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Abstract 26 

Large variance in reproductive success is the primary factor that reduces effective population size (Ne) in 27 

natural populations. In sequentially hermaphroditic (‘sex-changing’) fish, the sex ratio is typically skewed 28 

and biased toward the ‘first’ sex, while reproductive success increases considerably after sex change. 29 

Therefore, sex-changing fish populations are theoretically expected to have lower Ne than gonochorists 30 

(separate sexes), assuming all other parameters are essentially equal. In this study, we estimate Ne from 31 

genetic data collected from two ecologically similar species living along the eastern coast of South 32 

Africa: one gonochoristic, the ‘santer’ sea bream Cheimerius nufar, and one protogynous (female-first) 33 

sex-changer, the ‘slinger’ sea bream Chrysoblephus puniceus. For both species, no evidence of genetic 34 

structuring, nor significant variation in genetic diversity, were found in the study area. Estimates of 35 

contemporary Ne were significantly lower in the protogynous species, but the same pattern was not 36 

apparent over historical timescales. Overall, our results show that sequential hermaphroditism may affect 37 

Ne differently over varying time frames, and that demographic signatures inferred from genetic markers 38 

with different inheritance modes also need to be interpreted cautiously, in relation to sex-changing life-39 

histories.  40 

41 



Introduction 42 

The amount of genetic diversity in a species reflects the effective population size (Ne), which in practical 43 

terms informs on the number of breeders that contribute to the offspring, generation after generation; this 44 

number, especially in some marine animals, has been estimated to be several orders of magnitude lower 45 

than census size (Nc) (Hauser and Carvalho, 2008). Census size fluctuations and ecological perturbations 46 

are known to reduce Ne, especially in fragmented populations. However, life history traits also play a 47 

fundamental role in determining the effective size of a population (reviewed in Caballero, 1994). Lee et 48 

al. (2011) suggest that delayed age-at-maturity and lowered juvenile survival reduce Ne/Nc. Recently, age-49 

at-maturity and adult lifespan were shown to explain half of the variance in Ne/Nc among 63 animal and 50 

plant species (Waples et al., 2013). Thus, variation in key life history traits related to mating success and 51 

survival rates, through their effect on individual lifetime reproductive success, appear to shape Ne 52 

differences among populations.  53 

In teleosts, older and larger females generally produce more and larger eggs (Chambers and 54 

Leggett, 1996; Palumbi, 2004). Larger size also improves the mating capacity of males through 55 

behaviours such as dominance and protection of territories (Warner, 1988). Hence, growth rate is also 56 

likely a key factor determining reproductive success. However, additional reproductive traits in marine 57 

fish might account for further components of lifetime variance in reproductive success. Sequential 58 

hermaphrodites first mature as one sex and, after changing, reproduce as the opposite sex. Since younger 59 

and smaller individuals of the first sex are generally more abundant than older and larger individuals of 60 

the second sex, sequential hermaphrodite species typically present skewed sex ratios compared to 61 

gonochoristic (separate sexes) species (Allsop and West, 2004). According to the size advantage model 62 

(Ghiselin, 1969; Warner, 1975), reproductive success in sequential hermaphrodites tends to increase 63 

considerably after sex change, with individuals of the ‘second sex’ expected to have a greater contribution 64 

to the next generation. Therefore, the age at which individuals change sex – which has been shown to 65 

fluctuate in response to environmental factors (Hamilton et al., 2007; Mariani et al., 2013) – will have a 66 

significant impact on the lifetime reproductive success in sequential hermaphrodites. As a result, 67 

intrinsically biased sex ratios (Wright, 1931) and variance in reproductive success are theoretically 68 

expected to result in lower Ne in sequentially hermaphroditic species, compared to gonochoristic ones, 69 

assuming that other characteristics are somewhat equal. This is inevitably complicated by the flexible 70 



nature of age/size-at-sex change in natural populations (see Avise and Mank, 2008; Mariani et al., 2013; 71 

Ross, 1990, for discussion). 72 

In the present study, by directly examining empirical data, we investigate whether sex-changing 73 

life history may indeed determine a reduction in Ne as a result of increased lifetime variance of 74 

reproductive success and skewed sex ratio. We compared genetic data in two closely related and 75 

sympatric species (family: Sparidae) with largely comparable habitat, ecology, abundance, behaviour and 76 

life-history traits, with the exception of their reproductive modes: one species being protogynous (the 77 

slinger sea bream, Chrysoblephus puniceus, which first matures as female, later turning to male) and the 78 

other being gonochoristic (santer sea bream, Cheimerius nufar, maturing either as male or female) 79 

(Garratt, 1985a, b, 1986, 1993). Chrysoblephus puniceus is endemic and restricted to the south-east coast 80 

of southern Africa, while C. nufar is distributed over a wider area of the Western Indian Ocean. Both 81 

species are targeted by the same local commercial and recreational line fisheries, and together represent a 82 

large proportion of catches from this region (Mann and Fennessy, 2013a, b). Both species are 83 

opportunistic predators found in shoals around coastal reefs feeding on crustaceans, mollusks and small 84 

fish (Garratt, 1986). Sex-ratios were found to fluctuate greatly in C. puniceus, both spatially, between 85 

southern Mozambique and the KwaZulu-Natal region (Garratt, 1985a), and temporally (Mariani et al., 86 

2013), with changes to some extent influenced by the degree of fishing pressure. In contrast, even sex 87 

ratios were found in C. nufar (Garratt, 1985a). Results obtained using nuclear and mitochondrial 88 

molecular markers are interpreted as a function of inheritance mode and reproductive strategy. The 89 

findings enhance our understanding of the role of life-history in population genetics and may have 90 

implications for the management of exploited populations. 91 

 92 

Materials and methods 93 

Sampling 94 

Chrysoblephus puniceus and Cheimerius nufar specimens were collected from commercial ski-boat line 95 

fishermen between May and July 2007 at three locations along the KwaZulu-Natal coast: Port Edward 96 

(PE), Park Rynie (PR) and Richards Bay (RB) (Fig. 1). A total of 138 C. puniceus (122 females and 16 97 

males) and 139 C. nufar (69 females and 67 males) were collected.  98 



Fork length and weight were measured and sex was assessed by macroscopic gonad identification. We 99 

used previously published length-age relationships to derive age from fork length for both C. puniceus 100 

(Garratt et al., 1993) and C. nufar (Druzhinin, 1975; Coetzee and Baird, 1981). Fin-clips were taken from 101 

the pectoral fins and stored in absolute ethanol for later DNA extraction. 102 

 103 

Molecular analyses 104 

DNA was extracted using a modified Phenol-Chloroform protocol (Sambrook and Russell, 2001). DNA 105 

concentration and quality were estimated on a NanoDropTM ND-1000 spectrophotometer. Samples of 106 

both species were screened at 11 microsatellite loci, some specifically developed for this study (Chopelet 107 

et al., 2009a). Of the eleven microsatellites designed for C. puniceus, five cross-amplified in C. nufar. Six 108 

supplementary microsatellites were specifically developed for C. nufar, using the same protocol as in 109 

Chopelet et al. (2009a) (see Table 1 for details). Microsatellites were amplified using fluorescence-110 

labelled forward primers (Applied Biosystems, Waltham, Massachusetts) and 2X Multiplex PCR Master 111 

Mix (QIAGEN, Hilden, Germany) in a final volume of 10µl. Depending on size and dye, fragments were 112 

amplified into two multiplexed reactions for C. puniceus (Chopelet et al., 2009a), while another 113 

microsatellite (SL3) was amplified separately. For C. nufar, one reaction contained SL25 and SA2, and 114 

the other included the nine remaining loci (Table 1). All amplifications were carried out using the same 115 

conditions. An initial step of 15 min at 95°C was followed by 30 cycles of 45s at 94°C, 45s at 60°C, and 116 

45s at 72°C and a final extension step at 72°C for 45 min. PCR products were sized on an ABI 3130xl 117 

alongside a GS600 ladder. Genemapper v 4 (Applied Biosystems) was used for allele scoring.  118 

Universal primers Hsp1 and Lsp1 were also used to amplify the first hypervariable region of the 119 

mitochondrial DNA control region (Ostellari et al., 1996). Each reaction was carried out using 300 ng of 120 

genomic DNA in Ready Mix (Applied Biosystems) in a final volume of 25 μl. PCR cycles were as 121 

follows: a) 95°C (5min), b) 30 cycles at 95°C (50sec), 56°C 1min and 72°C (2min), and c) a final 10 min 122 

elongation at 72°C (10 min). Amplified products were purified with exonuclease I and shrimp alkaline 123 

phosphatase (Hanke & Wink 1994) and sequenced at GATC-Biotech (Konstanz, Germany). 124 

 125 

Statistical analyses 126 

Genetic diversity 127 



Genetic analyses were first performed to detect patterns of spatial structure and estimate diversity within 128 

and between locations. For microsatellite data, frequencies of null alleles were estimated using FREENA 129 

(Chapuis and Estoup, 2007). For each location sample, number of alleles (Na), observed (Ho) and 130 

expected (He) heterozygozity and inbreeding coefficient (FIS) were assessed using GENEPOP ON THE WEB 131 

(http://genepop.curtin.edu.au/; Raymond and Rousset, 1995; Rousset, 2008). Marker neutrality was tested 132 

in LOSITAN (Antao et al., 2008). To correct for variance in the sample size among populations, we further 133 

estimated the allelic richness (AR) based on the minimum sample size (see Table 1) using FSTAT 2.9.3 134 

(Goudet, 1995) and the number of private alleles using the rarefaction method (Kalinowski, 2005) 135 

implemented in ADZE 1.0 (Szpiech et al., 2008). Population differentiation was estimated using the θ 136 

estimator of FST (Weir and Cockerham, 1984) and relative confidence intervals using 10,000 permutations 137 

on the individuals in GENETIX v.4.05.2 (Belkhir et al., 1996-2004). Although the mutation rate was in our 138 

instance likely to be orders of magnitude smaller than migration rates, the corrected F’ST (Hedrick, 2005) 139 

was calculated, and Jost’s Dest (Jost, 2008) estimated using SMOGD (Crawford, 2010), and reported as 140 

additional information on genetic substructure. POWSIM was employed to evaluate the power of the 141 

dataset to detect genetic differentiation (Ryman et al., 2006). Five-hundred replications and different Ne/t 142 

ratios (500/0; 2000/2; 1000/5; 1000/10; 500/10) were used to obtain the expected FST according to this 143 

equation: FST = 1 - (1 - 1/2Ne)
t
, with t being the number of generations of isolation (Ryman et al., 2006). 144 

Bayesian assignment was performed in STRUCTURE 2.3 (Pritchard et al., 2000; Falush et al., 2003, 2007) 145 

to infer the most likely number of genetic clusters (K) present in the datasets using the admixture model, 146 

and 500,000 iterations, after 50,000 burn-in. The number of clusters was calculated by averaging the 147 

mean posterior probability of the data L(K) over 10 independent runs.  148 

Nucleotide and haplotype diversities were estimated from mitochondrial DNA sequences using DNASP 149 

v4.5 (Rozas et al., 2003). Median-Joining networks were constructed for both species using POPART 150 

(http://popart.otago.ac.nz). 151 

 152 

Estimating effective population size 153 

We used the linkage disequilibrium (LD) method implemented in LDNe (Waples and Do, 2008) to 154 

estimate contemporary Ne for each location from the microsatellite data, both including and excluding the 155 

markers that were not under HWE according to the exact test performed in Genepop. The LD method is 156 

http://genepop.curtin.edu.au/
http://popart.otago.ac.nz/


based on the theoretical relationship (Hill, 1981) between a measure of LD (r^2 = squared correlation of 157 

alleles at pairs of unlinked gene loci), sample size (N), and Ne. LDNe implements a modification of Hill’s 158 

method that accounts for bias from ignoring second order terms in N and Ne.  LDNe allows one to screen 159 

out rare alleles, which tend to upwardly bias Ne estimates, by selecting a minimum allowable allele 160 

frequency (PCrit).  We focused especially on PCrit = 0.02, which (given the minimum sample sizes of N = 161 

39-45; Table 2) ensured that any alleles that occurred in a single copy were not used (Waples and Do, 162 

2010).   Another estimate of effective population size was obtained using the Approximate Bayesian 163 

Computation method implemented in DIYABC 2.01 (Cornuet et al., 2014). Calculations were performed 164 

for each species, pooling samples from all locations in order to reflect the lack of genetic substructure 165 

detected in our data. Three simple scenarios were simulated. Each one represented one single population 166 

whose Ne remained constant (scenario 1), one where Ne increased after a time t1 (scenario 2), and the third 167 

where Ne decreased after t1. Priors were as follows: effective population size was between 10 and 10
6
, and 168 

t1 between 10 and 10
4
 generations,  169 

A longer-term view of effective population size was also obtained through estimates of historical 170 

female Ne from mtDNA data. We first used the Watterson estimator of the mutation parameter theta (θ) 171 

obtained from the number of polymorphic sites (S) (Watterson, 1975). In DNASP v4.5, θ is defined as 172 

2Neμ for mitochondrial DNA, where Ne is the effective population size and μ is the mutation rate per 173 

DNA sequence per generation (Tajima 1996). We estimated the female effective population size (Nef) 174 

from the haplotype mutation rate and generation time (T) according to this equation:  175 

 176 

We assumed a widely accepted rate μ=11% per site per million year for the Sparid mtDNA 177 

control region (Bargelloni et al., 2003; Sala-Bozano et al., 2009; Coscia et al., 2012), equal to 0.055 178 

substitutions/site/million years. The age at maximum egg production was estimated with Linf = 47 cm for 179 

C. puniceus and Linf = 75 cm for C. nufar (where  Linf,, a paramenter of the von Bertalanffy growth 180 

equation, is defined as the length that an individual would reach if it grew indefinitely). This, according to 181 

Beverton (1992), can be used as an approximation of generation time (T = 5 for C. puniceus and 7 for C. 182 

nufar). Therefore, to account for life-history plasticity, we estimated Ne in both species with generation 183 

time encompassing these values: T = 3, 5 and 8. 184 



Furthermore, we applied the Bayesian Skyline Plot (BSP) approach implemented in BEAST v 185 

1.7 (Drummond et al., 2012) to estimate trends in past effective population size. Firstly, jModelTest 0.1.1 186 

(Posada, 2008; Guindon and Gascuel, 2003) was used to select the best model of substitution for each 187 

dataset via the AIC (Akaike Information Criterion): GTR (Generalised Time Reversible described in 188 

Tavare (1986)) was selected for C. nufar and HKY (Hasegawa, Kishino and Yano 1985) for C. puniceus. 189 

To avoid convergence issues, several independent runs (each 10
6
 generations and 10% burn-in) were used 190 

for each species until each effective sample size value (ESS) reached ~200 as per the user’s manual.  191 

 192 

Results 193 

Species and population characteristics 194 

Males (375-1404 g) were larger than females (257-952 g) in C. puniceus, while male (420-1436 g) 195 

and female sizes (440-2820 g) overlapped in C. nufar (Figures S1 and S2). Individuals from the most 196 

northern location, Richards Bay, had slightly larger sizes in both species (Fig. S2). Fifteen male C. 197 

puniceus were found in Richards Bay and one male in Park Rynie, while only females were collected in 198 

Port Edward (southernmost location). A recent study has shown that the likely age-at-sex-change for C. 199 

puniceus is around 301mm, significantly lower than three decades ago (Mariani et al., 2013), and 200 

potentially decreased as a result of increased fishing pressure. 201 

 202 

Genetic variation 203 

No evidence of null alleles was detected within the dataset. At least one marker in each of the two 204 

species deviated from equilibrium expectations across all locations with strongly positive associated  FIS 205 

values (SA3 in C. nufar, and SL35 in C. puniceus, Table S3). Since LOSITAN did not detect any signature 206 

of selection (data not shown) and no significant FIS was recorded for any species at each location (Table 207 

2), all markers were retained in the subsequent analyses. 208 

Expected and observed heterozygosities were 0.83 in all locations for C. puniceus, and varied 209 

between 0.72 (PE and RB) and 0.74 (PR) for C. nufar. Allelic richness and the number of alleles were 210 

higher in C. puniceus (overall NA=18.4 and AR=18.1) than C. nufar (overall NA=12 and AR=12.1) (Table 211 

2).  No significant FST values were found within either species (Table S1; C. puniceus overall FST = 212 

0.0011, p=0.19; C. nufar overall FST = 0.0004, p=0.37). No significant genetic differentiation was found 213 



between the three samples, for each species, irrespective of the method employed (overall Dest was 0.0036 214 

for C. puniceus and 0.0010 for C. nufar) or corrections used (Hedrick’s corrected G’ST was 0.0047 for C. 215 

puniceus and 0.0019 for C. nufar). Hence, as expected, STRUCTURE detected one genetic cluster in each 216 

species (K=1, Fig S3). According to the power estimations implemented in POWSIM, the probability that 217 

our datasets can detect low genetic differentiations up to an FST of 0.005 is 100% (Fig. S4), with high 218 

probabilities (70-80%) also for values around 0.0025. This suggests a lack of genetic structuring among 219 

the three locations sampled at microsatellites (see also Table S1). 220 

A total of 75 individual C. puniceus and 77 C. nufar were sequenced (179 bp and 223 bp long 221 

fragments of the control region respectively; Genbank Accession Nos.: XXXX–XXXX). Overall, 222 

nucleotide diversity π was 0.03 for C. puniceus and 0.04 for C. nufar, while haplotype diversity Hd was 223 

0.996 for C. puniceus, with 65 haplotypes, and 0.984 for C. nufar, with 55 haplotypes.  Within species, 224 

both π and Hd did not vary, with the former being 0.03 and 0.04 for C. puniceus and C. nufar respectively, 225 

across all sampling locations (Table 2). Hd ranged between 1 (Richards Bay) and 0.996 (Port Edward) for 226 

C. puniceus, and between 0.994 (Richards Bay) and 0.969 (Park Rynie) for C. nufar. No significant ΦST 227 

was detected for any of the two species between any location (Table S1), and visual inspection of median 228 

joining networks also showed a lack of geographical structure (Figures S5 and S6). 229 

 230 

Effective population size 231 

Ne estimates using LDNe tended to increase with extreme values of allelic frequencies (Pcrit) (Fig. 232 

2). However, C. puniceus consistently had much smaller Ne and smaller variances than C. nufar, 233 

irrespective of the allelic frequencies included (Fig. 2). Estimates of effective population size (Ne^) at Pcrit 234 

= 0.02 are reported in Table 2. In C. nufar, negative Ne were interpreted as infinite (Waples and Do, 235 

2010); the lower boundaries of the confidence intervals for C. nufar did not overlap with the highest 236 

boundaries of the C. puniceus estimates, using all loci, and only marginally overlapped when we excluded 237 

the locus not in HWE (Table 2). The pattern was found to be robust and consistent, whether samples were 238 

pooled or treated as separate geographical collections. Historical Ne was estimated from microsatellites 239 

using DIYABC. Of the three scenarios simulated, the second one was by far the most likely for C. 240 

puniceus (Ne increased in time), while scenarios 1 and 2 were equally likely for C. nufar. For consistency 241 

with C. puniceus data – and in line with population expansion results from mtDNA data (see below) – we 242 



used scenario 2 for C. nufar too. Estimates of effective population size (t0) were slightly higher for C. 243 

puniceus than C. nufar, but the confidence limits were highly overlapped (Table 2).  244 

Historical female population size inferred from mtDNA offered further insight into demographic 245 

aspects, but the obtained estimates proved to be of different orders of magnitude depending on the method 246 

used. The Watterson method returned estimates in the order of the tens of thousands (Fig 3), slightly 247 

larger in C. nufar than in C. puniceus, all else being equal; however, considering the longer generation 248 

time in the latter, estimates for the protogynous C. puniceus are slightly greater than for C. nufar (Fig 3). 249 

The Bayesian Skyline method (Fig 4) also indicates larger effective size in C. puniceus, although the 250 

confidence limits largely overlap.  251 

 252 

Discussion 253 

No significant genetic divergence was detected among populations of either species, using either 254 

microsatellites or the variable mitochondrial control region, suggesting that the three sampled populations 255 

for each species do not belong to independent evolutionarily significant units (ESUs). This lack of genetic 256 

differentiation is also mirrored by similar levels of genetic diversity among locations. Similar findings for 257 

C. puniceus were recently reported by Duncan et al. (2015) who reported a single panmictic stock. The 258 

life histories and behaviour of both species are consistent with the lack of genetic differentiation within 259 

this area: they live in large shoals in the vicinity of rocky and coral reefs and are capable of migration 260 

across tens of kilometres (Garratt, 1984; Griffiths and Wilke, 2002). Based on studies of histological 261 

changes in the ovaries, it appears that spawning in C. puniceus occurs in large aggregations off the coasts 262 

of southern Mozambique and Northern KwaZulu-Natal (mostly to the north of Durban) and decreases to 263 

the south of Park Rynie (Garratt, 1985). Most C. puniceus males sampled in this study were from 264 

Richards Bay, in accordance with this pattern. The majority of eggs are fertilized and scattered above 265 

coral and rocky reefs from northern locations, and the developing larvae drift southward influenced by the 266 

strong Agulhas Current in this region (Garratt, 1985). Juveniles settling out to the south of Park Rynie, 267 

where no spawning takes place, are believed to move northward later in life to reproduce (Maggs et al., 268 

2013). Accordingly, average sizes were found to be higher in the northernmost location of Richard’s Bay. 269 

Such southward larval dispersal followed by northward adult migration could result in a constant 270 

redistribution of alleles across the area, ultimately ensuring population cohesion.  271 



Cheimerius nufar has an extended distribution along the African east coast. The spawning area 272 

stretches from the Eastern Cape to the Gulf of Aden and individuals in spawning condition are found 273 

regularly in both Eastern Cape and KwaZulu-Natal waters (Coetzee, 1983; Garratt, 1985). Patterns of 274 

adult migration and settlement of juveniles are less well known for C. nufar (Griffiths and Wilke, 2002), 275 

but it is likely that other separate spawning aggregations exist in more northern, unsampled areas of the 276 

Western Indian Ocean.  277 

 278 

This study examined population genetic inference of Ne in the context of sex-change in marine 279 

fish. Other sources of Ne variation were minimized by comparing two species with very similar 280 

taxonomical and biological characteristics and by obtaining replicate samples from the same biological 281 

units and dwelling in the same locations. No estimates of census size exist for these species, but these are 282 

also likely to be similar in the study area: C. puniceus and C. nufar are known to be the two most 283 

abundant commercial line-fishery targets in the South-African east coast, with annual landings around 284 

300,000 and 100,000 individuals, respectively, but with the fishery that targets a habitats slightly more 285 

suited to the former (Winker et al., 2012). 286 

All methods to calculate effective population size will assume discrete generations; therefore, 287 

underestimation of Ne may occur here, but will likely affect both species similarly (Waples et al., 2014). 288 

Predictions from population genetics theory led to the expectation that a sex changing species would 289 

present smaller Ne than a gonochoristic one for the following reasons: a) the sex ratio of the sex-changing 290 

species is biased toward the ‘first sex’, which is known to reduce Ne (Wright, 1931; Chopelet et al., 291 

2009b); and b) the dynamic balance of age-at-sex change, which affects individual variance in 292 

reproductive success (Vk). Using the LD method, we find agreement with these expectations, with 293 

substantially lower effective sizes in the protogynous C. puniceus; while Ne estimates in C. nufar were 294 

one order or magnitude larger, with infinite upper confidence boundaries, indicating that more precise 295 

estimates in this species would ideally require greater sample sizes (Palstra and Ruzzante, 2008).  296 

Obviously, the Ne/Nc ratios of these species may be different, but unpublished surveys indicate that local 297 

abundances are in the same order of magnitude (Winker et al., 2012). Protogynous populations can still 298 

therefore sustain large numbers through a relatively small number of breeders; over short time scales, a 299 

population may be dominated by a relatively small number of strong, large breeding males, belonging to 300 



two or three year classes, and able to pass their gene combinations to most of the new cohorts. On the 301 

other hand, ABC computation provides no evidence that Ne differs significantly between breeding 302 

strategies. Point estimates and confidence limits are very similar in the two species, suggesting that over 303 

evolutionary time scales, some factors are at play in reducing the expected high variance in individual 304 

reproductive success of sex-changers. One such scenario could be the inherently ‘bet-hedging’ nature of a 305 

sex-changing life history, whereby successful genotypes with optimal timing of first maturation and sex-306 

change are able to maximize reproductive output as both females and males, hence reducing long-term 307 

stochasticity. 308 

Effective population size estimates based on mtDNA do not reveal substantial differences between 309 

C. nufar and C. puniceus, except for the magnitude of the point estimates (i.e. millions with BEAST and 310 

tens of thousands with the Watterson method). Although the Bayesian Skyline Plot shows overlapping 311 

confidence limits, Ne appears larger in C. puniceus; with the Watterson method – once taken into account 312 

that the generation time for C. puniceus is lower (Garratt, 1985, Mann et al., 2014) – there also seems to 313 

be a trend towards greater Ne in C. puniceus.  Interestingly, in a protogynous species like C. puniceus, 314 

virtually every individual has the potential to reproduce as a female, with only a fraction becoming males. 315 

This is likely to maintain a large mtDNA diversity over evolutionary timescales. In gonochoristic species 316 

like C. nufar, only about half of individuals (the females) from every new cohort will transmit their 317 

mtDNA, which may explain the patterns detected here using maternally inherited loci. Based on this, 318 

protogynous species can be expected to have mtDNA diversity similar or higher, while protandrous 319 

species would likely be lower, than that estimated for gonochoristic species.  320 

This is potentially an important fact to be considered in conservation biology, and presumably 321 

similar (yet opposite) considerations should be applied to protandrous species (where only a smaller 322 

proportion of individuals will reproduce as females). This hypothesis can potentially be tested already 323 

using the available literature. However, expectations will always require adjustment according to the 324 

degree of plasticity of sex-changing patterns; for instance, a recent stock assessment of the C. puniceus 325 

population in South Africa has revealed strong evidence of recovery since the introduction of a cut in 326 

commercial fishing effort in 2003-2006 (Winker et al., 2012).  This may have been facilitated by earlier 327 

age-at-sex-change inferred by Mariani et al. (2013). 328 



Much remains to be understood about the interaction among life history traits in determining 329 

lifetime variance in reproductive success and, by reflection, the effective size of a population, especially 330 

when the added complexities of sex-change, its timing and its extent are added to the picture. Beyond 331 

fecundity, longevity and age at maturation, sex change is a particularly labile trait:  individuals of the first 332 

sex might sometimes be larger than individuals of the second sex, it is not always the largest individuals 333 

of a group that change sex (Munoz and Warner, 2003), and some individuals in the population might not 334 

change sex at all (Mann and Buxton, 1998). In the case of C. puniceus it is likely that the large females 335 

that do not change sex make a significant contribution to future generations (Berkeley et al., 2004; 336 

Palumbi, 2004).  Furthermore, the social status of individuals within the group will affect the timing of 337 

sex change, as will behavioural and/or biochemical (pheromones) interactions (Munday et al., 2006). Our 338 

initial empirical analyses show that theoretical predictions may be supported over contemporary time 339 

scales, but other mechanisms may play bigger roles over evolutionary periods. 340 

In a population, it is generally possible to distinguish different groups such as individuals of the 341 

same age or with the same sex. The reproductive success (the average number of gametes transmitted to 342 

the next generations) of these groups can differ significantly (males can produce and transmit more 343 

gametes than females, or vice versa, depending on operational sex-ratios). In sex changing species the 344 

partitioning of reproductive success depends on the age at sex change. Some individuals change sex 345 

earlier and might present higher overall lifetime reproductive success than those changing sex at older 346 

stages, although shifts in age-at-sex-change will likely be linked with trade-offs with growth, maturity 347 

and longevity (Allsop and West, 2003). The next step towards offering generality to this indication will 348 

require a detailed understanding of how age-at-sex and other life-history traits shape the reproductive 349 

success and Ne.  Furthermore, the remarkably diverse magnitude range of Ne estimates obtained through 350 

different methods, using the same data sets, suggests that, while these can be useful in a within-method 351 

comparative approach, much remains to be done to match method estimation with the appropriate time 352 

scales (Waples, 2005). We expect that the analysis of genetic data in larger sets of sex-changing and 353 

gonochoristic species pairs will be required to shed more light on the significance of sex change in 354 

affecting Ne and the evolutionary trajectories of populations and species. 355 

 356 

 357 
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FIGURE TITLES AND LEGENDS 589 

 590 

 591 

Figure 1 – MAP: Sampling locations off the KwaZulu Natal Coast of South Africa. 592 

 593 

 594 

Figure 2 – EFFECTIVE POPULATION SIZE ESTIMATES: Effective population size of 595 

Cheimerius nufar (santer, in red) and Chrysoblephus puniceus (slinger, in green) estimated with 596 

different allelic frequencies (or Pcrit). The three sampled populations were pooled. 597 

 598 

 599 

Figure 3 – HISTORICAL FEMALE EFFECTIVE POPULATION SIZE: Historical female effective 600 

population size (Nef) of slinger, Chrysoblephus puniceus (continuous line) and santer, Cheimerius nufar 601 

(dotted line) based on θ for different mutation rates (μ) and three generation lengths (T = 3, 5 and 8 602 

years). Red values correspond to Nef estimations for μ = 11% and T = 5. 603 

 604 

 605 

Figure 4: BAYESIAN SKYLINE PLOTS: Bayesian Skyline plots for santer, Cheimerius nufar 606 

and slinger, Chrysoblephus puniceus. The continuous and dashed lines represent the median and 607 

mean values, respectively. 608 

 609 



Table 1: Variability of ten polymorphic microsatellite loci in santer, Cheimerius nufar, from South Africa (n = 131) grouped into two multiplex reactions (I and II). Ta, 

annealing temperature (°C); Na, number of alleles observed; Ho, observed heterozygosity; He, expected heterozygosity. For slinger, Chrysoblephus puniceus, see Chopelet et 

al. (2009a). 

Locus 

name 

GenBank 

Accession 

Number 

Dye 

label 
Primer sequences (5'-3') Repeat Motif Ta 

Size 

Range 

(bp) 

NA He Ho 

SA1 (I)   6FAM 
F:CAGCGATGCACAGTAAAGTACC 

R:AGCATACAGAGGCCTTCAGC 
(TG)33 58 253-293 19 0.93 0.94 

SA2 (II) 
 

NED 
F:GAGCCAGACTCCAGACATCC    

R:CCGGACAGGAGTATTGAAGC 
(GTCT)11 58 190-234 8 0.75 0.73 

SA3 (I) 
 

PET 
F:CCAGAGTCTGTGCTGTGAGTGC 

R:TCCTTGTGGTCCACTTTACG 
(CA)17 58 386-420 13 0.89 0.77 

SA6 (I) 
 

6FAM 
F:AGCTGCTGCTCATCTCACG 

R:GCAGTGTTAACATCTTCGAATGC 
(TG)12 58 187-209 9 0.75 0.79 

SA10 (I) 
 

6FAM 
F:GAAGCCAAACGAGGACAGC 

R:GTGAGGAGCATGCTAATACCG 

(GT)15GA(GT)26 

GAGTGAGTGA(GT)18 
58 428-532 42 0.96 0.92 

SA25 (I) 
 

VIC 
F:GGAGGAAATGAACCGATGG 

R:GCAGCTGGTCAATAGTGTGG 
(TG)7CA(TG)6 58 152-220 19 0.61 0.70 

SL25 (II) FJ526983 NED 
F:GGTACTGTTTGGCCCTTGC 

R:GCCTGGTAATATGCCTGAGC  

(GA)11TG(GA)3TA(GA)4GTCA 

(GA)2AA(GA)9CA(GA)2AA(GA)12 
58 207-271 7 0.61 0.66 

SL26 (I) FJ526984 PET 
F:TGAAGGTGCTGATGACTTTCC 

R:CAGTCCTGCCTCTGACTGG 

(TC)2TT(TC)9GC(TC)4TGCCTT 

(TC)5GC(TC)7 
58 239-247 5 0.38 0.32 

SL27 (I) FJ526985 VIC 
F:CAGCCTCAGCTCATTTCTCC 

R:CCTGCCCTCCTGTAGATGC 
(TG)55 58 183-201 6 0.35 0.32 

SL34 (I) FJ526988 VIC 
F:GCGTGCACACTCTTACAGTACC 

R:TCGGATGTGCATCTCATAGG 
(CA)17 58 321-361 19 0.84 0.85 



Table 2: Genetic diversity of slinger, Chrysoblephus puniceus and santer, Cheimerius nufar estimated with microsatellites and mitochondrial DNA. N, number of samples 

analysed; NA, number of alleles; AR, allelic richness; He, expected heterozygosity; Ho, observed heterozygosity; Fis, inbreeding coefficient; Nhap, number of haplotypes; Hd, 

haplotype diversity; π, nucleotide diversity. The three Ne estimates refer to, in order: i) estimates based on LDNe using all loci, ii) estimates based on LDNe excluding loci 

departing from HW equilibrium, iii) estimates based on DIYABC. 

    microsatellites   mitochondrial 

  location N NA AR He Ho Fis Ne^ Ne^
(HWE)LD

 Ne^
(HWE)ABC

 N Nhap Hd p 

C. 

puniceus 

[slinger] 

PE 43 18.5 18 0.83 0.78 0.05 835(287-∞) 707(259-∞) 

 
24 23 0.996 0.03 

 
PR 41 18.7 18.2 0.83 0.81 0.02 128(93-187) 535(228-∞) 

 
25 24 0.997 0.03 

 
RB 38 18 18 0.83 0.79 0.04 166(114-292) 462(198-∞) 

 
26 26 1 0.03 

  ALL 125 18.4 18.1 0.83 0.79 0.04 371(289-511) 601 (404-1124) 

560,000        

(52,000-980,000) 75 65 0.996 0.03 

C. nufar 

[santer] 
PE 43 11.6 11.8 0.72 0.74 0.06 ∞(-261-∞) ∞ (327-∞) 

 
25 22 0.99 0.04 

 
PR 45 12.4 12.4 0.74 0.76 -0.04 ∞(-340-∞) ∞ (733-∞) 

 
26 20 0.969 0.04 

 
RB 42 12.1 12.1 0.72 0.70 0.02 ∞(405-∞) ∞ (353-∞) 

 
26 24 0.994 0.04 

  ALL 131 12 12.1 0.73 0.73 0.01 2236(654-∞) 3233 (743-∞) 
370,000        

(23,000-960,000) 
77 55 0.984 0.04 
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