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Actor-critic: 

Refers to a class of agent architectures, where the actor plays out a particular 

policy, while the critic learns to evaluate the actor's policy. Both the actor and critic 

are simultaneously improving by bootstrapping on each other.  

 

Agent: 

 A system that is embedded in an environment. The controller or decision-making 

 entity  choosing actions and learning to perform a task. Examples include mobile 

 robots, software agents, or industrial controllers. 

 

Average-reward methods: 

A framework where the agent's goal is to maximize the expected payoff per step. 

Average-reward methods are appropriate in problems where the goal is to 

maximize the long-term performance. They are usually much more difficult to 

analyse than discounted algorithms.  

 

Discount Factor: 

A scalar value between 0 and 1 which determines the present value of future 

rewards. If the discount factor is 0, the agent is concerned with maximizing 

immediate rewards. As the discount factor approaches 1, the agent takes more 

future rewards into account. Algorithms which discount future rewards include Q-

learning and TD (lambda). 

 

Discounting: 

If rewards received in the far future are worth less than rewards received sooner, 

they are described as being discounted. Humans and animals appear to discount 

future  rewards hyperbolically; exponential discounting is common in engineering 

and finance. 

 

Dynamic Programming: 

 A collection of calculation techniques for finding a policy that maximises reward or 

 minimises costs. Is a class of solution methods for solving sequential decision 

 problems with a compositional cost structure. 

 

Environment:  

The external system in which an agent is “embedded” which enables perception 

and action. 

 

Episode: 

 A time segment of learning with task dependent starting and ending conditions.  

 

Function Approximation: 

 Refers to the problem of inducing a function from training examples. Standard 

 approximators include decision trees, neural networks, and nearest-neighbour 

 methods. 

 

Markov Chain:  

 A model for a random process that evolves over time such that the states (like 

 locations in a maze) occupied in the future are independent of the states in the past 

 given the current state.  
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Markov Decision Process: 

A model for a controlled random process in which an agent's choice of action 

determines the probabilities of transitions of a Markov chain and lead to rewards 

(or costs) that need to be maximised (or minimised). Essentially, the outcome of 

applying an action to a state  depends only on the current action and state (and not 

on preceding actions or states) . 

Model: 

 The agent's view of the environment, which maps state-action pairs to probability 

 distributions over states. Note that not every reinforcement learning agent uses a 

 model of its environment. Basically it’s a mathematical description of the 

 environment.  

 

Model-based algorithms: 

These compute value functions using a model of the system dynamics. Adaptive 

Real-time DP (ARTDP) is a well-known example of a model-based algorithm. 

 

Model-free algorithms: 

These directly learn a value function without requiring knowledge of the 

consequences of doing actions. Q-learning is the best known example of a  model-

free algorithm.  

 

Monte Carlo Methods: 

A class of methods for learning value functions, which estimates the value of a 

state by running many trials starting at that state, then averages the total rewards 

received on those trials. 

 

Policy: 

 The decision-making function of the agent, which represents a mapping from 

 situations to actions. Can be considered a deterministic or stochastic scheme for 

 choosing an action at  every state or location. 

 

Policy Evaluation: 

 Determining the value of each state for a given policy. 

 

Policy Improvement: 

 Forming a new policy that is better than the current one. 

 

Policy Iteration: 

 Alternating steps of policy evaluation and policy improvement to converge to an 

 optimal policy. 

 

POMDP 

 Partially observable Markov decision problem. State information is available only 

 through a set of observations.  

 

Return: 

 The cumulative (discounted) reward for an entire episode. 

 

Reward: 

An immediate, possibly stochastic, payoff that results from performing an action in 

a state represented by a numerical signal to the learning agent indicating task 
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progress or completion or the degree to which a state or action is desirable. Reward 

functions can be used to specify a wide range of planning goals  

 

Sensor: 

 Agents perceive the state of their environment using sensors, which can refer to 

 physical transducers, such as ultrasound, or simulated feature-detectors.  

 

State: 

This can be viewed as a summary of the past history of the system, which 

determines its future evolution.  

 

Temporal Difference Algorithms: 

 A class of learning methods, based on the idea of comparing temporally successive 

 predictions. Possibly the single most fundamental idea in all of reinforcement 

 learning. 

 

Temporal Difference Prediction Error: 

 A measure of the inconsistency between estimates of the value function at two 

 successive states. This prediction error can be used to improve the predictions and 

 also to choose  good actions.  

 

Unsupervised Learning: 

 The area of machine learning in which an agent learns from interaction with its 

 environment, rather than from a knowledgeable teacher that specifies the action the 

 agent should take in any given state. 

 

Value Function: 

Is a mapping from states to real numbers, where the value of a state represents the 

long-term reward achieved starting from that state, and executing a particular 

policy. The key distinguishing feature of RL methods is that they learn policies 

indirectly, by instead learning value functions. RL methods can be contrasted with 

direct  optimization methods, such as genetic algorithms (GA), which attempt to 

search the policy space directly. A function defined over states, which gives an 

estimate of the total (possibly discounted)  reward expected in the future, starting 

from each state, and following a particular policy.  

 

Value Iteration: 

 A single iteration of policy evaluation followed by policy improvement. 
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This dissertation focuses on the problem of uncertainty handling during learning, by agents 

dealing in stochastic environments by means of Multi Objective Reinforcement Learning 

(MORL). Most previous investigations into multi objective reinforcement learning have 

proposed algorithms to deal with the learning performance issues but have neglected the 

uncertainty present in stochastic environments. The realisation that multiple long term 

objectives are exhibited in many risky and uncertain real-world decision making problems 

forms the principle motivation of this research. 

This dissertation proposes a novel modification to the single objective GPFRL algorithm 

(HIinojosa et al, 2008) where, the implementation of a linear scalarisation methodology 

provides a way to automatically find an optimal policy for multiple objectives under 

different kinds of uncertainty. The proposed Generalised Probabilistic Fuzzy Multi 

Objective Reinforcement Learning (GPFMORL) algorithm is further enhanced by the 

introduction of prospect theory to guarantee convergence by the means of risk evaluation. 

The simulated grid world increased in complexity as a further two complementary and 

conflicting objectives were specified whilst also introducing uncertainty in the form of 

stochastic cross winds.  

Results obtained from the GPFMORL grid world simulations were compared against two 

more classical multi objective algorithms, MOQ and MOSARSA, showing not only a 

stronger convergence but also a much faster one. Experiments performed on an actual 

Quad-Copter/Drone demonstrated that the proposed algorithm and developed framework 

are both feasible and promising for the control of Artificially Intelligent (AI) Unmanned 

Aerial Vehicles (UAV) in a variety of real-world multi objective applications such as; 

autonomous landing/delivery or search and rescue.  

Furthermore, the observed results of this work showed that the GPFMORL method can 

find its major real world application in the un-calibrated control of non-linear, multiple 

inputs, and multiple output systems, especially in multi objective situations with high 

uncertainty. Proposed novel case study research prototype examples include: Controlled 

Environment Agriculture for optimising Hydroponic Crop Growth by the proposed 

“Automated Solar Powered Environmental Controller” (ASPEC). Finally the “Robotic 

Dementia Medication Administration System” (RDMAS) attempts to optimise liquid 

medication dispensing via intelligent scheduling to more appropriate times of the day when 

the patient is more likely to remember to take their medication, based upon previous 

learned knowledge and experience. 
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1.1 Motivation 

 

In situations where pre-programmed solutions are difficult or impossible to design, 

learning algorithms can be used to generate solutions for complex problems. 

Depending upon the level of available information, one or more types of learning can 

be applied. According to the connectionist learning approach (Hinton, 1989), these 

algorithms exist primarily in the form of Unsupervised, Supervised and 

Reinforcement Learning (RL). Unsupervised learning is only applicable when target 

information is not available and the agent attempts to form a model based upon 

association amongst data or clustering. Supervised learning however is much more 

powerful but requires the knowledge of output patterns corresponding to input data. 

However, in dynamic environments where the outcome of an action is not 

immediately known and is subject to change, correct target data may not be available 

at the moment of learning, this implies that supervised approaches cannot be applied. 

In these environments, reward information, whose availability can be only sparse, 

may be the best signal that the agent receives. For such systems, Reinforcement 

Learning has proven to be a more suitable method than supervised or unsupervised 

learning when the systems require a selection of actions whose consequences emerge 

over long periods of time for which input-output data are not available (Berenji and 

Khedkar, 1992).  This dissertation proposes a novel Multi Objective Reinforcement 

Learning (MORL) algorithm that combines the universal function approximation 

capabilities of fuzzy systems and probabilistic theory with a linear scalarisation 

approach. The proposed algorithm seeks to exploit the advantages of both fuzzy 

inference systems and Probabilistic theory in a multi objective scenario to capture the 

probabilistic uncertainty of real world stochastic environments. This will allow the 

agent to choose an action that best satisfies all objectives based upon a probabilistic 

distribution able to minimise negative outcomes or maximise positive reinforcement 

of future events.  

In recent years a growing number of algorithms for multi objective reinforcement 

learning have been proposed suggesting that MORL is emerging as a distinct sub-

discipline of reinforcement learning research. However the field of MORL is still in 

its infancy and therefore the literature remains fragmented with very few real world 
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applications developed. The observation that most real-world applications require the 

simultaneous satisfaction of multiple objectives drove the growth in multi objective 

optimisation research during the 1990‘s (Coello et al. 2002). Multi objective 

optimization concerns minimising each objective so that a lower value is superior to a 

higher value, however in the context of RL, the superiority is reversed so that the task 

is to maximise the reward. MORL problems are different to RL problems in the fact 

that there are two or more objectives to be achieved, each with its own associated 

reward signal; therefore the reward is a vector rather than a scalar value. If all 

objectives are directly related or completely independent, they can be combined into a 

single objective and a policy found that can maximise all objectives. In contrast if the 

objectives are conflicting then any policy must either maximise only one objective, or 

represent a trade-off between conflicting objectives usually in the form of a pareto 

front. The extension of a single objective RL algorithm (GPFRL) into a multi 

objective algorithm (GPFMORL) introduces new possibilities for variations in the 

overall aim of the MORL algorithm which shall be described in the following sections 

1.2 Background to the research  

                

The recent advances in Artificial Intelligence (AI) and military funded technologies 

embedded into Micro Arial Vehicles (MAV‘s) have allowed a wide variety of 

Unmanned Arial Vehicle (UAV) applications to be researched and advanced such as 

search and rescue, crop monitoring and even an Amazon drone delivery service. 

Along with the increasing popularity of quadcopters (drones) there arises the 

opportunity to take advantage of their full capabilities by endowing them with AI so 

that they can learn how to react to situations themselves without being reliant upon a 

human operator or communication link. Furthermore, researchers typically rely on 

expensive aerial vehicles that are capable of lifting heavier advanced sensors which 

inherently reduce the operational run time of the UAV impairing the overall 

effectiveness of task completion when instead the use of computer vision and AI 

techniques could be more efficient especially for communication failure redundancies. 

1.3 Research Goal and Contributions 

 

It can be seen later that the GPFMORL framework is an extended version of the 

single objective GPFRL algorithm using linear scalarisation and Prospect Theory. The 

following contribution is derived from the work described in this thesis. 
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A Generalised Probabilistic Fuzzy Multi Objective Reinforcement Learning method 

intended for continuous states and actions and is able to learn input-output mappings 

through interactions with the environment. This method tackles 6 issues in the 

decision making processes. 

 Uncertainty in the outcome of actions is handled by a probabilistic approach.  

 Learning from interaction, where system model is not readily available is 

handled by using reinforcement learning.  

 Uncertainty in the inputs, which is handled by using a fuzzy logic control 

method.  

 Choosing the most appropriate action that satisfies multiple objectives using a 

linear scalarisation technique. 

 Dealing with the presence of risk in the form of Prospect Theory (Risk 

Aversion) 

The developed algorithm exhibits a comparatively fast learning speed and flexibility 

as it can be used for several different systems, where control or decision making 

under uncertainty is paramount. This concept has been tested through 4 different 

experiments and 2 additional research prototypes: 

 The random walk multi objective deterministic simulations 

 The Windy Grid World multi objective stochastic simulations 

 Experiments performed using Prospect Theory for uncertainty under risk 

 A real time experimental investigation of automatic landing for a quadcopter 

mobile robot using computer vision as the primary positioning sensor. 

1. Working Prototype of the Automated Solar Powered Environmental Controller 

2. Partially working prototype for the Robotic Dementia Medication 

Administration System  

 

1.4 Justification for the research 

 

What takes place when lerning occurs in still largely unknown. The presence of 

uncertainty and the concept of knowledge itself make it intrinsically difficult if not 

impossible to model and analyse the final behaviour of a learning system; therefore no 

system with unsupervised learning should be unsupervised. Instead, it is suggested 
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that the research of methods combining the probability estimation of reinforcement 

learning, as the one proposed by Hinojosa et al (2011), with other methods that can 

incorporate the knowledge of human operators; especially for situations where the 

result of selecting actions or behaviours with a relatively ―high‖ probability of success 

can have positive consequences. As an example, it can be suggested the use of 

prospect theory, which is a method of calculating decisions not only based on 

probabilities of success but also based on a risk evaluation. 

1.5 Methodology 

 

Quantitative research is ‗Explaining phenomena by collecting numerical data that are 

analysed using mathematically based methods (in particular statistics)‘. For example, 

how many iterations (steps) does it take a MORL agent to converge to the optimal 

policy? While quantitative research is based on numerical data analysed statistically, 

qualitative research uses non-numerical data. Qualitative research encompasses a 

wide range of methods, such as interviews, case studies, ethnographic research and 

discourse analysis. Due to the nature of this autonomous project and the hazardous 

environment in which it acts, the need for human subjects is eradicated. The 

performance measure of the system can be acquired using statistical methods directly 

outputted from the system in terms of a numerical value. The performance may then 

be compared to other implementations of MORL using further statistical analysis in 

an attempt to demonstrate its superiority and short falls in contrast with other 

algorithms.  

 

1.6 Outline of the thesis 

 

 Chapter 2  Reviews existing Multi Objective Reinforcement Learning 

literature to build a theoretical foundation upon which the research is based. 

The chapter starts with a brief introduction to multi objective reinforcement 

learning and then suggests some important real world applications where 

MORL may be applied to improve existing methods. A general overview of 

RL is then described and a taxonomy of RL frameworks is presented 

highlighting criteria from which the proposed algorithm was created. Several 

single policy multi objective algorithms are summarised, followed by multiple 
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policy algorithms, most significant RL and Hybrid algorithms. Prospect theory 

is then briefly introduced finishing with a discussion and conclusions. 

 

 Chapter 3  Explains in more detail the principal components of the 

GPFMORL architecture. The mathematical formulisation of a sequential 

decision making process is explained. I then analyse the importance of 

uncertainty handling; review the concept of fuzzy inference systems, and then 

introduce the application of probabilistic theory to fuzzy logic. Finally 

conclusions are made and the rationale behind extending the GPFRL single 

objective RL algorithm into an improved multi objective GPFMORL 

algorithm is justified.  

 

 Chapter 4  In this chapter, we consider a number of examples regarding 

our proposed reinforcement learning approach. In sub section 4.2, we describe 

a multi objective linear scalarisation technique which extends the single 

objective GPFRL algorithm into a multi objective one (GPFMORL). Prospect 

theory is then explained in section 4.3 in more detail with integration into our 

proposed algorithm. Section 4.4 details three unique case study research 

prototypes developed to demonstrate the feasibility of MORL decision making 

for crucial applications such as AI UAV‘s, ASPEC and RDMAS. Subsection 

4.4.1 details the various implementations necessary to construct the 

Unmanned Aerial Vehicle Visual Navigation Framework. Subsection 4.4.2 

details various prototypes for the Automated Solar Powered Environmental 

Controller. Subsection 4.4.3 details the design for a Robotic Dementia 

Medication Administration System. Section 4.5 explains some Empirical 

Evaluation methods for MORL finishing with a discussion and conclusion. 

 

 Chapter 5  This chapter explains several experiments using the proposed 

GPFMORL algorithm, and compare it to results of two other more 

conventional MORL algorithms MOQ and MOSARSA. Four experiments are 

presented in this thesis: Multi Objective Deterministic Environment, Multi 

Objective Stochastic Windy Hill World Environment, UAV Automatic 
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Landing Practical Experiment and finally the Controlled Environment 

Agriculture of Hydroponic Tomatoe Plants using ASPEC.     

 

 Chapter 6 – Recalls the contributions of this work; it then states some 

observations and proposes some possible extensions and directions for future 

research. The chapter ends with some final conclusions derived from this 

research.  

Additionally three appendices complement the chapters above as by demonstating the 

implementation of MORL as follows: first, appendix A contains matlab programme 

code used for the random walk simulated experiments. Second, Appendix B contains 

C++ code used for the practical UAV experiment. Finally Appendix C includes 

design and development evidence of an alternate case study embedded system 

prototype ―Automated Solar Programmable Environmental Controller (ASPEC)‖.  

1.7 Delimitations of scope and key assumptions 

 

One of the test labs is approximately 6 m high therefore preliminary experiments 

reveal that this is sufficient to perceive the environments plan view perspective of 

around 3m
2
.  Should larger environments need to be tested, there are other rooms 

available with a maximum height of approximately 12m high, therefore at most a plan 

view perspective of a 6m
2
 environment can be used for testing purposes.  This should 

satisfy my testing conditions of non-finite environments in an attempt to validate 

scaled up versions of MORL. It is assumed that the control PC shall be no more than 

50m from the AR-Drone at any point in order to ensure reliable Wi-Fi signal strength. 

1.8 Conclusion 

This chapter laid the foundations for the report. It introduced the research problem 

and research questions and hypotheses. Subsequently the research was justified, 

definitions were presented, the methodology was described and justified, the thesis 

was outlined, and the limitations were given. On these foundations, the report can 

proceed with a detailed description of the research. 
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2.1            Introduction 

Automonous robot operation requires the subjects to know its  position and movement 

within the environment.  Since no assumptions can be made about the environment, 

the robot must learn from its environment. The learning task consists of finding a 

mapping from environmental conditions to behaviours into the most effective actions 

(policy). One method that is particularly good at learning and improving policies is 

RL, which is considered to be a significant sub-branch of Machine Learning (ML) 

most suited to solving sequential decision making problems. Single Objective 

Reinforcement Learning (SORL) has proven to be very powerful at allowing agents to 

learn in unknown environments by maximising a value representing a single long 

term objective. However within the majority of real world decision making problems 

there usually exists multiple long term objectives. Only recently in the last few years 

has there been a significant increase in MORL research. However, researchers have 

yet to develop of a MORL algorithm capable of dealing with risk and uncertainty  

which is crucial in most real world applications as suggested by the ASPEC and 

RDMAS research prototypes. 

 

2.2           Case Study Research Prototype Review 

2.2.1        Controlled Environment Agriculture 

An important real world example of a multi objective problem in the presence of 

uncertainty is the optimisation of hydroponic crop growth by means of Controlled 

Environment Agriculture (CEA). Few systems have attempted to automate 

hydroponic crop growth however no systems take into account uncertain 

environmental factors which is imperative to predicting the optimal conditions for 

optimised crop growth. The paper by Saaid et al (2013) proposes a microcontroller 

system for a hydroponic technique known as deep water culture. Whilst the described 

system compensates for PH variations with good results, the electrical conductivity of 

the nutrient solution is neglected, consequently only the PH of the nutrient solution is 

optimised which is not sufficient for crop growth optimisation. The instrumental 

system developed by Domingues et al (2012) proved successful at monitoring and 

fixing the pH and EC of the nutrient solution for hydroponic lettuce. However the 

quality of crop results obtained were done so via two crops grown in parallel, one in 

conventional soil and the other using an automated hydroponic system. This does not 

fairly test the advantages of the automated system; instead it compares automated 
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hydroponic crop growth with manual conventional soil methods which are 

unsurprisingly not as efficient. Instead a fairer test would have been to test two 

parallel hydroponic crop growths, one real time-automatic and the other manually 

controlled hydroponics truly demonstrating the advantages of automated hydroponics 

in a non-bias testing environment. Whilst the work by Velázquez et al (2013) 

proposes sound electrical schematic evidence of accurate PH and EC monitoring 

systems, it neglects other environmental factors such as Temperature which is 

influential on nutrient absorption. A system with closed loop feedback from nutrient 

solution sensors in combination with monitoring of uncertain conditions, such as 

sunlight and temperature, may result in much more effective hydroponic optimisation 

system, such as the one proposed later in this thesis. 

 

2.2.2        Robotic Medication Administration Systems 

As a result of medication errors both in hospitals and at home, adverse drug events 

(ADE‘s) cost the NHS around £200 - £400 million per year. In order to reduce these 

medication errors, Morriss, Frank, et al (2009), proposed barcode technology that 

verifies medication administration. However whilst this system was effective at 

detecting medication errors, it was not capable of acting automatically in order to 

correct these errors which may in fact present the opportunity for more errors to 

propagate further down the medication administration cycle. Other commercial 

products include Aesynt‘s ROBOT-Rx which is the market-leading automated 

medication dispensing solution. The system increases efficiency and accuracy in a 

Central Pharmacy, but this is not a personal mobile solution and is the size of a large 

room which would not be feasible for self-care patients in their own homes. 

2.3 Reinforcement Learning  

 

 

 

 

RL uses the notion of positive rewards and negative punishments that are experienced 

by the agent themselves. In other learning methods such as supervised learning, the 

best action possible will be made known to the agent after acting in specific way. In 

Figure 2.1:  Basic Components of a RL 
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practical problems, the best action is sometimes impossible to know, but a certain 

value of the resulting state could be defined. The task of the agent is to learn from this 

indirect, delayed reward to choose sequences of actions that yield the greatest 

cumulative reward. The reward obtained when the agent attempts different actions, is 

used in reinforcement learning to update either the value function or the policy. The 

value function determines the potential value of each state where as the policy maps 

possible perceived states to the best known set of actions. The goal or objectives to be 

achieved are defined by the reward function without actually specifying how the 

objectives shall be accomplished.  

The primary aim of RL is to maximise the expected total reward over time, also 

known as return. Interaction within the environment allows the agent to learn the 

optimal actions to take for each state by selecting actions which result in the largest 

expected return. In order to update the agents knowledge, a method that involves 

some kind of temporal difference (TD) may be used (Sutton & Barto, 1998) that 

updates the value function. Temporal-difference (TD) methods were formalised and 

studied by Sutton (1988) as a solution to the problem of making multi-step predictions 

of future events based on past experience. Before Sutton‘s formalisation, well-

understood techniques for learning predictions were trained using differences between 

predictions and the actual future outcomes.TD techniques are used to update the 

values or value function parameters based on the direct reward and the difference 

between the current and last potential state value, weighted with a learning parameter 

(Veen, M. van der. 2011). The update rule is therefore based on the difference 

between the value of the last state visited and the value of the current state, or a 

weighted combination of the old expected (long-term) return value and the current one 

based on current reward and the value of the next state (Veen, M. van der. 2011).  

Alternatively Evolutionary Algorithms (EA) can be used to directly update the 

policies themselves whereby whole policies, instead of values, are evaluated and 

‗evolve‘ to better policies (XIE Li-juan, 2009). To use the knowledge learned from 

experience, as well as gather new knowledge, a trade-off between exploration and 

exploitation must be established. In practice, often some percentage of the actions is 

chosen random and the remaining actions are determined by the value function or 

policy learned so far (Veen, M. van der. 2011).  Markov Decision Process (MDP) 

models are the mathematical foundation for RL in a single agent environment (Yang, 

E., & Gu, D. 2004). Commonly a MDP is characterized as the mathematical 
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formulation for sequential decision-making problems defined as a 4-tuple {S, A, R, 

T,y} (Sutton&Barto, 1998) of which sequences of MDP tupples describe the agents 

experience in the learning process. 

 

2.4             Taxonomy of RL Frameworks  

Being a very flexible learning technique, there are several methods and algorithms 

that have been developed. Each of these can be classified under one or more 

categories according to different criteria. There are mainly three basic criteria to 

classify reinforcement learning methods: 

 By the presence of a system model.  

 By the way they learn and select a correct policy.  

 By its structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 presents a flow chart illustrating a reinforcement learning taxonomy, along 

with some well-known algorithm examples. Each of the reinforcement leaning 

methods or algorithms are classified into one or more categories according to different 

criteria. The hashed blocks show the structure of a recently developed GPFRL  

algorithm (Hinojosa, W. 2008), where the shaded blocks show the model that forms 

the principal focus of this thesis which primarily concerns extending the GPRFL 

algorithm to the multi-objective domain for complex dynamic unknown stochastic 

environments. 

 

Figure 2.2: Reinforcement Learning Taxonomy 
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A. Model-Based & Model-Free Single Objective 

Model-based or indirect methods act in two phases: first, they learn the transition 

probability and reward functions and second, they make use of those transition 

probabilities in order to compute the Q function by means of, for example, the 

Bellman equations (Bellman, 1957). Some of the best well known algorithms in this 

category are Dyna (Roy et al., 2005) and prioritised sweeping (Demspster, 1969, 

Moore and Atkeson, 1993). Model free or direct methods learn the policy by directly 

approximating the Q-function with updates from direct experience. These methods are 

sometimes referred to as the Q-learning family of algorithms (Sutton, 1988), 

(Watkins, 1989). Some of the best well known algorithms in this category are 

adaptive heuristic critic (AHC) (Barto et al., 1983), Q-learning (Watkins, 1989) and 

SARSA (Rummery and Niranjan, 1994). Model free methods can be further classified 

in three sub groups depending on whether the algorithm focuses on learning the policy 

or the value function, critic only, actor only, and actor-critic (Barto et al., 1983). 

 

B.  Actor, Critic, Actor-Critic 

Critic only methods are called value function-based methods and they attempt to find 

the optimal value function from which an optimal policy is derived. Some of the most 

important reinforcement learning algorithms are critic-only methods, such as 

Dynamic programming (Bellman, 1957) and Temporal Difference (Sutton and Barto, 

1987, Sutton, 1988). In contrast with the critic only method, actor only methods learn 

the policy, which is a function that depends only on the current state and therefore a 

value function is never defined. In actor only methods, the learning agent uses an 

explicit representation of its behaviour with the goal of improving it by searching the 

space of possible policies P. Therefore, an actor only method will be feasible, if its 

search space is restricted to a subset of P. Some important actor only algorithms 

include: Associative Reinforcement Learning Algorithms (Barto and Anandan, 1985). 

Policy gradient algorithms (Cheeseman, 1985). REINFORCE (Williams, 1992). 

EARL, evolutionary algorithm RL (Moriarty et al., 1999). The best well known 

example of the actor-critic algorithm is the Adaptive Heuristic Critic Algorithm 

(AHC) (Barto et al,1983) where this novel concept was introduced for the very first 

time. Actor-critic (AC) methods are TD methods that have a separate memory 

structures to explicitly represent the policy independent of the value function. The 

policy structure is known as the actor, because it is used to select actions, and the 
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estimated value function is known as the critic, because it criticizes the actions made 

by the actor. When combined into an AC structure, the learning is always on-policy: 

the critic must learn about and critique whatever policy is currently being followed by 

the actor. The critique takes the form of a TD error (a scalar signal) and represents the 

sole output of the critic which drives all learning in both actor and critic. It would 

seem that an actor-critic system with a lookup table is guaranteed to converge to 

optimality no matter what. Surprisingly, that is not the case. Although it always 

converges for y>0.5 (Williams & Baird 1993), it does not always converge for larger 

y as shown by Baird (1999).  

 

C. ON-Policy / OFF-Policy 

In both model free and model based methods there are two basic strategies to update 

the policies value function which are known as on-policy and off-policy learning. Off-

policy methods are able to update the estimated value functions by using hypothetical 

actions, those that may never actually be tried. The behaviour policy of the agent is 

usually ―soft‖ and therefore includes some element of exploration. An advantage of 

off-policy algorithms is that they can separate exploration from control, whilst on-

policy algorithms cannot. One of the most well-known on-policy learning algorithms 

is called Q-Learning (Watkins, 1989) and is reviewed in more detail in section 4A. 

 

 

D. Single-Policy Multi-Objective 

MORL approaches may be divided into two categories based on the number of 

policies to be learned: single-policy approaches and multiple-policy approaches. 

Single-policy approaches aim to obtain the best single policy that satisfies the 

preferences among the multiple objectives, as specified by a user or derived from the 

problem domain (Vamplew, P et al. 2011). The major difference between the single-

policy approaches is the way in which these preferences are expressed. 

 

 Weighted Sum Approach 

The weighted sum approach is a naturally extended version of Greatest Mass 

approaches such as (GM-Q) and (GM-Sarsa). GM-Q suffers from the problem of 

positive bias where as GM-Sarsa does not due to being an on-policy method. Using 
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GM-Sarsa‘s approach the updates were based upon actual actions taken rather than the 

best possible action, the algorithm discovers Q-Values that are closer to the true 

expected return. This weighted sum approach has the advantage of allowing the user  

to have some control over the nature of the solution by 

placing more or less emphasis on each of the several 

objectives. Assuming there are two objectives to be 

completed and 5 possible candidate actions as illustrated 

in (Fig 2.3), you notice that actions a2, a3 and a4 lie 

within the concave regions of the pareto front and will 

therefore never be selected, instead either a1 or a5 

will be selected according to their pre-defined 

weights. This disadvantage can be overcome by 

using less frequent non linear functions as 

demonstrated in Tesauro, G. et al (2007) 

 

 W-Learning Approach 

In the paper by Humphrys, M (1996), Humphrys demonstrates how ‗W‘ values can be 

generated using Top-Q algorithm which generates the action according to the 

objective with the highest Q-value in the current state. The advantage of this is that 

the Optimal action is chosen for at least one objective. However the disadvantage is 

that the objective with the highest Q-Value may have no preference over what action 

is chosen, while another objective stands to lose a great deal if its action is not 

selected. A much better approach is to learn the W values based upon the update rule 

for a process known as W learning (Liu, C. et al 2013). The reverse of this process is 

called Negotiated W-Learning which results from Liu, C. et al‘s (2013) statement that 

there is no need to learn the W values, instead they can be computed directly from the 

Q-Values. 

A common approach in complex reinforcement learning tasks is to divide the problem 

into functional parts, or behaviours, and then to assign a sub-agent to solve each task. 

The action selection problem then becomes to negotiate between sub-agents with 

conflicting desires. W-learning is a method whereby agents build up W-values in each 

state that indicate how important that state is for that agent. These values are then 

used as basis for selecting agents. 

Figure 2.3: Weighted Sum 

Concave Drawback (Source: 

Liu et al,  2013) 
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 Analytic Hierarchy Process (AHP) Approach 

In most cases, knowledge about the optimisation problem does not exists explicitly 

therefore we often define the objectives in a qualitative manor such as ―It is more 

important that the UAV does not fly into a wall rather than landing precisely on the 

helipad.‖ However this presents a problem for stochastic/deterministic systems as 

there is no precise mathematical description to quantify this information. Using fuzzy 

subsets and inference rules, the Importance factor Ii and the value of improvement 

Di(ap,aq)= Qi(s, ap) − Qi(s, aq) are used as inputs to construct the action selection 

mechanism (Humphrys, M. 1996). Another example using the AHP algorithm is the 

Greenhouse Parameter Control Strategy demonstrated in Qian and Wang (2013) 

where the target for the RL agent is to produce as high yield of crops as possible by 

taking into account several environmental factors such as light intensity, Co2 level, 

humidity, and temperature. Various equipment such as heaters, ventilation fans, 

irrigation equipment and LED lights are controlled by the AHP algorithm to provide a 

more scientific and reasonable sequence in selecting control measures. Providing the 

ideal growth values for any particular crop are known, this method may be used to 

automatically collect and control crop growth parameters to be used as an automatic 

control algorithm for maximising any crops production yield. 

 

 Ranking Approach 

Mitten (1964) and Sobel (1975) expressed an objective function TQ(s,a) in terms of 

partial policies which is also known as the sequential or threshold approach. In this 

approach one objective is maximized whilst satisfying the constraints on other 

objectives (such as maximizing factory production while maintaining a required 

safety level). In the paper by Zheng et al (2012), the two metrics of transmission delay 

and packet loss rate are considered as an optimisation problem of two choices. 

 Minimize transmission delay under desired constraint of packet loss rate, 

which would be suitable for the scenario of a best effort application. 

 Minimize packet loss rate under desired constraint of transmission delay, 

which would be proper for the scenario of a real-time application. 

Two Q-Tables are used in this approach to address the challenges of randomness, 

uncertainty, and multiple metrics in the field of cognitive radio networks. However 
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Since they only consider the packet loss caused by the link condition, the comparison 

between MORL based routing and shortest path routing is actually unfair. 

 

 Geometric Approach 

This algorithm proposed by Mannor and Shimkin (2004) focuses on the long term 

average reward vector in a dynamic, unknown environment. Interestingly this 

algorithm can also deal with environments that may be altered by the actions of other 

agents providing pre-existing knowledge of the problem domain is provided to define 

the target set. Importantly a disadvantage of this system is that although the changes 

to the environments state can be observed, they cannot be predicted before hand. The 

geometric algorithm learns to approach a prescribed target set in multidimensional 

objective space shown in fig 2.4b below. 

 

 

 

 

 

 

Figure 2.4a & 2.4b : Reward Vectors (Source: Mannor and Shimkin, 2001) 

The above learning algorithm illustrated in Figure 2.4a only needs to determine which 

element to use at each of the two extreme regions. EG: If the temperature is higher 

than T, the cooling fan policy shall be executed, where as if the temperature is lower 

than T then the heater will be activated. Now consider a more complex multi-

objective version of this example where the objective is still to maintain a specific 

temperature although now other parameters such as ―frequency of switching between 

policies, average energy consumption, average humidity are to be added as extra 

objectives. The target set shown in Figure 2.4b demonstrates how the steering policy 

for the controller is now much more complex than figure 2.4a‘s left or right 

directions, now there is a continuum of possible directions, each associated with a 

possible different steering policy.  
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E. Multiple-Policy Multi-Objective 

Multiple- policy approaches aim to find a set of policies that approximate the Pareto 

front. The fundamental difference between multiple policy approaches is the manner 

in which the Pareto front is approximated (Chunming et al 2003). 

 

 Convex Hull Approach 

Until now, only single policy approaches to multi objective reinforcement learning 

have been discussed however there have been efforts to develop algorithms that are 

multiple policy approaches by nature.  A multiple policy approach known as the 

convex hull approach is described in Li-juan et al (2009) which can learn optimal 

policies for all linear preference assignments over the objective space at once. 

Conventional RL algorithms repeatedly back up maximal expected rewards whereas 

this type of RL backs up the set of expected rewards that are maximal for some set of 

linear preferences. Barret and Narayanan (2008) proved that their solution gives the 

optimal policy for any linear preference function and the solution is reduced to the 

standard value iteration algorithm for specific weight vector. Crucially this convex 

hull technique can be used in combination with other RL algorithms, because multiple 

policies are learned at once, these RL algorithms must be off-policy such as Q-

Learning or Dynamic Programming Techniques. 

 

 Varying Parameter Approach 

Given a set of parameters, the optimal policy with respect to those parameters could 

be learned. As demonstrated in Castelletti (2002), scalarised Q-learning can be 

applied in a multiple-policy context by performing repeated runs of a single-policy 

algorithm using different parameter values. Similarly, a multiple-policy approach can 

be implemented by performing multiple runs with different parameters, objective 

threshold values, and orderings in any single-policy algorithm. Shelton (2001) applied 

policy gradient methods and the idea of varying parameters to the MORL domain. 

Gradients in the parameter space of the policy were computed individually for each 

objective and then combined to form a weighted gradient. By varying the weighting 

of the objective gradients, a range of policies can be discovered. 
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2.5      Historical Progress 

A. Most significant RL frameworks 

Q-Learning aims to learn and estimate Q values in order to construct optimal control 

strategies (policy) from delayed rewards, even when the agent has no prior knowledge 

of the effects of its own actions on the environment. The RL agent uses its past 

experience to improve its estimate by blending new information into its prior 

experience. More than one optimal policy can be generated however the Q values 

remain unique (Yang and Gu, 2004). Although Q-learning is a very effective 

framework for individual robot learning (Gherega et al 2012), alone, it does not 

appear to lend itself to Multi-robot systems where other robots may alter the state of 

the environment, rather than a single agent learning from the new state of the 

environment changed only by actions performed by themselves. In the paper by Mei 

et al (2007) the blackboard architecture is adopted to realise cooperative Q learning in 

multi-robot system. Each individual robot first queries the blackboard according to its 

current state, then executes allocated action and sends the obtained reward back to the 

blackboard. The blackboard carries out learning using received state- action pairs and 

rewards. Q-learning is applied as a coordination mechanism for multiple robot teams.. 

A common hypothesis for MRS is that the more robots participating in completing 

this task, the better the overall performance. However Mataric‘s (1994) analysis of 

interference suggests that there is a limit in multi-agent systems to the level of 

improvement gained by adding additional robots. What was demonstrated was that 

while the size of the team causes an exponential drop-off in the number of iterations 

required to complete the map, the change in the reward function only makes local 

changes about this curve. More important to the performance of the overall team than 

the reward values are the learning rate and exploration properties. The algorithm in 

Castelletti et al (2012) proposed an extension of fitted Q-Iteration  (FQI) enables to 

learn the control policies for all the linear combinations of preferences that are 

assigned to the objectives in a single training process. In Liu and Wu (2010), visited 

states are assigned with different immediate rewards by comparing the objective 

vector of current state with those of the Pareto optimal solutions found previously. 

These Pareto optimal solutions are stored in an elite list, which keeps track of the non-

dominated solutions found so far and is used to construct the Pareto front at the end of 

the optimization process. Gherega et al (2012) use a Q-Learning Approach to 
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Decision Problems in Image Processing by using reinforcement learning in image 

processing and computer vision extending as a way of replacing human assistance 

with intelligent agents. 

 

B. Most Significant Hybrid Algorithms  

In recent years, many researchers have attempted to implement new RL schemes 

either by developing new hybrid architectures or designing new learning methods 

from scratch. Many new hybrid architectures are being attempted that combine 

reinforcement learning with other methods like fuzzy logic and neural networks such 

as Castelletti et al (2012) and Liu and Wu (2010). The Generalised Probabilistic 

Fuzzy Reinforcement Learning Algorithm (GPFRL) proposed by Hinojosa (2010) 

demonstrates how the combination of RL, fuzzy logic, and probabilistic theory have 

proven to be an excellent way of managing information in the presence of different 

kinds of uncertainty. When combined with fuzzy logic, the RL task of fine tuning 

controllers can be achieved by one of two ways, either by performing structure 

identification as studied by Lin and Xu (2006), Lin and Lee (1993), Wang et al 

(2007), or as parameter identification like in Berenji and Khedkar (1992), Lin and Lee 

(1993), Wang et al (2007). A similar study to GPFRL is by Strens (2000) who uses 

the idea that uncertainty in the underlying MDP model can be encoded with a 

probability distribution. An early approach known as Adaptive Heuristic Critic (Barto 

et al, 1983) where the system state is described based upon the input variables in what 

is called a ―box system.‖ The agent then uses these discrete input variables as a way 

of deciding the most appropriate action to take and then represents the system as a 

numerical value that corresponds to the input state. A better approach considers a 

continuous system characterisation, like in Anderson (1989), whose algorithm allows 

the addition of continuous inputs by using a two-layer neural network. The work in 

Anderson (1989) was an improvement over Barto et al (1983) in the fact that 

continuous inputs were used however the learning speed was still relatively poor. An 

improvement to the learning speed was suggested by Berenji and Khedkar (1992) 

whose work of the (GARIC) algorithm introduces generalised approximate reasoning 

and structure learning into its architecture therefore further reducing the learning time. 

Another interesting hybrid approach that uses approximate reasoning theory and 

neural networks was proposed by Lee (1991) however, his approach has the 
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disadvantage of not being capable of being used as a stand-alone controller without 

the learning structure. Lin and Lee (1993) developed two approaches: A 

reinforcement neural fuzzy control network (RNFCN) (Lin, 1995) and a 

reinforcement neural network based fuzzy logic control system (RNN-FLCS). Both 

algorithms were given the ability to learn using structure and parameter learning to 

achieve good overall performance compared with other hybrid methods. A 

generalised RL fuzzy controller was proposed by Zarandi et al (2008) which is 

capable of handling vagueness of inputs but overlooks the handling of ambiguity 

which is crucial when dealing with uncertainty. Furthermore the structure of the 

algorithm became very complex by the use of two independent fuzzy inference 

systems. Several other fuzzy RL algorithms, primarily model free, have been 

implemented based upon Q-learning (Lin and Lin, 1996), (Almeida and Kaymak, 

2009) or AC techniques such as those by Jouffe (1998) and Lin (2003). Lin and Lin 

(1996) developed RL strategy based on fuzzy-adaptive-learning control network 

(FALCON- RL) method. Fuzzy-AC-learning (FACL) method (Jouffe, 1998), Lin‘s 

RL-adaptive fuzzy-controller (RLAFC) method (Lin, 2003), and Wang‘s fuzzy AC 

RL network (FACRLN) method (Wang et al, 2007) However, most of these 

algorithms fail to provide a way to handle real-world uncertainty which is a greater 

issue in such a large complex stochastic environments with continuous inputs. 

 

2.6 Prospect Theory 

Psychologists and economists have recently paid closer attention to modelling how 

decisions are made under conditions of risk, where options are characterised by a 

known probability distribution over possible outcomes. Decision making under risk 

was first introduced by a mathematician named Daniel Bernoulli who published a 

paper in 1738 entitled ―Exposition of a new theory on the measurement of risk, as 

cited in Hannson (1994). His paper was based upon the economic theory of risk 

aversion, The St Petersburg paradox, risk premiums, and utility. Bernoulli also 

proposed a function called the ―Utility Function‖ to explain how people behave when 

making choices. Bernoulli took the assumption that people try to maximise their 

utility rather than their expected value and that people are typically risk averse. This 

model was the beginning of utility theory which combines descriptive and normative 

elements at the same time. 
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Based upon Bernoulli‘s principle, later in 1944, John von Neumann and Oskar 

Morgenstern proposed a reinterpreted formal model called expected utility theory 

(EUT). Since then, it has been used as a model of rational choice under risk based 

upon the assumption that people behave as rational agents and that they adhere to 

EUT in decision making behaviour under risk (Andriottyi, 2009). However EUT 

cannot capture the human decision making attitudes towards risk i.e.: risk aversion 

and risk seeking, because it does not model the domain of human intuition, thoughts 

or preferences that come to mind quickly without much reflection (Coleman et al, 

2007). This drawback is also confirmed in Allais‘s and Ellsberg‘s paradoxes (Zhang 

et al 2007). A group of psychologists called Kahneman & Tversky (1979) addressed 

this limitation and developed an alternative theory of choice based upon Prospect 

Theory (PT) that can accurately describe how people actually make their decisions. 

They claimed that PT captures common human decision making attitudes towards risk 

that cannot be captured by EUT ie: risk aversion and risk seeking. While risk aversion 

is generally assumed in any economic analysis under uncertainty, risk seeking is 

generally not. PT goes towards explain why people often make decisions that seem 

irrational. If people always made decisions on a utilitarian bases there would be little 

need for insurance and few, if any, people would gamble. Moreover, if utility were the 

basis for all decision making there would be little need for marketing. The list of the 

topics that PT could apply to is long and still growing, some of these topics are: 

Investment banking (Willman et al. 2002), commercial banking (e.g. Godlewski, 

2004), finance (Han& Hsu, 2004), analyst behaviour (e.g. Ding et al, 2004), hedge 

funds (e.g. Siegmann & Lucas, 2002) and political science (Mercer, 2005). Andriotti  

(2009) proposed a new Q-learning algorithm that reproduced human non-rational 

behavior by using PT as its basis instead of the EUT. Andriotti‘s new model has been 

applied in urban traffic modelling. 

 

2.7 Discussion 

Despite the recent developments in Reinforcement Learning, the challenge remains to 

scale up solutions to larger and more complex problems. ―Recently, RL has been 

applied in many fields however MORL algorithm research  is a relatively new field of 

study, therefore inherently there are few real-world applications developed so far (Liu 

et al, 2013). Traditionally RL works particularly well in finite discretised 
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environments such as the deep see treasure benchmark (Vamplew et al, 2008) but not 

so well in larger continuous environments. Additionally due to the multi objective 

nature of many real world practical optimisation and control problems, there is a need 

for multi objective reinforcement learning algorithms to be further developed to 

accommodate such applications. The difference between single-agent and multi-agent 

system exists in the environments. In multi-agent systems other adapting agents make 

the environment no longer stationary, violating the Markov property that traditional 

single agent behaviour learning relies upon (Yanjg and Gu, 2004).  

Many alternate approaches to solving MORL are actively being researched to work 

around this Markov violation and some algorithms are reviewed below. However, it 

appears that, should the environment remain stationary, this violation can be avoided. 

Forcing the robots to move in a synchronised manor could allow Multi Robot Systems 

(MRS) to utilise well understood Markovian principles, which have proven to work 

well in single robot systems. Providing all robots are synchronised during the learning 

process the only changes to the environment are the ones that we are actually trying to 

understand. This novel methodology could effectively scale up the MORL problem to 

be able to deal with more complex dynamic environments without other robots 

altering the state of the environment and causing misinterpretations of the agents 

effects of its own actions upon the environment. ―Unlike single-objective optimisation 

that returns a best solution to the problem, multi-objective problems have usually no 

unique, perfect solution, but a set of equally efficient, or non-inferior, alternative 

solutions, known as the Pareto optimal set, which represents the possible trade-off 

among conflicting objectives‖ (Liao, 2010).  

While conventional single objective algorithms such as the Q-Learning and SARSA 

may vary in terms of the internal mechanisms, they all share the same aim of 

maximising the scalar reward received, which is achieved by identifying a single 

optimal policy. For multi objective tasks there is no longer a single optimal policy, as 

many policies may in fact be Pareto optimal. Therefore variations can exist between 

MORL algorithms in terms of the number and nature of policies that they aim to 

discover. Within MORL research the algorithms developed belong to one of two 

classes based upon the number of policies to be learned.  Single-policy algorithms aim 

to learn a single policy that best satisfies a set of preferences between objectives as 

specified by the user or derived from the problem domain. Alternatively multiple 
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policy approaches aim to find a set of policies which approximate the Pareto front. As 

with any MORL algorithm, the aim is to intrinsically identify a single or multiple 

policies that produces suitable compromises between the multiple objectives. A good 

compromise can be expressed in terms of Pareto dominance (Pareto 1896) which 

allows a comparison of a pair of solutions to a multi objective problem. The main 

disadvantage of generating multiple policies rather than a single policy is the 

increased computation cost and the increased time spent interacting with the 

environment. The single policy approach is therefore more suited to on-line learning 

tasks within a real environment such as the UAV visual navigation task described in 

section 8. Using a UAV to learn from its own interactions is constrained by the fact 

that it has limited power where the additional cost of searching for multiple policies 

may be impractical due to the maximum learning flight time of approximately 15 

minutes. The earliest example of a single policy algorithm was provided by Gabor et 

al (1998) where a similar approach is designed for problems where constraints apply 

to some of the objectives. For example in our experimentation the UAV must carry 

out a navigation task of maintaining a relative position above the helipad in the 

presence of stochastic uncertainty whilst maintaining a battery level above zero. 

2.8 Conclusion 

In order to identify the structure of the field, a representative set of approaches have 

been reviewed that provide insights into some of the latest state of the art algorithms 

used actively by researchers within the past decade. 

In this review the background and basic architecture of RL and its methods were 

introduced first; then several representative MORL approaches were discussed. It has 

been shown that MORL is particularly successful in the following areas: 

  1) Improving the performance of the traditional single-objective RL. 

  2) Generating highly diverse multiple Pareto-optimal models for constructing   

      ensembles. 

  3) Achieving a desired trade-off between accuracy and interpretability of  

  neural networks or fuzzy systems. 

Reinforcement learning provides a set of very useful methods for learning in cases 

where a model of the environment or system is not available. The most remarkable 

advantage in the use of reinforcement learning methods is in its use on systems where 

complete feedback information is not available, as RL only requires information about 
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the success or failure of an action. It was seen that the SARSA and Q-learning 

algorithms are very similar, while SARSA updates for the policy it is actually 

executing, Q-learning updates for a greedy policy. It can be said that Q-learning will 

learn the ―true‖ optimal policy, but SARSA will learn about what its actually doing.  

Hinojosa (2010) proposed an approach that is robust under probabilistic uncertainty 

while also being capable of dealing with continuous states and actions as is prominent 

in complex real world scenarios particularly when using computer vision as the 

primary observation method for sensing changes in the environment. The two main 

fields of application of reinforcement learning are decision making and control 

problems. So far reinforcement learning has been used successfully in several 

different applications under both fields, yet some more practical and real-world 

applications need to be tested particularly for scenarios involving multiple conflicting 

objectives. For single-policy MORL approaches, the weighted-sum and W-learning 

approaches are simple to implement, but they cannot express exactly the preferences 

of the designer. The AHP, ranking, and geometric approaches may express the 

preferences more exactly, but they need more prior knowledge of the problem 

domain. For multiple-policy approaches, the convex hull algorithm can learn optimal 

policies for all linear preference assignments over the objective space at once. The 

varying parameter approach can be easily implemented by performing multiple runs 

with different parameters, objective threshold values, and orderings in any single-

policy algorithm. MORL approaches have been improved recently in three important 

directions:  

 Enhancing their qualities 

 Adapting dynamic preferences 

 Constructing evaluation systems 

Except for these three important improvements, the main challenges and open 

problems still remain in MORL which include Value Function Approximation (VFA), 

feature representation, convergence analysis of algorithms, and its applications to 

multi-agent and MRS systems for real-world problems. It is to the best of my 

knowledge that no other algorithm exists that is capable of dealing with multiple 

objectives in the presence of risk and uncertainty by using generalised probabilistic 

fuzzy logic in the area of decision making for UAV‘s, Healthcare & Agriculture. 
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3.1 Introduction 

This chapter explains the principal components of the GPFMORL architecture for 

solving sequential decision making problems in uncertain stochastic environments. 

The mathematical formulisation of a sequential decision making process is explained 

along with the agent, policy, environment and reward structure. We then analyse the 

importance of uncertainty handling; review the concept of fuzzy inference systems, 

and then introduce the reader to probabilistic theory and its application to fuzzy logic. 

The proposed GPFMORL algorithm extends an existing single objective GPFRL 

algorithm (Hinojosa, 2011) which itself merged 3 different paradigms in order to deal 

with their individual limitations. In order to improve the work by Hinojosa (2011) a 

further two methodologies were introduced namely linear scalarisation and prospect 

theory in order to ensure the convergence of a multi objective sequential decision 

making problem. MORL has proven to be a valuable learning method when a system 

requires a selection of control actions associated with each objective, whose 

consequences emerge over long periods for which input or output data are not 

available (Hinojosa, 2011). In particular UAV visual navigation for automatically 

landing a UAV on a helipad in uncertain stochastic conditions. Finally, conclusions 

are made and rationale behind extending the GPFRL single objective RL algorithm 

into an improved multi objective GPFMORL algorithms are justified.  

3.2 Multi Objective Reinforcement Learning Framework 

The following subsections describe the most important terms used in both single and 

multi objective reinforcement learning that shall be used through the entire thesis. 

 

Markov Decision Process 

MDP models are for RL in single agent environments (Yang and Gu, 2004). 

Commonly an MDP is characterized by the mathematical formulation of a sequential 

decision-making problem defined as a 4-tuple {S, A, R, T, y} (Sutton&Barto, 1998) 

of which sequences of MDP tupples describe the agents experience in the learning 

process. 
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 S = State Space – A finite discrete set of environment states (5x5 Grid = 25 

states) 

 A = Action Space – A finite discrete set of actions available to the agent (Left, 

Right, Forward, Backwards) 

 R = Reward Function giving the expected immediate reward by the agent 

under each action in each state. 

 T = Transition Function T: S ×R→Π(S) that provides a probability distribution 

matrix for each state and action 

 y = discount factor which controls how much effect future rewards have on the 

decisions at each moment 

 

Every MDP has a deterministic stationary optimal policy which consists of a 

stationary policy (a probability distribution over actions to be taken for each state) and 

a deterministic policy (one with probability 1 to some action in each state). 

 

The Agent 

A system such as a UAV moves and interacts with the environment through a 

collection of both straight and diagonal actions such as Forward, Backward, Left 

Right and combinations of these such as FL, FR, BL, BR. The agent observes the state 

of the environment and uses a learned policy in order to select an appropriate action or 

controller output. The agent must also have a goal or goals relating to the state of the 

environment. For example, an agent could be a quadcopter UAV that is attempting to 

stabilise itself above a helipad whilst perceiving the state of the environment in which 

it is navigating.  

 

The Policy 

The policy (π) is a decision rule that dictates what action to take at every possible 

state. The goal of the learning agent is to find a policy that maximizes the total 

expected reward (or the total discounted rewards) that it will receive over time, known 

as ―the expected return‖. For example: for the present thesis, given any particular 

state, the use of the policy will determine a probability distribution for the agent‘s 

future rewards, or as we will call it, a probability of success. 
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The Environment 

The environment is the external and immediate world in which the agent acts in. The 

environment interacts with the agent, dynamically affecting its perceived state. The 

environment can be represented in many ways. For example: the environment for a 

robot could be composed of walls to be avoided, or the friction of its wheels on the 

floor, or aerodynamic wind forces from external sources or created itself by a UAV‘s 

propeller blades. Some well known multi and single objective RL benchmark 

environments are Buridians Ass Grid World (a foraging task) and the MO 

Puddleworld problem which composes of a goal and puddles to avoid (Boyan and 

Moore, 1995).  The environment that is currently perceived by the UAV in this thesis 

is a downwards facing view of the area surrounding the helipad which has been 

cellular decomposed into a 5x5 grid. Each of the 25 rectangles represents a unique 

state in which the UAV may perform one of 8 distinct actions as previously described. 

 

Agent environments are classified based on different properties that can affect the 

complexity of the agents decision-making process according to Russell and Norvig 

(1994). 

 Accessible or inaccessible: An accessible environment is one in which the 

agent can obtain complete, timely and accurate information about the state of 

the environment.  

 Deterministic or non-deterministic: In a non-deterministic environment, the 

state that will result from an action is not guaranteed even when the system is 

in a similar state. This uncertainty presents a greater challenge to the agent 

designer than deterministic systems.  

 Static or dynamic: Static environments remain unchanged except for the 

results produced by the actions of the agent. Whilst dynamic environments are 

created when other processes operate in them, thereby changing the 

environment outside the control of the agent. 

 Discrete or continuous: An environment is discrete if there are a fixed, finite 

number of actions and percepts in it. 

The proposed three dimensional environment is a challenging one for any robot to 

operate within due to the highlighted factors mentioned above. It is inaccessible at 

times when the agent can not obtain complete visual state information in the unlikely 
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event that the UAV flies outside the boundaries of the localisation grid. Any of the 8 

possible actions that may be taken could actually lead to a non-deterministic state 

transition ie: if there is a stochastic cross wind or other aerodynamic affects present 

then the expected state after taking an action is likely to change and not be predictable 

prior to moving.  

 

The Reward 

The reward function is a signal that expresses the failure or success of performing a 

specific action and it is extracted from a state observation; in other words the reward 

maps each perceived state (or a state-action pair) of the environment to a single 

number. The reward indicates the intrinsic desirability of the observed state; therefore, 

if a policy selected action returns a negative reward, then the policy may be changed 

in order to select a different action for that given state in the future. For example, a 

simple system like the cart-pole example by Hinojosa (2011) can be credited with a 

reward of zero for every action that keeps it in balance and punished with a reward of 

-1 as soon as the controller takes an action that leads the pole out of balance. In the 

case of the grid world problem, where we want to use a value based reinforcement 

learning algorithm to learn how to reach the goal state as quickly as possible, a natural 

way to model goal states in a reward function is to give a positive reward on reaching 

the goal state and zero reward on all other steps. In the grid world this would translate 

to a positive reward for reaching the goal state and zero reward on each other step 

except boundary and hill states which are negative. The reward function would then 

also require a discount factor strictly lower than one. Otherwise, any action that 

eventually exits in the grid world is optimal and there is no incentive to reach the goal 

quickly. An alternative method would be to set the reward for each transition to some 

negative value and to use this as an incentive to find the goal quickly. 
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3.3 Multi Objective Actor-Critic Architecture 

As discussed in chapter 2 of this thesis both actor only and critic only methods have 

strong theoretical foundations. However, their performance cannot be assured for the 

cases when the agent has to cope with deficient function approximation and partial 

observability. Critic only methods have a superior sample complexity and asymptotic 

performance when provided complete state information; yet, critic only methods are 

robust to inadequate function approximation and noisy state information. Although 

value function-based critic methods and actor-only methods are contrasting 

approaches to solve reinforcement learning tasks, it is possible to combine their 

advantages into an Actor-Critic (AC) architecture. AC methods are also temporal 

difference methods but are unique in the fact that they have two memory structures to 

represent the policy structure independently to the value function. The actor refers to 

the policy structure and is responsible for selecting actions whereas the critic is so 

called because it criticises the actions made by the actor. When combined into an AC 

structure, the learning is always on-policy: the critic must learn about and critique 

whatever policy is currently being followed by the actor. The critique takes the form 

of a TD error (a scalar signal) and represents the sole output of the critic which drives 

all learning in both actor and critic, as seen in  

 

 

 

 

 

 

 

 

 

 

 

In the Actor-Critic architecture illustrated previously, at any given time, the critic is 

learning the values for the Markov chain that comes from following the current policy 

Critic 

Actor Environment 

State 

Punishment (-1) 

Action 

Reward (+1) 

Figure 3.1 Multi Objective Actor-Critic Architecture 
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of the actor. The actor is constantly learning the policy that is greedy with the respect 

to the critic's current values. AC methods were among the first reinforcement learning 

algorithms to use temporal-difference learning. These methods were first studied in 

the context of a classical conditioning model in animal learning by Sutton and Barto 

(1981). Later, Barto et al, (1983) successfully applied AC methods to the cart-pole 

balancing problem, where they defined for the first time the terms actor and critic. In 

the simplest case of finite-state and action spaces, the following AC algorithm has 

been suggested by Sutton and Barto (1998). After choosing the action    in the state    

and receiving the reward   , the critic evaluates the new state and computes the 

temporal-difference (TD) error    according to (3.1):  

 

          (    )   (  )         (3.1) 

where γ is the discounting rate and V is the current value function implemented by the 

critic.  

 

The next step that proceeds is to update the critics value function:  

 (  )   (  )           (3.2) 

Where    represents the critic‘s learning rate at time t. The key step in this algorithm 

is the update of the actor‘s parameters.  If TD error is positive, the probability of 

selecting that action in that state in the future should be increased since action   has 

resulted in a better than expected state value. By reverse logic, the probability of 

selecting      in the state      in the future should be decreased if the TD error is 

negative. Suppose the actor chooses actions stochastically using the Gibbs softmax 

method: 

     *    |    +  
  (   )

∑  (   )                   (3.3) 

where  (   ) is the value of the actor‘s parameter indicating the tendency of choosing 

action in state. Then, these parameters are updated as follows: 

 (     )   (     )               (3.4) 

where    is the actor‘s learning rate at time t.  

 

b 
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An AC system first updates the value in every state once, then it updates the policy in 

every state once, finally the process is repeated, this occurs in the form of incremental 

value iterations. This process is a form of dynamic programming, which is guaranteed 

to converge to the optimal policy. If it instead updates all the values repeatedly in all 

the states until the values converge, then updates all the policies once, then repeats, 

then it reduces to policy iteration, another form of dynamic programming with 

guaranteed convergence. If it updates all the values N times between updating the 

policies, then it reduces to modified policy iteration, which is also guaranteed to 

converge to optimality.   

 

In conclusion we list some of the most important advantages of using actor-critic 

methods below which is followed by a pseudo code description of the crucial steps to 

be executed:  

 Explicit representation of policy as well as value function.  

 Minimal computation to select actions.  

 Can learn an explicit stochastic policy. 

 Can put constraints on policies.  

 Appealing as psychological and neural models. 
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The learning process of a GPFMORL is based on an Actor-Critic reinforcement 

learning scheme, where the actor learns the policy function and the Critic learns the 

value function using the TD method simultaneously. This makes it possible to focus 

on on-line performance, which involves finding a balance between exploration of 

uncharted territory and exploitation of current knowledge.  

RL typically requires an unambiguous representation of states and actions and the 

existence of a scalar reward function. For a given state, the most traditional of these 

implementations would take an action, observe a reward, update the value function 

and select, as the new control output, the action with the highest expected value 

(probability) in each state (for a greedy policy evaluation). The updating of the value 

function is repeated until convergence is achieved. This procedure is usually 

summarized under policy improvement iterations. 

The parameter learning of the GPFMORL system includes two parts: the Actor 

parameter learning and the Critic parameter learning. One feature of the Actor–Critic 

learning is that the learning of these two parameters is executed simultaneously.  

 

Given a performance measurement and a minimum desirable performance we define 

the external reinforcement signal r as:  

 

    
    ( )        
      ( )      

       (3.5) 

 

 

The internal reinforcement r expressed in (3.6), is calculated using the temporal 

difference of the value function between successive time steps and the external 

reinforcement.  

 

  ( )   ( )     ( )    (   )    (3.6) 

 

 

Where γ is the discount factor used to determine the proportion of the delay to the 

future rewards and the value function   ( )  is the prediction of eventual 

reinforcement for action    
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The goal of reinforcement learning is to adjust correlated parameters in order to 

maximize the cumulative sum of the future rewards. The main goal of the Actor is to 

find a mapping between the input and the output of the system that maximizes the 

performance of the system by maximizing the total expected reward. The role of the 

Critic is to estimate the value function of the policy followed by the Actor. The TD 

error is the temporal difference of the value function between successive states. The 

goal of the learning agent is to train the Critic to minimize the squared TD error. 

 

 

3.4 Fuzzy Logic and Fuzzy Inference Systems 

Fuzzy logic is a technique originally developed by Zedeh (1973) as a way of 

processing data by allowing partial set membership rather than crisp set membership 

or non membership. In a similar way that this thesis‘ contributions stem from the 

extension of a previously developed GPFRL theory, Fuzzy Logic (FL) is an extension 

of the conventional Boolean Logic theory. It is based upon fuzziness and uncertainty 

of non crisp logic and the main concept concerns the degree of truth in the sense that 

the degree of truth is no longer limited to the distinct values zero or one. For example: 

Belonging to a set is not a binary rough criteria, instead it is described with some 

uncertainty inside the range of zero to one that allows a partial membership. 

 

 

Due to these fascinating characterisations of fuzzy logic, many interesting advantages 

are presented. Firstly FL systems have demonstrated an outstanding capability for 

mapping non linear relationships of input and output models without the need for 

precise mathematical formulation. Pinder (2013) demonstrates the use of a fuzzy 

altitude controller to control hovering height of a helicopter equipped with a camera 

and angled mirror. Image processing was used to estimate the non linear area to 

distance relationship in order to be fuzified using linguistic variables represented by 

natural language. Descriptive linguistic variables then allow the fuzzy if-then rules to 

be constructed to eventually control output actions to alter the throttle depicting the 

helicopters vertical motion in three dimensional space. 
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In addition to the previously mentioned advantages one of the most interesting is that 

FL systems are capable of handling and representing non statistical uncertainty, 

distinguishing traits of which probability theory cannot. The fuzzy altitude controller 

also provides a convenient way of mapping input space to output space whilst being 

roust to data input errors ie: poor estimates of the helipads area possibly due to 

illumination factors, shadows or simply a noisy video stream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Fuzzy inference system for the proposed fuzzy altitude controller 

 

FIS have been successfully applied in many different fields ranging from automatic 

control and expert systems to data classification, decision analysis and computer 

vision. Due to this multidisciplinary nature, FIS became associated with a rather large 

number of methods such as fuzzy-rule-based systems, fuzzy expert systems (Siler and 

Buckley, 2004), fuzzy modelling, fuzzy associative memory (Kosko, 1991), and the 

one of especial concern for this work, fuzzy logic controllers.  

When a FIS is used for controlling systems it is called fuzzy logic controller (FLC). 

FLC are especially advisable for cases where the mathematical model of the system to 

be controlled is unavailable, and the system is known to be significantly nonlinear, 

time varying, or to have a time delay. Within the area of automatic control, FIS have 

had great success in the field of robotics. FLC are particularly suitable for 

implementing systems with stimulus-response behaviour, since fuzzy rules provide a 

natural framework to describe the way the system ―should react‖ whilst providing 

human reasoning capabilities in order to capture uncertainties (Jang et al., 1997).  
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One of the first control systems built using fuzzy set theory (and one of the most 

commonly used) is the Mamdani's fuzzy inference method (Mamdani and Assilian, 

1975). Mamdani's effort was based on Zadeh's paper on fuzzy algorithms (Zadeh, 

1973) for complex systems and decision processes. Another important method is the 

Sugeno inference method. In general, Sugeno systems can be used to model any 

inference system in which the output membership functions are either linear or 

constant. 

 

3.5 Probabilistic Theory and Uncertainty 

From all the methods for dealing with uncertainty mentioned earlier in this chapter, 

probabilistic theory is the oldest (can be back traced to the early 1960s) and the best 

understood of all. As a contrast with FL, probability theory concerns with the concept 

of ―probability of truth‖ and gives information about the likelihood of an event in the 

future by representing information through probability densities. Therefore, 

probability and fuzziness are concepts that represent two different kinds of 

uncertainty, statistical and non-statistical, respectively.  

In recent years this probabilistic approach has become the dominant paradigm in a 

wide array of problems, ranging from financial (Berg et al., 2004, Almeida and 

Kaymak, 2009), control (Liu and Li, 2005, Blackmore, 2006, Hinojosa et al., 2008), 

robotics (Thrun, 2000, Valavanis and Saridis, 1991, Park et al., 2007, Thrun et al., 

2000, Jaulmes et al., 2005), and for representing uncertainty in mathematical models 

(Ross, 2004). Some research work, as in Cheeseman (1985), supports the idea that all 

the numerous schemes for representing and reasoning about uncertainty featured in 

the AI literature are unnecessary as probability theory can easily and effectively deal 

with this issue.  

Probability theory attempts to quantify the notion of probable. The general idea is 

divided into two concepts:  

 

 Aleatory (objective) probability, which represents the likelihood of future 

events whose occurrence, is governed by some random phenomena.  

 

 Epistemic (subjective) probability, which expresses the uncertainty about the 

outcome of some event, in the lack of knowledge or causes.  
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If we apply the concepts of probabilistic theory to the particular case of an embodied 

agent, this approach becomes divided in two fields, (Thrun, 2000):  

 

 Probabilistic perception: Deals with the uncertainty about the external world, 

as captured by the sensors of the embodied agent by using a probability 

distribution of the captured data instead of discreet values.  

 

 Probabilistic control: Given the uncertainty about the environment, a learning 

agent faces the task of taking a decision about its next action which 

consequences might be uncertain, especially over the long-term. In this same 

particular case, a probabilistic controller will need to anticipate various 

contingencies that might arise in uncertain worlds, by blending information 

gathering (exploration) with robust performance-oriented control 

(exploitation). In this case, the uncertainty of the state is propagated forward in 

order to obtain a probabilistic representation of a long-term behaviour. There 

are two broad views on probability theory for representing uncertainty: the 

frequentist and the subjective or Bayesian view.  

 

 The Frequentist View, sometimes also referred as ―empirical‖ or ―a posteriori‖ 

view of probability, relates to the situation where an experiment can be 

repeated indefinitely under identical conditions, but the observed outcome is 

random. Empirical evidence suggests that the relative occurrence of any 

particular event, i.e. its relative frequency, converges to a limit as the number 

of repetitions of the experiment increases. Therefore, probabilities are defined 

in the limit of an infinite number of trials.  

 

 The Subjective View, was originally introduced by Pearl (1982, 1988) and 

further developed later by Lauritzen and Spiegelhalter (1988). The subjective 

or Bayesian view of probability is used as a belief where the basic idea in the 

application of this approach is to assign a probability to any event based on the 

current state of knowledge and to update it in the light of the new information. 

The conventional procedure for updating a prior probability in the light of new 
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information is by using Bayesian theorem where subjective probabilities 

quantify degrees of belief.  

 

Other less common views can include the classical view, sometimes referred as ―a 

priori‖ or ―theoretical‖ and the axiomatic view, which is a unifying perspective aimed 

to provide a satisfactory formal structure for the development of a rigid theory by 

focusing on the question ―How does probability work?‖ rather than trying to define 

what probability is.  

 

As probabilistic methods and fuzzy techniques are good for processing uncertainties 

(Zadeh, 1995, Laviolette and Seaman, 1994), it would be beneficial to endow FLS 

with probabilistic features. The integration of probability theory and fuzzy logic has 

been the subject of many studies as in Liang and Song (1996). 
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3.6 GPFMORL Algorithm Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

  

 

  

 

    

 

Figure 3.4: Proposed GPFMORL Algorithm Flowchart 

 

 

Calculate 

probabilities of 

success 

                                 

Start 

                       

Do action 

Choose an 

action using 

probabilities 

                       

Get reward 

Distort θ(s,a) 

probability by 

PDF = -0.1 

If Risky Explore 

using Prospect  

Theory 

Success no 

yes 

End 

Observe the 

environment 

(Image Processing) 

Compute 

prediction of 

reinforcement 

Compute 

internal 

reinforcement  

               

Update v & w 

Compute the 

TD error 

prediction 

Chapter 3: GPFMORL Methodology 

               

Scalarisation 



                                       

Page 38 of 233 
 

3.7 Rationale behind extending GPFRL with a Multi Objective Methodology 

This chapter has explored the different advantages and limitations of three different 

popular paradigms, fuzzy logic systems, probabilistic theory and reinforcement 

learning separately. It was concluded that each of this paradigms could very well 

complement the drawbacks of the others and seamlessly work together in a 

cooperative rather than competitive way. 

Fuzzy logic systems are good at generalizations, and due to its distinctive 

characteristics, it is able to handle non-statistical uncertainties, and fuzziness; 

however under certain conditions, the design and development of rather large or more 

complex systems can be too complicated for human operators. 

Reinforcement learning methods have been an intense focus of research in the last 

decade. Research has proven that reinforcement learning can be successfully used in 

many different areas, such as decision making or control. A remarkable characteristic 

is that RL methods do not require input-output pairs for training or previous 

knowledge of the environment model. RL only uses sparse signal information in order 

to reach to optimal conclusions. Therefore using RL for automatic tuning of fuzzy 

logic parameters and even image processing parameterisation is the focus of recent 

research. 

Probabilistic theory is still one of the most effectives way (and most explored) to deal 

with uncertainties, especially stochastic uncertainty. The fusion of probabilistic theory 

with fuzzy logic controllers have shown to be a powerful tool for practical areas such 

as finance and weather forecasting. Both paradigms can work in collaboration, in 

order to complement each other. As a result, probabilistic fuzzy logic system can 

handle a very large range of uncertainties. 

The present work combines these three paradigms into a novel multi objective 

method, able to learn optimal policies for control or decision making whilst being 

resistant to stochastic, non-stochastic, uncertainties, randomness and fuzziness.  
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3.8 Conclusion 

Fuzzy logic is an effective tool for solving many nonlinear control problems, where 

the nonlinear behaviour of the system makes it difficult, if not impossible, to build an 

analytical model of the system. Additionally, fuzzy set theory provides a 

mathematical framework for modelling vagueness and imprecision. However, 

building a fuzzy controller has its own difficulties.  

The process of designing a FLC has two challenging tasks: defining the controller 

structure and, second, finding the numerical values for the controller parameters. 

These challenges arise due to a lack of a well-established theoretical approach; rather, 

they are entirely based on the empirical experience of a human operator, which is 

transferred into the FLC. However, the extraction of the expert‘s knowledge is not 

always an easy task; decision rules with complex structures and an excessively large 

number of variables necessary to solve the control task introduce difficulty in 

performing the knowledge extraction.  

A direct solution to these problems is to use learning algorithms in order to replace or 

enhance the human operator ―a priori‖ knowledge. Fuzzy logic learning can be used to 

automatically provide a solution for these issues, thereby removing human input from 

the design.  

Several techniques reported in recent literature to create such intelligent controllers 

include the use of algorithms such as neural networks, genetic algorithms, and more 

recently reinforcement learning, in order to learn and optimize a fuzzy logic 

controller. 
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4.1 Introduction 

This chapter explains the implementation of a number of components necessary for 

our proposed reinforcement learning approach. In sub section 4.2, we consider a 

Helipad Visual Localisation method using Cellular Decomposition (CD) in order to 

allow the UAV to approximate its relative location and therefore its current state. 

Subsection 4.3 illustrates the potential field methodology (PFM) used for assigning 

reactive behaviours when in danger of flying outside the boundaries of the grid. 

Section 4.4 conceptualises the development of a fuzzy altitude controller for 

quadcopters using only the perceived area of the helipad combined with the ultrasonic 

distance estimates to provide a more robust multi-modal altitude estimation algorithm. 

Section 4.5 explains the simulation experiments of using GPFMORL for a locating 

goal location in the fewest number of steps starting from both static and random 

starting positions within the grid. The UAV positional controller‘s architecture is 

illustrated in subsection 4.6 which is used by the MORL agent in order to facilitate as 

a real world controller in addition to the decision making capabilities demonstrated in 

the simulation results. Subsection 4.7 details some representative MORL benchmarks 

and methods of empirical evaluation. Subsection 4.8 includes a brief analysis of 

preliminary test results achieved using both simulation and real world application of 

the UAV with appropriate performance measures to compare the performance of our 

proposed algorithm with other reinforcement learning and intelligent approaches. 

Finally the conclusion of this section can be found in subsection 4.9 which also 

summarises the implementation and overall design of the proposed system. 
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4.2 Multi Objective Linear Scalarisation 

This approach to MORL translates a multi objective problem to a single objective task 

by applying a function to the reward vector in order to produce a single, scalar reward.  

The scalerisation function can be either a non-linear function tuned to the problem 

domain (Tesauro et al. 2007) or more commonly a linear weighted sum of the 

objective rewards. The use of weights allows the user to choose some control over the 

nature of the policy to be found by the system, by placing greater or lesser emphasis 

on each objective to be achieved. The fundamental limitation with linear scalarisation 

is that it cannot find policies which lie in non-convex regions of the pareto front. 

 

When scalarisation is performed on Q-Learning, we actually scalarise the state value 

function which is a single value for each state representing the likelihood score of 

expected reward for transitioning to the reward location from any state. However, 

formally scalarisation is performed on state-action pairs representing the likelihood of 

reaching the goal/reward location from a specific state when taking any particular 

action available from the action set. After careful consideration it was decided that we 

should either re-implement q-learning to generate value functions for every state-

action pair, or we should continue with my efforts of using GPFRL as a baseline 

algorithm which does in fact store state- action pairs through the use of a multi-agent 

approach. 

Also we know that GPFRL outperforms other single objective algorithms such as Q-

Learning & SARSA therefore it is highly unlikely that the multi objective version of 

Q-Learning would yield better performance results that GPFMORL. Therefore, the 

decision was made to focus on the multi-objective version of GPFRL which shall be 

referred to as GPFMORL from here on.   

GPFMORL 

The work of Hinojosa  et al (2011) consisted of a multi agent algorithm (GPFRL) 

where each agent learns the probabilities of success upon choosing one of the four 

cardinal directions, forward, backward, left and right. For every step within the 

discretised grid world that results in the agent being a state closer to the goal state, it 

received a reward of +1. In contrast, for every step it takes in a direction that is not 

towards the goal, it receives a punishment of -1. Importantly, actions that would take 

the agent off the grid leave its location unchanged but also result in a punishment of -

1, other actions result in a reward of 0. 
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The first modification of the GPFRL algorithm was derived from the realisation that -

1 punishment for moving further from the goal was equal to -1 punishment generated 

from the much more serious action of exiting the grid world by crossing the 

boundaries. The ―Over Boundary‖ penalty can be enhanced by additionally reducing 

the probability derived from the actor weights for a specific action taken when in a 

particular state. This additional probability reduction is performed by introducing a 

small weighting factor called the ―Potential Field Penalty Factor‖ (PFPF = 0.01) 

which is multiplied by the probability value to reduce the chance of performing 

illogical actions such as exiting the grid boundary when in risky states. Modifying this 

PFPF value allows greater or less emphasis on the secondary objective of avoiding the 

grid boundaries. 

The second modification attempted a linear scalarisation to the single objective 

(GPFRL) algorithm which stored the expected reward for a combination of state j and 

action k pairs in the Actors policy function. In the GPFMORL algorithm, the two-

dimensional value function array Wjk is extended to incorporate multiple objectives 

Wjko by a three-dimensional array so that the expected rewards for each state j, action 

k and objective o can be stored, retrieved and updated separately. Therefore in the 

case of two objectives, the second objective is stored in the third dimension. However, 

this approach enables more than two objectives to be achieved by extending the array 

to n-dimensions depending upon the number of objectives to be achieved.  

Finally the MDP for single objective RL is also extended to by replacing the single 

scalar reward signal by a vector of reward signals ie:  ⃗⃗ (si, ai) = (R1(si, ai),…Rm(si, 

ai)), where m represents the number of objectives. Now that the reward vector consists 

of multiple components, each representing different objectives, it is likely that 

conflicts arise whilst trying to optimise one or more objectives. In such cases, a trade-

off between these objectives has to be learned, resulting in a set of policies. As 

mentioned previously the set of optimal policies for each objective, or a combination 

of objectives is referred to as the Pareto Optimal Set. In addition to conflicting 

objectives there also may be multiple objectives which are complementary or 

independent by nature. For example the benchmark proposed in this paper involves 

complementary objectives of maximising stabilisation above the helipad in 

preparation for landing whilst minimizing the possibility of becoming lost by avoiding 

the grid boundaries. 
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By employing scalarisation functions as a scoring mechanism, a multi objective 

problem is transformed into a single objective by performing a function over the 

objectives to obtain a combined score for an action k for different objectives o. This 

single score can then be used to evaluate the particular action k by utilising the 

standard action selection strategies of single objective reinforcement learning such as 

E-Greedy to decide which action to select. 

 

For a multi objective solution x, a weighted-sum is performed over each objective 

function      (ie: fo with o =1..m) and their corresponding weights to obtain the 

score of x, for example. 

  ( )   ∑   
 
         ( )    (4.1) 

 

In the case of GPFMORL, the objective functions f are considered the actors policy 

structures Wjko values. As a result of applying the scalarisation, scalarised W-Values 

or SW-values are obtained. 

      ∑   
 
               (4.2) 

 

The action corresponding to the largest weighted-sum or SW-Values is considered the 

greedy action in state s, formulated as the following: 

 

        ( )    max SW(j,k‘)    (4.3) 

 

Pseudo Code 

Initialise W(j,k.o) arbitrarily 
foreach episode T do 
 Initialise state s 
 repeat 
  Choose action kfrom state j using policy derived from Wjko(e.g. scal-ε-greedy) 

  Take action k and observe state j’ϵ J and reward vector rϵ R 

  greedyk’(j’),         Call scal. Greedy action selection 
  foreach objective odo 
   Wjko Wjko + α[rjko+ γW(j’, greedyk’(j’),o) –Wjko)] 
   end for 
   jj’ 
 until s is terminal 
end for 

 

𝑘′ 
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In his approach there are four learning agents, where each one learns the probabilities 

of success of going in each one of the four (or 8) directions. So for every step that the 

agent takes that result with the agent being in a state closer to the goal state, it 

receives a reward of one, ―1‖; in the same way for every step it takes in a direction 

that is not towards the goal, it receives a punishment of ―-1‖. Actions that would take 

the agent off the grid leave its location unchanged, but also result in a reward of -1. 

Other actions result in a reward of 0. 

The -1 reward for leaving the grid can be improved by additionally reducing the 

probability of taking an OVER GRID action whenever in that particular state. This is 

done by introducing a small fraction PFM Factor which reduces the probability by 

10% of that states actor value function according to the responsible agent for the non-

logical move. No adjustment to the critics memory structure are performed due to the 

punishment being instant and not a temporal credit assignment reward function 

relating to the goal. 

―For every step it takes in a direction that is not towards the goal, it receives a 

punishment of ―-1‖Actions that would take the agent off the grid leave its location 

unchanged, but also result in a reward of -1.‖ 

Creating a richer reward scheme appears to not only allow more than one objective to 

be specified by the designer but also improves performance. Confirming my 

hypothesis that in addition to the -1 for leaving the grid there should be a more severe 

punishment in addition to that of moving further away from the goal whilst still being 

in a safe zone state. 

Therefore in addition to this punishment of -1, the probability value also needs to be 

decreased further using the proposed PFM-Factor by multiplying them together. 

Preliminary results with the PFM factor <0.1 sometimes results in the GPFRL finding 

the goal in less steps than the GPFMORL & GPFRL sometimes even converges 

faster, however the GPFMORL always finds the optimal policy with fewer trials than 

the GPFRL. 
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4.3 Prospect Theory  

In 1979, Daniel Kahneman and Amos Tversky, two researchers in behavioural 

psychology, developed prospect theory which aims to model human decision making 

in the context of risk. This model fits in the field of subjective probabilities and helps 

to make decisions depending on the context as well as balancing an aversion of loss 

based on the current state. The purpose of prospect theory allows the MORL agent to 

establish a dynamic compromise between exploration and exploitation during 

learning. Based on a weighting of probabilities, it allows us to solve muti objective 

problems with reasonable computational and adds a level of dynamism to the 

proposed scalarisation technique. 

A review of existing work suggests that prospect theory is a descriptive theory to 

model the way in which human beings make decisions that involve risk. It is 

considered to be the model used by behavioural economics since 1979. According to 

prospect theory, decision-making under risk may be seen as a choice between several 

gambles or prospects. The basic equation of the theory that determines the value of 

utility v(x, p) of a simple prospect that pays £x with probability p (and nothing 

otherwise)  

 (   )   ( ) ( )      (4.4) 

 

where the value function v(x), and the function for weighting the probability w (p), are 

non-linear transformations for the outcomes (x), and the probabilities for each 

possible outcome (p), respectively,  and they represent the participants‘ perception of 

both values.  

The value function and the probability weighting function are shown in Fig4.1 A & B 
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Figure 4.1A: The value function v(.) 

as a function of gains and losses 

Figure 4.1B: Weighting function (w.) for gains as a 

function of the probability p of a chance event. 

(Kahneman and Tversky 1979) 
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Reference Point 

Kahneman & Tversky (1979) defined the reference point (RP) which determines if the 

result is a gain or loss. The principle comes from the fact that, when confronted by a 

decision making problem, the decision-maker analyses the options gain or loss based 

on the current state; this is also referred to the status quo. This reference works as a 

behavioural trigger where, how risky someone behaves all depends upon the status 

quo. According to Kahneman & Tversky (1979) people behave more riskily when 

dealing with losses rather than dealing with gains. The utility value in Prospect theory 

depends upon the status quo or in our experiments the quadcopter‘s current state. 

In Equation (3.2), it is assumed that the outcomes (the values) are already manipulated 

with the status quo set as zero. where sq is the value of the status quo. 

 

 ( )   (    )      (4.5) 

 

The Value Function 

In PT, the outcomes are assigned to gains and losses rather than to final assets; in 

addition, the value function captures how much better one gain is than another gain 

and how much worse one loss is than another loss. Moreover, the value function is 

steeper for losses than for gains, a property known as loss aversion. Kahneman et al. 

(1997) observed that people typically require more compensation to give up a 

possession than they would have been willing to pay to obtain it in the first place. 

Figure 4.1A shows that the three psychological principles—the RP, DS, and loss 

aversion–constrain the shape of the value function. The first principle, the RP, 

suggests that outcomes are viewed relative to a RP and, hence, coded as gains or 

losses. For example, a person is tall only in comparison to others who are shorter. 

This comparison in PT is performed with respect to the RP. This means that people 

might accept an option in one situation that they reject in another (Chiu & Wu, 2010). 

In the second principle, DS, the value function is S-shaped and predicted to be 

concave for gains above the RP and convex for losses below the RP. This means that 

differences between small gains or losses close to the RP are assigned a high value, 

whereas differences further away from the RP are assigned smaller values. For 

example, there is a big difference between a £100 gain and a £200 gain, but a much 

smaller difference between gains of £1,100 gain and £1,200. Similarly, a loss of £100 
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seems quite distinct from a loss of $200, but losses of $1,100 and $1,200 seem pretty 

similar. 

In the third psychological principle, loss aversion forms the shape of the value 

function in the loss region, where the value function appears steeper for losses than 

for gains (Figure 4.1A). This means that a loss is assigned a greater value than a gain 

of an objectively identical amount. Thus, losses are given more significance than 

gains. To explain this principle, for example, a loss of £100 seems much more painful 

than a gain of £100 which seems pleasurable. Most people dislike a prospect that 

gives an equal chance of winning £1,000 or losing £1,000. 

Tversky & Kahneman (1992) formulated the value function as a power function: 

 

 ( )  {
      

  (   )    
     (4.6) 

 

Where α and β>0 measures the curvature of the value function for gains and losses 

respectively, and λ is the coefficient of loss aversion. Thus, the value function for 

gains (losses) is increasingly concave (convex) for smaller values of α (β) < 1, and 

loss aversion is more pronounced for larger values of λ > 1. The estimated values for 

the value function parameters as concluded from a study by Tversky & Kahneman 

(1992) of a sample of college students were: α= 0.88, β=0.88, and λ= 2.25. 

 

Probability Weighting Function 

PT assumes that individuals do not weight outcomes by their probability, as in EUT, 

but by some distortion of probabilities. This distortion of probability is captured by 

prospect theory‘s probability weighting function. Figure 4.1B implies an inverse-S-

shaped probability weighting function, which is concave near zero and convex near 

one (multidimensional character). 

In weighting functions, two of the three psychological principles, the RP and DS, 

govern the shape of the function. For the probability, there are two obvious RPs, 

certainty and impossibility, or a 100% chance and a 0% chance. The distortion of the 

probability shown in the probability weighting function captures the DS away from 

these two RPs. People are most sensitive to changes in probability when they are near 

0% or 100% than when the change applies to intermediate probabilities. People will 

pay much less, for example, for a lottery in which they have a 99% chance of winning 
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£1,000 than they will for a lottery in which they have a 100% chance of winning 

£1,000, but there is little difference between the amount people would pay for a 50% 

versus a 51% chance of winning £1,000. The objective difference in the probabilities 

(1%) is identical, but its impact on one‘s decision is not. 

The probability weighting function is exhibits DS also. The function is concave for 

small probabilities and convex for medium and large probabilities (See Figure 4.1B). 

Involves DS into probability weighting function leads to give more weight to low 

probability than they would receive using EUT. This overweighting is consistent with 

risk-seeking for low probability gains and risk-aversion for low probability losses. 

Thereby which explaining non-rational gambling behaviour and providing insurance 

against very low probability events. In contrast, medium to high probabilities are 

given less weight than they would receive using EUT. Such underweighting is 

consistent with risk-aversion for medium to high probability gains, and risk-seeking 

for medium to high probability losses. 

Scholars and researchers such as Gonzalez & Wu (1999), Abdellaoui (2000), and 

Wakker (2001) have confirmed that the inverse-S-shaped weighting function seems to 

be consistent with a range of empirical findings. The weighting function can be 

parameterised in the following form according to the probability weighting function 

originally proposed by Tversky & Kahneman (1992): 

 

 ( )   
  

(   (   ) )       (4.7) 

 

Where p is the weighting probability of the distribution of gains or losses and > 0  

measures its degree of curvature.. 
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For all simulations the parameter values shall be the estimated values by Tversky & 

kahneman (1992) n = 0.88, P = 0.88, y = 0.75 and A = 2.25 

 

 Reference Point  

The reference point  uses the current value of reward. Whenever one modifies 

the values of rewards, it accumulates for each objective, these values in the 

reference point. For the GPFMORLPT algorithm, it uses the values in the 

critic table.  

 

 Probability weighting function 

Our simulation environment probability weighting function was not only  

stochastic, but also allowed the generation of probability distribution. It was 

then extracted from the values of reward which is then applied as a distortion 

independently for each of the criteria. 

 ( )   
  

(   (   ) )       (4.8) 

 The value function computes the value function with the formula above, by 

adding the offset reference point: 

 

 ( )  {
(    )     

  (    )     
     (4.9) 

 

where RP is the current value of the reference point, and x is the current Q-value or 

the current critics value function for any particular state. 

 

For each possible action, we associate the following results: 

 

  ( )    ( )   ( )      ( )   ( )    (4.10) 

 

where PT is the value from the perspective of the corresponding action x, w1(x) is the 

weighting for objective 1, v1(x) its value function for objective 1 and n represents the 

number of objectives. 
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4.4 Case Study Research Prototypes        

 4.4.1 Unmanned Aerial Vehicle Visual Navigation Framework 

   4.4.1.1        Helipad Visual Localisation using Cellular Decomposition (CD) 

Cellular decomposition (CD) is a simple yet effective technique for discretization of 

large continuous input spaces into smaller well defined regions each one being unique 

to the rest. The CD technique particularly lends itself well to our chosen application 

due to the fact that reinforcement learning determines what best actions to choose 

based upon probabilities derived from what particular state the agent in currently 

occupying. The UAV observes the 

environment through a downwards facing 

camera where real time video is streamed 

back to the workstation PC where it is 

then evenly divided up into cells or state 

space. In order to maintain the intuitive 

methodology, a relatively small number of 

25 cells were used to describe the UAV‘s 

perception into discrete states forming a 

5x5 grid. The 5x5 grid or ―Cellular Decomposed State Matrix‖ (CDSM) as referred to 

throughout the rest of the thesis, is also commonly known as the grid world which can 

be altered to accommodate a variety of applications such as the introduction of 

stochastic cross winds to demonstrate the algorithms adaptive learning capabilities in 

the presence of risk and uncertainty. Providing the pixel screen resolution of the 

UAV‘s video stream is known, in addition to the Grid Size, we can calculate how 

many pixels each state should contain and more importantly which states are 

responsible for each pixel‘s location. Using this inferred information we can estimate 

the UAV‘s current position by using image processing to find the centroid of a 

helipad marker with respect to the position of the UAV in two dimentional space. 

Keeping the UAV stationary and moving the helipad marker on the floor would cause 

a change of state. Equally if the helipad marker was stationary and the UAV moved, 

then this would also cause a similar change in state. Taking advantage of this 

phenomenon we can implement visual localisation of the helipad for informing the 

MORL algorithm where the UAV is positioned above ie: what state the UAV is in. 

Now knowing where the UAV is positioned with respect to the helipad, further 
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Figure 4.2: OpenCV Visual Localisation 
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information can be inferred such as which is the most appropriate action or action(s) 

to take when in this state. 

 

Actions 

The actions available to the agent are movements in the following directions: 

Forward, Backward, Left and Right. However to improve agility and take advantage 

of the UAV‘s omnidirectional capabilities an additional 4 regions may be added for 

diagonal manoeuvres such as Forward-Left, Forward-Right, Backward-Left, and 

Backward-Right. The addition of fuzzy Near & Far membership functions allows the 

implementation of Multi Modal fuzzy translational velocity controller for more 

precise control of the UAV‘s state transitions  (Figure: 4.3). 

 

 

 

Rewards/Punishments 

 If the UAV is in the green state 13 then the agent receives a reward of +1 for 

achieving its objective of stabilizing itself directly above the helipad. 

 If the UAV is in any yellow state 7,8,9,12,14,17,18,19 then the agent receives 

no reward or punishment 0 because this is still a safe zone 

 If the UAV is in any red state 1,2,3,4,5,6,10,11,15,16,20, 21,22,23,24,25 the 

agent receives a punishment -1 due to moving outside the safe zone and into 

the risky danger zone. 

In the unlikely event that the UAV loses visual localisation of the helipad by moving 

outside of the Cellular Decomposed State Matrix (CDSM), the UAV is forced to land 
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Figure 4.3: State ID and Region ID 
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as a safety precaution due to not knowing its current state (State 0) or action to take in 

order to continue learning. This counts as the end of an episode just like when the 

reward is found and is represented by a 3 on the Helipad Deviation Graph‘s Y-Axis 

signifying being lost. Section 4.6 Figure 4.41 shows preliminary results for the 

stabilisation performance above the goal position (Helipad). The x-axis represent the 

incrementing number of state transitions and the y-axis represent the Zone State ID. 0 

= Green Target Zone, 1 = Yellow Safe Zone, 2 = Red Danger Zone, 3 = Lost 

 

   4.4.1.2        Potential Field Methodology (PFM) Reactive Behaviour 

Due to the importance of acquiring consistent visual localisation information to                                                                      

inform the rest of the learning algorithms of their current state, it is crucial that the 

UAV maintains within visual perspective of the helipad. There are many different 

reactive architectures that can be applied to the control of robotics navigation, one in 

particular which immediately appears appropriate for use with UAV‘s flying in 3D 

space is the potential field methodology. The motor component of a reactive 

behaviour can be expressed with a potential field methodology whereby each field 

consists of both magnitude and direction components similar to vectors. The 

perpendicular Potential Field Methodology (PFM) shown in Figure 4.4b is 

implemented for the outer states near the boundaries known as the ―danger zone‖. An 

attractive potential field (Figure 4.4c) could also be used for the inner states in the 

safe zone with equal directions to the adjacent outer states but with reduced 

magnitude to ensure a smooth control gradient preventing overshooting the helipad. 

However actions executed within the observable state space are to be better controlled 

using GPFMORL as this has never been attempted before. ―The motor commands of 

the robot at any position in a potential field correspond to the vector on which the 

robot is situated. Goals attract, and thus the goals will have vectors pointing towards 

them; obstacles repulse, and will be surrounded by vectors pointing away.‖ (Yang 

and Gu, 2004)  

 

There are 5 primitive Pfields which all have different influences on reactive 

behaviours  

 

(a) uniform; (b) perpendicular; (c) attractive; (d) repulsive; (e) tangential.  
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a) Uniform: the robot feels the same force wherever it is. Thus, if it is placed in such a 

field it aligns itself with the ―arrows‖ and moves at a velocity proportional to the 

length of the arrows. Often used to capture behaviour of go in direction of n-degrees. 

b) Perpendicular: e.g. directs robot to or from a wall. 

c) Attractive:  useful for representing attraction of robot to a light or goal position. 

d) Repulsive: opposite of attractive – represents obstacles the robot must avoid. The 

closer the robot is to the object, the stronger the repulsive force is. 

e) Tangential: the field is a tangent round the object. Useful for directing a robot 

around an obstacle, or having it investigate something. 

 

The type of potential field which is most relevant for forcing the UAV into an 

observable state space is a combination of the attractive and perpendicular pfields 

shown as Figure4.4c and in Figure4.4b respectively, extracted from Yang and Gu 

(2004). This is due to the fact that all these potential fields attempt firstly direct the 

UAV away from the boundaries so that if the UAV overshoots its intended state, or if 

the GPFMORL algorithm attempts to try and explore outside its observable state 

space, this is instantly corrected by automatically forcing the UAV to fly in the 

opposite direction adjacent to that specific boundary. The UAV should compute the 

effect of the occupied pfield at every update, with no memory of where it was 

previously or where it has moved. Although no memory of the UAVs position is 

necessary for the PFM, it is necessary for the MORL agent to learn. Effectively the 

PFM reactive behaviour has been implemented to prevent illogical moves from being 

executed such as flying out of the boundaries of the CDSM. This allows the MORL 

agent to explore more rational/less risky moves without sacrificing future learning 

performance by becoming lost. 
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Figure 4.4a,b,c,d,e: Potential Field Representations (Source: Arkin, 1989) 



                                       

Page 54 of 233 
 

Equation 11 shown below is the most straight forward formula, where the potential 

function is constructed as the sum of attractive and repulsive potentials: To ensure a 

smooth gradient, Uatt(q) is often chosen so that the magnitude of the attractive 

gradient decreases as the robot approaches the goal location q goal 

 

 

 

 

 

 

 

 

 

 

 

Above you can see an accuracy surface view profile for creating a non linear gradient 

change when the UAV reaches critical heights. Using this, the UAV would be 

adjusting its altitude constantly therefore not allowing any other commands to be 

executed. The illustration to the right shows a similar technique applied to a fuzzy 

altitude controller where the constant magnitude of the Urep gradient is keeping the 

UAV away from the wall. Then in the event that the UAV does pass outside the 

observable state space into an unknown state (state 0) the PMF then changes to an 

attractive pfiled to pull the UAV back towards the direction of the last known state. 

Figure 4.6 shows more intense gradient change as the UAV hovers too high or too 

low. The advantage of such a profile allows delicate and proportional control of the 

UAVs throttle when the correct height is almost reached and more severe movement 

applied when the UAV is going to crash into the floor or the roof. The fact that there 

is a blue horizontal line across most of the graph also means that the correct hovering 

altitude range has been extended to only allow drastic altitude changes when on a 

vertical collision course. The advantage of this improved profile is that the altitude 

)()()( qUqUqU repatt 
Equation 4.11 (Source: 

Li-juan, 2001) 

Figure 4.6:  Speed optimised surface view profile  

Figure 4.5:  Accuracy optimised 

surface view profile 
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controller now does not create a bottleneck of an excessive number of correctional 

commands which the majority are not required. 

 

4.4.1.3        UAV 1
st
 Person Perspective Heads Up Display (HUD) 

 

 

 

 

 

 

 

 

In Addition to the HUD the software writes the recorded video frames to .avi files as 

well as logging the entire state transition history for each step taken in every trial. 

 

   4.4.1.4        Fuzzy Altitude Controller 

As the distance between the UAV and the helipad decreases the area of the helipad 

appears to increase. Likewise when the robot moves away from the helipad its size 

appears smaller. We intend on using this phenomenon to control the speed of the 

altitude correction using fuzzy logic. We aim to create an effective control system that 

gradually slows the UAVs reactions down the nearer it gets to the appropriate 

hovering height. If the UAV were to move sharply close to the helipad then the 

helipad would move out the cameras field of view easily. In fact the UAV should 

Altitude Estimation (m) Remaining Power Estimation 

(m) 

Recording Status 

Helipad Target (In State 7) Hills/Obstacles Unmanned Ground Vehicle (UGV) 
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Figure 4.7: UAV‘s Heads Up Display (HUD) 
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move sharply when it is too high in order to get there faster and more efficiently. In 

the event of the UAV being slightly too high the correction will be made much more 

slowly to prevent overshooting. In order to increase performance a non linear fuzzy 

altitude controller has been developed. Fuzzy sets are ideal for this situation because 

they can be used to model the non linear input area of the helipad when the UAVs 

altitude changes. A knowledge base can then be constructed consisting of rules 

determining when the UAV is at the correct hovering height. e.g. ―Too Low, Low, ok, 

High, Too High‖ 

“This kind of controller has several advantages because it does not need to 

recalculate parameters when environmental conditions change”(Yang and Gu, 2005). 

The inference engine should then 

generate a control action as a 

function of state variable values at 

any given time. This would 

theoretically ensure that the 

appropriate motor power and sign 

(+-) were immediately available to 

be executed by the UAV whenever 

required. 

The illustration to the right 

extracted from Yang and Gu (2005) shows an attempt of creating the various fuzzy 

sets required ie: when it is hovering at the correct altitude (Z), or too high (P), or too 

low (N), or Very Positive/Negative for extreme situations. Assuming the correct 

hovering point of 0 on the vertical Z-Axis in 3D space, anything below that point will 

be negative and anything above will be a positive direction of corrective movements. 

Yang and Gu (2005) inspired the logic behind using the non linear area of the helipad 

to be fuzzified in combination with raw ultra-sonic sensor data and then output as a 

number between -100 & +100. This output can then be used to directly control the 

altitudes speed or vertical distance that needs to be adjusted. The + & - values are 

used for determining the speed that the motors should move in order to move either up 

or down to control the amounts of thrust used to hover. This approach has advantages 

against noisy sensor data such as deficient light for the camera to see the helipad 

properly or if the UAV is landing on textured helipads whose distance may not be 

accurately estimated due to the sound waves not deflecting as normal. 

Figure 4.8: Fuzzy Membership 

Functions (Source:Yang and Gu, 2005) 
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 “Control of a scale model autonomous helicopter during takeoff and landing 

manoeuvres has proven to be an extremely difficult problem.” (Li-juan, 2001) 

Li-juan (2001) suggests that the reason for take-off and landing manoeuvres being so 

difficult is a consequence of two main factors: 

1. The slow time varying and environment dependant nature of the aerodynamic 

forces encountered during take-off and landing.  

2. The high sensitivity of the UAV to collective pitch and roll changes during 

these manoeuvres. 

 

Whilst the sensitivity of the controls can be manually altered by adjusting several 

parameters, the aerodynamic forces encountered are much more difficult to 

compensate for.  

“It is no simple matter to model a priori of the aerodynamic effects that occur due to 

ground effects since they depend upon the nature of the environment in which the 

helicopter is flying as well as the ambient properties of the air.” (Li-juan, 2001) 

 

Due to flight testing being performed in different environments both at home and at 

universities testing lab, coupled with the factors mentioned above, it would have been 

very difficult if not impossible to develop my own standardised aerodynamic model 

of ground effect. Therefore the GPFMORL algorithm is proposed which is capable of  

learning and compensating for complex aerodynamic effects through trial and error 

interaction with the real environment. In order to further test the uncertainty handling 

capabilities we can introduce stochastic random cross winds either using manual tele-

operation or via algorithmic approaches. Ie: Generating stochastic cross winds 

occurring with a probability of 0.2. 

 

The fuzzy altitude controller is responsible for maintaining a steady hovering height 

roughly half way the height from the floor to the ceiling in the testing environment. 

The input to the controller is the area of the helipad which are inherently non linear. 

The non linear inputs are then fuzzified using the Mamdani method to output the 

speed of the motors and hence the direction of vertical movement as a range from -

100 (Down Full Speed) to +100 (Upwards Full Speed.  Defuzification method of 

centroid of area yields the best results obtained from preliminary tests. 
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Inputs = height  

    Outputs = speed 

                                                                                                                         Mamdani  

                                  Inference 

                              

                                   Range 

             Defuzzification 

 

 

Inputs 

Fuzzification of the Helipad Area input is achieved by three membership functions, 

two of type triMF and one of type TrapMF. The first triangular membership function 

is for when the quadcopter is flying at a high altitude and has the range of (-400 0 

400).  

 

 

 

Figure 4.9: Fuzzy Altitude Controller Structure 

Figure 4.10:  Fuzzy Altitude Controller Inputs 
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The second MF from the left is a trapezium membership function chosen so that the 

hovering height range is extended to reduce the number of altitude corrections 

necessary to maintain a reasonable hovering height. The range parameters which are 

currently set to (0 400 600 1000) can also be modified to allow shorter or longer 

ranges for the hovering condition to be satisfied depending upon the required flight 

characteristics. The third and final membership function is a triangularMF used for the 

scenario where the quadcopter is flying too low and must increase its throttle to 

achieve higher altitude. The membership function ―Low‖ has the parameters (600 

1000 1297) and has an identical shape to the ―High‖ triangular membership function. 

Overlapping of membership functions is essential to ensure fuzzy logic inference is 

correctly applied. 

 

Outputs 

The range of the output is set to  -300 300 although an output of -100 to +100 is only 

ever used. Extending the range to three times its limit resulted in more responsive 

control of the motors providing validation is used to prevent invalid commands being 

sent to the UAV‘s motors. The membership functions are arranged as before using a 

combination of TriMF and TrapMF functions with the parameters as described below.  

 

Boost Down = -540 -300 -100 TriMF 

Hover = -300 -100 100 300      TrapMF 

Boost Up = 100 300 540   TriMF 
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Figure 4.11:  Fuzzy Altitude Controller 

Outputs 
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Rule Base 

 

 

 

 

 

 

 

Figure 4.12: Fuzzy Logic Rule Base Editor 

The rule editor allows the altitude measurements to be translated into control actions 

to be performed by the various motors connected to the UAV. The altitude input is 

separated into three intuitive height categories of High, Medium and Low by selecting 

appropriate parameters for each membership function. Depending upon the current 

height category, the output action will be determined which allows the quadcopter to 

correct its altitude to remain at a constant hovering height. The output BoostUp will 

be initiated if the quadcopter flies too close to the floor or BoostDown when 

dangerously close to the ceiling. The output Hover prevents any altitude corrections 

from being made due to the inputs stating that it is currently flying at a medium height 

approximately chest height. 

 

Rule View 

 

 

 

 

 

 

 

 

 

The illustration to the left shows 

the effect on output speed as the 

height input is altered. The 

example shows a scenario 

where the quadcopter is flying 

dangerously high with an input 

of approximately 76. The 

controller responds by 

instructing the motors to rotate 

slower therefore moving in the 

negative direction at 

approximately- 96% full power. 
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Figure 4.13:  Fuzzy Altitude Controller Inputs 
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 Reactive Behaviour (Fuzzy Logic Control) 

Pre-processing 

The helipad has a constant area when the quadcopters altitude remains constant; when 

the altitude changes so does the area perceived by the camera. For example when the 

quadcopter is very close to the floor the helipad will appear larger than if the 

quadcopter was flying at high altitude. Unfortunately the area returns inversely 

proportional values that appear to be opposite to what is expected. For example, when 

the quadcopter is flying low the values are small and when the  

Although the range of the 

output is set to -300 to +300, 

the actual output should never 

exceed +-100. This is ensured 

by validation however the 

input values should never be 

such that would cause invalid 

outputs to be generated. The 

example to the right shows the 

helicopter at slightly above 

hovering position therefore 

correction is a low 5% 

 The Illustration to the left 

shows the effect of descending 

to an altitude that is considered 

too low ie: 826. The controller 

now decides that the direction 

the UAV must travel is now 

positive (UP) and that the speed 

of correction should be slightly 

faster than the previous 

occasion at approximately 35% 
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Figure 4.14:  Fuzzy Rule View – Slightly too HIGH 

Figure 4.15:  Fuzzy Rule View – Slightly too LOW 
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 quadcopter is flying higher the values become larger. In order to convert this raw data 

into more intuitive altitude knowledge we have subtracted the raw area value from 

800 to allow a more realistic output to be displayed i.e. Height. This value of 800 was 

acquired experimentally and, if required, it could be modified to allow even more 

realistic measurement of actual altitude in centimetre units. 

 

 

    4.4.1.5        Multi-Modal Fuzzy Translational Velocity Controller 

 

The translational velocities for each state transition were originally hard coded to all 

be of equal speed (+1.0). However, this proved not to be the most effective way of 

control as overshooting and undershooting of state transitions became problematic. In 

the situation where the UAV was far from the goal and HIGH up it would make more 

sense to increase the speed to reach the next state as there is more room for error at 

higher altitudes. However if the altitude is low then any slight movement could result 

in overshooting the state so its movements should be gentle by reducing the 

translational velocities accordingly. The design of a multi modal fuzzy controller 

allows a more smooth control of translational velocities from state to state by using 

the ultrasonic altitude estimation along with the visual perceived distance to the goal 

to output speeds from 0 to 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Multi-Modal Fuzzy Translational Velocity Controller Surface View 

Chapter 4: Design & Implementation  



                                       

Page 63 of 233 
 

 

Figure 4.17: Translational Velocity Controller – Fuzzy Rules 

 

 

Figure 4.18: Translational Velocity Controller – Input/Output Fuzzy Logic Design 

 

 

Figure 4.19: Translational Velocity Controller – DistanceToGoal Membership 

Functions 
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Figure 4.20: Translational Velocity Controller– DistanceToGround Membership 

Functions 

 

 

Figure 4.21: Translational Velocity Controller – Output Speed Membership Functions 

 

   4.4.1.6        Discussion 

The developed fuzzy controllers improved the learning speed of the algorithm by 

reducing the stochastic nature of the problem to deterministic state transitions. Rather 

than one state leading to another random state due to incorrect speed, the controlled 

speed ensures that the moving from one state to the next state is what is expected. 

Therefore only external stochastic influences are dealt with rather than internal 

influences caused by inadequate control. 
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 4.4.2        Automated Solar Powered Environmental Controller 

    4.4.2.1         Motivation  

As a society we find ourselves in a world where its becoming increasingly more 

difficult to obtain clean food. So much of what is available to is over processed and 

exposed to toxins. The leading causes of death are all tightly connected to diet and yet 

the types and qualities of food available to us have not changed. Over the recent years 

editing the DNA of food crops has become so prevalent that virtually every one of us 

eats genetically modified food every day, what that does to our planet and bodies is 

unknown… 

In response to this situation there is a movement focused upon growing our own food, 

on our own terms, that means selecting varieties for taste and quality rather than 

durability. It means not subjecting our food to long transports, or soaking it in 

pesticides. It means not fiddling with genetic integrity of the plants we eat. 

This clean food movement is demonstrated in several different ways such as as: 

Urban farming groups and community gardening clubs, Hobbyist Home Growers, 

Organisations promoting local food and farmers markets (Fig: 4.22)  

 

 

 

 

The ASPEC system was created as a compliment to all of these as well as providing a 

feasible alternative for industrial/commercial suppliers who inevitably must allow us 

to have access to healthier hydroponic food. The proposed ASPEC system is 

automating food production techniques and optimising them by an advanced 

automation programme where we are developing the world‘s first solar powered 

multi-functional embedded system that will increases the efficiency of hydroponic 

installations without consuming expensive/non-renewable power from the grid. We 

are using open source hardware and software in conjunction with modern artificial 

intelligence approaches to produce an affordable smart management system for 

scalable food production. 
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Figure 4.22:  Organisations promoting local food and Hobbyist Home Growers 
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for the past 4 years we have been documenting and designing basic structures for 

growing food. From the larger Twin Channel Independently Controlled ASPEC 

system to DIY miniature windowsill hydroponic gardens made from recycled water 

bottles, takeaway containers and jam jars. 

 

 

 

 

 

 

 

 

 

Flood and Drain Auto Pot ASPEC 
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Figure 4.23:  Design and Testing of cost effective and advanced hydroponic methods 

Figure 4.24:  ASPEC Nutrient vessel arrangement and NFT crop layout 
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The total world area of glasshouses is estimated to be over 41,000 ha with most of these 

found in north western Europe and only a small percentage of those are fully 

automated. Controlled environment agriculture (CEA) is highly productive, 

conservative of water and land and protective of the environment. There are many types 

of CEA systems however not every system is cost effective in each location. While the 

technique of hydroponic culture in the tropics may be quite similar to those in the desert 

and temperate regions of the world, the greenhouse structures and methods of 

environmental control can differ greatly.  

In conventional soil growth, any excess water, nutrients, vitamins and minerals that 

haven't been absorbed by the plants roots eventually drain away and are wasted, 

potentially harming the environment through Eutrophication. Using NFT hydroponics 

there is a continuous recirculation of nutrient solution that constantly allows the roots to 

absorb whatever they want, whenever they want, this can lead to yields 3x higher than 

soil production with the advantage that: 
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Figure 4.25:  Automated Solar Powered Self-Sustainable Greenhouse 
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1.  Smaller volumes of nutrients can be completely absorbed, much less volume of 

water is required providing a system that is better for the environment and saves cost on 

otherwise wasted fertilisers. 

2.   In addition to the environmental & financial benefits of hydroponics, automation of 

climatic and nutrient conditions results in an easy to use, hassle free system that 

optimises the conditions for perfect plant growth. 

3.   If a solar panel is used to provide all the automation power required to maintain the 

optimal environmental conditions, then not even humans are required as a resource. 

4.  The key difference between the limited range of commercial controllers and the one 

being proposed is that the ASPEC is artificially intelligent and can operate using very 

low voltages/current e.g. 12VDC 3A. This allows the controllers auxiliary battery to 

recharge and function carbon free during the day while the plants use natural sunlight to 

grow during the day while the controller is charged enough to operate all night 

maintaining the optimum conditions. 

Such a system allows the ASPEC controller to be commercially viable in third world 

countries with power deficiencies and even is a viable option for growing food on the 

international space station where resources are extremely costly. 
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Figure 4.26:  ASPEC mk2 with purpose built 

illuminated micro switch Human Machine Interface 

Figure 4.28: Custom 

HMI (Rear View) 

Figure 4.27: Custom HMI 

(Front View) 
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An ASPEC  system could be used in your garden, back yard, conservatory or even on 

your rooftop. Your community can have an even larger system on an unused plot of 

desolate land even if it does not have a mains supply of water or electricity available.  

 

 

 

 

 

 

 

 

Commercial application of the proposed system is also a viable option for much 

larger scale food production at reduced costs to both the environment and the 

12vDC 110Mah 

Sealed Lead Acid 

Battery  

40w Solar Panel collects 

energy and rain water for 

the system to operate 

Half guttering to direct 

collected water into 

storage water butt 

100 ltr Water but to provide 

adequate pressure for float valve 

Waste pipe for automatic 

flushing  

Twin Channel 

NFT Tray  

ASPEC + 6 1ltr 

nutrient bottles  

Air Temperature 

Probe  
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Figure 4.29:  ASPEC Grow Schedule (by Hesi) 

Figure 4.30:  ASPEC self-sustaining greenhouse 
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consumer whilst improving the taste, quality, speed and quantity of the food 

produced. This is achieved by using a hydroponic nutrient film technique (NFT) that 

has been optimised by introducing a cleverly designed Automated Solar-

Programmable Environmental Controller (ASPEC). 

 

 

 

 

 

Figure 4.31:  Conventional Hydroponic Nutrient Film Technique (NFT) 

4.4.2.2         ASPEC Functions and Features 

In manually controlled hydroponics, the following numbered tasks heavily rely on a 

human operator. The bulleted points below each number show how these processes 

have been automated and optimised resulting in more efficient and effective crop 

growth. 

1. Ensuring the water level of the tank is constantly topped up to a specified level 

 Float valve maintains water level at the maximum volume (25ltrs) 

 

2. Turning the air pump on when necessary to cool, mix and oxygenate the nutrient 

solution. 

 The air pump automatically switches on when the temperature of the nutrient 

solution exceeds 15
o
c or when nutrients have just been added. 

 

3. Opening greenhouse windows to reduce humidity or switching on a fan to cool the 

greenhouse air temperature down 

 Humidity is maintained between the recommended 80%-95% for clones, 60%-70% 

for Vegetative and 40% - 60% for flowering plants. The integrated dual fans also 

ensure the air temperature never exceeds 29
o
c. In very large greenhouses/poly-
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tunnels an external 230VAC more powerful fan can be easily connected to assist 

the integrated dual fans. 

 

4. Turning on a heater during the early cold months and at night to prevent frostbite . 

 An external 230VAC heater can be easily connected to the controller which 

ensures that temperatures never drop below 10
o
c  

5. Ensuring the NFT pump is always on and does not become blocked 

 The filtered NFT pump is activated at 6am until 9pm each day where it then 

switches on and off intermittently to reduce power consumption at night when 

there is less chance of the root zone drying out.  

 

6. Once a week a hand held Electrical Conductivity (EC) probe is used to test the 

nutrient solution concentration. 

 The permanently submerged EC probe constantly checks how concentrated the 

nutrient solution is every day so that the next feed can be reduced, cancelled or 

increased depending upon the uncertainties of the weather. 

 

7. If the nutrient concentration is too high, the human may drain some of the nutrient 

solution away to waste and then top up with fresh water to lower the concentration. 

 If it has been a cold and cloudy week then the probability that the nutrient solution 

is too concentrated is very high therefore the scheduled feed may be reduced or 

even prohibited. In the event of a dangerously high nutrient concentration, 25% of 

the nutrient solution is automatically flushed away resulting in fresh water mixing 

to achieve a lower safe concentration of nutrient solution. 

 

8. If the concentration is too low then more nutrients will be added little by little until 

the desired concentration is achieved for that specific type of plant. 

 If the weather has been a very hot and sunny one week then nutrient uptake is 

increased hence the probability of increasing the recommended feed concentration 

is high therefore the exact volume of delivered nutrients is calculated based upon 

the current EC value and the volume of water present in the nutrient reservoir. 

9. Approximately every month, the concentration of each individual micronutrient 

will become unbalanced so the entire contents of the tank should be flushed to 
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waste and fresh water and nutrients should replace the old unbalanced nutrients to 

maintain optimal growth conditions. 

 Each month after 9pm the NFT pump stops recirculating the nutrient solution while 

the flush pump empties the contents of the nutrient reservoir. Once empty, the flush 

pump stops while the nutrient reservoir refills with fresh water. Finally the new 

nutrients are added to the water, followed by 10 minutes of mixing by the air stone 

pump, then the NFT pump re-activates to achieve balanced nutrients; mixed to the 

optimal concentration. 

 

10. Once a week the potential of hydrogen (PH) within the nutrient solution is also 

tested with a hand held probe to check if the solution is too acidic or too alkaline. 

 The permanently submerged PH probe constantly checks how acidic/alkaline the 

nutrient solution is every day so that it can be automatically altered using PH UP 

and PH Down correctors. 

 

11. The human operator must painstakingly record a history of all environmental 

factors such as EC, PH, Air Temp, Tank Temp, Humidity, Date & Time, Dosage 

Volumes and battery levels in order to predict future discrepancies or potential 

problems. 

 The ASPEC system automatically logs every value recorded so that graphs can be 

automatically generated at the end of each month which highlights any problems 

and most importantly at what date and time they occurred. Each grow season, the 

results from these graphs can be used to further optimise the feeding schedule in 

attempt to reduce the amount of waste flushed away each month. 

 

12. The hand held probes used are difficult to read whilst partially submerging them 

in the nutrient solution and often NFT re-circulation must be stopped during 

probing to prevent nutrient solution from leaking away. 

 The developed TFT touch screen Human Machine Interface (HMI) provides an 

intuitive way of configuring the system on the fly whilst also displaying real-time 

information, manual functions and system alarms. The data on the HMI can also be 

accessed wirelessly using radio frequency communication to a PC or tablet. 
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Alternatively a mobile smart phone can also be connected to monitor serial 

communication and even be used to re-programme the control software if desired. 

 

 

 

 

 

 

 

 

Figure 4.32: ASPEC & Additional complementary hardware layout 

It is suggested that this type of system could also benefit from the use of AI 

algorithms such as GPFMORL taking uncertain weather conditions into account when 

selecting the correct dosage of nutrients to inject into the nutrient reservoir to ensure 

optimal crop growth. Over time, the collected data from the probes can be logged by 

the system therefore allowing the system to also manage other objectives such as 

minimise number of automatic flushes to reduce wasted nutrients and cost. 

Alternatively a similar type of system could also be used for other types of medical 

applications such as medication administration where instead of nutrients being 

injected into the NFT solution tank, the various types of liquid medications can be 

accurately delivered into a drinking vessel for a patient to self-medicate whist 

ensuring the correct dosage and medication is delivered at multiple times of day.  

 

    4.4.2.3         Hardware Design 

  

The hardware required to build the working prototype consists of the following 

components: 

 1 x Arduino Mega Atmel Micro Controller (Atmega2560 MCU) 
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 1 x 8ch Relay Board + 1x 1ch Relay Board 

 6 x 12vDC Liquid Pumps 

 12 x 1meter lengths of 11mm1/13mm PVC Pipe 

 1 x 12vDC to 5v Regulator 

 1 x Micro SD Card Data Logging Module 

 1 x Real Time Clock Module with battery backup 

 1 x 3v Air Pump with pipe and air stone 

 1 x EC Sensor Circuit and BNC connector Probe 

 1 x PH Sensor Circuit and BNC connector Probe 

 2 x Waterproof Temperature Sensors 

 2 x 12v 100mm Computer Fans with 4‖ducting connectors 

 1 x TFT Touch Screen + Standby Selector Switch 

 3 x 230v Solid State Relays for auxiliary equipment 

 

 4.4.2.4         Touchscreen Human Machine Interface (HMI) Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: ASPEC 

(Inside View) 
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  4.4.2.5            ASPEC State Representation 

 

 

 

In addition to the AI control, there also 

exists the possibility to manually 

control all aspects of the system. 

This allows the systems value functions 

(learned knowledge) to be initialised at 

some initial pre-determined values. 

Although these values can be a good 

guide to start learning from, they are 

not optimal and can then be optimised 

using the proposed GPFMORL 

methodology should the user select to 

utilise this intelligent feature of the 

system.  

Target EC = 1.8 

(Reward = +5) 

Target PH = 6 

(Reward = +3) 

Target Air Temp = 21 

(Reward = +8) 

Target Solution Temp = 16 

(Reward = +6) 
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4.4.2.6            Discussion 

The ASPEC controller appears to be a feasible solution for controlled environment 

agriculture (CEA) and improves upon existing technologies by automating the 

hydroponic process of crop growth. The proposed system design is unique in the fact 

that it has been designed to operate on very low voltages so can be powered by the 

sunlight entering your greenhouse.  Unlike current CEA methods that use synthetic 

light to extend the grow period, we propose to optimise conditions based upon 

whatever the weather is like on that particular day. The cost advantages of not having 

to use artificial lighting are extremely appealing whilst also benefiting the 

environment by allowing people to easily grow their own hydroponic food at home. 

 

4.4.3        Robotic Dementia Medication Administration System 

4.4.3.1     RDMAS Case Study Poster 

See next page P77 for poster illustration (Fig: 4.37 – RDMAS Research Prototype 

Poster) 
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    4.4.3.2         Hardware Design 

The hardware design for the proposed RDMAS is very similar in design to the 

ASPEC being that both applications facilitate the controlled dispensing of liquids 

either based upon an intelligent schedule or a closed loop feedback system. The 

RDMAS was integrated into a soft robotic arm capable of moving the dispensed 

medication vessel towards the patient‘s mouth when required. 

 

 

    4.4.3.3         RDMAS State Representation 

  

 

 

1 Day = 1 Simulation Trial 

1 week = 7 trials 

And each month its a new play so 4plays of 7 trials = 1 month of testing 

 

 

  4.4.3.4            Discussion 

It is hoped that the proposed RDMAS system shall be tested with real dementia 

patients in a controlled environment to fully test its diagnosis capabilities on human 

subjects. The qualified nurse shall initially set up the system to deliver medications at 

the prescribed dosage and time of day and ensure that validation has been assigned for 

risky medications which may not mix well with others. The goal of the system is to 

deliver multiple medications at the suggested times, then monitor if the medications 

have actually been administered. This is done so that the system can re-assign 

medication delivery times to more appropriate times of day if the medication was 

missed for whatever reason by analysing their daily memory reactions times. 
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 4.5 Empirical Evaluation methods for MORL 

MO-Puddleworld (Boyan and Moore, 1995) is a two-dimensional environment, which 

has previously been used as a single-objective RL bench-mark. The agent starts each 

episode at a random, non-goal state and has to move to the goal in the top-right corner 

of the world, while avoiding the puddles. The agent receives its current coordinates as 

input, and at each step selects between four actions (left, right, up or down) which 

move it by 0.05 in the de- sired direction. At each step a small amount of gaussian 

noise (standard deviation 0.01) is also added. The agent‘s 

position is bounded by the limits of the world (0,...,1). 

The reward structure for Puddle world is interesting, as it 

is effectively a form of scalarisation with fixed weights 

for the two objectives of reaching the goal quickly and 

avoiding the puddles. On each step on which the goal is 

not reached, the agent receives a penalty of −1. An 

additional penalty is applied when the agent is within a 

puddle, equal to 400 multiplied by the distance to the 

nearest edge of the puddle. To convert this problem to a multiobjective task, the two 

penalties are presented as separate elements of a reward vector (omitting the 

multiplication by 400, as it is no longer relevant).  

 

The Buridan‘s ass problem (Chen and Hu, 2010) 

with three objectives is shown in Figure 4.40 shows 

the donkey is in the centre square of the 3x3grid. 

There are food piles on the diagonally opposite 

squares. The food is visible only from the 

neighbouring squares in the eight directions. If the 

donkey moves away from the neighbouring square of 

a food piles, there is a certain probability Pstolen 0.9 

with which the food is stolen. Food regenerates once 

every N appear 10 time steps. If the donkey chooses to stay at a square with food, then 

it eats food. Otherwise, if the time since the donkey last ate food is more than max 9 

T, it will feel hungry. The donkey has to strike a compromise between minimizing the 

three different costs: hunger, food-stolen, and walking. The environment, actions and 

objectives are similar to the UAV scenario where food is replaced by the helipad goal. 
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4.6 PRELIMINARY RESULTS  

The chosen methodology for maintaining visual localisation is potential field 

methodology (PFM) which has been selected due to its intuitive design and real time 

response for reactive behaviour. The PFM is used to keep the UAV away from the 

boundaries and within the observable state space. The magnitude of the PF can be 

automatically adjusted depending upon the output of the fuzzy translational velocity 

controller. Implementation of this methodology allows a baseline of results to be 

obtained that show how well the UAV is able to maintain its position within the 

desired state. Storing a history of previous states visited allows a graph to be plotted 

showing the deviation from the helipad in number of states over time ie: when UAV is 

in the safe zone the deviation shall be 1 and when in any danger zone the deviation 

shall be 2. This graph not only shows how long the UAV took to reach the helipad, 

but also how long it maintained its position there before naturally drifting away to 

another state, from this data we can determine a performance measure which can be 

compared with higher level control algorithms.  

PFM is intended to create the action sets necessary for avoiding the situation where 

the UAV flies too far away from the helipad and looses visual localisation of the 

environment. It is therefore intended that the RL agent intelligently decides which 

actions to take when in the safe inner zone of the environment and the PFM controls 

the reactive movements in the danger zone to always keep the helipad in the UAV‘s 

field of view to allow learning to occur. Search for the Helipad (Moving towards the 

helipad using Forward Camera Improving upon the PFM, a similar reward scheme 

shall be implemented for a RL approach that is designed to keep the helipad‘s landing 

box in view by occupying the lower-middle state 23 in order to perceive the Landing 

box on the floor by flying low until it gets close enough to switch the camera to 

downwards perspective and then increase its altitude to acquire a better view of the 

helipad for localised landing or following. While the GPFRL algorithm is capable of 

dealing with discrete state and actions spaces, it reaches its full potential when using 

continuous states such as when dealing with the uncertainty of sensor data. For 

example the UAV must know how far it is away from the helipad on the floor in order 

to know when it should switch to the PFM, therefore the only available sensor is the 

camera which can ascertain the distance by calculating the area of any side of the 

landing box which contains the helipad marker. When detecting the area of the 
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landing box from a forward view we are actually detecting the walls of the box due to 

being situated at the correct plane for successful image processing. The area of the 

landing box may be noisy due to ambient light levels or light reflections therefore the 

Probabilistic Fuzzy Inference System should be able to compensate for this and 

decide whether the UAV is either near or far from the landing box. Furthermore our 

hypothesis is that increasing the action set and state spaces to a 10x10 grid with 8 

possible actions would result in a much more continuous movement of the UAV but 

would inherently increase computational time due to doubling the action agents from 

4 to 8 and quadrupling the number of possible states encountered from 25 to 100. 

 

Helipad Deviation Comparison Graph of Manual vs Automatic Control

 

 

Helipad Deviation Y-Axis: 0 = Helipad, 1 = Safe Zone, 2 = Danger Zone, 3 = Lost 

Step Numbers X-Axis = Each time the UAV transitions/moves into a new state 

Asomptotes (Flat Ridges) = Where the UAV moved states but not zones. Caused by 

human error (Teleoperation) or aerodynamic affects (PFM) that cannot be predicted 

due to no automatic learning occurring. Using GPFMORL we hypothesise that these 

―Flat Ridges‖ should reduce over time as the agents learn better policies to execute in 

similar states. 
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 4.7 Discussion 

From the graph in figure 4.41 you can see the red line which represents teleoperated 

control by a human operator to attempt to fly above the helipad in preparation for 

landing. In this test the quadcopter started in the safe zone (1) then quickly became 

lost many times by flying outside the perceivable state space. After many transitions 

between the safe zone and the danger zone, the quadcopter finally finds the helipad 

(0) for a brief second before flying back into the safe zone. This is considered to be 

the worst performing solution to the problem mainly due to delayed reaction times 

from the human operator. The green line on the graph represents Assistive 

teleoperation which uses the PFM to try and prevent the quadcopter losing visual 

localisation and becoming lost. This improved method only allows the quadcopter to 

get lost 3 times and the helipad goal is found many more times than teleoperation 

alone at 10 times. Finally the GPFMORL approach gets lost at the start of the trial a 

few times just as much as assisted teleoperation, but then after becoming lost twice, it 

learns to never get lost again and reaches the goal just one time fewer than the 

assistive teleoperated control. 

 

 4.8 Conclusion 

The process of localisation is no simple task for a robot and is a prerequisite for most 

navigation tasks. It is possible to achieve localisation even when there may only be 

one landmark visible in the captured image providing the hardware and software 

capabilities allow this. Range finders and gyroscopes alone are not enough to solve 

this complicated task due to their accuracy limitations therefore other sensors such as 

a camera must be used. Localisation is necessary for correcting the robots inaccurate 

positioning incurred through drift. The camera equipped on the quadcopter, whilst the 

information is rich it is still limited mainly due to its field of view and the absence of 

other on-board sensors. The quadcopter is incapable of carrying any other relatively 

heavy sensors however a more suitable wide-angle lens could be retro fitted the 

existing lens. Although the use of more sophisticated sensors would improve the 

performance of the system the added weight would require a much more expensive 

and powerfull hexcopter or octocopter. Using such a large and expensive quadcopter 

would go against the expectations of this thesis which is to alow cheap, non intrusive 

drones to be used in everyday applications. 
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The reactive paradigm of potential fields can be interpreted for both positional 

corrections to stabilise over a central (H) goal or for vector summation to achieve both 

the direction and magnitude of the altitude potential fields used for the fuzzy 

translational velocity controller. Potential fields provide a comprehendible 

visualisation of an abstract theory allowing the development stage to be successfully 

completed methodically. The Helipad deviation graphs undoubtedly show that 

although the PFM is suitable for preventing out of bounds moves, sometimes its 

actions are not optimal when there are stochastic environmental factors such as 

ground affect and unpredictable cross winds. While the repulsive force from the 

boundaries is sufficient to allow the RL to observe its current state by ensuring visual 

localisation, a simple attractive force around the helipad would often lead to 

overshooting or even never coming close to the helipad due to inconsistent winds. 

This is one of the reasons for combining these methodologies in conjunction with the 

GPFMORL approach to multi objective optimisation for sequential decision making 

processes. 
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5.1 Introduction  

This chapter considers a number of example algorithms related to the proposed multi 

objective reinforcement learning approach. In section two, I demonstrate how the 

random walk grid world is used to evaluate the convergence of the multi objective 

learning algorithms while comparing its performance with two classic temporal 

difference algorithms Q-Learning and SARSA and their multi objective extensions 

referred to as MOQ and MOSARSA. In addition, a third objective of hills/obstacles is 

added to a highly stochastic version of the grid world called Windy Hill World. The 

purpose of this is to evaluate the influence of environment stochasticity on the 

performance of our proposed GPFMORL algorithm in hope that it shall be robust 

against external aerodynamic forces in real world testing using a quadcopter. In 

section 3 we test our optimised GPFMORL algorithm on a real AR-Drone 2.0 

quadcopter and compare classical approaches with artificially intelligent approaches 

for real world applications such as autonomous landing and search and rescue. 

Quadcopter modifications and related experimental results are shown along with 

results produced from the multi modal fuzzy altitude controller verifying its 

capabilities in the presence of uncertainty. Section four describes two similar 

prototypes that have been created for different real world applications where the 

proposed algorithm could be used to improve the effectiveness of each system beyond 

the capabilities of any conventional human operator. Finally section five summarises 

the contents of this chapter of the thesis. 

 

5.2 Decision Making Simulated Experiments 

5.2.1 Random Walk Problem (1
st
 Objective Helipad) 

The random walk problem is a mathematical formulisation of a trajectory which 

consists of taking random successive steps. The random walk analysis provides results 

that have been applied to computer science, physics, ecology, psychology, and several 

other fields as a fundamental model for random processes in time. 

Experiments  
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The purpose of this experiment is to provide a mean by which to evaluate the update 

rule, the stability and the convergence of our proposed GPFMORL algorithm, and 

compare it with two other multi objective extensions of classical reinforcement 

learning algorithms, MOSARSA and MOQ-Learning.  Figure 5.1 Shows an example 

of a 10x10 grid world testing environment in which the learning agents act.  

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

 

In figure 5.1 the learning agents start from a non-boundary state ―12‖ at the upper left 

corner and the task of the learning agents is to find the shortest possible path to the 

goal state ―46‖ (helipad) in the shortest possible time. The goal described above is 

often referred to as the first Helipad Goal objective, or Objective 1.  In the above 

example there are many possible solutions to this first objective, two of them are 

marked with a red and blue line in Fig5.1. In either solution, the shortest possible 

number of steps taken to reach the goal is 7 steps. 

5.2.2 Obstacle Avoidance (2
nd

 Objective Boundary) 

In order to maintain visual localisation allowing the agent to identify the current 

perceived state, it is necessary that the agent does not deviate too far away from the 

helipad visual marker. The previously described second objective of not becoming 

lost off the edges of the grid world environment can be implemented through a 

scalarisation approach to compute boundary punishments (-1) independently of 

helipad rewards (+1) using a vector of rewards. The secondary objective of staying 

within the confines of the grid world environment is often referred to as the second 

North 

n 

South 

West East m 
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boundary objective and is complementary to the first objective providing the helipad 

goal is not situated on a boundary state. The location of the boundary punishments is 

emphasised in Figure 5.1 with the boundary states underlined and the start and goal 

stated in bold. 

5.2.3 3D Hill Traversal (3rd Objective Hills) 

To further test the multi objective capabilities of the proposed GPFMORL algorithm, 

a third and potentially conflicting objective is considered during the learning process. 

The third objective, also referred to as the Hill objective, allows three dimensional 

obstacles such as buildings or hills to be either avoided or traversed depending upon 

the cost of flying over or around the hill. In the below example there is a total of five 

hills, each with their own punishment value ranging from -0.1 to -0.8. For example 

the first hill in state 43 may be -0.1, the second hill in state 53 may be -0.2, the third 

hill occupying state 34 may be -0.4, the fourth  hill occupying state 35 may be -0.6 

and the final hill occupying state 36 may be -0.8. No hill punishment value should be 

equal to or exceed the boundary punishments due to due to avoiding or traversing the 

hills always being preferred compared to exiting the grid world by entering a 

boundary state described by the secondary objective 

Blue Policy – Minimum of seven steps to                                      

goal crossing -0.1 Small Hill 

Red Policy – Minimum of seven steps to 

goal crossing -0.8 Tall Hill 

Green Policy – Minimum of nine steps to 

goal crossing No Hills 

Figure 5.2: Multi Objective Solutions 

The blue line in Figure 5.2 represents the optimal policy in terms of the shortest 

number of steps to reach the goal and only having to traverse a small hill. The red line 

shows the agent traversing a very large hill which consumes more energy so in fact, a 

better solution would be the green line going around the hill at the cost of taking more 

steps to reach the goal. 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 
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5.2.4 Grid World Exploration 

In the following experiments, the agent learns which direction to select for every state 

in order to reach the goal in as few steps as possible whilst satisfying several other 

objectives. To accomplish this task the learning agent explores each option for every 

state, evaluates the long term outcome and updates the value functions of every state, 

so that the next time that state is visited, the agent can select the action with the 

highest probability of success. ie: reaching the goal in as few steps as possible whilst 

minimising the number of boundaries and tall hills encountered. 

Inevitably, the probabilities of success for each action taken in every state will diverge 

from their initial values towards their real values at a rate that is directly proportional 

to the number of times that the state is visited. It becomes clear that in order to 

generate accurate probabilities for all actions in every state, all states must be visited 

as many times as possible. Obviously this poses a problem in terms of computational 

time for large state spaces due to the explorative behaviour attempting every possible 

route. As a solution, the explorative behaviour could be significantly reduced making 

the agent ―greedy‖ however then the agent is less likely to find new more optimal 

solutions due to many states being not being visited therefore their probabilities of 

success are unknown. 

In most reinforcement learning implementation, there is an issue concerning the trade-

off between ―exploration‖ and ―exploitation‖ (Sutton and Barto, 1998). It is the 

balance between trusting that the information obtained so far is sufficient to make the 

right decision (exploitation) and trying to get more information so that better 

decisions can be made (exploration). For example, when a robot faces an unknown 

environment, it has to first explore the environment to acquire some knowledge about 

it. The experience acquired must also be used (exploited) for action selection to 

maximize the rewards (Kantardzie, 2002). Choosing an action merely considering the 

best actions will lead to a exploiting behaviour. In order to create a balance, Barto et 

al (1983) suggested the addition of a noise signal with mean zero and a Gaussian 

distribution. The use of this signal will force the system into an explorative behaviour 

where different than optimum actions are selected for all states; thus a more accurate 

input-output mapping is created at the cost of learning speed. In order to maximize  
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both, accuracy and learning speed an enhanced noise signal is proposed. This new 

signal is generated by a stochastic noise generator defined in (5.1). 

    (    )     (5.1) 

 

 

Where N is a random number generator function with a Gaussian distribution, mean 

zero and a standard deviation   which is defined as 

   
 

   ,    ( )-    (5.2) 

The stochastic noise generator uses the prediction of eventual reinforcement,   ( ) 

shown in (5.2), as a damping factor in order to compute a new standard deviation. The 

result is a noise signal which is more influential at the beginning of the runs, boosting 

exploration, but quickly becomes less influential as the agent learns, leaving the 

system with its default exploitation behaviour. Considering there is only one learning 

agent for every action and every learning agent assigns a probability value to every 

action according to Equation 5.3. 

    
            (5.3) 

 

Where   was defined in Hinojosa (2011). If only one action exists with a probability 

value equal to max     
  and this probability value is greater than or equal to the 

predefined epsilon threshold value of  |  *   +, then the action will be selected. 

Alternatively an action     is selected at random. The previously mentioned epsilon 

value   can be defined within the reinforcement learning algorithms parameters in 

order to bias the behaviour towards exploratory or exploitative tendencies. 
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5.2.5 Multi Objective Deterministic Environment 

5.2.5.1 System Description 

This simulation uses a 10x10 square grid to illustrate the value functions for a simple 

finite MDP. Each of 100 cells within the grid represents a different state of the 

environment in which the agent can move in any one of the four possible directions:  

North, South, East or West. These actions deterministically cause the agent to move 

one cell in the respective direction within the grid world environment with a 

probability of 1. 

All episodes start from state 12 which is at the upper left corner of the grid world 

adjacent to the North and West boundaries with coordinates S(2,2). The agent 

proceeds North, South, East or West by one state in every step with equal probability. 

The primary objective is to find an optimal policy for moving from the starting S(2,2) 

state to the goal state G(mg,ng) with minimised cost i.e. minimum number of moving 

steps. The secondary objective avoids traveling towards the outer boundary states in 

order to minimise the risk of becoming lost outside of the grid world environment i.e.: 

minimum number of boundary steps. The third and final objective is to either 

circumnavigate an obstacle or traverse over the top of the obstacle depending upon its 

size and energy cost involved i.e.: minimum number of High Hill steps. The overall 

objective is to find an optimal policy which satisfies all three objectives by using a 

scalarisation approach described in section 4.2. 

For this series of simulation experiments, the initial starting location of the agent is set 

to S(2,2) or state 12 and the goal location is fixed at G(5,6) or state 46. The state 

number can be derived according to equation 5.4 where nmax is the total number of 

grid world rows and m and n are the vertical and horizontal axis positions of the grid. 

 

      (   )        (5.4) 

 

The rewards and punishments associated to different states remain constant for each 

algorithm and for all experiments as shown in table 5.1 
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TABLE 5.1 REWARD AND PUNISHMENT SCHEME FOR THREE OBJECTIVES IN THE RANDOM 
WALK 

Reward/Punishm
ent   

GPFMO
RL   

MOSAR
SA   

MOQ-
Learni
ng 

Goal State 46 
 

1 
 

1 
 

1 

Boundaries 
 

-1 
 

-1 
 

-1 

Hill State 34 
 

-0.4 
 

-0.4 
 

-0.4 

Hill State 35 
 

-0.6 
 

-0.6 
 

-0.6 

Hill State 36 
 

-0.8 
 

-0.8 
 

-0.8 

Hill State 43 
 

-0.1 
 

-0.1 
 

-0.1 

Hill State 53   -0.2   -0.2   -0.2 

 

Any over boundary actions result in a negative reward or punishment of -1 as the 

table shows however, the location of the agent will not change in this circumstance to 

allow the learning process to continue using observable states. Any other action that 

has not been described results in a reward of zero ―0‖. The MORL parameters and 

objective weightings for each algorithm are shown in table 5.2 

TABLE 5.2 MORL PARAMETERS AND OBJECTIVE WEIGHTINGS 

Parameter/Wei
ghts   

GPFMO
RL   

MOSAR
SA   

MOQ-
Learnin
g 

α 
 

0.003 
 

0.4 
 

0.4 

β 
 

0.005 
 

- 
 

- 

γ 
 

0.95 
 

0.95 
 

0.95 

ε 
 

0.01 
 

0.01 
 

0.01 

Objective 1 
 

0.4 
 

0.4 
 

0.4 

Objective 2 
 

0.3 
 

0.3 
 

0.3 

Objective 2   0.3   0.3   0.3 

 

For this experiment the discount factor γ is set to 0.95 and the action selection strategy 

is ε-greedy which is determined by setting the epsilon value to ε= 0.01.  The 

parameters shown above in table 5.2 are the values used in this series of simulations 

and the corresponding code developed and evaluated  using MATLAB 2014® can be 

found in Appendix A. 

Chapter 5: Experiments  



                                       

Page 91 of 233 
 

 

 

5.2.5.2 Fixed Start State 

For this test, the simulation was set to execute 40 trials of starting from the start state 

S(2,2) and attempting to reach the Goal G(5,6) whilst satisfying the other objectives 

as shown in figure 5.3.  These results are then averaged over a total of 100 plays. 

Figure 5.4 Shows the average number of steps the agent takes to reach the goal state 

for the 1
st
 objective, the average number of boundary steps taken for the 2

nd
 objective 

and the average number of steps traversing over a hill for the final 3
rd

 objective.  

 

 

 

 

 

 

Figure 5.4: Static Starting position MOQ learning rates 40trials & 100 Plays (5.470s) 
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Figure 5.3: MORL Punishment Locations 
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The graph shown above in figure 5.4 illustrates that in the very first trial it took 

approximately 55 steps to reach the helipad goal, 13 of those steps were boundary 

crossing steps and 4 of them were hill traversal steps. This is clearly not the optimal 

policy at the beginning of the trials but as the learning process continues, by the 10
th

 

trial, a more optimal solution has been discovered which satisfies all the objectives as 

described by the reward structure in figure 5.3. 

 

 

 

 

 

Figure 5.5: Static Starting position MOSARSA learning rates 40trials 100 Plays  

 

 

 

 

 

Figure 5.6: Static Starting position GPFMORL learning rates 40trials 100 Plays 

It can be seen that the GPFMORL algorithm converged the optimal policy much 

faster in only 4 trials compared with MOQ and MOSARSA that took approximately 

15 trials. The GPFMORL algorithm also took only 37 steps in the very first trial  
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compared with 55 and 50 for MOQ and MOSARSA respectively. Finally the 

GPFMMORL algorithm also demonstrated more stability than the other algorithms 

showing only small deviations from the optimal policy once found.  

 

 

 

 

 

 

 

 

Figure 5.6.1: Static Starting position 1
st
 Objective (Helipad) Comparison 

 

 

 

 

 

 

 

 

 

Figure 5.6.2: Static Starting position 2
nd

 Objective (Boundaries) Comparison 

 

 

 

 

 

 

 

 

 

Figure 5.6.3: Static Starting position 3
rd

 Objective (Hills) Comparison 
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Figure 5.7: Fixed Start State Utility Value Distributions for a) MOQ-Learning and b) 

MOSARSA 

 

a) North      b) East 

 

 

 

 

     c) South      d) West 

 

 

 

Fig 5.8: Fixed start state GPFMORL probability distributions a)North, b)East, 

c)South, d)West 

 

a)  MOQ-Learning b) MOSARSA 
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Figure 5 .7 Illustrates in a) The scalarised utility value distribution of the MOQ-

Learning algorithm and b) The scalarised utility value distribution of the MOSARSA 

algorithm generated after 40 trials averaged over 100 plays of the random walk 

experiment starting from a static location moving towards a static goal. 

Fig 5.8 shows the GPFMORL algorithms scalarised probabilities of success after 40 

trials averaged over 100 plays when choosing any of the four available actions 

a)North, b)East, c)South and d)West, starting from a static location moving towards a 

static goal location. 

MOQ-Learning and MOSARSA‘s value assignments for each of the 100 states are 

clearly visualised in figure 5.7 Where state ―1‖ is situated at the upper left of the 

lower grid axis. The tallest point on each of the surface graphs is where the goal 

reward of ―+1‖ is located at state ―46‖ or (m=5 & n=6). All other hills indicate the 

relative value of each corresponding state in relation with the value assigned to the 

goal state. In this case the learning agent follows the path with the highest steep due to 

following an ε-greedy policy tuned for maximum exploitation. It can be observed that 

the flat surrounding area near the opposite side of the goal is mainly unchanged from 

its initialised values, this is due to following an ε-greedy policy and not completely 

exploring every state within the grid world environment as a result of primarily 

exploiting its successful behaviour. The other reason for unchanged state values is 

because that particular state may not have led to a state with an assigned value. 

Should the ε-greedy value be increased to promote a more explorative behaviour then 

it is much more likely that every state is visited and a value assigned for each state, 

however this increases computational requirements which can significantly reduce the 

learning time and produce less stable convergence results with a much higher standard 

deviation in all cases.  

Figure 5.8 shows the surface areas generated for each of the four learning agents. In 

each sub-graph there are 100 possible states each with their own associated 

probability for moving either North, South, East or West. In these graphs it can be 

noticed that there are a series of hills and dips in contrast with MOQ-Learning and 

SARSA where only hills are present.  For the GPFMORL algorithms, the dips can be 

understood as representing a low probability of taking that choice of action when in 

that particular state. The addition of low probabilities in the GPFMORL algorithm as 
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well as high probabilities is likely to contribute to a much richer source of options 

available to the decision making process therefore improving the learning 

performance. It can also be observed in Fig 5.8 showing the generated probability 

values for each state only deviate slightly from their initial probability of 0.5, this is 

due to following an ε-greedy policy therefore the learning agent only requires a small 

difference in each of the directional probabilities to determine the appropriate action 

to take. Altering the ε-greedy parameter can force the agent to randomly select actions 

with small probability values therefore resulting in a more exploratory behaviour 

where more of the state space is explored generating higher variations in probability 

values. 

5.2.5.3 Random Start State 

For this second series of experiments within the grid world we shall randomly 

initialise the starting position of the agent to any of the 100 possible states. The 

number of trials has been extended to 100 and these have been averaged over 500 

plays in order to compare the original single objective GPFRL‘s performance with the 

newly proposed GPFMORL approach. Figure 5.9 shows the average number of steps 

for each of the three objectives for MOQ-Learning. Figure 5.10 shows the average 

number of steps for each of the three objectives for MOSARSA. Figure5.11 shows the 

average number of steps for each of the three objectives for the newly proposed 

GPFMORL algorithm. In figure 5.12 we show the utility value distributions for the 

MOQ-Learning algorithm a), and the MOSARSA algorithm b). Additionally figure 

5.13 shows the probability distributions for each of the 4 agents responsible for 

moving either North, South, East or West. 
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Figure 5.9: Random Starting Location MOQ learning rates 100trials & 500 Plays  
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Figure 5.10: Random Start Location MOSARSA learning rates 100trials & 500 Plays  

Figure 5.11: Random Start Location GPFMORL learning rates 100trials & 500 Plays  
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Figure 5.11.1: Random Starting position 1st Objective (Helipad) Comparison 

 

 

 

 

 

Figure 5.11.2: Random Starting position 2nd Objective (Boundaries) Comparison 

 

 

 

 

 

Figure 5.11.3: Random Starting position 3rd Objective (Hills) Comparison 
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Figure 5.12: Random Start State Utility Value Distributions for a) MOQ and b) 

MOSARSA 

a) North      b) East 

 

 

 

 

c)South      d)West 

 

 

 

 

Fig 5.13: Random start state GPFMORL probability distributions a)North, b)East, c)South, 

d)West 
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Due to the random starting locations, more of the states are visited therefore more 

knowledge is acquired about the environment which improves its ability to find 

alternate optimal policies by behaving in a more explorative way. 

5.2.5.4 Discussion 

The fixed starting location experiment is an example of a completely deterministic 

environment without stochasticity present in either the inputs or outputs ie: The 

stochastic signal generator is set to ε = 0.001). This results in the agent being certain 

that the selected action taken will always result in moving one step to the adjacent 

state in that corresponding direction. The fixed start state ensures that the relative 

position between the starting position and goal state remain the same for every trial. It 

can be observed that the proposed GPFMORL algorithm exhibits a faster convergence 

towards the optimal policy whilst MOQ and MOSARSA also learned the optimal 

policy but in a slightly slower time and was less stable than the GPFMORL algorithm. 

This is likely to be due to the temporal difference error updating the value functions in 

every time step where as MOQ and MOSARA must wait until the goal is reached 

before the value functions can then be updated.  

Another important observation is that the optimal value for the learning rate α of 

GPFMORL is comparatively smaller at (0.003) compared to MOQ and MOSARA 

which is much higher at (0.4).  The learning rate of GPFMORL can be much smaller 

due to only one value function update being necessary for the learning agent to 

differentiate between states and take an appropriate action for every state, therefore 

the learning agents has a rough idea of the optimal policy even after the very first 

trial. In comparison with MOQ and MOSARA, these algorithms do not have any idea 

of the optimal policy until a state has been visited where the value function has been 

updated previously. Regarding MOQ and MOSARSA, it becomes clear that the 

addition of any stochastic signal will confuse the learning process in the first few 

trials as any information it has learned will be modified randomly forcing the learner 

to revisit the same state several times in order to differentiate the decisions to make in 

every state. 
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5.2.6 Multi Objective Stochastic Environment 

5.2.6.1 System Description 

This section of the results presents a different version of the grid world environment 

called the Windy Hill World in which stochasticity has been added to in order to 

evaluate the influence on the performance of our proposed GPFMORL algorithm and 

compare it to that of MOQ and SARSA algorithms. In this experiment, there are two 

types of stochasticity to be introduced to verify the advantages of the GPFMORL in a 

broader setting which include: 

1. Policy Stochasticity – Altering the policy from e-greedy to a more explorative 

behaviour by changing the epsilon value from ε = 0.01 to ε = 0.2 

2. Environment Stochasticity – Generating varied strength of upwards wind gust 

depending upon geographical location with a probability of 0.2 

Under these stochastic conditions, uncertainties in the input states become inherent 

which allows us to evaluate the uncertainty handling capabilities of our proposed 

method. The windy hill world is therefore a more realistic simulation of what 

decisions may need to be made in the event of aerodynamic forces or windy weather 

conditions forecasted by the met office.  

 

     

 

 

 

 

In the same way as previous experiments, the agent must move from the starting 

location (S:12) towards the goal location (G:46)  whilst avoiding the boundaries of the 

grid world and choosing to either go around or traverse the hills/buildings. However 
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in the windy hill world there is a crosswind that travels upwards and its strength 

varies from column to column. Hypothetically, if this entire environment was also on 

a large hill that was steeper in the middle and lower at the sides then you could expect 

there to be a much stronger wind in the middle of the hill at its highest altitude. To 

really push the limits of the algorithm, the goal location (G:46) is in a column where 

the maximum wind strength of 2 is blowing. The values of each columns wind 

strength along with the direction of the wind is shown in Fig 5.14. The wind strength 

values are the number of cells that the agent will shift north when the wind blows with 

a probability of 0.2.  The red arrow in Fig 5.14 shows an example of the agent trying 

to move one cell to the right (east) from cell 12 towards cell 13 however due to the 

moderate northerly stochastic crosswind, its final position actually ends up being 3, 

one step north of where the agent intended on being located. 

 

5.2.6.2 Multi Objective Stochastic Windy Hill World  

Table 5.3 shows the parameter values for all three learning algorithms with added 

stochasticity. 

 TABLE 5.3 WINDY MORL PARAMETERS AND OBJECTIVE WEIGHTINGS 

Param/Weights        GPFMORL      MOSARSA   MOQ-Learning 

α 
 

0.003 
 

0.4 
 

0.4 

β 
 

0.005 
 

- 
 

- 

γ 
 

0.95 
 

0.95 
 

0.95 

ε 
 

0.2 
 

0.2 
 

0.2 

Objective 1 
 

0.4 
 

0.4 
 

0.4 

Objective 2 
 

0.3 
 

0.3 
 

0.3 

Objective 2   0.3   0.3   0.3 

 

For this experiment, the simulation was set to perform 40 trials which are averaged 

over 100 plays. Figure 5.15 shows the average number of steps taken for all 3 

objectives when starting from a static start position moving towards a static goal with 

the addition of stochasticity. 

 

 

Chapter 5: Experiments  

Chapter 5: Experiments  



                                       

Page 104 of 233 
 

 

 

 

 

 

 

 

 

 

Figure 5.15: Static Start Location Windy MOQ learning rates 40 trials & 100 Plays 

 

It can be observed that the single objective Q-learning algorithm fails to converge 

under these highly stochastic conditions however the multi objective version of the 

algorithm copes much better and has a low standard deviation from the optimal policy 

once reached. The minimum number of steps taken to reach the goal is more than the 

optimal policy without the presence of the stochastic winds. However, the stochastic 

winds inevitably cause the agent to steer off course therefore having to take extra 

steps to compensate and reach the goal. The number of boundary steps taken is also 

increased due to the stochastic winds often forcing the agent into the northern 

boundary. The number of hill encounters appears to also have increased to 

approximately 3 also due to the random gusts of wind forcing the agent into a more 

explorative behaviour rather than exploitative with a probability of 0.2.  
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Figure 5.16: Windy Static Start Location MOSARSA learning rates 40 trials & 100 

Plays 
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Figure 5.17: Windy Static Start State Utility Value Distributions for a) MOQ and b) 

MOSARSA 

Figure 5.16 shows the learning performance of MOSARSA by storing the average 

number of steps taken for all 3 objectives when starting from a static start position 

moving towards a static goal with the addition of stochasticity. Fig 5.17 a) and b) 

show the utility value distributions for MOQ and MOSARSA algorithms respectively.  

 

 

 

 

 

 

 

 

Figure 5.18: Static Start Location Windy GPFMORL learning rates 40 trials & 100 

Plays 
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Figure 5.18.1: Windy Static Starting position 1st Objective (Helipad ) Comparison 

 

 

 

 

 

Figure 5.18.2: Windy Static Starting position 2nd Objective (Boundaries) Comparison 

 

 

 

 

 

 

Figure 5.18.3: Windy Static Starting position 3rd Objective (Hills) Comparison 
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   a)North         b)East 

 

 

 

 

 

   c)South        d)West 

 

 

 

Figure 5.19: Windy Static Start GPFMORL probability distributions a)North, b)East, 

c)South, d)West 

It can be observed that ―why does MOQ have less flat surrounding states which 

contain more information than MOSARSA, could it just be chance, the wind has 

helped in this particular run of the experiment. 

In figure 5.17 we show the utility value distributions for the MOQ-Learning algorithm 

a), and the MOSARSA algorithm b). In contrast  fig 5.19 shows the probability 

distributions for each of the 4 agents responsible for moving either North, South, East 

or West. 

It can be seen that the GPFMORL algorithm clearly converges to an optimum faster 

than both the MOQ and MOSARSA algorithms taking only half as many trials to find 

the optimum policy and with considerably fewer steps in the first trial. The 

GPFMORL algorithm demonstrates that it is capable of handling the added 

stochasticity whilst still discovering the optimal policy and exploiting the learned 

information from then on. 
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5.2.6.3 Discussion 

With the added stochasticity, both MOQ and MOSARSA did find a suitable path to 

the goal however both failed in all trials to learn the optimal solution. MOQ was 2 

steps away from determining the optimal solution whereas MOSARSA was even 

worse taking 4 steps more than the optimal solution for reaching the goal from a static 

starting point. These non-optimal solutions found for both these algorithms also took 

considerably longer to find with almost twice the number of trials than the 

GPFMORL algorithm took and which actually found the optimal solution, this 

proving the uncertainty robustness of the proposed algorithm.  

5.2.7 Prospect Theory Results 

Notice that with prospect theory, number of steps taken to reach the goal in the very 

first trial is only 15 steps. The agent then quickly begins to improve performance until 

it experiences a boundary around trial 5. This confuses the system and forces the 

agent to explore a different path without encountering the boundary. By trial 15, the 

algorithm converges to an optimal goal step count of 7 whilst traversing two 

hills/obstacles without ever coming into contact with the boundary. Due to this being 

a deterministic experiment, when the agent decides upon the optimal policy, there are 

no factors altering this optimal policy therefore it keeps to this policy thereafter 

without any standard deviation. 
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Figure 5.22: Stochastic Experiment with Prospect Theory (40 trials of 3 plays) 
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Figure 5.21: Deterministic GPFMORL probability distributions a)North, b)East, 

c)South, d)West 
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Figure 5.22.1: Deterministic Vs Stochastic 1st Objective (Helipad) Comparison 

 

 

 

 

 

 

Figure 5.22.2: Deterministic Vs Stochastic 2nd Objective (Boundaries) Comparison 

 

 

 

 

 

 

Figure 5.22.3: Deterministic Vs Stochastic 3rd Objective (Hills) Comparison 
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Experimentation with the stochastic windy hill world environment presents some 

interesting results.  Similar to the deterministic experiment,  the algorithm takes around 

30 steps to reach the goal and then quickly learns a more optimal route. The optimal 

policy in this case was actualy reached by the 9
th

 trial which is slightly better than the 

deterministic case possibly due to the exploration characteristics of the stochastic 

environment forcing the agent to explore policies which may never have been 

attempted. Another interesting result is the fact that although this algorithm still 

converges to the optimal policy faster, it never remains at the optimal policy and shows 

some standard deviation. This can be attributed to the stochastic nature of the testing 

environment which causes the actual path to deviate from the optimal policy with a 

probability of 0.2. Therefore at around trial 20, you can see the effect of this stochastic 

crosswind on all 3 objectives, such that at this point in time, a cross wind blew the 

agent upwards to a state where the boundary was encountered.  Similary at trial 25, the 

stochastic cross wind blew the agent twice in concession which resulted in twice as 

many boundary steps, and therefore twice as many steps required to reach the goal 

however the number of hills/obstacles remains the same. 

 

Chapter 5: Experiments  

a) North 

c) South d) West 

Figure 5.23: Stochastic GPFMORL probability distributions a)North, b)East, c)South, 
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5.2.8 Conclusions 

The GPFMORL algorithm is conceptually simple and relies on well-established 

theory‘s, such as Bayesian statistics. A clear difference between the proposed 

GPFMORL algorithm and more common algorithms such as MOQ and MOSARA, is 

the use of a probabilistic model for the transition dynamics which mimics two 

important features of biological learners. 

1. The ability to generalise 

2. The ability to explicitly incorporate uncertainty into the decision making 

process 

These model uncertainties have to be taken into account during long-term planning to 

reduce model bias. Beyond specifying a reasonable cost function, GPFMORL does 

not require expert knowledge to learn the task. This characteristic is ideal because it 

would be extremely difficult if not impossible to model all the aerodynamic forces 

that the UAV would encounter, even with a good model, this could not be relied upon 

due to the random nature of the stochastic elements. 

In the presented experiments, the GPFMORL algorithm was tested in a grid world 

environment with 3 objectives under different conditions and the results compared to 

those of MOQ and MOSARSA. First, a standard deterministic version of the grid 

world was used to test MOQ, MOSARSA and GPFMORL algorithms in a random 

walk using both fixed and then random starting locations. The purpose of these 

experiments was to test the ability of the algorithms to handle randomness an also to 

test the exploration/exploitation characteristics.  The results can be observed in figure 

5.6 and Figure 5.11 for the fixed starting location and random starting location 

respectively.  The obtained results were conclusive; the GPFMORL algorithm 

outperformed the classic MOQ and MOSARSA algorithms in terms of learning rate. 

The GPFMORL algorithm converged to the optimum solution in a shorter time and 

showed good stability in both experiments.  In the random starting location 

experiment the results were even more remarkable. The GPFMORL algorithm found 

its way to the goal in the very first trial in fewer than 27 steps whilst MOQ and 
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MOSARSA took more than 46 steps to reach the goal on their very first attempt with 

very unstable initial choices. 

In the second set of experiments, the GPFMORL was tested in a highly stochastic 

version of the grid world, the windy hill grid world. In this case, ―wind‖ was added to 

the standard grid world, in order to add environment stochasticity. Also the greedy 

term was increased from 0.01 (greedy behaviour) to 0.2 (more exploration) in order to 

add randomness. Under these conditions both MOSARSA and MOQ-learning failed 

to converge to an optimal policy. Again the GPFRL showed a strong uncertainty 

resistance, by converging to the optimal policy in 19 trials and showed a very stable 

behaviour thereafter. 

In all the experiments described, an important factor that contributed to the fast 

learning speed is the use of a richer reward scheme, where an internal reinforcement 

signal is provided. Whilst in MOSARA and MOQ-Learning the agent receives a 

positive reward every time the agent reaches the goal state, in the GPFRL method, the 

agent receives a reward in every state. This reward is calculated by shaping the 

external reward (given at the goal state) by using temporal difference as described in 

(3.3). This internal reinforcement or reward signal represents an estimation of the 

reward for the current state as a difference between the prediction of eventual 

reinforcement of the current state and that of the previous state, as it was first 

described by Barto et al (1983). 

Optimal design of reward functions has been studied before (Laud and DeJong, 2003, 

Mataric, 1994) where different experiments showed faster learning rates. In 1998, 

Dorigo and Colombetti (1998), suggested the use of reward shaping which import 

behaviourist concepts and methodology into RL, and discussed a model for automatic 

training of a RL agent. In the scheme they consider, the automatic trainer has an 

abstracted specification of the task, and it automatically rewards the agent whenever 

its behaviour is a better approximation of the desired behaviour. However, it has been 

suggested by Marthi (2007) that this notion of shaping goes well beyond of using a 

rich reward scheme. 

It appears that by adding more objectives the problem is actually solved much faster 

due to both complementary and conflicting objectives both being satisfied as one 

whole problem. 
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It is clear that a well-designed reward function may facilitate learning, promote faster 

convergence, and prevent aimless wandering. Also, as pointed out by Laud and 

DeJong (2003), if the optimal value can be provided as a reward, the RL task 

successfully collapses to greedy action selection. 

The extended MOQPT-learning and MOSARSA algorithms for multiple objectives 

caused erratic results and therefore have not been included. The present results for the 

GPFMORLPT (Prospect Theory extended) algorithms were tested in both 

deterministic and stochastic environments giving satisfactory results leaving  more 

room for exploration before converging to on an optimal path in a similar number of 

trials to that of the standard GPFMORL algorithm. 

In these simulated and practical experiments the GPFMORL algorithm has been 

exploited to facilitate the real time dynamic learning and control of a UAV. The 

GPFMORL algorithm generalises the continuous input space with fuzzy rules and has 

the ability to respond to varying states with the appropriate smooth translational 

velocities using fuzzy reasoning. Additionally it is also possible to embed prior 

knowledge into the fuzzy rules, enabling the UAV to explore interesting environments 

and reducing the training time significantly. 

Beyond this specific application, however, the larger and more important issue is 

whether learning from experience can be useful and practical for more general 

complex problems. Certainly the quality of results obtained in this study suggests that 

the approach may work well in practice, and may work better than we have a right to 

expect theoretically. 

 

5.3 Unmanned Aerial Vehicle Practical Experiments 
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 5.3.1 Introduction 

The two most important topics in mobile robot design are planning and control. Both 

of them can be considered a utility optimization problem, in which a robot seeks to 

maximize the expected utility (performance) under uncertainty (Thrun, 2000). In 

order to increase the flexibility of robots, facing unforeseen changes such as changes 

in their environments or sensor failure, the amount of predefined knowledge used in 

the control strategy has to be kept as low as possible. The present experiment, 

presents an automatic learning algorithm that uses reinforcement learning in order to 

find sensor-motor couplings through the robot‘s interaction with the environment.  

Although the results obtained in many different test and simulated domains look 

promising, RL techniques have rarely been implemented in application requiring real 

robots. Robotic applications present difficult challenges to RL methods, nevertheless 

its experience based motivation, high reactivity and effectively layered structure are 

still of great potential.  

While recent techniques have been successfully applied to the problem of robot 

control under uncertainty (La, 2003, Pineau et al., 2003, Poupart and Boutilier, 2004, 

Roy et al., 2005), they typically assume a known (and stationary) model of the 

environment. This dissertation, investigated the problem of finding an optimal policy 

for controlling a robot in a partially observable domain, where the model is not 

perfectly known, and may change over time; whilst proposing that a probabilistic 

approach is a strong solution not only to the navigation problem, but also to a large 

range of robot problems that involves sensing and interacting with the real world. 

However, few control algorithms make use of full probabilistic solutions and as a 

consequence; robot control can become increasingly fragile as the system's perceptual 

and state uncertainty, increase.  

Reinforcement learning enables an autonomous mobile robot to sense and act in its 

environment to select the optimal actions based on its self-learning mechanism. Two 

credit assignment problems should be addressed at the same time in reinforcement 

learning algorithms, i.e., structural and temporal assignment problems. The 

autonomous mobile robot should explore various combinations of state-action 

patterns to resolve these problems.  
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5.3.2 Autonomous Quadcopter Landing 

In our third experiment, the GPFMORL algorithm was implemented on an Parrot AR-

Drone 2.0 quadcopter mobile robot (Figure 5.24) in order to learn a mapping that will 

enable itself to avoid obstacles (hills) and boundaries whilst finding the shortest route 

to the helipad goal. For this case, four active learning agents were implemented to 

read four clusters of information gathered from a single Ultrasonic (US) distance 

sensor and learn the probabilities of success for the preselected actions. The US 

distance sensor first checks the current altitude of the quadcopter when in any state; 

this provides a baseline altitude value to which other measurements can then be 

compared to. The other measurements consist of the drone changing its pose/attitude 

to angle the proximity detection field to approximately 30 degrees in front, behind, to 

the left and to the right of the quadcopter all in one manoeuvre, without changing the 

current position of the quadcopter. On completion of the detection manoeuvre, there 

shall be five unique US distance measurements for example, The floor direction 

(altitude) may be 1.5m, The right, front  and back distances may all be approximately 

2m due to the hypotenuse of a triangle being a longer distance as shown in fig 5.24 a). 

Finally if there was an obstacle/hill to the left of the drone, then rather than 2m like 

the rest of the directional proximity values, the left distance may be 1.3 indicating that 

there is an obstacle or hill present in the state to the left of the drone as shown in 

figure 5.24b).  

 

 

 

 

 

Figure 5.24a,b ¼ of the Detection manoeuvre (Left) for detecting obstacles/hills 

before being there 

In this experiment the GPFMORL algorithm is implemented on a personal computer 

with a wireless link to an AR-Drone 2.0 quadcopter equipped with forward and down 

facing cameras. All the computations were performed offline and the data was sent 

1.5m 
2m 

1.5m 

1.3m 

a) No Obstacle Present 300 Roll Left 
b) Obstacle Present 300 Roll Left 

1.5m 
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and received via a Wi-Fi link between the PC and the quadcopter. The software was 

developed in C++ using Microsoft Visual Studio and uses OpenCV computer vision 

library.  

The algorithm consists of two software threads, where one thread manages the 

communication and the second executes the GPFRL algorithm which decides how to 

control the quadcopter. Thread one, requests data from the quadcopter such as video 

streams, Ultra sonic data, inertial measurements etc. which are then sent by the 

quadcopter and then processed via the C++ programme on the PC. Processing 

Includes:  

 Discretising the perceived field of view into a finite state space of equal 

proportions. 

 Segment helipad from background and calculate the area and position of the 

helipad 

 Potential fields created around the perimeter of the environment to ensure 

localisation 

 Determine the current state of the quadcopter with relative referencing to the 

helipad. 

 Multi-Modal Fuzzy speed controller to determine optimal translational 

velocities. 

 Functions: Record live video streams to file, record drone state history log, 

HUD, Automatic or Manual control toggle keys (A & Z), Auto-Land toggle 

key (L). 

The second thread reads the processed information from the blackboard, and selects 

an appropriate action using GPFMORL and velocity using a probabilistic fuzzy logic 

controller where the rules are updated every cycle using the proposed GPFRL 

algorithm. The selected action is then executed with the appropriate velocity and the 

state history is updated accordingly. 

 5.3.3 Search & Rescue Application 

In our fourth experiment we investigate if the proposed framework and algorithm is 

suitable for performing the much more complex task of search and rescue. The 

Rescue part of this application is very similar to experiment 3 in the fact that once it 
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has found the goal/Helipad/Collapsed patient it will centralise itself over the goal and 

then come to a controlled landing as close to the goal as close as possible. The Search 

part of this application also uses a similar method for moving closer to the goal but 

instead of a using a ground facing camera, we first use the forward facing camera with 

a higher resolution. The appropriate actions to take in each state primarily depend 

upon the learning algorithm however it becomes clear that in order to keep the goal 

centralised the forward version of the algorithm should increase or decrease altitude 

along with strafing left or right, alternatively the downwards camera algorithm is 

more focused on moving forward backward left or right to keep the goal centralised 

and only really uses the altitude control to acquire a better field of view or when 

finally landing once centralised. 

For this experiment the field of view was slightly increased by mounting a lightweight 

wide angle lens onto the quadcopter‘s existing lens in order to improve perception 

especially at lower altitudes. 

 

 

 

 

 

 

 

       Figure 5.25: C++ Search and rescue application using AR-Drone 2.0 and OpenCV 

Conventional RL algorithms aim to maximise performance on a single objective. In 

the case of Williams recently proposed GPFRL algorithm the objective is to find the 

goal in as few steps as possible. However many real world problems exhibit multiple 

objectives such as the UAV must avoid flying outside of the visual localisation grid 

whilst attempting to land efficiently on the helipad. 
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The perceived field of view from an AR-Drone 2.0 is discretised into a 5x5 grid world 

in attempt to reduce the curse of dimensionality in large continuous state spaces such 

as that of real time video streams. The goal attempting to be reached is the helipad 

marker which is segmented from the background image using OpenCV image 

processing in order for the MORL algorithm to know a common frame of reference 

for determining the agents relative position. A reward of +1 is received whenever the 

Unmanned Arial Vehicle (UAV) reaches the goal by directly stabilising itself above 

the helipad goal marker. Conversely a punishment or negative reward -1 is received 

whenever the agent takes each step that does not lead to one of the terminating goal 

states. 

In the event of the agents trying explorative behaviour to find a more optimal route to 

the helipad they could actually make a very bad move by attempting to fly outside of 

the grid world environment. Such ―Boundary Crossing‖ actions should be punished 

due to resulting in the UAV becoming lost in an unknown state, also potentially 

encountering unknown obstacles. When hypothetically flying out of the danger zone 

in simulation, the position of the UAV does not change, however in real flight the 

UAV must move into an undesired state before being punished, and then move back 

to a known state. Whilst this is easy to simulate by ignoring the physical change of 

position when instructed to move outside of the grid world, there must be some other 

methodology to maintain the agents within the boundaries of the learning 

environment. To solve this issue of maintaining the agent within the observable MDP, 

a potential field methodology has been implemented with attractive forces assigned 

from outer states towards the central goal state thus enabling the MORL agents to 

explore/exploit within the confines of the grid world environment. 

 

5.3.4 Multi-Modal Fuzzy Translational Velocity Controller 

In preliminary heuristic based experiments the speeds for each individual state 

transition were hard coded however as mentioned previously it is not wise to code the 

system with too much expert knowledge as this can be uncertain in these highly 

stochastic conditions. It is therefore proposed that the translational velocity of the 

state transitions is determined by a fuzzy logic controller. The two inputs to this 

controller are ―Distance to Goal‖ and ―Distance to Ground‖ due to these factors being 
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responsible for how fast or slow the quadcopter should travel in order to get to its 

desired state. The inputs are fuzzified using Near and Far Gaussian membership 

functions in order to generate a crisp value for the velocity to travel in the direction of 

whatever action is selected The outputs are fuzzified using three membership 

functions Slow, Default and Fast. The rule base consists of just four simple rules:  

IF Distance to Goal = NEAR and Distance to Ground = NEAR then SPEED = Low 

IF Distance to Goal = FAR and Distance to Ground = FAR then SPEED = High 

IF Distance to Goal = NEAR and Distance to Ground = FAR then SPEED = Medium 

IF Distance to Goal = FAR and Distance to Ground = NEAR then SPEED = Low 

 

 

 

 

 

 

 

 

Figure 5.26: Multi-Modal Fuzzy Speed Controller outputs for translational velocity 

5.3.5 Discussion 

Unlike in a simulation where you may begin each iteration of the program initialised 

to any starting position, in real life the UAV needs to move randomly after it finds the 

central goal but just before it lands in order to replicate this action. The next learning 

episode now begins from a random physical location anywhere except directly over 

the helipad. Otherwise the UAV would find take off and land straight away because it 

goal has been found in the first perceived state that was obviously revisited without 
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any searching necessary. The proposed GPFMORL algorithm is considered multi 

objective due to the fact that not only does it need to find the goal, but it should also 

avoid flying out of the visual localisation grid using as little power as possible. The 

afore mentioned application is similar to the MO Puddleworld benchmark where 

instead of avoiding the boundaries of the grid, the secondary objective is to avoid 

entering the puddles. 

 

While the UAV may choose to explore by trying to find another way to the helipad by 

attempting to fly outside of the grid, this action should in fact be heavily punished due 

to potentially causing the UAV to waste power and possibly become lost or fly into 

unknown obstacles outside of the danger zone. When flying out of the danger zone 

the position of the UAV shall not change in simulation, however in real flight the 

UAV must move in order to reach the undesired state then move back whilst being 

punished. Whilst this is easy to achieve using simulation by simply ignoring the 

change of position when instructed to move outside of the grid, there must be some 

method for keeping the UAV within the bounds of the learning environment. To solve 

this issue a Potential Field Methodology has been implemented as previously 

described. 

 

5.4 Automated Solar Powered Environmental Controller (ASPEC) 

5.4.1 Introduction 

To demonstrate the theoretical research outlined in this thesis, it was decided that an 

additional case study of CEA (Controlled Environment Agriculture) using an 

experimental ASPEC (Automated Solar Powered Environmental Controller) shall be 

developed and used for experimentation. The Experimental setup for this novel 

Embedded system is described in section 5.4.2 followed by the experimental results 

described in section 5.4.3. Finally section 5.4.4 concludes with a short discussion of 

the outcomes of the experiment and suggested future improvements for further 

development. 

 

5.4.2 Experimental Setup 

In order to facilitate the accurate perception of the nutrient solutions state on a real 

time basis, it was necessary to utilise both a PH Probe measuring the Potential of 

Hydrogen and an EC probe to measure the electrical conductivity of the nutrient 
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solution. In addition to the internal sensors, the system also comprised of two 

temperature sensors to measure the external ambient air temperature and the internal 

nutrient reservoir solution temperature. The ambient air temperature was controlled 

by activating cooling fans and the nutrient solution temperature was controlled by a 

submersible air bubble stone, both regulated to optimal conditions via a closed loop 

system. The chosen crops to optimise their growth were 4 Sungold F1 Tomato plants 

using a hydroponic Nutrient Film Technique controlled by a bespoke embedded 

system called the ASPEC (Automated Solar Powered Environmental Controller). The 

experiment was carried out over a course of an extended grow cycle of 6 month (24 

weeks) and with the exception of ensuring nutrient bottles were replenished, there was 

no manual intervention required throughout the whole growing cycle. The available 

actions available to the learning agent were to add nutrients to the solution, dilute the 

solution by adding water, increasing the PH with PH Up corrector (Strong Alkali) and 

finally decreasing the PH with PH down corrector (Strong Acid). The infinite supply 

of water was provided by a rainwater collection barrel stored under gravitational 

pressure and all the power needs were achieved by storing solar power from a small 

40w solar panel into a 12v Lead acid battery. 

5.4.3 Results 

Presented in (Figure 5.27) are the graphical results for the ASPEC optimisation of EC 

& PH using Advanced Controlled Environment Agriculture of Hydroponic Tomato 

plants (Sungold F1). The two most important hydroponic parameters of EC & PH are 

optimised via a novel MORL algorithm implemented into an embedded system 

capable of performing a certain action when in specific states based upon an iterative 

learning process. 

The X-Axis represent days of the growing cycle over an extended growing period of 

6month, whilst the Y-axis represent both PH values, and EC values in the unit of 

micro–siemens (µS) . The two measurements of state information and the relevant 

actions are represented by the following coloured lines: 

Electrical Conductivity (EC) - Blue Line 

Potential of Hydrogen (PH) - Red Line 

Addition of nutrient - Green Line 

Dilution of nutrients - Purple Line 
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PH UP Corrector - Turquoise Line 

PH Down Corrector - Orange Line 

 

 

The system begins by filling up the hydroponic reservoir with fresh water up to a 

volume of 25ltrs which shall be maintained throughout the entire grow cycle. During 

the first few weeks the plants are susceptible to high EC concentrations which can 

damage the plants and prevent growth. It is therefore it is recommended by the grow 

schedule that only half the dosage of nutrients are administered during the first two 

weeks to allow the plants to get acclimatise to a more concentrated dose later on. It 

can be observed on the graph (Figure 5.27) that during the first week, the EC state 

(Blue) gradually increases from 0 to 1.1 by choosing the action of Adding nutrients 

(Green). This overfeeding of nutrients is quickly reduced back down to the optimal 

recommended EC value of 0.8 by stopping the addition of nutrients and choosing to 

dilute the solution slightly. This  dilution of nutrients (Purple) is performed by 

pumping some of the nutrient solution out of the reservoir therefore allowing a small 

amount of fresh water back in to maintain a constant volume of 25ltrs hence diluting 

the nutrient concentration. The PH of the fresh water entering the system initially has 

a natural value of 7 (PH neutral) and combined with the nutrients, should be reduced 

down to a slightly acidic value of PH 6 (Red). The PH state of the solution is 
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corrected to PH 6 by first attempting the optimal action of adding PH down corrector 

to the solution.  

After 2 weeks the optimal conditions are reached PH 6 and EC 0.8. As the nutrient 

dose is increased to full strength (EC1.8), which generally causes an increase in PH, 

the learning agent explores a non-optimal action of PH Up corrector which is 

administered causing the PH to dramatically increase to PH 8. The high alkalinity of 

the solution is now in danger of preventing optimal plant growth so the corrective 

measure is decided to try reducing the PH of the solution by executing the PH down 

corrector action. The PH is gradually adjusted to a more optimal solution of PH 6 but 

with adverse effects to the EC concentration. In adding large amounts of PH 

corrector, the undesired effect of the EC concentration is increased. To correct the EC 

the action of diluting the nutrient solution is decided which does in fact lower the EC 

but also has the effect of increasing the PH slightly due to the fresh water being 

neutral PH 7. Once again the action of PH down is used to reduce the value of the PH, 

however on this occasion the action is repeated for too long which results in a lower 

than optimal PH of 5.4. Now rather than using PH correctors as before, the learning 

agent decides to just increase the nutrient dosage action in hope that as a result of 

increasing the EC slightly, the PH will resolve to an optimal value of PH6 whilst also 

reaching an optimal EC. Once the majority of good actions in certain states have been 

repeated and the bad actions have learned to be avoided the graph begins to stabilise. 

The optimal policy that has been determined ensures the most suitable PH and EC by 

adding appropriate amount of nutrients and the PH down corrector whenever the state 

of the solution requires slight corrections. 

5.4.4 Discussion 

The proposed ASPEC case study confirms what was previously learned from manual 

control of hydroponic agriculture by converging to an almost identical method of 

optimisation learned entirely from its own interaction with the environment. Although 

the learning algorithm took several weeks to reach an optimal policy, it did so entirely 

from scratch without no prior knowledge of hydroponic agriculture. With respect to 

the several years it would take a human gardener to learn how to effectively grow 

hydroponic crops, this system did so in considerably less time. The learning time 

could possibly be increased by monitoring state information on an hourly basis rather 

than on a daily one at the cost of having to process much larger amounts of data over 
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the course of a 6 month period. Such an approach would require the hardware to be 

designed with increased non-volatile memory capacity and a more powerful processor 

to deal with the increased amount of data and computation required for such a 

complex task. It is hoped that such a system shall become more accepted into the ever 

expanding general population to aid controlled environment agriculture of hydroponic 

fruit and vegetables for everyone to enjoy at a lower cost to both the consumer and 

environment. 

5.5 Summary 

This chapter presented four experiments used to test different aspects of the proposed 

GPFMORL method. The experiments performed include: Deterministic random walk, 

Stochastic random walk, UAV navigation for autonomous landing, Search and rescue 

application. Results and conclusion have been detailed for each experiment. Two 

other applications were considered for use with the GPFMORL algorithm and the 

hardware prototypes were developed such as the Autonomous Solar Programmable 

Environmental Controller (ASPEC) and Robotic Dementia Medication 

Administration System (RDMAS) 

The next chapter provides a final conclusion and observations and then proposes some 

topics for future research. 
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6.1  Introduction 

This work has explored the different advantages and limitations of three different 

popular paradigms, fuzzy logic systems, probabilistic theory, prospect theory and 

reinforcement learning separately. It was concluded that each of this paradigms could 

very well complement the drawbacks of the others and seamlessly work together in a 

cooperative rather than competitive way.  

Fuzzy logic systems are good at generalizations, and due to its distinctive 

characteristics, it is able to handle non-statistical uncertainties, and fuzziness; 

however under certain conditions, the design and development of rather large or more 

complex systems can be too complicated for human operators.  

 

Reinforcement learning methods have been an intense focus of research in the last 

decade. Research has proven that reinforcement learning can be successfully used in 

many different areas, such as decision making or control. A remarkable characteristic 

is that RL methods do not require input-output pairs for training or previous 

knowledge of the environment model. RL only uses sparse signal information in order 

to reach to optimal conclusions. Therefore using RL for automatic tuning of fuzzy 

logic parameters have also being the focus of recent research.  

Probabilistic theory is still one of the most effectives way (and most explored) to deal 

with uncertainties, especially stochastic uncertainty. The fusion of probabilistic theory 

with fuzzy logic controllers have shown to be a powerful tool for practical areas such 

as finance and weather forecasting. Both paradigms can work in collaboration, in 

order to complement each other. As a result, probabilistic fuzzy logic system can 

handle a very large range of uncertainties.  

The present work combines these three paradigms into a novel method, able to learn 

optimal policies for control or decision making whilst being resistant to stochastic, 

non-stochastic, uncertainties, randomness and fuzziness. Four different experiments 

were carried on to ratify our claims; a random walk within a fixed start and random 

start grid world and a windy hill world, and finally control of a wi-fi camera equipped 

quadcopter mobile robot.  

CONCLUDING DISCUSSION 
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Chapter 6: Concluding Discussion 

The rest of this chapter is organized as follows; Section two highlights the 

contributions of this dissertation. In section three some important observations are 

described. Section four proposes some future work and in section five the final 

conclusions are given. 

 

6.2  Contributions Of this Work 

The contributions of this work can be summarised in the following list: 

 This work proposed a novel modification to the GPFRL algorithm where, the 

implementation of a scalarisation methodology provided a way to find optimal 

policies for multiple objectives under different kinds of uncertainties in an 

automatic way. 

 

 Through several different experiments of grid world variations, the proposed 

method has demonstrated high performance under situations of decision 

making taking into consideration risk. 

 

 The observed results of this work showed that the GPFMORL method can find 

its major application in the un-calibrated control of non-linear, multiple inputs, 

and multiple output systems, especially in situations with high uncertainty. 

 

 GPFMORL algorithm was compared in a grid world, with the multi objective 

extensions of well-established RL methods, MOSARSA and MOQ-learning. 

In this experiment the GPFMORL method showed not only a strong 

convergence but also a much faster one. 

 

 PROSPECT THEORY was investigated as recommended by hinojosa and 

proved to be good at preventing the agent from risky situations and actualy 

improved the GPFMORL algortighms performance. 

 

 The GPFMORL method was implemented on an AR-Drone 2.0 Quadcopter 

robot with the task of landing on the helipad, avoiding boundaries and 

traversing hills if necessary. The preliminary results of this heuristic based 
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experiment were promising showing that the performance of the developed 

system is likely to be able to work well with real-time applications.. 

 

6.3  Observations 

The following section presents some observations that were made during the 

development of this work. 

 Due to wi-fi interference the characteristics of the AR-Drone 2.0 could often be 

random and erratic even when reducing network traffic. 

 Due to the inherent limitations of ultrasonic proximity sensors, the processed 

value of altitude is often inaccurate and can lead to sudden increases or decreasing 

in altitude without prior warning. 

 

 The frame rate of developed the image processing framework is more than 

sufficient for detecting the helipad even with erratic high speed manoeuvres. 

 

6.4  Future Work 

6.4.1  Theoretical Suggestions 

Learning still is a black box in most of the cases. The presence of uncertainty and the 

concept of knowledge itself make it intrinsically difficult if not impossible to model 

and analyze the final behaviour of a learning system; therefore no system with 

unsupervised learning should be unsupervised. It is suggested the research of methods 

combining the probability estimation of reinforcement learning, as the one proposed 

in this work, with other methods that can incorporate the knowledge of human 

operators; especially for situation where the result of selecting actions or behaviours 

with a relatively “high” probability of success can have considerable consequences. 

As an example, it can be suggested the use of prospect theory, which is a method of 

calculating decisions not only based on probabilities of success but also based on a 

risk evaluation. ― W. Hinojosa, ―Probabilistic fuzzy logic framework in reinforcement 

learning for decision making,‖ September, 2010. 
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Originally we began by creating an multi modal fuzzy altitude controller in order to 

deal with the non-statistical uncertainties present in detecting the environment. 

However since the vertical axis ―Z‖ (altitude) of the UAV does not contribute to 

whatever positional state the UAV is in, it seemed necessary to alter the FIS. Instead 

of using ultra-sonic and area measurements of the helipad as inputs, now Distance to 

helipad and ultra-sonic measurements are used to create a fuzzy translational velocity 

controller. This facilitates smooth transition between states at the appropriate speed to 

reduce overshooting from one state to the next. Performing the obstacle detection 

manoeuvre combined with prospect theory, it is possible to distort the probabilities of 

success regarding risky situations. For example if the UAV detects a potential 

obstacle/hill to the left then the probability associated with moving left when in that 

state shall be reduced forcing the agent into a more explorative behaviour to take an 

more optimal alternate route in future. 

A further improvement would be a fuzzy controller that uses 2 inputs of Roll & Pitch 

to determine how level the UAV was when it acquired the current state using visual 

detection. If the Roll and pitch is 0 in both cases then the probability of the UAV 

flying directly over the detected state is 1. However if either the roll or pitch is more 

than 0 then the probability of being in the detected state is reduced due to UAV 

possibly perceiving a differnet state from the perceived viewing angle. If the UAV is 

at its limits of 30
0
 incline in either axis then the probability of the perceived state 

being correct is almost 0. 

6.4.2  Practical Suggestions 

Although mathematical models of dynamical systems can be accurate to a high 

degree, it doesn‘t come close to real systems in terms of uncertainty. Therefore, it is 

highly suggested a more rigorous testing of the proposed GPFRL method on systems 

interacting with real environments, such as with mobile robots navigating on 

uncharted environments, highly nonlinear manipulators, etc. 

Moreover, it is suggested the exploration on how this proposed algorithm performs on 

more challenging tasks, especially in systems with higher dimensional states. [1] W. 

Hinojosa, ―Probabilistic fuzzy logic framework in reinforcement learning for decision 

making, ‖ September, 2010. 
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 Adding a omnidirectional camera to the UAV would improve perception 

 Using a purpose built professional wide angle lens instead of retro fit lenses 

designed for smartphones. 

 The translational velocities should be dramatically increased during landing in 

order to quickly react to the fast changing state information perceived from the 

environment. 

 Optical flow algorithm to detect adjacent obstacles/hills by turning on the spot      

.           (yaw) to check the velocity of POI detected to determine obstructed regions. 

 Improve resolution of downwards facing camera to improve helipad detection 

 Either implement an digital  image stabilisation algorithm or mount the 

camera on a 3 axis mechanical gimbal to reduce UAV in-place movements from 

affecting the state detection.  

6.5  Final Conclusions 

It is my conclusion after observing the results of the proposed algorithm, that the 

objectives of this dissertation have been successfully met. We can also anticipate the 

effective solution to more complex problems with more objectives using this 

algorithm. As any approach, there are limitations and shortcomings in the proposed 

algorithm, which should be improved further. 
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Appendix A 

MOQ-Learning 

% -------------RL Parameters------------- 
alpha = 0.4; % Step-size (learning rate)0.1 for windy 
epsilon = 0.2; % e-Greedy behaviour for maximum stability 
gamma = 0.95; % Discount Factor 
totalPlays = 100; % Number of plays to average over 
totalTrials = 40; % Trials per play 

  
%-------------MORL Parameters------------- 
NoOfObjectives = 3; % Specify any number of objectives 
W1 = 0.4; 
W2 = 0.3; 
W3 = 0.3;  
   
% ----------Enviroment Constants---------- 
gridSize = 10; % Size of the Grid 
totalStates = gridSize*gridSize; % Total number of system states 
  
% Starting Location (Fixed) 
startM = 2; 
startN = 2; 
  
% Reward Location  
rewardM = ceil(gridSize/2); %(center of the grid)y-axis 
rewardN = ceil(gridSize/2)+1; %(center of the grid)x-axis 
  
%Windy Grid World Enviroment Stochasticity  
WindChance = 0.2; %20% chance of it being NotWindy, Windy or Very Windy 
  
% ----------Variable Initialisation----------  
totalNumSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays 
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all 
plays 
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays 
  
% Out Of Boundary Counts 
northCount = 0; 
eastCount = 0; 
southCount = 0; 
westCount = 0; 
  
S43hillCount = 0; 
S53hillCount = 0; 
S34hillCount = 0; 
S35hillCount = 0; 
S36hillCount = 0; 
  
%-------------------------------------------------------------------- 
%Begin stepping through the grid world enviroment using MOQ-Learning 
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%-------------------------------------------------------------------- 
for j = 1 : totalPlays 
% Store number of steps to reach reward for each trial 
numSteps = zeros(totalTrials, 1); 
  
% Store number of out of boundary steps (punishments) 
numBoundSteps = zeros(totalTrials, 1); 
  
% Store number of out of boundary steps (punishments) 
    numHillSteps = zeros(totalTrials, 1); 
  
% Initialize V(s) & Goal Reward 
grid = zeros(gridSize, gridSize); 
grid(rewardM, rewardN,1) = 1; 
grid(rewardM, rewardN,2) = 1; 
grid(rewardM, rewardN,3) = 1; 
  
% Initialise Boundary Punishments -1 in all boundary states 
for i=1 : gridSize 
    grid(1,i,2)=-1; 
    grid(gridSize,i,2)=-1; 
    grid(i,1,2)=-1; 
    grid(i,gridSize,2)=-1; 
end 
  
 %Initialise Hill Punishments 
    grid(4,4,3) = -0.4; %State 34 
    grid(4,5,3) = -0.6; %State 35 
    grid(4,6,3) = -0.8; %State 36 
    grid(5,3,3) = -0.1; %State 43 
    grid(6,3,3) = -0.2; %State 53 
  
    for i = 1 : totalTrials 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%        
%         % Random Starting Location Generator 
%         stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1 
%         vectorMax = max(stochGrid);% Return the maximum value of each column 
%         big = max(vectorMax);%Determine maximum value of this vector of 5 values 
%         %Delete semi colon after following line to display 
%         %random start position 
%         binaryMap = stochGrid==big; % Create a binary matrix indicating position of max value 
%         [row_M,col_N] = find(stochGrid==big); 
%         randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted to 
comply with my notation) 
%         randomStartState; 
%          
%         % Assign random co-ordinates to each trials starting position/state 
%         startM = row_M; 
%         startN = col_N; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%           
         
        % Current position on grid is represented by m,n 
        m = startM; 
        n = startN; 
        prevM = startM; 
        prevN = startN; 
  
        % Begin stepping through a path 
        found = 0; 
        while(found == 0) 
            % increment # steps taken this trial 
            numSteps(i) = numSteps(i) + 1; 
  
            % pick an action and avoid going over grid borders 
            N = m-1; 
            if(N < 1) 
                N = 1; 
                northCount = northCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
            E = n+1; 
            if(E > gridSize) 
                E = gridSize; 
                eastCount = eastCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
            S = m+1; 
            if(S > gridSize) 
                S = gridSize; 
                southCount = southCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
            W = n-1; 
            if(W < 1) 
                W = 1; 
                westCount = westCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
             
            
            % Perform an observation (using boxes system) 
            stidx = ((m - 1) * gridSize) + n; 
            X = zeros(totalStates, 1); 
            X(stidx) = 1; 
            disp(stidx); 
             
            choices1 = [ grid(N,n,1), grid(m,E,1), grid(S,n,1), grid(m,W,1) ]; 
            choices2 = [ grid(N,n,2), grid(m,E,2), grid(S,n,2), grid(m,W,2) ]; 
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            choices3 = [ grid(N,n,3), grid(m,E,3), grid(S,n,3), grid(m,W,3) ]; 
           
            indices1 = find(choices1 == max(choices1)); 
            indices2 = find(choices2 == max(choices2)); 
            indices3 = find(choices3 == max(choices3));            
             
            maximum1 = max(choices1); 
            maximum2 = max(choices2); 
            maximum3 = max(choices3); 
             
            %Detecting when agent has encountered an Obstacle/Hill 
            %State 43 
            if (m == 5 && n == 3) 
                 S43hillCount = S43hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 53 
            if (m == 6 && n == 3) 
                 S53hillCount = S53hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 34 
            if (m == 4 && n == 4) 
                 S34hillCount = S34hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 35 
            if (m == 4 && n == 5) 
                 S35hillCount = S35hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 36 
            if (m == 4 && n == 6) 
                 S36hillCount = S36hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            % choose the path with the maximum value, or explore 
            if((length(indices1) == 1) && (rand(1) - epsilon >= 0)) 
                index1 = indices1(1); 
            else 
                index1 = ceil(length(choices1) * rand(1)); % randomly select direction 
            end 
             
            if((length(indices2) == 1) && (rand(1) - epsilon >= 0)) 
                index2 = indices2(1); 
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            else 
                index2 = ceil(length(choices2) * rand(1)); % randomly select direction 
            end 
             
            if((length(indices3) == 1) && (rand(1) - epsilon >= 0)) 
                index3 = indices3(1); 
            else 
                index3 = ceil(length(choices3) * rand(1)); % randomly select direction 
            end 
                         
            
            choice_rand = rand; 
            windy_rand = rand; 
             
           % disp(' '); 
           % disp(stidx); 
            
            %If random number is less than 0.2 (20% chance of shifting position) 
            if (windy_rand < WindChance)         
                if (n == 1 && m>1) 
                    disp('N WAS 1, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 2 && m>1) 
                    disp('N WAS 2, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 3 && m>1) 
                    disp('N WAS 3, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 4 && m>1) 
                    disp('N WAS 4, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 5 && m>2) 
                    disp('N WAS 5, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 6 && m>2) 
                    disp('N WAS 6, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 7 && m>1) 
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                    disp('N WAS 7, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 8 && m>1) 
                    disp('N WAS 8, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 9 && m>1) 
                    disp('N WAS 9, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 10 && m>1) 
                    disp('N WAS 10, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                                  
                 disp(' '); 
                 
            else 
                disp('NO WIND'); 
                 
                %If random number is less than 0.4 (40% chance of choosing index 1) 
                if(choice_rand < W1) 
                    index = index1; 
                %If random number is less than 0.7 (30% chance of choosing index 2)     
                elseif( choice_rand < W1+W2) 
                    index = index2; 
                else 
                %Otherwise there will be a (30% chance of choosing index 3)     
                    index = index3; 
                end 
                
                disp(' '); 
                  
            end %end primary if 
  
            %Take action 
            if(index == 1) % grid(m-1,n) 
                m = N; 
            elseif(index == 2) % grid(m,n+1) 
                n = E; 
            elseif(index == 3) % grid(m+1,n) 
                m = S; 
            elseif(index == 4) % grid(m,n-1) 
                n = W; 
            else 
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                disp('error'); 
            end 
  
            % stop after this step if the reward was found 
            if(m == rewardM && n == rewardN) 
                found = 1; 
                disp(46); 
            end 
  
            %Expected discounted reward 
            expDiscReward1 = gamma*grid(m,n,1); 
            expDiscReward2 = gamma*grid(m,n,2); 
            expDiscReward3 = gamma*grid(m,n,3); 
            
            % calculate prediction error 
            predErr1 = expDiscReward1 - grid(prevM,prevN,1); 
            predErr2 = expDiscReward2 - grid(prevM,prevN,2); 
            predErr3 = expDiscReward3 - grid(prevM,prevN,3); 
            
            % V(s) = V(s) + alpha[r' + V(s') - V(s)] 
            grid(prevM,prevN,1) = grid(prevM,prevN,1) + alpha*predErr1; 
            grid(prevM,prevN,2) = grid(prevM,prevN,2) + alpha*predErr2; 
            grid(prevM,prevN,3) = grid(prevM,prevN,3) + alpha*predErr3; 
           
            grid(prevM,prevN,1) = (grid(prevM,prevN,1)*W1 + grid(prevM,prevN,2)*W2 + 
grid(prevM,prevN,3)*W3)/NoOfObjectives; 
             
            % update values for next step, and directional choices 
            prevM = m; 
            prevN = n; 
        end 
    end 
    % Update storage matrices for across all plays 
    totalNumSteps = totalNumSteps + numSteps; 
     
     % Update storage matrices for across all plays 
    totalNumBoundSteps =  totalNumBoundSteps + numBoundSteps; 
  
    % Update storage matrices for across all plays 
    totalNumHillSteps =  totalNumHillSteps + numHillSteps; 
     
end 
  
outOfBoundsCount = northCount + eastCount + southCount + westCount; 
hillCount =  S43hillCount +  S53hillCount + S34hillCount +  S35hillCount +  S36hillCount; 
  
  
%------------------------------------- 
% Plot 2D Graphs for both objectives 
%------------------------------------- 
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disp('Multi Objective Q-Learning Algorithm'); 
AverageBoundsCount = outOfBoundsCount/totalPlays 
AverageHillCount = hillCount/totalPlays 
disp(' '); 
  
% Average number of steps across all plays 
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
title('Multi Objective Q-Learning Algorithm') 
xlabel('NoOfTrials') 
ylabel('NoOfSteps') 
hold on 
  
% Average number of boundary penaltys across all plays 
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--'); 
hold on 
  
  
% Average number of Hill penaltys across all plays 
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':'); 
  
legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills') 
hold off 
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MOSARSA 

% -------------RL Parameters------------- 
alpha = 0.4; % Step-size 
epsilon = 0.2; % e-Greedy behaviour for maximum stability 
gamma = 0.95; % Discount 
totalPlays = 100; % Number of plays to average over 
totalTrials = 40; % Trials per play 
  
%-------------MORL Parameters------------- 
NoOfObjectives = 3; % Specify any number of objectives 
W1 = 0.4; 
W2 = 0.3; 
W3 = 0.3; 
  
% ----------Enviroment Constants---------- 
gridSize = 10;% Size of the Grid 
totalStates = gridSize*gridSize; % Total number of system states 
  
% Start Location (Fixed) 
startM = 2; 
startN = 2; 
  
% Reward Location 
rewardM = ceil(gridSize/2);%(center of the grid)y-axis 
rewardN = rewardM+1;%(center of the grid)x-axis 
  
%Windy Grid World Enviroment Stochasticity  
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy 
  
% ----------Variable Initialisation----------  
totalNumSteps = zeros(totalTrials, 1);% Total number of steps for each trial over all plays 
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all 
plays 
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays 
%totalReward = zeros(totalTrials, 1); %not used 
  
%Store the number of times that each boundary is crossed 
northCount = 0; 
eastCount = 0; 
southCount = 0; 
westCount = 0; 
  
%Store the number of times that each Hill is crossed 
S43hillCount = 0; 
S53hillCount = 0; 
S34hillCount = 0; 
S35hillCount = 0; 
S36hillCount = 0; 
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%------------------------------------- 
% Start walking - SARSA 
%------------------------------------- 
for j = 1 : totalPlays 
    % Store # steps for each trial 
    numSteps = zeros(totalTrials, 1); 
     
     % Store number of out of boundary steps 
    numBoundSteps = zeros(totalTrials, 1); 
     
     % Store number of out of hill steps 
    numHillSteps = zeros(totalTrials, 1); 
     
    % Initialize V(s) 
    grid = zeros(gridSize, gridSize,3); 
    grid(rewardM, rewardN,1) = 1; 
    grid(rewardM, rewardN,2) = 1; 
    grid(rewardM, rewardN,3) = 1; 
     
    %bondaries punishement 
        for i = 1 : gridSize 
           % grid(1,i,1) = -1; 
            grid(1,i,2) = -1; 
            %grid(10,i,1) = -1; 
            grid(10,i,2) = -1; 
            %grid(i,1,1) = -1; 
            grid(i,1,2) = -1; 
            %grid(i,10,1) = -1; 
            grid(i,10,2) = -1; 
        end 
     
    %obstacles 
     
    %state 34 35 36 43 53 
    grid(4,4,3) = -0.4; %34 
    grid(4,5,3) = -0.6; %35 
    grid(4,6,3) = -0.8; %36 
    grid(5,3,3) = -0.1; %43 
    grid(6,3,3) = -0.2; %53 
     
    for i = 1 : totalTrials 
         
%          % Random Starting Location 
%                     stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1 
%                     vectorMax = max(stochGrid);% Return the maximum value of each column 
%                     big = max(vectorMax);%Determine maximum value of this vector of 5 values 
%                    %Delete semi colon after following line to display 
%                    %random start position 
%                     binaryMap = stochGrid==big; % Create a binary matrix indicating position of 
max value 
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%                     [row_M,col_N] = find(stochGrid==big); 
%                     randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted 
to comply with my notation) 
%                     randomStartState; 
  
%         %  end 
%             
%         %  r = randi([1 10],1,1) 
%          
%                     % Assign random co-ordinates to each trials starting position/state 
%                     startM = row_M; 
%                     startN = col_N; 
%          
                
        % Current position on grid is represented by m,n 
        m = startM; 
        n = startN; 
        prevM = startM; 
        prevN = startN; 
        % Begin stepping through a path 
        found = 0; 
        while(found == 0) 
            % increment # steps taken this trial 
            numSteps(i) = numSteps(i) + 1; 
            % pick an action and avoid going over grid borders 
            N = m-1; 
            if(N < 1) 
                N = 1; 
                northCount = northCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
            E = n+1; 
            if(E > gridSize) 
                E = gridSize; 
                eastCount = eastCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
            S = m+1; 
            if(S > gridSize) 
                southCount = southCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
                S = gridSize; 
            end 
            W = n-1; 
            if(W < 1) 
                W = 1; 
                westCount = westCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
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              % Perform an observation (using boxes system) 
            stidx = ((m - 1) * gridSize) + n; 
            X = zeros(totalStates, 1); 
            X(stidx) = 1; 
            disp(stidx); 
             
            choices1 = [ grid(N,n,1), grid(m,E,1), grid(S,n,1), grid(m,W,1) ]; 
            choices2 = [ grid(N,n,2), grid(m,E,2), grid(S,n,2), grid(m,W,2) ]; 
            choices3 = [ grid(N,n,3), grid(m,E,3), grid(S,n,3), grid(m,W,3) ]; 
            % choose the path with the maximum value, or explore 
             
            indices1 = find(choices1 == max(choices1)); 
            indices2 = find(choices2 == max(choices2)); 
            indices3 = find(choices3 == max(choices3)); 
             
             
            maximum1 = max(choices1); 
            maximum2 = max(choices2); 
            maximum3 = max(choices3); 
             
            %Detecting when agent has encountered an Obstacle/Hill 
            %State 43 
            if (m == 5 && n == 3) 
                 S43hillCount = S43hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 53 
            if (m == 6 && n == 3) 
                 S53hillCount = S53hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 34 
            if (m == 4 && n == 4) 
                 S34hillCount = S34hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 35 
            if (m == 4 && n == 5) 
                 S35hillCount = S35hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 36 
            if (m == 4 && n == 6) 
                 S36hillCount = S36hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
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            if((length(indices1) == 1) && (rand(1) - epsilon >= 0)) 
                index1 = indices1(1); 
            else 
                index1 = ceil(length(choices1) * rand(1)); % randomly select direction 
            end 
             
            if((length(indices2) == 1) && (rand(1) - epsilon >= 0)) 
                index2 = indices2(1); 
            else 
                index2 = ceil(length(choices2) * rand(1)); % randomly select direction 
            end 
             
            if((length(indices3) == 1) && (rand(1) - epsilon >= 0)) 
                index3 = indices3(1); 
            else 
                index3 = ceil(length(choices3) * rand(1)); % randomly select direction 
            end 
                                  
             %If random number is less than 0.5 (50% chance of choosing index 1) 
            %If random number is less than 0.2 (20% chance of choosing index 1) 
            choice_rand = rand; 
            windy_rand = rand; 
             
            disp(' '); 
           % disp(stidx); 
             
            if (windy_rand < WindChance)              
  
                if (n == 1 && m>1) 
                    disp('N WAS 1, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 2 && m>1) 
                    disp('N WAS 2, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 3 && m>1) 
                    disp('N WAS 3, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 4 && m>1) 
                    disp('N WAS 4, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 5 && m>2) 
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                    disp('N WAS 5, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 6 && m>2) 
                    disp('N WAS 6, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 7 && m>1) 
                    disp('N WAS 7, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 8 && m>1) 
                    disp('N WAS 8, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 9 && m>1) 
                    disp('N WAS 9, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 10 && m>1) 
                    disp('N WAS 10, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end   
                  
                % disp(' '); 
                 
            else 
                disp('NO WIND'); 
        
                if(choice_rand < W1) 
                    index = index1; 
                elseif( choice_rand < W1+W2) 
                    index = index2; 
                else 
                    index = index3; 
                end 
                 
                 disp(' '); 
                  
            end %end primary if 
                      
            %Take action 
            if(index == 1) % grid(m-1,n) 
                m = N; 
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            elseif(index == 2) % grid(m,n+1) 
                n = E; 
            elseif(index == 3) % grid(m+1,n) 
                m = S; 
            elseif(index == 4) % grid(m,n-1) 
                n = W; 
            else 
                disp('error'); 
            end 
            % stop after this step if the reward was found 
            if(m == rewardM && n == rewardN) 
                found = 1; 
                disp(46); 
            end 
            %Expected discounted reward 
            expDiscReward1 = gamma*grid(m,n,1); 
            expDiscReward2 = gamma*grid(m,n,2); 
            expDiscReward3 = gamma*grid(m,n,3); 
            % calculate prediction error 
            predErr1 = expDiscReward1 - grid(prevM,prevN,1); 
            predErr2 = expDiscReward2 - grid(prevM,prevN,2); 
            predErr3 = expDiscReward3 - grid(prevM,prevN,3); 
            % V(s) = V(s) + alpha[r' + V(s') - V(s)] 
            grid(prevM,prevN,1) = grid(prevM,prevN,1) + alpha*predErr1; 
            grid(prevM,prevN,2) = grid(prevM,prevN,2) + alpha*predErr2; 
            grid(prevM,prevN,3) = grid(prevM,prevN,3) + alpha*predErr3; 
            
             grid(prevM,prevN,1) = (grid(prevM,prevN,1)*W1 + grid(prevM,prevN,2)*W2 + 
grid(prevM,prevN,3)*W3)/NoOfObjectives; 
            % update values for next step, and directional choices 
            prevM = m; 
            prevN = n; 
        end 
    end 
    % Update storage matrices for across all plays 
    totalNumSteps = totalNumSteps + numSteps; 
     
     % Update storage matrices for across all plays 
    totalNumBoundSteps =  totalNumBoundSteps + numBoundSteps; 
  
    % Update storage matrices for across all plays 
    totalNumHillSteps =  totalNumHillSteps + numHillSteps; 
     
end 
  
outOfBoundsCount = northCount + eastCount + southCount + westCount; 
hillCount =  S43hillCount +  S53hillCount + S34hillCount +  S35hillCount +  S36hillCount; 
  
  
%------------------------------------- 
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% Plot 2D Graphs for all objectives 
%------------------------------------- 
disp('Multi Objective SARSA Algorithm'); 
AverageBoundsCount = outOfBoundsCount/totalPlays 
AverageHillCount = hillCount/totalPlays 
disp(' '); 
  
% Average number of steps across all plays 
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
title('Multi Objective SARSA Algorithm') 
xlabel('NoOfTrials') 
ylabel('NoOfSteps') 
hold on 
  
% Average number of boundary penaltys across all plays 
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--'); 
hold on 
  
  
% Average number of Hill penaltys across all plays 
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':'); 
  
legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills') 
hold off 
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 GPFMORL 

%GPFMORL Complex Enviroment with 3 Objectives 
%7th August Start & Goal Env Test Exp1 (100plays) 
 
%-------------RL Constants--------------- 
alpha = 0.003; % Actor learning rate 
beta = 0.005; % Critic learning rate 
epsilon = 0.2; % Exploration/explotation control parameter 
gamma = 0.95; % Discount factor 
totalActions = 4; % Number of possible actions 
totalAgents = totalActions; % Total number of learning agents 
  
totalPlays = 100; % Number of plays to average over (was 100) works at 1 
totalTrials = 40; % Trials per play (was 40) works at 20 
  
% ----------Enviroment Constants--------- 
gridSize = 10; % Size of the Grid (was 10) 
totalStates = gridSize*gridSize; % Total number of system states 
rewardM = ceil(gridSize/2); % Location of reward in M axe 
rewardN = ceil(gridSize/2)+1; % Location of reward in N axe 
  
startM = 2; % Location to start from in M axe 
startN = 2; % Location to start from in N axe 
  
% ---------Variable Initialisation-------- 
totalNumSteps = zeros(totalTrials, 1);% Total # steps for each trial over all plays 
totalReward = zeros(totalTrials, totalAgents); 
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all 
plays 
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays 
  
%-------------MORL Variables------------- 
NoOfObjectives = 3; % Specify any number of objectives 
W1 = 0.4; %Objective 1 weighting (reaching the helipad goal) Best@1 
W2 = 0.3; %Objective 2 weighting (Avoiding the grid boundarys) Best@1 
W3 = 0.3; 
  
%Windy Grid World Enviroment Stochasticity  
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy 
  
  
%Store the number of times that each boundary is crossed (for plot) 
northCount = 0; 
eastCount = 0; 
southCount = 0; 
westCount = 0; 
  
S43hillCount = 0; 
S53hillCount = 0; 
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S34hillCount = 0; 
S35hillCount = 0; 
S36hillCount = 0; 
  
% RandomStartList= zeros(24, 1); 
% RandomStartList(1, 1) = 13; 
% RandomStartList(2, 1) = 14; 
% RandomStartList(3, 1) = 15; 
% RandomStartList(4, 1) = 16; 
% RandomStartList(5, 1) = 17; 
% RandomStartList(6, 1) = 18; 
% RandomStartList(7, 1) = 19; 
% RandomStartList(8, 1) = 23; 
% RandomStartList(9, 1) = 29; 
% RandomStartList(10, 1) = 33; 
% RandomStartList(11, 1) = 39; 
% RandomStartList(12, 1) = 43; 
% RandomStartList(13, 1) = 49; 
% RandomStartList(14, 1) = 53; 
% RandomStartList(15, 1) = 59; 
% RandomStartList(16, 1) = 63; 
% RandomStartList(17, 1) = 69; 
% RandomStartList(18, 1) = 73; 
% RandomStartList(19, 1) = 74; 
% RandomStartList(20, 1) = 75; 
% RandomStartList(21, 1) = 76; 
% RandomStartList(22, 1) = 77; 
% RandomStartList(23, 1) = 78; 
% RandomStartList(24, 1) = 79; 
% 
% 
%  r = randi([1 26],1,1); 
%  randomStartPoint = RandomStartList(r, 1); 
% randomStartPoint 
  
%---------------------------------------------------------------- 
% Begin stepping through the grid world enviroment using GPFMORL 
%---------------------------------------------------------------- 
for j = 1 : totalPlays 
    % Store # steps for each trial 
    numSteps = zeros(totalTrials, 1); 
     
    % Store number of out of boundary steps (punishments) 
    numBoundSteps = zeros(totalTrials, 1); 
     
     
         % Store number of out of boundary steps (punishments) 
    numHillSteps = zeros(totalTrials, 1); 
     
    % Initializing actor and critic weights 
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    v = zeros(totalStates, totalAgents, 3); 
    w = zeros(totalStates, totalAgents,3); 
     
    %Northern & Eastern Boundary Penalty Association 10x10 
    for ii = 1 : gridSize 
        v(ii,1,2) = -1; 
        v(ii*10,2,2) = -1; 
    end 
     
    %Southern Boundary Penalty Association 10x10 
    for jj=91 : 100 
        v(jj,3,2) = -1; 
    end 
     
    %Western Boundary Penalty Associationv 10x10 
    for hh=1 : gridSize 
        v((hh*10)-9,4,2) = -1; 
    end 
     
     
     
     
    %reward at astate 46 CHANGED BECAUSE WAS WRONG 
    v(45,2,1) = 1; 
    v(45,2,2) = 1; 
    w(45,2,1) = 1; 
    w(45,2,2) = 1; 
    w(45,2,3) = 1; 
    v(45,2,3) = 1; 
     
    v(56,1,1) = 1; 
    v(56,1,2) = 1; 
    w(56,1,1) = 1; 
    w(56,1,2) = 1; 
    w(56,1,3) = 1; 
    v(56,1,3) = 1; 
     
    v(36,3,1) = 1; 
    v(36,3,2) = 1; 
    w(36,3,1) = 1; 
    w(36,3,2) = 1; 
    w(36,3,3) = 1; 
    v(36,3,3) = 1; 
     
    v(47,4,1) = 1; 
    v(47,4,2) = 1; 
    w(47,4,1) = 1; 
    w(47,4,2) = 1; 
    w(47,4,3) = 1; 
    v(47,4,3) = 1; 
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    %building danger zone that would cost more to cross 
     
    %state 34 
     
    %comimg from west 
    v(33,2,3) =  -0.4; 
    w(33,2,3) =  -0.4; 
     
    %coming from south 
    v(44,1,3) =  -0.4; 
    w(44,1,3) =  -0.4; 
     
    %coming from north 
    v(24,3,3) =  -0.4; 
    w(24,3,3) = -0.4; 
     
    %coming from east 
    v(35,4,3) =  -0.4; 
    w(35,4,3) =  -0.4; 
     
    %state 35 
     
    %comimg from west 
    v(34,2,3) =  -0.6; 
    w(34,2,3) =  -0.6; 
     
    %coming from south 
    v(45,1,3) =  -0.6; 
    w(45,1,3) =  -0.6; 
     
    %coming from north 
    v(25,3,3) =  -0.6; 
    w(25,3,3) =  -0.6; 
     
    %coming from east 
    v(36,4,3) =  -0.6; 
    w(36,4,3) =  -0.6; 
     
    %state 36 
     
    %comimg from west 
    v(35,2,3) =  -0.8; 
    w(35,2,3) = -0.8; 
     
    %coming from south 
    v(46,1,3) =  -0.8; 
    w(46,1,3) =  -0.8; 
     
    %coming from north 
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    v(26,3,3) =  -0.8; 
    w(26,3,3) =  -0.8; 
     
    %coming from east 
    v(37,4,3) =  -0.8; 
    w(37,4,3) = -0.8; 
     
    %state 43 
     
    %comimg from west 
    v(42,2,3) = -0.1; 
    w(42,2,3) = -0.1; 
     
    %coming from south 
    v(53,1,3) = -0.1; 
    w(53,1,3) = -0.1; 
     
    %coming from north 
    v(33,3,3) = -0.1; 
    w(33,3,3) = -0.1; 
     
    %coming from east 
    v(44,4,3) = -0.1; 
    w(44,4,3) = -0.1; 
     
    %state 53 
     
    %comimg from west 
    v(52,2,3) = -0.2; 
    w(52,2,3) = -0.2; 
     
    %coming from south 
    v(63,1,3) = -0.2; 
    w(63,1,3) = -0.2; 
     
    %coming from north 
    v(43,3,3) = -0.2; 
    w(43,3,3) = -0.2; 
     
    %coming from east 
    v(54,4,3) =  -0.2; 
    w(54,4,3) =  -0.2; 
     
     
    for i = 1 : totalTrials 
        disp(j+(i/100)) 
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        % while (randomStartState ~= 0 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 23 || 29 || 33 || 39 || 
43 || 49 || 53 || 59 || 63 || 69 || 73 || 74 || 75 || 76 || 77 || 78 || 79) 
         
         
        %       % Random Starting Location 
        %             stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1 
        %             vectorMax = max(stochGrid);% Return the maximum value of each column 
        %             big = max(vectorMax);%Determine maximum value of this vector of 5 values 
        %             binaryMap = stochGrid==big % Create a binary matrix indicating position of max 
value 
        %             [row_M,col_N] = find(stochGrid==big); 
        %             randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted 
to comply with my notation) 
        %             randomStartState 
         
         
         
        %  end 
         
         
        %  r = randi([1 10],1,1) 
         
        %             % Assign random co-ordinates to each trials starting position/state 
        %             startM = row_M; 
        %             startN = col_N; 
         
        % Current position on grid is represented by m,n 
        m = startM; 
        n = startN; 
        prevM = startM; 
        prevN = startN; 
         
        % % Clean some variables 
        % p = zeros(totalAgents,1); 
        % oldp = p; 
         
        % Clean some variables 
        p = zeros(totalAgents,3); 
        oldp(:,1) = p(:,1); 
        oldp(:,2) = p(:,2); 
        oldp(:,3) = p(:,3); 
         
        % Begin stepping through a path 
        found = 0; 
        while(found == 0) 
             
            % Increment # steps taken this trial 
            numSteps(i) = numSteps(i) + 1; 
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            % Find probabilities from actor weights 
            sumWeights = zeros(totalAgents,1); 
            sumWeights2 = zeros(totalAgents,1); 
            sumWeights3 = zeros(totalAgents,1); 
            ro = zeros(totalStates, totalAgents); 
            ro2 = zeros(totalStates, totalAgents); 
            ro3 = zeros(totalStates, totalAgents); 
            for agent = 1 : totalAgents 
                for state = 1 : totalStates 
                    %ro(state, agent) = logsig(w(state, agent)); 
                    ro(state, agent) = logsig(w(state, agent,1)); 
                    ro2(state, agent) = logsig(w(state, agent, 2)); 
                    ro3(state, agent) = logsig(w(state, agent, 3)); 
                    sumWeights(agent) = sumWeights(agent) + ro(state, agent); 
                    sumWeights2(agent) = sumWeights2(agent) + ro2(state, agent); 
                    sumWeights3(agent) = sumWeights3(agent) + ro3(state, agent); 
                end 
            end 
            % Perform an observation (using boxes system) 
            stidx = ((m - 1) * gridSize) + n; 
            X = zeros(totalStates, 1); 
            X(stidx) = 1; 
             
            % Finding final probability 
            P = zeros(totalAgents, 1); 
            P2 = zeros(totalAgents, 1); 
            P3 = zeros(totalAgents, 1); 
            for agent = 1 : totalAgents 
                P(agent) = ro(stidx, agent); 
                P2(agent) = ro2(stidx, agent); 
                P3(agent) = ro3(stidx, agent); 
            end 
            % Creating action set avoiding grid borders 
            %N is the new m axis position after moving North 
            N = m - 1; 
            if(N < 1) 
                N = 1; 
                northCount = northCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
             
            E = n + 1; 
            if(E > gridSize) 
                E = gridSize; 
                eastCount = eastCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
             
            S = m + 1; 
            if(S > gridSize) 



                                       

Page 163 of 233 
 

Appendix A 

                southCount = southCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
                S = gridSize; 
            end 
             
            W = n - 1; 
            if(W < 1) 
                W = 1; 
                westCount = westCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
             
             
             
            %Detecting when agent has encountered an Obstacle/Hill 
            %State 43 
            if (m == 5 && n == 3) 
                 S43hillCount = S43hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 53 
            if (m == 6 && n == 3) 
                 S53hillCount = S53hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 34 
            if (m == 4 && n == 4) 
                 S34hillCount = S34hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 35 
            if (m == 4 && n == 5) 
                 S35hillCount = S35hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 36 
            if (m == 4 && n == 6) 
                 S36hillCount = S36hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end   
             
            % Initializing values 
            Nu = zeros(totalAgents, 1); 
            Nu2 = zeros(totalAgents, 1); 
            Nu3 = zeros(totalAgents, 1); 
            stdev = zeros(totalAgents, 1); 
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            stdev2 = zeros(totalAgents, 1); 
            stdev3 = zeros(totalAgents, 1); 
             
            % Stochastic random number generator 
            for agent = 1 : totalAgents 
                %stdev(agent) = 2*logsig(p(agent))-1; 
                stdev(agent) = 2*logsig(p(agent,1))-1; 
                stdev2(agent) = 2*logsig(p(agent,2))-1; 
                stdev3(agent) = 2*logsig(p(agent,3))-1; 
                Nu(agent) = stdev(agent)*randn; 
                Nu2(agent) = stdev2(agent)*randn; 
                Nu3(agent) = stdev3(agent)*randn; 
                if Nu(agent) >= 1 
                    Nu(agent) = 1; 
                elseif Nu(agent) <= -1 
                    Nu(agent) = -1; 
                end 
                 
                if Nu2(agent) >= 1 
                    Nu2(agent) = 1; 
                elseif Nu2(agent) <= -1 
                    Nu2(agent) = -1; 
                end 
                 
                if Nu3(agent) >= 1 
                    Nu3(agent) = 1; 
                elseif Nu3(agent) <= -1 
                    Nu3(agent) = -1; 
                end 
                 
            end 
            %troubles >> we need to evaluate both choices (obj1 & obl2) and decide with the 
scalarized values 
            % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 1 
            choices = zeros(totalAgents, 1); 
            for agent=1:totalAgents 
                choices(agent) = P(agent)+Nu(agent); 
            end 
             
            % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 2 
            choices2 = zeros(totalAgents, 1); 
            for agent=1:totalAgents 
                choices2(agent) = P2(agent)+Nu2(agent); 
            end 
             
            choices3 = zeros(totalAgents, 1); 
            for agent=1:totalAgents 
                choices3(agent) = P3(agent)+Nu3(agent); 
            end 
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            %here, we need to evaluate both choice from the point of view of each 
            %objective, basivally, what we do is applying twice a single objective 
            %action selection. for the moment, we use a greedy selection 
             
            %we choose an index for objective 1 
            % Choose the path with the maximum probability, or explore 
            indices = find(choices == max(choices)); 
            maximum = max(choices); 
            if((length(indices) == 1) && (maximum >= epsilon)) 
                index1 = indices(1); 
            else 
                index1 = ceil(length(choices) * rand); % randomly select direction 
            end 
             
            %we choose an index for objective 2 
            % Choose the path with the maximum probability, or explore 
            indices2 = find(choices2 == max(choices2)); 
            maximum2 = max(choices2); 
            if((length(indices2) == 1) && (maximum2 >= epsilon)) 
                index2 = indices2(1); 
            else 
                index2 = ceil(length(choices2) * rand); % randomly select direction 
            end 
             
            indices3 = find(choices3 == max(choices3)); 
            maximum3 = max(choices3); 
            if((length(indices3) == 1) && (maximum3 >= epsilon)) 
                index3 = indices3(1); 
            else 
                index3 = ceil(length(choices3) * rand); % randomly select direction 
            end 
             
             
    %If random number is less than 0.5 (50% chance of choosing index 1) 
            %If random number is less than 0.2 (20% chance of choosing index 1) 
            choice_rand = rand; 
            windy_rand = rand; 
             
            disp(' '); 
            disp(stidx); 
             
            if (windy_rand < WindChance)         
                
             
  
                if (n == 1 && m>1) 
                    disp('N WAS 1, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 



                                       

Page 166 of 233 
 

Appendix A 

                if (n == 2 && m>1) 
                    disp('N WAS 2, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 3 && m>1) 
                    disp('N WAS 3, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 4 && m>1) 
                    disp('N WAS 4, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 5 && m>2) 
                    disp('N WAS 5, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 6 && m>2) 
                    disp('N WAS 6, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 7 && m>1) 
                    disp('N WAS 7, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 8 && m>1) 
                    disp('N WAS 8, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 9 && m>1) 
                    disp('N WAS 9, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 10 && m>1) 
                    disp('N WAS 10, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                 
                  
                 disp(' '); 
                 
            else 
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                disp('NO WIND'); 
        
                if(choice_rand < W1) 
                    index = index1; 
                elseif( choice_rand < W1+W2) 
                    index = index2; 
                else 
                    index = index3; 
                end 
                 
                 disp(' '); 
                  
            end %end primary if 
  
           %Take action 
            r=zeros(totalAgents,1); 
            if(index == 1) % grid(m-1,n) 
                m = N; 
                r(index) = sign(m-rewardM); 
            elseif(index == 2) % grid(m,n+1) 
                n = E; 
                r(index) = sign(rewardN-n); 
            elseif(index == 3) % grid(m+1,n) 
                m = S; 
                r(index) = sign(rewardM-m); 
            elseif(index == 4) % grid(m,n-1) 
                n = W; 
                r(index) = sign(n-rewardN); 
            else 
                disp('error random number too big'); 
            end 
             
            % Stop after this step if the reward was found 
            if(m == rewardM && n == rewardN) 
                found = 1; 
                disp(46); 
            end 
             
            % Saving prediction information 
            oldp(:,1) = p(:,1); 
            oldp(:,2) = p(:,2); 
            oldp(:,3) = p(:,3); 
            p = zeros(totalAgents,3); 
             
             
            % % Computing the prediction of eventual reinforcement 
            % for agent = 1:totalAgents 
            % p(agent) = v(stidx,agent); 
            % end 
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            % Computing the prediction of eventual reinforcement 
            for agent = 1:totalAgents 
                p(agent,1) = v(stidx,agent,1); 
                p(agent,2) = v(stidx,agent,2); 
                p(agent,3) = v(stidx,agent,3); 
            end 
            % Computing the prediction error using temporal differences method 
            rbar=zeros(totalAgents,1); 
            rbar2=zeros(totalAgents,1); 
            rbar3=zeros(totalAgents,1); 
            for agent = 1:totalAgents 
                %predErr = gamma*p(agent) - oldp(agent); % 
                predErr = gamma*p(agent,1) - oldp(agent,1); % 
                predErr2 = gamma*p(agent,2) - oldp(agent,2); 
                predErr3 = gamma*p(agent,3) - oldp(agent,3); 
                %rbar(agent) = r(agent) + predErr; 
                rbar(agent) = r(agent) + predErr; 
                rbar2(agent) = r(agent) + predErr2; 
                rbar3(agent) = r(agent) + predErr3; 
            end 
             
            stateF = stidx; 
            agentF = index; 
            % Learning thev value functions 
            %for agent = 1 : totalAgents 
            %for state = 1 : totalStates 
             
            %Actor Policy functions for 1st & Second dimention/objective of storage matrix 
            w( stateF, agentF, 1) = w( stateF, agentF, 1 ) + alpha * rbar( agentF ) * X( stateF ) * ( 1 
/ro ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,1 ) ) * sumWeights( agentF ); 
            w( stateF, agentF, 2) = w( stateF, agentF, 2 ) + alpha * rbar2( agentF ) * X( stateF ) * ( 1 
/ro2 ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,2 ) ) * sumWeights2( agentF ); 
            w( stateF, agentF, 3) = w( stateF, agentF, 3 ) + alpha * rbar3( agentF ) * X( stateF ) * ( 1 
/ro3 ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,3 ) ) * sumWeights3( agentF ); 
             
            %Critic Value functions Value function for 1st and 2nd Objectives 
            v(stateF,agentF,1)=v(stateF,agentF,1)-beta*gamma*rbar(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
            v(stateF,agentF,2)=v(stateF,agentF,2)-beta*gamma*rbar2(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
            v(stateF,agentF,3)=v(stateF,agentF,3)-beta*gamma*rbar3(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
             
            %SHOULD WE USE THESE WEIGHTS IF THE OTHER CODE CHOOSES INDEX1 or 
            %INDEX2 BASED UPON THE WEIGHTs ANYWAY 
            %Scalarized Value function for BOTH Objectives 
            %v(stateF,agentF,3)=(v(stateF,agentF,1)*W1 + 
v(stateF,agentF,2)*W2)/NoOfObjectives; 
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            v(stateF,agentF,1)=(v(stateF,agentF,1)*W1 + v(stateF,agentF,2)*W2 + 
v(stateF,agentF,3)*W3)/NoOfObjectives; 
            
            w(stateF,agentF,1)=(w(stateF,agentF,1)*W1 + w(stateF,agentF,2)*W2 + 
w(stateF,agentF,3)*W3)/NoOfObjectives; 
             
            %Store scalarized Value functon back into the storage matrix (this can slow 
            %things down considerably) 
            %v(stateF,agentF,1)=v(stateF,agentF,3); 
             
            %end 
            %end 
             
            % update values for next step, and directional choices 
            prevM = m; 
            prevN = n; 
        end % end while not found 
    end %end totalTrials loop 
     
    % Update storage matrices for across all plays 
    totalNumSteps = totalNumSteps + numSteps; 
     
    % Update storage matrices for across all plays 
    totalNumBoundSteps =  totalNumBoundSteps + numBoundSteps; 
     
           % Update storage matrices for across all plays 
    totalNumHillSteps =  totalNumHillSteps + numHillSteps; 
     
     
end %end totalPlays loop 
  
outOfBoundsCount = northCount + eastCount + southCount + westCount; 
hillCount =  S43hillCount +  S53hillCount + S34hillCount +  S35hillCount +  S36hillCount; 
  
% %------------------------------------- 
% % Outputs 
% %------------------------------------- 
% % Average number of steps across all plays 
% plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
  
%------------------------------------- 
% Plot 2D Graphs for both objectives 
%------------------------------------- 
disp('GPFMORL Algorithm'); 
AverageBoundsCount = outOfBoundsCount/totalPlays 
AverageHillCount = hillCount/totalPlays 
disp(' '); 
  
% Average number of steps across all plays 
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
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title('GPFMORL Algorithm') 
xlabel('NoOfTrials') 
ylabel('NoOfSteps') 
hold on 
  
% Average number of boundary penaltys across all plays 
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--'); 
hold on 
  
  
% Average number of boundary penaltys across all plays 
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':'); 
  
legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills') 
hold off 
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GPFMORLPT 

%GPFMORL-PT Complex Enviroment with 3 Objectives 
%this 10x10 with ptmo0d 
%-------------RL Constants--------------- 
alpha = 0.003; % Actor learning rate 
beta = 0.005; % Critic learning rate 
epsilon = 0.01; % Exploration/explotation control parameter 
gamma = 0.95; % Discount factor 
  
totalActions = 4; % Number of possible actions 
totalAgents = totalActions; % Total number of learning agents 
  
totalPlays = 3; % Number of plays to average over (was 100) works at 1 
totalTrials = 40; % Trials per play (was 40) works at 20 
  
  
%-------------PT Constants--------------- 
  
pt_alpha = 0.88; 
pt_beta = 0.88; 
pt_lambda = 2.25; % loss aversion discount 
pt_gamma = 0.75; % probabiliy weighting coefficient 
  
%pt_w contains the weights of probabilities 
pt_w = zeros(4,3); 
  
%pt_nu contains the subjective values of each prospect 
pt_nu = zeros(4,3); 
  
%PT will contain the prospect theory value for each possible action 
PT = zeros(4,1); 
  
%RP is the two dimensional reference point 
RP = zeros(3,1); 
  
%-------------MORL Variables------------- 
NoOfObjectives = 3; % Specify any number of objectives 
W1 = 0.4; %Objective 1 weighting (reaching the helipad goal) Best@1 
W2 = 0.3; %Objective 2 weighting (Avoiding the grid boundarys) Best@ 
W3 = 0.3; %Objective 3 obstacle 
objectives = 3; 
%outOfBoundsCount = 0; //dont need to declare variables in matlab 
  
%Windy Grid World Enviroment Stochasticity  
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy 
  
  
PFMFactor = 0.1; %was o.1 
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% ----------Enviroment Constants--------- 
gridSize = 10; % Size of the Grid (was 10) 
totalStates = gridSize*gridSize; % Total number of system states 
rewardM = ceil(gridSize/2); % Location of reward in M axe 
rewardN = ceil(gridSize/2)+1; % Location of reward in N axe 
  
% ---------Variable Initialisation-------- 
totalNumSteps = zeros(totalTrials, 1);% Total # steps for each trial over all plays 
totalReward = zeros(totalTrials, totalAgents); 
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all 
plays 
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays 
  
  
plotX = zeros(totalTrials,1); 
plotY = zeros(totalTrials,1); 
  
trialCount = 1; 
  
startM = 2; % Location to start from in M axe 
startN = 2; % Location to start from in N axe // 
  
  
  
%Store the number of times that each boundary is crossed (for plot) 
northCount = 0; 
eastCount = 0; 
southCount = 0; 
westCount = 0; 
  
S43hillCount = 0; 
S53hillCount = 0; 
S34hillCount = 0; 
S35hillCount = 0; 
S36hillCount = 0; 
  
%---------------------------------------------------------------- 
% Begin stepping through the grid world enviroment using GPFMORL 
%---------------------------------------------------------------- 
for j = 1 : totalPlays 
    % Store # steps for each trial 
    numSteps = zeros(totalTrials, 1); 
     
    % Store number of out of boundary steps (punishments) 
    numBoundSteps = zeros(totalTrials, 1); 
     
         % Store number of out of boundary steps (punishments) 
    numHillSteps = zeros(totalTrials, 1); 
     
    % Initializing actor and critic weights 
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    v = zeros(totalStates, totalAgents, 3); 
    w = zeros(totalStates, totalAgents,3); 
     
    %reward at astate 46 CHANGED BECAUSE WAS WRONG 
    v(45,2,1) = 1; 
    v(45,2,2) = 1; 
    w(45,2,1) = 1; 
    w(45,2,2) = 1; 
    w(45,2,3) = 1; 
    v(45,2,3) = 1; 
     
    v(56,1,1) = 1; 
    v(56,1,2) = 1; 
    w(56,1,1) = 1; 
    w(56,1,2) = 1; 
    w(56,1,3) = 1; 
    v(56,1,3) = 1; 
     
     
     
    v(36,3,1) = 1; 
    v(36,3,2) = 1; 
    w(36,3,1) = 1; 
    w(36,3,2) = 1; 
    w(36,3,3) = 1; 
    v(36,3,3) = 1; 
     
    v(47,4,1) = 1; 
    v(47,4,2) = 1; 
    w(47,4,1) = 1; 
    w(47,4,2) = 1; 
    w(47,4,3) = 1; 
    v(47,4,3) = 1; 
     
    %building danger zone that would cost more to cross 
     
    %state 34 
     
    %comimg from west 
    v(33,2,3) =  -0.4; 
    w(33,2,3) =  -0.4; 
     
    %coming from south 
    v(44,1,3) =  -0.4; 
    w(44,1,3) =  -0.4; 
     
    %coming from north 
    v(24,3,3) =  -0.4; 
    w(24,3,3) = -0.4; 
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    %coming from east 
    v(35,4,3) =  -0.4; 
    w(35,4,3) =  -0.4; 
     
    %state 35 
     
    %comimg from west 
    v(34,2,3) =  -0.6; 
    w(34,2,3) =  -0.6; 
     
    %coming from south 
    v(45,1,3) =  -0.6; 
    w(45,1,3) =  -0.6; 
     
    %coming from north 
    v(25,3,3) =  -0.6; 
    w(25,3,3) =  -0.6; 
     
    %coming from east 
    v(36,4,3) =  -0.6; 
    w(36,4,3) =  -0.6; 
     
    %state 36 
     
    %comimg from west 
    v(35,2,3) =  -0.8; 
    w(35,2,3) = -0.8; 
     
    %coming from south 
    v(46,1,3) =  -0.8; 
    w(46,1,3) =  -0.8; 
     
    %coming from north 
    v(26,3,3) =  -0.8; 
    w(26,3,3) =  -0.8; 
     
    %coming from east 
    v(37,4,3) =  -0.8; 
    w(37,4,3) = -0.8; 
     
    %state 43 
     
    %comimg from west 
    v(42,2,3) = -0.1; 
    w(42,2,3) = -0.1; 
     
    %coming from south 
    v(53,1,3) = -0.1; 
    w(53,1,3) = -0.1; 
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    %coming from north 
    v(33,3,3) = -0.1; 
    w(33,3,3) = -0.1; 
     
    %coming from east 
    v(44,4,3) = -0.1; 
    w(44,4,3) = -0.1; 
     
    %state 53 
     
    %comimg from west 
    v(52,2,3) = -0.2; 
    w(52,2,3) = -0.2; 
     
    %coming from south 
    v(63,1,3) = -0.2; 
    w(63,1,3) = -0.2; 
     
    %coming from north 
    v(43,3,3) = -0.2; 
    w(43,3,3) = -0.2; 
     
    %coming from east 
    v(54,4,3) =  -0.2; 
    w(54,4,3) =  -0.2; 
     
     
     
    plotX = zeros(totalTrials,1); 
    plotY = zeros(totalTrials,1); 
     
    trialCount = 1; 
     
    RP = zeros(3,1); 
     
    %State, Action(2), ObjDimention = punishment 
     
    %Northern & Eastern Boundary Penalty Association 10x10 
    for ii = 1 : gridSize 
        v(ii,1,2) = -1; 
        v(ii*10,2,2) = -1; 
    end 
     
     
     
    %Southern Boundary Penalty Association 10x10 
    for jj=91 : 100 
        v(jj,3,2) = -1; 
    end 
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    %Western Boundary Penalty Associationv 10x10 
    for hh=1 : gridSize 
        v((hh*10)-9,4,2) = -1; 
    end 
     
     
     
     
    %  %Row 1 Puinsihments 
    %  v(1,1,2) = -1; 
    %  v(1,4,2) = -1; 
    %  v(2,1,2) = -1; 
    %  v(3,1,2) = -1; 
    %  v(4,1,2) = -1; 
    %  v(5,1,2) = -1; 
    %  v(5,2,2) = -1; 
    % 
    %  %Row 2 Puinsihments 
    %  v(6,4,2) = -1; 
    %  v(10,2,2) = -1; 
    % 
    %  %Row 3 Puinsihments 
    %  v(11,4,2) = -1; 
    %  v(15,2,2) = -1; 
    % 
    %  %Row 4 Puinsihments 
    %  v(16,4,2) = -1; 
    %  v(20,2,2) = -1; 
    % 
    %  %Row 5 Puinsihments 
    %  v(21,3,2) = -1; 
    %  v(21,4,2) = -1; 
    %  v(22,3,2) = -1; 
    %  v(23,3,2) = -1; 
    %  v(24,3,2) = -1; 
    %  v(25,2,2) = -1; 
    %  v(25,3,2) = -1; 
     
     
     
     
    for i = 1 : totalTrials 
        disp(j+(i/100)) 
         
        %        % Random Starting Location 
        %        stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1 
        %        vectorMax = max(stochGrid);% Return the maximum value of each column 
        %        big = max(vectorMax);%Determine maximum value of this vector of 5 values 
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        %        binaryMap = stochGrid==big % Create a binary matrix indicating position of max 
value 
        %        [row_M,col_N] = find(stochGrid==big) 
        %        randomStartState = find(binaryMap') % find the indice of the 5x5 
        %        grid (inverted to comply with my notation) 
         
        %        % Assign random co-ordinates to each trials starting position/state 
        %        startM = row_M; 
        %        startN = col_N; 
         
        % Current position on grid is represented by m,n 
        m = startM; 
        n = startN; 
        prevM = startM; 
        prevN = startN; 
         
         
        RP = zeros(3,1); 
         
        % % Clean some variables 
        % p = zeros(totalAgents,1); 
        % oldp = p; 
         
         
        % Clean some variables 
        p = zeros(totalAgents,3); 
        oldp(:,1) = p(:,1); 
        oldp(:,2) = p(:,2); 
        oldp(:,3) = p(:,3); 
         
         
        % Begin stepping through a path 
        found = 0; 
        stepcount = 0; 
        while(found == 0) 
            stepcount = stepcount +1; 
             
            % Increment # steps taken this trial 
            numSteps(i) = numSteps(i) + 1; 
             
            % Find probabilities from actor weights 
            sumWeights = zeros(totalAgents,1); 
            sumWeights2 = zeros(totalAgents,1); 
            sumWeights3 = zeros(totalAgents,1); 
             
            ro = zeros(totalStates, totalAgents); 
            ro2 = zeros(totalStates, totalAgents); 
            ro3 = zeros(totalStates, totalAgents); 
             
            for agent = 1 : totalAgents 
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                for state = 1 : totalStates 
                    %ro(state, agent) = logsig(w(state, agent)); 
                    ro(state, agent) = logsig(w(state, agent,1)); 
                    ro2(state, agent) = logsig(w(state, agent, 2)); 
                    ro3(state, agent) = logsig(w(state, agent, 3)); 
                     
                    sumWeights(agent) = sumWeights(agent) + ro(state, agent); 
                    sumWeights2(agent) = sumWeights2(agent) + ro2(state, agent); 
                    sumWeights3(agent) = sumWeights3(agent) + ro3(state, agent); 
                     
                end 
            end 
            % Perform an observation (using boxes system) 
            stidx = ((m - 1) * gridSize) + n; 
            X = zeros(totalStates, 1); 
            X(stidx) = 1; 
             
            % Finding final probability 
            P = zeros(totalAgents, 1); 
            P2 = zeros(totalAgents, 1); 
            P3 = zeros(totalAgents, 1); 
            for agent = 1 : totalAgents 
                P(agent) = ro(stidx, agent); 
                P2(agent) = ro2(stidx, agent); 
                P3(agent) = ro3(stidx, agent); 
            end 
            % Creating action set avoiding grid borders 
            %N is the new m axis position after moving North 
            N = m - 1; 
            if(N < 1) 
                %     %Here i should punish this agents action by reducing probability of 
                %     %moving north in that state 
                %     %Find what state we are currently in 
                %     CurrentState = find(X == max(X)); 
                % 
                %     %Reduce the North agents probability when in states near boundary 
                %     ro(CurrentState,1) = ro(CurrentState,1)- PFMFactor; 
                % 
                %     %Reduce the North agents probability when in states near boundary 
                %     v(CurrentState,1,2) = ro(CurrentState,1)- PFMFactor*northCount; 
                %     northCount = northCount + 1; 
                 
                N = 1; 
                 
                northCount = northCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
             
             
            E = n + 1; 
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            if(E > gridSize) 
                %     %Find what state we are currently in 
                %     CurrentState = find(X == max(X)); 
                % 
                %     %Reduce the East agents probability when in states near boundary 
                %     ro(CurrentState,2) = ro(CurrentState,2)- PFMFactor; 
                % 
                %      %Reduce the Easts agents probability when in states near boundary 
                %     v(CurrentState,2,2) = ro(CurrentState,2)- PFMFactor*eastCount; 
                %     eastCount = eastCount + 1; 
                % 
                E = gridSize; 
                 
                eastCount = eastCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
                 
            end 
            S = m + 1; 
            if(S > gridSize) 
                %      %Find what state we are currently in 
                %     CurrentState = find(X == max(X)); 
                % 
                %     %Reduce the South agents probability when crossing grid boundary 
                %      ro(CurrentState,3) = ro(CurrentState,3)- PFMFactor; 
                % 
                %     %Reduce the South agents probability when in states near boundary 
                %     v(CurrentState,3,2) = ro(CurrentState,3)- PFMFactor*southCount; 
                %     southCount = southCount + 1; 
                southCount = southCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
                 
                S = gridSize; 
            end 
            W = n - 1; 
            if(W < 1) 
                %      %Find what state we are currently in 
                %     CurrentState = find(X == max(X)); 
                % 
                %     %Reduce the West agents probability when in states near boundary 
                %      ro(CurrentState,4) = ro(CurrentState,4)- PFMFactor; 
                % 
                %     %Reduce the West agents probability when in states near boundary 
                %     v(CurrentState,4,2) = ro(CurrentState,4)- PFMFactor*westCount; 
                %     westCount = westCount + 1; 
                 
                W = 1; 
                westCount = westCount + 1; 
                numBoundSteps(i) =  numBoundSteps(i) + 1; 
            end 
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            % Initializing values 
            Nu = zeros(totalAgents, 1); 
            Nu2 = zeros(totalAgents, 1); 
            Nu3 = zeros(totalAgents, 1); 
             
            stdev = zeros(totalAgents, 1); 
            stdev2 = zeros(totalAgents, 1); 
            stdev3 = zeros(totalAgents, 1); 
             
            % Stochastic random number generator 
            for agent = 1 : totalAgents 
                %stdev(agent) = 2*logsig(p(agent))-1; 
                stdev(agent) = 2*logsig(p(agent,1))-1; 
                stdev2(agent) = 2*logsig(p(agent,2))-1; 
                stdev3(agent) = 2*logsig(p(agent,3))-1; 
                 
                Nu(agent) = stdev(agent)*randn; 
                Nu2(agent) = stdev2(agent)*randn; 
                Nu3(agent) = stdev3(agent)*randn; 
                if Nu(agent) >= 1 
                    Nu(agent) = 1; 
                elseif Nu(agent) <= -1 
                    Nu(agent) = -1; 
                end 
                 
                if Nu2(agent) >= 1 
                    Nu2(agent) = 1; 
                elseif Nu2(agent) <= -1 
                    Nu2(agent) = -1; 
                end 
                 
                if Nu3(agent) >= 1 
                    Nu3(agent) = 1; 
                elseif Nu3(agent) <= -1 
                    Nu3(agent) = -1; 
                end 
                 
            end 
             
             
                    %Detecting when agent has encountered an Obstacle/Hill 
            %State 43 
            if (m == 5 && n == 3) 
                 S43hillCount = S43hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 53 
            if (m == 6 && n == 3) 
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                 S53hillCount = S53hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 34 
            if (m == 4 && n == 4) 
                 S34hillCount = S34hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
            %State 35 
            if (m == 4 && n == 5) 
                 S35hillCount = S35hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end 
             
               %State 36 
            if (m == 4 && n == 6) 
                 S36hillCount = S36hillCount + 1; 
                numHillSteps(i) =  numHillSteps(i) + 1; 
            end   
             
             
            %Prospect Theory values computation 
            %w > probability weights 
             
            for agent=1 : totalAgents 
                pt_w(agent,1) = (P(agent)^pt_gamma) / ( P(agent)^pt_gamma + 
((1+P(agent)^pt_gamma))^(1/pt_gamma) ); 
                pt_w(agent,2) = (P2(agent)^pt_gamma) / ( P2(agent)^pt_gamma + 
((1+P2(agent)^pt_gamma))^(1/pt_gamma) ); 
                pt_w(agent,3) = (P3(agent)^pt_gamma) / ( P3(agent)^pt_gamma + 
((1+P3(agent)^pt_gamma))^(1/pt_gamma) ); 
                 
                if(w(stidx,agent,1) >= RP(1)) 
                    pt_nu(agent,1) = (w(stidx,agent,1) - RP(1))^pt_alpha; 
                else 
                    pt_nu(agent,1) = (-pt_lambda*(RP(1) - v(stidx,agent,1)))^pt_beta; 
                end 
                 
                if(w(stidx,agent,2) >= RP(2)) 
                    pt_nu(agent,2) = (w(stidx,agent,2) - RP(2))^pt_alpha; 
                else 
                    pt_nu(agent,2) = (-pt_lambda*(RP(2) - v(stidx,agent,2)))^pt_beta; 
                end 
                 
                if(w(stidx,agent,3) >= RP(3)) 
                    pt_nu(agent,3) = (w(stidx,agent,3) - RP(3))^pt_alpha; 
                else 
                    pt_nu(agent,3) = (-pt_lambda*(RP(3) - v(stidx,agent,3)))^pt_beta; 
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                end 
                 
                PT(agent) = pt_nu(agent,1)*pt_w(agent,1) + pt_nu(agent,2)*pt_w(agent,2) + 
pt_nu(agent,3)*pt_w(agent,3); 
                 
            end 
             
             
             
            % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 1 
%             choices = zeros(totalAgents, 1); 
%             for agent=1:totalAgents 
%                 choices(agent) = P(agent)+Nu(agent); 
%             end 
%              
%             % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 2 
%             choices2 = zeros(totalAgents, 1); 
%             for agent=1:totalAgents 
%                 choices2(agent) = P2(agent)+Nu2(agent); 
%             end 
%              
             
            %action selection 
             
             
             
             
            %we choose an index 
            % Choose the path with the maximum probability, or explore 
            indices = find(PT == max(PT)); 
            maximum = max(PT); 
            if((length(indices) == 1) && (maximum >= epsilon)) 
                index = indices(1); 
            else 
                index = ceil(length(PT) * rand); % randomly select direction 
            end 
             
            %we choose an index for objective 2 
            % Choose the path with the maximum probability, or explore 
            %             indices2 = find(choices2 == max(choices2)); 
            %             maximum2 = max(choices2); 
            %             if((length(indices2) == 1) && (maximum2 >= epsilon)) 
            %                 index2 = indices2(1); 
            %             else 
            %                 index2 = ceil(length(choices2) * rand); % randomly select direction 
            %             end 
            % 
             
            %now we have two choices, one for each objective 
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            %we now need to choose one, we can't compute both of the final values, in a 
            %real environment, the response to the action would come up after taking 
            %action, so we will choose stochasticly, taking the objectives weights into 
            %account 
             
            %NB: this is where we are gonna integrate Prospect theory 
             
            %             choice_rand = rand; 
            %             if(choice_rand < W1) 
            %                 index = index1; 
            %             else 
            %                 index = index2; 
            %             end 
             
             
             windy_rand = rand; 
              
              disp(' '); 
            disp(stidx); 
             
            if (windy_rand < WindChance)         
                
             
  
                if (n == 1 && m>1) 
                    disp('N WAS 1, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 2 && m>1) 
                    disp('N WAS 2, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 3 && m>1) 
                    disp('N WAS 3, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 4 && m>1) 
                    disp('N WAS 4, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 5 && m>2) 
                    disp('N WAS 5, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 6 && m>2) 
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                    disp('N WAS 6, Wind Strength = 2'); 
                    WindStrength = 2; 
                    m = m-WindStrength; 
                end 
                if (n == 7 && m>1) 
                    disp('N WAS 7, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 8 && m>1) 
                    disp('N WAS 8, Wind Strength = 1'); 
                    WindStrength = 1; 
                    m = m-WindStrength; 
                end 
                if (n == 9 && m>1) 
                    disp('N WAS 9, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                if (n == 10 && m>1) 
                    disp('N WAS 10, Wind Strength = 0'); 
                    WindStrength = 0; 
                    m = m-WindStrength; 
                end 
                 
                  
                 disp(' '); 
                 
            else 
                disp('NO WIND'); 
        
            end %end primary if 
             
            %Take action 
            r=zeros(totalAgents,1); 
            if(index == 1) % grid(m-1,n) 
                m = N; 
                r(index) = sign(m-rewardM); 
            elseif(index == 2) % grid(m,n+1) 
                n = E; 
                r(index) = sign(rewardN-n); 
            elseif(index == 3) % grid(m+1,n) 
                m = S; 
                r(index) = sign(rewardM-m); 
            elseif(index == 4) % grid(m,n-1) 
                n = W; 
                r(index) = sign(n-rewardN); 
            else 
                disp('error random number too big'); 
            end 



                                       

Page 185 of 233 
 

Appendix A 

            % Stop after this step if the reward was found 
            if(m == rewardM && n == rewardN) 
                found = 1; 
                disp(46); 
            end 
            % Saving prediction information 
            oldp(:,1) = p(:,1); 
            oldp(:,2) = p(:,2); 
            oldp(:,3) = p(:,3); 
            p = zeros(totalAgents,3); 
             
            % % Computing the prediction of eventual reinforcement 
            % for agent = 1:totalAgents 
            % p(agent) = v(stidx,agent); 
            % end 
             
             
            % Computing the prediction of eventual reinforcement 
            for agent = 1:totalAgents 
                p(agent,1) = v(stidx,agent,1); 
                p(agent,2) = v(stidx,agent,2); 
                p(agent,3) = v(stidx,agent,3); 
            end 
            % Computing the prediction error using temporal differences method 
            rbar=zeros(totalAgents,1); 
            rbar2=zeros(totalAgents,1); 
            rbar3=zeros(totalAgents,1); 
            for agent = 1:totalAgents 
                %predErr = gamma*p(agent) - oldp(agent); % 
                predErr = gamma*p(agent,1) - oldp(agent,1); % 
                predErr2 = gamma*p(agent,2) - oldp(agent,2); 
                predErr3 = gamma*p(agent,3) - oldp(agent,3); 
                %rbar(agent) = r(agent) + predErr; 
                rbar(agent) = r(agent) + predErr; 
                rbar2(agent) = r(agent) + predErr2; 
                rbar3(agent) = r(agent) + predErr3; 
            end 
            rf_tmp = zeros(3,1); 
             
            % Learning the value functions 
            stateF = stidx; 
            agentF = index; 
            
             
            %Actor & Critic Value functions updating 1st dimention/objective of storage matrix 
            w( stateF, agentF, 1) = w( stateF, agentF, 1 ) + alpha * rbar( agentF ) * X( stateF ) * ( 1 
/ro ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,1 ) ) * sumWeights( agentF );  
            w( stateF, agentF, 2) = w( stateF, agentF, 2 ) + alpha * rbar2( agentF ) * X( stateF ) * ( 1 
/ro2 ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,2 ) ) * sumWeights2( agentF ); 
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            w( stateF, agentF, 3) = w( stateF, agentF, 3 ) + alpha * rbar3( agentF ) * X( stateF ) * ( 1 
/ro3 ( stateF, agentF, 1 ) ) * exp( -w( stateF, agentF,3 ) ) * sumWeights3( agentF ); 
             
            v(stateF,agentF,1)=v(stateF,agentF,1)-beta*gamma*rbar(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
            v(stateF,agentF,2)=v(stateF,agentF,2)-beta*gamma*rbar2(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
            v(stateF,agentF,3)=v(stateF,agentF,3)-beta*gamma*rbar3(agentF)*X(stateF); %Takes 
the form of TD error scalar signal 
             
            %Scalarized Value function for BOTH Objectives 
           % v(stateF,agentF,3)=(v(stateF,agentF,1)*W1 + 
v(stateF,agentF,2)*W2)/NoOfObjectives; 
             
            %Store scalarized Value functon back into the storage matrix (this can slow 
            %things down considerably) 
            %v(stateF,agentF,1)=v(stateF,agentF,3); 
             
             
            %update the reference point for prospect theory 
     
            RP(1) =  RP(1) + v(stateF,agent,1); 
            RP(2) =  RP(2) + v(stateF,agent,2); 
            RP(3) =  RP(3) + v(stateF,agent,3); 
              
            
%               
%               plot(RP(1)*10, RP(2)*10,'o'); 
%               hold on 
%              
%               RP(1) = RP(1) / stepcount; 
%             RP(2) = RP(2) / stepcount; 
              
            % update values for next step, and directional choices 
            prevM = m; 
            prevN = n; 
        end % end while not found 
%          
%         plotX(trialCount) = v(state,agent,1); 
%         plotY(trialCount) = v(state,agent,2); 
         
        trialCount = trialCount + 1; 
         
%         plot(v(state,agent,1),v(state,agent,2),'o'); 
%         hold on 
         
         
         
    end %end totalTrials loop 
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    %plot(plotX, plotY, 'o'); 
%     xlabel('1st objective'); 
%     ylabel('2nd objective'); 
     
    % Update storage matrices for across all plays 
    totalNumSteps = totalNumSteps + numSteps; 
     
    % Update storage matrices for across all plays 
    totalNumBoundSteps =  totalNumBoundSteps + numBoundSteps; 
     
        % Update storage matrices for across all plays 
    totalNumHillSteps =  totalNumHillSteps + numHillSteps; 
     
end %end totalPlays loop 
  
outOfBoundsCount = northCount + eastCount + southCount + westCount; 
hillCount =  S43hillCount +  S53hillCount + S34hillCount +  S35hillCount +  S36hillCount; 
  
% %------------------------------------- 
% % Outputs 
% %------------------------------------- 
% % Average number of steps across all plays 
% plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
  
%------------------------------------- 
% Plot 2D Graphs for both objectives 
%------------------------------------- 
disp('GPFMORLPTv5 Hills Algorithm'); 
AverageBoundsCount = outOfBoundsCount/totalPlays 
AverageHillCount = hillCount/totalPlays 
disp(' '); 
  
% Average number of steps across all plays 
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-'); 
title('GPFMORLPT Hills Algorithm') 
xlabel('NoOfTrials') 
ylabel('NoOfSteps') 
hold on 
  
% Average number of boundary penaltys across all plays 
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--'); 
hold on 
  
% Average number of boundary penaltys across all plays 
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':'); 
  
legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills') 
hold off 
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Unmanned Aerial Vehicle Practical 
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UAV Practical Test 
//UAV v1    
#include "ardrone/ardrone.h" 
#include <fstream> 
 
//--------------------Variables---------------------- 
double innerPower = 0.1; // Safe zone potential field magnitude - set to 0 when RL 
decides actions 
double outerPower = 0.2; // Danger zone potential field magnitude 
double altitudePower = 0.1; // Altiitude velocity 
double distancePower = 0.1; 
bool AUTOfloor = false;  // Set Automatic Floor Reactive Behaviour ON or OFF 
bool AUTOfront = false;  // Set Automatic Front Reactive Behaviour ON or OFF 
bool AUTOland = false;  // Set Automatic Landing flag ON or OFF 
bool rec = false; 
const int gridSize = 5;  
int DroneState = 0;   // Current state that the UAV is hovering above or in 
front of 
int prevDroneState = 0;  // Previous state that the UAV was at before moving to its 
current state 
int targetArea;    // Used for moving forward and backward when using 
forward camera 
bool targetReached = false; // Flag for when front camera detects centralised target at 
appropiate distance 
int XpixelSegments; 
int YpixelSegments; 
int m; //not used atm 
int n; //not used atm 
 
bool UpANDSwitch = false; //set to true for automatic increase of altitude and switch cameras  
 
//------------------Initialisation-------------------- 
//File Writing of DroneState History 
std::ofstream outputFile; //Global create output file for storing what states have been visited 
 
// GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Forward Target) 
//int minH = 90, maxH = 229; 
//int minS = 187, maxS = 255; 
//int minV = 39, maxV = 166; 
 
//Improved for Salford Royal Visit 
int minH = 0, maxH = 128; //max H best at 155 for ocluded corner (Fixed Forward Target) 
int minS = 136, maxS = 235; 
int minV = 0, maxV = 103; 
 
//Create video object 
CvVideoWriter *video; 
 
int main(int argc, char **argv) 
{ 
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    // AR.Drone class 
    ARDrone ardrone; 
 
    // Initialize 
    if (!ardrone.open()) { 
        printf("Failed to initialize.\n"); 
        return -1;} 
 
 // Image of AR.Drone's camera 
    IplImage *image = ardrone.getImage(); 
 
  //// Orientation 
  //      double roll  = ardrone.getRoll(); 
  //      double pitch = ardrone.getPitch(); 
  //      double yaw   = ardrone.getYaw(); 
  //      printf("ardrone.roll  = %3.2f [deg]\n", roll  * RAD_TO_DEG); 
  //      printf("ardrone.pitch = %3.2f [deg]\n", pitch * RAD_TO_DEG); 
  //      printf("ardrone.yaw   = %3.2f [deg]\n", yaw   * RAD_TO_DEG); 
 
        //// Altitude 
        double altitude = ardrone.getAltitude(); 
        printf("ardrone.altitude = %3.2f [m]\n", altitude); 
 
        //// Velocity 
        //double vx, vy, vz; 
        //double velocity = ardrone.getVelocity(&vx, &vy, &vz); 
        //printf("ardrone.vx = %3.2f [m/s]\n", vx); 
        //printf("ardrone.vy = %3.2f [m/s]\n", vy); 
        //printf("ardrone.vz = %3.2f [m/s]\n", vz); 
  
 // Name of video 
    char filename[256]; 
    SYSTEMTIME st; 
    GetLocalTime(&st); 
 //when compiled and run in VisualStudio, check build2010 folder, or if running 
executable check bin2010 
    //sprintf(filename, "cam%d%02d%02d%02d%02d%02d.avi", st.wYear, st.wMonth, st.wDay, 
st.wHour, st.wMinute, st.wSecond); 
 sprintf(filename, "vid%02d-%02d  %02d-%02d.avi", st.wDay, st.wMonth, st.wHour, 
st.wMinute); 
 
 //Open text file 
 outputFile.open("DroneStateLog.txt"); //Open output file to be written to 
 
    // Operational Instructions 
    printf("***************************************\n"); 
    printf("*       John Pinder's MORL-UAV        *\n"); 
    printf("***************************************\n"); 
    printf("* - Controls -                        *\n"); 
    printf("*    'Space' -- Takeoff/Landing       *\n"); 
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    printf("*    'Up'    -- Move Forward          *\n"); 
    printf("*    'Down'  -- Move Backward         *\n"); 
    printf("*    'Left'  -- Straife Left          *\n"); 
    printf("*    'Right' -- Straife Right         *\n"); 
    printf("*    'R'     -- Raise Altitude        *\n"); 
    printf("*    'F'     -- Fall Altitude         *\n"); 
 printf("*    'Q'     -- Turn Left             *\n"); 
 printf("*    'E'     -- Turn Right            *\n"); 
    printf("*                                     *\n"); 
    printf("* - Automatic Control Toggles -       *\n"); 
 printf("*    'A'     -- Auto Floor            *\n"); 
    printf("*    'Z'     -- Auto Front            *\n"); 
 printf("*    'L'     -- Auto Land             *\n"); 
 printf("*                                     *\n"); 
    printf("*  - Others -                         *\n"); 
 printf("*    'V'     -- Image Process Config  *\n"); 
 printf("*    'C'     -- Change Camera         *\n"); 
 printf("*    'O'     -- Start/Stop Recoring   *\n"); 
    printf("*    'Esc'   -- Exit                  *\n"); 
 printf("*    'M'     -- Flight Animations     *\n"); 
    printf("***************************************\n"); 
 
 // Battery 
    printf("Battery = %d%%\n", ardrone.getBatteryPercentage()); 

 
//////////////////////////////////////////////////////WHILE LOOP/////////////////////////////////////////////////// 
 
int lock = 0; //Used to prevent multiple video writer objects from being instantiated 
 while (1) { 
        // Key input 
        int key = cvWaitKey(33); 
        if (key == 0x1b) break; 
 
        //// Altitude 
        double altitude = ardrone.getAltitude(); 
        //printf("ardrone.altitude = %3.2f [m]\n", altitude); 
 
   int bat = ardrone.getBatteryPercentage(); 
 
  // Create a video writer 
  if (rec && lock == 0){   
   video = cvCreateVideoWriter(filename, CV_FOURCC('D','I','B',' '), 30, 
cvGetSize(image)); 
   lock = 1;} 
 
  // Create a window with HSV slider selections for image processsing 
segmentation thresholds  
  if (key == 'v') { 
   cvNamedWindow("Image Procesing Configuration"); 
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   cvCreateTrackbar("H max", "Image Procesing Configuration", &maxH, 
255); 
   cvCreateTrackbar("H min", "Image Procesing Configuration", &minH, 
255); 
   cvCreateTrackbar("S max", "Image Procesing Configuration", &maxS, 
255); 
   cvCreateTrackbar("S min", "Image Procesing Configuration", &minS, 
255); 
   cvCreateTrackbar("V max", "Image Procesing Configuration", &maxV, 
255); 
   cvCreateTrackbar("V min", "Image Procesing Configuration", &minV, 
255); 
   cvResizeWindow("Image Procesing Configuration", 0, 0);} 
   
  // Instructions for Flight Animations 
  if (key == 'm') { 
   printf("  G - ARDRONE_ANIM_PHI_M30_DEG\n"); 
   printf("  N - ARDRONE_ANIM_PHI_30_DEG\n"); 
   printf("  K - ARDRONE_ANIM_THETA_M30_DEG\n"); 
   printf("  W - ARDRONE_ANIM_THETA_30_DEG\n"); 
   printf("  S - ARDRONE_ANIM_THETA_20DEG_YAW_200DEG\n"); 
   printf("  4 - ARDRONE_ANIM_THETA_20DEG_YAW_M200DEG\n"); 
   printf("  5 - ARDRONE_ANIM_TURNAROUND\n"); 
   printf("  D - ARDRONE_ANIM_TURNAROUND_GODOWN\n"); 
   printf("  2 - ARDRONE_ANIM_YAW_SHAKE\n"); 
   printf("  I - ARDRONE_ANIM_YAW_DANCE\n"); 
   printf("  3 - ARDRONE_ANIM_PHI_DANCE\n"); 
   printf("  P - ARDRONE_ANIM_THETA_DANCE\n"); 
   printf("  T - ARDRONE_ANIM_VZ_DANCE\n"); 
   printf("  G - ARDRONE_ANIM_WAVE\n"); 
   printf("  B - ARDRONE_ANIM_PHI_THETA_MIXED\n"); 
   printf("  Y - ARDRONE_ANIM_DOUBLE_PHI_THETA_MIXED\n"); 
   printf("  H - ARDRONE_ANIM_FLIP_AHEAD\n"); 
   printf("  6 - ARDRONE_ANIM_FLIP_BEHIND\n"); 
   printf("  U - ARDRONE_ANIM_FLIP_LEFT\n"); 
   printf("  J - ARDRONE_ANIM_FLIP_RIGHT\n");} 
 
 
  //// LED animations (cOMMENT IOUT USUALY) 
  //      if (key == 'q') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_GREEN_RED,              
0.5, 5); 
  //      if (key == 'a') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_GREEN,                  0.5, 
5); 
  //      if (key == 'z') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_RED,                    0.5, 5); 
  //      if (key == 'w') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_ORANGE,                 0.5, 
5); 
  //      if (key == 's') ardrone.setLED(ARDRONE_LED_ANIM_SNAKE_GREEN_RED,              
0.5, 5); 
  //      if (key == 'x') ardrone.setLED(ARDRONE_LED_ANIM_FIRE,                         0.5, 5); 
  //      if (key == 'e') ardrone.setLED(ARDRONE_LED_ANIM_STANDARD,                     0.5, 5); 
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  //      if (key == 'd') ardrone.setLED(ARDRONE_LED_ANIM_RED,                          0.5, 5); 
  //      if (key == 'c') ardrone.setLED(ARDRONE_LED_ANIM_GREEN,                        0.5, 5); 
  //      if (key == 'r') ardrone.setLED(ARDRONE_LED_ANIM_RED_SNAKE,                    0.5, 5); 
  //      if (key == 'f') ardrone.setLED(ARDRONE_LED_ANIM_BLANK,                        0.5, 5); 
  //      if (key == 'v') ardrone.setLED(ARDRONE_LED_ANIM_RIGHT_MISSILE,                0.5, 
5); 
  //      if (key == 't') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_MISSILE,                 0.5, 5); 
  //      if (key == 'g') ardrone.setLED(ARDRONE_LED_ANIM_DOUBLE_MISSILE,               0.5, 
5); 
  //      if (key == 'b') 
ardrone.setLED(ARDRONE_LED_ANIM_FRONT_LEFT_GREEN_OTHERS_RED,  0.5, 5); 
  //      if (key == 'y') 
ardrone.setLED(ARDRONE_LED_ANIM_FRONT_RIGHT_GREEN_OTHERS_RED, 0.5, 5); 
  //      if (key == 'h') 
ardrone.setLED(ARDRONE_LED_ANIM_REAR_RIGHT_GREEN_OTHERS_RED,  0.5, 5); 
  //      if (key == 'n') 
ardrone.setLED(ARDRONE_LED_ANIM_REAR_LEFT_GREEN_OTHERS_RED,   0.5, 5); 
  //      if (key == 'u') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_GREEN_RIGHT_RED,         
0.5, 5); 
  //      if (key == 'j') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_RED_RIGHT_GREEN,         
0.5, 5); 
  //      if (key == 'm') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_STANDARD,               
0.5, 5); 

 
        // Update 
        if (!ardrone.update()) break; 
 
        // Get an image 
        IplImage *image = ardrone.getImage(); //maybe not needed 
 
  // Write video frames when told to 
  //if (rec){ 
  // cvWriteFrame(video, image);} 
 
//////////////////////////////////////IMAGE PROCCESING /////////////////////////////////////////////////////////  
  // HSV image 
        IplImage *hsv = cvCloneImage(image); 
        cvCvtColor(image, hsv, CV_RGB2HSV_FULL); 
 
        // Binalized image 
        IplImage *binalized = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1); // Create 
black white image 
 
        // Binalize 
        CvScalar lower = cvScalar(minH, minS, minV); // Set HSV lower threshholds from 
sliderbar 
        CvScalar upper = cvScalar(maxH, maxS, maxV); // Set HSV upper threshholds from 
sliderbar 
  
  // Feature Extraction 
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  cvInRangeS(image, lower, upper, binalized); //Binalize helipad segmented 
from background using HSV thresholds 
 
        // Show result 
        cvShowImage("binalized", binalized); 
 
        // De-noising 
        cvMorphologyEx(binalized, binalized, NULL, NULL, CV_MOP_CLOSE); 
  
        // Detect contours 
        CvSeq *contour = NULL, *maxContour = NULL; 
        CvMemStorage *contourStorage = cvCreateMemStorage(); 
        cvFindContours(binalized, contourStorage, &contour, sizeof(CvContour), 
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); 
 
        // Find largest contour 
        double max_area = 0.0; 
        while (contour) { 
            double area = fabs(cvContourArea(contour)); 
            if (area > max_area) { 
                maxContour = contour; 
                max_area = area;} 
    contour = contour->h_next;} 
 
        // Object detected loop 
        if (maxContour) { 
            // Show result 
            CvRect rect = cvBoundingRect(maxContour); 
            CvPoint minPoint, maxPoint; 
            minPoint.x = rect.x; 
            minPoint.y = rect.y; 
            maxPoint.x = rect.x + rect.width; 
            maxPoint.y = rect.y + rect.height; 
            cvRectangle(image, minPoint, maxPoint, CV_RGB(255,0,0)); 
   //printf("MinX = %d ",minPoint.x); 
   //printf("MinY = %d\n ",minPoint.y); 
        
      int  xCentroid = (minPoint.x + maxPoint.x)/2; 
      int  yCentroid = (minPoint.y + maxPoint.y)/2; 
   //printf("X= %d ",xCentroid); 
   //printf("Y= %d\n ",yCentroid); 
   //printf("width = %d ",rect.width); 
   //printf("Height= %d\n ",rect.height); 
 
   //Calculate area of target for distance correction 
   targetArea = rect.height*rect.width; 
   //printf("Area = %d\n ",targetArea); 
 
   //Pixel calculation 
   int totalXPixels = 638; 
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   int XpixelSegments = totalXPixels/gridSize; 
   int totalYPixels = 357; 
   int YpixelSegments = totalYPixels/gridSize; 
 
   //Assigning pixel coordinates to states  
    //First row of 5 states 
   if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments) 
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){ 
      DroneState = 1; 
     m=1; 
     n=1;   } 
   if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments) 
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){ 
      DroneState = 2; 
     m=1; 
     n=2;   } 
   if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments) 
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){ 
      DroneState = 3; 
     m=1; 
     n=3;   } 
   if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments) 
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){ 
      DroneState = 4; 
     m=1; 
     n=4;   } 
   if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments) 
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){ 
      DroneState = 5; 
     m=1; 
     n=5;   } 
   
   //Second row of 5 states 
   if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments) 
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){ 
      DroneState = 6; 
     m=2; 
     n=1;   } 
   if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments) 
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){ 
      DroneState = 7; 
     m=2; 
     n=2;   } 
   if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments) 
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){ 
      DroneState = 8; 
     m=2; 
     n=3;   } 
   if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments) 
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){ 
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      DroneState = 9; 
     m=2; 
     n=4;   } 
   if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments) 
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){ 
      DroneState = 10;   
     m=2; 
     n=5;   } 
 
   //Third row of 5 states 
   if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments) 
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){ 
      DroneState = 11; 
     m=3; 
     n=1;   } 
   if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments) 
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){ 
      DroneState = 12; 
     m=3; 
     n=2;   } 
   if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments) 
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){ 
      DroneState = 13; 
     m=3; 
     n=3;   } 
   if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments) 
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){ 
      DroneState = 14; 
     m=3; 
     n=4;  } 
   if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments) 
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){ 
      DroneState = 15; 
     m=3; 
     n=5;   } 
 
   //Fourth row of 5 states 
   if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments) 
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){ 
      DroneState = 16; 
     m=4; 
     n=1;   } 
   if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments) 
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){ 
      DroneState = 17; 
     m=4; 
     n=2;   } 
   if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments) 
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){ 
      DroneState = 18; 
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     m=4; 
     n=3;   } 
   if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments) 
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){ 
      DroneState = 19; 
     m=4; 
     n=4;   } 
   if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments) 
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){ 
      DroneState = 20; 
     m=4; 
     n=5;   } 
    
   //Fith row of 5 states 
   if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments) 
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){ 
      DroneState = 21; 
     m=5; 
     n=1;   } 
   if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments) 
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){ 
      DroneState = 22; 
     m=5; 
     n=2;   } 
   if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments) 
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){ 
      DroneState = 23; 
     m=5; 
     n=3;   } 
   if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments) 
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){ 
      DroneState = 24; 
     m=5; 
     n=4;   } 
   if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments) 
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){ 
      DroneState = 25; 
     m=5; 
     n=5;   } 
    
   // } //end if drone is flat 
  } //end IF Object Detected 
  else  {DroneState = 0; //Assign current state to 0 when the helipad localisation 
is lost 
        } //do i realy need these braces as a single line 
 
////////////////////////////////////////OUTPUTS//////////////////////////////////////////////////// 
  //Console ouput of changing Drone State when Automatic Reactive Behaviour 
is ON 
  if (AUTOfloor == true || AUTOfront == true){ 



                                       

Page 198 of 233 
 

Appendix B 

  if(DroneState!=prevDroneState)std::cout << "STATE " << DroneState << " " << 
std::endl;}   
   
  //Always output changing DroneState to DroneState.txt   
  if(DroneState!=prevDroneState)outputFile << DroneState << " " << std::endl; 
 
/////////////////////////////////////////ACTIONS/////////////////////////////////////////////////// 
  // Take off / Landing  
  if (key == ' ') { 
   if (ardrone.onGround()) ardrone.takeoff(); 
   else                    ardrone.landing();} 
 
  // Automatic Landing when floor cam activated and above helipad 
        if ((DroneState == 13)&&(AUTOland == true)&&(AUTOfloor == true)) { 
            if (ardrone.onGround()) ardrone.takeoff(); 
   else                    { 
    ardrone.landing(); 
    printf("FORCED LANDING\n");} } 
 
//THIS WAS TAKEN FROM EXAMPLE CODE AND HAS NOT BEEN CHECKED OR TESTED 
// // Return true if drone altitude is under .5 m 
// bool IsTooLow() { 
// double altitude = ardrone.getAltitude(); 
// 
// if (altitude < 0.5) return true; 
// else return false; 
//} 
// 
// // Return true if drone altitude is over 1.5 m 
//bool IsTooHigh() { 
// double altitude = ardrone.getAltitude(); 
// 
// if (altitude > 1.5) return true; 
// else return false; 
//} 
// 
// // Autonomous drone altitude control 
//void KeepGoodAltitude() { 
// // Lower the drone 
// if (IsTooHigh()) LooseAltitude(); 
// 
// // Raise the drone 
// if (IsTooLow()) GainAltitude(); 
//} 
  /*void GainAltitude() { 
 vz = ALTITUDE_SPEED; 
 cout << "gain alt" << endl; 
} 
 
void LooseAltitude() { 
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 vz = -ALTITUDE_SPEED; 
 cout << "loose alt" << endl; 
}*/ 
 
 
  // Teleoperation Velocity Parameters 
  double vx = 0.0, vy = 0.0, vz = 0.0, vr = 0.0; 
  if (key == 0x260000) vx =  2.0; //Forward 
  if (key == 0x280000) vx = -2.0; //Backward 
  if (key == 'q')   vr =  1.0; //Turn Left 
  if (key == 'e')   vr = -1.0; //Turn Right 
  if (key == 'r')      vz =  1.0; //Raise Alititude 
  if (key == 'f')      vz = -1.0; //Lower Altitude 
  if (key == 0x250000) vy =  2.0; //Straife Left 
  if (key == 0x270000) vy = -2.0; //Straife Right 
 
  // Flight Animations Actions (commented out for saftey) 
  /* if (key == 'g') ardrone.setAnimation(ARDRONE_ANIM_PHI_M30_DEG,          
1000); 
  if (key == 'n') ardrone.setAnimation(ARDRONE_ANIM_PHI_30_DEG,              
1000); 
  if (key == 'k') ardrone.setAnimation(ARDRONE_ANIM_THETA_M30_DEG,           
1000); 
  if (key == 'w') ardrone.setAnimation(ARDRONE_ANIM_THETA_30_DEG,            
1000); 
  if (key == 's') 
ardrone.setAnimation(ARDRONE_ANIM_THETA_20DEG_YAW_200DEG,  1000); 
  if (key == '4') 
ardrone.setAnimation(ARDRONE_ANIM_THETA_20DEG_YAW_M200DEG, 1000); 
  if (key == '5') ardrone.setAnimation(ARDRONE_ANIM_TURNAROUND,              
5000); 
  if (key == 'd') 
ardrone.setAnimation(ARDRONE_ANIM_TURNAROUND_GODOWN,       5000); 
  if (key == '2') ardrone.setAnimation(ARDRONE_ANIM_YAW_SHAKE,               
2000); 
  if (key == 'i') ardrone.setAnimation(ARDRONE_ANIM_YAW_DANCE,               
5000); 
  if (key == '3') ardrone.setAnimation(ARDRONE_ANIM_PHI_DANCE,               
5000); 
  if (key == 'p') ardrone.setAnimation(ARDRONE_ANIM_THETA_DANCE,             
5000); 
  if (key == 't') ardrone.setAnimation(ARDRONE_ANIM_VZ_DANCE,                
5000); 
  if (key == 'g') ardrone.setAnimation(ARDRONE_ANIM_WAVE,                    
5000); 
  if (key == 'b') ardrone.setAnimation(ARDRONE_ANIM_PHI_THETA_MIXED,         
5000); 
  if (key == 'y') 
ardrone.setAnimation(ARDRONE_ANIM_DOUBLE_PHI_THETA_MIXED,  5000); 
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  if (key == 'h') ardrone.setAnimation(ARDRONE_ANIM_FLIP_AHEAD,                
15); 
  if (key == '6') ardrone.setAnimation(ARDRONE_ANIM_FLIP_BEHIND,               
15); 
  if (key == 'u') ardrone.setAnimation(ARDRONE_ANIM_FLIP_LEFT,                 
15); 
  if (key == 'j') ardrone.setAnimation(ARDRONE_ANIM_FLIP_RIGHT,                
15);*/ 
 
  //DOWNWARDS (floor) FACING CAM 
ACTIONS///////////////////////////////////////////////// 
  //Orthogonal Actions (Rooks Moves)  
  //When helipad is detected slightly in front of the UAV, move forward slightly 
  if ((DroneState == 8) && (AUTOfloor == true)) { 
   vx = innerPower; 
   printf("UAV MOVING forward*\n");} 
  // When helipad is detected far away in front of the UAV, move forward rapidly 
to avoid getting lost 
  if ((DroneState == 3) && (AUTOfloor == true)){ 
   vx = outerPower; 
   printf("UAV MOVING FORWARD*\n");} 
 
  // When helipad is detected slightly behind the UAV, move backward slightly 
  if ((DroneState == 18) && (AUTOfloor == true)) { 
   vx = -innerPower; 
   printf("UAV MOVING backward*\n");} 
  // When helipad is detected far away behind the UAV, move backward rapidly 
to avoid getting lost 
  if ((DroneState == 23) && (AUTOfloor == true)) { 
   vx = -outerPower; 
   printf("UAV MOVING BACKWARD*\n");} 
 
  // When helipad is detected slightly to the left of the UAV, move left slightly 
  if ((DroneState == 12) && (AUTOfloor == true)) { 
   vy = innerPower; 
   printf("UAV MOVING left*\n");} 
  // When helipad is detected far away to the left of the UAV, move left rapidly to 
avoid getting lost 
  if ((DroneState == 11) && (AUTOfloor == true)){ 
   vy = outerPower; 
   printf("UAV MOVING LEFT*\n");} 
 
  // When helipad is detected slightly to the right of the UAV, move right slightly 
  if ((DroneState == 14) && (AUTOfloor == true)) { 
   vy = -innerPower; 
   printf("UAV MOVING right*\n");} 
  // When helipad is detected far away to the right of the UAV, move right rapidly 
to avoid getting lost 
  if ((DroneState == 15) && (AUTOfloor == true)){ 
   vy = -outerPower; 
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   printf("UAV MOVING RIGHT*\n");} 
 
  //Diagnal Manovoures (Kings Moves) 
  //FRn = Front Right near 
  if ((DroneState == 9) && (AUTOfloor == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right*\n"); 
    vx = innerPower; 
    printf("UAV MOVING forward*\n");} 
  //FRf = Front Right far 
  if ((DroneState == 5) && (AUTOfloor == true)) { 
    vy = -outerPower; 
    printf("UAV MOVING RIGHT*\n"); 
    vx = outerPower; 
    printf("UAV MOVING FORWARD*\n");} 
   
  //BLn = Back Left near 
  if ((DroneState == 17) && (AUTOfloor == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left*\n"); 
    vx = -innerPower; 
    printf("UAV MOVING backward*\n");} 
  //BLf = Back Left far 
  if ((DroneState == 21) && (AUTOfloor == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT*\n"); 
    vx = -outerPower; 
    printf("UAV MOVING BACKWARD*\n");} 
   
  //FLn = Front Left near 
  if ((DroneState == 7) && (AUTOfloor == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left*\n"); 
    vx = innerPower; 
    printf("UAV MOVING forward*\n");} 
  //FLf = Front Left far 
  if ((DroneState == 1) && (AUTOfloor == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT*\n"); 
    vx = outerPower; 
    printf("UAV MOVING FORWARD*\n");} 
 
  //BRn = Back Right near 
  if ((DroneState == 19) && (AUTOfloor == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right*\n"); 
    vx = -innerPower; 
    printf("UAV MOVING backward*\n");} 
  //BRf = Back Right far 
  if ((DroneState == 25) && (AUTOfloor == true)) { 
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    vy = -outerPower; 
    printf("UAV MOVING RIGHT*\n"); 
    vx = -outerPower; 
    printf("UAV MOVING BACKWARD*\n");} 
 
 
  //Combination Manovoures (NotDiagnals) 
  //FRn = Front Right near 
  if ((DroneState == 4) && (AUTOfloor == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right*\n"); 
    vx = outerPower; 
    printf("UAV MOVING FORWARD*\n");} 
  //FRf = Front Right far 
  if ((DroneState == 10) && (AUTOfloor == true)) { 
    vy = -outerPower; 
    printf("UAV MOVING RIGHT*\n"); 
    vx = innerPower; 
    printf("UAV MOVING forward*\n");} 
   
  //BLn = Back Left near 
  if ((DroneState == 16) && (AUTOfloor == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT*\n"); 
    vx = -innerPower; 
    printf("UAV MOVING backward*\n");} 
  //BLf = Back Left far 
  if ((DroneState == 22) && (AUTOfloor == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left*\n"); 
    vx = -outerPower; 
    printf("UAV MOVING BACKWARD*\n");} 
   
  //FLn = Front Left near 
  if ((DroneState == 2) && (AUTOfloor == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left*\n"); 
    vx = outerPower; 
    printf("UAV MOVING FORWARD*\n");} 
  //FLf = Front Left far 
  if ((DroneState == 6) && (AUTOfloor == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT*\n"); 
    vx = innerPower; 
    printf("UAV MOVING forward*\n");} 
 
  //BRn = Back Right near 
  if ((DroneState == 20) && (AUTOfloor == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING RIGHT*\n"); 
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    vx = -outerPower; 
    printf("UAV MOVING backward*\n");} 
  //BRf = Back Right far 
  if ((DroneState == 24) && (AUTOfloor == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right*\n"); 
    vx = -outerPower; 
    printf("UAV MOVING BACKWARD*\n");} 
 
  //FORWARDS  (front) FACING CAM ACTIONS///////////////////////////////////////////////// 
  // When face is detected slightly above the UAV, move up slightly 
   if ((DroneState == 8) && (AUTOfront == true)) { 
   vz =  altitudePower; 
   printf("UAV MOVING up\n");} 
 

// When face is detected far above the UAV, move UP rapidly to stay at eye 
level 

  if ((DroneState == 3) && (AUTOfront == true)){ 
   vz =  2*altitudePower; 
   printf("UAV MOVING UP\n");} 
 
  // When face is detected slightly below the UAV, move down slightly 
  if ((DroneState == 18) && (AUTOfront == true)) { 
   vz =  -altitudePower; 
   printf("UAV MOVING down\n");} 
 

// When helipad is detected far away behind the UAV, move backward rapidly 
to avoid getting lost 

  if ((DroneState == 23) && (AUTOfront == true)) { 
   vz =  2*-altitudePower; 
   printf("UAV MOVING DOWN\n");} 
 
  // When helipad is detected slightly to the left of the UAV, move left slightly 
  if ((DroneState == 12) && (AUTOfront == true)) { 
   vy = innerPower; 
   printf("UAV MOVING left\n");} 

// When helipad is detected far away to the left of the UAV, move left rapidly to 
avoid getting lost 

  if ((DroneState == 11) && (AUTOfront == true)){ 
   vy = outerPower; 
   printf("UAV MOVING LEFT\n"); 
  //or 
  // r =  1.0; //Turn Left to keep facing towards target 
   //printf("UAV TURNING LEFT\n"); 
          } 
 
  // When helipad is detected slightly to the right of the UAV, move right slightly 
  if ((DroneState == 14) && (AUTOfront == true)) { 
   vy = -innerPower; 
   printf("UAV MOVING right\n");} 
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// When helipad is detected far away to the right of the UAV, move right rapidly 
to avoid getting lost 

  if ((DroneState == 15) && (AUTOfront == true)){ 
   vy = -outerPower; 
   printf("UAV MOVING RIGHT\n"); 
  //or 
   //r =  -1.0; //Turn right to keep facing towards target 
   //printf("UAV TURNING RIGHT\n"); 
           } 
    
   
  //Diagnal Manovoures 
  //FRn = Front Right near 
  if ((DroneState == 9) && (AUTOfront == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right\n"); 
    vz = altitudePower; 
    printf("UAV MOVING up\n");} 
  //FRf = Front Right far 
  if ((DroneState == 5) && (AUTOfront == true)) { 
    vy = -outerPower; 
    printf("UAV MOVING RIGHT\n"); 
    vz = 1.5*altitudePower; 
    printf("UAV MOVING UP\n");} 
 
  //BLn = Back Left near 
  if ((DroneState == 17) && (AUTOfront == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left\n"); 
    vz = -altitudePower; 
    printf("UAV MOVING down\n");} 
  //BLf = Back Left far 
  if ((DroneState == 21) && (AUTOfront == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT\n"); 
    vz = 1.5*-altitudePower; 
    printf("UAV MOVING DOWN\n");} 
   
  //FLn = Front Left near 
  if ((DroneState == 7) && (AUTOfront == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left\n"); 
    vz = altitudePower; 
    printf("UAV MOVING up\n");} 
  //FLf = Front Left far 
  if ((DroneState == 1) && (AUTOfront == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT\n"); 
    vz = 1.5*altitudePower; 
    printf("UAV MOVING UP\n");} 
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  //BRn = Back Right near 
  if ((DroneState == 19) && (AUTOfront == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right\n"); 
    vz = -altitudePower; 
    printf("UAV MOVING down\n");} 
  //BRf = Back Right far 
  if ((DroneState == 25) && (AUTOfront == true)) { 
    vy = -outerPower; 
    printf("UAV MOVING RIGHT\n"); 
    vz = 1.5*-altitudePower; 
    printf("UAV MOVING DOWN\n");} 
 
 

//NEED TO DO THE "NOT" diagnals for the front camera just like i have done 
for down camera 

  //Combination Manovoures (NotDiagnals) 
  //FRn = Front Right near 
  if ((DroneState == 4) && (AUTOfront == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right\n"); 
    vz = 1.5*altitudePower; 
    printf("UAV MOVING UP\n");} 
  
   
  //FRf = Front Right far 
  if ((DroneState == 10) && (AUTOfront == true)) { 
    vy = -outerPower; 
    printf("UAV MOVING RIGHT\n"); 
    vz = altitudePower; 
    printf("UAV MOVING up\n");} 
   
  //BLn = Back Left near 
  if ((DroneState == 16) && (AUTOfront == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT\n"); 
    vz = -altitudePower; 
    printf("UAV MOVING down\n");} 
  //BLf = Back Left far 
  if ((DroneState == 22) && (AUTOfront == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left\n"); 
    vz = 1.5*-altitudePower; 
    printf("UAV MOVING DOWN\n");} 
   
  //FLn = Front Left near 
  if ((DroneState == 2) && (AUTOfront == true)) { 
    vy = innerPower; 
    printf("UAV MOVING left\n"); 
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    vz = 1.5*altitudePower; 
    printf("UAV MOVING UP\n");} 
  //FLf = Front Left far 
  if ((DroneState == 6) && (AUTOfront == true)) { 
    vy = outerPower; 
    printf("UAV MOVING LEFT\n"); 
    vz = altitudePower; 
    printf("UAV MOVING up\n");} 
 
  //BRn = Back Right near 
  if ((DroneState == 20) && (AUTOfront == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING RIGHT\n"); 
    vz = -altitudePower; 
    printf("UAV MOVING down\n");} 
  //BRf = Back Right far 
  if ((DroneState == 24) && (AUTOfront == true)) { 
    vy = -innerPower; 
    printf("UAV MOVING right\n"); 
    vz = 1.5*-altitudePower; 
    printf("UAV MOVING DOWN\n");} 
 
 
   if (DroneState == 13){ 
              
ardrone.setLED(ARDRONE_LED_ANIM_GREEN,                        0.5, 5); 
   } 
   else { 

ardrone.setLED(ARDRONE_LED_ANIM_RED,                          
0.5, 5); 

    
   } 
   
  // printf("Area= %d\n ",targetArea/1000); 
   //printf("Area= %d\n ",targetArea/500); 
 
  //Forward & Backwards Traversing  
  if ((DroneState >0) && (AUTOfront == true)){ 
   //If far away move closer 
   if (targetArea/500 < 2){//was 10,000 //was 1 
     printf("Too FAR, Moving FORWARDS\n"); 
     vx = distancePower; }//move forwards  
   //If too close move further away 
   else if (targetArea/500 > 10){ //was 50,000 //was 16 
     printf("Too CLOSE, Moving BACKWARDS\n"); 
     vx = 1.5*-distancePower;}//move backward 
      
    
   //If distance is appropiate ie: 2->20 & drone is directly in front of target 
   else if (DroneState == 13){ 
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     targetReached = true; 
      
      
     if (UpANDSwitch == true) {  
      
     printf("*******TARGET CENTRALISED AT SAFE 
DISTANCE*******\n"); 
     printf("***************SWITCHING 
CAMERAS*****************\n"); 
    
     //Automaticaly changes cameras used & searching 
mode 
     static int mode = 1; 
     ardrone.setCamera(++mode%4); 
     ardrone.setCamera(++mode%4);//had to do it twice 
for some reason 
     AUTOfront = false; //Turn OFF automatic control for 
FRONT camera 
     AUTOfloor = true; //Turn ON automatic control for 
FLOOR camera 
      
     //Ground target HSV parameters   
     minH = 85, maxH = 240; 
     minS = 226, maxS = 255; 
     minV = 39, maxV = 166; 
     printf("Image Procssing Parameters Have Been 
Changed For Ground Target\n"); 
      
     //Move up to aquire better helipad view 
     for (int a = 1; a <10000 ; a++){ 
     vz = 12*altitudePower;  
     ardrone.move3D(vx, vy, vz, vr);} 
     printf("UAV MOVED UP for better landing view\n"); 
 
     }//end of upANDswitch 
 
   }//end IF drone is centrtalised at the appropiate distance to the target 
  }//end IF drone state detected ie: not 0 
 
  ardrone.move3D(vx, vy, vz, vr); //move the uav according to dynamic preset 
variables 
 
//////////////////////////////////////Configuration Options/////////////////////////////////////////// 
//THIS COULD BE REMOVED WHEN TESTED THAT THE HSV PARAMS ARE CHANGING 
DEPENDANT UPON CAMERA USED 
  //if (AUTOfloor == true){ 
  // // GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Ground Target) 
  // int minH = 85, maxH = 240; 
  // int minS = 226, maxS = 255; 
  // int minV = 39, maxV = 166;} 



                                       

Page 208 of 233 
 

Appendix B 

  // //printf("Image Procssing Parameters Have Been Changed For 
Ground Target\n");} 
  //else{ 
  // // GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Forward Target) 
  // //int minH = 90, maxH = 229; 
  // //int minS = 187, maxS = 255; 
  // //int minV = 39, maxV = 166; 
 
  // int minH = 0, maxH = 0; 
  // int minS = 0, maxS = 0; 
  // int minV = 0, maxV = 0; 
  // } 
 
        // Change camera 
        static int mode = 0; 
        if (key == 'c') ardrone.setCamera(++mode%4); 
 
  // Toggle Visual Stabilisation for DOWNWARDS Camera Reactive Behaviour 
  if  ((key == 'a') && (AUTOfloor == false)){ AUTOfloor =  true; //toggle ON 
    printf("AUTOfloor ON\n"); 
     //Ground target HSV parameters   
     minH = 85, maxH = 240; 
     minS = 226, maxS = 255; 
     minV = 39, maxV = 166; 
     printf("Image Procssing Parameters Have Been 
Changed For GROUND FACING Target\n"); 
     //ardrone.setCamera(++mode%4); //switch 
camera when near target  
           
 } 
       
  else if  ((key == 'a') && (AUTOfloor == true)){ AUTOfloor =  false; //toggle OFF 
    printf("AUTOfloor OFF\n");} 
   // ardrone.setCamera(++mode%4);    
  
   
 
 
  // Toggle Visual Stabilisation for FORWARDS Camera Reactive Behaviour 
  if  ((key == 'z') && (AUTOfront == false)){ AUTOfront =  true; //toggle ON 
    printf("AUTOfront ON\n"); 
   
      minH = 0, maxH = 128; //max H best at 155 for 
ocluded corner (Fixed Forward Target) 
      minS = 136, maxS = 235; 
      minV = 0, maxV = 103; 
         printf("Image Procssing Parameters Have Been 
Changed For FORWARD FACING Target\n"); 
          } 
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  else if  ((key == 'z') && (AUTOfront == true)){ AUTOfront =  false; //toggle OFF 
    printf("AUTOfront OFF\n");} 

 
   // Toggle Automatic Landing for Downwards Camera Reactive 
Behaviour 
  if  ((key == 'l') && (AUTOland == false)){ AUTOland =  true; //toggle ON 
    printf("AUTOland ON\n");} 
  else if  ((key == 'l') && (AUTOland == true)){ AUTOland =  false; //toggle OFF 
    printf("AUTOland OFF\n");} 
 
  // Toggle Visual Stabilisation for FORWARDS Camera Reactive Behaviour 
  if  ((key == 'o') && (rec == false)){ rec =  true; //toggle ON 
    printf("Started Recoring!\n");} 
  else if  ((key == 'o') && (rec == true)){ rec =  false; //toggle OFF 
    printf("Stopped Recording\n");} 
 
  // Release memory 
  cvReleaseMemStorage(&contourStorage); 
 
        // Show recording state 
        if (rec) { 
            static CvFont font = cvFont(1.0); 
            cvPutText(image, "REC", cvPoint(600, 20), &font, CV_RGB(255,0,0));} 
 
   
 //Trying to display srings of data to HUD 
  // ostringstream str2; // string stream 
 
 // // Battery 
 //str2 << ardrone.getBatteryPercentage(); 
 //putText(result, str2.str(), Point(180, 33), CV_FONT_HERSHEY_PLAIN, 2, 
CV_RGB(0, 250, 0), 2); 
 
  if (altitude >0 && altitude <= 0.5) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "0.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
    if (altitude > 0.5 && altitude <= 1) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "1m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
     
    if (altitude >1 && altitude <= 1.5) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "1.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
     if (altitude >1.5 && altitude <= 2) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "2m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
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     if (altitude >2 && altitude <= 2.5) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "2.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
     //2.8 is maximum height of robotics lab 
      if (altitude >2.5 && altitude <= 2.8) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "3m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
       if (altitude >2.8) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "TOO High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));} 
 
 
    //BATERY WARNING 
 
      if (bat >=0 && bat < 5) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "LAND NOW", cvPoint(275, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >=5 && bat <= 10) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 10% ", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >10 && bat <= 20) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 20%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
     
    if (bat >20 && bat <= 30) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 30%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >30 && bat <= 40) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 40%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >40 && bat <=50) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 50%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >50 && bat <= 60) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 60%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >60 && bat <= 70) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 70%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
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    if (bat >70 && bat <= 80) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 80%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >80 && bat <= 90) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 90%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat >90 && bat < 100) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Bat = 99%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));} 
 
    if (bat == 100) { 
           static CvFont font2 = cvFont(1.0); 
            cvPutText(image, "Fully Charged", cvPoint(260, 20), &font2, CV_RGB(255,0,0));} 
 
 
  //Verticle Lines superimposed on video feed 
  cvLine( image, cvPoint( 0, 0 ), cvPoint( 0, 357), cvScalar( 0, 255, 0 ),  2, 8 ); 
  cvLine( image, cvPoint( 127, 0 ), cvPoint( 127, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 255, 0 ), cvPoint( 255, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 383, 0 ), cvPoint( 383, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 510, 0 ), cvPoint( 510, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 638, 0 ), cvPoint( 638, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
 
  //Horizontal Lines superimposed on video feed 
  cvLine( image, cvPoint( 0, 0 ), cvPoint( 638, 0), cvScalar( 0, 255, 0 ),  2, 8 ); 
  cvLine( image, cvPoint( 0, 71 ), cvPoint( 638, 71), cvScalar( 0, 255, 0 ),  2, 8 ); 
  cvLine( image, cvPoint( 0, 143 ), cvPoint( 638, 143), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 0, 214 ), cvPoint( 638, 214), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 0, 285 ), cvPoint( 638, 285), cvScalar( 0, 255, 0 ),  2, 8 
); 
  cvLine( image, cvPoint( 0, 357 ), cvPoint( 638, 357), cvScalar( 0, 255, 0 ),  2, 8 
); 
 
        // Display the image 
        cvShowImage("camera", image); 
 
   // Write video frames when told to 
  if (rec){ 
   cvWriteFrame(video, image);} 
 
  // Release images 
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  cvReleaseImage(&hsv); 
  cvReleaseImage(&binalized); 
 
  // Remember last state visited 
  prevDroneState = DroneState; 
 
 }// End Main While Loop 
 
 // Save the video 
    cvReleaseVideoWriter(&video); 
 
 // Close the DroneStateLog.txt file 
 outputFile.close(); 
 
    // See you 
    ardrone.close(); 
 
    return 0; 
} //END MAIN PROG 
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ASPEC 

//ASPEC v2.9 - TODO - Feed Count & Only feed when bat>=12v potdivider 
#include <RTCTimedEvent.h> 
#include <Wire.h> 
#include "RTClib.h" 
#include <dht11.h> 
#include <OneWire.h> 
#include <DallasTemperature.h> 
#include <FuzzyRule.h> 
#include <FuzzyComposition.h> 
#include <Fuzzy.h> 
#include <FuzzyRuleConsequent.h> 
#include <FuzzyOutput.h> 
#include <FuzzyInput.h> 
#include <FuzzyIO.h> 
#include <FuzzySet.h> 
#include <FuzzyRuleAntecedent.h> 
RTC_DS1307 rtc; //must be specified after the includes or causes compilation errors 
 
#define ONE_WIRE_BUS 10 // Temp Data wire is plugged into pin 10 on the Arduinowas 3  
// Setup a oneWire instance to communicate with any OneWire devices 
OneWire oneWire(ONE_WIRE_BUS); 
// Pass our oneWire reference to Dallas Temperature.  
DallasTemperature sensors(&oneWire); 
DeviceAddress insideThermometer = { 0x28, 0xF1, 0x61, 0xD2, 0x05, 0x00, 0x00, 0xB4 }; 
DeviceAddress outsideThermometer = { 0x28, 0x19, 0xFE, 0xD2, 0x05, 0x00, 0x00, 0xE4 }; 
 
//Set scheduled feeding times Hr,Min 
int SetFeedTimeHrs  = 13; 
int SetFeedTimeMins = 30; 
int SetFeedDay      = 3; //Day: 1=Mon, 2=Tues, 3=Wed, 4=Thur, 5=Friday, 6=Sat, 7=Sun 
 
int A_BML = 100;//ml       A&B Range = 10ML -> 200ML in multiples of 10 (Enter total weekly 
feed ammount) 
int B_52ML = 50;//ml       1st Addative Range = 10ML -> 200ML in multiples of 10 
int VoodooJuiceML = 50;//ml  help roots 
int BigBudML = 50;//ml  help roots 
int OverDriveML = 50;//ml  help roots 
//to do: CarboLoadML = 50 
int FlushML = 50;//ml  Swap voodo juice with royal flush before septemeber 
 
int numofA_B10mlDoses = A_BML/10; //had to declare this again because not in scope 
int numofB_5210mlDoses = B_52ML/10; //had to declare this again because not in scope 
int numofVoodooJuice10mlDoses = VoodooJuiceML/10; //had to declare this again because 
not in scope 
int numofBigBud10mlDoses = BigBudML/10; //had to declare this again because not in scope 
int numofOverDrive10mlDoses = OverDriveML/10; //had to declare this again because not in 
scope 
int numofFlush10mlDoses = FlushML/10; //had to declare this again because not in scope 
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int Pump10mlTimeDelay = 341; //and this 
int settleTime = 5000; 
int FeedCount; 
 
//Specify pin numbers of each connected component 
int led = 13; // Pin 13 has an LED connected on most Arduino boards. 
int RLY8 = 9; //Bloom-A + Bloom-B Pumps (Symultanious Activation) 
int RLY7 = 8; //B-52 (Vitamin Pump)  
int RLY6 = 7; //VoodoJuice / CarboLoad / Royal Flush 
int RLY5 = 6; //Big-Bud 
int RLY4 = 5; //Overdrive 
int RLY3 = 4; //Dual Cooling Fans 
int RLY2 = 3; //NFT Pump 
int RLY1 = 2; //Flush Pump 
int AirPumpRLY= 52; 
#define humidityPin 53 
 
// Instantiating an object of library 
Fuzzy* fuzzy = new Fuzzy(); 
  
FuzzySet* concentrated = new FuzzySet(0, 20, 20, 40); 
FuzzySet* safe = new FuzzySet(30, 50, 50, 70); 
FuzzySet* dilute = new FuzzySet(60, 80, 100, 100); 
  
FuzzySet* alkali = new FuzzySet(0, 0, 0, 0); 
FuzzySet* neutral = new FuzzySet(1, 10, 10, 20); 
FuzzySet* normal = new FuzzySet(15, 30, 30, 50); 
FuzzySet* acidic = new FuzzySet(45, 60, 70, 70); 
  
FuzzySet* cold = new FuzzySet(-30, -30, -20, -10); 
FuzzySet* good = new FuzzySet(-15, 0, 0, 15); 
FuzzySet* hot = new FuzzySet(10, 20, 30, 30); 
 
//Declare Variables 
int PrevHumidity, Humidity, hCheck; 
//int MinHumidity, MaxHumidity; 
dht11 DHT11; 
float myTemp,myTemp2; //Changes when updateTemperature method is repetadly run 
int Temp,Temp2; 
int MinTemp = 100; 
int MinTemp2 = 100;  
int MaxTemp = myTemp; 
int MaxTemp2 = myTemp2; 
float PrevMinTemp, PrevMaxTemp,PrevMinTemp2, PrevMaxTemp2; 
bool AirIsON, NFTIsON, FlushIsON; 
////////////////////////////////////////////////////////SETUP/////////////////////////////////////////////////////////////////////////////// 
void setup() { 
  Serial.begin(57600); 
  // Start up the library 
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  sensors.begin(); 
  //set the resolution to 10 bit (good enough?) 
  sensors.setResolution(insideThermometer, 10); 
  sensors.setResolution(outsideThermometer, 10); 
 
Serial.print("Sucsessful Feeds = "); 
Serial.print(FeedCount); 
Serial.print(". Feed set to: "); 
Serial.print(SetFeedTimeHrs); 
Serial.print(":"); 
Serial.print(SetFeedTimeMins); 
Serial.print(" on "); 
 
 if (SetFeedDay == 7) 
    Serial.print("Sun"); 
  if (SetFeedDay == 1) 
    Serial.print("Mon"); 
  if (SetFeedDay == 2) 
    Serial.print("Tues"); 
  if (SetFeedDay == 3) 
    Serial.print("Wednes"); 
  if (SetFeedDay == 4) 
    Serial.print("Thurs"); 
  if (SetFeedDay == 5) 
    Serial.print("Fri"); 
  if (SetFeedDay == 6)    
    Serial.print("Satur"); 
  
  Serial.println("day "); 
 
  //---------------Manualy set the time (KEEP COMMENTED)------------------- set at 25 seconds to 
to compile & upload 
  // ALWAYS REMEMBER TO RE-UPLOAD A COMMENTED OUT VERSION IMMEDIATLY 
AFTER CHANGING UNCOMMENTED TIME 
   //RTCTimedEvent.time.hour = 11; 
   //RTCTimedEvent.time.minute = 25; //set at same as target time minute 
   //RTCTimedEvent.time.second = 0; //Press upload at 10 sec to the hour 
   //RTCTimedEvent.time.day = 30; //date 
   //RTCTimedEvent.time.month = 10; //Jan=1, Feb=2, March=3 
   //RTCTimedEvent.time.year = 2015; 
   //RTCTimedEvent.time.dayOfWeek  = 5; //1=Monday, 2=Tues 3= Wednesday 4=Thursday 
   //RTCTimedEvent.writeRTC();//never use this or wil reset time 
  
  if (! rtc.isrunning()) { 
    Serial.println("RTC is NOT running!"); 
    Serial.print("Please check time and reset using code above if nessecery"); 
    // following line sets the RTC to the date & time this sketch was compiled 
   // rtc.adjust(DateTime(__DATE__, __TIME__));//NOTE:does not set day of week or date/time 
in RTCTimedEvent Lib 
  } 
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  //following line sets the RTC to the date & time of PC when compiled (19sec behind) 
  //rtc.adjust(DateTime(__DATE__, __TIME__)); //KEEP COMMENTED 
  
  //initial buffer for 13 timers 
  RTCTimedEvent.initialCapacity = sizeof(RTCTimerInformation)*13; 
   
  //At Lunchtime on every Saturday of April, Call BloomFeed1Call 
  RTCTimedEvent.addTimer(SetFeedTimeMins,  
                         SetFeedTimeHrs,  
                         TIMER_ANY, //Date 
                         4,  //Month: 4=April 
                         SetFeedDay,  
                         BloomFeed1Call); 
 
  RTCTimedEvent.addTimer(SetFeedTimeMins,  
                         SetFeedTimeHrs,  
                         TIMER_ANY, //Date 
                         5,  //Month:5 =May 
                         SetFeedDay,   
                         BloomFeed2Call); 
 
  RTCTimedEvent.addTimer(SetFeedTimeMins, 
                         SetFeedTimeHrs, 
                         TIMER_ANY, //Date 
                         6,  //Month: 6=June 
                         SetFeedDay,   
                         BloomFeed3Call); 
  
  RTCTimedEvent.addTimer(SetFeedTimeMins,  
                         SetFeedTimeHrs,  
                         TIMER_ANY, //Date 
                         7,  //Month:7=July 
                         SetFeedDay,   
                         BloomFeed4Call); 
                          
  RTCTimedEvent.addTimer(SetFeedTimeMins,  
                         SetFeedTimeHrs,  
                         TIMER_ANY,  
                         8,  //Month: 8=August 
                         SetFeedDay,   
                         BloomFeed5Call); 
                          
  RTCTimedEvent.addTimer(SetFeedTimeMins,  
                         SetFeedTimeHrs,  
                         TIMER_ANY, //Date 
                         9,  //Month: 9=September 
                         SetFeedDay,   
                         BloomFeed6Call);                          
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  //Turn Air Pump ON at 9am 
  RTCTimedEvent.addTimer(00, //minute 
                         14, //hour 
                         TIMER_ANY, //Date 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         AirCallON); 
 
  //Turn Air Pump OFF at 10pm  
  RTCTimedEvent.addTimer(01, //minute 
                         14, //hour 
                         TIMER_ANY, //Date 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         AirCallOFF); 
  
  //Turn NFT Pump ON at 6am 
  RTCTimedEvent.addTimer(0, //minute 
                         6, //hour 
                         TIMER_ANY, //Date 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         NFTCallON); 
 
  //Turn NFT Pump OFF at 9pm  
  RTCTimedEvent.addTimer(34, //minute 
                         6, //hour 
                         TIMER_ANY, //Date 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         NFTCallOFF); 
  //********************************************************                        
  //Turn Flush Pump ON at 11am on the first day of each month (20minFlush) 
  RTCTimedEvent.addTimer(47, //minute 
                         14, //hour 
                         23, //Date //should be 1 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         FlushCallON); 
 
  //Turn Flush Pump OFF at 11:20am on the first day of each month (20minFlush) 
  RTCTimedEvent.addTimer(50, //minute 
                         14, //hour 
                         23, //Date 
                         TIMER_ANY,  //Month 
                         TIMER_ANY,  //DayOfWeek 
                         FlushCallOFF); 
 
  //Display date/time & Temperatures (used for data logging & Serial Monitoring) 
  RTCTimedEvent.addTimer(TIMER_ANY, //minute 
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                         TIMER_ANY, //hour 
                         TIMER_ANY, //Date 
                         TIMER_ANY, //Month 
                         TIMER_ANY, //DayOfWeek 
                         minuteCall); 
     
  // FuzzyInput 
  FuzzyInput* inputEC = new FuzzyInput(1); 
  EC->addFuzzySet(concentrated); 
  EC->addFuzzySet(safe); 
  EC->addFuzzySet(dilute); 
  
  fuzzy->addFuzzyInput(EC); 
  
  // FuzzyInput 
  FuzzyInput* inputPH = new FuzzyInput(2); 
  PH->addFuzzySet(alkali); 
  PH->addFuzzySet(neutral); 
  PH->addFuzzySet(normal); 
  PH->addFuzzySet(acidic); 
  
  fuzzy->addFuzzyInput(PH); 
  
  // FuzzyInput 
  FuzzyInput* temperature = new FuzzyInput(3); 
  temperature->addFuzzySet(cold); 
  temperature->addFuzzySet(good); 
  temperature->addFuzzySet(hot); 
  
  fuzzy->addFuzzyInput(temperature); 
  
  // FuzzyOutput 
  FuzzyOutput* risk = new FuzzyOutput(1); 
  
  FuzzySet* minimum = new FuzzySet(0, 20, 20, 40); 
  risk->addFuzzySet(minimum); 
  FuzzySet* average = new FuzzySet(30, 50, 50, 70); 
  risk->addFuzzySet(average); 
  FuzzySet* maximum = new FuzzySet(60, 80, 80, 100); 
  risk->addFuzzySet(maximum); 
  
  fuzzy->addFuzzyOutput(risk); 
  
  // FuzzyOutput 
  // adding nutrient dosage as output too 
  FuzzyOutput* outputDosage = new FuzzyOutput(2); 
  
  FuzzySet* stopedOut = new FuzzySet(0, 0, 0, 0); 
  outputDosage->addFuzzySet(noDoseOut); 
  FuzzySet* slowOut = new FuzzySet(1, 10, 10, 20); 
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  outputDosage->addFuzzySet(lowDoseOut); 
  FuzzySet* normalOut = new FuzzySet(15, 30, 30, 50); 
  outputDosage->addFuzzySet(normalDoseOut); 
  FuzzySet* quickOut = new FuzzySet(45, 60, 70, 70); 
  outputDosage->addFuzzySet(highDoseOut); 
  
  fuzzy->addFuzzyOutput(outputDose); 
  
  // Building FuzzyRule 
  FuzzyRuleAntecedent* ECConcentratedAndPHAlkali = new FuzzyRuleAntecedent(); 
  ecConcentratedAndPHAlkali ->joinWithAND(concentrated, highDose); 
 
  FuzzyRuleAntecedent* temperatureCold = new FuzzyRuleAntecedent(); 
  temperatureCold->joinSingle(cold); 
 
  FuzzyRuleAntecedent* ifPHAlkaliAndECHighDoseOrTemperatureCold = new 
FuzzyRuleAntecedent(); 
  ifECConcentratedAndPHAlkaliOrTemperatureCold-
>joinWithOR(ECConcentratedAndPHAlkali, temperatureCold); 
  
  FuzzyRuleConsequent* thenRisMaximumAndPHAcidic = new FuzzyRuleConsequent(); 
  thenRisMaximumAndPHAcidic->addOutput(maximum); 
  thenRisMaximumAndPHAcidic->addOutput(lowDoseOut); 
  
  FuzzyRule* fuzzyRule1 = new FuzzyRule(1, 
ifECConcentratedAndDosageHighDoseOrTemperatureCold,    
thenRisMaximumAndDosageHighDoseOut); 
  fuzzy->addFuzzyRule(fuzzyRule1); 
  
  // Building FuzzyRule 
  FuzzyRuleAntecedent* ECConcentratedAndPHNeutral = new FuzzyRuleAntecedent(); 
  ECSafeAndPHNormal->joinWithAND(safe, normal); 
  FuzzyRuleAntecedent* ifECSafeAndPHNormalOrTemperatureGood = new 
FuzzyRuleAntecedent(); 
  ifECSafeAndPHNormalOrTemperatureGood->joinWithOR(ECSafeAndPHSpeedNormal, 
good); 
  
  FuzzyRuleConsequent* thenRiskAverageAndECNormal = new FuzzyRuleConsequent(); 
  thenRiskAverageAndPHNormal->addOutput(average); 
  thenRiskAverageAndPHNormal->addOutput(normalOut); 
  
  FuzzyRule* fuzzyRule2 = new FuzzyRule(2, ifECSafeAndPHNormalOrTemperatureGood, 
thenRiskAverageAndPHNormal); 
  fuzzy->addFuzzyRule(fuzzyRule2); 
  
  // Building FuzzyRule 
  FuzzyRuleAntecedent* ECDiluteAndPHNeutral = new FuzzyRuleAntecedent(); 
  ECConcentratedAndPHNeutral->joinWithAND(concentrated, neutral); 
  FuzzyRuleAntecedent* ifECDiluteAndPHNeutralOrTemperatureHot = new 
FuzzyRuleAntecedent(); 
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  ifECDiluteAndPHNeutralOrTemperatureHot->joinWithOR(ECDiluteAndPHNeutral, hot); 
  
  FuzzyRuleConsequent* thenRiskMinimumDoseHigh = new FuzzyRuleConsequent(); 
  thenRiskMinimumDoseHigh->addOutput(minimum); 
  thenRiskMinimumDoseHigh->addOutput(HighDoseOut); 
  
  FuzzyRule* fuzzyRule3 = new FuzzyRule(3, ifECDiluteAndPHNeutralOrTemperatureHot, 
thenRiskMinimumDoseHigh); 
  fuzzy->addFuzzyRule(fuzzyRule3); 
 
  // Initialize digital pins as an output 
  pinMode(led, OUTPUT);      
  pinMode(RLY8, OUTPUT); //Bloom-A + Bloom-B Pumps (Symultanious Activation)    
  pinMode(RLY7, OUTPUT); //B-52 (Vitamin Pump)  
  pinMode(RLY6, OUTPUT); //VoodoJuice (Root-Regen Pump)    
  pinMode(RLY5, OUTPUT); //Big-Bud 
  pinMode(RLY4, OUTPUT); //Overdrive 
  pinMode(RLY3, OUTPUT); //Dual Cooling Fans 
  pinMode(RLY2, OUTPUT); //NFT Pump 
  pinMode(RLY1, OUTPUT); //Flush Pump 
  pinMode(AirPumpRLY, OUTPUT); //3.3v Air Bubblestone Pump (Cools nutrient solution) 
  //pinMode(humidityPin, INPUT); //Dont think this is needed, maybe pins default to INPUT 
mode 
   
  // Initialise relays to HIGH to prevent them from activating pumps 
  digitalWrite(RLY8, HIGH); //Bloom-A + Bloom-B Pumps (Symultanious Activation)   
  digitalWrite(RLY7, HIGH); //B-52 (Vitamin Pump)    
  digitalWrite(RLY6, HIGH); //VoodoJuice (Root-Regen Pump)    
  digitalWrite(RLY5, HIGH); //Big-Bud    
  digitalWrite(RLY4, HIGH); //Overdrive   
  digitalWrite(RLY3, HIGH); //Dual Cooling Fans   
  digitalWrite(RLY2, LOW);  //NFT Pump (Activated on startup) 
  digitalWrite(RLY1, HIGH);  //Flush Pump 
  digitalWrite(AirPumpRLY, LOW); //3.3v Air Cooling Bubblestone Pump (This causes air pump 
to run when arduino is powered up or reset) 
}//end of SETUP 
////////////////////////////////////////////////////////LOOP/////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////// 
 
// loop routine runs over and over again forever: 
void loop() { 
  RTCTimedEvent.loop(); 
  delay(1000); //Was 2000, may caus instability not sure 
   
 // RELAYTEST(); 
   
//Dont pump NFT when flushing the system    
if (FlushIsON == 1){ 
  digitalWrite(RLY2, HIGH);  //NFT Pump OFF 
    digitalWrite(RLY1, LOW);  //Flush Pump ON 
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    } 
    else 
    { 
      digitalWrite(RLY2, LOW);  //NFT Pump ON 
    digitalWrite(RLY1, HIGH);  //Flush Pump OFF 
    } 
   
  //for constant monitoring of temperature rather than timer 
  updateTemperature(insideThermometer); 
    updateTemperature2(outsideThermometer); 
   
  Temp = myTemp; 
  if ((myTemp < MinTemp) && (myTemp != 0)) { 
    // Serial.print("MyTemp < MinTemp\n\r"); 
    PrevMinTemp = myTemp; 
    MinTemp = PrevMinTemp; 
    //   Serial.print(MinTemp); 
    //  Serial.print("HAS JUST BEEN SET FOR MIN TEMP EVER RECORED\n\r"); 
  } 
   
  Temp2 = myTemp2; 
  if ((myTemp2 < MinTemp2) && (myTemp2 != 0)) { 
    // Serial.print("MyTemp < MinTemp\n\r"); 
    PrevMinTemp2 = myTemp2; 
    MinTemp2 = PrevMinTemp2; 
    //   Serial.print(MinTemp); 
    //  Serial.print("HAS JUST BEEN SET FOR MIN TEMP EVER RECORED\n\r"); 
  } 
  
  //  Serial.print(MinTemp); 
  //  Serial.print(" MIN\n\r"); 
  //  Serial.print(MaxTemp); 
  //  Serial.print(" MAX\n\r"); 
     
  if (myTemp > MaxTemp) { 
    // Serial.print("MyTemp2 > MaxTemp2\n\r"); 
    PrevMaxTemp = myTemp; 
    MaxTemp = PrevMaxTemp; 
    //  Serial.print(MaxTemp2); 
    //   Serial.print("HAS JUST BEEN SET FOR MAX TEMP2 EVER RECORED\n\r"); 
  } 
  if (myTemp2 > MaxTemp2) { 
    // Serial.print("MyTemp2 > MaxTemp2\n\r"); 
    PrevMaxTemp2 = myTemp2; 
    MaxTemp2 = PrevMaxTemp2; 
    //  Serial.print(MaxTemp2); 
    //   Serial.print("HAS JUST BEEN SET FOR MAX TEMP2 EVER RECORED\n\r"); 
  } 
   
 // Serial.print("Getting temperatures...\n\r"); 
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  sensors.requestTemperatures(); 
   
 // if (insideThermometer != previnsideThermometer){    
//  Serial.print("Inside temperature is: "); 
//  printTemperature(insideThermometer); 
//  Serial.print("\n\r"); 
   
//  Serial.print("Outside temperature is: "); 
//  printTemperature(outsideThermometer); 
//  Serial.print("\n\r"); 
 // Serial.print("\n\r\n\r"); 
   
   //RELAYTEST(); //Execute Relay Test Function 
 
//-----------------Humidity Output------------------- 
int HumidityCallibration = -10; 
  
  hCheck = DHT11.read(humidityPin); 
  if(hCheck != 0) 
    Humidity = 255; //Must be an error 
  else 
    Humidity = DHT11.humidity; 
    Humidity = Humidity + HumidityCallibration; //my calibration 
   
  String s1; 
  if(Humidity == 255 + HumidityCallibration) 
    s1 = "HUMIDITY ERROR - Emergency DualFans ON"; 
  else 
    s1 = String(Humidity) + "%Humidity"; 
     
  if(PrevHumidity!=Humidity){ 
  Serial.println(s1); 
  digitalWrite(led, HIGH);}    // Initialise LED to high to turn on the LED 
  
//When too humid inside the PinderPonics, Begin ventilation  
  //Reccomeded humidity for flowering is 40% - 60% 
  //Therefor this value should be 60 
  if (Humidity > 60 || myTemp2 > 29) 
       digitalWrite(RLY3, LOW);   // Dual Ventilation Fans ON 
  else  digitalWrite(RLY3, HIGH);  // Dual Ventilation Fans OFF 
       delay(200);   // wait for a second otherwise very buggy  
   
  //Reccomended temp for nutrient solution tank is 15-24 oC     
  if (AirIsON == 1 || myTemp > 24)//&& Inside temperature > 18oC 
     digitalWrite(AirPumpRLY, HIGH);   // Air Stone Pump 
  else digitalWrite(AirPumpRLY, LOW);  // Dual Ventilation Fans OFF 
       delay(200);   // wait for a second otherwise very buggy  
 
fuzzy->setInput(1, 10); 
  fuzzy->setInput(2, 30); 
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  fuzzy->setInput(3, -15); 
  
  fuzzy->fuzzify(); 
    
  Serial.print("EC: "); 
  Serial.print(concentrated->getPertinence()); 
  Serial.print(", "); 
  Serial.print(safe->getPertinence()); 
  Serial.print(", "); 
  Serial.println(dilute->getPertinence()); 
    
  Serial.print("Dose: "); 
  Serial.print(noDose->getPertinence()); 
  Serial.print(", "); 
  Serial.print(lowDose->getPertinence()); 
  Serial.print(", "); 
  Serial.print(normalDose->getPertinence()); 
  Serial.print(", "); 
  Serial.println(highDose->getPertinence()); 
    
  Serial.print("Temperature: "); 
  Serial.print(cold->getPertinence()); 
  Serial.print(", "); 
  Serial.print(good->getPertinence()); 
  Serial.print(", "); 
  Serial.println(hot->getPertinence()); 
  
  float output1 = fuzzy->defuzzify(1); 
  float output2 = fuzzy->defuzzify(2); 
    
  Serial.print("Risk output: "); 
  Serial.print(output1); 
  Serial.print(", Dose output: "); 
  Serial.println(output2); 
  
       //Activate NFT Pump 
 //if (NFTIsON ==1){ 
  //     digitalWrite(RLY2, LOW);   // Dual Ventilation Fans ON 
  //     Serial.print("NFT IS ON");} 
  //  else { digitalWrite(RLY2, HIGH);  // Dual Ventilation Fans OFF 
   //        Serial.print("NFT IS OFF"); 
    //     delay(200);}   // wait for a second otherwise very buggy  
//          
// //Activate Flush Pump 
// if (Humidity > 27) 
//       digitalWrite(RLY1, LOW);   // Dual Ventilation Fans ON 
//    else digitalWrite(RLY1, HIGH);  // Dual Ventilation Fans OFF 
//         delay(200);   // wait for a second otherwise very buggy  
        
//------------------------------------------------------------- 
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  //Show time every update 
//DateTime now = rtc.now(); 
//     
//    Serial.print(now.year(), DEC); 
//    Serial.print('/'); 
//    Serial.print(now.month(), DEC); 
//    Serial.print('/'); 
//    Serial.print(now.day(), DEC); 
//    Serial.print(' '); 
//    Serial.print(now.hour(), DEC); 
//    Serial.print(':'); 
//    Serial.print(now.minute(), DEC); 
//    Serial.print(':'); 
//    Serial.print(now.second(), DEC); 
//    Serial.println(); 
  
//at the end of the loop store current humiudity to old humidity 
PrevHumidity = Humidity; 
digitalWrite(led, LOW);    // Turn LED off after being on from humidity change 
} 
 
//--------------------------Timer Functions--------------------------------- 
void minuteCall(RTCTimerInformation* Sender) {  
  Serial.print("Time: "); 
  Serial.print(RTCTimedEvent.time.hour, DEC); 
  Serial.print(":"); 
  Serial.print(RTCTimedEvent.time.minute, DEC); 
  Serial.print(":"); 
  Serial.print(RTCTimedEvent.time.second, DEC); 
  Serial.print(" Date: "); 
  Serial.print(RTCTimedEvent.time.day, DEC); 
  Serial.print("/"); 
  Serial.print(RTCTimedEvent.time.month, DEC); 
  Serial.print("/"); 
  Serial.println(RTCTimedEvent.time.year, DEC); 
   
  Serial.print("Greenhouse temperature is: "); 
  printTemperature2(outsideThermometer); 
  Serial.print("\n\r"); 
 
  Serial.print("Tank temperature is: "); 
  printTemperature(insideThermometer); 
  Serial.print("\n\r"); 
 
Serial.print("C:"); 
 Serial.print(MinTemp); 
    Serial.print(" Tank MIN Temp  "); 
    Serial.print("C:"); 
    Serial.print(MaxTemp); 
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    Serial.print(" Tank MAX Temp\n\r"); 
     
    Serial.print("C:"); 
 Serial.print(MinTemp2); 
    Serial.print(" Greenhouse MIN Temp  "); 
    Serial.print("C:"); 
    Serial.print(MaxTemp2); 
    Serial.print(" Greenhouse MAX Temp\n\n\r"); 
} 
 
//April Bloom Feed   
void BloomFeed1Call(RTCTimerInformation* Sender) { 
Serial.print("Feeding "); 
  Serial.print(A_BML); 
  Serial.print("ml Bloom A&B"); 
  for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {  
      Serial.print("."); 
    digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*1.3); //200 = MINml  
    digitalWrite(RLY8, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
    
 
  Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML); 
  Serial.print("ml VoodooJuice"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
FeedCount = FeedCount +1; 
} //END April BloomFeed2Cal 
  
//May Bloom Feed 
void BloomFeed2Call(RTCTimerInformation* Sender) {   
  Serial.print("Feeding "); 
  Serial.print(A_BML); 
  Serial.print("ml Bloom A&B"); 
  for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {  
      Serial.print("."); 
    digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*1.3); //200 = MINml  
    digitalWrite(RLY8, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
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   }//end for 
   Serial.println(" Done!"); 
 
 
Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML); 
  Serial.print("ml VoodooJuice"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //NEEDS ALTERING FOR JUNE USING SLUGISH 
CARBOLOAD 
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
    
 
Serial.print("Feeding "); 
  Serial.print(BigBudML); 
  Serial.print("ml BigBud"); 
  for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY5, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
   FeedCount = FeedCount +1; 
  }//end BloomFeed2Call 
 
 
//June Bloom Feed     
void BloomFeed3Call(RTCTimerInformation* Sender) { 
 Serial.println(" DONT FORGET TO SWITCH VOODO JUICE WITH CARBOLOAD"); 
  Serial.print("Feeding "); 
  Serial.print(A_BML); 
  Serial.print("ml Bloom A&B"); 
  for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {  
      Serial.print("."); 
    digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*1.3); //200 = MINml  
    digitalWrite(RLY8, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
     
 Serial.print("Feeding "); 
  Serial.print(BigBudML); 
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  Serial.print("ml BigBud"); 
  for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY5, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
   
   Serial.print("Feeding "); 
  Serial.print(B_52ML); 
  Serial.print("ml B-52"); 
  for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY7, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
   
  //NEED FEED CARBOLOAD  should i add ML VARIABLES for carbo load aand flush or use 
same as voodujuice YES 
Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML); 
  Serial.print("ml CarboLoad"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*4); //200 = MINml  
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
FeedCount = FeedCount +1; 
 
}//end BloomFeed3Call 
   
 
//July Bloom Feed 
void BloomFeed4Call(RTCTimerInformation* Sender) { 
  Serial.println(" CHECK VOODOO JUICE HAS BEEN SWITCHED WITH CARBOLOAD"); 
  Serial.print("Feeding "); 
  Serial.print(A_BML); 
  Serial.print("ml Bloom A&B"); 
  for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {  
      Serial.print("."); 
    digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*1.3); //200 = MINml  
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    digitalWrite(RLY8, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
     
 Serial.print("Feeding "); 
  Serial.print(BigBudML); 
  Serial.print("ml BigBud"); 
  for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY5, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
   
   Serial.print("Feeding "); 
  Serial.print(B_52ML); 
  Serial.print("ml B-52"); 
  for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY7, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
   
 
//NEED FEED CARBOLOAD  should i add ML VARIABLES for carbo load aand flush or use 
same as voodujuice YES 
Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML); 
  Serial.print("ml CarboLoad"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*4); //200 = MINml  
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
FeedCount = FeedCount +1; 
}//end BloomFeed4Call  
   
//August Bloom Feed   
void BloomFeed5Call(RTCTimerInformation* Sender) { 
  Serial.println(" CHECK VOODOO JUICE HAS BEEN SWITCHED WITH CARBOLOAD"); 
  Serial.println(" CHECK OVERDRIVE HAS BEEN FILLED UP FOR 1st EVER USE"); 



                                       

Page 230 of 233 
 

Appendix C 

  Serial.print("Feeding "); 
  Serial.print(A_BML); 
  Serial.print("ml Bloom A&B"); 
  for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {  
      Serial.print("."); 
    digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*1.3); //200 = MINml  
    digitalWrite(RLY8, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
     
  Serial.print("Feeding "); 
  Serial.print(B_52ML); 
  Serial.print("ml B-52"); 
  for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY7, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
 
Serial.print("Feeding "); 
  Serial.print(OverDriveML); 
  Serial.print("ml OverDrive"); 
  for (int doseCount = 1; doseCount <= numofOverDrive10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY4, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY4, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!"); 
   
  //NEED FEED CARBOLOAD  should i add ML VARIABLES for carbo load aand flush or use 
same as voodujuice YES 
Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML); 
  Serial.print("ml CarboLoad"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay*4); //200 = MINml  
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
  FeedCount = FeedCount +1; 
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  }//end BloomFeed5Call  
 
  //September Bloom Feed 
  void BloomFeed6Call(RTCTimerInformation* Sender) { 
    
   //NEED FEED CARBOLOAD  should i add ML VARIABLES for carbo load aand flush or use 
same as voodujuice YES 
Serial.println(" DONT FORGET TO SWITCH CARBOLOAD WITH ROYAL FLUSH"); 
Serial.print("Feeding "); 
  Serial.print(VoodooJuiceML);//or TODO FlushML 
  Serial.print("ml FLUSH"); 
  for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {  
    Serial.print("."); 
    digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously  
    delay(Pump10mlTimeDelay); //200 = MINml  
    digitalWrite(RLY6, HIGH);  
    delay(settleTime);//Let nutrient tubes settle  
   }//end for 
   Serial.println(" Done!\n"); 
   FeedCount = FeedCount +1; 
 }//end BloomFeed6Call  
  
  
void AirCallON(RTCTimerInformation* Sender) { 
  AirIsON = 1; 
  Serial.println("Air Pump is ON"); 
} 
 
void AirCallOFF(RTCTimerInformation* Sender) { 
  AirIsON = 0; 
  Serial.println("Air Pump is OFF"); 
} 
 
void NFTCallON(RTCTimerInformation* Sender) { 
  NFTIsON = 1; 
  Serial.println("NFT Pump is ON"); 
} 
 
void NFTCallOFF(RTCTimerInformation* Sender) { 
  NFTIsON = 0; 
  Serial.println("NFT Pump is OFF"); 
} 
 
void FlushCallON(RTCTimerInformation* Sender) { 
  FlushIsON = 1; 
   
  Serial.println("Flush Pump is ON"); 
} 
 
void FlushCallOFF(RTCTimerInformation* Sender) { 
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  FlushIsON = 0; 
  Serial.println("Flush Pump is OFF"); 
} 
 
void updateTemperature(DeviceAddress deviceAddress) 
{ 
  float tempC = sensors.getTempC(deviceAddress); 
  if (tempC == -127.00) { 
    Serial.print("Error getting temperature"); 
  } else { 
   // Serial.print("C: "); 
   // Serial.print(tempC); 
   // Serial.print(" F: "); 
    //Serial.print(DallasTemperature::toFahrenheit(tempC)); 
    myTemp = tempC; 
     
  } 
} 
 
void updateTemperature2(DeviceAddress deviceAddress) 
{ 
  float tempC2 = sensors.getTempC(deviceAddress); 
  if (tempC2 == -127.00) { 
    Serial.print("Error getting temperature"); 
  } else { 
   // Serial.print("C: "); 
   // Serial.print(tempC); 
   // Serial.print(" F: "); 
    //Serial.print(DallasTemperature::toFahrenheit(tempC)); 
    myTemp2 = tempC2; 
     
  } 
} 

 
void printTemperature(DeviceAddress deviceAddress) 
{ 
  float tempC = sensors.getTempC(deviceAddress); 
  if (tempC == -127.00) { 
    Serial.print("Error getting temperature"); 
  } else { 
    Serial.print("C: "); 
    Serial.print(tempC); 
    Serial.print(" F: "); 
    Serial.print(DallasTemperature::toFahrenheit(tempC)); 
    myTemp = tempC; 
  } 
} 
void printTemperature2(DeviceAddress deviceAddress) 
{ 
  float tempC2 = sensors.getTempC(deviceAddress); 
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  if (tempC2 == -127.00) { 
    Serial.print("Error getting temperature"); 
  } else { 
    Serial.print("C: "); 
    Serial.print(tempC2); 
    Serial.print(" F: "); 
    Serial.print(DallasTemperature::toFahrenheit(tempC2)); 
    myTemp2 = tempC2; 
  } 
} 
 
//-----------------RELAY Testing Output------------------- 
void RELAYTEST() 
  { 
  digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously  
  delay(500);   
  digitalWrite(RLY8, HIGH);  
    
  digitalWrite(RLY7, LOW); //B-52 (Vitamin Pump) 
  delay(500);   
  digitalWrite(RLY7, HIGH); 
       
  digitalWrite(RLY6, LOW); //Voodo Juice (Healthy Bacteria Pump) 
  delay(500);    
  digitalWrite(RLY6, HIGH); 
        
  digitalWrite(RLY5, LOW); //Big Bud or Final Phase (Big Yeilds or Flushing Solution) 
  delay(500);    
  digitalWrite(RLY5, HIGH); 
        
  digitalWrite(RLY4, LOW); //OverDrive (LastBoost) 
  delay(500);    
  digitalWrite(RLY4, HIGH); 
    
  digitalWrite(RLY3, LOW); //Dual Fans 
  delay(500);    
  digitalWrite(RLY3, HIGH); 
 
  digitalWrite(RLY2, LOW); // NFT Recirculation Pump 
  delay(500);    
  digitalWrite(RLY2, HIGH); 
           
  digitalWrite(RLY1, LOW); // Flushing/Waste Pump 
  delay(500);    
  digitalWrite(RLY1, HIGH); 
 
  digitalWrite(AirPumpRLY, HIGH); // Flushing/Waste Pump 
  delay(500);    
  digitalWrite(AirPumpRLY, LOW); 

  } 


