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This experimental study focused on the possible deterrent effect of permanent 29 

magnets on adult sandbar sharks, Carcharhinus plumbeus. Results showed that the 30 

presence of a magnetic field significantly reduced the number of approaches of 31 

conditioned C. plumbeus towards a target; indicating that adult C. plumbeus can be 32 

deterred by strong magnetic fields. These data, therefore, confirm that the use of 33 

magnetic devices to reduce shark bycatch is a promising avenue. 34 

 35 
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INTRODUCTION 39 

 40 

Due to their low fecundity and late maturity, most shark species are highly susceptible 41 

to overfishing. In a study about large pelagic sharks in the Northwest Atlantic Ocean 42 

Baum et al. (2003; 2005) estimated a greater than 50% decline of populations in 8 to 43 

15 years. On an annual basis, global mortality is estimated to range between 63 and 44 

273 million sharks per year, which represents an average exploitation rate between 45 

6.4% and 7.9% of the global population (Worm et al., 2013). Sharks are vulnerable to 46 

even light fishing pressure, and the decline of these large predators results in 47 

community shifts that influence other vulnerable species such as marine mammals 48 

and sea turtles (Ferretti et al., 2010). Apart from direct capture of sharks, shark 49 

bycatch also contributes to substantial shark mortality (Baum et al., 2003; Verlecar et 50 

al., 2007) in commercial longline fisheries (Stevens, 2000; Gilman et al., 2008; 51 

Cortés et al., 2010; Zhou et al., 2011) and in beach nets (Cliff et al., 1988; Cliff & 52 

Dudley, 1992; O'Connell et al., 2014a, 2014c). Shark bycatch also results in personal 53 

injuries, lower catches, and loss of gear (Gilman et al., 2008).  54 

To reduce human injuries and shark bycatch, several shark repellents have been 55 

developed. Chemical shark repellents developed for the protection of humans 56 

(Gilbert, 1977) are only useful as a directional repellent and need to be delivered 57 

directly in the presence of sharks (Smith, 1991; Sisneros & Nelson, 2001). Gear 58 

modifications, such as the use of circle hooks instead of the often used j-shaped hooks 59 

appear promising (Kaplan et al., 2007) but are not always successful (Read, 2007), 60 

and may even be harmful to other protected animals (Gilman et al., 2008). Current 61 

shark repellent research focuses on permanent magnets and electropositive metal 62 

alloys (O'Connell et al., 2014c). These operate by repelling sharks, making use of 63 
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their ability to detect weak electric fields (as small as 5nVcm-1, e.g. Kalmijn, 1971; 64 

Haine et al., 2001; Kajiura, 2003). Sharks can detect electric fields that are induced by 65 

the reaction of electropositive rare-earth metal alloys with water (Kaimmer & Stoner, 66 

2008; Brill et al., 2009; Tallack & Mandelman, 2009) and by movements through 67 

magnetic fields (Klimley, 1993; Kalmijn, 2000; Meyer et al., 2005; Peters et al., 68 

2007). Hence, permanent magnets have the potential to deter sharks (Stoner & 69 

Kaimmer, 2008; Rigg et al., 2009; O'Connell et al., 2010, 2011a). The effect of 70 

permanent magnets and electropositive metal alloys on the behaviour and bycatch of 71 

sharks has been assessed recently in a range of species, but much variation between 72 

species, studies, life stages and magnets/metals has been observed (Table I). More 73 

research to assess the repulsive effect of magnetic repellents on the behaviour of 74 

sharks is therefore necessary. 75 

The sandbar shark, Carcharhinus plumbeus (Nardo, 1827) is a member of the family 76 

Carcharhinidae and is closely related to several species that are vulnerable to long-line 77 

fisheries (Mandelman et al., 2008; O'Connell et al., 2014c). Previous studies on C. 78 

plumbeus elicited negative responses from juveniles on electropositive metal 79 

repellents (Brill et al., 2009), but the possible repulsive effect of permanent magnetic 80 

fields on the behaviour of adult C. plumbeus still has to be demonstrated (O'Connell et 81 

al., 2011b; Hutchinson et al., 2012). Hutchinson et al. (2012) suggested that the 82 

absence of a response in marine trials could be due to a particular feeding strategy, or 83 

to different sensory modalities. The latter was tested in an experimental environment 84 

and it was predicted that captive adult C. plumbeus conditioned to associate a target 85 

with food will be more reluctant to approach that target when it is fitted with a 86 

permanent magnet.  87 

 88 
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MATERIALS AND METHODS 89 

STUDY ANIMALS AND EXPERIMENTAL DESIGN 90 

Experiments were carried out with three captive adult C. plumbeus (160-180 cm total 91 

length) at Rotterdam Zoo in the Netherlands. These C. plumbeus were caught as 92 

neonates along the Florida coastline and transported to Rotterdam Zoo as part of a 93 

permanent exhibition. The animals were kept and experiments conducted in this 94 

public aquarium (30 x 25 x 5.5 m). The natural seawater in the aquarium was 95 

constantly recycled and filtered. Temperature and salinity were kept constant around 96 

25°C and 35, respectively. Also present in in the public aquarium were three other 97 

species of shark (Carachinus acronotus (Poey, 1860), Carachinus limbatus (Müller & 98 

Henle, 1839) and Ginglystoma cirratum (Bonnaterre, 1788)), turtles and fishes. 99 

Because of the shared “habitat”, the filtration, circulation and heating systems could 100 

not be disconnected from the aquarium during the experiments. The standard 101 

procedure at Rotterdam Zoo is to feed sharks up to 4% of their body mass four times a 102 

week. The C. plumbeus were conditioned to touch a target (PVC, diameter 20 cm) in 103 

return for food. After a successful hit, a sound signal rang as a positive reinforcer and 104 

food was presented to the shark at 1.5 m distance from the target (see: Clark, 1959; 105 

Wright & Jackson, 1964).  106 

The experimental design involved three C. plumbeus which were individually tested 107 

(and recorded on video) in the presence or absence of a magnetic field (magnetic 108 

treatment, see below). Attachment of the magnet or sham magnet to the target was 109 

alternated per session, with three sessions per treatment. The number of approaches 110 

(steady, straight-line swimming through the water column in the direction of the 111 

target) were then recorded. Hitting the target with the anterior part of the head was 112 

scored as a successful approach. Approaching the target without physically touching 113 
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the target, and/or showing clear avoidance behaviour such as a sharp turn and/or 114 

acceleration away from the target (O'Connell et al., 2014a) was scored as an 115 

unsuccessful approach.  116 

 117 

MAGNETIC TREATMENT 118 

The treatment consisted of a cylindrically shaped (Ø70xh30 mm) 360 mT 119 

neodymium-iron-boron (Nd2Fe14B) magnet with a nickel-copper-nickel coating 120 

(Sprecher et al., 2014) or a cylindrically shaped steel sham magnet (Ø70xh30 mm) 121 

being attached vertically with its top to the back side of the target. Both the magnet 122 

and sham magnet were placed inside a PVC case to prevent corrosion and obscure any 123 

visual differences between them. The thickness of the case was 4 mm at the top and 124 

bottom, and 1.8 mm at the sides. The magnetic field of the magnet inside its PVC case 125 

was measured with a Magnet-physik, Dr Steingroever GmbH, FH 126 

(http://www.magnet-physik.de/) 51Gauss/Teslameter on a 30x10 cm
2
 grid (one data 127 

point per 2 cm
2
) outside the aquarium. It was not possible to measure the magnetic 128 

field while the magnet was submerged. A schematic representation of the magnetic 129 

field around the neodymium magnet is shown in Fig. 1. Due to the vertical orientation 130 

of the magnet, C. plumbeus approaching the target were exposed to magnetic pole 131 

(50-250 mT). 132 

 133 

DATA ANALYSES 134 

A binomial test (2-sided) was used to analyse the differences in C. plumbeus response 135 

to the magnet and sham magnet in the total number of approaches and the number of 136 

successful approaches per individual C. plumbeus. Specimens were submitted to three 137 

trials per treatment, in which they showed a total number of 133 approaches. Eleven 138 

http://www.magnet-physik.de/
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approaches (9% of all approaches) were excluded from further analysis because the C. 139 

plumbeus were not individually recognizable (due to the angle of the approach and 140 

strong similarity between the two females), when an interaction between C. plumbeus 141 

and other animals elicited a distinct change in the specimen’s behaviour, or when the 142 

whole sequence from approaching to leaving the target area was not entirely visible to 143 

the observer.  144 

 145 

RESULTS 146 

The attachment of the magnet on the target had a significant effect on C. plumbeus’  147 

behaviour. The total number of approaches towards the target did not differ 148 

significantly between the treatments (Fig. 2, binomial test: Male 1, N = 33, P > 0.05; 149 

Female 1, N = 45, P > 0.1; Female 2, N = 65, P > 0.1). However, all three C. 150 

plumbeus showed a significantly lower number of successful approaches to the target 151 

when a magnet was attached to the target compared to when a sham magnet was 152 

attached (Fig. 2, binomial test: Male 1, N = 19, P < 0.001; Female 1, N = 13, P < 153 

0.01; Female 2, N = 28, P < 0.01).  154 

 155 

DISCUSSION 156 

Conditioned adult C. plumbeus responded negatively to a strong magnetic field during 157 

direct approaches towards a permanent neodymium magnet. This result is consistent 158 

with the results of both laboratory and field experiments on juvenile C. plumbeus by 159 

Brill at al. (2009) but contrasts with findings by the results of long-line experiments 160 

on juvenile C. plumbeus by O’Connell et al. (2011b) and Hutchinson et al. (2012). 161 

According to O’Connell et al. (2011b), the fact that they only captured and tested 162 

juvenile C. plumbeus for a magnetic response might explain their observed lack of 163 
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response to magnetic repellents. This is possibly because juvenile C. plumbeus’ 164 

electroreception sensitivities differ from adults owing to differences in ampullary 165 

canal length. During the present study, all C. plumbeus were adults with full 166 

electroreception sensitivities. Hutchinson et al. (2012), suggested that differences in 167 

environmental conditions, especially visibility, could affect sensory modalities used 168 

by sharks. Their hypothesis that C. plumbeus living in clear waters are less susceptible 169 

to electropositive metals is in contrast with the results of the present study which was 170 

conducted in an aquarium with good visibility. O’Connell et al. (2011b) also noted 171 

that the differences between their study and the study of Brill at al. (2009) might be 172 

an artefact of a low sample size. With only three individuals tested, this is a 173 

recognized issue in the present study as well. In this case, all three C. plumbeus 174 

showed a significant negative response when approaching a permanent magnet which 175 

is in line with studies on several species within the Carcharhinidae (Table I). 176 

In the aquarium of Rotterdam Zoo, C. plumbeus food intake depended on the number 177 

of times they hit the target. Consequentially, this refusal to hit the target resulted in a 178 

lower food intake. Food deprivation is an important factor known to effect 179 

electrosensory repellent success (Stoner & Kaimmer, 2008; O'Connell et al., 2014c). 180 

Unfortunately, it should be noted that due to logical constrains of working in a zoo, no 181 

food deprivation experiments were conducted during this study. The specimens were 182 

fed following the normal procedures on the days between the experiments. Since 183 

turbidity, water temperature and salinity were virtually constant during this study, 184 

these factors were unlikely to affect the results. Moreover, no habitation effects were 185 

observed (O'Connell et al., 2011a). The possible effect of conspecific density on the 186 

effect of the repellent (Robbins et al., 2011; O'Connell et al., 2014c) could not be 187 

tested since the C. plumbeus were trained to approach the target individually.  188 
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The individual responses could be evaluated by repeated trials due to the captive 189 

nature of this study. This study clearly demonstrates that captive adult C. plumbeus 190 

show an aversive response to a strong magnetic field at the cost of a food award. 191 

Depletion of top predator populations can seriously affect oceans all around the world 192 

through cascading effects in the food web (Springer et al., 2003; Myers et al., 2007), 193 

which causes unpredictable changes in the ecosystem. The use of magnetic devices to 194 

reduce shark bycatch is a promising avenue that could benefit both the ecosystems 195 

and fishermen, especially since many teleost species (but see Öhman et al., (2007) for 196 

several exceptions) are not repelled by these devices (Rigg et al., 2009; O’Connell et 197 

al., 2011b; O'Connell & He, 2014). 198 

 199 
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Table I. An overview of the effects of electropositive or magnetic materials on the behaviour of different shark species.  
Scientific name  Common name Wild or 

Captive 

Life stage Study treatment Shark 

response 

Reference 

 Alopias pelagicus  

(Nakamura, 1935) 

 

Pelagic 

thresher 

shark 

W NS Electropositive metal alloy No 

response 

Hutchinson et al. (2012) 

Carcharhinus plumbeus  

(Nardo 1827) 

Sandbar shark C; W Juvenile Electropositive metal alloy Aversion Brill et al. (2009) 

  W Juvenile Barium-ferrite magnet; Electropositive 

metal alloy; Rare earth magnet 

No 

response 

O'Connell et al. (2011b); Hutchinson et al. 

(2012) 

  C Adult Rare earth magnet Aversion Current study 

Carcharhinus acronotus  

(Poey, 1860) 

Blacknose shark W NS Barium-ferrite magnet No 

response 

O'Connell & He (2014) 

Carcharhinus amblyrhynchos 

(Bleeker, 1856) 

Grey reef shark C NS Ferrite magnet Aversion Rigg et al. (2009) 

Carcharhinus galapagensis 

(Snodgrass & Heller, 

1905) 

Galapagos shark W NS Rare earth magnet Aversion Robbins et al. (2011) 

  W NS Ferrite magnet; Electropositive metal 

alloy  

No 

response 

Robbins et al. (2011) 

Carcharhinus leucas  

(Müller & Henle, 1839) 

Bull shark W NS Barium-ferrite magnet Aversion O'Connell et al. (2014c) 

Carcharhinus limbatus 

(Müller & Henle, 1839) 

Blacktip shark W Adult Barium-ferrite magnet Aversion O'Connell et al. (2011b) 

  W Adult Rare earth magnet No 

response 

O'Connell et al. (2011b) 

Carcharhinus perezi  

(Poey, 1876) 

Caribbean reef shark W NS Barium-ferrite magnet Aversion O'Connell and He (2014) 

Carcharhinus tilstoni 

(Whitley, 1950) 

Australian blacktip 

shark 

C NS Ferrite magnet Aversion Rigg et al. (2009) 

Carcharodon carcharias (L.) Great white shark W NS Barium-ferrite magnet Aversion O'Connell et al. (2014a) 

Galeocerdo cuvier  

(Péron & Lesueur, 1822) 

 

Tiger shark W NS Electropositive metal alloy No 

response 

Hutchinson et al. (2012) 

Ginglymostoma cirratum  

(Bonnaterre, 1788) 

Nurse shark W NS Barium-ferrite magnet Aversion O'Connell et al. (2010); O'Connell & He 

(2014) 

Glyphis glyphis  

(Müller & Henle, 1839) 

Speartooth shark C NS Ferrite magnet Aversion Rigg et al. (2009) 

Isurus oxyrinchus  

(Rafinesque, 1810) 

Shortfin mako W NS; 

Juvenile 

Electropositive metal alloy No 

response 

Hutchinson et al. (2012); Godin et al. (2013) 
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Mustelus canis  

(Mitchill, 1815) 

Dusky smooth-hound W Adult Rare earth magnet Aversion O'Connell et al. (2011b) 

 

Negaprion brevirostris  

(Poey, 1868) 

Lemon shark C; W Juvenile; 

NS 

Barium-ferrite magnet Aversion O'Connell et al. (2011a); O'Connell et al. 

(2014b); O'Connell & He (2014)  

Prionace glauca (L.) Blue shark W NS; 

Juvenile 

Electropositive metal alloy No 

response 

Hutchinson et al. (2012); Godin et al. (2013) 

Rhizoprionodon acutus  

(Rüppell, 1837) 

Milk shark C NS Ferrite magnet Aversion Rigg et al. (2009) 

Rhizoprionodon terraenovae 

(Richardson,1836) 

Atlantic sharpnose 

shark 

W Mixed Rare earth magnet Aversion O'Connell et al. (2011b) 

 

Scyliorhinus canicula (L.) Small spotted catshark C Mixed Rare earth magnet Aversion Smith & O'Connell (2014) 

Sphyrna lewini  

(Griffith & Smith, 1834) 

Scalloped 

hammerhead 

shark 

C; W NS Ferrite magnet; Electropositive metal 

alloy 

Aversion Rigg et al. (2009); Hutchinson et al. (2012) 

Squalus acanthias (L.) Spiny dogfish C; W NS Electropositive metal alloy Aversion Kaimmer & Stoner (2008); Stoner & 

Kaimmer (2008) 

  C; W NS; Adult Electropositive metal alloy; Rare earth 

magnet 

No 

response 

Stoner & Kaimmer (2008); Tallack 

&Mandelman (2009); O'Connell et al. 

(2011b) 

C: Captive; W: Wild; NS: Not specified 
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Fig. 1. Stylized spatial distribution of the magnetic field of a 70x30 mm neodymium cylinder shaped 

magnet. Proportions are shown to scale. Magnetic induction was measured with a Magnet-physik, Dr 

Steingroever GmbH, FH 51 Gauss/Teslameter. Background magnetic field was 0.3 mT. 
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Fig. 2. Total number of approaches to the target (light bars) and the number of successful approaches to the 

target (dark bars) by three C. plumbeus. Hitting the target with the anterior part of the head was scored as a 

successful approach. A magnet (360 mT) or a sham magnet was attached to the target during the target 

training (three trails per treatment). The difference in the number of successful hits on the target between the 

dummy and magnet treatment was significant for all three C. plumbeus (Binomial test, P<0.01). 

 


