1 ACCEPTED MANUSCRIPT

- 2
- 3 Siegenthaler, A., Niemantsverdriet, P. R. W., Laterveer,
- 4 M. and Heitkönig, I. M. A. (2016), Aversive responses of
- 5 captive sandbar sharks *Carcharhinus plumbeus* to strong
- 6 magnetic fields. J Fish Biol, 89: 1603–1611.
- 7 doi:10.1111/jfb.13064

8 Aversive responses of captive sandbar sharks

- 9 (Carcharhinus plumbeus) to strong magnetic
- 10 fields

11	Short title: Carcharhinus plumbeus responses to magnetic fields
12	
13	
14	
15	
16	A. Siegenthaler ^{a,b,1,*} , P. R. W. Niemantsverdriet ^{b,} , M. Laterveer ^{b,2} , I. M.
17	A. Heitkönig ^a
18	
19	^a Wageningen University, Resource Ecology Group, Droevendaalsesteeg 3a, 6708 PD
20	Wageningen, the Netherlands
21	^b Rotterdam ZOO, PO Box 532, 3000 AM Rotterdam, The Netherlands
22	¹ Present address: School of Environment & Life Sciences, Room 335, Peel building,
23	University Of Salford, Salford M5 4WT, United Kingdom.
24	² Present address: Blue Linked, Slootweg 4, 2728 PD Zoetermeer, The Netherlands.
25	[*] Corresponding author: School of Environment & Life Sciences, Room 335, Peel
26	building, University Of Salford, Salford M5 4WT, United Kingdom. T:
27	+44(0)1612953136
28	E-mail: a.siegenthaler@edu.salford.ac.uk

29	This experimental study focused on the possible deterrent effect of permanent
30	magnets on adult sandbar sharks, Carcharhinus plumbeus. Results showed that the
31	presence of a magnetic field significantly reduced the number of approaches of
32	conditioned C. plumbeus towards a target; indicating that adult C. plumbeus can be
33	deterred by strong magnetic fields. These data, therefore, confirm that the use of
34	magnetic devices to reduce shark bycatch is a promising avenue.
35	
36	Key words: Behaviour; Bycatch; Elasmobranch; Fisheries; Magnetoreception; Permanent

- 37 Magnet
- 38

39 INTRODUCTION

40

41 Due to their low fecundity and late maturity, most shark species are highly susceptible 42 to overfishing. In a study about large pelagic sharks in the Northwest Atlantic Ocean 43 Baum et al. (2003; 2005) estimated a greater than 50% decline of populations in 8 to 44 15 years. On an annual basis, global mortality is estimated to range between 63 and 45 273 million sharks per year, which represents an average exploitation rate between 46 6.4% and 7.9% of the global population (Worm et al., 2013). Sharks are vulnerable to 47 even light fishing pressure, and the decline of these large predators results in 48 community shifts that influence other vulnerable species such as marine mammals 49 and sea turtles (Ferretti et al., 2010). Apart from direct capture of sharks, shark 50 bycatch also contributes to substantial shark mortality (Baum et al., 2003; Verlecar et 51 al., 2007) in commercial longline fisheries (Stevens, 2000; Gilman et al., 2008; 52 Cortés et al., 2010; Zhou et al., 2011) and in beach nets (Cliff et al., 1988; Cliff & 53 Dudley, 1992; O'Connell et al., 2014a, 2014c). Shark bycatch also results in personal 54 injuries, lower catches, and loss of gear (Gilman et al., 2008). 55 To reduce human injuries and shark bycatch, several shark repellents have been 56 developed. Chemical shark repellents developed for the protection of humans 57 (Gilbert, 1977) are only useful as a directional repellent and need to be delivered 58 directly in the presence of sharks (Smith, 1991; Sisneros & Nelson, 2001). Gear 59 modifications, such as the use of circle hooks instead of the often used j-shaped hooks 60 appear promising (Kaplan et al., 2007) but are not always successful (Read, 2007), 61 and may even be harmful to other protected animals (Gilman et al., 2008). Current 62 shark repellent research focuses on permanent magnets and electropositive metal 63 alloys (O'Connell et al., 2014c). These operate by repelling sharks, making use of

64	their ability to detect weak electric fields (as small as 5nVcm-1, e.g. Kalmijn, 1971;
65	Haine et al., 2001; Kajiura, 2003). Sharks can detect electric fields that are induced by
66	the reaction of electropositive rare-earth metal alloys with water (Kaimmer & Stoner,
67	2008; Brill et al., 2009; Tallack & Mandelman, 2009) and by movements through
68	magnetic fields (Klimley, 1993; Kalmijn, 2000; Meyer et al., 2005; Peters et al.,
69	2007). Hence, permanent magnets have the potential to deter sharks (Stoner &
70	Kaimmer, 2008; Rigg et al., 2009; O'Connell et al., 2010, 2011a). The effect of
71	permanent magnets and electropositive metal alloys on the behaviour and bycatch of
72	sharks has been assessed recently in a range of species, but much variation between
73	species, studies, life stages and magnets/metals has been observed (Table I). More
74	research to assess the repulsive effect of magnetic repellents on the behaviour of
75	sharks is therefore necessary.
76	The sandbar shark, Carcharhinus plumbeus (Nardo, 1827) is a member of the family
77	Carcharhinidae and is closely related to several species that are vulnerable to long-line
78	fisheries (Mandelman et al., 2008; O'Connell et al., 2014c). Previous studies on C.
79	plumbeus elicited negative responses from juveniles on electropositive metal
80	repellents (Brill et al., 2009), but the possible repulsive effect of permanent magnetic
81	fields on the behaviour of adult C. plumbeus still has to be demonstrated (O'Connell et
82	al., 2011b; Hutchinson et al., 2012). Hutchinson et al. (2012) suggested that the
83	absence of a response in marine trials could be due to a particular feeding strategy, or
84	to different sensory modalities. The latter was tested in an experimental environment
85	and it was predicted that captive adult C. plumbeus conditioned to associate a target
86	with food will be more reluctant to approach that target when it is fitted with a
87	permanent magnet.

89 MATERIALS AND METHODS

90 STUDY ANIMALS AND EXPERIMENTAL DESIGN

91 Experiments were carried out with three captive adult C. plumbeus (160-180 cm total 92 length) at Rotterdam Zoo in the Netherlands. These C. plumbeus were caught as 93 neonates along the Florida coastline and transported to Rotterdam Zoo as part of a 94 permanent exhibition. The animals were kept and experiments conducted in this 95 public aquarium (30 x 25 x 5.5 m). The natural seawater in the aquarium was 96 constantly recycled and filtered. Temperature and salinity were kept constant around 97 25°C and 35, respectively. Also present in in the public aquarium were three other 98 species of shark (Carachinus acronotus (Poey, 1860), Carachinus limbatus (Müller & 99 Henle, 1839) and Ginglystoma cirratum (Bonnaterre, 1788)), turtles and fishes. 100 Because of the shared "habitat", the filtration, circulation and heating systems could 101 not be disconnected from the aquarium during the experiments. The standard 102 procedure at Rotterdam Zoo is to feed sharks up to 4% of their body mass four times a 103 week. The C. plumbeus were conditioned to touch a target (PVC, diameter 20 cm) in 104 return for food. After a successful hit, a sound signal rang as a positive reinforcer and 105 food was presented to the shark at 1.5 m distance from the target (see: Clark, 1959; 106 Wright & Jackson, 1964). 107 The experimental design involved three C. plumbeus which were individually tested 108 (and recorded on video) in the presence or absence of a magnetic field (magnetic 109 treatment, see below). Attachment of the magnet or sham magnet to the target was 110 alternated per session, with three sessions per treatment. The number of approaches 111 (steady, straight-line swimming through the water column in the direction of the 112 target) were then recorded. Hitting the target with the anterior part of the head was 113 scored as a successful approach. Approaching the target without physically touching

114 the target, and/or showing clear avoidance behaviour such as a sharp turn and/or

115 acceleration away from the target (O'Connell *et al.*, 2014*a*) was scored as an

- 116 unsuccessful approach.
- 117

118 MAGNETIC TREATMENT

- 119 The treatment consisted of a cylindrically shaped (Ø70xh30 mm) 360 mT
- 120 neodymium-iron-boron (Nd₂Fe₁₄B) magnet with a nickel-copper-nickel coating
- 121 (Sprecher *et al.*, 2014) or a cylindrically shaped steel sham magnet (Ø70xh30 mm)
- being attached vertically with its top to the back side of the target. Both the magnet
- 123 and sham magnet were placed inside a PVC case to prevent corrosion and obscure any
- 124 visual differences between them. The thickness of the case was 4 mm at the top and
- bottom, and 1.8 mm at the sides. The magnetic field of the magnet inside its PVC case
- 126 was measured with a Magnet-physik, Dr Steingroever GmbH, FH
- 127 (http://www.magnet-physik.de/) 51Gauss/Teslameter on a 30x10 cm² grid (one data
- 128 point per 2 cm^2) outside the aquarium. It was not possible to measure the magnetic
- 129 field while the magnet was submerged. A schematic representation of the magnetic
- 130 field around the neodymium magnet is shown in Fig. 1. Due to the vertical orientation
- 131 of the magnet, *C. plumbeus* approaching the target were exposed to magnetic pole
- 132 (50-250 mT).
- 133

134 DATA ANALYSES

A binomial test (2-sided) was used to analyse the differences in *C. plumbeus* response to the magnet and sham magnet in the total number of approaches and the number of successful approaches per individual *C. plumbeus*. Specimens were submitted to three trials per treatment, in which they showed a total number of 133 approaches. Eleven

139	approaches (9% of all approaches) were excluded from further analysis because the C .
140	plumbeus were not individually recognizable (due to the angle of the approach and
141	strong similarity between the two females), when an interaction between C. plumbeus
142	and other animals elicited a distinct change in the specimen's behaviour, or when the
143	whole sequence from approaching to leaving the target area was not entirely visible to
144	the observer.

145

146 **RESULTS**

- 147 The attachment of the magnet on the target had a significant effect on *C. plumbeus* '
- 148 behaviour. The total number of approaches towards the target did not differ
- 149 significantly between the treatments (Fig. 2, binomial test: Male 1, N = 33, P > 0.05;

150 Female 1, N = 45, P > 0.1; Female 2, N = 65, P > 0.1). However, all three *C*.

151 *plumbeus* showed a significantly lower number of successful approaches to the target

152 when a magnet was attached to the target compared to when a sham magnet was

- 153 attached (Fig. 2, binomial test: Male 1, N = 19, P < 0.001; Female 1, N = 13, P < 0.001
- 154 0.01; Female 2, N = 28, P < 0.01).

155

156 **DISCUSSION**

157 Conditioned adult *C. plumbeus* responded negatively to a strong magnetic field during

158 direct approaches towards a permanent neodymium magnet. This result is consistent

159 with the results of both laboratory and field experiments on juvenile *C. plumbeus* by

- 160 Brill *at al.* (2009) but contrasts with findings by the results of long-line experiments
- 161 on juvenile *C. plumbeus* by O'Connell *et al.* (2011*b*) and Hutchinson *et al.* (2012).
- 162 According to O'Connell *et al.* (2011*b*), the fact that they only captured and tested
- 163 juvenile *C. plumbeus* for a magnetic response might explain their observed lack of

164 response to magnetic repellents. This is possibly because juvenile C. plumbeus' 165 electroreception sensitivities differ from adults owing to differences in ampullary canal length. During the present study, all C. plumbeus were adults with full 166 167 electroreception sensitivities. Hutchinson et al. (2012), suggested that differences in 168 environmental conditions, especially visibility, could affect sensory modalities used 169 by sharks. Their hypothesis that C. plumbeus living in clear waters are less susceptible 170 to electropositive metals is in contrast with the results of the present study which was 171 conducted in an aquarium with good visibility. O'Connell et al. (2011b) also noted 172 that the differences between their study and the study of Brill at al. (2009) might be 173 an artefact of a low sample size. With only three individuals tested, this is a 174 recognized issue in the present study as well. In this case, all three C. plumbeus 175 showed a significant negative response when approaching a permanent magnet which 176 is in line with studies on several species within the Carcharhinidae (Table I). 177 In the aquarium of Rotterdam Zoo, C. plumbeus food intake depended on the number 178 of times they hit the target. Consequentially, this refusal to hit the target resulted in a 179 lower food intake. Food deprivation is an important factor known to effect 180 electrosensory repellent success (Stoner & Kaimmer, 2008; O'Connell et al., 2014c). 181 Unfortunately, it should be noted that due to logical constrains of working in a zoo, no 182 food deprivation experiments were conducted during this study. The specimens were 183 fed following the normal procedures on the days between the experiments. Since 184 turbidity, water temperature and salinity were virtually constant during this study, 185 these factors were unlikely to affect the results. Moreover, no habitation effects were 186 observed (O'Connell et al., 2011a). The possible effect of conspecific density on the 187 effect of the repellent (Robbins et al., 2011; O'Connell et al., 2014c) could not be 188 tested since the *C. plumbeus* were trained to approach the target individually.

189	The individual responses could be evaluated by repeated trials due to the captive
190	nature of this study. This study clearly demonstrates that captive adult C. plumbeus
191	show an aversive response to a strong magnetic field at the cost of a food award.
192	Depletion of top predator populations can seriously affect oceans all around the world
193	through cascading effects in the food web (Springer et al., 2003; Myers et al., 2007),
194	which causes unpredictable changes in the ecosystem. The use of magnetic devices to
195	reduce shark bycatch is a promising avenue that could benefit both the ecosystems
196	and fishermen, especially since many teleost species (but see Öhman et al., (2007) for
197	several exceptions) are not repelled by these devices (Rigg et al., 2009; O'Connell et
198	al., 2011b; O'Connell & He, 2014).
198 199	<i>al.</i> , 2011 <i>b</i> ; O'Connell & He, 2014).
	<i>al.</i> , 2011 <i>b</i> ; O'Connell & He, 2014). We are very grateful to W. Vos of Pipesurvey International for providing a
199	
199 200	We are very grateful to W. Vos of Pipesurvey International for providing a
199 200 201	We are very grateful to W. Vos of Pipesurvey International for providing a magnetometer to make measurements of the magnetic fields possible. We also thank
199 200 201 202	We are very grateful to W. Vos of Pipesurvey International for providing a magnetometer to make measurements of the magnetic fields possible. We also thank the caretakers of the Oceanium building of Rotterdam Zoo for their help and support
 199 200 201 202 203 	We are very grateful to W. Vos of Pipesurvey International for providing a magnetometer to make measurements of the magnetic fields possible. We also thank the caretakers of the Oceanium building of Rotterdam Zoo for their help and support in taking care of the sharks. Funding was provided by Rotterdam Zoo in the

207 **References**

- Baum, J. K., Kehler, D. & Myers, R. A. (2005). Robust estimates of decline for
 pelagic shark populations in the Northwest Atlantic and Gulf of Mexico. *Fisheries* 30, 27-30.
- Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J. & Doherty, P. A.
 (2003). Collapse and conservation of shark populations in the Northwest
 Atlantic. *Science* 299, 389-392.
- Brill, R., Bushnell, P., Smith, L., Speaks, C., Sundaram, R., Stroud, E. & Wang, J.
 (2009). The repulsive and feeding-deterrent effects of electropositive metals
 on juvenile sandbar sharks (*Carcharhinus plumbeus*). *Fishery Bulletin* 107, 298-307.
- 218 Clark, E. (1959). Instrumental conditioning of lemon sharks. *Science* **130**, 217-218.

210	Cliff C & Dudley C E I (1002) Checks coucht in the motostice sill note off Notel									
219	Cliff, G. & Dudley, S. F. J. (1992). Sharks caught in the protective gill nets off Natal,									
220	South Africa. 6. The copper shark <i>Carcharhinus brachyurus</i> (Günther). <i>South</i>									
221	African Journal of Marine Science 12 , 663-674.									
222	Cliff, G., Dudley, S. F. J. & Davis, B. (1988). Sharks caught in the protective gill nets									
223	off Natal, South Africa. 1. The sandbar shark Carcharhinus plumbeus (Nardo).									
224	South African Journal of Marine Science 7, 255-265.									
225	Cortés, E., Arocha, F., Beerkircher, L., Carvalho, F., Domingo, A., Heupel, M.,									
226	Holtzhausen, H., Santos, M. N., Ribera, M. & Simpfendorfer, C. (2010).									
227	Ecological risk assessment of pelagic sharks caught in Atlantic pelagic									
228	longline fisheries. Aquatic Living Resources 23, 25-34.									
229	Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. (2010). Patterns									
230	and ecosystem consequences of shark declines in the ocean. Ecology Letters									
231	13 , 1055-1071.									
232	Gilbert, P. W. (1977). Two decades of shark research: A review. BioScience 27, 670-									
233	673.									
234	Gilman, E., Clarke, S., Brothers, N., Alfaro-Shigueto, J., Mandelman, J., Mangel, J.,									
235	Petersen, S., Piovano, S., Thomson, N., Dalzell, P., Donoso, M., Goren, M. &									
236	Werner, T. (2008). Shark interactions in pelagic longline fisheries. <i>Marine</i>									
237	Policy 32, 1-18.									
238	Godin, A. C., Wimmer, T., Wang, J. H. & Worm, B. (2013). No effect from rare-earth									
239	metal deterrent on shark bycatch in a commercial pelagic longline trial.									
240	Fisheries Research 143 , 131-135.									
240	Haine, O. S., Ridd, P. V. & Rowe, R. J. (2001). Range of electrosensory detection of									
242	prey by Carcharhinus melanopterus and Himantura granulata. Marine and									
242	Freshwater Research 52 , 291-296.									
243 244	Hutchinson, M., Wang, J. H., Swimmer, Y., Holland, K., Kohin, S., Dewar, H.,									
244										
243 246	Wraith, J., Vetter, R., Heberer, C. & Martinez, J. (2012). The effects of a									
	lanthanide metal alloy on shark catch rates. <i>Fisheries Research</i> 131-133 , 45-51.									
247										
248	Kaimmer, S. & Stoner, A. W. (2008). Field investigation of rare-earth metal as a									
249	deterrent to spiny dogfish in the pacific halibut fishery. <i>Fisheries Research</i> 94,									
250	43-47.									
251	Kajiura, S. M. (2003). Electroreception in neonatal bonnethead sharks, <i>Sphyrna</i>									
252	tiburo. Marine Biology 143, 603-611.									
253	Kalmijn, A. J. (1971). The electric sense of sharks and rays. <i>Journal of Experimental</i>									
254	<i>Biology</i> 55 , 371-383.									
255	Kalmijn, A. J. (2000). Detection and processing of electromagnetic and near-field									
256	acoustic signals in elasmobranch fishes. <i>Philosophical Transactions of the</i>									
257	Royal Society Series B: Biological Sciences 355, 1135-1141.									
258	Kaplan, I. C., Cox, S. P. & Kitchell, J. F. (2007). Circle hooks for Pacific longliners:									
259	Not a panacea for marlin and shark bycatch, but part of the solution.									
260	Transactions of the American Fisheries Society 136 , 392-401.									
261	Klimley, A. P. (1993). Highly directional swimming by scalloped hammerhead									
262	sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry,									
263	and geomagnetic field. Marine Biology 117, 1-22.									
264	Mandelman, J., Cooper, P., Werner, T. & Lagueux, K. (2008). Shark bycatch and									
265	depredation in the U.S. Atlantic pelagic longline fishery. Reviews in Fish									
266	Biology and Fisheries 18, 427-442.									

267	Meyer, C. G., Holland, K. N. & Papastamatiou, Y. P. (2005). Sharks can detect
268	changes in the geomagnetic field. Journal of the Royal Society Interface 2,
269	129-130.
270	Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. (2007).
271	Cascading effects of the loss of apex predatory sharks from a coastal ocean.
272	<i>Science</i> 315 , 1846-1850.
273	O'Connell, C. P., Abel, D. C., Gruber, S. H., Stroud, E. M. & Rice, P. H. (2011a).
274	Response of juvenile lemon sharks, Negaprion brevirostris, to a magnetic
275	barrier simulating a beach net. Ocean & Coastal Management 54, 225-230.
276	O'Connell, C. P., Abel, D. C., Rice, P. H., Stroud, E. M. & Simuro, N. C. (2010).
277	Responses of the southern stingray (Dasyatis americana) and the nurse shark
278	(Ginglymostoma cirratum) to permanent magnets. Marine and Freshwater
279	Behaviour and Physiology 43, 63 - 73.
280	O'Connell, C. P., Abel, D. C., Stroud, E. M. & Rice, P. H. (2011b). Analysis of
281	permanent magnets as elasmobranch bycatch reduction devices in hook-and-
282	line and longline trials. <i>Fishery Bulletin</i> 109 , 394-401.
283	O'Connell, C. P., Andreotti, S., Rutzen, M., Meÿer, M. & He, P. (2014a). The use of
284	permanent magnets to reduce elasmobranch encounter with a simulated beach
285	net. 2. The great white shark (Carcharodon carcharias). Ocean & Coastal
286	Management 97 , 20-28.
287	O'Connell, C. P., Guttridge, T. L., Gruber, S. H., Brooks, J., Finger, J. S. & He, P.
288	(2014b). Behavioral modification of visually deprived lemon sharks
289	(Negaprion brevirostris) towards magnetic fields. Journal of Experimental
290	Marine Biology and Ecology 453 , 131-137.
291	O'Connell, C. P. & He, P. (2014). A large scale field analysis examining the effect of
292	magnetically-treated baits and barriers on teleost and elasmobranch behavior.
293	Ocean & Coastal Management 96 , 130-137.
294	O'Connell, C. P., Hyun, SY., Gruber, S. H., O'Connell, T. J., Johnson, G., Grudecki,
295	K. & He, P. (2014c). The use of permanent magnets to reduce elasmobranch
296	encounter with a simulated beach net. 1. The bull shark (Carcharhinus
297	leucas). Ocean & Coastal Management 97, 12-19.
298	Öhman, M., Sigray, P., Westerberg, H. (2007). Offshore windmills and the effects of
299	electromagnetic fields on fish. AMBIO: A Journal of the Human Environment,
300	36 , 630-633.
301	Peters, R. C., Eeuwes, L. B. M. & Bretschneider, F. (2007). On the electrodetection
302	threshold of aquatic vertebrates with ampullary or mucous gland
303	electroreceptor organs. Biological Reviews 82, 361-373.
304	Read, A. J. (2007). Do circle hooks reduce the mortality of sea turtles in pelagic
305	longlines? A review of recent experiments. Biological Conservation 135, 155-
306	169.
307	Rigg, D. P., Peverell, S. C., Hearndon, M. & Seymour, J. E. (2009). Do elasmobranch
308	reactions to magnetic fields in water show promise for bycatch mitigation?
309	Marine and Freshwater Research 60, 942-948.
310	Robbins, W. D., Peddemors, V. M. & Kennelly, S. J. (2011). Assessment of
311	permanent magnets and electropositive metals to reduce the line-based capture
312	of Galapagos sharks, Carcharhinus galapagensis. Fisheries Research 109,
313	100-106.
314	Sisneros, J. A. & Nelson, D. R. (2001). Surfactants as chemical shark repellents: Past,
315	present, and future. Environmental Biology of Fishes 60, 117-130.

316	Smith, L. E. & O'Connell, C. P. (2014). The effects of neodymium-iron-boron							
317	permanent magnets on the behaviour of the small spotted catshark							
318	(Scyliorhinus canicula) and the thornback skate (Raja clavata). Ocean &							
319	Coastal Management 97 , 44-49.							
320	Smith, L. J. (1991). The effectiveness of sodium lauryl sulphate as a shark repellent in							
321	a laboratory test situation. Journal of Fish Biology 38, 105-113.							
322	Sprecher, B., Xiao, Y., Walton, A., Speight, J., Harris, R., Kleijn, R., Visser, G. &							
323	Kramer, G. J. (2014). Life cycle inventory of the production of rare earths and							
324	the subsequent production of NdFeB rare earth permanent magnets.							
325	Environmental Science & Technology 48, 3951-3958.							
326	Springer, A. M., Estes, J. A., van Vliet, G. B., Williams, T. M., Doak, D. F., Danner,							
327	E. M., Forney, K. A. & Pfister, B. (2003). Sequential megafaunal collapse in							
328	the North Pacific ocean: An ongoing legacy of industrial whaling?							
329	Proceedings of the National Academy of Sciences 100, 12223-12228.							
330	Stevens, J. (2000). The population status of highly migratory oceanic sharks. In							
331	Getting Ahead of the Curve: Conserving the Pacific Ocean's Tunas,							
332	Swordfish, Billfishes and Sharks. Marine Fisheries Symposium no. 16							
333	(Hinman, K., ed.). Leesburg, VA: National Coalition for Marine Conservation.							
334	Stoner, A. W. & Kaimmer, S. M. (2008). Reducing elasmobranch bycatch:							
335	Laboratory investigation of rare earth metal and magnetic deterrents with							
336	spiny dogfish and Pacific halibut. Fisheries Research 92, 162-168.							
337	Tallack, S. M. L. & Mandelman, J. W. (2009). Do rare-earth metals deter spiny							
338	dogfish? A feasibility study on the use of electropositive "Mischmetal" To							
339	reduce the bycatch of Squalus acanthias by hook gear in the Gulf of Maine.							
340	ICES Journal of Marine Science 66, 315-322.							
341	Verlecar, X. N., Snigdha, Desai, S. R. & Dhargalkar, V. K. (2007). Shark hunting - an							
342	indiscriminate trade endangering elasmobranchs to extinction. Current Science							
343	92 , 1078-1082.							
344	Worm, B., Davis, B., Kettemer, L., Ward-Paige, C. A., Chapman, D., Heithaus, M.							
345	R., Kessel, S. T. & Gruber, S. H. (2013). Global catches, exploitation rates,							
346	and rebuilding options for sharks. <i>Marine Policy</i> 40 , 194-204.							
347	Wright, T. & Jackson, R. (1964). Instrumental conditioning of young sharks. Copeia							
348	1964 , 409-412.							
349	Zhou, S., Smith, A. D. M. & Fuller, M. (2011). Quantitative ecological risk							
350	assessment for fishing effects on diverse data-poor non-target species in a							
351	multi-sector and multi-gear fishery. Fisheries Research 112, 168-178.							
~ ~ ~								

Scientific name	Common name	Wild or	Life stage	Study treatment	Shark	Reference
		Captive			response	
Alopias pelagicus	Pelagic	W	NS	Electropositive metal alloy	No	Hutchinson et al. (2012)
(Nakamura, 1935)	thresher				response	
	shark					
Carcharhinus plumbeus (Nardo 1827)	Sandbar shark	C; W	Juvenile	Electropositive metal alloy	Aversion	Brill <i>et al.</i> (2009)
		W	Juvenile	Barium-ferrite magnet; Electropositive metal alloy; Rare earth magnet	No response	O'Connell <i>et al.</i> (2011 <i>b</i>); Hutchinson <i>et al.</i> (2012)
		С	Adult	Rare earth magnet	Aversion	Current study
Carcharhinus acronotus (Poey, 1860)	Blacknose shark	W	NS	Barium-ferrite magnet	No response	O'Connell & He (2014)
Carcharhinus amblyrhynchos (Bleeker, 1856)	Grey reef shark	С	NS	Ferrite magnet	Aversion	Rigg et al. (2009)
Carcharhinus galapagensis (Snodgrass & Heller, 1905)	Galapagos shark	W	NS	Rare earth magnet	Aversion	Robbins et al. (2011)
,		W	NS	Ferrite magnet; Electropositive metal alloy	No response	Robbins et al. (2011)
Carcharhinus leucas (Müller & Henle, 1839)	Bull shark	W	NS	Barium-ferrite magnet	Aversion	O'Connell <i>et al.</i> (2014 <i>c</i>)
<i>Carcharhinus</i> limbatus (Müller & Henle, 1839)	Blacktip shark	W	Adult	Barium-ferrite magnet	Aversion	O'Connell et al. (2011b)
(, ,		W	Adult	Rare earth magnet	No	O'Connell et al. (2011b)
					response	
Carcharhinus perezi (Poey, 1876)	Caribbean reef shark	W	NS	Barium-ferrite magnet	Aversion	O'Connell and He (2014)
Carcharhinus tilstoni (Whitley, 1950)	Australian blacktip shark	С	NS	Ferrite magnet	Aversion	Rigg et al. (2009)
Carcharodon carcharias (L.)	Great white shark	W	NS	Barium-ferrite magnet	Aversion	O'Connell et al. (2014a)
Galeocerdo cuvier	Tiger shark	W	NS	Electropositive metal alloy	No	Hutchinson et al. (2012)
(Péron & Lesueur, 1822)	6				response	
Ginglymostoma cirratum (Bonnaterre, 1788)	Nurse shark	W	NS	Barium-ferrite magnet	Aversion	O'Connell <i>et al.</i> (2010); O'Connell & He (2014)
Glyphis glyphis (Müller & Henle, 1839)	Speartooth shark	С	NS	Ferrite magnet	Aversion	Rigg <i>et al.</i> (2009)
Isurus oxyrinchus (Rafinesque, 1810)	Shortfin mako	W	NS; Juvenile	Electropositive metal alloy	No response	Hutchinson et al. (2012); Godin et al. (2013)

Table I. An overview of the effects of electropositive or magnetic materials on the behaviour of different shark species.

Mustelus canis (Mitchill, 1815)	Dusky smooth-hound	W	Adult	Rare earth magnet	Aversion	O'Connell et al. (2011b)
Negaprion brevirostris (Poey, 1868)	Lemon shark	C; W	Juvenile; NS	Barium-ferrite magnet	Aversion	O'Connell <i>et al.</i> (2011 <i>a</i>); O'Connell <i>et al.</i> (2014 <i>b</i>); O'Connell & He (2014)
Prionace glauca (L.)	Blue shark	W	NS; Juvenile	Electropositive metal alloy	No response	Hutchinson et al. (2012); Godin et al. (2013)
Rhizoprionodon acutus (Rüppell, 1837)	Milk shark	С	NS	Ferrite magnet	Aversion	Rigg et al. (2009)
Rhizoprionodon terraenovae (Richardson,1836)	Atlantic sharpnose shark	W	Mixed	Rare earth magnet	Aversion	O'Connell et al. (2011b)
Scyliorhinus canicula (L.)	Small spotted catshark	С	Mixed	Rare earth magnet	Aversion	Smith & O'Connell (2014)
Sphyrna lewini (Griffith & Smith, 1834)	Scalloped hammerhead shark	C; W	NS	Ferrite magnet; Electropositive metal alloy	Aversion	Rigg et al. (2009); Hutchinson et al. (2012)
Squalus acanthias (L.)	Spiny dogfish	C; W	NS	Electropositive metal alloy	Aversion	Kaimmer & Stoner (2008); Stoner & Kaimmer (2008)
		C; W	NS; Adult	Electropositive metal alloy; Rare earth magnet	No response	Stoner & Kaimmer (2008); Tallack &Mandelman (2009); O'Connell <i>et al.</i> (2011 <i>b</i>)

C: Captive; W: Wild; NS: Not specified

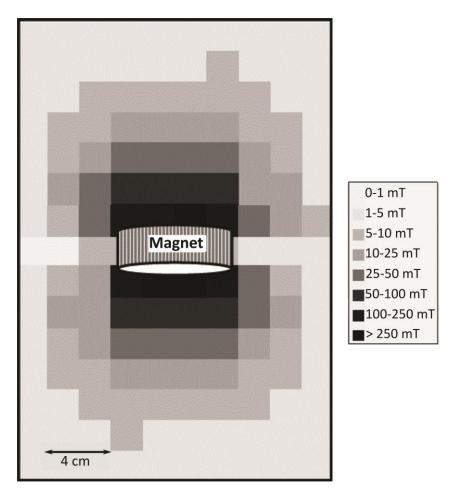


Fig. 1. Stylized spatial distribution of the magnetic field of a 70x30 mm neodymium cylinder shaped magnet. Proportions are shown to scale. Magnetic induction was measured with a Magnet-physik, Dr Steingroever GmbH, FH 51 Gauss/Teslameter. Background magnetic field was 0.3 mT.

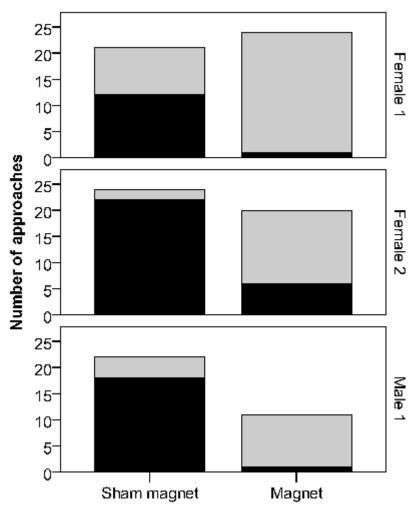


Fig. 2. Total number of approaches to the target (light bars) and the number of successful approaches to the target (dark bars) by three *C. plumbeus*. Hitting the target with the anterior part of the head was scored as a successful approach. A magnet (360 mT) or a sham magnet was attached to the target during the target training (three trails per treatment). The difference in the number of successful hits on the target between the dummy and magnet treatment was significant for all three *C. plumbeus* (Binomial test, P<0.01).