

THE UNIVERSITY OF SALFORD

SCHOOL OF COMPUTING, SCIENCE AND ENGINEERING

Multi-Objective Reinforcement

Learning Framework for Unknown

Stochastic & Uncertain Environments

JOHN MICHAEL PINDER

Submitted in partial fulfilment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY IN ADVANCED ROBOTICS AND AUTOMONOUS

SYSTEMS 2016

Author: John Michael Pinder BSc, MSc

Supervised by: Prof Samia Nefti-Meziani

Co Supervised by: Dr Theodoros Theodoridis

SALFORD – UK

Contents I

List of Figures VI

List of Tables X

Acknowledgements XI

Acronyms XII

Glossary XIII

Abstract XVII

Chapter 1. INTRODUCTION

1.1 Motivation………………………………………………………….………….…......1

1.2 Background to the research……………………………...…….....……....…….....….2

1.3 Research Goal and Contributions ………..…………...…………......……….............2

1.4 Justification for the research……………..………………………………….…..…....3

1.5 Methodology…………………………….……………......………..…………….......4

1.6 Outline of the thesis…………………………..……….……..….................................4

1.7 Delimitations of scope and key assumptions……..……………….............................6

1.8 Conclusion…………………………………………..…………...……..........…….....6

Chapter 2. MULTI OBJECTIVE REINFORCEMENT LEARNING

2.1 Introduction……………………………………...………....….......….……...……....7

2.2 Case Study Research Prototype Review…………………………….……….……....7

 2.2.1 Controlled Environment Agriculture………………….……….……....7

 2.2.2 Robotic Medication Administration Systems………….……….….…..8

2.3 Reinforcement Learning …………..…………………………….…………...…..8

2.4 Taxonomy of Reinforcement Learning Frameworks……………..…..............…10

A. Model-Based & Model-Free Single Objective.………….……...……11

B. Actor, Critic, Actor-Critic…………………….…................................11

CONTENTS

I

CONTENTS

C. On-Policy/Off-Policy….……………………………………….…...…12

D. Single Policy Multi-Objective………………………………….….….12

E. Multiple-Policy Multi-Objective………………..……………..……..16

2.5 Historical Progress……………………..………………………………………….17

A. Most Significant RL Algorithms……………….….…………….……17

B. Most Significant Hybrid Algorithms ……………….................…...…18

2.6 Prospect Theory……………..…………………………………..………..…….……19

2.7 Discussion………………………………………………………………………..….20

2.8 Conclusion……………………………….……….......................................……..….22

Chapter 3. GPFMORL METHODOLOGY

3.1 Introduction…………………………………………………..……………..….…...24

3.2 Multi Objective Reinforcement Learning Framework…….…………..….…....…...24

3.3 Multi Objective Actor-Critic Architecture………………………………....….…...28

3.4 Fuzzy Logic and Fuzzy Inference Systems……………….……….…...…….……..32

3.5 Probabilistic Theory and Uncertainty………………………………………..….......34

3.6 GPFMORL Algorithm Flowchart……………………………………………..…....37

3.7 Rational behind extending GPFRL with a MO methodology….…………….…..…38

3.8 Conclusion………………………………………………..……...…………..…..….39

Chapter 4. DESIGN & IMPLEMENTATION

4.1 Introduction……………………………………………………………….….…......40

4.2 Multi Objective Linear Scalarisation………………………..………….….….…....41

4.3 Prospect Theory………………………………………………………………....….45

4.4 Case Study Research Prototypes…………………….….…………………….........49

 4.4.1 Unmanned Aerial Vehicle Visual Navigation Framework……….…...50

II

CONTENTS

 4.4.1.1 Helipad Visual Localisation using Cellular Decomposition….… .50

 4.4.1.2 Potential Field Methodology (PFM) Reactive Behaviour………..52

 4.4.1.3 UAV 1st Person Perspective Heads Up Display (HUD)………....55

 4.4.1.4 Fuzzy Altitude Controller……………………………………...…55

 4.4.1.5 Multi-Modal Fuzzy Translational Velocity Controller……….…..62

 4.4.1.6 Discussion………………………………………………..…....….64

 4.4.2 Automated Solar Powered Environmental Controller…………...…...65

 4.4.2.1 Motivation………………………………………………..…....…65

 4.4.2.2 ASPEC Functions and Features……………………………….....70

 4.4.2.3 Hardware Design………………………………………….......…73

 4.4.2.4 Touchscreen Human Machine Interface (HMI) Design……........74

 4.4.2.5 ASPEC State Representation…………………………..….…......75

 4.4.2.6 Discussion………………………………………………..….…...76

 4.4.3 Robotic Dementia Medication Administration System……….….…..76

 4.4.3.1 RDMAS Case Study Poster…………………………..…..…...…77

 4.4.3.2 Hardware Design……………………………………………...…78

 4.4.3.3 RDMAS State Representation…………………………..…....….78

 4.4.3.4 Discussion…………………………………………….….…...….78

4.5 Empirical Evaluation methods for MORL…………………..………………..…79

4.6 Preliminary Results…………………………………………………………..….80

4.7 Discussion………………………………………………………….….….….….82

4.8 Conclusion……………………………………………………..…………….….82

Chapter 5. EXPERIMENTS

 5.1 Introduction…………………………………………….…......................................84

 5.2 Decision Making Simulated Experiments…………………………………….....…84

III

CONTENTS

 5.2.1 Random Walk Problem (1st Objective Helipad)……………………....84

 5.2.2 Obstacle Avoidance (2nd Objective Boundary)………………85

 5.2.3 3D Hill Traversal (3rd Objective Hills)……………………… 86

 5.2.4 Grid World Exploration.……………………….…………...... 87

 5.2.5 Multi Objective Deterministic Environment……………..…...89

 5.2.5.1 System Description………………………….….…. ...89

 5.2.5.2 Fixed Start State………………………………...….....91

 5.2.5.3 Random Start State…………………………….......…96

 5.2.5.4 Discussion………………………………………...….101

 5.2.6 Multi Objective Stochastic Environment……………..…........102

 5.2.6.1 System Description…………………………..……....102

 5.2.6.2 Multi Objective Stochastic Windy Hill World……....103

 5.2.6.3 Discussion……………………………………....…....109

 5.2.7 Prospect Theory Results…………………………………...…109

 5.2.8 Conclusions…………………………………………..……….113

 5.3 Unmanned Aerial Vehicle Practical Experiments……………………………...…115

 5.3.1 Introduction …………………………………………..……….116

 5.3.2 Autonomous Quad copter Landing …………………….…...117

 5.3.3 Search and Rescue Application……………………..……....…118

 5.3.4 Multi-modal Fuzzy Translational Velocity Controller………. 120

 5.3.5 Discussion…………………………………………….……….121

 5.4 Automated Solar Powered Environmental Controller (ASPEC) .……………..…122

 5.4.1 Introduction ………………………….………………..…..…..122

 5.4.2 Experimental Setup…………………..………………..…..…..122

 5.4.3 Results…. ……………………………………………..…..…..123

 5.4.4 Discussion. ………………………………………………..…..125

IV

CONTENTS

 5.5 Summary……………………………………………..………………….……...…126

Chapter 6. CONCLUDING DISCUSSION

 6.1 Introduction…………………………………………………….…127

 6.2 Contributions of this work…………………...…………………...128

 6.3 Observations………………………………………………..….…129

 6.4 Future Work…………………………………………………....…129

 6.4.1 Theoretical Suggestions…………………………………...…129

 6.4.2 Practical Suggestions…………………………………….….130

 6.5 Final Conclusions…………………………………………….....…131

References 132

Appendix 138

Appendix A - Multi Objective Random Walk Problem: 139

 MOQ-Learning……………………………………………………………........140

 MOSARSA……………………………………………………………….…....148

 GPFMORL…………………………………………………………………......156

 GPFMORLPT……………………………………………………………….....171

Appendix B - Unmanned Aerial Vehicle Practical: 188

 Main Program……………………………………………………………….....189

Appendix C - Case Study Research Prototype: 213

 Automated Solar Powered Environmental Controller (ASPEC)…………........214

V

Figure 2.1: Basic Components of a RL…………...…………………………….…….……8

Figure 2.2: Reinforcement Learning Taxonomy………………………………….……….10

Figure 2.3: Concave Drawback………………………………………………….…....…...13

Figure 2.4: Reward Vectors.…………… …………………………………..………....…..15

Figure 3.1: Multi Objective Actor-Critic Architecture ……...……………...…….…..…..28

Figure 3.2 Actor Critic GPFRL Pseudo Code………………………………………….….30

Figure 3.3: Fuzzy inference system for the proposed fuzzy altitude controller…..…...….33

Figure 3.4: Proposed GPFMORL Algorithm Flowchart………………………….…....….37

Figure 4.1A: The value function as a function of gains and losses…………………...…...45

Figure 4.1B: Weighting function for gains as a function of the probability………............45

Figure 4.2: OpenCV Visual Localisation ……………………..……………….….............50

Figure 4.3: State ID and Region ID……………………………………………………..…51

Figure 4.4a,b,c,d,e: Potential Field Representations…………………………………..…..53

Figure 4.5: Accuracy optimised surface view profile………………………………….....54

Figure 4.6: Speed optimised surface view profile……………………………………...…54

Figure 4.7: UAV’s Heads Up Display (HUD)……………….…………..……………..…55

Figure 4.8: Fuzzy Membership Functions……………………………………….….…..…56

Figure 4.9: Fuzzy Altitude Controller Structure…………………….……………….……58

Figure 4.10: Fuzzy Altitude Controller Inputs…………………………………...…...…..58

Figure 4.11: Fuzzy Altitude Controller Outputs………………………………..……..….59

Figure 4.12: Fuzzy Logic Rule Base Editor………………………………………….…....60

Figure 4.13: Fuzzy Altitude Controller Inputs………………………………………..…..60

Figure 4.14: Fuzzy Rule View – Slightly too HIGH………………………………….......61

Figure 4.15: Fuzzy Rule View – Slightly too LOW…………………………………...….61

Figure 4.16: Multi-Modal Fuzzy Translational Velocity Controller Surface View….…....62

Figure 4.17: Translational Velocity Controller – Fuzzy Rules…………………………....63

LIST OF FIGURES

VI

LIST OF FIGURES

Figure 4.18: Translational Velocity Controller – Input/Output Fuzzy Logic Design…......63

Figure 4.19: Translational Velocity Controller – DistanceToGoal Membership Funct.......63

Figure 4.20: Translational Velocity Controller– DistanceToGround Membership Funct...64

Figure 4.21: Translational Velocity Controller – Output Speed Membership Functions....64

Figure 4.22: Organisations promoting local food and Hobbyist Home Growers.…….….65

Figure 4.23: Design and Testing of cost effective and advanced hydroponic methods.….66

Figure 4.24: ASPEC Nutrient vessel arrangement and NFT crop layout……….………..66

Figure 4.25: Automated Solar Powered Self-Sustainable Greenhouse………….…….….67

Figure 4.26: ASPEC mk2 with purpose built illuminated micro switch HMI………..…..68

Figure 4.27: Custom HMI (Front View)……………………………………….……….…68

Figure 4.28: Custom HMI (Rear View)…………………………………………………...68

Figure 4.29: ASPEC Grow Schedule (by Hesi)…………………………………….….…69

Figure 4.30: ASPEC self-sustaining greenhouse………………………………………....69

Figure 4.31: Conventional Hydroponic Nutrient Film Technique (NFT)………...............70

Figure 4.32: ASPEC & Additional complementary hardware layout……………….….....73

Figure 4.33: ASPEC (Inside View)………………………………………………….….....74

Figure 4.34: ASPEC Touchscreen Human Machine Interface screens………………....…74

Figure 4.35: ASPEC Nutrient Configuration Screen………………………………….…..75

Figure 4.36: ASPEC State Representation……………………………………………..….75

Figure 4.37: RDMAS Research Prototype Poster……………………………………..…..77

Figure 4.38: RDMAS State Representation…………………………………………….....78

Figure 4.39: MO Puddleworld………………………………………………………...…...79

Figure 4.40: Buridan’s Ass…………………………………………………………….......79

Figure 4.41: UAV Helipad Deviation Comparison Graph…………………………….......81

Figure 5.1: Random Walk Grid World Environment and Action Set………………….….85

Figure 5.2: Multi Objective Solutions…………………………………………………..…86

Figure 5.3: MORL Punishment Locations………………………………………………...91

VII

LIST OF FIGURES

Figure 5.4: Static Starting position MOQ learning rates………………………………..…91

Figure 5.5: Static Starting position MOSARSA learning rates………………………....…92

Figure 5.6: Static Starting position GPFMORL learning rates………………………...….92

Figure 5.6.1: Static Starting position 1st Objective (Helipad) Comparison……………….93

Figure 5.6.2: Static Starting position 2nd Objective (Boundaries) Comparison…………..93

Figure 5.6.3: Static Starting position 3rd Objective (Hills) Comparison……………….…93

Figure 5.7a: Fixed Start State Utility Value Distributions for MOQ-Learning………..….94

Figure 5.7b: Fixed Start State Utility Value Distributions for MOSARSA………….…....94

Figure 5.8: Fixed Start State GPFMORL probability distributions a), b), c), d)..……...…94

Figure 5.9: Random Starting Location MOQ learning rates……………………………....97

Figure 5.10: Random Start Location MOSARSA learning rates…………………..……...98

Figure 5.11: Random Start Location GPFMORL learning rates…………………….…....98

Figure 5.11.1: Random Starting position 1st Objective (Helipad) Comparison……….….99

Figure 5.11.2: Random Starting position 2nd Objective (Boundaries) Comparison……...99

Figure 5.11.3: Random Starting position 3rd Objective (Hills) Comparison………….….99

Figure 5.12a: Random Start State Utility Value Distributions for MOQ-Learning……...100

Figure 5.12b: Random Start State Utility Value Distributions for MOSARSA…………100

Figure 5.13: Random Start State GPFMORL probability distributions a), b), c), d)….…100

Figure 5.14 Windy Hill World………………………………………………..………….103

Figure 5.15: Static Start Location Windy MOQ learning rates…………………………..104

Figure 5.16: Windy Static Start Location MOSARSA learning rates……………………105

Figure 5.17a: Windy Static Start State Utility Value Distributions for MOQ …………..106

Figure 5.17b: Windy Static Start State Utility Value Distributions for MOSARSA….…106

Figure 5.18: Static Start Location Windy GPFMORL learning rates………………...….106

Figure 5.18.1: Windy Static Starting position 1st Objective (Helipad) Comparison……107

Figure 5.18.2: Windy Static Starting position 2nd Objective (Boundaries) Comparison..107

Figure 5.18.3: Windy Static Starting position 3rd Objective (Hills) Comparison…….…107

Figure 5.19: Windy Static Start GPFMORL probability distributions a), b), c), d)..…….108

VIII

LIST OF FIGURES

Figure 5.20: Deterministic Experiment with Prospect Theory……………………….…..109

Figure 5.21: Deterministic GPFMORL probability distributions…………………….….110

Figure 5.22: Stochastic Experiment with Prospect Theory…………………………..…..110

Figure 5.22.1: Deterministic Vs Stochastic 1st Objective (Helipad) Comparison…….…111

Figure 5.22.2: Deterministic Vs Stochastic 2nd Objective (Boundaries) Comparison…..111

Figure 5.22.3: Deterministic Vs Stochastic 3rd Objective (Hills) Comparison………….111

Figure 5.23: Stochastic GPFMORL probability distributions…………………………....112

Figure 5.24a,b ¼ of the Detection manoeuvre (Left) for detecting obstacles/hills…..…..117

Figure 5.25: C++ Search and rescue application using AR-Drone 2.0 and OpenCV.…...119

Figure 5.26: Multi-Modal Fuzzy Speed Controller outputs for translational velocity…...121

Figure 5.27: ASPEC Experimental Results Graph………………………………..….…..124

IX

Table 5.1: Reward and punishment scheme for three objectives in the random walk….....90

Table 5.2: MORL Parameters and objective weightings……………………………….…90

Table 5.3: Windy MORL parameters and objective weightings…………………………103

LIST OF TABLES

X

This dissertation is the product of many years of endurance and effort and is the result of

not just one individual, but of many, each one being equally important for its correct

development.

To begin, I would like to thank my supervisor Prof Samia Nefti Meziani for this amazing

opportunity to learn under her guidance in such a well-equipped robotics department at the

University Of Salford. Also thanks to my co-supervisor Dr Theodoros Theodoridis for his

initial guidance and introduction to the interesting field of Multi Objective Reinforcement

Learning.

I would like to thank and acknowledge the remarkable work of Dr William Hinojosa in the

development of the GPFRL algorithm which formed the foundations upon which this

research was conducted.

I thank my parents and family who have never stopped supporting me, I thank their

patience, commitment, support, and advice when I needed it the most. They always

believed in me and encouraged me, showing me love and support making me the person I

am today.

Special thanks to my beautiful partner Sarah whose continuing support and perseverance

have allowed me to peruse my ambitious goals in life. I appreciate that moving into a

house together, financial situations, and coping with the stresses of supporting a PHD has

pushed our relationship to the limits but thank you for still believing in me and helping me

in any way you could.

ACKNOWLEDGEMENTS

XI

AI Artificial Intelligence

DP Dynamic Programming

FIS Fuzzy Inference System

US Ultra Sonic

MC Monte Carlo Methods

MDP Markov Decision Process

NN Neural Networks

PFL Probabilistic Fuzzy Logic

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

SARSA State-Action-Reward State-Action

TD Temporal Difference

MORL Multi Objective Reinforcement Learning

MOQ Multi Objective Q-Learning

MOSARSA Multi Objective State Action Reward State Action

GPFMORL Generalised Probabilistic Fuzzy Multi Objective Reinforcement Learning

UAV Unmanned Aerial Vehicle

CDSM Cellular Decomposed State Matrix

PFM Potential Field Methodology

ACRONYMS

XII

Actor-critic:

Refers to a class of agent architectures, where the actor plays out a particular

policy, while the critic learns to evaluate the actor's policy. Both the actor and critic

are simultaneously improving by bootstrapping on each other.

Agent:

 A system that is embedded in an environment. The controller or decision-making

 entity choosing actions and learning to perform a task. Examples include mobile

 robots, software agents, or industrial controllers.

Average-reward methods:

A framework where the agent's goal is to maximize the expected payoff per step.

Average-reward methods are appropriate in problems where the goal is to

maximize the long-term performance. They are usually much more difficult to

analyse than discounted algorithms.

Discount Factor:

A scalar value between 0 and 1 which determines the present value of future

rewards. If the discount factor is 0, the agent is concerned with maximizing

immediate rewards. As the discount factor approaches 1, the agent takes more

future rewards into account. Algorithms which discount future rewards include Q-

learning and TD (lambda).

Discounting:

If rewards received in the far future are worth less than rewards received sooner,

they are described as being discounted. Humans and animals appear to discount

future rewards hyperbolically; exponential discounting is common in engineering

and finance.

Dynamic Programming:

 A collection of calculation techniques for finding a policy that maximises reward or

 minimises costs. Is a class of solution methods for solving sequential decision

 problems with a compositional cost structure.

Environment:

The external system in which an agent is “embedded” which enables perception

and action.

Episode:

 A time segment of learning with task dependent starting and ending conditions.

Function Approximation:

 Refers to the problem of inducing a function from training examples. Standard

 approximators include decision trees, neural networks, and nearest-neighbour

 methods.

Markov Chain:

 A model for a random process that evolves over time such that the states (like

 locations in a maze) occupied in the future are independent of the states in the past

 given the current state.

GLOSSARY

XIII

GLOSSARY

Markov Decision Process:

A model for a controlled random process in which an agent's choice of action

determines the probabilities of transitions of a Markov chain and lead to rewards

(or costs) that need to be maximised (or minimised). Essentially, the outcome of

applying an action to a state depends only on the current action and state (and not

on preceding actions or states) .

Model:

 The agent's view of the environment, which maps state-action pairs to probability

 distributions over states. Note that not every reinforcement learning agent uses a

 model of its environment. Basically it’s a mathematical description of the

 environment.

Model-based algorithms:

These compute value functions using a model of the system dynamics. Adaptive

Real-time DP (ARTDP) is a well-known example of a model-based algorithm.

Model-free algorithms:

These directly learn a value function without requiring knowledge of the

consequences of doing actions. Q-learning is the best known example of a model-

free algorithm.

Monte Carlo Methods:

A class of methods for learning value functions, which estimates the value of a

state by running many trials starting at that state, then averages the total rewards

received on those trials.

Policy:

 The decision-making function of the agent, which represents a mapping from

 situations to actions. Can be considered a deterministic or stochastic scheme for

 choosing an action at every state or location.

Policy Evaluation:

 Determining the value of each state for a given policy.

Policy Improvement:

 Forming a new policy that is better than the current one.

Policy Iteration:

 Alternating steps of policy evaluation and policy improvement to converge to an

 optimal policy.

POMDP

 Partially observable Markov decision problem. State information is available only

 through a set of observations.

Return:

 The cumulative (discounted) reward for an entire episode.

Reward:

An immediate, possibly stochastic, payoff that results from performing an action in

a state represented by a numerical signal to the learning agent indicating task

XIV

GLOSSARY

progress or completion or the degree to which a state or action is desirable. Reward

functions can be used to specify a wide range of planning goals

Sensor:

 Agents perceive the state of their environment using sensors, which can refer to

 physical transducers, such as ultrasound, or simulated feature-detectors.

State:

This can be viewed as a summary of the past history of the system, which

determines its future evolution.

Temporal Difference Algorithms:

 A class of learning methods, based on the idea of comparing temporally successive

 predictions. Possibly the single most fundamental idea in all of reinforcement

 learning.

Temporal Difference Prediction Error:

 A measure of the inconsistency between estimates of the value function at two

 successive states. This prediction error can be used to improve the predictions and

 also to choose good actions.

Unsupervised Learning:

 The area of machine learning in which an agent learns from interaction with its

 environment, rather than from a knowledgeable teacher that specifies the action the

 agent should take in any given state.

Value Function:

Is a mapping from states to real numbers, where the value of a state represents the

long-term reward achieved starting from that state, and executing a particular

policy. The key distinguishing feature of RL methods is that they learn policies

indirectly, by instead learning value functions. RL methods can be contrasted with

direct optimization methods, such as genetic algorithms (GA), which attempt to

search the policy space directly. A function defined over states, which gives an

estimate of the total (possibly discounted) reward expected in the future, starting

from each state, and following a particular policy.

Value Iteration:

 A single iteration of policy evaluation followed by policy improvement.

XV

“You only get out of

life what you put in”

- Clifford Neal.

XVI

This dissertation focuses on the problem of uncertainty handling during learning, by agents

dealing in stochastic environments by means of Multi Objective Reinforcement Learning

(MORL). Most previous investigations into multi objective reinforcement learning have

proposed algorithms to deal with the learning performance issues but have neglected the

uncertainty present in stochastic environments. The realisation that multiple long term

objectives are exhibited in many risky and uncertain real-world decision making problems

forms the principle motivation of this research.

This dissertation proposes a novel modification to the single objective GPFRL algorithm

(HIinojosa et al, 2008) where, the implementation of a linear scalarisation methodology

provides a way to automatically find an optimal policy for multiple objectives under

different kinds of uncertainty. The proposed Generalised Probabilistic Fuzzy Multi

Objective Reinforcement Learning (GPFMORL) algorithm is further enhanced by the

introduction of prospect theory to guarantee convergence by the means of risk evaluation.

The simulated grid world increased in complexity as a further two complementary and

conflicting objectives were specified whilst also introducing uncertainty in the form of

stochastic cross winds.

Results obtained from the GPFMORL grid world simulations were compared against two

more classical multi objective algorithms, MOQ and MOSARSA, showing not only a

stronger convergence but also a much faster one. Experiments performed on an actual

Quad-Copter/Drone demonstrated that the proposed algorithm and developed framework

are both feasible and promising for the control of Artificially Intelligent (AI) Unmanned

Aerial Vehicles (UAV) in a variety of real-world multi objective applications such as;

autonomous landing/delivery or search and rescue.

Furthermore, the observed results of this work showed that the GPFMORL method can

find its major real world application in the un-calibrated control of non-linear, multiple

inputs, and multiple output systems, especially in multi objective situations with high

uncertainty. Proposed novel case study research prototype examples include: Controlled

Environment Agriculture for optimising Hydroponic Crop Growth by the proposed

“Automated Solar Powered Environmental Controller” (ASPEC). Finally the “Robotic

Dementia Medication Administration System” (RDMAS) attempts to optimise liquid

medication dispensing via intelligent scheduling to more appropriate times of the day when

the patient is more likely to remember to take their medication, based upon previous

learned knowledge and experience.

ABSTRACT

XVII

Page 1 of 233

1.1 Motivation

In situations where pre-programmed solutions are difficult or impossible to design,

learning algorithms can be used to generate solutions for complex problems.

Depending upon the level of available information, one or more types of learning can

be applied. According to the connectionist learning approach (Hinton, 1989), these

algorithms exist primarily in the form of Unsupervised, Supervised and

Reinforcement Learning (RL). Unsupervised learning is only applicable when target

information is not available and the agent attempts to form a model based upon

association amongst data or clustering. Supervised learning however is much more

powerful but requires the knowledge of output patterns corresponding to input data.

However, in dynamic environments where the outcome of an action is not

immediately known and is subject to change, correct target data may not be available

at the moment of learning, this implies that supervised approaches cannot be applied.

In these environments, reward information, whose availability can be only sparse,

may be the best signal that the agent receives. For such systems, Reinforcement

Learning has proven to be a more suitable method than supervised or unsupervised

learning when the systems require a selection of actions whose consequences emerge

over long periods of time for which input-output data are not available (Berenji and

Khedkar, 1992). This dissertation proposes a novel Multi Objective Reinforcement

Learning (MORL) algorithm that combines the universal function approximation

capabilities of fuzzy systems and probabilistic theory with a linear scalarisation

approach. The proposed algorithm seeks to exploit the advantages of both fuzzy

inference systems and Probabilistic theory in a multi objective scenario to capture the

probabilistic uncertainty of real world stochastic environments. This will allow the

agent to choose an action that best satisfies all objectives based upon a probabilistic

distribution able to minimise negative outcomes or maximise positive reinforcement

of future events.

In recent years a growing number of algorithms for multi objective reinforcement

learning have been proposed suggesting that MORL is emerging as a distinct sub-

discipline of reinforcement learning research. However the field of MORL is still in

its infancy and therefore the literature remains fragmented with very few real world

Introduction

Chapter 1

Page 2 of 233

applications developed. The observation that most real-world applications require the

simultaneous satisfaction of multiple objectives drove the growth in multi objective

optimisation research during the 1990‘s (Coello et al. 2002). Multi objective

optimization concerns minimising each objective so that a lower value is superior to a

higher value, however in the context of RL, the superiority is reversed so that the task

is to maximise the reward. MORL problems are different to RL problems in the fact

that there are two or more objectives to be achieved, each with its own associated

reward signal; therefore the reward is a vector rather than a scalar value. If all

objectives are directly related or completely independent, they can be combined into a

single objective and a policy found that can maximise all objectives. In contrast if the

objectives are conflicting then any policy must either maximise only one objective, or

represent a trade-off between conflicting objectives usually in the form of a pareto

front. The extension of a single objective RL algorithm (GPFRL) into a multi

objective algorithm (GPFMORL) introduces new possibilities for variations in the

overall aim of the MORL algorithm which shall be described in the following sections

1.2 Background to the research

The recent advances in Artificial Intelligence (AI) and military funded technologies

embedded into Micro Arial Vehicles (MAV‘s) have allowed a wide variety of

Unmanned Arial Vehicle (UAV) applications to be researched and advanced such as

search and rescue, crop monitoring and even an Amazon drone delivery service.

Along with the increasing popularity of quadcopters (drones) there arises the

opportunity to take advantage of their full capabilities by endowing them with AI so

that they can learn how to react to situations themselves without being reliant upon a

human operator or communication link. Furthermore, researchers typically rely on

expensive aerial vehicles that are capable of lifting heavier advanced sensors which

inherently reduce the operational run time of the UAV impairing the overall

effectiveness of task completion when instead the use of computer vision and AI

techniques could be more efficient especially for communication failure redundancies.

1.3 Research Goal and Contributions

It can be seen later that the GPFMORL framework is an extended version of the

single objective GPFRL algorithm using linear scalarisation and Prospect Theory. The

following contribution is derived from the work described in this thesis.

Chapter 1: Introduction

Chapter 1: Introduction

Page 3 of 233

A Generalised Probabilistic Fuzzy Multi Objective Reinforcement Learning method

intended for continuous states and actions and is able to learn input-output mappings

through interactions with the environment. This method tackles 6 issues in the

decision making processes.

 Uncertainty in the outcome of actions is handled by a probabilistic approach.

 Learning from interaction, where system model is not readily available is

handled by using reinforcement learning.

 Uncertainty in the inputs, which is handled by using a fuzzy logic control

method.

 Choosing the most appropriate action that satisfies multiple objectives using a

linear scalarisation technique.

 Dealing with the presence of risk in the form of Prospect Theory (Risk

Aversion)

The developed algorithm exhibits a comparatively fast learning speed and flexibility

as it can be used for several different systems, where control or decision making

under uncertainty is paramount. This concept has been tested through 4 different

experiments and 2 additional research prototypes:

 The random walk multi objective deterministic simulations

 The Windy Grid World multi objective stochastic simulations

 Experiments performed using Prospect Theory for uncertainty under risk

 A real time experimental investigation of automatic landing for a quadcopter

mobile robot using computer vision as the primary positioning sensor.

1. Working Prototype of the Automated Solar Powered Environmental Controller

2. Partially working prototype for the Robotic Dementia Medication

Administration System

1.4 Justification for the research

What takes place when lerning occurs in still largely unknown. The presence of

uncertainty and the concept of knowledge itself make it intrinsically difficult if not

impossible to model and analyse the final behaviour of a learning system; therefore no

system with unsupervised learning should be unsupervised. Instead, it is suggested

Chapter 1: Introduction

Page 4 of 233

that the research of methods combining the probability estimation of reinforcement

learning, as the one proposed by Hinojosa et al (2011), with other methods that can

incorporate the knowledge of human operators; especially for situations where the

result of selecting actions or behaviours with a relatively ―high‖ probability of success

can have positive consequences. As an example, it can be suggested the use of

prospect theory, which is a method of calculating decisions not only based on

probabilities of success but also based on a risk evaluation.

1.5 Methodology

Quantitative research is ‗Explaining phenomena by collecting numerical data that are

analysed using mathematically based methods (in particular statistics)‘. For example,

how many iterations (steps) does it take a MORL agent to converge to the optimal

policy? While quantitative research is based on numerical data analysed statistically,

qualitative research uses non-numerical data. Qualitative research encompasses a

wide range of methods, such as interviews, case studies, ethnographic research and

discourse analysis. Due to the nature of this autonomous project and the hazardous

environment in which it acts, the need for human subjects is eradicated. The

performance measure of the system can be acquired using statistical methods directly

outputted from the system in terms of a numerical value. The performance may then

be compared to other implementations of MORL using further statistical analysis in

an attempt to demonstrate its superiority and short falls in contrast with other

algorithms.

1.6 Outline of the thesis

 Chapter 2 Reviews existing Multi Objective Reinforcement Learning

literature to build a theoretical foundation upon which the research is based.

The chapter starts with a brief introduction to multi objective reinforcement

learning and then suggests some important real world applications where

MORL may be applied to improve existing methods. A general overview of

RL is then described and a taxonomy of RL frameworks is presented

highlighting criteria from which the proposed algorithm was created. Several

single policy multi objective algorithms are summarised, followed by multiple

Chapter 1: Introduction

Chapter 1: Introduction

Page 5 of 233

policy algorithms, most significant RL and Hybrid algorithms. Prospect theory

is then briefly introduced finishing with a discussion and conclusions.

 Chapter 3 Explains in more detail the principal components of the

GPFMORL architecture. The mathematical formulisation of a sequential

decision making process is explained. I then analyse the importance of

uncertainty handling; review the concept of fuzzy inference systems, and then

introduce the application of probabilistic theory to fuzzy logic. Finally

conclusions are made and the rationale behind extending the GPFRL single

objective RL algorithm into an improved multi objective GPFMORL

algorithm is justified.

 Chapter 4 In this chapter, we consider a number of examples regarding

our proposed reinforcement learning approach. In sub section 4.2, we describe

a multi objective linear scalarisation technique which extends the single

objective GPFRL algorithm into a multi objective one (GPFMORL). Prospect

theory is then explained in section 4.3 in more detail with integration into our

proposed algorithm. Section 4.4 details three unique case study research

prototypes developed to demonstrate the feasibility of MORL decision making

for crucial applications such as AI UAV‘s, ASPEC and RDMAS. Subsection

4.4.1 details the various implementations necessary to construct the

Unmanned Aerial Vehicle Visual Navigation Framework. Subsection 4.4.2

details various prototypes for the Automated Solar Powered Environmental

Controller. Subsection 4.4.3 details the design for a Robotic Dementia

Medication Administration System. Section 4.5 explains some Empirical

Evaluation methods for MORL finishing with a discussion and conclusion.

 Chapter 5 This chapter explains several experiments using the proposed

GPFMORL algorithm, and compare it to results of two other more

conventional MORL algorithms MOQ and MOSARSA. Four experiments are

presented in this thesis: Multi Objective Deterministic Environment, Multi

Objective Stochastic Windy Hill World Environment, UAV Automatic

Chapter 1: Introduction

Page 6 of 233

Landing Practical Experiment and finally the Controlled Environment

Agriculture of Hydroponic Tomatoe Plants using ASPEC.

 Chapter 6 – Recalls the contributions of this work; it then states some

observations and proposes some possible extensions and directions for future

research. The chapter ends with some final conclusions derived from this

research.

Additionally three appendices complement the chapters above as by demonstating the

implementation of MORL as follows: first, appendix A contains matlab programme

code used for the random walk simulated experiments. Second, Appendix B contains

C++ code used for the practical UAV experiment. Finally Appendix C includes

design and development evidence of an alternate case study embedded system

prototype ―Automated Solar Programmable Environmental Controller (ASPEC)‖.

1.7 Delimitations of scope and key assumptions

One of the test labs is approximately 6 m high therefore preliminary experiments

reveal that this is sufficient to perceive the environments plan view perspective of

around 3m
2
. Should larger environments need to be tested, there are other rooms

available with a maximum height of approximately 12m high, therefore at most a plan

view perspective of a 6m
2
 environment can be used for testing purposes. This should

satisfy my testing conditions of non-finite environments in an attempt to validate

scaled up versions of MORL. It is assumed that the control PC shall be no more than

50m from the AR-Drone at any point in order to ensure reliable Wi-Fi signal strength.

1.8 Conclusion

This chapter laid the foundations for the report. It introduced the research problem

and research questions and hypotheses. Subsequently the research was justified,

definitions were presented, the methodology was described and justified, the thesis

was outlined, and the limitations were given. On these foundations, the report can

proceed with a detailed description of the research.

Chapter 1: Introduction

Page 7 of 233

2.1 Introduction

Automonous robot operation requires the subjects to know its position and movement

within the environment. Since no assumptions can be made about the environment,

the robot must learn from its environment. The learning task consists of finding a

mapping from environmental conditions to behaviours into the most effective actions

(policy). One method that is particularly good at learning and improving policies is

RL, which is considered to be a significant sub-branch of Machine Learning (ML)

most suited to solving sequential decision making problems. Single Objective

Reinforcement Learning (SORL) has proven to be very powerful at allowing agents to

learn in unknown environments by maximising a value representing a single long

term objective. However within the majority of real world decision making problems

there usually exists multiple long term objectives. Only recently in the last few years

has there been a significant increase in MORL research. However, researchers have

yet to develop of a MORL algorithm capable of dealing with risk and uncertainty

which is crucial in most real world applications as suggested by the ASPEC and

RDMAS research prototypes.

2.2 Case Study Research Prototype Review

2.2.1 Controlled Environment Agriculture

An important real world example of a multi objective problem in the presence of

uncertainty is the optimisation of hydroponic crop growth by means of Controlled

Environment Agriculture (CEA). Few systems have attempted to automate

hydroponic crop growth however no systems take into account uncertain

environmental factors which is imperative to predicting the optimal conditions for

optimised crop growth. The paper by Saaid et al (2013) proposes a microcontroller

system for a hydroponic technique known as deep water culture. Whilst the described

system compensates for PH variations with good results, the electrical conductivity of

the nutrient solution is neglected, consequently only the PH of the nutrient solution is

optimised which is not sufficient for crop growth optimisation. The instrumental

system developed by Domingues et al (2012) proved successful at monitoring and

fixing the pH and EC of the nutrient solution for hydroponic lettuce. However the

quality of crop results obtained were done so via two crops grown in parallel, one in

conventional soil and the other using an automated hydroponic system. This does not

fairly test the advantages of the automated system; instead it compares automated

Multi Objective Reinforcement Learning

Chapter 2

Page 8 of 233

hydroponic crop growth with manual conventional soil methods which are

unsurprisingly not as efficient. Instead a fairer test would have been to test two

parallel hydroponic crop growths, one real time-automatic and the other manually

controlled hydroponics truly demonstrating the advantages of automated hydroponics

in a non-bias testing environment. Whilst the work by Velázquez et al (2013)

proposes sound electrical schematic evidence of accurate PH and EC monitoring

systems, it neglects other environmental factors such as Temperature which is

influential on nutrient absorption. A system with closed loop feedback from nutrient

solution sensors in combination with monitoring of uncertain conditions, such as

sunlight and temperature, may result in much more effective hydroponic optimisation

system, such as the one proposed later in this thesis.

2.2.2 Robotic Medication Administration Systems

As a result of medication errors both in hospitals and at home, adverse drug events

(ADE‘s) cost the NHS around £200 - £400 million per year. In order to reduce these

medication errors, Morriss, Frank, et al (2009), proposed barcode technology that

verifies medication administration. However whilst this system was effective at

detecting medication errors, it was not capable of acting automatically in order to

correct these errors which may in fact present the opportunity for more errors to

propagate further down the medication administration cycle. Other commercial

products include Aesynt‘s ROBOT-Rx which is the market-leading automated

medication dispensing solution. The system increases efficiency and accuracy in a

Central Pharmacy, but this is not a personal mobile solution and is the size of a large

room which would not be feasible for self-care patients in their own homes.

2.3 Reinforcement Learning

RL uses the notion of positive rewards and negative punishments that are experienced

by the agent themselves. In other learning methods such as supervised learning, the

best action possible will be made known to the agent after acting in specific way. In

Figure 2.1: Basic Components of a RL

Chapter 2: Literature Review

Chapter 2: Multi Objective Reinforcement Learning

Page 9 of 233

practical problems, the best action is sometimes impossible to know, but a certain

value of the resulting state could be defined. The task of the agent is to learn from this

indirect, delayed reward to choose sequences of actions that yield the greatest

cumulative reward. The reward obtained when the agent attempts different actions, is

used in reinforcement learning to update either the value function or the policy. The

value function determines the potential value of each state where as the policy maps

possible perceived states to the best known set of actions. The goal or objectives to be

achieved are defined by the reward function without actually specifying how the

objectives shall be accomplished.

The primary aim of RL is to maximise the expected total reward over time, also

known as return. Interaction within the environment allows the agent to learn the

optimal actions to take for each state by selecting actions which result in the largest

expected return. In order to update the agents knowledge, a method that involves

some kind of temporal difference (TD) may be used (Sutton & Barto, 1998) that

updates the value function. Temporal-difference (TD) methods were formalised and

studied by Sutton (1988) as a solution to the problem of making multi-step predictions

of future events based on past experience. Before Sutton‘s formalisation, well-

understood techniques for learning predictions were trained using differences between

predictions and the actual future outcomes.TD techniques are used to update the

values or value function parameters based on the direct reward and the difference

between the current and last potential state value, weighted with a learning parameter

(Veen, M. van der. 2011). The update rule is therefore based on the difference

between the value of the last state visited and the value of the current state, or a

weighted combination of the old expected (long-term) return value and the current one

based on current reward and the value of the next state (Veen, M. van der. 2011).

Alternatively Evolutionary Algorithms (EA) can be used to directly update the

policies themselves whereby whole policies, instead of values, are evaluated and

‗evolve‘ to better policies (XIE Li-juan, 2009). To use the knowledge learned from

experience, as well as gather new knowledge, a trade-off between exploration and

exploitation must be established. In practice, often some percentage of the actions is

chosen random and the remaining actions are determined by the value function or

policy learned so far (Veen, M. van der. 2011). Markov Decision Process (MDP)

models are the mathematical foundation for RL in a single agent environment (Yang,

E., & Gu, D. 2004). Commonly a MDP is characterized as the mathematical

Chapter 2: Multi Objective Reinforcement Learning

Page 10 of 233

formulation for sequential decision-making problems defined as a 4-tuple {S, A, R,

T,y} (Sutton&Barto, 1998) of which sequences of MDP tupples describe the agents

experience in the learning process.

2.4 Taxonomy of RL Frameworks

Being a very flexible learning technique, there are several methods and algorithms

that have been developed. Each of these can be classified under one or more

categories according to different criteria. There are mainly three basic criteria to

classify reinforcement learning methods:

 By the presence of a system model.

 By the way they learn and select a correct policy.

 By its structure.

Figure 2.2 presents a flow chart illustrating a reinforcement learning taxonomy, along

with some well-known algorithm examples. Each of the reinforcement leaning

methods or algorithms are classified into one or more categories according to different

criteria. The hashed blocks show the structure of a recently developed GPFRL

algorithm (Hinojosa, W. 2008), where the shaded blocks show the model that forms

the principal focus of this thesis which primarily concerns extending the GPRFL

algorithm to the multi-objective domain for complex dynamic unknown stochastic

environments.

Figure 2.2: Reinforcement Learning Taxonomy

Chapter 2: Multi Objective Reinforcement Learning

Chapter 2: Multi Objective Reinforcement Learning

Page 11 of 233

A. Model-Based & Model-Free Single Objective

Model-based or indirect methods act in two phases: first, they learn the transition

probability and reward functions and second, they make use of those transition

probabilities in order to compute the Q function by means of, for example, the

Bellman equations (Bellman, 1957). Some of the best well known algorithms in this

category are Dyna (Roy et al., 2005) and prioritised sweeping (Demspster, 1969,

Moore and Atkeson, 1993). Model free or direct methods learn the policy by directly

approximating the Q-function with updates from direct experience. These methods are

sometimes referred to as the Q-learning family of algorithms (Sutton, 1988),

(Watkins, 1989). Some of the best well known algorithms in this category are

adaptive heuristic critic (AHC) (Barto et al., 1983), Q-learning (Watkins, 1989) and

SARSA (Rummery and Niranjan, 1994). Model free methods can be further classified

in three sub groups depending on whether the algorithm focuses on learning the policy

or the value function, critic only, actor only, and actor-critic (Barto et al., 1983).

B. Actor, Critic, Actor-Critic

Critic only methods are called value function-based methods and they attempt to find

the optimal value function from which an optimal policy is derived. Some of the most

important reinforcement learning algorithms are critic-only methods, such as

Dynamic programming (Bellman, 1957) and Temporal Difference (Sutton and Barto,

1987, Sutton, 1988). In contrast with the critic only method, actor only methods learn

the policy, which is a function that depends only on the current state and therefore a

value function is never defined. In actor only methods, the learning agent uses an

explicit representation of its behaviour with the goal of improving it by searching the

space of possible policies P. Therefore, an actor only method will be feasible, if its

search space is restricted to a subset of P. Some important actor only algorithms

include: Associative Reinforcement Learning Algorithms (Barto and Anandan, 1985).

Policy gradient algorithms (Cheeseman, 1985). REINFORCE (Williams, 1992).

EARL, evolutionary algorithm RL (Moriarty et al., 1999). The best well known

example of the actor-critic algorithm is the Adaptive Heuristic Critic Algorithm

(AHC) (Barto et al,1983) where this novel concept was introduced for the very first

time. Actor-critic (AC) methods are TD methods that have a separate memory

structures to explicitly represent the policy independent of the value function. The

policy structure is known as the actor, because it is used to select actions, and the

Chapter 2: Multi Objective Reinforcement Learning

Page 12 of 233

estimated value function is known as the critic, because it criticizes the actions made

by the actor. When combined into an AC structure, the learning is always on-policy:

the critic must learn about and critique whatever policy is currently being followed by

the actor. The critique takes the form of a TD error (a scalar signal) and represents the

sole output of the critic which drives all learning in both actor and critic. It would

seem that an actor-critic system with a lookup table is guaranteed to converge to

optimality no matter what. Surprisingly, that is not the case. Although it always

converges for y>0.5 (Williams & Baird 1993), it does not always converge for larger

y as shown by Baird (1999).

C. ON-Policy / OFF-Policy

In both model free and model based methods there are two basic strategies to update

the policies value function which are known as on-policy and off-policy learning. Off-

policy methods are able to update the estimated value functions by using hypothetical

actions, those that may never actually be tried. The behaviour policy of the agent is

usually ―soft‖ and therefore includes some element of exploration. An advantage of

off-policy algorithms is that they can separate exploration from control, whilst on-

policy algorithms cannot. One of the most well-known on-policy learning algorithms

is called Q-Learning (Watkins, 1989) and is reviewed in more detail in section 4A.

D. Single-Policy Multi-Objective

MORL approaches may be divided into two categories based on the number of

policies to be learned: single-policy approaches and multiple-policy approaches.

Single-policy approaches aim to obtain the best single policy that satisfies the

preferences among the multiple objectives, as specified by a user or derived from the

problem domain (Vamplew, P et al. 2011). The major difference between the single-

policy approaches is the way in which these preferences are expressed.

 Weighted Sum Approach

The weighted sum approach is a naturally extended version of Greatest Mass

approaches such as (GM-Q) and (GM-Sarsa). GM-Q suffers from the problem of

positive bias where as GM-Sarsa does not due to being an on-policy method. Using

Chapter 2: Multi Objective Reinforcement Learning

Page 13 of 233

GM-Sarsa‘s approach the updates were based upon actual actions taken rather than the

best possible action, the algorithm discovers Q-Values that are closer to the true

expected return. This weighted sum approach has the advantage of allowing the user

to have some control over the nature of the solution by

placing more or less emphasis on each of the several

objectives. Assuming there are two objectives to be

completed and 5 possible candidate actions as illustrated

in (Fig 2.3), you notice that actions a2, a3 and a4 lie

within the concave regions of the pareto front and will

therefore never be selected, instead either a1 or a5

will be selected according to their pre-defined

weights. This disadvantage can be overcome by

using less frequent non linear functions as

demonstrated in Tesauro, G. et al (2007)

 W-Learning Approach

In the paper by Humphrys, M (1996), Humphrys demonstrates how ‗W‘ values can be

generated using Top-Q algorithm which generates the action according to the

objective with the highest Q-value in the current state. The advantage of this is that

the Optimal action is chosen for at least one objective. However the disadvantage is

that the objective with the highest Q-Value may have no preference over what action

is chosen, while another objective stands to lose a great deal if its action is not

selected. A much better approach is to learn the W values based upon the update rule

for a process known as W learning (Liu, C. et al 2013). The reverse of this process is

called Negotiated W-Learning which results from Liu, C. et al‘s (2013) statement that

there is no need to learn the W values, instead they can be computed directly from the

Q-Values.

A common approach in complex reinforcement learning tasks is to divide the problem

into functional parts, or behaviours, and then to assign a sub-agent to solve each task.

The action selection problem then becomes to negotiate between sub-agents with

conflicting desires. W-learning is a method whereby agents build up W-values in each

state that indicate how important that state is for that agent. These values are then

used as basis for selecting agents.

Figure 2.3: Weighted Sum

Concave Drawback (Source:

Liu et al, 2013)

Chapter 2: Multi Objective Reinforcement Learning

Page 14 of 233

 Analytic Hierarchy Process (AHP) Approach

In most cases, knowledge about the optimisation problem does not exists explicitly

therefore we often define the objectives in a qualitative manor such as ―It is more

important that the UAV does not fly into a wall rather than landing precisely on the

helipad.‖ However this presents a problem for stochastic/deterministic systems as

there is no precise mathematical description to quantify this information. Using fuzzy

subsets and inference rules, the Importance factor Ii and the value of improvement

Di(ap,aq)= Qi(s, ap) − Qi(s, aq) are used as inputs to construct the action selection

mechanism (Humphrys, M. 1996). Another example using the AHP algorithm is the

Greenhouse Parameter Control Strategy demonstrated in Qian and Wang (2013)

where the target for the RL agent is to produce as high yield of crops as possible by

taking into account several environmental factors such as light intensity, Co2 level,

humidity, and temperature. Various equipment such as heaters, ventilation fans,

irrigation equipment and LED lights are controlled by the AHP algorithm to provide a

more scientific and reasonable sequence in selecting control measures. Providing the

ideal growth values for any particular crop are known, this method may be used to

automatically collect and control crop growth parameters to be used as an automatic

control algorithm for maximising any crops production yield.

 Ranking Approach

Mitten (1964) and Sobel (1975) expressed an objective function TQ(s,a) in terms of

partial policies which is also known as the sequential or threshold approach. In this

approach one objective is maximized whilst satisfying the constraints on other

objectives (such as maximizing factory production while maintaining a required

safety level). In the paper by Zheng et al (2012), the two metrics of transmission delay

and packet loss rate are considered as an optimisation problem of two choices.

 Minimize transmission delay under desired constraint of packet loss rate,

which would be suitable for the scenario of a best effort application.

 Minimize packet loss rate under desired constraint of transmission delay,

which would be proper for the scenario of a real-time application.

Two Q-Tables are used in this approach to address the challenges of randomness,

uncertainty, and multiple metrics in the field of cognitive radio networks. However

Chapter2: Literature Review

Chapter 2: Multi Objective Reinforcement Learning

Page 15 of 233

Since they only consider the packet loss caused by the link condition, the comparison

between MORL based routing and shortest path routing is actually unfair.

 Geometric Approach

This algorithm proposed by Mannor and Shimkin (2004) focuses on the long term

average reward vector in a dynamic, unknown environment. Interestingly this

algorithm can also deal with environments that may be altered by the actions of other

agents providing pre-existing knowledge of the problem domain is provided to define

the target set. Importantly a disadvantage of this system is that although the changes

to the environments state can be observed, they cannot be predicted before hand. The

geometric algorithm learns to approach a prescribed target set in multidimensional

objective space shown in fig 2.4b below.

Figure 2.4a & 2.4b : Reward Vectors (Source: Mannor and Shimkin, 2001)

The above learning algorithm illustrated in Figure 2.4a only needs to determine which

element to use at each of the two extreme regions. EG: If the temperature is higher

than T, the cooling fan policy shall be executed, where as if the temperature is lower

than T then the heater will be activated. Now consider a more complex multi-

objective version of this example where the objective is still to maintain a specific

temperature although now other parameters such as ―frequency of switching between

policies, average energy consumption, average humidity are to be added as extra

objectives. The target set shown in Figure 2.4b demonstrates how the steering policy

for the controller is now much more complex than figure 2.4a‘s left or right

directions, now there is a continuum of possible directions, each associated with a

possible different steering policy.

Chapter 2: Multi Objective Reinforcement Learning

Page 16 of 233

E. Multiple-Policy Multi-Objective

Multiple- policy approaches aim to find a set of policies that approximate the Pareto

front. The fundamental difference between multiple policy approaches is the manner

in which the Pareto front is approximated (Chunming et al 2003).

 Convex Hull Approach

Until now, only single policy approaches to multi objective reinforcement learning

have been discussed however there have been efforts to develop algorithms that are

multiple policy approaches by nature. A multiple policy approach known as the

convex hull approach is described in Li-juan et al (2009) which can learn optimal

policies for all linear preference assignments over the objective space at once.

Conventional RL algorithms repeatedly back up maximal expected rewards whereas

this type of RL backs up the set of expected rewards that are maximal for some set of

linear preferences. Barret and Narayanan (2008) proved that their solution gives the

optimal policy for any linear preference function and the solution is reduced to the

standard value iteration algorithm for specific weight vector. Crucially this convex

hull technique can be used in combination with other RL algorithms, because multiple

policies are learned at once, these RL algorithms must be off-policy such as Q-

Learning or Dynamic Programming Techniques.

 Varying Parameter Approach

Given a set of parameters, the optimal policy with respect to those parameters could

be learned. As demonstrated in Castelletti (2002), scalarised Q-learning can be

applied in a multiple-policy context by performing repeated runs of a single-policy

algorithm using different parameter values. Similarly, a multiple-policy approach can

be implemented by performing multiple runs with different parameters, objective

threshold values, and orderings in any single-policy algorithm. Shelton (2001) applied

policy gradient methods and the idea of varying parameters to the MORL domain.

Gradients in the parameter space of the policy were computed individually for each

objective and then combined to form a weighted gradient. By varying the weighting

of the objective gradients, a range of policies can be discovered.

Chapter 2: Multi Objective Reinforcement Learning

Page 17 of 233

2.5 Historical Progress

A. Most significant RL frameworks

Q-Learning aims to learn and estimate Q values in order to construct optimal control

strategies (policy) from delayed rewards, even when the agent has no prior knowledge

of the effects of its own actions on the environment. The RL agent uses its past

experience to improve its estimate by blending new information into its prior

experience. More than one optimal policy can be generated however the Q values

remain unique (Yang and Gu, 2004). Although Q-learning is a very effective

framework for individual robot learning (Gherega et al 2012), alone, it does not

appear to lend itself to Multi-robot systems where other robots may alter the state of

the environment, rather than a single agent learning from the new state of the

environment changed only by actions performed by themselves. In the paper by Mei

et al (2007) the blackboard architecture is adopted to realise cooperative Q learning in

multi-robot system. Each individual robot first queries the blackboard according to its

current state, then executes allocated action and sends the obtained reward back to the

blackboard. The blackboard carries out learning using received state- action pairs and

rewards. Q-learning is applied as a coordination mechanism for multiple robot teams..

A common hypothesis for MRS is that the more robots participating in completing

this task, the better the overall performance. However Mataric‘s (1994) analysis of

interference suggests that there is a limit in multi-agent systems to the level of

improvement gained by adding additional robots. What was demonstrated was that

while the size of the team causes an exponential drop-off in the number of iterations

required to complete the map, the change in the reward function only makes local

changes about this curve. More important to the performance of the overall team than

the reward values are the learning rate and exploration properties. The algorithm in

Castelletti et al (2012) proposed an extension of fitted Q-Iteration (FQI) enables to

learn the control policies for all the linear combinations of preferences that are

assigned to the objectives in a single training process. In Liu and Wu (2010), visited

states are assigned with different immediate rewards by comparing the objective

vector of current state with those of the Pareto optimal solutions found previously.

These Pareto optimal solutions are stored in an elite list, which keeps track of the non-

dominated solutions found so far and is used to construct the Pareto front at the end of

the optimization process. Gherega et al (2012) use a Q-Learning Approach to

Chapter 2: Multi Objective Reinforcement Learning

Page 18 of 233

Decision Problems in Image Processing by using reinforcement learning in image

processing and computer vision extending as a way of replacing human assistance

with intelligent agents.

B. Most Significant Hybrid Algorithms

In recent years, many researchers have attempted to implement new RL schemes

either by developing new hybrid architectures or designing new learning methods

from scratch. Many new hybrid architectures are being attempted that combine

reinforcement learning with other methods like fuzzy logic and neural networks such

as Castelletti et al (2012) and Liu and Wu (2010). The Generalised Probabilistic

Fuzzy Reinforcement Learning Algorithm (GPFRL) proposed by Hinojosa (2010)

demonstrates how the combination of RL, fuzzy logic, and probabilistic theory have

proven to be an excellent way of managing information in the presence of different

kinds of uncertainty. When combined with fuzzy logic, the RL task of fine tuning

controllers can be achieved by one of two ways, either by performing structure

identification as studied by Lin and Xu (2006), Lin and Lee (1993), Wang et al

(2007), or as parameter identification like in Berenji and Khedkar (1992), Lin and Lee

(1993), Wang et al (2007). A similar study to GPFRL is by Strens (2000) who uses

the idea that uncertainty in the underlying MDP model can be encoded with a

probability distribution. An early approach known as Adaptive Heuristic Critic (Barto

et al, 1983) where the system state is described based upon the input variables in what

is called a ―box system.‖ The agent then uses these discrete input variables as a way

of deciding the most appropriate action to take and then represents the system as a

numerical value that corresponds to the input state. A better approach considers a

continuous system characterisation, like in Anderson (1989), whose algorithm allows

the addition of continuous inputs by using a two-layer neural network. The work in

Anderson (1989) was an improvement over Barto et al (1983) in the fact that

continuous inputs were used however the learning speed was still relatively poor. An

improvement to the learning speed was suggested by Berenji and Khedkar (1992)

whose work of the (GARIC) algorithm introduces generalised approximate reasoning

and structure learning into its architecture therefore further reducing the learning time.

Another interesting hybrid approach that uses approximate reasoning theory and

neural networks was proposed by Lee (1991) however, his approach has the

Chapter 2: Multi Objective Reinforcement Learning

Page 19 of 233

disadvantage of not being capable of being used as a stand-alone controller without

the learning structure. Lin and Lee (1993) developed two approaches: A

reinforcement neural fuzzy control network (RNFCN) (Lin, 1995) and a

reinforcement neural network based fuzzy logic control system (RNN-FLCS). Both

algorithms were given the ability to learn using structure and parameter learning to

achieve good overall performance compared with other hybrid methods. A

generalised RL fuzzy controller was proposed by Zarandi et al (2008) which is

capable of handling vagueness of inputs but overlooks the handling of ambiguity

which is crucial when dealing with uncertainty. Furthermore the structure of the

algorithm became very complex by the use of two independent fuzzy inference

systems. Several other fuzzy RL algorithms, primarily model free, have been

implemented based upon Q-learning (Lin and Lin, 1996), (Almeida and Kaymak,

2009) or AC techniques such as those by Jouffe (1998) and Lin (2003). Lin and Lin

(1996) developed RL strategy based on fuzzy-adaptive-learning control network

(FALCON- RL) method. Fuzzy-AC-learning (FACL) method (Jouffe, 1998), Lin‘s

RL-adaptive fuzzy-controller (RLAFC) method (Lin, 2003), and Wang‘s fuzzy AC

RL network (FACRLN) method (Wang et al, 2007) However, most of these

algorithms fail to provide a way to handle real-world uncertainty which is a greater

issue in such a large complex stochastic environments with continuous inputs.

2.6 Prospect Theory

Psychologists and economists have recently paid closer attention to modelling how

decisions are made under conditions of risk, where options are characterised by a

known probability distribution over possible outcomes. Decision making under risk

was first introduced by a mathematician named Daniel Bernoulli who published a

paper in 1738 entitled ―Exposition of a new theory on the measurement of risk, as

cited in Hannson (1994). His paper was based upon the economic theory of risk

aversion, The St Petersburg paradox, risk premiums, and utility. Bernoulli also

proposed a function called the ―Utility Function‖ to explain how people behave when

making choices. Bernoulli took the assumption that people try to maximise their

utility rather than their expected value and that people are typically risk averse. This

model was the beginning of utility theory which combines descriptive and normative

elements at the same time.

Chapter 2: Multi Objective Reinforcement Learning

Page 20 of 233

Based upon Bernoulli‘s principle, later in 1944, John von Neumann and Oskar

Morgenstern proposed a reinterpreted formal model called expected utility theory

(EUT). Since then, it has been used as a model of rational choice under risk based

upon the assumption that people behave as rational agents and that they adhere to

EUT in decision making behaviour under risk (Andriottyi, 2009). However EUT

cannot capture the human decision making attitudes towards risk i.e.: risk aversion

and risk seeking, because it does not model the domain of human intuition, thoughts

or preferences that come to mind quickly without much reflection (Coleman et al,

2007). This drawback is also confirmed in Allais‘s and Ellsberg‘s paradoxes (Zhang

et al 2007). A group of psychologists called Kahneman & Tversky (1979) addressed

this limitation and developed an alternative theory of choice based upon Prospect

Theory (PT) that can accurately describe how people actually make their decisions.

They claimed that PT captures common human decision making attitudes towards risk

that cannot be captured by EUT ie: risk aversion and risk seeking. While risk aversion

is generally assumed in any economic analysis under uncertainty, risk seeking is

generally not. PT goes towards explain why people often make decisions that seem

irrational. If people always made decisions on a utilitarian bases there would be little

need for insurance and few, if any, people would gamble. Moreover, if utility were the

basis for all decision making there would be little need for marketing. The list of the

topics that PT could apply to is long and still growing, some of these topics are:

Investment banking (Willman et al. 2002), commercial banking (e.g. Godlewski,

2004), finance (Han& Hsu, 2004), analyst behaviour (e.g. Ding et al, 2004), hedge

funds (e.g. Siegmann & Lucas, 2002) and political science (Mercer, 2005). Andriotti

(2009) proposed a new Q-learning algorithm that reproduced human non-rational

behavior by using PT as its basis instead of the EUT. Andriotti‘s new model has been

applied in urban traffic modelling.

2.7 Discussion

Despite the recent developments in Reinforcement Learning, the challenge remains to

scale up solutions to larger and more complex problems. ―Recently, RL has been

applied in many fields however MORL algorithm research is a relatively new field of

study, therefore inherently there are few real-world applications developed so far (Liu

et al, 2013). Traditionally RL works particularly well in finite discretised

Chapter 2: Multi Objective Reinforcement Learning

Page 21 of 233

environments such as the deep see treasure benchmark (Vamplew et al, 2008) but not

so well in larger continuous environments. Additionally due to the multi objective

nature of many real world practical optimisation and control problems, there is a need

for multi objective reinforcement learning algorithms to be further developed to

accommodate such applications. The difference between single-agent and multi-agent

system exists in the environments. In multi-agent systems other adapting agents make

the environment no longer stationary, violating the Markov property that traditional

single agent behaviour learning relies upon (Yanjg and Gu, 2004).

Many alternate approaches to solving MORL are actively being researched to work

around this Markov violation and some algorithms are reviewed below. However, it

appears that, should the environment remain stationary, this violation can be avoided.

Forcing the robots to move in a synchronised manor could allow Multi Robot Systems

(MRS) to utilise well understood Markovian principles, which have proven to work

well in single robot systems. Providing all robots are synchronised during the learning

process the only changes to the environment are the ones that we are actually trying to

understand. This novel methodology could effectively scale up the MORL problem to

be able to deal with more complex dynamic environments without other robots

altering the state of the environment and causing misinterpretations of the agents

effects of its own actions upon the environment. ―Unlike single-objective optimisation

that returns a best solution to the problem, multi-objective problems have usually no

unique, perfect solution, but a set of equally efficient, or non-inferior, alternative

solutions, known as the Pareto optimal set, which represents the possible trade-off

among conflicting objectives‖ (Liao, 2010).

While conventional single objective algorithms such as the Q-Learning and SARSA

may vary in terms of the internal mechanisms, they all share the same aim of

maximising the scalar reward received, which is achieved by identifying a single

optimal policy. For multi objective tasks there is no longer a single optimal policy, as

many policies may in fact be Pareto optimal. Therefore variations can exist between

MORL algorithms in terms of the number and nature of policies that they aim to

discover. Within MORL research the algorithms developed belong to one of two

classes based upon the number of policies to be learned. Single-policy algorithms aim

to learn a single policy that best satisfies a set of preferences between objectives as

specified by the user or derived from the problem domain. Alternatively multiple

Chapter 2: Multi Objective Reinforcement Learning

Chapter 2: Multi Objective Reinforcement Learning

Page 22 of 233

policy approaches aim to find a set of policies which approximate the Pareto front. As

with any MORL algorithm, the aim is to intrinsically identify a single or multiple

policies that produces suitable compromises between the multiple objectives. A good

compromise can be expressed in terms of Pareto dominance (Pareto 1896) which

allows a comparison of a pair of solutions to a multi objective problem. The main

disadvantage of generating multiple policies rather than a single policy is the

increased computation cost and the increased time spent interacting with the

environment. The single policy approach is therefore more suited to on-line learning

tasks within a real environment such as the UAV visual navigation task described in

section 8. Using a UAV to learn from its own interactions is constrained by the fact

that it has limited power where the additional cost of searching for multiple policies

may be impractical due to the maximum learning flight time of approximately 15

minutes. The earliest example of a single policy algorithm was provided by Gabor et

al (1998) where a similar approach is designed for problems where constraints apply

to some of the objectives. For example in our experimentation the UAV must carry

out a navigation task of maintaining a relative position above the helipad in the

presence of stochastic uncertainty whilst maintaining a battery level above zero.

2.8 Conclusion

In order to identify the structure of the field, a representative set of approaches have

been reviewed that provide insights into some of the latest state of the art algorithms

used actively by researchers within the past decade.

In this review the background and basic architecture of RL and its methods were

introduced first; then several representative MORL approaches were discussed. It has

been shown that MORL is particularly successful in the following areas:

 1) Improving the performance of the traditional single-objective RL.

 2) Generating highly diverse multiple Pareto-optimal models for constructing

 ensembles.

 3) Achieving a desired trade-off between accuracy and interpretability of

 neural networks or fuzzy systems.

Reinforcement learning provides a set of very useful methods for learning in cases

where a model of the environment or system is not available. The most remarkable

advantage in the use of reinforcement learning methods is in its use on systems where

complete feedback information is not available, as RL only requires information about

Chapter 2: Multi Objective Reinforcement Learning

Chapter 2: Multi Objective Reinforcement Learning

Page 23 of 233

the success or failure of an action. It was seen that the SARSA and Q-learning

algorithms are very similar, while SARSA updates for the policy it is actually

executing, Q-learning updates for a greedy policy. It can be said that Q-learning will

learn the ―true‖ optimal policy, but SARSA will learn about what its actually doing.

Hinojosa (2010) proposed an approach that is robust under probabilistic uncertainty

while also being capable of dealing with continuous states and actions as is prominent

in complex real world scenarios particularly when using computer vision as the

primary observation method for sensing changes in the environment. The two main

fields of application of reinforcement learning are decision making and control

problems. So far reinforcement learning has been used successfully in several

different applications under both fields, yet some more practical and real-world

applications need to be tested particularly for scenarios involving multiple conflicting

objectives. For single-policy MORL approaches, the weighted-sum and W-learning

approaches are simple to implement, but they cannot express exactly the preferences

of the designer. The AHP, ranking, and geometric approaches may express the

preferences more exactly, but they need more prior knowledge of the problem

domain. For multiple-policy approaches, the convex hull algorithm can learn optimal

policies for all linear preference assignments over the objective space at once. The

varying parameter approach can be easily implemented by performing multiple runs

with different parameters, objective threshold values, and orderings in any single-

policy algorithm. MORL approaches have been improved recently in three important

directions:

 Enhancing their qualities

 Adapting dynamic preferences

 Constructing evaluation systems

Except for these three important improvements, the main challenges and open

problems still remain in MORL which include Value Function Approximation (VFA),

feature representation, convergence analysis of algorithms, and its applications to

multi-agent and MRS systems for real-world problems. It is to the best of my

knowledge that no other algorithm exists that is capable of dealing with multiple

objectives in the presence of risk and uncertainty by using generalised probabilistic

fuzzy logic in the area of decision making for UAV‘s, Healthcare & Agriculture.

Chapter 2: Multi Objective Reinforcement Learning

Page 24 of 233

3.1 Introduction

This chapter explains the principal components of the GPFMORL architecture for

solving sequential decision making problems in uncertain stochastic environments.

The mathematical formulisation of a sequential decision making process is explained

along with the agent, policy, environment and reward structure. We then analyse the

importance of uncertainty handling; review the concept of fuzzy inference systems,

and then introduce the reader to probabilistic theory and its application to fuzzy logic.

The proposed GPFMORL algorithm extends an existing single objective GPFRL

algorithm (Hinojosa, 2011) which itself merged 3 different paradigms in order to deal

with their individual limitations. In order to improve the work by Hinojosa (2011) a

further two methodologies were introduced namely linear scalarisation and prospect

theory in order to ensure the convergence of a multi objective sequential decision

making problem. MORL has proven to be a valuable learning method when a system

requires a selection of control actions associated with each objective, whose

consequences emerge over long periods for which input or output data are not

available (Hinojosa, 2011). In particular UAV visual navigation for automatically

landing a UAV on a helipad in uncertain stochastic conditions. Finally, conclusions

are made and rationale behind extending the GPFRL single objective RL algorithm

into an improved multi objective GPFMORL algorithms are justified.

3.2 Multi Objective Reinforcement Learning Framework

The following subsections describe the most important terms used in both single and

multi objective reinforcement learning that shall be used through the entire thesis.

Markov Decision Process

MDP models are for RL in single agent environments (Yang and Gu, 2004).

Commonly an MDP is characterized by the mathematical formulation of a sequential

decision-making problem defined as a 4-tuple {S, A, R, T, y} (Sutton&Barto, 1998)

of which sequences of MDP tupples describe the agents experience in the learning

process.

GPFMORL Methodology

Chapter 3

Page 25 of 233

 S = State Space – A finite discrete set of environment states (5x5 Grid = 25

states)

 A = Action Space – A finite discrete set of actions available to the agent (Left,

Right, Forward, Backwards)

 R = Reward Function giving the expected immediate reward by the agent

under each action in each state.

 T = Transition Function T: S ×R→Π(S) that provides a probability distribution

matrix for each state and action

 y = discount factor which controls how much effect future rewards have on the

decisions at each moment

Every MDP has a deterministic stationary optimal policy which consists of a

stationary policy (a probability distribution over actions to be taken for each state) and

a deterministic policy (one with probability 1 to some action in each state).

The Agent

A system such as a UAV moves and interacts with the environment through a

collection of both straight and diagonal actions such as Forward, Backward, Left

Right and combinations of these such as FL, FR, BL, BR. The agent observes the state

of the environment and uses a learned policy in order to select an appropriate action or

controller output. The agent must also have a goal or goals relating to the state of the

environment. For example, an agent could be a quadcopter UAV that is attempting to

stabilise itself above a helipad whilst perceiving the state of the environment in which

it is navigating.

The Policy

The policy (π) is a decision rule that dictates what action to take at every possible

state. The goal of the learning agent is to find a policy that maximizes the total

expected reward (or the total discounted rewards) that it will receive over time, known

as ―the expected return‖. For example: for the present thesis, given any particular

state, the use of the policy will determine a probability distribution for the agent‘s

future rewards, or as we will call it, a probability of success.

Chapter 3: GPFMORL Methodology

Page 26 of 233

The Environment

The environment is the external and immediate world in which the agent acts in. The

environment interacts with the agent, dynamically affecting its perceived state. The

environment can be represented in many ways. For example: the environment for a

robot could be composed of walls to be avoided, or the friction of its wheels on the

floor, or aerodynamic wind forces from external sources or created itself by a UAV‘s

propeller blades. Some well known multi and single objective RL benchmark

environments are Buridians Ass Grid World (a foraging task) and the MO

Puddleworld problem which composes of a goal and puddles to avoid (Boyan and

Moore, 1995). The environment that is currently perceived by the UAV in this thesis

is a downwards facing view of the area surrounding the helipad which has been

cellular decomposed into a 5x5 grid. Each of the 25 rectangles represents a unique

state in which the UAV may perform one of 8 distinct actions as previously described.

Agent environments are classified based on different properties that can affect the

complexity of the agents decision-making process according to Russell and Norvig

(1994).

 Accessible or inaccessible: An accessible environment is one in which the

agent can obtain complete, timely and accurate information about the state of

the environment.

 Deterministic or non-deterministic: In a non-deterministic environment, the

state that will result from an action is not guaranteed even when the system is

in a similar state. This uncertainty presents a greater challenge to the agent

designer than deterministic systems.

 Static or dynamic: Static environments remain unchanged except for the

results produced by the actions of the agent. Whilst dynamic environments are

created when other processes operate in them, thereby changing the

environment outside the control of the agent.

 Discrete or continuous: An environment is discrete if there are a fixed, finite

number of actions and percepts in it.

The proposed three dimensional environment is a challenging one for any robot to

operate within due to the highlighted factors mentioned above. It is inaccessible at

times when the agent can not obtain complete visual state information in the unlikely

Chapter 3: GPFMORL Methodology

Page 27 of 233

event that the UAV flies outside the boundaries of the localisation grid. Any of the 8

possible actions that may be taken could actually lead to a non-deterministic state

transition ie: if there is a stochastic cross wind or other aerodynamic affects present

then the expected state after taking an action is likely to change and not be predictable

prior to moving.

The Reward

The reward function is a signal that expresses the failure or success of performing a

specific action and it is extracted from a state observation; in other words the reward

maps each perceived state (or a state-action pair) of the environment to a single

number. The reward indicates the intrinsic desirability of the observed state; therefore,

if a policy selected action returns a negative reward, then the policy may be changed

in order to select a different action for that given state in the future. For example, a

simple system like the cart-pole example by Hinojosa (2011) can be credited with a

reward of zero for every action that keeps it in balance and punished with a reward of

-1 as soon as the controller takes an action that leads the pole out of balance. In the

case of the grid world problem, where we want to use a value based reinforcement

learning algorithm to learn how to reach the goal state as quickly as possible, a natural

way to model goal states in a reward function is to give a positive reward on reaching

the goal state and zero reward on all other steps. In the grid world this would translate

to a positive reward for reaching the goal state and zero reward on each other step

except boundary and hill states which are negative. The reward function would then

also require a discount factor strictly lower than one. Otherwise, any action that

eventually exits in the grid world is optimal and there is no incentive to reach the goal

quickly. An alternative method would be to set the reward for each transition to some

negative value and to use this as an incentive to find the goal quickly.

Chapter 3: GPFMORL Methodology

Chapter 3: GPFMORL Methodology

Page 28 of 233

3.3 Multi Objective Actor-Critic Architecture

As discussed in chapter 2 of this thesis both actor only and critic only methods have

strong theoretical foundations. However, their performance cannot be assured for the

cases when the agent has to cope with deficient function approximation and partial

observability. Critic only methods have a superior sample complexity and asymptotic

performance when provided complete state information; yet, critic only methods are

robust to inadequate function approximation and noisy state information. Although

value function-based critic methods and actor-only methods are contrasting

approaches to solve reinforcement learning tasks, it is possible to combine their

advantages into an Actor-Critic (AC) architecture. AC methods are also temporal

difference methods but are unique in the fact that they have two memory structures to

represent the policy structure independently to the value function. The actor refers to

the policy structure and is responsible for selecting actions whereas the critic is so

called because it criticises the actions made by the actor. When combined into an AC

structure, the learning is always on-policy: the critic must learn about and critique

whatever policy is currently being followed by the actor. The critique takes the form

of a TD error (a scalar signal) and represents the sole output of the critic which drives

all learning in both actor and critic, as seen in

In the Actor-Critic architecture illustrated previously, at any given time, the critic is

learning the values for the Markov chain that comes from following the current policy

Critic

Actor Environment

State

Punishment (-1)

Action

Reward (+1)

Figure 3.1 Multi Objective Actor-Critic Architecture

Chapter 3: GPFMORL Methodology

Page 29 of 233

of the actor. The actor is constantly learning the policy that is greedy with the respect

to the critic's current values. AC methods were among the first reinforcement learning

algorithms to use temporal-difference learning. These methods were first studied in

the context of a classical conditioning model in animal learning by Sutton and Barto

(1981). Later, Barto et al, (1983) successfully applied AC methods to the cart-pole

balancing problem, where they defined for the first time the terms actor and critic. In

the simplest case of finite-state and action spaces, the following AC algorithm has

been suggested by Sutton and Barto (1998). After choosing the action in the state

and receiving the reward , the critic evaluates the new state and computes the

temporal-difference (TD) error according to (3.1):

 () () (3.1)

where γ is the discounting rate and V is the current value function implemented by the

critic.

The next step that proceeds is to update the critics value function:

 () () (3.2)

Where represents the critic‘s learning rate at time t. The key step in this algorithm

is the update of the actor‘s parameters. If TD error is positive, the probability of

selecting that action in that state in the future should be increased since action has

resulted in a better than expected state value. By reverse logic, the probability of

selecting in the state in the future should be decreased if the TD error is

negative. Suppose the actor chooses actions stochastically using the Gibbs softmax

method:

 * | +
 ()

∑ () (3.3)

where () is the value of the actor‘s parameter indicating the tendency of choosing

action in state. Then, these parameters are updated as follows:

 () () (3.4)

where is the actor‘s learning rate at time t.

b

Chapter 3: GPFMORL Methodology

Page 30 of 233

An AC system first updates the value in every state once, then it updates the policy in

every state once, finally the process is repeated, this occurs in the form of incremental

value iterations. This process is a form of dynamic programming, which is guaranteed

to converge to the optimal policy. If it instead updates all the values repeatedly in all

the states until the values converge, then updates all the policies once, then repeats,

then it reduces to policy iteration, another form of dynamic programming with

guaranteed convergence. If it updates all the values N times between updating the

policies, then it reduces to modified policy iteration, which is also guaranteed to

converge to optimality.

In conclusion we list some of the most important advantages of using actor-critic

methods below which is followed by a pseudo code description of the crucial steps to

be executed:

 Explicit representation of policy as well as value function.

 Minimal computation to select actions.

 Can learn an explicit stochastic policy.

 Can put constraints on policies.

 Appealing as psychological and neural models.

Chapter 3: GPFMORL Methodology

Figure 3.2: Actor Critic Pseudo Code (Source: Hinojosa et al, 2011)

Page 31 of 233

The learning process of a GPFMORL is based on an Actor-Critic reinforcement

learning scheme, where the actor learns the policy function and the Critic learns the

value function using the TD method simultaneously. This makes it possible to focus

on on-line performance, which involves finding a balance between exploration of

uncharted territory and exploitation of current knowledge.

RL typically requires an unambiguous representation of states and actions and the

existence of a scalar reward function. For a given state, the most traditional of these

implementations would take an action, observe a reward, update the value function

and select, as the new control output, the action with the highest expected value

(probability) in each state (for a greedy policy evaluation). The updating of the value

function is repeated until convergence is achieved. This procedure is usually

summarized under policy improvement iterations.

The parameter learning of the GPFMORL system includes two parts: the Actor

parameter learning and the Critic parameter learning. One feature of the Actor–Critic

learning is that the learning of these two parameters is executed simultaneously.

Given a performance measurement and a minimum desirable performance we define

the external reinforcement signal r as:

 ()
 ()

 (3.5)

The internal reinforcement r expressed in (3.6), is calculated using the temporal

difference of the value function between successive time steps and the external

reinforcement.

 () () () () (3.6)

Where γ is the discount factor used to determine the proportion of the delay to the

future rewards and the value function () is the prediction of eventual

reinforcement for action

Chapter 3: GPFMORL Methodology

Page 32 of 233

The goal of reinforcement learning is to adjust correlated parameters in order to

maximize the cumulative sum of the future rewards. The main goal of the Actor is to

find a mapping between the input and the output of the system that maximizes the

performance of the system by maximizing the total expected reward. The role of the

Critic is to estimate the value function of the policy followed by the Actor. The TD

error is the temporal difference of the value function between successive states. The

goal of the learning agent is to train the Critic to minimize the squared TD error.

3.4 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy logic is a technique originally developed by Zedeh (1973) as a way of

processing data by allowing partial set membership rather than crisp set membership

or non membership. In a similar way that this thesis‘ contributions stem from the

extension of a previously developed GPFRL theory, Fuzzy Logic (FL) is an extension

of the conventional Boolean Logic theory. It is based upon fuzziness and uncertainty

of non crisp logic and the main concept concerns the degree of truth in the sense that

the degree of truth is no longer limited to the distinct values zero or one. For example:

Belonging to a set is not a binary rough criteria, instead it is described with some

uncertainty inside the range of zero to one that allows a partial membership.

Due to these fascinating characterisations of fuzzy logic, many interesting advantages

are presented. Firstly FL systems have demonstrated an outstanding capability for

mapping non linear relationships of input and output models without the need for

precise mathematical formulation. Pinder (2013) demonstrates the use of a fuzzy

altitude controller to control hovering height of a helicopter equipped with a camera

and angled mirror. Image processing was used to estimate the non linear area to

distance relationship in order to be fuzified using linguistic variables represented by

natural language. Descriptive linguistic variables then allow the fuzzy if-then rules to

be constructed to eventually control output actions to alter the throttle depicting the

helicopters vertical motion in three dimensional space.

Chapter 3: GPFMORL Methodology

Page 33 of 233

In addition to the previously mentioned advantages one of the most interesting is that

FL systems are capable of handling and representing non statistical uncertainty,

distinguishing traits of which probability theory cannot. The fuzzy altitude controller

also provides a convenient way of mapping input space to output space whilst being

roust to data input errors ie: poor estimates of the helipads area possibly due to

illumination factors, shadows or simply a noisy video stream.

Figure 3.3: Fuzzy inference system for the proposed fuzzy altitude controller

FIS have been successfully applied in many different fields ranging from automatic

control and expert systems to data classification, decision analysis and computer

vision. Due to this multidisciplinary nature, FIS became associated with a rather large

number of methods such as fuzzy-rule-based systems, fuzzy expert systems (Siler and

Buckley, 2004), fuzzy modelling, fuzzy associative memory (Kosko, 1991), and the

one of especial concern for this work, fuzzy logic controllers.

When a FIS is used for controlling systems it is called fuzzy logic controller (FLC).

FLC are especially advisable for cases where the mathematical model of the system to

be controlled is unavailable, and the system is known to be significantly nonlinear,

time varying, or to have a time delay. Within the area of automatic control, FIS have

had great success in the field of robotics. FLC are particularly suitable for

implementing systems with stimulus-response behaviour, since fuzzy rules provide a

natural framework to describe the way the system ―should react‖ whilst providing

human reasoning capabilities in order to capture uncertainties (Jang et al., 1997).

Helipad Area

Input (pixels2)

U-Sonic Dist

Input (cm)

If Area = LOW

THEN Acend

If Area = OK

THEN HOVER

If Area = HIGH

THEN Decend

+
Output

Non fuzzy inputs

(crisp) numbers

limited to a range

All rules are evaluated

in parallel using Fuzzy

Reasoning

Defuzification

of results

Result is a

crisp number

Chapter 3: GPFMORL Methodology

Page 34 of 233

One of the first control systems built using fuzzy set theory (and one of the most

commonly used) is the Mamdani's fuzzy inference method (Mamdani and Assilian,

1975). Mamdani's effort was based on Zadeh's paper on fuzzy algorithms (Zadeh,

1973) for complex systems and decision processes. Another important method is the

Sugeno inference method. In general, Sugeno systems can be used to model any

inference system in which the output membership functions are either linear or

constant.

3.5 Probabilistic Theory and Uncertainty

From all the methods for dealing with uncertainty mentioned earlier in this chapter,

probabilistic theory is the oldest (can be back traced to the early 1960s) and the best

understood of all. As a contrast with FL, probability theory concerns with the concept

of ―probability of truth‖ and gives information about the likelihood of an event in the

future by representing information through probability densities. Therefore,

probability and fuzziness are concepts that represent two different kinds of

uncertainty, statistical and non-statistical, respectively.

In recent years this probabilistic approach has become the dominant paradigm in a

wide array of problems, ranging from financial (Berg et al., 2004, Almeida and

Kaymak, 2009), control (Liu and Li, 2005, Blackmore, 2006, Hinojosa et al., 2008),

robotics (Thrun, 2000, Valavanis and Saridis, 1991, Park et al., 2007, Thrun et al.,

2000, Jaulmes et al., 2005), and for representing uncertainty in mathematical models

(Ross, 2004). Some research work, as in Cheeseman (1985), supports the idea that all

the numerous schemes for representing and reasoning about uncertainty featured in

the AI literature are unnecessary as probability theory can easily and effectively deal

with this issue.

Probability theory attempts to quantify the notion of probable. The general idea is

divided into two concepts:

 Aleatory (objective) probability, which represents the likelihood of future

events whose occurrence, is governed by some random phenomena.

 Epistemic (subjective) probability, which expresses the uncertainty about the

outcome of some event, in the lack of knowledge or causes.

Chapter 3: GPFMORL Methodology

Page 35 of 233

If we apply the concepts of probabilistic theory to the particular case of an embodied

agent, this approach becomes divided in two fields, (Thrun, 2000):

 Probabilistic perception: Deals with the uncertainty about the external world,

as captured by the sensors of the embodied agent by using a probability

distribution of the captured data instead of discreet values.

 Probabilistic control: Given the uncertainty about the environment, a learning

agent faces the task of taking a decision about its next action which

consequences might be uncertain, especially over the long-term. In this same

particular case, a probabilistic controller will need to anticipate various

contingencies that might arise in uncertain worlds, by blending information

gathering (exploration) with robust performance-oriented control

(exploitation). In this case, the uncertainty of the state is propagated forward in

order to obtain a probabilistic representation of a long-term behaviour. There

are two broad views on probability theory for representing uncertainty: the

frequentist and the subjective or Bayesian view.

 The Frequentist View, sometimes also referred as ―empirical‖ or ―a posteriori‖

view of probability, relates to the situation where an experiment can be

repeated indefinitely under identical conditions, but the observed outcome is

random. Empirical evidence suggests that the relative occurrence of any

particular event, i.e. its relative frequency, converges to a limit as the number

of repetitions of the experiment increases. Therefore, probabilities are defined

in the limit of an infinite number of trials.

 The Subjective View, was originally introduced by Pearl (1982, 1988) and

further developed later by Lauritzen and Spiegelhalter (1988). The subjective

or Bayesian view of probability is used as a belief where the basic idea in the

application of this approach is to assign a probability to any event based on the

current state of knowledge and to update it in the light of the new information.

The conventional procedure for updating a prior probability in the light of new

Chapter 3: GPFMORL Methodology

Page 36 of 233

information is by using Bayesian theorem where subjective probabilities

quantify degrees of belief.

Other less common views can include the classical view, sometimes referred as ―a

priori‖ or ―theoretical‖ and the axiomatic view, which is a unifying perspective aimed

to provide a satisfactory formal structure for the development of a rigid theory by

focusing on the question ―How does probability work?‖ rather than trying to define

what probability is.

As probabilistic methods and fuzzy techniques are good for processing uncertainties

(Zadeh, 1995, Laviolette and Seaman, 1994), it would be beneficial to endow FLS

with probabilistic features. The integration of probability theory and fuzzy logic has

been the subject of many studies as in Liang and Song (1996).

Chapter 3: GPFMORL Methodology

Page 37 of 233

3.6 GPFMORL Algorithm Flowchart

Figure 3.4: Proposed GPFMORL Algorithm Flowchart

Calculate

probabilities of

success

Start

Do action

Choose an

action using

probabilities

Get reward

Distort θ(s,a)

probability by

PDF = -0.1

If Risky Explore

using Prospect

Theory

Success no

yes

End

Observe the

environment

(Image Processing)

Compute

prediction of

reinforcement

Compute

internal

reinforcement

Update v & w

Compute the

TD error

prediction

Chapter 3: GPFMORL Methodology

Scalarisation

Page 38 of 233

3.7 Rationale behind extending GPFRL with a Multi Objective Methodology

This chapter has explored the different advantages and limitations of three different

popular paradigms, fuzzy logic systems, probabilistic theory and reinforcement

learning separately. It was concluded that each of this paradigms could very well

complement the drawbacks of the others and seamlessly work together in a

cooperative rather than competitive way.

Fuzzy logic systems are good at generalizations, and due to its distinctive

characteristics, it is able to handle non-statistical uncertainties, and fuzziness;

however under certain conditions, the design and development of rather large or more

complex systems can be too complicated for human operators.

Reinforcement learning methods have been an intense focus of research in the last

decade. Research has proven that reinforcement learning can be successfully used in

many different areas, such as decision making or control. A remarkable characteristic

is that RL methods do not require input-output pairs for training or previous

knowledge of the environment model. RL only uses sparse signal information in order

to reach to optimal conclusions. Therefore using RL for automatic tuning of fuzzy

logic parameters and even image processing parameterisation is the focus of recent

research.

Probabilistic theory is still one of the most effectives way (and most explored) to deal

with uncertainties, especially stochastic uncertainty. The fusion of probabilistic theory

with fuzzy logic controllers have shown to be a powerful tool for practical areas such

as finance and weather forecasting. Both paradigms can work in collaboration, in

order to complement each other. As a result, probabilistic fuzzy logic system can

handle a very large range of uncertainties.

The present work combines these three paradigms into a novel multi objective

method, able to learn optimal policies for control or decision making whilst being

resistant to stochastic, non-stochastic, uncertainties, randomness and fuzziness.

Chapter 3: GPFMORL Methodology

Page 39 of 233

3.8 Conclusion

Fuzzy logic is an effective tool for solving many nonlinear control problems, where

the nonlinear behaviour of the system makes it difficult, if not impossible, to build an

analytical model of the system. Additionally, fuzzy set theory provides a

mathematical framework for modelling vagueness and imprecision. However,

building a fuzzy controller has its own difficulties.

The process of designing a FLC has two challenging tasks: defining the controller

structure and, second, finding the numerical values for the controller parameters.

These challenges arise due to a lack of a well-established theoretical approach; rather,

they are entirely based on the empirical experience of a human operator, which is

transferred into the FLC. However, the extraction of the expert‘s knowledge is not

always an easy task; decision rules with complex structures and an excessively large

number of variables necessary to solve the control task introduce difficulty in

performing the knowledge extraction.

A direct solution to these problems is to use learning algorithms in order to replace or

enhance the human operator ―a priori‖ knowledge. Fuzzy logic learning can be used to

automatically provide a solution for these issues, thereby removing human input from

the design.

Several techniques reported in recent literature to create such intelligent controllers

include the use of algorithms such as neural networks, genetic algorithms, and more

recently reinforcement learning, in order to learn and optimize a fuzzy logic

controller.

Chapter 3: GPFMORL Methodology

Page 40 of 233

4.1 Introduction

This chapter explains the implementation of a number of components necessary for

our proposed reinforcement learning approach. In sub section 4.2, we consider a

Helipad Visual Localisation method using Cellular Decomposition (CD) in order to

allow the UAV to approximate its relative location and therefore its current state.

Subsection 4.3 illustrates the potential field methodology (PFM) used for assigning

reactive behaviours when in danger of flying outside the boundaries of the grid.

Section 4.4 conceptualises the development of a fuzzy altitude controller for

quadcopters using only the perceived area of the helipad combined with the ultrasonic

distance estimates to provide a more robust multi-modal altitude estimation algorithm.

Section 4.5 explains the simulation experiments of using GPFMORL for a locating

goal location in the fewest number of steps starting from both static and random

starting positions within the grid. The UAV positional controller‘s architecture is

illustrated in subsection 4.6 which is used by the MORL agent in order to facilitate as

a real world controller in addition to the decision making capabilities demonstrated in

the simulation results. Subsection 4.7 details some representative MORL benchmarks

and methods of empirical evaluation. Subsection 4.8 includes a brief analysis of

preliminary test results achieved using both simulation and real world application of

the UAV with appropriate performance measures to compare the performance of our

proposed algorithm with other reinforcement learning and intelligent approaches.

Finally the conclusion of this section can be found in subsection 4.9 which also

summarises the implementation and overall design of the proposed system.

Design & Implementation

Chapter 4

Page 41 of 233

4.2 Multi Objective Linear Scalarisation

This approach to MORL translates a multi objective problem to a single objective task

by applying a function to the reward vector in order to produce a single, scalar reward.

The scalerisation function can be either a non-linear function tuned to the problem

domain (Tesauro et al. 2007) or more commonly a linear weighted sum of the

objective rewards. The use of weights allows the user to choose some control over the

nature of the policy to be found by the system, by placing greater or lesser emphasis

on each objective to be achieved. The fundamental limitation with linear scalarisation

is that it cannot find policies which lie in non-convex regions of the pareto front.

When scalarisation is performed on Q-Learning, we actually scalarise the state value

function which is a single value for each state representing the likelihood score of

expected reward for transitioning to the reward location from any state. However,

formally scalarisation is performed on state-action pairs representing the likelihood of

reaching the goal/reward location from a specific state when taking any particular

action available from the action set. After careful consideration it was decided that we

should either re-implement q-learning to generate value functions for every state-

action pair, or we should continue with my efforts of using GPFRL as a baseline

algorithm which does in fact store state- action pairs through the use of a multi-agent

approach.

Also we know that GPFRL outperforms other single objective algorithms such as Q-

Learning & SARSA therefore it is highly unlikely that the multi objective version of

Q-Learning would yield better performance results that GPFMORL. Therefore, the

decision was made to focus on the multi-objective version of GPFRL which shall be

referred to as GPFMORL from here on.

GPFMORL

The work of Hinojosa et al (2011) consisted of a multi agent algorithm (GPFRL)

where each agent learns the probabilities of success upon choosing one of the four

cardinal directions, forward, backward, left and right. For every step within the

discretised grid world that results in the agent being a state closer to the goal state, it

received a reward of +1. In contrast, for every step it takes in a direction that is not

towards the goal, it receives a punishment of -1. Importantly, actions that would take

the agent off the grid leave its location unchanged but also result in a punishment of -

1, other actions result in a reward of 0.

Chapter 4: Design & Implementation

Page 42 of 233

The first modification of the GPFRL algorithm was derived from the realisation that -

1 punishment for moving further from the goal was equal to -1 punishment generated

from the much more serious action of exiting the grid world by crossing the

boundaries. The ―Over Boundary‖ penalty can be enhanced by additionally reducing

the probability derived from the actor weights for a specific action taken when in a

particular state. This additional probability reduction is performed by introducing a

small weighting factor called the ―Potential Field Penalty Factor‖ (PFPF = 0.01)

which is multiplied by the probability value to reduce the chance of performing

illogical actions such as exiting the grid boundary when in risky states. Modifying this

PFPF value allows greater or less emphasis on the secondary objective of avoiding the

grid boundaries.

The second modification attempted a linear scalarisation to the single objective

(GPFRL) algorithm which stored the expected reward for a combination of state j and

action k pairs in the Actors policy function. In the GPFMORL algorithm, the two-

dimensional value function array Wjk is extended to incorporate multiple objectives

Wjko by a three-dimensional array so that the expected rewards for each state j, action

k and objective o can be stored, retrieved and updated separately. Therefore in the

case of two objectives, the second objective is stored in the third dimension. However,

this approach enables more than two objectives to be achieved by extending the array

to n-dimensions depending upon the number of objectives to be achieved.

Finally the MDP for single objective RL is also extended to by replacing the single

scalar reward signal by a vector of reward signals ie: ⃗⃗ (si, ai) = (R1(si, ai),…Rm(si,

ai)), where m represents the number of objectives. Now that the reward vector consists

of multiple components, each representing different objectives, it is likely that

conflicts arise whilst trying to optimise one or more objectives. In such cases, a trade-

off between these objectives has to be learned, resulting in a set of policies. As

mentioned previously the set of optimal policies for each objective, or a combination

of objectives is referred to as the Pareto Optimal Set. In addition to conflicting

objectives there also may be multiple objectives which are complementary or

independent by nature. For example the benchmark proposed in this paper involves

complementary objectives of maximising stabilisation above the helipad in

preparation for landing whilst minimizing the possibility of becoming lost by avoiding

the grid boundaries.

Chapter 4: Design & Implementation

Page 43 of 233

By employing scalarisation functions as a scoring mechanism, a multi objective

problem is transformed into a single objective by performing a function over the

objectives to obtain a combined score for an action k for different objectives o. This

single score can then be used to evaluate the particular action k by utilising the

standard action selection strategies of single objective reinforcement learning such as

E-Greedy to decide which action to select.

For a multi objective solution x, a weighted-sum is performed over each objective

function (ie: fo with o =1..m) and their corresponding weights to obtain the

score of x, for example.

 () ∑

 () (4.1)

In the case of GPFMORL, the objective functions f are considered the actors policy

structures Wjko values. As a result of applying the scalarisation, scalarised W-Values

or SW-values are obtained.

 ∑

 (4.2)

The action corresponding to the largest weighted-sum or SW-Values is considered the

greedy action in state s, formulated as the following:

 () max SW(j,k‘) (4.3)

Pseudo Code

Initialise W(j,k.o) arbitrarily
foreach episode T do
 Initialise state s
 repeat
 Choose action kfrom state j using policy derived from Wjko(e.g. scal-ε-greedy)

 Take action k and observe state j’ϵ J and reward vector rϵ R

 greedyk’(j’), Call scal. Greedy action selection
 foreach objective odo
 Wjko Wjko + α[rjko+ γW(j’, greedyk’(j’),o) –Wjko)]
 end for
 jj’
 until s is terminal
end for

𝑘′

Chapter 4: Design & Implementation

Page 44 of 233

In his approach there are four learning agents, where each one learns the probabilities

of success of going in each one of the four (or 8) directions. So for every step that the

agent takes that result with the agent being in a state closer to the goal state, it

receives a reward of one, ―1‖; in the same way for every step it takes in a direction

that is not towards the goal, it receives a punishment of ―-1‖. Actions that would take

the agent off the grid leave its location unchanged, but also result in a reward of -1.

Other actions result in a reward of 0.

The -1 reward for leaving the grid can be improved by additionally reducing the

probability of taking an OVER GRID action whenever in that particular state. This is

done by introducing a small fraction PFM Factor which reduces the probability by

10% of that states actor value function according to the responsible agent for the non-

logical move. No adjustment to the critics memory structure are performed due to the

punishment being instant and not a temporal credit assignment reward function

relating to the goal.

―For every step it takes in a direction that is not towards the goal, it receives a

punishment of ―-1‖Actions that would take the agent off the grid leave its location

unchanged, but also result in a reward of -1.‖

Creating a richer reward scheme appears to not only allow more than one objective to

be specified by the designer but also improves performance. Confirming my

hypothesis that in addition to the -1 for leaving the grid there should be a more severe

punishment in addition to that of moving further away from the goal whilst still being

in a safe zone state.

Therefore in addition to this punishment of -1, the probability value also needs to be

decreased further using the proposed PFM-Factor by multiplying them together.

Preliminary results with the PFM factor <0.1 sometimes results in the GPFRL finding

the goal in less steps than the GPFMORL & GPFRL sometimes even converges

faster, however the GPFMORL always finds the optimal policy with fewer trials than

the GPFRL.

Chapter 4: Design & Implementation

Page 45 of 233

4.3 Prospect Theory

In 1979, Daniel Kahneman and Amos Tversky, two researchers in behavioural

psychology, developed prospect theory which aims to model human decision making

in the context of risk. This model fits in the field of subjective probabilities and helps

to make decisions depending on the context as well as balancing an aversion of loss

based on the current state. The purpose of prospect theory allows the MORL agent to

establish a dynamic compromise between exploration and exploitation during

learning. Based on a weighting of probabilities, it allows us to solve muti objective

problems with reasonable computational and adds a level of dynamism to the

proposed scalarisation technique.

A review of existing work suggests that prospect theory is a descriptive theory to

model the way in which human beings make decisions that involve risk. It is

considered to be the model used by behavioural economics since 1979. According to

prospect theory, decision-making under risk may be seen as a choice between several

gambles or prospects. The basic equation of the theory that determines the value of

utility v(x, p) of a simple prospect that pays £x with probability p (and nothing

otherwise)

 () () () (4.4)

where the value function v(x), and the function for weighting the probability w (p), are

non-linear transformations for the outcomes (x), and the probabilities for each

possible outcome (p), respectively, and they represent the participants‘ perception of

both values.

The value function and the probability weighting function are shown in Fig4.1 A & B

Chapter 4: Design & Implementation

Figure 4.1A: The value function v(.)

as a function of gains and losses

Figure 4.1B: Weighting function (w.) for gains as a

function of the probability p of a chance event.

(Kahneman and Tversky 1979)

Page 46 of 233

Reference Point

Kahneman & Tversky (1979) defined the reference point (RP) which determines if the

result is a gain or loss. The principle comes from the fact that, when confronted by a

decision making problem, the decision-maker analyses the options gain or loss based

on the current state; this is also referred to the status quo. This reference works as a

behavioural trigger where, how risky someone behaves all depends upon the status

quo. According to Kahneman & Tversky (1979) people behave more riskily when

dealing with losses rather than dealing with gains. The utility value in Prospect theory

depends upon the status quo or in our experiments the quadcopter‘s current state.

In Equation (3.2), it is assumed that the outcomes (the values) are already manipulated

with the status quo set as zero. where sq is the value of the status quo.

 () () (4.5)

The Value Function

In PT, the outcomes are assigned to gains and losses rather than to final assets; in

addition, the value function captures how much better one gain is than another gain

and how much worse one loss is than another loss. Moreover, the value function is

steeper for losses than for gains, a property known as loss aversion. Kahneman et al.

(1997) observed that people typically require more compensation to give up a

possession than they would have been willing to pay to obtain it in the first place.

Figure 4.1A shows that the three psychological principles—the RP, DS, and loss

aversion–constrain the shape of the value function. The first principle, the RP,

suggests that outcomes are viewed relative to a RP and, hence, coded as gains or

losses. For example, a person is tall only in comparison to others who are shorter.

This comparison in PT is performed with respect to the RP. This means that people

might accept an option in one situation that they reject in another (Chiu & Wu, 2010).

In the second principle, DS, the value function is S-shaped and predicted to be

concave for gains above the RP and convex for losses below the RP. This means that

differences between small gains or losses close to the RP are assigned a high value,

whereas differences further away from the RP are assigned smaller values. For

example, there is a big difference between a £100 gain and a £200 gain, but a much

smaller difference between gains of £1,100 gain and £1,200. Similarly, a loss of £100

Chapter 4: Design & Implementation

Page 47 of 233

seems quite distinct from a loss of $200, but losses of $1,100 and $1,200 seem pretty

similar.

In the third psychological principle, loss aversion forms the shape of the value

function in the loss region, where the value function appears steeper for losses than

for gains (Figure 4.1A). This means that a loss is assigned a greater value than a gain

of an objectively identical amount. Thus, losses are given more significance than

gains. To explain this principle, for example, a loss of £100 seems much more painful

than a gain of £100 which seems pleasurable. Most people dislike a prospect that

gives an equal chance of winning £1,000 or losing £1,000.

Tversky & Kahneman (1992) formulated the value function as a power function:

 () {

 ()
 (4.6)

Where α and β>0 measures the curvature of the value function for gains and losses

respectively, and λ is the coefficient of loss aversion. Thus, the value function for

gains (losses) is increasingly concave (convex) for smaller values of α (β) < 1, and

loss aversion is more pronounced for larger values of λ > 1. The estimated values for

the value function parameters as concluded from a study by Tversky & Kahneman

(1992) of a sample of college students were: α= 0.88, β=0.88, and λ= 2.25.

Probability Weighting Function

PT assumes that individuals do not weight outcomes by their probability, as in EUT,

but by some distortion of probabilities. This distortion of probability is captured by

prospect theory‘s probability weighting function. Figure 4.1B implies an inverse-S-

shaped probability weighting function, which is concave near zero and convex near

one (multidimensional character).

In weighting functions, two of the three psychological principles, the RP and DS,

govern the shape of the function. For the probability, there are two obvious RPs,

certainty and impossibility, or a 100% chance and a 0% chance. The distortion of the

probability shown in the probability weighting function captures the DS away from

these two RPs. People are most sensitive to changes in probability when they are near

0% or 100% than when the change applies to intermediate probabilities. People will

pay much less, for example, for a lottery in which they have a 99% chance of winning

Chapter 4: Design & Implementation

Chapter 4: Design & Implementation

Page 48 of 233

£1,000 than they will for a lottery in which they have a 100% chance of winning

£1,000, but there is little difference between the amount people would pay for a 50%

versus a 51% chance of winning £1,000. The objective difference in the probabilities

(1%) is identical, but its impact on one‘s decision is not.

The probability weighting function is exhibits DS also. The function is concave for

small probabilities and convex for medium and large probabilities (See Figure 4.1B).

Involves DS into probability weighting function leads to give more weight to low

probability than they would receive using EUT. This overweighting is consistent with

risk-seeking for low probability gains and risk-aversion for low probability losses.

Thereby which explaining non-rational gambling behaviour and providing insurance

against very low probability events. In contrast, medium to high probabilities are

given less weight than they would receive using EUT. Such underweighting is

consistent with risk-aversion for medium to high probability gains, and risk-seeking

for medium to high probability losses.

Scholars and researchers such as Gonzalez & Wu (1999), Abdellaoui (2000), and

Wakker (2001) have confirmed that the inverse-S-shaped weighting function seems to

be consistent with a range of empirical findings. The weighting function can be

parameterised in the following form according to the probability weighting function

originally proposed by Tversky & Kahneman (1992):

 ()

(()) (4.7)

Where p is the weighting probability of the distribution of gains or losses and > 0

measures its degree of curvature..

Chapter 4: Design & Implementation

Chapter 4: Design & Implementation

Page 49 of 233

For all simulations the parameter values shall be the estimated values by Tversky &

kahneman (1992) n = 0.88, P = 0.88, y = 0.75 and A = 2.25

 Reference Point

The reference point uses the current value of reward. Whenever one modifies

the values of rewards, it accumulates for each objective, these values in the

reference point. For the GPFMORLPT algorithm, it uses the values in the

critic table.

 Probability weighting function

Our simulation environment probability weighting function was not only

stochastic, but also allowed the generation of probability distribution. It was

then extracted from the values of reward which is then applied as a distortion

independently for each of the criteria.

 ()

(()) (4.8)

 The value function computes the value function with the formula above, by

adding the offset reference point:

 () {
()

 ()
 (4.9)

where RP is the current value of the reference point, and x is the current Q-value or

the current critics value function for any particular state.

For each possible action, we associate the following results:

 () () () () () (4.10)

where PT is the value from the perspective of the corresponding action x, w1(x) is the

weighting for objective 1, v1(x) its value function for objective 1 and n represents the

number of objectives.

Chapter 4: Design & Implementation

Page 50 of 233

4.4 Case Study Research Prototypes

 4.4.1 Unmanned Aerial Vehicle Visual Navigation Framework

 4.4.1.1 Helipad Visual Localisation using Cellular Decomposition (CD)

Cellular decomposition (CD) is a simple yet effective technique for discretization of

large continuous input spaces into smaller well defined regions each one being unique

to the rest. The CD technique particularly lends itself well to our chosen application

due to the fact that reinforcement learning determines what best actions to choose

based upon probabilities derived from what particular state the agent in currently

occupying. The UAV observes the

environment through a downwards facing

camera where real time video is streamed

back to the workstation PC where it is

then evenly divided up into cells or state

space. In order to maintain the intuitive

methodology, a relatively small number of

25 cells were used to describe the UAV‘s

perception into discrete states forming a

5x5 grid. The 5x5 grid or ―Cellular Decomposed State Matrix‖ (CDSM) as referred to

throughout the rest of the thesis, is also commonly known as the grid world which can

be altered to accommodate a variety of applications such as the introduction of

stochastic cross winds to demonstrate the algorithms adaptive learning capabilities in

the presence of risk and uncertainty. Providing the pixel screen resolution of the

UAV‘s video stream is known, in addition to the Grid Size, we can calculate how

many pixels each state should contain and more importantly which states are

responsible for each pixel‘s location. Using this inferred information we can estimate

the UAV‘s current position by using image processing to find the centroid of a

helipad marker with respect to the position of the UAV in two dimentional space.

Keeping the UAV stationary and moving the helipad marker on the floor would cause

a change of state. Equally if the helipad marker was stationary and the UAV moved,

then this would also cause a similar change in state. Taking advantage of this

phenomenon we can implement visual localisation of the helipad for informing the

MORL algorithm where the UAV is positioned above ie: what state the UAV is in.

Now knowing where the UAV is positioned with respect to the helipad, further

Chapter 4: Design & Implementation

Figure 4.2: OpenCV Visual Localisation

Page 51 of 233

information can be inferred such as which is the most appropriate action or action(s)

to take when in this state.

Actions

The actions available to the agent are movements in the following directions:

Forward, Backward, Left and Right. However to improve agility and take advantage

of the UAV‘s omnidirectional capabilities an additional 4 regions may be added for

diagonal manoeuvres such as Forward-Left, Forward-Right, Backward-Left, and

Backward-Right. The addition of fuzzy Near & Far membership functions allows the

implementation of Multi Modal fuzzy translational velocity controller for more

precise control of the UAV‘s state transitions (Figure: 4.3).

Rewards/Punishments

 If the UAV is in the green state 13 then the agent receives a reward of +1 for

achieving its objective of stabilizing itself directly above the helipad.

 If the UAV is in any yellow state 7,8,9,12,14,17,18,19 then the agent receives

no reward or punishment 0 because this is still a safe zone

 If the UAV is in any red state 1,2,3,4,5,6,10,11,15,16,20, 21,22,23,24,25 the

agent receives a punishment -1 due to moving outside the safe zone and into

the risky danger zone.

In the unlikely event that the UAV loses visual localisation of the helipad by moving

outside of the Cellular Decomposed State Matrix (CDSM), the UAV is forced to land

Chapter 4: Design & Implementation

Figure 4.3: State ID and Region ID

Page 52 of 233

as a safety precaution due to not knowing its current state (State 0) or action to take in

order to continue learning. This counts as the end of an episode just like when the

reward is found and is represented by a 3 on the Helipad Deviation Graph‘s Y-Axis

signifying being lost. Section 4.6 Figure 4.41 shows preliminary results for the

stabilisation performance above the goal position (Helipad). The x-axis represent the

incrementing number of state transitions and the y-axis represent the Zone State ID. 0

= Green Target Zone, 1 = Yellow Safe Zone, 2 = Red Danger Zone, 3 = Lost

 4.4.1.2 Potential Field Methodology (PFM) Reactive Behaviour

Due to the importance of acquiring consistent visual localisation information to

inform the rest of the learning algorithms of their current state, it is crucial that the

UAV maintains within visual perspective of the helipad. There are many different

reactive architectures that can be applied to the control of robotics navigation, one in

particular which immediately appears appropriate for use with UAV‘s flying in 3D

space is the potential field methodology. The motor component of a reactive

behaviour can be expressed with a potential field methodology whereby each field

consists of both magnitude and direction components similar to vectors. The

perpendicular Potential Field Methodology (PFM) shown in Figure 4.4b is

implemented for the outer states near the boundaries known as the ―danger zone‖. An

attractive potential field (Figure 4.4c) could also be used for the inner states in the

safe zone with equal directions to the adjacent outer states but with reduced

magnitude to ensure a smooth control gradient preventing overshooting the helipad.

However actions executed within the observable state space are to be better controlled

using GPFMORL as this has never been attempted before. ―The motor commands of

the robot at any position in a potential field correspond to the vector on which the

robot is situated. Goals attract, and thus the goals will have vectors pointing towards

them; obstacles repulse, and will be surrounded by vectors pointing away.‖ (Yang

and Gu, 2004)

There are 5 primitive Pfields which all have different influences on reactive

behaviours

(a) uniform; (b) perpendicular; (c) attractive; (d) repulsive; (e) tangential.

Chapter 4: Design & Implementation

Page 53 of 233

a) Uniform: the robot feels the same force wherever it is. Thus, if it is placed in such a

field it aligns itself with the ―arrows‖ and moves at a velocity proportional to the

length of the arrows. Often used to capture behaviour of go in direction of n-degrees.

b) Perpendicular: e.g. directs robot to or from a wall.

c) Attractive: useful for representing attraction of robot to a light or goal position.

d) Repulsive: opposite of attractive – represents obstacles the robot must avoid. The

closer the robot is to the object, the stronger the repulsive force is.

e) Tangential: the field is a tangent round the object. Useful for directing a robot

around an obstacle, or having it investigate something.

The type of potential field which is most relevant for forcing the UAV into an

observable state space is a combination of the attractive and perpendicular pfields

shown as Figure4.4c and in Figure4.4b respectively, extracted from Yang and Gu

(2004). This is due to the fact that all these potential fields attempt firstly direct the

UAV away from the boundaries so that if the UAV overshoots its intended state, or if

the GPFMORL algorithm attempts to try and explore outside its observable state

space, this is instantly corrected by automatically forcing the UAV to fly in the

opposite direction adjacent to that specific boundary. The UAV should compute the

effect of the occupied pfield at every update, with no memory of where it was

previously or where it has moved. Although no memory of the UAVs position is

necessary for the PFM, it is necessary for the MORL agent to learn. Effectively the

PFM reactive behaviour has been implemented to prevent illogical moves from being

executed such as flying out of the boundaries of the CDSM. This allows the MORL

agent to explore more rational/less risky moves without sacrificing future learning

performance by becoming lost.

Chapter 4: Design & Implementation

Figure 4.4a,b,c,d,e: Potential Field Representations (Source: Arkin, 1989)

Page 54 of 233

Equation 11 shown below is the most straight forward formula, where the potential

function is constructed as the sum of attractive and repulsive potentials: To ensure a

smooth gradient, Uatt(q) is often chosen so that the magnitude of the attractive

gradient decreases as the robot approaches the goal location q goal

Above you can see an accuracy surface view profile for creating a non linear gradient

change when the UAV reaches critical heights. Using this, the UAV would be

adjusting its altitude constantly therefore not allowing any other commands to be

executed. The illustration to the right shows a similar technique applied to a fuzzy

altitude controller where the constant magnitude of the Urep gradient is keeping the

UAV away from the wall. Then in the event that the UAV does pass outside the

observable state space into an unknown state (state 0) the PMF then changes to an

attractive pfiled to pull the UAV back towards the direction of the last known state.

Figure 4.6 shows more intense gradient change as the UAV hovers too high or too

low. The advantage of such a profile allows delicate and proportional control of the

UAVs throttle when the correct height is almost reached and more severe movement

applied when the UAV is going to crash into the floor or the roof. The fact that there

is a blue horizontal line across most of the graph also means that the correct hovering

altitude range has been extended to only allow drastic altitude changes when on a

vertical collision course. The advantage of this improved profile is that the altitude

)()()(qUqUqU repatt
Equation 4.11 (Source:

Li-juan, 2001)

Figure 4.6: Speed optimised surface view profile

Figure 4.5: Accuracy optimised

surface view profile

Chapter 4: Design & Implementation

Page 55 of 233

controller now does not create a bottleneck of an excessive number of correctional

commands which the majority are not required.

4.4.1.3 UAV 1
st
 Person Perspective Heads Up Display (HUD)

In Addition to the HUD the software writes the recorded video frames to .avi files as

well as logging the entire state transition history for each step taken in every trial.

 4.4.1.4 Fuzzy Altitude Controller

As the distance between the UAV and the helipad decreases the area of the helipad

appears to increase. Likewise when the robot moves away from the helipad its size

appears smaller. We intend on using this phenomenon to control the speed of the

altitude correction using fuzzy logic. We aim to create an effective control system that

gradually slows the UAVs reactions down the nearer it gets to the appropriate

hovering height. If the UAV were to move sharply close to the helipad then the

helipad would move out the cameras field of view easily. In fact the UAV should

Altitude Estimation (m) Remaining Power Estimation

(m)

Recording Status

Helipad Target (In State 7) Hills/Obstacles Unmanned Ground Vehicle (UGV)

Chapter 4: Design & Implementation

Figure 4.7: UAV‘s Heads Up Display (HUD)

Page 56 of 233

move sharply when it is too high in order to get there faster and more efficiently. In

the event of the UAV being slightly too high the correction will be made much more

slowly to prevent overshooting. In order to increase performance a non linear fuzzy

altitude controller has been developed. Fuzzy sets are ideal for this situation because

they can be used to model the non linear input area of the helipad when the UAVs

altitude changes. A knowledge base can then be constructed consisting of rules

determining when the UAV is at the correct hovering height. e.g. ―Too Low, Low, ok,

High, Too High‖

“This kind of controller has several advantages because it does not need to

recalculate parameters when environmental conditions change”(Yang and Gu, 2005).

The inference engine should then

generate a control action as a

function of state variable values at

any given time. This would

theoretically ensure that the

appropriate motor power and sign

(+-) were immediately available to

be executed by the UAV whenever

required.

The illustration to the right

extracted from Yang and Gu (2005) shows an attempt of creating the various fuzzy

sets required ie: when it is hovering at the correct altitude (Z), or too high (P), or too

low (N), or Very Positive/Negative for extreme situations. Assuming the correct

hovering point of 0 on the vertical Z-Axis in 3D space, anything below that point will

be negative and anything above will be a positive direction of corrective movements.

Yang and Gu (2005) inspired the logic behind using the non linear area of the helipad

to be fuzzified in combination with raw ultra-sonic sensor data and then output as a

number between -100 & +100. This output can then be used to directly control the

altitudes speed or vertical distance that needs to be adjusted. The + & - values are

used for determining the speed that the motors should move in order to move either up

or down to control the amounts of thrust used to hover. This approach has advantages

against noisy sensor data such as deficient light for the camera to see the helipad

properly or if the UAV is landing on textured helipads whose distance may not be

accurately estimated due to the sound waves not deflecting as normal.

Figure 4.8: Fuzzy Membership

Functions (Source:Yang and Gu, 2005)

Chapter 4: Design & Implementation

Chapter 4: Design & Implementation

Page 57 of 233

 “Control of a scale model autonomous helicopter during takeoff and landing

manoeuvres has proven to be an extremely difficult problem.” (Li-juan, 2001)

Li-juan (2001) suggests that the reason for take-off and landing manoeuvres being so

difficult is a consequence of two main factors:

1. The slow time varying and environment dependant nature of the aerodynamic

forces encountered during take-off and landing.

2. The high sensitivity of the UAV to collective pitch and roll changes during

these manoeuvres.

Whilst the sensitivity of the controls can be manually altered by adjusting several

parameters, the aerodynamic forces encountered are much more difficult to

compensate for.

“It is no simple matter to model a priori of the aerodynamic effects that occur due to

ground effects since they depend upon the nature of the environment in which the

helicopter is flying as well as the ambient properties of the air.” (Li-juan, 2001)

Due to flight testing being performed in different environments both at home and at

universities testing lab, coupled with the factors mentioned above, it would have been

very difficult if not impossible to develop my own standardised aerodynamic model

of ground effect. Therefore the GPFMORL algorithm is proposed which is capable of

learning and compensating for complex aerodynamic effects through trial and error

interaction with the real environment. In order to further test the uncertainty handling

capabilities we can introduce stochastic random cross winds either using manual tele-

operation or via algorithmic approaches. Ie: Generating stochastic cross winds

occurring with a probability of 0.2.

The fuzzy altitude controller is responsible for maintaining a steady hovering height

roughly half way the height from the floor to the ceiling in the testing environment.

The input to the controller is the area of the helipad which are inherently non linear.

The non linear inputs are then fuzzified using the Mamdani method to output the

speed of the motors and hence the direction of vertical movement as a range from -

100 (Down Full Speed) to +100 (Upwards Full Speed. Defuzification method of

centroid of area yields the best results obtained from preliminary tests.

Chapter 4: Design & Implementation

Page 58 of 233

Inputs = height

 Outputs = speed

 Mamdani

 Inference

 Range

 Defuzzification

Inputs

Fuzzification of the Helipad Area input is achieved by three membership functions,

two of type triMF and one of type TrapMF. The first triangular membership function

is for when the quadcopter is flying at a high altitude and has the range of (-400 0

400).

Figure 4.9: Fuzzy Altitude Controller Structure

Figure 4.10: Fuzzy Altitude Controller Inputs

Chapter 4: Design & Implementation

Page 59 of 233

The second MF from the left is a trapezium membership function chosen so that the

hovering height range is extended to reduce the number of altitude corrections

necessary to maintain a reasonable hovering height. The range parameters which are

currently set to (0 400 600 1000) can also be modified to allow shorter or longer

ranges for the hovering condition to be satisfied depending upon the required flight

characteristics. The third and final membership function is a triangularMF used for the

scenario where the quadcopter is flying too low and must increase its throttle to

achieve higher altitude. The membership function ―Low‖ has the parameters (600

1000 1297) and has an identical shape to the ―High‖ triangular membership function.

Overlapping of membership functions is essential to ensure fuzzy logic inference is

correctly applied.

Outputs

The range of the output is set to -300 300 although an output of -100 to +100 is only

ever used. Extending the range to three times its limit resulted in more responsive

control of the motors providing validation is used to prevent invalid commands being

sent to the UAV‘s motors. The membership functions are arranged as before using a

combination of TriMF and TrapMF functions with the parameters as described below.

Boost Down = -540 -300 -100 TriMF

Hover = -300 -100 100 300 TrapMF

Boost Up = 100 300 540 TriMF

Chapter 4: Design & Implementation

Figure 4.11: Fuzzy Altitude Controller

Outputs

Page 60 of 233

Rule Base

Figure 4.12: Fuzzy Logic Rule Base Editor

The rule editor allows the altitude measurements to be translated into control actions

to be performed by the various motors connected to the UAV. The altitude input is

separated into three intuitive height categories of High, Medium and Low by selecting

appropriate parameters for each membership function. Depending upon the current

height category, the output action will be determined which allows the quadcopter to

correct its altitude to remain at a constant hovering height. The output BoostUp will

be initiated if the quadcopter flies too close to the floor or BoostDown when

dangerously close to the ceiling. The output Hover prevents any altitude corrections

from being made due to the inputs stating that it is currently flying at a medium height

approximately chest height.

Rule View

The illustration to the left shows

the effect on output speed as the

height input is altered. The

example shows a scenario

where the quadcopter is flying

dangerously high with an input

of approximately 76. The

controller responds by

instructing the motors to rotate

slower therefore moving in the

negative direction at

approximately- 96% full power.

Chapter 4: Design & Implementation

Figure 4.13: Fuzzy Altitude Controller Inputs

Page 61 of 233

 Reactive Behaviour (Fuzzy Logic Control)

Pre-processing

The helipad has a constant area when the quadcopters altitude remains constant; when

the altitude changes so does the area perceived by the camera. For example when the

quadcopter is very close to the floor the helipad will appear larger than if the

quadcopter was flying at high altitude. Unfortunately the area returns inversely

proportional values that appear to be opposite to what is expected. For example, when

the quadcopter is flying low the values are small and when the

Although the range of the

output is set to -300 to +300,

the actual output should never

exceed +-100. This is ensured

by validation however the

input values should never be

such that would cause invalid

outputs to be generated. The

example to the right shows the

helicopter at slightly above

hovering position therefore

correction is a low 5%

 The Illustration to the left

shows the effect of descending

to an altitude that is considered

too low ie: 826. The controller

now decides that the direction

the UAV must travel is now

positive (UP) and that the speed

of correction should be slightly

faster than the previous

occasion at approximately 35%

Chapter 4: Design & Implementation

Figure 4.14: Fuzzy Rule View – Slightly too HIGH

Figure 4.15: Fuzzy Rule View – Slightly too LOW

Page 62 of 233

 quadcopter is flying higher the values become larger. In order to convert this raw data

into more intuitive altitude knowledge we have subtracted the raw area value from

800 to allow a more realistic output to be displayed i.e. Height. This value of 800 was

acquired experimentally and, if required, it could be modified to allow even more

realistic measurement of actual altitude in centimetre units.

 4.4.1.5 Multi-Modal Fuzzy Translational Velocity Controller

The translational velocities for each state transition were originally hard coded to all

be of equal speed (+1.0). However, this proved not to be the most effective way of

control as overshooting and undershooting of state transitions became problematic. In

the situation where the UAV was far from the goal and HIGH up it would make more

sense to increase the speed to reach the next state as there is more room for error at

higher altitudes. However if the altitude is low then any slight movement could result

in overshooting the state so its movements should be gentle by reducing the

translational velocities accordingly. The design of a multi modal fuzzy controller

allows a more smooth control of translational velocities from state to state by using

the ultrasonic altitude estimation along with the visual perceived distance to the goal

to output speeds from 0 to 1.6

Figure 4.16: Multi-Modal Fuzzy Translational Velocity Controller Surface View

Chapter 4: Design & Implementation

Page 63 of 233

Figure 4.17: Translational Velocity Controller – Fuzzy Rules

Figure 4.18: Translational Velocity Controller – Input/Output Fuzzy Logic Design

Figure 4.19: Translational Velocity Controller – DistanceToGoal Membership

Functions

Chapter 4: Design & Implementation

Page 64 of 233

Figure 4.20: Translational Velocity Controller– DistanceToGround Membership

Functions

Figure 4.21: Translational Velocity Controller – Output Speed Membership Functions

 4.4.1.6 Discussion

The developed fuzzy controllers improved the learning speed of the algorithm by

reducing the stochastic nature of the problem to deterministic state transitions. Rather

than one state leading to another random state due to incorrect speed, the controlled

speed ensures that the moving from one state to the next state is what is expected.

Therefore only external stochastic influences are dealt with rather than internal

influences caused by inadequate control.

Chapter 4: Design & Implementation

Page 65 of 233

 4.4.2 Automated Solar Powered Environmental Controller

 4.4.2.1 Motivation

As a society we find ourselves in a world where its becoming increasingly more

difficult to obtain clean food. So much of what is available to is over processed and

exposed to toxins. The leading causes of death are all tightly connected to diet and yet

the types and qualities of food available to us have not changed. Over the recent years

editing the DNA of food crops has become so prevalent that virtually every one of us

eats genetically modified food every day, what that does to our planet and bodies is

unknown…

In response to this situation there is a movement focused upon growing our own food,

on our own terms, that means selecting varieties for taste and quality rather than

durability. It means not subjecting our food to long transports, or soaking it in

pesticides. It means not fiddling with genetic integrity of the plants we eat.

This clean food movement is demonstrated in several different ways such as as:

Urban farming groups and community gardening clubs, Hobbyist Home Growers,

Organisations promoting local food and farmers markets (Fig: 4.22)

The ASPEC system was created as a compliment to all of these as well as providing a

feasible alternative for industrial/commercial suppliers who inevitably must allow us

to have access to healthier hydroponic food. The proposed ASPEC system is

automating food production techniques and optimising them by an advanced

automation programme where we are developing the world‘s first solar powered

multi-functional embedded system that will increases the efficiency of hydroponic

installations without consuming expensive/non-renewable power from the grid. We

are using open source hardware and software in conjunction with modern artificial

intelligence approaches to produce an affordable smart management system for

scalable food production.

Chapter 4: Design & Implementation

Figure 4.22: Organisations promoting local food and Hobbyist Home Growers

Page 66 of 233

for the past 4 years we have been documenting and designing basic structures for

growing food. From the larger Twin Channel Independently Controlled ASPEC

system to DIY miniature windowsill hydroponic gardens made from recycled water

bottles, takeaway containers and jam jars.

Flood and Drain Auto Pot ASPEC

Chapter 4: Design & Implementation

Figure 4.23: Design and Testing of cost effective and advanced hydroponic methods

Figure 4.24: ASPEC Nutrient vessel arrangement and NFT crop layout

Page 67 of 233

The total world area of glasshouses is estimated to be over 41,000 ha with most of these

found in north western Europe and only a small percentage of those are fully

automated. Controlled environment agriculture (CEA) is highly productive,

conservative of water and land and protective of the environment. There are many types

of CEA systems however not every system is cost effective in each location. While the

technique of hydroponic culture in the tropics may be quite similar to those in the desert

and temperate regions of the world, the greenhouse structures and methods of

environmental control can differ greatly.

In conventional soil growth, any excess water, nutrients, vitamins and minerals that

haven't been absorbed by the plants roots eventually drain away and are wasted,

potentially harming the environment through Eutrophication. Using NFT hydroponics

there is a continuous recirculation of nutrient solution that constantly allows the roots to

absorb whatever they want, whenever they want, this can lead to yields 3x higher than

soil production with the advantage that:

Chapter 4: Design & Implementation

Figure 4.25: Automated Solar Powered Self-Sustainable Greenhouse

Page 68 of 233

1. Smaller volumes of nutrients can be completely absorbed, much less volume of

water is required providing a system that is better for the environment and saves cost on

otherwise wasted fertilisers.

2. In addition to the environmental & financial benefits of hydroponics, automation of

climatic and nutrient conditions results in an easy to use, hassle free system that

optimises the conditions for perfect plant growth.

3. If a solar panel is used to provide all the automation power required to maintain the

optimal environmental conditions, then not even humans are required as a resource.

4. The key difference between the limited range of commercial controllers and the one

being proposed is that the ASPEC is artificially intelligent and can operate using very

low voltages/current e.g. 12VDC 3A. This allows the controllers auxiliary battery to

recharge and function carbon free during the day while the plants use natural sunlight to

grow during the day while the controller is charged enough to operate all night

maintaining the optimum conditions.

Such a system allows the ASPEC controller to be commercially viable in third world

countries with power deficiencies and even is a viable option for growing food on the

international space station where resources are extremely costly.

Chapter 4: Design & Implementation

Chapter 4: Design & Implementation

Figure 4.26: ASPEC mk2 with purpose built

illuminated micro switch Human Machine Interface

Figure 4.28: Custom

HMI (Rear View)

Figure 4.27: Custom HMI

(Front View)

Page 69 of 233

An ASPEC system could be used in your garden, back yard, conservatory or even on

your rooftop. Your community can have an even larger system on an unused plot of

desolate land even if it does not have a mains supply of water or electricity available.

Commercial application of the proposed system is also a viable option for much

larger scale food production at reduced costs to both the environment and the

12vDC 110Mah

Sealed Lead Acid

Battery

40w Solar Panel collects

energy and rain water for

the system to operate

Half guttering to direct

collected water into

storage water butt

100 ltr Water but to provide

adequate pressure for float valve

Waste pipe for automatic

flushing

Twin Channel

NFT Tray

ASPEC + 6 1ltr

nutrient bottles

Air Temperature

Probe

Chapter 4: Design & Implementation

Figure 4.29: ASPEC Grow Schedule (by Hesi)

Figure 4.30: ASPEC self-sustaining greenhouse

Page 70 of 233

consumer whilst improving the taste, quality, speed and quantity of the food

produced. This is achieved by using a hydroponic nutrient film technique (NFT) that

has been optimised by introducing a cleverly designed Automated Solar-

Programmable Environmental Controller (ASPEC).

Figure 4.31: Conventional Hydroponic Nutrient Film Technique (NFT)

4.4.2.2 ASPEC Functions and Features

In manually controlled hydroponics, the following numbered tasks heavily rely on a

human operator. The bulleted points below each number show how these processes

have been automated and optimised resulting in more efficient and effective crop

growth.

1. Ensuring the water level of the tank is constantly topped up to a specified level

 Float valve maintains water level at the maximum volume (25ltrs)

2. Turning the air pump on when necessary to cool, mix and oxygenate the nutrient

solution.

 The air pump automatically switches on when the temperature of the nutrient

solution exceeds 15
o
c or when nutrients have just been added.

3. Opening greenhouse windows to reduce humidity or switching on a fan to cool the

greenhouse air temperature down

 Humidity is maintained between the recommended 80%-95% for clones, 60%-70%

for Vegetative and 40% - 60% for flowering plants. The integrated dual fans also

ensure the air temperature never exceeds 29
o
c. In very large greenhouses/poly-

Chapter 4: Design & Implementation

Page 71 of 233

tunnels an external 230VAC more powerful fan can be easily connected to assist

the integrated dual fans.

4. Turning on a heater during the early cold months and at night to prevent frostbite .

 An external 230VAC heater can be easily connected to the controller which

ensures that temperatures never drop below 10
o
c

5. Ensuring the NFT pump is always on and does not become blocked

 The filtered NFT pump is activated at 6am until 9pm each day where it then

switches on and off intermittently to reduce power consumption at night when

there is less chance of the root zone drying out.

6. Once a week a hand held Electrical Conductivity (EC) probe is used to test the

nutrient solution concentration.

 The permanently submerged EC probe constantly checks how concentrated the

nutrient solution is every day so that the next feed can be reduced, cancelled or

increased depending upon the uncertainties of the weather.

7. If the nutrient concentration is too high, the human may drain some of the nutrient

solution away to waste and then top up with fresh water to lower the concentration.

 If it has been a cold and cloudy week then the probability that the nutrient solution

is too concentrated is very high therefore the scheduled feed may be reduced or

even prohibited. In the event of a dangerously high nutrient concentration, 25% of

the nutrient solution is automatically flushed away resulting in fresh water mixing

to achieve a lower safe concentration of nutrient solution.

8. If the concentration is too low then more nutrients will be added little by little until

the desired concentration is achieved for that specific type of plant.

 If the weather has been a very hot and sunny one week then nutrient uptake is

increased hence the probability of increasing the recommended feed concentration

is high therefore the exact volume of delivered nutrients is calculated based upon

the current EC value and the volume of water present in the nutrient reservoir.

9. Approximately every month, the concentration of each individual micronutrient

will become unbalanced so the entire contents of the tank should be flushed to

Chapter 4: Design & Implementation

Page 72 of 233

waste and fresh water and nutrients should replace the old unbalanced nutrients to

maintain optimal growth conditions.

 Each month after 9pm the NFT pump stops recirculating the nutrient solution while

the flush pump empties the contents of the nutrient reservoir. Once empty, the flush

pump stops while the nutrient reservoir refills with fresh water. Finally the new

nutrients are added to the water, followed by 10 minutes of mixing by the air stone

pump, then the NFT pump re-activates to achieve balanced nutrients; mixed to the

optimal concentration.

10. Once a week the potential of hydrogen (PH) within the nutrient solution is also

tested with a hand held probe to check if the solution is too acidic or too alkaline.

 The permanently submerged PH probe constantly checks how acidic/alkaline the

nutrient solution is every day so that it can be automatically altered using PH UP

and PH Down correctors.

11. The human operator must painstakingly record a history of all environmental

factors such as EC, PH, Air Temp, Tank Temp, Humidity, Date & Time, Dosage

Volumes and battery levels in order to predict future discrepancies or potential

problems.

 The ASPEC system automatically logs every value recorded so that graphs can be

automatically generated at the end of each month which highlights any problems

and most importantly at what date and time they occurred. Each grow season, the

results from these graphs can be used to further optimise the feeding schedule in

attempt to reduce the amount of waste flushed away each month.

12. The hand held probes used are difficult to read whilst partially submerging them

in the nutrient solution and often NFT re-circulation must be stopped during

probing to prevent nutrient solution from leaking away.

 The developed TFT touch screen Human Machine Interface (HMI) provides an

intuitive way of configuring the system on the fly whilst also displaying real-time

information, manual functions and system alarms. The data on the HMI can also be

accessed wirelessly using radio frequency communication to a PC or tablet.

Chapter 4: Design & Implementation

Page 73 of 233

Alternatively a mobile smart phone can also be connected to monitor serial

communication and even be used to re-programme the control software if desired.

Figure 4.32: ASPEC & Additional complementary hardware layout

It is suggested that this type of system could also benefit from the use of AI

algorithms such as GPFMORL taking uncertain weather conditions into account when

selecting the correct dosage of nutrients to inject into the nutrient reservoir to ensure

optimal crop growth. Over time, the collected data from the probes can be logged by

the system therefore allowing the system to also manage other objectives such as

minimise number of automatic flushes to reduce wasted nutrients and cost.

Alternatively a similar type of system could also be used for other types of medical

applications such as medication administration where instead of nutrients being

injected into the NFT solution tank, the various types of liquid medications can be

accurately delivered into a drinking vessel for a patient to self-medicate whist

ensuring the correct dosage and medication is delivered at multiple times of day.

 4.4.2.3 Hardware Design

The hardware required to build the working prototype consists of the following

components:

 1 x Arduino Mega Atmel Micro Controller (Atmega2560 MCU)

Chapter 4: Design & Implementation

Page 74 of 233

 1 x 8ch Relay Board + 1x 1ch Relay Board

 6 x 12vDC Liquid Pumps

 12 x 1meter lengths of 11mm1/13mm PVC Pipe

 1 x 12vDC to 5v Regulator

 1 x Micro SD Card Data Logging Module

 1 x Real Time Clock Module with battery backup

 1 x 3v Air Pump with pipe and air stone

 1 x EC Sensor Circuit and BNC connector Probe

 1 x PH Sensor Circuit and BNC connector Probe

 2 x Waterproof Temperature Sensors

 2 x 12v 100mm Computer Fans with 4‖ducting connectors

 1 x TFT Touch Screen + Standby Selector Switch

 3 x 230v Solid State Relays for auxiliary equipment

 4.4.2.4 Touchscreen Human Machine Interface (HMI) Design

Figure 4.33: ASPEC

(Inside View)

Chapter 4: Design & Implementation

Figure 4.34: ASPEC Touchscreen Human Machine Interface screens

Page 75 of 233

 4.4.2.5 ASPEC State Representation

In addition to the AI control, there also

exists the possibility to manually

control all aspects of the system.

This allows the systems value functions

(learned knowledge) to be initialised at

some initial pre-determined values.

Although these values can be a good

guide to start learning from, they are

not optimal and can then be optimised

using the proposed GPFMORL

methodology should the user select to

utilise this intelligent feature of the

system.

Target EC = 1.8

(Reward = +5)

Target PH = 6

(Reward = +3)

Target Air Temp = 21

(Reward = +8)

Target Solution Temp = 16

(Reward = +6)

Chapter 4: Design & Implementation

Figure 4.35: ASPEC Nutrient

Configuration Screen

Figure 4.36: ASPEC State Representation

Page 76 of 233

4.4.2.6 Discussion

The ASPEC controller appears to be a feasible solution for controlled environment

agriculture (CEA) and improves upon existing technologies by automating the

hydroponic process of crop growth. The proposed system design is unique in the fact

that it has been designed to operate on very low voltages so can be powered by the

sunlight entering your greenhouse. Unlike current CEA methods that use synthetic

light to extend the grow period, we propose to optimise conditions based upon

whatever the weather is like on that particular day. The cost advantages of not having

to use artificial lighting are extremely appealing whilst also benefiting the

environment by allowing people to easily grow their own hydroponic food at home.

4.4.3 Robotic Dementia Medication Administration System

4.4.3.1 RDMAS Case Study Poster

See next page P77 for poster illustration (Fig: 4.37 – RDMAS Research Prototype

Poster)

Chapter 4: Design & Implementation

Page 77 of 233

Chapter 4: Design & Implementation

Figure 4.37: RDMAS Research Prototype Poster

Page 78 of 233

 4.4.3.2 Hardware Design

The hardware design for the proposed RDMAS is very similar in design to the

ASPEC being that both applications facilitate the controlled dispensing of liquids

either based upon an intelligent schedule or a closed loop feedback system. The

RDMAS was integrated into a soft robotic arm capable of moving the dispensed

medication vessel towards the patient‘s mouth when required.

 4.4.3.3 RDMAS State Representation

1 Day = 1 Simulation Trial

1 week = 7 trials

And each month its a new play so 4plays of 7 trials = 1 month of testing

 4.4.3.4 Discussion

It is hoped that the proposed RDMAS system shall be tested with real dementia

patients in a controlled environment to fully test its diagnosis capabilities on human

subjects. The qualified nurse shall initially set up the system to deliver medications at

the prescribed dosage and time of day and ensure that validation has been assigned for

risky medications which may not mix well with others. The goal of the system is to

deliver multiple medications at the suggested times, then monitor if the medications

have actually been administered. This is done so that the system can re-assign

medication delivery times to more appropriate times of day if the medication was

missed for whatever reason by analysing their daily memory reactions times.

Chapter 4: Design & Implementation

Figure 4.38: RDMAS State Representation

Page 79 of 233

 4.5 Empirical Evaluation methods for MORL

MO-Puddleworld (Boyan and Moore, 1995) is a two-dimensional environment, which

has previously been used as a single-objective RL bench-mark. The agent starts each

episode at a random, non-goal state and has to move to the goal in the top-right corner

of the world, while avoiding the puddles. The agent receives its current coordinates as

input, and at each step selects between four actions (left, right, up or down) which

move it by 0.05 in the de- sired direction. At each step a small amount of gaussian

noise (standard deviation 0.01) is also added. The agent‘s

position is bounded by the limits of the world (0,...,1).

The reward structure for Puddle world is interesting, as it

is effectively a form of scalarisation with fixed weights

for the two objectives of reaching the goal quickly and

avoiding the puddles. On each step on which the goal is

not reached, the agent receives a penalty of −1. An

additional penalty is applied when the agent is within a

puddle, equal to 400 multiplied by the distance to the

nearest edge of the puddle. To convert this problem to a multiobjective task, the two

penalties are presented as separate elements of a reward vector (omitting the

multiplication by 400, as it is no longer relevant).

The Buridan‘s ass problem (Chen and Hu, 2010)

with three objectives is shown in Figure 4.40 shows

the donkey is in the centre square of the 3x3grid.

There are food piles on the diagonally opposite

squares. The food is visible only from the

neighbouring squares in the eight directions. If the

donkey moves away from the neighbouring square of

a food piles, there is a certain probability Pstolen 0.9

with which the food is stolen. Food regenerates once

every N appear 10 time steps. If the donkey chooses to stay at a square with food, then

it eats food. Otherwise, if the time since the donkey last ate food is more than max 9

T, it will feel hungry. The donkey has to strike a compromise between minimizing the

three different costs: hunger, food-stolen, and walking. The environment, actions and

objectives are similar to the UAV scenario where food is replaced by the helipad goal.

Chapter 4: Design & Implementation

Figure 4.39: MO

Puddleworld (Source:

Boyan and Moore, 1995)

Figure 4.40: Buridan‘s

Ass (Source: Chen and

Hu, 2010)

Page 80 of 233

4.6 PRELIMINARY RESULTS

The chosen methodology for maintaining visual localisation is potential field

methodology (PFM) which has been selected due to its intuitive design and real time

response for reactive behaviour. The PFM is used to keep the UAV away from the

boundaries and within the observable state space. The magnitude of the PF can be

automatically adjusted depending upon the output of the fuzzy translational velocity

controller. Implementation of this methodology allows a baseline of results to be

obtained that show how well the UAV is able to maintain its position within the

desired state. Storing a history of previous states visited allows a graph to be plotted

showing the deviation from the helipad in number of states over time ie: when UAV is

in the safe zone the deviation shall be 1 and when in any danger zone the deviation

shall be 2. This graph not only shows how long the UAV took to reach the helipad,

but also how long it maintained its position there before naturally drifting away to

another state, from this data we can determine a performance measure which can be

compared with higher level control algorithms.

PFM is intended to create the action sets necessary for avoiding the situation where

the UAV flies too far away from the helipad and looses visual localisation of the

environment. It is therefore intended that the RL agent intelligently decides which

actions to take when in the safe inner zone of the environment and the PFM controls

the reactive movements in the danger zone to always keep the helipad in the UAV‘s

field of view to allow learning to occur. Search for the Helipad (Moving towards the

helipad using Forward Camera Improving upon the PFM, a similar reward scheme

shall be implemented for a RL approach that is designed to keep the helipad‘s landing

box in view by occupying the lower-middle state 23 in order to perceive the Landing

box on the floor by flying low until it gets close enough to switch the camera to

downwards perspective and then increase its altitude to acquire a better view of the

helipad for localised landing or following. While the GPFRL algorithm is capable of

dealing with discrete state and actions spaces, it reaches its full potential when using

continuous states such as when dealing with the uncertainty of sensor data. For

example the UAV must know how far it is away from the helipad on the floor in order

to know when it should switch to the PFM, therefore the only available sensor is the

camera which can ascertain the distance by calculating the area of any side of the

landing box which contains the helipad marker. When detecting the area of the

Chapter 4: Design & Implementation

Page 81 of 233

landing box from a forward view we are actually detecting the walls of the box due to

being situated at the correct plane for successful image processing. The area of the

landing box may be noisy due to ambient light levels or light reflections therefore the

Probabilistic Fuzzy Inference System should be able to compensate for this and

decide whether the UAV is either near or far from the landing box. Furthermore our

hypothesis is that increasing the action set and state spaces to a 10x10 grid with 8

possible actions would result in a much more continuous movement of the UAV but

would inherently increase computational time due to doubling the action agents from

4 to 8 and quadrupling the number of possible states encountered from 25 to 100.

Helipad Deviation Comparison Graph of Manual vs Automatic Control

Helipad Deviation Y-Axis: 0 = Helipad, 1 = Safe Zone, 2 = Danger Zone, 3 = Lost

Step Numbers X-Axis = Each time the UAV transitions/moves into a new state

Asomptotes (Flat Ridges) = Where the UAV moved states but not zones. Caused by

human error (Teleoperation) or aerodynamic affects (PFM) that cannot be predicted

due to no automatic learning occurring. Using GPFMORL we hypothesise that these

―Flat Ridges‖ should reduce over time as the agents learn better policies to execute in

similar states.

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Manual Moves
Test1
Teleoperation
Test1
PFM Test1

Chapter 4: Design & Implementation

Figure 4.41: UAV Helipad Deviation Comparison Graph

GPFMORL

PFM

TeleOperation

Page 82 of 233

 4.7 Discussion

From the graph in figure 4.41 you can see the red line which represents teleoperated

control by a human operator to attempt to fly above the helipad in preparation for

landing. In this test the quadcopter started in the safe zone (1) then quickly became

lost many times by flying outside the perceivable state space. After many transitions

between the safe zone and the danger zone, the quadcopter finally finds the helipad

(0) for a brief second before flying back into the safe zone. This is considered to be

the worst performing solution to the problem mainly due to delayed reaction times

from the human operator. The green line on the graph represents Assistive

teleoperation which uses the PFM to try and prevent the quadcopter losing visual

localisation and becoming lost. This improved method only allows the quadcopter to

get lost 3 times and the helipad goal is found many more times than teleoperation

alone at 10 times. Finally the GPFMORL approach gets lost at the start of the trial a

few times just as much as assisted teleoperation, but then after becoming lost twice, it

learns to never get lost again and reaches the goal just one time fewer than the

assistive teleoperated control.

 4.8 Conclusion

The process of localisation is no simple task for a robot and is a prerequisite for most

navigation tasks. It is possible to achieve localisation even when there may only be

one landmark visible in the captured image providing the hardware and software

capabilities allow this. Range finders and gyroscopes alone are not enough to solve

this complicated task due to their accuracy limitations therefore other sensors such as

a camera must be used. Localisation is necessary for correcting the robots inaccurate

positioning incurred through drift. The camera equipped on the quadcopter, whilst the

information is rich it is still limited mainly due to its field of view and the absence of

other on-board sensors. The quadcopter is incapable of carrying any other relatively

heavy sensors however a more suitable wide-angle lens could be retro fitted the

existing lens. Although the use of more sophisticated sensors would improve the

performance of the system the added weight would require a much more expensive

and powerfull hexcopter or octocopter. Using such a large and expensive quadcopter

would go against the expectations of this thesis which is to alow cheap, non intrusive

drones to be used in everyday applications.

Chapter 4: Design & Implementation

Page 83 of 233

The reactive paradigm of potential fields can be interpreted for both positional

corrections to stabilise over a central (H) goal or for vector summation to achieve both

the direction and magnitude of the altitude potential fields used for the fuzzy

translational velocity controller. Potential fields provide a comprehendible

visualisation of an abstract theory allowing the development stage to be successfully

completed methodically. The Helipad deviation graphs undoubtedly show that

although the PFM is suitable for preventing out of bounds moves, sometimes its

actions are not optimal when there are stochastic environmental factors such as

ground affect and unpredictable cross winds. While the repulsive force from the

boundaries is sufficient to allow the RL to observe its current state by ensuring visual

localisation, a simple attractive force around the helipad would often lead to

overshooting or even never coming close to the helipad due to inconsistent winds.

This is one of the reasons for combining these methodologies in conjunction with the

GPFMORL approach to multi objective optimisation for sequential decision making

processes.

Chapter 4: Design & Implementation

Chapter 4: Design & Implementation

Page 84 of 233

5.1 Introduction

This chapter considers a number of example algorithms related to the proposed multi

objective reinforcement learning approach. In section two, I demonstrate how the

random walk grid world is used to evaluate the convergence of the multi objective

learning algorithms while comparing its performance with two classic temporal

difference algorithms Q-Learning and SARSA and their multi objective extensions

referred to as MOQ and MOSARSA. In addition, a third objective of hills/obstacles is

added to a highly stochastic version of the grid world called Windy Hill World. The

purpose of this is to evaluate the influence of environment stochasticity on the

performance of our proposed GPFMORL algorithm in hope that it shall be robust

against external aerodynamic forces in real world testing using a quadcopter. In

section 3 we test our optimised GPFMORL algorithm on a real AR-Drone 2.0

quadcopter and compare classical approaches with artificially intelligent approaches

for real world applications such as autonomous landing and search and rescue.

Quadcopter modifications and related experimental results are shown along with

results produced from the multi modal fuzzy altitude controller verifying its

capabilities in the presence of uncertainty. Section four describes two similar

prototypes that have been created for different real world applications where the

proposed algorithm could be used to improve the effectiveness of each system beyond

the capabilities of any conventional human operator. Finally section five summarises

the contents of this chapter of the thesis.

5.2 Decision Making Simulated Experiments

5.2.1 Random Walk Problem (1
st
 Objective Helipad)

The random walk problem is a mathematical formulisation of a trajectory which

consists of taking random successive steps. The random walk analysis provides results

that have been applied to computer science, physics, ecology, psychology, and several

other fields as a fundamental model for random processes in time.

Experiments

Chapter 5

Page 85 of 233

The purpose of this experiment is to provide a mean by which to evaluate the update

rule, the stability and the convergence of our proposed GPFMORL algorithm, and

compare it with two other multi objective extensions of classical reinforcement

learning algorithms, MOSARSA and MOQ-Learning. Figure 5.1 Shows an example

of a 10x10 grid world testing environment in which the learning agents act.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

In figure 5.1 the learning agents start from a non-boundary state ―12‖ at the upper left

corner and the task of the learning agents is to find the shortest possible path to the

goal state ―46‖ (helipad) in the shortest possible time. The goal described above is

often referred to as the first Helipad Goal objective, or Objective 1. In the above

example there are many possible solutions to this first objective, two of them are

marked with a red and blue line in Fig5.1. In either solution, the shortest possible

number of steps taken to reach the goal is 7 steps.

5.2.2 Obstacle Avoidance (2
nd

 Objective Boundary)

In order to maintain visual localisation allowing the agent to identify the current

perceived state, it is necessary that the agent does not deviate too far away from the

helipad visual marker. The previously described second objective of not becoming

lost off the edges of the grid world environment can be implemented through a

scalarisation approach to compute boundary punishments (-1) independently of

helipad rewards (+1) using a vector of rewards. The secondary objective of staying

within the confines of the grid world environment is often referred to as the second

North

n

South

West East m

Chapter 5: Experiments

Figure 5.1: Random Walk Grid World Environment and Action Set

Page 86 of 233

boundary objective and is complementary to the first objective providing the helipad

goal is not situated on a boundary state. The location of the boundary punishments is

emphasised in Figure 5.1 with the boundary states underlined and the start and goal

stated in bold.

5.2.3 3D Hill Traversal (3rd Objective Hills)

To further test the multi objective capabilities of the proposed GPFMORL algorithm,

a third and potentially conflicting objective is considered during the learning process.

The third objective, also referred to as the Hill objective, allows three dimensional

obstacles such as buildings or hills to be either avoided or traversed depending upon

the cost of flying over or around the hill. In the below example there is a total of five

hills, each with their own punishment value ranging from -0.1 to -0.8. For example

the first hill in state 43 may be -0.1, the second hill in state 53 may be -0.2, the third

hill occupying state 34 may be -0.4, the fourth hill occupying state 35 may be -0.6

and the final hill occupying state 36 may be -0.8. No hill punishment value should be

equal to or exceed the boundary punishments due to due to avoiding or traversing the

hills always being preferred compared to exiting the grid world by entering a

boundary state described by the secondary objective

Blue Policy – Minimum of seven steps to

goal crossing -0.1 Small Hill

Red Policy – Minimum of seven steps to

goal crossing -0.8 Tall Hill

Green Policy – Minimum of nine steps to

goal crossing No Hills

Figure 5.2: Multi Objective Solutions

The blue line in Figure 5.2 represents the optimal policy in terms of the shortest

number of steps to reach the goal and only having to traverse a small hill. The red line

shows the agent traversing a very large hill which consumes more energy so in fact, a

better solution would be the green line going around the hill at the cost of taking more

steps to reach the goal.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Chapter 5: Experiments

Page 87 of 233

5.2.4 Grid World Exploration

In the following experiments, the agent learns which direction to select for every state

in order to reach the goal in as few steps as possible whilst satisfying several other

objectives. To accomplish this task the learning agent explores each option for every

state, evaluates the long term outcome and updates the value functions of every state,

so that the next time that state is visited, the agent can select the action with the

highest probability of success. ie: reaching the goal in as few steps as possible whilst

minimising the number of boundaries and tall hills encountered.

Inevitably, the probabilities of success for each action taken in every state will diverge

from their initial values towards their real values at a rate that is directly proportional

to the number of times that the state is visited. It becomes clear that in order to

generate accurate probabilities for all actions in every state, all states must be visited

as many times as possible. Obviously this poses a problem in terms of computational

time for large state spaces due to the explorative behaviour attempting every possible

route. As a solution, the explorative behaviour could be significantly reduced making

the agent ―greedy‖ however then the agent is less likely to find new more optimal

solutions due to many states being not being visited therefore their probabilities of

success are unknown.

In most reinforcement learning implementation, there is an issue concerning the trade-

off between ―exploration‖ and ―exploitation‖ (Sutton and Barto, 1998). It is the

balance between trusting that the information obtained so far is sufficient to make the

right decision (exploitation) and trying to get more information so that better

decisions can be made (exploration). For example, when a robot faces an unknown

environment, it has to first explore the environment to acquire some knowledge about

it. The experience acquired must also be used (exploited) for action selection to

maximize the rewards (Kantardzie, 2002). Choosing an action merely considering the

best actions will lead to a exploiting behaviour. In order to create a balance, Barto et

al (1983) suggested the addition of a noise signal with mean zero and a Gaussian

distribution. The use of this signal will force the system into an explorative behaviour

where different than optimum actions are selected for all states; thus a more accurate

input-output mapping is created at the cost of learning speed. In order to maximize

Chapter 5: Experiments

Chapter 5: Experiments

Page 88 of 233

both, accuracy and learning speed an enhanced noise signal is proposed. This new

signal is generated by a stochastic noise generator defined in (5.1).

 () (5.1)

Where N is a random number generator function with a Gaussian distribution, mean

zero and a standard deviation which is defined as

 , ()- (5.2)

The stochastic noise generator uses the prediction of eventual reinforcement, ()

shown in (5.2), as a damping factor in order to compute a new standard deviation. The

result is a noise signal which is more influential at the beginning of the runs, boosting

exploration, but quickly becomes less influential as the agent learns, leaving the

system with its default exploitation behaviour. Considering there is only one learning

agent for every action and every learning agent assigns a probability value to every

action according to Equation 5.3.

 (5.3)

Where was defined in Hinojosa (2011). If only one action exists with a probability

value equal to max
 and this probability value is greater than or equal to the

predefined epsilon threshold value of | * +, then the action will be selected.

Alternatively an action is selected at random. The previously mentioned epsilon

value can be defined within the reinforcement learning algorithms parameters in

order to bias the behaviour towards exploratory or exploitative tendencies.

Chapter 5: Experiments

Page 89 of 233

5.2.5 Multi Objective Deterministic Environment

5.2.5.1 System Description

This simulation uses a 10x10 square grid to illustrate the value functions for a simple

finite MDP. Each of 100 cells within the grid represents a different state of the

environment in which the agent can move in any one of the four possible directions:

North, South, East or West. These actions deterministically cause the agent to move

one cell in the respective direction within the grid world environment with a

probability of 1.

All episodes start from state 12 which is at the upper left corner of the grid world

adjacent to the North and West boundaries with coordinates S(2,2). The agent

proceeds North, South, East or West by one state in every step with equal probability.

The primary objective is to find an optimal policy for moving from the starting S(2,2)

state to the goal state G(mg,ng) with minimised cost i.e. minimum number of moving

steps. The secondary objective avoids traveling towards the outer boundary states in

order to minimise the risk of becoming lost outside of the grid world environment i.e.:

minimum number of boundary steps. The third and final objective is to either

circumnavigate an obstacle or traverse over the top of the obstacle depending upon its

size and energy cost involved i.e.: minimum number of High Hill steps. The overall

objective is to find an optimal policy which satisfies all three objectives by using a

scalarisation approach described in section 4.2.

For this series of simulation experiments, the initial starting location of the agent is set

to S(2,2) or state 12 and the goal location is fixed at G(5,6) or state 46. The state

number can be derived according to equation 5.4 where nmax is the total number of

grid world rows and m and n are the vertical and horizontal axis positions of the grid.

 () (5.4)

The rewards and punishments associated to different states remain constant for each

algorithm and for all experiments as shown in table 5.1

Chapter 5: Experiments

Page 90 of 233

TABLE 5.1 REWARD AND PUNISHMENT SCHEME FOR THREE OBJECTIVES IN THE RANDOM
WALK

Reward/Punishm
ent

GPFMO
RL

MOSAR
SA

MOQ-
Learni
ng

Goal State 46

1

1

1

Boundaries

-1

-1

-1

Hill State 34

-0.4

-0.4

-0.4

Hill State 35

-0.6

-0.6

-0.6

Hill State 36

-0.8

-0.8

-0.8

Hill State 43

-0.1

-0.1

-0.1

Hill State 53 -0.2 -0.2 -0.2

Any over boundary actions result in a negative reward or punishment of -1 as the

table shows however, the location of the agent will not change in this circumstance to

allow the learning process to continue using observable states. Any other action that

has not been described results in a reward of zero ―0‖. The MORL parameters and

objective weightings for each algorithm are shown in table 5.2

TABLE 5.2 MORL PARAMETERS AND OBJECTIVE WEIGHTINGS

Parameter/Wei
ghts

GPFMO
RL

MOSAR
SA

MOQ-
Learnin
g

α

0.003

0.4

0.4

β

0.005

-

-

γ

0.95

0.95

0.95

ε

0.01

0.01

0.01

Objective 1

0.4

0.4

0.4

Objective 2

0.3

0.3

0.3

Objective 2 0.3 0.3 0.3

For this experiment the discount factor γ is set to 0.95 and the action selection strategy

is ε-greedy which is determined by setting the epsilon value to ε= 0.01. The

parameters shown above in table 5.2 are the values used in this series of simulations

and the corresponding code developed and evaluated using MATLAB 2014® can be

found in Appendix A.

Chapter 5: Experiments

Page 91 of 233

5.2.5.2 Fixed Start State

For this test, the simulation was set to execute 40 trials of starting from the start state

S(2,2) and attempting to reach the Goal G(5,6) whilst satisfying the other objectives

as shown in figure 5.3. These results are then averaged over a total of 100 plays.

Figure 5.4 Shows the average number of steps the agent takes to reach the goal state

for the 1
st
 objective, the average number of boundary steps taken for the 2

nd
 objective

and the average number of steps traversing over a hill for the final 3
rd

 objective.

Figure 5.4: Static Starting position MOQ learning rates 40trials & 100 Plays (5.470s)

-0.4 -0.6 -0.8

-0.1

-0.2

G+1

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

S +1 = 1
st
 Goal Objective (Yellow S46)

-1‘s = Boundary‘s (outer perimeter)

-0.1 to -0.8 = Hills/Buildings The darker the

blue, the taller the building

Figure 5.3: MORL Punishment Locations

Chapter 5: Experiments

Chapter 5: Experiments

Page 92 of 233

The graph shown above in figure 5.4 illustrates that in the very first trial it took

approximately 55 steps to reach the helipad goal, 13 of those steps were boundary

crossing steps and 4 of them were hill traversal steps. This is clearly not the optimal

policy at the beginning of the trials but as the learning process continues, by the 10
th

trial, a more optimal solution has been discovered which satisfies all the objectives as

described by the reward structure in figure 5.3.

Figure 5.5: Static Starting position MOSARSA learning rates 40trials 100 Plays

Figure 5.6: Static Starting position GPFMORL learning rates 40trials 100 Plays

It can be seen that the GPFMORL algorithm converged the optimal policy much

faster in only 4 trials compared with MOQ and MOSARSA that took approximately

15 trials. The GPFMORL algorithm also took only 37 steps in the very first trial

Chapter 5: Experiments

Page 93 of 233

compared with 55 and 50 for MOQ and MOSARSA respectively. Finally the

GPFMMORL algorithm also demonstrated more stability than the other algorithms

showing only small deviations from the optimal policy once found.

Figure 5.6.1: Static Starting position 1
st
 Objective (Helipad) Comparison

Figure 5.6.2: Static Starting position 2
nd

 Objective (Boundaries) Comparison

Figure 5.6.3: Static Starting position 3
rd

 Objective (Hills) Comparison

Chapter 5: Experiments

Page 94 of 233

Figure 5.7: Fixed Start State Utility Value Distributions for a) MOQ-Learning and b)

MOSARSA

a) North b) East

 c) South d) West

Fig 5.8: Fixed start state GPFMORL probability distributions a)North, b)East,

c)South, d)West

a) MOQ-Learning b) MOSARSA

Ƿ(t)
Ƿ(t)

Ƿ(t)
Ƿ(t)

V(s) V(s)

Chapter 5: Experiments

Page 95 of 233

Figure 5 .7 Illustrates in a) The scalarised utility value distribution of the MOQ-

Learning algorithm and b) The scalarised utility value distribution of the MOSARSA

algorithm generated after 40 trials averaged over 100 plays of the random walk

experiment starting from a static location moving towards a static goal.

Fig 5.8 shows the GPFMORL algorithms scalarised probabilities of success after 40

trials averaged over 100 plays when choosing any of the four available actions

a)North, b)East, c)South and d)West, starting from a static location moving towards a

static goal location.

MOQ-Learning and MOSARSA‘s value assignments for each of the 100 states are

clearly visualised in figure 5.7 Where state ―1‖ is situated at the upper left of the

lower grid axis. The tallest point on each of the surface graphs is where the goal

reward of ―+1‖ is located at state ―46‖ or (m=5 & n=6). All other hills indicate the

relative value of each corresponding state in relation with the value assigned to the

goal state. In this case the learning agent follows the path with the highest steep due to

following an ε-greedy policy tuned for maximum exploitation. It can be observed that

the flat surrounding area near the opposite side of the goal is mainly unchanged from

its initialised values, this is due to following an ε-greedy policy and not completely

exploring every state within the grid world environment as a result of primarily

exploiting its successful behaviour. The other reason for unchanged state values is

because that particular state may not have led to a state with an assigned value.

Should the ε-greedy value be increased to promote a more explorative behaviour then

it is much more likely that every state is visited and a value assigned for each state,

however this increases computational requirements which can significantly reduce the

learning time and produce less stable convergence results with a much higher standard

deviation in all cases.

Figure 5.8 shows the surface areas generated for each of the four learning agents. In

each sub-graph there are 100 possible states each with their own associated

probability for moving either North, South, East or West. In these graphs it can be

noticed that there are a series of hills and dips in contrast with MOQ-Learning and

SARSA where only hills are present. For the GPFMORL algorithms, the dips can be

understood as representing a low probability of taking that choice of action when in

that particular state. The addition of low probabilities in the GPFMORL algorithm as

Chapter 5: Experiments

Page 96 of 233

well as high probabilities is likely to contribute to a much richer source of options

available to the decision making process therefore improving the learning

performance. It can also be observed in Fig 5.8 showing the generated probability

values for each state only deviate slightly from their initial probability of 0.5, this is

due to following an ε-greedy policy therefore the learning agent only requires a small

difference in each of the directional probabilities to determine the appropriate action

to take. Altering the ε-greedy parameter can force the agent to randomly select actions

with small probability values therefore resulting in a more exploratory behaviour

where more of the state space is explored generating higher variations in probability

values.

5.2.5.3 Random Start State

For this second series of experiments within the grid world we shall randomly

initialise the starting position of the agent to any of the 100 possible states. The

number of trials has been extended to 100 and these have been averaged over 500

plays in order to compare the original single objective GPFRL‘s performance with the

newly proposed GPFMORL approach. Figure 5.9 shows the average number of steps

for each of the three objectives for MOQ-Learning. Figure 5.10 shows the average

number of steps for each of the three objectives for MOSARSA. Figure5.11 shows the

average number of steps for each of the three objectives for the newly proposed

GPFMORL algorithm. In figure 5.12 we show the utility value distributions for the

MOQ-Learning algorithm a), and the MOSARSA algorithm b). Additionally figure

5.13 shows the probability distributions for each of the 4 agents responsible for

moving either North, South, East or West.

Chapter 5: Experiments

Page 97 of 233

Figure 5.9: Random Starting Location MOQ learning rates 100trials & 500 Plays

Chapter 5: Experiments

Chapter 5: Experiments

Page 98 of 233

Figure 5.10: Random Start Location MOSARSA learning rates 100trials & 500 Plays

Figure 5.11: Random Start Location GPFMORL learning rates 100trials & 500 Plays

Chapter 5: Experiments

Page 99 of 233

Figure 5.11.1: Random Starting position 1st Objective (Helipad) Comparison

Figure 5.11.2: Random Starting position 2nd Objective (Boundaries) Comparison

Figure 5.11.3: Random Starting position 3rd Objective (Hills) Comparison

Chapter 5: Experiments

Page 100 of 233

Figure 5.12: Random Start State Utility Value Distributions for a) MOQ and b)

MOSARSA

a) North b) East

c)South d)West

Fig 5.13: Random start state GPFMORL probability distributions a)North, b)East, c)South,

d)West

V(s)
V(s)

a) MOQ-Learning b) MOSARSA

Ƿ(t)
Ƿ(t)

Ƿ(t) Ƿ(t)

Chapter 5: Experiments

Chapter 5: Experiments

Page 101 of 233

Due to the random starting locations, more of the states are visited therefore more

knowledge is acquired about the environment which improves its ability to find

alternate optimal policies by behaving in a more explorative way.

5.2.5.4 Discussion

The fixed starting location experiment is an example of a completely deterministic

environment without stochasticity present in either the inputs or outputs ie: The

stochastic signal generator is set to ε = 0.001). This results in the agent being certain

that the selected action taken will always result in moving one step to the adjacent

state in that corresponding direction. The fixed start state ensures that the relative

position between the starting position and goal state remain the same for every trial. It

can be observed that the proposed GPFMORL algorithm exhibits a faster convergence

towards the optimal policy whilst MOQ and MOSARSA also learned the optimal

policy but in a slightly slower time and was less stable than the GPFMORL algorithm.

This is likely to be due to the temporal difference error updating the value functions in

every time step where as MOQ and MOSARA must wait until the goal is reached

before the value functions can then be updated.

Another important observation is that the optimal value for the learning rate α of

GPFMORL is comparatively smaller at (0.003) compared to MOQ and MOSARA

which is much higher at (0.4). The learning rate of GPFMORL can be much smaller

due to only one value function update being necessary for the learning agent to

differentiate between states and take an appropriate action for every state, therefore

the learning agents has a rough idea of the optimal policy even after the very first

trial. In comparison with MOQ and MOSARA, these algorithms do not have any idea

of the optimal policy until a state has been visited where the value function has been

updated previously. Regarding MOQ and MOSARSA, it becomes clear that the

addition of any stochastic signal will confuse the learning process in the first few

trials as any information it has learned will be modified randomly forcing the learner

to revisit the same state several times in order to differentiate the decisions to make in

every state.

Chapter 5: Experiments

Page 102 of 233

5.2.6 Multi Objective Stochastic Environment

5.2.6.1 System Description

This section of the results presents a different version of the grid world environment

called the Windy Hill World in which stochasticity has been added to in order to

evaluate the influence on the performance of our proposed GPFMORL algorithm and

compare it to that of MOQ and SARSA algorithms. In this experiment, there are two

types of stochasticity to be introduced to verify the advantages of the GPFMORL in a

broader setting which include:

1. Policy Stochasticity – Altering the policy from e-greedy to a more explorative

behaviour by changing the epsilon value from ε = 0.01 to ε = 0.2

2. Environment Stochasticity – Generating varied strength of upwards wind gust

depending upon geographical location with a probability of 0.2

Under these stochastic conditions, uncertainties in the input states become inherent

which allows us to evaluate the uncertainty handling capabilities of our proposed

method. The windy hill world is therefore a more realistic simulation of what

decisions may need to be made in the event of aerodynamic forces or windy weather

conditions forecasted by the met office.

In the same way as previous experiments, the agent must move from the starting

location (S:12) towards the goal location (G:46) whilst avoiding the boundaries of the

grid world and choosing to either go around or traverse the hills/buildings. However

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 5.14 Windy Hill World

Wind Strength = 0 0 1 1 2 2 1 1 0 0

2
0%

 c
h

an
ce

 o
f

N
o

rt
h

er
ly

 W
in

d
 G

u
st

s

Chapter 5: Experiments

Page 103 of 233

in the windy hill world there is a crosswind that travels upwards and its strength

varies from column to column. Hypothetically, if this entire environment was also on

a large hill that was steeper in the middle and lower at the sides then you could expect

there to be a much stronger wind in the middle of the hill at its highest altitude. To

really push the limits of the algorithm, the goal location (G:46) is in a column where

the maximum wind strength of 2 is blowing. The values of each columns wind

strength along with the direction of the wind is shown in Fig 5.14. The wind strength

values are the number of cells that the agent will shift north when the wind blows with

a probability of 0.2. The red arrow in Fig 5.14 shows an example of the agent trying

to move one cell to the right (east) from cell 12 towards cell 13 however due to the

moderate northerly stochastic crosswind, its final position actually ends up being 3,

one step north of where the agent intended on being located.

5.2.6.2 Multi Objective Stochastic Windy Hill World

Table 5.3 shows the parameter values for all three learning algorithms with added

stochasticity.

 TABLE 5.3 WINDY MORL PARAMETERS AND OBJECTIVE WEIGHTINGS

Param/Weights GPFMORL MOSARSA MOQ-Learning

α

0.003

0.4

0.4

β

0.005

-

-

γ

0.95

0.95

0.95

ε

0.2

0.2

0.2

Objective 1

0.4

0.4

0.4

Objective 2

0.3

0.3

0.3

Objective 2 0.3 0.3 0.3

For this experiment, the simulation was set to perform 40 trials which are averaged

over 100 plays. Figure 5.15 shows the average number of steps taken for all 3

objectives when starting from a static start position moving towards a static goal with

the addition of stochasticity.

Chapter 5: Experiments

Chapter 5: Experiments

Page 104 of 233

Figure 5.15: Static Start Location Windy MOQ learning rates 40 trials & 100 Plays

It can be observed that the single objective Q-learning algorithm fails to converge

under these highly stochastic conditions however the multi objective version of the

algorithm copes much better and has a low standard deviation from the optimal policy

once reached. The minimum number of steps taken to reach the goal is more than the

optimal policy without the presence of the stochastic winds. However, the stochastic

winds inevitably cause the agent to steer off course therefore having to take extra

steps to compensate and reach the goal. The number of boundary steps taken is also

increased due to the stochastic winds often forcing the agent into the northern

boundary. The number of hill encounters appears to also have increased to

approximately 3 also due to the random gusts of wind forcing the agent into a more

explorative behaviour rather than exploitative with a probability of 0.2.

Standard

deviation of

approximately 6

Non optimal

policy of 10

steps even after

39 trials

Chapter 5: Experiments

Page 105 of 233

Figure 5.16: Windy Static Start Location MOSARSA learning rates 40 trials & 100

Plays

Standard

deviation of

approximately 5

Non optimal

policy of 12

steps even after

31 trials

Chapter 5: Experiments

Page 106 of 233

Figure 5.17: Windy Static Start State Utility Value Distributions for a) MOQ and b)

MOSARSA

Figure 5.16 shows the learning performance of MOSARSA by storing the average

number of steps taken for all 3 objectives when starting from a static start position

moving towards a static goal with the addition of stochasticity. Fig 5.17 a) and b)

show the utility value distributions for MOQ and MOSARSA algorithms respectively.

Figure 5.18: Static Start Location Windy GPFMORL learning rates 40 trials & 100

Plays

a) MOQ-Learning b) MOSARSA

V(s)
V(s)

Standard

deviation of

approximately 2

Optimal policy

of 9 steps after

only 19 trials

Chapter 5: Experiments

Page 107 of 233

Figure 5.18.1: Windy Static Starting position 1st Objective (Helipad) Comparison

Figure 5.18.2: Windy Static Starting position 2nd Objective (Boundaries) Comparison

Figure 5.18.3: Windy Static Starting position 3rd Objective (Hills) Comparison

Chapter 5: Experiments

Page 108 of 233

 a)North b)East

 c)South d)West

Figure 5.19: Windy Static Start GPFMORL probability distributions a)North, b)East,

c)South, d)West

It can be observed that ―why does MOQ have less flat surrounding states which

contain more information than MOSARSA, could it just be chance, the wind has

helped in this particular run of the experiment.

In figure 5.17 we show the utility value distributions for the MOQ-Learning algorithm

a), and the MOSARSA algorithm b). In contrast fig 5.19 shows the probability

distributions for each of the 4 agents responsible for moving either North, South, East

or West.

It can be seen that the GPFMORL algorithm clearly converges to an optimum faster

than both the MOQ and MOSARSA algorithms taking only half as many trials to find

the optimum policy and with considerably fewer steps in the first trial. The

GPFMORL algorithm demonstrates that it is capable of handling the added

stochasticity whilst still discovering the optimal policy and exploiting the learned

information from then on.

Ƿ(t) Ƿ(t)

Ƿ(t) Ƿ(t)

Chapter 5: Experiments

Page 109 of 233

5.2.6.3 Discussion

With the added stochasticity, both MOQ and MOSARSA did find a suitable path to

the goal however both failed in all trials to learn the optimal solution. MOQ was 2

steps away from determining the optimal solution whereas MOSARSA was even

worse taking 4 steps more than the optimal solution for reaching the goal from a static

starting point. These non-optimal solutions found for both these algorithms also took

considerably longer to find with almost twice the number of trials than the

GPFMORL algorithm took and which actually found the optimal solution, this

proving the uncertainty robustness of the proposed algorithm.

5.2.7 Prospect Theory Results

Notice that with prospect theory, number of steps taken to reach the goal in the very

first trial is only 15 steps. The agent then quickly begins to improve performance until

it experiences a boundary around trial 5. This confuses the system and forces the

agent to explore a different path without encountering the boundary. By trial 15, the

algorithm converges to an optimal goal step count of 7 whilst traversing two

hills/obstacles without ever coming into contact with the boundary. Due to this being

a deterministic experiment, when the agent decides upon the optimal policy, there are

no factors altering this optimal policy therefore it keeps to this policy thereafter

without any standard deviation.

Chapter 5: Experiments

Figure 5.20: Deterministic Experiment with Prospect Theory (40 trials of 3 plays)

Page 110 of 233

Figure 5.22: Stochastic Experiment with Prospect Theory (40 trials of 3 plays)

Chapter 5: Experiments

a) North b) East

c) South d) West

Figure 5.21: Deterministic GPFMORL probability distributions a)North, b)East,

c)South, d)West

Page 111 of 233

Figure 5.22.1: Deterministic Vs Stochastic 1st Objective (Helipad) Comparison

Figure 5.22.2: Deterministic Vs Stochastic 2nd Objective (Boundaries) Comparison

Figure 5.22.3: Deterministic Vs Stochastic 3rd Objective (Hills) Comparison

Chapter 5: Experiments

Page 112 of 233

Experimentation with the stochastic windy hill world environment presents some

interesting results. Similar to the deterministic experiment, the algorithm takes around

30 steps to reach the goal and then quickly learns a more optimal route. The optimal

policy in this case was actualy reached by the 9
th

 trial which is slightly better than the

deterministic case possibly due to the exploration characteristics of the stochastic

environment forcing the agent to explore policies which may never have been

attempted. Another interesting result is the fact that although this algorithm still

converges to the optimal policy faster, it never remains at the optimal policy and shows

some standard deviation. This can be attributed to the stochastic nature of the testing

environment which causes the actual path to deviate from the optimal policy with a

probability of 0.2. Therefore at around trial 20, you can see the effect of this stochastic

crosswind on all 3 objectives, such that at this point in time, a cross wind blew the

agent upwards to a state where the boundary was encountered. Similary at trial 25, the

stochastic cross wind blew the agent twice in concession which resulted in twice as

many boundary steps, and therefore twice as many steps required to reach the goal

however the number of hills/obstacles remains the same.

Chapter 5: Experiments

a) North

c) South d) West

Figure 5.23: Stochastic GPFMORL probability distributions a)North, b)East, c)South,

d)West

b) East

Page 113 of 233

5.2.8 Conclusions

The GPFMORL algorithm is conceptually simple and relies on well-established

theory‘s, such as Bayesian statistics. A clear difference between the proposed

GPFMORL algorithm and more common algorithms such as MOQ and MOSARA, is

the use of a probabilistic model for the transition dynamics which mimics two

important features of biological learners.

1. The ability to generalise

2. The ability to explicitly incorporate uncertainty into the decision making

process

These model uncertainties have to be taken into account during long-term planning to

reduce model bias. Beyond specifying a reasonable cost function, GPFMORL does

not require expert knowledge to learn the task. This characteristic is ideal because it

would be extremely difficult if not impossible to model all the aerodynamic forces

that the UAV would encounter, even with a good model, this could not be relied upon

due to the random nature of the stochastic elements.

In the presented experiments, the GPFMORL algorithm was tested in a grid world

environment with 3 objectives under different conditions and the results compared to

those of MOQ and MOSARSA. First, a standard deterministic version of the grid

world was used to test MOQ, MOSARSA and GPFMORL algorithms in a random

walk using both fixed and then random starting locations. The purpose of these

experiments was to test the ability of the algorithms to handle randomness an also to

test the exploration/exploitation characteristics. The results can be observed in figure

5.6 and Figure 5.11 for the fixed starting location and random starting location

respectively. The obtained results were conclusive; the GPFMORL algorithm

outperformed the classic MOQ and MOSARSA algorithms in terms of learning rate.

The GPFMORL algorithm converged to the optimum solution in a shorter time and

showed good stability in both experiments. In the random starting location

experiment the results were even more remarkable. The GPFMORL algorithm found

its way to the goal in the very first trial in fewer than 27 steps whilst MOQ and

Chapter 5: Experiments

Chapter 5: Experiments

Page 114 of 233

MOSARSA took more than 46 steps to reach the goal on their very first attempt with

very unstable initial choices.

In the second set of experiments, the GPFMORL was tested in a highly stochastic

version of the grid world, the windy hill grid world. In this case, ―wind‖ was added to

the standard grid world, in order to add environment stochasticity. Also the greedy

term was increased from 0.01 (greedy behaviour) to 0.2 (more exploration) in order to

add randomness. Under these conditions both MOSARSA and MOQ-learning failed

to converge to an optimal policy. Again the GPFRL showed a strong uncertainty

resistance, by converging to the optimal policy in 19 trials and showed a very stable

behaviour thereafter.

In all the experiments described, an important factor that contributed to the fast

learning speed is the use of a richer reward scheme, where an internal reinforcement

signal is provided. Whilst in MOSARA and MOQ-Learning the agent receives a

positive reward every time the agent reaches the goal state, in the GPFRL method, the

agent receives a reward in every state. This reward is calculated by shaping the

external reward (given at the goal state) by using temporal difference as described in

(3.3). This internal reinforcement or reward signal represents an estimation of the

reward for the current state as a difference between the prediction of eventual

reinforcement of the current state and that of the previous state, as it was first

described by Barto et al (1983).

Optimal design of reward functions has been studied before (Laud and DeJong, 2003,

Mataric, 1994) where different experiments showed faster learning rates. In 1998,

Dorigo and Colombetti (1998), suggested the use of reward shaping which import

behaviourist concepts and methodology into RL, and discussed a model for automatic

training of a RL agent. In the scheme they consider, the automatic trainer has an

abstracted specification of the task, and it automatically rewards the agent whenever

its behaviour is a better approximation of the desired behaviour. However, it has been

suggested by Marthi (2007) that this notion of shaping goes well beyond of using a

rich reward scheme.

It appears that by adding more objectives the problem is actually solved much faster

due to both complementary and conflicting objectives both being satisfied as one

whole problem.

Chapter 5: Experiments

Page 115 of 233

It is clear that a well-designed reward function may facilitate learning, promote faster

convergence, and prevent aimless wandering. Also, as pointed out by Laud and

DeJong (2003), if the optimal value can be provided as a reward, the RL task

successfully collapses to greedy action selection.

The extended MOQPT-learning and MOSARSA algorithms for multiple objectives

caused erratic results and therefore have not been included. The present results for the

GPFMORLPT (Prospect Theory extended) algorithms were tested in both

deterministic and stochastic environments giving satisfactory results leaving more

room for exploration before converging to on an optimal path in a similar number of

trials to that of the standard GPFMORL algorithm.

In these simulated and practical experiments the GPFMORL algorithm has been

exploited to facilitate the real time dynamic learning and control of a UAV. The

GPFMORL algorithm generalises the continuous input space with fuzzy rules and has

the ability to respond to varying states with the appropriate smooth translational

velocities using fuzzy reasoning. Additionally it is also possible to embed prior

knowledge into the fuzzy rules, enabling the UAV to explore interesting environments

and reducing the training time significantly.

Beyond this specific application, however, the larger and more important issue is

whether learning from experience can be useful and practical for more general

complex problems. Certainly the quality of results obtained in this study suggests that

the approach may work well in practice, and may work better than we have a right to

expect theoretically.

5.3 Unmanned Aerial Vehicle Practical Experiments

Chapter 5: Experiments

Page 116 of 233

 5.3.1 Introduction

The two most important topics in mobile robot design are planning and control. Both

of them can be considered a utility optimization problem, in which a robot seeks to

maximize the expected utility (performance) under uncertainty (Thrun, 2000). In

order to increase the flexibility of robots, facing unforeseen changes such as changes

in their environments or sensor failure, the amount of predefined knowledge used in

the control strategy has to be kept as low as possible. The present experiment,

presents an automatic learning algorithm that uses reinforcement learning in order to

find sensor-motor couplings through the robot‘s interaction with the environment.

Although the results obtained in many different test and simulated domains look

promising, RL techniques have rarely been implemented in application requiring real

robots. Robotic applications present difficult challenges to RL methods, nevertheless

its experience based motivation, high reactivity and effectively layered structure are

still of great potential.

While recent techniques have been successfully applied to the problem of robot

control under uncertainty (La, 2003, Pineau et al., 2003, Poupart and Boutilier, 2004,

Roy et al., 2005), they typically assume a known (and stationary) model of the

environment. This dissertation, investigated the problem of finding an optimal policy

for controlling a robot in a partially observable domain, where the model is not

perfectly known, and may change over time; whilst proposing that a probabilistic

approach is a strong solution not only to the navigation problem, but also to a large

range of robot problems that involves sensing and interacting with the real world.

However, few control algorithms make use of full probabilistic solutions and as a

consequence; robot control can become increasingly fragile as the system's perceptual

and state uncertainty, increase.

Reinforcement learning enables an autonomous mobile robot to sense and act in its

environment to select the optimal actions based on its self-learning mechanism. Two

credit assignment problems should be addressed at the same time in reinforcement

learning algorithms, i.e., structural and temporal assignment problems. The

autonomous mobile robot should explore various combinations of state-action

patterns to resolve these problems.

Chapter 5: Experiments

Page 117 of 233

5.3.2 Autonomous Quadcopter Landing

In our third experiment, the GPFMORL algorithm was implemented on an Parrot AR-

Drone 2.0 quadcopter mobile robot (Figure 5.24) in order to learn a mapping that will

enable itself to avoid obstacles (hills) and boundaries whilst finding the shortest route

to the helipad goal. For this case, four active learning agents were implemented to

read four clusters of information gathered from a single Ultrasonic (US) distance

sensor and learn the probabilities of success for the preselected actions. The US

distance sensor first checks the current altitude of the quadcopter when in any state;

this provides a baseline altitude value to which other measurements can then be

compared to. The other measurements consist of the drone changing its pose/attitude

to angle the proximity detection field to approximately 30 degrees in front, behind, to

the left and to the right of the quadcopter all in one manoeuvre, without changing the

current position of the quadcopter. On completion of the detection manoeuvre, there

shall be five unique US distance measurements for example, The floor direction

(altitude) may be 1.5m, The right, front and back distances may all be approximately

2m due to the hypotenuse of a triangle being a longer distance as shown in fig 5.24 a).

Finally if there was an obstacle/hill to the left of the drone, then rather than 2m like

the rest of the directional proximity values, the left distance may be 1.3 indicating that

there is an obstacle or hill present in the state to the left of the drone as shown in

figure 5.24b).

Figure 5.24a,b ¼ of the Detection manoeuvre (Left) for detecting obstacles/hills

before being there

In this experiment the GPFMORL algorithm is implemented on a personal computer

with a wireless link to an AR-Drone 2.0 quadcopter equipped with forward and down

facing cameras. All the computations were performed offline and the data was sent

1.5m
2m

1.5m

1.3m

a) No Obstacle Present 300 Roll Left
b) Obstacle Present 300 Roll Left

1.5m

Chapter 5: Experiments

1.5m

Page 118 of 233

and received via a Wi-Fi link between the PC and the quadcopter. The software was

developed in C++ using Microsoft Visual Studio and uses OpenCV computer vision

library.

The algorithm consists of two software threads, where one thread manages the

communication and the second executes the GPFRL algorithm which decides how to

control the quadcopter. Thread one, requests data from the quadcopter such as video

streams, Ultra sonic data, inertial measurements etc. which are then sent by the

quadcopter and then processed via the C++ programme on the PC. Processing

Includes:

 Discretising the perceived field of view into a finite state space of equal

proportions.

 Segment helipad from background and calculate the area and position of the

helipad

 Potential fields created around the perimeter of the environment to ensure

localisation

 Determine the current state of the quadcopter with relative referencing to the

helipad.

 Multi-Modal Fuzzy speed controller to determine optimal translational

velocities.

 Functions: Record live video streams to file, record drone state history log,

HUD, Automatic or Manual control toggle keys (A & Z), Auto-Land toggle

key (L).

The second thread reads the processed information from the blackboard, and selects

an appropriate action using GPFMORL and velocity using a probabilistic fuzzy logic

controller where the rules are updated every cycle using the proposed GPFRL

algorithm. The selected action is then executed with the appropriate velocity and the

state history is updated accordingly.

 5.3.3 Search & Rescue Application

In our fourth experiment we investigate if the proposed framework and algorithm is

suitable for performing the much more complex task of search and rescue. The

Rescue part of this application is very similar to experiment 3 in the fact that once it

Chapter 5: Experiments

Page 119 of 233

has found the goal/Helipad/Collapsed patient it will centralise itself over the goal and

then come to a controlled landing as close to the goal as close as possible. The Search

part of this application also uses a similar method for moving closer to the goal but

instead of a using a ground facing camera, we first use the forward facing camera with

a higher resolution. The appropriate actions to take in each state primarily depend

upon the learning algorithm however it becomes clear that in order to keep the goal

centralised the forward version of the algorithm should increase or decrease altitude

along with strafing left or right, alternatively the downwards camera algorithm is

more focused on moving forward backward left or right to keep the goal centralised

and only really uses the altitude control to acquire a better field of view or when

finally landing once centralised.

For this experiment the field of view was slightly increased by mounting a lightweight

wide angle lens onto the quadcopter‘s existing lens in order to improve perception

especially at lower altitudes.

 Figure 5.25: C++ Search and rescue application using AR-Drone 2.0 and OpenCV

Conventional RL algorithms aim to maximise performance on a single objective. In

the case of Williams recently proposed GPFRL algorithm the objective is to find the

goal in as few steps as possible. However many real world problems exhibit multiple

objectives such as the UAV must avoid flying outside of the visual localisation grid

whilst attempting to land efficiently on the helipad.

Chapter 5: Experiments

Chapter 5: Experiments

Page 120 of 233

The perceived field of view from an AR-Drone 2.0 is discretised into a 5x5 grid world

in attempt to reduce the curse of dimensionality in large continuous state spaces such

as that of real time video streams. The goal attempting to be reached is the helipad

marker which is segmented from the background image using OpenCV image

processing in order for the MORL algorithm to know a common frame of reference

for determining the agents relative position. A reward of +1 is received whenever the

Unmanned Arial Vehicle (UAV) reaches the goal by directly stabilising itself above

the helipad goal marker. Conversely a punishment or negative reward -1 is received

whenever the agent takes each step that does not lead to one of the terminating goal

states.

In the event of the agents trying explorative behaviour to find a more optimal route to

the helipad they could actually make a very bad move by attempting to fly outside of

the grid world environment. Such ―Boundary Crossing‖ actions should be punished

due to resulting in the UAV becoming lost in an unknown state, also potentially

encountering unknown obstacles. When hypothetically flying out of the danger zone

in simulation, the position of the UAV does not change, however in real flight the

UAV must move into an undesired state before being punished, and then move back

to a known state. Whilst this is easy to simulate by ignoring the physical change of

position when instructed to move outside of the grid world, there must be some other

methodology to maintain the agents within the boundaries of the learning

environment. To solve this issue of maintaining the agent within the observable MDP,

a potential field methodology has been implemented with attractive forces assigned

from outer states towards the central goal state thus enabling the MORL agents to

explore/exploit within the confines of the grid world environment.

5.3.4 Multi-Modal Fuzzy Translational Velocity Controller

In preliminary heuristic based experiments the speeds for each individual state

transition were hard coded however as mentioned previously it is not wise to code the

system with too much expert knowledge as this can be uncertain in these highly

stochastic conditions. It is therefore proposed that the translational velocity of the

state transitions is determined by a fuzzy logic controller. The two inputs to this

controller are ―Distance to Goal‖ and ―Distance to Ground‖ due to these factors being

Chapter 5: Experiments

Page 121 of 233

responsible for how fast or slow the quadcopter should travel in order to get to its

desired state. The inputs are fuzzified using Near and Far Gaussian membership

functions in order to generate a crisp value for the velocity to travel in the direction of

whatever action is selected The outputs are fuzzified using three membership

functions Slow, Default and Fast. The rule base consists of just four simple rules:

IF Distance to Goal = NEAR and Distance to Ground = NEAR then SPEED = Low

IF Distance to Goal = FAR and Distance to Ground = FAR then SPEED = High

IF Distance to Goal = NEAR and Distance to Ground = FAR then SPEED = Medium

IF Distance to Goal = FAR and Distance to Ground = NEAR then SPEED = Low

Figure 5.26: Multi-Modal Fuzzy Speed Controller outputs for translational velocity

5.3.5 Discussion

Unlike in a simulation where you may begin each iteration of the program initialised

to any starting position, in real life the UAV needs to move randomly after it finds the

central goal but just before it lands in order to replicate this action. The next learning

episode now begins from a random physical location anywhere except directly over

the helipad. Otherwise the UAV would find take off and land straight away because it

goal has been found in the first perceived state that was obviously revisited without

Chapter 5: Experiments

Page 122 of 233

any searching necessary. The proposed GPFMORL algorithm is considered multi

objective due to the fact that not only does it need to find the goal, but it should also

avoid flying out of the visual localisation grid using as little power as possible. The

afore mentioned application is similar to the MO Puddleworld benchmark where

instead of avoiding the boundaries of the grid, the secondary objective is to avoid

entering the puddles.

While the UAV may choose to explore by trying to find another way to the helipad by

attempting to fly outside of the grid, this action should in fact be heavily punished due

to potentially causing the UAV to waste power and possibly become lost or fly into

unknown obstacles outside of the danger zone. When flying out of the danger zone

the position of the UAV shall not change in simulation, however in real flight the

UAV must move in order to reach the undesired state then move back whilst being

punished. Whilst this is easy to achieve using simulation by simply ignoring the

change of position when instructed to move outside of the grid, there must be some

method for keeping the UAV within the bounds of the learning environment. To solve

this issue a Potential Field Methodology has been implemented as previously

described.

5.4 Automated Solar Powered Environmental Controller (ASPEC)

5.4.1 Introduction

To demonstrate the theoretical research outlined in this thesis, it was decided that an

additional case study of CEA (Controlled Environment Agriculture) using an

experimental ASPEC (Automated Solar Powered Environmental Controller) shall be

developed and used for experimentation. The Experimental setup for this novel

Embedded system is described in section 5.4.2 followed by the experimental results

described in section 5.4.3. Finally section 5.4.4 concludes with a short discussion of

the outcomes of the experiment and suggested future improvements for further

development.

5.4.2 Experimental Setup

In order to facilitate the accurate perception of the nutrient solutions state on a real

time basis, it was necessary to utilise both a PH Probe measuring the Potential of

Hydrogen and an EC probe to measure the electrical conductivity of the nutrient

Chapter 5: Experiments

Page 123 of 233

solution. In addition to the internal sensors, the system also comprised of two

temperature sensors to measure the external ambient air temperature and the internal

nutrient reservoir solution temperature. The ambient air temperature was controlled

by activating cooling fans and the nutrient solution temperature was controlled by a

submersible air bubble stone, both regulated to optimal conditions via a closed loop

system. The chosen crops to optimise their growth were 4 Sungold F1 Tomato plants

using a hydroponic Nutrient Film Technique controlled by a bespoke embedded

system called the ASPEC (Automated Solar Powered Environmental Controller). The

experiment was carried out over a course of an extended grow cycle of 6 month (24

weeks) and with the exception of ensuring nutrient bottles were replenished, there was

no manual intervention required throughout the whole growing cycle. The available

actions available to the learning agent were to add nutrients to the solution, dilute the

solution by adding water, increasing the PH with PH Up corrector (Strong Alkali) and

finally decreasing the PH with PH down corrector (Strong Acid). The infinite supply

of water was provided by a rainwater collection barrel stored under gravitational

pressure and all the power needs were achieved by storing solar power from a small

40w solar panel into a 12v Lead acid battery.

5.4.3 Results

Presented in (Figure 5.27) are the graphical results for the ASPEC optimisation of EC

& PH using Advanced Controlled Environment Agriculture of Hydroponic Tomato

plants (Sungold F1). The two most important hydroponic parameters of EC & PH are

optimised via a novel MORL algorithm implemented into an embedded system

capable of performing a certain action when in specific states based upon an iterative

learning process.

The X-Axis represent days of the growing cycle over an extended growing period of

6month, whilst the Y-axis represent both PH values, and EC values in the unit of

micro–siemens (µS) . The two measurements of state information and the relevant

actions are represented by the following coloured lines:

Electrical Conductivity (EC) - Blue Line

Potential of Hydrogen (PH) - Red Line

Addition of nutrient - Green Line

Dilution of nutrients - Purple Line

Chapter 5: Experiments

Page 124 of 233

PH UP Corrector - Turquoise Line

PH Down Corrector - Orange Line

The system begins by filling up the hydroponic reservoir with fresh water up to a

volume of 25ltrs which shall be maintained throughout the entire grow cycle. During

the first few weeks the plants are susceptible to high EC concentrations which can

damage the plants and prevent growth. It is therefore it is recommended by the grow

schedule that only half the dosage of nutrients are administered during the first two

weeks to allow the plants to get acclimatise to a more concentrated dose later on. It

can be observed on the graph (Figure 5.27) that during the first week, the EC state

(Blue) gradually increases from 0 to 1.1 by choosing the action of Adding nutrients

(Green). This overfeeding of nutrients is quickly reduced back down to the optimal

recommended EC value of 0.8 by stopping the addition of nutrients and choosing to

dilute the solution slightly. This dilution of nutrients (Purple) is performed by

pumping some of the nutrient solution out of the reservoir therefore allowing a small

amount of fresh water back in to maintain a constant volume of 25ltrs hence diluting

the nutrient concentration. The PH of the fresh water entering the system initially has

a natural value of 7 (PH neutral) and combined with the nutrients, should be reduced

down to a slightly acidic value of PH 6 (Red). The PH state of the solution is

0

1

2

3

4

5

6

7

8

9
1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

EC

PH

Add Nutrients

Dilute Nutrients

PH Up

PH Down

Figure 5.27: ASPEC Experimental Results Graph

PH/EC

Days

Chapter 5: Experiments

Page 125 of 233

corrected to PH 6 by first attempting the optimal action of adding PH down corrector

to the solution.

After 2 weeks the optimal conditions are reached PH 6 and EC 0.8. As the nutrient

dose is increased to full strength (EC1.8), which generally causes an increase in PH,

the learning agent explores a non-optimal action of PH Up corrector which is

administered causing the PH to dramatically increase to PH 8. The high alkalinity of

the solution is now in danger of preventing optimal plant growth so the corrective

measure is decided to try reducing the PH of the solution by executing the PH down

corrector action. The PH is gradually adjusted to a more optimal solution of PH 6 but

with adverse effects to the EC concentration. In adding large amounts of PH

corrector, the undesired effect of the EC concentration is increased. To correct the EC

the action of diluting the nutrient solution is decided which does in fact lower the EC

but also has the effect of increasing the PH slightly due to the fresh water being

neutral PH 7. Once again the action of PH down is used to reduce the value of the PH,

however on this occasion the action is repeated for too long which results in a lower

than optimal PH of 5.4. Now rather than using PH correctors as before, the learning

agent decides to just increase the nutrient dosage action in hope that as a result of

increasing the EC slightly, the PH will resolve to an optimal value of PH6 whilst also

reaching an optimal EC. Once the majority of good actions in certain states have been

repeated and the bad actions have learned to be avoided the graph begins to stabilise.

The optimal policy that has been determined ensures the most suitable PH and EC by

adding appropriate amount of nutrients and the PH down corrector whenever the state

of the solution requires slight corrections.

5.4.4 Discussion

The proposed ASPEC case study confirms what was previously learned from manual

control of hydroponic agriculture by converging to an almost identical method of

optimisation learned entirely from its own interaction with the environment. Although

the learning algorithm took several weeks to reach an optimal policy, it did so entirely

from scratch without no prior knowledge of hydroponic agriculture. With respect to

the several years it would take a human gardener to learn how to effectively grow

hydroponic crops, this system did so in considerably less time. The learning time

could possibly be increased by monitoring state information on an hourly basis rather

than on a daily one at the cost of having to process much larger amounts of data over

Chapter 5: Experiments

Page 126 of 233

the course of a 6 month period. Such an approach would require the hardware to be

designed with increased non-volatile memory capacity and a more powerful processor

to deal with the increased amount of data and computation required for such a

complex task. It is hoped that such a system shall become more accepted into the ever

expanding general population to aid controlled environment agriculture of hydroponic

fruit and vegetables for everyone to enjoy at a lower cost to both the consumer and

environment.

5.5 Summary

This chapter presented four experiments used to test different aspects of the proposed

GPFMORL method. The experiments performed include: Deterministic random walk,

Stochastic random walk, UAV navigation for autonomous landing, Search and rescue

application. Results and conclusion have been detailed for each experiment. Two

other applications were considered for use with the GPFMORL algorithm and the

hardware prototypes were developed such as the Autonomous Solar Programmable

Environmental Controller (ASPEC) and Robotic Dementia Medication

Administration System (RDMAS)

The next chapter provides a final conclusion and observations and then proposes some

topics for future research.

Chapter 5: Experiments

Chapter 5: Experiments

Page 127 of 233

6.1 Introduction

This work has explored the different advantages and limitations of three different

popular paradigms, fuzzy logic systems, probabilistic theory, prospect theory and

reinforcement learning separately. It was concluded that each of this paradigms could

very well complement the drawbacks of the others and seamlessly work together in a

cooperative rather than competitive way.

Fuzzy logic systems are good at generalizations, and due to its distinctive

characteristics, it is able to handle non-statistical uncertainties, and fuzziness;

however under certain conditions, the design and development of rather large or more

complex systems can be too complicated for human operators.

Reinforcement learning methods have been an intense focus of research in the last

decade. Research has proven that reinforcement learning can be successfully used in

many different areas, such as decision making or control. A remarkable characteristic

is that RL methods do not require input-output pairs for training or previous

knowledge of the environment model. RL only uses sparse signal information in order

to reach to optimal conclusions. Therefore using RL for automatic tuning of fuzzy

logic parameters have also being the focus of recent research.

Probabilistic theory is still one of the most effectives way (and most explored) to deal

with uncertainties, especially stochastic uncertainty. The fusion of probabilistic theory

with fuzzy logic controllers have shown to be a powerful tool for practical areas such

as finance and weather forecasting. Both paradigms can work in collaboration, in

order to complement each other. As a result, probabilistic fuzzy logic system can

handle a very large range of uncertainties.

The present work combines these three paradigms into a novel method, able to learn

optimal policies for control or decision making whilst being resistant to stochastic,

non-stochastic, uncertainties, randomness and fuzziness. Four different experiments

were carried on to ratify our claims; a random walk within a fixed start and random

start grid world and a windy hill world, and finally control of a wi-fi camera equipped

quadcopter mobile robot.

CONCLUDING DISCUSSION

Chapter 6

Page 128 of 233

Chapter 6: Concluding Discussion

The rest of this chapter is organized as follows; Section two highlights the

contributions of this dissertation. In section three some important observations are

described. Section four proposes some future work and in section five the final

conclusions are given.

6.2 Contributions Of this Work

The contributions of this work can be summarised in the following list:

 This work proposed a novel modification to the GPFRL algorithm where, the

implementation of a scalarisation methodology provided a way to find optimal

policies for multiple objectives under different kinds of uncertainties in an

automatic way.

 Through several different experiments of grid world variations, the proposed

method has demonstrated high performance under situations of decision

making taking into consideration risk.

 The observed results of this work showed that the GPFMORL method can find

its major application in the un-calibrated control of non-linear, multiple inputs,

and multiple output systems, especially in situations with high uncertainty.

 GPFMORL algorithm was compared in a grid world, with the multi objective

extensions of well-established RL methods, MOSARSA and MOQ-learning.

In this experiment the GPFMORL method showed not only a strong

convergence but also a much faster one.

 PROSPECT THEORY was investigated as recommended by hinojosa and

proved to be good at preventing the agent from risky situations and actualy

improved the GPFMORL algortighms performance.

 The GPFMORL method was implemented on an AR-Drone 2.0 Quadcopter

robot with the task of landing on the helipad, avoiding boundaries and

traversing hills if necessary. The preliminary results of this heuristic based

Page 129 of 233

Chapter 6: Concluding Discussion

experiment were promising showing that the performance of the developed

system is likely to be able to work well with real-time applications..

6.3 Observations

The following section presents some observations that were made during the

development of this work.

 Due to wi-fi interference the characteristics of the AR-Drone 2.0 could often be

random and erratic even when reducing network traffic.

 Due to the inherent limitations of ultrasonic proximity sensors, the processed

value of altitude is often inaccurate and can lead to sudden increases or decreasing

in altitude without prior warning.

 The frame rate of developed the image processing framework is more than

sufficient for detecting the helipad even with erratic high speed manoeuvres.

6.4 Future Work

6.4.1 Theoretical Suggestions

Learning still is a black box in most of the cases. The presence of uncertainty and the

concept of knowledge itself make it intrinsically difficult if not impossible to model

and analyze the final behaviour of a learning system; therefore no system with

unsupervised learning should be unsupervised. It is suggested the research of methods

combining the probability estimation of reinforcement learning, as the one proposed

in this work, with other methods that can incorporate the knowledge of human

operators; especially for situation where the result of selecting actions or behaviours

with a relatively “high” probability of success can have considerable consequences.

As an example, it can be suggested the use of prospect theory, which is a method of

calculating decisions not only based on probabilities of success but also based on a

risk evaluation. ― W. Hinojosa, ―Probabilistic fuzzy logic framework in reinforcement

learning for decision making,‖ September, 2010.

Page 130 of 233

Chapter 6: Concluding Discussion

Originally we began by creating an multi modal fuzzy altitude controller in order to

deal with the non-statistical uncertainties present in detecting the environment.

However since the vertical axis ―Z‖ (altitude) of the UAV does not contribute to

whatever positional state the UAV is in, it seemed necessary to alter the FIS. Instead

of using ultra-sonic and area measurements of the helipad as inputs, now Distance to

helipad and ultra-sonic measurements are used to create a fuzzy translational velocity

controller. This facilitates smooth transition between states at the appropriate speed to

reduce overshooting from one state to the next. Performing the obstacle detection

manoeuvre combined with prospect theory, it is possible to distort the probabilities of

success regarding risky situations. For example if the UAV detects a potential

obstacle/hill to the left then the probability associated with moving left when in that

state shall be reduced forcing the agent into a more explorative behaviour to take an

more optimal alternate route in future.

A further improvement would be a fuzzy controller that uses 2 inputs of Roll & Pitch

to determine how level the UAV was when it acquired the current state using visual

detection. If the Roll and pitch is 0 in both cases then the probability of the UAV

flying directly over the detected state is 1. However if either the roll or pitch is more

than 0 then the probability of being in the detected state is reduced due to UAV

possibly perceiving a differnet state from the perceived viewing angle. If the UAV is

at its limits of 30
0
 incline in either axis then the probability of the perceived state

being correct is almost 0.

6.4.2 Practical Suggestions

Although mathematical models of dynamical systems can be accurate to a high

degree, it doesn‘t come close to real systems in terms of uncertainty. Therefore, it is

highly suggested a more rigorous testing of the proposed GPFRL method on systems

interacting with real environments, such as with mobile robots navigating on

uncharted environments, highly nonlinear manipulators, etc.

Moreover, it is suggested the exploration on how this proposed algorithm performs on

more challenging tasks, especially in systems with higher dimensional states. [1] W.

Hinojosa, ―Probabilistic fuzzy logic framework in reinforcement learning for decision

making, ‖ September, 2010.

Page 131 of 233

Chapter 6: Concluding Discussion

 Adding a omnidirectional camera to the UAV would improve perception

 Using a purpose built professional wide angle lens instead of retro fit lenses

designed for smartphones.

 The translational velocities should be dramatically increased during landing in

order to quickly react to the fast changing state information perceived from the

environment.

 Optical flow algorithm to detect adjacent obstacles/hills by turning on the spot

. (yaw) to check the velocity of POI detected to determine obstructed regions.

 Improve resolution of downwards facing camera to improve helipad detection

 Either implement an digital image stabilisation algorithm or mount the

camera on a 3 axis mechanical gimbal to reduce UAV in-place movements from

affecting the state detection.

6.5 Final Conclusions

It is my conclusion after observing the results of the proposed algorithm, that the

objectives of this dissertation have been successfully met. We can also anticipate the

effective solution to more complex problems with more objectives using this

algorithm. As any approach, there are limitations and shortcomings in the proposed

algorithm, which should be improved further.

Page 132 of 233

References

E. L. Thorndike, Animal Intelligence. Darien, CT, USA: Hafner, 1911.

A.M. Turing, ―Computing machinery and intelligence,‖ Mind, vol. 59, pp. 433–460,

1950

L. P.Kaelbling, M. L. Littman, and A.W. Moore, ―Reinforcement learning: A survey,‖

J. Artif. Intell.Res., vol. 4, pp. 237–285, 1996.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge,MA, USA: MIT Press, 1998

AirRobot. Quadrocopter UAV Model AR100. http:// www.airrobot-uk.com/index.htm.

Liu, C., Xu, X., & Hu, D. (2013). Multiobjective Reinforcement Learning: A

Comprehensive Overview. ieeexplore.ieee.org, 1–13. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6509978

Gherega, A., Udrea, R. M., & Monica, R. (2012). A Q-Learning Approach to Decision

Problems in Image Processing, (c), 60–66.

Veen, M. van der. (2011). Optimizing artificial force fields for autonomous drones in

the pylon challenge using reinforcement learning.UvARescue and Amsterdam Oxford

Joint Rescue Forces in the USARSim simulator. Retrieved from https://martijn-bsc-

thesis.googlecode.com/files/Thesis.pdf

Yang, E., &Gu, D. (2005). A Survey on Multiagent Reinforcement Learning Towards

Multi-Robot Systems.CIG, 2. Retrieved from

http://cscourse.essex.ac.uk/cig/2005/papers/p1012.pdf

Yang, E., &Gu, D. (2004). Multiagent reinforcement learning for multi-robot systems:

A survey. Department of Computer Science, Univeristy of …. Retrieved from

http://computerscience.nl/docs/vakken/aibop/MAS-reinforcement-learning.pdf

XIE Li-juan, XIE Guang-rong, CHEN Huan-wen, and LI Xiao-li. A novel artificial

potential field-based reinforcement learning for mobile

M. L. Littman, ―Value-function reinforcement learning in markov games,‖ Journal of

Cognitive Systems Research, vol. 2, pp. 55–66, 2001.

Arkin, R. C., Endo, Y., Lee, B., Mackenzie, D., & Martinson, E. (n.d.). Multi Strategy

Learning MethodsFor Multi robot Systems, (Lm).

Mataric, M. "Reward Functions for Accelerated Learning" in Machine Learning: Proc.

Eleventh International Conference, San Francisco, CA, 1994, 181-189. 8.

Mitchell, T. (1990). Machine Learning (Vol. 4, pp. 417–433).

doi:10.1146/annurev.cs.04.060190.002221

H. L. Liao, S. Member, Q. H. Wu, and S. Member, ―Multi-Objective Optimisation by

Reinforcement Learning,‖ 2010.

http://www.airrobot-uk.com/index.htm
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6509978

Page 133 of 233

E. Yang and D. Gu, ―A Survey on Multiagent Reinforcement Learning Towards Multi-

Robot Systems.,‖ CIG, vol. 2, 2005.

P. Vamplew, R. Dazeley, A. Berry, R.Issabekov, and E. Dekker, ―Empirical evaluation

methods for multiobjective reinforcement learning algorithms,‖ Mach. Learning, vol.

84, no. 1–2, pp. 51–80, 2011.

Y. Yang, Y. Tian, and H. Mei, ―Cooperative Q Learning Based on Blackboard

Architecture,‖ pp. 224–227, 2007.

G. Qian and X. Wang, ―Greenhouse parameter control strategy based on the

AHP(Analytical Hierarchy Process),‖ 2013 25th Chinese Control Decis. Conf., pp.

1589–1594, May 2013.

P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry, ‖On the Limitations of

Scalarisation for Multi-Objective Reinforcement Learning of Pareto Fronts‖, Artificial

Inteligence 2008, LNAI 5360, pp.372-378, 2008

Shaker, M., Smith, M. N. R., Yue, S., &Duckett, T. (2010). Vision-Based Landing of a

Simulated Unmanned Aerial Vehicle with Fast Reinforcement Learning.2010

International Conference on Emerging Security Technologies, 183–188.

doi:10.1109/EST.2010.14

Hinojosa, W. M., Nefti, S., &Kaymak, U. (2011). Systems Control With Generalized

Probabilistic Fuzzy-Reinforcement Learning. IEEE Transactions on Fuzzy Systems,

19(1), 51–64. doi:10.1109/TFUZZ.2010.2081994

Kim, H., & Jordan, M. (2003). Autonomous helicopter flight via reinforcement

learning. Advances in neural …. Retrieved from

http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2003_CN07.pdf

Dijkshoorn, N. (2012). Simultaneous localization and mapping with the Ar. Drone

(MASTERS THESIS). Amsterdam University. Retrieved from

http://www.nickd.nl/dl/thesis_Nick_Dijkshoorn.pdf

Theodoridis, T., & Hu, H. (2012). Toward Intelligent Security Robots: A Survey. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

42(6), 1219–1230. doi:10.1109/TSMCC.2012.2198055

A. Castelletti, G. Corani, A. Rizzolli, R. Soncinie-Sessa, and E.Weber, ―Reinforcement

learning in the operational management of a water sys- tem,‖ in Proc. IFAC Workshop

Model. Control Environ. Issues, Yoko- hama, Japan, 2002, pp. 325–330.

J. Karlsson, ―Learning to solvemultiple goals,‖ Ph.D. dissertation, Dept. Comput.Sci.,

Univ. Rochester, Rochester, NY, USA, 1997.

D. C. K. Ngai and N. H. C. Yung, ―A multiple goal reinforcement learn- ing method for

complex vehicle overtaking maneuvers,‖ IEEE Trans. Intell. Trans. Syst., vol. 12, no. 2,

pp. 509–522, Jun. 2011.

F. Sahba, H.R. Tizhoosh, and M. Salama, ―Application of reinforcement learning for

segmentation of transrectal ultrasound images‖, Biomed Central Medical Imaging,

2008.

Page 134 of 233

G. Tesauro, R. Das, H. Chan, J. O. Kephart, C. Lefurgy, D.W. Levine, and F. Rawson,

―Managing power consumption and performance of computing systems using

reinforcement learning,‖ in Advances in Neural Information Processing Systems.

Cambridge, MA, USA: MIT Press, 2007.

M. Humphrys, ―Action selection methods using reinforcement learning,‖ in From

Animals to Animats 4, P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, and S.W.Wilson,

Eds. Cambridge,MA, USA: MIT Press, 1996, pp. 134–144…

P. Abbeel, A. Coates, M. Quigley, and A. Ng.An application of reinforcement learning

to aerobatic helicopter flight. In NIPS 19, 2007

Liu, Y., & Dai, Q. (2010). A survey of computer vision applied in aerial robotic

vehicles. Optics Photonics and Energy Engineering (OPEE …, (201), 277–280.

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5508131

L. G. Mitten, ―Composition principles for synthesis of optimum multi- stage

processes,‖ Oper. Res., vol. 12, pp. 610–619, 1964.

M. J. Sobel, ―Ordinal dynamic programming,‖ Manage. Sci., vol. 21, pp. 967–975,

1975.

S. Mannor and N. Shimkin, ―The steering approach for multi-criteria reinforcement

learning,‖ in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 1563–1570.

Cherian, A., Andersh, J., Morellas, V., Papanikolopoulos, N., &Mettler, B.

(2009).Autonomous altitude estimation of a UAV using a single onboard camera.2009

IEEE/RSJ International Conference on Intelligent Robots and Systems, 3900–3905.

doi:10.1109/IROS.2009.5354307

K. Zheng, H. Li, R. C.Qiu, and S. Gong, ―Multi-objective reinforcement learning based

routing in cognitive radio networks:Walking in a random maze,‖ in Proc. Int. Conf.

Comput. Netw.Commun., 2012, pp. 359–363.

S. Mannor and N. Shimkin, ―A geometric approach to multi-criterion reinforcement

learning,‖ J. Mach. Learning Res., vol. 5, pp. 325–360, 2004.

XIE Li-juan, XIE Guang-rong, CHEN Huan-wen, and LI Xiao-li. A novel artificial

potential field-based reinforcement learning for mobile robotics in ambient intelligence.

International Journal of Robotics and Automation, 2009.

L. Barrett and S.Narayanan, ―Learning all optimal policies with multiple criteria,‖ in

Proc. 25th Int. Conf.Mach. Learning, 2008, pp. 41–47.

C. R. Shelton, ―Importance sampling for reinforcement learning with multiple

objectives,‖ AI Laboratory,Massachusetts Institute of Technol- ogy, Cambridge,MA,

USA, Tech. Rep. 2001-003, 2001.

A. Castelletti, F. Pianosi,&M.Restelli, ―Tree-based fitted Q-iteration for multi-objective

Markov decision problems,‖ in Proc. Int. Joint Conf. Neural Netw., 2012, pp. 1–8.

H. L. Liu and Q. H.Wu, ―Multi-objective optimization by reinforcement learning,‖ in

Proc. IEEE Congr. Evol.Comput., 2010, pp. 1–8.

Page 135 of 233

S. Singh, T. Jaakkola, M. L. Littman et al, ―Convergence results for single-step on-

policy reinforcement-learning algorithms,‖ Machine Learning, vol. 39, pp. 287–308,

2000.

Matari, M. J., & Systems, C. (1997). Reinforcement Learning in the Multi-Robot

Domain, 83, 73–83.

ROY, N., GORDON, G. & THRUN, S. 2005. Finding approximate POMDP solutions

through belief compression. Journal of Artificial Intelligence Research, 23, 1-40.

DEMSPSTER, A. P. 1969. Upper and lower probability inferences for families of

hypotheses with monotone density rations. Annals of Mathematical Statistics, 40, 953-

969.

SUTTON, R. S. 1988. Learning to predict by the methods of temporal differences.

Machine Learning, 3, 9-44.

RUMMERY, G. A. & NIRANJAN, M. 1994. On-line q-learning using connectionist

systems. Cambridge: Cambridge University.

BARTO, A. G., SUTTON, R. S. & ANDERSON, C. W. 1983. Neuron-like adaptive

elements that can solve difficult learning control problems. IEEE Transactions on

Systems, Man, and Cybernetics, 13, 835-846.

Watkins, C. J. C. H. 1989. Learning from delayed rewards.PhD, King's College.

BELLMAN, R. E. 1957. Dynamic programming, Princeton, New Jersey, Princeton

University Press.

BARTO, A. G. & ANANDAN, P. 1985. Pattern recognizing stochastic learning

automata. IEEE Transactions on Systems, Man and Cybernetics, SMC-15, 360-374.

CHEESEMAN, P. 1985. In defense of probability.9th International Joint Conference on

Artificial Intelligence. Los Angeles, California: Morgan Kaufmann Publishers Inc.

WILLIAMS, R. J. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning, 8, 229-256.

MORIARTY, D. E., SCHULTZ, A. C. & GREFENSTETTE, J. J. 1999. Evolutionary

algorithms for reinforcement learning. Journal of Artificial Intelligence Research, 11,

241-276.

KALYANAKRISHNAN, S. & STONE, P. 2009. An empirical analysis of value

function-based and policy search reinforcement learning. 8th International Conference

on Autonomous Agents and Multiagent Systems. Budapest, Hungary: International

Foundation for Autonomous Agents and Multiagent Systems.

BAIRD, L. C. 1999. Reinforcement learning through gradient descent.Doctor of

Philosophy, Carnegie Mellon University.

HINOJOSA, W., NEFTI, S., GRAY, J. & KAYMAK, U. 2008. Reinforcement learning

for probabilistic fuzzy controllers.International Conference on Control.Manchester, UK

Page 136 of 233

LIN, C.-J. & XU, Y.-J. 2006. A novel genetic reinforcement learning for nonlinear

fuzzy control problems. Neurocomputing, 69, 2078-2089

LIN, C.-T. & LEE, C. S. G. 1993.Reinforcement structure/parameter learning for

neural-network-based fuzzy logic control systems.IEEE International Conference on

Fuzzy Systems. San Francisco, CA, USA.

WANG, X.-S., CHENG, Y.-H. & YI, J.-Q. 2007. A fuzzy actor-critic reinforcement

learning network. Information Sciences, 177, 3764-3781.

BARRICELLI, N. 1954. Esempinumerici di processi di evoluzione.Methodos, 45-68.

BERENJI, H. R. & KHEDKAR, P. 1992. Learning and tuning fuzzy logic controllers

through reinforcements. IEEE Transactions on Neural Networks, 3, 724-740.

STRENS, M. 2000. A Bayesian framework for reinforcement learning.Proceeedings of

the 17th International Conference on Machine Learning. Stanford University,

California: ICML.

Watkins, C. J. C. H. & Dayan, P. 1992. Q-learning. Machine Learning, 8, 279-292.

SINGH, S., JAAKKOLA, T., LITTMAN, M. L. & ARI, C. S. 2000. Convergence

Results for Single-Step On-Policy Reinforcement-Learning Algorithms.Machine

Learning, 38.

A.G.Barto et al., ―Neuron-like adaptive elements that can solve difficult learning

control problems,‖ IEEE Trans. Syst,Man, Cybern.,vol.SMC-13,no.5,pp.835–846, 1983

C.W. Anderson, ―Learning to control an inverted pendulum using neural networks,‖

IEEE Control Syst. Mag., vol. 9, no. 3, pp. 31–37, Apr. 1989.

H.R.Berenji and P.Khedkar, ―Learning and tuning fuzzy logic controllers through

reinforcements,‖ IEEETrans.NeuralNetw., vol. 3, no. 5, pp. 724– 740, Sep. 1992.

C.-C. Lee, ―A self-learning rule-based controller employing approximate reasoning and

neural net concept,‖ Int. J. Intell.Syst., vol. 6, no. 1, pp. 71–93, 1991.

C.-T. Lin and C. S. G. Lee, ―Reinforcement structure/parameter learning for neural-

network-based fuzzy logic control systems,‖ presented at the IEEE Int. Conf. Fuzzy

Syst., San Francisco, CA, 1993.

C.-T. Lin, ―A neural fuzzy control system with structure and parameter learning,‖

Fuzzy Sets Syst., vol. 70, no. 2/3, pp. 183–212, Mar. 1995.

C.-J. Lin and C.-T. Lin, ―Reinforcement learning for an ART-based fuzzy adaptive

learning control network,‖ IEEE Trans. Neural Netw.,vol.7, no. 3, pp. 709–731, May

1996.

R. J. Almeida and U. Kaymak, ―Probabilistic fuzzy systems in value-at- risk

estimation,‖ Int. J. Intell. Syst. Account., Finance Manag., vol. 16, no. 1/2, pp. 49–70,

2009.

L. Jouffe, ―Fuzzy inference system learning by reinforcement methods,‖ IEEE Trans.

Syst.,Man, Cybern., vol. 28, no. 3, pp. 238–255, Aug. 1998.

Page 137 of 233

C.-K.Lin, ―A reinforcement learning adaptive fuzzy controller for robots,‖ Fuzzy Sets

Syst., vol. 137, no. 1, pp. 339–352, Aug. 2003.

X.-S.Wang et al., ―A fuzzy actor–critic reinforcement learning network,‖ Inf. Sci., vol.

177, no. 18, pp. 3764–3781, Sep. 2007.

MOORE, A. W. & ATKESON, C. G. 1993. Prioritized sweeping: reinforcement

learning with less data and less real time. Machine Learning, 13, 103-130.

SUTTON, R. S. & BARTO, A. G. 1987. A temporal-difference model of classical

conditioning.9th Annual Conference of the Cognitive Science Society.Seattle,WA.

Morriss, F. H., Abramowitz, P. W., Nelson, S. P., Milavetz, G., Michael, S. L., Gordon,

S. N., ... & Cook, E. F. (2009). Effectiveness of a barcode medication administration

system in reducing preventable adverse drug events in a neonatal intensive care unit: a

prospective cohort study. The Journal of pediatrics, 154(3), 363-368.

Danie Kahneman Amos Tversky: Prospect Theory: An Analysis of Decision under

Risk;– Economica, Vol.47, No. 2 (Mar 1979), pp. 263-292

Thaler, R.H., Tversky, A., Kahneman, D., & Schwartz,A.(1997)The effect of myopia

andloss aversion on risk taking: An experimental test. Quarterly Journal of Economics,

112, 647-661.

Andrew Chiu, George Wu (2010) Advances in Prospect Theory: Cumulative

Representation of Uncertainty Amos Tversky, Daniel Kahneman – Journal Of Risk and

Uncertainty 5:297-323 (1992)

Richard Gonzalez, George Wu. 1999. On the shape of the Probability Weighting

Function Cognitive Psychology 38, 129-168 (1999)

Mohamed Abdellaoui 2000, Parameter-free Elicitation of Utilities and Probability

Weitghting Function, Management Science 46, 1497-1512 (2000)

May Bunny (2012). Multi-criteria optimisation using Prospect Theory

Peter P.Wakker, Jose Luis Pinto, Han, Bleichrodt. Making Descriptive Use of Prospect

Theory to improve the Perspective Use of Expected Utility– Management Science 47,

1498- 1514

Chris Warkins, P. Dayan. 1989. Q-Learning– Machine Learning 8 (3), 279-292(1989)

Frank MJ, Claus ED 2006. Anatomy of A Decision: striato-orbito frontal interactions

In reinforcement learning, decision making and reversal– Psychol Rev 2006 Apr;113

:300-26

Chris Gaskett, Gordon Cheng. 2003. Online Learning of a motor map for humanoid

robot reaching– Proceedings of theInternational l conference on computational

intelligence, robotics and autionomous systems (2003)

Mohammad Hossein Fazel Zarandi, Javid Jouzdani, Maryam Fazel Zarandi, 2008.

Reinforcement Learning for Fuzzy Control with Linguistic States. Journal of Uncertain

Systems Vol.2, No.1, pp.54-66, 2008

Page 138 of 233

Appendix

Page 139 of 233

Appendix A

Multi Objective Random Walk Problem

Page 140 of 233

Appendix A

MOQ-Learning

% -------------RL Parameters-------------
alpha = 0.4; % Step-size (learning rate)0.1 for windy
epsilon = 0.2; % e-Greedy behaviour for maximum stability
gamma = 0.95; % Discount Factor
totalPlays = 100; % Number of plays to average over
totalTrials = 40; % Trials per play

%-------------MORL Parameters-------------
NoOfObjectives = 3; % Specify any number of objectives
W1 = 0.4;
W2 = 0.3;
W3 = 0.3;

% ----------Enviroment Constants----------
gridSize = 10; % Size of the Grid
totalStates = gridSize*gridSize; % Total number of system states

% Starting Location (Fixed)
startM = 2;
startN = 2;

% Reward Location
rewardM = ceil(gridSize/2); %(center of the grid)y-axis
rewardN = ceil(gridSize/2)+1; %(center of the grid)x-axis

%Windy Grid World Enviroment Stochasticity
WindChance = 0.2; %20% chance of it being NotWindy, Windy or Very Windy

% ----------Variable Initialisation----------
totalNumSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all
plays
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays

% Out Of Boundary Counts
northCount = 0;
eastCount = 0;
southCount = 0;
westCount = 0;

S43hillCount = 0;
S53hillCount = 0;
S34hillCount = 0;
S35hillCount = 0;
S36hillCount = 0;

%--
%Begin stepping through the grid world enviroment using MOQ-Learning

Page 141 of 233

Appendix A

%--
for j = 1 : totalPlays
% Store number of steps to reach reward for each trial
numSteps = zeros(totalTrials, 1);

% Store number of out of boundary steps (punishments)
numBoundSteps = zeros(totalTrials, 1);

% Store number of out of boundary steps (punishments)
 numHillSteps = zeros(totalTrials, 1);

% Initialize V(s) & Goal Reward
grid = zeros(gridSize, gridSize);
grid(rewardM, rewardN,1) = 1;
grid(rewardM, rewardN,2) = 1;
grid(rewardM, rewardN,3) = 1;

% Initialise Boundary Punishments -1 in all boundary states
for i=1 : gridSize
 grid(1,i,2)=-1;
 grid(gridSize,i,2)=-1;
 grid(i,1,2)=-1;
 grid(i,gridSize,2)=-1;
end

 %Initialise Hill Punishments
 grid(4,4,3) = -0.4; %State 34
 grid(4,5,3) = -0.6; %State 35
 grid(4,6,3) = -0.8; %State 36
 grid(5,3,3) = -0.1; %State 43
 grid(6,3,3) = -0.2; %State 53

 for i = 1 : totalTrials
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Random Starting Location Generator
% stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1
% vectorMax = max(stochGrid);% Return the maximum value of each column
% big = max(vectorMax);%Determine maximum value of this vector of 5 values
% %Delete semi colon after following line to display
% %random start position
% binaryMap = stochGrid==big; % Create a binary matrix indicating position of max value
% [row_M,col_N] = find(stochGrid==big);
% randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted to
comply with my notation)
% randomStartState;
%
% % Assign random co-ordinates to each trials starting position/state
% startM = row_M;
% startN = col_N;

Page 142 of 233

Appendix A

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Current position on grid is represented by m,n
 m = startM;
 n = startN;
 prevM = startM;
 prevN = startN;

 % Begin stepping through a path
 found = 0;
 while(found == 0)
 % increment # steps taken this trial
 numSteps(i) = numSteps(i) + 1;

 % pick an action and avoid going over grid borders
 N = m-1;
 if(N < 1)
 N = 1;
 northCount = northCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end
 E = n+1;
 if(E > gridSize)
 E = gridSize;
 eastCount = eastCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end
 S = m+1;
 if(S > gridSize)
 S = gridSize;
 southCount = southCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end
 W = n-1;
 if(W < 1)
 W = 1;
 westCount = westCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

 % Perform an observation (using boxes system)
 stidx = ((m - 1) * gridSize) + n;
 X = zeros(totalStates, 1);
 X(stidx) = 1;
 disp(stidx);

 choices1 = [grid(N,n,1), grid(m,E,1), grid(S,n,1), grid(m,W,1)];
 choices2 = [grid(N,n,2), grid(m,E,2), grid(S,n,2), grid(m,W,2)];

Page 143 of 233

Appendix A

 choices3 = [grid(N,n,3), grid(m,E,3), grid(S,n,3), grid(m,W,3)];

 indices1 = find(choices1 == max(choices1));
 indices2 = find(choices2 == max(choices2));
 indices3 = find(choices3 == max(choices3));

 maximum1 = max(choices1);
 maximum2 = max(choices2);
 maximum3 = max(choices3);

 %Detecting when agent has encountered an Obstacle/Hill
 %State 43
 if (m == 5 && n == 3)
 S43hillCount = S43hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 53
 if (m == 6 && n == 3)
 S53hillCount = S53hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 34
 if (m == 4 && n == 4)
 S34hillCount = S34hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 35
 if (m == 4 && n == 5)
 S35hillCount = S35hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 36
 if (m == 4 && n == 6)
 S36hillCount = S36hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 % choose the path with the maximum value, or explore
 if((length(indices1) == 1) && (rand(1) - epsilon >= 0))
 index1 = indices1(1);
 else
 index1 = ceil(length(choices1) * rand(1)); % randomly select direction
 end

 if((length(indices2) == 1) && (rand(1) - epsilon >= 0))
 index2 = indices2(1);

Page 144 of 233

Appendix A

 else
 index2 = ceil(length(choices2) * rand(1)); % randomly select direction
 end

 if((length(indices3) == 1) && (rand(1) - epsilon >= 0))
 index3 = indices3(1);
 else
 index3 = ceil(length(choices3) * rand(1)); % randomly select direction
 end

 choice_rand = rand;
 windy_rand = rand;

 % disp(' ');
 % disp(stidx);

 %If random number is less than 0.2 (20% chance of shifting position)
 if (windy_rand < WindChance)
 if (n == 1 && m>1)
 disp('N WAS 1, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 2 && m>1)
 disp('N WAS 2, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 3 && m>1)
 disp('N WAS 3, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 4 && m>1)
 disp('N WAS 4, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 5 && m>2)
 disp('N WAS 5, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 6 && m>2)
 disp('N WAS 6, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 7 && m>1)

Page 145 of 233

Appendix A

 disp('N WAS 7, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 8 && m>1)
 disp('N WAS 8, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 9 && m>1)
 disp('N WAS 9, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 10 && m>1)
 disp('N WAS 10, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end

 disp(' ');

 else
 disp('NO WIND');

 %If random number is less than 0.4 (40% chance of choosing index 1)
 if(choice_rand < W1)
 index = index1;
 %If random number is less than 0.7 (30% chance of choosing index 2)
 elseif(choice_rand < W1+W2)
 index = index2;
 else
 %Otherwise there will be a (30% chance of choosing index 3)
 index = index3;
 end

 disp(' ');

 end %end primary if

 %Take action
 if(index == 1) % grid(m-1,n)
 m = N;
 elseif(index == 2) % grid(m,n+1)
 n = E;
 elseif(index == 3) % grid(m+1,n)
 m = S;
 elseif(index == 4) % grid(m,n-1)
 n = W;
 else

Page 146 of 233

Appendix A

 disp('error');
 end

 % stop after this step if the reward was found
 if(m == rewardM && n == rewardN)
 found = 1;
 disp(46);
 end

 %Expected discounted reward
 expDiscReward1 = gamma*grid(m,n,1);
 expDiscReward2 = gamma*grid(m,n,2);
 expDiscReward3 = gamma*grid(m,n,3);

 % calculate prediction error
 predErr1 = expDiscReward1 - grid(prevM,prevN,1);
 predErr2 = expDiscReward2 - grid(prevM,prevN,2);
 predErr3 = expDiscReward3 - grid(prevM,prevN,3);

 % V(s) = V(s) + alpha[r' + V(s') - V(s)]
 grid(prevM,prevN,1) = grid(prevM,prevN,1) + alpha*predErr1;
 grid(prevM,prevN,2) = grid(prevM,prevN,2) + alpha*predErr2;
 grid(prevM,prevN,3) = grid(prevM,prevN,3) + alpha*predErr3;

 grid(prevM,prevN,1) = (grid(prevM,prevN,1)*W1 + grid(prevM,prevN,2)*W2 +
grid(prevM,prevN,3)*W3)/NoOfObjectives;

 % update values for next step, and directional choices
 prevM = m;
 prevN = n;
 end
 end
 % Update storage matrices for across all plays
 totalNumSteps = totalNumSteps + numSteps;

 % Update storage matrices for across all plays
 totalNumBoundSteps = totalNumBoundSteps + numBoundSteps;

 % Update storage matrices for across all plays
 totalNumHillSteps = totalNumHillSteps + numHillSteps;

end

outOfBoundsCount = northCount + eastCount + southCount + westCount;
hillCount = S43hillCount + S53hillCount + S34hillCount + S35hillCount + S36hillCount;

%-------------------------------------
% Plot 2D Graphs for both objectives
%-------------------------------------

Page 147 of 233

Appendix A

disp('Multi Objective Q-Learning Algorithm');
AverageBoundsCount = outOfBoundsCount/totalPlays
AverageHillCount = hillCount/totalPlays
disp(' ');

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');
title('Multi Objective Q-Learning Algorithm')
xlabel('NoOfTrials')
ylabel('NoOfSteps')
hold on

% Average number of boundary penaltys across all plays
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--');
hold on

% Average number of Hill penaltys across all plays
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':');

legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills')
hold off

Page 148 of 233

Appendix A

MOSARSA

% -------------RL Parameters-------------
alpha = 0.4; % Step-size
epsilon = 0.2; % e-Greedy behaviour for maximum stability
gamma = 0.95; % Discount
totalPlays = 100; % Number of plays to average over
totalTrials = 40; % Trials per play

%-------------MORL Parameters-------------
NoOfObjectives = 3; % Specify any number of objectives
W1 = 0.4;
W2 = 0.3;
W3 = 0.3;

% ----------Enviroment Constants----------
gridSize = 10;% Size of the Grid
totalStates = gridSize*gridSize; % Total number of system states

% Start Location (Fixed)
startM = 2;
startN = 2;

% Reward Location
rewardM = ceil(gridSize/2);%(center of the grid)y-axis
rewardN = rewardM+1;%(center of the grid)x-axis

%Windy Grid World Enviroment Stochasticity
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy

% ----------Variable Initialisation----------
totalNumSteps = zeros(totalTrials, 1);% Total number of steps for each trial over all plays
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all
plays
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays
%totalReward = zeros(totalTrials, 1); %not used

%Store the number of times that each boundary is crossed
northCount = 0;
eastCount = 0;
southCount = 0;
westCount = 0;

%Store the number of times that each Hill is crossed
S43hillCount = 0;
S53hillCount = 0;
S34hillCount = 0;
S35hillCount = 0;
S36hillCount = 0;

Page 149 of 233

Appendix A

%-------------------------------------
% Start walking - SARSA
%-------------------------------------
for j = 1 : totalPlays
 % Store # steps for each trial
 numSteps = zeros(totalTrials, 1);

 % Store number of out of boundary steps
 numBoundSteps = zeros(totalTrials, 1);

 % Store number of out of hill steps
 numHillSteps = zeros(totalTrials, 1);

 % Initialize V(s)
 grid = zeros(gridSize, gridSize,3);
 grid(rewardM, rewardN,1) = 1;
 grid(rewardM, rewardN,2) = 1;
 grid(rewardM, rewardN,3) = 1;

 %bondaries punishement
 for i = 1 : gridSize
 % grid(1,i,1) = -1;
 grid(1,i,2) = -1;
 %grid(10,i,1) = -1;
 grid(10,i,2) = -1;
 %grid(i,1,1) = -1;
 grid(i,1,2) = -1;
 %grid(i,10,1) = -1;
 grid(i,10,2) = -1;
 end

 %obstacles

 %state 34 35 36 43 53
 grid(4,4,3) = -0.4; %34
 grid(4,5,3) = -0.6; %35
 grid(4,6,3) = -0.8; %36
 grid(5,3,3) = -0.1; %43
 grid(6,3,3) = -0.2; %53

 for i = 1 : totalTrials

% % Random Starting Location
% stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1
% vectorMax = max(stochGrid);% Return the maximum value of each column
% big = max(vectorMax);%Determine maximum value of this vector of 5 values
% %Delete semi colon after following line to display
% %random start position
% binaryMap = stochGrid==big; % Create a binary matrix indicating position of
max value

Page 150 of 233

Appendix A

% [row_M,col_N] = find(stochGrid==big);
% randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted
to comply with my notation)
% randomStartState;

% % end
%
% % r = randi([1 10],1,1)
%
% % Assign random co-ordinates to each trials starting position/state
% startM = row_M;
% startN = col_N;
%

 % Current position on grid is represented by m,n
 m = startM;
 n = startN;
 prevM = startM;
 prevN = startN;
 % Begin stepping through a path
 found = 0;
 while(found == 0)
 % increment # steps taken this trial
 numSteps(i) = numSteps(i) + 1;
 % pick an action and avoid going over grid borders
 N = m-1;
 if(N < 1)
 N = 1;
 northCount = northCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end
 E = n+1;
 if(E > gridSize)
 E = gridSize;
 eastCount = eastCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end
 S = m+1;
 if(S > gridSize)
 southCount = southCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 S = gridSize;
 end
 W = n-1;
 if(W < 1)
 W = 1;
 westCount = westCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

Page 151 of 233

Appendix A

 % Perform an observation (using boxes system)
 stidx = ((m - 1) * gridSize) + n;
 X = zeros(totalStates, 1);
 X(stidx) = 1;
 disp(stidx);

 choices1 = [grid(N,n,1), grid(m,E,1), grid(S,n,1), grid(m,W,1)];
 choices2 = [grid(N,n,2), grid(m,E,2), grid(S,n,2), grid(m,W,2)];
 choices3 = [grid(N,n,3), grid(m,E,3), grid(S,n,3), grid(m,W,3)];
 % choose the path with the maximum value, or explore

 indices1 = find(choices1 == max(choices1));
 indices2 = find(choices2 == max(choices2));
 indices3 = find(choices3 == max(choices3));

 maximum1 = max(choices1);
 maximum2 = max(choices2);
 maximum3 = max(choices3);

 %Detecting when agent has encountered an Obstacle/Hill
 %State 43
 if (m == 5 && n == 3)
 S43hillCount = S43hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 53
 if (m == 6 && n == 3)
 S53hillCount = S53hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 34
 if (m == 4 && n == 4)
 S34hillCount = S34hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 35
 if (m == 4 && n == 5)
 S35hillCount = S35hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 36
 if (m == 4 && n == 6)
 S36hillCount = S36hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

Page 152 of 233

 if((length(indices1) == 1) && (rand(1) - epsilon >= 0))
 index1 = indices1(1);
 else
 index1 = ceil(length(choices1) * rand(1)); % randomly select direction
 end

 if((length(indices2) == 1) && (rand(1) - epsilon >= 0))
 index2 = indices2(1);
 else
 index2 = ceil(length(choices2) * rand(1)); % randomly select direction
 end

 if((length(indices3) == 1) && (rand(1) - epsilon >= 0))
 index3 = indices3(1);
 else
 index3 = ceil(length(choices3) * rand(1)); % randomly select direction
 end

 %If random number is less than 0.5 (50% chance of choosing index 1)
 %If random number is less than 0.2 (20% chance of choosing index 1)
 choice_rand = rand;
 windy_rand = rand;

 disp(' ');
 % disp(stidx);

 if (windy_rand < WindChance)

 if (n == 1 && m>1)
 disp('N WAS 1, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 2 && m>1)
 disp('N WAS 2, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 3 && m>1)
 disp('N WAS 3, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 4 && m>1)
 disp('N WAS 4, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 5 && m>2)

Page 153 of 233

Appendix A

 disp('N WAS 5, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 6 && m>2)
 disp('N WAS 6, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 7 && m>1)
 disp('N WAS 7, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 8 && m>1)
 disp('N WAS 8, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 9 && m>1)
 disp('N WAS 9, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 10 && m>1)
 disp('N WAS 10, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end

 % disp(' ');

 else
 disp('NO WIND');

 if(choice_rand < W1)
 index = index1;
 elseif(choice_rand < W1+W2)
 index = index2;
 else
 index = index3;
 end

 disp(' ');

 end %end primary if

 %Take action
 if(index == 1) % grid(m-1,n)
 m = N;

Page 154 of 233

Appendix A

 elseif(index == 2) % grid(m,n+1)
 n = E;
 elseif(index == 3) % grid(m+1,n)
 m = S;
 elseif(index == 4) % grid(m,n-1)
 n = W;
 else
 disp('error');
 end
 % stop after this step if the reward was found
 if(m == rewardM && n == rewardN)
 found = 1;
 disp(46);
 end
 %Expected discounted reward
 expDiscReward1 = gamma*grid(m,n,1);
 expDiscReward2 = gamma*grid(m,n,2);
 expDiscReward3 = gamma*grid(m,n,3);
 % calculate prediction error
 predErr1 = expDiscReward1 - grid(prevM,prevN,1);
 predErr2 = expDiscReward2 - grid(prevM,prevN,2);
 predErr3 = expDiscReward3 - grid(prevM,prevN,3);
 % V(s) = V(s) + alpha[r' + V(s') - V(s)]
 grid(prevM,prevN,1) = grid(prevM,prevN,1) + alpha*predErr1;
 grid(prevM,prevN,2) = grid(prevM,prevN,2) + alpha*predErr2;
 grid(prevM,prevN,3) = grid(prevM,prevN,3) + alpha*predErr3;

 grid(prevM,prevN,1) = (grid(prevM,prevN,1)*W1 + grid(prevM,prevN,2)*W2 +
grid(prevM,prevN,3)*W3)/NoOfObjectives;
 % update values for next step, and directional choices
 prevM = m;
 prevN = n;
 end
 end
 % Update storage matrices for across all plays
 totalNumSteps = totalNumSteps + numSteps;

 % Update storage matrices for across all plays
 totalNumBoundSteps = totalNumBoundSteps + numBoundSteps;

 % Update storage matrices for across all plays
 totalNumHillSteps = totalNumHillSteps + numHillSteps;

end

outOfBoundsCount = northCount + eastCount + southCount + westCount;
hillCount = S43hillCount + S53hillCount + S34hillCount + S35hillCount + S36hillCount;

%-------------------------------------

Page 155 of 233

Appendix A

% Plot 2D Graphs for all objectives
%-------------------------------------
disp('Multi Objective SARSA Algorithm');
AverageBoundsCount = outOfBoundsCount/totalPlays
AverageHillCount = hillCount/totalPlays
disp(' ');

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');
title('Multi Objective SARSA Algorithm')
xlabel('NoOfTrials')
ylabel('NoOfSteps')
hold on

% Average number of boundary penaltys across all plays
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--');
hold on

% Average number of Hill penaltys across all plays
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':');

legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills')
hold off

Page 156 of 233

Appendix A

 GPFMORL

%GPFMORL Complex Enviroment with 3 Objectives
%7th August Start & Goal Env Test Exp1 (100plays)

%-------------RL Constants---------------
alpha = 0.003; % Actor learning rate
beta = 0.005; % Critic learning rate
epsilon = 0.2; % Exploration/explotation control parameter
gamma = 0.95; % Discount factor
totalActions = 4; % Number of possible actions
totalAgents = totalActions; % Total number of learning agents

totalPlays = 100; % Number of plays to average over (was 100) works at 1
totalTrials = 40; % Trials per play (was 40) works at 20

% ----------Enviroment Constants---------
gridSize = 10; % Size of the Grid (was 10)
totalStates = gridSize*gridSize; % Total number of system states
rewardM = ceil(gridSize/2); % Location of reward in M axe
rewardN = ceil(gridSize/2)+1; % Location of reward in N axe

startM = 2; % Location to start from in M axe
startN = 2; % Location to start from in N axe

% ---------Variable Initialisation--------
totalNumSteps = zeros(totalTrials, 1);% Total # steps for each trial over all plays
totalReward = zeros(totalTrials, totalAgents);
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all
plays
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays

%-------------MORL Variables-------------
NoOfObjectives = 3; % Specify any number of objectives
W1 = 0.4; %Objective 1 weighting (reaching the helipad goal) Best@1
W2 = 0.3; %Objective 2 weighting (Avoiding the grid boundarys) Best@1
W3 = 0.3;

%Windy Grid World Enviroment Stochasticity
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy

%Store the number of times that each boundary is crossed (for plot)
northCount = 0;
eastCount = 0;
southCount = 0;
westCount = 0;

S43hillCount = 0;
S53hillCount = 0;

Page 157 of 233

Appendix A

S34hillCount = 0;
S35hillCount = 0;
S36hillCount = 0;

% RandomStartList= zeros(24, 1);
% RandomStartList(1, 1) = 13;
% RandomStartList(2, 1) = 14;
% RandomStartList(3, 1) = 15;
% RandomStartList(4, 1) = 16;
% RandomStartList(5, 1) = 17;
% RandomStartList(6, 1) = 18;
% RandomStartList(7, 1) = 19;
% RandomStartList(8, 1) = 23;
% RandomStartList(9, 1) = 29;
% RandomStartList(10, 1) = 33;
% RandomStartList(11, 1) = 39;
% RandomStartList(12, 1) = 43;
% RandomStartList(13, 1) = 49;
% RandomStartList(14, 1) = 53;
% RandomStartList(15, 1) = 59;
% RandomStartList(16, 1) = 63;
% RandomStartList(17, 1) = 69;
% RandomStartList(18, 1) = 73;
% RandomStartList(19, 1) = 74;
% RandomStartList(20, 1) = 75;
% RandomStartList(21, 1) = 76;
% RandomStartList(22, 1) = 77;
% RandomStartList(23, 1) = 78;
% RandomStartList(24, 1) = 79;
%
%
% r = randi([1 26],1,1);
% randomStartPoint = RandomStartList(r, 1);
% randomStartPoint

%--
% Begin stepping through the grid world enviroment using GPFMORL
%--
for j = 1 : totalPlays
 % Store # steps for each trial
 numSteps = zeros(totalTrials, 1);

 % Store number of out of boundary steps (punishments)
 numBoundSteps = zeros(totalTrials, 1);

 % Store number of out of boundary steps (punishments)
 numHillSteps = zeros(totalTrials, 1);

 % Initializing actor and critic weights

Page 158 of 233

Appendix A

 v = zeros(totalStates, totalAgents, 3);
 w = zeros(totalStates, totalAgents,3);

 %Northern & Eastern Boundary Penalty Association 10x10
 for ii = 1 : gridSize
 v(ii,1,2) = -1;
 v(ii*10,2,2) = -1;
 end

 %Southern Boundary Penalty Association 10x10
 for jj=91 : 100
 v(jj,3,2) = -1;
 end

 %Western Boundary Penalty Associationv 10x10
 for hh=1 : gridSize
 v((hh*10)-9,4,2) = -1;
 end

 %reward at astate 46 CHANGED BECAUSE WAS WRONG
 v(45,2,1) = 1;
 v(45,2,2) = 1;
 w(45,2,1) = 1;
 w(45,2,2) = 1;
 w(45,2,3) = 1;
 v(45,2,3) = 1;

 v(56,1,1) = 1;
 v(56,1,2) = 1;
 w(56,1,1) = 1;
 w(56,1,2) = 1;
 w(56,1,3) = 1;
 v(56,1,3) = 1;

 v(36,3,1) = 1;
 v(36,3,2) = 1;
 w(36,3,1) = 1;
 w(36,3,2) = 1;
 w(36,3,3) = 1;
 v(36,3,3) = 1;

 v(47,4,1) = 1;
 v(47,4,2) = 1;
 w(47,4,1) = 1;
 w(47,4,2) = 1;
 w(47,4,3) = 1;
 v(47,4,3) = 1;

Page 159 of 233

Appendix A

 %building danger zone that would cost more to cross

 %state 34

 %comimg from west
 v(33,2,3) = -0.4;
 w(33,2,3) = -0.4;

 %coming from south
 v(44,1,3) = -0.4;
 w(44,1,3) = -0.4;

 %coming from north
 v(24,3,3) = -0.4;
 w(24,3,3) = -0.4;

 %coming from east
 v(35,4,3) = -0.4;
 w(35,4,3) = -0.4;

 %state 35

 %comimg from west
 v(34,2,3) = -0.6;
 w(34,2,3) = -0.6;

 %coming from south
 v(45,1,3) = -0.6;
 w(45,1,3) = -0.6;

 %coming from north
 v(25,3,3) = -0.6;
 w(25,3,3) = -0.6;

 %coming from east
 v(36,4,3) = -0.6;
 w(36,4,3) = -0.6;

 %state 36

 %comimg from west
 v(35,2,3) = -0.8;
 w(35,2,3) = -0.8;

 %coming from south
 v(46,1,3) = -0.8;
 w(46,1,3) = -0.8;

 %coming from north

Page 160 of 233

Appendix A

 v(26,3,3) = -0.8;
 w(26,3,3) = -0.8;

 %coming from east
 v(37,4,3) = -0.8;
 w(37,4,3) = -0.8;

 %state 43

 %comimg from west
 v(42,2,3) = -0.1;
 w(42,2,3) = -0.1;

 %coming from south
 v(53,1,3) = -0.1;
 w(53,1,3) = -0.1;

 %coming from north
 v(33,3,3) = -0.1;
 w(33,3,3) = -0.1;

 %coming from east
 v(44,4,3) = -0.1;
 w(44,4,3) = -0.1;

 %state 53

 %comimg from west
 v(52,2,3) = -0.2;
 w(52,2,3) = -0.2;

 %coming from south
 v(63,1,3) = -0.2;
 w(63,1,3) = -0.2;

 %coming from north
 v(43,3,3) = -0.2;
 w(43,3,3) = -0.2;

 %coming from east
 v(54,4,3) = -0.2;
 w(54,4,3) = -0.2;

 for i = 1 : totalTrials
 disp(j+(i/100))

Page 161 of 233

Appendix A

 % while (randomStartState ~= 0 || 13 || 14 || 15 || 16 || 17 || 18 || 19 || 23 || 29 || 33 || 39 ||
43 || 49 || 53 || 59 || 63 || 69 || 73 || 74 || 75 || 76 || 77 || 78 || 79)

 % % Random Starting Location
 % stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1
 % vectorMax = max(stochGrid);% Return the maximum value of each column
 % big = max(vectorMax);%Determine maximum value of this vector of 5 values
 % binaryMap = stochGrid==big % Create a binary matrix indicating position of max
value
 % [row_M,col_N] = find(stochGrid==big);
 % randomStartState = find(binaryMap'); % find the indice of the 5x5 grid (inverted
to comply with my notation)
 % randomStartState

 % end

 % r = randi([1 10],1,1)

 % % Assign random co-ordinates to each trials starting position/state
 % startM = row_M;
 % startN = col_N;

 % Current position on grid is represented by m,n
 m = startM;
 n = startN;
 prevM = startM;
 prevN = startN;

 % % Clean some variables
 % p = zeros(totalAgents,1);
 % oldp = p;

 % Clean some variables
 p = zeros(totalAgents,3);
 oldp(:,1) = p(:,1);
 oldp(:,2) = p(:,2);
 oldp(:,3) = p(:,3);

 % Begin stepping through a path
 found = 0;
 while(found == 0)

 % Increment # steps taken this trial
 numSteps(i) = numSteps(i) + 1;

Page 162 of 233

Appendix A

 % Find probabilities from actor weights
 sumWeights = zeros(totalAgents,1);
 sumWeights2 = zeros(totalAgents,1);
 sumWeights3 = zeros(totalAgents,1);
 ro = zeros(totalStates, totalAgents);
 ro2 = zeros(totalStates, totalAgents);
 ro3 = zeros(totalStates, totalAgents);
 for agent = 1 : totalAgents
 for state = 1 : totalStates
 %ro(state, agent) = logsig(w(state, agent));
 ro(state, agent) = logsig(w(state, agent,1));
 ro2(state, agent) = logsig(w(state, agent, 2));
 ro3(state, agent) = logsig(w(state, agent, 3));
 sumWeights(agent) = sumWeights(agent) + ro(state, agent);
 sumWeights2(agent) = sumWeights2(agent) + ro2(state, agent);
 sumWeights3(agent) = sumWeights3(agent) + ro3(state, agent);
 end
 end
 % Perform an observation (using boxes system)
 stidx = ((m - 1) * gridSize) + n;
 X = zeros(totalStates, 1);
 X(stidx) = 1;

 % Finding final probability
 P = zeros(totalAgents, 1);
 P2 = zeros(totalAgents, 1);
 P3 = zeros(totalAgents, 1);
 for agent = 1 : totalAgents
 P(agent) = ro(stidx, agent);
 P2(agent) = ro2(stidx, agent);
 P3(agent) = ro3(stidx, agent);
 end
 % Creating action set avoiding grid borders
 %N is the new m axis position after moving North
 N = m - 1;
 if(N < 1)
 N = 1;
 northCount = northCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

 E = n + 1;
 if(E > gridSize)
 E = gridSize;
 eastCount = eastCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

 S = m + 1;
 if(S > gridSize)

Page 163 of 233

Appendix A

 southCount = southCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 S = gridSize;
 end

 W = n - 1;
 if(W < 1)
 W = 1;
 westCount = westCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

 %Detecting when agent has encountered an Obstacle/Hill
 %State 43
 if (m == 5 && n == 3)
 S43hillCount = S43hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 53
 if (m == 6 && n == 3)
 S53hillCount = S53hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 34
 if (m == 4 && n == 4)
 S34hillCount = S34hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 35
 if (m == 4 && n == 5)
 S35hillCount = S35hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 36
 if (m == 4 && n == 6)
 S36hillCount = S36hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 % Initializing values
 Nu = zeros(totalAgents, 1);
 Nu2 = zeros(totalAgents, 1);
 Nu3 = zeros(totalAgents, 1);
 stdev = zeros(totalAgents, 1);

Page 164 of 233

Appendix A

 stdev2 = zeros(totalAgents, 1);
 stdev3 = zeros(totalAgents, 1);

 % Stochastic random number generator
 for agent = 1 : totalAgents
 %stdev(agent) = 2*logsig(p(agent))-1;
 stdev(agent) = 2*logsig(p(agent,1))-1;
 stdev2(agent) = 2*logsig(p(agent,2))-1;
 stdev3(agent) = 2*logsig(p(agent,3))-1;
 Nu(agent) = stdev(agent)*randn;
 Nu2(agent) = stdev2(agent)*randn;
 Nu3(agent) = stdev3(agent)*randn;
 if Nu(agent) >= 1
 Nu(agent) = 1;
 elseif Nu(agent) <= -1
 Nu(agent) = -1;
 end

 if Nu2(agent) >= 1
 Nu2(agent) = 1;
 elseif Nu2(agent) <= -1
 Nu2(agent) = -1;
 end

 if Nu3(agent) >= 1
 Nu3(agent) = 1;
 elseif Nu3(agent) <= -1
 Nu3(agent) = -1;
 end

 end
 %troubles >> we need to evaluate both choices (obj1 & obl2) and decide with the
scalarized values
 % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 1
 choices = zeros(totalAgents, 1);
 for agent=1:totalAgents
 choices(agent) = P(agent)+Nu(agent);
 end

 % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 2
 choices2 = zeros(totalAgents, 1);
 for agent=1:totalAgents
 choices2(agent) = P2(agent)+Nu2(agent);
 end

 choices3 = zeros(totalAgents, 1);
 for agent=1:totalAgents
 choices3(agent) = P3(agent)+Nu3(agent);
 end

Page 165 of 233

Appendix A

 %here, we need to evaluate both choice from the point of view of each
 %objective, basivally, what we do is applying twice a single objective
 %action selection. for the moment, we use a greedy selection

 %we choose an index for objective 1
 % Choose the path with the maximum probability, or explore
 indices = find(choices == max(choices));
 maximum = max(choices);
 if((length(indices) == 1) && (maximum >= epsilon))
 index1 = indices(1);
 else
 index1 = ceil(length(choices) * rand); % randomly select direction
 end

 %we choose an index for objective 2
 % Choose the path with the maximum probability, or explore
 indices2 = find(choices2 == max(choices2));
 maximum2 = max(choices2);
 if((length(indices2) == 1) && (maximum2 >= epsilon))
 index2 = indices2(1);
 else
 index2 = ceil(length(choices2) * rand); % randomly select direction
 end

 indices3 = find(choices3 == max(choices3));
 maximum3 = max(choices3);
 if((length(indices3) == 1) && (maximum3 >= epsilon))
 index3 = indices3(1);
 else
 index3 = ceil(length(choices3) * rand); % randomly select direction
 end

 %If random number is less than 0.5 (50% chance of choosing index 1)
 %If random number is less than 0.2 (20% chance of choosing index 1)
 choice_rand = rand;
 windy_rand = rand;

 disp(' ');
 disp(stidx);

 if (windy_rand < WindChance)

 if (n == 1 && m>1)
 disp('N WAS 1, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end

Page 166 of 233

Appendix A

 if (n == 2 && m>1)
 disp('N WAS 2, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 3 && m>1)
 disp('N WAS 3, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 4 && m>1)
 disp('N WAS 4, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 5 && m>2)
 disp('N WAS 5, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 6 && m>2)
 disp('N WAS 6, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 7 && m>1)
 disp('N WAS 7, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 8 && m>1)
 disp('N WAS 8, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 9 && m>1)
 disp('N WAS 9, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 10 && m>1)
 disp('N WAS 10, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end

 disp(' ');

 else

Page 167 of 233

Appendix A

 disp('NO WIND');

 if(choice_rand < W1)
 index = index1;
 elseif(choice_rand < W1+W2)
 index = index2;
 else
 index = index3;
 end

 disp(' ');

 end %end primary if

 %Take action
 r=zeros(totalAgents,1);
 if(index == 1) % grid(m-1,n)
 m = N;
 r(index) = sign(m-rewardM);
 elseif(index == 2) % grid(m,n+1)
 n = E;
 r(index) = sign(rewardN-n);
 elseif(index == 3) % grid(m+1,n)
 m = S;
 r(index) = sign(rewardM-m);
 elseif(index == 4) % grid(m,n-1)
 n = W;
 r(index) = sign(n-rewardN);
 else
 disp('error random number too big');
 end

 % Stop after this step if the reward was found
 if(m == rewardM && n == rewardN)
 found = 1;
 disp(46);
 end

 % Saving prediction information
 oldp(:,1) = p(:,1);
 oldp(:,2) = p(:,2);
 oldp(:,3) = p(:,3);
 p = zeros(totalAgents,3);

 % % Computing the prediction of eventual reinforcement
 % for agent = 1:totalAgents
 % p(agent) = v(stidx,agent);
 % end

Page 168 of 233

Appendix A

 % Computing the prediction of eventual reinforcement
 for agent = 1:totalAgents
 p(agent,1) = v(stidx,agent,1);
 p(agent,2) = v(stidx,agent,2);
 p(agent,3) = v(stidx,agent,3);
 end
 % Computing the prediction error using temporal differences method
 rbar=zeros(totalAgents,1);
 rbar2=zeros(totalAgents,1);
 rbar3=zeros(totalAgents,1);
 for agent = 1:totalAgents
 %predErr = gamma*p(agent) - oldp(agent); %
 predErr = gamma*p(agent,1) - oldp(agent,1); %
 predErr2 = gamma*p(agent,2) - oldp(agent,2);
 predErr3 = gamma*p(agent,3) - oldp(agent,3);
 %rbar(agent) = r(agent) + predErr;
 rbar(agent) = r(agent) + predErr;
 rbar2(agent) = r(agent) + predErr2;
 rbar3(agent) = r(agent) + predErr3;
 end

 stateF = stidx;
 agentF = index;
 % Learning thev value functions
 %for agent = 1 : totalAgents
 %for state = 1 : totalStates

 %Actor Policy functions for 1st & Second dimention/objective of storage matrix
 w(stateF, agentF, 1) = w(stateF, agentF, 1) + alpha * rbar(agentF) * X(stateF) * (1
/ro (stateF, agentF, 1)) * exp(-w(stateF, agentF,1)) * sumWeights(agentF);
 w(stateF, agentF, 2) = w(stateF, agentF, 2) + alpha * rbar2(agentF) * X(stateF) * (1
/ro2 (stateF, agentF, 1)) * exp(-w(stateF, agentF,2)) * sumWeights2(agentF);
 w(stateF, agentF, 3) = w(stateF, agentF, 3) + alpha * rbar3(agentF) * X(stateF) * (1
/ro3 (stateF, agentF, 1)) * exp(-w(stateF, agentF,3)) * sumWeights3(agentF);

 %Critic Value functions Value function for 1st and 2nd Objectives
 v(stateF,agentF,1)=v(stateF,agentF,1)-beta*gamma*rbar(agentF)*X(stateF); %Takes
the form of TD error scalar signal
 v(stateF,agentF,2)=v(stateF,agentF,2)-beta*gamma*rbar2(agentF)*X(stateF); %Takes
the form of TD error scalar signal
 v(stateF,agentF,3)=v(stateF,agentF,3)-beta*gamma*rbar3(agentF)*X(stateF); %Takes
the form of TD error scalar signal

 %SHOULD WE USE THESE WEIGHTS IF THE OTHER CODE CHOOSES INDEX1 or
 %INDEX2 BASED UPON THE WEIGHTs ANYWAY
 %Scalarized Value function for BOTH Objectives
 %v(stateF,agentF,3)=(v(stateF,agentF,1)*W1 +
v(stateF,agentF,2)*W2)/NoOfObjectives;

Page 169 of 233

Appendix A

 v(stateF,agentF,1)=(v(stateF,agentF,1)*W1 + v(stateF,agentF,2)*W2 +
v(stateF,agentF,3)*W3)/NoOfObjectives;

 w(stateF,agentF,1)=(w(stateF,agentF,1)*W1 + w(stateF,agentF,2)*W2 +
w(stateF,agentF,3)*W3)/NoOfObjectives;

 %Store scalarized Value functon back into the storage matrix (this can slow
 %things down considerably)
 %v(stateF,agentF,1)=v(stateF,agentF,3);

 %end
 %end

 % update values for next step, and directional choices
 prevM = m;
 prevN = n;
 end % end while not found
 end %end totalTrials loop

 % Update storage matrices for across all plays
 totalNumSteps = totalNumSteps + numSteps;

 % Update storage matrices for across all plays
 totalNumBoundSteps = totalNumBoundSteps + numBoundSteps;

 % Update storage matrices for across all plays
 totalNumHillSteps = totalNumHillSteps + numHillSteps;

end %end totalPlays loop

outOfBoundsCount = northCount + eastCount + southCount + westCount;
hillCount = S43hillCount + S53hillCount + S34hillCount + S35hillCount + S36hillCount;

% %-------------------------------------
% % Outputs
% %-------------------------------------
% % Average number of steps across all plays
% plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');

%-------------------------------------
% Plot 2D Graphs for both objectives
%-------------------------------------
disp('GPFMORL Algorithm');
AverageBoundsCount = outOfBoundsCount/totalPlays
AverageHillCount = hillCount/totalPlays
disp(' ');

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');

Page 170 of 233

Appendix A

title('GPFMORL Algorithm')
xlabel('NoOfTrials')
ylabel('NoOfSteps')
hold on

% Average number of boundary penaltys across all plays
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--');
hold on

% Average number of boundary penaltys across all plays
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':');

legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills')
hold off

Page 171 of 233

Appendix A

GPFMORLPT

%GPFMORL-PT Complex Enviroment with 3 Objectives
%this 10x10 with ptmo0d
%-------------RL Constants---------------
alpha = 0.003; % Actor learning rate
beta = 0.005; % Critic learning rate
epsilon = 0.01; % Exploration/explotation control parameter
gamma = 0.95; % Discount factor

totalActions = 4; % Number of possible actions
totalAgents = totalActions; % Total number of learning agents

totalPlays = 3; % Number of plays to average over (was 100) works at 1
totalTrials = 40; % Trials per play (was 40) works at 20

%-------------PT Constants---------------

pt_alpha = 0.88;
pt_beta = 0.88;
pt_lambda = 2.25; % loss aversion discount
pt_gamma = 0.75; % probabiliy weighting coefficient

%pt_w contains the weights of probabilities
pt_w = zeros(4,3);

%pt_nu contains the subjective values of each prospect
pt_nu = zeros(4,3);

%PT will contain the prospect theory value for each possible action
PT = zeros(4,1);

%RP is the two dimensional reference point
RP = zeros(3,1);

%-------------MORL Variables-------------
NoOfObjectives = 3; % Specify any number of objectives
W1 = 0.4; %Objective 1 weighting (reaching the helipad goal) Best@1
W2 = 0.3; %Objective 2 weighting (Avoiding the grid boundarys) Best@
W3 = 0.3; %Objective 3 obstacle
objectives = 3;
%outOfBoundsCount = 0; //dont need to declare variables in matlab

%Windy Grid World Enviroment Stochasticity
WindChance = 0.2; %20% chance of it being NotWindy, Windy, Very Windy

PFMFactor = 0.1; %was o.1

Page 172 of 233

Appendix A

% ----------Enviroment Constants---------
gridSize = 10; % Size of the Grid (was 10)
totalStates = gridSize*gridSize; % Total number of system states
rewardM = ceil(gridSize/2); % Location of reward in M axe
rewardN = ceil(gridSize/2)+1; % Location of reward in N axe

% ---------Variable Initialisation--------
totalNumSteps = zeros(totalTrials, 1);% Total # steps for each trial over all plays
totalReward = zeros(totalTrials, totalAgents);
totalNumBoundSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all
plays
totalNumHillSteps = zeros(totalTrials, 1); % Total number of steps for each trial over all plays

plotX = zeros(totalTrials,1);
plotY = zeros(totalTrials,1);

trialCount = 1;

startM = 2; % Location to start from in M axe
startN = 2; % Location to start from in N axe //

%Store the number of times that each boundary is crossed (for plot)
northCount = 0;
eastCount = 0;
southCount = 0;
westCount = 0;

S43hillCount = 0;
S53hillCount = 0;
S34hillCount = 0;
S35hillCount = 0;
S36hillCount = 0;

%--
% Begin stepping through the grid world enviroment using GPFMORL
%--
for j = 1 : totalPlays
 % Store # steps for each trial
 numSteps = zeros(totalTrials, 1);

 % Store number of out of boundary steps (punishments)
 numBoundSteps = zeros(totalTrials, 1);

 % Store number of out of boundary steps (punishments)
 numHillSteps = zeros(totalTrials, 1);

 % Initializing actor and critic weights

Page 173 of 233

Appendix A

 v = zeros(totalStates, totalAgents, 3);
 w = zeros(totalStates, totalAgents,3);

 %reward at astate 46 CHANGED BECAUSE WAS WRONG
 v(45,2,1) = 1;
 v(45,2,2) = 1;
 w(45,2,1) = 1;
 w(45,2,2) = 1;
 w(45,2,3) = 1;
 v(45,2,3) = 1;

 v(56,1,1) = 1;
 v(56,1,2) = 1;
 w(56,1,1) = 1;
 w(56,1,2) = 1;
 w(56,1,3) = 1;
 v(56,1,3) = 1;

 v(36,3,1) = 1;
 v(36,3,2) = 1;
 w(36,3,1) = 1;
 w(36,3,2) = 1;
 w(36,3,3) = 1;
 v(36,3,3) = 1;

 v(47,4,1) = 1;
 v(47,4,2) = 1;
 w(47,4,1) = 1;
 w(47,4,2) = 1;
 w(47,4,3) = 1;
 v(47,4,3) = 1;

 %building danger zone that would cost more to cross

 %state 34

 %comimg from west
 v(33,2,3) = -0.4;
 w(33,2,3) = -0.4;

 %coming from south
 v(44,1,3) = -0.4;
 w(44,1,3) = -0.4;

 %coming from north
 v(24,3,3) = -0.4;
 w(24,3,3) = -0.4;

Page 174 of 233

Appendix A

 %coming from east
 v(35,4,3) = -0.4;
 w(35,4,3) = -0.4;

 %state 35

 %comimg from west
 v(34,2,3) = -0.6;
 w(34,2,3) = -0.6;

 %coming from south
 v(45,1,3) = -0.6;
 w(45,1,3) = -0.6;

 %coming from north
 v(25,3,3) = -0.6;
 w(25,3,3) = -0.6;

 %coming from east
 v(36,4,3) = -0.6;
 w(36,4,3) = -0.6;

 %state 36

 %comimg from west
 v(35,2,3) = -0.8;
 w(35,2,3) = -0.8;

 %coming from south
 v(46,1,3) = -0.8;
 w(46,1,3) = -0.8;

 %coming from north
 v(26,3,3) = -0.8;
 w(26,3,3) = -0.8;

 %coming from east
 v(37,4,3) = -0.8;
 w(37,4,3) = -0.8;

 %state 43

 %comimg from west
 v(42,2,3) = -0.1;
 w(42,2,3) = -0.1;

 %coming from south
 v(53,1,3) = -0.1;
 w(53,1,3) = -0.1;

Page 175 of 233

Appendix A

 %coming from north
 v(33,3,3) = -0.1;
 w(33,3,3) = -0.1;

 %coming from east
 v(44,4,3) = -0.1;
 w(44,4,3) = -0.1;

 %state 53

 %comimg from west
 v(52,2,3) = -0.2;
 w(52,2,3) = -0.2;

 %coming from south
 v(63,1,3) = -0.2;
 w(63,1,3) = -0.2;

 %coming from north
 v(43,3,3) = -0.2;
 w(43,3,3) = -0.2;

 %coming from east
 v(54,4,3) = -0.2;
 w(54,4,3) = -0.2;

 plotX = zeros(totalTrials,1);
 plotY = zeros(totalTrials,1);

 trialCount = 1;

 RP = zeros(3,1);

 %State, Action(2), ObjDimention = punishment

 %Northern & Eastern Boundary Penalty Association 10x10
 for ii = 1 : gridSize
 v(ii,1,2) = -1;
 v(ii*10,2,2) = -1;
 end

 %Southern Boundary Penalty Association 10x10
 for jj=91 : 100
 v(jj,3,2) = -1;
 end

Page 176 of 233

Appendix A

 %Western Boundary Penalty Associationv 10x10
 for hh=1 : gridSize
 v((hh*10)-9,4,2) = -1;
 end

 % %Row 1 Puinsihments
 % v(1,1,2) = -1;
 % v(1,4,2) = -1;
 % v(2,1,2) = -1;
 % v(3,1,2) = -1;
 % v(4,1,2) = -1;
 % v(5,1,2) = -1;
 % v(5,2,2) = -1;
 %
 % %Row 2 Puinsihments
 % v(6,4,2) = -1;
 % v(10,2,2) = -1;
 %
 % %Row 3 Puinsihments
 % v(11,4,2) = -1;
 % v(15,2,2) = -1;
 %
 % %Row 4 Puinsihments
 % v(16,4,2) = -1;
 % v(20,2,2) = -1;
 %
 % %Row 5 Puinsihments
 % v(21,3,2) = -1;
 % v(21,4,2) = -1;
 % v(22,3,2) = -1;
 % v(23,3,2) = -1;
 % v(24,3,2) = -1;
 % v(25,2,2) = -1;
 % v(25,3,2) = -1;

 for i = 1 : totalTrials
 disp(j+(i/100))

 % % Random Starting Location
 % stochGrid = rand(gridSize); %Generate 5x5 grid with random real numbers 0-1
 % vectorMax = max(stochGrid);% Return the maximum value of each column
 % big = max(vectorMax);%Determine maximum value of this vector of 5 values

Page 177 of 233

Appendix A

 % binaryMap = stochGrid==big % Create a binary matrix indicating position of max
value
 % [row_M,col_N] = find(stochGrid==big)
 % randomStartState = find(binaryMap') % find the indice of the 5x5
 % grid (inverted to comply with my notation)

 % % Assign random co-ordinates to each trials starting position/state
 % startM = row_M;
 % startN = col_N;

 % Current position on grid is represented by m,n
 m = startM;
 n = startN;
 prevM = startM;
 prevN = startN;

 RP = zeros(3,1);

 % % Clean some variables
 % p = zeros(totalAgents,1);
 % oldp = p;

 % Clean some variables
 p = zeros(totalAgents,3);
 oldp(:,1) = p(:,1);
 oldp(:,2) = p(:,2);
 oldp(:,3) = p(:,3);

 % Begin stepping through a path
 found = 0;
 stepcount = 0;
 while(found == 0)
 stepcount = stepcount +1;

 % Increment # steps taken this trial
 numSteps(i) = numSteps(i) + 1;

 % Find probabilities from actor weights
 sumWeights = zeros(totalAgents,1);
 sumWeights2 = zeros(totalAgents,1);
 sumWeights3 = zeros(totalAgents,1);

 ro = zeros(totalStates, totalAgents);
 ro2 = zeros(totalStates, totalAgents);
 ro3 = zeros(totalStates, totalAgents);

 for agent = 1 : totalAgents

Page 178 of 233

Appendix A

 for state = 1 : totalStates
 %ro(state, agent) = logsig(w(state, agent));
 ro(state, agent) = logsig(w(state, agent,1));
 ro2(state, agent) = logsig(w(state, agent, 2));
 ro3(state, agent) = logsig(w(state, agent, 3));

 sumWeights(agent) = sumWeights(agent) + ro(state, agent);
 sumWeights2(agent) = sumWeights2(agent) + ro2(state, agent);
 sumWeights3(agent) = sumWeights3(agent) + ro3(state, agent);

 end
 end
 % Perform an observation (using boxes system)
 stidx = ((m - 1) * gridSize) + n;
 X = zeros(totalStates, 1);
 X(stidx) = 1;

 % Finding final probability
 P = zeros(totalAgents, 1);
 P2 = zeros(totalAgents, 1);
 P3 = zeros(totalAgents, 1);
 for agent = 1 : totalAgents
 P(agent) = ro(stidx, agent);
 P2(agent) = ro2(stidx, agent);
 P3(agent) = ro3(stidx, agent);
 end
 % Creating action set avoiding grid borders
 %N is the new m axis position after moving North
 N = m - 1;
 if(N < 1)
 % %Here i should punish this agents action by reducing probability of
 % %moving north in that state
 % %Find what state we are currently in
 % CurrentState = find(X == max(X));
 %
 % %Reduce the North agents probability when in states near boundary
 % ro(CurrentState,1) = ro(CurrentState,1)- PFMFactor;
 %
 % %Reduce the North agents probability when in states near boundary
 % v(CurrentState,1,2) = ro(CurrentState,1)- PFMFactor*northCount;
 % northCount = northCount + 1;

 N = 1;

 northCount = northCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

 E = n + 1;

Page 179 of 233

Appendix A

 if(E > gridSize)
 % %Find what state we are currently in
 % CurrentState = find(X == max(X));
 %
 % %Reduce the East agents probability when in states near boundary
 % ro(CurrentState,2) = ro(CurrentState,2)- PFMFactor;
 %
 % %Reduce the Easts agents probability when in states near boundary
 % v(CurrentState,2,2) = ro(CurrentState,2)- PFMFactor*eastCount;
 % eastCount = eastCount + 1;
 %
 E = gridSize;

 eastCount = eastCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;

 end
 S = m + 1;
 if(S > gridSize)
 % %Find what state we are currently in
 % CurrentState = find(X == max(X));
 %
 % %Reduce the South agents probability when crossing grid boundary
 % ro(CurrentState,3) = ro(CurrentState,3)- PFMFactor;
 %
 % %Reduce the South agents probability when in states near boundary
 % v(CurrentState,3,2) = ro(CurrentState,3)- PFMFactor*southCount;
 % southCount = southCount + 1;
 southCount = southCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;

 S = gridSize;
 end
 W = n - 1;
 if(W < 1)
 % %Find what state we are currently in
 % CurrentState = find(X == max(X));
 %
 % %Reduce the West agents probability when in states near boundary
 % ro(CurrentState,4) = ro(CurrentState,4)- PFMFactor;
 %
 % %Reduce the West agents probability when in states near boundary
 % v(CurrentState,4,2) = ro(CurrentState,4)- PFMFactor*westCount;
 % westCount = westCount + 1;

 W = 1;
 westCount = westCount + 1;
 numBoundSteps(i) = numBoundSteps(i) + 1;
 end

Page 180 of 233

Appendix A

 % Initializing values
 Nu = zeros(totalAgents, 1);
 Nu2 = zeros(totalAgents, 1);
 Nu3 = zeros(totalAgents, 1);

 stdev = zeros(totalAgents, 1);
 stdev2 = zeros(totalAgents, 1);
 stdev3 = zeros(totalAgents, 1);

 % Stochastic random number generator
 for agent = 1 : totalAgents
 %stdev(agent) = 2*logsig(p(agent))-1;
 stdev(agent) = 2*logsig(p(agent,1))-1;
 stdev2(agent) = 2*logsig(p(agent,2))-1;
 stdev3(agent) = 2*logsig(p(agent,3))-1;

 Nu(agent) = stdev(agent)*randn;
 Nu2(agent) = stdev2(agent)*randn;
 Nu3(agent) = stdev3(agent)*randn;
 if Nu(agent) >= 1
 Nu(agent) = 1;
 elseif Nu(agent) <= -1
 Nu(agent) = -1;
 end

 if Nu2(agent) >= 1
 Nu2(agent) = 1;
 elseif Nu2(agent) <= -1
 Nu2(agent) = -1;
 end

 if Nu3(agent) >= 1
 Nu3(agent) = 1;
 elseif Nu3(agent) <= -1
 Nu3(agent) = -1;
 end

 end

 %Detecting when agent has encountered an Obstacle/Hill
 %State 43
 if (m == 5 && n == 3)
 S43hillCount = S43hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 53
 if (m == 6 && n == 3)

Page 181 of 233

Appendix A

 S53hillCount = S53hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 34
 if (m == 4 && n == 4)
 S34hillCount = S34hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 35
 if (m == 4 && n == 5)
 S35hillCount = S35hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %State 36
 if (m == 4 && n == 6)
 S36hillCount = S36hillCount + 1;
 numHillSteps(i) = numHillSteps(i) + 1;
 end

 %Prospect Theory values computation
 %w > probability weights

 for agent=1 : totalAgents
 pt_w(agent,1) = (P(agent)^pt_gamma) / (P(agent)^pt_gamma +
((1+P(agent)^pt_gamma))^(1/pt_gamma));
 pt_w(agent,2) = (P2(agent)^pt_gamma) / (P2(agent)^pt_gamma +
((1+P2(agent)^pt_gamma))^(1/pt_gamma));
 pt_w(agent,3) = (P3(agent)^pt_gamma) / (P3(agent)^pt_gamma +
((1+P3(agent)^pt_gamma))^(1/pt_gamma));

 if(w(stidx,agent,1) >= RP(1))
 pt_nu(agent,1) = (w(stidx,agent,1) - RP(1))^pt_alpha;
 else
 pt_nu(agent,1) = (-pt_lambda*(RP(1) - v(stidx,agent,1)))^pt_beta;
 end

 if(w(stidx,agent,2) >= RP(2))
 pt_nu(agent,2) = (w(stidx,agent,2) - RP(2))^pt_alpha;
 else
 pt_nu(agent,2) = (-pt_lambda*(RP(2) - v(stidx,agent,2)))^pt_beta;
 end

 if(w(stidx,agent,3) >= RP(3))
 pt_nu(agent,3) = (w(stidx,agent,3) - RP(3))^pt_alpha;
 else
 pt_nu(agent,3) = (-pt_lambda*(RP(3) - v(stidx,agent,3)))^pt_beta;

Page 182 of 233

Appendix A

 end

 PT(agent) = pt_nu(agent,1)*pt_w(agent,1) + pt_nu(agent,2)*pt_w(agent,2) +
pt_nu(agent,3)*pt_w(agent,3);

 end

 % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 1
% choices = zeros(totalAgents, 1);
% for agent=1:totalAgents
% choices(agent) = P(agent)+Nu(agent);
% end
%
% % Finding choices (Probability + explotation/exploration) FOR OBJECTIVE 2
% choices2 = zeros(totalAgents, 1);
% for agent=1:totalAgents
% choices2(agent) = P2(agent)+Nu2(agent);
% end
%

 %action selection

 %we choose an index
 % Choose the path with the maximum probability, or explore
 indices = find(PT == max(PT));
 maximum = max(PT);
 if((length(indices) == 1) && (maximum >= epsilon))
 index = indices(1);
 else
 index = ceil(length(PT) * rand); % randomly select direction
 end

 %we choose an index for objective 2
 % Choose the path with the maximum probability, or explore
 % indices2 = find(choices2 == max(choices2));
 % maximum2 = max(choices2);
 % if((length(indices2) == 1) && (maximum2 >= epsilon))
 % index2 = indices2(1);
 % else
 % index2 = ceil(length(choices2) * rand); % randomly select direction
 % end
 %

 %now we have two choices, one for each objective

Page 183 of 233

Appendix A

 %we now need to choose one, we can't compute both of the final values, in a
 %real environment, the response to the action would come up after taking
 %action, so we will choose stochasticly, taking the objectives weights into
 %account

 %NB: this is where we are gonna integrate Prospect theory

 % choice_rand = rand;
 % if(choice_rand < W1)
 % index = index1;
 % else
 % index = index2;
 % end

 windy_rand = rand;

 disp(' ');
 disp(stidx);

 if (windy_rand < WindChance)

 if (n == 1 && m>1)
 disp('N WAS 1, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 2 && m>1)
 disp('N WAS 2, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 3 && m>1)
 disp('N WAS 3, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 4 && m>1)
 disp('N WAS 4, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 5 && m>2)
 disp('N WAS 5, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 6 && m>2)

Page 184 of 233

Appendix A

 disp('N WAS 6, Wind Strength = 2');
 WindStrength = 2;
 m = m-WindStrength;
 end
 if (n == 7 && m>1)
 disp('N WAS 7, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 8 && m>1)
 disp('N WAS 8, Wind Strength = 1');
 WindStrength = 1;
 m = m-WindStrength;
 end
 if (n == 9 && m>1)
 disp('N WAS 9, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end
 if (n == 10 && m>1)
 disp('N WAS 10, Wind Strength = 0');
 WindStrength = 0;
 m = m-WindStrength;
 end

 disp(' ');

 else
 disp('NO WIND');

 end %end primary if

 %Take action
 r=zeros(totalAgents,1);
 if(index == 1) % grid(m-1,n)
 m = N;
 r(index) = sign(m-rewardM);
 elseif(index == 2) % grid(m,n+1)
 n = E;
 r(index) = sign(rewardN-n);
 elseif(index == 3) % grid(m+1,n)
 m = S;
 r(index) = sign(rewardM-m);
 elseif(index == 4) % grid(m,n-1)
 n = W;
 r(index) = sign(n-rewardN);
 else
 disp('error random number too big');
 end

Page 185 of 233

Appendix A

 % Stop after this step if the reward was found
 if(m == rewardM && n == rewardN)
 found = 1;
 disp(46);
 end
 % Saving prediction information
 oldp(:,1) = p(:,1);
 oldp(:,2) = p(:,2);
 oldp(:,3) = p(:,3);
 p = zeros(totalAgents,3);

 % % Computing the prediction of eventual reinforcement
 % for agent = 1:totalAgents
 % p(agent) = v(stidx,agent);
 % end

 % Computing the prediction of eventual reinforcement
 for agent = 1:totalAgents
 p(agent,1) = v(stidx,agent,1);
 p(agent,2) = v(stidx,agent,2);
 p(agent,3) = v(stidx,agent,3);
 end
 % Computing the prediction error using temporal differences method
 rbar=zeros(totalAgents,1);
 rbar2=zeros(totalAgents,1);
 rbar3=zeros(totalAgents,1);
 for agent = 1:totalAgents
 %predErr = gamma*p(agent) - oldp(agent); %
 predErr = gamma*p(agent,1) - oldp(agent,1); %
 predErr2 = gamma*p(agent,2) - oldp(agent,2);
 predErr3 = gamma*p(agent,3) - oldp(agent,3);
 %rbar(agent) = r(agent) + predErr;
 rbar(agent) = r(agent) + predErr;
 rbar2(agent) = r(agent) + predErr2;
 rbar3(agent) = r(agent) + predErr3;
 end
 rf_tmp = zeros(3,1);

 % Learning the value functions
 stateF = stidx;
 agentF = index;

 %Actor & Critic Value functions updating 1st dimention/objective of storage matrix
 w(stateF, agentF, 1) = w(stateF, agentF, 1) + alpha * rbar(agentF) * X(stateF) * (1
/ro (stateF, agentF, 1)) * exp(-w(stateF, agentF,1)) * sumWeights(agentF);
 w(stateF, agentF, 2) = w(stateF, agentF, 2) + alpha * rbar2(agentF) * X(stateF) * (1
/ro2 (stateF, agentF, 1)) * exp(-w(stateF, agentF,2)) * sumWeights2(agentF);

Page 186 of 233

Appendix A

 w(stateF, agentF, 3) = w(stateF, agentF, 3) + alpha * rbar3(agentF) * X(stateF) * (1
/ro3 (stateF, agentF, 1)) * exp(-w(stateF, agentF,3)) * sumWeights3(agentF);

 v(stateF,agentF,1)=v(stateF,agentF,1)-beta*gamma*rbar(agentF)*X(stateF); %Takes
the form of TD error scalar signal
 v(stateF,agentF,2)=v(stateF,agentF,2)-beta*gamma*rbar2(agentF)*X(stateF); %Takes
the form of TD error scalar signal
 v(stateF,agentF,3)=v(stateF,agentF,3)-beta*gamma*rbar3(agentF)*X(stateF); %Takes
the form of TD error scalar signal

 %Scalarized Value function for BOTH Objectives
 % v(stateF,agentF,3)=(v(stateF,agentF,1)*W1 +
v(stateF,agentF,2)*W2)/NoOfObjectives;

 %Store scalarized Value functon back into the storage matrix (this can slow
 %things down considerably)
 %v(stateF,agentF,1)=v(stateF,agentF,3);

 %update the reference point for prospect theory

 RP(1) = RP(1) + v(stateF,agent,1);
 RP(2) = RP(2) + v(stateF,agent,2);
 RP(3) = RP(3) + v(stateF,agent,3);

%
% plot(RP(1)*10, RP(2)*10,'o');
% hold on
%
% RP(1) = RP(1) / stepcount;
% RP(2) = RP(2) / stepcount;

 % update values for next step, and directional choices
 prevM = m;
 prevN = n;
 end % end while not found
%
% plotX(trialCount) = v(state,agent,1);
% plotY(trialCount) = v(state,agent,2);

 trialCount = trialCount + 1;

% plot(v(state,agent,1),v(state,agent,2),'o');
% hold on

 end %end totalTrials loop

Page 187 of 233

Appendix A

 %plot(plotX, plotY, 'o');
% xlabel('1st objective');
% ylabel('2nd objective');

 % Update storage matrices for across all plays
 totalNumSteps = totalNumSteps + numSteps;

 % Update storage matrices for across all plays
 totalNumBoundSteps = totalNumBoundSteps + numBoundSteps;

 % Update storage matrices for across all plays
 totalNumHillSteps = totalNumHillSteps + numHillSteps;

end %end totalPlays loop

outOfBoundsCount = northCount + eastCount + southCount + westCount;
hillCount = S43hillCount + S53hillCount + S34hillCount + S35hillCount + S36hillCount;

% %-------------------------------------
% % Outputs
% %-------------------------------------
% % Average number of steps across all plays
% plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');

%-------------------------------------
% Plot 2D Graphs for both objectives
%-------------------------------------
disp('GPFMORLPTv5 Hills Algorithm');
AverageBoundsCount = outOfBoundsCount/totalPlays
AverageHillCount = hillCount/totalPlays
disp(' ');

% Average number of steps across all plays
plot(totalNumSteps / totalPlays, 'color', 'k', 'LineStyle', '-');
title('GPFMORLPT Hills Algorithm')
xlabel('NoOfTrials')
ylabel('NoOfSteps')
hold on

% Average number of boundary penaltys across all plays
plot(totalNumBoundSteps / totalPlays, 'color', 'k', 'LineStyle', '--');
hold on

% Average number of boundary penaltys across all plays
plot(totalNumHillSteps / totalPlays, 'color', 'k', 'LineStyle', ':');

legend('Obj1 Heli Goal','Obj2 Boundary','Obj3 Hills')
hold off

Page 188 of 233

Appendix B

Unmanned Aerial Vehicle Practical

Page 189 of 233

Appendix B

UAV Practical Test
//UAV v1
#include "ardrone/ardrone.h"
#include <fstream>

//--------------------Variables----------------------
double innerPower = 0.1; // Safe zone potential field magnitude - set to 0 when RL
decides actions
double outerPower = 0.2; // Danger zone potential field magnitude
double altitudePower = 0.1; // Altiitude velocity
double distancePower = 0.1;
bool AUTOfloor = false; // Set Automatic Floor Reactive Behaviour ON or OFF
bool AUTOfront = false; // Set Automatic Front Reactive Behaviour ON or OFF
bool AUTOland = false; // Set Automatic Landing flag ON or OFF
bool rec = false;
const int gridSize = 5;
int DroneState = 0; // Current state that the UAV is hovering above or in
front of
int prevDroneState = 0; // Previous state that the UAV was at before moving to its
current state
int targetArea; // Used for moving forward and backward when using
forward camera
bool targetReached = false; // Flag for when front camera detects centralised target at
appropiate distance
int XpixelSegments;
int YpixelSegments;
int m; //not used atm
int n; //not used atm

bool UpANDSwitch = false; //set to true for automatic increase of altitude and switch cameras

//------------------Initialisation--------------------
//File Writing of DroneState History
std::ofstream outputFile; //Global create output file for storing what states have been visited

// GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Forward Target)
//int minH = 90, maxH = 229;
//int minS = 187, maxS = 255;
//int minV = 39, maxV = 166;

//Improved for Salford Royal Visit
int minH = 0, maxH = 128; //max H best at 155 for ocluded corner (Fixed Forward Target)
int minS = 136, maxS = 235;
int minV = 0, maxV = 103;

//Create video object
CvVideoWriter *video;

int main(int argc, char **argv)
{

Page 190 of 233

Appendix B

 // AR.Drone class
 ARDrone ardrone;

 // Initialize
 if (!ardrone.open()) {
 printf("Failed to initialize.\n");
 return -1;}

 // Image of AR.Drone's camera
 IplImage *image = ardrone.getImage();

 //// Orientation
 // double roll = ardrone.getRoll();
 // double pitch = ardrone.getPitch();
 // double yaw = ardrone.getYaw();
 // printf("ardrone.roll = %3.2f [deg]\n", roll * RAD_TO_DEG);
 // printf("ardrone.pitch = %3.2f [deg]\n", pitch * RAD_TO_DEG);
 // printf("ardrone.yaw = %3.2f [deg]\n", yaw * RAD_TO_DEG);

 //// Altitude
 double altitude = ardrone.getAltitude();
 printf("ardrone.altitude = %3.2f [m]\n", altitude);

 //// Velocity
 //double vx, vy, vz;
 //double velocity = ardrone.getVelocity(&vx, &vy, &vz);
 //printf("ardrone.vx = %3.2f [m/s]\n", vx);
 //printf("ardrone.vy = %3.2f [m/s]\n", vy);
 //printf("ardrone.vz = %3.2f [m/s]\n", vz);

 // Name of video
 char filename[256];
 SYSTEMTIME st;
 GetLocalTime(&st);
 //when compiled and run in VisualStudio, check build2010 folder, or if running
executable check bin2010
 //sprintf(filename, "cam%d%02d%02d%02d%02d%02d.avi", st.wYear, st.wMonth, st.wDay,
st.wHour, st.wMinute, st.wSecond);
 sprintf(filename, "vid%02d-%02d %02d-%02d.avi", st.wDay, st.wMonth, st.wHour,
st.wMinute);

 //Open text file
 outputFile.open("DroneStateLog.txt"); //Open output file to be written to

 // Operational Instructions
 printf("***************************************\n");
 printf("* John Pinder's MORL-UAV *\n");
 printf("***************************************\n");
 printf("* - Controls - *\n");
 printf("* 'Space' -- Takeoff/Landing *\n");

Page 191 of 233

Appendix B

 printf("* 'Up' -- Move Forward *\n");
 printf("* 'Down' -- Move Backward *\n");
 printf("* 'Left' -- Straife Left *\n");
 printf("* 'Right' -- Straife Right *\n");
 printf("* 'R' -- Raise Altitude *\n");
 printf("* 'F' -- Fall Altitude *\n");
 printf("* 'Q' -- Turn Left *\n");
 printf("* 'E' -- Turn Right *\n");
 printf("* *\n");
 printf("* - Automatic Control Toggles - *\n");
 printf("* 'A' -- Auto Floor *\n");
 printf("* 'Z' -- Auto Front *\n");
 printf("* 'L' -- Auto Land *\n");
 printf("* *\n");
 printf("* - Others - *\n");
 printf("* 'V' -- Image Process Config *\n");
 printf("* 'C' -- Change Camera *\n");
 printf("* 'O' -- Start/Stop Recoring *\n");
 printf("* 'Esc' -- Exit *\n");
 printf("* 'M' -- Flight Animations *\n");
 printf("***************************************\n");

 // Battery
 printf("Battery = %d%%\n", ardrone.getBatteryPercentage());

//WHILE LOOP///

int lock = 0; //Used to prevent multiple video writer objects from being instantiated
 while (1) {
 // Key input
 int key = cvWaitKey(33);
 if (key == 0x1b) break;

 //// Altitude
 double altitude = ardrone.getAltitude();
 //printf("ardrone.altitude = %3.2f [m]\n", altitude);

 int bat = ardrone.getBatteryPercentage();

 // Create a video writer
 if (rec && lock == 0){
 video = cvCreateVideoWriter(filename, CV_FOURCC('D','I','B',' '), 30,
cvGetSize(image));
 lock = 1;}

 // Create a window with HSV slider selections for image processsing
segmentation thresholds
 if (key == 'v') {
 cvNamedWindow("Image Procesing Configuration");

Page 192 of 233

Appendix B

 cvCreateTrackbar("H max", "Image Procesing Configuration", &maxH,
255);
 cvCreateTrackbar("H min", "Image Procesing Configuration", &minH,
255);
 cvCreateTrackbar("S max", "Image Procesing Configuration", &maxS,
255);
 cvCreateTrackbar("S min", "Image Procesing Configuration", &minS,
255);
 cvCreateTrackbar("V max", "Image Procesing Configuration", &maxV,
255);
 cvCreateTrackbar("V min", "Image Procesing Configuration", &minV,
255);
 cvResizeWindow("Image Procesing Configuration", 0, 0);}

 // Instructions for Flight Animations
 if (key == 'm') {
 printf(" G - ARDRONE_ANIM_PHI_M30_DEG\n");
 printf(" N - ARDRONE_ANIM_PHI_30_DEG\n");
 printf(" K - ARDRONE_ANIM_THETA_M30_DEG\n");
 printf(" W - ARDRONE_ANIM_THETA_30_DEG\n");
 printf(" S - ARDRONE_ANIM_THETA_20DEG_YAW_200DEG\n");
 printf(" 4 - ARDRONE_ANIM_THETA_20DEG_YAW_M200DEG\n");
 printf(" 5 - ARDRONE_ANIM_TURNAROUND\n");
 printf(" D - ARDRONE_ANIM_TURNAROUND_GODOWN\n");
 printf(" 2 - ARDRONE_ANIM_YAW_SHAKE\n");
 printf(" I - ARDRONE_ANIM_YAW_DANCE\n");
 printf(" 3 - ARDRONE_ANIM_PHI_DANCE\n");
 printf(" P - ARDRONE_ANIM_THETA_DANCE\n");
 printf(" T - ARDRONE_ANIM_VZ_DANCE\n");
 printf(" G - ARDRONE_ANIM_WAVE\n");
 printf(" B - ARDRONE_ANIM_PHI_THETA_MIXED\n");
 printf(" Y - ARDRONE_ANIM_DOUBLE_PHI_THETA_MIXED\n");
 printf(" H - ARDRONE_ANIM_FLIP_AHEAD\n");
 printf(" 6 - ARDRONE_ANIM_FLIP_BEHIND\n");
 printf(" U - ARDRONE_ANIM_FLIP_LEFT\n");
 printf(" J - ARDRONE_ANIM_FLIP_RIGHT\n");}

 //// LED animations (cOMMENT IOUT USUALY)
 // if (key == 'q') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_GREEN_RED,
0.5, 5);
 // if (key == 'a') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_GREEN, 0.5,
5);
 // if (key == 'z') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_RED, 0.5, 5);
 // if (key == 'w') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_ORANGE, 0.5,
5);
 // if (key == 's') ardrone.setLED(ARDRONE_LED_ANIM_SNAKE_GREEN_RED,
0.5, 5);
 // if (key == 'x') ardrone.setLED(ARDRONE_LED_ANIM_FIRE, 0.5, 5);
 // if (key == 'e') ardrone.setLED(ARDRONE_LED_ANIM_STANDARD, 0.5, 5);

Page 193 of 233

Appendix B

 // if (key == 'd') ardrone.setLED(ARDRONE_LED_ANIM_RED, 0.5, 5);
 // if (key == 'c') ardrone.setLED(ARDRONE_LED_ANIM_GREEN, 0.5, 5);
 // if (key == 'r') ardrone.setLED(ARDRONE_LED_ANIM_RED_SNAKE, 0.5, 5);
 // if (key == 'f') ardrone.setLED(ARDRONE_LED_ANIM_BLANK, 0.5, 5);
 // if (key == 'v') ardrone.setLED(ARDRONE_LED_ANIM_RIGHT_MISSILE, 0.5,
5);
 // if (key == 't') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_MISSILE, 0.5, 5);
 // if (key == 'g') ardrone.setLED(ARDRONE_LED_ANIM_DOUBLE_MISSILE, 0.5,
5);
 // if (key == 'b')
ardrone.setLED(ARDRONE_LED_ANIM_FRONT_LEFT_GREEN_OTHERS_RED, 0.5, 5);
 // if (key == 'y')
ardrone.setLED(ARDRONE_LED_ANIM_FRONT_RIGHT_GREEN_OTHERS_RED, 0.5, 5);
 // if (key == 'h')
ardrone.setLED(ARDRONE_LED_ANIM_REAR_RIGHT_GREEN_OTHERS_RED, 0.5, 5);
 // if (key == 'n')
ardrone.setLED(ARDRONE_LED_ANIM_REAR_LEFT_GREEN_OTHERS_RED, 0.5, 5);
 // if (key == 'u') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_GREEN_RIGHT_RED,
0.5, 5);
 // if (key == 'j') ardrone.setLED(ARDRONE_LED_ANIM_LEFT_RED_RIGHT_GREEN,
0.5, 5);
 // if (key == 'm') ardrone.setLED(ARDRONE_LED_ANIM_BLINK_STANDARD,
0.5, 5);

 // Update
 if (!ardrone.update()) break;

 // Get an image
 IplImage *image = ardrone.getImage(); //maybe not needed

 // Write video frames when told to
 //if (rec){
 // cvWriteFrame(video, image);}

//////////////////////////////////////IMAGE PROCCESING ///
 // HSV image
 IplImage *hsv = cvCloneImage(image);
 cvCvtColor(image, hsv, CV_RGB2HSV_FULL);

 // Binalized image
 IplImage *binalized = cvCreateImage(cvGetSize(image), IPL_DEPTH_8U, 1); // Create
black white image

 // Binalize
 CvScalar lower = cvScalar(minH, minS, minV); // Set HSV lower threshholds from
sliderbar
 CvScalar upper = cvScalar(maxH, maxS, maxV); // Set HSV upper threshholds from
sliderbar

 // Feature Extraction

Page 194 of 233

Appendix B

 cvInRangeS(image, lower, upper, binalized); //Binalize helipad segmented
from background using HSV thresholds

 // Show result
 cvShowImage("binalized", binalized);

 // De-noising
 cvMorphologyEx(binalized, binalized, NULL, NULL, CV_MOP_CLOSE);

 // Detect contours
 CvSeq *contour = NULL, *maxContour = NULL;
 CvMemStorage *contourStorage = cvCreateMemStorage();
 cvFindContours(binalized, contourStorage, &contour, sizeof(CvContour),
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

 // Find largest contour
 double max_area = 0.0;
 while (contour) {
 double area = fabs(cvContourArea(contour));
 if (area > max_area) {
 maxContour = contour;
 max_area = area;}
 contour = contour->h_next;}

 // Object detected loop
 if (maxContour) {
 // Show result
 CvRect rect = cvBoundingRect(maxContour);
 CvPoint minPoint, maxPoint;
 minPoint.x = rect.x;
 minPoint.y = rect.y;
 maxPoint.x = rect.x + rect.width;
 maxPoint.y = rect.y + rect.height;
 cvRectangle(image, minPoint, maxPoint, CV_RGB(255,0,0));
 //printf("MinX = %d ",minPoint.x);
 //printf("MinY = %d\n ",minPoint.y);

 int xCentroid = (minPoint.x + maxPoint.x)/2;
 int yCentroid = (minPoint.y + maxPoint.y)/2;
 //printf("X= %d ",xCentroid);
 //printf("Y= %d\n ",yCentroid);
 //printf("width = %d ",rect.width);
 //printf("Height= %d\n ",rect.height);

 //Calculate area of target for distance correction
 targetArea = rect.height*rect.width;
 //printf("Area = %d\n ",targetArea);

 //Pixel calculation
 int totalXPixels = 638;

Page 195 of 233

Appendix B

 int XpixelSegments = totalXPixels/gridSize;
 int totalYPixels = 357;
 int YpixelSegments = totalYPixels/gridSize;

 //Assigning pixel coordinates to states
 //First row of 5 states
 if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments)
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){
 DroneState = 1;
 m=1;
 n=1; }
 if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments)
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){
 DroneState = 2;
 m=1;
 n=2; }
 if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments)
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){
 DroneState = 3;
 m=1;
 n=3; }
 if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments)
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){
 DroneState = 4;
 m=1;
 n=4; }
 if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments)
&& (yCentroid >0*YpixelSegments && yCentroid<1*YpixelSegments)){
 DroneState = 5;
 m=1;
 n=5; }

 //Second row of 5 states
 if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments)
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){
 DroneState = 6;
 m=2;
 n=1; }
 if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments)
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){
 DroneState = 7;
 m=2;
 n=2; }
 if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments)
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){
 DroneState = 8;
 m=2;
 n=3; }
 if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments)
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){

Page 196 of 233

Appendix B

 DroneState = 9;
 m=2;
 n=4; }
 if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments)
&& (yCentroid >1*YpixelSegments && yCentroid<2*YpixelSegments)){
 DroneState = 10;
 m=2;
 n=5; }

 //Third row of 5 states
 if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments)
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){
 DroneState = 11;
 m=3;
 n=1; }
 if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments)
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){
 DroneState = 12;
 m=3;
 n=2; }
 if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments)
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){
 DroneState = 13;
 m=3;
 n=3; }
 if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments)
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){
 DroneState = 14;
 m=3;
 n=4; }
 if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments)
&& (yCentroid >2*YpixelSegments && yCentroid<3*YpixelSegments)){
 DroneState = 15;
 m=3;
 n=5; }

 //Fourth row of 5 states
 if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments)
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){
 DroneState = 16;
 m=4;
 n=1; }
 if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments)
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){
 DroneState = 17;
 m=4;
 n=2; }
 if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments)
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){
 DroneState = 18;

Page 197 of 233

Appendix B

 m=4;
 n=3; }
 if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments)
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){
 DroneState = 19;
 m=4;
 n=4; }
 if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments)
&& (yCentroid >3*YpixelSegments && yCentroid<4*YpixelSegments)){
 DroneState = 20;
 m=4;
 n=5; }

 //Fith row of 5 states
 if ((xCentroid >0*XpixelSegments && xCentroid<1*XpixelSegments)
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){
 DroneState = 21;
 m=5;
 n=1; }
 if ((xCentroid >1*XpixelSegments && xCentroid<2*XpixelSegments)
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){
 DroneState = 22;
 m=5;
 n=2; }
 if ((xCentroid >2*XpixelSegments && xCentroid<3*XpixelSegments)
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){
 DroneState = 23;
 m=5;
 n=3; }
 if ((xCentroid >3*XpixelSegments && xCentroid<4*XpixelSegments)
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){
 DroneState = 24;
 m=5;
 n=4; }
 if ((xCentroid >4*XpixelSegments && xCentroid<5*XpixelSegments)
&& (yCentroid >4*YpixelSegments && yCentroid<5*YpixelSegments)){
 DroneState = 25;
 m=5;
 n=5; }

 // } //end if drone is flat
 } //end IF Object Detected
 else {DroneState = 0; //Assign current state to 0 when the helipad localisation
is lost
 } //do i realy need these braces as a single line

//OUTPUTS//
 //Console ouput of changing Drone State when Automatic Reactive Behaviour
is ON
 if (AUTOfloor == true || AUTOfront == true){

Page 198 of 233

Appendix B

 if(DroneState!=prevDroneState)std::cout << "STATE " << DroneState << " " <<
std::endl;}

 //Always output changing DroneState to DroneState.txt
 if(DroneState!=prevDroneState)outputFile << DroneState << " " << std::endl;

///ACTIONS///
 // Take off / Landing
 if (key == ' ') {
 if (ardrone.onGround()) ardrone.takeoff();
 else ardrone.landing();}

 // Automatic Landing when floor cam activated and above helipad
 if ((DroneState == 13)&&(AUTOland == true)&&(AUTOfloor == true)) {
 if (ardrone.onGround()) ardrone.takeoff();
 else {
 ardrone.landing();
 printf("FORCED LANDING\n");} }

//THIS WAS TAKEN FROM EXAMPLE CODE AND HAS NOT BEEN CHECKED OR TESTED
// // Return true if drone altitude is under .5 m
// bool IsTooLow() {
// double altitude = ardrone.getAltitude();
//
// if (altitude < 0.5) return true;
// else return false;
//}
//
// // Return true if drone altitude is over 1.5 m
//bool IsTooHigh() {
// double altitude = ardrone.getAltitude();
//
// if (altitude > 1.5) return true;
// else return false;
//}
//
// // Autonomous drone altitude control
//void KeepGoodAltitude() {
// // Lower the drone
// if (IsTooHigh()) LooseAltitude();
//
// // Raise the drone
// if (IsTooLow()) GainAltitude();
//}
 /*void GainAltitude() {
 vz = ALTITUDE_SPEED;
 cout << "gain alt" << endl;
}

void LooseAltitude() {

Page 199 of 233

Appendix B

 vz = -ALTITUDE_SPEED;
 cout << "loose alt" << endl;
}*/

 // Teleoperation Velocity Parameters
 double vx = 0.0, vy = 0.0, vz = 0.0, vr = 0.0;
 if (key == 0x260000) vx = 2.0; //Forward
 if (key == 0x280000) vx = -2.0; //Backward
 if (key == 'q') vr = 1.0; //Turn Left
 if (key == 'e') vr = -1.0; //Turn Right
 if (key == 'r') vz = 1.0; //Raise Alititude
 if (key == 'f') vz = -1.0; //Lower Altitude
 if (key == 0x250000) vy = 2.0; //Straife Left
 if (key == 0x270000) vy = -2.0; //Straife Right

 // Flight Animations Actions (commented out for saftey)
 /* if (key == 'g') ardrone.setAnimation(ARDRONE_ANIM_PHI_M30_DEG,
1000);
 if (key == 'n') ardrone.setAnimation(ARDRONE_ANIM_PHI_30_DEG,
1000);
 if (key == 'k') ardrone.setAnimation(ARDRONE_ANIM_THETA_M30_DEG,
1000);
 if (key == 'w') ardrone.setAnimation(ARDRONE_ANIM_THETA_30_DEG,
1000);
 if (key == 's')
ardrone.setAnimation(ARDRONE_ANIM_THETA_20DEG_YAW_200DEG, 1000);
 if (key == '4')
ardrone.setAnimation(ARDRONE_ANIM_THETA_20DEG_YAW_M200DEG, 1000);
 if (key == '5') ardrone.setAnimation(ARDRONE_ANIM_TURNAROUND,
5000);
 if (key == 'd')
ardrone.setAnimation(ARDRONE_ANIM_TURNAROUND_GODOWN, 5000);
 if (key == '2') ardrone.setAnimation(ARDRONE_ANIM_YAW_SHAKE,
2000);
 if (key == 'i') ardrone.setAnimation(ARDRONE_ANIM_YAW_DANCE,
5000);
 if (key == '3') ardrone.setAnimation(ARDRONE_ANIM_PHI_DANCE,
5000);
 if (key == 'p') ardrone.setAnimation(ARDRONE_ANIM_THETA_DANCE,
5000);
 if (key == 't') ardrone.setAnimation(ARDRONE_ANIM_VZ_DANCE,
5000);
 if (key == 'g') ardrone.setAnimation(ARDRONE_ANIM_WAVE,
5000);
 if (key == 'b') ardrone.setAnimation(ARDRONE_ANIM_PHI_THETA_MIXED,
5000);
 if (key == 'y')
ardrone.setAnimation(ARDRONE_ANIM_DOUBLE_PHI_THETA_MIXED, 5000);

Page 200 of 233

Appendix B

 if (key == 'h') ardrone.setAnimation(ARDRONE_ANIM_FLIP_AHEAD,
15);
 if (key == '6') ardrone.setAnimation(ARDRONE_ANIM_FLIP_BEHIND,
15);
 if (key == 'u') ardrone.setAnimation(ARDRONE_ANIM_FLIP_LEFT,
15);
 if (key == 'j') ardrone.setAnimation(ARDRONE_ANIM_FLIP_RIGHT,
15);*/

 //DOWNWARDS (floor) FACING CAM
ACTIONS///
 //Orthogonal Actions (Rooks Moves)
 //When helipad is detected slightly in front of the UAV, move forward slightly
 if ((DroneState == 8) && (AUTOfloor == true)) {
 vx = innerPower;
 printf("UAV MOVING forward*\n");}
 // When helipad is detected far away in front of the UAV, move forward rapidly
to avoid getting lost
 if ((DroneState == 3) && (AUTOfloor == true)){
 vx = outerPower;
 printf("UAV MOVING FORWARD*\n");}

 // When helipad is detected slightly behind the UAV, move backward slightly
 if ((DroneState == 18) && (AUTOfloor == true)) {
 vx = -innerPower;
 printf("UAV MOVING backward*\n");}
 // When helipad is detected far away behind the UAV, move backward rapidly
to avoid getting lost
 if ((DroneState == 23) && (AUTOfloor == true)) {
 vx = -outerPower;
 printf("UAV MOVING BACKWARD*\n");}

 // When helipad is detected slightly to the left of the UAV, move left slightly
 if ((DroneState == 12) && (AUTOfloor == true)) {
 vy = innerPower;
 printf("UAV MOVING left*\n");}
 // When helipad is detected far away to the left of the UAV, move left rapidly to
avoid getting lost
 if ((DroneState == 11) && (AUTOfloor == true)){
 vy = outerPower;
 printf("UAV MOVING LEFT*\n");}

 // When helipad is detected slightly to the right of the UAV, move right slightly
 if ((DroneState == 14) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING right*\n");}
 // When helipad is detected far away to the right of the UAV, move right rapidly
to avoid getting lost
 if ((DroneState == 15) && (AUTOfloor == true)){
 vy = -outerPower;

Page 201 of 233

Appendix B

 printf("UAV MOVING RIGHT*\n");}

 //Diagnal Manovoures (Kings Moves)
 //FRn = Front Right near
 if ((DroneState == 9) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING right*\n");
 vx = innerPower;
 printf("UAV MOVING forward*\n");}
 //FRf = Front Right far
 if ((DroneState == 5) && (AUTOfloor == true)) {
 vy = -outerPower;
 printf("UAV MOVING RIGHT*\n");
 vx = outerPower;
 printf("UAV MOVING FORWARD*\n");}

 //BLn = Back Left near
 if ((DroneState == 17) && (AUTOfloor == true)) {
 vy = innerPower;
 printf("UAV MOVING left*\n");
 vx = -innerPower;
 printf("UAV MOVING backward*\n");}
 //BLf = Back Left far
 if ((DroneState == 21) && (AUTOfloor == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT*\n");
 vx = -outerPower;
 printf("UAV MOVING BACKWARD*\n");}

 //FLn = Front Left near
 if ((DroneState == 7) && (AUTOfloor == true)) {
 vy = innerPower;
 printf("UAV MOVING left*\n");
 vx = innerPower;
 printf("UAV MOVING forward*\n");}
 //FLf = Front Left far
 if ((DroneState == 1) && (AUTOfloor == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT*\n");
 vx = outerPower;
 printf("UAV MOVING FORWARD*\n");}

 //BRn = Back Right near
 if ((DroneState == 19) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING right*\n");
 vx = -innerPower;
 printf("UAV MOVING backward*\n");}
 //BRf = Back Right far
 if ((DroneState == 25) && (AUTOfloor == true)) {

Page 202 of 233

Appendix B

 vy = -outerPower;
 printf("UAV MOVING RIGHT*\n");
 vx = -outerPower;
 printf("UAV MOVING BACKWARD*\n");}

 //Combination Manovoures (NotDiagnals)
 //FRn = Front Right near
 if ((DroneState == 4) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING right*\n");
 vx = outerPower;
 printf("UAV MOVING FORWARD*\n");}
 //FRf = Front Right far
 if ((DroneState == 10) && (AUTOfloor == true)) {
 vy = -outerPower;
 printf("UAV MOVING RIGHT*\n");
 vx = innerPower;
 printf("UAV MOVING forward*\n");}

 //BLn = Back Left near
 if ((DroneState == 16) && (AUTOfloor == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT*\n");
 vx = -innerPower;
 printf("UAV MOVING backward*\n");}
 //BLf = Back Left far
 if ((DroneState == 22) && (AUTOfloor == true)) {
 vy = innerPower;
 printf("UAV MOVING left*\n");
 vx = -outerPower;
 printf("UAV MOVING BACKWARD*\n");}

 //FLn = Front Left near
 if ((DroneState == 2) && (AUTOfloor == true)) {
 vy = innerPower;
 printf("UAV MOVING left*\n");
 vx = outerPower;
 printf("UAV MOVING FORWARD*\n");}
 //FLf = Front Left far
 if ((DroneState == 6) && (AUTOfloor == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT*\n");
 vx = innerPower;
 printf("UAV MOVING forward*\n");}

 //BRn = Back Right near
 if ((DroneState == 20) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING RIGHT*\n");

Page 203 of 233

Appendix B

 vx = -outerPower;
 printf("UAV MOVING backward*\n");}
 //BRf = Back Right far
 if ((DroneState == 24) && (AUTOfloor == true)) {
 vy = -innerPower;
 printf("UAV MOVING right*\n");
 vx = -outerPower;
 printf("UAV MOVING BACKWARD*\n");}

 //FORWARDS (front) FACING CAM ACTIONS///
 // When face is detected slightly above the UAV, move up slightly
 if ((DroneState == 8) && (AUTOfront == true)) {
 vz = altitudePower;
 printf("UAV MOVING up\n");}

// When face is detected far above the UAV, move UP rapidly to stay at eye
level

 if ((DroneState == 3) && (AUTOfront == true)){
 vz = 2*altitudePower;
 printf("UAV MOVING UP\n");}

 // When face is detected slightly below the UAV, move down slightly
 if ((DroneState == 18) && (AUTOfront == true)) {
 vz = -altitudePower;
 printf("UAV MOVING down\n");}

// When helipad is detected far away behind the UAV, move backward rapidly
to avoid getting lost

 if ((DroneState == 23) && (AUTOfront == true)) {
 vz = 2*-altitudePower;
 printf("UAV MOVING DOWN\n");}

 // When helipad is detected slightly to the left of the UAV, move left slightly
 if ((DroneState == 12) && (AUTOfront == true)) {
 vy = innerPower;
 printf("UAV MOVING left\n");}

// When helipad is detected far away to the left of the UAV, move left rapidly to
avoid getting lost

 if ((DroneState == 11) && (AUTOfront == true)){
 vy = outerPower;
 printf("UAV MOVING LEFT\n");
 //or
 // r = 1.0; //Turn Left to keep facing towards target
 //printf("UAV TURNING LEFT\n");
 }

 // When helipad is detected slightly to the right of the UAV, move right slightly
 if ((DroneState == 14) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING right\n");}

Page 204 of 233

Appendix B

// When helipad is detected far away to the right of the UAV, move right rapidly
to avoid getting lost

 if ((DroneState == 15) && (AUTOfront == true)){
 vy = -outerPower;
 printf("UAV MOVING RIGHT\n");
 //or
 //r = -1.0; //Turn right to keep facing towards target
 //printf("UAV TURNING RIGHT\n");
 }

 //Diagnal Manovoures
 //FRn = Front Right near
 if ((DroneState == 9) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING right\n");
 vz = altitudePower;
 printf("UAV MOVING up\n");}
 //FRf = Front Right far
 if ((DroneState == 5) && (AUTOfront == true)) {
 vy = -outerPower;
 printf("UAV MOVING RIGHT\n");
 vz = 1.5*altitudePower;
 printf("UAV MOVING UP\n");}

 //BLn = Back Left near
 if ((DroneState == 17) && (AUTOfront == true)) {
 vy = innerPower;
 printf("UAV MOVING left\n");
 vz = -altitudePower;
 printf("UAV MOVING down\n");}
 //BLf = Back Left far
 if ((DroneState == 21) && (AUTOfront == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT\n");
 vz = 1.5*-altitudePower;
 printf("UAV MOVING DOWN\n");}

 //FLn = Front Left near
 if ((DroneState == 7) && (AUTOfront == true)) {
 vy = innerPower;
 printf("UAV MOVING left\n");
 vz = altitudePower;
 printf("UAV MOVING up\n");}
 //FLf = Front Left far
 if ((DroneState == 1) && (AUTOfront == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT\n");
 vz = 1.5*altitudePower;
 printf("UAV MOVING UP\n");}

Page 205 of 233

Appendix B

 //BRn = Back Right near
 if ((DroneState == 19) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING right\n");
 vz = -altitudePower;
 printf("UAV MOVING down\n");}
 //BRf = Back Right far
 if ((DroneState == 25) && (AUTOfront == true)) {
 vy = -outerPower;
 printf("UAV MOVING RIGHT\n");
 vz = 1.5*-altitudePower;
 printf("UAV MOVING DOWN\n");}

//NEED TO DO THE "NOT" diagnals for the front camera just like i have done
for down camera

 //Combination Manovoures (NotDiagnals)
 //FRn = Front Right near
 if ((DroneState == 4) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING right\n");
 vz = 1.5*altitudePower;
 printf("UAV MOVING UP\n");}

 //FRf = Front Right far
 if ((DroneState == 10) && (AUTOfront == true)) {
 vy = -outerPower;
 printf("UAV MOVING RIGHT\n");
 vz = altitudePower;
 printf("UAV MOVING up\n");}

 //BLn = Back Left near
 if ((DroneState == 16) && (AUTOfront == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT\n");
 vz = -altitudePower;
 printf("UAV MOVING down\n");}
 //BLf = Back Left far
 if ((DroneState == 22) && (AUTOfront == true)) {
 vy = innerPower;
 printf("UAV MOVING left\n");
 vz = 1.5*-altitudePower;
 printf("UAV MOVING DOWN\n");}

 //FLn = Front Left near
 if ((DroneState == 2) && (AUTOfront == true)) {
 vy = innerPower;
 printf("UAV MOVING left\n");

Page 206 of 233

Appendix B

 vz = 1.5*altitudePower;
 printf("UAV MOVING UP\n");}
 //FLf = Front Left far
 if ((DroneState == 6) && (AUTOfront == true)) {
 vy = outerPower;
 printf("UAV MOVING LEFT\n");
 vz = altitudePower;
 printf("UAV MOVING up\n");}

 //BRn = Back Right near
 if ((DroneState == 20) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING RIGHT\n");
 vz = -altitudePower;
 printf("UAV MOVING down\n");}
 //BRf = Back Right far
 if ((DroneState == 24) && (AUTOfront == true)) {
 vy = -innerPower;
 printf("UAV MOVING right\n");
 vz = 1.5*-altitudePower;
 printf("UAV MOVING DOWN\n");}

 if (DroneState == 13){

ardrone.setLED(ARDRONE_LED_ANIM_GREEN, 0.5, 5);
 }
 else {

ardrone.setLED(ARDRONE_LED_ANIM_RED,
0.5, 5);

 }

 // printf("Area= %d\n ",targetArea/1000);
 //printf("Area= %d\n ",targetArea/500);

 //Forward & Backwards Traversing
 if ((DroneState >0) && (AUTOfront == true)){
 //If far away move closer
 if (targetArea/500 < 2){//was 10,000 //was 1
 printf("Too FAR, Moving FORWARDS\n");
 vx = distancePower; }//move forwards
 //If too close move further away
 else if (targetArea/500 > 10){ //was 50,000 //was 16
 printf("Too CLOSE, Moving BACKWARDS\n");
 vx = 1.5*-distancePower;}//move backward

 //If distance is appropiate ie: 2->20 & drone is directly in front of target
 else if (DroneState == 13){

Page 207 of 233

Appendix B

 targetReached = true;

 if (UpANDSwitch == true) {

 printf("*******TARGET CENTRALISED AT SAFE
DISTANCE*******\n");
 printf("***************SWITCHING
CAMERAS*****************\n");

 //Automaticaly changes cameras used & searching
mode
 static int mode = 1;
 ardrone.setCamera(++mode%4);
 ardrone.setCamera(++mode%4);//had to do it twice
for some reason
 AUTOfront = false; //Turn OFF automatic control for
FRONT camera
 AUTOfloor = true; //Turn ON automatic control for
FLOOR camera

 //Ground target HSV parameters
 minH = 85, maxH = 240;
 minS = 226, maxS = 255;
 minV = 39, maxV = 166;
 printf("Image Procssing Parameters Have Been
Changed For Ground Target\n");

 //Move up to aquire better helipad view
 for (int a = 1; a <10000 ; a++){
 vz = 12*altitudePower;
 ardrone.move3D(vx, vy, vz, vr);}
 printf("UAV MOVED UP for better landing view\n");

 }//end of upANDswitch

 }//end IF drone is centrtalised at the appropiate distance to the target
 }//end IF drone state detected ie: not 0

 ardrone.move3D(vx, vy, vz, vr); //move the uav according to dynamic preset
variables

//////////////////////////////////////Configuration Options///
//THIS COULD BE REMOVED WHEN TESTED THAT THE HSV PARAMS ARE CHANGING
DEPENDANT UPON CAMERA USED
 //if (AUTOfloor == true){
 // // GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Ground Target)
 // int minH = 85, maxH = 240;
 // int minS = 226, maxS = 255;
 // int minV = 39, maxV = 166;}

Page 208 of 233

Appendix B

 // //printf("Image Procssing Parameters Have Been Changed For
Ground Target\n");}
 //else{
 // // GUI HSV Threshold slider bar limits 0 -> 255 (Fixed Forward Target)
 // //int minH = 90, maxH = 229;
 // //int minS = 187, maxS = 255;
 // //int minV = 39, maxV = 166;

 // int minH = 0, maxH = 0;
 // int minS = 0, maxS = 0;
 // int minV = 0, maxV = 0;
 // }

 // Change camera
 static int mode = 0;
 if (key == 'c') ardrone.setCamera(++mode%4);

 // Toggle Visual Stabilisation for DOWNWARDS Camera Reactive Behaviour
 if ((key == 'a') && (AUTOfloor == false)){ AUTOfloor = true; //toggle ON
 printf("AUTOfloor ON\n");
 //Ground target HSV parameters
 minH = 85, maxH = 240;
 minS = 226, maxS = 255;
 minV = 39, maxV = 166;
 printf("Image Procssing Parameters Have Been
Changed For GROUND FACING Target\n");
 //ardrone.setCamera(++mode%4); //switch
camera when near target

 }

 else if ((key == 'a') && (AUTOfloor == true)){ AUTOfloor = false; //toggle OFF
 printf("AUTOfloor OFF\n");}
 // ardrone.setCamera(++mode%4);

 // Toggle Visual Stabilisation for FORWARDS Camera Reactive Behaviour
 if ((key == 'z') && (AUTOfront == false)){ AUTOfront = true; //toggle ON
 printf("AUTOfront ON\n");

 minH = 0, maxH = 128; //max H best at 155 for
ocluded corner (Fixed Forward Target)
 minS = 136, maxS = 235;
 minV = 0, maxV = 103;
 printf("Image Procssing Parameters Have Been
Changed For FORWARD FACING Target\n");
 }

Page 209 of 233

Appendix B

 else if ((key == 'z') && (AUTOfront == true)){ AUTOfront = false; //toggle OFF
 printf("AUTOfront OFF\n");}

 // Toggle Automatic Landing for Downwards Camera Reactive
Behaviour
 if ((key == 'l') && (AUTOland == false)){ AUTOland = true; //toggle ON
 printf("AUTOland ON\n");}
 else if ((key == 'l') && (AUTOland == true)){ AUTOland = false; //toggle OFF
 printf("AUTOland OFF\n");}

 // Toggle Visual Stabilisation for FORWARDS Camera Reactive Behaviour
 if ((key == 'o') && (rec == false)){ rec = true; //toggle ON
 printf("Started Recoring!\n");}
 else if ((key == 'o') && (rec == true)){ rec = false; //toggle OFF
 printf("Stopped Recording\n");}

 // Release memory
 cvReleaseMemStorage(&contourStorage);

 // Show recording state
 if (rec) {
 static CvFont font = cvFont(1.0);
 cvPutText(image, "REC", cvPoint(600, 20), &font, CV_RGB(255,0,0));}

 //Trying to display srings of data to HUD
 // ostringstream str2; // string stream

 // // Battery
 //str2 << ardrone.getBatteryPercentage();
 //putText(result, str2.str(), Point(180, 33), CV_FONT_HERSHEY_PLAIN, 2,
CV_RGB(0, 250, 0), 2);

 if (altitude >0 && altitude <= 0.5) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "0.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 if (altitude > 0.5 && altitude <= 1) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "1m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 if (altitude >1 && altitude <= 1.5) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "1.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 if (altitude >1.5 && altitude <= 2) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "2m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

Page 210 of 233

Appendix B

 if (altitude >2 && altitude <= 2.5) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "2.5m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 //2.8 is maximum height of robotics lab
 if (altitude >2.5 && altitude <= 2.8) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "3m High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 if (altitude >2.8) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "TOO High", cvPoint(10, 20), &font2, CV_RGB(255,0,0));}

 //BATERY WARNING

 if (bat >=0 && bat < 5) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "LAND NOW", cvPoint(275, 20), &font2, CV_RGB(255,0,0));}

 if (bat >=5 && bat <= 10) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 10% ", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >10 && bat <= 20) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 20%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >20 && bat <= 30) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 30%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >30 && bat <= 40) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 40%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >40 && bat <=50) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 50%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >50 && bat <= 60) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 60%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >60 && bat <= 70) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 70%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

Page 211 of 233

Appendix B

 if (bat >70 && bat <= 80) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 80%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >80 && bat <= 90) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 90%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat >90 && bat < 100) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Bat = 99%", cvPoint(270, 20), &font2, CV_RGB(255,0,0));}

 if (bat == 100) {
 static CvFont font2 = cvFont(1.0);
 cvPutText(image, "Fully Charged", cvPoint(260, 20), &font2, CV_RGB(255,0,0));}

 //Verticle Lines superimposed on video feed
 cvLine(image, cvPoint(0, 0), cvPoint(0, 357), cvScalar(0, 255, 0), 2, 8);
 cvLine(image, cvPoint(127, 0), cvPoint(127, 357), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(255, 0), cvPoint(255, 357), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(383, 0), cvPoint(383, 357), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(510, 0), cvPoint(510, 357), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(638, 0), cvPoint(638, 357), cvScalar(0, 255, 0), 2, 8
);

 //Horizontal Lines superimposed on video feed
 cvLine(image, cvPoint(0, 0), cvPoint(638, 0), cvScalar(0, 255, 0), 2, 8);
 cvLine(image, cvPoint(0, 71), cvPoint(638, 71), cvScalar(0, 255, 0), 2, 8);
 cvLine(image, cvPoint(0, 143), cvPoint(638, 143), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(0, 214), cvPoint(638, 214), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(0, 285), cvPoint(638, 285), cvScalar(0, 255, 0), 2, 8
);
 cvLine(image, cvPoint(0, 357), cvPoint(638, 357), cvScalar(0, 255, 0), 2, 8
);

 // Display the image
 cvShowImage("camera", image);

 // Write video frames when told to
 if (rec){
 cvWriteFrame(video, image);}

 // Release images

Page 212 of 233

Appendix B

 cvReleaseImage(&hsv);
 cvReleaseImage(&binalized);

 // Remember last state visited
 prevDroneState = DroneState;

 }// End Main While Loop

 // Save the video
 cvReleaseVideoWriter(&video);

 // Close the DroneStateLog.txt file
 outputFile.close();

 // See you
 ardrone.close();

 return 0;
} //END MAIN PROG

Page 213 of 233

Appendix C

Case Study Research Prototype

Page 214 of 233

Appendix C

ASPEC

//ASPEC v2.9 - TODO - Feed Count & Only feed when bat>=12v potdivider
#include <RTCTimedEvent.h>
#include <Wire.h>
#include "RTClib.h"
#include <dht11.h>
#include <OneWire.h>
#include <DallasTemperature.h>
#include <FuzzyRule.h>
#include <FuzzyComposition.h>
#include <Fuzzy.h>
#include <FuzzyRuleConsequent.h>
#include <FuzzyOutput.h>
#include <FuzzyInput.h>
#include <FuzzyIO.h>
#include <FuzzySet.h>
#include <FuzzyRuleAntecedent.h>
RTC_DS1307 rtc; //must be specified after the includes or causes compilation errors

#define ONE_WIRE_BUS 10 // Temp Data wire is plugged into pin 10 on the Arduinowas 3
// Setup a oneWire instance to communicate with any OneWire devices
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
DeviceAddress insideThermometer = { 0x28, 0xF1, 0x61, 0xD2, 0x05, 0x00, 0x00, 0xB4 };
DeviceAddress outsideThermometer = { 0x28, 0x19, 0xFE, 0xD2, 0x05, 0x00, 0x00, 0xE4 };

//Set scheduled feeding times Hr,Min
int SetFeedTimeHrs = 13;
int SetFeedTimeMins = 30;
int SetFeedDay = 3; //Day: 1=Mon, 2=Tues, 3=Wed, 4=Thur, 5=Friday, 6=Sat, 7=Sun

int A_BML = 100;//ml A&B Range = 10ML -> 200ML in multiples of 10 (Enter total weekly
feed ammount)
int B_52ML = 50;//ml 1st Addative Range = 10ML -> 200ML in multiples of 10
int VoodooJuiceML = 50;//ml help roots
int BigBudML = 50;//ml help roots
int OverDriveML = 50;//ml help roots
//to do: CarboLoadML = 50
int FlushML = 50;//ml Swap voodo juice with royal flush before septemeber

int numofA_B10mlDoses = A_BML/10; //had to declare this again because not in scope
int numofB_5210mlDoses = B_52ML/10; //had to declare this again because not in scope
int numofVoodooJuice10mlDoses = VoodooJuiceML/10; //had to declare this again because
not in scope
int numofBigBud10mlDoses = BigBudML/10; //had to declare this again because not in scope
int numofOverDrive10mlDoses = OverDriveML/10; //had to declare this again because not in
scope
int numofFlush10mlDoses = FlushML/10; //had to declare this again because not in scope

Page 215 of 233

Appendix C

int Pump10mlTimeDelay = 341; //and this
int settleTime = 5000;
int FeedCount;

//Specify pin numbers of each connected component
int led = 13; // Pin 13 has an LED connected on most Arduino boards.
int RLY8 = 9; //Bloom-A + Bloom-B Pumps (Symultanious Activation)
int RLY7 = 8; //B-52 (Vitamin Pump)
int RLY6 = 7; //VoodoJuice / CarboLoad / Royal Flush
int RLY5 = 6; //Big-Bud
int RLY4 = 5; //Overdrive
int RLY3 = 4; //Dual Cooling Fans
int RLY2 = 3; //NFT Pump
int RLY1 = 2; //Flush Pump
int AirPumpRLY= 52;
#define humidityPin 53

// Instantiating an object of library
Fuzzy* fuzzy = new Fuzzy();

FuzzySet* concentrated = new FuzzySet(0, 20, 20, 40);
FuzzySet* safe = new FuzzySet(30, 50, 50, 70);
FuzzySet* dilute = new FuzzySet(60, 80, 100, 100);

FuzzySet* alkali = new FuzzySet(0, 0, 0, 0);
FuzzySet* neutral = new FuzzySet(1, 10, 10, 20);
FuzzySet* normal = new FuzzySet(15, 30, 30, 50);
FuzzySet* acidic = new FuzzySet(45, 60, 70, 70);

FuzzySet* cold = new FuzzySet(-30, -30, -20, -10);
FuzzySet* good = new FuzzySet(-15, 0, 0, 15);
FuzzySet* hot = new FuzzySet(10, 20, 30, 30);

//Declare Variables
int PrevHumidity, Humidity, hCheck;
//int MinHumidity, MaxHumidity;
dht11 DHT11;
float myTemp,myTemp2; //Changes when updateTemperature method is repetadly run
int Temp,Temp2;
int MinTemp = 100;
int MinTemp2 = 100;
int MaxTemp = myTemp;
int MaxTemp2 = myTemp2;
float PrevMinTemp, PrevMaxTemp,PrevMinTemp2, PrevMaxTemp2;
bool AirIsON, NFTIsON, FlushIsON;
//SETUP///
void setup() {
 Serial.begin(57600);
 // Start up the library

Page 216 of 233

Appendix C

 sensors.begin();
 //set the resolution to 10 bit (good enough?)
 sensors.setResolution(insideThermometer, 10);
 sensors.setResolution(outsideThermometer, 10);

Serial.print("Sucsessful Feeds = ");
Serial.print(FeedCount);
Serial.print(". Feed set to: ");
Serial.print(SetFeedTimeHrs);
Serial.print(":");
Serial.print(SetFeedTimeMins);
Serial.print(" on ");

 if (SetFeedDay == 7)
 Serial.print("Sun");
 if (SetFeedDay == 1)
 Serial.print("Mon");
 if (SetFeedDay == 2)
 Serial.print("Tues");
 if (SetFeedDay == 3)
 Serial.print("Wednes");
 if (SetFeedDay == 4)
 Serial.print("Thurs");
 if (SetFeedDay == 5)
 Serial.print("Fri");
 if (SetFeedDay == 6)
 Serial.print("Satur");

 Serial.println("day ");

 //---------------Manualy set the time (KEEP COMMENTED)------------------- set at 25 seconds to
to compile & upload
 // ALWAYS REMEMBER TO RE-UPLOAD A COMMENTED OUT VERSION IMMEDIATLY
AFTER CHANGING UNCOMMENTED TIME
 //RTCTimedEvent.time.hour = 11;
 //RTCTimedEvent.time.minute = 25; //set at same as target time minute
 //RTCTimedEvent.time.second = 0; //Press upload at 10 sec to the hour
 //RTCTimedEvent.time.day = 30; //date
 //RTCTimedEvent.time.month = 10; //Jan=1, Feb=2, March=3
 //RTCTimedEvent.time.year = 2015;
 //RTCTimedEvent.time.dayOfWeek = 5; //1=Monday, 2=Tues 3= Wednesday 4=Thursday
 //RTCTimedEvent.writeRTC();//never use this or wil reset time

 if (! rtc.isrunning()) {
 Serial.println("RTC is NOT running!");
 Serial.print("Please check time and reset using code above if nessecery");
 // following line sets the RTC to the date & time this sketch was compiled
 // rtc.adjust(DateTime(__DATE__, __TIME__));//NOTE:does not set day of week or date/time
in RTCTimedEvent Lib
 }

Page 217 of 233

Appendix C

 //following line sets the RTC to the date & time of PC when compiled (19sec behind)
 //rtc.adjust(DateTime(__DATE__, __TIME__)); //KEEP COMMENTED

 //initial buffer for 13 timers
 RTCTimedEvent.initialCapacity = sizeof(RTCTimerInformation)*13;

 //At Lunchtime on every Saturday of April, Call BloomFeed1Call
 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY, //Date
 4, //Month: 4=April
 SetFeedDay,
 BloomFeed1Call);

 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY, //Date
 5, //Month:5 =May
 SetFeedDay,
 BloomFeed2Call);

 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY, //Date
 6, //Month: 6=June
 SetFeedDay,
 BloomFeed3Call);

 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY, //Date
 7, //Month:7=July
 SetFeedDay,
 BloomFeed4Call);

 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY,
 8, //Month: 8=August
 SetFeedDay,
 BloomFeed5Call);

 RTCTimedEvent.addTimer(SetFeedTimeMins,
 SetFeedTimeHrs,
 TIMER_ANY, //Date
 9, //Month: 9=September
 SetFeedDay,
 BloomFeed6Call);

Page 218 of 233

Appendix C

 //Turn Air Pump ON at 9am
 RTCTimedEvent.addTimer(00, //minute
 14, //hour
 TIMER_ANY, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 AirCallON);

 //Turn Air Pump OFF at 10pm
 RTCTimedEvent.addTimer(01, //minute
 14, //hour
 TIMER_ANY, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 AirCallOFF);

 //Turn NFT Pump ON at 6am
 RTCTimedEvent.addTimer(0, //minute
 6, //hour
 TIMER_ANY, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 NFTCallON);

 //Turn NFT Pump OFF at 9pm
 RTCTimedEvent.addTimer(34, //minute
 6, //hour
 TIMER_ANY, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 NFTCallOFF);
 //**
 //Turn Flush Pump ON at 11am on the first day of each month (20minFlush)
 RTCTimedEvent.addTimer(47, //minute
 14, //hour
 23, //Date //should be 1
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 FlushCallON);

 //Turn Flush Pump OFF at 11:20am on the first day of each month (20minFlush)
 RTCTimedEvent.addTimer(50, //minute
 14, //hour
 23, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 FlushCallOFF);

 //Display date/time & Temperatures (used for data logging & Serial Monitoring)
 RTCTimedEvent.addTimer(TIMER_ANY, //minute

Page 219 of 233

Appendix C

 TIMER_ANY, //hour
 TIMER_ANY, //Date
 TIMER_ANY, //Month
 TIMER_ANY, //DayOfWeek
 minuteCall);

 // FuzzyInput
 FuzzyInput* inputEC = new FuzzyInput(1);
 EC->addFuzzySet(concentrated);
 EC->addFuzzySet(safe);
 EC->addFuzzySet(dilute);

 fuzzy->addFuzzyInput(EC);

 // FuzzyInput
 FuzzyInput* inputPH = new FuzzyInput(2);
 PH->addFuzzySet(alkali);
 PH->addFuzzySet(neutral);
 PH->addFuzzySet(normal);
 PH->addFuzzySet(acidic);

 fuzzy->addFuzzyInput(PH);

 // FuzzyInput
 FuzzyInput* temperature = new FuzzyInput(3);
 temperature->addFuzzySet(cold);
 temperature->addFuzzySet(good);
 temperature->addFuzzySet(hot);

 fuzzy->addFuzzyInput(temperature);

 // FuzzyOutput
 FuzzyOutput* risk = new FuzzyOutput(1);

 FuzzySet* minimum = new FuzzySet(0, 20, 20, 40);
 risk->addFuzzySet(minimum);
 FuzzySet* average = new FuzzySet(30, 50, 50, 70);
 risk->addFuzzySet(average);
 FuzzySet* maximum = new FuzzySet(60, 80, 80, 100);
 risk->addFuzzySet(maximum);

 fuzzy->addFuzzyOutput(risk);

 // FuzzyOutput
 // adding nutrient dosage as output too
 FuzzyOutput* outputDosage = new FuzzyOutput(2);

 FuzzySet* stopedOut = new FuzzySet(0, 0, 0, 0);
 outputDosage->addFuzzySet(noDoseOut);
 FuzzySet* slowOut = new FuzzySet(1, 10, 10, 20);

Page 220 of 233

Appendix C

 outputDosage->addFuzzySet(lowDoseOut);
 FuzzySet* normalOut = new FuzzySet(15, 30, 30, 50);
 outputDosage->addFuzzySet(normalDoseOut);
 FuzzySet* quickOut = new FuzzySet(45, 60, 70, 70);
 outputDosage->addFuzzySet(highDoseOut);

 fuzzy->addFuzzyOutput(outputDose);

 // Building FuzzyRule
 FuzzyRuleAntecedent* ECConcentratedAndPHAlkali = new FuzzyRuleAntecedent();
 ecConcentratedAndPHAlkali ->joinWithAND(concentrated, highDose);

 FuzzyRuleAntecedent* temperatureCold = new FuzzyRuleAntecedent();
 temperatureCold->joinSingle(cold);

 FuzzyRuleAntecedent* ifPHAlkaliAndECHighDoseOrTemperatureCold = new
FuzzyRuleAntecedent();
 ifECConcentratedAndPHAlkaliOrTemperatureCold-
>joinWithOR(ECConcentratedAndPHAlkali, temperatureCold);

 FuzzyRuleConsequent* thenRisMaximumAndPHAcidic = new FuzzyRuleConsequent();
 thenRisMaximumAndPHAcidic->addOutput(maximum);
 thenRisMaximumAndPHAcidic->addOutput(lowDoseOut);

 FuzzyRule* fuzzyRule1 = new FuzzyRule(1,
ifECConcentratedAndDosageHighDoseOrTemperatureCold,
thenRisMaximumAndDosageHighDoseOut);
 fuzzy->addFuzzyRule(fuzzyRule1);

 // Building FuzzyRule
 FuzzyRuleAntecedent* ECConcentratedAndPHNeutral = new FuzzyRuleAntecedent();
 ECSafeAndPHNormal->joinWithAND(safe, normal);
 FuzzyRuleAntecedent* ifECSafeAndPHNormalOrTemperatureGood = new
FuzzyRuleAntecedent();
 ifECSafeAndPHNormalOrTemperatureGood->joinWithOR(ECSafeAndPHSpeedNormal,
good);

 FuzzyRuleConsequent* thenRiskAverageAndECNormal = new FuzzyRuleConsequent();
 thenRiskAverageAndPHNormal->addOutput(average);
 thenRiskAverageAndPHNormal->addOutput(normalOut);

 FuzzyRule* fuzzyRule2 = new FuzzyRule(2, ifECSafeAndPHNormalOrTemperatureGood,
thenRiskAverageAndPHNormal);
 fuzzy->addFuzzyRule(fuzzyRule2);

 // Building FuzzyRule
 FuzzyRuleAntecedent* ECDiluteAndPHNeutral = new FuzzyRuleAntecedent();
 ECConcentratedAndPHNeutral->joinWithAND(concentrated, neutral);
 FuzzyRuleAntecedent* ifECDiluteAndPHNeutralOrTemperatureHot = new
FuzzyRuleAntecedent();

Page 221 of 233

Appendix C

 ifECDiluteAndPHNeutralOrTemperatureHot->joinWithOR(ECDiluteAndPHNeutral, hot);

 FuzzyRuleConsequent* thenRiskMinimumDoseHigh = new FuzzyRuleConsequent();
 thenRiskMinimumDoseHigh->addOutput(minimum);
 thenRiskMinimumDoseHigh->addOutput(HighDoseOut);

 FuzzyRule* fuzzyRule3 = new FuzzyRule(3, ifECDiluteAndPHNeutralOrTemperatureHot,
thenRiskMinimumDoseHigh);
 fuzzy->addFuzzyRule(fuzzyRule3);

 // Initialize digital pins as an output
 pinMode(led, OUTPUT);
 pinMode(RLY8, OUTPUT); //Bloom-A + Bloom-B Pumps (Symultanious Activation)
 pinMode(RLY7, OUTPUT); //B-52 (Vitamin Pump)
 pinMode(RLY6, OUTPUT); //VoodoJuice (Root-Regen Pump)
 pinMode(RLY5, OUTPUT); //Big-Bud
 pinMode(RLY4, OUTPUT); //Overdrive
 pinMode(RLY3, OUTPUT); //Dual Cooling Fans
 pinMode(RLY2, OUTPUT); //NFT Pump
 pinMode(RLY1, OUTPUT); //Flush Pump
 pinMode(AirPumpRLY, OUTPUT); //3.3v Air Bubblestone Pump (Cools nutrient solution)
 //pinMode(humidityPin, INPUT); //Dont think this is needed, maybe pins default to INPUT
mode

 // Initialise relays to HIGH to prevent them from activating pumps
 digitalWrite(RLY8, HIGH); //Bloom-A + Bloom-B Pumps (Symultanious Activation)
 digitalWrite(RLY7, HIGH); //B-52 (Vitamin Pump)
 digitalWrite(RLY6, HIGH); //VoodoJuice (Root-Regen Pump)
 digitalWrite(RLY5, HIGH); //Big-Bud
 digitalWrite(RLY4, HIGH); //Overdrive
 digitalWrite(RLY3, HIGH); //Dual Cooling Fans
 digitalWrite(RLY2, LOW); //NFT Pump (Activated on startup)
 digitalWrite(RLY1, HIGH); //Flush Pump
 digitalWrite(AirPumpRLY, LOW); //3.3v Air Cooling Bubblestone Pump (This causes air pump
to run when arduino is powered up or reset)
}//end of SETUP
//LOOP///
//////////////////////////////////

// loop routine runs over and over again forever:
void loop() {
 RTCTimedEvent.loop();
 delay(1000); //Was 2000, may caus instability not sure

 // RELAYTEST();

//Dont pump NFT when flushing the system
if (FlushIsON == 1){
 digitalWrite(RLY2, HIGH); //NFT Pump OFF
 digitalWrite(RLY1, LOW); //Flush Pump ON

Page 222 of 233

Appendix C

 }
 else
 {
 digitalWrite(RLY2, LOW); //NFT Pump ON
 digitalWrite(RLY1, HIGH); //Flush Pump OFF
 }

 //for constant monitoring of temperature rather than timer
 updateTemperature(insideThermometer);
 updateTemperature2(outsideThermometer);

 Temp = myTemp;
 if ((myTemp < MinTemp) && (myTemp != 0)) {
 // Serial.print("MyTemp < MinTemp\n\r");
 PrevMinTemp = myTemp;
 MinTemp = PrevMinTemp;
 // Serial.print(MinTemp);
 // Serial.print("HAS JUST BEEN SET FOR MIN TEMP EVER RECORED\n\r");
 }

 Temp2 = myTemp2;
 if ((myTemp2 < MinTemp2) && (myTemp2 != 0)) {
 // Serial.print("MyTemp < MinTemp\n\r");
 PrevMinTemp2 = myTemp2;
 MinTemp2 = PrevMinTemp2;
 // Serial.print(MinTemp);
 // Serial.print("HAS JUST BEEN SET FOR MIN TEMP EVER RECORED\n\r");
 }

 // Serial.print(MinTemp);
 // Serial.print(" MIN\n\r");
 // Serial.print(MaxTemp);
 // Serial.print(" MAX\n\r");

 if (myTemp > MaxTemp) {
 // Serial.print("MyTemp2 > MaxTemp2\n\r");
 PrevMaxTemp = myTemp;
 MaxTemp = PrevMaxTemp;
 // Serial.print(MaxTemp2);
 // Serial.print("HAS JUST BEEN SET FOR MAX TEMP2 EVER RECORED\n\r");
 }
 if (myTemp2 > MaxTemp2) {
 // Serial.print("MyTemp2 > MaxTemp2\n\r");
 PrevMaxTemp2 = myTemp2;
 MaxTemp2 = PrevMaxTemp2;
 // Serial.print(MaxTemp2);
 // Serial.print("HAS JUST BEEN SET FOR MAX TEMP2 EVER RECORED\n\r");
 }

 // Serial.print("Getting temperatures...\n\r");

Page 223 of 233

Appendix C

 sensors.requestTemperatures();

 // if (insideThermometer != previnsideThermometer){
// Serial.print("Inside temperature is: ");
// printTemperature(insideThermometer);
// Serial.print("\n\r");

// Serial.print("Outside temperature is: ");
// printTemperature(outsideThermometer);
// Serial.print("\n\r");
 // Serial.print("\n\r\n\r");

 //RELAYTEST(); //Execute Relay Test Function

//-----------------Humidity Output-------------------
int HumidityCallibration = -10;

 hCheck = DHT11.read(humidityPin);
 if(hCheck != 0)
 Humidity = 255; //Must be an error
 else
 Humidity = DHT11.humidity;
 Humidity = Humidity + HumidityCallibration; //my calibration

 String s1;
 if(Humidity == 255 + HumidityCallibration)
 s1 = "HUMIDITY ERROR - Emergency DualFans ON";
 else
 s1 = String(Humidity) + "%Humidity";

 if(PrevHumidity!=Humidity){
 Serial.println(s1);
 digitalWrite(led, HIGH);} // Initialise LED to high to turn on the LED

//When too humid inside the PinderPonics, Begin ventilation
 //Reccomeded humidity for flowering is 40% - 60%
 //Therefor this value should be 60
 if (Humidity > 60 || myTemp2 > 29)
 digitalWrite(RLY3, LOW); // Dual Ventilation Fans ON
 else digitalWrite(RLY3, HIGH); // Dual Ventilation Fans OFF
 delay(200); // wait for a second otherwise very buggy

 //Reccomended temp for nutrient solution tank is 15-24 oC
 if (AirIsON == 1 || myTemp > 24)//&& Inside temperature > 18oC
 digitalWrite(AirPumpRLY, HIGH); // Air Stone Pump
 else digitalWrite(AirPumpRLY, LOW); // Dual Ventilation Fans OFF
 delay(200); // wait for a second otherwise very buggy

fuzzy->setInput(1, 10);
 fuzzy->setInput(2, 30);

Page 224 of 233

Appendix C

 fuzzy->setInput(3, -15);

 fuzzy->fuzzify();

 Serial.print("EC: ");
 Serial.print(concentrated->getPertinence());
 Serial.print(", ");
 Serial.print(safe->getPertinence());
 Serial.print(", ");
 Serial.println(dilute->getPertinence());

 Serial.print("Dose: ");
 Serial.print(noDose->getPertinence());
 Serial.print(", ");
 Serial.print(lowDose->getPertinence());
 Serial.print(", ");
 Serial.print(normalDose->getPertinence());
 Serial.print(", ");
 Serial.println(highDose->getPertinence());

 Serial.print("Temperature: ");
 Serial.print(cold->getPertinence());
 Serial.print(", ");
 Serial.print(good->getPertinence());
 Serial.print(", ");
 Serial.println(hot->getPertinence());

 float output1 = fuzzy->defuzzify(1);
 float output2 = fuzzy->defuzzify(2);

 Serial.print("Risk output: ");
 Serial.print(output1);
 Serial.print(", Dose output: ");
 Serial.println(output2);

 //Activate NFT Pump
 //if (NFTIsON ==1){
 // digitalWrite(RLY2, LOW); // Dual Ventilation Fans ON
 // Serial.print("NFT IS ON");}
 // else { digitalWrite(RLY2, HIGH); // Dual Ventilation Fans OFF
 // Serial.print("NFT IS OFF");
 // delay(200);} // wait for a second otherwise very buggy
//
// //Activate Flush Pump
// if (Humidity > 27)
// digitalWrite(RLY1, LOW); // Dual Ventilation Fans ON
// else digitalWrite(RLY1, HIGH); // Dual Ventilation Fans OFF
// delay(200); // wait for a second otherwise very buggy

//---

Page 225 of 233

Appendix C

 //Show time every update
//DateTime now = rtc.now();
//
// Serial.print(now.year(), DEC);
// Serial.print('/');
// Serial.print(now.month(), DEC);
// Serial.print('/');
// Serial.print(now.day(), DEC);
// Serial.print(' ');
// Serial.print(now.hour(), DEC);
// Serial.print(':');
// Serial.print(now.minute(), DEC);
// Serial.print(':');
// Serial.print(now.second(), DEC);
// Serial.println();

//at the end of the loop store current humiudity to old humidity
PrevHumidity = Humidity;
digitalWrite(led, LOW); // Turn LED off after being on from humidity change
}

//--------------------------Timer Functions---------------------------------
void minuteCall(RTCTimerInformation* Sender) {
 Serial.print("Time: ");
 Serial.print(RTCTimedEvent.time.hour, DEC);
 Serial.print(":");
 Serial.print(RTCTimedEvent.time.minute, DEC);
 Serial.print(":");
 Serial.print(RTCTimedEvent.time.second, DEC);
 Serial.print(" Date: ");
 Serial.print(RTCTimedEvent.time.day, DEC);
 Serial.print("/");
 Serial.print(RTCTimedEvent.time.month, DEC);
 Serial.print("/");
 Serial.println(RTCTimedEvent.time.year, DEC);

 Serial.print("Greenhouse temperature is: ");
 printTemperature2(outsideThermometer);
 Serial.print("\n\r");

 Serial.print("Tank temperature is: ");
 printTemperature(insideThermometer);
 Serial.print("\n\r");

Serial.print("C:");
 Serial.print(MinTemp);
 Serial.print(" Tank MIN Temp ");
 Serial.print("C:");
 Serial.print(MaxTemp);

Page 226 of 233

Appendix C

 Serial.print(" Tank MAX Temp\n\r");

 Serial.print("C:");
 Serial.print(MinTemp2);
 Serial.print(" Greenhouse MIN Temp ");
 Serial.print("C:");
 Serial.print(MaxTemp2);
 Serial.print(" Greenhouse MAX Temp\n\n\r");
}

//April Bloom Feed
void BloomFeed1Call(RTCTimerInformation* Sender) {
Serial.print("Feeding ");
 Serial.print(A_BML);
 Serial.print("ml Bloom A&B");
 for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*1.3); //200 = MINml
 digitalWrite(RLY8, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);
 Serial.print("ml VoodooJuice");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
FeedCount = FeedCount +1;
} //END April BloomFeed2Cal

//May Bloom Feed
void BloomFeed2Call(RTCTimerInformation* Sender) {
 Serial.print("Feeding ");
 Serial.print(A_BML);
 Serial.print("ml Bloom A&B");
 for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*1.3); //200 = MINml
 digitalWrite(RLY8, HIGH);
 delay(settleTime);//Let nutrient tubes settle

Page 227 of 233

Appendix C

 }//end for
 Serial.println(" Done!");

Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);
 Serial.print("ml VoodooJuice");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //NEEDS ALTERING FOR JUNE USING SLUGISH
CARBOLOAD
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

Serial.print("Feeding ");
 Serial.print(BigBudML);
 Serial.print("ml BigBud");
 for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY5, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
 FeedCount = FeedCount +1;
 }//end BloomFeed2Call

//June Bloom Feed
void BloomFeed3Call(RTCTimerInformation* Sender) {
 Serial.println(" DONT FORGET TO SWITCH VOODO JUICE WITH CARBOLOAD");
 Serial.print("Feeding ");
 Serial.print(A_BML);
 Serial.print("ml Bloom A&B");
 for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*1.3); //200 = MINml
 digitalWrite(RLY8, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(BigBudML);

Page 228 of 233

Appendix C

 Serial.print("ml BigBud");
 for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY5, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(B_52ML);
 Serial.print("ml B-52");
 for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY7, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 //NEED FEED CARBOLOAD should i add ML VARIABLES for carbo load aand flush or use
same as voodujuice YES
Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);
 Serial.print("ml CarboLoad");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*4); //200 = MINml
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
FeedCount = FeedCount +1;

}//end BloomFeed3Call

//July Bloom Feed
void BloomFeed4Call(RTCTimerInformation* Sender) {
 Serial.println(" CHECK VOODOO JUICE HAS BEEN SWITCHED WITH CARBOLOAD");
 Serial.print("Feeding ");
 Serial.print(A_BML);
 Serial.print("ml Bloom A&B");
 for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*1.3); //200 = MINml

Page 229 of 233

Appendix C

 digitalWrite(RLY8, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(BigBudML);
 Serial.print("ml BigBud");
 for (int doseCount = 1; doseCount <= numofBigBud10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY5, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY5, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(B_52ML);
 Serial.print("ml B-52");
 for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY7, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

//NEED FEED CARBOLOAD should i add ML VARIABLES for carbo load aand flush or use
same as voodujuice YES
Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);
 Serial.print("ml CarboLoad");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*4); //200 = MINml
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
FeedCount = FeedCount +1;
}//end BloomFeed4Call

//August Bloom Feed
void BloomFeed5Call(RTCTimerInformation* Sender) {
 Serial.println(" CHECK VOODOO JUICE HAS BEEN SWITCHED WITH CARBOLOAD");
 Serial.println(" CHECK OVERDRIVE HAS BEEN FILLED UP FOR 1st EVER USE");

Page 230 of 233

Appendix C

 Serial.print("Feeding ");
 Serial.print(A_BML);
 Serial.print("ml Bloom A&B");
 for (int doseCount = 1; doseCount <= numofA_B10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*1.3); //200 = MINml
 digitalWrite(RLY8, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 Serial.print("Feeding ");
 Serial.print(B_52ML);
 Serial.print("ml B-52");
 for (int doseCount = 1; doseCount <= numofB_5210mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY7, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY7, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

Serial.print("Feeding ");
 Serial.print(OverDriveML);
 Serial.print("ml OverDrive");
 for (int doseCount = 1; doseCount <= numofOverDrive10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY4, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY4, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!");

 //NEED FEED CARBOLOAD should i add ML VARIABLES for carbo load aand flush or use
same as voodujuice YES
Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);
 Serial.print("ml CarboLoad");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay*4); //200 = MINml
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
 FeedCount = FeedCount +1;

Page 231 of 233

Appendix C

 }//end BloomFeed5Call

 //September Bloom Feed
 void BloomFeed6Call(RTCTimerInformation* Sender) {

 //NEED FEED CARBOLOAD should i add ML VARIABLES for carbo load aand flush or use
same as voodujuice YES
Serial.println(" DONT FORGET TO SWITCH CARBOLOAD WITH ROYAL FLUSH");
Serial.print("Feeding ");
 Serial.print(VoodooJuiceML);//or TODO FlushML
 Serial.print("ml FLUSH");
 for (int doseCount = 1; doseCount <= numofVoodooJuice10mlDoses; doseCount++) {
 Serial.print(".");
 digitalWrite(RLY6, LOW); //BloomA &BloomB symultaniously
 delay(Pump10mlTimeDelay); //200 = MINml
 digitalWrite(RLY6, HIGH);
 delay(settleTime);//Let nutrient tubes settle
 }//end for
 Serial.println(" Done!\n");
 FeedCount = FeedCount +1;
 }//end BloomFeed6Call

void AirCallON(RTCTimerInformation* Sender) {
 AirIsON = 1;
 Serial.println("Air Pump is ON");
}

void AirCallOFF(RTCTimerInformation* Sender) {
 AirIsON = 0;
 Serial.println("Air Pump is OFF");
}

void NFTCallON(RTCTimerInformation* Sender) {
 NFTIsON = 1;
 Serial.println("NFT Pump is ON");
}

void NFTCallOFF(RTCTimerInformation* Sender) {
 NFTIsON = 0;
 Serial.println("NFT Pump is OFF");
}

void FlushCallON(RTCTimerInformation* Sender) {
 FlushIsON = 1;

 Serial.println("Flush Pump is ON");
}

void FlushCallOFF(RTCTimerInformation* Sender) {

Page 232 of 233

Appendix C

 FlushIsON = 0;
 Serial.println("Flush Pump is OFF");
}

void updateTemperature(DeviceAddress deviceAddress)
{
 float tempC = sensors.getTempC(deviceAddress);
 if (tempC == -127.00) {
 Serial.print("Error getting temperature");
 } else {
 // Serial.print("C: ");
 // Serial.print(tempC);
 // Serial.print(" F: ");
 //Serial.print(DallasTemperature::toFahrenheit(tempC));
 myTemp = tempC;

 }
}

void updateTemperature2(DeviceAddress deviceAddress)
{
 float tempC2 = sensors.getTempC(deviceAddress);
 if (tempC2 == -127.00) {
 Serial.print("Error getting temperature");
 } else {
 // Serial.print("C: ");
 // Serial.print(tempC);
 // Serial.print(" F: ");
 //Serial.print(DallasTemperature::toFahrenheit(tempC));
 myTemp2 = tempC2;

 }
}

void printTemperature(DeviceAddress deviceAddress)
{
 float tempC = sensors.getTempC(deviceAddress);
 if (tempC == -127.00) {
 Serial.print("Error getting temperature");
 } else {
 Serial.print("C: ");
 Serial.print(tempC);
 Serial.print(" F: ");
 Serial.print(DallasTemperature::toFahrenheit(tempC));
 myTemp = tempC;
 }
}
void printTemperature2(DeviceAddress deviceAddress)
{
 float tempC2 = sensors.getTempC(deviceAddress);

Page 233 of 233

Appendix C

 if (tempC2 == -127.00) {
 Serial.print("Error getting temperature");
 } else {
 Serial.print("C: ");
 Serial.print(tempC2);
 Serial.print(" F: ");
 Serial.print(DallasTemperature::toFahrenheit(tempC2));
 myTemp2 = tempC2;
 }
}

//-----------------RELAY Testing Output-------------------
void RELAYTEST()
 {
 digitalWrite(RLY8, LOW); //BloomA &BloomB symultaniously
 delay(500);
 digitalWrite(RLY8, HIGH);

 digitalWrite(RLY7, LOW); //B-52 (Vitamin Pump)
 delay(500);
 digitalWrite(RLY7, HIGH);

 digitalWrite(RLY6, LOW); //Voodo Juice (Healthy Bacteria Pump)
 delay(500);
 digitalWrite(RLY6, HIGH);

 digitalWrite(RLY5, LOW); //Big Bud or Final Phase (Big Yeilds or Flushing Solution)
 delay(500);
 digitalWrite(RLY5, HIGH);

 digitalWrite(RLY4, LOW); //OverDrive (LastBoost)
 delay(500);
 digitalWrite(RLY4, HIGH);

 digitalWrite(RLY3, LOW); //Dual Fans
 delay(500);
 digitalWrite(RLY3, HIGH);

 digitalWrite(RLY2, LOW); // NFT Recirculation Pump
 delay(500);
 digitalWrite(RLY2, HIGH);

 digitalWrite(RLY1, LOW); // Flushing/Waste Pump
 delay(500);
 digitalWrite(RLY1, HIGH);

 digitalWrite(AirPumpRLY, HIGH); // Flushing/Waste Pump
 delay(500);
 digitalWrite(AirPumpRLY, LOW);

 }

