categorised only 5 out of the 12 DMAs as high-risk (see Table 5.20). There 

were even four low-risk level DMAs found at WSZ2 in 2006, although WSZ2 was 

classified as high-risk at the WSZ level that year. This shows that classifying risk at the 

WSZ level does not always give a true picture of it. Furthermore, narrowing the risk to the 

DMA level makes it easier to identify and investigate the causes of the failures. 

 

Table 5.20 Risk levels of WSZ2 in 2006 generated by the ANN(t,ѱ) model at the DMA 

level 

DMA 

Percentage of  

high-risk nodes Risk level 

131-T2 15.38 High 

128-01   0.00 Low 

128-14   8.09 Medium 

128-16 11.39 Medium 

128-13 11.33 Medium 

128-02 35.44 High 

131-22 39.50 High 

128-20 22.34 High 

131-T5   0.00 Low 

128-15 16.91 High 

128-21   0.92 Low 

128-T2   0.00 Low 
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5.6.3 Risk maps generated by the ANN(t,ѱ) models 

Presently, most water companies identify high discolouration risk regions in WDNs by 

selecting areas in the network with high Fe and Mn concentrations from their random 

sampling or by using customer complaints data relating to discolouration. As indicated in 

Chapter 1, these methods can be imprecise for two main reasons. First, with about 315,000 

km of water mains in England and Wales, monitoring Fe and Mn concentrations will 

always be a very difficult and expensive task. This means that it may be impossible to 

sample every node in large WSZs. In view of this, regions which have high Fe and Mn 

concentrations that are not sampled will not be detected. Secondly, according to studies 

conducted by Ewan and Williams (1986) in the United Kingdom, approximately 30% of 

customers that experience discoloured water actually complain. This means that there is a 

high tendency that some regions in WSZs with high discolouration risk (Fe and Mn 

accumulation potential) can go undetected.  

 

Although the ANN(t,ѱ) models’ risk indexes are able to help in identifying high-risk 

WSZs or DMAs, they have a limitation of not being able to determine the exact location of 

the high-risk nodes that contribute to making a WSZ or DMA high-risk. This is because 

not every node in the high-risk WSZs or DMAs contributes to making them high-risk. To 

overcome this limitation, risk maps were generated by the ANN(t,ѱ) models to predict Fe 

and Mn accumulation potential for every node in a given WSZ. Narrowing the risk of Fe 

and Mn accumulation potential from the DMA level to the node level makes it easier to 

investigate the causes of high-risk Fe and Mn accumulation potential in the network.  

  

Figure 5.22 (a) shows a risk map of predicted Fe and Mn accumulation potential for WSZ2 

in 2009 generated by the model, whereas Fig. 5.22 (b) shows a risk map of the 

corresponding measured Fe and Mn accumulation potential. Three service reservoirs 

supply WSZ2 with water. Service reservoir A supplies water to the southern, north-eastern, 

and eastern regions of the reservoir, service reservoir B supplies water to the north-eastern 

and south-western regions of the reservoir, and service reservoir C supplies water to the 

north-western region of the reservoir. The predicted risk maps show that, generally, Fe and 

Mn accumulation potential increases with increasing hydraulic distance from the source of 

water supply. 
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Figure 5.22 ANN(t,ѱ) model risk maps showing (a) Predicted and (b) measured Fe and Mn accumulation potential at WSZ2 in 2009 
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From Fig. 5.22 (a), it was observed that DMA2-02 (region highlighted by a black oval) 

had high Fe and Mn accumulation potential values even though it is very close to service 

reservoir C. This is because DMA2-02 receives water from service reservoir A, which has 

a long hydraulic distance from this region. It was also observed that DMA2-01 (region 

highlighted by a black circle), which also receives water from service reservoir A, had 

very low Fe and Mn accumulation potential values. This is due to the short hydraulic 

distance from service reservoir A to DMA2-01. 

 

In general, as hydraulic distance increases, average water age increases, chlorine 

dissipation increases, and microbial growth increases. Biological oxidation then becomes 

dominant, which subsequently leads to the biological oxidation of soluble Fe and Mn to 

insoluble Fe and Mn. The measured yearly average FCR concentrations at DMA2-01 and 

DMA2-02 for 2009 were 0.41 and 0.28 mg/L, respectively. This means that more 

biological oxidation occurred at DMA2-02 than DMA2-01 in 2009. The measured average 

water ages of 14.66 and 21.35 hours at DMA2-01 and DMA2-02, respectively observed 

are a further indication that the latter DMA provides a more conducive environment for 

microbial growth and is more prone to biological oxidation.  

 

From Fig 5.22(a), the high predicted Fe and Mn accumulation potential values observed at 

DMA2-16 in 2009 (highlighted by a black rectangle) resulted from long hydraulic distance 

(approximately 6.5 km) from service reservoir A, low yearly average FCR (0.27 mg/L), 

and high yearly average water age (approximately 20 hours). Comparing the measured and 

predicted risk maps, it was observed that most of the regions in the network with measured 

high-risk of Fe and Mn accumulation potential were also predicted as high-risk regions by 

the model. Similarly, most of the regions with measured medium- and low-risk Fe and Mn 

accumulation potential were also predicted as medium- and low-risk regions by the model, 

respectively. These risk maps generated by the model will be able to help drinking water 

companies predict high-risk regions of Fe and Mn accumulation potential; including 

regions that have not been sampled for water quality variables. 
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Figure 5.23 ANN(t,ѱ) model risk maps showing (a) measured Fe and Mn accumulation potential and (b) customer complaints for WSZ2 in 

2009 
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The predicted risk map for WSZ2 in 2009 was also compared with the customer 

complaints related to discolouration data for the same WSZ that year (Fig 5.23). It was 

observed that most regions in the network with high Fe and Mn accumulation potential 

also had high customer complaints. These results conforms to studies by Slaats (2002), 

who observed that the gradual accumulation or sudden increase of Fe and Mn particles in 

WDNs was the most common cause of water discolouration and customer complaints. This 

also explains why some researches have used Fe and Mn concentrations as KPIs in 

customer complaints studies (Bernal, Cardenoso, Babrellas, Matia, & Salvatella, 1999; 

Ewan & Williams, 1986; Gauthier et al., 1999). 

  

With approximately 30% of all customer complaints related to water quality in UK being 

as a result of discolouration according to a study conducted by (Ewan & Williams, 1986), 

it is very important to identify regions in the network with potential high customer 

complaints. Furthermore, the introduction of the Service Incentive Mechanism (SIM) in 

April 2010 by the Ofwat has made it extremely important for water companies to reduce 

the number of customer complaints due to drinking water discolouration. The SIM rates 

water companies on their performance based on customer satisfaction, and either rewards 

or penalises them. The high-risk regions identified by the model can help to reduce 

customer complaints, and Fe and Mn compliant failures by periodically flushing the 

identified high-risk regions to clean up the accumulated Fe and Mn. 

 

A few of the model predictions did not correlate very well with customer complaints. For 

instance, although the ANN(t,ѱ) model for WSZ5 has an overall testing CA of 85.11% for 

Fe and Mn accumulation potential, it did not correlate very well with customer complaints 

due to discolouration in 2009. Some of the high-risk regions predicted at WSZ5 in 2009 

did not correspond to its customer complaints due to discolouration that year. Instead, most 

of the customers complained in regions where there were pipe bursts in DMA5-06 

(highlighted by a red circle), as shown in Fig. 5.24 (b) and (c). This is because the 

ANN(t,ѱ) models have a limitation of not being able to predict high-risk levels in events 

such as pipe burst and opening of fire hydrants during fire extinguishing exercises. These 

unpredictable event variables which can also cause discolouration were not included in the 

model and so their effects on the risk of Fe and Mn accumulation potential or customer 

complaints were subsequently not captured. The model was developed to predict Fe and 

Mn accumulation potential, but not discolouration.  
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Figure 5.24 ANN(t,ѱ) model risk maps showing (a) predicted Fe and Mn accumulation potential (b) customer complaints and (c) pipe burst 

at WSZ5 in 2009
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To investigate the causes of customer complaints at DMA5-06, 2009 pipe burst data were 

plotted on a map of WSZ5 (see Fig 24 (c)). From the map, it was observed that there were 

a high number of burst in and around DMA5-06 (highlighted by a red circle). Water 

discolouration as a result of these pipe bursts may have contributed to the increased 

number of customer complaints. These complaints could also have been as a result of 

events such as the reinstatement of pipe mains after repairs or the opening of fire hydrants 

during fire extinguishing exercises. To investigate the dates on which the customers 

complained, monthly customer complaints data were plotted against the months of the year 

at DMA5-06 (see Fig 5.25). The graph showed that an unusually high number of customer 

complaints were recorded at DMA5-06 in July 2009. A graph of Fe and Mn concentrations 

against date at DMA5-06 in 2009 also showed relatively high Fe and Mn concentrations in 

July. This may be due to mobilised Fe and Mn particles caused by above mentioned 

hydraulic events in July, which were not captured by the ANN(t,ѱ) model.  

 

 

 

 

Figure 5.25 (a) Monthly variations of customer complaints and (b) variation of iron and 

manganese concentrations date at DMA5-06 in 2009  
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5.7 Summary 

Two ANN models to predict Fe and Mn accumulation potential were developed in this 

chapter. The first model, ANN(t), was used as a sensitivity tool to select relevant input 

variables that influence Fe and Mn accumulation potential. It was also used to predict Fe 

and Mn accumulation potential. Furthermore, it could be used as an optimiser for water 

companies to find optimal input variable values to reduce Fe and Mn accumulation 

potential. From the prediction profiler graphs generated by ANN(t)  model  the following 

observations were made: 

 Increased in Al concentration generally increased Fe and Mn accumulation 

potential. 

 There was a high positive correlation between Fe and Mn accumulation potential 

and turbidity. 

 In general, long hydraulic distance from source of water supply increased Fe and 

Mn accumulation potential. 

 There was a negative correlation between Fe and Mn accumulation potential and 

Ca concentration.  

 A highly positive correlation between hardness and Fe and Mn accumulation 

potential was observed.  

 It was observed that chemical oxidation, corrosion, biological oxidation, sorption, 

shear stress effect and distance effect where all very important processes that 

influenced Fe and Mn accumulation potential. 

 

The ANN(t,ѱ) model was used to predict Fe and Mn accumulation potential for each node 

and to determine high-risk DMAs and WSZs. In addition it was used to generate risk maps 

to visually show the distribution of Fe and Mn accumulation potential in WSZs. From the 

risk maps generated by the model, it was observed that most of the regions in the network 

with high Fe and Mn accumulation potential for each of the WSZs also had high number 

of customer complaints due to discolouration. There were a few years the high-risk regions 

predicted by the model did not correlate well with customer complaints. These was 

because events such as pipe burst and opening of fire hydrants during flushing were not 

included in the models, and were therefore not captured when they caused discolouration. 

However, it should be noted that the ANN(t,ѱ) model was developed to predict Fe and Mn 
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accumulation potential, which is the main cause of drinking water discolouration, but not 

customer complaints or discolouration in general. 

 

The high CA and low RMSE values observed in the testing data sets show that the models 

are likely to predict well on new datasets. Just like all ANN models, the ANN(t) and 

ANN(t,ѱ) models can be used to make predictions on new data sets from different WSZs. 

However, it should first be trained with data from the new WSZs. The developed models 

can be used as tools to assist in reducing discolouration and customer complaints by 

helping water resource engineers to identify high-risk regions, investigate the causes of 

high Fe and Mn accumulation potential in those regions, and if possible, find solutions to 

them. Although the ANN(t,ѱ) was able to predict Fe and Mn accumulation reasonably 

well and identify high-risk zones, they could not programmatically determine the causes of 

the failures. It had to be manually investigated to find the reasons for the failures. The 

black-box nature of ANNs make it difficult to programmatically trace back the causes of 

the failures from the output variable to the input variables. With so many nodes in WSZs, 

manually investigating the causes of failures can be a laborious task. It is envisaged that a 

hierarchical fuzzy logic model will be able to overcome this limitation by predicting Fe 

and Mn accumulation potential as well as explaining the causes of failures in the network. 
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CHAPTER 6: Fuzzy Inference System for Predicting 

Accumulation Potential 

6.1 Introduction 

In the UK, high Fe and Mn concentrations in WDNs can lead to penalisation by the DWI 

and the Ofwat. To prevent this, water companies need a model that can identify both high-

risk regions and the causes of failures in these regions. The causes of Fe and Mn failures 

are difficult to determine by mathematical formulae or traditional models. Data-driven FIS 

approaches are more appropriate to solve such problems because of their learning 

capabilities and their ability to cope well with uncertainties (Cox, 1992). Knowing the 

exact cause(s) of the risk will determine what appropriate measures that can be taken to 

reduce it. In Chapter 5, two ANN models for predicting Fe and Mn accumulation potential 

were developed. Although they could identify various risk levels of Fe and Mn failures in 

WSZs, the black-box nature of ANNs made them unable to explain the causes for these 

failures unless they were manually investigated. With thousands of nodes in every WSZ, 

manually investigating the causes of Fe and Mn failures at every node would be time-

consuming and very laborious. To overcome this limitation, two hierarchical fuzzy 

inference systems (FISs) for predicting Fe and Mn accumulation potential were developed 

in this chapter. They are the hierarchical rule-based expert FIS, and the hierarchical data-

driven FIS. The hierarchical rule-based expert FIS uses expert knowledge to formulate 

rules, whereas the hierarchical data-driven FIS uses genetic algorithm to optimise the rules 

and their weights.  

 

Unlike ANN models, the intermediate nodes of FISs are white-boxed. Hence, the system 

can explain the causes of high Fe and Mn accumulation potential. In addition, the FISs can 

predict and classify various levels (high, medium, or low) of Fe and Mn accumulation 

potential in WDNs. They used the same relevant variables used in modelling the ANN 

models in Chapter 5. The relevant variables were categorised into hydraulic, chemical, and 

biological. These variables undergo complex processes as water travels through WDNs. 

Some of the processes that influence Fe and Mn accumulation include corrosion, chemical 

oxidation, sorption, and biological oxidation. The hierarchical FISs then capture all the 

processes and use them to make predictions. The remaining parts of this chapter are 

arranged as follows. Section 6.2 explains how the data was prepared for the FIS. This 
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section describes how all the data were transformed between zero and one. Sections 6.3 

and 6.4 discuss the development of the hierarchical rule-based expert FIS and the 

hierarchical data-driven FIS, respectively. The results of the hierarchical rule-based expert 

FIS and hierarchical data-driven FIS are presented in Sections 6.5 and 6.6, respectively. 

Finally, the summary of this chapter is presented in Section 6.7. 

 

 

6.2 Data preparation 

The success of the FIS, just like any model, is dependent on how well the data are prepared. 

The same prepared five-year data set used for the ANN model was also used for the FIS. 

Yearly averages of water quality variables were used in the FIS. It would have been ideal 

to use monthly or quarterly averages as input water quality variables, since Fe and Mn 

accumulation potential exhibits seasonal variations. However, because some water quality 

variables were not sampled at sufficient frequency, the data would have had many gaps if 

monthly or quarterly averages were used. 

 

The same assumption used in Chapter 5 in calculating the yearly averages of water quality 

variables at each node was used to prepare the data for the FIS. The 14 independent 

variables used for the modelling were Al, alkalinity, turbidity, hardness, calcium, FCR, 

colour, phosphorus, average water age, maximum daily shear stress at a node, variation of 

daily shear stress at a node, hydraulic distance from source of water supply to a node, pipe 

material index, and pipe age. Because the structure of the developed FIS is hierarchical, 

there were intermediate nodes to link the input variables to the output variable. The eight 

intermediate nodes used were chemical oxidation, corrosion, sorption, chemical effect, 

biological effect, shear stress effect, distance effect, and hydraulic effect. The dependent 

variable, measured Fe and Mn accumulation potential, was calculated using Eqn. 5.4 in 

Chapter 5. Data for each variable were linearly transformed between zero and one using 

Eqn. 5.1 in Chapter 5. 

 

The same classification levels of Fe and Mn accumulation potential used in Chapter 5 were 

used in developing the FISs. Measured values of Fe and Mn accumulation potential above 

90
th

 percentile were classified as high-risk, between 70
th

 and 90
th

 percentile as medium-

risk and below 70
th

 percentile as low-risk. 
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6.3 Model development of the hierarchical rule-based expert FIS 

Water companies generally set post-treatment targets of Fe and Mn to approximately 3% 

of their respective MCLs to reduce the concentrations in WDNs. Irrespective of how well 

water is treated, very low concentrations of Fe and Mn may still enter the network from 

water treatment plants and gradually accumulate on pipe walls. During events such as high 

flows, bursts, or high diurnal consumption of drinking water, these accumulated particles 

re-suspend and subsequently cause water discolouration. If the re-suspended particles end 

up in customers’ taps, it prompts customers to complain. These complaints greatly 

undermine customers’ confidence in water companies. Discolouration can also occur as a 

result of increased chemical oxidation, corrosion, sorption, biological oxidation, water age, 

and hydraulic distance from source of water supply.  

 

A FIS is a system that makes predictions or decisions by mapping a set of given inputs to a 

given output using fuzzy logic. Two hierarchical FISs were developed to capture the 

processes that occur in WDNs. The first FIS developed, hierarchical rule-based expert FIS, 

uses knowledge from human experts to form rules that describe the data used for the 

modelling. The second FIS, the hierarchical data-driven FIS, uses genetic algorithm to 

generate rules for the system.  

 

Unlike ANN models which are regarded as black-box because their internal operations are 

difficult to explain and rely heavily on the data that describes the input and output 

variables, the membership functions which make up the fuzzy sets can easily be defined. 

The transparency and interpretability of FISs are their main advantages over ANN models. 

Although fuzzy logic is a powerful tool that can be used to solve many control problems, it 

may not be applicable in solving some problems. Some advantages and disadvantages of 

fuzzy logic have been listed by Robert (1989). Cox (1992) suggested that FISs can be used 

to solve problems that: 

(a) Have one or more continuous input variables. 

(b) Cannot be solved mathematically  

(c) Are difficult to solve mathematically because of computational memory. 

(d) Experts can identify rules that define the behaviour of the system. 
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There are several types of FIS, namely the Mamdani fuzzy model, Sugeno fuzzy model, 

and Tsukamoto fuzzy model. However, the most commonly used FIS, Mamdani fuzzy 

logic approach, was used in this research because of its simplicity and effectiveness in 

handling linguistic variables. The following steps show how the hierarchical rule-based 

expert FIS was developed.  

(a) Knowledge acquisition – acquiring expect knowledge for the formation of fuzzy 

rules. 

(b) Choosing appropriate membership functions – selecting appropriate membership 

functions that define the points in the universe of discourse. 

(c) Fuzzification – converts the input data into fuzzy representations. 

(d) Fuzzy logic rules – helps in the processing of the data. 

(e) Aggregation – combines outputs of each rule into a single fuzzy set. 

(f) Defuzzification – converts the output data into a crisp value. 

(g) Membership function tuning – manually tuning the membership functions. 

 

6.3.1 Summary of knowledge acquired 

Knowledge acquisition is a very important step in the fuzzy modelling process. It is 

defined as the process of gathering relevant information about a domain (De Kork, 2003). 

There are several ways that relevant information can be gathered. This could be 

deductively by human experts, inductively by learning from examples, from historical 

database, or by data-driven approach using modelling data (Oladipupo, Ayo, & Uwadia, 

2012). Data-driven approach of acquiring knowledge can be through genetic algorithm, 

artificial neural network, clustering, machine language or classification, whereas expert 

knowledge is acquired through human experts.  

 

An expert system is a computer program that uses knowledge from human experts to solve 

control problems, usually with a small number of input variables (Feigenbaum, 1982). 

They are normally used to solve complicated problems that cannot be solved using 

algorithm and therefore requires human intelligence. A fuzzy rule-based expert system is 

an expert system that uses human knowledge to form rules and tune membership functions 

to reason about data in inference mechanism (Neshat & Yaghobi, 2009). The prediction 

accuracy of an expert system is highly dependent on the accuracy of the knowledge-base 

that is used to define the rules. Therefore, the knowledge-base must be accurate to make 

the system predictions credible. Since the number of fuzzy logic rules increase 
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exponentially with input variables, it becomes difficult to manually define the rules in 

fuzzy rule-based expert systems with many input variables. Hence, data-driven approach 

of knowledge acquisition is the preferred technique for fuzzy control problems with many 

input variables. Unlike data-driven approach of modelling, expert systems usually use 

manual rule-based approach in making its computations.  

 

Since fuzzy logic has the ability to express natural language as fuzzy logic rules, the 

knowledge acquired on relevant variables that influence Fe and Mn accumulation potential 

were translated into these rules. The following section gives a summary of the knowledge 

acquired to form rules for the hierarchical rule-based expert FIS. 

 

6.3.1.1 Effect of chemical oxidation on Fe and Mn accumulation potential 

Hardness 

Increase in hardness increases chemical oxidation of Fe and Mn. Besides dissolved Mg 

and Ca that contributes to hardness, dissolved ions such as Fe, Mn, Al, and zinc also 

contribute to hardness (WHO, 2011b). The prediction profiler graphs in Section 5.5.3 also 

show a strong positive correlation between Fe and Mn accumulation potential and 

hardness. 

Free chlorine residual  

FCR has a positive correlation with chemical oxidation of Fe and Mn. Since it is an 

oxidising agent, it helps to chemically oxidise soluble Fe
2+

 and Mn
2+

 to insoluble Fe
3+

 and 

Mn
4+

.  

Alkalinity 

Alkalinity has a negative correlation with chemical oxidation of Fe and Mn. This is 

because increase in alkalinity helps to increase the buffer capacity of drinking water, thus 

keeping the pH of water stable, and reducing chemical oxidation of Fe and Mn in WDNs. 

Also, studies by Naylor et al. (1993) showed a negative correlation between alkalinity and 

corrosion. 

  

6.3.1.2 Effect of corrosion on Fe and Mn accumulation potential 

Pipe Material 

Pipe material was arranged from low to high values in order of corrosivity as:  

Polyethylene (PE) → Polyvinyl chloride (PVC) → High Density Polyethylene (HDPE) → 

Asbestos Cement (AC) → Ductile Iron (DI) → Steel (ST) → Cast Iron (CI). 
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Each of them was given a value between zero and one termed pipe material index. Low 

corrosive materials were given values close to zero, whereas high corrosive materials were 

given values close to one. 

Pipe Age 

In iron pipes, increase in pipe age increases corrosion rates. This is because old cast iron 

pipes tend to be more corroded than newer ones. 

 

6.3.1.3 Effect of sorption on Fe and Mn accumulation potential 

Aluminium 

Increase in Al concentration increases sorption. This is due to the formation of amorphous 

Al(OH)3 with increasing Al concentration which tends to adsorb Fe and Mn particles 

(Wang et al., 2012). The prediction profiler graphs in section 5.5.3 also showed a strong 

positive correlation between Fe and Mn accumulation potential and Al concentration. 

Calcium  

Calcium has a positive correlation with sorption because adsorption of Mn and Fe on 

amorphous Al(OH)3 is enhanced by high concentrations of Ca
2+

 and Mg
2+

 (Wang et al., 

2012). 

Colour 

Colour has a positive correlation with sorption because increase in TOC, which is an 

indirect measure of colour, enhances the adsorption of Mn (Wang et al., 2012). 

 

6.3.1.4 Effect of biological oxidation on Fe and Mn accumulation potential 

Free chlorine residual 

FCR has a negative correlation with biological oxidation of Fe and Mn. This is due to the 

killing or reduction of the growth of Fe- and Mn-oxidising bacteria with increasing free 

chlorine residual levels.    

Colour 

Increasing colour increases biological oxidation of Fe and Mn because increase in colour 

(total organic carbon) enhances biofilm formation. Carbon serves as a bioavailable form of 

nutrient for bacteria responsible for the formation of biofilms (van der Kooij, 2002). 

Water age 

Increase in water age increases biological oxidation of Fe and Mn. Stagnant water 

conditions promote the growth of bacteria, increase biological oxidation and result in the 

deterioration of water quality. 
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Turbidity 

Turbidity has a positive correlation with biological oxidation of Fe and Mn. Increase in 

turbidity increases the concentration of suspended organic particles. Fe- and Mn-oxidising 

bacteria attach themselves to these suspended particles, causing microbial growth to 

increase. High turbidity levels also enhance the biological oxidation of Fe and Mn by 

serving as a shield to protect microorganisms from disinfection (WHO, 2011a). 

Phosphorus 

Increase in phosphorus increases biological oxidation because phosphorus is a bioavailable 

form of nutrient needed by bacteria in WDNs for growth and reproduction (CRCWQT, 

2005). 

 

6.3.1.5 Shear stress effect on Fe and Mn accumulation potential 

Maximum daily shear stress at node  

Increase in maximum daily shear stress decreases Fe and Mn accumulation potential 

because Fe and Mn precipitates are unable to accumulate on the pipe walls under high 

maximum daily shear stress. In general, high shear stress regions are subject to low 

accumulation potential, whereas low shear stress regions are subject to high accumulation 

potential.  

Variation of daily shear stress at node 

Increase in variation of daily shear stress decreases Fe and Mn accumulation potential. 

Nodes with low variation of daily shear stress generally have low disturbance in WDNs. 

Hence, Fe and Mn particles accumulate easily. On the other hand, nodes with high 

variation of daily shear stress generally have high disturbance in WDNs. Therefore, Fe and 

Mn particles in these regions are unable to accumulate on the pipe walls. 

 

6.3.1.6 Distance effect on Fe and Mn accumulation potential 

Water age 

Increase in water age increases Fe and Mn accumulation potential. Generally, when water 

age is high, chlorine levels are low, resulting in creating a conducive environment for the 

formation of biofilms. Such regions are more susceptible to biological oxidation of Fe and 

Mn.  

Hydraulic distance from source of water supply  

Hydraulic distance from source of water supply has a positive correlation with Fe and Mn 

accumulation potential. Prediction profiler graphs from the ANN(t) models in Section 
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5.5.3 show that hydraulic distance from source of water supply has a strong positive 

correlation with Fe and Mn accumulation potential.   

 

6.3.2 Choosing appropriate membership functions 

A fuzzy membership function is a curve that defines how the points in the universe of 

discourse are mapped to a membership value between 0 and 1. These membership 

functions help in expressing fuzzy rules in linguistic form using linguistic words such as 

high, medium, cold, and hot. Membership functions were defined for each of the input, 

intermediate, and output fuzzy variables in the hierarchical FIS. Unlike classical sets, 

which have binary memberships and hard boundaries, fuzzy logic sets can have partial 

memberships. Fuzzy membership functions can take various forms or shapes. There are 

different types of fuzzy membership functions, including triangular, trapezoidal, Gaussian, 

S-function, Gbell, Pi-shaped, Dsigmoidal, and Psigmoidal. There are several methods that 

can be used to assign the appropriate membership function to fuzzy variables. These 

methods include inductive reasoning, neural networks, genetic algorithms, inference, rank 

ordering, and intuition (Ross, 2010). However, the precise shapes or types of membership 

functions that is used is not so important and have little effect on the performance of the 

model. It is rather the placement of the membership functions within the universe of 

discourse and how they overlap each other that significantly affects the performance of 

models (Ross, 2010).  

 

 

Figure 6.1 Fuzzy set for hydraulic distance from source of water supply in WSZ2 showing 

the membership functions 
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Triangular and trapezoidal membership functions is the most commonly used membership 

function (Nasr, Rezaei, & Dashti Barmaki, 2012). Hence, they were used to develop the 

FIS. The membership functions of all the fuzzy variables were partitioned into three 

linguistic categories, namely low, medium, and high. Trapezoidal membership functions 

were used for the medium category, and triangular membership functions were used for 

the low and high categories. The membership functions for the input variable, hydraulic 

distance from source of water supply in WSZ2 are presented in Fig 6.1. 

 

6.3.3 Fuzzification 

Fuzzification is a step in the FIS process where crisp values of the input variables are 

fuzzified. An output fuzzified value between 0 and 1 is returned irrespective of the value 

of the crisp input variable. Fuzzy logic sets allow partial memberships. This means that 

they can have intermediate values between two membership functions. For instance, in Fig 

6.1, a node in WSZ2 with a hydraulic distance from source of water supply of 0.23 would 

have an intermediate value between ‘low’ and ‘medium’ with a fuzzified value of 0.44. In 

the fuzzification process, the degree to which the input values belong to each of the 

membership functions is determined. This concept of using linguistic terms in fuzzification 

is very important because it provides a way to represent real world problems which 

comprises of uncertainties due to imprecision or ambiguity. It also makes it possible to 

compute with words. More details of the fuzzification process are presented in Section 

3.3.4.2. 

 

6.3.4 Formulation of fuzzy rules from expert knowledge 

The fuzzy rules were formulated from the knowledge acquired in previous chapters on 

variables that influence Fe and Mn accumulation potential. If the antecedent of the fuzzy 

rule has more than one linguistic set, the AND operator was used to combine multiple 

antecedents, and the Mamdani minimum implication method was used to truncate the 

output fuzzy sets. For details of the Mamdani minimum implication method, refer to 

Section 3.3.4.4. The intersection of the antecedents can be evaluated using Eqn. 6.1, 

whereas Fig. 6.2 illustrates the intersection of the membership functions of fuzzy sets A 

and B.  

 

𝜇𝐴∩𝐵(𝑥) = min[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] , 𝑥 ∈ 𝑈                                             (6.1) 
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where µA = membership function that defines the fuzzy set A;  

µB = membership function that defines the fuzzy set B; and U = universe of discourse. 

 

 

Figure 6.2 The intersection of membership functions of fuzzy sets A and B 

 

Some of the formulated rules may have more influence on the system results than others. It 

is very important to ensure the system gives preference to more influential rules than the 

less influential rules. This was implemented by assigning weights to each of the rules. The 

weights are numbers between zero and one assigned to the consequent part of the rules to 

give them a level of importance in the FIS process. Very influential rules were assigned 

value one or close to one, whereas less influential rules were assigned values close to zero. 

From expert knowledge, it is known that corrosion is one of the most common causes of 

drinking water discolouration (DWI, 2007). Hence, rules associated with corrosion were 

assigned more weights. Similarly, it is known from expert knowledge that regions with 

dead-end pipes and redundant loops contribute significantly to discolouration (Boxall et al., 

2001). Chlorine is also known to dissipate rapidly in these regions because of their high 

water age. These stagnant conditions promote the growth of bacteria, increase biological 

oxidation, and result in the deterioration of water quality. Therefore, rules associated with 

shear stress and biological oxidation were given more weights. 

 

6.3.4.1 Reduction of the fuzzy rules 

One of the dilemmas researchers face in developing FISs is the formulation of fuzzy rules 

with many input variables. It is well known that the number of fuzzy rules generally 

increases with number of input variables and/or membership functions. FIS with many 

input variables can reduce model performance, increase computational time, and 

exacerbate computational memory. It is also very difficult to manually formulate fuzzy 
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rules with too many input variables. A number of researchers have proposed different rule 

reduction techniques to mitigate this problem. Giiven and Passino (2001) proposed a fuzzy 

rule reduction technique in which the number of rules increases linearly with the number 

of input parameters. Ciliz (2005) proposed an algorithm that eliminates inconsistent and 

redundant fuzzy rules without affecting the performance of the FIS. In most of the 

reduction techniques, the performances of the FISs are reduced. These reduction 

techniques can be categorised into three, namely;  

 the selection of most significant rules; 

 the elimination of redundant rules; and 

 the merging of rules with common properties (Balasubramaniam, 2006). 

 

Since genetic algorithm was used in this research to optimise the fuzzy rules, there was the 

need to reduce the number of rules in order to reduce the number of subjects of the 

population for the genetic algorithm to find feasible solutions to the problem. The 

conventional method of formulating fuzzy rules also known as intersection rule 

configuration (IRC) increases exponentially with the number of input variables. As per this 

method, the consequent is obtained from the intersection of two or more antecedent part of 

fuzzy rules (see Eqn. 3.30). In IRC, the rules are formed for every possible combination of 

the membership functions. To illustrate this, suppose there is a FIS with 3 membership 

functions and 6 input variables, then the total number of rules formed using the IRC 

technique would be 3
6
 (729).  

 

To mitigate fuzzy rule explosion while maintaining a good system performance, a fuzzy 

rule reduction method known as the union rule configuration (URC) by (Combs & 

Andrews, 1998) was adopted. The URC method forms rules using only one antecedent for 

every consequent (see Table 6.1). This method uses simple implication to obtain the 

consequent part of fuzzy rules and aggregated using Eqn. 3.31. Contrary to the IRC 

method, the URC increases linearly with the number of input variables. For instance, the 

total number of rules formed for a FIS with 3 membership functions and 6 input variables 

using the URC method will be 3 × 6 (18). Comparing the illustrations from the two 

methods, it can be seen that the number of rules was reduced from 729 to 18. A fuzzy 

subsystem from the developed hierarchical FIS was used to test the accuracy of the URC. 

Figure 6.3 shows the fuzzy inference subsystem from the developed hierarchical FIS. The 
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input variables are average water age and hydraulic distance from source of water supply, 

whereas the output variable is distance effect.  

 

Table 6.1 Some rules used in the hierarchical rule-based expert FIS 

Rule Number Rule 

1 If pipe material index is LOW then corrosion is LOW 

2 If pipe material index is MEDIUM then corrosion is MEDIUM 

3 If pipe material index is HIGH then corrosion is HIGH 

4 If free chlorine residual is LOW then chemical oxidation is LOW 

5 If free chlorine residual is MEDIUM then chemical oxidation is MEDIUM 

6 If free chlorine residual is HIGH then chemical oxidation is HIGH 

7 If alkalinity is LOW then chemical oxidation is HIGH 

8 If alkalinity is MEDIUM then chemical oxidation is MEDIUM 

9 If alkalinity is HIGH then chemical oxidation is LOW 

10 If free chlorine residual is LOW then biological oxidation is HIGH 

11 If free chlorine residual is MEDIUM then biological oxidation is MEDIUM 

12 If free chlorine residual is HIGH then biological oxidation is LOW 

13 If colour is LOW then biological oxidation is LOW 

14 If colour is MEDIUM then biological oxidation is MEDIUM 

15 If colour is HIGH then biological oxidation is HIGH 

16 If water age is LOW then biological oxidation is LOW 

17 If water age is MEDIUM then biological oxidation is MEDIUM 

18 If water age is HIGH then biological oxidation is HIGH 

 

 

Figure 6.3 Fuzzy inference subsystem from the developed hierarchical FIS 

 

Figure 6.4 shows screen shots of the fuzzy rule viewer and editor of the fuzzy inference 

subsystem when the IRC technique was used. Since there were three membership 

functions and two input variables, a total of nine rules were formed. Input values of 0.9 for 

both average water age and hydraulic distance from source of water supply gave a 

defuzzified crisp distance effect value of 0.925. Using the same fuzzy inference subsystem, 

fuzzy rules were formed using the URC method. Screen shots of the fuzzy rule viewer and 

editor for the fuzzy inference subsystem when the URC method was used is shown in Fig. 

6.5. The total number of rules was reduced to six. Computing the distance effect value 
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with the same input values of 0.9 for both average water age and hydraulic distance from 

source of water supply gave the same result. Table 6.2 shows results from the inference 

subsystem when the IRC and URC methods were used with various input values. It was 

observed that both methods gave the same results. Since the rules reduction did not change 

the output results, the URC method was used to develop the hierarchical FIS in this 

research. A total of 78 rules were used in the FIS. 

 

(a) 

 

(b) 

 

Figure 6.4 Screen shots of the (a) fuzzy rule viewer and (b) fuzzy rule editor of the fuzzy 

inference subsystem when the IRC technique was used 
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(a) 

 

(b) 

 

Figure 6.5 Screen shots of (a) fuzzy rule viewer and (b) fuzzy rule editor of the FIS using 

the URC technique 

 

Table 6.2 Results from the inference subsystem using both IRC and URC methods 

Average Water age 0.1 0.2 0.9 

Hydraulic distance from source 0.1 0.8 0.9 

Distance effect (using IRC method) 0.0749 0.5 0.925 

Distance effect (using URC method) 0.0749 0.5 0.925 
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6.3.5 Rule aggregation 

Since the output results of the FIS depend on all the rules, they were combined in order to 

make the effect of each of the rules contribute to the outcome of the predictions. The order 

in which the rules are executed are not important since the aggregation method is 

commutative. The process of combining the fuzzy output sets of each rule into a single 

fuzzy set is known as aggregation. The aggregated output of a fuzzy set is the union 

(aggregation) of two or more outputs of the rules. During the process, the truncated output 

functions returned by the implication process in each of the rules were aggregated using 

Eqn 6.2. Details on rule aggregation are presented in Section 3.3.4.5. 

 

𝜇𝐴∪𝐵(𝑥) = max[𝜇𝐴(𝑥), 𝜇𝐵(𝑥)] , 𝑥 ∈ 𝑈                                             (6.2) 

 

where  

µA = truncated output functions returned in first rule that defines the fuzzy output set A;  

µB = truncated output functions returned in second rule that defines the fuzzy output set B; 

and U = universe of discourse; and 

  

6.3.6 Defuzzification 

The centroid method, which is also known as the centre of gravity (CoG) method, which is 

the most common technique of defuzzification, was used to develop the hierarchical FIS in 

this research because of its popularity, easiness to compute and the recommendation to use 

in quantitative models (Sugeno, 1985). The CoG method was also used because its 

deterministic response curve is smooth, continuous and gives consistent results (Pham & 

Castellani, 2002). Although this method gives good predictions, it has computational 

difficulties in processing fuzzy sets with complex membership functions (Nazz, Alam, & 

Biswas, 2011). The CoG method computes a crisp value representing the centre of gravity 

of the aggregated fuzzy outputs. It can be mathematically expressed as Eqn. 3.45 in 

Chapter 3. Details of the Defuzzification process are presented in Section 3.3.4.6 

 

6.3.7 Manual tuning of membership functions 

The success of a FIS also depends on how well the shapes of the membership functions are 

defined. The rule of thumb stipulated by Cox (1992) in defining membership functions 

was followed in this research. In this rule of thumb, he first suggested that the number of 

membership functions should be odd; between three and nine. Secondly, he proposed that 
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to give a smooth and stable surface to a fuzzy controller the membership functions should 

overlap between 10 and 50% of the space of neighbouring membership functions. Finally, 

he suggested that the density of the membership function should be highest around the 

optimal control point, and should decrease with distance from that point. These guidelines 

were followed in manually tuning the membership functions to improve the model 

performance. 

 

6.3.8 The structure of the hierarchical rule-based expert FIS 

Figure 6.6 shows the structure of the hierarchical rule-based expert FIS with 18 input 

nodes, 8 intermediate nodes and an output node. The input nodes represent the independent 

variables used in developing the model, whereas the output node represents the dependent 

variable Fe and Mn accumulation potential. Information flows from left to right; from the 

input nodes, through the intermediate nodes, to the output node. The hierarchical rule-

based expert FIS is made up of 9 subsystems. Since the model is hierarchical, an output 

node in an outer subsystem becomes an input node in an inner subsystem. Information 

flows smoothly from one subsystem to another until a crisp value of the predicted Fe and 

Mn accumulation potential is computed at the output node. 
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Figure 6.6 Structure of the hierarchical rule-based expert FIS 

 

6.4 Model development of the hierarchical data-driven FIS 

Although the rules of the hierarchical rule-based expert FIS can be easily formulated using 

expert knowledge, they may not give very accurate predictions for a number of reasons. 

First, the system rules may vary slightly for every WSZ. Thus, the influence of some 

variables that contribute to Fe and Mn accumulation may vary slightly for every WSZ. 

Secondly, the narrow range of the knowledge-base in most expert systems makes them 

give poor predictions in new situations outside this range. Finally, they are unable to learn 
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from data and adapt to new instances. In view of these drawbacks, a hierarchical FIS that 

uses data-driven approach to optimise the rules was developed. It has the same structure as 

the hierarchical rule-based expert FIS. However, the fuzzy rules and weights were 

generated automatically using a genetic algorithm. Data from five WSZs were used to 

optimise the rules and weights of the rules. The modelling data from each of the five 

WSZs were randomly divided into two sets; 80% of the data from each WSZ was used to 

train the FIS and the remaining 20% for testing. Using the combined measured data from 

all the 5 WSZs, another model was developed. Similarly, the combined data for all the five 

WSZs were randomly divided into training (80%) and testing data set (20%). The 

following sections show how the genetic algorithm was used to optimise the rules and 

weights of the hierarchical data-driven FIS.  

 

6.4.1 Genetic Algorithm 

Genetic algorithm is a type of evolutionary algorithm that mimics the natural selection 

process for a solution from a number of possible solutions. It is a search heuristic that tries 

to imitate the processes observed in natural evolution. Other types of evolutionary 

algorithm include evolution strategy (ES), evolutionary programming (EP), genetic 

programming (GP) and learning classifier system (LCS). Genetic algorithm is normally 

used in optimising solutions to problems. Optimisation is the process of searching for the 

best solution to a problem out of various possible solutions. Occasionally, some complex 

problems may have only one solution. 

 

There are five main steps in the genetic algorithm process. These include the initialisation 

of the population, evaluation of the fitness function, selection of parents, cross-over, and 

mutation. It is an iterative process that starts with a randomly generated population. In this 

research, the population size was set to 78; representing the number of rules in the 

hierarchical data-driven FIS. The population of each iteration is known as a generation. 

The FIS was allowed up to 20,000 generations to optimise the rules and weights of the 

rules. During each iteration, the fitness of every member in the population is evaluated 

using Eqn. 6.3. Worst members are eliminated due to the low fitness value. As in the real-

world genetic process, only the fit members are randomly selected from the current 

population to cross-over. The heuristic crossover method explained in Section 3.4.2.5 was 

used in this research (see Eqn. 3.47). The crossover ratio parameter (CRatio), which 

specifies how far the offspring is from the parent with a better fitness value, was set to its 
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default value of 0.2. Some of the offspring are randomly selected for mutation. Mutation is 

a very important step in the genetic algorithm process because when omitted, diversity will 

not be introduced into the population and would get stuck at a local minimum. During 

mutation, specific parts of the genetic materials of the randomly selected individual 

subjects are regenerated to replace lost genetic material. The Gaussian mutation method 

explained in Section 3.4.2.6 was used in optimising the rules and weights of the rules in 

this research (see Eqns. 3.48 and 3.49). The process is terminated when the satisfactory 

fitness level is attained, stall generation limit is exceeded, or when the maximum number 

of generation is reached. The stall generation limit is the stopping criterion used to stop the 

optimisation. If there is no improvement in the best fitness value for a number of 

generations, the algorithm is terminated. The stall generation limit was set to 50 in this 

research. Figure 6.8 shows the flow chart of the genetic algorithm that was used to 

optimise the rules of the hierarchical data-driven FIS. 

 

6.4.2 Optimising the fuzzy rules 

Water distribution models are more useful if they are optimised to replicate the hydraulic 

characteristics of real water systems. During the optimisation process, the model 

parameters are modified until the predicted output from the model matches the observed 

data. Although optimising a model helps to improve its prediction accuracy, it is plagued 

with a number of difficulties which includes potential uncertainties in the parameters and 

the need for considerable large computational resources if the input parameters are many.  

 

Because the factors that influence Fe and Mn accumulation differ slightly in every 

network, using genetic algorithm to optimise the consequent part of the rules for each 

WSZ may help to improve the model’s prediction accuracy. It is an evolutionary approach 

to optimisation which serves as an alternate method to the traditional methods of 

optimisation. This approach is data driven. Hence, it relies heavily on the modelling data to 

generate the optimised rules. In principle, it uses the crossover (mating) of solutions to 

produce new generation of solutions; which in simple terms means selecting the best 

solution to a problem from various possible solutions. It has the ability to solve problems 

that are non-parametric, multi-dimensional, and non-differentiable.  

 

Using genetic algorithm to tune the FIS rules has several advantages. If there is enough 

data for the optimisation, the optimised rules generated will be a better representation of 
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the FIS than the rules from expert knowledge. Due to the optimisation capabilities of 

genetic algorithms, it is normally used to search for optimums; either global maximum or 

minima. Furthermore, it is able to give multiple solutions to a problem.  

 

Initially, the rules and their corresponding weights were simultaneously optimised with a 

genetic algorithm. However, this gave poor model performance because the combined 

rules and weights increased the subjects of the population. This made it difficult for the 

genetic algorithm to find feasible solutions to the problem. In view of this, the optimisation 

was performed in two phases. A genetic algorithm was used to optimise the consequent 

part of the rules for the fuzzy model developed. Afterwards, another genetic algorithm was 

used to optimise the weights of the fuzzy rules. The source code of the genetic algorithm 

for optimising the rules is presented in Appendix J, whereas the flow chat for the genetic 

algorithm for optimising the rules is presented in Fig. 6.7. The MSE was used as the 

objective function (see Eqn. 6.3). The smaller the MSE value, the better the predictive 

power of the model. The optimisation graph for WSZ2 after 20,000 generations is 

presented in Fig. 6.8. Similar optimisation graphs for the remaining WSZs are presented in 

Appendix S. It was observed that if the fitness function reduced from 0.0795 to 0.0301. 

This indicates that the genetic algorithm was able to improve the performance of the model 

through optimisation of the rules. Results from the remaining WSZs showing how fitness 

function values were reduced by the genetic algorithm for optimising the rules are 

presented in Table 6.4. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑆𝐸 =  
1

𝑠𝑝
∑(𝑌𝑖 − 𝑋𝑖)

2 

𝑠𝑝

𝑖=1

                     (6.3) 
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Figure 6.7 Flow chat for the genetic algorithm for optimising the rules 
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Figure 6.8 Fitness function graph for WSZ2 during rule optimisation 

 

6.4.3 Optimising the fuzzy weights 

The FIS was updated with the optimised rules and were initially given equal weights for all 

the rules. Another genetic algorithm was used to optimise the weights of the rules. The 

genetic algorithm parameters and stopping conditions were defined.  Again, MSE is the 

objective function that was used to evaluate the fitness of individual subjects after every 

generation. The algorithm was run for 20,000 generations with the aim of achieving a 

better fitness through the generations. The optimisation graph for WSZ3 after 20,000 

generations is presented in Fig. 6.9. It was observed that the fitness function reduced from 

0.0532 to 0.0382. Results from the remaining WSZs showing how fitness function values 

were reduced by the genetic algorithm for optimising the weights of the rules are presented 

in Table 6.4. The algorithm is terminated when the stopping conditions are met. The flow 

chat of the genetic algorithm for optimising the weights of the rules is presented in Fig. 

6.10.  
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Figure 6.9 Fitness function graph for WSZ3 during weight optimisation 

  

 

 

Figure 6.10 Flow chat for the genetic algorithm for optimising the weights 
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6.5 Results and discussion of the hierarchical rule-based expert FIS 

The ANN(t,ѱ) model developed in Chapter 5 was able to predict Fe and Mn accumulation 

potential at every node in a given WSZ. However, the black-box nature of ANNs made it 

difficult to access and evaluates the effect of each hidden node on Fe and Mn accumulation 

potential. Therefore, the causes of Fe and Mn failures were manually investigated. Due to 

the enormous sizes of WSZs, manually investigating the Fe and Mn failures became time-

consuming and very laborious. FISs, which are regarded as white-box in nature because 

their intermediate nodes can be accessed and their effect on the output variables can be 

evaluated, was developed to overcome this limitation. The hierarchical rule-based expert 

FIS developed was able to indicate which intermediate nodes and input variables cause 

high-risk of Fe and Mn accumulation potential without manual investigation.  

 

6.5.1 Performance of the hierarchical rule-based expert FIS 

Six hierarchical rule-based expert FISs were developed; five of them used their respective 

WSZs data sets for the modelling, whereas the sixth FIS used the combined data sets of all 

the five WSZs for the modelling. CA and MSE were used as performance indicators for 

the evaluation of the models. Models with high CA have better predictions than those with 

low CA. On the other hand, models with smaller MSE have better prediction accuracy than 

those with larger MSE. To evaluate the performance of the FISs for each range of 

classified risk, the CA of each class correctly predicted were computed as an additional 

evaluation. This evaluation was done to ensure the FISs developed were not exhibiting 

accuracy paradox; which are models with lower level of accuracy that appear to have 

better predictive powers than models with higher accuracy (Valverde-Albacete, 2014). 

Table 6.3 shows the performance of the six hierarchical rule-based expert FISs. It was 

observed that all the six FISs had low CA. They were also unable to predict the high-risk 

values of Fe and Mn accumulation potential very well. The high-risk values of Fe and Mn 

accumulation potential correctly predicted ranged from 0–16.28%. They also had 

relatively high MSE.  

 



 

209 

 

  6
2
 

Table 6.3 Performance of the six hierarchical rule-based expert FISs 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

Overall CA (%) 51.64 54.68 58.33 48.84 55.10 56.07 

CA - low (%) 66.49 75.15 67.15 57.65 62.13 71.74 

CA - medium (%) 23.44 21.43 23.08 43.55 13.33 16.99 

CA - high (%) 15.38 16.67 0.00 16.28 0.00 11.11 

Mean square error 0.0782 0.0836 0.0586 0.0724 0.0804 0.1585 

Sample size 275 267 168 301 314 1327 

 

Figure 6.11 shows the confusion matrix generated by the hierarchical rule-based expert 

FIS for WSZ2. The left diagonal cells of the confusion matrix (highlighted in green) are 

the correctly predicted values from the FIS. It correctly predicted only 7 out of 42 (16.67 

%) high-risk values, 12 out of 56 (21.43 %) medium-risk values and 31 out of 169 (75.21 

%) low-risk values. The FIS for WSZ2 has a poor prediction power because it has an 

overall classification accuracy of 54.68% and was able to predict only 16.67% of the high 

classified values of Fe and Mn accumulation potential. 

 

 

 

                                                                          Predicted 

  
Low Medium High 

Low  127 31 11 

Medium 33 12 11 

High 29 6 7 

 

Figure 6.11 Confusion matrix generated by the hierarchical rule-based expert FIS for 

WSZ2 

 

There are three main reasons why the models may have given poor performances.  First, as 

indicated in Section 6.4, Fe and Mn accumulation are formed under slightly different 

conditions for each WSZ. Therefore, the use of the same expert system rules for each of 
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the WSZs was not an accurate representation of the FISs. Secondly, some of the weights 

assigned to the rules to handle more or less influential variables that influence Fe and Mn 

accumulation potential may not have been correct. This is because it is very difficult to 

find which variable will be highly influential just by inspection of the data. Moreover, the 

highly influential variables vary slightly for each WSZ making it difficult to assign the 

correct weights for the rules. Finally, since the rules formed did not learn from the data, 

they are unable to adapt to new instances. The first 15 rules and their corresponding 

weights from the hierarchical rule-based expert FIS for WSZ2 are presented in Table 6.4. 

All the 78 rules with their corresponding weights for WSZ2 and that for the remaining 

WSZs are presented in Appendix S. 

 

Table 6.4 The first 15 rules and their corresponding weights from the hierarchical rule-

based expert FIS for WSZ2 

Rule 

Number Rules from expert knowledge 

Weights from 

expert knowledge 

1 If Hardness is LOW then Chemical oxidation is LOW 0.9 

2 If Hardness is MEDIUM then Chemical oxidation is MEDIUM 0.9 

3 If Hardness is HIGH then Chemical oxidation is HIGH 0.9 

4 If FCR is LOW then Chemical oxidation is LOW 0.9 

5 If FCR is MEDIUM then Chemical oxidation is MEDIUM 0.9 

6 If FCR is HIGH then Chemical oxidation is HIGH 0.9 

7 If Alkalinity is LOW then Chemical oxidation is HIGH 0.9 

8 If Alkalinity is MEDIUM then Chemical oxidation is MEDIUM 0.9 

9 If Alkalinity is HIGH then Chemical oxidation is LOW 0.9 

10 If Chemical oxidation is LOW then Corrosion is LOW 1.0 

11 If Chemical oxidation is MEDIUM then Corrosion is MEDIUM 1.0 

12 If Chemical oxidation is HIGH then Corrosion is HIGH 1.0 

13 If Pipe material index is LOW then Corrosion is LOW 1.0 

14 If Pipe material index is MEDIUM then Corrosion is MEDIUM 1.0 

15 If Pipe material index is HIGH then Corrosion is HIGH 1.0 

 

 

6.6 Results and discussion of the hierarchical data-driven FIS 

A major problem in the development of FISs is how to correctly define the fuzzy rules and 

assign appropriate weights to them in order to make good predictions. As can be seen from 
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the hierarchical rule-based expert FIS results in Section 6.5.1, when solving complex 

problems with many input variables, generalising the rules for every WSZ resulted in poor 

predictions. It is known that using expert knowledge to form fuzzy rules with many input 

variables can be very difficult and complicated (Babusk, 1998). Hence, the data-driven 

approach which automates the generation of the fuzzy rules is often preferred. The 

following sections show the performance of the hierarchical data-driven FIS developed 

which used genetic algorithm to optimise the fuzzy rules and weights. 

 

6.6.1 Performance of the hierarchical data-driven FIS 

Again, six models were developed this time using hierarchical data-driven FIS. Five of the 

FISs used their respective WSZs data sets for the modelling, whereas the sixth used the 

combined data from all the WSZs. The performance indicators CA and MSE were used in 

evaluating the models. Table 6.5 shows the performance of the six hierarchical data-driven 

FISs. The MSE of the FISs were recorded during the first generation of the rules 

optimisation and after the rule optimisation was completed. It was observed that for all the 

six FISs, the optimisation was able to successfully improve the performance. Likewise, it 

was observed that the performance of all the FISs further improved after the weights 

assigned to the fuzzy rules were also optimised. For instance the MSE of the FIS for 

WSZ2 reduced from 0.0795 to 0.0263 after the rules and weights optimisation. This is an 

indication of a good model performance. Results of the remaining WSZs showing how 

fitness function values were reduced by the genetic algorithm are presented in Table 6.5. 

 

From Table 6.5, it was observed that the overall CA on the testing data set gave better 

predictions than the hierarchical rule-based expert FIS shown in Table 6.3. This may be 

due to the slight variation of the factors that influence Fe and Mn accumulation potential 

for every WSZ; which makes generalisation of the rules not a good representation of the 

hierarchical rule-based expert FIS. It was also observed that the FIS for the combined data 

set gave relatively poor prediction. As explained in Chapter 5, this could be due to not 

having enough instances of data to represent the entire search space for the combined five 

water supply zones. It could also be due to the fact that Fe and Mn accumulation are 

formed under slightly different conditions for each WSZ. Therefore, combining the data 

sets resulted in having too many sources of water supply which confused the training 

process and subsequently gave relatively poor predictions. With the exception of the FISs 
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for WSZ1 and WSZ3 which gave poor predictions of high-risk Fe and Mn accumulation 

potential, the FISs for the three remaining WSZs gave relatively good predictions. The 

FISs for WSZ1 and WSZ3 could correctly classify only 40 and 33.33% respectively of the 

high-risk values of Fe and Mn accumulation potential on the testing data set. This was due 

to too many sources of water supplied to these two WSZs as explained in Section 5.6.1. 

The solution to improving these poor predictions is presented in Section 6.6.2. 

 

Table 6.5 Performance of the six hierarchical data-driven FISs 

Performance indicator WSZ1 WSZ2 WSZ3 WSZ4 WSZ5 WSZAll 

MSE after first generation 0.0832 0.0795 0.0780 0.0813 0.0766 0.0784 

MSE after rules optimisation 0.0624 0.0301 0.0532 0.0589 0.0639 0.0542 

MSE after weights optimisation 0.0494 0.0263 0.0382 0.0439 0.4907 0.0475 

Overall training CA (%) 64.22 69.91 66.20 66.41 76.40 68.21 

Overall testing CA (%) 65.12 68.29 61.54 60.78 68.09 62.19 

Testing CA - low (%) 73.33 83.33 65.00 76.92 75.00 77.78 

Testing CA - medium (%) 50.00 22.22 66.67 36.67 55.00 15.63 

Testing CA - high (%) 40.00 75.00 33.33 58.00 61.00 32.00 

Training sample size 232 226 142 256 267 940 

Testing sample size 43 41 26 45 47 201 

 

 

                                                        Predicted 

  
Low Medium High 

Low  20 2 2 

Medium 1 2 6 

High 0 2 6 

 

Figure 6.12 Testing data confusion matrix after predictions from the hierarchical data-

driven FIS for WSZ2 

 

Figure 6.12 shows the testing data confusion matrix after predictions from the hierarchical 

data-driven FIS for WSZ2. The model was able to correctly predict 83.33%, 22.22% and 
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75% of its low-, medium- and high-risk values, respectively. The overall classification 

accuracy on the testing data set of 68.29% indicates that the hierarchical data-driven FIS 

for WSZ2 is a good model which will make good predictions on new data sets.                  

 

The hierarchical data-driven FIS gave better results than the hierarchical rule-based expert 

FIS because the genetic algorithm was able to optimise the rules and weights of the rules. 

The first 15 rules and their corresponding weights from the hierarchical data-driven FIS for 

WSZ2 are presented in Table 6.6. All the 78 rules with their corresponding weights for 

WSZ2 and that for the remaining WSZs are presented in Appendix S.  

 

Table 6.6 The first 15 rules and their corresponding weights from the hierarchical data-

driven FIS for WSZ2 

Rule 

Number Rules after optimisation 

Weights after 

optimisation 

1 If Hardness is LOW then Chemical oxidation is MEDIUM 0.4107 

2 If Hardness is MEDIUM then Chemical oxidation is LOW 0.3711 

3 If Hardness is HIGH then Chemical oxidation is LOW 0.7952 

4 If FCR is LOW then Chemical oxidation is HIGH 0.5760 

5 If FCR is MEDIUM then Chemical oxidation is MEDIUM 0.5613 

6 If FCR is HIGH then Chemical oxidation is MEDIUM 0.3699 

7 If Alkalinity is LOW then Chemical oxidation is HIGH 0.5656 

8 If Alkalinity is MEDIUM then Chemical oxidation is HIGH 0.4491 

9 If Alkalinity is HIGH then Chemical oxidation is MEDIUM 0.3667 

10 If Chemical oxidation is LOW then Corrosion is MEDIUM 0.4668 

11 If Chemical oxidation is MEDIUM then Corrosion is MEDIUM 0.2811 

12 If Chemical oxidation is HIGH then Corrosion is LOW 0.7013 

13 If Pipe material index is LOW then Corrosion is MEDIUM 0.5214 

14 If Pipe material index is MEDIUM then Corrosion is LOW 0.2452 

15 If Pipe material index is HIGH then Corrosion is MEDIUM 0.4890 

 

 

6.6.2 Improving the performance of the hierarchical data-driven FIS 

As mentioned in Section 5.4, In order to predict Fe and Mn accumulation potential for 

every node, there is the need to have a base data set which consists of measured data for all 

the nodes. However, due to the enormous sizes of WSZs, it was impossible to have 

measured data of water quality variables for every node. It was observed that majority of 

the water quality variable values had small standard deviations. It was therefore assumed 

that at any given time, concentrations of chemical variables and variables that influence 
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biological processes in a given DMA were approximately the same. Yearly average water 

quality variables value at all the nodes in a given DMA were subsequently assumed to be 

approximately the same. However, there were a few water quality variables in WSZ1 and 

WSZ3 that had high standard deviations because there were too many sources of water 

supply to these WSZs. This means that the water quality variables from these two WSZs 

may not have been well represented using this assumption. This resulted in poor 

performance from the FIS for WSZ1 and WSZ3. 

 

Table 6.7 Performance of the hierarchical data-driven FIS using water quality variables 

estimates from the multiple linear regression models 

Performance indicator WSZ1 WSZ3 

MSE before rules optimisation 0.0826 0.0766 

MSE after rules optimisation 0.0639 0.0498 

MSE after weights optimisation 0.0436 0.0364 

Overall training CA (%) 70.95 65.49 

Overall testing CA (%) 69.77 65.38 

Testing CA - low (%) 75.00 69.42 

Testing CA - medium (%) 62.50 66.67 

Testing CA - high (%) 63.25 59.33 

Training sample size 232 142 

Testing sample size 43 26 

 

 

In view of the poor performance, the results obtained from the multiple linear regression 

model developed in Section 5.6.1 to predict the measured water quality variables values of 

every node in each DMA for WSZ1 and WSZ2 was used to develop the FISs in order to 

capture the variations. The measured water quality variables predicted by the multiple 

linear regression model, which were used as new input water quality variables for the FISs, 

were transformed between zero and one using Eqn. 5.1 in Chapter 5. Table 6.7 shows the 

performance of the hierarchical data-driven FISs when the input water quality variables 

estimates from the multiple linear regression model was used in the modelling. It was 

observed that the predicted percentage of high classified values of Fe and Mn 

accumulation potential from the testing data in WSZ1 improved from 40% to 63.25%. The 

MSE, after the rules and weights optimisation, improved from 0.0494 to 0.0436. Also, the 

overall CA on the testing data set improved from 65.12 to 69.77. Similarly, the predicted 

percentage of high classified values of Fe and Mn accumulation potential from the testing 

data in WSZ3 improved from 33.33% to 59.33%. Both the MSE and CA on the testing 
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data set in WSZ3 also improved. This indicates that the models are able to give better 

predictions in WSZs with too many sources when the input water quality variables for 

every node are estimated using multiple linear regression than assuming that yearly 

average water quality variable values at every node within each of the DMAs were 

approximately the same. 

 

6.6.3 Risk index of the hierarchical data-driven FIS 

Drinking water companies have a duty to routinely sample a number of water quality 

variables which includes Fe and Mn. The tests are mainly done at the treatment plants, 

service reservoirs, and customer taps. The results of these tests are electronically 

transferred to DWI monthly. Drinking water companies are required to send annual 

monitoring programme to DWI. They are also required to send data of customer 

complaints due to drinking water discolouration to the Ofwat. There are appropriate 

sanctions in place by these water regulatory authorities to penalise drinking water 

companies if they fail to comply with regulations. Presently, most water companies 

identify high discolouration risk regions in water distribution networks (WDNs) by either 

selecting areas in the network with high Fe and Mn concentrations from their routine 

sampling or using customer complaints data due to discolouration. However, as indicated 

in Section 5.6.3, these risk assessment methods are imprecise because only selected few 

nodes are sampled and not all customers that experience water discolouration complain. 

Hence, there is a high likelihood that certain regions in WSZs with high customer 

complaints or Fe and Mn concentrations can go undetected. 

 

To overcome the above-mentioned limitations, a risk index that uses the predicted Fe and 

Mn accumulation potential by the FIS at every node was developed to quantify the various 

levels of risk. The risk levels defined in Chapter 5 were used to develop the FISs. If more 

than 10% of all the predicted Fe and Mn accumulation potential by the model are high in a 

given WSZ, that WSZ is classified as a high-risk WSZ. If the predicted high values by the 

model in a WSZ are between 5 and 10% of all the model’s predictions, it was classified as 

medium-risk WSZ. WSZs with less than 5% of all the model’s predictions which are high 

were classified as low-risk WSZ. The risk levels of the five WSZs between the year 2005 

and 2009 generated by the hierarchical data-driven FIS are presented in Table 6.8. It was 

observed that there were variations in risk levels for each of the WSZs. As indicated in 

Section 5.6.2, these variations could be as a result of months of accumulation of Fe and 
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Mn particles on the pipe walls of WDNs or network cleaning through flushing, to remove 

accumulated sediments. 

 

Table 6.8 Risk levels of the WSZs between the year 2005 and 2009 generated by the 

hierarchical data-driven FIS 

WSZ\Year 2005 2006 2007 2008 2009 

WSZ1 Medium Medium Medium Low Medium 

WSZ2 High Medium High High High 

WSZ3 Medium Medium High Low Medium 

WSZ4 High Medium High High High 

WSZ5 Low Low Low Medium High 

  

Table 6.9 Customer complaints levels of the five WSZs from 2005 to 2009 

WSZ\Year 2005 2006 2007 2008 2009 

WSZ1 Medium Medium Medium Low Medium 

WSZ2 High High Medium Medium High 

WSZ3 Low Medium Low Low Medium 

WSZ4 Medium High High High High 

WSZ5 Medium Low Low Low High 

 

A cumulative frequency curve for all customer complaints per 1000 properties from all the 

WSZs was plotted. The 90
th

 and 70
th

 percentile of the customer complaints per 1000 

properties corresponded to 2.5 and 1.2, respectively. Using these percentiles, WSZs with 

customer complaints per 1000 properties greater than 2.5 were classified as high, between 

2.5 and 1.2 as medium, and below 1.2 as low. Table 6.7 shows the customer complaints 

levels of the five WSZs from 2005 to 2009. Comparing Table 6.8 with Table 6.9, it was 

observed that most WSZs with high customer complaints also had high-risk levels of Fe 

and Mn concentrations potential predicted by the FIS. However, it was observed that there 

were a few number of years the high-risk levels predicted by the FIS did not match high 

customer complaints in some WSZs. There are a number of reasons for this disparity. First, 

it should be noted that the aim of this research is not to predict drinking water 

discolouration, but to predict Fe and Mn accumulation potential. In view of this, only 

variables that influence Fe and Mn accumulation were included in the FIS. Although 

increased Fe and Mn concentrations (accumulation) are the main causes of drinking water 

discolouration, there are other factors that also cause water to discolour. Hydraulic events 

such as opening of fire hydrants during flushing operations or fire extinguishing exercises, 

and increase in flow due to pipe burst can all cause drinking water discolouration and 
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prompt customers to complain. Secondly, as indicated in Chapter 2, approximately 30% of 

customers that experienced discoloured water in the United Kingdom actually complain 

(Ewan & Williams, 1986). This explains why customer complaints can sometimes be 

ineffective in identifying high-risk regions in WSZs. 

 

  

Figure 6.13 Correlation between measured yearly average Fe and Mn accumulation 

potential and predicted high-risk nodes from 2005-2009 

 

To further investigate the performance of the hierarchical data-driven FISs, Graphs of 

measured yearly average Fe and Mn accumulation potential in each WSZ were plotted 

against the corresponding number of high-risk nodes predicted by the FISs between 2005 

and 2009. Graphs of measured yearly average Fe and Mn accumulation potential plotted 

against number of high-risk nodes predicted by the FISs for WSZ2 and WSZ3 had an R
2
 of 

0.98 and 0.88 respectively (see Fig 6.13). Similar graphs from the remaining WSZs are 

presented in Appendix R. The strong positive correlations observed is an indication that 

the hierarchical data-driven FISs are predicting well. 

 

6.6.4 Risk maps generated by hierarchical data-driven FIS 

Due to the non-uniform distribution of risk levels of Fe and Mn accumulation potential in 

WSZs, narrowing the risk index from WSZ level to node level makes it easier to identify 

high-risk regions and investigate the causes of the failures. The ability of the hierarchical 
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data-driven FISs developed to generate risk maps which visually show all the various 

levels of Fe and Mn accumulation potential made this possible. In addition, it has the 

ability to backtrack from the output node, through the intermediate nodes, to the input 

nodes and automatically indicates which intermediate nodes and input variables cause 

high-risk of Fe and Mn accumulation potential. 

 

Figure 6.14(a) shows a risk map of predicted Fe and Mn accumulation potential for WSZ2 

in 2005 generated by the hierarchical data-driven FIS. While Fig. 6.14(b) shows a risk map 

of its corresponding measured Fe and Mn accumulation potential. Three service reservoirs 

(labelled A, B and C) supply WSZ2 with water. Comparing the measured and predicted 

risk maps, it was observed that most of the regions in the network with measured high-risk 

of Fe and Mn accumulation potential were also predicted as high-risk regions by the model. 

Similarly, most of the regions in the network with measured medium-risk of Fe and Mn 

accumulation potential were also predicted as medium-risk regions by the model. It was 

observed that DMA2-02 (highlighted by a black circle) which receives water from service 

reservoir A had low Fe and Mn accumulation potential. This was mainly due to biological 

oxidation of Fe and Mn. In 2005, the biological oxidation of Fe and Mn in that region was 

low as a result of very low phosphorus concentrations. As indicated in Section 6.3.1.4, 

phosphorus is a bioavailable form of nutrients that bacteria in WDNs need for growth and 

reproduction (CRCWQT, 2005). Therefore, low concentrations of it will help to reduce the 

growth or kill the bacteria responsible for oxidising Fe and Mn. 

 

DMA2-16 (highlighted by a black rectangle) receives water from service reservoir A (see 

Fig. 6.14(a)). There were a number of factors that contributed to the high Fe and Mn 

accumulation potential at this DMA. Tracing from the output node to the intermediate 

nodes revealed that high values of the intermediate nodes; biological oxidation and 

hydraulic effect, were the main causes of the high-risk experienced in this region. Further 

backtracking from the hydraulic effect intermediate node to the input nodes showed that 

high values of the variables hydraulic distance from service reservoir A and average water 

age contributed to the high Fe and Mn accumulation potential observed at DMA2-16. As 

explained in Section 6.3.1, increase levels of these two variables increases Fe and Mn 

accumulation potential. Also, high levels of phosphorus, turbidity, and average water age 

all contributed to increased Fe and Mn accumulation potential at DMA2-16 as explained in 

section 6.3.1. 
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Service reservoir A in Fig. 6.14(a) supplies water to DMA2-13 (highlighted by a black 

square). It was observed that nodes in this DMA had very low Fe and Mn accumulation 

potential. The low-risk levels experienced in this region can be attributed to low 

intermediate values of hydraulic effect, biological oxidation, chemical oxidation, and 

corrosion. Tracing the intermediate nodes back to their input nodes, it was observed that 

the low values of hydraulic effect were as a result of low average water age and short 

hydraulic distance from service reservoir A. In general, it is known that low water age and 

short hydraulic distance from source of water supply reduces Fe and Mn accumulation 

potential. The short retention time of water under these conditions prevents disinfectants 

such as chlorine from dissipating, which helps to prevent microbial growth and eventually 

leads to the reduction of biological oxidation of Fe and Mn. Very low levels of colour were 

observed at DMA2-13 in 2005. It was the lowest level recorded from 2005 to 2009 for the 

entire WSZ2. Since carbon is the main bioavailable form of nutrients for the bacteria 

responsible for oxidising Fe and Mn, low concentrations of it reduces microbial growth 

and subsequently reduces biological oxidation of Fe and Mn (CRCWQT, 2005). The low 

corrosion and chemical oxidation levels observed were as result of high alkalinity 

concentrations in this region. As explained in Section 6.3.1, research has shown that there 

is a negative correlation between alkalinity and corrosion (Naylor et al., 1993). 
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Figure 6.14 Hierarchical data-driven FIS risk maps showing (a) predicted and (b) measured Fe and Mn accumulation potential at WSZ2 in 

2005

 2
2
0
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From Fig. 6.14 (a), the high predicted Fe and Mn accumulation potential values observed 

at DMA2-01 in 2005 (highlighted by a black oval) was as a result of high values of the 

intermediate nodes; biological oxidation and hydraulic effect. The high values of 

biological oxidation observed were as a result of high levels of average water age, colour, 

and turbidity. As already explained in Section 6.3.1, increase in average water age and 

colour increases biological oxidation. It is also known that increased levels of suspended 

organic and inorganic particles increase turbidity levels. This enhances biological 

oxidation by allowing Fe- and Mn-oxidising bacteria to attach themselves to these 

suspended particles. Furthermore, high levels of turbidity aid the biological oxidation 

process by serving as a shield to inhibit microorganisms from disinfection (WHO, 2011a). 

The increased hydraulic effect was as a result of low maximum daily shear stress and high 

average water age. Since DMA2-01 is at the periphery of WSZ2, it has many dead ends. 

These regions are more susceptible to accumulation of Fe and Mn particles on the pipe 

walls. This observation conforms to research by (Boxall et al., 2001) which suggested that 

discolouration materials are more likely to accumulate in networks that are less subjected 

to low conditioning daily shear stress than networks with high conditioning daily shear 

stress. 

 

Comparing the predicted risk map with customer complaints risk map for WSZ2 in 2005, 

it was observed that most of the regions in the network with high predicted Fe and Mn 

accumulation potential also had high customer complaints (see Fig 6.15 (a) and (b)). A 

significant number of high-risk nodes predicted by the FIS in the region highlighted by a 

black rectangle also had high number of customer complaints. It was observed that a few 

number of high-risk nodes were predicted by the FIS in the regions highlighted with black 

circle and hexagon. Similarly, there were few number of customer complaints observed in 

the same regions. There were no high-risk nodes predicted by the FIS in the region 

highlighted with black square in 2005. Likewise, there were no customer complaints in the 

same region that year. The region highlighted with black oval had high customer 

complaints in 2005. However, the FIS predicted many medium-risk nodes and a few high-

risk nodes in the region that year. The customers may have complained as a result of water 

discolouration from hydraulic events such as pipe burst or opening of fire hydrants during 

flushing exercises, which were not included in the FIS.  
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Figure 6.15 Hierarchical data-driven FIS risk maps showing (a) predicted Fe and Mn accumulation potential and (b) customer complaints for 

WSZ2 in 2005 
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6.7 Summary 

In this chapter, two FISs were developed to predict Fe and Mn accumulation potential by 

using relevant chemical, biological, and physical/hydraulic variables. The first FIS 

developed, the hierarchical rule-based expert FIS, used expert knowledge to formulate 

rules and assigned weights to them in making its predictions. The hierarchical rule-based 

expert FIS gave relatively poor results because the same rules were used in the prediction 

for each of the WSZ. Since Fe and Mn accumulation are formed under slightly different 

conditions for each WSZ, using the same expert system rules and weights for all the WSZs 

may not be an accurate representation of the FISs.  

 

The second FIS, the hierarchical data-driven FIS, was developed to overcome this 

limitations of the hierarchical rule-based expert FIS. It uses genetic algorithm to optimise 

its rules and weights. It was observed that the hierarchical data-driven FIS gave better 

predictions than the hierarchical rule-based expert FIS. A risk index that uses the predicted 

Fe and Mn accumulation potential by the FIS was developed to rank the risk levels of the 

WSZs. The developed hierarchical data-driven FIS was also able to determine the location 

of the high-risk regions by generating risk maps that predict Fe and Mn accumulation 

potential for every node in the WSZs. Comparing the predicted risk maps generated to the 

measured risk maps, it was observed that most regions with high predicted Fe and Mn 

accumulation potential also had high measured Fe and Mn accumulation potential. 

Similarly, most of the regions predicted by the FIS as having medium- and low-risk Fe and 

Mn accumulation potential also had measured medium- and low-risk Fe and Mn 

accumulation potential, respectively.  

 

Comparing the predicted risk map with customer complaints risk map, it was observed that 

most of the regions in the network with high predicted Fe and Mn accumulation potential 

also had high customer complaints. However, a few regions did not follow this pattern 

because not all customers that experience water discolouration complained. This could 

also be due to hydraulic events such as opening of fire hydrants and pipe burst that can 

cause drinking water discolouration and prompt customers to complain, which were not 

used as variables in the FISs. Unlike the ANN models developed in Chapter 5, the white-

box nature of FISs makes their intermediate nodes accessible for the evaluation. Hence, 

they are able to automatically indicate which intermediate nodes and input variables are 
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causes of high-risk of Fe and Mn accumulation potential. The developed hierarchical data-

driven FIS could be of great benefit to water resource engineers and drinking water supply 

companies by using it as an important tool to identify high-risk regions and also explain 

the causes of the risk. 
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CHAPTER 7: Conclusions and recommendations 

7.1 Conclusions 

Although only small concentrations of Fe and Mn enter WDNs after water has been treated, 

years of accumulation of Fe and Mn particles and other adsorbed compounds associated 

with the accumulation process can cause drinking water discolouration. This may prompt 

customers to complain and lead to penalisation by Ofwat. A comprehensive literature 

review on drinking water discolouration models and the factors that influence the 

formation of drinking water discolouration showed that:  

 Researchers have only studied each of the factors that influence Fe and Mn 

accumulation either partially or separately, but not in combination.  

 The physical, chemical and/or biological processes that lead to formation of Fe and 

Mn accumulation/drinking water discolouration are very complex and interrelated. 

Hence, it is very difficult to use mathematical formulae or traditional models to 

solve such problems. AI-based methods of modelling such as ANNs and FISs are 

more appropriate to solve these complex problems because of their learning 

capabilities and ability to cope well with uncertainties in data. 

 Most of the reviewed models mainly used physical/hydraulic variables in 

predicting drinking water discolouration. Hence, they could not capture all the 

factors that influence the formation of discoloured water in WDNs and therefore 

may not properly explain the processes and mechanisms that lead to Fe and Mn 

accumulation. 

 The current practices by drinking water companies to identify regions with high-

risk of discolouration or Fe and Mn failures includes (a) identifying regions in the 

network with high Fe and Mn concentrations and (b) identifying regions in the 

network with high number of customer complaints due to discolouration. However, 

these methods are ineffective because: 

o Not all customers who experience discolouration complain. In the UK, 

studies have shown that approximately 30% of customers that experience 

discoloured water event actually complain, whereas in Australia studies 

have shown that only 15% of customers who experience water 

discolouration complain. This means that high discolouration risk regions 

where customers do not complain may not be detected. 
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o The large sizes of WSZs make it impossible to sample all regions in the 

network. Hence, regions which have high Fe and Mn concentrations that are 

not sampled may not be detected. 

 

The main observations and conclusions drawn from the analysis of the customer 

complaints, water quality and hydraulic/physical data are as follows: 

 There were high number of customer complaints during the second and third 

quarters of the year. These spikes in complaints observed could be attributed to 

high water consumption during this period. Excess demand for water during this 

period increases flow velocity and shear stress, which causes accumulated Fe and 

Mn particles to dislodge from the pipe walls, and subsequently leads to water 

discolouration. The seasonal variations observed could also be due to high 

temperatures during this period. High temperatures promote bacterial growth, 

which cause biological oxidation of soluble Fe and Mn to their precipitate/insoluble 

form in WDNs. High temperatures are also known to expedite the chemical 

oxidation of Fe and Mn. 

 Fe and Mn concentrations plotted against FCR concentrations for all 176 DMAs 

showed that when FCR concentrations were greater than 0.8 mg/L, neither Fe nor 

Mn exceeded their respective MCLs. This indicates that most of the oxidation that 

occurred within the distribution system may be microbial-induced, and that FCR 

concentrations above 0.8 mg/l were able to kill or reduce the growth of Fe- and 

Mn-oxidising bacteria. An optimum level of FCR is needed in the water 

distribution system to prevent the growth of microorganisms and preserve water 

quality. 

 Fe and Mn concentrations plotted against maximum shear stress at nodes showed 

that areas with high maximum daily shear stress had low Fe and Mn 

concentrations. This is because Fe and Mn precipitates are unable to accumulate on 

pipe walls under high shear stress conditions. On the other hand, it was observed 

that regions with low daily maximum shear stress had high concentrations of Fe 

and Mn. Generally, low shear stress regions are subjected to high Fe and Mn 

accumulation because the shear stress exerted on the pipe walls in these regions are 

not high enough to dislodge any deposits of Fe and Mn particles. Low shear stress 
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also increases water age, reduces FCR, increases microbial growth, and 

subsequently leads to the deterioration of water quality. 

 Fe and Mn concentrations were found to gradually increase with hydraulic distance 

from source of water supply. This is because as water travels through WDNs, water 

age generally increases and chlorine levels decrease. Since chlorine is a 

disinfectant, it supresses the growth of or kill Fe- and Mn-oxidising bacteria in 

regions with high hydraulic distance from source of water supply, preventing them 

to biologically oxidise soluble Fe and Mn to insoluble Fe and Mn. Conversely, 

regions with long hydraulic distance from source have low concentrations of FCR. 

Hence, such regions promote microbial growth, increase biological oxidation of Fe 

and Mn and subsequently increase Fe and Mn concentrations.  

 

The main aim of this research was to use AI-based models to predict Fe and Mn 

accumulation potential with relevant biological, chemical and hydraulic/physical variables. 

Two ANN models were developed to overcome the limitations of the models and current 

methods used by drinking water companies to identify regions with high-risk of 

discolouration or Fe and Mn compliance failures. The first ANN model developed, 

ANN(t), was used as a sensitivity tool to select relevant input variables that influenced Fe 

and Mn accumulation potential, and also as a tool to investigate the relationship between 

the input variables and the predicted Fe and Mn accumulation potential. The following 

observations were made from this model: 

 Increased concentrations of Al generally increased Fe and Mn accumulation 

potential. This is due to the formation of amorphous Al(OH)3 with increasing Al 

concentration which tends to adsorb Fe and Mn particles. 

 Increased turbidity levels generally increased Fe and Mn accumulation potential 

because increase in turbidity increases suspended organic particles. Fe- and Mn-

oxidising bacteria attach themselves to these suspended particles, causing microbial 

growth to increase. High levels of turbidity also enhance the biological oxidation of 

Fe and Mn by serving as a shield to inhibit Fe- and Mn-oxidising bacteria from 

disinfection. 

 In general, as hydraulic distance from source of water supply increases, Fe and Mn 

accumulation potential also increases. Generally, increase in hydraulic distance 

from source of water supply increases water age and reduces FCR concentration. 
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Since chlorine is a disinfectant which suppresses the growth of Fe- and Mn-

oxidising bacteria, increase in hydraulic distance from source of water supply 

reduces chlorine levels, which subsequently leads to increase in biological 

oxidation. 

 There was a negative correlation between Fe and Mn accumulation potential and 

Ca concentration. Increase in Ca leads to the formation of calcium carbonate 

(CaCO3) in the presence of DO in WDNs. CaCO3 serves as a corrosion inhibitor by 

forming protective scales on the inner walls of ferrous pipes which prevents 

drinking water from coming into direct contact with these pipes in WDNs; thereby 

reducing Fe failures. 

 There was a high positive correlation between hardness and Fe and Mn 

accumulation potential because increase in hardness increases chemical oxidation 

of Fe and Mn. 

 Increased alkalinity levels reduced Fe and Mn accumulation potential. Increase in 

alkalinity helps to increase the buffer capacity of drinking water by keeping the pH 

of water stable, thereby reducing chemical oxidation of Fe and Mn in WDNs. 

 Increased colour levels increased Fe and Mn accumulation potential. This is 

because increase in TOC, which is an indirect measure of colour, enhances 

adsorption of Mn. It also promotes microbial growth and increases biological 

oxidation of Fe and Mn because carbon is a bioavailable form of nutrients for Fe- 

and Mn-oxidising bacteria. 

 

The second ANN model, ANN(t,ѱ), uses biological, chemical, and hydraulic/physical 

variables to predict Fe and Mn accumulation potential for every node in a given WSZ. It 

can also be used to generate risk maps to visually see the distribution of the predicted Fe 

and Mn accumulation potential in WSZs in order to determine the high Fe and Mn 

accumulation potential risk regions. From the risk maps generated by the model, it was 

observed that:  

 Most of the regions in the network with high Fe and Mn accumulation potential 

also had high customer complaints due to discolouration.  

 There were a few years the high-risk regions predicted by the model did not 

correlate well with customer complaints. This was because events such as pipe 

bursts and the opening of fire hydrants during flushing, which can also cause water 



 

229 

 

  6
2
 

discolouration and prompt customers to complain, were not included in the model. 

The aim of this research was not to predict water discolouration, but to predict Fe 

and Mn accumulation potential. 

 Although ANN(t,ѱ) model was able to predict Fe and Mn accumulation reasonably 

well and identify high-risk regions, the causes of failures had to be manually 

investigated. With so many nodes in WSZs, manually investigating the causes of 

failures can be a laborious task. 

 

The hierarchical rule-based expert FIS and the hierarchical data-driven FIS were 

developed to overcome the limitations of the ANN(t,ѱ) model. Unlike the developed ANN 

models, the FISs were able to automatically indicate the causes of high-risk of Fe and Mn 

accumulation potential. The hierarchical rule-based expert FIS used expert knowledge to 

formulate its rules and assign weights to the rules, whereas the hierarchical data-driven FIS 

used genetic algorithm to optimise the rules and weights of the rules. Results from both 

FISs showed that: 

 The hierarchical data-driven FIS performed better than the hierarchical rule-based 

expert FIS. The relatively poor results observed in the hierarchical rule-based 

expert FIS were because the same rules formed from expert knowledge were used 

to model each of the WSZs. These rules did not accurately represent this FIS 

because Fe and Mn accumulation are formed under slightly different conditions in 

every WSZ.  

 The hierarchical data-driven FIS gave good predictions because the rules and 

weights of the rules were optimised with a genetic algorithm for each WSZ. From 

the generated risk maps, it was observed that most regions with high customer 

complaints also had high Fe and Mn accumulation potential. 

 

The developed ANN models and FISs can be used as tools to assist drinking water 

companies and water resource engineers in reducing discolouration and customer 

complaints by identifying high-risk Fe and Mn accumulation potential regions and 

explaining the causes of the risks. Since the models are able to predict Fe and Mn 

accumulation potential at every node, they can be used to identify high-risk regions 

including regions where water quality variables have not been sampled. In addition, the 

developed models can help in the development of cleaning protocols, maintenance of 
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water mains, and development of operational and management strategies for water 

distribution at the national and international levels. 

 

7.2 Limitations of the developed models 

The models developed in this research have a few limitations, just like every model. The 

following sections list some of these limitations. 

 

7.2.1 Limitations of the ANN(t) model 

 The ANN(t) model is only able to predict Fe and Mn accumulation potential at 

nodes where past sampling data exist. Thus, it is unable to make predictions for 

every node in a WSZ. 

 ANNs require large data sets that are sampled adequately from the entire search 

space in order to have enough instances to make good predictions. 

 

7.2.2 Limitations of the ANN(t,ѱ) model 

 Although ANN(t,ѱ) model is able to predict Fe and Mn accumulation potential for 

every node in a WSZ, including regions where no past sampling data exist, it is 

unable to predict high-risk levels caused by hydraulic events such as pipe bursts 

and the opening of fire hydrants during fire extinguishing exercises because such 

hydraulic events were not included in the model.  

 It requires large data sets from all regions in the WSZ to improve its prediction 

capabilities. 

 Although the ANN(t,ѱ) model gave better predictions than the FIS, its black-box 

nature make it unable to explain the causes of high-risk of Fe and Mn accumulation 

potential unless it is investigated manually. 

 

7.2.3 Limitation of the hierarchical rule-based expert FIS 

 Since Fe and Mn accumulation are formed under slightly different conditions for 

each WSZ, using the same rules formulated from expert knowledge to model every 

WSZ resulted in relatively poor model performance.  
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7.2.4 Limitation of the hierarchical data-driven FIS 

 The ANN(t,ѱ) model performed better than the hierarchical data-driven FIS 

because, generally, FISs are not used in solving problems that require high level 

precision solutions. 

 

7.3 Recommendations and future work 

It would have been ideal to use monthly or quarterly averages as input water quality 

variables because Fe and Mn accumulation potential exhibits seasonal variations. However, 

because some water quality variables were not sampled frequently, the data would have 

had many gaps if monthly or quarterly averages were used. It is therefore recommended 

that the water quality variables be sampled frequently in order to make monthly or weekly 

predictions possible. 

 

DO is a very important variable that chemically oxidises Fe and Mn. However, it was not 

included in the models because it was not sampled. Nevertheless, it can be assumed that 

dissolved oxygen will be available in abundance in drinking water systems. Temperature is 

another important variable which aids the formation of biofilms and expedites the 

chemical oxidation of Fe and Mn. However, it was also not included because there was not 

enough data of it. TOC is another variable that influences Fe and Mn accumulation that 

was not included in the models because it was not sampled. Instead, colour, which is an 

indirect measure of TOC, was used as a variable in the model. Flushing frequency is a very 

important variable because flushing reduces or cleans years of accumulation of Fe and Mn 

particles in WDNs. However, no data for this variable were available. These variables 

would have greatly improved the models’ predictions. It is therefore recommended that 

they are added to future models. 

 

To make the developed models more useful to drinking water companies, a user friendly 

interface (software) for the two models need to be developed. This would enable engineers 

with little or no knowledge in ANN or fuzzy logic to use the models effectively. 
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APPENDICES 

Appendix A: Source code for calculating shear stress at node  

 

A.1 Source code for calculating minimum daily shear stress 

function [Vmin, Tmin] = LinkCalcsMin(InputFile) 

  
Vmin = []; Tmin=[]; Fmin = []; Hlmin = []; 

  
%Load EPANET DLL 
%loadlibrary('epanet2', 'epanet2.h'); 
if ~libisloaded('epanet2'), loadlibrary('epanet2', 'epanet2.h'); end 

%Edited 

  

  
%Open EPANET toolkit 
Err = calllib('epanet2', 'ENopen', InputFile, 'report.rpt',' '); 

  
%Supress the writing of all error messages to be written to report.rpt. 
Err = calllib('epanet2', 'ENsetreport', 'MESSAGES NO'); 

  
%Make Calculations 
%Calculate the number of links 
Nlinks = 0; 
[Err, Nlinks] = calllib('epanet2', 'ENgetcount', 2, Nlinks); 

  
%Calculate minimum velocity, shear stress, flow and headloss 
[minVel, minShear, minFlw, minHl] = HydraulicCalculations(Nlinks);   

%Changed from[a,b] 
Vmin = minVel; 
Tmin = minShear; 
Fmin = minFlw; 
Hlmin = minHl;  

  
%Read  Link Ids from EPANET 
id = ' '; 
LinkIds = { }; 
for i = 1:Nlinks 
    [Err, id] = calllib('epanet2', 'ENgetlinkid', i, id); 
    LinkIds{i} = id; 
end 

  
%Read Start and End node of link 
S_Node_ = 0; E_Node_ = 0;  
S_Node_Id_ = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id_ = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
S_Node_Id = { }; 
E_Node_Id = { }; 

  
%S_Node_Id = zeros(1,Nlinks); 
%E_Node_Id = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, S_Node_, E_Node_]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node_, E_Node_); 
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    [Err, S_Node_Id_] = calllib('epanet2', 'ENgetnodeid', S_Node_, 

S_Node_Id_); 
    [Err, E_Node_Id_] = calllib('epanet2', 'ENgetnodeid', E_Node_, 

E_Node_Id_); 

    
    S_Node_Id{i} = S_Node_Id_; 
    E_Node_Id{i} = E_Node_Id_; 
end 

  

  
%Read Link length from EPANET 
len_ = 0.0; 
len = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, len_] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len_); 
    len(i) = len_; 
end 

  

  
%Read Link diameters from EPANET 
dia_ = 0.0; 
dia = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, dia_] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia_); 
    dia(i) = dia_; 
end 

  

  

  
%%Export the values 
M = [LinkIds', S_Node_Id', E_Node_Id', num2cell(len'), num2cell(dia'), 

num2cell(Fmin'), num2cell(Hlmin'), num2cell(Vmin'), num2cell(Tmin')]; 
dlmcell('LinkParameters.csv',M, 'delimiter', ',');      

  
%Close EPANET toolkit 
Err = calllib('epanet2', 'ENclose'); 

  
%Unload EPANET DLL. 
unloadlibrary('epanet2'); 
return 

  

  
function [minVel, minShear, minFlw, minHl] = HydraulicCalculations(Nlinks) 
%Solve Hydraulics and calculate parameters for current loading 

  

  
minVel = ones(1,Nlinks)*200; minShear = ones(1,Nlinks)*200; minFlw = 

ones(1,Nlinks)*200; minHl = ones(1,Nlinks)*200; 
t = 0; tstep=1; 
Err = calllib('epanet2', 'ENopenH'); 
Err = calllib('epanet2', 'ENinitH', 0); 
while(tstep > 0) 
   [Err, t] = calllib('epanet2', 'ENrunH', t); 

         
   %Calculate various parameters at current timestep 
   [minVel, minShear, minFlw, minHl] = calcparams(minVel, minShear, 

minFlw, minHl, Nlinks); 
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   [Err, tstep] = calllib('epanet2', 'ENnextH', tstep); 
end 
Err = calllib('epanet2', 'ENcloseH'); 
return 

  
function [v, t, f, hL] = calcparams(mV, mT, mfL, mhL, Nl) 
Rho = 1000.0; g = 9.80665; 
dia = 0.0; len = 0.0; vel = 100.0; Hl = 100.0;  
S_Node = 0; E_Node = 0; flw = 100.0; 
S_Node_Id = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
v = zeros(1,Nl); t = zeros(1,Nl); f = zeros(1,Nl); hL = zeros(1,Nl); 
for i = 1:Nl 
    [Err, dia] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia); 
    [Err, len] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len); 
    [Err, vel] = calllib('epanet2', 'ENgetlinkvalue', i, 9, vel); 
    [Err, Hl]  = calllib('epanet2', 'ENgetlinkvalue', i, 10, Hl); 
    [Err, S_Node, E_Node]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node, E_Node); 
    [Err, S_Node_Id] = calllib('epanet2', 'ENgetnodeid', S_Node, 

S_Node_Id); 
    [Err, E_Node_Id] = calllib('epanet2', 'ENgetnodeid', E_Node, 

E_Node_Id); 
    [Err, flw]  = calllib('epanet2', 'ENgetlinkvalue', i, 8, flw); 

     
    v(i) = min(vel, mV(i)); 
    shear = Rho*g*(dia/4000)*(Hl/Len); 
    t(i) = min(shear, mT(i)); 
    f(i) = min(flw, mfL(i)); 
    hL(i) = min(Hl, mhL(i)); 
end     
return 

  

 

A.2 Source code for calculating maximum daily shear stress  

function [Vmax, Tmax] = LinkCalcsMax(InputFile) 

  
Vmax = []; Tmax=[]; Fmax = []; Hlmax = []; 

  
%Load EPANET DLL 
%loadlibrary('epanet2', 'epanet2.h'); 
if ~libisloaded('epanet2'), loadlibrary('epanet2', 'epanet2.h'); end 

%Edited 

  

  
%Open EPANET toolkit 
Err = calllib('epanet2', 'ENopen', InputFile, 'report.rpt',' '); 

  
%Supress the writing of all error messages to be written to report.rpt. 
Err = calllib('epanet2', 'ENsetreport', 'MESSAGES NO'); 

  
%Make Calculations 
%Calculate the number of links 
Nlinks = 0; 
[Err, Nlinks] = calllib('epanet2', 'ENgetcount', 2, Nlinks); 

  
%Calculate maximum velocity and shear stress 
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[maxVel, maxShear, maxFlw, maxHl] = HydraulicCalculations(Nlinks);   

%Changed from[a,b] 
Vmax = maxVel; 
Tmax = maxShear; 
Fmax = maxFlw; 
Hlmax = maxHl;  

  
%Read  Link Ids from EPANET 
id = ' '; 
LinkIds = { }; 
for i = 1:Nlinks 
    [Err, id] = calllib('epanet2', 'ENgetlinkid', i, id); 
    LinkIds{i} = id; 
end 

  
%Read Start and End node of link 
S_Node_ = 0; E_Node_ = 0;  
S_Node_Id_ = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id_ = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
S_Node_Id = { }; 
E_Node_Id = { }; 

  
%S_Node_Id = zeros(1,Nlinks); 
%E_Node_Id = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, S_Node_, E_Node_]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node_, E_Node_); 
    [Err, S_Node_Id_] = calllib('epanet2', 'ENgetnodeid', S_Node_, 

S_Node_Id_); 
    [Err, E_Node_Id_] = calllib('epanet2', 'ENgetnodeid', E_Node_, 

E_Node_Id_); 

    
    S_Node_Id{i} = S_Node_Id_; 
    E_Node_Id{i} = E_Node_Id_; 
end 

  

  
%Read Link length from EPANET 
len_ = 0.0; 
len = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, len_] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len_); 
    len(i) = len_; 
end 

  

  
%Read Link diameters from EPANET 
dia_ = 0.0; 
dia = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, dia_] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia_); 
    dia(i) = dia_; 
end 

  

 
%%Export the values 
M = [LinkIds', S_Node_Id', E_Node_Id', num2cell(len'), num2cell(dia'), 

num2cell(Fmax'), num2cell(Hlmax'), num2cell(Vmax'), num2cell(Tmax')]; 
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dlmcell('LinkParameters.csv',M, 'delimiter', ', ');      

  
%Close EPANET toolkit 
Err = calllib('epanet2', 'ENclose'); 

  
%Unload EPANET DLL. 
unloadlibrary('epanet2'); 
return 

  

  
function [maxVel, maxShear, maxFlw, maxHl] = HydraulicCalculations(Nlinks) 
%Solve Hydraulics and calculate parameters for current loading 

  
maxVel = zeros(1,Nlinks); maxShear = zeros(1,Nlinks); maxFlw = 

zeros(1,Nlinks); maxHl = zeros(1,Nlinks); 
t = 0; tstep=1; 
Err = calllib('epanet2', 'ENopenH'); 
Err = calllib('epanet2', 'ENinitH', 0); 
while(tstep > 0) 
   [Err, t] = calllib('epanet2', 'ENrunH', t); 

         
   %Calculate various parameters at current timestep 
   [maxVel, maxShear, maxFlw, maxHl] = calcparams(maxVel, maxShear, 

maxFlw, maxHl, Nlinks); 

            
   [Err, tstep] = calllib('epanet2', 'ENnextH', tstep); 
end 
Err = calllib('epanet2', 'ENcloseH'); 
return 

  
function [v, t, f, hL] = calcparams(mV, mT, mfL, mhL, Nl) 
Rho = 1000.0; g = 9.80665; 
dia = 0.0; len = 0.0; vel = 0.0; Hl = 0.0;  
S_Node = 0; E_Node = 0; flw = 0.0; 
S_Node_Id = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
v = zeros(1,Nl); t = zeros(1,Nl); f = zeros(1,Nl); hL = zeros(1,Nl); 
for i = 1:Nl 
    [Err, dia] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia); 
    [Err, len] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len); 
    [Err, vel] = calllib('epanet2', 'ENgetlinkvalue', i, 9, vel); 
    [Err, Hl]  = calllib('epanet2', 'ENgetlinkvalue', i, 10, Hl); 
    [Err, S_Node, E_Node]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node, E_Node); 
    [Err, S_Node_Id] = calllib('epanet2', 'ENgetnodeid', S_Node, 

S_Node_Id); 
    [Err, E_Node_Id] = calllib('epanet2', 'ENgetnodeid', E_Node, 

E_Node_Id); 
    [Err, flw]  = calllib('epanet2', 'ENgetlinkvalue', i, 8, flw); 

     
    v(i) = max(vel, mV(i)); 
    shear = Rho*g*(dia/4000)*(Hl/Len); 
    t(i) = max(shear, mT(i)); 
    f(i) = max(flw, mfL(i)); 
    hL(i) = max(Hl, mhL(i)); 
end     
return 
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A.3 Source code for calculating variation of daily shear stress  

 

function [Vavg, Tavg, Favg, Hlavg, varShearOutPut] = CalcsVar(InputFile) 

  
Vavg = []; Tavg=[]; Favg = []; Hlavg = []; 

  
%Load EPANET DLL 
%loadlibrary('epanet2', 'epanet2.h'); 
if ~libisloaded('epanet2'), loadlibrary('epanet2', 'epanet2.h'); end 

%Edited 

   
%Open EPANET toolkit 
Err = calllib('epanet2', 'ENopen', InputFile, 'report.rpt',' '); 

  
%Supress the writing of all error messages to be written to report.rpt. 
Err = calllib('epanet2', 'ENsetreport', 'MESSAGES NO'); 

  
%Make Calculations 
%Calculate the number of links 
Nlinks = 0; 
[Err, Nlinks] = calllib('epanet2', 'ENgetcount', 2, Nlinks); 

  
%Calculate average velocity and shear stress 
[avgVel, avgShear, avgFlw, avgHl,varShear] = 

HydraulicCalculations(Nlinks);   %Changed from[a,b] 
Vavg = avgVel; 
Tavg = avgShear; 
Favg = avgFlw; 
Hlavg = avgHl;  
varShearOutPut = varShear'; 

  
%Read  Link Ids from EPANET 
id = ' '; 
LinkIds = { }; 
for i = 1:Nlinks 
    [Err, id] = calllib('epanet2', 'ENgetlinkid', i, id); 
    LinkIds{i} = id; 
end 

  
%Read Start and End node of link 
S_Node_ = 0; E_Node_ = 0;  
S_Node_Id_ = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id_ = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
S_Node_Id = { }; 
E_Node_Id = { }; 

  
for i = 1:Nlinks 
    [Err, S_Node_, E_Node_]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node_, E_Node_); 
    [Err, S_Node_Id_] = calllib('epanet2', 'ENgetnodeid', S_Node_, 

S_Node_Id_); 
    [Err, E_Node_Id_] = calllib('epanet2', 'ENgetnodeid', E_Node_, 

E_Node_Id_); 

    
    S_Node_Id{i} = S_Node_Id_; 
    E_Node_Id{i} = E_Node_Id_; 
end 
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%Read Link length from EPANET 
len_ = 0.0; 
len = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, len_] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len_); 
    len(i) = len_; 
end 

  
%Read Link diameters from EPANET 
dia_ = 0.0; 
dia = zeros(1,Nlinks); 
for i = 1:Nlinks 
    [Err, dia_] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia_); 
    dia(i) = dia_; 
end  

  
%%Export the values 
M = [LinkIds', S_Node_Id', E_Node_Id', num2cell(len'), num2cell(dia'), 

num2cell(Favg'), num2cell(Hlavg'), num2cell(Vavg'), num2cell(Tavg')]; 
dlmcell('LinkParameters.csv',M, 'delimiter', ',');      

  
%Close EPANET toolkit 
Err = calllib('epanet2', 'ENclose'); 

  
%Unload EPANET DLL. 
unloadlibrary('epanet2'); 
return 

  
function [avgVel, avgShear, avgFlw, avgHl,varShear] = 

HydraulicCalculations(Nlinks) 
%Solve Hydraulics and calculate parameters for current loading 

  
sumVel = zeros(1,Nlinks); sumShear = zeros(1,Nlinks); sumFlw = 

zeros(1,Nlinks); sumHl = zeros(1,Nlinks); 
%avgVel = zeros(1,Nlinks); avgShear = zeros(1,Nlinks); avgFlw = 

zeros(1,Nlinks); avgHl = zeros(1,Nlinks); 
t = 0; tstep=1; 
Err = calllib('epanet2', 'ENopenH'); 
Err = calllib('epanet2', 'ENinitH', 0); 
tCount = 0; 
%sumShear = zeros(1,5000); 
while(tstep > 0) 
   [Err, t] = calllib('epanet2', 'ENrunH', t); 
   sumShear = zeros(1,Nlinks);      
   %Calculate various parameters at current timestep 
   [sumVel, sumShear, sumFlw, sumHl] = calcparams(sumVel, sumShear, 

sumFlw, sumHl, Nlinks); 

            
   [Err, tstep] = calllib('epanet2', 'ENnextH', tstep); 

    
   if tCount ==0 
       sumShear_ = sumShear; 
   else 
   sumShear_ =[sumShear_;sumShear];  
   end 
   tCount = tCount+1; 
end 

  
varShear = nanstd(sumShear_,0,1); 
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%save varShear.csv; 
dbltCount= double(tCount); 
avgVel = sumVel/dbltCount; 
avgShear = sumShear/dbltCount; 
avgFlw = sumFlw/dbltCount; 
avgHl = sumHl/dbltCount; 

 
Err = calllib('epanet2', 'ENcloseH'); 
return 

  
function [v, t, f, hL] = calcparams(mV, mT, mfL, mhL, Nl) 
Rho = 1000.0; g = 9.80665; 
dia = 0.0; len = 0.0; vel = 0.0; Hl = 0.0;  
S_Node = 0; E_Node = 0; flw = 0.0; 
S_Node_Id = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 

  
v = zeros(1,Nl); t = zeros(1,Nl); f = zeros(1,Nl); hL = zeros(1,Nl); 
for i = 1:Nl 
    [Err, dia] = calllib('epanet2', 'ENgetlinkvalue', i, 0, dia); 
    [Err, len] = calllib('epanet2', 'ENgetlinkvalue', i, 1, len); 
    [Err, vel] = calllib('epanet2', 'ENgetlinkvalue', i, 9, vel); 
    [Err, Hl]  = calllib('epanet2', 'ENgetlinkvalue', i, 10, Hl); 
    [Err, S_Node, E_Node]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node, E_Node); 
    [Err, S_Node_Id] = calllib('epanet2', 'ENgetnodeid', S_Node, 

S_Node_Id); 
    [Err, E_Node_Id] = calllib('epanet2', 'ENgetnodeid', E_Node, 

E_Node_Id); 
    [Err, flw]  = calllib('epanet2', 'ENgetlinkvalue', i, 8, flw); 

     
    mV(i)= mV(i)+ vel; 
    v(i) = mV(i); 
    shear = Rho*g*(dia/4000)*(Hl/Len); 
    mT(i) = mT(i)+ shear; 
    t(i) = mT(i); 
    mfL(i) = mfL(i)+ flw; 
    f(i) = mfL(i); 
    mhL(i) = mhL(i)+ Hl; 
    hL(i)= mhL(i);  
end     
return 

 

 

 

 

 

 

 

 

 



 

260 

 

  6
2
 

Appendix B: Microsoft visual basic source code for the ANN(t) model 

 
Public Class Form1 
    Dim H1_1 As Double 
    Dim H1_2 As Double 
    Dim H1_3 As Double 
    Dim H1_4 As Double 
    Dim H1_5 As Double 
    Dim H1_6 As Double 
 
 
 
'Calculate accumulation potential 
Private Sub cmdCalculate_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles cmdCalculate.Click 
 
'Hidden node1 
H1_1 = Math.Tanh(0.5 * (0.463284479120175 + 0.00949247676167365 * 
Me.txtALUM.Text + 0.0126597034177741 * Me.txtCALC.Text + -0.241611053047977 * 
Me.txtFCR.Text + 0.0868278598646471 * Me.txtCOLO.Text + -0.0565284114139191 * 
Me.txtpHEstimate.Text + 0.0255275956774647 * Me.txtMAGN.Text + 
0.0000766274482116695 * Me.txtPHUS.Text + -0.617791898552024 * 
Me.txtTURB.Text)) 
 
'Hidden node2 
H1_2 = Math.Tanh(0.5 * (0.524089025180102 + -0.0093927263963424 * 
Me.txtALUM.Text + -0.00429357092183455 * Me.txtCALC.Text + 0.184590911540848 
* Me.txtFCR.Text + -0.0975214033083568 * Me.txtCOLO.Text + -
0.0932180605196759 * Me.txtpHEstimate.Text + -0.0679959768791871 * 
Me.txtMAGN.Text + 0.0000531507655027744 * Me.txtPHUS.Text + -
0.591656495168582 * Me.txtTURB.Text)) 
 
'Hidden node3 
H1_3 = Math.Tanh(0.5 * (0.592972546773058 + 0.00910191563652503 * 
Me.txtALUM.Text + -0.0125474935526051 * Me.txtCALC.Text + -0.104847701371256 
* Me.txtFCR.Text + 0.0837164595497211 * Me.txtCOLO.Text + -
0.00928227514352046 * Me.txtpHEstimate.Text + -0.116632230957134 * 
Me.txtMAGN.Text + -0.0000363256013144583 * Me.txtPHUS.Text + 
0.534025280758758 * Me.txtTURB.Text)) 
 
'Hidden node4 
H1_4 = Math.Tanh(0.5 * ((-1.24855417584072) + -0.0100469592521452 * 
Me.txtALUM.Text + 0.00226351139847208 * Me.txtCALC.Text + 0.160204621314887 * 
Me.txtFCR.Text + -0.0388309125044971 * Me.txtCOLO.Text + 0.14773421980523 * 
Me.txtpHEstimate.Text + 0.12642136437944 * Me.txtMAGN.Text + -
0.0000601494808437273 * Me.txtPHUS.Text + 0.595142615935719 * 
Me.txtTURB.Text)) 
 
'Hidden node5 
H1_5 = Math.Tanh(0.5 * ((-0.388120283539696) + -0.0101866006155669 * 
Me.txtALUM.Text + -0.00331745165021977 * Me.txtCALC.Text + 0.108475546713748 
* Me.txtFCR.Text + -0.00751084934619563 * Me.txtCOLO.Text + 
0.0618187020514616 * Me.txtpHEstimate.Text + 0.0177091783385372 * 
Me.txtMAGN.Text + 0.0000155636972814439 * Me.txtPHUS.Text + 0.180649323547993 
* Me.txtTURB.Text)) 
 
'Hidden node6 
H1_6 = Math.Tanh(0.5 * ((-2.51392454307646) + -0.0176116384731722 * 
Me.txtALUM.Text + 0.0223087999712135 * Me.txtCALC.Text + 1.28423784732323 * 
Me.txtFCR.Text + 0.0634063145648184 * Me.txtCOLO.Text + 0.292916543065033 * 
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Me.txtpHEstimate.Text + 0.0179912457938581 * Me.txtMAGN.Text + -
0.000210485948113387 * Me.txtPHUS.Text + 0.514295980691018 * Me.txtTURB.Text)) 
 
'Fe and Mn acummulated 
Me.txtFeandMnAccum.Text = (-0.102988239949188) + 1.65672756816735 * H1_1 + 
1.94026905238202 * H1_2 + 1.69574405883207 * H1_3 + 2.47113093924084 * H1_4 + 
-1.15005573105549 * H1_5 + -0.0517311032644249 * H1_6 

End Sub 
 
 
 
'Exit 
Private Sub cmdExit_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles cmdExit.Click 
         End 
     End Sub 
End Class 
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Appendix C: seasonal variations of customer complaints  

  

  

  

Figure B.1 Seasonal variations of customer complaints from some DMAs 
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Appendix D: Source code for calculating the shortest distance from 

reservoir to node 

 

function [] = CalcDistFromReservoirToNode(InputFile) 

  
%Load EPANET DLL 
if ~libisloaded('epanet2'), loadlibrary('epanet2', 'epanet2.h'); end  

  
%Get the excel tab 
ExcelTab = InputFile(1:6); 

  
%Open EPANET toolkit 
Err = calllib('epanet2', 'ENopen', InputFile, 'report.rpt',' '); 

  
%Supress the writing of all error messages to be written to report.rpt. 
Err = calllib('epanet2', 'ENsetreport', 'MESSAGES NO'); 

  
%Calculate the number of links 
Nlinks = 0; 
[Err, Nlinks] = calllib('epanet2', 'ENgetcount', 2, Nlinks); 

  
%Calculate the number of nodes 
Nnodes = 0; 
[Err, Nnodes] = calllib('epanet2', 'ENgetcount', 0, Nnodes); 

  
%Get  Node Ids from EPANET 
id = 'abcdefghijklmnopqrstuvwxyzaaaaa'; 
NodeIds = { }; 
for i = 1:Nnodes 
    [Err, id] = calllib('epanet2', 'ENgetnodeid', i, id); 
    NodeIds{i} = id; 
end 

  
len_ = 0.0; len = zeros(1,Nlinks); 
S_Node_ = 0; E_Node_ = 0;  
S_Node_Id_ = 'abcdefghijklmnopqrstuvwxyzaaaaa'; E_Node_Id_ = 

'abcdefghijklmnopqrstuvwxyzaaaaa'; 
S_Node_Id = { }; E_Node_Id = { }; id = ' '; LinkIds = { }; 
for i = 1:Nlinks 
    [Err, len_] = calllib('epanet2', 'ENgetlinkvalue', i, int32(1), len_);   
    [Err, S_Node_, E_Node_]  = calllib('epanet2', 'ENgetlinknodes', i, 

S_Node_, E_Node_); 
    [Err, S_Node_Id_] = calllib('epanet2', 'ENgetnodeid', S_Node_, 

S_Node_Id_); 
    [Err, E_Node_Id_] = calllib('epanet2', 'ENgetnodeid', E_Node_, 

E_Node_Id_); 
    [Err, id] = calllib('epanet2', 'ENgetlinkid', i, id); 

     
    LinkIds{i} = id; 
    if len_ == 0 
        len_ = 0.3; 
    end 

  
    len(i) = len_; 
    S_Node_Id{i} = S_Node_Id_; 
    E_Node_Id{i} = E_Node_Id_; 
end 
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%Give nodes integer names 
NodeNum_ = 0; 
for i = 1:Nnodes 
    NodeNum_ = NodeNum_ +1; 
    NodeNum(i) = NodeNum_; 
end 

  
%Givelink integer names 
LinkNum_ = 0; 
for i = 1:Nlinks 
    LinkNum_ = LinkNum_ +1; 
    LinkNum(i) = LinkNum_; 
end 

  
%Put node properties in a Matrix 
NodeProperties = [NodeIds', num2cell(NodeNum')]; 

  
%Get the integer values for StartNodes 
SNodeNum = zeros(1,Nlinks); 
for i=1:Nlinks 
    [SNodeNum_] = vlookup(NodeProperties, cell2mat(S_Node_Id(i)), 2, 1); 
    SNodeNum(i) = cell2mat(SNodeNum_); 
end 

  
%Get the numeric values for EndNodes 
ENodeNum = zeros(1,Nlinks); 
for i=1:Nlinks 
    [ENodeNum_] = vlookup(NodeProperties, cell2mat(E_Node_Id(i)), 2, 1); 
    ENodeNum(i) = cell2mat(ENodeNum_); 
end 

  
%Convert the number of links and nodes from integer to double 
dblNnodes = double(Nnodes); 
dblNlinks = double(Nlinks); 
%Create a sparse matrix and force it into a square matrix 
Msparse = sparse(SNodeNum', ENodeNum', len',  dblNnodes, dblNnodes, 

dblNlinks); 

  
%Create a bidirectional link between the nodes 
M = Msparse + Msparse'; 
 %Calculate maximum velocity and shear stress 

[maxVel, maxShear, maxFlw, maxHl] = Hydraul 
%Create an adjancy matrix 
MSparseAdj = (M>0); 
Madj = full(MSparseAdj); 

  
%Find the dead ends nodes (in integers) 
DeadEndsAllInt=leaf_nodes(Madj); 

  
%calculate the number of dead ends 
NDeadEndsAll = numel(DeadEndsAllInt); 

  
%List the the dead end node names (original ie. in characters) which 

comprises of nodes tanks 
%and reservoirs 
for i=1:NDeadEndsAll 
    [DeadEndNodesAll_] = vlookup(NodeProperties, DeadEndsAllInt(i), 1, 2); 
    DeadEndNodesAllChar(i) = DeadEndNodesAll_; 
end 
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%Find all reservoirs and tanks 
ReservoirIds_= 'abcdefghijklmnopqrstuvwxyzaaaaa'; ReservoirIds = { }; 
TankIds_= 'abcdefghijklmnopqrstuvwxyzaaaaa'; TankIds = { }; 
NodeType_ = int32(0); 
for i = 1:Nnodes 
    %type=int32(0); 
    [Err, NodeType_] = calllib('epanet2', 'ENgetnodetype', i, NodeType_); 
    NodeType(i) = NodeType_; 
    if NodeType_ == 1 
        [Err, ReservoirIds_] = calllib('epanet2', 'ENgetnodeid', i, 

ReservoirIds_); 
        ReservoirIds{i} = ReservoirIds_; 
    elseif NodeType_ == 2 
        [Err, TankIds_] = calllib('epanet2', 'ENgetnodeid', i, TankIds_); 
        TankIds{i} = TankIds_; 
    end 
end 

  
%Remove empty cells and add the ReservoirIds to the TankIds 
ReservoirIds = ReservoirIds(~cellfun('isempty',ReservoirIds));  
TankIds = TankIds(~cellfun('isempty',TankIds));  
ReservoirsAndTanksIDs = {ReservoirIds{:}, TankIds{:}}; 

  
%Remove Reservoirs and Tanks from dead ends 
DeadEndNodes = setdiff(DeadEndNodesAllChar,ReservoirsAndTanksIDs); 

  
%Find the corresponding numeric values for the dead end  
NDeadEndNodes = numel(DeadEndNodes); 
for i=1:NDeadEndNodes  
    [DeadEndNodesNum_] = vlookup(NodeProperties, 

cell2mat(DeadEndNodes(i)), 2, 1); 
    DeadEndNodesNum(i) = DeadEndNodesNum_; 
end 

  
%Find the numeric values for the reservoirs and tanks 
NReservoirsAndTanks = numel(ReservoirsAndTanksIDs); 
for i=1:NReservoirsAndTanks 
    [ReservoirsAndTanksNum_] = vlookup(NodeProperties, 

cell2mat(ReservoirsAndTanksIDs(i)), 2, 1); 
    ReservoirsAndTanksNum(i) = ReservoirsAndTanksNum_; 
end 

  
%Calculate the shortest distance between reservoirs and nodes 
[ShortDistReservoirToNode, CorrShortestNodeNum, CorrReservoirsAndTanksNum] 

= GetDistSampledToDeadEnd(M,ReservoirsAndTanksNum,NodeNum); 

  
%Find the corresponding character values for the nodes with shortest 

distance from reservoir 
disp('Finding the corresponding character values for the nodes with 

shortest distance from reservoir'); 
NCorrShortestNodeNum = numel(CorrShortestNodeNum); 
for i=1:NCorrShortestNodeNum  
%for i=1:Nnodes   
    CorrShortestNodeNum = CorrShortestNodeNum'; 
    [CorrShortestNodeChar_] = vlookup(NodeProperties, 

CorrShortestNodeNum(i), 1, 2); 
    CorrShortestNodeChar(i) = CorrShortestNodeChar_; 
    disp(['Calculating ', num2str(i), ' Out of ', 

num2str(NCorrShortestNodeNum)]); 
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end 
disp('Finished Finding the corresponding character values for the nodes 

with shortest distance from reservoir'); 

  
%Find the corresponding character values for reservoirs and tanks 
disp('Finding the corresponding character values for reservoirs and 

tanks'); 
NCorrReservoirsAndTanksNum = numel(CorrReservoirsAndTanksNum); 
for i=1:NCorrReservoirsAndTanksNum 
%for i=1:NReservoirsAndTanks   
    CorrReservoirsAndTanksNum = CorrReservoirsAndTanksNum'; 
    [CorrReservoirsAndTanksChar_] = vlookup(NodeProperties, 

CorrReservoirsAndTanksNum(i), 1, 2); 
    CorrReservoirsAndTanksChar(i) = CorrReservoirsAndTanksChar_; 
    disp(['Calculating ', num2str(i), ' Out of ', 

num2str(NCorrReservoirsAndTanksNum)]); 
end 
disp('Finished Finding the corresponding character values for reservoirs 

and tanks'); 

  
%Write the values into excel sheet 
rangeStr = sprintf('A2:A%d', length(CorrReservoirsAndTanksNum)+1);  
xlswrite('ReservoirNodesCalculations.xlsx',CorrReservoirsAndTanksChar',Ex

celTab,rangeStr); 

  
rangeStr = sprintf('B2:B%d', length(CorrShortestNodeNum)+1);  
xlswrite('ReservoirNodesCalculations.xlsx',CorrShortestNodeChar',ExcelTab

,rangeStr); 

  
rangeStr = sprintf('C2:C%d', length(ShortDistReservoirToNode)+1);  
xlswrite('ReservoirNodesCalculations.xlsx',ShortDistReservoirToNode',Exce

lTab,rangeStr); 

  
%Close EPANET toolkit 
Err = calllib('epanet2', 'ENclose'); 

  
%Unload EPANET DLL. 
unloadlibrary('epanet2'); 

  
return 

  

  

   
function [ShortDistReservoirToNode, CorrShortestNodeNum, 

CorrReservoirsAndTanksNum] = 

GetDistSampledToDeadEnd(M,ReservoirsAndTanksNum,NodeNum) 
   %%%%%%%-----  This function calculates the shortest distance from the 

sampled nodes to dead ends -----%%%% 
    NReservoirsAndTanksNum = numel(ReservoirsAndTanksNum); NNodeNum = 

numel(NodeNum); 
    CorrShortestNodeNum = zeros(1,NNodeNum); CorrShortestNodeNum_ = 

zeros(1,NNodeNum); 
    CorrReservoirsAndTanksNum = zeros(1,NNodeNum); 

CorrReservoirsAndTanksNum_ = zeros(1,NNodeNum);       
    ShortDistReservoirToNode = zeros(1,NNodeNum);  

     
    for i = 1:NReservoirsAndTanksNum 
          disp(['Calculating ReservoirsAndTanks: ', num2str(i), ' Out of 

', num2str(NReservoirsAndTanksNum)]); 
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            ShortDistReservoirToNode__ = zeros(1,NNodeNum); 
            for j = 1:NNodeNum 
                [ShortDistReservoirToNode_, path_, pred_] = 

graphshortestpath(M,cell2mat(ReservoirsAndTanksNum(i)),NodeNum(j)); 
                ShortDistReservoirToNode__(j) = 

ShortDistReservoirToNode__(j) + ShortDistReservoirToNode_; 
                CorrReservoirsAndTanksNum_(j) = 

cell2mat(ReservoirsAndTanksNum(i)); 
                CorrShortestNodeNum_(j)= NodeNum(j); 
            end 
            if i==1     
                CorrReservoirsAndTanksNum = CorrReservoirsAndTanksNum_;  
                CorrShortestNodeNum = CorrShortestNodeNum_; 
                ShortDistReservoirToNode = ShortDistReservoirToNode__; 
            else  
            CorrReservoirsAndTanksNum = 

[CorrReservoirsAndTanksNum,CorrReservoirsAndTanksNum_];  
            CorrShortestNodeNum = 

[CorrShortestNodeNum,CorrShortestNodeNum_]; 
            ShortDistReservoirToNode = 

[ShortDistReservoirToNode,ShortDistReservoirToNode__]; 
            end 
    end 
 return    
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Appendix E: Source code to determine which of the reservoirs / tanks 

supply the nodes with water  

 
function SupplySources = CalcPathDelaysResToNode1(epainpfile, outputfile) 

  
%Open epanet library 
if ~libisloaded('epanet2'), loadlibrary('epanet2', 'epanet2.h'); end 

   
%Open EPANET toolkit 
Err = calllib('epanet2', 'ENopen', epainpfile, 'report.rpt',' '); 

%***Added**** 

  
%Supress the writing of all error messages to be written to report.rpt. 
Err = calllib('epanet2', 'ENsetreport', 'MESSAGES NO'); %***Added**** 

  
%Retrieve the number of nodes in the network (junctions+reservoirs+tanks) 
Nnodes = 0; Err =0; 
[Err, Nnodes] = calllib('epanet2', 'ENgetcount', 0, Nnodes); 

  
%Retrieve the number of tanks (reservoirs+tanks) in the network 
Ntanks = 0; Err =0; 
[Err, Ntanks] = calllib('epanet2', 'ENgetcount', 1, Ntanks); 

   

  
%NOTE: epanet numbers juctions from 1 to Njuncs 
%and (reservoirs + tanks) from (Njuncs+1) to Nnodes 
%Calculate No. of Junctions in the network 
Njuncs = Nnodes - Ntanks; 

  
%use a large sample time to achieve steady state 
sampletime = 241; 

  
%Complete hydraulic analysis and save hydraulics data 
hyddata = 'hydraulicsfile'; 
Err = calllib('epanet2', 'ENsettimeparam', 0, (sampletime+40)*3600); %set 

duration EN_DURATION 
Err = calllib('epanet2', 'ENsolveH'); 
Err = calllib('epanet2', 'ENsavehydfile', hyddata); 

  
disp('Hydraulic analysis is Completed.....'); 
disp('  '); 

  
%Call the water quality function for each junction (output node) 
SupplySources = zeros(Njuncs, Ntanks); 

  
for i = 1:Njuncs 
    %Retrieve id of junction i(output node) 
    outputid = 'abcdefghijklmnopqrstuvwxyzaaaaa'; 
    [Err, outputid] = calllib('epanet2', 'ENgetnodeid', i, outputid); 
    disp(['Calculating Delays for junction: ', num2str(i), ' Out of ', 

num2str(Njuncs)]); 

     
    %find which source nodes (reservoirs and tanks) supplying water to 

output node i (junction) 
    SourcesSupplyingOrNot = zeros(1,Ntanks);  %initially assume no source 

is supplying (0: false) 
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    for j = 1:Ntanks 
        %retrie the id of source node j 
        sourceid = 'abcdefghijklmnopqrstuvwxyzaaaaa'; 
        [Err, sourceid] = calllib('epanet2', 'ENgetnodeid', j+Njuncs, 

sourceid); 

         
        %Check if the source node j is supplying water to output node i 
        IsSupplying = CalcPathDelaysResToNode2(hyddata, sourceid, 

outputid, sampletime); 

         
        %if source node j is supply node to junction i, store that 

information 
        SourcesSupplyingOrNot(j) = IsSupplying; % 1 means true (supplying) 

and 0 means false 
    end 

     
    %Store whether each source node is suplying or not to junction i  
    SupplySources(i,:) = SourcesSupplyingOrNot; 
end 

  
%Print output to a file 
fid = fopen(outputfile, 'w'); 
fprintf(fid, '%s', 'JuncId'); 
for j = Njuncs+1:Nnodes 
    sourceid = 'abcdefghijklmnopqrstuvwxyzaaaaa'; 
    [Err, sourceid] = calllib('epanet2', 'ENgetnodeid', j, sourceid); 
    fprintf(fid, '\t%s', sourceid); 
end 
for i = 1:Njuncs %***Changed**** 
    juncid = 'abcdefghijklmnopqrstuvwxyzaaaaa'; 
    [Err, juncid] = calllib('epanet2', 'ENgetnodeid', i, juncid); 
    fprintf(fid, '\n%s', juncid); 
    fprintf(fid, '\t%d', SupplySources(i,:)); 
end 
fclose(fid); 

  
disp('  '); 
disp('Completed calculating Delays....'); 

  
%Close & unload epanet library 
Err = calllib('epanet2', 'ENclose'); 
unloadlibrary('epanet2'); 
return 
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Appendix F: Source code for plotting the ANN(t,ѱ) risk maps  

 
function [] = RiskMaps_Hierarchical_MShear_VarShear_Wage_DFS(WSZ) 
ExcelTab = WSZ; 
%%%%%   MaxShear and VarShear input Parameters   %%%%%% 
FeAndMnAcummPFuzzy_MaxShear_VarShear_Input=readfis('FeandMnAcummPotential

_Shear_VarShear.fis'); 
%Read the input variables from excel sheet 
InputVariables_MaxShear_VarShear = xlsread('TableForRiskMaps.xlsx', 

ExcelTab, 'E:F'); 
%compute the Accumulation potential 
FeAndMnAcummPInterm_MaxShear_VarShear=evalfis(InputVariables_MaxShear_Var

Shear,FeAndMnAcummPFuzzy_MaxShear_VarShear_Input); 
%Write the values of the Accumulation potential into excel sheet 
rangeStr = sprintf('BN2:BN%d', 

length(InputVariables_MaxShear_VarShear)+1);  
xlswrite('TableForRiskMaps.xlsx',FeAndMnAcummPInterm_MaxShear_VarShear,Ex

celTab,rangeStr); 

  
%%%%%   WaterAge and Distance froemSource input Parameters   %%%%%% 
FeAndMnAcummPFuzzy_WAge_DFS_Input=readfis('FeandMnAcummPotential_WaterAge

_DistFrmSource.fis'); 
%Read the input variables from excel sheet 
InputVariables_WAge_DFS = xlsread('TableForRiskMaps.xlsx', ExcelTab, 

'G:H'); 
%compute the Accumulation potential 
FeAndMnAcummPInterm_WAge_DFS=evalfis(InputVariables_WAge_DFS,FeAndMnAcumm

PFuzzy_WAge_DFS_Input); 
%Write the values of the Accumulation potential into excel sheet 
rangeStr = sprintf('BO2:BO%d', length(InputVariables_WAge_DFS)+1);  
xlswrite('TableForRiskMaps.xlsx',FeAndMnAcummPInterm_WAge_DFS,ExcelTab,ra

ngeStr); 

  
ExcelTab = WSZ; 
%%%%%  Intermediate Parameters and Output  %%%%%% 
FeAndMnAcummPFuzzy_MaxShearVarShear_WAgeDFS_Interm=readfis('FeandMnAcummP

otential_Hierarchical_Shear_VarShear_WaterAge_DistFrmSource.fis'); 
%Read the input variables from excel sheet 
IntermVariables_MaxShearVarShear_WAgeDFS = 

xlsread('TableForRiskMaps.xlsx', ExcelTab, 'BN:BO'); 
%compute the Accumulation potential 
FeAndMnAcummPOutPut_MaxShearVarShear_WAgeDFS=evalfis(IntermVariables_MaxS

hearVarShear_WAgeDFS,FeAndMnAcummPFuzzy_MaxShearVarShear_WAgeDFS_Interm); 
%Write the values of the Accumulation potential into excel sheet 
rangeStr = sprintf('BP2:BP%d', 

length(IntermVariables_MaxShearVarShear_WAgeDFS)+1);  
xlswrite('TableForRiskMaps.xlsx',FeAndMnAcummPOutPut_MaxShearVarShear_WAg

eDFS,ExcelTab,rangeStr); 

  
%Read the x and y-coordinates (all nodes) from excel sheet 
x_ = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'B:B'); 
y_ = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'C:C'); 
z_ = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'BP:BP'); %Risk parameter 

  
%Read the x and y-coordinates for reservoirs and tanks 
x_rt = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'BC:BC'); 
y_rt = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'BD:BD'); 
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%Read the x and y-coordinates and Customer complaints nodes from excel 

sheet 
xCC = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'AH:AH'); 
yCC = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'AI:AI'); 
zCC = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'AG:AG'); %Customer 

complaints 

  
disp('Finished Reading'); 

  
%Plot the network Nodes  
Fig.; 
%Plot the reservoirs 
scatter(x_rt,y_rt,250,'s', 'markerfacecolor',[1 0 1]); 
%scatter(x_rt,y_rt,1000,'.'); 
hold on; 
scatter(x_, y_, 181, z_, '.'); 
colorbar; 
hold on; 
%Plot the network diagram for risk map 
PlotNetworkDiagram(ExcelTab); 
title(['Predicted Fe and Mn Accumulation Potential Risk Map using Input 

Parameters Maximum Shear Stress, Variation in Shear Stress, Water Age and 

Distance from Source  for ',WSZ]); 
%Remove x and y ticks 
set(gca,'xtick',[]); 
set(gca,'ytick',[]); 
hold off; 

  
%Plot the contour map - Customer complaints 
Fig.; 
%Plot the reservoirs 
scatter(x_rt,y_rt,250,'s', 'markerfacecolor',[1 0 1]); 
%scatter(x_rt,y_rt,1000,'.'); 
hold on; 
PlotContourMap(xCC,yCC,zCC) 
colorbar; 
hold on; 
%Plot the network Nodes for contour map - Customer complaints 
plot(x_, y_,'k.'); 
hold on; 
%Plot the network diagram for contour map - Customer complaints 
PlotNetworkDiagram(ExcelTab); 
title(['Customer Complaints Contour Map for ',WSZ]); 
%Remove x and y ticks 
set(gca,'xtick',[]); 
set(gca,'ytick',[]); 
hold off; 

  
%Plot the network Nodes (All Nodes) for risk map - Customer complaints 
Fig.; 
%Plot the reservoirs 
scatter(x_rt,y_rt,250,'s', 'markerfacecolor',[1 0 1]); 
%scatter(x_rt,y_rt,1000,'.'); 
hold on; 
%Plot the network Nodes for contour map - Customer complaints 
plot(x_, y_,'k.'); 
hold on; 
scatter(xCC, yCC, 250, zCC, '.'); 
colorbar; 
hold on; 
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%Plot the network diagram for risk map 
PlotNetworkDiagram(ExcelTab); 
title(['Customer Complaints Risk Map for ',WSZ]); 
%Remove x and y ticks 
set(gca,'xtick',[]); 
set(gca,'ytick',[]); 
hold off; 

  
%Plot the 3D risk map - Customer complaints 
Fig.; 
%Plot the reservoirs 
scatter(x_rt,y_rt,250,'s', 'markerfacecolor',[1 0 1]); 
%scatter(x_rt,y_rt,1000,'.'); 
hold on; 
%Plot the network Nodes for contour map - Customer complaints 
plot(x_, y_,'k.'); 
hold on; 
%Plot the network diagram for risk map 
PlotNetworkDiagram(ExcelTab); 
stem3 (xCC, yCC, zCC, 'marker', 'none', 'linewidth',3) 
hold on; 
title(['Customer Complaints 3D Risk Map for ',WSZ]); 
%Remove x and y ticks 
set(gca,'xtick',[]); 
set(gca,'ytick',[]); 
hold off; 
return 

  
function PlotContourMap(x,y,z) 
a = size([x,y,z]); 
b=a(:,1); 
xlin=linspace(min(x),max(x),b);    %xlin=linspace(min(x_),max(x_),b);    
ylin=linspace(min(y),max(y),b);    %ylin=linspace(min(y_),max(y_),b);    
[X,Y]=meshgrid(xlin,ylin); 
uint8(x); uint8(y); uint8(z); uint8(X); uint8(Y); 
Z=griddata(x,y,z,X,Y); 
%mesh(X,Y,Z); 
contourf(X,Y,Z); 
%colorbar; 
return 

  

  

  

  

  
function PlotNetworkDiagram(ExcelTab) 

  
%Read the node properties (x and y-coordinates) from excel sheet 
XYCoor= xlsread('TableForRiskMaps.xlsx', ExcelTab, 'B:C'); 
%Give nodes integer names 
NodeNum_ = 0; Nnodes = length(XYCoor); 
for i = 1:Nnodes 
    NodeNum_ = NodeNum_ +1; 
    NodeNum(i) = NodeNum_; 
end 
Node_XY_MatrixNum = [NodeNum' XYCoor]; 

  
%Read Node Ids 
[~,NodeIds,~] = xlsread('TableForRiskMaps.xlsx', ExcelTab, 'A:A'); 
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NodeIds(1) = []; 

  
%Put node properties in a Matrix 
NodeMatrix = [NodeIds, num2cell(NodeNum')]; 

  
%Read the link properties from excel sheet 
[~,LinkProperties,~] = xlsread('TableForRiskMaps.xlsx', ExcelTab, 

'AA:AC'); 
LinkProperties(1,:)=[]; 
S_Node_Id = LinkProperties(:,2); 
%S_Node_Id = S_Node_Id'; 
E_Node_Id = LinkProperties(:,3); 
%E_Node_Id = E_Node_Id'; 
%Givelink integer names 
LinkNum_ = 0; Nlinks = int32(length(LinkProperties)); 
for i = 1:Nlinks 
    LinkNum_ = LinkNum_ +1; 
    LinkNum(i) = LinkNum_; 
end 

  
%Get the corresponding integer values for StartNodes 
SNodeNum = zeros(1,Nlinks); 
for i=1:Nlinks 
    [SNodeNum_] = vlookup(NodeMatrix, cell2mat(S_Node_Id(i)), 2, 1); 
    SNodeNum(i) = cell2mat(SNodeNum_); 
end 

  
%Get the corresponding numeric values for EndNodes 
ENodeNum = zeros(1,Nlinks); 
for i=1:Nlinks 
    [ENodeNum_] = vlookup(NodeMatrix, cell2mat(E_Node_Id(i)), 2, 1); 
    ENodeNum(i) = cell2mat(ENodeNum_); 
end 

  
LinkMatrixNum = [LinkNum' SNodeNum' ENodeNum']; 
%Plot network diagram 
for i = 1:Nlinks 
%    if (i <= Nnodes)  
%        text(Node_XY_MatrixNum(i,2),Node_XY_MatrixNum(i,3),[' ' 

num2str(i)]);  
%    end 
   

plot(Node_XY_MatrixNum(LinkMatrixNum(i,2:3)',2),Node_XY_MatrixNum(LinkMat

rixNum(i,2:3)',3),'k'); 
end 
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Appendix G: Source code to read data for fuzzy model  

 
function [inputData, FeAndMnMeasured, fSys, ruleData_ante, ruleData_cons, 

ruleData_wt, ruleData_conn, outputCol] = ReadData() 
%%%%%% NOTE!!!! 
%Run this function 1st before you run the Genetic Algorithm function 
%(GAfcn)to write the values consequents into excel sheet  

  
 ExcelTab = 'WSZ2_YrAvg'; 

  
%Read the column to determine which rules need to be optimised  
outputCol = xlsread('_OptimisedRules.xlsx', 'Rules4', 'C:C'); 

  
%Read actual Fe and Mn accumulation potential 
FeAndMnMeasured = xlsread('_TableForRiskMaps.xlsx', 'WSZ2_YrAvgOptAll', 

'AC:AC'); 

  
%FeAndMnMeasured = xlsread('_TableForRiskMaps.xlsx', ExcelTab, 'AS:AS'); 

  
 disp('Half way through'); 

  
inputData =  xlsread('_TableForRiskMaps.xlsx', 'WSZ2_YrAvgOptAll', 

'F2:Y219'); 

  
 %Put the fuzzy files into a cell 
fSys_ = 

{'_Chemical_Oxidation.fis','_Corrosion_With_Pipe_Age.fis','_Sorption.fis'

,'_Shear_Effect.fis','_Distance_Effect.fis','_Chemical_Effect.fis', ... 
    

'_Biological_Effect_With_WaterAge4.fis','_Hydraulic_Effect.fis','_Fe&Mn_A

ccum_Potential.fis'}; 

   
%Create an empty cell to store the fuzzy system. 
fSys = cell(9,1); 
for i=1:9 
    fSys{i}=readfis(fSys_{i}); 
end 

  
%Create an empty cell to store rules for the fuzzy system  
ruleData_cons = cell(9,1); 
ruleData_ante = cell(9,1); 
ruleData_conn = cell(9,1); 
ruleData_wt = cell(9,1); 

  
%%%%%%%%% Read the 1st fuzzy sub-system (Chemical Oxidation 

Parameters)%%%%%%%%%%% 
Chemical_Oxidation_Fuzzy=readfis(fSys_{1}); 
%determine the number of rules 
n = getfis(Chemical_Oxidation_Fuzzy,'numRules'); 
rules1_cons = zeros(n,1); 
rules1_wt = zeros(n,1); 
rules1_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Chemical_Oxidation_Fuzzy.rule(1).antecedent); 
rules1_ante = zeros(n,m); 
for j=1:n 
    rules1_cons(j) = Chemical_Oxidation_Fuzzy.rule(j).consequent; 
    rules1_ante(j,:)= Chemical_Oxidation_Fuzzy.rule(j).antecedent; 
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    rules1_wt(j) = Chemical_Oxidation_Fuzzy.rule(j).weight; 
    rules1_conn(j) = Chemical_Oxidation_Fuzzy.rule(j).connection; 
end 
ruleData_cons{1} = rules1_cons; 
ruleData_ante{1} = rules1_ante; 
ruleData_wt{1} = rules1_wt;  
ruleData_conn{1} = rules1_conn;  

  
%%%%%%%%%%% Read the 2nd fuzzy sub-system (Corrosion Parameters) 

%%%%%%%%%%%%%%% 
Corrosion_Fuzzy=readfis(fSys_{2}); 
%determine the number of rules 
n = getfis(Corrosion_Fuzzy,'numRules'); 
rules2_cons = zeros(n,1); 
rules2_wt = zeros(n,1); 
rules2_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Corrosion_Fuzzy.rule(1).antecedent); 
rules2_ante = zeros(n,m); 
for j=1:n 
    rules2_cons(j) = Corrosion_Fuzzy.rule(j).consequent; 
    rules2_ante(j,:)= Corrosion_Fuzzy.rule(j).antecedent; 
    rules2_wt(j) = Corrosion_Fuzzy.rule(j).weight; 
    rules2_conn(j) = Corrosion_Fuzzy.rule(j).connection; 
end 
ruleData_cons{2} = rules2_cons; 
ruleData_ante{2} = rules2_ante; 
ruleData_wt{2} = rules2_wt;  
ruleData_conn{2} = rules2_conn;  

  
%%%%%%%%%%% Read the 3rd fuzzy sub-system (Sorption Parameters) 

%%%%%%%%%%%%%%%% 
Sorption_Fuzzy=readfis(fSys_{3}); 
%determine the number of rules 
n = getfis(Sorption_Fuzzy,'numRules'); 
rules3_cons = zeros(n,1); 
rules3_wt = zeros(n,1); 
rules3_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Sorption_Fuzzy.rule(1).antecedent); 
rules3_ante = zeros(n,m); 
for j=1:n 
    rules3_cons(j) = Sorption_Fuzzy.rule(j).consequent; 
    rules3_ante(j,:)= Sorption_Fuzzy.rule(j).antecedent; 
    rules3_wt(j) = Sorption_Fuzzy.rule(j).weight; 
    rules3_conn(j) = Sorption_Fuzzy.rule(j).connection; 
end 
ruleData_cons{3} = rules3_cons; 
ruleData_ante{3} = rules3_ante; 
ruleData_wt{3} = rules3_wt;  
ruleData_conn{3} = rules3_conn;  

  
%%%%%%%%%%% Read the 4th fuzzy sub-system (Shear Stress Effect Parameters) 

%%%%%%%%%%%%%%%%%%%%%%% 
Shear_Stress_Effect_Fuzzy=readfis(fSys_{4}); 
%determine the number of rules 
n = getfis(Shear_Stress_Effect_Fuzzy,'numRules'); 
rules4_cons = zeros(n,1); 
rules4_wt = zeros(n,1); 
rules4_conn = zeros(n,1); 
%determine the number of antecedents 
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m = length(Shear_Stress_Effect_Fuzzy.rule(1).antecedent); 
rules4_ante = zeros(n,m); 
for j=1:n 
    rules4_cons(j) = Shear_Stress_Effect_Fuzzy.rule(j).consequent; 
    rules4_ante(j,:)= Shear_Stress_Effect_Fuzzy.rule(j).antecedent; 
    rules4_wt(j) = Shear_Stress_Effect_Fuzzy.rule(j).weight; 
    rules4_conn(j) = Shear_Stress_Effect_Fuzzy.rule(j).connection; 
end 
ruleData_cons{4} = rules4_cons; 
ruleData_ante{4} = rules4_ante; 
ruleData_wt{4} = rules4_wt;  
ruleData_conn{4} = rules4_conn;  

  
%%%%%%%%%% Read the 5th fuzzy sub-system (Distance Effect Parameters) 

%%%%%%%%%%%%%%% 
Distance_Stress_Effect_Fuzzy=readfis(fSys_{5}); 
%determine the number of rules 
n = getfis(Distance_Stress_Effect_Fuzzy,'numRules'); 
rules5_cons = zeros(n,1); 
rules5_wt = zeros(n,1); 
rules5_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Distance_Stress_Effect_Fuzzy.rule(1).antecedent); 
rules5_ante = zeros(n,m); 
for j=1:n 
    rules5_cons(j) = Distance_Stress_Effect_Fuzzy.rule(j).consequent; 
    rules5_ante(j,:)= Distance_Stress_Effect_Fuzzy.rule(j).antecedent; 
    rules5_wt(j) = Distance_Stress_Effect_Fuzzy.rule(j).weight; 
    rules5_conn(j) = Distance_Stress_Effect_Fuzzy.rule(j).connection; 
end 
ruleData_cons{5} = rules5_cons; 
ruleData_ante{5} = rules5_ante; 
ruleData_wt{5} = rules5_wt;  
ruleData_conn{5} = rules5_conn;  

  
%%%%%%%%%%% Read the 6th fuzzy sub-system (Chemical Effect Intermidiate 

Parameters) %%%%%%%%%%%%%%%% 
Chemical_Effect_Fuzzy=readfis(fSys_{6}); 
%determine the number of rules 
n = getfis(Chemical_Effect_Fuzzy,'numRules'); 
rules6_cons = zeros(n,1); 
rules6_wt = zeros(n,1); 
rules6_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Chemical_Effect_Fuzzy.rule(1).antecedent); 
rules6_ante = zeros(n,m); 
for j=1:n 
    rules6_cons(j) = Chemical_Effect_Fuzzy.rule(j).consequent; 
    rules6_ante(j,:)= Chemical_Effect_Fuzzy.rule(j).antecedent; 
    rules6_wt(j) =  Chemical_Effect_Fuzzy.rule(j).weight; 
    rules6_conn(j) =  Chemical_Effect_Fuzzy.rule(j).connection; 
end 
ruleData_cons{6} = rules6_cons; 
ruleData_ante{6} = rules6_ante; 
ruleData_wt{6} = rules6_wt;  
ruleData_conn{6} = rules6_conn;  

  
%%%%%%%%%% Read the 7th fuzzy sub-system (Biological Effect Intermidiate 

Parameters) %%%%%%%%%%%%%%% 
Biological_Effect_Fuzzy=readfis(fSys_{7}); 
%determine the number of rules 
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n = getfis(Biological_Effect_Fuzzy,'numRules'); 
rules7_cons = zeros(n,1); 
rules7_wt = zeros(n,1); 
rules7_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Biological_Effect_Fuzzy.rule(1).antecedent); 
rules7_ante = zeros(n,m); 
for j=1:n 
    rules7_cons(j) = Biological_Effect_Fuzzy.rule(j).consequent; 
    rules7_ante(j,:)= Biological_Effect_Fuzzy.rule(j).antecedent; 
    rules7_wt(j) = Chemical_Oxidation_Fuzzy.rule(j).weight; 
    rules7_conn(j) = Chemical_Oxidation_Fuzzy.rule(j).connection; 
end 
ruleData_cons{7} = rules7_cons; 
ruleData_ante{7} = rules7_ante; 
ruleData_wt{7} = rules7_wt;  
ruleData_conn{7} = rules7_conn; 

  
%%%%%%%%%%%%%%% Read the 8th fuzzy sub-system (Hydraulic Effect 

Intermidiate Parameters) %%%%%%%%%%%%%%%%% 
Hydraulic_Effect_Fuzzy=readfis(fSys_{8}); 
%determine the number of rules 
n = getfis(Hydraulic_Effect_Fuzzy,'numRules'); 
rules8_cons = zeros(n,1); 
rules8_wt = zeros(n,1); 
rules8_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Hydraulic_Effect_Fuzzy.rule(1).antecedent); 
rules8_ante = zeros(n,m); 
for j=1:n 
    rules8_cons(j) = Hydraulic_Effect_Fuzzy.rule(j).consequent; 
    rules8_ante(j,:)= Hydraulic_Effect_Fuzzy.rule(j).antecedent; 
    rules8_wt(j) = Hydraulic_Effect_Fuzzy.rule(j).weight; 
    rules8_conn(j) = Hydraulic_Effect_Fuzzy.rule(j).connection; 
end 
ruleData_cons{8} = rules8_cons; 
ruleData_ante{8} = rules8_ante; 
ruleData_wt{8} = rules8_wt;  
ruleData_conn{8} = rules8_conn; 

  
%%%%%%%%%%%% Read the 9th fuzzy sub-system (Accumulation Potential 

Parameters) %%%%%%%%%%%%%% 
Accumulation_Potential_Fuzzy=readfis(fSys_{9}); 
%determine the number of rules 
n = getfis(Accumulation_Potential_Fuzzy,'numRules'); 
rules9_cons = zeros(n,1); 
rules9_wt = zeros(n,1); 
rules9_conn = zeros(n,1); 
%determine the number of antecedents 
m = length(Accumulation_Potential_Fuzzy.rule(1).antecedent); 
rules9_ante = zeros(n,m); 
for j=1:n 
    rules9_cons(j) = Accumulation_Potential_Fuzzy.rule(j).consequent; 
    rules9_ante(j,:)= Accumulation_Potential_Fuzzy.rule(j).antecedent; 
    rules9_wt(j) = Accumulation_Potential_Fuzzy.rule(j).weight; 
    rules9_conn(j) = Accumulation_Potential_Fuzzy.rule(j).connection; 
end 
ruleData_cons{9} = rules9_cons; 
ruleData_ante{9} = rules9_ante; 
ruleData_wt{9} = rules9_wt;  
ruleData_conn{9} = rules9_conn; 
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%Put the fuzzy system into a cell 
 fSys = {Chemical_Oxidation_Fuzzy, Corrosion_Fuzzy, Sorption_Fuzzy, 

Shear_Stress_Effect_Fuzzy, Distance_Stress_Effect_Fuzzy, ... 
     Chemical_Effect_Fuzzy, Biological_Effect_Fuzzy, 

Hydraulic_Effect_Fuzzy, Accumulation_Potential_Fuzzy}; 

   
%Write the values consequents into excel sheet 
myCons = cell2mat(ruleData_cons); 
rangeStr = sprintf('D2:D%d', length(myCons)+1);  
xlswrite('_OptimisedRules.xlsx',myCons,'Rules4',rangeStr); 

  
return 
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Appendix H: Source code to evaluate the fuzzy system  

 
function [FeAndMnAccumP_Predicted] = EvalFuzzySytem(fSys,inputData) 

  
%%%%%%%%% Evaluate the 1st fuzzy sub-system (Chemical Oxidation 

Parameters) %%%%%%%%%%% 
%Compute the Chemical Oxidation 
inputData(:,5)=evalfis(inputData(:,[1 2 3 4]),fSys{1}); 

  
%%%%%%%%%%% Evaluate the 2nd fuzzy sub-system (Corrosion Parameters) 

%%%%%%%%%%%%%%% 
%Compute the Corrosion 
inputData(:,8)=evalfis(inputData(:,[5 6 7]),fSys{2}); 

  
%%%%%%%%%%%%%%%%%% Evaluate the 3rd fuzzy sub-system (Sorption Parameters) 

%%%%%%%%%%%%%%%% 
%Compute the Sorption  
inputData(:,11)=evalfis(inputData(:,[1 9 10]),fSys{3}); 

  
%%%%%%%%%%% Evaluate the 4th fuzzy sub-system (Shear Stress Effect 

Parameters) %%%%%%%%%%%%%%%%%%%%%%% 
inputData(:,17)=evalfis(inputData(:,[15 16]),fSys{4}); 

  
%%%%%%%%%% Evaluate the 5th fuzzy sub-system (Distance Effect Parameters) 

%%%%%%%%%%%%%%% 
%Compute the Distance Effect 
inputData(:,19)=evalfis(inputData(:,[13 18]),fSys{5}); 

  
%%%%%%%%%%% Evaluate the 6th fuzzy sub-system (Chemical Effect 

Intermidiate Parameters) %%%%%%%%%%%%%%%% 
%Compute the Chemical Effect 
inputData(:,12)=evalfis(inputData(:,[5 8 11]),fSys{6}); 

  
%%%%%%%%%% Evaluate the 7th fuzzy sub-system (Biological Effect 

Intermidiate Parameters) %%%%%%%%%%%%%%% 
%Compute the Biological Effect 
inputData(:,14)=evalfis(inputData(:,[2 10 13 3]),fSys{7}); 

  
%%%%%%%%%%%%%%% Evaluate the 8th fuzzy sub-system (Hydraulic Effect 

Intermidiate Parameters) %%%%%%%%%%%%%%%%% 
%Compute the Hydraulic Effect 
inputData(:,20)=evalfis(inputData(:,[17 19]),fSys{8}); 

  
%%%%%%%%%%%% Evaluate the 9th fuzzy sub-system (Accumulation Potential 

Parameters) %%%%%%%%%%%%%% 
%Compute the Accumulation Potential 
FeAndMnAccumP_Predicted=evalfis(inputData(:,[12 14 20]),fSys{9}); 

  
myData = inputData(:,:); 
return 
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Appendix I: Source code to assign rule to the fuzzy system  

 
function [fSys] = AssignRules(fSys, optData, ruleData_ante, ruleData_cons, 

ruleData_wt, ruleData_conn, outputCol) 

  
%Assign rules to 1st fuzzy sub-system 
rules_cons1 = ModifyRules(ruleData_cons{1}, optData(1:9), outputCol(1:9)); 
[fSys{1}] = ReAssignRules(fSys{1}, ruleData_ante{1}, rules_cons1, 

ruleData_wt{1}, ruleData_conn{1}); 

  
%Assign rules to 2nd fuzzy sub-system 
rules_cons2 = ModifyRules(ruleData_cons{2}, optData(10:18), 

outputCol(10:18)); 
[fSys{2}] = ReAssignRules(fSys{2}, ruleData_ante{2}, rules_cons2, 

ruleData_wt{2}, ruleData_conn{2}); 

  
%Assign rules to 3rd fuzzy sub-system 
rules_cons3 = ModifyRules(ruleData_cons{3}, optData(19:27), 

outputCol(19:27)); 
[fSys{3}] = ReAssignRules(fSys{3}, ruleData_ante{3}, rules_cons3, 

ruleData_wt{3}, ruleData_conn{3}); 

  
%Assign rules to 4th fuzzy sub-system 
rules_cons4 = ModifyRules(ruleData_cons{4}, optData(28:33), 

outputCol(28:33)); 
[fSys{4}] = ReAssignRules(fSys{4}, ruleData_ante{4}, rules_cons4, 

ruleData_wt{4}, ruleData_conn{4}); 

  
%Assign rules to 5th fuzzy sub-system 
rules_cons5 = ModifyRules(ruleData_cons{5}, optData(34:39), 

outputCol(34:39)); 
[fSys{5}] = ReAssignRules(fSys{5}, ruleData_ante{5}, rules_cons5, 

ruleData_wt{5}, ruleData_conn{5}); 

  
%Assign rules to 6th fuzzy sub-system 
rules_cons6 = ModifyRules(ruleData_cons{6}, optData(40:48), 

outputCol(40:48)); 
[fSys{6}] = ReAssignRules(fSys{6}, ruleData_ante{6}, rules_cons6, 

ruleData_wt{6}, ruleData_conn{6}); 

  
%Assign rules to 7th fuzzy sub-system 
rules_cons7 = ModifyRules(ruleData_cons{7}, optData(49:63), 

outputCol(49:63)); 
[fSys{7}] = ReAssignRules(fSys{7}, ruleData_ante{7}, rules_cons7, 

ruleData_wt{7}, ruleData_conn{7}); 

  
%Assign rules to 8th fuzzy sub-system 
rules_cons8 = ModifyRules(ruleData_cons{8}, optData(64:69), 

outputCol(64:69)); 
[fSys{8}] = ReAssignRules(fSys{8}, ruleData_ante{8}, rules_cons8, 

ruleData_wt{8}, ruleData_conn{8}); 

  
%Assign rules to 9th fuzzy sub-system 
rules_cons9 = ModifyRules(ruleData_cons{9}, optData(70:78), 

outputCol(70:78)); 
[fSys{9}] = ReAssignRules(fSys{9}, ruleData_ante{9}, rules_cons9, 

ruleData_wt{9}, ruleData_conn{9}); 
return 
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 function [rules_cons] = ModifyRules(rules_cons, optData, outputCol) 
n=length(rules_cons); 
j = 1; 
for i = 1:n 
    if(outputCol(i) > 0) 
        x = 0; 
    else 
        rules_cons(i) = optData(j); 
        j = j + 1; 
    end 
end 

  
return 

   
function [fSystems] = ReAssignRules(fSystems, rules_ante, rules_cons, 

rules_wt, rules_conn) 
   fSystems.rule=[]; 
   %merge the antecedent, consequent, weight  and connective  
   rules_All = [rules_ante,rules_cons,rules_wt,rules_conn]; 
   fSystems = addrule(fSystems,rules_All); 
return 
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Appendix J: Source code for the genetic algorithm  

 
function [optData, fval, exitflag, output, finalpop, finalscore] = GAfnc() 
%Read the data to be optimised 
optData = xlsread('_OptimisedRules.xlsx', 'Rules4', 'E:E'); 
%delete all zeroes 
optData = optData(optData~=0); 
optData = optData'; 

  
%Read the data from excel sheet and fuzy system 
[inputData, FeAndMnMeasured, fSys, ruleData_ante, ruleData_cons, 

ruleData_wt, ruleData_conn, outputCol] = ReadData(); 

  
%Define number of variables 
Nvars = length(optData); 

  
%Define bounds 
LB = ones(1,Nvars); 
UB = 5*ones(1,Nvars); 

  
%define anonymous objective function and number of variables 
objfun = @(optData)EvalRows(optData, inputData, FeAndMnMeasured, fSys, 

ruleData_cons, ruleData_ante, ruleData_wt, ruleData_conn, outputCol); 

  
%************************************************************************

** 
%*************Enter Algorithm Options 

Here********************************* 
%************************************************************************

** 
%define Genetic Algorithm options 
gaoptions = gaoptimset(@ga); 
gaoptions.PlotFcns = @gaplotbestf; 
gaoptions.PopulationType = 'doubleVector'; 
gaoptions.PopulationSize = [100]; 
gaoptions.PopInitRange = [LB; UB]; 
gaoptions.InitialPopulation = []; 
gaoptions.EliteCount = 1; 
gaoptions.CreationFcn = @int_pop; 
gaoptions.MutationFcn = @int_mutation; 
%gaoptions.MutationFcn = {@mutationgaussian, 0.2, 0.8}; 
gaoptions.CrossoverFcn = @crossoverscattered; 
%gaoptions.CrossoverFcn = {@crossoverheuristic, 1.2}; 
gaoptions.CrossoverFraction = 0.8 + 0.2*rand; 
gaoptions.MigrationDirection = 'both'; 
gaoptions.MigrationInterval = 20; 
gaoptions.MigrationFraction = 0.03; 
gaoptions.Generations = 4000; 
gaoptions.StallGenLimit = gaoptions.Generations; 
gaoptions.TolFun = 1.0e-100; 
gaoptions.Display = 'iter'; 
gaoptions.Vectorized = 'off'; 
%************************************************************************

** 
%*************Enf of Algorithm 

Options************************************* 
%************************************************************************

** 
  



 

283 

 

  6
2
 

 
% Run the Genetic Algorithm 
[optData, fval, exitflag, output, finalpop, finalscore] = 

ga(objfun,Nvars,[],[],[],[],LB,UB,[],gaoptions); 

  
%************************************************************************

** 
%**********************************Post 

Processing************************* 
%***************************End of Post 

Processing************************* 
%************************************************************************

** 
return; 

  
%--------------------------------------------------- 
% Mutation function to generate childrens satisfying the range and 

integer 
% constraints on decision variables. 
function mutationChildren = int_mutation(parents,options,GenomeLength, ... 
    FitnessFcn,state,thisScore,thisPopulation) 
shrink = .01;  
scale = 1; 
scale = scale - shrink * scale * state.Generation/options.Generations; 
range = options.PopInitRange; 
lower = range(1,:); 
upper = range(2,:); 
scale = scale * (upper - lower); 
mutationPop =  length(parents); 
% The use of ROUND function will make sure that childrens are integers. 
mutationChildren =  repmat(lower,mutationPop,1) +  ... 
    round(repmat(scale,mutationPop,1) .* rand(mutationPop,GenomeLength)); 
return; 
% End of mutation function 
%--------------------------------------------------- 
function Population = int_pop(GenomeLength,FitnessFcn,options) 

  
totalpopulation = sum(options.PopulationSize); 
range = options.PopInitRange; 
lower= range(1,:); 
span = range(2,:) - lower; 
% The use of ROUND function will make sure that individuals are integers. 
Population = repmat(lower,totalpopulation,1) +  ... 
    round(repmat(span,totalpopulation,1) .* 

rand(totalpopulation,GenomeLength)); 
return; 
% End of creation function 
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Appendix K: SQL code to retrieve customer complaints data in WSZ1  

SELECT 

 tblCCData.[Model Node],  

Year([Date]) AS [Year],  

Sum(tblCCData.NumberOfCC) AS NumberOfCC, tblCCData.DMA 

FROM tblWSZ1_Hyd INNER JOIN tblCCData ON tblWSZ1_Hyd.Node = 

tblCCData.[Model Node] 

WHERE (((tblCCData.WSZ)="WSZ1") AND 

((tblCCData.Contact_reason)="Discoloured Water" OR  

(tblCCData.Contact_reason)="Slime")) 

GROUP BY tblCCData.[Model Node], Year([Date]), tblCCData.DMA 

ORDER BY Year([Date]), tblCCData.[Model Node]; 

 

 

 

 

Appendix L: SQL code to retrieve hydraulic, Fe and Mn data in WSZ2  

SELECT  

qryWSZ2_YearlyAveragesWQ_AtNodes.WSZ, tblWSZ2_Hyd.Node, 

qryWSZ2_YearlyAveragesWQ_AtNodes.Year, 

qryWSZ2_YearlyAveragesWQ_AtNodes.AvgHARD_Node, tblWSZ2_Hyd.[Pipe 

Material], tblWSZ2_Hyd.[Pipe Age], tblWSZ2_Hyd.AvgWaterAge, 

tblWSZ2_Hyd.MaxShearStressAtNdode, tblWSZ2_Hyd.VarShearStressAtNode, 

tblWSZ2_Hyd.[Hydraulic Dist From Source], 

qryWSZ2_YearlyAveragesWQ_AtNodes.DMA, 

qryWSZ2_YearlyAveragesWQ_AtNodes.AvgIRON_Node, 

qryWSZ2_YearlyAveragesWQ_AtNodes.AvgMANG_Node 

FROM tblWSZ2_Hyd INNER JOIN qryWSZ2_YearlyAveragesWQ_AtNodes  

ON tblWSZ2_Hyd.Node = qryWSZ2_YearlyAveragesWQ_AtNodes.Model_node 

ORDER BY qryWSZ2_YearlyAveragesWQ_AtNodes.Year; 
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Appendix M: Algorithm for estimating missing pipe age data  

Open the file with the pipe IDs, pipe roughness and missing pipe age data. 

Open the report file.  

Read pipe IDs and pipe roughness from the data file. 

for pipe = 1 to number of records in the file 

if pipe =Polyethylene 

Use the linear regression equation for Polyethylene to compute pipe age. 

else if pipe = Polyvinyl Chloride 

Use the linear regression equation for Polyvinyl Chloride to compute pipe 

age. 

else if pipe = High Density Polyethylene 

Use the linear regression equation for High Performance   Polyethylene to 

compute pipe age. 

else if pipe = Asbestos Cement 

Use the linear regression equation for Asbestos Cement to compute pipe 

age. 

else if pipe = Ductile Iron 

Use the linear regression equation for Ductile Iron to compute pipe age. 

else if pipe = Steel 

 Use the linear regression equation for Steel to compute pipe age. 

else 

 Use the linear regression equation for Cast Iron to compute pipe age. 

end if 

Print the computed pipe age in the report file. 

end for 

Close the report file. 

Close the data file.  
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Appendix N: Algorithm for choosing appropriate number of hidden 

nodes and layers 

Initialise random number generator 

Load the data 

Open the report file  

for hidden nodes in layer1 = 1 to 15 

for hidden nodes in layer2 = 3 to 8 

for iteration = 1 to 30 

 Create a network 

 Set the default network parameters 

 Initialise and train network 

 Save the network and training data 

 Compute for the performance of the model 

 Print the performance of the model into the report file 

end 

end 

end 

Close the report file. 
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Appendix O: Algorithm for tuning the network parameters 

Initialise random number generator 

Load the data 

Open the report file  

for network parameter = Xi to Xn 

for iteration = 1 to 30 

 Create a network 

 Set the net n
th

 value of the network parameter 

 Initialise and train network 

 Save the network and training data 

 Compute for the performance of the model 

 Print the performance of the model into the report file 

end 

end 

Close the report file. 
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Appendix P: Results of tuned parameters 

 

Table P.1 Average performance of the ANN(t) model on the test data set for WSZ1  

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Hidden 

nodes in 1
st
 

layer 

Hidden 

nodes in 

2
nd

 layer 

0.1551 50.91 1 3 

0.1745 48.97 2 3 

0.1747 52.69 3 3 

0.1734 48.82 4 3 

0.1648 48.34 5 3 

0.1740 49.94 6 3 

0.1778 50.60 7 3 

0.1620 49.89 8 3 

0.1702 48.46 9 3 

0.1569 49.49 10 3 

0.1759 51.09 11 3 

0.1550 52.84 12 3 

0.1755 49.72 13 3 

0.1607 51.57 14 3 

0.1735 49.05 15 3 

 

 

Table P.2 Average performance of the ANN(t) model using three different activation 

functions for WSZ1 

  Sigmoid 

activation 

function 

Linear 

activation 

function 

Hyperbolic 

activation 

function 

Average RMSE on testing 

data set 
0.1526 0.1942 0.1800 

Average CA on testing data 

set (%) 
53.05 42.57 46.43 

 

 



 

289 

 

  6
2
 

Table P.3 Average performance of the ANN(t) model on the testing data set using 

different minimum gradient values for WSZ1 

Average RMSE 

on testing data set 

Average CA on 

testing data set 

(%) 

Minimum 

gradient 

magnitude 

0.1615 51.52 0.01 

0.1532 52.55 0.001 

0.1524 51.42 0.0001 

0.1466 53.41 1.00E-05 

0.1455 55.07 1.00E-06 

0.1618 53.09 1.00E-07 

0.1534 52.18 1.00E-08 

0.1617 54.92 1.00E-09 

0.1583 54.05 1.00E-10 

0.1495 54.50 1.00E-11 

 

 

Table P.4 Average performance of the ANN(t) model on the testing data set using 

different learning rate values for WSZ1 

Average 

RMSE on 

testing data 

set 

Average CA 

on testing 

data set (%) 

Learning 

rate 

0.1563 55.22 0.001 

0.1537 55.74 0.008 

0.1489 55.53 0.005 

0.1550 55.15 0.01 

0.1413 55.87 0.08 

0.1407 56.46 0.05 

0.1462 55.06 0.1 

0.1509 55.98 0.15 

0.1446 54.16 0.2 

0.1563 55.62 0.3 
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Table P.5 Average performance of the ANN(t) model on the testing data set using 

different initial Mu values for WSZ1 

Average RMSE 

on testing data set 

Average CA 

on testing data 

set (%) 

Initial 

Mu 

0.1408 56.38 1.00E-05 

0.1464 56.15 5.00E-05 

0.1464 56.15 0.0001 

0.1529 54.21 0.001 

0.1505 55.39 0.01 

0.1408 56.36 0.04 

0.1387 57.76 0.08 

0.1459 54.71 0.1 

0.1432 56.40 0.2 

0.1437 55.04 0.5 

 

 

Table P.6 Average performance of the ANN(t) model on the testing data set using 

different Mu increase factor values for WSZ1 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Mu 

increase 

factor 

0.1450 56.43 0.01 

0.1424 57.91 0.1 

0.1309 60.92 1 

0.1446 60.18 3 

0.1496 59.54 7 

0.1339 59.55 10 

0.1341 59.87 15 

0.1481 60.58 20 

0.1380 57.72 30 

0.1444 57.67 50 
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Table P.7 Average performance of the ANN(t) model on the testing data set using 

different Mu decrease factor values for WSZ1 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Mu 

decrease 

factor 

0.1307 61.56 0.001 

0.1344 62.83 0.01 

0.1248 63.26 0.05 

0.1283 62.75 0.08 

0.1384 60.30 0.1 

0.1294 60.25 0.12 

0.1330 59.24 0.15 

0.1344 62.63 0.2 

0.1355 59.41 0.5 

0.1343 60.72 1 

 

Table P.8 Average performance of the ANN(t) model on the testing data set using the 

scaled conjugate gradient backpropagation algorithm for WSZ1 

Performance indicator 

Scaled conjugate gradient 

backpropagation 

Average RMSE on testing data set 0.1539 

Average CA on testing data set (%) 58.92 

 

Table P.9 The tuned ANN(t) model parameter values for WSZ1 

Name 
Tuned 

value 

Description of 

parameter     

Show 5 The display of epochs within display 

 Epochs 1000 The maximum number of iteration 

Goal 0 Performance goal 

 
Min_grad 

1.00E-

06 
Minimum gradient magnitude 

Mu 0.08 Initial Mu 

  Mu_inc 1 Mu increase factor 

 Mu_dec 0.05 Mu decrease factor 

 η 0.05 Learning rate 

 1
st
 layer nodes 12 The number of nodes in 1

st
 layer 

2
nd

  layer nodes 3 The number of nodes in 2
nd

 layer 

Sigmoid activation function    The activation functions used in the model 

Levenberg–Marquardt 

algorithm 
   

Optimisation algorithm used in the 

model 
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Table P.10 Average performance of the ANN(t) model on the test data set for WSZ3  

Average RMSE on 

testing data set 

Average CA 

on testing 

data set (%) 

Hidden 

nodes in 1
st
 

layer 

Hidden 

nodes in 

2
nd

 layer 

0.1719 51.70 1 5 

0.1760 48.33 2 5 

0.1670 50.64 3 5 

0.1782 50.66 4 5 

0.1551 48.66 5 5 

0.1511 53.48 6 5 

0.1536 51.73 7 5 

0.1728 48.70 8 5 

0.1782 51.82 9 5 

0.1674 50.02 10 5 

0.1799 49.57 11 5 

0.1764 49.88 12 5 

0.1796 52.14 13 5 

0.1595 51.31 14 5 

0.1762 53.00 15 5 

 

 

Table P.11 Average performance of the ANN(t) model using three different activation 

functions for WSZ3 

  Sigmoid 

activation 

function 

Linear 

activation 

function 

Hyperbolic 

activation 

function 

Average RMSE on testing data set 0.1502 0.1802 0.1795 

Average CA on testing data set (%) 53.89 42.10 47.27 
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Table P.12 Average performance of the ANN(t) model on the testing data set using 

different minimum gradient values for WSZ3 

Average RMSE 

on testing data 

set 

Average CA on 

testing data set 

(%) 

Minimum 

gradient 

magnitude 

0.1466 55.01 0.01 

0.1544 53.25 0.001 

0.1631 52.42 0.0001 

0.1526 50.00 1.00E-05 

0.1548 52.51 1.00E-06 

0.1601 52.82 1.00E-07 

0.1540 54.18 1.00E-08 

0.1551 52.64 1.00E-09 

0.1508 52.11 1.00E-10 

0.1634 52.96 1.00E-11 

 

 

Table P.13 Average performance of the ANN(t) model on the testing data set using 

different learning rate values for WSZ3 

Average 

RMSE on 

testing data set 

Average CA 

on testing 

data set (%) 

Learning 

rate 

0.1550 54.84 0.001 

0.1515 54.52 0.008 

0.1419 56.22 0.005 

0.1487 55.60 0.01 

0.1558 54.74 0.08 

0.1596 54.12 0.05 

0.1513 54.15 0.1 

0.1461 55.72 0.15 

0.1556 55.78 0.2 

0.1439 55.10 0.3 
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Table P.14 Average performance of the ANN(t) model on the testing data set using 

different initial Mu values for WSZ3 

Average RMSE 

on testing data 

set 

Average CA on 

testing data set 

(%) 

Initial 

Mu 

0.1435 56.24 1.00E-05 

0.1376 54.63 5.00E-05 

0.1549 57.78 0.0001 

0.1451 57.67 0.001 

0.1355 58.19 0.01 

0.1465 54.15 0.04 

0.1477 55.93 0.08 

0.1418 54.76 0.1 

0.1549 54.75 0.2 

0.1438 55.59 0.5 

 

 

Table P.15 Average performance of the ANN(t) model on the testing data set using 

different Mu increase factor values for WSZ3 

Average RMSE 

on testing data 

set 

Average CA on 

testing data set 

(%) 

Mu 

increase 

factor 

0.1355 59.23 0.01 

0.1302 60.99 0.1 

0.1468 59.48 1 

0.1378 57.82 3 

0.1419 56.82 7 

0.1413 57.95 10 

0.1361 59.88 15 

0.1366 57.44 20 

0.1493 58.06 30 

0.1331 57.60 50 
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Table P.16 Average performance of the ANN(t) model on the testing data set using 

different Mu decrease factor values for WSZ3 

Average RMSE on 

testing data set 

Average CA 

on testing 

data set (%) 

Mu 

decrease 

factor 

0.1280 58.76 0.001 

0.1267 61.93 0.01 

0.1214 62.55 0.05 

0.1315 60.51 0.08 

0.1341 58.67 0.1 

0.1222 61.09 0.12 

0.1314 60.85 0.15 

0.1335 59.44 0.2 

0.1256 60.89 0.5 

0.1301 60.62 1 

 

 

Table P.17 Average performance of the ANN(t) model on the testing data set using the 

scaled conjugate gradient backpropagation algorithm for WSZ3 

Performance indicator 

Scaled conjugate 

gradient 

backpropagation 
 Average RMSE on testing data set 0.1414 

 Average CA on testing data set (%) 55.09 
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Table P.18 The tuned ANN(t) model parameter values for WSZ3 

Name 
Tuned 

value 
Description of parameter 

Show 5 The display of epochs within display 

Epochs 1000 The maximum number of iteration 

Goal 0 Performance goal 

Min_grad 0.01 Minimum gradient magnitude 

Mu 0.01 Initial Mu 

Mu_inc 0.1 Mu increase factor 

Mu_dec 0.05 Mu decrease factor 

η 0.005 Learning rate 

1
st
 layer nodes 6 The number of nodes in 1

st
 layer 

2
nd

  layer nodes 5 The number of nodes in 2
nd

 layer 

Sigmoid activation function    The activation functions used in the model 

Levenberg–Marquardt 

algorithm 
   Optimisation algorithm used in the model 

 

 

Table P.19 Average performance of the ANN(t) model on the test data set for WSZ4  

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Hidden 

nodes in 1
st
 

layer 

Hidden 

nodes in 

2
nd

 layer 

0.1919 48.60 1 4 

0.1991 45.59 2 4 

0.1791 46.38 3 4 

0.1839 49.45 4 4 

0.1703 48.66 5 4 

0.1943 48.91 6 4 

0.1778 46.30 7 4 

0.1906 45.52 8 4 

0.1849 47.27 9 4 

0.1912 48.94 10 4 

0.1897 47.46 11 4 

0.1937 48.66 12 4 

0.1965 48.82 13 4 

0.1807 49.90 14 4 

0.1702 49.98 15 4 
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Table P.20 Average performance of the ANN(t) model using three different activation 

functions for WSZ4 

  Sigmoid 

activation 

function 

Linear 

activation 

function 

Hyperbolic 

activation 

function 

Average RMSE on testing data set 0.1691 0.2095 0.1711 

Average CA on testing data set (%) 50.32 41.42 47.06 

 

Table P.21 Average performance of the ANN(t) model on the testing data set using 

different minimum gradient values for WSZ4 

Average RMSE on 

testing data set 

Average CA on 

testing data set 

(%) 

Minimum 

gradient 

magnitude 

0.1742 50.96 0.01 

0.1666 50.45 0.001 

0.1775 51.27 0.0001 

0.1714 49.78 1.00E-05 

0.1697 51.12 1.00E-06 

0.1847 51.18 1.00E-07 

0.1798 49.03 1.00E-08 

0.1688 52.18 1.00E-09 

0.1667 48.67 1.00E-10 

0.1650 52.86 1.00E-11 

 

 

Table P.22 Average performance of the ANN(t) model on the testing data set using 

different learning rate values for WSZ4 

Average RMSE 

on testing data set 

Average CA 

on testing 

data set (%) 

Learning 

rate 

0.1767 55.00 0.001 

0.1705 53.24 0.008 

0.1721 52.00 0.005 

0.1767 51.85 0.01 

0.1665 50.85 0.08 

0.1731 50.41 0.05 

0.1616 54.29 0.1 

0.1702 51.57 0.15 

0.1748 51.63 0.2 

0.1673 53.07 0.3 
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Table P.23 Average performance of the ANN(t) model on the testing data set using 

different initial Mu values for WSZ4 

Average RMSE 

on testing data 

set 

Average CA 

on testing data 

set (%) 

Initial Mu 

0.1718 52.65 1.00E-05 

0.1741 54.12 5.00E-05 

0.1652 56.13 0.0001 

0.1739 52.66 0.001 

0.1632 52.52 0.01 

0.1568 55.50 0.04 

0.1726 56.50 0.08 

0.1662 56.31 0.1 

0.1613 55.08 0.2 

0.1567 56.65 0.5 

 

 

Table P.24 Average performance of the ANN(t) model on the testing data set using 

different Mu increase factor values for WSZ4 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Mu 

increase 

factor 

0.1619 54.50 0.01 

0.1566 55.46 0.1 

0.1684 56.86 1 

0.1553 56.36 3 

0.1566 58.55 7 

0.1505 59.00 10 

0.1538 57.83 15 

0.1630 58.10 20 

0.1601 55.14 30 

0.1569 57.60 50 
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Table P.25 Average performance of the ANN(t) model on the testing data set using 

different Mu decrease factor values for WSZ4 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Mu 

decrease 

factor 

0.1498 57.69 0.001 

0.1584 57.27 0.01 

0.1571 59.99 0.05 

0.1534 57.36 0.08 

0.1489 59.99 0.1 

0.1552 59.49 0.12 

0.1506 56.22 0.15 

0.1554 59.54 0.2 

0.1473 60.59 0.5 

0.1595 58.05 1 

 

 

Table P.26 Average performance of the ANN(t) model on the testing data set using the 

scaled conjugate gradient backpropagation algorithm for WSZ4 

Performance indicator 

Scaled conjugate 

gradient 

backpropagation 

Average RMSE on testing data set 0.1715 

Average CA on testing data set (%) 55.44 

 

Table P.27 The tuned ANN(t) model parameter values for WSZ4 

Name 
Tuned 

value 

Description of 

parameter   

Show 5 The display of epochs within display 

Epochs 1000 The maximum number of iteration 

Goal 0 Performance goal 

Min_grad 1.00E-11 Minimum gradient magnitude 

Mu 0.5 Initial Mu 

 Mu_inc 10 Mu increase factor 

Mu_dec 0.5 Mu decrease factor 

η 0.1 Learning rate 

1
st
 layer nodes 15 The number of nodes in 1

st
 layer 

2
nd

  layer nodes 4 The number of nodes in 2
nd

 layer 

Sigmoid activation function   The activation functions used in the model 

Levenberg–Marquardt 

algorithm 
  Optimisation algorithm used in the model 
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Table P.28 Average performance of the ANN(t) model on the test data set for WSZ5  

Average RMSE 

on testing data set 

Average CA 

on testing 

data set (%) 

Hidden 

nodes in 

1
st
 layer 

Hidden 

nodes in 

2
nd

 layer 

0.1742 50.40 1 5 

0.1561 50.78 2 5 

0.1678 50.76 3 5 

0.1523 50.25 4 5 

0.1568 48.64 5 5 

0.1506 53.51 6 5 

0.1542 52.32 7 5 

0.1710 48.68 8 5 

0.1721 48.38 9 5 

0.1789 51.51 10 5 

0.1719 48.46 11 5 

0.1704 49.58 12 5 

0.1531 48.44 13 5 

0.1516 50.36 14 5 

0.1609 49.41 15 5 

 

 

Table P.29 Average performance of the ANN(t) model using three different activation 

functions for WSZ5 

  Sigmoid 

activation 

function 

Linear 

activation 

function 

Hyperbolic 

activation 

function 

Average RMSE on testing data set 0.1469 0.1910 0.1571 

Average CA on testing data set (%) 55.98 42.04 46.30 
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Table P.30 Average performance of the ANN(t) model on the testing data set using 

different minimum gradient values for WSZ5 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Minimum 

gradient 

magnitude 

0.1307 56.10 0.01 

0.1259 55.36 0.001 

0.1332 56.09 0.0001 

0.1359 54.74 1.00E-05 

0.1286 53.04 1.00E-06 

0.1257 57.70 1.00E-07 

0.1381 53.05 1.00E-08 

0.1366 53.75 1.00E-09 

0.1306 54.07 1.00E-10 

0.1329 55.75 1.00E-11 

 

 

Table P.31 Average performance of the ANN(t) model on the testing data set using 

different learning rate values for WSZ5 

Average RMSE 

on testing data 

set 

Average CA 

on testing 

data set (%) 

Learning 

rate 

0.1353 56.90 0.001 

0.1270 59.35 0.008 

0.1363 57.24 0.005 

0.1297 56.17 0.01 

0.1335 57.11 0.08 

0.1314 58.53 0.05 

0.1317 58.02 0.1 

0.1369 58.66 0.15 

0.1248 60.42 0.2 

0.1394 56.11 0.3 
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Table P.32 Average performance of the ANN(t) model on the testing data set using 

different initial Mu values for WSZ5 

Average RMSE 

on testing data 

set 

Average CA 

on testing data 

set (%) 

Initial 

Mu 

0.1149 61.36 1.00E-05 

0.1149 59.00 5.00E-05 

0.1095 58.68 0.0001 

0.1067 57.26 0.001 

0.1084 60.77 0.01 

0.1033 57.78 0.04 

0.1005 62.92 0.08 

0.1154 57.80 0.1 

0.1042 57.70 0.2 

0.1009 59.44 0.5 

 

 

Table P.33 Average performance of the ANN(t) model on the testing data set using 

different Mu increase factor values for WSZ5 

Average RMSE 

on testing data set 

Average CA on 

testing data set 

(%) 

Mu 

increase 

factor 

0.0854 64.07 0.01 

0.0811 65.24 0.1 

0.0864 64.72 1 

0.0820 61.48 3 

0.0878 62.18 7 

0.0911 63.28 10 

0.0956 62.19 15 

0.0891 62.20 20 

0.0974 61.03 30 

0.0827 60.77 50 
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Table P.34 Average performance of the ANN(t) model on the testing data set using 

different Mu decrease factor values for WSZ5 

Average RMSE on 

testing data set 

Average CA on 

testing data set 

(%) 

Mu 

decrease 

factor 

0.0634 69.46 0.001 

0.0627 70.39 0.01 

0.0590 72.67 0.05 

0.0608 69.38 0.08 

0.0554 69.89 0.1 

0.0610 73.52 0.12 

0.0571 72.50 0.15 

0.0578 73.15 0.2 

0.0509 74.07 0.5 

0.0637 71.04 1 

 

Table P.35 Average performance of the ANN(t) model on the testing data set using the 

scaled conjugate gradient backpropagation algorithm for WSZ5 

Performance indicator 

Scaled conjugate 

gradient 

backpropagation 

Average RMSE on testing data set 0.1194 

Average CA on testing data set (%) 63.45 

 

 

Table P.36 The tuned ANN(t) model parameter values for WSZ5 

Name 
Tuned 

value 
Description of parameter 

Show 5 The display of epochs within display 

Epochs 1000 The maximum number of iteration 

Goal 0 Performance goal 

Min_grad 1.00E-07 Minimum gradient magnitude 

Mu 0.08 Initial Mu 

Mu_inc 0.1 Mu increase factor 

Mu_dec 0.5 Mu decrease factor 

η 0.2 Learning rate 

1
st
 layer nodes 6 The number of nodes in 1

st
 layer 

2
nd

  layer nodes 5 The number of nodes in 2
nd

 layer 

Sigmoid activation function   The activation functions used in the model 

Levenberg–Marquardt 

algorithm 
  Optimisation algorithm used in the model 
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Appendix Q: Prediction profiler graphs from the ANN(t) model 

 

  

 

Figure Q.1 Relationship between Fe and Mn accumulation potential and aluminium 
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Figure Q.2 Relationship between Fe and Mn accumulation potential and Ca
2+
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Figure Q.3 Relationship between Fe and Mn accumulation potential and free chlorine 

recidual 
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Figure Q.4 Relationship between Fe and Mn accumulation potential and colour 
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Figure Q.5 Relationship between Fe and Mn accumulation potential and hardness 
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Figure Q.6 Relationship between Fe and Mn accumulation potential and tubidity 
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Figure Q.7 Relationship between Fe and Mn accumulation potential and hydraulic 

distance from source of water supply 
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Appendix R: Graphs of measured yearly average Fe and Mn 

accumulation potential and predicted high-risk nodes 

  

 

Figure R.1 Correlation between measured yearly average Fe and Mn accumulation 

potential and predicted high-risk nodes from 2005-2009 

 

 

 

 

 

 

 

 

 

R² = 0.6613 

0.1

0.12

0.14

0.16

0 100 200 300 400 500 600Ye
ar

ly
 a

ve
ra

ge
 F

e 
an

d
 M

n
 

A
cc

u
m

u
la

ti
o

n
  p

o
te

n
ti

al
 

Number of High Risk Nodes 

WSZ1 

R² = 0.5508 

0.1

0.15

0.2

0.25

0 500 1000 1500 2000Ye
ar

ly
 a

ve
ra

ge
 F

e 
an

d
 M

n
 

A
cc

u
m

u
la

ti
o

n
  p

o
te

n
ti

al
 

Number of High Risk Nodes 

WSZ3 

R² = 0.7103 

0

0.05

0.1

0.15

0 500 1000 1500Ye
ar

ly
 a

ve
ra

ge
 F

e 
an

d
 M

n
 

A
cc

u
m

u
la

ti
o

n
  p

o
te

n
ti

al
 

Number of High Risk Nodes 

WSZ3 



 

312 

 

  6
2
 

Appendix S: Results from the FIS 

Table S.1 Rules and their corresponding weights from the hierarchical rule-based expert 

FIS for WSZ2 

Rule 

Number Rules from expert knowledge 

Weights from 

expert knowledge 

1 If Hardness is LOW then Chemical oxidation is LOW 0.9 

2 If Hardness is MEDIUM then Chemical oxidation is MEDIUM 0.9 

3 If Hardness is HIGH then Chemical oxidation is HIGH 0.9 

4 If FCR is LOW then Chemical oxidation is LOW 0.9 

5 If FCR is MEDIUM then Chemical oxidation is MEDIUM 0.9 

6 If FCR is HIGH then Chemical oxidation is HIGH 0.9 

7 If Alkalinity is LOW then Chemical oxidation is HIGH 0.9 

8 If Alkalinity is MEDIUM then Chemical oxidation is MEDIUM 0.9 

9 If Alkalinity is HIGH then Chemical oxidation is LOW 0.9 

10 If Chemical oxidation is LOW then Corrosion is LOW 1.0 

11 If Chemical oxidation is MEDIUM then Corrosion is MEDIUM 1.0 

12 If Chemical oxidation is HIGH then Corrosion is HIGH 1.0 

13 If Pipe material index is LOW then Corrosion is LOW 1.0 

14 If Pipe material index is MEDIUM then Corrosion is MEDIUM 1.0 

15 If Pipe material index is HIGH then Corrosion is HIGH 1.0 

16 If Pipe age is LOW then Corrosion is LOW 1.0 

17 If Pipe age is MEDIUM then Corrosion is MEDIUM 1.0 

18 If Pipe age is HIGH then Corrosion is HIGH 1.0 

19 If Calcium is LOW then Sorption is LOW 0.6 

20 If Calcium is MEDIUM then Sorption is MEDIUM 0.6 

21 If Calcium is HIGH then Sorption is HIGH 0.6 

22 If Aluminium is LOW then Sorption is LOW 0.6 

23 If Aluminium is MEDIUM then Sorption is MEDIUM 0.6 

24 If Aluminium is HIGH then Sorption is HIGH 0.6 

25 If Colour is LOW then Sorption is LOW 0.6 

26 If Colour is MEDIUM then Sorption is MEDIUM 0.6 

27 If Colour is HIGH then Sorption is HIGH 0.75 

28 If Maximum shear stress is LOW then Shear stress effect is HIGH 0.75 

29 
If Maximum shear stress is MEDIUM then Shear stress effect is 

MEDIUM 
0.75 

30 If Maximum shear stress is HIGH then Shear stress effect is LOW 0.75 

31 If Variation of shear stress is LOW then Shear stress effect is HIGH 0.75 

32 
If Variation of shear stress is MEDIUM then Shear stress effect is 

MEDIUM 
0.75 

33 If Variation of shear stress is HIGH then Shear stress effect is LOW 0.75 
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Table S.1 Rules and their corresponding weights from the hierarchical rule-based expert 

FIS for WSZ2 continued 

Rule 

Number Rules from expert knowledge 

Weights from 

expert knowledge 

34 If Average water age is LOW then Distance effect is LOW 0.9 

35 If Average water age is MEDIUM then Distance effect is MEDIUM 0.9 

36 If Average water age is HIGH then Distance effect is HIGH 0.9 

37 If Distance from source is LOW then Distance effect is LOW 0.9 

38 If Distance from source is MEDIUM then Distance effect is MEDIUM 0.9 

39 If Distance from source is HIGH then Distance effect is HIGH 0.9 

40 If Chemical oxidation is LOW then Chemical effect is LOW 0.7 

41 If Chemical oxidation is MEDIUM then Chemical effect is MEDIUM 0.7 

42 If Chemical oxidation is HIGH then Chemical effect is HIGH 0.7 

43 If Corrosion is LOW then Chemical effect is LOW 1.0 

44 If Corrosion is MEDIUM then Chemical effect is MEDIUM 1.0 

45 If Corrosion is HIGH then Chemical effect is HIGH 1.0 

46 If Sorption is LOW then Chemical effect is HIGH 0.7 

47 If Sorption is MEDIUM then Chemical effect is MEDIUM 0.7 

48 If Sorption is HIGH then Chemical effect is LOW 0.7 

49 If FCR is LOW then Biological effect is HIGH 0.9 

50 If FCR is MEDIUM then Biological effect is MEDIUM 0.9 

51 If FCR is HIGH then Biological effect is LOW 0.9 

52 If Colour is LOW then Biological effect is LOW 0.9 

53 If Colour is MEDIUM then Biological effect is MEDIUM 0.9 

54 If Colour is HIGH then Biological effect is HIGH 0.9 

55 If Average water age is LOW then Biological effect is LOW 0.9 

56 If Average water age is MEDIUM then Biological effect is MEDIUM 0.9 

57 If Average water age is HIGH then Biological effect is HIGH 0.9 

58 If Turbidity is LOW then Biological effect is LOW 0.9 

59 If Turbidity is MEDIUM then Biological effect is MEDIUM 0.9 

60 If Turbidity is HIGH then Biological effect is HIGH 0.9 

61 If Phosphorus is LOW then Biological effect is LOW 0.9 

62 If Phosphorus is MEDIUM then Biological effect is MEDIUM 0.9 

63 If Phosphorus is HIGH then Biological effect is HIGH 0.9 

64 If Shear stress effect is LOW then Hydraulic effect is LOW 0.6 

65 If Shear stress effect is MEDIUM then Hydraulic effect is MEDIUM 0.6 

66 If Shear stress effect is HIGH then Hydraulic effect is HIGH 0.6 

67 If Distance effect is LOW then Hydraulic effect is LOW 0.6 
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Table S.1 Rules and their corresponding weights from the hierarchical rule-based expert 

FIS for WSZ2 continued 

Rule 

Number Rules from expert knowledge 

Weights from 

expert knowledge 

68 If Distance effect is MEDIUM then Hydraulic effect is MEDIUM 0.6 

69 If Distance effect is HIGH then Hydraulic effect is HIGH 0.6 

70 
If Chemical effect is LOW then Fe and Mn Accumulation Potential is 

LOW 
0.8 

71 
If Chemical effect is MEDIUM then Fe and Mn Accumulation 

Potential is MEDIUM 
0.8 

72 
If Chemical effect is HIGH then Fe and Mn Accumulation Potential is 

HIGH 
0.8 

73 
If Biological effect is LOW then Fe and Mn Accumulation Potential is 

LOW 
0.9 

74 
If Biological effect is MEDIUM then Fe and Mn Accumulation 

Potential is MEDIUM 
0.9 

75 
If Biological effect is HIGH then Fe and Mn Accumulation Potential is 

HIGH 
0.9 

76 
If Hydraulic effect is LOW then Fe and Mn Accumulation Potential is 

LOW 
0.8 

77 
If Hydraulic effect is MEDIUM then Fe and Mn Accumulation 

Potential is MEDIUM 
0.8 

78 
If Hydraulic effect is HIGH then Fe and Mn Accumulation Potential is 

HIGH 0.8 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

315 

 

  6
2
 

Table S.2 Rules and their corresponding weights from the hierarchical data-driven FIS for 

WSZ2 

Rule 

Number Rules after optimisation 

Weights after 

optimisation 

1 If Hardness is LOW then Chemical oxidation is MEDIUM 0.4107 

2 If Hardness is MEDIUM then Chemical oxidation is LOW 0.3711 

3 If Hardness is HIGH then Chemical oxidation is LOW 0.7952 

4 If FCR is LOW then Chemical oxidation is HIGH 0.5760 

5 If FCR is MEDIUM then Chemical oxidation is MEDIUM 0.5613 

6 If FCR is HIGH then Chemical oxidation is MEDIUM 0.3699 

7 If Alkalinity is LOW then Chemical oxidation is HIGH 0.5656 

8 If Alkalinity is MEDIUM then Chemical oxidation is HIGH 0.4491 

9 If Alkalinity is HIGH then Chemical oxidation is MEDIUM 0.3667 

10 If Chemical oxidation is LOW then Corrosion is MEDIUM 0.4668 

11 If Chemical oxidation is MEDIUM then Corrosion is MEDIUM 0.2811 

12 If Chemical oxidation is HIGH then Corrosion is LOW 0.7013 

13 If Pipe material index is LOW then Corrosion is MEDIUM 0.5214 

14 If Pipe material index is MEDIUM then Corrosion is LOW 0.2452 

15 If Pipe material index is HIGH then Corrosion is MEDIUM 0.4890 

16 If Pipe age is LOW then Corrosion is LOW 0.5701 

17 If Pipe age is MEDIUM then Corrosion is LOW 0.4383 

18 If Pipe age is HIGH then Corrosion is MEDIUM 0.2985 

19 If Calcium is LOW then Sorption is HIGH 0.6080 

20 If Calcium is MEDIUM then Sorption is MEDIUM 0.7014 

21 If Calcium is HIGH then Sorption is MEDIUM 0.4569 

22 If Aluminium is LOW then Sorption is HIGH 0.6724 

23 If Aluminium is MEDIUM then Sorption is HIGH 0.6577 

24 If Aluminium is HIGH then Sorption is LOW 0.4827 

25 If Colour is LOW then Sorption is MEDIUM 0.6550 

26 If Colour is MEDIUM then Sorption is HIGH 0.5176 

27 If Colour is HIGH then Sorption is HIGH 0.2943 

28 If Maximum shear stress is LOW then Shear stress effect is LOW 0.3714 

29 
If Maximum shear stress is MEDIUM then Shear stress effect is 

HIGH 
0.5035 

30 If Maximum shear stress is HIGH then Shear stress effect is HIGH 0.4864 

31 If Variation of shear stress is LOW then Shear stress effect is LOW 0.4596 

32 
If Variation of shear stress is MEDIUM then Shear stress effect is 

HIGH 
0.6906 

33 If Variation of shear stress is HIGH then Shear stress effect is HIGH 0.4778 

34 If Average water age is LOW then Distance effect is MEDIUM 0.5690 
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Table S.2 Rule2 and their corresponding weights from the hierarchical data-driven FIS for 

WSZ2 continued 

Rule 

Number                               Rules after optimisation 

Weights after 

optimisation 

35 If Average water age is MEDIUM then Distance effect is LOW 0.4344 

36 If Average water age is HIGH then Distance effect is LOW 0.6127 

37 If Distance from source is LOW then Distance effect is LOW 0.4960 

38 
If Distance from source is MEDIUM then Distance effect is 

MEDIUM 
0.7344 

39 If Distance from source is HIGH then Distance effect is LOW 0.3634 

40 If Chemical oxidation is LOW then Chemical effect is HIGH 0.5635 

41 If Chemical oxidation is MEDIUM then Chemical effect is HIGH 0.2577 

42 If Chemical oxidation is HIGH then Chemical effect is MEDIUM 0.2917 

43 If Corrosion is LOW then Chemical effect is MEDIUM 0.6755 

44 If Corrosion is MEDIUM then Chemical effect is LOW 0.2321 

45 If Corrosion is HIGH then Chemical effect is MEDIUM 0.5092 

46 If Sorption is LOW then Chemical effect is MEDIUM 0.5641 

47 If Sorption is MEDIUM then Chemical effect is HIGH 0.3497 

48 If Sorption is HIGH then Chemical effect is HIGH 0.5422 

49 If FCR is LOW then Biological effect is HIGH 0.3163 

50 If FCR is MEDIUM then Biological effect is HIGH 0.6469 

51 If FCR is HIGH then Biological effect is HIGH 0.6256 

52 If Colour is LOW then Biological effect is MEDIUM 0.4055 

53 If Colour is MEDIUM then Biological effect is HIGH 0.6338 

54 If Colour is HIGH then Biological effect is HIGH 0.5545 

55 If Average water age is LOW then Biological effect is HIGH 0.7453 

56 
If Average water age is MEDIUM then Biological effect is 

MEDIUM 
0.4455 

57 If Average water age is HIGH then Biological effect is HIGH 0.6680 

58 If Turbidity is LOW then Biological effect is MEDIUM 0.6479 

59 If Turbidity is MEDIUM then Biological effect is HIGH 0.3436 

60 If Turbidity is HIGH then Biological effect is HIGH 0.7268 

61 If Phosphorus is LOW then Biological effect is LOW 0.3801 

62 If Phosphorus is MEDIUM then Biological effect is HIGH 0.6458 

63 If Phosphorus is HIGH then Biological effect is MEDIUM 0.2964 

64 If Shear stress effect is LOW then Hydraulic effect is LOW 0.6986 

65 If Shear stress effect is MEDIUM then Hydraulic effect is LOW 0.5170 

66 If Shear stress effect is HIGH then Hydraulic effect is LOW 0.3959 

67 If Distance effect is LOW then Hydraulic effect is MEDIUM 0.4881 

68 If Distance effect is MEDIUM then Hydraulic effect is MEDIUM 0.4031 

69 If Distance effect is HIGH then Hydraulic effect is MEDIUM 0.4769 
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Table S.2 Rules and their corresponding weights from the hierarchical data-driven FIS for 

WSZ2 continued 

Rule 

Number                                  Rules after optimisation 

Weights after 

optimisation 

70 
If Chemical effect is LOW then Fe and Mn Accumulation Potential 

is MEDIUM 
0.6556 

71 
If Chemical effect is MEDIUM then Fe and Mn Accumulation 

Potential is HIGH 
0.5015 

72 
If Chemical effect is HIGH then Fe and Mn Accumulation Potential 

is MEDIUM 
0.5852 

73 
If Biological effect is LOW then Fe and Mn Accumulation 

Potential is MEDIUM 
0.2359 

74 
If Biological effect is MEDIUM then Fe and Mn Accumulation 

Potential is LOW 
0.6829 

75 
If Biological effect is HIGH then Fe and Mn Accumulation 

Potential is LOW 
0.4641 

76 
If Hydraulic effect is LOW then Fe and Mn Accumulation Potential 

is HIGH 
0.6766 

77 
If Hydraulic effect is MEDIUM then Fe and Mn Accumulation 

Potential is HIGH 
0.4635 

78 
If Hydraulic effect is HIGH then Fe and Mn Accumulation 

Potential is LOW 
0.5634 

 

 

 

As observed in Tables S.1 and S.2, the antecedent parts of the rules do not change in both 

the hierarchical rule-based expert FIS and hierarchical data-driven FIS. Also, the same 

weights based on expert knowledge were used for all WSZs in the hierarchical rule-based 

expert FIS. Hence, they will be omitted from subsequent results. The chromosomes in the 

genetic algorithm of the hierarchical data-driven FIS consist of the numbers 1, 2, and 3 

representing LOW, MEDIUM, and HIGH. Due to limited space, the results for the 

remaining WSZs will be reported with these numbers. 
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Table S.3 Rules and their corresponding weights from the hierarchical data-driven FIS for 

WSZ1, WSZ3, WSZ4, and WSZ5 

  Rule consequents after optimisation Weights after optimisation 

Rule 

Number WSZ1 WSZ3 WSZ4 WSZ5 WSZ1 WSZ3 WSZ4 WSZ5 

1 1 3 1 2 0.7289 0.9510 0.5122 0.2118 

2 3 1 1 1 0.4254 0.4709 0.6109 0.4682 

3 2 2 3 3 0.5231 0.1983 0.7537 0.4509 

4 1 2 3 3 0.7340 0.0181 0.6177 0.3947 

5 3 3 3 2 0.3267 0.3870 0.4352 0.4028 

6 1 2 1 1 0.4317 0.7710 0.4920 0.2471 

7 2 3 3 3 0.4756 0.6247 0.5829 0.3474 

8 3 3 1 1 0.4981 0.0873 0.2237 0.1268 

9 3 2 1 3 0.4983 0.1342 0.4678 0.6359 

10 2 3 1 2 0.8036 0.1770 0.4468 0.3355 

11 1 1 1 1 0.2587 0.4785 0.3839 0.4514 

12 1 3 1 2 0.6652 0.2563 0.4944 0.1941 

13 3 1 3 3 0.8447 0.5324 0.6292 0.2357 

14 2 3 3 2 0.6981 0.3859 0.4932 0.0100 

15 1 3 2 2 0.4000 0.3765 0.2731 0.7438 

16 2 3 3 3 0.4651 0.2862 0.5036 0.6295 

17 1 3 3 3 0.3896 0.0779 0.5969 0.1698 

18 3 3 2 3 0.1241 0.6980 0.3048 0.0660 

19 1 2 2 3 0.3485 0.6448 0.3839 0.3784 

20 3 2 2 1 0.4450 0.4231 0.3693 0.5624 

21 2 3 1 3 0.6740 0.6200 0.6081 0.3312 

22 3 3 1 2 0.5935 0.1302 0.4536 0.6525 

23 2 3 3 1 0.5382 0.6104 0.6524 0.4171 

24 1 3 2 2 0.6200 0.5838 0.6470 0.4536 

25 1 1 1 2 0.2600 0.5763 0.7375 0.7070 

26 3 2 3 1 0.3954 0.6104 0.4580 0.7900 

27 3 2 2 3 0.7142 0.1476 0.5760 0.5129 

28 3 2 2 3 0.3226 0.5208 0.3511 0.7615 

29 3 1 2 1 0.5130 0.7225 0.3619 0.9287 

30 1 1 1 2 0.5745 0.5726 0.4556 0.7100 

31 2 3 3 2 0.7625 0.1294 0.5583 0.7158 

32 3 2 1 3 0.2952 0.5971 0.5728 0.5104 

33 2 1 1 2 0.2466 0.8732 0.7520 0.0259 

34 2 1 3 1 0.3193 0.8417 0.4356 0.5766 

35 3 2 3 2 0.4409 0.2704 0.2989 0.6259 

36 3 3 1 2 0.5147 0.2908 0.6425 0.8606 

37 1 3 1 1 0.3015 0.4056 0.5822 0.3344 

38 3 3 3 2 0.5123 0.6277 0.8013 0.1631 

39 3 2 2 1 0.2644 0.1142 0.6555 0.5810 
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Table S.3 Rules and their corresponding weights from the hierarchical data-driven FIS for 

WSZ1, WSZ3, WSZ4, and WSZ5 continued 

  Rule consequents after optimisation Weights after optimisation 

Rule 

Number WSZ1 WSZ3 WSZ4 WSZ5 WSZ1 WSZ3 WSZ4 WSZ5 

40 3 1 3 1 0.9541 0.4028 0.7595 0.4194 

41 3 3 1 3 0.6431 0.7589 0.4538 0.7093 

42 3 3 2 1 0.1760 0.6774 0.3432 0.7464 

43 1 3 2 3 0.4619 0.3546 0.5698 0.9224 

44 1 3 3 3 0.3735 0.0780 0.5304 0.3642 

45 1 1 2 1 0.7647 0.6069 0.4723 0.0100 

46 3 3 1 3 0.4449 0.3307 0.4539 0.5973 

47 3 3 1 2 0.1247 0.6971 0.5995 0.0001 

48 2 2 1 3 0.4393 0.3715 0.4548 0.4991 

49 1 1 3 3 0.7035 0.2781 0.5448 0.7844 

50 3 3 2 1 0.4101 0.4817 0.1032 0.1588 

51 3 1 3 1 0.6666 0.3031 0.5716 0.4799 

52 1 3 1 1 0.7279 0.5665 0.5424 0.4874 

53 1 3 2 1 0.4430 0.0428 0.5198 0.5313 

54 1 3 3 3 0.1145 0.5847 0.6609 0.8102 

55 3 1 3 1 0.4666 0.8799 0.2596 0.6595 

56 1 1 3 2 0.4090 0.4032 0.3552 0.5715 

57 2 1 2 3 0.4748 0.4055 0.3418 0.2711 

58 3 1 1 1 0.4836 0.4092 0.5796 0.7178 

59 2 3 3 2 0.4077 0.4157 0.5077 0.8541 

60 1 3 3 1 0.7159 0.6356 0.6415 0.2200 

61 3 3 1 2 0.5755 0.6125 0.5230 0.8865 

62 1 3 2 1 0.3151 0.8438 0.6647 0.5987 

63 1 3 3 1 0.8668 0.0005 0.7091 0.4773 

64 1 1 3 3 0.5476 0.1432 0.3609 0.6436 

65 3 2 3 1 0.3639 1.0000 0.9980 0.8827 

66 2 2 1 2 0.4109 0.7251 0.5225 0.4012 

67 1 1 3 3 0.4196 0.1684 0.8146 0.4714 

68 2 3 1 3 0.5876 0.9223 0.5206 0.2910 

69 1 3 3 3 0.5575 0.9503 0.8327 0.3564 

70 1 2 1 1 0.3827 0.2563 0.8031 0.4736 

71 3 3 3 1 0.3386 0.4262 0.2604 0.4833 

72 3 1 3 3 0.3661 0.6626 0.5101 0.6920 

73 3 1 2 2 0.2384 0.2050 0.6044 0.4187 

74 1 1 1 1 0.5687 0.0482 0.4311 0.4067 

75 2 3 1 1 0.5584 0.4187 0.5018 0.7447 

76 1 2 1 1 0.2612 0.7867 0.1941 0.6721 

77 1 1 1 3 0.0122 0.0244 0.5840 0.6800 

78 3 3 2 2 0.5879 0.5315 0.7107 0.3815 
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Figure S.1 Fitness function graph for WSZ5 during rule optimisation 

 

 

 
Figure S.2 Fitness function graph for WSZ3 during rule optimisation 
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Figure S.3 Fitness function graph for WSZ4 during rule optimisation 

 

 
Figure S.4 Fitness function graph for WSZ1 during rule optimisation 
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Appendix T: Risk maps generated by the ANN(t,ѱ) model 

 

Figure T.1 ANN(t,ѱ) model risk maps showing (a) Predicted and (b) measured Fe and Mn accumulation potential at WSZ1 in 2009  
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Figure T.2 ANN(t,ѱ) model risk maps showing (a) Predicted and (b) measured Fe and Mn accumulation potential at WSZ3 in 2006  
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Figure T.3 ANN(t,ѱ) model risk maps showing (a) Predicted and (b) measured Fe and Mn accumulation potential at WSZ4 in 2005  
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Appendix U: Risk maps generated by the Hierarchical data-driven FIS 

 
 

Figure U.1 Hierarchical data-driven FIS risk maps showing (a) predicted and (b) measured Fe and Mn accumulation potential at WSZ1 in 

2008 
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Figure U.2 Hierarchical data-driven FIS risk maps showing (a) predicted and (b) measured Fe and Mn accumulation potential at WSZ3 in 

2008 
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Figure U.3 Hierarchical data-driven FIS risk maps showing (a) predicted and (b) measured Fe and Mn accumulation potential at WSZ4 in 

2009 
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Figure U.4 Hierarchical data-driven FIS risk maps showing (a) predicted and (b) measured Fe and Mn accumulation potential at WSZ5 in 

2006
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