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ABSTRACT 
 

This study presents a newly developed micro-simulation model for motorway roadwork 

sections to evaluate the efficiency of different temporary traffic management schemes (TTMSs) 

such as the use of narrow lanes, offside and inside lane closures. The effect on traffic 

performance (i.e. capacity and delay) of various parameters (e.g. flow rates, percentage of heavy 

goods vehicles, roadwork zone lengths and speed limits) has been tested. The reason for 

building this model from scratch is the inability of an industry standard software package (i.e. 

S-Paramics), which has been made available for this research, in appropriately presenting traffic 

behaviour at motorway roadwork sections. The newly developed micro-simulation model was 

built using the FORTRAN programming language. It was developed based on car-following, 

lane changing, gap acceptance, lane closure and narrow lanes rules. 

Data from four sources (taken from different sets of data from UK motorways sites) were 

collected and analysed. The data was used in developing, calibrating and validating the model. 

Observations from motorway roadwork sites with narrow lanes scheme show certain prominent 

drivers’ behaviours, namely avoiding passing HGVs on adjacent lanes and lane repositioning 

before passing an HGV.  

The simulation results revealed that, under low traffic demand, the use of narrow lanes scheme 

seems to perform better in terms of capacity and delay than both offside and inside lane closure 

schemes, whereas under high traffic demand associated with high HGVs percentage (i.e. ≥ 

25%), the use of offside lane closure scheme seems to perform better in terms of capacity and 

delay than narrow lanes scheme and inside lane closure scheme. The simulation results showed 

that the presence of HGVs has a large impact on reducing site capacity. The model also suggests 

that a stricter speed limit compliance should be imposed on motorway roadwork sections with 

the use of narrow lanes TTMS in order to maintain higher section capacity and reduced delays. 

Regression analysis was carried out based on the simulation results in order to provide equations 

for use in estimating section capacity and delay. 
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CHAPTER ONE                                                                                    
INTRODUCTION 

 

 

1.1  Background 

Roadwork sections have become the rule rather than the exception on motorways due to the 

continuous requirement for road maintenance, resurfacing and extension. With Highways 

England’s 2014 five years £15 billion strategic business plan to modernise and maintain 

England’s 6900 km motorways and major A roads network, motorways will be a key area of 

infrastructure reconstruction. During this time, there will be several closures for road 

maintenance (www.infrastructure-intelligence.com, 2014). According to Chitturi and 

Benekohal (2007), nearly 20% of the U.S. National Highway Systems has been reported to be 

under reconstruction during the peak summer roadwork season.  

Roadworks have impacts for safety (i.e. for road users/workers) and capacity (i.e. congestion, 

queuing and delays). Based on Elghamrawy (2011), there were 745 reported fatalities and 

40,700 severe injuries per year at roadwork sections in the USA. The Federal Highway 

Administration of America (FHWA, 2004) reported that 10% of overall road traffic congestion 

was due to roadwork sections costing the equivalent of $7.8 billion. According to London First 

(2012), the total cost of congestion due to roadworks in London alone was around £750 million.  

Traffic congestion on roadwork sections is mainly due to high traffic demands approaching the 

carriageway capacity (or possibly due to the occurrence of incidents/accidents). A variety of 

temporary traffic management schemes (TTMSs) have been developed and are being used to 

maintain the maximum carriageway capacity during roadwork periods (see for example the US 

Manual on Uniform Traffic Control Devices - MUTCD, 2009 and the UK Traffic Signs Manual, 

Chapter 8, 2009). The most common schemes used at the UK motorway roadwork sections are 

lane closure and narrow lanes schemes. Freeman et al. (2004) and Bourne et al. (2008) reported 

that the use of narrow lanes scheme has become very common in the UK in recent years. 

Although the physical narrowing of lanes (as suggested in some studies such as Warner and 

Aberg, 2008 and Ahie et al., 2015) makes it harder to exceed the speed limits on the road, the 

main purpose of using these narrow lanes is to significantly improve the overall capacity under 

the assumption that three narrow lanes, for example, have a significantly higher capacity than 

two normal width lanes. However, very limited research has been found in the literature to back 
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up the assumption of using narrow lanes to preserve carriageway capacity during roadworks 

periods (see for example, Marlow et al., 1992). Therefore, an evaluation of traffic performance 

is needed at such roadwork sections to evaluate the efficiency of those TTMSs and also to 

determine the parameters that contribute to the cause of congestion.  

Traffic micro-simulation models are an effective technique which can be used in the evaluation 

of the roadwork sections since the use of on-site trials needs extensive time and funding 

resources and also it is causing disturbance to traffic stream. According to Hidas (2005) the 

micro-simulation models have the ability to represent traffic behaviour and help more in 

implementing different scenarios without causing disruption to traffic operations in the field 

and without using expensive sources. 

1.2 Aim and objectives  

The principal purpose of this study is to develop a new traffic micro-simulation model to 

evaluate the efficiency of different temporary traffic management schemes (TTMSs) at 

roadwork sections to identify the most suitable scheme that will maximise capacity and 

minimise delay at such sections. Also, the developed model will be used as a tool to investigate 

different factors that could affect traffic performance of roadwork sections. The objectives of 

this study are as follow: 

 Conducting a literature review on the concept of modelling motorway roadwork 

sections in order to produce a realistic traffic microscopic simulation model. 

 Collecting field traffic data from several motorway roadwork sections with different 

TTMSs as well as from normal motorway sections with 2, 3 and 4 lanes; by using 

camcorders and other sources such as Individual Vehicles' raw Data (IVD). 

 Analysing the collected data using statistical tests/methods to gain a better 

understanding into traffic behaviours. 

 Modelling motorway roadwork sections by building a micro-simulation model using 

an available industry standard software package (S-Paramics) to check its suitability 

and any limitations in representing roadwork sections based on field data. 

 Developing a new traffic micro-simulation model (using a Visual Compact Fortran 

programming language) that is capable of representing motorway roadwork sections 

taking into consideration any of limitations of previous models using the existing 

rules and algorithms and applying the necessary modifications as required. 
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 Calibrating the developed micro-simulation model with field data and validating it 

by using other sets of field data.  

 Utilising the developed model to study the effect of various traffic parameters such 

as HGVs percentages, flow rates, roadwork zone lengths and speed limits on site 

capacity and delay. 

 Developing and recommending regression models to estimate section capacity and 

delay based on the simulation results. 

1.3 Thesis outline  

The structure of this research has been proposed in such way in order to accomplish the 

abovementioned objectives. Figure 1.1 illustrates the research structure which consists of seven 

main sections. These sections are as follow:  

 Section one (chapter 2) presents the review of literature of motorway roadworks 

from previous studies in order to identify the important factors of the modelling 

concept and the limitations of previous models.  

 Section two (chapters 3 and 4) presents the data collection and analysis in order to 

build a good understanding in traffic behaviours. The collected data was also used 

in developing, calibrating and validating the newly developed micro-simulation 

model. The data was taken from two motorway sections; normal sections (i.e. 

remote from merging, diverging or roadworks) and roadwork sections.  

 Section three (chapter 5) describes the development of the S-Paramics simulation 

model. In addition, the calibration and validation processes and the limitations of 

the S-Paramics software are also described in the chapter. 

 Section four (chapter 6) presents the development of the new micro-simulation 

model; it can be seen from Figure 1.1 that there are five rules (sub-models) have 

been developed for the new micro-simulation model: car-following, lane-changing, 

gap acceptance, lane closure and narrow lanes rules. The car-following sub-model 

describes the interaction between the subject vehicle and its predecessor in the same 

lane. This sub-model governs the longitudinal movement of vehicles in a stream of 

traffic. The lane changing sub-model governs the lateral movements of vehicles 

from one lane to another. The gap acceptance sub-model manages the gap selection 

behaviour. Lane closure and narrow lanes sub-models describe the behaviour of 

vehicles at roadwork sections that are operated by a TTMS.  
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 Section five (chapter 7) presents the verification, calibration and validation 

processes of the newly developed micro-simulation model using real data from the 

visited sites and from different sources. The results show reasonable behaviour 

compared with the field data and other simulation models such as VISSIM and S-

Paramics. 

 Section six (chapter 8) presents the applications of the developed model in testing 

various types of TTMSs and various traffic parameters. It also presents the 

regression equations that are developed based on the simulation results to estimate 

section capacity and delay. 

 Section seven (chapter 9) presents the conclusions and recommendations for future 

work.   
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Note:           chapter number 

Figure 1.1: Flow chart of the current research  
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CHAPTER TWO                                                                                         
LITERATURE REVIEW 

 

 

2.1 Introduction 

This chapter describes the types of temporary traffic management schemes (TTMSs) that are 

applied at motorway roadwork sections and addresses the impacts of roadworks on traffic 

performance. It also summarises studies/models that have been developed to represent 

roadwork sections and addresses the main limitations in the existing models. Furthermore, this 

chapter briefly defines the main types of simulation models and then concentrates on the rules 

that are applied in microscopic simulation models.   

2.2 TTMSs at motorway roadworks 

The main objective of implementing traffic management at roadwork sections is to maintain 

the safety of motorists and workers with the least possible amount of traffic delay. This 

objective can be achieved via guiding drivers safely and efficiently through the sections of 

roadworks. Therefore, several sophisticated temporary traffic management schemes (TTMSs) 

have been developed and are being used, such as lane closure systems, contra-flow systems, 

tidal flow systems, and lane restriction to heavy good vehicles (HGVs). In addition, the drop in 

carriageway capacity due to roadwork sites with high traffic demand has led to many techniques 

being implemented, such as the use of hard shoulders as a temporary running lane and the use 

of narrow lanes to produce more lanes of traffic within the available space. Some of the TTMSs 

that can be applied at motorway roadworks are discussed in the following sub-sections. These 

layouts have been obtained from various design manuals such as the USA Manual on Uniform 

Traffic Control Devices (MUTCD, 2009) and the UK Traffic Signs Manual (Chapter 8, 2009). 

2.2.1 Lane closure scheme 

A lane closure scheme is one of the most common layouts applied at motorway roadwork 

sections, particularly when the work is minor and required for a short period. This system 

requires closing one or two lanes for roadworks. According to Bourne et al. (2008), there are 

inconsistent findings about how the side of the lane closure (i.e. whether the offside or inside 

lane should be closed) affects the carriageway capacity. 
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2.2.2 Narrow lanes scheme 

In recent years the uses of narrow lanes as a TTMS at motorway roadwork sections have 

become very common in the UK (Freeman et al., 2004 and Bourne et al., 2008). The main 

purpose of using narrow lanes is to significantly improve the overall capacity under the 

assumption that three narrow lanes, for example, have a significantly higher capacity than two 

normal width lanes. However, very limited research has been found in the literature to back up 

the assumption of using narrow lanes to preserve carriageway capacity during roadworks 

periods (see for example, Marlow et al., 1992). On the other hand, there is a potential to increase 

accident risk because of reducing lane widths, particularly in the presence of heavy goods 

vehicles (HGVs) and when drivers do not comply with the applied speed limit at roadwork 

sections (Pratt, 1996 and Mahoney et al., 2006). Furthermore, Hall and Rutman (2003) reported 

that the narrowing lanes enhance the opportunity for sideswipe accidents (i.e. where the side of 

one or more vehicles has been impacted). They attributed that to the physical constraint caused 

by narrower lanes and concrete barriers (which are placed on roadway edges) at roadwork 

sections which creates conditions that are conducive to sideswipe collisions. They also reported 

that many sideswipe collisions involve wider vehicles, especially HGVs. In the same context, 

Harb (2009) used data from the Florida Traffic Crash Records Database between 2002 to 2004 

(inclusive) and found that HGVs are 44.6% more likely to be involved in single vehicle 

accidents on motorway roadwork sections compared to HGVs in non-roadwork sections (which 

may be related to the use of narrower lanes). 

It is worth mentioning here that the use of narrow lanes has also been used on normal roadway 

section (i.e. without roadworks) to reduce traffic congestion. Based on observations from a 

trunk road in Paris, Cohen (2004) found that the gain in capacity resulting from increasing the 

number of lanes by narrowing them was about 7% in one direction and 16% for the other 

direction. The original cross section of the observed carriageway was two by four lanes, 3.5 

metres for each lane with a hard shoulder. The cross section was then changed to two by five 

lanes with 3 metres for the offside lane and four 3.2 metres each lane without the hard shoulder. 

2.2.3 Contra-flow scheme 

A contraflow system can be implemented on a busy dual-carriageway when nearly the whole 

width of one side of the carriageway is closed for works. There are two types of contraflow 

system; one being the full contraflow scheme, when all vehicles on the side where works are 

taking place (primary traffic) are required to move to the other side (i.e. unobstructed side by 
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work) of the motorway carriageway (secondary traffic). The other type is a partial contraflow 

scheme when some of the vehicles are moved (one lane diverted) to the secondary carriageway, 

whereas others vehicles use the primary carriageway. Contraflow systems often use the hard 

shoulder as a running lane. A buffer zone/lane should be applied to separate the opposing traffic 

at the secondary carriageway. This may lead to a reduction in lane width to allocate the buffer 

zone. Summersgill (1985) reported that it is recommended to use a full lane width as a buffer 

zone to separate the primary and secondary traffic but sometimes only 1.3 m is used as a buffer 

zone. 

2.3 Roadwork site layout 

Figure 2.1 illustrates a typical site layout of motorway roadworks operated by a lane closure 

scheme. According to the Manual on Uniform Traffic Control Devices (MUTCD, 2009), most 

TTMSs are divided into four zones:  

 the advance warning zone (tells upstream traffic about the roadworks ahead),  

 the transition zone (moves traffic from the closed lane to the adjacent open lane),  

 the activity zone (where works occur), and  

 the termination zone (where the TTMS ends). 

 

Figure 2.1: Illustration of motorway roadwork site layout operated by lane closure 

2.4 Traffic signage at roadworks 

Many types of signage have been developed and employed to manage the unusual manoeuvres 

at motorway roadwork sections, and to provide drivers with clear information about the 

upcoming obstructions in the motorway. In order to maintain safe and efficient traffic 

operations at a roadwork section, the traffic signage should be erected in advance of the 

roadwork sections to give drivers an adequate amount of time to decelerate and make their 
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required manoeuvre. Yousif (1993) reported that the size and type of signs, number of lines on 

signage and number of words per line, type of information and the familiarity of drivers with 

the signs affect the required time to process the information. 

According to the MUTCD (2009), the traffic signs that are applied within the advance warning 

zone may vary from a single sign or high-intensity rotating, flashing, oscillating, or strobe lights 

on a vehicle to a series of signs in advance of the roadwork section. In addition, the placement 

distance of the warning signs varies and depends on the type of roadway and traffic situations. 

This distance should be longer on motorways and other high-speed roads compared to lower-

speed roads in urban areas. 

Bai et al. (2010) determined motorists’ responses to warning signs in a rural two-lane highway 

roadwork section in the USA. The motorists’ responses were measured by vehicle speed change 

before and after the signs. These signs were a portable changeable message sign (PCMS) and a 

temporary traffic sign (TTS). The results showed that a PCMS either switched on or off was 

most efficient to reduce the speed of trucks, whereas the TTS was found to be most effective 

with passenger cars and semi-trailers. The authors concluded that the vehicle speeds were 

changed due to a combination of the influences of the traffic signs and drivers’ awareness of 

the roadwork. However, the authors did not explain precisely what the reasons were behind the 

difference in speed reduction between cars and semitrailers under TTS and trucks under PCMS 

conditions. 

2.5 Traffic operation fundamentals  

Speed, flow and density are the most significant factors of the traffic stream that are used in 

evaluating the operations and performance of traffic. Speed and density could be used to 

represent the quality measure of the traffic stream which can estimate the level of service (LOS) 

for any type of road (for example urban area roads, trunk roads and motorways). Flow 

represents the quantity measure of the traffic stream (Salter and Hounsell, 1996). These three 

elements are defined as follows: 

 Speed can be defined as the rate of movement of a vehicle which is expressed by 

distance per unit time (mph or km/hr).  

 Density is the number of vehicles occupying a given length of road at a specific instant 

(veh/km).  
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 Flow is defined as the number of vehicles passing a given section during a specified 

period of time (veh/hr). 

Considering the speed, density and flow units, it is obvious that the relationship between the 

three parameters is as shown in Equation 2.1 (Mannering and Washburn, 2012 and 

Alterawi, 2014).  

𝑄 = 𝑉 𝐾                                                                                                                    Equation 2.1 

Where:  

Q: traffic flow (veh/hr). 

V: traffic speed (km/hr). 

K: traffic density (veh/km). 

Several studies have been carried out to investigate the relationships between these factors 

under various conditions of traffic flow. The study by Greenshields (1935) was one of the 

earliest reported studies in this field. This was then followed by several studies such as Lighthill 

and Whitham (1955), who proposed an outstanding paper on traffic flow theory based on fluid 

dynamics; Hall (1987), who analysed the relationships of these parameters using Catastrophe 

theory; and Heydecker and Addison (2011), who developed a relationship between speed and 

density to analyse the flow of traffic that operates under variable speed limits. Figure 2.2 shows 

a general layout of the relationships between the three characteristics (speed, density and flow) 

of the traffic, assuming a linear speed-density relationship.  

 

Figure 2.2: Fundamental diagrams of speed-density, flow-density and speed-flow 

(Mannering and Washburn, 2012) 

2.6 Impacts of roadworks on traffic performance  

Roadwork sections have many impacts on traffic performance. Congestion and queuing which 

might lead to an increase in traffic delays and vehicles’ emissions, an increase in accident rates 
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and fuel consumption, and a reduction in roadway capacity are examples of these impacts. The 

following sub-sections give a detailed description of the most likely effects of roadworks.  

2.6.1 Reduction in capacity  

Capacity can be defined as the maximum number of vehicles that can be reasonably expected 

to cross a given section of a lane or roadway during a given time period under prevailing 

roadway, traffic, and control conditions (Highway Capacity Manual, 2000). 

Morris et al.  (2010) reported that the motorway capacity should not be considered as a fixed 

value, but is variable and depends on several factors. According to Slinn et al. (2005), these 

factors are as follows: 

 The characteristics of the motorway layout which depend on the geometric design of 

the motorway itself. 

 Motorway surface conditions, clarity of road marking, signing and maintenance. 

 Traffic composition (i.e. proportions of each vehicle type).  

 The numbers and speed of vehicles. 

 The ambient conditions which include visibility, weather and time of day. 

 Road users’ levels of training and competence.  

The capacity of a motorway with roadwork sections could be defined as the maximum 

throughput that can be achieved; the throughput is the number of vehicles passing the roadwork 

section during a given time period. The maximum throughput (capacity) might be considered 

as the most important measure that can estimate the roadwork section operational performance. 

This will help in evaluating the effectiveness of the different TTMSs that could be implemented 

at roadworks.  

Hunt et al. (1991) reported that the flow breakdown without incidents at roadwork sections was 

found to be in a traffic flow range of 1600 – 2300 pcu/hr/lane (where a pcu is a passenger car 

unit equivalent to 1 pcu for light vehicles and 2 for heavy vehicles). Note that the maximum 

traffic flow (i.e. capacity) often occurs just before the flow breakdown. Yousif, (2002) reported 

that the values of maximum throughputs that were observed by Matthews (1984), formed the 

basis for the expected maximum throughputs on motorway roadwork sections. Table 2.1 shows 

these values of throughputs with different TTMSs for a typical traffic composition of 15-20% 

HGVs.  
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Table 2.1: Maximum observed throughputs with different traffic management schemes 

(Yousif, 2002) 

Type of TTMS 
Maximum Throughput 

pcu/hr 

Maximum Throughput 

pcu/hr/lane 

Lane closure – 1 lane open 1900 1900 

Lane closure – 2 lanes open 3770 1890 

Two-way traffic (one lane each way) 1770 1770 

Segregated contra-flow (primary stream) 3420 1710 

Full contra-flow (primary stream) 3500 1750 

Contra-flow sites (secondary stream) 3540 1770 

The reduction in the motorway capacity at roadwork sections could be attributed to the number 

of lanes which were withdrawn from the carriageway. In addition, many researchers have 

agreed that the management of the merge area is the main factor which affects the carriageway 

capacity (see for example Hunt et al., 1991, Kazzaz, 1998; Yousif, 2002; and 

Papageorgiou et al., 2008).  

2.6.2 Increased delay  

Traffic delay at roadwork sections can be divided into two categories: delay because of reduced 

speed at the roadwork section (due to either posted temporary speed limit or high traffic density 

occurrences), and delay caused by queuing of vehicles trying to enter the section of roadwork 

(Bourne et al., 2008). The traffic delay might also be considered as an important measure of 

performance. This also helps in evaluating the efficiency of the different TTMSs applied at 

roadwork sections. 

2.6.3 Reduction in speed  

In the United Kingdom, the speed limit of 70 mph (112 km/hr) on the motorway network 

became mandatory in 1978. This speed limit corresponds to an 85th percentile of free speed as 

determined by the Department of Transport (Kazzaz, 1998). In 2011 and based on 

Butcher (2013), the UK Government intended to consult on increasing motorway speed limit 

to 80 mph (130 km/hr). However, in some parts of the M1 motorway, the Highways 

Agency (HA), or what is now referred to as Highways England, had decreased the speed limit 

to 60 mph between 7am and 7pm for sections between Junctions 28 and 35a. The HA claims 

that the speed reduction will help to reduce air pollution and congestion and manage traffic 

speeds more effectively (The Chartered Institution of Highways and Transportation, 2014). At 

motorway roadwork sections, a temporary mandatory speed limit of 50 mph (80 km/hr) has 

been implemented to guide drivers safely through such sections (Department for 
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Transport, 2009). This temporary mandatory speed limit was applied in 1988 instead of the 

temporary advisory speed limit of the same speed amount (Kazzaz, 1998).  

In addition, the presence of TTMSs at roadwork sections can also cause a reduction in drivers’ 

speed. This is because drivers need to be more alert to drive through the TTMS safely which 

might require them to reduce their speed (Alterawi, 2014).  

2.6.4 Reduction in safety level 

There is strong evidence to suggest that along the motorway length the roadwork sections are 

considered unsafe in contrast with the remaining sections of motorway (Chen and Tarko, 2014). 

According to previous studies (see for example Tarko and Venugopal, 2001; 

Khattak et al., 2002; and Mahoney et al., 2006) the accident rates during roadwork periods are 

higher than those periods without roadworks. Likewise, the European Union Road Federation 

(ERF, 2007) confirms that roadwork sections present a considerably higher risk to road users. 

Recently, the National Work Zone Safety Information Clearinghouse reported that 609 fatalities 

were recorded due to work zone accidents in 2012, where the total number of traffic accident 

fatalities in the same year was 33,561. Therefore, the Federal Highway Administration 

(FHWA), and the American Association of State Highway and Transportation Officials 

(AASHTO) are looking to enhance the design practices of roadwork sections in order to control 

and minimise the fatalities and injuries at roadwork sections. Likewise, the Transport Research 

Laboratory (TRL) in the UK is seeking to control and minimise the fatalities and injuries and 

also to maximise the capacity at motorway roadwork sections. The TRL commissioned periodic 

studies for the safety of major motorways roadworks. These studies were carried out in 1982 

(Summersgill, 1985), 1987 (Marlow and Coombe, 1989), 1992 (Hayes et al., 1994) and 2001-

2003 (Freeman et al., 2004). 

For the safety of road-workers, Sinclair (2010) reported that the working environment of road-

workers is unsafe. In 2005, the UK Highways Agency (HA) reported that the number of road-

workers killed on motorways and major ‘A’ roads had increased after two years of decline. 

However, this number of fatalities kept growing during 2006/07 (Gillard et al., 2008).  

2.6.5 Effects of vehicle speed on safety level  

According to Bekhor et al. (2013), there is a high correlation between high speeds of vehicles 

and high accident severity. Therefore, the control of vehicle speed along the motorways 

network and particularly at roadwork sections is fundamental for safety. At roadwork sections, 
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the vehicle speeds need to be reduced to be compatible with safety requirements at such 

sections. At the same time, the variation in speeds amongst motorists should be kept low, along 

the sections of motorway before roadwork sections (sections where the speed limit is 70 mph) 

and throughout the roadwork section, since the higher differential may produce more accidents 

(Yousif, 1993 and Geistefeldt, 2011).  

The compliance of drivers with the posted temporary speed limit is one of the most significant 

factors that could enhance safety level and traffic operation at roadwork sections. Summersgill 

(1985) reported that 93% of drivers exceed the advisory speed limit of 50 mph (80 km/hr). This 

is consistent with findings by Lines (1985), Kathmann and Cannon (2000) and Yousif (2002) 

who reported that these poor levels of compliance could be attributed to the absence of speed 

monitoring systems on site. Wood et al. (2010) suggested that the use of speed cameras or using 

stationary police cars at motorway roadwork sections will improve compliance with the speed 

limit. However, additional measures are required to control vehicle speed at roadwork sections. 

The obtrusive perceptual countermeasures is one technique of many that have been explored to 

control this issue, this technique is designed to increase drivers’ feeling of speed and sense of 

danger to force them to decelerate. Allpress and Leland (2010) evaluated two obtrusive 

perceptual countermeasures arrangements. The results suggest that the obtrusive perceptual 

countermeasures significantly reduced vehicle speeds at roadwork sections, but the vehicle 

speeds were still higher than the posted temporary speed limit.  

Bella (2005) noticed that the speed of vehicles along the motorway roadwork sections exceeded 

the temporary speed limit, and the drivers reduced their speed just with the presence of the 

physical constraint of the roadway at roadworks. Likewise, Paolo and Sara (2012) selected 

eleven roadwork sites on two-lane rural roads in Italy to investigate the speed of vehicles 

approaching roadwork sections in order to understand the drivers’ speed behaviour. These 

roadwork sites can be classified into two groups. The first group contains roadwork sites with 

a physical reduction in lane width, whereas the second group contains those sites without width 

reduction. The results showed that 98% of vehicles at the beginning of the roadwork sections 

were observed travelling with speeds higher than the temporary speed limit, and at eight sites 

this percentage reached 100%. The result also suggests that this percentage reduces with the 

presence of physical lane width reductions. The authors concluded that the presence of physical 

lane width reductions will help in decreasing vehicles speeds.   
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2.7 Review of existing roadworks models 

Several models have been developed to represent traffic behaviour and to estimate traffic 

capacity at roadwork sections. These are mainly mathematical or simulation models, as 

discussed in the following sub-sections. 

2.7.1 Mathematical models 

Several researchers have attempted to study the effects of roadwork sections on motorist delays, 

queues and costs using mathematical models. Cassidy and Han (1993), Schonfeld and Chien 

(1999) and Chien et al. (2002) developed mathematical models to estimate vehicle delay, queue 

length and to optimise the roadwork zone length on a single-carriageway highway with two 

lanes operating under one-way traffic control. 

For dual-carriageway motorways, McCoy and Mennenga (1998) developed a model to calculate 

the optimum roadwork zone length by minimising maintenance, user delay, accident and 

vehicle operating costs based on average daily traffic (ADT) on a rural four-lane highway (two 

lanes per direction) with one lane closed at a time for roadworks. Likewise, Chien and Schonfeld 

(2001) developed a mathematical model to optimise the length of roadwork zones to minimise 

the user delay, agency and accident cost in four-lane highways (two lanes per direction) with 

one lane closure, based on ADT. As a conclusion, they reported that shorter roadwork zones 

tend to alleviate the user delays and increase the agency cost. The main limitations of both 

models are their formulation which is restricted to only one configuration of highways (i.e. four 

lanes) with only one lane closure layout applied as a TTMS at roadwork sections, in addition to 

assuming that there is a constant ADT on highways. This is not a representation of real traffic 

conditions due to the variations and fluctuations in traffic flow throughout the day. 

Jiang and Adeli (2003) developed a model which considers two variables, roadwork zone length 

and the starting time of the roadwork, to optimise the short-term roadwork total cost (e.g. sum 

of user delay, construction and accident costs) and traffic delay using average hourly traffic 

data. In addition, the number of lane closures and the effects of night time construction and 

seasonal variation were considered in this model. The optimum roadwork zone length was 

obtained using Bolzmann-simulated annealing neural network.  

Racha et al. (2008) developed a mathematical model to estimate the capacity of roadwork 

sections by analysing the relationships between speed, flow, and density. The model suggests a 

value of 1550 passenger cars per hour as the base capacity of two-lane roadwork highway 
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sections with one lane closure. The proposed model estimates the capacity of roadwork sections 

as a function of the heavy vehicle adjustment factor. However, the scope of this model is limited 

to only one configuration of highway roadwork sections (i.e. a four-lane highway, with two 

lanes per direction, operated by a one-lane closure scheme). Also, no mention was made of the 

effect on roadwork section capacity of the lane closure side (i.e. whether the inside or the offside 

lanes were closed). 

Elghamrawy (2011) developed a mathematical model to identify the optimal setup of roadwork 

sections to minimise the total cost which includes agency, user delay and accident cost. This 

study takes into account the effects of the temporary speed limit applied at roadwork sections, 

length of roadwork zone, barrier type, temporary traffic control (TTC) type and starting time. 

Then, the optimisation model is implemented using genetic algorithms (GAs) in a C++ objected 

oriented environment.  

Weng and Meng (2015) developed a mathematical model to estimate the capacity of roadwork 

sections based on a speed-flow relationship. The developed model takes into consideration the 

effects of the roadwork zone length, speed limit applied at the roadwork, heavy vehicle 

percentage and geometric alignment (deflection angle of the roadway alignment). Weng and 

Yan (2016) proposed a probability distribution-based capacity model to predict roadwork 

section capacity. They assumed that the capacity of the roadwork section follows a lognormal 

distribution.  

However, the complexity and inflexibility of using mathematical models for roadwork sections, 

has led to the adoption of another technique to evaluate capacity and to represent traffic 

behaviour at such sections. Yousif (1993) and Jiang and Adeli (2004) reported that the 

representation of traffic behaviour at roadwork sections cannot be mathematically modelled 

because it is complicated and correlated to a large number of interacting variables.  

2.7.2 Simulation models 

Several simulation models have been developed to represent traffic behaviour at motorway 

roadwork sections. Memmott and Dudek (1984) developed a computer model (QUEWZ, Queue 

and User Cost Evaluation of Work Zones) to estimate the delay costs, speed-change cycling 

costs of slowing down to go through a work zone, and vehicle operating costs, based on hourly 

traffic data. Two traffic management schemes including lane closure and crossover can be 
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examined using this model to estimate capacity and average speed through the roadwork 

section. 

Yousif (1993) developed a micro-simulation model to evaluate the effect of road geometry and 

traffic characteristics on delay and capacity at dual-carriageway roadwork sections. The 

movement of each vehicle in the model is controlled by a set of car-following rules, whereas 

the vehicle lane-changing process is based on comparing the available gaps in the adjacent lane 

with assumed perceptual thresholds. The model was programmed using FORTRAN 77 

language and was designed to cover different motorway configurations.  

Jiang and Adeli (2004) developed a computer model to determine the freeway roadwork 

capacity, roadwork zone length estimation and to estimate the users’ queues and delays for 

different traffic management schemes. The model is implemented in an interactive software 

system, called IntelliZone (Intelligent decision support system for work zone traffic 

management). 

Kim et al. (2013) developed a simple simulation model to estimate roadwork section delays and 

queue lengths and to provide a decision-making framework that assesses three alternative lane 

closure systems applied at freeway roadwork sections. The model has been programmed using 

Visual Basic language within a commercial spreadsheet program (EXCEL). 

However, none of these simulation models take into account the effect of using narrow lanes as 

a TTMS on traffic performance. 

Many other traffic micro-simulation models (packages) have been developed to deal with 

general traffic modelling such as CORSIM (which was developed by the United States Federal 

Highway Authority, FHWA), VISSIM (which was developed by Planung Transport Verkehr 

(PTV), a German company) and S-Paramics (which was developed by SIAS Limited, a Scottish 

company). These models have the ability to represent the behaviour and interaction between 

individual vehicles on local arterial and regional freeway networks, and also have the ability to 

simulate different roadway configurations and features (European Commission, 2000). 

However, Alterawi (2014) reported that roadwork sections can be coded as incidents as there is 

no direct option for modelling such sections in CORSIM and VISSIM. In addition, Al-Obaedi 

(2012) stated that one of the main limitations of VISSIM and S-Paramics could be related to the 

failure to represent some important interactions between vehicles such as courtesy behaviour 

(e.g. cooperative slowing down) of drivers travelling on the mainline motorway while allowing 
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those vehicles entering from the ramp. In addition, the S-Paramics software also suffers from 

certain limitations. It is not capable of accurately representing certain important zones of the 

TTMSs at motorway roadwork sections. The limitations of the S-Paramics software are 

presented in detail in Chapter 5. 

2.8 Simulation techniques 

Traffic simulation models are an effective technique which can be used in evaluating 

transportation facilities. Such models have the ability to represent traffic behaviour without 

causing disruption to traffic operations in the field. Furthermore, the low-cost, low-risk 

environment enables the users of such models to assess and evaluate several traffic management 

alternatives and their effects on traffic operation in a short time by providing a visual 

environment for determining the best choice for any traffic scenario. Therefore, in the last three 

decades a wide number of sophisticated traffic simulation models have been developed 

(Moriarty et al., 2008).  

Traffic simulation models can be classified into three types based on the level of detail at which 

these simulation models describe traffic behaviour. These are macroscopic, mesoscopic and 

microscopic models (ITE, 2010). 

 Macroscopic models describe the traffic as a continuum. They are suitable for large-

scale simulations such as simulation of a traffic network at a portion of a city 

(Aycin, 2001). These models describe traffic characteristics based on average 

parameters such as flow, speed and density by assuming that traffic flow behaves as a 

fluid. However, these models cannot represent the interactions between individual 

vehicles (Al-Obaedi, 2012).  

 Mesoscopic models are more refined than macroscopic models and they describe the 

traffic in much more detail by considering the individual vehicles in groups or cells. 

However, they still ignore the interaction of vehicles in each individual group (Al-

Obaedi, 2012). 

 Microscopic models describe the traffic at a detailed level where individual vehicles and 

the interaction between each other are represented by specific rules such as those used 

for longitudinal movements (i.e. car-following) and lateral movements (i.e. lane-

changing). However, they are more difficult to develop and to calibrate than 

macroscopic models (Aycin, 2001; Burghout, 2004; and Al-Obaedi, 2012). Regardless 
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of the difficulty in developing and calibrating microscopic models, these models are 

more efficient in simulating complicated traffic situations (Burghout, 2004), such as the 

case of roadwork sections. Also, microscopic simulation models could represent the 

road geometry even if the traffic management used on site is complex (Alterawi, 2014). 

Therefore, the microscopic simulation approach has been adopted in this study.  

Microscopic simulation models consist of a combination of three important sub-models. These 

are car-following, lane-changing and gap acceptance models, which will be discussed in detail 

in the following sub-sections. 

2.8.1 Car-following models 

Micro-simulation models are commonly built up by using numbers of sub-models; one of the 

most important sub-models is car-following (Olstam and Tapania, 2004). The car-following 

model describes the interaction between a vehicle and its leader (the vehicle immediately in 

front) in the same lane by calculating the acceleration/deceleration rates used in updating the 

longitudinal position of the vehicle in correspondence to its leader. For any vehicle in traffic, 

when its acceleration/deceleration rates are known, the speed and position of this vehicle can 

be easily determined through the manipulation of the standard equations of motion. 

In previous studies, several car-following models have been proposed to represent the 

longitudinal movement of vehicles. The following sub-sections discuss the main groups.  

2.8.1.1   Gazis Herman Rothery (GHR) model 

The Gazis Herman Rothery (GHR) model represents the earlier well-known car-following 

model and it was developed in the late fifties at General Motors’ Research 

Laboratories (Brackstone and McDonald, 1999). The GHR model is based on a stimulus-

response type of function and its mathematical formulation states that the acceleration of the 

following vehicle (n) is related to the differences in speeds and spacing between the following 

vehicle (n) and its leading vehicle (n-1), as shown in Equation 2.2 (Brackstone and McDonald, 

1999). Figure 2.3 shows the car-following notations.  

𝑎𝑛(𝑡) = α𝑣𝑛
𝛽(𝑡) 

𝛥𝑣(𝑡 − 𝑅𝑡)

𝛥𝑥𝛾(𝑡 − 𝑅𝑡)
                                                                       Equation 2.2 

Where:  

an(t): the acceleration of vehicle n (m/sec2) applied at time (t), 
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vn(t): the speed of vehicle n (m/sec) at time (t), 

∆x(t-Rt): the relative distance (m) between vehicle n and n-1 assessed at earlier time (t-Rt), 

∆v(t-Rt): the relative speed (m/sec) between vehicle n and n-1 assessed at earlier time (t-Rt), 

Rt: the driver reaction time (sec), and 

α, β, γ:  the model parameters.  

 
 

 
Figure 2.3: Car-following notations 

Brackstone and McDonald (1999) provided detailed information about the GHR model 

parameters values (i.e. α, β and γ), and they also listed the researchers who tried to improve this 

model during the past five decades. However, the authors reported that due to the large number 

of contradictory findings of the values used to represent the model parameters, the GHR model 

is being used less frequently. Gipps (1981) reported that there is no obvious relationship 

between the parameters of the model and drivers’ or vehicles’ characteristics. In addition, 

Olstam and Tapania (2004) reported that the driver of the following vehicle reacts to its leader 

actions even when the spacing between them is too large. However, some traffic simulation 

models, such as MITSIM (Yang and Koutsopouls, 1996), used this type of car-following model 

(Al-Jameel, 2012 and Al-Obaedi, 2012).  

2.8.1.2   Safety distance or collision avoidance (CA) models  

The main idea of this group of car-following models is to avoid the colliding of vehicles by 

providing a safe separation distance between the following vehicle and its leader. According to 

Brackstone and McDonald (1999), Kometani and Sasaki in 1959 produced the first model of 

this group.  

In 1981 Gipps presented a car-following model which depends on the idea of safe distance 

keeping. The model by Gipps (1981) is based on the assumption that the driver of the following 

vehicle can select a safe speed to ensure that he/she can bring his/her vehicle to a safe stop if 

the vehicle in front comes to a sudden stop. The Gipps model has been used in many micro-

simulation models such as the DRACULA (Liu, 2005) and AIMSUN (Barceló and Casas, 2005) 

models. 

The CAR-following SIMulation model (CARSIM) (Benekohal, 1986) is another example of a 

CA model. According to the CARSIM model, the drivers are assumed to maintain a sufficient 

n Traffic direction n-1 

𝛥𝑥 



21 

 

distance from their leaders to react safely if any changes occur ahead. The CARSIM model can 

represent traffic in both normal and stop and go conditions (Benekohal and Treiterer, 1988), 

since the acceleration rate of the following vehicle is selected from five different situations 

(acceleration/deceleration). The CARSIM model has been used in many micro-simulation 

models (see for example Yousif, 1993; Purnawan, 2005; Al-Obaedi, 2012; Al-Jameel, 2012; 

and Alterawi, 2014).  

2.8.1.3   Psychophysical or action point (AP) models 

According to these models, the driver will perform an action (acceleration or deceleration) when 

a certain threshold is reached. This threshold can be expressed as a function of the difference 

between pairs of vehicles in speeds or spacing. According to Ahmed (1999), Leutzbach (in 

1968) proposed the psycho-physical model which addresses two limitations of the GHR 

models. These two limitations are, first, the driver of the following vehicle reacts to its leader 

actions even when the spacing between them is too large, and second, the driver reacts to small 

changes in front relative speeds. 

The AP models produced perceptual thresholds which represent the minimum value of the 

stimulus to which the driver will respond (Toledo, 2007). For example, at low space headways 

the relative speed threshold is small and gradually increases with the space headway. At certain 

high space headways, this threshold becomes infinity which means that the follower no longer 

follows its leader. PARAllel MICroscopic Simulation (PARAMICS) (Duncan, 1995) is a good 

example of this group of models. However, these models suffer from difficulties in calculating 

and calibrating the perceptual thresholds (Brackstone and McDonald, 1999; and Panwai and 

Dia, 2005).   

2.8.1.4   Other car-following models 

There are several other approaches which have been used by researchers to model car-

following. The fuzzy logic-based model is one of these approaches. This model is based on the 

theory that some of the system sets are not crisp but fuzzy (Khodayari et al., 2011). The model 

divides variables into a number of overlapping sets combining each one with a specific term 

which describes how sufficiently a variable fits the description of a term (Brackstone and 

McDonald, 1999). The linear (Helly) model is another approach to the car-following modelling. 

This model is based on the GHR models and was improved by Helly in 1959 by introducing a 

desired following distance factor (Panwai and Dia, 2005).  
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2.8.2 Lane-changing models 

Modelling lane-changing is one of the most important parts of any microscopic traffic 

simulation model (Hidas, 2002; and Toledo et al., 2005). The term lane-changing can be easily 

defined as the transition of a vehicle from one lane to another.  

The process of lane-changing is complex, and several researchers have attempted to represent 

this process using, for example, empirical and analytical as well as simulation models. The 

majority of these models classified lane changes as either a discretionary lane-changing (DLC) 

or a mandatory one (MLC) (see for example Yousif, 1993; Ahmed, 1999; Toledo et al., 2005; 

Liu, 2005; Choudhury, 2007; Al-Jameel, 2012; and Al-Obaedi, 2012). The DLC is implemented 

primarily when the driver endeavours to enhance his/her driving conditions, such as speed, by 

overtaking a slower leading vehicle in front (Gipps, 1986; Yousif, 1993; Sultan and McDonald, 

2001; Liu, 2005; Barceló and Casas, 2005; Al-Jameel, 2012; and Al-Obaedi, 2012) or in order 

to return to their original lane after the overtaking process (Ferrari, 1989; Yousif, 1993; Al-

Jameel, 2012; and Al-Obaedi, 2012). For the MLC, this includes those cases in which drivers 

need to change lanes to reach their destination (e.g. due to the presence of roadworks, merging 

from slip roads or diverging) or because of traffic regulations. Due to the importance of 

modelling lane-changing and the varied behaviours of drivers involved in a lane change, it was 

found necessary to study this parameter in more depth (using observation from sites, as will be 

discussed later in the next Chapter, and using the literature, as will be discussed in the following 

sub-sections). This will then inform the assumptions made in the development of the new 

micro-simulation model.   

2.8.2.1   Review of previous lane-changing models 

One of the earlier lane-changing models was introduced by Sparmann (1978). The model 

distinguishes between changes to the inside and to the offside lane. According to the Sparmann 

model, drivers change to the inside lane because the inside lane does not have obstructions, 

whereas changing towards the offside lane is motivated by, the current lane having an 

obstruction (e.g. slow vehicles) and the offside lane having better conditions 

(Choudhury, 2007). 

Gipps (1986) developed a rule-based model that describes the possibility, necessity and 

desirability of a lane change. The model describes the behaviour of drivers in an urban driving 

situation; where traffic signals, obstructions and the presence of HGVs affect the driver’s lane 
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selection decision. Based on the distance to the intended turn, the driver’s behaviour falls into 

one of three patterns. When the turn is far away, the driver concentrates on maintaining a desired 

speed and there is no impact on the driver lane-changing decisions. When the turn is close, the 

driver focuses on being in the correct lane and the speed is unimportant. At middle distance to 

turn, the driver tends to stay in a pair of lanes that are most appropriate for his/her turn and 

ignore increasing his/her speed if this involves changing lanes in the wrong direction.  

Yousif (1993) developed a micro-simulation model to represent the traffic behaviour on dual-

carriageway roads for both normal and roadworks conditions. In normal conditions, the driver 

changes to a faster lane if he/she is obstructed by a slower leading vehicle which has a speed 

less than his/her by a magnitude of (R) (suggested by Ferrari (1989) as R =1040/DVc; 

where, DVc: is the desired speed of follower) otherwise, the driver will stay in his/her current 

lane. The driver changes to a slower lane if he/she obstructs his/her following vehicle or to 

return to his/her original lane after the overtaking process. At roadworks, the driver on the 

closed lane will change lane to an adjacent open lane depending on the distance to the closure 

point. 

Ahmed (1999) modelled the lane-changing process using three steps: a decision to consider a 

lane change, a choice of a target lane, and the acceptance of gaps in the target lane. The 

decision/desire of changing lane depends on the satisfaction of the driver with his/her driving 

condition. One of the important factors that affect the driver’s satisfaction is the difference 

between the current speed of the driver and his/her desired speed. If the driver is not satisfied 

with the driving conditions in the current lane, then the driver will evaluate the neighbouring 

lane (i.e. inside and offside lanes) conditions to choose the preferred lane. It should be noted 

that in the USA both overtaking (using offside lanes) and undertaking (using inside lanes) are 

allowed, unlike in the UK where undertaking is prohibited on motorways (see section 268 of 

the Highway Code). The developed lane-changing model by Ahmed (1999) has been tested and 

validated by using the microscopic traffic simulator laboratory (MITSIMLab). 

Al-Obaedi (2012) developed a micro-simulation model for motorway merge sections to study 

the effectiveness of applying ramp metering systems. In this study, the DLC is applied when 

drivers are not necessarily required to change their lanes but it is applied when they try to 

increase their speeds or to return their original lane after an overtaking manoeuvre. The model 

distinguishes between the desire to change lane and the execution of the lane-changing. The 

assumptions made for the desirability of lane-changing are mainly similar to those which were 
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θ  

proposed by Yousif (1993), whereas the assumptions made for the lane-changing execution are 

based on whether the lane change is beneficial (i.e. not to be trapped behind a slower leading 

vehicle in the target lane) and on the availability of sufficient lead and lag gaps in the target 

lane. At merge sections, when drivers try to merge onto the main line motorway from the ramp 

(auxiliary lane), the MLC is applied.  

Lv et al. (2013) produced a microscopic lane-changing process (LCP) model for modelling 

lane-changing for multilane traffic. The authors reported that the majority of previous micro-

simulation models assumed an instantaneous action for lane-changing manoeuvres, where the 

turning angle (i.e. the lane changer turns the direction of his/her vehicle towards the target lane 

with an angle of θ, as shown in Figure 2.4) of the subject vehicle (θ) = 90° and the lane-changing 

manoeuvre time = 0. In addition, the vehicles that are travelling in the current lane are not 

affected by the lane-changing manoeuvre. Therefore, they proposed a lane-changing process 

model which took into consideration the effects of a lane-changing process for both current and 

target lanes and its lateral movement. However, such an argument is not valid since many 

previous micro-simulation models (see for example Zia, 1992; Yousif, 1993; Al-Jameel, 2012; 

and Al-Obaedi, 2012) took into consideration the manoeuvring time and the effect of the lane 

changing manoeuvre on vehicles that are travelling in current and target lanes. Also, the 

developed model by Lv et al. (2013) has some limitations such as the model considers only the 

discretionary lane-changing where the driver changes his/her lane to enhance the driving 

conditions, while the situation of mandatory lane-changing (merging, diverging, and 

roadworks) was not taken into consideration. Another weakness of the model is that equal 

distribution (i.e. lane utilisation) of vehicles among the two lanes of the roadway was used 

which is not realistic. In addition, some parameters and variables that were used in the model 

have been given an arbitrary value such as lane-changing angle and driver’s reaction time.   

  

Figure 2.4: Illustration of the turning angle (θ) of the subject vehicle 

2.8.2.2   Lane-changing at roadworks  

At roadwork sections, the drivers must change their lane because of the presence of a lane 

closure ahead. Therefore, the lane-changing at those sites can be classified as mandatory lane-

Target lane 

 Current lane Traffic direction 
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changing (MLC). Hidas (2002 and 2005) and Choudhury (2007) proposed three types of lane-

changing manoeuvres namely free (normal), forced and cooperative. These types were adopted 

here in this study and are discussed in the following sub-sections. 

i. Free MLC  

Under free flow conditions, when there are several opportunities provided for the subject 

vehicle (i.e. merger) to change lanes without any interactions in terms of speed reduction 

between the subject vehicle, and the new leading or following vehicles in the target lane, this 

type of lane-changing manoeuvre (i.e. free MLC) is predominant. In addition, the subject 

vehicle does not need to change lane urgently since its position is far away from the end of the 

lane (i.e. lane closure). Hidas (2002) suggested a value of 8 seconds to represents the urgency 

of the driver to change lane (the urgency of the lane-changing manoeuvre can be represented 

by the time or distance required to reach to the end of the lane).  

ii. Forced MLC  

Under congested traffic conditions (i.e. when there are insufficient gap sizes available for the 

subject vehicle to change lanes) associated with the subject vehicle getting closer to the end of 

the lane, the subject vehicle would possibly be forcing the lag vehicle (i.e. new follower) in the 

target lane to slow down in order to widen this gap (i.e. lag gap). Figure 2.5 shows an illustration 

of lead and lag gaps. Rao (2006) assumed that the subject vehicle will use the forced lane-

changing manoeuvre when the remaining time to the end of the lane is lower than 10 seconds. 

 

Figure 2.5: Illustration of lag and lead gaps 

iii. Cooperative MLC 

Without the courtesy of drivers in the adjacent open lane during congested traffic conditions, 

the vehicles that are travelling in a lane to be closed ahead might be stuck in the closing lane 

Target lane 

 Current lane Traffic direction 

Lead gap Lag gap 

 Subject vehicle (merger) 

New follower New leader 
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and be unable to change to the adjacent open lane. Hidas (2005) reported that the cooperative 

lane-changing manoeuvre consists of three mechanisms: firstly, the subject vehicle shows a 

desire to change lane; secondly, the new following vehicle in the target lane identifies the 

situation of the subject vehicle and starts to slow down to give way; then, the subject vehicle 

changes lane when the gap size becomes sufficiently long to perform the manoeuvre safely.  

2.8.2.3   Review of previous MLC models 

Based on a real traffic data taken from merging and weaving sections under congested traffic 

conditions, Hidas (2005) developed a new lane-changing model. Although, the results of the 

developed model show a reasonable performance in representing the real traffic conditions, 

particularly the speed-flow relationship, the model suffers from some limitations; there is no 

clear differentiation between the forced and cooperative lane-changing manoeuvres in the 

formulation of the model. Another shortcoming of the model is represented by ignoring the 

cooperative yielding behaviour of drivers on motorways (shifting to the adjacent lane). 

Likewise, Choudhury (2007) developed a freeway merging model which considered the 

cooperative slowing down behaviour. However, the cooperative yielding behaviour (shifting) 

is common practice amongst drivers in the UK when trying to help other drivers to merge in 

front of them. Also, this behaviour (i.e. shifting) has been recommended by the Driving 

Standards Agency (DSA) (2000). Based on empirical observations from motorway roadwork 

sections, Hunt and Yousif (1990) reported that under congested conditions, on average one in 

three drivers travelling on the open lane yield right of way to vehicles which are travelling on 

the closing lane. 

Wang (2006) modelled the cooperative slowing down and yielding behaviours of a following 

driver in the inside lane of a motorway based on an arbitrary manner. The driver in the inside 

lane would make a decision whether to move to the adjacent lane/s (i.e. offside lane/s) or to 

decrease his/her speed in order to provide a sufficient gap for the subject vehicle in the slip road 

to merge safely. Based on observations for sections of the M8 Motorway, Wang found that the 

percentage of cooperative slowing down behaviour was found to be 7%, whereas the 

cooperative yielding percentage was 20%. Likewise, Al-Jameel (2012) developed a micro-

simulation model which considered the cooperative slowing down and yielding behaviours of 

drivers at weaving sections. He supposed that the non-weaving vehicles (i.e. mainline 

motorway vehicles) will show a courtesy behaviour when the deceleration rate does not exceed 

the normal deceleration (i.e. -3 m/sec2). Similarly, Al-Obaedi (2012) developed his model for 
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motorway merge sections. He suggested that for those drivers on the main line motorway 

showing courteous behaviours to those merging from the ramp, those drivers will reduce their 

speeds to allow merging vehicles from the ramp and if the speed reduction is higher than the 

value of R (suggested by Ferrari (1989) as R =1040/DVc; where, DVc: is the desired speed of 

the following driver), then the driver on the main line motorway will show a cooperative 

yielding by moving to the adjacent offside lane if there is a sufficient gap in that lane.  

Weng and Meng (2011) investigated drivers’ merging behaviour at roadwork sections (i.e. 

transition zone). They reported that the traffic speeds and densities in the merging area affect 

the drivers’ desired merging location. Under congested conditions, the merging location moved 

downstream.  

Few studies have been found in the literature which deal with the modelling of the MLC at 

motorway roadwork sections (see for example Yousif, 1993 and Weng and Meng, 2011). The 

majority of the existing MLC studies are concentrated on different roadway sections, such as 

urban arterials, intersections lane-changing and motorway merging and weaving sections (see 

for example Zia, 1992; Hidas, 2005; Wang, 2006; Choudhury, 2007; Al-Jameel, 2012; Al-

Obaedi, 2012; and Taha and Ibrahim, 2012). The behaviour of drivers at motorway merging 

and roadwork sections are nearly similar since the drivers at these sections need to change lane 

to reach their destination.  

2.8.3 Gap acceptance model 

The gap acceptance model represents the distance or time between successive vehicles 

travelling in the adjacent (target) lane. This gap splits into lead gap and lag gap: lead gap is the 

clear spacing between the front of the subject vehicle (merger) and the rear of the new leader, 

whereas lag gap is the gap between the rear of the merger and the front of the new follower (as 

shown in Figure 2.5).  

Marczak et al. (2013) reviewed several lane-changing models and reported that most of the 

existing models are based on the gap acceptance theory. According to this theory the driver of 

the subject vehicle in the current lane (i.e. merger) will compare the available gap in the adjacent 

lane (target lane) with the so-called critical (minimum) gap; an adjacent gap will be considered 

acceptable if the adjacent gap is larger than the critical (minimum) gap, if not the adjacent gap 

will be rejected and another one will be sought (Barceló, 2010 and Zhang et al., 2010). The 

critical gap has also been divided into lead critical gap which represents the gap between the 
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subject vehicle and the new leading vehicle, and the lag critical gap which is laid between the 

subject vehicle and the new following vehicle. As a conclusion, the subject vehicle can merge 

if both lead gap (Glead) and lag gap (Glag) are higher than the lead critical (minimum) gap 

(Gmin,lead) and the lag critical (minimum) gap (Gmin,lag), respectively (see Equation 2.3). 

𝐺𝑙𝑒𝑎𝑑  ≥ 𝐺𝑚𝑖𝑛,𝑙𝑒𝑎𝑑     𝑎𝑛𝑑      𝐺𝑙𝑎𝑔 ≥ 𝐺𝑚𝑖𝑛,𝑙𝑎𝑔                                                  Equation 2.3 

There are several factors affecting the values of the critical (minimum) gaps, such as speed of 

merger, speeds of new follower and new leader, the distance remaining to the end of the lane 

and reaction time (Ahmed, 1999; Hidas, 2002 and 2005; Lee, 2006; Rao, 2006; 

Choudhury, 2007; and Al-Obaedi, 2012). Table 2.2 summarises the factors affecting the critical 

gaps values based on previous studies.   

Table 2.2: Summary of factors affecting the critical gap values from previous studies 
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Yousif (1993) x x   x      x    

Ahmed (1999) x x x x           

Hidas (2002)  x x x  x x x       

Zheng (2003)  x x x           

Hidas (2005)  x x x  x x  x x     

Liu (2005)  x x x  x x x    x x  

Lee (2006) x x  x x  x        

Rao (2006) x x  x x  x        

Wang (2006)  x x x  x x x     x  

Al-Jameel 

(2012) 
 x x x  x x x     x  

Al-Obaedi 

(2012) 
 x x x  x x x    x x  

Marczak et al. 

(2013) 
x x x x          x 
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It can be seen from Table 2.2 that the most influential factor among the proposed models is the 

speed of the merger, new follower and new leader. This reflects the importance of this factor 

on the values of the accepted gaps. Such findings are consistent with those of Hidas (2005) and 

Yousif (1993) who reported that the relative difference in speeds between the merger and those 

involved in the target lane appears to be the most important factor influencing the accepted lead 

and lag gaps. 

Hidas (2005) proposed two equations for lead critical (minimum) gap and lag critical 

(minimum) gap, as shown in Equations 2.4 and 2.5 respectively. The development of these 

equations is based on field observations which confirm that the size of the available gap for the 

subject vehicle is a function of the relative speed between the merger and new follower/new 

leader in the target lane. 

𝐺𝑚𝑖𝑛,𝑙𝑒𝑎𝑑 = 𝐺𝑚𝑖𝑛 + {
𝐶(𝑉𝐶 − 𝑉𝐿)                 𝑖𝑓 𝑉𝐶 > 𝑉𝐿

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                              Equation 2.4 

𝐺𝑚𝑖𝑛,𝑙𝑎𝑔 = 𝐺𝑚𝑖𝑛 + {
𝐶(𝑉𝐹 − 𝑉𝐶)                 𝑖𝑓 𝑉𝐹 > 𝑉𝐶

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               Equation 2.5 

 

Where:  

C: constant gap parameter (Hidas (2005) suggested the constant value = 0.9), 

VC: the velocity of the subject vehicle (i.e. merger) (m/sec), 

VL: the velocity of the new leader (m/sec), 

VF: the velocity of the new follower (m/sec), and 

Gmin: minimum safe constant gap which is independent of the speed difference between 

vehicles, Hidas (2005) suggested the average value = 2.0 m. 

Al-Obaedi (2012) proposed two equations for the lead and lag critical (minimum) gaps based 

on the safety gap acceptance equation that was proposed by Liu et al. (1995) and Liu (2005) 

(Liu developed and used this equation in her model, DRACULA), as shown in Equations 2.6 

and 2.7. In addition, this safety gap acceptance equation was also adopted by Wang (2006) and 

Al-Jameel (2012) in their models.  

𝐺𝑚𝑖𝑛,𝑙𝑒𝑎𝑑 = 𝑅𝑡(𝑉𝐶) + 𝑀𝑎𝑥 [0, (
𝑉𝐶2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐶
−

𝑉𝐿2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐿
)] + 𝐵𝑈𝐹  Equation 2.6 

  

𝐺𝑚𝑖𝑛,𝑙𝑎𝑔 = 𝑅𝑡(𝑉𝐹) + 𝑀𝑎𝑥 [0, (
𝑉𝐹2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐹
−

𝑉𝐶2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐶
)] + 𝐵𝑈𝐹   Equation 2.7 
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Where: 

Rt: the reaction time (sec), 

VC: the velocity of the subject vehicle (i.e. merger) (m/sec), 

VL: the velocity of the new leader (m/sec), 

VF: the velocity of the new follower (m/sec), 

MaxDECC: the maximum deceleration rate for the merger (m/sec2), 

MaxDECL: the maximum deceleration rate for the new leader (m/sec2), 

MaxDECF: the maximum deceleration rate for the new follower (m/sec2), and 

BUF: the safety buffer space (m). 

Al-Obaedi (2012) suggested that the size of the accepted gaps for the MLC is lower than those 

used for the DLC. This assumption is consistent with the findings by Yousif (1993), Hidas 

(2005), Liu (2005), Wang (2006) and Al-Jameel (2012) who reported that the size of the 

accepted gaps for the MLC is lower than those used for the DLC. In addition, Al-Obaedi (2012) 

used, in his micro-simulation model, a value of 1.0 m as a default value for the Gmin,lead when 

the new leader is faster than the merger and also a default value of 1.0 m is used as a critical 

(minimum) lag gap (Gmin,lag = 1.0 m) when the new follower is slower than the merger. This is 

also consistent with the findings by Hidas (2002 and 2005) who reported that the drivers were 

observed accepting very short gaps (not more than 1.0-2.0 m), when the relative speed between 

the merger and the new leading/following vehicle in the target lane is close to zero. 

Furthermore, based on real traffic data, Hunt and Yousif (1990) reported that when the merger 

is slower than the new leader, a value of 0.2 seconds was observed for the accepted lead gaps. 

This value (i.e. 0.2 seconds) has also been observed for accepted lag gap when the merger is 

faster than the new follower.  

2.9 Other related simulation characteristics 
 

2.9.1 Lane utilisation  

According to the Highway Capacity Manual (HCM, 2010) lane utilisation (or lane distribution 

as referred to in the HCM) can be defined as the parameter that is used to describe the 

distribution of traffic among available lanes in a single direction. The lane utilisation parameter 

has been used in many simulation models in order to properly distribute simulated vehicles 

among the simulated lanes, (see for example S-Paramics model which uses the total section 

flow as an input data then it distributes the input total flow amongst the available lanes by using 

specific lane utilisation equations).  
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Several research studies have dealt with the lane utilisation and some proposed regression 

models for the relationships between the lane utilisation and total traffic flow (see for example 

Yousif and Hunt, 1995; Zheng, 2003; Al-Jameel, 2012; Al-Obaedi, 2012 and 

Yousif et al., 2013a). Based on real traffic data taken from the Motorway Incident Detection 

and Automated Signalling (MIDAS) for the M602 (2-lane motorway in the UK), 

Yousif et al. (2013a) reported that under free flow conditions, drivers are usually using 

lane 1 (inside lane), but with the increase of traffic flow, drivers tend to change lanes to 

lane 2 (offside lane). Also, Yousif et al. (2013a) reported that with the increase in traffic flow, 

the utilisation of offside lane would rapidly increase until about 2000 veh/hr (when both lanes 

carry similar amounts of traffic flow). After that, when traffic flow reaches section capacity, 

the offside lane will carry about 60% of the flow. This was found to be consistent with findings 

of Yousif and Hunt (1995) and Al-Jameel (2012). 

For three-lane motorway, Yousif et al. (2013a) reported that (based on data taken from MIDAS 

for the M62) under free flow conditions (when traffic flow rates are up to around 500 veh/hr), 

the majority of vehicles are utilising lane 1 (inside lane). As traffic flow increases, the other 

lanes (i.e. lanes 2 and 3) will start to have their share of use. After that, when traffic flow reaches 

capacity, the lane use for both lanes 2 and 3 are approximately similar while vehicles which 

utilised lane 1 is lower than those utilising lanes 2 and 3. This is different from the finding of 

Duret et al. (2012), who collected real traffic data from three-lane highway section in Lyon, 

France. They reported that when traffic flow was lower than 1800 veh/hr no distinct trend of 

lane utilisation could be observed. As traffic flow increases, lane utilisation increases linearly 

for lane 3 (offside lane) while decreases linearly for both lanes 1 and 2. The reasons for these 

differences in lane utilisation between the M62 and the highway in Lyon could be due to the 

relatively high speed limit implemented in France, and to the high rate of HGVs (25% of total 

traffic flow is for HGVs) using the highway in Lyon. It should be noted that the applied speed 

limit for highways in France is 130 km/hr (equivalent to 81 mph). Furthermore, the differences 

between countries’ culture affect the behaviour of drivers which could affect the pattern of lane 

changes (Nordaen and Rundmo, 2009 and Ferrari, 1989). According to the Highway Capacity 

Manual (HCM, 2010) the lane utilisation is depending on traffic regulation, traffic composition, 

speed and volume (traffic flow), the number of and the location of access points, the origin-

destination patterns of drivers, and local driver habits. Figure 2.6 illustrates the lanes notations 

used in this study, for a motorway section with 3 lanes. 
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Figure 2.6: Lane’s notations 

Some research studies have investigated the lane utilisation in respect to traffic density rather 

than traffic flow such as Knoop et al. (2010) who studied the lane utilisation based on data from 

Dutch motorways. The authors reported that at moderate to high density lower percentage of 

lane use was observed for lane 1. Similarly, Lee and Park (2010) studied the lane utilisation 

against the density and reported that the lane utilisation is affected by the amount of HGVs. 

However, the main limitation of using traffic density in studying lane utilisation is that the 

density is not directly measured by loop detectors which are commonly embedded on 

motorways to collect traffic data (Al-Obaedi, 2012).  

2.9.2 Lane changing frequency 

Lane changing frequency parameter can be defined as the total number of lane changes 

observed between all available lanes along a specified section length during a given time period 

(Zia, 1992). The lane changing frequency parameter has been used by many previous studies 

(see for example Zia, 1992; Yousif, 1993; McDonald et al., 1994; Al-Jameel, 2012; and Al-

Obaedi, 2012) to calibrate/validate many traffic micro-simulation models. According to 

previous literature, it was found that the frequency of lane changing for normal motorway 

sections (i.e. far away from merge, diverge or roadwork sections) is correlated to the traffic 

flow. Brackstone et al. (1998) reported that the frequency of lane changing initially increases 

with traffic flow; then decreases at high traffic flow since both the number of acceptable gaps 

and the desire to change lane decreases as flow breakdown approaches. 

2.9.3 Accepted gaps at merge sections 

Gap acceptance could be considered as an important parameter that affects the lane changing 

process at merge sections. As mentioned in Section 2.8.3, this gap splits into lead and lag gaps. 

It was found that there is a need for studying the minimum values of lead and lag gaps required 

for the lane changing process at the approaches to roadworks sections. Several previous studies 

(e.g. Hunt and Yousif, 1990; Hidas, 2002 and 2005; Al-Jameel, 2012 and Al-Obaedi, 2012) 

Lane 1 (inside lane) Traffic direction  

Lane 2 

Lane 3 (offside lane) 

Hard shoulder 
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have estimated the minimum accepted lead and lag gaps based on the relative speed between 

vehicles involved in the lane changing manoeuvre. According to Yousif (1993) the accepted 

lead gap can be defined as the time or distance between the lane changing (subject) vehicle and 

the new leading vehicle in the target lane at the start of the lane changing manoeuvre, whereas 

the accepted lag gap can be defined as the time or distance between the lane changing (subject) 

vehicle and the new following vehicle in the target lane at the start of the lane changing 

manoeuvre (see Figure 2.5). 

2.9.4 Courtesy behaviours  

According to Wang (2006), Al-Jameel (2012) and Al-Obaedi (2012) the courtesy behaviour 

consists of two categories. These are: (i) “cooperative slowing down behaviour” when the lag 

vehicle on the adjacent (open) lane slowed down to increase the lag gap available for the subject 

vehicle to change lane and (ii) “cooperative yielding behaviour” when the lag vehicle in the 

adjacent (open) lane moved (shifted) to other adjacent lanes to give way to the subject vehicle 

(in the closed lane) to merge. 

2.9.5 Headway 

Time headway can be defined as the time intervals between the passages of successive vehicles 

passing a reference line on the road (Salter and Hounsell, 1996 and Ha et al., 2012). Figure 2.7 

shows an illustration of the time headway. Oner (2011) cited May (1990) who reported that the 

time headway is one of the important traffic flow characteristics that affects the safety, level of 

service, driver behaviour and capacity of the transportation system.  

 

Figure 2.7: Illustration of time headway 

To represent the arrival of vehicles to a specific section, different mathematical models have 

been used by previous research studies. Yousif (1993) used real traffic data to test several 

headway distribution models. Shifted negative exponential has been found to be a good 

representation of headway distribution at free flow conditions while under high traffic flow the 

generalised queuing model was suggested. Al-Obaedi (2012) followed the same technique that 

Direction of travel 

Time headway 
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has been adopted by Yousif (1993) (i.e. by testing different distribution models using real traffic 

data), the models that have been tested are the shifted negative exponential, double negative 

exponential and generalised queuing model. The author reported that not one of the tested 

models could represent the traffic arrivals for all ranges of tested flow rates. However, he agreed 

with the findings of Yousif (1993) about using the shifted negative exponential distribution for 

free to moderate flow rates and generalised queuing distributions could only deal with the heavy 

flow rates. Likewise, Al-Jameel (2012) tested field data with lognormal distribution and 

negative exponential with different shifts. He reported that the shifted negative headway 

distribution showed a good representation of field data than the lognormal distribution.  

2.10 Summary 

The important findings from this chapter can be summarised as follow: 

 Several TTMSs have been developed and are being used. The lane closure scheme is 

one of these schemes which is used widely. However, there are contradictory findings 

on whether the offside or inside lane should be closed for roadworks to maintain the 

traffic capacity (see for example Hunt and Yousif, 1994; Kazzaz, 1998; and Bourne et 

al., 2008). Therefore, this study will try to find out which lane is better to be closed for 

roadworks to provide more capacity and less delay. 

 The narrow lanes system is another type of TTMSs which is used widely to meet the 

high traffic demand created during roadworks. However, very little research has been 

found in the literature to back the assumption of using narrow lanes to preserve the 

carriageway capacity during roadwork periods. Therefore, an evaluation of the traffic 

behaviour at motorway roadworks with narrow lanes has been carried out based on field 

traffic data taken from motorway roadwork sections (see Chapter 4) in order to 

understand and model this behaviour in the newly developed model. 

 Existing mathematical models for roadworks have various limitations, such as the 

inflexibility of examining the effects of different TTMSs and parameters on traffic 

performance. Therefore, the micro-simulation approach has been adopted in this study 

due to the capability of such an approach to represent complicated traffic situations.     

 The car-following model is one of the most important components of any micro-

simulation model. The CAR-following SIMulation model (CARSIM) which was 

initially developed by Benekohal (1986) has been adopted in this study with some 

modifications. Many previous researchers used CARSIM, see for example, 

Yousif (1993), Purnawan (2005), Al-Obaedi (2012) and Al-Jameel (2012) who tested 
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several car-following models under different sets of data including different traffic 

conditions. The tested models are GHR (Gazis et al., 1961), CARSIM 

(Beneckohal, 1986), WEAVSIM (Zarean, 1987), and Paramics (Panwai and Dia, 2005). 

The results showed that CARSIM is the most realistic amongst others in representing 

different traffic conditions.  

 The lane-changing manoeuvre forms an essential part of the current study and has been 

classified into two categories, namely DLC and MLC. In addition, the MLC was 

categorised into: free, forced and cooperative. 

 Several gap acceptance models have been introduced in the literature. However, the 

model proposed by Al-Obaedi (2012), which was based on the safety gap acceptance 

model by Liu (2005), has been adopted in this study. This is because it takes into 

consideration the safety buffer space and the impact of speeds of the involved vehicles 

on gap acceptance. Also, many researchers have adopted the safety gap acceptance 

model (see for example Wang, 2006 and Al-Jameel, 2012). 
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CHAPTER THREE                                                                               
METHODOLOGY 

 

 

3.1 Introduction 

The aim of this chapter is to present the work that was carried out for collecting and analysing 

field traffic data. Field data from sites as well as from relevant highway agencies was collected 

to gain a better understanding into the traffic behaviour at motorway normal and roadwork 

sections. The data was also used in developing, calibrating and validating the micro-simulation 

model. The data collected from roadwork sections was mainly used in investigating the gap 

acceptance, drivers’ courtesy behaviour, compliance of drivers with applied speed limit and the 

behaviour of drivers at narrow lanes roadwork sections, whereas the data taken from normal 

roadway sections (i.e. far away from merge, diverge or roadwork sections) was mainly used in 

estimating vehicles’ length, drivers’ desired speed, time headways between vehicles, lane 

utilisation, lane changing frequency and manoeuvring time.  

3.2 Data collection techniques 

In order to collect traffic data, different methods and devices have been proposed in the 

literature. Loop detectors, radar speed meters, pneumatic road tubes, ultrasonic and passive 

acoustic, instrumented vehicles and camcorders are examples of these devices (Leduc, 2008 

and Al-Obaedi, 2012). However, the literature has shown that the main system used to collect 

traffic data for the academic research purposes is camcorders; this could be due to the 

reasonably low cost involved. Furthermore, the camcorders system has many advantageous as 

reported by Yousif (1993) such as:   

 The required data can be collected by one person only,  

 The person who collects the data is able to record any comments of events outside the 

field of the camcorder through the recording system, and  

 The camcorder is easy to install on sites.  

However, the accuracy of the extracted data provided by this technique (i.e. camcorders) is 

influenced by the observer/researcher decision. 



37 

 

Loop detectors technique provides traffic data with high accuracy since this technique is not 

affected by human errors. Also, data taken from loop detectors can be collected and analysed 

with less efforts. However, loop detectors technique is not capable of providing certain traffic 

characteristics such as drivers’ courtesy behaviour, the number of lane changes and the 

manoeuvring time for lane changing (however, these characteristics were studied by using 

camcorders).   

For the purpose of this study, two techniques (camcorders and loop detectors) have been used 

to collect the required data. Two video cameras (Sony HDD Handycam DCR-SR57) were used 

in collecting the data.  

3.3 Site selection 

Locating motorway roadwork sites to conduct field surveys is not an easy task. This is mainly 

because of the temporary nature and short duration of the motorway roadworks. Some of the 

experienced difficulties are: 

 Lack of or inaccurate information from relevant agencies on presence of current 

motorway roadworks, 

 Unavailable vantage points to record data from (i.e. an overhead bridge close to the 

roadwork section), 

 Remote location of some of motorway roadwork sites (such as the case of the M6 site 

survey beyond Preston and the case of the M1 close to Leeds), and 

 Difficulties associated with adverse weather conditions.  

However, four categories of field data have been used in this study for both normal and 

roadwork sections. These four categories are described in the following sections.   

3.3.1 Category I: Motorway roadwork sites 

Table 3.1 gives a brief description of the roadwork sites selected for the current study. The 

chosen sites cover different types of temporary traffic management schemes (i.e. lane closure 

system, narrow lanes system and lane closure with using hard shoulder as a running lane). These 

sites have been surveyed during 2014 and 2015. Figure 3.1 shows the locations of these sites. 
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Table 3.1: Summary of motorway roadwork sites (Category I) 

Site 

No. 

Site 

location 

Number 

of lanes 

Traffic 

direction 
Date 

Total 

filming 

duration 

Traffic management 

scheme 

1 
M1 

(J36 – J37) 
3 Southbound 

Saturday 

15/03/2014 

1.5 hours 

(PM) 

Offside lane closure with 

using the hard shoulder 

as a running lane 

2 
M67 

(J2 – J3) 
2 Westbound 

Saturday 

21/06/2014 

3.5 hours 

(AM & PM) 
Offside lane closure 

3 
M6 

(J31 – J32) 
4 Northbound 

Sunday 

31/08/2014 

3.5 hours 

(AM & PM) 
Narrow lanes 

4 
M61 

(J2 – J3) 
2 Eastbound 

Saturday 

08/11/2014 

2.5 hours 

(AM) 
Drop lane section 

5 
M61 

(J2 – J3) 
3 Eastbound 

Saturday 

08/11/2014 

2.5 hours 

(AM) 
Drop lane section 

6 
M62    

(J18 – J19) 
3 Eastbound 

Sunday 

15/03/2015 

2.0 hours 

(AM & PM) 
Narrow lanes 

7 
M62    

(J18 – J19) 
3 Westbound 

Sunday 

15/03/2015 

2.0 hours 

(AM & PM) 
Narrow lanes 

 

3.3.2 Category II: Normal motorway sections 

Different normal motorway sites were surveyed as summarised in Table 3.2 and the location 

map shown in Figure 3.1, during 2013 and 2014. These sections were chosen to be far away 

from any merging, diverging and roadwork sections. The selected sites cover two-lane, three-

lane and four-lane motorway sections. 

Table 3.2: Summary of normal motorway sites (Category II) 

Site 

No. 

Site 

location 

Number 

of lanes 
Traffic direction Date 

Total 

filming 

duration 

Traffic 

management 

scheme 

8 
M60 

(J24 – J25) 
3  Both directions 

Saturday 

16/08/2014 

6.5 hours 

(AM & PM) 

Normal roadway 

section 

9 
M6 

(J31 – J32) 
4  Southbound 

Sunday 

31/08/2014 

3.5 hours 

(AM & PM) 

Normal roadway 

section 

10 
M602 

(J2– J3) 
2  Eastbound 

Tuesday 

18/11/2014 

3.0 hours 

(AM) 

Normal roadway 

section 

11 
M602, M62 

& M6 
--- 

From Manchester 

to Birmingham 

Wednesday 

17/04/2013 

1.5 hours 

(AM) 

Normal roadway 

section 

12 
M602, M62, 

M6 & M58 
--- 

From Manchester 

to Southport 

Wednesday 

30/07/2014 

1.0 hours 

(AM) 

Normal roadway 

section 
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Figure 3.1: Sites locations map (Categories I and II) (Source of map: Google Maps, 2014)  

3.3.3 Category III: Loop detectors data (Individual Vehicle Data-IVD) 

Field data has been made available which was extracted from the Individual Vehicle Data (IVD) 

which is obtained from the Highways Agency. This data includes the time headway between 

vehicles, the length and speed of each individual vehicle. The data was taken from normal 

motorway sections and collected over several continuous complete days. Table 3.3 shows the 

descriptions of these sites. 

Table 3.3: Summary of IVD sites (Category III) 

Site 

No. 
Site location 

Number 

of lanes 
Date Duration 

13 
M25 

(J15 – J16) 
4  

From 04/05/2002 

to 18/05/2002 
15 days 

14 
M42 

(J5 – J6) 
3  

From 22/08/2002 

to 20/09/2002 
30 days 

 

3.3.4 Category IV: Historical motorway sites  

Three video footages taken from two motorway roadwork sites and one normal motorway site 

from previous studies have been made available and used to extract field traffic data. The 

reasons for using such historic data are because these have been made available in the current 
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study and the fact that (for the sites with roadwork) it is often difficult to find motorway 

roadwork sites due to the reasons that were previously mentioned in Section 3.3. The 

descriptions of this historic data are presented in Table 3.4. 

Table 3.4: Summary of historic roadwork sites (Category IV) 

Site 

No. 

Site 

location 

Number 

of lanes 

Traffic 

direction 
Date 

Total filming 

duration 

Traffic management 

scheme 

15 
M61 

(J8 – J9) 
3  Northbound 

Friday 

16/08/1996 

3.0 hours  

(PM) 
Offside lane closure 

16 
M6 

(J14 – J15) 
3  Southbound 

Friday 

25/10/1996 

4.0 hours 

(AM) 
Offside lane closure 

17 
M60          

(J16 – J17) 
4 Eastbound 

Wednesday 

31/07/1996 

1.5 hours  

(PM) 

Normal roadway 

section 

 

3.3.5 Summary of the selected sites 

For the purpose of this study, several traffic parameters were studied using the field data that 

were collected from the surveyed sites. Table 3.5 summaries the details of sites locations, type 

of data collection techniques and the parameters obtained from the collected data. The following 

sections in this chapter present the analysis of these parameters and a detailed description of the 

methods used in extracting the data. 

3.4 Headway 

As discussed in Section 2.9.5, the time headway is one of the important traffic flow 

characteristics that affect the safety, level of service, driver behaviour and capacity of the 

transportation system. Observed time headway data (from sites) will be used and compared 

with the simulated time headway (from the developed micro-simulation model) for calibration 

purposes.  

3.4.1 Headway distribution models  

As mentioned in Section 2.9.5, different mathematical models have been used by previous 

research studies in order to represent the arrival of vehicles to a specific section. In general, 

these models could be classified into either single or composite models. The following sub-

sections presents the formulation and detailed description of the tested headway distribution 

models.      
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Table 3.5: Summary of studied parameters along with selected sites  

Site 

no. 

Site 

location 
Purpose 

Data 

collection 

technique 

1 
M1 

(J36-J37) 
- Compliance of drivers with applied speed limit 

Video 

recordings 

2 
M67 

(J2-J3) 

- Gap acceptance 

- Drivers’ courtesy behaviour 

- Compliance of drivers with applied speed limit 

- Traffic flow, speed and lane utilisation for validation purpose (see 

Chapter 7)  

Video 

recordings 

3 
M6 

(J31-J32) 

- Drivers’ behaviour at narrow lanes (see Chapter 4) 

- Traffic flow and headway distribution for calibration purpose (see 

Chapter 7) 

Video 

recordings 

4 
M61 

(J2-J3) 

- Gap acceptance 

- Drivers’ courtesy behaviour 

Video 

recordings 

5 
M61 

(J2-J3) 
- Gap acceptance  

Video 

recordings 

6 
M62 

(J18-J19) 

- Drivers’ behaviour at narrow lanes (see Chapter 4) 

- Traffic flow, speed and lane utilisation for validation purpose (see 

Chapter 7) 

Video 

recordings 

7 
M62 

(J18-J19) 
- Drivers’ behaviour at narrow lanes (see Chapter 4) 

Video 

recordings 

8 
M60 

(J24-J25) 

- Headway distribution  

- Lane changing frequency 

- Comparison between drivers’ behaviour at roadwork sections with 

narrow lanes and normal roadway section (see Chapter 4) 

Video 

recordings 

9 
M6 

(J31-J32) 
- Lane changing frequency 

Video 

recordings 

10 
M602 

(J2-J3) 

- Lane changing frequency 

- Traffic flow and lane utilisation for validation purpose (see Chapter 7) 

Video 

recordings 

11 

M602, 

M62 & 

M6 

- Lane changing manoeuvring time  
Video 

recordings 

12 

M602, 

M62, M6 

& M58 

- Lane changing manoeuvring time 
Video 

recordings 

13 
M25 

(J15-J16) 

- Vehicles’ types and lengths (see Chapter 6) 

- Drivers’ desired speeds (see Chapter 6) 

- Traffic flow, speed and lane utilisation for validation purpose (see 

Chapter 7) 

Loop detectors 

(IVD) 

14 
M42 

(J5-J6) 

- Headway distribution  

- Lane utilisation 

- Drivers’ desired speeds (see Chapter 6) 

- Traffic flow, speed and lane utilisation for validation purpose (see 

Chapter 7) 

Loop detectors 

(IVD) 

15 
M61 

(J8-J9) 

- Developing, calibrating and validating the S-Paramics software (see 

Chapter 5) 

Video 

recordings 

16 
M6 

(J14-J15) 

- Developing, calibrating and validating the S-Paramics software (see 

Chapter 5) 

Video 

recordings 

17 
M60          

(J16-J17) 

- Comparison between drivers’ behaviour at roadwork sections with 

narrow lanes and normal roadway section (see Chapter 4) 

Video 

recordings 
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3.4.1.1   Single headway models 

i. Negative exponential distribution 

Salter and Hounsell (1996) reported that this model is suitable to represent the vehicle arrival 

rates at free traffic flow conditions. The probability density function is as shown in 

Equation 3.1: 

𝑓(𝑡) = 𝑒𝑥𝑝−𝑄𝑡                                                                                         Equation 3.1 

Where:  

Q: the traffic flow (veh/hr), and  

t: the time headway in seconds. 

ii. Shifted negative exponential distribution 

By shifting the negative exponential distribution by a minimum headway (shift), this model is 

able to describe vehicle arrival rate for free to moderate flow (Yousif, 1993 and Al-

Obaedi, 2012). The form of the shifted negative exponential can be described by 

Equation 3.2 (Benekohal, 1986 and Alterawi, 2014): 

𝑇𝐻 = 𝑠ℎ𝑖𝑓𝑡 − [
1

𝑄
− 𝑠ℎ𝑖𝑓𝑡] ln(𝑅𝑁𝐷)                                                              Equation 3.2 

Where:  

TH: the time headway for each generated vehicle in a simulation model,  

Shift: the additional time such as 0.25, 0.5 and 1 in seconds, and 

RND: the random number generated by the simulation model.  

iii. Lognormal distribution  

Al-Obaedi (2012) cited Tolle (1976) who reported that the lognormal distribution is suitable to 

fit headway distribution data under high flow rates. The probability density function is as shown 

in Equations 3.3 to 3.5 (Zia, 1992; Walck, 1996; and Alterawi, 2014):   

𝑓(𝑡) =
1

𝜎𝑡(2𝜋)0.5
 𝑒𝑥𝑝

−(ln(𝑡)−𝜇)

2𝜎2                                                                           Equation 3.3 

 𝜇 = 𝑙𝑛(𝑎) − 𝜎2/2                                                                                                  Equation 3.4 

 𝜎2 = 𝑙𝑛 (
𝑠2

𝑎2 + 1)                                                                                                     Equation 3.5 

Where: 

a and s: the mean and the standard deviation of the lognormal distribution, respectively, and 

μ and σ: the mean and the standard deviation of the normal distribution, respectively. 
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Branston (1976) and Al-Obaedi (2012) recommended that the values of a and s are to be 

independent of the traffic flow rate with the following values: 

a = 1.6 sec   s = 0.4 sec   for slower lane  

a = l.3 sec   s = 0.4 sec   for faster lane 

 

3.4.1.2   Composite headway models 

i. Generalised queuing model 

General queuing model is based on the assumption that vehicles are travelling in random 

queues. The general queuing model consists of two separate criteria to describe the headway. 

One is used for free vehicles (i.e. no leading vehicle) while the other one is used for the 

restrained vehicles (i.e. following a leader). To calculate the restrained vehicles headway, many 

researchers used the lognormal distribution such as Zia (1992), Yousif (1993), Zheng (2003) 

and Al-Obaedi (2012), whereas the headway for free vehicles is estimated as the sum of 

restrained headway and the headway derived from the negative exponential 

distribution (Branston, 1976; Zia, 1992 and Al-Obaedi, 2012). Equations 3.6 and 3.7 show the 

proportion of restrained vehicles (𝜙) and free flow vehicles (Qf), respectively (as suggested by 

Branston, 1976 and Al-Obaedi, 2012).   

𝜙 = 𝑎 . 𝑄 − (0.5 . 𝑄0.5. (𝑎 . 𝑄 − 1))                                                                   Equation 3.6 

𝑄𝑓 = 𝑄 − 0.5 . 𝑄1.5                                                                                                 Equation 3.7    

3.4.2 Testing headway distribution models using real data 

For the purpose of this study, three sets of real traffic data collected from two sites with different 

traffic flow conditions (i.e. ranging from free, moderate to heavy) have been used to test the 

headway distribution models mentioned earlier in order to select the most appropriate one. The 

selected headway distribution model will be used to generate vehicles at the start of the 

developed micro-simulation model.  

Table 3.6 shows a brief description of the selected data sets for this test. The selected sites are 

normal motorway sections (i.e. far away from merge or diverge sections) and consisted of three 

lanes. The tested headway distribution models are the shifted negative exponential, the 

lognormal and the generalised queuing model.    
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Table 3.6: Headway field data details 

Data sets No. 1 2 3 

Site No. 8 14 14 

Site location M60 (J24 – J25) M42 (J5 – J6) M42 (J5 – J6) 

Date 
Saturday 

16/08/2014 

Thursday 

22/08/2002  

Monday 

16/09/2002 

Time 
09:30 – 10:00 

AM 

09:30 – 10:30 

AM 

08:15 – 09:15 

AM 

Data period 30 min 60 min 60 min 

Using the shifted negative exponential distribution and based on the data set 3, Figure 3.2 shows 

good agreement between the observed and the predicted cumulative headway distribution for 

lanes 1, 2 and 3 with flow rates of about 1390, 1890 and 2090 veh/hr, respectively. This was 

found to be consistent with the findings of Al-Jameel (2012) who used the shifted negative 

exponential distribution to generate vehicles in his micro-simulation model on motorways. The 

best shift values (which gave better results) of 0.75, 0.75 and 0.70 were used for lanes 1, 2, and 

3 respectively.  

 

Figure 3.2: Observed and predicted cumulative headway distributions for Site No. 14 - 

data set 3 (M42) in (a) lane 1, (b) lane 2 and (c) lane 3 using the shifted negative 

exponential model 
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The results also show that the generalised queuing distribution could replicate the observed 

headways under heavy flow on lane 3 better than those under moderate flow on lane 1 (as shown 

in Figure 3.3), which are based on the data set 3. This shows an agreement with previous 

researchers’ findings such as Zia (1992), Yousif (1993) and Al-Obaedi (2012) who reported 

that the generalised queuing model could only deal with heavy flow rates. The best mean 

headway parameters (a) that could be achieved for this distribution are 1.6, 1.4 and 1.2 seconds 

for lanes 1, 2 and 3 respectively, and the best standard deviation parameters (s) achieved is 0.4 

seconds for all lanes. This was found to be consistent with the findings of Branston (1976) who 

suggested that values of 1.6 and 0.4 seconds for (a) and (s) respectively are recommended for 

slow speed lane and values of 1.3 and 0.4 seconds for (a) and (s) are recommended for high-

speed lane.    

 

Figure 3.3: Observed and predicted cumulative headway distributions for Site No. 14 - 

data set 3 (M42) in (a) lane 1, (b) lane 2 and (c) lane 3 using generalised queuing model 

Figure 3.4 show the observed cumulative headway distribution and the predicted cumulative 

headway distribution using the lognormal model for lanes 1, 2 and 3 with flow rates of 1390, 

1890 and 2090 veh/hr respectively, based on data set 3. It can be seen from the figure that the 

lognormal model did not replicate the observed headways very well, especially for lane 1.  
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Figure 3.4: Observed and predicted cumulative headway distributions for Site No. 14 - data 
set 3 (M42) in (a) lane 1, (b) lane 2 and (c) lane 3 using the lognormal model 

The Kolmogorov-Smirnov (K-S) non-parametric test for goodness of fit was used to determine 

the best fit to the data. The test compares the maximum difference Dmax between two cumulative 

distributions (i.e. observed and predicted headway) with the critical value Dcr which could be 

obtained from Equation 3.8 or from K-S tables (Hayter, 2002). 

𝐷𝑐𝑟 = 1.36  √
𝑛1 + 𝑛2

𝑛1𝑛2
       (for 95% confidence level)                               Equation 3.8  

Where: 

n1 & n2: are the sample sizes.  

The results of the goodness of fit using the (K-S) test for all data sets are shown in Table 3.7 

which could reflect the above results and findings. It can be seen from the table that not one of 

the tested models is capable of representing the arrival distribution of traffic for all ranges of 

tested flow rates. However, the table shows that the shifted negative exponential distribution 

performs better than both the generalised queuing distribution and lognormal distribution in 

terms of replicating the observed cumulative headway distribution for all data sets. Therefore, 

it was decided to use the shifted negative exponential distribution for generating traffic in the 

developed micro-simulation model.  
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Table 3.7: Statistical results for testing the headway distribution models using K-S test 

Data set No. 1 2 3 

Lane no. 1 2 3 1 2 3 1 2 3 

Flow rate (veh/hr) 518 457 158 980 1571 1392 1391 1890 2090 

Shifted negative 

exponential (Dmax)  
0.058 0.085 0.171* 0.058 0.043 0.136* 0.046 0.030 0.048* 

Generalised 

queuing (Dmax) 
0.172* 0.114* 0.110 0.205* 0.128* 0.151* 0.133* 0.126* 0.092* 

Lognormal       

(Dmax) 
0.519* 0.510* 0.677* 0.569* 0.312* 0.269* 0.367* 0.234* 0.251* 

K-S critical value 

(Dcr) 
0.085 0.090 0.153 0.061 0.049 0.052 0.052 0.044 0.042 

*: Dmax > Dcr  

 
3.5 Lane utilisation 

As discussed in Section 2.9.1, lane utilisation can be defined as the parameter that is used to 

describe the distribution of traffic among available lanes in a single direction (HCM, 2010). In 

this study, the lane utilisation parameter has been used to properly distribute simulated vehicles 

among the simulated lanes of the newly developed micro-simulation model.   

3.5.1 Testing lane utilisation models using real data 

For the purpose of this study, several lane utilisation models proposed by previous studies were 

tested using real data in order to select the most appropriate models. The selected lane utilisation 

models will be used to distribute simulated vehicles among the simulated lanes of the developed 

micro-simulation model.  

Three complete days (24 hours in each day) of data from the IVD taken from the M42 (3-lane 

motorway) were used for this test. Table 3.8 shows the previous lane utilisation models for 3 

lanes motorway sections and the test results (i.e. coefficient of determinations, R2). As 

mentioned earlier, traffic regulations and local drivers’ habits have direct impacts on how 

vehicles are distributed among the motorway lanes. Therefore, the lane utilisation models listed 

in Table 3.8 were limited to the previous studies that were developed based on data collected 

from the UK motorways only.  

It is worth mentioning here that, the newly developed micro-simulation model takes into 

consideration the traffic regulations of the UK motorway (i.e. speed limit of 70 mph, drivers 

are not allowed to overtake on the inside (undertake) and HGVs are banned from using the 

offside lane for motorways with 3 or more lanes).   
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Table 3.8: Testing some previous models of lane utilisation 

Names and 

References 
Lane Lane Utilisation Model (%) R2 

Yousif and 

Hunt (1995) 

1 P1 = 608.84Q- 0.39 0.89 

2 P2 = 100 - P1 - P3 0.36 

3 P3 = 0.034 + 0.0179Q - 1.85E-6Q2 0.94 

Zheng (2003) 

1 P1 = 0.67106 - 2.4168E-4Q - 2.9302E-8Q2 0.93 

2 P2 = 0.4795 - 1.052E-5Q - 3.018E-9Q2 0.17 

3 P3 = -0.15061 + 2.522E-4Q + 2.6284E-8Q2 0.94 

Al-Jameel 

(2012) 

1 For Q ≥ 150; P1 = 446.94Q-0.319 0.91 

2 P2 = 100 – P1 – P3 0.45 

3 For Q ≥ 150; P3 = -4xl0-8 (Q)2 + 0.0096Q-2.2136 0.96 

Yousif et al. 

(2013a) 

1 
P1 = 1.732E-15Q4 – 2.75E-11Q3 + 1.67E-07Q2 – 

0.000485Q + 0.8412 
0.94 

2 
P2 = 2.14E-19Q5 – 4.91E-15Q4 + 4.68E-11Q3 – 2.2E-

07Q2 + 0.000449Q + 0.1588  
0.70 

3 P3 = 100 – P1 – P2 0.96 

Note: P = percentage in lane; Q = traffic flow (veh/hr)  

It can be seen from Table 3.8 that all the models presented suggest high coefficient of 

determination (R2) values for both lanes 1 and 3. However, the R2 value for lane 2 seem very 

low, apart from the suggested models by Yousif et al. (2013a) and therefore these were used in 

representing lane utilisation. 

Also, it is worth mentioning that, Yousif et al. (2013a) have developed other regression 

models/equations to represent lane utilisation for HGVs. The models/equations suggested by 

Yousif et al. (2013a) were based on a very large amount of traffic data taken from MIDAS for 

different motorway sections (i.e. 2, 3, and 4 lanes). Therefore, it was decided to use these 

equations in distributing the different types of vehicles (i.e. passenger cars and HGVs) among 

the lanes in the developed micro-simulation model. Table 3.9 shows the summary of these 

models/equations suggested by Yousif et al. (2013a) for different motorway sections (i.e. 2, 3, 

and 4 lanes) for both, all vehicles and HGV’s. 

3.5.2 Lane utilisation at motorway roadwork sections 

Lane utilisation is affected by the lane-changing process which is concentrated at sections 

approaching roadwork. Jin (2010) reported that the presence of merging, diverging, and 

weaving sections will affect lane utilisation. Therefore, at the approach to roadwork 

sections (with the use of lane closure scheme) the lane utilisation is significantly different from 

that at normal roadway sections. In this study, the main reason for collecting lane utilisation 
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data from motorway with roadwork sections is to be used in validating the developed micro-

simulation model (as will be discussed later in Section 7.5). 

According to the Design Manual for Roads and Bridges – DMRB (2005), the loop detectors 

should be installed in all new motorways, widened motorways and in all existing motorways 

during major maintenance. In addition, these loop detectors shall be sited in all running lanes 

of both carriageways at space intervals of 500 m (plus or minus 20%); exit and entry slip road 

lanes at junctions, entry slip road lanes to motorway service areas; and within motorway to 

motorway link roads (DMRB, 2005). However, such information was not available since it 

proved to be difficult to find loop detectors near roadwork sections (i.e. not all of the existing 

motorways are equipped with such detectors). Therefore, camcorders have been used to collect 

the necessary traffic data that is related to the lane utilisation at roadwork sections. 

Table 3.9: Yousif et al. (2013a) models of lane utilisation (in terms of total flow rates and 

HGV flow) 

Name and 

Reference 

Number of 

motorway 

lanes 

Lane Lane Utilisation Model (%) 

Yousif et al.

 (2013a) for 

all vehicles 

2 
1 P1 = -1.2E-11Q3 + 1.13E-07Q2 - 0.000397Q + 0.9294 

2 P2 = 100 – P1 

3 

1 
P1 = 1.732E-15Q4 – 2.75E-11Q3 + 1.67E-07Q2 – 

0.000485Q + 0.8412 

2 
P2 = 2.14E-19Q5 – 4.91E-15Q4 + 4.68E-11Q3 – 2.2E-

07Q2 + 0.000449Q + 0.1588  

3 P3 = 100 – P1 – P2 

4 

1 P1 = -2.62E-12Q3 + 4.67E-08Q2 – 0.000243Q + 0.54 

2 P2 = 6.27E-09Q2 – 7.64E-05Q + 0.46 

3 
P3 = -8.79E-16Q4 + 1.775E-11Q3 – 1.29E-07Q2 + 

0.000377Q 

4 P4 = 100 – P1 – P2 – P3 

Yousif et al.

 (2013a) for 

HGVs 

3 
1 PH1 = 0.976 - 0.0002044QH - 0.0000285Q 

2 PH2 = 100 – PH1 

4 

1 PH1 = 0.862 - 0.0002007QH -0.00003943Q 

2 PH2 = 0.154 + 0.00011QH + 0.00002143Q 

3 PH3 = 100 – PH1 – PH2 

Note: P = percentage in lane; Q = traffic flow (veh/hr); PH = percentage of HGVs in lane; 

QH = total HGV traffic flow (veh/hr)  
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3.6 Lane changing observations 
  
3.6.1 Lane changing frequency 

As discussed in Section 2.9.2, the lane changing frequency parameter can be defined as the total 

number of lane changes observed between all available lanes along a specified section length 

during a given time period (Zia, 1992). For the purpose of this study, the frequency of lane 

changing parameter has been investigated based on real traffic data in order to be used in 

calibrating the developed micro-simulation model. 

In this study, field data have been collected from three normal motorway sections to investigate 

the frequency of lane changing. These are the M6 J31-J32 section with four lanes, the M60 J24-

J25 section with three lanes and the M602 J2-J3 section with two lanes. Camcorders were used 

for collecting the data from each site. Table 3.10 shows the description of field data which was 

used for studying the frequency of lane changing.  

Table 3.10: Lane changing frequency field data details 

Site No. 9 8 10 

Site location M6 (J31 – J32) M60 (J24 – J25) M602 (J2 – J3) 

Number of 

lanes 
4 lanes 3 lanes 2 lanes 

Date 
Sunday 

31/08/2014 

Saturday 

16/08/2014  

Tuesday 

18/11/2014  

Time 11:40 – 14:10  09:25 – 11:55 09:00 – 11:30 

Data period 150 minutes 150 minutes 150 minutes 

Section length 150 m 200 m 200 m 

The lane changes frequency and total flow rates of the observed motorways have been extracted 

by playing back the recorded video footages. Using a marker pen, a thin line across the 

computer screen was sketched at the start of an arbitrary white road marking (at the centre of 

the computer screen) to help in counting vehicles (e.g. measuring time headways between 

successive vehicles). Similarly, in order to measure the frequency of lane changing, two thin 

lines across the computer screen were drawn to cover the distance of section length shown in 

Table 3.10. For Site No. 9 (M6), for example, the first line was located at the start of an arbitrary 

white road marking (near from the bottom of the computer screen), whereas the second line 

was after 16 consecutive white road markings (9 m each, as prescribed in the Traffic Signs 

Manual (Road Marking - Chapter 5, 2003) away from the first line, to cover the distance close 

to 150 m. An event recorder (computer programing codes, used as a stopwatch) was used to 

facilitate the extraction of events which were registered on a spreadsheet whenever a button 
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was pressed on the keyboard. The data were then grouped into 5 minutes intervals (as suggested 

by previous researchers such as Yousif, 1993 and Al-Obaedi, 2012). 

3.6.1.1   Four lanes section 

For motorway sections with 4 lanes, Figure 3.5 shows the results of lane changing frequency 

for the M6 (J31 – J32). In this field survey, a flow ranging from around 4800 veh/hr and up 

to 6000 veh/hr was covered which seems limited since the low flow rates are excluded from 

this data. However, previous studies by Chang and Kao (1991), Al-Obaedi (2012) and Al-

Jameel (2012) (which cover low to moderate flow rates for 4-lane sections) suggested that the 

frequency of lane changing initially increases as flow increases. Al-Jameel (2012) reported that 

the frequency of lane changing (for 4-lane motorway) reaches its maximum value of 1800 (lane 

changes/hr/km) at flow rate of 4200 veh/hr, after that, the lane changing frequency start 

decreasing as traffic flow keep increasing. The data was based on using camcorders from the 

M60 (normal motorway section, far away from merge or diverge sections).  

 

Figure 3.5: Frequency of lane changing for the M6 (4-lane motorway) (Site No. 9)   

The results presented in Figure 3.5 for the current data (from the M6, Site No. 9) seem to be 

consistent with the findings of previous researchers such as Al-Jameel (2012) and Brackstone et 

al. (1998) who reported that the frequency of lane changing decreases at high traffic flow. 

3.6.1.2   Three lanes section 

For the M60 (J24 – J25) motorway section with 3 lanes, the available data only covered flow 

rates less than 3500 veh/hr. The field data suggests that, as traffic flow increases, the frequency 
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of lane changes increases, as shown in Figure 3.6. This is consistent with the findings by Yousif 

(1993) who reported that the frequency of lane changing initially increases with traffic flow. 

However, the field data from the M60 (Site No. 8) when compared to the data observed by 

Yousif (1993) showed higher lane changes frequency than Yousif’s data at flow rate of 

3000 veh/hr. Yousif (1993) reported that at flow rate of 3000 veh/hr, the frequency of lane 

changing reaches its maximum value of around 1200 lane changes/hr/km. Then, the lane 

changing frequency starts to decrease as flow rates exceed this level.  

 
 Figure 3.6: Frequency of lane changing for the M60 (3-lane motorway) (Site No. 8) 

Furthermore, the field data from the M60 has also been compared with data observed by 

McDonald et al. (1994). However, the data by McDonald et al. (1994) very scattered, and at 

flow rate of 3000 veh/hr, the number of lane changes was ranging from 800 to 1600 lane 

changes/hr/km. In general, all data (i.e. by Yousif, 1993; by McDonald et al., 1994 and the 

current data from the M60 - Site No. 8) agreed that the frequency of lane changing reached a 

maximum at flow rate of about 3000 veh/hr. Both previous studies (i.e. Yousif, 1993 and 

McDonald et al., 1994) used camcorders to collect the data from normal motorway sections. 

Yousif (1993) collected his data from the M4, whereas McDonald et al. (1994) collected their 

data from the M27. 

3.6.1.3   Two lanes section 

Figure 3.7 shows the frequency of lane changing taken from the M602 (J2 – J3), motorway 

sections, (Site No. 10) with 2 lanes. For this field survey, the flow was limited to a range from 

around 1200 to 2700 veh/hr (i.e. low and high flow rates are excluded). The field data from the 

M602 is not showing a clear trend for the lane changing frequency. This could be attributed to 
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the long queues experienced at some intervals during the survey due to the presence of a 

signalised junction which is located around 1400 m far away (in the downstream direction) 

from the site.         

 
Figure 3.7: Frequency of lane changing for the M602 (2-lane motorway) (Site No. 10) 

3.6.1.4   Summary 

Based on these results (presented in Figures 3.7 to 3.9), it can be concluded that, the current 

field data from the M6 (J31 – J32), M60 (J24 – J25) and M602 (J2 – J3) are not reliable to be 

used in calibrating the developed micro-simulation model since they are proved to be limited. 

Therefore, other published data taken from previous studies will be used for this purpose (as 

will be discussed later in Section 7.4.2).  

3.6.2 Lane changing manoeuvring time 

Lane changing manoeuvring time could be defined as the time required for a vehicle to change 

its current lane to the adjacent lane. In this study, the manoeuvring time is measured from the 

instant that a vehicle starts to deviate from its current lane until the rear tyres of the vehicle 

cross the longitudinal marking line (as suggested by Al-Obaedi, 2012). Two video recordings 

were collected while travelling as a passenger to investigate this factor (see Table 3.11 for 

further details). 
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Table 3.11: Lane changing manoeuvring time field data details 

Site No. 11 12 

Site location M602, M62 & M6 
M602, M62, M6 & 

M58 

Trips route 
From Manchester to 

Birmingham 

From Manchester to 

Southport 

Date 
Wednesday 

17/04/2013 

Wednesday 

30/07/2014  

Time 10:00 – 11:30  09:00 – 09:45 

Data period 90 minutes 45 minutes 

The analysis of data revealed that the average manoeuvring time and standard deviations for 

site number 11 are 3.12 and 0.66 seconds, respectively and 3.19 and 0.11 seconds, respectively 

for site number 12. These values are found within the reported values by previous studies (as 

shown in Table 3.12).   

Table 3.12: Summary of previous studies for manoeuvring time  

Name and 

reference 
Average (sec) 

Standard 

deviation (sec) 

Zia (1992) 3.0 0.86 

Yousif (1993) 4.2 1.05 

Al-Obaedi (2012) 2.6 0.57 

The above-stated results are for passenger cars only. An attempt to estimate the manoeuvring 

time for HGVs was achieved based on data from site number 11. The average and standard 

deviation of manoeuvring time for HGVs are 5.12 and 2.1 seconds, respectively. Al-

Obaedi (2012) also measured the average manoeuvring time and standard deviation for HGVs 

and reported lower values of 4.15 seconds and 0.7 seconds. For the purpose of this study, the 

manoeuvring time for each vehicle (passenger car or HGV) has been generated from a normal 

distribution, with the statistical values obtained from site number 11, as suggested by previous 

studies (e.g. Yousif, 1993; Al-Jameel, 2012; and Al-Obaedi, 2012).  

3.7 Traffic behaviour at roadworks  
 

3.7.1 Accepted gaps 

As mentioned in Section 2.9.3, it was found that due to the importance of the gap acceptance 

on merging process, there is a need for studying the minimum values of lead and lag gaps 

required for the lane changing process at the approaches to roadworks sections. 

For the purpose of this study, three video recordings from three motorway sections (see 

Table 3.13) were used to investigate the gap acceptance. The selected sections were the M67 
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J2-J3 (roadwork section), the M61 J2-J3 (drop lane section, 2 lanes) and the M61 J2-J3 (drop 

lane section, 3 lanes). Drop lane sections were selected because of the similarity in drivers 

merging behaviour with that of roadwork sections and the unavailability of sufficient roadwork 

sections with a good vantage point to collect the data from. However, there are some differences 

between both sections which include the fact that speed limits might be different (for example, 

speed limits on motorway roadwork sections are likely to be reduced from 70 mph to 50 mph, 

whereas this reduction may not apply for drop lane sections).  

Table 3.13: Gap acceptance field data details 

Site No. 2 4 5 

Site location M67 (J2 – J3) M61 (J2 – J3) M61 (J2 – J3) 

Number of 

lanes 
2  2  3 

Date Saturday 21/06/2014 Saturday 08/11/2014 Saturday 08/11/2014 

Time 11:20 – 14:55  8:45 – 11:15 8:45 – 11:15 

Duration  3.5 hours 2.5 hours 2.5 hours 

Type of 

section 

Roadwork section with 

offside lane closure 

Drop lane section with 

offside lane drops 

Drop lane section with 

offside lane drops 

Speed limit 50 mph 70 mph 70 mph 

Vehicles’ speeds and sizes of lead and lag gaps have been extracted by playing back the 

recorded video footages. Vehicles’ speeds were calculated by drawing two screen lines (datum 

lines) to cover a distance of about 100 m (i.e. 11 consecutive white road markings 9 m each). 

The time required for a vehicle to cross this distance is then measured using an event recorder. 

Simple calculations of distance over time were then used to convert the readings into speeds. It 

is worth mentioning here that the accuracy of speed measurement depends on the measured 

time which may be affected by human errors (i.e. time taken to manually press a button when 

vehicle passes the datum line). However, an attempt to check the accuracy of speed 

measurement was carried out by comparing some speed readings extracted from video 

recordings with those obtained from a radar speed meter for the same vehicles. In general, the 

paired results show good agreement between speed readings from video recordings and those 

from the radar speed meter.  

Similarly, to calculate the sizes of lead and lag gaps, many screen lines were drawn on the PC 

monitor to make grids along the section under study. As the lane changing (subject) vehicle 

starts to deviate from its current lane, the lag gap is the time required for the following vehicle 

in the target (adjacent) lane to reach to the position of the subject vehicle at the instant of 
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deviation, whereas the lead gap is the time required for the subject vehicle to reach to the leading 

vehicle position at the instant of deviation (see Figure 2.5).  

Figure 3.8 shows the relationship between relative speeds on the size of accepted lead and lag 

gaps for the M67, whereas Figure 3.9 shows the results of gap acceptance for the M61 (for both, 

2 and 3 lane sections). Values of lead and lag gaps of less than or equal to 5 seconds were only 

considered in the analysis of the field data where other values (i.e. larger than 5 sec) were 

omitted from the analysis because they were considered so large. The dashed lines in the figures 

represent the minimum lead or lag gaps and suggest that the higher the speed differences, the 

higher the required lead/lag gaps.  

 
 
Figure 3.8: Relationship between relative speeds on the size of accepted lead and lag gaps 

based on data from the M67 (Site No. 2) 
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Figure 3.9: Relationship between relative speeds on the size of accepted lead and lag gaps 

based on data from the M61 (Site No. 4 and 5)  

The minimum observed lead and lag gaps for the M67 were about 0.2 and 0.4 seconds, 

respectively, whereas the minimum lead and lag gaps for the M61 (both sections with 2 

and 3 lanes) were about 0.4 and 0.6 seconds, respectively. The difference in the results between 

the M67 and the M61 could be attributed to the differences in traffic flow conditions between 

those sites. The flow rates for the M67 site was around 1000 veh/hr, whereas the flow rates for 

the M61 site were around 300 veh/hr for the 2-lane section (i.e. site no. 4) and 500 veh/hr for 

the 3-lane section (i.e. site no. 5). However, for the purpose of this study, the results presented 

in Figure 3.8 from the M67 (Site No. 2) have been used in the development of the new micro-

simulation model (see Section 6.6), since the results presented in Figure 3.9 are limited to low 

flow conditions only. 
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3.7.2 Courtesy behaviour 

In this study, and as discussed in Section 2.9.4, the courtesy behaviour consists of two 

categories. Firstly, the lag vehicle on the open lane will try to slow down to increase the lag gap 

available for the subject vehicle to change lane (cooperative slowing down). Secondly, 

cooperative yielding which occurred at the approach of the roadwork sections, when vehicles 

in the open lane moved (shifted) to other adjacent open lanes to give way to vehicles in the 

closed lane to merge.  

In this study, only the cooperative slowing down was measured since the cooperative yielding 

is difficult to obtain accurately from the video playbacks because it is required installing 

camcorder(s) on overpass bridges upstream the roadwork section in order to calculate the 

number of lane changings cases. In addition, these cases of lane changing need to be evaluated 

further to determine which cases have been performed to give way for closed lane vehicles 

rather than enhancing driving condition. 

Field data from the M67 (i.e. site number 2) and the M61 with 2 lanes section (i.e. site number 

4) have been used in studying the cooperative slowing down behaviour. It is worth mentioning 

here that there are some limitations when obtaining such data. These limitations relate to 

obtaining data for only certain cases where vehicles’ rear brake lights were shown and in other 

cases where front flashing headlights were used (which is common practice for UK drivers to 

give way to other drivers). For the M61 site, the camcorder was installed facing upstream the 

drop lane section (i.e. facing the traffic), whereas for the M67 site, the camcorder was installed 

upstream of the roadwork section facing traffic from behind.  

Based on the M67 data, the results suggest that 12% of drivers (of the total number of lane-

changing cases) are offering cooperation by slowing down. However, there might be other cases 

of lag vehicles’ rear brake lights were applied but were not considered due to obstruction from 

the camcorder view caused by the presence of larger vehicles within the traffic. This would 

result in some underestimation of this cooperative behaviour. However, due to the fact that in 

some cases the subject vehicle forces the lag vehicle to slow down and to widen the gap (i.e. 

lag gap), this will result in some overestimation of this cooperative behaviour.  

For the M61 data, the results suggest that only 4% of drivers (of the total number of lane 

changes) were offering cooperation with slowing down. However, there might be other 

cooperative slowing down cases which are not included in the analysis, since these cases may 
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have happened without flashing the headlights. This low percentage of drivers offering courtesy 

could be attributed to the local traffic conditions since the M61 site is experienced low traffic 

condition (around 300 veh/hr) which means that there are several opportunities provided for the 

subject vehicle to change lanes without any interactions between the subject vehicle and the 

lead or lag vehicles in the target lane.  

3.7.3 Compliance of drivers with speed limit at roadwork sections  

As mentioned in Section 2.6.5, the compliance of drivers with the posted temporary speed limit 

(i.e. 50 mph) applied at motorway roadwork sections is one of the most significant factors that 

could enhance safety levels and traffic operation through such sections. Two video recordings 

from the M67 and the M1 (see Table 3.14) have been used to investigate the compliance of 

drivers with the applied speed limit at roadwork sections.  

Table 3.14: Drivers’ compliance with speed limit field data details 

Site No. 1 2 

Site location M1 (J36 – J37) M67 (J2 – J3) 

Number of lanes 3  2  

Date Saturday 15/03/2014 Saturday 21/06/2014 

Time 15:05 – 16:35 11:20 – 14:55  

Duration  1.5 hours 3.5 hours 

Type of section 

Roadwork section with 

offside lane closure with 

using hard shoulder as a 

running lane  

Roadwork section with 

offside lane closure 

Speed limit 50 mph 50 mph 

The same procedure was followed as in the previous sections to measure vehicles’ speeds. 

Figure 3.10 shows the cumulative distribution of drivers’ speeds based on data from 

the M67 (Site No. 2).  

It can be seen from Figure 3.10 that 83% of drivers are not complying with the applied speed 

limit (i.e. 50 mph). This finding is consistent with Summersgill (1985) who reported that 93% 

of drivers did not comply and exceeded the speed limit, see Section 2.6.5. Figure 3.10 also 

shows that the percentage of vehicles that are travelling with speeds less than the speed limit 

plus 10 mph (i.e. 60 mph) is about 57%. The results obtained from the M67 field survey which 

presented in Figure 3.10 were used as a basis of realistic assumptions for generating drivers’ 

desired speed at roadwork sections (as will be discussed later in Section 6.7.1).   
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Figure 3.10: Cumulative distribution for drivers’ speeds based on data from the M67 

(Site No. 2) 

It can be seen from Figure 3.10 that 83% of drivers are not complying with the applied speed 

limit (i.e. 50 mph). This finding is consistent with Summersgill (1985) who reported that 93% 

of drivers did not comply and exceeded the speed limit, see Section 2.6.5. Figure 3.10 also 

shows that the percentage of vehicles that are travelling with speeds less than the speed limit 

plus 10 mph (i.e. 60 mph) is about 57%. The results obtained from the M67 field survey which 

presented in Figure 3.10 were used as a basis of realistic assumptions for generating drivers’ 

desired speed at roadwork sections (as will be discussed later in Section 6.7.1).   

The analysis of the M1 data reveals that only 29% of drivers were observed complying with the 

applied speed limit. The result of drivers’ compliance with speed limit from the M1 was 

compared with results from the previous study by Yousif (2002) based on data from motorway 

roadwork sections (M61). Table 3.15 shows the findings which are based on results obtained 

from cumulative speed distributions. 

The table suggests that the drivers who are travelling on the M1 section complied with a speed 

limit of 50 mph more than those travelling on the M61. This could be attributed to the 

differences in the weather conditions and speed monitoring systems between both sites. The M1 

experienced adverse weather condition, unlike the other site (i.e. the M61). In addition, 

Yousif (2002) reported that the absence of any speed enforcement devices on the M61 site 

reflects the poor level of compliance with the speed limit, whereas many speed cameras have 

been noticed along the M1 site. The table also suggests that the level of compliance with the 

speed limit for faster lane drivers is lower than that for slower lane, for both current (i.e. M1) 
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and previous (i.e. M61) study. These differences in the levels of compliance between lanes 

could be attributed to the fact that HGVs and other “slower” moving vehicles are mainly 

travelling on the slower lane.  

Table 3.15: Compliance of drivers with speed limits applied at motorway roadwork 

sections 

Data Current field data (M1)* 
Published data (Yousif, 

2002) (M61)** 

Lane no. 
Hard 

shoulder 
1 2 1 2 

% of drivers travelling 

with speed below speed 

limit (i.e. 50 mph) 

52% 28% 8% 23% 11% 

% of drivers travelling 

with speed below speed 

limit + 10 mph (i.e. 

60 mph) 

99% 97% 80% 84% 63% 

*: The M1 site is a 3-lane motorway with offside lane closure (3 lanes open, including the hard shoulder as a 

running lane).  

**: The M61 site was also 3-lane motorway section with offside lane closure (2 lanes open). 

 
3.8 Summary 

This chapter presented the analysis of data which is collected from different motorway sites 

with normal and roadwork sections. The main findings of the chapter can be summarised as 

follows: 

 Video recordings and IVD data taken from normal motorway sections with 3 lanes have 

been used to fit some headway distribution models (as discussed in Section 3.4). It was 

found that the shifted negative exponential distribution acceptably replicates the field 

data for different flow rates. Therefore, the shifted negative exponential distribution has 

been used in this study.   

 IVD data (3 complete days) taken from 3 lanes normal motorway section has been used 

in testing different lane utilisation models which were proposed by previous studies. 

The results suggest that the models suggested by Yousif et al. (2013a) represent the 

most appropriate models among the other tested models in replicating the field data. 

Therefore, the models by Yousif et al. (2013a) have been used in this study (see Section 

3.5).  

 Lane changing frequency and manoeuvring time have been estimated based on video 

recordings taken from normal motorway sections with 2, 3 and 4 lanes (see Section 3.6). 
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The collected data used in estimating the lane changing frequency proved to be limited, 

therefore other published data taken from previous studies are used for the purpose of 

this study (see Section 3.6.1). The average manoeuvring time was found to be around 3 

seconds for passenger cars and around 5 seconds for HGVs (see Section 3.6.1).  

 Some video recordings taken from motorway roadwork sites in the UK have been used 

to study traffic behaviour at roadwork sections. This includes estimating gap acceptance 

values (the results showed that the minimum observed lead and lag gaps for the M67 

site were about 0.2 and 0.4 seconds, respectively, see Section 3.7.1); studying drivers’ 

courtesy behaviour (the results showed that 12% of drivers are offering cooperation by 

slowing down, see Section 3.7.2); and testing the compliance of drivers with the 

temporary speed limit applied at roadwork sections (the results showed that 83% of 

drivers are not complying with the applied speed limit, see Section 3.7.3).     

 Traffic behaviour at motorway roadwork sections with the use of narrow lanes scheme 

is also studied based on some video recordings taken from motorway roadwork sections. 

The field observations revealed that there is some turbulence in the behaviour (as will 

be discussed in the following chapter). 

 Limitations of this chapter include difficulties of acquiring the needed data from 

motorway roadwork sections (as discussed in Section 3.3) which could affect the 

accuracy of results. For example, the minimum accepted gaps and the courtesy 

behaviour factors (see Sections 3.7.1 and 3.7.2) have been studied based on limited data 

since the heavy flow conditions are excluded from the available data (i.e. M67 and 

M61). Therefore, field data from motorway roadworks with heavy flow rates are needed 

to fully evaluate the effects of these factors. Also, the accuracy of the results could be 

influenced by the shortage of observed section length from the video footage and the 

methodology used in analysing the data.    
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CHAPTER FOUR                                                                                 
INVESTIGATION OF DRIVING BEHAVIOURS AT MOTORWAY 

ROADWORKS WITH NARROW LANES 
 

 

4.1 Introduction  

As mentioned in Sections 1.1 and 2.2.2, the implementation of narrow lanes as a temporary 

traffic management scheme (TTMS) on UK motorway roadwork sections has been frequently 

used. The rationale is to free up carriageway space, especially for sites with high traffic demands 

needing repairs. What remains to be determined is the impact of this work on driving 

behaviours. This is important due to the need to manage traffic operational turbulence which 

could affect the capacity and safety levels in roadwork sections. Using camcorders from 

overhead bridges, observations were made which uncovered two discernible patterns of driving 

behaviour where narrow lanes are implemented at roadworks, especially when heavy goods 

vehicles (HGVs) are present: (i) “avoiding” passing/overtaking HGVs travelling in the adjacent 

lanes and (ii) lane “repositioning” while passing/overtaking. The aim of this chapter is to report 

on the “avoiding” and lane “repositioning” behaviours to inform the assumptions made in the 

development of the new micro-simulation model and also to help make recommendations to 

those using narrow lanes as a TTMS and make them aware of these behaviours (especially on 

motorway sections carrying high percentages of HGVs). 

4.2 Site layout of roadworks with narrow lanes  

Figure 4.1 illustrates a typical site layout of motorway roadworks operated by narrowing lanes 

scheme. As mentioned in Section 2.3, most TTMSs are divided into four zones, namely, the 

advance warning zone, the transition zone, the activity zone, and the termination 

zone (MUTCD, 2009).  

According to the Traffic Signs Manual (Chapter 8, 2009), the lane width may be reduced from 

the standard motorway lane width of 3.65 metres to 3.25 metres (desirable minimum) when 

heavy vehicles are expected, and to an absolute minimum of 3.0 metres where there is a shortage 

of space. However, the maximum width of lorries on UK roads is 2.55 metres (excluding 

driving mirrors) and 2.60 metres are permitted for refrigerated vehicles to allow for the extra 

thickness of the insulation (Regulations 1986 – SI 1986/1078, Butcher, 2009). Also, the widths 



64 

 

of buses are found to be 2.55 metres which are obtained from manufacturers’ specifications, 

such as Volvo Buses and the Caetano Levante coaches operated by National Express, whereas 

typical widths of the larger types of passenger cars are found to be around 2.25 metres which 

are taken from manufacturers’ specifications such as Mercedes-Benz and BMW. 

 

Figure 4.1: Illustration of motorway roadwork site layout operated by narrowing lanes 

The Traffic Signs Manual (Chapter 8, 2009) reported that drivers’ concentration level is raised 

when they drive on narrow lanes and this should be taken into consideration when determining 

the length of the TTMS. Therefore, a 4 km have been suggested as a maximum length of the 

narrow lanes for roadwork sites, except where otherwise agreed with the Highway Authority. 

4.3 Data collection 

For the purpose of evaluating and studying the traffic behaviour of UK motorway roadwork 

with narrow lanes sections, field data (using camcorders) taken from two typical motorway 

roadwork sites with narrowing lanes has been used. The first site was the M6 motorway 

northbound between Junctions 31 and 32 (around three and a half hours of video footage were 

recorded from 11:40 to 15:20 on Sunday, the 31st of August 2014). The second site was the M62 

in both directions between Junctions 18 and 19 (two hours of video footage from 11:30 a.m. to 

13:30 for each direction was recorded on Sunday, the 15th of March, 2015). For both sites, a 

speed limit of 50 mph (80 km/hr) was imposed. Table 4.1 illustrates the details of site locations 

and gives a general description of each site conditions. 

Standard lane width 
Narrowed lanes  

Advanced 
warning zone Activity zone 

Termination 

zone 

Transition 

zone 
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Table 4.1: Summary of the selected sites details 

Data set 

No. 
1 2 3 4 5 

Site No. 3 6 7 8 17 

Site 

location 

M6          

(J31 – J32) 

M62          

(J18 – J19) 

M62        

(J18 – J19) 

M60        

(J24 – J25) 

M60        

(J16 – J17) 

Traffic 

direction 
Northbound Eastbound Westbound Northbound Eastbound 

Number 

of lanes 
4 lanes 3 lanes 3 lanes 3 lanes 4 lanes 

Date 
Sunday 

31/08/2014 

Sunday 

15/03/2015 

Sunday 

15/03/2015 

Saturday 

16/08/2014 

Wednesday 

31/07/1996 

Time 11:40 – 15:17 11:30 – 13:30 11:30 – 13:30 09:30 – 10:30 15:10 – 15:40 

Duration 3.5 hours 2 hours 2 hours 1 hour ½ hour 

Type of 

section 

Roadwork 

section with 

narrow lanes 

Roadwork 

section with 

narrow lanes 

Roadwork 

section with 

narrow lanes 

Normal 

roadway  

section 

Normal 

roadway  

section 

Speed 

limit 
50 mph 50 mph 50 mph 70 mph 70 mph 

The M6 motorway site consists of 4 lanes with narrow lanes applied as a TTMS. The hard 

shoulder and part of lane 1 were closed for roadworks. The widths of lanes were reduced 

from 3.65⁞3.65⁞3.65⁞3.65 metres (i.e. the normal standard motorway lane widths) to 

about 3.25⁞3.00⁞3.00⁞3.00 metres for lanes 1, 2, 3 and 4, respectively. The length of the 

observed section covered by the camcorder is about 200 m showing traffic movements from 

before the start of the transition section and also through the activity zone (as shown in 

Figure 4.2). The camcorders were placed on a footbridge which was located about 1 mile before 

Junction 32. 

 
Figure 4.2: Schematic layout of the M6 roadwork site 

The M62 motorway site consists of 3 lanes with narrowing lanes applied as a TTMS which 

extends for about 5 miles starting from Junction 18 and up to Junction 20. The camcorder was 

placed on an overbridge which was located about 1 mile after Junction 18. The length of the 

observed section covered by the camcorder is also about 200 m. The hard shoulder and part of 
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lane 1 were also closed for roadworks (as shown in Figure 4.3). Metal barriers were used for 

this site, whereas plastic cones were used for the M6 site. The widths of lanes were reduced to 

about 3.25⁞3.00⁞3.00 metres for lanes 1, 2 and 3, respectively. 

 
Figure 4.3: Schematic layout of the M62 roadwork site 

In addition, two other video recordings from normal roadway sections (i.e. with standard lane 

width) were taken from the M60 (J24 – J25) and the M60 (J16 – J17, historic data) were used 

for comparison purposes with data from the narrowing lanes.  

4.4 Data analysis 
 

4.4.1 Avoiding behaviour when passing/overtaking HGVs 

Field data from narrowing lanes sites showed a relatively high number of observations of 

passenger car drivers following a HGV travelling on adjacent lanes, avoid passing the HGV 

even when their lane is clear from vehicles. The number of “avoiders” was calculated by 

counting the number of drivers who could have the opportunity to pass (or overtake) the HGV 

but preferred to decelerate or adjust their speed to keep following the HGV rather than passing 

it (see vehicles “C1” and “C2” in Figure 4.4). It should be noted that the unfamiliarity of drivers 

with the roadworks layout (i.e. narrow lanes) could be one of the causes of traffic turbulence. 

However, there was no knowledge of the degree of drivers’ familiarity with the road sections 

chosen for this study. 

 
Figure 4.4: Vehicles’ positions on motorway sections with narrow lanes (“avoiding” case) 
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4.4.1.1   Analysing method 

The methodology that has been used for this analysis was; firstly, locating a HGV and its 

following vehicle (Fveh) (i.e. C1 or C2 vehicles) on the adjacent lanes. A distance of 45 metres, 

which is equivalent to 5 consecutive white road markings (i.e. 9 m each, based on the Traffic 

Signs Manual, Chapter 5, 2003), has been adopted as a critical value of clear spacing 

distance (CSD) between the rear of the HGV and the front of its following vehicle on adjacent 

lanes. This selected CSD distance (i.e. 45 metres) is roughly equal to a time headway of 2 

seconds for a 50 mph speed limit. A higher value may affect the accuracy of results due to the 

shortage of observed section length from the video footage. The criterion for this methodology 

is shown in the flowchart as illustrated in Figure 4.5. 

The path of the Fveh was then traced to see if the Fveh passed the leading HGV within the 

observed section (i.e. 200 m), and if so, this case was considered as an overtaking case (see 

vehicle “C3” in Figure 4.6). If not, an evaluation for the speed of the Fveh was then carried out 

to see if the Fveh was slowing down to avoid passing the HGV while travelling through the 

observed section. The latter were considered as part of the avoiding sample of cases (as shown 

in Figure 4.4, vehicles “C1” and “C2”). The slowing down of vehicle Fveh can be judged from 

tracing the relative distance between the HGV and that Fveh from the start of the observed 

section (i.e. 200 m) and when approaching from behind the HGV to see if the Fveh is getting 

closer and starting to decelerate. Also, in some cases, there were cars following the HGV on 

the same lane (with approximately the same speed of that HGV) while a Fveh 

overtaking/passing all of these cars and then decelerate when getting closer to the HGV 

travelling on the adjacent lane (see vehicle “C9” in Figure 4.7).   

For cases where the speed of HGV is equal or higher than the speed of Fveh, such cases were 

ignored from the analysis. However, the accuracy of the results could be influenced by the 

methodology used in analysing the data and also the evaluation process of the Fveh speed since 

this evaluation is mainly dependent on the observer judgment.   
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       Figure 4.5: Method of estimating avoiding passing HGV 

 

 
Figure 4.6: Vehicles’ positions on narrow lanes motorway section (“overtaking” case) 
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Figure 4.7: Vehicles’ positions (slowing down illustration) 

4.4.1.2   Results and discussion 

Data consisting of 165 cases over a period of 220 minutes from the M6 site (i.e. data set 1) was 

analysed. The results revealed that about 47% of passenger car drivers who were following a 

HGV on the adjacent lanes were observed to be “avoiding” passing the HGV. Table 4.2 

summarises the numbers of HGVs, numbers of avoiders and passers, as well as the avoiders’ 

percentage for each lane of the M6. The percentage of avoiding behaviour was measured by 

comparing the calculated number of “avoiders” (i.e. “C1” and “C2”) to the total number of 

passenger car drivers which consisted of normal cases of passing HGVs (i.e. “C3”) plus those 

avoiding ones. The avoiding behaviour percentage was calculated for each lane as well as for 

all lanes. 

Table 4.2: Summary of “avoiding” observations for each lane of the M6 (data set 1) 

Lane 1 cases 

 Left lane Lane 1 Right lane (L2) 

No. of HGVs  30  

No. of avoiders --  9 

No. of passers --  21 

Total --  30 

Avoiders % --  30% 

Lane 2 cases 

 Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs  15  

No. of avoiders 1  4 

No. of passers 9  10 

Total 10  14 

Avoiders % 10%  29% 

Lane 3 cases 

 Left lane (L2) Lane 3 Right lane (L4) 

No. of HGVs  120  

No. of avoiders 53  32 

No. of passers 29  43 

Total 82  75 

Avoiders % 65%  43% 

Overall percentage of avoiders = 47% 
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This behaviour of avoiding passing HGVs could be attributed to the insufficient lateral 

separation between the HGVs and other vehicles due to the narrow lanes which made drivers 

feel uncomfortable/unsafe to overtake in such situations. Therefore, they seem to prefer to stay 

in their lanes travelling behind the HGV vehicles which are positioned in their adjacent lanes 

rather than passing them (sometimes until crossing the whole roadwork section and where the 

lanes regain their normal width). The percentage of “avoiders” of those drivers could be 

considered high. This might affect the capacity of the roadwork section which confirms the 

suggestion by Marlow et al. (1992) that the operational capacity of single narrow lanes with 

widths less than 3 m is lower than the lane capacity at conventional roadworks. 

Tables 4.3 and 4.4 summarise the numbers of HGVs, numbers of avoiders and passers, as well 

as the avoiders’ percentage for each lane as well as for all lanes for both, data sets 2 and 3, 

respectively. The results for data set 2 presented in Table 4.3 show good agreement with the 

results in Table 4.4 (i.e. for data set 3). It can be seen from Tables 4.3 and 4.4 that the overall 

avoiders percentage has decreased when compared with Table 4.2. This could be attributed to 

the difference in the road layout between the M6 and the M62 sites. The observed section for 

the M62 site was located at least after 1 mile from the start of the activity zone (i.e. starting of 

implementing the narrow lanes) for data set 2 and after about 3.5 miles for data set 3. For the 

observed section of the M6 site, this covered the movements of vehicles from before the start 

of the transition zone and also through the activity zone, as shown in Figure 4.2. Therefore, it 

is believed that the drivers who were travelling on the M62 (for both directions) were more 

familiar (and therefore more alert) with the presence of narrow lanes than those who were 

driving on the M6. This may explain the reasons for observing the M62 drivers to be perform 

more overtaking/passing of the HGVs than those for the M6.  

It can be seen from Tables 4.3, 4.4 and 4.5 that there is a noticeable difference (around 80%) in 

the values of lane 1 avoiders’ percentage between the M6 site (i.e. data set 1) and the M62 

site (i.e. data sets 2 and 3). A value of 10% has been measured as avoiders’ percentage in lane 1 

for data set 1, whereas 75% and 100% were measured for data sets 2 and 3 respectively. It 

should be noted that both sites had similar lane widths of 3.25 m for lane 1, but for the M62 site 

(as shown in Figure 4.3), a metal barrier was used, whereas plastic cones were used for the M6 

site. It may be assumed that the presence of the metal barrier constrains the movements of 

drivers and make them avoid passing the HGV on the adjacent lane. However, the sample sizes 

available are relatively small and further data may be required to validate this assumption. 



71 

 

Table 4.3: Summary of “avoiding” observations for each lane of the M62 (data set 2)  

Lane 1 cases 

 Left lane Lane 1 Right lane (L2) 

No. of HGVs  58  

No. of avoiders --  12 

No. of passers --  46 

Total --  58 

Avoiders% --  21% 

Lane 2 cases 

 Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs  33  

No. of avoiders 6  13 

No. of passers 2  16 

Total 8  29 

Avoiders% 75%  45% 

Overall percentage of avoiders = 33% 

 

Table 4.4: Summary of “avoiding” observations for each lane of the M62 (data set 3) 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of HGVs   58   

No. of avoiders --   17 

No. of passers --   41 

Total --  58 

Avoiders% --  29% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs   20   

No. of avoiders 1*   7 

No. of passers 0*   12 

Total 1*  19 

Avoiders% 100%*  37% 

Overall percentage of avoiders = 32% 

*Sample size is too small (which might have affected the results). 

Similar methodology of data analysis on narrowing lanes has been adopted on sites with normal 

lane width (i.e. the M60, between J24 and J25, and the M60 between J16 and J17). Table 4.5 

summarises the values of avoiding percentage for all sites. It can be seen from this table that 

the passenger cars avoiding the passing of HGVs has not been observed on normal lane width 

sections. 

 Table 4.5: Summary of “avoiding” behaviour for all sites 

Site location 
Data set 

No. 

Number of 

observed cases 

Duration 

(minutes) 

Overall 

avoiding (%) 

M6 (J31 – J32) 1 165 220 47 

M62 (J18 – J19) 2 91 120 33 

M62 (J18 – J19) 3 78 120 32 

M60 (J24 – J25) 4 28 60 0 

M60 (J16 – J17) 5 94 30 0 
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4.4.2  Lane repositioning before passing HGVs behaviour 

Another observation from the narrow lane sections is the lane repositioning of some drivers 

when approaching from behind a HGV in the adjacent lane. Some drivers were observed 

overtaking the HGV by driving as far away from the HGV to widen the lateral distance between 

their vehicles and the HGV and too close to the road marking of their current lane away from 

the HGV (see vehicle “C5” in Figure 4.8).  

 
Figure 4.8: Vehicles’ positions on motorway section with narrow lanes (“repositioning” 

behaviour)  

Table 4.6 summarises the numbers of HGVs, numbers of lane repositioning and those driving 

in the centre of the lane (i.e. mid-lane drivers), as well as the percentage of lane repositioning 

drivers for each lane and for all lanes of the M6. The same lane repositioning behaviour has 

been noticed for drivers who were following wide vans and caravans. These cases were also 

analysed and reported on in Table 4.7.  

It can be seen from Tables 4.6 and 4.7 that there is some consistency in the results. Also, it can 

be seen from the Tables that the offside lane (i.e. lane 4) and lane 3 have very high percentages 

of lane “repositioning”. This could be attributed to the relatively high speed of drivers who were 

driving on lanes 3 and 4 compared to those who were driving on lane 1 and 2. It can also be 

seen from both Tables that the lane “repositioning” percentage for the inside lane (i.e. lane 1) 

is equal to zero. This is because the inside lane has a width equal to 3.25 m, whereas the width 

of other lanes is equal to 3.0 m (as shown in Figure 4.2). 
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Direction of travel 

Hard shoulder + Work zone (not to scale) 
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Table 4.6: Summary of lane “repositioning” before passing HGVs observations for the 

M6 (data set 1) 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of HGVs   35   

No. of lane repositioning drivers --    20 

No. of mid-lane drivers --    15 

Total  --   35 

Lane repositioning% --   57% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs   10   

No. of lane repositioning drivers 0   7 

No. of mid-lane drivers 3   0 

Total  3  7 

Lane repositioning% 0%  100% 

Lane 3 cases 

  Left lane (L2) Lane 3 Right lane (L4) 

No. of HGVs   62   

No. of lane repositioning drivers 2   55 

No. of mid-lane drivers 6   3 

Total  8  58 

Lane repositioning% 25%  95% 

Overall percentage of lane repositioning drivers = 76% 

 

Table 4.7: Summary of lane “repositioning” before passing vans for the M6 (data set 1)  

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of vans   64   

No. of lane repositioning drivers --    40 

No. of mid-lane drivers --    24 

Total  --    64 

Lane repositioning% --    63% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of vans   23   

No. of normal drivers    

No. of lane repositioning drivers 0   17 

No. of mid-lane drivers 10   1 

Total  10  18 

Lane repositioning% 0%  94% 

Lane 3 cases 

  Left lane (L2) Lane 3 Right lane (L4) 

No. of vans   10   

No. of lane repositioning drivers 1   7 

No. of mid-lane drivers 5  0 

Total  6  7 

Lane repositioning% 17%  100% 

Overall percentage of lane repositioning drivers = 62% 
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Table 4.8 and 4.9 summarise the numbers of HGVs, numbers of lane “repositioning” of drivers, 

as well as their percentages for each lane and for all lanes for data sets 2 and 3, respectively, 

whereas Tables 4.10 and 4.11 show the summary of the lane “repositioning” behaviour of 

drivers who were following vans for data sets 2 and 3, respectively. 

Table 4.8: Summary of lane “repositioning” before passing HGVs for data set 2 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of HGVs   45   

No. of lane repositioning drivers --    42 

No. of mid-lane drivers --    3 

Total  --    45 

Lane repositioning% --    93% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs   16   

No. of lane repositioning drivers 0   15 

No. of mid-lane drivers 2  0 

Total  2  15 

Lane repositioning% 0%  100% 

Overall percentage of lane repositioning drivers = 92% 

 

Table 4.9: Summary of lane “repositioning” before passing HGVs for data set 3 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of HGVs   40   

No. of lane repositioning drivers --    31 

No. of mid-lane drivers --    9 

Total  --    40 

Lane repositioning% --    78% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of HGVs   12   

No. of lane repositioning drivers 0   11 

No. of mid-lane drivers 0   1 

Total  0  12 

Lane repositioning% --  92% 

Overall percentage of lane repositioning drivers = 81% 

It can be seen from Tables 4.8 to 4.11 that the results seem to be consistent. In addition, the 

results in these Tables are in agreement with those reported in Tables 4.6 and 4.7. For 

comparison purposes, field data taken from normal lane width (i.e. 3.65 m) sections was used 

to investigate the lane “repositioning” behaviour of drivers affected by the presence of HGVs 

and vans. The analysis of normal lane data shows very little percentage of lane “repositioning” 

behaviour. Figure 4.9 shows the comparison between all data sets for the lane “repositioning” 

behaviour. Results of the lane “repositioning” behaviour for the presence of HGVs and vans 
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were then combined for all the selected sites for comparison purposes as there were no 

significant differences between the results (as shown in Table 4.12). 

Table 4.10: Summary of lane “repositioning” before passing vans for data set 2 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of vans   42   

No. of lane repositioning drivers --    30 

No. of mid-lane drivers --   12 

Total  --   42 

Lane repositioning% --   71% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of vans   10   

No. of lane repositioning drivers 0   7 

No. of mid-lane drivers 3   1 

Total  3  8 

Lane repositioning% 0%  88% 

Overall percentage of lane repositioning drivers = 70% 

 
Table 4.11: Summary of lane “repositioning” before passing vans for data set 3 

Lane 1 cases 

  Left lane Lane 1 Right lane (L2) 

No. of vans   20   

No. of lane repositioning drivers --    16 

No. of mid-lane drivers --    4 

Total  --   20 

Lane repositioning% --   80% 

Lane 2 cases 

  Left lane (L1) Lane 2 Right lane (L3) 

No. of vans   4   

No. of lane repositioning drivers 0   3 

No. of mid-lane drivers 0  1 

Total  0  4 

Lane repositioning% --  75% 

Overall percentage of lane repositioning drivers = 79% 

 

Table 4.12: Summary of lane “repositioning” percentage for all sites 

Site location 
Data set 

No. 

Number of 

observed cases 
Duration 

Lane 

Repositioning % 

M6 (J31 – J32) 1 204 220 minutes 69% 

M62 (J18 – J19) 2 113 120 minutes 82% 

M62 (J18 – J19) 3 76 120 minutes 80% 

M60 (J24 – J25) 4 44 60 minutes 13% 

M60 (J16 – J17) 5 94 30 minutes 12% 
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Figure 4.9: Percentage of lane “repositioning” behaviour for the presence of HGVs and 

vans for each data set 

It should be noted here that there may be other factors affecting drivers’ repositioning of 

themselves on the road. Several studies looked at the effect of driving on a curvature and how 

narrow lane widths affect the positioning of the vehicle (see for example, Charlton et al. 2014 

and Coutton-Jean et al., 2009) and lane keeping affected by the emotional behaviour of drivers 

due to nervousness and concentration deficits (see for example, Jeon et al., 2014). Other studies, 

such as Cao et al. (2015), suggest that experienced drivers tend to have better lateral control 

performance (i.e. lane keeping) when compared with others. This could be due to their ability 

to process nearby lane markings peripherally in order to stay in position compared to novice 

drivers (Alberti et al., 2014). Most of these studies were conducted on controlled experimental 

basis (such as using simulation, questionnaire surveys, controlled sites …etc.). However, based 

on the data collection method used in the current study, it was not possible to distinguish 

between, for example, the type of drivers (experience vs. novice), assessing their emotions or 

in controlling the environment that they were driving through since these factors are beyond 

the scope of this study. 

4.4.3 Other observed behaviours 

Other behaviours have also been observed; such as some drivers were observed to prefer staying 

in the same lane driving behind a HGV and following it with a gap even if they have the 

opportunity to overtake (see vehicle “C4”, Figure 4.10). Another observation from the narrow 

lane sections is the hesitation of some drivers when approaching from behind a HGV in the 

adjacent lane. They were observed to wait a while behind the HGV to assess the situation before 
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speeding up and passing that HGV. However, both cases were not included in the analysis due 

to the shortage of observed section length from the video footage which could not provide a 

full view of these behaviours. 

 
Figure 4.10: Vehicles’ positions (keep following a HGV on the same lane) 

4.5 Summary 

The most important findings of this chapter can be summarised as follows: 

 There is a lack of research in studying motorway roadworks operated by using 

narrowing lanes. 

 Field observations (using video recordings) taken from motorway roadwork sections 

with narrow lanes revealed that there is some turbulence in the behaviour which could 

affect the capacity and safety levels at such sections.  

 The field observations from the UK suggest that there are two predominant behaviours 

on narrowing lanes scheme applied at roadwork sections. These are, namely, “avoiding” 

and lane “repositioning” behaviours of passing heavy vehicles including public service 

vehicles, caravans etc. in the adjacent lane.  

 The percentage of “avoiders” could be increased further when metal barriers were in 

place instead of plastic cones. 

 Many drivers who were following a HGV on same or the adjacent lanes were observed 

to be driving below their desired speed; this phenomenon could lead to deterioration of 

the section capacity.  

 The percentage of lane “repositioning” behaviour increases as speeds of drivers increase. It 

is believed that this behaviour is unsafe and could lead to an increase in the rate of traffic 

accidents. 

Lane 1 

Lane 2 

Direction of travel 

Hard shoulder + Work zone (not to scale) 

 Lane 3 

Lane 4 

HGV C4 
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CHAPTER FIVE                                                                                                                
LIMITATIONS OF THE S–PARAMICS SOFTWARE 

 

 

5.1 Introduction 

In this chapter, an industry standard traffic software, S-Paramics, has been applied to motorway 

roadworks to test its validity. This software provides a visual display of vehicles’ movements 

on any selected sections of the modelled road. However, there seem to be some limitations on 

the accuracy of the representation of such movements, especially within the taper section (i.e. 

transition zone). This chapter describes these limitations and presents the calibration and 

validation processes of the developed model using the S-Paramics software.    

5.2 S-Paramics software 

The S-Paramics version 2007.1 microscopic traffic simulation software package was made 

available for use in this study. It is a commonly used micro-simulation software which has the 

capability of modelling many aspects of transportation networks (i.e. local arterial and regional 

freeway). Paramics is an acronym for Parallel Microscopic Simulation and was developed by 

SIAS Limited.  

The S-Paramics software provides the user with the option of having several different vehicle 

types within the traffic mix (e.g. there are 16 built-in types within the software, but the user has 

the choice to increase/decrease the number of types of vehicles as well as modifying the physical 

dimensions and the dynamic characteristics of each of these types). Vehicle characteristics (e.g. 

dimensions and acceleration/deceleration rates) and driver characteristics (e.g. aggressiveness 

and awareness) can be modified relatively easily as part of the calibration and validation of the 

model in order to replicate empirical observations. In addition, the users of the S-Paramics 

software have the option of presenting its output as a real-time visual display. This may be of 

benefit to the users and model developers in verifying, calibrating and validating the model, as 

well as helping to demonstrate different options and scenarios to clients and members of the 

public who may not necessarily be experts in traffic engineering. Therefore, visualisation of 

vehicles’ movements within a network is one of the advantages that S-Paramics provides.  



79 

 

 
5.3 S-Paramics model development 
 

5.3.1  Data used for the development of the S-Paramics model 

It is often difficult to find sites at roadworks and with good vantage points to record data close 

to the taper section (for example, by filming from an overhead bridge close to the taper section). 

Therefore, for this research, historic data from two motorway roadworks sites (which were made 

available for this study) were used for the testing of the S-Paramics software.  

Table 5.1 illustrates the details of the sites locations. The data were used in building and 

developing an S-Paramics model to demonstrate the capability of the software. The first site 

was on the M61 motorway northbound between Junctions 8 and 9. This site had a slight left 

hand bend just before approaching the roadwork section. Around three hours of video footage 

(from 15:20 to 18:30) on Friday, 16 August 1996 was recorded. The second site was the M6 at 

the southbound direction between Junctions 14 and 15. Four hours of video footage (from 8:00 

a.m. to 12:00) was recorded on Friday, 25 October 1996. For both sites, a speed limit of 50 mph 

(80 km/hr) was imposed and an offside lane (i.e. lane 3) closure was applied, for further details 

on these two sites see Section 3.3.4. It should be noted here that although the data used for this 

study seem to go back a long time, it is believed that there have been no significant differences 

in the layout of roadworks closure to influence drivers’ merging behaviour close to the taper 

section, hence, the justification of using the historic data for the purpose of testing the S-

Paramics software in this study.     

Table 5.1: Roadworks sites details 

Site 

No. 

Site 

locations 

Traffic 

direction 
Number 

of lanes 
Date 

Duration 

(hours) 
Speed 

limit 

Type of 

section 

15 
M61        

(J8 - J9) 
Northbound 3 lanes 16/08/1996 3 

50 

mph 

Roadwork 

with offside 

lane closure 

16 
M6        

(J14 - J15) 
Southbound 3 lanes 25/10/1996 4 

50 

mph 

Roadwork 

with offside 

lane closure 

The average speed and traffic flow for each lane of the observed motorways have been extracted 

by playing back the two footages. Using a marker pen, a thin line across the computer screen 

was sketched in line with the point of start of the taper section (i.e. transition zone) at both 

roadwork sites to help in counting vehicles (e.g. measuring time headways between successive 

vehicles). Similarly, in order to calculate vehicles’ speeds, two screen lines were drawn to cover 

a distance close to 100 m. The first line was located at the start of taper, whereas the second line 
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was after 11 consecutive white road markings (9 m each) away from the first line. Simple 

distance/time calculations were then used to convert the readings into speeds using video 

playbacks with the help of computer programming codes written for this purpose to act as a 

stopwatch. The output was formatted and stored on a spreadsheet for further analysis. The data 

were then grouped into five minutes intervals (as suggested by previous researchers such as 

Yousif, 1993 and Al-Obaedi, 2012), and to ensure that the data were tailored to the needs of S-

Paramics.  

5.3.2 Building the S-Paramics model 

Following data collection, the building of the S-Paramics model was achieved by setting out 

the geometry of the M61 site which is similar to the M6 one since both sites had the same traffic 

management scheme (i.e. offside lane closure) and with the same applied speed limit of 50 mph. 

To correctly model a section, an image from Google maps for the motorway site was used as a 

base to create an overlay within AutoCAD. This overlay was then inserted into S-Paramics to 

the correct scale. Nodes and links were then created. Links carry the geometric design and 

characteristics of traffic (e.g. number of lanes, directional movements, speeds … etc.), and 

nodes were created at points where the section changed (i.e. where one lane was withdrawn 

from the carriageway).  

Two types of vehicles were modelled, cars and Heavy Goods Vehicles (HGVs), with their 

corresponding vehicular composition. The model was run for three hours for both sites (with 

the first half an hour used as warming-up and the last half an hour used as cooling-down 

periods). The option of having loop detectors within S-Paramics was used to gather output data 

for flow rate and average speed for each lane. 

5.3.3 Modelling roadwork site layout  

As mentioned in Section 2.3, most TTMSs are divided into four zones, namely, the advance 

warning zone, the transition zone, the activity zone, and the termination zone (MUTCD, 2009). 

Road closure (activity zone) is one of the options which seems to be directly available within 

S-Paramics. To model the effect of the presence of the taper section (transition zone) and the 

advanced warning zone, the option of the “signposting” within S-Paramics was used since there 

appears to be no other option in S-Paramics for modelling the taper section (Nassrullah and 

Yousif, 2015). This option (i.e. “signposting”) is used as a way of communicating to the 

approaching upstream vehicles in the simulation that there is lane closure ahead. It helps drivers 
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to reassess their lane choice and get in the correct lane before approaching the closure. 

According to SIAS Limited (2007), the signposting distance has a significant effect on drivers’ 

behaviour. The modelled drivers were made aware of the presence of the roadworks before they 

reached the start of the traffic management signage. This was done by increasing the 

signposting distance. However, according to Walker and Calvert (2015), this increase may not 

necessarily result in a change in drivers’ behaviour which implies that the use of signposting is 

not effective. Therefore, it is found necessary to have a closer look at the effect of the presence 

of a taper section and the manner by which lane changes are performed. This is shown in some 

detail within the next sections.  

The default value of 750 m as the signposting distance was used. This value has been changed 

and tested using data from the M61 and the M6.  

5.4 S-Paramics model calibration and validation 

Calibration and validation processes are the key for a successful evaluation of any micro-

simulation model (Li et al., 2010). If ignored, the data compiled from the software cannot be 

considered as a true representation of real life situation. Once the section is created on S-

Paramics, the collected data are then used as inputs into the software to start the calibration 

process in order to check that the created section replicates real life situations. Following this, 

the real data and modelled data can be compared to validate the results. In this study, the 

verification process of S-Paramics has been checked out through the visualisation of its output 

for all possible movements of vehicles (Bertini et al., 2002). 

5.4.1 Statistical tests 

To test the goodness of fit between the observed and modelled traffic flow, three statistical tests 

were used. These are Root Mean Square Error (RMSE), Root Mean Square Error 

Percentage (RMSEP) and the GEH statistical test (where GEH stands for Geoffrey E. Havers, 

who developed the test). The former two tests, shown in Equations 5.1 and 5.2, are used to 

check the system error in traffic simulation models. Lower values from these two tests represent 

better representation of the simulated data to the observed real data. According to Hourdakis et 

al. (2003), satisfactory model results will be achieved if RMSEP is less than 15%. These two 

tests were adopted by other researchers such as Al-Jameel (2012), Al-Obaedi (2012) and 

Yousif et al. (2013b), whereas the latter test (i.e. GEH as shown in Equation 5.3), is used and 

recommended by the Design Manual for Roads and Bridges - DMRB (Department for Transport 
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1996). This test which is similar to the well-known Chi-squared statistic is used to measure the 

validity of data from the created model compared to that of the observed data. The GEH statistic 

value should be ≤ 5 for the link flow to be acceptably reflecting the observed flow data 

(Department for Transport, 1996). In addition, the RMSE and the RMSEP were applied to test 

the goodness of fit between the observed and modelled average speed.  

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                                               Equation 5.1 

𝑅𝑀𝑆𝐸𝑃 =  √
1

𝑛
 ∑ (

𝑥𝑖 − 𝑦𝑖

𝑥𝑖
)

2
𝑛

𝑖=1

                                                                            Equation 5.2 

𝐺𝐸𝐻 = √
2(𝑌 − 𝑋)2

𝑌 + 𝑋
                                                                                                    Equation 5.3  

Where, 

X: observed flow,  

Y: simulated flow,  

n: number of time intervals, 

xi: observed data at time interval i, and 

yi: simulated results at time interval i.  

It is worth mentioning here that the unit of the RMSE test is similar to the unit of the parameter 

which was used in the test. For example, when testing the goodness-of-fit between the actual 

and simulated flow data, the unit of the RMSE will be in veh/hr. The unit for RMSEP test is in 

percentage, whereas the unit for GEH test is a scalar quantity. 

5.4.2 Model calibration 

Traffic micro-simulation models consist of several calibration parameters which should be 

evaluated before the model can be used (Hollander and Liu, 2008). The default values of the S-

Paramics have been used to start with for the calibration of parameters. For the signposting 

distance, the default value of 750 m was used initially and then modified to obtain as close 

results as possible compared with observed data. All other values for the calibration parameters 

have been kept the same, including aggression and awareness level, mean headway and 

minimum gap. The calibration results have been analysed for every 5-minute intervals for each 

lane to match the real data sets. 
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Table 5.2 shows the results of the sensitivity analysis conducted on a selection of signposting 

values ranging from the default value of 750 m and up to 2000 m. For the M61 data (i.e. with 

free to medium traffic flow conditions), a value of signposting of 1600 m seems to yield better 

results based on several simulation runs. However, for the M6 data (i.e. with medium to 

congested traffic flow conditions), this value is close to 2000 m.  

Table 5.2: Calibration process for both data sets (M61 and M6) 

Data type 
Signposting 

distance (m) 

M61 model M6 model 

RMSE GEH RMSE GEH 

Flow 

750 – Default 8.9 2.0 9.8 1.9 

900 8.3 1.7 9.7 1.7 

1000 6.8 1.5 10.6 2.1 

1200 7.3 1.7 10.8 1.9 

1400 7.2 1.4 10.0 1.7 

1600 6.0 1.1 11.3 2.1 

1800 6.5 1.5 10.3 1.9 

2000 7.1 1.5 9.3 1.6 

An attempt to test the sensitivity of the S-Paramics calibration parameters has been conducted. 

Different calibration parameters were modified using arbitrary values (within acceptable and 

logical limits) in order to obtain the best results. These parameters included changing the mean 

headway, modifying the gap acceptance and varying the drivers’ aggression and awareness. 

None of these parameters had made any considerable effect on the results including, for 

example, speed.  

Traffic flow is used as input and average speeds were used as calibration measures. Figure 5.1 

shows the modelled flow versus observed flow data for every time slice for both the M61 and 

M6 data. Figure 5.2 shows the modelled speed versus observed speed data. The results of the 

M61 data suggest a close match between observed and modelled speeds, whereas the data set 

of the M6 is not that close to a good match.  

5.4.3 Model validation 

In order to validate the developed model, the calibrated model (based on the M61 data) was 

then used as a basis for the model validation. The collected data from the M6 were used as input 

for the validation process. Liu and Wang (2007) reported that data from different time periods 

on the same site or different sites can be used as an independent source for the validation 

process. A period of two hours was used to execute the validation process. Figure 5.3 shows 

modelled versus observed speeds for each time slice. 
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Figure 5.1: Simulated versus observed flow based on data from (a) M61 and (b) M6 

 

Figure 5.2: Simulated versus observed speed based on data from (a) M61 and (b) M6 

 

 
Figure 5.3: Validation - simulated versus observed speed based on data from the M6 

 

5.5 Testing the sensitivity of S-Paramics results for the presence of 
taper section 

In order to find out the effects of the presence of the taper section, three loop detectors within 

the model were used. These detectors were located at the start of the taper section (Taper 
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detector), at 15 m before the end of taper (A detector) and just after the start of closure (Closure 

detector), as shown in Figure 5.4. This sensitivity analysis was achieved via two checks. These 

are, firstly, comparing the modelled flows with the observed data at two positions (start of taper 

and start of closure) for each lane as well as for all lanes. Secondly, the test was done by 

investigating the profiles of modelled flow through the transition zone for lane 3 only (i.e. closed 

lane). All of the three detectors (i.e. Taper, A and Closure detectors) were used in this test.   

  

Figure 5.4: Illustration of loop detectors positions  

Tables 5.3 and 5.4 summarise the statistical tests results for the M61 and M6 data, respectively. 

The above-mentioned statistical tests were used.  

Table 5.3: Observed versus simulated traffic data based on the M61 data 

Detectors’ 

Position 
Data type Lane RMSE RMSEP (%) GEH 

Taper Flow 

Lane 1 163 (veh/hr) 16.4 4.6 

Lane 2 237 (veh/hr) 18.9 6.2 

Lane 3 316 (veh/hr) * 23.5 

All Lanes 72 (veh/hr) 3.3 1.1 

Closure 

Flow 

Lane 1 161 (veh/hr) 16.3 4.5 

Lane 2 157 (veh/hr) 14.1 3.5 

Lane 3 ** ** ** 

All Lanes 98 (veh/hr) 4.4 1.5 

Speed 

Lane 1 10.3 (km/hr) 11.6 

NA 
Lane 2 16.9 (km/hr) 17.9 

Lane 3 ** ** 

All Lanes 13.6 (km/hr) 14.9 
 NA: Not applicable  **: Lane 3 is closed for roadwork 
*: The denominator in the RMSEP formula is divided by zero (no traffic flow on lane 3) 

 

Lane 1 

Lane 2 

Lane 3 Roadwork Zone 

Traffic direction  

Taper detector Closure detector 
A detector 
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Table 5.4: Observed versus simulated traffic data based on the M6 data 

Detectors’ 
position 

Data type Lane RMSE RMSEP (%) GEH 

Taper Flow 

Lane 1 233 (veh/hr) 28.4 6.4 

Lane 2 647 (veh/hr) 35.8 16.3 

Lane 3 456 (veh/hr) * 25.7 

All Lanes 112 (veh/hr) 5.8 1.6 

Closure 

Flow 

Lane 1 253 (veh/hr) 30.7 7.0 

Lane 2 209 (veh/hr) 11.3 3.9 

Lane 3 ** ** ** 

All Lanes 186 (veh/hr) 8.7 2.7 

Speed 

Lane 1 18.2 (km/hr) 45.4 

NA 
Lane 2 24.6 (km/hr) 64.1 

Lane 3 ** ** 

All Lanes 22.1 (km/hr) 45.5 

The simulation results based on the M61 data (i.e. Table 5.3) satisfactorily replicate real life 

conditions. It can be seen from Table 5.3 that values of RMSEP for both flow and speed are 

around 15% which indicates that the model can reasonably replicate the observed data (as 

discussed in Section 5.4.1). However, there is a notable difference between the simulated results 

and the observed data for the M6 case (i.e. Table 5.4), particularly for the speed data. Table 5.4 

shows that the values of RMSEP for both flow and speed are higher than 15% (i.e. the RMSEP 

values around 30% – 45%) which indicates that the model cannot replicate the observed data. 

This could be attributed to the congested traffic conditions on the M6 roadwork section with 

the relatively high levels of heavy goods vehicles percentage. Traffic flow was breaking down 

and dropping down to less than 1600 veh/hr, as shown in Figure 5.1b.  

By comparing the statistical test values for flow data at the taper detector with that at the closure 

detector for both sites, it can be seen from Table 5.3 (representing the uncongested situation) 

that there is a reasonable close match between both detectors. However, in Table 5.4 (where 

congested situations prevailed), the closure detector shows lower values than those at the taper 

detector. This shows that under congested traffic flow condition (i.e. the M6 case shown in 

Table 5.4), the S-Paramics failed to replicate the observed data. This could be attributed to the 

insufficient gap sizes available for the subject vehicles to change lanes into, particularly with 

the very limited lane-changing opportunities due to congestion situations. 

Table 5.5 shows the observed and simulated flow for all loop detectors within the transition 

zone (i.e. Taper, A and Closure Detectors), for both data sets, for lane 3, while Table 5.6 shows 
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the observed and simulated lane utilisation data for all loop detectors within the transition zone 

(i.e. Taper, A and Closure Detectors), for both data sets, for lane 3. Figure 5.5 shows the 

observed and the simulated lane utilisation data at the start of the transition zone (i.e. Taper 

Detector), for both data sets, for the closed lane (i.e. lane 3). The difference between observed 

and simulated seems high (i.e. around 20%). This may be because the modelled drivers carry 

on using the closed lane when they are unable to find a suitable gap to merge into the adjacent 

open lane rather than wait for the opportunity to do so (as also reported by Walker and 

Calvert, 2015). In addition, Walker and Calvert (2015) reported that the modelled drivers do 

not distinguish between a temporary traffic management schemes applied at roadworks and the 

same layout of roadway in normal conditions (i.e. no roadworks), whereas drivers in real-life 

do make this distinction. 

Table 5.5: Flow profile for lane 3 for all loop detectors within the transition zone versus 

the observed flow for both data sets (M61 and M6) 

Data 

type 

Time slice 

(minutes) 

M61 

observed 

flow 

(veh/hr) 

M61 model Flow data 

(veh/hr) 
M6 

observed 

flow 

(veh/hr) 

M6 model Flow data 

(veh/hr) 

Taper 
A 

detector 
Closure Taper 

A 

detector 
Closure 

Flow 

0-5 0 312 312 0 24 252 252 0 

5-10 36 264 240 0 144 360 336 0 

10-15 24 276 240 0 24 348 372 0 

15-20 12 312 312 0 12 312 288 0 

20-25 12 372 360 0 72 360 336 0 

25-30 36 348 324 0 24 420 420 0 

30-35 12 372 360 0 36 744 804 0 

35-40 0 408 384 0 84 600 648 0 

40-45 24 228 264 0 72 420 408 0 

45-50 0 432 396 0 60 564 588 0 

50-55 0 384 384 0 36 564 588 0 

55-60 24 384 408 0 96 384 396 0 

60-65 48 240 264 0 72 756 756 0 

65-70 36 252 252 0 36 552 600 0 

70-75 24 312 324 0 48 576 600 0 

75-80 24 324 300 0 60 504 492 0 

80-85 12 312 276 0 12 552 564 0 

85-90 12 348 324 0 72 552 612 0 

90-95 12 312 276 0 72 612 600 0 

95-100 12 348 348 0 48 588 600 0 

100-105 0 348 348 0 84 600 648 0 

105-110 12 300 276 0 72 624 648 0 

110-115 24 312 300 0 72 252 300 0 

115-120 12 348 288 0 14 168 168 0 
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Table 5.6: Lane utilisation data for lane 3 for all loop detectors within the transition zone 

versus the observed lane utilisation for both data sets (M61 and M6) 

Data type 
Time slice 

(minutes) 

M61 

observed 

lane 

utilisation 

(%) 

M61 model lane utilisation 

data (%) 

M6 

observed 

lane 

utilisation 

(%) 

M6 model lane utilisation data 

(%) 

Taper 
A 

detector 
Closure Taper 

A 

detector 
Closure 

Lane 

utilisation 

0-5 0 16 16 0 1 12 12 0 

5-10 2 13 12 0 5 14 13 0 

10-15 1 14 12 0 1 14 15 0 

15-20 1 17 17 0 0 13 12 0 

20-25 1 16 16 0 3 15 14 0 

25-30 2 15 14 0 1 16 16 0 

30-35 1 18 18 0 1 25 26 0 

35-40 0 18 17 0 3 22 23 0 

40-45 1 11 12 0 3 15 15 0 

45-50 0 17 16 0 2 19 20 0 

50-55 0 19 19 0 1 19 20 0 

55-60 1 17 19 0 4 15 15 0 

60-65 2 12 13 0 2 24 24 0 

65-70 2 12 12 0 1 19 21 0 

70-75 1 13 14 0 2 19 20 0 

75-80 1 15 14 0 2 18 17 0 

80-85 1 13 12 0 0 18 18 0 

85-90 1 15 14 0 2 18 20 0 

90-95 1 14 12 0 2 21 20 0 

95-100 1 16 16 0 2 18 19 0 

100-105 0 17 17 0 3 20 21 0 

105-110 1 13 12 0 2 20 21 0 

110-115 1 14 14 0 5 13 15 0 

115-120 1 16 13 0 1 8 8 0 

 

 

Figure 5.5: Simulated versus observed lane utilisation data at the start of the transition 

zone for lane 3 for both data sets (a) M61 and (b) M6 

It is reasonable to assume that understanding and modelling driver behaviour at roadworks 

section which may differ from normal roadway sections is not an easy task. However, S-

Paramics seems unable to represent the actual behaviour of traffic at roadworks sections, 
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particularly under congested situation. Therefore, more care is needed when modelling such 

sections.  

It is worth mentioning that, during the running of the simulation model under heavy flow 

conditions, the visual output from S-Paramics suggested that on a number of occasions, 

vehicles’ overlapping on each other has occurred just before the closure (see Figure 5.6). This 

representation does not seem to be logical. Similar observations have been reported by Al-

Jameel (2012). This could be attributed to the ignoring of vehicles’ length in the forced lane-

changing process calculations in the S-Paramics. Several simulations runs using only one type 

of vehicles (i.e. Light Goods Vehicle, LGV) with different vehicles’ length (i.e. starting from 1 

m up to 25 m) for each run was done to find out the effects of vehicle’s length on overlapping 

rates. It was found that runs with short vehicles’ length showed less overlapping rates than runs 

with longer length of vehicles.  

 

Figure 5.6: Illustration of vehicles’ overlapping on each other in the S-Paramics model (i.e. 

visual representation at the taper) 

5.6 Summary  

In this chapter, two sets of data from motorway sites were used in order to test the capability of 

the S-Paramics software (which is widely used in industry) in representing motorway roadwork 

sections. The S-Paramics software has the ability to represent the behaviour and interaction 

between individual vehicles on local arterial and regional freeway networks, and also has the 

ability to simulate different roadway configurations and features. Also, the S-Paramics software 

provides the users with the options of having several different vehicle types and characteristics. 

In addition, the users of the S-Paramics software have the option of presenting its output as a 

real-time visual display. However, the results suggest that the S-Paramics model is not capable 

of accurately representing traffic behaviour at the taper section (transition zone) which is an 

important part of the temporary traffic management schemes at motorway roadwork sections. 

Lane 1 

Lane 2 

Lane 3 Roadwork Zone 

Traffic direction  

Transition zone 

(i.e. taper section) 

Start of taper End of taper (start of closure) 
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The model allows for a relatively high number (i.e. around 20% of total traffic) of very late lane 

changes (i.e. late mergers) at the end of the taper section which does not conform to real life 

observations. Previous research suggests that late merging may contribute to capacity reduction. 

Therefore, the increased number of the late mergers within the model may affect the reliability 

of its outputs in terms of estimating possible capacity reduction and overall delays for roadwork 

sites. The frequency of those very late mergers increases as the traffic flow increases. The visual 

display of the S-Paramics does not seem to give an accurate representation of the vehicle 

movements within the taper section of the closed lane.  

In addition, the SIAS Limited (2007) was reviewed in order to find out if the observed driving 

behaviours at motorway roadwork sections with narrow lanes scheme (as discussed in the 

previous Chapter) or other driving behaviours at such sections differ from normal motorway 

section. It was found that the S-Paramics software does not take into consideration the variation 

in driving behaviours between normal roadway sections and roadworks with narrow lanes 

sections. All these imply that the S-Paramics software package should be used with caution 

when modelling roadworks for motorways. 
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CHAPTER SIX                                                                                                        
MODEL SPECIFICATION AND DEVELOPMENT 

 

 

6.1 Introduction 

Due to the lack of capability of the S-Paramics software to appropriately model drivers’ 

behaviour at motorway roadwork sections (as discussed in the previous chapter), a new micro-

simulation model for motorway roadwork sections was built from scratch for the purpose of 

this study. This chapter presents the specification and the structure of the newly developed 

micro-simulation model. The new model consists of five main sub-models; these are car-

following, lane-changing, gap acceptance, lane closure and narrow lanes. Each of these sub-

models will be discussed in detail in this chapter.  

The microscopic technique was employed in the new model because of the capability of such a 

technique in representing the interaction between individual vehicles. The development of the 

new micro-simulation model requires information about basic road geometry together with 

traffic behaviour at both normal and roadwork sections (as discussed in Chapters 3 and 4) and 

information about characteristics of drivers and vehicles (as will be discussed later in this 

Chapter, Section 6.3). It also requires selection/development of suitable algorithms for car-

following, lane-changing, gap acceptance, lane closure and narrow lanes sub-models (rules). 

These rules and characteristics need to be programmed using a suitable programming language.   

Compaq Visual FORTRAN (6.5) programming language was used in developing the new 

micro-simulation model. This programming language was chosen in this study because 

FORTRAN is one of the widely used programming languages in engineering applications and 

also engineers have traditionally used it. In addition, this version (i.e. Compaq Visual 

FORTRAN 6.5) has the ability to provide a visual representation of vehicles’ movements and 

interactions. 

6.2 The model structure  

Figure 6.1 illustrates the general structure of the newly developed micro-simulation model. The 

first stage in the structure is to define each driver’s/vehicle’s characteristics (such as driver’s 

desired speed, driver’s reaction time, vehicle’s type and length, etc.). Next, vehicles will be 

generated and assigned at the beginning of the simulated road. The position and speed of the 
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generated vehicles will be updated every scanning time (∆t) for the whole length of the road. 

The order of dealing with the vehicles during each scanning time is based on their longitudinal 

positions. The system scans the road at every scanning time (∆t) from the end to the start, 

including the warm up and cool-off sections. This is undertaken by numbering and renumbering 

the vehicles in the system at each ∆t as shown in Figure 6.2. Then, the simulated data will be 

collected. The final process is to compare the simulation current time with the assumed 

simulation period (which is equal to the total simulation time), and the simulation model will 

be terminated once the simulation period has been reached.  

 

Figure 6.1: General structure of the newly developed micro-simulation model 

Define the characteristics of each driver/vehicle (e.g. vehicle 

type & length, desired speed and reaction time)  

T ˂ Simulation period 

 

No 

Yes T = T + ∆t 

Generate and number the vehicles in the system 

Car-following rules 

Lane-changing and gap acceptance rules    

Lane closure and narrow lanes rules    

Update the vehicles (speed and position) in the system    

Collect the simulated data    

End of simulation   

Start of simulation   
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Figure 6.2: (a) Numbering and (b) renumbering the vehicles in the system at each ∆t 

The time interval at which the elements of the simulation model should be updated is defined 

as the scanning time (∆t). The determination of the scanning time (∆t) is an important factor in 

any simulation model. A small scanning time will result in more computer time, whereas a long 

scanning time may affect the accuracy of the results. Yousif (1993) tested a range of values 

from 0.1 to 2.0 seconds and suggested a value of 0.5 sec. Many researchers also adopted a value 

of 0.5 sec as a scanning time to update their simulation models (see for example Purnawan, 

2005; Al-Jameel, 2012; Al-Obaedi, 2012; and Alterawi, 2014). Therefore, a scanning time of 

0.5 sec was used for this study.   

6.3 Drivers’ and vehicles’ characteristics 

The efficiency of any microscopic traffic simulation model depends mainly on the quality of 

the traffic-flow sub-models (i.e. car-following, lane-changing, gap acceptance, lane closure and 

narrow lanes) and also depends on the accurate representation of the characteristics of the 

driver/vehicle units. According to Macadam (2003), the understanding of human drivers and 

the modelling of their behaviour have a very broad scope. Therefore, in this study, the focus is 

on the characteristics of the drivers/vehicles which control common activities of driving and its 

subsequent computer-based modelling. These characteristics of drivers/vehicles are discussed 

in detail in the following sub-sections. 

6.3.1 Vehicle characteristics 
 

6.3.1.1   Vehicle type and length 

Several types of vehicles can be found travelling along the motorways ranging from 

motorcycles to heavy goods vehicles (HGVs). The dimensions and engine capabilities among 

these vehicles types are different. The length of a vehicle is an important factor which could 

Traffic direction 7 4 
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2 

1 

(a) Time = T 

Traffic direction 7 5 
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6 1 

2 

(b)   Time = T + ∆t 
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indicate the type of vehicle and affect the calculations of acceleration/deceleration rates for car-

following rules and the estimations of the gaps required for the merging process.  

Based on previous empirical observations from UK motorways, El-Hanna (1974) proposed two 

types of vehicles, namely passenger cars and HGVs. The author reported that the lengths of 

vehicles are normally distributed for both passenger cars and HGVs with mean and standard 

deviation as shown in Table 6.1. 

Table 6.1: Vehicle types and lengths (source: El-Hanna, 1974) 

Vehicle type Mean (μ) Standard deviation (σ) 

Passenger car 4.2 0.4 

HGV 11.2 2.4 

The findings by El-Hanna (1974) have been adopted by many researchers including Zia (1992), 

Zheng (2003) and Wang (2006), whereas Yousif (1993) and Purnawan (2005) adopted the 

findings by Chin (1983) who found different results with HGVs mean length of 6.8 m. A study 

carried out by Al-Jameel (2012) based on real traffic data from UK motorways showed that the 

mean and standard deviation for both passenger cars and HGVs are close to those suggested by 

El-Hanna (1974). However, Al-Jameel (2012) reported that the lengths of HGVs are not 

normally distributed.  

In this study, only two types of vehicles, namely passenger cars and HGVs, have been adopted 

in developing the new model. The reasons behind this decision are for simplicity and because 

the majority of vehicles are either passenger cars or HGVs. Al-Obaedi (2012) investigated 

vehicle lengths by using the typical manufacturers’ data sources and reported that the minimum 

length for HGVs is 5.6 m. Alterawi (2014) also used a value of 5.6 m to distinguish between 

passenger cars and HGVs. In this study, this value has been adopted (as suggested by previous 

researchers), so the developed simulation model considers a vehicle as a HGV when its length 

is greater than or equal to 5.6 m. 

A sample of field data from the Individual Vehicles’ raw Data (IVD) consisting of 530,184 

vehicles taken from the M25 has been used to investigate vehicles’ length. The results revealed 

that vehicles’ length is ranging from 2.52 m to 25.5 m, as shown in Table 6.2 together with the 

descriptive statistical summary.  
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Table 6.2: Vehicle lengths based on data from UK motorways (M25) (Site No. 13) 

Vehicle 

type 

Mean 

(m) 

Standard 

deviation 

(m) 

Min. 

length 

(m) 

Max. 

length (m) 

Sample 

size 

Cars 4.31 0.44 2.52 5.59 461,209 

HGVs 11.87 4.59 5.6 25.5 68,975 

The results seem in good agreement with El-Hanna (1974) and Al-Jameel (2012). Figures 6.3 

and 6.4 show the distributions for passenger car lengths and those for HGVs, respectively.  

 

Figure 6.3: Distribution of car lengths based on data from the M25 (Site No. 13) 

 

Figure 6.4: Distribution of HGV lengths based on data from the M25 (Site No. 13) 

The distribution of cars’ length fits a normal distribution as shown in Figure 6.3 and Figure 6.5 

which shows the cars’ length cumulative distribution. This is consistent with the findings by 
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many previous studies (see for example El-Hanna, 1974; Purnawan, 2005; Al-Jameel, 2012; 

and Alterawi, 2014). Therefore, in this study, for the generation of passenger car’s length the 

normal distribution is used with the statistical values shown in Table 6.2.  

 
Figure 6.5: Cumulative distribution for car lengths based on data from the M25 

It can be seen from Figure 6.4 that the HGVs length distribution is not normally distributed. 

Therefore, in this study, the HGVs’ lengths were obtained from the HGVs cumulative 

distribution, as shown in Figure 6.6, by generating random numbers. The random numbers were 

set to be equal to the cumulative distribution as modelled by others (see for example Al-Jameel, 

2012; Al-Obaedi, 2012; and Alterawi, 2014). 

 

Figure 6.6: Cumulative distribution for HGV lengths based on data from the M25 
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6.3.1.2   Vehicle acceleration/deceleration rates 

The American Traffic Engineering Handbook, ITE (2010) suggested two types of acceleration, 

namely normal and maximum acceleration/deceleration rates. For the purpose of this study, 

these two types of acceleration rates, as well as the values of acceleration/deceleration rate used 

are as proposed by ITE in developing the model, as there is an absence of such data from the 

UK. 

The normal acceleration/deceleration rate (comfortable acceleration) is applied by the drivers 

to maintain their desired speed, either by slowing down when they exceed the desired speed or 

accelerating to reach their desired speed. The maximum acceleration/deceleration is applied in 

other situations (e.g. accelerate to overtake another vehicle or decelerate in urgent situations). 

According to the ITE (2010), the values of normal acceleration are 1.1 m/sec2 for passenger 

cars and 0.37 m/sec2 for HGVs, whereas the normal deceleration values are 3.0 m/sec2 and 1.8 

m/sec2 for cars and HGVs, respectively. Table 6.3 shows the maximum acceleration rates for 

passenger cars and HGVs, these accelerations represent the vehicles’ mechanical abilities under 

different speed levels. The maximum deceleration rate is assumed as 4.9 m/sec2. However, the 

majority of vehicle capabilities in the USA are higher than those in the UK. Therefore, these 

values were factored down by 75% as suggested by previous researchers such as Yousif (1993), 

Wang (2006), Al-Jameel (2012) and Alterawi (2014). 

Table 6.3: Maximum acceleration rates (m/sec2) for passenger cars and HGVs (ITE, 1999) 

Speed 

(km/hr) 
0 – 32 32 – 48 48 – 64 64 – 80 > 80 

Cars 2.4 2.0 1.8 1.6 1.4 

HGVs 0.5 0.4 0.2 0.2 0.1 

 

6.3.2 Driver characteristics 
 

6.3.2.1   Perception reaction time  

The driver reaction time is one of the most significant factors that governs the headway value 

between vehicles and affects the stopping sight distance (minimum distance required for a 

vehicle to stop before striking an object on the carriageway). The perception reaction time 

consists of two components: the perception time which is the time period that elapses from 

seeing the hazard on the carriageway until the driver realises that a brake action is needed, and 

the reaction time which is the time required by a driver to press the brake 
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pedal (O’Flaherty, 1997). There are several factors affecting the length of the driver reaction 

time such as driving experience, psychological and physical conditions, age and gender, and 

the distance to the object (Yousif, 1993; Roess et al., 2004 and Ruhai et al., 2010).  

Several researches have studied driver reaction time under different conditions. Johansson and 

Rumer (1971) used a sample of 321 drivers driving in real traffic to estimate the brake reaction 

time distribution. They used the term brake reaction time to represent perception reaction time. 

The drivers were instructed to press the brake pedal straightway after hearing the horn, the brake 

reaction time is the duration from when the horn was sounded to the instant the driver’s brake 

light turned on. They recorded the driver reaction time for both alerted and non-alerted 

(surprised) conditions. The results of the study are shown in Figure 6.7. Johansson and Rumer 

suggested a correction factor of 1.35 for the non-alerted conditions. 

 
Figure 6.7: Driver reaction time distribution for alerted and surprised conditions 

(Johansson and Rumer, 1971) 

Lerner et al. (1995) used a sample of 56 drivers travelling in real traffic to estimate the 

distribution of drivers’ reaction time for non-alerted situations. The drivers did not know that 

they were participating in the experiment. A yellow highway barrel was released (but it was 

kept within the central reservation) about 200 feet in front of the drivers, when the drivers were 

travelling at a speed of 40 mph. The reaction time is the duration from when the barrel is 

released to the instant that the driver applies the brakes. The mean and standard deviation for 

the reaction time were 1.51, and 0.39 seconds respectively. 
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For the purpose of this study, drivers’ reaction time were obtained from Figure 6.7 cumulative 

distribution, following many previous researchers such as Benekohal (1986), Yousif (1993), 

Al-Jameel (2012), Al-Obaedi (2012) and Alterawi (2014).   

Congested conditions (i.e. traffic density equal to or exceeding of 37 veh/km) have been used 

to distinguish between surprised and alerted situations as suggested by the above-mentioned 

researchers (Benekohal, 1986; Yousif, 1993; Al-Jameel, 2012; Al-Obaedi, 2012 and 

Alterawi, 2014). The driver is assumed to be in alert mode when he/she drives in congested 

conditions. At roadwork sections, the drivers are also assumed to be in an alert situation due to 

the presence of roadworks signs; the drivers will continue to be in an alert situation until passing 

the end-of-works sign (termination zone). 

6.3.2.2   Desired speed 

The desired speed represents the speed that is adopted by a driver to reach his/her destination 

without delay. Following Duncan (1976), Wang (2006), Al-Jameel (2012) and Al-

Obaedi (2012) the desired speed has been measured under a free flow condition with flows of 

less than 300 veh/hr. A sample of field data taken from the IVD resources from two motorways, 

namely the M25 (four-lane section) and the M42 (three-lane section), were used to measure 

driver desired speeds as shown in Table 6.4.  

Table 6.4: Summary of data collected from IVD resources sites for desired speed  

Site 

No. 
Site location 

Number 

of lanes 
Date Duration 

13 
M25 

(J15 – J16) 
4  

04/05/2002 to 

10/05/2002 
7 days 

14 
M42 

(J5 – J6) 
3  

22/08/2002 to 

30/08/2002 
9 days 

The complete days of data as shown in Table 6.4 were filtered manually to exclude the intervals 

with a flow higher than 300 (veh/hr/lane). Tables 6.5 and 6.6 show typical mean and standard 

deviation values for the M25 and the M42, respectively, for both cars and HGVs for each lane. 

Table 6.5: Desired speeds from the M25 IVD data (Site No. 13) 

Lane no. 1 2 3 4 

Vehicle type Cars HGVs Cars HGVs Cars HGVs Cars HGVs 

Mean speed (km/hr) 112 91 121 102 130 125 138 --- 

Standard deviation 

(km/hr) 
15.4 9.6 14.6 15.9 15.1 17.5 13.8 --- 
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Table 6.6: Desired speeds from the M42 IVD data (Site No. 14) 

Lane no. 1 2 3 

Vehicle type  Cars HGVs Cars HGVs Cars HGVs 

Mean speed (km/hr) 111 90 121 100 131 --- 

Standard deviation 

(km/hr) 
17.3 9.5 15.4 15.5 14.8 --- 

The results reveal that in general the values of desired speeds for all lanes are consistent with 

those reported by Al-Jameel (2012). Also, the compliance of drivers with the speed limit 

(i.e. 70 mph equivalent to 112 km/hr) during the free flow condition (with flow less 

than 300 veh/hr) was very poor. Seventy-five per cent of vehicles were found to be exceeding 

the speed limit on the M25 and 71% on the M42. These percentages are relatively higher than 

the 48% that is reported by the Free Flow Vehicle Speed Statistics: Great Britain 2012, (2013). 

The results also show good agreement in mean speeds between both motorways.   

For the purpose of this study, the desired speed for each driver has been generated from a normal 

distribution, with the statistical values shown in Table 6.5, as suggested by previous studies 

(e.g. Yousif, 1993; Wang, 2006; Al-Jameel, 2012; Al-Obaedi, 2012; and Alterawi, 2014). In 

order to include the effects of posted speeds limits, a new parameter called drivers’ compliance 

with speed limit (DCSL%) has been introduced in the developed model. A value of 50% has 

been adopted for the drivers’ compliance with speed limit parameter (DCSL%) as suggested by 

the Free Flow Vehicle Speed Statistics: Great Britain 2012, (2013).   

The process of assigning desired speed for each driver was modelled by generating a random 

number for each driver; if the generated number is higher than the DCSL% then the driver will 

be regarded as non-complying with the applied speed limit and will be assigned with a desired 

speed equal to the generated desired speed from the normal distribution. Otherwise, the driver 

will be regarded as a complying driver and the applied speed limit (i.e. 70 mph, 60 mph … etc.) 

will be assigned as a desired speed to that driver. The steps of assigning desired speed are 

illustrated in Figure 6.8. It is assumed that all drivers enter the simulated section using their 

assigned desired speeds, and then these speeds will be adjusted once they enter the section 

according to the car-following rules.  
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Figure 6.8: Method of assigning driver’s desired speed 

6.3.2.3   Driver aggressiveness 

Driver aggressiveness is another factor that controls the driver’s behaviour (e.g. speeds and 

positions) at the approach to roadwork sections. In this study, based on drivers’ reaction time, 

this factor (i.e. driver aggressiveness) has been classified into two classes. Class 1 represents 

aggressive drivers whereas class 2 represents the case for non-aggressive drivers. Those drivers 

with short reaction time (top 20% of drivers) were assumed to be aggressive (i.e. class 1); 

whereas the others were assumed to be non-aggressive (i.e. class 2). This classification has then 

been used for the new following vehicle in the target lane (i.e. adjacent open lane) for showing 

courteous behaviours to those merging from the closing lane, as will be discussed later in this 

Chapter.   

6.4 Car–following rules 

The car-following sub-model (rules) governs the interaction between successive vehicles 

travelling in the same lane. These rules represent the foundation for the vehicles interaction 

behaviour in the developed micro-simulation model.  

No  

Yes  

Generate Random Number 

for each driver (RN) 

GDS < Speed limit Assigned desired speed = GDS 

Generate Desired Speed from normal 

distribution for each driver (GDS) 

No  

Yes   RN > DCSL% Assigned desired speed = GDS 

Assigned desired speed = 

speed limit 
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The car-following sub-model has been developed based on the assumptions (with some 

modifications) of the CAR-following SIMulation model (CARSIM) which has been suggested 

by Benekohal (1986). CARSIM was adopted for the developed micro-simulation model 

because it has the ability to represent different traffic conditions realistically (free flowing as 

well as stop and go conditions) so that it helps in achieving a close reflection to the actual 

situation at roadwork sections. In addition, many previous researches have adopted the 

CARSIM model (see for example Benekohal, 1986; Yousif, 1993; Purnawan, 2005; Al-Jameel, 

2012; Al-Obaedi, 2012; Alterawi, 2014). 

Five different situations (accelerations/decelerations) were considered in developing the car-

following sub-model (as explained in the following sub-sections). In order to represent the 

interactions between vehicles realistically and safely, drivers will be assumed to maintain a 

sufficient distance from their leaders to react safely if any changes occur ahead. The values of 

these acceleration/deceleration rates are calculated and assigned for each vehicle for every 

scanning time (Δt). Then, only one acceleration/deceleration rate value (ACC) is selected from 

the calculated acceleration/deceleration rates to be used in determining the new velocities and 

positions for each vehicle. At the end of each scanning time, vehicle speeds and locations will 

be updated using Equations 6.1 and 6.2.      

𝑉𝑁 = 𝑉𝑛 + 𝐴𝐶𝐶(𝛥𝑡)                                                                                            Equation 6.1 

𝑃𝑂𝑆𝑁 = 𝑃𝑂𝑆𝑛 + 𝑉𝑛(𝛥𝑡) + 0.5(𝐴𝐶𝐶)𝛥𝑡2                                                      Equation 6.2 

Where: 

VN: the updated velocity of vehicle n (m/sec), at the end of the current Δt,  

POSN: the updated position of vehicle n (m), at the end of the current Δt, 

ACC: the acceleration/deceleration rate of vehicle n (m/sec2), 

Δt: the scanning time (sec) which is equal to 0.5 seconds, 

Vn: the current velocity of vehicle n (m/sec), and 

POSn: the current position of vehicle n (m). 

6.4.1 Vehicle capability acceleration (ACC1) 

A vehicle type (either a passenger car or a HGV) will be assigned for each vehicle generated in 

the system. The acceleration/deceleration rate (ACC1) that will be assigned for the vehicle is 

affected by the current speed of the vehicle and the vehicle’s mechanical ability which, by itself, 

depends on its type. This rate (i.e. ACC1) is calculated using Table 6.3. 
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6.4.2 Desired speed acceleration (ACC2) 

When the generated vehicle is not constrained by a vehicle ahead, the vehicle will be assumed 

to accelerate/decelerate until reaching its assigned desired speed and then maintain it. The 

symbol (ACC2) has been used to represent this condition. The normal acceleration/deceleration 

values (as discussed in Section 6.3.1.2) are used to measure the value of ACC2.  

6.4.3 Slow moving acceleration (ACC3) 

Under congested conditions, when vehicles are travelling in platoon situations (moving very 

slowly in a closely-spaced group), the distance between the following and leading vehicle is 

governed by the buffer space. The buffer space can be defined as the space between two 

successive vehicles under heavy flow conditions (i.e. platoon situations) as shown in Figure 6.9. 

Different values of buffer space have been suggested by previous studies as shown in Table 6.7. 

For the purpose of this study, a value of 1.8 m was assumed for the buffer space, as this value 

(i.e. 1.8 m) is obtained from the calibration process of the car-following sub-model (as will be 

discussed later in Section 7.4.1) and is also within the reported limits in the table. The 

acceleration/deceleration rate used in this situation (ACC3) is calculated using Equations 6.3 

to 6.5.  

𝑃𝑂𝑆𝐿 − 𝑃𝑂𝑆𝐹 ≥ 𝐿𝑙𝑒𝑎𝑑 + 𝐵𝑈𝐹                                                                         Equation 6.3 

By substituting Eq. (6.2) for POSF in Eq. (6.3) then, 

𝑃𝑂𝑆𝐿 − [𝑃𝑂𝑆𝑓 + 𝑉𝑓(𝛥𝑡) + 0.5(𝐴𝐶𝐶3)𝛥𝑡2] − 𝐿𝑙𝑒𝑎𝑑 − 𝐵𝑈𝐹 ≥ 0.0      Equation 6.4 

By rearranging Eq. (6.4) we get, 

𝐴𝐶𝐶3 =
𝑃𝑂𝑆𝐿 − 𝑃𝑂𝑆𝑓 − 𝑉𝑓(𝛥𝑡) − 𝐿𝑙𝑒𝑎𝑑 − 𝐵𝑈𝐹

0.5𝛥𝑡2
                                     Equation 6.5 

Where: 

ACC3: the acceleration/deceleration rate (m/sec2) for the slow moving conditions, 

POSL: the position of the leading vehicle (m), 

POSF and POSf: the new and old positions of the following vehicle (m), respectively, 

Vf: the velocity of the following vehicle (m/sec), 

BUF: the buffer space (m), and 

Llead: the length of the leading vehicle (m). 
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Figure 6.9: Illustration of the safety buffer space 

Table 6.7: Summary of previous studies for buffer space 

Names and 

references 

Buffer space 

(m) 
Remarks 

Benekohal 

(1986) 
0.9 – 3.0 

0.9 m was used at high density; elsewhere 3 m was 

used. 

Zia (1992) 3.0 Constant value 

Yousif (1993) 1.8 
The author used a normal distribution with standard 

deviation of 1.17 m. 

Al-Obaedi 

(2012) 
1.5 – 3.0 

1.5 m was used for vehicles travelling on the ramp, 

while for the main line motorway vehicles 3 m was 

used. 

Al-Jameel (2012) 2.0 Constant value 

Alterawi (2014) 1.5 Constant value 

6.4.4 Moving from stationary acceleration (ACC4) 

Under congested (platoon) conditions, when the vehicle starts to move from a stopped position, 

due to the movement of the leading vehicle, it will take a few seconds preparing to move. This 

delay is called the move-up delay (MUD), and it varies from one driver to another.  

Based on real traffic data taken from the M4 at the approach to roadwork sections, 

Yousif (1993) reported that the MUD differs among drivers in the range of 0.6-4 seconds with 

an average of 1.8 seconds. Similarly, Al-Obaedi (2012) investigated the MUD using data taken 

from the M60 for passenger cars only, and found similar findings to those reported by 

Yousif (1993).  

Based on drivers’ reaction time, a value of 1 sec as a MUD will be assigned for drivers with a 

short reaction time (top 20% of drivers) and 2 seconds for the others. These values of the MUD 

were implemented in this micro-simulation model as suggested by previous researchers, such 

as Benekohal (1986), Yousif (1993), Al-Jameel (2012) and Al-Obaedi (2012). The acceleration 

rate values for the move-up delay condition (ACC4) are 0.42 and 0.21 m/sec2 for passenger cars 

and HGVs respectively following Benekohal (1986), Al-Jameel (2012) and Alterawi (2014). 

Traffic direction 

Buffer space 



105 

 

6.4.5 Stopping distance (non-collision criteria) acceleration (ACC5) 

At every scanning time interval, the distance between the following and leading vehicle is 

calculated to ensure that this distance is sufficient for the follower to stop safely even when the 

leader stops suddenly. The acceleration/deceleration rate (ACC5) that satisfies this condition 

can be measured using the following equations:  

𝑃𝑂𝑆𝐿 − [𝑃𝑂𝑆𝑓 + 𝑉𝑓(𝛥𝑡) + 0.5(𝐴𝐶𝐶5)𝛥𝑡2] − 𝐿𝑙𝑒𝑎𝑑 − 𝐵𝑈𝐹 ≥  

= 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.7 𝑜𝑟 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6.8               Equation 6.6 

[𝑉𝑓 + 𝐴𝐶𝐶5(𝛥𝑡)] 𝑅𝑡                                                                                             Equation 6.7 

[𝑉𝑓 + 𝐴𝐶𝐶5(𝛥𝑡)] 𝑅𝑡 +
[𝑉𝑓 + 𝐴𝐶𝐶5(𝛥𝑡)]2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐹
−

𝑉𝐿2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐿
                        Equation 6.8 

The solution of the Equations (6.6, 6.7 and 6.8) will consist of two parts, as follows in Equations 

6.9 and 6.10. The minimum value of these two equations will be selected to represent the safe 

distance between the leading and following vehicles. 

𝐴𝐶𝐶5 =
𝑃𝑂𝑆𝐿 − 𝑃𝑂𝑆𝑓 − 𝑉𝑓(𝛥𝑡) − 𝐿𝑙𝑒𝑎𝑑 − 𝐵𝑈𝐹 − 𝑉𝑓(𝑅𝑡)

𝛥𝑡(𝑅𝑡) + 0.5𝛥𝑡2
                  Equation 6.9 

 

𝑃𝑂𝑆𝐿 − [𝑃𝑂𝑆𝑓 + 𝑉𝑓(𝛥𝑡) + 0.5(𝐴𝐶𝐶5)𝛥𝑡2] − 𝐿𝑙𝑒𝑎𝑑 − 𝐵𝑈𝐹  

≥  [𝑉𝑓 + 𝐴𝐶𝐶5(𝛥𝑡)] 𝑅𝑡 +
[𝑉𝑓 + 𝐴𝐶𝐶5(𝛥𝑡)]2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐹
−

𝑉𝐿2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐿
  

=                                                                                                   Equation 6.10 

Where: 

Rt: the reaction time of the driver (sec), 

VL: the velocity of the leading vehicle (m/sec), 

MaxDECF: the maximum deceleration rate for the following vehicle (m/sec2), and 

MaxDECL: the maximum deceleration rate for the leading vehicle (m/sec2). 

As mentioned earlier, for every scanning time (Δt), the five accelerations/decelerations 

rates (i.e. ACC1, ACC2, ACC3, ACC4 and ACC5) are calculated and assigned for each vehicle. 

A unique value for the acceleration/deceleration rate (ACC) is then selected from the calculated 

accelerations/decelerations rates to update velocities and positions for each vehicle using 

Equations 6.1 and 6.2. The criteria for selecting the value of (ACC) is as shown in Figure 6.10.   
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Figure 6.10: The car-following sub-model flow chart 
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6.5 Lane-changing rules 

The lane changing sub-model governs the lateral movements of vehicles from one lane to 

another. In this study, the lane-changing manoeuvre forms an essential part of the newly 

developed micro-simulation model and has been classified into two categories: discretionary 

lane changing (DLC) and mandatory lane changing (MLC). In addition, the MLC was 

categorised into three types: free, forced, and cooperative. In this study, the DLC will be applied 

on normal roadway sections and at other situations when the lane-changing manoeuvre is not 

mandatory, while at the approach to roadwork sections (with the use of lane closures schemes) 

the MLC will be applied. In this section, the main assumptions that have been made for the 

DLC and the MLC are discussed in the following sub-sections. 

6.5.1 Discretionary lane-changing (DLC) 

As mentioned in Section 2.8.2, the DLC is implemented primarily when a driver endeavours to 

enhance his/her driving conditions, such as speed by overtaking a slower leading vehicle in 

front or in order to return to his/her original lane after the overtaking process. The drivers’ 

desire to change lane and the basis of lane selection should be identified clearly in order to 

develop a proper DLC algorithm. The following sub-sections provide further details.  

6.5.1.1   DLC toward faster lanes 

Generally, drivers might change their lanes toward the faster ones (i.e. right lanes) due to the 

presence of a slower moving vehicle in front. When a driver feels that after a certain length of 

time (threshold time, THRT) he/she will be obstructed by a slower leading vehicle, the driver 

may then try to avoid that slower moving vehicle by moving to a faster lane (Yousif, 1993).  

When the driver of vehicle (C) (see Figure 6.11) approaches from behind a slower leading 

vehicle (L), the driver of C will compare his/her speed with the speed of the leading vehicle (L). 

If the speed of C is higher than that of L by a value of R (suggested by Ferrari (1989) as R 

=1040/DVc; where, DVc: is the desired speed of the follower), then the desire of lane-changing 

is initiated and the driver of C will change to the adjacent faster lane if there are sufficient lead 

and lag gaps available in that lane and if the lane-changing is beneficial. The availability of the 

sufficient gaps is controlled by the gap acceptance sub-model, which will be discussed in the 

next section (Section 6.6). Following Al-Obaedi (2012), the DLC toward faster lane is 

considered unbeneficial if the distance between the new leading vehicle (L3) and the vehicle C 

is less than 100 m and the speed of the new leading vehicle (L3) is not higher than that of the 
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leading vehicle (L) by a value of R. Figure 6.11 illustrates the positions of the surrounding 

vehicles that are involved in the lane-changing process for C.   

Otherwise, when the speed of the vehicle (C) is not higher than that of the leading vehicle (L) 

by a value of R, the driver of C will stay in his/her current lane by slowing down to the speed 

of the leading vehicle (L), and travels with a speed lower than his/her desired speed. 

 

Figure 6.11: Illustration of the surrounding vehicles that affect the lane-changing process 

for vehicle C (DLC toward faster lane) 

The separation time between successive vehicles (TBSVeh) (e.g. between C and L) is 

calculated, as shown in Equation 6.11, for every vehicle for every scanning time (∆t), then, the 

calculated TBSVeh will be compared with the threshold time (THRT). The above-mentioned 

process (i.e. desirability and execution of lane-changing) is initiated only if the TBSVeh 

becomes ≤ THRT. The value of the threshold time (THRT) parameter would be estimated from 

the calibration process of the lane changing sub-model, as will be discussed later in 

Section 7.4.2. Figure 6.12 shows the general structure of the developed rules for the DLC 

toward faster lanes. 

𝑇𝐵𝑆𝑉𝑒ℎ =
𝑃𝑂𝑆𝐿 − 𝑃𝑂𝑆𝐶 − 𝐿𝐿

𝑉𝐶 − 𝑉𝐿
                                                               Equation 6.11 

Where: 

TBSVeh: the time between successive vehicles (sec),  

POSL: the position of the leading vehicle L (m), 

POSC: the position of vehicle C (m), 

LL: the length of the leading vehicle L (m), 

VC: the velocity of vehicle C (m/sec), and 

VL: the velocity of the leading vehicle L (m/sec). 

Lane 1 Direction of travel 

Lane 2 

Lane 3 

C L 

L3 
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Figure 6.12: DLC toward faster lanes structure 

6.5.1.2   DLC toward slower lanes 

Drivers might change their lanes to the slower lanes (i.e. left lanes) for the following cases: 

Case A: Avoiding obstruction of a faster moving vehicle approaching from behind, and  

Case B: After the overtaking manoeuvre, drivers desire to return to their original lane. 

 

Case A: 

In situations where the driver of vehicle (C) (see Figure 6.13) is followed by a faster following 

vehicle (F) within a relatively short distance (threshold distance, THRD) and the driver of C 

feels that his/her vehicle is obstructing the following vehicle (F), then, the driver of C will desire 

to change to the adjacent slower lane, if the speed of C is less than that of its follower (F) by a 

THRT ≥ TBSVeh 
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Aborted process 
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No Aborted process 
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value of R. This is applicable only when the speed of C is equal or close to its desired speed. 

The value of the threshold distance (THRD) parameter would be estimated from the calibration 

process of the lane changing sub-model, as will be discussed later in Section 7.4.2. The decision 

of estimating the values of the threshold distance (THRD) and the threshold time (THRT) 

parameters was made due to the difficulties associated with obtaining the values of these 

parameters from field observations. Figure 6.13 illustrates the threshold distance (THRD) 

parameter and the positions of the surrounding vehicles that are involved in the lane-changing 

process for C.  

 

Figure 6.13: Illustration of the THRD parameter and the surrounding vehicles of vehicle C 

(DLC toward slower lane) 

Case B: 

An assumption has been made that 80% of drivers would retain their original lanes after 

overtaking a slower vehicle in the traffic stream, as suggested by Al-Obaedi (2012). This is not 

applied to drivers who are using the offside lane for overtaking as in such a case it is assumed 

that all drivers wish to retain their original lanes. 

For both cases (A and B), the driver of C will check the situation of the slower lane (i.e. the 

availability of sufficient gaps and the benefit of lane changing) in order not to be trapped behind 

a slower leading vehicle (L1) (see Figure 6.13) in that lane. Likewise, the DLC toward slower 

lane is considered unbeneficial if the new leading vehicle (L1) is within 100 m and the speed 

of L1 is less than that for C. Figure 6.14 shows the general structure of the developed rules for 

the DLC toward slower lanes. 

THRD 
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Lane 2 

Lane 3 

C F 

L1 
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Figure 6.14: DLC toward slower lanes structure 

6.5.2 Mandatory lane-changing (MLC) 

In this study, the MLC is implemented at the approach to roadwork sections (with the use of 

lane closures schemes). When drivers approach the lane closure, they will try to change from 

their closed lane to an adjacent open lane depending on their urgency to perform the lane-

changing (merging) manoeuvre (which depends on their distance to the end of the lane, i.e. start 

of the transition zone), their compliance with posted traffic signs and the courtesy behaviour of 

drivers in the adjacent open lane. Figure 6.15 illustrates the general structure of developed MLC 

algorithm for this study. 
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 Figure 6.15: The developed MLC structure 

For this study, the remaining distance to the end of the lane (as shown in Figure 6.16) is used 

to represent the urgency of the lane-changing (merging) manoeuvre. A value of 100 m as a 

remaining distance to the end of the lane was adopted in this simulation model to represent the 

urgency of the merger. This distance (i.e. 100 m) is within the limit suggested by Rao (2006) 

who reported that the merger will use the forced lane-changing (merging) manoeuvre when the 

remaining time to the end of the lane is lower than 10 seconds. In addition, real observations 

from the M67 site (2 lanes motorway roadwork site with offside lane closure) have shown that 

most of the observed forced merging manoeuvre cases (i.e. mergers force the new follower in 

the adjacent open lane) occurred when the mergers were positioned approximately less than 

100 m from the end of the lane (i.e. start of the transition zone). 
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Figure 6.16: Illustration of the urgency of merging manoeuvre  

In this simulation model, the merging manoeuvre is considered as a non-urgent manoeuvre if 

the merger is more than 100 m away from the end of the lane. Otherwise (when the remaining 

distance of the merger to the end of the lane is lower or equal to 100 m), the merging manoeuvre 

is considered as an urgent manoeuvre. In such a situation (i.e. urgent manoeuvre), and if the 

new follower is not offering a courtesy or the offered new gap is not sufficient, the merger 

would be then forcing the new follower to slow down in order to widen the gap (by using the 

minimum observed accepted gaps, as will be discussed in Section 6.6).  

In this simulation model, the courtesy process in the adjacent open lane consists of two 

behaviours: cooperative slowing down and cooperative yielding, as discussed in Section 3.7.2. 

Both behaviours are applicable if there is more than one lane left open for traffic movements at 

roadwork sections (e.g. 3 or 4 lanes motorway sections with a lane closure). For those sections 

of roadworks with only one open lane (e.g. 2 lanes motorway section with a lane closure), only 

the cooperative slowing down is applicable.  

The courtesy process is started by sending a courtesy request from a driver (merger) who tries 

to merge into an adjacent open lane to the new follower in the adjacent open lane if there are 

no sufficient gaps available in that lane. The new follower will then respond to this request 

based on his/her driver aggressiveness class (DAGC). If the new follower is 

class 1 (i.e. aggressive driver), then he/she would ignore the courtesy request, whereas if the 

new follower is class 2 (i.e. non-aggressive driver), then the new follower will show courteous 

behaviours to the driver merging from the closed lane. The new follower will slow down to 

allow the merger to change from his/her closed lane and if the speed reduction is higher than 

the value of R (suggested by Ferrari (1989) as R = 1040/DVc; where, DVc: is the desired speed 

of the following driver), then the new follower will apply the DLC manoeuvre and show a 

Roadworks zone 
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cooperative yielding behaviour by moving to the second adjacent open lane (as shown in Figure 

6.16) if there is a sufficient gap in that lane.  

However, the deceleration rate for the cooperative slowing down is estimated based on the car-

following rules with respect to the merger and should not be exceeding the normal deceleration 

rate (i.e. -3 m/sec2). Figure 6.17 illustrates the general structure for modelling the courtesy 

behaviour. 

 

Figure 6.17: Courtesy behaviour structure 

6.6 Gap acceptance rules 

Basically, the gap acceptance rules are connected to the lane-changing rules. When the desire 

of lane-changing is initiated, the lane changer (merger) will then look for a safe lane-changing 

manoeuvre. The safe lane-changing manoeuvre can occur by, firstly, locating the new leading 

and following vehicles in the target lane, then, selecting available lead and lag gaps with values 

greater than the corresponding lead and lag (minimum) critical gaps. 
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As discussed in Sections 2.8.3 and 2.9, the gap acceptance model that has been adopted by Al-

Obaedi (2012) which was based on the safety gap acceptance model by Liu (2005) has been 

adopted in this simulation model. Therefore, Equations 2.6 and 2.7 are applied to measure the 

lead critical gap and the lag critical gap, respectively, for the DLC manoeuvre.  

Yousif (1993), Hidas (2005), Wang (2006), Al-Jameel (2012) and Al-Obaedi (2012) reported 

that the sizes of the accepted gaps for merge locations (i.e. MLC manoeuvre) are usually lower 

than those used in DLC manoeuvres. Therefore, Al-Obaedi (2012) used Equations 2.6 and 2.7 

but without using the safety buffer space (“BUF” term) and applied a 50% factor to the first 

term in the equations to calculate the minimum lead and lag gaps for the MLC manoeuvre. This 

is also adopted in this study. Equations 6.12 and 6.13 show the calculation of lead and lag 

critical (minimum) gaps that are used for the MLC, respectively. Also, for the cases where the 

new leader is faster than the merger, a critical lead gap of 1.0 m (Gmin,lead = 1.0 m) is used as a 

default value. Also, a default value of 1.0 m is used as a critical lag gap (Gmin,lag = 1.0 m) when 

the new follower is slower than the merger, as suggested by Hidas (2002 and 2005) and Al-

Obaedi (2012).       

𝐺𝑚𝑖𝑛,𝑙𝑒𝑎𝑑 =
𝑅𝑡(𝑉𝐶)

2
+ 𝑀𝑎𝑥 [0, (

𝑉𝐶2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐶
−

𝑉𝐿2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐿
)]              Equation 6.12 

  

𝐺𝑚𝑖𝑛,𝑙𝑎𝑔 =
𝑅𝑡(𝑉𝐹)

2
+ 𝑀𝑎𝑥 [0, (

𝑉𝐹2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐹
−

𝑉𝐶2

2𝑀𝑎𝑥𝐷𝐸𝐶𝐶
)]               Equation 6.13 

                   

Where: 

Rt: the reaction time (sec), 

VC: the velocity of the subject vehicle (i.e. merger) (m/sec), 

VL: the velocity of the new leader (m/sec), 

VF: the velocity of the new follower (m/sec), 

MaxDECC: maximum deceleration rate for the merger (m/sec2), 

MaxDECL: maximum deceleration rate for the new leader (m/sec2), and 

MaxDECF: maximum deceleration rate for the new follower (m/sec2).  

For the situation of the urgent MLC manoeuvre, the closed lane driver (i.e. merger) will accept 

very short gaps to move from the closed lane. According to Gipps (1986), the sense of driver’s 

urgency to change lanes is reflected in the driver’s willingness to accept smaller gaps. In the 

same context, Yousif (1993) reported that the observed lead and lag gaps decrease as the 

remaining distance to the end of lane decreases. This is consistent with the finding of Nemeth 



116 

 

and Rouphail (1983) who reported that late merging at roadwork sections will push drivers to 

accept very short gaps to merge into the adjacent open lane. Therefore, the critical gaps that are 

obtained from Equations 6.12 and 6.13 will be compared with the minimum observed accepted 

gaps which can be obtained from Figure 3.8. Then, the minimum ones will be used as the critical 

gaps in the simulation model. 

6.7 Lane closure rules 

In the current simulation model, the lane closure sub-model governs the interactions and 

behaviours of vehicles at roadwork sections with the use of a lane closure scheme. As 

mentioned in Section 2.3, the MUTCD (2009) divides the temporary traffic management 

schemes into four zones (i.e. the advance warning zone, the transition zone, the activity zone, 

and the termination zone) as shown in Figure 2.1. In addition, the effect of the positions of 

roadworks signs has been created in this simulation model as suggested by the Traffic Signs 

Manual (Chapter 8, 2009). Figure 6.18 illustrates the signage layout for roadwork sections at 

dual carriageways with national speed limits. The following sub-sections describe the 

behaviours of drivers at each of these four zones. 

6.7.1 Advance warning zone 

According to the Traffic Signs Manual (Chapter 8, 2009) the decision of lane changing should 

be taken by drivers who continue to drive on the closed lane once they approach 100 m upstream 

of the first sign requiring a lane-change decision (i.e. 800 yards sign), as shown in Figure 6.18. 

Therefore, in this simulation model, the modelled drivers will seek to move to an adjacent open 

lane when they are less than 900 m from the end of the lane (i.e. start of the transition zone). In 

this area (i.e. 900 m upstream of the start of the transition zone up to the start of the activity 

zone) the MLC rules will be applied by drivers who are travelling on the closed lane. While 

drivers in the adjacent open lane maybe in one of three states:  

 offering courtesy by slowing down to increase the gap for the merging vehicle,  

 shifting to second adjacent open lane, or  

 remaining in the same lane without offering courtesy.  

Also, according to the Traffic Signs Manual (Chapter 8, 2009), the temporary speed limit should 

be applied 50 m in advance of the first sign indicating lane closures (i.e. 800 yards sign), as 

shown in Figure 6.18. Therefore, the modelled drivers will adapt their speed limit (from the 
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national speed limit (i.e. 70 mph) to the temporary speed limit (i.e. 50 mph)) when they are less 

than 850 m from the start of the transition zone. 

Similarly to the normal roadway sections (as discussed in Section 6.3.2.2), if the modelled 

drivers are not complying with the posted speed limit, they will start using their roadworks 

desired speeds which were generated from Figure 3.10 (as discussed in Section 3.7.3) once they 

pass the first temporary speed limit sign (i.e. 850 m away from the start of the transition zone). 

Otherwise, if they are complying with the speed limit, the applied temporary speed limit (i.e. 

50 mph) will be assigned as a desired speed to those drivers.  

 

Figure 6.18: Signage layout at roadwork sections (Traffic Signs Manual - Chapter 8, 2009) 
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6.7.2 Transition zone 

As drivers pass the end of the lane, the urgency to change lane is highly increased for those who 

are still travelling on the closed lane. However, those drivers (who try to merge into an adjacent 

open lane) will stop at the end of the transition zone if sufficient gaps are not available. Drivers 

in the adjacent open lane are still in one of the three states: either offering courtesy by slowing 

down, shifting to second adjacent open lane, or remaining in the same lane without offering 

courtesy.  

6.7.3 Activity zone & termination zone 

The activity zone will start after withdrawing the closed lane from the carriageway as shown in 

Figure 2.1. In this zone, all vehicles have moved from the closed lane to the adjacent open lane. 

Therefore, the MLC rules (which were applied by drivers on the closed lane) and the courtesy 

behaviours (which were applied by drivers in the adjacent open lane) are aborted in this zone 

and beyond. The termination zone is located at the end of the activity zone, where the road 

layout returns to its normal condition (normal driving condition is restored, such as national 

speed limit).  

6.8 Narrow lanes rules 

The narrow lanes scheme requires narrowing the width of existing lanes only, without 

withdrawing any lane from the carriageway. Therefore, the MLC rules and the courtesy 

behaviours are not applied by drivers who drive on roadwork sections with a narrow lanes 

scheme.  

The observed behaviours associated with narrow lane sections as described in 

Chapter 4 (i.e. avoiding behaviour when passing/overtaking HGVs) have been integrated 

within the developed micro-simulation model. The lane repositioning before passing HGVs 

behaviour was not integrated within the developed model since it is believed that this behaviour 

mainly affects the safety levels of traffic which is out of the scope of the developed model. 

However, the avoiding behaviour when passing/overtaking HGVs splits into: avoiding passing 

HGVs on the adjacent lane and avoiding passing HGVs on the same lane. The main assumptions 

that have been made for both behaviours of avoiding passing HGVs are discussed in the 

following sub-sections. 
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6.8.1 Avoiding passing HGVs on adjacent lane 

As discussed in Section 4.4.1, field observations have shown that a relatively high number of 

observations of drivers following a HGV travelling on adjacent lanes, avoid passing the HGV 

even when their lane is clear from vehicles. The percentage of these drivers (who prefer 

following the HGV on adjacent lane, FDAL%) was found to be around 47%, for the M6 site. 

In the current simulation model, this behaviour has been modelled by generating a random 

number (RN) for each driver. The driver is regarded as an avoider if the generated number (RN) 

is equal to or lower than the percentage of avoiders on the adjacent lane (FDAL%), otherwise 

he/she will be regarded as a passer.  

When the driver of vehicle C (see Figure 6.19) approaches from behind a HGV on the adjacent 

lane and if the driver of C is considered as a passer (i.e. FDAL% < RN), he/she will continue 

interacting (accelerate/decelerate) with his/her current leader (L) in the current lane and 

ignoring the presence of the HGV. Otherwise, if the driver of C is considered as an avoider (i.e. 

FDAL% ≥ RN), then he/she will start interacting with the HGV on the adjacent lane in order to 

keep following that HGV. The acceleration/deceleration rate that is applied by the avoider (C) 

is the minimum of A1 (which is the acceleration/deceleration rate with respect to current leader 

(L) in the current lane) and A2 (the acceleration/deceleration rate with respect to the HGV in 

the adjacent lane), as shown in Figure 6.19. It should be noted that each of Al and A2 are 

obtained from the car-following rules that were discussed in Section 6.4. The process of 

modelling the avoiding passing HGVs in the adjacent lane on narrow lanes sections is illustrated 

by the flowchart in Figure 6.20. This process is applicable while drivers are travelling in 

transition and activity zones where the lanes are narrowed. Before or after these zones (where 

normal lane width is restored) this process is not applicable. 

 

Figure 6.19: Illustration of the calculation of acceleration rates for avoiders 
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Figure 6.20: Flow chart for modelling the “avoiding” of passing HGVs on adjacent lane  

6.8.2 Avoiding passing HGVs on same lane 

The second behaviour of the avoiding behaviour when passing/overtaking HGVs is avoiding 

overtaking HGVs on the same lane. As discussed in Section 4.4.3, the percentage of drivers 

who prefer staying in the same lane driving behind a HGV and following it even if they have 

the opportunity to overtake (FDSL%) was not measured due to the shortage of observed section 

length from the video footage. Therefore, the value of the FDSL parameter would be estimated 

from the calibration process of the narrow lanes sub-model, as will be discussed later in 

Section 7.4.4. Likewise, this behaviour (i.e. avoiding overtaking HGVs on the same lane) has 

been modelled by generating a random number for each driver. The driver is regarded as an 

avoider if the generated number is equal to or lower than the percentage of avoiders on the same 
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lane (FDSL%), otherwise he/she will be regarded as a passer. The avoider (C) will stay in 

his/her current lane driving behind his/her leading HGV and refuse any desire of overtaking the 

HGV even if the new leading vehicle (L2) is far away and the lane-changing manoeuvre is 

beneficial (DLC toward faster lanes), as shown in Figure 6.21. The process of modelling the 

avoiding of overtaking HGVs on the same lane is illustrated by the flowchart in Figure 6.22. 

Likewise, this process is applicable while drivers are travelling in transition and activity zones 

where the lanes are narrowed. Before or after these zones (where normal lane width is restored) 

this process is not applicable. 

 

Figure 6.21: Illustration of the surrounding vehicles for the avoider (vehicle C) 

 

Figure 6.22: Flow chart for modelling the “avoiding” of overtaking HGVs on the same lane 
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6.9 Other characteristics of the developed model 

Other characteristics were added in the newly developed micro-simulation model, such as 

warm-up and cool-off sections which have been introduced (500 m each) at the beginning and 

termination points of the simulated section, respectively. The purpose of having such sections 

for the warm-up section, is to eliminate the unsteady conditions during the start of the 

simulation model, whereas for the cool-off section, it is to prevent the effect of traffic behaviour 

changing abruptly due to the exiting of vehicles from the simulated section. In both of these 

sections, the simulation outputs are ignored. Several simulation studies have adopted the value 

of 500 m for these sections (i.e. warm-up and cool-off sections), see for example Zia (1992), 

Yousif (1993), Purnawan (2005) and Alterawi (2014). 

Warm-up and cool-off periods have also been introduced (5 minutes each) in the current 

simulation model at the start and the end of the simulation period. The simulation outputs are 

also ignored in these periods. The purpose of having a warm-up period is to ensure that some 

vehicles have crossed the total length of the simulated section to ensure a steady condition of 

the traffic behaviour, whereas the purpose of the cool-off period is the same as previously 

reported for the cool-off section. 

The simulated section is divided into a number of sub-sections (i.e. data collection points) in 

order to collect the data from the model. The number and locations of these sub-sections can be 

varied, and the interval of the unit length where the sub-sections are located can be easily 

changed through the input file.  

6.10 The developed model output  

The output of the developed micro-simulation model consists of two levels of output data. 

These are: first, micro output data which gives detailed information such as vehicle position, 

speed and acceleration/deceleration rate, and spacing between vehicles, and second, macro 

output data which consists of traffic flows, average speeds and delays. 

6.11 The developed model capabilities   

The model is designed in order to test the effect of different temporary traffic management 

schemes that are applied at motorway roadwork sections (i.e. lane closure and narrow lanes 

schemes) on system capacity and delay. In addition, the effects of various parameters 

(i.e. HGVs%, section length, speed limits and drivers’ compliance with the speed limit) on 
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system capacity and delay were also tested. Furthermore, all related parameters are easily 

changed in the input file in order to assess the effect of applying different values. 

6.12 Summary 

This chapter described the development of the newly developed micro-simulation model for 

motorway roadwork sections. The developed model consists of five sub-models (i.e. car-

following, lane changing, gap acceptance, lane closure and narrow lanes rules) which were also 

described in detail in this chapter. These rules have been developed with the help of real 

observations from UK motorway sites as well as some related previous studies.  

 The car-following sub-model has been developed based on the assumptions of the CAR-

following SIMulation model (CARSIM) which has been suggested by Benekohal 

(1986).  

 The lane-changing sub-model has been classified into two categories, DLC and MLC. 

The DLC is applied on normal roadway sections and at other situations when the lane 

changing manoeuvre is not mandatory, while at the approach to roadwork sections (with 

the use of lane closures schemes) the MLC will be applied. In addition, the MLC was 

categorised into: free, forced and cooperative.  

 The gap acceptance sub-model that has been adopted by Al-Obaedi (2012) which was 

based on the safety gap acceptance model by Liu (2005) has been adopted in this 

simulation model. 

 The lane closure sub-model has been developed in order to govern the interactions and 

behaviours of drivers at roadwork sections with the use of a lane closure scheme. The 

cooperative behaviours of drivers (i.e. slowing down and yielding) were integrated in 

this sub-model. 

 The narrow lanes sub-model has been developed to govern the interactions and 

behaviours of drivers at roadwork sections with the use of a narrow lanes scheme. The 

observed driving behaviours from narrow lanes sites (i.e. avoiding passing HGVs) were 

integrated in this sub-model.       

The following chapter will describe the verification, calibration and validation processes of this 

developed micro-simulation model using field data taken from different motorway sites. 

Limitations identified in the current chapter: the development of the new micro-simulation 

model has been based on data taken from selected UK motorway roadwork sites. More data 



124 

 

from other parts of the country as well as other countries would make the newly developed 

micro-simulation model more comprehensive to include the effect of any variations in driving 

behaviours. 
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CHAPTER SEVEN                                                                                                  
MODEL VERIFICATION, CALIBRATION AND VALIDATION 

 

 

7.1 Introduction 

The newly developed model (as referred to in the previous chapter) should be assessed and 

tested by comparing its outputs with real traffic data before applying it to evaluate the existing 

TTMSs. Three processes were adopted in assessing the performance of the developed model; 

these are verification, calibration and validation. These processes are dependent and repetitive 

as suggested by May (1990) and Al-Obaedi (2012) since any discovered errors may require 

adjusting the model’s assumptions and/or parameters. Figure 7.1 shows a typical structure for 

the verification, calibration and validation process to be applied for any simulation model.  

 

Figure 7.1: Micro-simulation model verification, calibration and validation 

processes (May, 1990) 

In this chapter, the statistical tests and the three processes of assessing the performance of the 

developed model are discussed in details in the following sections. 

7.2 Statistical tests 

For the purpose of the calibration and validation processes, several statistical tests were used. 

In addition to the previously described tests in Chapter 5 (i.e. RMSE, RMSEP and GEH), three 

new statistical tests have also been used to test the goodness-of-fit between observed and 

simulated results. These are the Theil’s inequality coefficient (U), the Theil’s mean 

difference (Um) and the Theil’s standard deviation difference (Us). All of these tests are 

extensively used in calibration and validation processes of traffic simulation models (see for 
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example Wang, 2006; Al-Jameel, 2012; Al-Obaedi and Yousif, 2012; and Alterawi, 2014). 

Their equations are given in Equations 7.1 to 7.3. 

 Theil's Inequality Coefficient (U): 

The Theil’s inequality coefficient (U) measures how well simulated results are close to 

corresponding observed values. The U value is bounded between 0 and 1; with a value of 0 

representing a perfect fit, and a value of 1 represent the worst possible fit (Wang, 2006). This 

test is considered to be more efficient than the RMSE or RMSEP (Al-Obaedi, 2012). It can be 

determined by the following equation (Wang, 2006): 

𝑈 =

√1
𝑛 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

√1
𝑛 ∑ (𝑥𝑖)2𝑛

𝑖=1  + √1
𝑛 ∑ (𝑦𝑖)2𝑛

𝑖=1

                                                               Equation 7.1 

Where, 

n: number of time intervals, 

xi: observed data at time interval i, and 

yi: simulated results at time interval i. 

 

 Theil's mean difference (Um): 

The Theil’s mean difference (Um) represented in Equation 7.2 measures the difference between 

the mean values. The Um value is between 0 and 1 with a lower value giving a better fit (Wang, 

2006).   

𝑈𝑚 =
(µ𝑥 − µ𝑦)2

1
𝑛 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

                                                                                       Equation 7.2 

Where, 

µx: the mean of the observed data, and 

µy: the mean of the simulated data. 

 

 Theil's standard deviation difference (Us): 

The Theil’s standard deviation difference (Us) represented in Equation 7.3 measures the degree 

of variability of the simulated results compared with observed data by comparing standard 

deviation values (Alterawi, 2014). The Us value is also between 0 and 1.   
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𝑈𝑠 =
(𝜎𝑥 − 𝜎𝑦)2

1
𝑛 ∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

                                                                                       Equation 7.3 

Where, 

σx: the standard deviation of the observed data, and 

σy: the standard deviation of the simulated results. 

According to Alterawi (2014), satisfactory model results will be achieved if (U) is lower than 

0.3. According to the Design Manual for Roads and Bridges (1996), the GEH should be ≤ 5 for 

the link flow to be satisfactory. These thresholds, along with other measures, are monitored 

throughout the calibration/validation process to ensure acceptable model quality. 

7.3 Verification process 

The verification process could be defined as the procedure of checking the accuracy of 

translation of proposed flowcharts and assumptions into a computer code. This could be 

achieved by observing the animation of the developed model and the simulation outputs to 

check if they are logical under several input parameters without the use of real 

data (Wang, 2006; Al-Jameel, 2012 and Alterwai, 2014). 

In this study, the model verification process has been achieved at earlier stages of the model 

development by observing the animation, checking the model outputs (for example vehicle 

length distribution, headway distribution, travel time, desired speed, lane utilisation, etc.) and 

debugging the program code for any errors or illogical behaviour. A typical screenshot from the 

developed model run is as shown in Figure 7.2. 

 

Figure 7.2: Typical screenshot from the newly developed micro-simulation model 

(narrow lanes roadworks section) 

By investigating the distributions of simulated desired speed and passenger cars length, it was 

found that the distributions of both desired speed and cars’ length are approximately the same 

as normal distribution as shown in Figure 7.3. This is similar to what was expected (as assumed 

in generating of these distributions). Likewise, it was found that the shifted negative exponential 
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distribution fits the distribution of the simulated headways (as shown in Figure 7.4); this is the 

same as assumed for generating these headways. In addition, several characteristics (e.g. traffic 

composition, vehicles’ travel time, reaction time, etc.) and rules (e.g. car-following, lane 

changing, lane closure and narrow lanes) were tested against the logical behaviour. See for 

example, Figure 7.5 which shows the simulated lane utilisation results for a three lanes normal 

motorway section. The simulation results were gathered at a location 1000 m after the end of 

the warm up section. The verification results proved that the newly developed model provided 

results as expected. 

 

Figure 7.3: Verification - simulated (a) desired speed distribution (b) passenger cars 

length distribution  

 

 
 

Figure 7.4: Verification - simulated headway distribution for a 2-lane normal motorway 
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Figure 7.5: Verification - simulated lane utilisation results for a 3-lane motorway section 
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The sensitivity of simulation results to the variation in the random number seeds used has also 

been tested. Figure 7.6 shows the simulation results for five simulation runs for the same input 

data but with different seeds. The simulation results (i.e. flow, average speed and average delay) 

were collected at the end of the roadwork zone (for a 2-lane motorway section with an inside 

lane closure and a total length of the simulated section of 5000 m). One hour of simulation time 

(excluding the periods of warm-up and cool-off) is used for each run. It can be seen from 

Figure 7.6 that the using of different seeds has no significant effect on the results.  

 
Figure 7.6: Verification - sensitivity of simulation results for varying random seeds 
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7.4 Calibration process 

According to Liu and Wang (2007), the model calibration process can be defined as the process 

of adjusting model parameters in order to achieve a closer fit between observed and simulated 

results. In the current study, the model calibration process has been achieved by performing 

several simulation runs (i.e. several iterations). During these iterative processes, the model 

parameters/rules were adjusted in order to achieve the closer fit between the simulated and 

observed data. Therefore, the results presented in this section represent the best results that 

could be obtained based on several runs. In this section, the calibration process for car-

following, lane changing, lane closure and narrowing lanes sub-models are described in details 

in the following sub-sections. 

7.4.1 Calibration of the car-following sub-model 

For the purpose of calibration of the developed car-following sub-model, field trajectory data 

that was collected by the Robert Bosch GmbH Research Group has been used in this study. 

This data was gathered by using an instrumented vehicle to record the relative speed and space 

headway between the instrumented vehicle and the leading vehicle (i.e. the vehicle immediately 

in front). The trajectory data is taken from Panwai and Dia (2005) (based on a single lane road 

in Stuttgart, Germany) and is characterised as follows: 

 Three stop-and-go conditions. 

 A range of speed between 0 and 60 km/hr. 

 The duration of the test is 300 seconds for a distance of 2.5 km. 

The reason behind using this field trajectory data is that the gathering of such data (which covers 

different traffic conditions) needs extensive resources and this is out of the scope of the current 

study due to time and resources limitations. In addition, such data is very limited or unpublished 

in the UK. 

Panwai and Dia (2005) used this trajectory data to evaluate the car-following behaviour of many 

well-known micro-simulation models such as S-Paramics, VISSIM and AIMSUN. For the 

purpose of this evaluation, two statistical tests (RMSE and EM, Error Metric) have been used 

by Panwai and Dia (2005) to compare the simulated clear spacing between the leader and the 

follower with the observed data. The results of the tests with the newly developed micro-

simulation model are presented in Table 7.1. The Error Metric (EM) test can be expressed by 

the following equation (Panwai and Dia, 2005):  
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𝐸𝑀 =  √∑ (log
𝑌

𝑋
)

2

                                                                                          Equation 7.4 

Where, 

X & Y: the observed and simulated space headway, respectively. 

 

Table 7.1: Performance of the car-following sub-model in the selected traffic simulation 

models (Panwai and Dia, 2005) 

Statistical 

test 

AIMSUN 

(v4.15) 

VISSIM (v3.70) 
PARAMICS 

(v4.1) 

The developed 

simulation 

model 
Wiedemann 74 Wiedemann 99 

EM 2.55 4.78 4.50 4.68 3.19 

RMSE (m) 4.99 5.72 5.05 10.43 4.97 

As discussed in Section 6.4, the developed car-following sub-model has been based on a safety 

criterion. Therefore, and following Alterawi (2014), the safety buffer space between successive 

vehicles and the driver’s reaction time are considered the main parameters influencing the car-

following behaviour. The developed simulation model has been run several times to select the 

optimum values of the buffer space and the driver’s reaction time. A range of values starting 

with 0.5 sec and ending with 2.2 sec have been tested for the driver’s reaction time, whereas 

for the buffer space the tested values are ranging from 0.8 m to 3.5 m. The results of the initial 

simulation run (i.e. buffer space = 0.8 m and reaction time = 0.5 sec) revealed that the values 

of RMSE and EM are 7.37 m and 6.29, respectively, whereas the best results have been obtained 

by using an optimum buffer space value of 1.8 m and an optimum reaction time of 1.4 sec, the 

values of RMSE and EM for the best results are 4.97 m and 3.19 respectively. Figure 7.7 shows 

the best results when comparing the observed and simulated clear spacing between the leading 

and the following vehicles.  

Figure 7.7 shows good agreement between the simulated and the observed clear spacing 

between the follower and the leader. Furthermore, it can be seen from Table 7.1 that the 

developed simulation model is the second best model after AIMSUN (with a very small 

difference) in terms of the representation of the leader-follower relationships on the basis of 

this test conditions. 
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Figure 7.7: Calibration - simulated versus observed clear spacing based on data from 

Panwai and Dia (2005) 

7.4.2 Calibration of the lane changing sub-model 

Following Zia (1992), Yousif (1993), McDonald et al. (1994), Al-Jameel (2012) and Al-Obaedi 

(2012) the frequency of lane changes data has been used in calibrating the developed lane 

changing sub-model. For the purpose of this calibration, several sets of published field data (for 

2 and 3 lanes normal sections) have been used.    

As discussed in Section 6.5, several parameters can influence the lane changing behaviour. In 

this study, the threshold time (THRT) and threshold distance (THRD) parameters were 

considered as the most important parameters affecting the lane changing behaviour. Therefore, 

a sensitivity analysis has been carried out to test the effect of these parameters on the frequency 

of lane changing. Several simulation runs were implemented using different values of the 

threshold time (ranging from 5 sec to 50 sec) and threshold distance (from 25 m to 250 m) to 

get the best results. After several iterations, it was then decided to use a combination of THRT 

and THRD values [(5sec, 50m), (10sec, 75m), (15sec, 100m), (20sec, 125m), (25sec, 150m), 

(30sec, 175m) and (35sec, 200m)] rather than using arbitrary values. This is in order to represent 

these parameters logically and reasonably since some runs have provided nearly the same 

results even if the differences in the parameters THRT and THRD values are high between 

these runs. For example, the result of one run which was based on values of 5 sec for THRT 

and 200 m for THRD is nearly similar to that of another run with 35 sec for THRT and 50 m 

for THRD, as shown in Figure 7.8.  
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Figure 7.8: Calibration - simulated lane changing frequency for a 2-lanes normal 

motorway section under arbitrary values of THRT and THRD 

Therefore, the proposed combinations of THRT and THRD [i.e. (5sec, 50m), (10sec, 75m), 

(15sec, 100m), (20sec, 125m), (25sec, 150m), (30sec, 175m) and (35sec, 200m)] have been 

used in calibrating the developed lane changing sub-model. Figure 7.9 shows the 

results (i.e. simulated lane changing frequency) of some simulation runs (using high, low and 

average values of combination of THRT and THRD) since showing the results of all runs may 

be unhelpful and confusing. The simulation results have been collected from the mid-

section (1000 m length) of a 5000 m simulated road length (normal motorway section 

with 2 lanes). Flow rates up to 4000 veh/hr with 15% HGV have been used for this test.  

 

Figure 7.9: Calibration - simulated lane changing frequency for a 2-lanes normal 

motorway section under high, low and average values of THRT and THRD  
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7.4.2.1   Two lanes section 

For the purpose of comparing the simulated results with field data, two sets of field data 

gathered by Yousif (1993) and by Sparman (1979) have been used due to the shortcomings of 

the collected data from the M602 (as discussed in Section 3.6.1.3). The Sparman’s data is taken 

from Al-Jameel (2012). Several iterations were implemented using the proposed combinations 

of THRT and THRD values (i.e. (5sec, 50m), (10sec, 75m), (15sec, 100m) …etc.) in order to 

get a closer fit between the actual and simulated data. The simulation run with values of 15 sec 

for THRT and 100 m for THRD was found to produce the best match with the actual data as 

shown in Figure 7.10.   

 

Figure 7.10: Calibration - simulated versus two sets of observed lane changing frequency 

data for a 2-lanes normal sections  

7.4.2.2   Three lanes section 

A published field data by Yousif (1993) was used for the calibration purposes of the three lanes 

normal section due to the shortcomings of the field data collected from the M60 (as discussed 

in Section 3.6.1.2). Likewise, several iterations were carried out using the proposed 

combinations of THRT and THRD. It was found that the run with values of 25 sec for THRT 

and 150 m for THRD yield the best match between the actual and simulated data as shown in 

Figure 7.11. Flow rates up to 6000 veh/hr with 15% HGV have been used in testing the 

simulation model for the three lanes normal motorway section. 
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Figure 7.11: Calibration - simulated versus observed lane changing frequency data for a 3- 

lanes normal sections 

Based on several simulation results, it was found that the proposed combinations of THRT and 

THRD with values ranging from 15 sec to 25 sec for the THRT parameter and from 100 m to 

150 m for the THRD parameter yield reasonable results when compared with the observed data 

for both two and three lanes sections. Therefore, it was decided to adopt values of 20 seconds 

for the THRT parameter and 125 metres for the THRD parameter for the purpose of this study. 

In addition, these adopted values of THRT and THRD parameters are in good agreement with 

those reported by Yousif (1993) and Al-Obaedi (2012).     

7.4.3 Calibration of the lane closure sub-model 

The calibration of the developed lane closure sub-model has been achieved in order to minimise 

the number of early merged drivers as the field observations have suggested. This is in order to 

make sure that the simulation model correctly replicates the traffic behaviour at lane closure 

sections.  

As discussed in Section 6.7.1, the modelled drivers (who drive on a closed lane) were directed 

to merge into an adjacent open lane once they approached the first signs indicating changing 

lane due to the presence of lane closure ahead. The simulation results showed that the modelled 

drivers merge much earlier in the approaching section which is not consistent with the real 

observations and data from field surveys. The real observations from the M67 site (2 lanes 

motorway with offside lane closure) revealed that a number of drivers using the lane to be 
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were modified in order to obtain a more realistic result from the simulation model. This has 

been achieved via two steps. These are, firstly, reducing the required distance (which is 900 m 

from the start of the transition zone, as suggested by the Traffic Signs Manual (Chapter 8, 2009) 

for dual carriageways with national speed limits) to initiate the desire of lane changing due to 

the presence of lane closure. Secondly, introducing a percentage of drivers who are not 

complying with the merging signs in order to allow for some drivers to proceed further on their 

closed lane. This has been modelled by generating a random number (C8) for each driver 

travelling on the closed lane. The driver will be regarded as non-complying with those merging 

signs and proceeding with driving on his/her current closed lane if the generated number is 

equal or lower than the percentage of non-complying drivers (N-CD%). Otherwise, he/she will 

be regarded as a complying driver and looking for suitable gaps in order to merge into an 

adjacent open lane. This process is then repeated every scanning time (∆t) until the subject 

driver merges into an open lane. The flowchart presented in Figure 7.12 illustrates the process 

of modelling the non-complying drivers with merging signs.    

 

Figure 7.12: Method of modelling non-complying drivers with merging signs 

In order to find out the optimum percentage of non-complying drivers (N-CD%) and the 

optimum distance required to initiate the desire of lane changing (D2LC), three sets of field 

data which cover a wide range of traffic flow conditions have been used. For free traffic 

conditions two sets of published field data collected from the A4232 and the M4 by 

Yousif (1993) have been used, whereas for congested traffic conditions a historic data from the 

M6 Site No. 16 (see Section 5.3.1) has been used. The reasons for using such historic data are 
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because these have been made available to this study and they (the two data sets by Yousif) 

covered the traffic movements for a very long section which extend for more than 1 mile. In 

addition, the reason for using the M6 (Site No. 16) data is because it represents congested 

situations and also to compare the simulation results obtained from the newly developed micro-

simulation model with those obtained from the S-Paramics software since the M6 data was used 

in testing the S-Paramics software (see Section 5.5; Table 5.6 and Figure 5.5).  

 Data set 1 (A4232): 

Yousif (1993) collected lane utilisation data from the A4232 site using camcorders. The A4232 

site consists of 2 lanes with inside lane closure. The length of the observed section covered by 

the camcorders is about 1 mile showing traffic movements from the 1 mile sign to the end of 

the transition zone. The lane utilisation data was extracted (by Yousif, 1993) at several sections 

upstream the activity zone (at positions of 1 mile, 800 m, 600 m, 400 m and 200 m upstream 

the transition zone and also at the start of the transition zone and at the end of the transition 

zone). Figure 7.13 shows the observed lane utilisation data compared with the simulation results 

for the early merging assumptions (before adopting N-CD% and D2LC parameters). The 

observed traffic characteristics reported by Yousif (1993) (total traffic flow = 700 veh/hr with 

14% HGV) were adopted in running the simulation model.  

 

Figure 7.13: Simulated (early merging) versus observed lane utilisation data from the 

A4232 

Several simulation runs have been implemented using different values of N-CD% and 

D2LC (distance required to initiate the desire for lane changing) in order to obtain best results. 
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The best fit between the simulated and observed data has been achieved for the use of values 

of 95% for the N-CD% parameter and 600 m for D2LC parameter, as shown in Figure 7.14.    

 

Figure 7.14: Calibration - simulated (calibrated, N-CD%=95% & D2LC=600m) 

versus observed lane utilisation data (A4232) 

 

 Data set 2 (M4, J29 – J32): 

The M4 site is a two lanes motorway roadwork section with inside lane closure. Yousif (1993) 

collected data on lane utilisation using two camcorders to cover the section from the position 

of the 800 yards sign to the start of the transition zone. Figure 7.15 shows the observed versus 

the simulated lane utilisation results for both early merging assumption (before adopting N-

CD% and D2LC parameters) and the calibrated one (after adopting N-CD% and D2LC 

parameters). Likewise, the use of 95% for the N-CD% and 600 m for the D2LC produced better 

results based on several simulation runs. The same characteristics as reported by Yousif (1993) 

for the M4 site (i.e. total flow = 1300 veh/hr with 8% HGV) were adopted in the simulation 

model. 

It can be seen from Figure 7.15 that the simulated lane utilisation result for early merging 

assumptions is lower than the observed lane utilisation data. This could be because the modelled 

drivers under the early merging assumptions merge much earlier in the approaching section, 

whereas after adopting the N-CD% and the D2LC parameters with values of 95% for the N-

CD% and 600 m for the D2LC parameters, respectively, the simulation result were then started 

to get closer to the observed data, as shown in the figure (i.e. simulated (calibrated)). 
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Figure 7.15: Calibration - simulated (early merging and calibrated, N-CD%=95% & 

D2LC=600m) versus observed lane utilisation data (M4) 

 Data set 3 (M6, J14 – J15, Site No. 16): 

A three lanes motorway roadwork site with offside lane closure from previous studies has been 

made available and used to extract field traffic data. The available footage (see Table 5.1, Site 

No. 16) shows the traffic movements at the start of the transition section. The lane utilisation 

data was extracted from the start of the transition section for every 5 minutes interval. The total 

flow rates and the percentage of HGVs were extracted (from the footage) from the start of the 

transition section and was then used as input data for the newly developed model at the start of 

the simulated section. Figure 7.16 shows the observed versus the simulated (N-CD% = 95% 

and D2LC = 600 m) lane utilisation data at the start of the transition zone for the closed lane 

(i.e. offside lane). 

Figure 7.16 shows that the percentage of lane utilisation is higher for the simulation results 

compared with the actual observed data. This could be due to the high percentage of N-

CD% (i.e. 95%) used in running the simulation model. As traffic flow increases, the availability 

of opportunities to merge into an open lane decreases due to the congested situations. This could 

lead drivers on the closed lane to utilise any available opportunity to merge. Therefore, the N-

CD% and D2LC parameters were modified in order to obtain best results. Based on several 

simulation runs, it was found that values of 30% for N-CD% and 800 m for the D2LC produced 

better results. The simulation results using these parameters values (i.e. N-CD% = 30% and 
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D2LC = 800 m) are compared with the observed actual data from the M6 as shown in Figure 

7.17 which shows very close match between the simulated and observed data. 

 

Figure 7.16: Calibration - simulated (N-CD%=95% & D2LC=600m) versus observed lane 

utilisation data (M6) at the start of the transition section 

Figure 7.17 also shows the simulated lane utilisation data by using the S-Paramics software. It 

can be seen from Figure 7.17 that the simulation results obtained from the newly develop model 

(i.e. Simulated 30%, 800m) replicate the observed data from the M6 better than those obtained 

from the S-Paramics software (S-Paramics results). 

 

Figure 7.17: Calibration - simulated (N-CD%=30% & D2LC=800m) versus observed lane 

utilisation data (M6) at the start of the transition section 
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Based on the simulation results presented in Figures 7.13 to 7.17, it was decided to adopt values 

of N-CD% = 95% and D2LC = 600 m for the simulation model under free to moderate traffic 

flow conditions, whereas under heavy traffic flow conditions, values of 30% for   the N-CD% 

and 800 m for the D2LC should be adopted.  

7.4.4 Calibration of the narrow lanes sub-model 

The FDSL parameter (as described in Section 6.8.2) is a percentage of drivers who prefer 

staying in the same lane driving behind a HGV and following it with a gap even if they have 

the opportunity to overtake. As discussed in Section 4.4.3, the (FDSL) parameter was not 

measured due to the shortage of observed section length from the video footage. Therefore, the 

calibration of the developed narrow lanes sub-model has been utilised to estimate the FDSL 

parameter. 

The calibration process has been carried out by conducting a sensitivity analysis for the FDSL 

parameter to test its effect on traffic flow and time headway distributions. Therefore, two types 

of field data (i.e. traffic flow and headway) were extracted from the M6 (J31 – J32) site (Site 

No. 3) and were then used for the purpose of this calibration. The M6 motorway site consists 

of 4 lanes with narrow lanes applied as a TTMS. The hard shoulder and part of lane 1 were 

closed for roadworks. Around three and a half hours of video footage were recorded from 11:40 

to 15:20 on Sunday the 31st of August 2014 (more details about this site in terms of its location, 

geometric design and other characteristics were shown in Section 4.3). The field data was 

extracted in 5 minutes interval at the start of the narrowing lanes section (i.e. start of the activity 

zone). Several simulation runs were implemented using different values of the FDSL parameter 

in order to get a closer fit between the observed and simulated data. The corresponding input 

values as gathered from the M6 site (e.g. the total flow and the percentage of HGVs) were 

adopted. Figure 7.18 shows the simulated and observed traffic flow data for each 5 minutes 

interval for the M6 site. Table 7.2 shows the corresponding statistical goodness of fit tests for 

the traffic flow data.  
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Figure 7.18: Calibration - simulated versus observed traffic flow data (M6, J31 – J32)  

Table 7.2: Calibration - statistical tests for the simulated flow based on data from the M6 

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 204 (veh/hr) 4.19% 0.83 0.021 0.175 0.082 

It can be seen from Figure 7.18 that the simulated traffic flow is in good agreement with the 

real observed data. It can also be seen from Table 7.2 that all the six statistical tests results for 

traffic flow data are satisfactory. The table shows that the value of GEH test is only 0.83 which 

indicates a good performance of the developed model.  

Figure 7.19 compares the observed with the simulated cumulative distribution of headway for 

each lane of the M6 site. The non-parametric Kolmogorov-Smirnov (K-S) hypothesis statistical 

test was used (at the 5% level of significance) in testing whether there is a significant difference 

between the observed and the simulated headway cumulative distributions. The K-S test 

compares the maximum difference (Dmax) between the two cumulative distributions with the 

critical value (Dcr) which can be obtained from the K-S tables or as shown in Equation 3.8. The 

results are reported in Table 7.3.  
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Figure 7.19: Calibration - simulated versus observed cumulative distribution of headways 

in lanes 1, 2, 3 and 4 on the M6 

Table 7.3: Calibration – K-S test results for the simulated headway distributions based on 

data from the M6 

Lane no. 1 2 3 4 

Dmax 0.103 0.064 0.062 0.143 

Dcr 0.061 0.064 0.063 0.091 

Accept (Dcr > Dmax) No Yes Yes No 

It can be seen from Figure 7.19 and Table 7.3 that the simulation results for lanes 2 and 3 seem 

to be in good agreement with the observed data, whereas for lanes 1 and 4, the simulation results 

showed that there is a significant difference in the distributions of time headway when 

compared to the observed data. Different shift values (in the shifted negative exponential 
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distribution, in the simulation model) were adopted (i.e. 0.1 to 1.0 with an increment of 0.1 

seconds) in an attempt to enhance the results. However, no good enhancement has been reached.  

The results of the sensitivity analysis showed that the FDSL parameter has a negligible effect 

on both traffic flow and headway distribution results. This could be due to the low percentage 

of heavy vehicles on the M6 site (which was only 7% HGVs). However, for simplicity, a value 

of 50% was assumed for the FDSL parameter, for the purpose of this study. It is worth 

mentioning here that the effect of FDSL parameter on traffic behaviour may differ from other 

sites, of roadworks with narrow lanes scheme, with high HGVs%. Therefore, field data from 

such sites (i.e. narrow lanes with high HGVs%) are required. 

7.5 Validation process 

In the previous section, the main four components of the newly developed micro-simulation 

model (i.e. car following, lane changing, lane closure and narrow lanes) were calibrated and 

tested using several sets of field data. As a final check, the whole simulation model was then 

validated using data collected from other sites to those used in the calibration process. Park and 

Schneeberger (2003) and Al-Obaedi (2012) define the model validation as the process of testing 

the accuracy of the whole micro-simulation model against real data before using the model in 

further applications.  

Park and Schneeberger (2003) cite Milam and Choa (2001) reporting that the model validation 

process could be achieved by comparing the simulated traffic flow data with that gathered from 

the field. In this study, the comparison between simulated and real traffic data is mainly based 

on comparing the flow, speed and lane utilisation data. 

In this study, the model validation process has been divided into two categories (i.e. those with 

normal roadway sites and those with roadworks). The following sub-sections provide further 

details.   

7.5.1 Model validation under normal roadway conditions 

Several data sets from motorways with 2, 3 and 4 lanes under different levels of flows (i.e. from 

free flow to congested situations) have been used to validate the newly developed micro-

simulation model, under normal roadway conditions. These were used to provide the input data 

for the developed model and also to compare traffic characteristics from the field with those 

predicted by the model. 
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7.5.1.1   Four lanes section 

Two sets of data taken from the M25 (J15–J16, Individual Vehicle Data, IVD) were used for 

the purpose of validating the developed model. These two sets were selected to represent peak 

and off-peak periods, as shown in Table 7.4. The traffic field data was collected and averaged 

for every 5 minutes interval. The corresponding input values as extracted from the site (e.g. the 

total flow and the percentage of HGVs) were used at the start of the simulated section, which 

was a 5000 m in length. The simulation results were collected at the mid-length section (i.e. 

2500 m from the start of the simulated section).  

Table 7.4: Validation – M25 data sets details 

Site 

No. 

Data 

set No. 
Site location 

Number 

of lanes 

Traffic 

condition 
Date Time Duration 

13 

1 M25 (J15-J16) 

4 

Peak  
Wednesday 

08/05/2002 

07:00 – 

10:00 a.m. 
3 hours 

2 M25 (J15-J16) Off-peak  
Saturday 

11/05/2002 

20:45 – 

23:45 p.m. 
3 hours 

 

 Comparison with data set 1: 

Figures 7.20 and 7.21 show the observed and simulated traffic flow and speed data, 

respectively, for each 5 minutes interval. While, Figure 7.22 compares the simulated and 

observed lane utilisation data by considering each lane separately. The results of the statistical 

goodness-of-fit tests for the traffic flow and speed for the 5 minutes interval are reported in 

Table 7.5. 

Figures 7.20 to 7.22 suggest good agreement of the simulation results with the real observed 

data. In addition, the statistical test results shown in Table 7.5 confirm the validity of the 

developed model for such traffic flow conditions. The table shows that the values of RMSEP 

for both flow and speed are lower than 15% which indicates that the newly developed model 

can reasonably replicate the chosen set of observed data, for the set of parameters used in 

running the model. 
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Figure 7.20: Validation - simulated versus observed traffic flow data (M25, data set 1) 

 

Figure 7.21: Validation - simulated versus observed speed data (M25, data set 1) 

Table 7.5: Validation - statistical tests for the developed model based on data from the 

M25 (data set1) 

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 358 (veh/hr) 5.8 % 1.29 0.028 0.030 0.000 

Speed 7.6 (km/hr) 8.9 % -- 0.041 0.053 0.094 
--: The Department for Transport (1996) suggested using the GEH test for testing the flow data. 
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Figure 7.22: Validation - simulated versus observed lane utilisation data for lanes 1, 2, 3 

and 4 on the M25 (data set 1) 

 Comparison with data set 2: 

The data set 2 was taken from the M25 (IVD) in the off-peak period (from 8:45 p.m. 

to 11.45 p.m.). Figures 7.23 to 7.25 show the comparison (for every 5 minutes interval) between 

the simulated and the observed flow, speed and lane utilisation data respectively, whereas the 

statistical goodness-of-fit tests results are presented in Table 7.6. 

It can be seen from Figures 7.23 to 7.25 that the simulation results are in good agreement with 

the real observed data. It can also be seen from Table 7.6 that the statistical tests results are 

within the acceptable limits. The table shows that the values of U, which measures the overall 

error, for both flow and speed are very small (under 0.3) which indicates a good correlation.  
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Figure 7.23: Validation - simulated versus observed traffic flow data (M25, data set 2) 

 

Figure 7.24: Validation - simulated versus observed speed data (M25, data set 2) 

Table 7.6: Validation - statistical tests for the developed model based on data from the 

M25 (data set 2) 

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 160 (veh/hr) 10.1 % 1.15 0.047 0.025 0.007 

Speed 3.1 (km/hr) 2.6 % -- 0.013 0.540 0.000 
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Figure 7.25: Validation - simulated versus observed lane utilisation data for lanes 1, 2, 3 

and 4 on the M25 (data set 2) 

7.5.1.2   Three lanes section 

One data set taken from the M42 (J5–J6, Individual Vehicle Data, IVD) was used in validating 

the developed model. The M42 (J5-J6) site is a three lanes normal motorway section. Table 7.7 

provides further details about the M42 site. Likewise, the field data and the simulation results 

were also averaged for every 5 minutes interval. Figures 7.26 to 7.28 show the comparison 

between the simulated and the observed flow, speed and lane utilisation data, respectively, 

whereas the statistical goodness-of-fit tests results are presented in Table 7.8.   

Table 7.7: Validation – M42 data set details 

Site 

No. 
Site location 

Number 

of lanes 
Date Time Duration 

14 M42 (J5 – J6) 3 
Friday 

06/09/2002 

09:45a.m. – 

12:45p.m. 
3 hours 

It can be seen from Figures 7.26 to 7.28 that the simulation results are in good agreement with 

the real observed data. Moreover, the statistical tests show a good agreement between the 

simulated and field data as indicated in Table 7.8.  
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Figure 7.26: Validation - simulated versus observed traffic flow data (M42) 

 

Figure 7.27: Validation - simulated versus observed speed data (M42) 

Table 7.8: Validation - statistical tests for the developed model based on the M42 data  

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 256 (veh/hr) 5.9 % 1.10 0.030 0.038 0.002 

Speed 5.3 (km/hr) 5.1 % -- 0.026 0.118 0.011 

 

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Tr
af

fi
c 

fl
o

w
 (

ve
h

/h
r)

Time slice (5 minutes) 

Observed

Simulated

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Sp
e

e
d

 (
km

/h
r)

Time slice (5 minutes) 

Observed

Simulated



152 

 

 

 

Figure 7.28: Validation - simulated versus observed lane utilisation data for lanes 1, 2 and 

3 on the M42 

7.5.1.3   Two lanes section 

For the purpose of validating the developed model for section with 2 lanes, field data was 

collected using camcorders from the M602 (J2–J3). Table 7.9 shows the details of the field data. 

The M602 (J2–J3) site is a two lanes normal motorway section. The traffic flow data was 

collected and averaged for every 5 minutes interval. By applying similar inputs for the 

developed model, the model shows a good agreement with the field data as shown in 

Figures 7.29 and 7.30 which show the comparison between the simulated flow and lane 

utilisation with the observed data. The statistical goodness-of-fit tests between the simulated 

and the actual flow data are presented in Table 7.10. This table shows that the results are within 

the acceptable limits. 

Table 7.9: Validation – M602 data set details 

Site 

No. 
Site location 

Number 

of lanes 
Date Time Duration 

10 M602 (J2 – J3) 2 
Tuesday 

18/11/2014 

09:35 – 

11:45 a.m. 
130 minutes 
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Figure 7.29: Validation - simulated versus observed traffic flow data (M602) 

 

Figure 7.30: Validation - simulated versus observed lane utilisation data for lanes 1 and 2 

on the M602 

Table 7.10: Validation - statistical tests for the developed model based on the M602 data  

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 133 (veh/hr) 6.4 % 0.83 0.031 0.188 0.040 

 
7.5.1.4   Summary  

The simulation results, in general, reveal a good agreement between the simulated and the actual 

data (e.g. The U for the flow and speed measurements did not exceed 0.1). This indicates that 

the newly developed model can reasonably describe the observed data from normal roadway 

sections in terms of replicating flow, speed and lane utilisation. In next section, the newly 
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developed micro-simulation model will be validated against field data collected from 

roadworks sections.  

7.5.2 Model validation under roadworks conditions 

For the purpose of validating the developed model under roadworks conditions, two roadworks 

sites were used. These two sites were selected to represent lane closure and narrow lanes 

situations, as shown in Table 7.11. A similar procedure to that used for the model validation 

under normal roadway conditions was adopted for model validation at roadworks sites. Flow, 

speed and lane utilisation data were collected from field surveys and compared with those 

predicted by the developed model. The description of the roadworks sites and the outputs of the 

developed model will be described in details in the following sub-sections. 

Table 7.11: Validation – summary of the selected roadworks sites details 

Site 

No. 
Site location 

Traffic 

direction 

Number 

of lanes 

Type of 

section 

Speed 

limit  
Date Time 

2 M67 (J2-J3) Westbound 2 lanes 
Lane 

closure 

50 

mph 

Saturday 

21/06/2014 

11:20 – 

14:55 

6 M62 (J18-J19) Eastbound 3 lanes 
Narrow 

lanes 

50 

mph 

Sunday 

15/03/2015 

11:30 – 

13:30 

 
7.5.2.1   Lane closure section  

Field data was collected by using camcorders from the M67 (J2-J3) site for the purpose of 

validating the developed model at roadworks section operated by lane closure scheme. The M67 

site consists of 2 lanes with offside lane (i.e. lane 2) closure applied as a TTMS. Figure 7.30 

shows an illustration of the M67 roadwork site layout. 

 

Figure 7.31: Illustration of the M67 roadwork site layout 

The field traffic flow, speed and lane utilisation data were extracted at the start of transition 

zone by playing back the video footage. The field data was then averaged for every 5 minutes 

interval. The corresponding input values as extracted from the site (e.g. the total flow and the 

percentage of HGVs) was used at the start of the simulated section. The simulation results were 
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collected at the start of the simulated transition zone. Figure 7.32 illustrates the layout of the 

simulated section. 

 

Figure 7.32: Illustration of the simulated section layout (based on the M67 site) 

Figures 7.33 and 7.34 show the observed and simulated traffic flow and speed data, 

respectively, for each 5 minutes interval. While Figure 7.35 shows the simulated and observed 

lane utilisation data at the start of the transition zone for each lane separately. The statistical 

goodness-of-fit tests for the traffic flow and speed are reported in Table 7.12.  

 

Figure 7.33: Validation - simulated versus observed traffic flow data (M67, lane closure) 
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Figure 7.34: Validation - simulated versus observed speed data (M67, lane closure) 

 

Figure 7.35: Validation - simulated versus observed lane utilisation data for lanes 1 and 2 

on the M67 (lane closure) 

Table 7.12: Validation - statistical tests for the developed model based on the M67 data  

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 118 (veh/hr) 10.9 % 1.05 0.054 0.008 0.213 

Speed 6.9 (km/hr) 8.1 % -- 0.041 0.115 0.159 

It can be seen from Figures 7.33 to 7.35 that the simulation results are in good agreement with 

the real observed data. It can also be seen from Table 7.12 that the statistical tests results are 

within the acceptable limits.  

7.5.2.2   Narrow lanes section  

For the purpose of validating the developed model at narrow lanes roadworks section, field date 

collected from the M62 (J18-J19) was used. The M62 site is a 3 lanes motorway with narrowing 
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lanes applied as a TTMS (see Section 4.3, for more details about this site). Likewise, the input 

data and the analyses were averaged for every 5 minutes interval. The simulation results were 

collected at the mid-length section (the length of the simulated section was 5000 m). Figures 

7.36 and 7.37 show the comparison between the observed and the simulation results for flow 

and speed data, respectively. While, the comparisons between the simulated and observed lane 

utilisation data for each lane of the M62 site are presented in Figure 7.38. The statistical 

goodness-of-fit tests for the traffic flow and speed are reported in Table 7.13.  

 

Figure 7.36: Validation - simulated versus observed traffic flow data (M62, narrow lanes) 

 

Figure 7.37: Validation - simulated versus observed speed data (M62, narrow lanes) 
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Figure 7.38: Validation - simulated versus observed lane utilisation data for lanes 1, 2 and 

3 on the M62 (narrow lanes) 

Table 7.13: Validation - statistical tests for the developed model based on the M62 data  

Statistical 

tests 
RMSE RMSEP GEH U Um Us 

Flow 267 (veh/hr) 6.7 % 1.19 0.032 0.164 0.038 

Speed 3.9 (km/hr) 5.1% -- 0.025 0.389 0.022 

Figures 7.36 and 7.37 together with the statistical tests shown in Table 7.13 indicate that the 

simulation results are in good agreement with the real observed data. However, Figure 7.38 

shows that the observed and simulated lane utilisation data are not close to a good match, 

particularly for lane 1 and lane 3. This difference could be due to the location of the M62 site. 

The observed section for the M62 site was located before around 300 metres from an exit to a 

service station and a local area (i.e. Whittle Lane, Heywood). This may explain the reasons for 

observing the actual drivers have been using lane 1 more than those predicted by the model. 

It can be concluded that the simulation results for both sites (the M67 lane closure section and 

the M62 narrow lanes section) are in good agreement with the real observed data. This 

consistency can be proved by statistical test results for both flow and speed which are 

satisfactory for all tests as they are within the limits (e.g. the U for the flow and speed 
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measurements did not exceed 0.1 and the RMSEP for the flow and speed did not exceed 15%). 

This indicates that the newly developed model can reasonably describe the observed data from 

roadworks sections (lane closure and narrow lanes TTMSs) in terms of replicating flow, speed 

and lane utilisation.  

7.6 Summary 

The current chapter presented the verification, calibration and validation processes that have 

been achieved for the developed model with using published and observed data. The main 

points of this chapter can be summarised as follows: 

 The verification process has been achieved for the developed micro-simulation model 

by observing the animation of the model and the simulation outputs. The verification 

results showed that the developed model performs logically and as expected (after 

making several improvements and debugging any errors).  

 The calibration process has been achieved for the main four components of the 

developed micro-simulation model (i.e. car following, lane changing, lane closure and 

narrow lanes) using several sets of field data. The simulation results were compared 

with the corresponding field data. The calibration results, in general, showed good 

agreement between the observed field data and those obtained from the developed 

model.  

 The current model contains several parameters; some of these parameters have been 

obtained directly either from the observed data or from the literature, whereas others 

have been obtained from the model itself. This was achieved by performing several 

simulation runs using different values of the parameter, then comparing the simulated 

with observed data to choose the most appropriate values that achieved the closest match 

between the observed and simulated results. 

 The validation process has been achieved for the whole simulation model (under normal 

and roadworks sections) using different sets of field data to those used in the calibration 

process. The validation results were within acceptable limits which confirm the validity 

of the developed model. Therefore, the newly developed model has been applied to 

evaluate the efficiency of TTMSs and also to test the effect of different scenarios on the 

traffic conditions at roadworks sections, as will be discussed in the following Chapter. 

 Limitations identified in this chapter: the low percentage of heavy good vehicles on the 

collected data from roadwork sections with narrow lanes such as the M6 site 
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(HGVs% = 7%) affects the calibration process of the developed narrow lanes sub-model 

(see Section 7.4.4). Therefore, field data from motorway roadwork sites with the use of 

a narrow lanes scheme with high HGVs% are required. 
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CHAPTER EIGHT                                                                                                  
MODEL APPLICATIONS 

 

 

8.1 Introduction 

In the previous chapter, the verification, calibration and validation processes of the newly 

developed micro-simulation model were discussed. It is revealed that the developed micro-

simulation model is reliable enough to be used for further applications. In this chapter, the 

newly developed micro-simulation model is applied to evaluate the efficiency of 

different TTMSs (i.e. narrow lanes, offside lane closure and inside lane closure) at motorway 

roadwork sections. The effect of various traffic parameters (i.e. HGVs%, section length and 

speed limits) on traffic performance (i.e. capacity and average vehicles delay) were also studied 

using the developed micro-simulation model. 

8.2 The effect of TTMSs on traffic performance for different HGVs% 

It is believed that the different types of temporary traffic management schemes (TTMSs) 

applied at motorway roadwork sections have different effects on sections capacity, safety and 

delay. Previous simulation studies have considered the effect of the side of lane closure 

(i.e. which side to be closed) on site capacity (see for example Hunt and Yousif, 1994). 

However, no simulation study has been found in the literature to deal with the effect of using 

narrow lanes as a TTMS.    

The developed micro-simulation model has been used to study the effect of 

different TTMSs (i.e. narrow lanes, offside lane closure and inside lane closure) on traffic 

performance under different HGVs% for a typical length of motorway including a roadwork 

section. Figure 8.1 shows a typical road layout (for a 3-lanes motorway section with offside 

lane closure) which is used as a default section for this test.     

Two measures of performance were used for the purpose of this test and throughout this chapter. 

These are capacity and average vehicles delay which are widely used to describe the traffic 

performance in many previous studies (see for example Zia, 1992; Yousif, 1993; Al-Jameel, 

2012; Weng and Meng, 2013; and Alterawi, 2014). As discussed in Section 2.6, the capacity 

can be defined as the maximum throughput that can be achieved; the throughput is the number 

of vehicles passing the roadwork section during a given time period, whereas the delay can be 
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defined as the difference between the journey time of a vehicle travelling along a certain section 

and the journey time when travelling along that section using the desired speed. The average 

vehicles’ delay is calculated by dividing the total delay of all vehicles over the total number of 

vehicles (in sec/veh).  

 

Figure 8.1: Typical layout used in testing the effect of different TTMSs 

For this test, narrow lanes, offside lane closure and inside lane closure schemes were tested. 

Various HGVs percentages were also tested (HGVs of 0% - 30% with 5% increment). The 

effect of different TTMSs for motorway roadwork sections with 2, 3 and 4 lanes under different 

levels of traffic flows (i.e. from free flow to congested situations) will be discussed in the 

following sub-sections. The simulation results (i.e. capacity and average vehicles delay) were 

analysed at the end of the roadwork zone where the road layout returns to its normal condition. 

One hour of simulation time (excluding the periods of warm-up and cool-off) is used for each 

run of the simulation. Over 1200 simulation runs were conducted for this test (i.e. the effect of 

different TTMSs on traffic performance under different HGVs%).  

8.2.1 Two lanes section 

Table 8.1 lists the main parameters that were used to test the effect of TTMSs on section 

capacity and average vehicles delay for a motorway roadwork section with 2 lanes. All other 

vehicle’s/driver’s characteristics were kept fixed. Figure 8.2 shows schematic layouts of the 

tested 2-lanes motorway sections with roadworks. 
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Table 8.1: Parameters used in testing the effect of TTMSs on capacity and average delay 

(2-lanes roadwork section)  

Number 

of lanes 
TTMSs 

HGVs (%) 

(increment) 

Flow rates 

(veh/hr) 

(increment) 

Whole 

section 

length (m) 

Roadwork 

zone length 

(m) 

Roadwork 

speed limit 

(mph) 

2 
- Offside closure 

- Inside closure 

0 – 30        

(5) 

250 - capacity  

(250) 
5000 1500 50 

 

 

Figure 8.2: Schematic layouts of the tested 2-lanes motorway roadwork sections 

It should be noted that for Table 8.1 and Figure 8.2 the simulated roadwork section was used 

for both the offside and inside lane closures as a TTMSs without using narrow lanes, due to 

unavailability of data from sites with narrow lanes schemes on a 2 lanes motorway roadwork 

sections (possibly due to section width shortage). It can also be seen from Table 8.1 that the 

input flow rates for successive runs of the simulation was increased from 250 veh/hr up to the 

section capacity with an increment of 250 veh/hr. When the simulated section reaches its 

capacity, the generated vehicles were not all able to enter the simulated section due to the car-

following rules which are based on maintaining a safe distance between vehicles on the same 

lane, as discussed in Section 6.4. 

8.2.1.1   Effect of TTMSs on section capacity 

Figure 8.3 shows the effect of TTMSs (i.e. offside and inside lane closure schemes) on section 

capacity for different HGVs%. The simulation results presented in Figure 8.3 are based on the 

average results for three simulation runs with different random numbers’ seeds. However, the 

sensitivity of simulation results to the variation in the random number seeds was found to be 

insignificant (see Section 7.3). Therefore, the simulation results (for the following sections) 

were based on one simulation run for each case which will help in reducing the number of 

simulation runs significantly.       

Lane 2 (offside lane) Roadwork Zone 

Direction of travel Lane 1 (inside lane) 

2-lanes motorway section with offside lane closure 

Lane 2 (offside lane) 

Roadwork Zone Lane 1 (inside lane) 

2-lanes motorway section with inside lane closure 

Direction of travel 
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Figure 8.3: Effect of TTMSs on 2-lanes roadwork sections capacity for different HGVs% 

It can be seen from the figure that the maximum section throughput (capacity) is generally 

higher for the case of the offside lane closure layout compared with the inside lane closure 

layout. This could be due to the variation of HGVs% between both lanes (the inside lane carries 

more HGVs than the offside lane). When the inside lane is closed, the HGVs and other slow 

moving vehicles that are travelling on the inside lane are required to merge into the offside lane 

which carries faster moving vehicles. This could be difficult for the HGVs due to their lower 

acceleration capabilities (Yousif, 1993). This could cause some traffic turbulences which could 

affect the section capacity. This finding (i.e. roadwork sections with offside lane closures 

having capacity higher than those with inside lane closures) could be the reason for having 

offside lane closure being the most commonly used layouts in practice. 

It can also be seen from Figure 8.3 that the maximum section throughput (capacity) achieved 

for roadwork section with offside lane closure for a traffic composition of 15% HGVs is around 

1700 veh/hr. This was found to be consistent with the findings of Matthews (1984), as discussed 

in Section 2.6.1. 

8.2.1.2   Effect of HGVs% on section capacity 

Figure 8.3 shows also the effect of different HGVs percentages on section capacity for both 

normal and roadwork sections. As the percentage of HGVs increases, the section capacity 

decreases from about 2500 veh/hr (for roadwork section with inside lane closure scheme) at 0% 

HGVs to around 1270 veh/hr at 30%. This is approximately 50% reduction in capacity which 

could be attributed to the longer lengths of HGVs resulting in an increase in headways and 
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hence reduction in capacity. Also, HGVs have lower acceleration capabilities and lower desired 

speeds than those of passenger cars (as discussed in Section 6.3.2.2). Table 8.2 summarises the 

effect of different HGVs% on the capacity of 2 lanes motorway for both normal and roadwork 

sections. 

Table 8.2: Effect of HGVs% on the capacity of normal and roadwork sections (2-lanes) 

Type of section 
Section capacity (veh/hr) Reduction in 

capacity (%) 0% HGVs 30% HGVs 

Normal roadway section 4314 2769 36 

Roadwork with offside lane closure 2796 1307 53 

Roadwork with inside lane closure 2515 1273 49 

 
8.2.1.3   Effect on average vehicles delay 

Figure 8.4 shows the effect of flow rates for various HGVs% for different TTMSs on average 

vehicles delay. The figure indicates that as traffic flow increases, the average delay increases. 

The average delay increases sharply when the inflow is approaching the maximum section 

throughput (capacity). When the inflow exceeds the roadwork section capacity, queues started 

to develop (at the start of the roadwork zone) leading to an increase in the driver’s journey time 

and hence an increase in delay.    

It should be noted that, for the case of normal roadway section (when all lanes are open for 

traffic movements), the sharp increase in the average vehicles delay would not be possible, 

because, as mentioned earlier, when the simulated section reaches its capacity, the generated 

vehicles were not all able to enter the simulated section due to the car-following rules. This 

means that the inflow cannot exceed the section capacity. However, for the cases of roadwork 

section with inside or offside closures (i.e. when a lane is withdrawn from the roadway), the 

sharp increase in the average vehicles delay would occur when the inflow exceeds the roadwork 

section capacity. This is because the section located before the roadwork (which has two lanes 

open for traffic movements) can accommodate more vehicles than that for roadwork section 

(which has only one lane open for traffic movements, see Figure 8.2). This leads to the 

occurrence of queues and hence the sharp increase in the delay as a result, due to the inflow 

being higher than the outflow (throughput).  
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Figure 8.4: Effect of flow rates, HGVs% and TTMSs on average delay for 2-lanes motorway 

roadwork sections 
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It can be seen from Figure 8.4 that, when the inflow is lower than the roadwork section capacity, 

there are no significant differences in the average vehicles delay between the offside lane 

closure and the inside lane closure layouts. However, when the inflow exceeds the section 

capacity, in general, the average vehicles delay has increased for the inside lane closure layout 

compared with that of the offside lane closure layout, for the same input flows. This could be 

due to what has been discussed in Section 3.6.2 that HGVs need more time to perform lane 

changing manoeuvres than passenger cars and due to the fact that higher proportions of HGVs 

are travelling on the inside lane (i.e. closed lane) which have to merge into the offside lane. 

This could lead to an increase in vehicles’ journey time further and hence increase the average 

vehicles delay.  

8.2.1.4   Summary 

Table 8.3 summarises the effect of TTMSs (i.e. offside and inside lane closure schemes) on 

reducing section capacity of 2 lanes motorway roadwork sections for different HGVs%. It can 

be seen from Table 8.3 that the reduction in capacity has increased for the inside lane closure 

scheme compared with that of the offside lane closure scheme for all of the HGVs%. Table 8.3 

also summarises the percentage of capacity gained when using the offside lane closure scheme 

instead of using the inside lane closure scheme.  

Table 8.3: Effect of TTMSs on capacity of 2-lane roadwork sections for different HGVs% 

TTMSs 

Reduction in Capacity (%) 

0% 

HGVs 

5% 

HGVs 

10% 

HGVs 

15% 

HGVs 

20% 

HGVs 

25% 

HGVs 

30% 

HGVs 

Offside lane closure scheme 35 44 45 50 51 48 53 

Inside lane closure scheme 42 52 57 58 55 53 54 

Gaining in capacity (%)  

(resulting from using the offside closure scheme instead of using the inside closure scheme)   

The use of offside closure scheme 7 8 12 8 4 5 1 

It can be seen from Table 8.3 that the gaining in capacity when using the offside lane closure 

scheme instead of using the inside lane closure scheme, in general, was around 8%. In addition, 

it can be seen from Figure 8.4 that the average vehicles delay (the sharp increase in the average 

vehicles delay) has increased by around 150 seconds when using inside lane closure compared 

with that of the offside lane closure scheme. Based on these simulation results, it can be 

concluded that the offside lane closure scheme has performed better than the inside lane closure 

in terms of maintaining section capacity and with lower average vehicles delay. However, 

sometimes site conditions may necessitate the closure of the inside lane because of certain 

requirements on site. 
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8.2.2 Three lanes section 

Table 8.4 lists the main parameters that were used to test the effect of different TTMSs on 

section capacity and average vehicles delay for a motorway roadwork section with 3 lanes. 

Likewise, all other vehicle’s/driver’s characteristics were kept fixed. Figure 8.5 shows 

schematic layouts of the tested 3 lanes motorway sections with roadworks. 

Table 8.4: Parameters used in testing the effect of TTMSs on capacity and average delay 

(3-lanes roadworks section) 

Number 

of lanes 
TTMSs 

HGVs (%) 

(increment) 

Flow rates 

(veh/hr) 

(increment) 

Whole 

section 

length (m) 

Roadwork 

zone length 

(m) 

Roadwork 

speed limit 

(mph) 

3 

- Narrow lanes 

- Offside closure 

- Inside closure 

0 – 30        

(5) 

250 - capacity  

(250) 
5000 1500 50 

 

 
 
Figure 8.5: Schematic layouts of the tested 3-lanes motorway roadwork sections 

8.2.2.1   Effect of TTMSs on section capacity 

Figure 8.6 shows the effect of different TTMSs (i.e. narrow lanes, offside lane closure and 

inside lane closure) on section capacity for different HGVs%. It can be seen from the figure 

that, when the HGVs% is lower or equal to 25%, the maximum section throughput (capacity) 

has not decreased for the use of the narrow lanes layout compared to the normal roadway section 

(i.e. no roadworks). When the HGVs% is increased to 30%, the section capacity has decreased 

for the case of the narrow lanes layout compared to the normal roadway section.  
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Figure 8.6: Effect of TTMSs on 3-lanes roadworks section capacity for different HGVs% 

As the HGVs% increases, the effect of narrow lanes on driving behaviours (i.e. avoiding 

passing HGVs on the same lane and on the adjacent lane, as discussed in Chapter 4) increases. 

At high percentages of HGVs, the number of avoiders (drivers who prefer to keep following 

HGVs rather than overtaking them) also becomes higher. Those avoiders will block other 

drivers behind preventing them from overtaking and forcing them to drive below their desired 

speeds. This could lead to an increase in the speed differences between drivers at the approach 

to roadwork sections. This disturbance in traffic flow may lead to flow breakdown and explain 

the reasons for observing the drop in section capacity for the use of the narrow lanes layout at 

30% of HGVs. 

Also, it can be seen from Figure 8.6 that for the case of the offside lane closure layout, section 

capacity is higher than that for the inside lane closure layout. This is consistent with the results 

presented in Section 8.2.1.1 for the 2 lanes motorway roadwork section.  

8.2.2.2   Effect of HGVs% on section capacity 

Figure 8.6 also shows the effect of different HGVs percentages on section capacity for both 

normal and roadwork sections. As the percentage of HGVs increases, the section capacity 

decreases from around 5400 veh/hr (for roadwork section with offside lane closure scheme) 

at 0% HGVs to about 3100 veh/hr at 30% with approximately 40% reduction in capacity. 

Table 8.5 summarises the effect of different HGVs% on the capacity of 3 lanes motorway for 

both normal and roadwork sections.  
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Table 8.5: Effect of HGVs% on the capacity of normal and roadwork sections (3-lanes)  

Type of section 
Section capacity (veh/hr) Reduction in 

capacity (%) 0% HGVs 30% HGVs 

Normal roadway section 6855 4507 34 

Roadwork with narrow lanes 6827 3314 51 

Roadwork with offside lane closure 5415 3112 43 

Roadwork with inside lane closure 5101 2982 42 

 
8.2.2.3   Effect on average vehicles delay 

Figure 8.7 shows the effect of the flow rates, HGVs% and TTMSs (i.e. narrow lanes, offside 

lane closure and inside lane closure) on average vehicles delay for 3 lanes motorway roadwork 

sections. When the offside or inside lane closure layouts are implemented, the figure indicates 

that as traffic flow increases, the average delay increases. The average delay increases sharply 

when the inflow exceeds the maximum roadwork section throughput (capacity). 

 It can also be seen from Figure 8.7 that, when the narrow lanes layout is implemented, the 

average vehicles delay increases slightly as traffic flow increases; this is when the adopted 

HGVs% equals to or is lower than 25%. When the HGVs% is increased to 30%, the average 

vehicles delay increases sharply as the inflow exceeds the section capacity. Therefore, it can be 

concluded that the sharp increase in the average vehicles delay is strongly influenced by the 

HGVs%.  

It should be noted here that, for the cases of normal roadway section or roadwork section with 

narrow lanes (with HGVs% ≤ 25%, for 3-lane sections), the sharp increase in the average 

vehicles delay would not be possible, see Figure 8.7. This is because, as mentioned earlier in 

Section 8.2.1.3, the inflow cannot exceed the section capacity. Also, as shown in Figure 8.6, 

the section capacity has not decreased for the use of the narrow lanes layout with 

HGVs% ≤ 25% compared to the normal roadway section. However, for the cases of roadwork 

section with inside/offside closures or narrow lanes with HGVs = 30%, the sharp increase in 

the average vehicles delay would occur (when the inflow exceeds the roadwork section 

capacity).  
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Figure 8.7: Effect of flow rates, HGVs% and TTMSs on average delay for 3-lanes motorway 

roadwork sections 
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Observations from the developed simulation model animation have shown that, at high traffic 

flows associated with high HGVs% (i.e. 30% or possibly higher), queues started to develop at 

the start of the roadwork zone. The movement of traffic through the roadwork zone (i.e. narrow 

lanes) was found to be intermittent (not continuous and moving in platoons), as shown in Figure 

8.8. Such intermittent movements which were observed from the developed model through the 

narrow lanes zone were also observed on site. This intermittent movement could be attributed 

to the presence of a number of slowing moving drivers of HGVs and their avoiders who block 

other drivers behind them and force them to slowing down too. This leads to the loss of available 

spaces through narrow lanes zone which could lead to a reduction in section throughput. This 

situation (i.e. intermittent movement) in addition to the disturbance in traffic stream at the 

approach to roadwork section (due to the relative difference in speeds amongst motorists) could 

lead to flow breakdown.  

Chitturi and Benekohal (2005) studied the effect of lane width on speeds of passenger cars and 

HGVs based on data collected from motorway roadwork sites with narrow lanes scheme. The 

results showed that the free-flow speeds of HGVs were statistically lower than the free-flow 

speeds of cars, even though the applied temporary speed limit was the same for both passenger 

cars and HGVs. In addition, the reduction in the free-flow speeds of HGVs was greater than the 

reduction in the free-flow speeds of cars. Furthermore, they reported that this reduction in the 

speed of HGVs affected the performance of the traffic stream in the roadwork sections. 

 

Figure 8.8: Typical screenshot from the developed simulation model (3-lanes motorway 

roadworks section with narrow lanes scheme at high flows and high HGVs%) 

8.2.2.4   Summary 

Table 8.6 summarises the effect of TTMSs (i.e. narrow lanes, offside lane closure and inside 

lane closure schemes) on reducing section capacity of 3 lanes motorway roadwork sections for 

different HGVs%. Also, it shows the percentage of capacity gained when using the narrow lanes 

scheme instead of using the offside lane closure scheme. It should be noted here that the narrow 

lanes scheme was compared to the offside lane closure scheme since the offside lane closure 

scheme performed better than the inside lane closure scheme, as shown in Table 8.6. The table 
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also shows the percentage of capacity gained when using the offside lane closure scheme 

instead of using the inside lane closure scheme.  

Table 8.6: Effect of TTMSs on capacity of 3-lane roadwork sections for different HGVs% 

TTMSs 

Reduction in Capacity (%) 

0% 

HGVs 

5% 

HGVs 

10% 

HGVs 

15% 

HGVs 

20% 

HGVs 

25% 

HGVs 

30% 

HGVs 

Narrow lanes scheme 0 1 0 0 0 0 26 

Offside lane closure scheme 21 28 26 25 28 26 31 

Inside lane closure scheme 26 37 40 38 38 35 34 

Gaining in capacity (%)  

(resulting from using the narrow lanes scheme instead of using offside lane closure scheme)   

The use of narrow lanes scheme 21 27 26 25 28 26 5 

Gaining in capacity (%)  

(resulting from using the offside lane closure scheme instead of using inside closure scheme)   

The use of offside lane closure 5 9 14 13 10 9 3 

It can be seen from Table 8.6 that, in general, there is a relatively high percentage in gained 

capacity when using the narrow lanes scheme instead of using the offside lane closure scheme 

when the HGVs percentage is ≤ 25%. This is in the region of about 25%. However, this capacity 

gain drops down to 5% when HGV% is increased to 30%. In addition, it can be seen from 

Figure 8.7 that the average vehicles’ delay has decreased by around 150 seconds for the use of 

narrow lanes scheme compared with that of the offside lane closure scheme, when the 

HGVs ≤ 25%. It can also be seen from Table 8.6 that the gaining in capacity when using the 

offside lane closure scheme instead of using the inside lane closure scheme was, in general, 

around 10%. Additionally, it can be seen from Figure 8.7 that the average vehicles delay has 

increased by around 150 seconds for the inside lane closure scheme compared with that of the 

offside lane closure scheme. Based on these simulation results, it can be concluded that narrow 

lanes scheme performed better than both the offside and inside lane closure schemes in terms 

of maintaining section capacity and average vehicles delay up until the percentage of HGVs 

is 25%. After that, when the HGVs% becomes higher (i.e. 30%), the performance of the all 

tested TTMSs (i.e. narrow lanes, offside lane closure and inside lane closure schemes) are 

nearly similar. Therefore, it may be argued that the use of narrow lanes scheme as a TTMS at 

3 lanes motorway roadwork sections is not recommended when the expected HGVs% is higher 

than 25% for high traffic demands, since for HGVs% = 30% the gaining in capacity is only 5% 

(see Table 8.6) and the average vehicles delay, when using the narrow lanes scheme, is higher 

than both the offside and inside lane closure schemes by around 100 seconds (see Figure 8.7). 

It is also believed that some driving behaviours at narrow lanes sections are unsafe (as discussed 

in Sections 4.4.2 and 4.5).   
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8.2.3 Four lanes section 

Table 8.7 lists the main parameters that were used to test the effect of different TTMSs on 

section capacity and average vehicles delay for a motorway roadwork section with 4 lanes. 

Likewise, all other vehicle’s/driver’s characteristics were kept unchanged. Figure 8.9 shows 

schematic layouts of the tested TTMSs that applied at 4 lanes motorway roadwork sections.  

Table 8.7: Parameters used in testing the effect of TTMSs on capacity and average delay 

(4-lanes roadworks section)  

Number 

of lanes 
TTMSs 

HGVs (%) 

(increment) 

Flow rates 

(veh/hr) 

(increment) 

Whole 

section 

length (m) 

Roadwork 

zone length 

(m) 

Roadwork 

speed limit 

(mph) 

4 

- Narrow lanes 

- Offside closure 

- Inside closure 

0 – 30        

(5) 

500 - capacity  

(500) 
5000 1500 50 

 

 

Figure 8.9: Schematic layouts of the tested 4-lanes motorway roadwork sections 
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It should be noted that for Table 8.7, the increment of input flow rates used for successive runs 

was increased. Normally an incremental value of 500 veh/hr is used until the section reaches its 

capacity, then a smaller increment was used (e.g. 250 veh/hr or even 100 veh/hr). This is to 

minimise the required numbers of simulation runs.  

8.2.3.1   Effect of TTMSs on section capacity 

Figure 8.10 shows the effect of different TTMSs on section capacity for different HGVs%. It 

can be seen from the figure that (when the HGVs% is ≤ 20%) the section capacity has not 

decreased for the use of the narrow lanes layout compared to the normal roadway section. After 

that, when the HGVs% reaches 25% or over, the section capacity has started decreasing for the 

use of the narrow lanes layout compared to the normal roadway section. It can also be seen 

from Figure 8.10 that the section capacity for the offside lane closure layout is slightly higher 

than that for the inside lane closure layout. This is consistent with the results presented in 

Sections 8.2.1.1 and 8.2.2.1. 

 

Figure 8.10: Effect of TTMSs on 4-lanes roadworks section capacity for different HGVs% 

 
8.2.3.2   Effect of HGVs% on section capacity 

Figure 8.10 also shows the effect of different HGVs percentages on section capacity for both 

normal and roadwork sections. Likewise, as the percentage of HGVs increases, the section 

capacity decreases. This is consistent with the results presented in Sections 8.2.1.2 and 8.2.2.2. 

Table 8.8 summarises the effect of different HGVs% on the capacity of 4 lanes motorway for 

both normal and roadwork sections.  
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Table 8.8: Effect of HGVs% on the capacity of normal and roadwork sections (4-lanes) 

Type of section 
Section capacity (veh/hr) Reduction in 

capacity (%) 0% HGVs 30% HGVs 

Normal roadway section 8502 5687 33 

Roadwork with narrow lanes 8497 4073 52 

Roadwork with offside lane closure 7597 4675 38 

Roadwork with inside lane closure 7509 4597 39 

 
8.2.3.3   Effect on average vehicles delay 

Figure 8.11 shows the effect of the flow rates, HGVs% and TTMSs on average vehicles delay 

for 4 lanes motorway roadwork sections. Likewise, when the offside or inside lane closure 

layouts are implemented, the figure indicates that as traffic flow increases, the average delay 

increases. The average delay increases sharply when the inflow exceeding the section capacity. 

It can also be seen from Figure 8.11 that, when the narrow lanes layout is implemented, the 

average vehicles delay increases slightly as traffic flow increases, when the HGVs% is ≤ 20%. 

When the HGVs% is ≥ 25%, the average vehicles delay increases sharply as the inflow exceeds 

the section capacity.  

It should be noted here that, for the cases of normal roadway section or roadwork section with 

narrow lanes (with HGVs% ≤ 20%, for 4-lane sections), the sharp increase in the average 

vehicles delay would not be possible, see Figure 8.11. This is because, as mentioned earlier in 

Section 8.2.1.3, the inflow cannot exceed the section capacity. Also, as shown in Figure 8.10, 

the section capacity has not decreased for the use of the narrow lanes layout with 

HGVs% ≤ 20% compared to the normal roadway section. However, for the cases of roadwork 

section with inside/offside closures or narrow lanes with HGVs ≥ 25%, the sharp increase in 

the average vehicles delay would occur (when the inflow exceeds the roadwork section 

capacity).  
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Figure 8.11: Effect of flow rates, HGVs% and TTMSs on average delay for 4-lanes 

motorway roadwork sections 
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Comparing Figure 8.7 for the 3 lanes section with Figure 8.11 for the 4 lanes section case, the 

use of narrow lanes as a TTMS has resulted in a sharp increase in the average vehicles delay 

when the HGVs% is ≥ 30% in the case of 3 lanes compared with ≥ 25% for 4 lanes. This 

difference could be attributed to the proportions of HGVs% distributed among the lanes. For 

the 3 lanes section, typical values for HGVs lane utilisation at traffic flow = 3000 veh/hr and at 

HGVs% = 30% are 70% and 30% for lane 1 (i.e. inside lane) and lane 2 respectively (based on 

the lane utilisation models suggested by Yousif et al., 2013a). The HGVs are unevenly 

distributed between lanes 1 and 2, whereas for the 4 lanes section, typical values for HGVs lane 

utilisation at traffic flow = 4000 veh/hr and at HGVs% = 30% are 45%, 38% and 17% for lane 

1, 2 and 3, respectively. The HGVs on 4 lanes section may provide more avoiders than the 3 

lanes section since the HGVs on 4 lanes section are distributed nearly evenly among the lanes 

unlike the 3 lanes section (where 70% of HGVs are using lane 1).   

8.2.3.4   Summary 

Table 8.9 summarises the effect of TTMSs (i.e. narrow lanes, offside lane closure and inside 

lane closure schemes) on reducing section capacity of 4 lanes motorway roadwork sections for 

different HGVs%. Also, it shows the percentage of capacity gained when using the narrow lanes 

scheme instead of using offside lane closure scheme when HGVs% ≤ 20%. It also shows the 

percentage of capacity gained when using the offside lane closure scheme instead of the narrow 

lanes scheme when the HGVs% is ≥ 25%. Furthermore, it shows the percentage of capacity 

gained when using the offside lane closure scheme instead of the inside lane closure scheme.  

Table 8.9: Effect of TTMSs on capacity of 4-lane roadwork sections for different HGVs% 

TTMSs 

Reduction in Capacity (%) 

0% 

HGVs 

5% 

HGVs 

10% 

HGVs 

15% 

HGVs 

20% 

HGVs 

25% 

HGVs 

30% 

HGVs 

Narrow lanes scheme 0 0 0 2 3 23 28 

Offside lane closure scheme 11 20 20 16 14 14 18 

Inside lane closure scheme 12 25 28 27 23 22 19 

Gaining in capacity (%)  

(resulting from using narrow lanes scheme instead of using offside closure, HGVs% ≤ 20%)   

The use of narrow lanes scheme 11 20 20 14 11 -- -- 

Gaining in capacity (%)  

(resulting from using offside closure scheme instead of using narrow lanes, HGVs% ≥ 25%) 

The use of offside closure scheme -- -- -- -- -- 9 10 

Gaining in capacity (%)  

(resulting from using the offside lane closure scheme instead of using inside closure scheme) 

The use of offside closure scheme 1 5 8 11 9 8 1 



179 

 

It can be seen from Table 8.9 that, in general, the gaining in capacity when using the narrow 

lanes scheme instead of using the offside lane closure scheme and when the HGVs is ≤ 20% is 

around 15%. In addition, it can be seen from Figure 8.11 that the average vehicles delay has 

decreased by around 120 seconds for the use of narrow lanes scheme compared with that of the 

offside lane closure scheme when the HGVs is ≤ 20%, whereas when the HGVs% becomes ≥ 

25% the use of offside lane closure scheme compared with that of the narrow lanes scheme has 

increased section capacity by around 10% (see Table 8.9) and has preserved the average 

vehicles delay by around 140 seconds (see Figure 8.11). It can also be seen from Table 8.9 that 

the gaining in capacity when using the offside lane closure scheme instead of using the inside 

lane closure scheme was, in general, around 8%. Additionally, it can be seen from Figure 8.11 

that the average vehicles delay has increased by around 100 seconds for the use of the inside 

lane closure scheme compared with that of the offside lane closure scheme. Based on these 

simulation results, it can be concluded that, the narrow lanes scheme performed better than both 

the offside and inside lane closure schemes in terms of maintaining section capacity and average 

vehicles delay up to an expected HGVs% of around 20%, whereas after that when HGVs% 

becomes ≥ 25%, the offside lane closure scheme performs better than narrow lanes scheme. 

Therefore, the use of narrow lanes scheme as a TTMS at 4 lanes motorway roadwork sections 

is not recommended when the expected HGVs% is higher than 20% associated with high traffic 

demand. 

8.3 Effect of roadwork zone length on traffic performance for 
different HGVs% 

The developed micro-simulation model has also been used to study the effect of roadwork zone 

lengths on traffic performance (i.e. capacity and average vehicles delay). For this test, various 

lengths of roadwork zone were tested (roadwork zone lengths ranging from 1500 m to 4500 m 

with 1500 m increment). Various flow rates with various HGVs% were also tested. The 

following sub-sections provide further details about the effect of roadwork zone lengths on the 

traffic performance for motorway roadwork sections with 2, 3 and 4 lanes operated by using 

different TTMSs (i.e. narrow lanes, offside lane closure and inside lane closure). Over 500 

simulation runs were used to test the effect of roadwork zone lengths on traffic performance. 

8.3.1 Narrow lanes scheme 

Table 8.10 lists the main parameters that were used to test the effect of different lengths of 

roadwork zone on section capacity and average vehicles delay for motorway roadwork sections 
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with 3 and 4 lanes operated by using narrow lanes scheme. All other vehicle’s/driver’s 

characteristics were kept unchanged.  

Table 8.10: Parameters used in testing the effect of roadwork zone lengths on capacity 

and average delay (narrow lanes scheme)  

Number 

of lanes 
TTMSs 

HGVs (%) 

(increment) 

Flow rates 

(veh/hr) 

(increment) 

Whole 

section 

length (m) 

(increment) 

Roadwork 

zone length 

(m) 

(increment) 

Roadwork 

speed limit 

(mph) 

3 

- Narrow lanes 
5 – 30        

(5) 

500 – capacity 

(500) 5000 – 8000 

(1500) 

1500 – 4500 

(1500) 
50 

4 
1000 – capacity 

(1000) 

It should be noted that for this test the increment of input flow rates used for successive runs 

was increased, as shown in Table 8.10. This is to minimise the required numbers of simulation 

runs. Also, it is worth mentioning here that, a value of 500 m was firstly used as an increment 

for the roadwork zone length. However, the simulation results reveal that such little increment 

had a little effect on the traffic performance, therefore and in order to cover a long distance of 

roadwork zones and also in order to minimise the required simulation runs, it was decided to 

use a value of 1500 m.  

8.3.1.1   Three lanes section 

Figure 8.12 shows the effect of roadwork zone lengths on the capacity of a three lanes motorway 

roadwork section (with the use of narrow lanes scheme), under different HGVs%. The figure 

indicates that the different lengths of the roadwork zone adopted in the test have no significant 

effect on section capacity.  

 

Figure 8.12: Effect of roadwork zone lengths on 3-lanes section capacity (narrow lanes) 
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Figure 8.13 shows the effect of different roadwork zone lengths on the average vehicles delay 

for a three lanes motorway roadwork (with the use of narrow lanes scheme) section under 

different flow rates and HGVs%. It can be seen from the figure that, as expected, there is an 

increase in the average vehicles delay as roadwork zone length increases.  

 

Figure 8.13: Effect of roadwork zone lengths on average delay for 3-lanes motorway 

roadwork section with narrow lanes 

8.3.1.2   Four lanes section 

Figure 8.14 shows the effect of different roadwork zone lengths on the capacity of a four lanes 

motorway roadwork section (with the use of narrow lanes scheme), under different HGVs%. 

Likewise, the figure indicates that the different lengths of the roadwork zone adopted in the test 

have no significant effect on section capacity.  
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Figure 8.14: Effect of roadwork zone lengths on 4-lanes section capacity (narrow lanes) 

Figure 8.15 shows the effect of different roadwork zone lengths on the average vehicles delay 

for a four lanes motorway roadwork (with the use of narrow lanes scheme) section under 

different flow rates and HGVs%. Likewise, the figure indicates that there is an increase in the 

average vehicles delay as roadwork zone length increases.  
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traffic performance. Likewise, various roadwork zone lengths were tested (from 1500 m up to 

4500 m with an increment of 1500 m). Various flow rates with a chosen 15% of HGVs were 

also tested. 

As mentioned in Section 8.2.2, the sharp increase in the average vehicles delay for roadwork 

sections with the use of narrow lanes scheme is strongly influenced by the HGVs%. Therefore, 

in the previous sub-section (i.e. Section 8.3.1), different HGVs% were tested, whereas the sharp 

increase in the average vehicles delay for roadwork sections with the use of offside or inside 

lane closure scheme is influenced by the flow rates (as described in Section 8.2.1). Therefore, 

in the current subsection, only a 15% of HGVs was chosen. 
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Figure 8.15: Effect of roadwork zone lengths on average delay for 4-lanes motorway 

roadwork section with narrow lanes 

Table 8.11: Parameters used in testing the effect of roadwork zone lengths on capacity 

and average delay (offside/inside lane closure schemes)  

Number 

of lanes 
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Flow rates 

(veh/hr) 

(increment) 

Whole 

section 

length (m) 

(increment) 

Roadwork 
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(increment) 

Roadwork 

speed limit 
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- Offside closure 
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8.3.2.1   Two lanes section 

Figure 8.16 shows the effect of different roadwork zone lengths on the capacity of a two lanes 

motorway roadwork section (with the use of offside/inside lane closure schemes), for a 15% of 

HGVs. It can be seen from the figure that the maximum throughputs (capacity) for the different 

lengths of roadwork zone tested are not significantly different. 

 

Figure 8.16: Effect of roadwork zone lengths on 2-lanes section capacity (lane closures) 

Figure 8.17 shows the effect of different roadwork zone lengths on the average vehicles delay 

for a two lanes motorway roadwork (with the use of offside and inside lane closure schemes) 

section under different flow rates with 15% of HGVs. It can be seen from the figure that there 

is a slight increase in the average vehicles delay as the length of roadwork zone increases (for 

the same input flow) for both offside and inside lane closure schemes. The average vehicles 

delay increases sharply when the inflow is exceeding the section capacity. 

 

Figure 8.17: Effect of roadwork zone lengths on average delay for 2-lanes motorway 

roadwork section with offside/inside lane closure 
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8.3.2.2   Three lanes section 

Figure 8.18 shows the effect of different roadwork zone lengths on the capacity of a three lanes 

motorway roadwork section (with the use of offside and inside lane closure schemes), for a 

15% of HGVs. Likewise, the figure indicates that the different roadwork zone lengths adopted 

in the test have no significant effect on section capacity.  

 

Figure 8.18: Effect of roadwork zone lengths on 3-lanes section capacity (lane closures) 

Figure 8.19 shows the effect of different roadwork zone lengths on the average vehicles delay 

for a three lanes motorway roadwork (with the use of offside and inside lane closure schemes) 

section under different flow rates with 15% of HGVs. Likewise, the figure indicates that there 

is a slight increase in the average vehicles delay as the length of roadwork zone increases (for 

the same input flow) for both schemes (i.e. offside and inside lane closure schemes). The 

average vehicles delay increases sharply when the inflow is exceeding the section capacity. 
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8.3.2.3   Four lanes section 

Figure 8.20 shows the effect of different roadwork zone lengths on the capacity of a four lanes 

motorway roadwork section (with the use of offside and inside lane closure schemes), for a 15% 

of HGVs. Likewise, the figure indicates that the different roadwork zone lengths adopted in the 

test have no significant effect on section capacity. 

 

Figure 8.20: Effect of roadwork zone lengths on 4-lanes section capacity (lane closures) 

Figure 8.21 shows the effect of different roadwork zone lengths on the average vehicles delay 

for a four lanes motorway roadwork (with the use of offside and inside lane closure schemes) 

section under different flow rates with 15% of HGVs. Likewise, the figure indicates that there 

is a slight increase in the average vehicles delay as the length of roadwork zone increases (for 

the same input flow) for both offside and inside lane closure schemes. The average vehicles 

delay increases sharply when the inflow is exceeding the section capacity. 

 

Figure 8.21: Effect of roadwork zone lengths on average delay for 4-lanes motorway 
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8.3.3   Summary 

Based on the simulation results for this test, it can be concluded that the different lengths of the 

roadwork zone adopted in the test have no significant effect on section capacity. This was found 

to be consistent with the findings of Yousif (1993) and Weng and Meng (2015). It can also be 

concluded that the capacity of motorway roadwork sections is not dependent on the length of 

the roadwork zone but it depends on HGVs%, number of lanes and the type of TTMSs applied.  

The simulation results for this test have also revealed that the increasing of roadwork zone 

length affects average vehicles delay. For the same input flow and HGVs% used, as the length 

of roadwork zone increases, the average vehicles delay increases. This is also consistent with 

the findings by Yousif (1993). The simulation results (presented in Figures 8.13, 8.15, 8.17, 

8.19 and 8.21) show that the average vehicles delay has increased by around 15 sec for every 

increment of the roadwork zone length (i.e. 1500 m), for the same input flow and HGVs%. 

8.4 Effect of temporary speed limit applied at roadworks on traffic 
performance 

According to Geistefeldt (2011), the purpose of using variable speed limits on heavily trafficked 

motorway sections is to increase road safety and to harmonise traffic flow and hence influence 

motorway capacity by reducing the variation in speeds amongst motorists.  

In this section, the developed model has been used to study the effect of the application of 

different temporary speed limits at roadwork section on traffic performance. Various temporary 

speed limits were tested (speed limit of 35 mph – 50 mph with 5 mph increment). Table 8.12 

lists the main parameters that were used to test the effect of different temporary speed limits 

applied at roadwork sections on section capacity and average vehicles delay. All other 

vehicle’s/driver’s characteristics were kept unchanged. In order to include the effects of 

temporary speeds limits, an assumed value of 50% was adopted as a percentage of drivers who 

are complying with those temporary speed limits.    

Table 8.12: Parameters used in testing the effect of speed limits applied at roadwork 

sections on capacity and average delay  

Number 

of lanes 
TTMSs HGVs (%) 

Flow rates 

(veh/hr) 

Whole 

section 

length (m) 

Roadwork 

zone length 

(m)  

Roadwork 

speed limit 

(mph) 

(increment) 

4 - Narrow lanes 25 and 30 5500 
5000  1500  

35 – 50  

(5) 3 - Offside closure 15 4500 
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8.4.1 Narrow lanes scheme 

The reduction of speed limit upstream the roadwork zone could lead to the reduction in the 

variation of speed amongst drivers. This could lead to alleviating the turbulence in driving 

behaviour (associated with the use of narrow lanes scheme) which could be considered as the 

main reason for the flow breakdown at such sections.      

Figure 8.22 shows the effect of temporary speed limits applied at roadwork section (with 

assuming that 50% of drivers are complying with those limits) on the capacity of a four lanes 

motorway roadwork section using narrow lanes scheme, for input flow rate = 5500 veh/hr and 

under 25% and 30% of HGVs, while Figure 8.23 shows the effect of the temporary speed limits 

on the average vehicles delay.  

 

Figure 8.22: Effect of roadwork speed limits (with 50% complying with speed limits) on 

4 lanes section capacity (narrow lanes) 

 

Figure 8.23: Effect of roadwork speed limits (with 50% complying with speed limits) on 

4 lanes section delay (narrow lanes) 
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It can be seen from the figures that, for both percentages of HGVs (i.e. 25% and 30%), the use 

of lower values of temporary speed limits seems to be ineffective in terms of increasing the 

throughput and decreasing the average vehicles delay. 

An attempt was made by assuming that all drivers are complying with the applied temporary 

speed limit (i.e. 100% complying). Although, this attempt seems to be unrealistic since the field 

surveys have shown that very little percentages of drivers were observed to comply with the 

applied speed limit (as described in Section 3.7.3). However, this attempt was made in order to 

test the effect of drivers’ compliance with the applied speed limits on the traffic performance. 

The simulation results for this attempt are presented in Figures 8.24 and 8.25 which show the 

effect of temporary speed limits applied at roadwork section on the capacity and average delay, 

respectively, for a four lanes motorway roadwork section using narrow lanes scheme, for input 

flow = 5500 veh/hr and under 25% and 30% of HGVs.  

 

Figure 8.24: Effect of roadwork speed limits (with 100% complying with speed limits) on 

4 lanes section capacity (narrow lanes) 
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on sites to make sure that all or the vast majority of drivers are complying with the posted speed 

limits. Also, based on these simulation results (presented in Figures 8.22 to 8.25), it can be 

concluded that the application of low temporary speed limits (such as 35 mph) at roadwork 

sections seems to be unnecessarily since it does not enhance the traffic performance (i.e. 

capacity and average vehicles delay). 

 

Figure 8.25: Effect of roadwork speed limits (with 100% complying with speed limits) on 

4 lanes section delay (narrow lanes) 
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Figure 8.26: Effect of roadwork speed limits on 3-lanes section capacity (lane closure) 

 

Figure 8.27: Effect of roadwork speed limits on 3-lanes section delay (lane closure) 
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lane in order to merge into the adjacent open lane. If such courteous behaviour is not offered, 

the mergers might be stuck in the closed lane and cannot change lanes to the adjacent open lane.  

8.4.3 Summary 

Based on the simulation results for this test, it can be concluded that a stricter speed limit 

compliance should be imposed on motorway roadwork sections with the use of narrow lanes 

TTMS in order to maintain higher section capacity and reduced delays. The simulation 

results (presented in Figures 8.22 to 8.25) show that the assumed 100% compliance with the 

speed limit has increased the section capacity by around 1250 veh/hr and has reduced the 

average vehicle delay by around 300 seconds. Also, the application of very low temporary speed 

limits (such as 35 mph) at roadwork sections seems to be unnecessarily since such low speed 

limit may influence traffic performance negatively. The simulation results show that the use of 

35 mph as a speed limit (with the use of 100% compliance) has reduced the section capacity by 

500 – 1000 veh/hr (see Figure 8.24) and increased the average vehicles delay by 50 – 100 

seconds (see Figure 8.25), compared to other assumed speed limit values such as 50 mph.    

8.5 Estimation of capacity of motorway roadwork sections 

In the previous sections, several factors that could affect the maximum section 

throughput (capacity) of motorway roadwork sections (such as HGVs%, type of TTMSs, 

roadwork zone length and speed limits) were tested using the newly developed micro-

simulation model. The simulation results reveal that the capacity of motorway roadwork 

sections is affected by HGVs%, number of lanes and the type of TTMSs implemented. 

Following the identification of these factors, a multiple regression analysis was carried out 

between the identified factors and the capacity using the statistical program SPSS, version 20. 

This regression analysis was carried out based on the simulation results presented in 

Section 8.2. Equation 8.1 shows the results from the regression analysis, which describes the 

relationship between the maximum section throughput (capacity) and the identified factors (i.e. 

number of lanes, HGVs% and type of TTMS implemented). 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 846.3 + 1794.0(𝐿𝑎𝑛𝑒𝑠) − 5935.9(𝐻𝐺𝑉𝑠%) − 488.0(𝑁𝑎𝑟𝑟𝑜𝑤)

− 1237.3(𝑂𝑓𝑓𝑠𝑖𝑑𝑒) − 1673.9(𝐼𝑛𝑠𝑖𝑑𝑒)                   Equation 8.1 

Where: 

Capacity: the maximum throughput (capacity) of motorway roadwork sections (veh/hr), 

Lanes: the number of lanes of motorway (i.e. 2, 3 or 4), 
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HGVs%: the percentages of Heavy Goods Vehicles (decimal, i.e. 0.15 for 15%), 

Narrow: the implementation of narrow lanes as a TTMS (1 if true and 0 if false), 

Offside: the implementation of offside lane closure as a TTMS (1 if true and 0 if false), and 

Inside: the implementation of inside lane closure as a TTMS (1 if true and 0 if false). 

The coefficient of determination (R2) value of the regression analysis is 0.94 which indicates a 

strong relationship between the dependent variable (i.e. capacity) with the other independent 

variables (i.e. number of lanes, HGVs% and type of TTMS implemented). According to 

Equation 8.1, as the values of HGVs% increases, the capacity decreases. In addition, as the 

number of lanes increases, the capacity increases as well. The equation also shows that the 

coefficient for inside lane closure (Inside) variable is lower than that for the offside lane closure 

(Offside) variable which means that the section capacity decreases further for the use of the 

inside lanes closure scheme compared with the use of the offside lane closure scheme. These 

effects seem to be consistent with the description of how these variables affect the capacity of 

motorway roadwork sections as discussed in Section 8.2. However, the main limitation of 

Equation 8.1 is that the equation suggests that there is reduction in capacity for the use of narrow 

lanes scheme even at low HGVs%. This is not consistent with the simulation results from the 

developed simulation model (as described in Section 8.2) which shows that the reduction in 

capacity for motorway roadwork sections with the use of narrow lanes scheme occurred at high 

HGVs% (i.e. ≥ 30% for 3 lanes section and ≥ 25% for 4 lanes section). Therefore, it can be 

suggested that, at low HGVs% (i.e. < 25% for 3 lanes section and < 20% for 4 lanes section) 

and when the narrow lanes scheme is implemented, a value of zero can be used for the 

“Narrow” variable. Also, it should be noted that the use of narrow lanes scheme at 2-lanes 

motorway section may not be compatible with the equation since such a case is not considered 

in the regression analysis. 

8.6 Estimation of average delay of motorway roadwork sections  

Based on the simulation results presented in Section 8.2 (which are based on roadwork zone 

length = 1500 m), multiple regression analysis was also used to estimate average vehicles delay. 

It should be noted that for this regression analysis the cases when traffic flow exceeds section 

capacity (when the average vehicles delay increases sharply) are not included. At such cases 

(i.e. when traffic flow exceeds section capacity), queues are often formed and as a result, the 

computed average delay becomes very high and it depends on the period of time for which the 

simulation continues. Therefore, only those cases of traffic flows that are lower than the section 

capacity are considered in this regression analysis. Equation 8.2 shows the results from the 
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regression analysis, which describes the relationship between the average vehicles delay and 

number of lanes, HGVs% and type of TTMS implemented. 

𝐷𝑒𝑙𝑎𝑦 = 10.1 − 5.8(𝐿𝑎𝑛𝑒𝑠) + 0.006(𝐹𝑙𝑜𝑤) + 12.6(𝐻𝐺𝑉𝑠%) + 18.7(𝑁𝑎𝑟𝑟𝑜𝑤)

+ 21.7(𝑂𝑓𝑓𝑠𝑖𝑑𝑒) + 21.6(𝐼𝑛𝑠𝑖𝑑𝑒)                                  Equation 8.2 

Where: 

Delay: the average vehicles delay (sec/veh), and 

Flow: the traffic flow of motorway section (veh/hr). 

The coefficient of determination (R2) value of the regression analysis is 0.82 which indicates a 

good relationship between the dependent variable (i.e. delay) with the other independent 

variables (i.e. number of lanes, HGVs% and type of TTMS implemented). It can be seen from 

Equation 8.2 that the coefficients for the inside lane closure (Inside) and the offside lane closure 

(Offside) variables are nearly similar. Therefore, an attempt to simplify the regression equation 

for the average delay was carried out by using one variable (which was called “Closure”) to 

represent both the inside lane closure and the offside lane closure variables, as shown in 

Equation 8.3.  

𝐷𝑒𝑙𝑎𝑦 = 10.3 − 5.9(𝐿𝑎𝑛𝑒𝑠) + 0.006(𝐹𝑙𝑜𝑤) + 12.8(𝐻𝐺𝑉𝑠%) + 18.6(𝑁𝑎𝑟𝑟𝑜𝑤)

+ 21.6(𝐶𝑙𝑜𝑠𝑢𝑟𝑒)                                                                  Equation 8.3 

Where: 

Closure: the implementation of offside lane closure or inside lane closure as a TTMS (1 if true 

and 0 if false). 

An attempt to include the effect of roadwork zone lengths on the regression analysis for the 

average delay was carried out (as shown in Equation 8.4) based on the simulation results 

presented in Sections 8.2 and 8.3. It should be noted that the applied length for this analysis 

ranges from 1500 m to 4500 m.    

𝐷𝑒𝑙𝑎𝑦 = −10.7 − 6.9(𝐿𝑎𝑛𝑒𝑠) + 0.007(𝐹𝑙𝑜𝑤) + 22.3(𝐻𝐺𝑉𝑠%) + 0.012(𝐿𝑟𝑤)

+ 19.1(𝑁𝑎𝑟𝑟𝑜𝑤) + 22.6(𝐶𝑙𝑜𝑠𝑢𝑟𝑒)                         Equation 8.4 

Where: 

Lrw: the length of roadwork zone (m). 

The value of R2 for this regression analysis is 0.88 which indicates a good relationship between 

the dependent variable (i.e. delay) with the other independent variables. However, the main 
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limitation of Equation 8.4 is that the applied roadwork zone length is ranging from 1500 m to 

4500 m. Therefore, Equation 8.4 should only be used for roadwork zone length within this 

range. The summary of the statistical results for all the equations (i.e. Equations 8.1 to 8.4) are 

shown in Appendix (A). 

8.7 Summary 

This chapter presented the application of the newly developed micro-simulation model in 

testing the efficiency of different TTMSs applied at motorway roadwork sections. The effects 

of various parameters (i.e. HGVs percentage, roadwork zone length, temporary speed limit and 

drivers’ compliance with the speed limit) on traffic performance were also tested and presented 

in the current chapter. The most important findings can be summarised as follows:  

 The use of offside lane closure scheme seems to perform better in terms of capacity and 

delay than the use of inside lane closure scheme for 2, 3 and 4 lanes motorway roadwork 

sections. The simulation results showed that the gaining in capacity when using the 

offside lane closure scheme instead of using the inside lane closure scheme was around 

8%, for 2, 3 and 4 lanes sections. In addition, the average vehicles delay has decreased 

by around 150 seconds for the use of the offside lane closure scheme compared with 

that of the inside lane closure scheme.  

 The presence of HGVs has a large impact on reducing section capacity for both normal 

and roadwork sections with different TTMSs (i.e. narrow lanes, offside lane closure and 

inside lane closure schemes) and with different numbers of lanes (i.e. 2, 3 and 4 lanes). 

The simulation results showed that, as the percentage of HGVs increases, the section 

throughput decreases. 

 Under low traffic demand (when the flow of a 3 lanes motorway roadwork section is 

under 3000 veh/hr and the flow of a 4 lanes motorway roadwork section is 

under 4000 veh/hr), the use of narrow lanes schemes seems to perform better in terms 

of capacity and delay than both offside and inside lane closure schemes. While under 

high traffic demand associated with high HGVs percentage (i.e. HGVs% > 25% 

for 3 lanes section and HGVs% > 20% for 4 lanes section), the use of narrow lanes 

scheme is not recommended and it was found that the use of offside lane closure scheme 

becomes the favourite option.     

 The length of roadwork zone has a very marginal impact on throughput of motorway 

roadwork sections with different TTMSs (i.e. narrow lanes, offside lane closure and 
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inside lane closure schemes) and with different numbers of lanes (i.e. 2, 3 and 4 lanes), 

whereas the length of roadwork zone has influenced the average vehicles delay. The 

simulation results showed that, as the length of roadwork zone increases, the average 

vehicles delay increases. The results have shown that the average vehicles delay has 

increased by around 15 seconds for every increment of the roadwork zone 

length (i.e. 1500 m), for the same input flow and HGVs%. 

 Applying different temporary speed limits have not influenced the traffic performance. 

The simulation results showed that drivers’ compliance with the temporary speed limits 

applied at roadwork sections (with the use of narrow lanes scheme) has a significant 

influence on the traffic performance in terms of increasing throughput and decreasing 

average vehicles delay. The simulation results showed that the assumed 100% 

compliance with the applied speed limit has increased the section capacity by around 

1250 veh/hr and has reduced the average vehicle delay by around 300 seconds. 

Therefore, a stricter speed limit compliance may need to be imposed on motorway 

roadwork sections in order to enhance section capacity and reduce delay and also to 

maintain safety levels (since this will lead to a reduction in the variation in speeds 

amongst motorists). 

 Limitations identified in this chapter: the newly developed micro-simulation model has 

not been applied to test the effect of changing the layout of TTMSs on traffic 

performance, for example increasing/decreasing the length of the transition zone or lane 

change zone (see Figure 8.1).          
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CHAPTER NINE                                                                                       
CONCLUSIONS AND RECOMMENDATIONS 

 

 

9.1 Conclusions 

As discussed in Section 1.2, the main aim of this study is to evaluate the efficiency of different 

temporary traffic management schemes (TTMSs) at motorway roadwork sections by 

developing a new traffic micro-simulation model. Also, the newly developed model will be 

used as a tool to investigate different factors (i.e. effect of HGVs%, roadwork zone length, 

temporary speed limit and drivers’ compliance with the speed limit) that could affect traffic 

performance (i.e. capacity and average vehicles delay) of roadwork sections. The aim of the 

study was achieved by means of eight research objectives. The first objective was the 

identification of the important factors of the modelling concept and the limitations of previous 

models and was achieved by conducting a comprehensive literature review. The second and 

third objectives were to collect and analysis field traffic data from several motorway roadwork 

sections with different TTMSs as well as from normal motorway sections with 2, 3 and 4 lanes 

in order to gain a better understanding into traffic behaviours and also to use the data in 

developing, calibrating and validating the new micro-simulation model. The fourth objective 

was to test the validity of the S-Paramics (an industry standard traffic software) in representing 

motorway roadwork sections. The fifth objective was the developing of a new traffic micro-

simulation model (using a Visual Compact Fortran programing language) that is capable of 

representing motorway roadwork sections. The sixth objective was to verify, calibrate and 

validate the newly developed micro-simulation model to make sure that the new model is 

reliable enough to be used for further applications. The seventh objective was the application 

of the new model to evaluate the efficiency of different TTMSs at motorway roadwork sections 

and also to test the effect of various traffic parameters (i.e. HGVs%, roadwork zone length and 

speed limits) on traffic performance (i.e. capacity and average vehicles delay). The eighth 

objective was to developing and recommending regression models to estimate section capacity 

and delay based on the simulation results. The following sections summarise the key findings 

related to each research objective of the study. 

 Objective 1: The literature has shown that the microscopic simulation approach allows 

the users some flexibility in representing changes in parameters affecting traffic 
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behaviour and road layouts with relative ease, unlike other approaches such as 

mathematical models. Also, it is proven to be more effective in representing traffic 

behaviour at complicated traffic situations such as the case of roadwork sections (see 

Sections 2.7 and 2.8). Therefore, the microscopic simulation approach has been adopted 

in this study. The literature has also shown that there is a lack of research in studying 

motorway roadworks operated by using narrowing lanes.  

 Objectives 2 & 3: Real traffic data from 17 UK motorway sites (from four different 

sources) have been collected and analysed (see Chapters 3 and 4). The data was used in 

developing, calibrating and validating the newly developed micro-simulation model. 

Different factors have been analysed based on results from real observations from 

motorway roadwork sites including drivers’ compliance with the applied speed limits 

(the results showed that 83% of drivers are not complying with the applied speed limit), 

drivers’ courtesy behaviour (the results showed that 12% of drivers are offering 

cooperation by slowing down) and accepted gap values (the results showed that the 

minimum observed lead and lag gaps for the M67 site were about 0.2 and 0.4 seconds, 

respectively) (see Section 3.7). Traffic behaviour at roadwork sections with narrow 

lanes has been investigated based on real observations, since the use of narrow lanes, as 

one of the TTMSs at UK motorway roadworks, has become very common in recent 

years. Field observations suggest that the behaviours for UK drivers on narrowing lanes 

could be divided into two discernible patterns in the presence of heavy goods vehicles 

(HGVs). These are “avoiding” passing/overtaking HGVs and lane “repositioning” while 

passing/overtaking an HGV (see Chapter 4). The results revealed that around 30% - 

50% of drivers who were following a HGV on the adjacent lanes were observed to be 

“avoiding” passing HGVs (see Section 4.4.1) and around 70% - 80% of drivers were 

observed to be doing lane repositioning when approaching from behind a HGV in the 

adjacent lane HGVs (see Section 4.4.2). 

 Objective 4: The S-Paramics micro-simulation software (which is widely used in 

industry) has been tested to model roadwork sections at motorway using two sets of real 

data. The results showed that the S-Paramics software suffers from certain limitations. 

It is not capable of accurately representing traffic behaviour at the transition zone which 

is an important part of the TTMSs (see Chapter 5). The difference between the observed 

and simulated data is about 20% (see Tables 5.5 and 5.6 and Figure 5.5). This has led 
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to the development of a new micro-simulation model to estimate traffic capacity and 

delay and to represent traffic behaviour at motorway roadwork sections. 

 Objective 5: The newly developed micro-simulation model for motorway roadwork 

(and for normal sections) has been based on car-following, lane changing and gap 

acceptance and lane closure rules, together with the newly developed narrow lanes 

algorithms. These rules and algorithms have been developed based partly on previous 

studies as well as other real observations from UK motorway sites as described in this 

study (see Chapters 3, 4 and 6). The new micro-simulation model has taken into account 

driver’s courtesy behaviour at the approach to roadwork sections (with the use of lane 

closure scheme) since this behaviour is found to be predominant on UK roads (see 

Sections 2.8.2, 3.7.2 and 6.5.2). The observed behaviours from sites with narrow lanes 

sections have been also taken into account in the development of the micro-simulation 

model (see Section 6.8). 

 Objective 6: The developed micro-simulation model has been calibrated and validated 

using field data. The results suggest that the developed model could acceptably 

represent real traffic situations (see Chapter 7). 

 Objective 7: The newly developed micro-simulation model has been applied to evaluate 

the efficiency of different TTMSs (i.e. narrow lanes, offside lane closure and inside lane 

closure) at motorway roadwork sections. The effect of various traffic parameters 

(i.e. HGVs percentage, roadwork zone length, temporary speed limit and drivers’ 

compliance with the speed limit) on traffic performance (i.e. capacity and average 

vehicles delay) have also been studied using the developed micro-simulation model (see 

Chapter 8). The main findings from this research objective can be summarised as 

follows: 

 The simulation results have revealed that the use of offside lane closure scheme 

seems to perform better in terms of capacity and delay than the use of inside lane 

closure scheme for 2, 3 and 4 lanes motorway roadwork sections (see 

Section 8.2). The simulation results showed that the gaining in capacity when 

using the offside lane closure scheme instead of using the inside lane closure 

scheme was around 8%, for 2, 3 and 4 lanes sections. In addition, the average 

vehicles’ delay has decreased by around 150 seconds for the use of the offside 
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lane closure scheme compared with that of the inside lane closure scheme (see 

Sections 8.2.1.4, 8.2.2.4 and 8.2.3.4). 

 The simulation results have also revealed that, under low traffic demand (when 

the flow of a 3 lanes motorway roadwork section is under 3000 veh/hr and the 

flow of a 4 lanes motorway roadwork section is under 4000 veh/hr), the use of 

narrow lanes scheme seems to perform better in terms of capacity and delay 

compared with the case of using either offside or inside lane closure schemes. 

However, under high traffic demands associated with high percentages of HGVs 

(i.e. HGVs% > 25% for 3 lanes sections and HGVs% > 20% for 4 lanes 

sections), the use of narrow lanes scheme is not recommended and the use of 

offside lane closure scheme becomes the favourite option (see Section 8.2). 

 The simulation results have also revealed that the presence of HGVs has a large 

impact on reducing section capacity for both normal and roadwork sections with 

different TTMSs and with different numbers of lanes. The simulation results 

have shown that, as the percentage of HGVs increases, the section throughput 

decreases (see Section 8.2). 

 The effect of roadwork zone length on traffic performance (i.e. capacity and 

average vehicles delay) has also been studied using the newly developed micro-

simulation model. The simulation results have shown that, for the tested 

roadworks zone lengths, this length has a very marginal impact on the 

throughput of motorway roadwork sections using different TTMSs and with 

different numbers of lanes (i.e. 2, 3 and 4 lanes), whereas this length has 

influenced the average vehicles’ delay. The simulation results suggest that, as 

the length of roadwork zone increases, the average vehicles delay increases. The 

simulation results have shown that the average vehicles’ delay has increased by 

around 15 seconds for every increment of the roadwork zone length (i.e. 1500 

m), for the same input flow and HGVs% (see Section 8.3).  

 The effect of temporary speed limits on traffic performance has been studied 

using the newly developed simulation model. The simulation results show that 

applying different temporary speed limits have no significant effect on traffic 

performance. The simulation results suggest that drivers’ compliance with the 
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temporary speed limits applied at roadwork sections with narrow lanes has a 

significant influence on traffic performance in terms of increasing throughput 

and decreasing average vehicles delay. The simulation results showed that for 

the assumed 100% compliance with the applied speed limit, this has increased 

the section capacity by around 1250 veh/hr and has reduced the average vehicle 

delay by around 300 seconds. Therefore, a stricter speed limit compliance may 

need to be imposed on motorway roadwork sections in order to enhance section 

capacity and reduce delay and also to maintain safety levels since this may lead 

to a reduction in speed differentials amongst motorists (see Section 8.4).   

 Objective 8: Regression analysis has been carried out based on the simulation results 

(which are obtained from the newly developed micro-simulation model) in order to 

provide equations for use in estimating section capacity and delay. These regression 

equations have been developed based on several parameters such as flow rates, 

percentage of HGVs, number of lanes, type of TTMSs implemented and roadwork zone 

length (see Sections 8.5 and 8.6). 

9.2 Recommendations and further research 

 Based on field observations from motorway roadwork sections with narrow lanes, it 

appears that the reduction in lane width is the main cause of the lane “repositioning” 

behaviour in the presence of HGVs (see Section 4.4.2). The data analysis showed that 

the lane “repositioning” percentage for the inside lane (i.e. lane 1) is equal to zero. This 

is because the inside lane has a width equal to 3.25 m, whereas the width of other lanes 

is equal to 3.0 m (see Tables 4.6, 4.7, 4.8 and 4.10). This behaviour is believed to be 

unsafe and could potentially lead to an increase in the rate of traffic accidents. Therefore, 

this study recommends that the lane width could be reduced to 3.25 m as an absolute 

minimum where HGVs are expected. The second cause of lane “repositioning” 

behaviour is the speed of drivers. The data analysis showed that the offside lane (i.e. 

lane 4) and lane 3 have very high percentages of lane “repositioning” (see Tables 4.6, 

4.7, 4.8 and 4.10). This could be attributed to the relatively high speed of drivers who 

were driving on lanes 3 and 4 compared to those who using lanes 1 and 2. Therefore, 

this study recommends a lowering of the speed limits to, for example, 40 mph and with 

stricter compliance when narrow lanes are implemented. The simulation results 

obtained from the newly developed micro-simulation model showed that the use of 
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40 mph as a temporary speed limit has values of traffic performance (i.e. capacity and 

delay) similar to those of using 50 mph as a temporary speed limit (see Figures 8.22 and 

8.23). However, further empirical investigation to find out the impact of this proposed 

reduction in speed limits on traffic performance is required. This recommendation of 

reducing the speed limits is in agreement with a similar recommendation by 

Harb (2009). 

 Based on the simulation results obtained from the newly developed micro-simulation 

model, this study recommends that the use of narrow lanes scheme as a TTMS at 3 lanes 

motorway roadwork sections is not recommended when the expected HGVs% is > 25% 

associated with high traffic demand, alternatively the offside lane closure scheme could 

be used (see Section 8.2.2.4); in addition, this study recommends that the use of narrow 

lanes scheme as a TTMS at 4 lanes motorway roadwork sections is not recommended 

when the expected HGVs% is higher than 20% associated with high traffic demand, 

alternatively the offside lane closure scheme could be used (see Section 8.2.3.4).  

 Due to the limited research devoted to studying motorway roadworks with narrow lanes 

(see Section 4.5), empirical studies in investigating the effects of the use of narrow lanes 

on site safety and capacity are highly needed, particularly for sites with relatively high 

percentages of HGVs.  These empirical studies are needed to find out the feasibility of 

using narrowing lanes as a TTMS at motorway roadwork sections since the main reason 

behind using narrow lanes is to improve section capacity. Detailed information on 

driving behaviours at motorway roadwork sections with narrowing lanes is also needed 

to inform and enhance the assumptions made in the development of the current micro-

simulation model. 

 It should be noted that this study has concentrated on data taken from several UK 

motorway roadwork sites (see Section 6.12). In order to apply or validate the 

recommended regression equations from this study for use in other countries, more data 

may be needed from these countries to validate the assumptions made in the micro-

simulation model before use. 
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Appendix A: Summary of the statistical results for capacity and delay 
equations 
 

A.1     Capacity 

 

Table A.1: Statistical summary of capacity model (Equation 8.1) 

 

Table A.2: Coefficients of the capacity model (Equation 8.1) 
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A.2     Delay 

 

Table A.3: Statistical summary of delay model (Equation 8.2) 

 

Table A.4: Coefficients of the delay model (Equation 8.2) 

 

 

Table A.5: Statistical summary of delay model (Equation 8.3) 

 

Table A.6: Coefficients of the delay model (Equation 8.3) 
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Table A.7: Statistical summary of delay model (Equation 8.4) 

 

Table A.8: Coefficients of the delay model (Equation 8.4) 

 

 

 

 


