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Abstract— one of the most important tasks of Mars rover, a robot which explores the Mars surface, is the process of automatic 

segmentation of images taken by front-line anoramic camera (Pancam). This procedure is highly significant since the transformation cost 

of images from Mars to earth is extremely high. Also, image analysis may help Mars rover for its navigation and localization. In this 

paper, a new feature vector including wavelet and color features is presented for Mars images. Then, this feature vector is presented for 

extreme learning machine (ELM) classifier which leads to a high accurate pixel classifier. It is shown that this system statistically 

outperforms support vector machine (SVM) and k-nearest neighbours (KNNs) classifiers with respect to both accuracy and run time. 

After that, dimension reduction in feature space is done by two proposed feature section algorithms based on ant colony optimization 

(ACO) to decrease the time complexity which is very important in Mars on-board applications. In the first proposed feature selection 

algorithm, the same feature subset is selected among the feature vector for all pixel classes, while in the second proposed algorithm, the 

most significant features are selected for each pixel class, separately. Proposed pixel classifier outperforms prior methods by 6.44% and 

5.84% with respect to average Fmeasure and accuracy, respectively. Finally, proposed feature selection methods decrease the feature 

vector size up to 76% and achieves Fmeasure and accuracy of 91.72% and 91.05%, respectively, which outperforms a conventional 

method with 87.22% and 86.64%. 

Keywords: pixel classification; feature selection; ant colony optimization; extreme learning machine; wavelet features; color 

features. 

1. INTRODUCTION 

 Exploration and research in Mars has been increased significantly over the last decade. Geological and structural information of Mars 

conducted by robots are all the results of such explorations. Also, mineral classification of mars images presents valuable information of 

Mars environment [1]. Furthermore, the extraction of chemical and mineralogical properties of the Mars stones and soil could be helpful 

in the future researches and explorations [2]. 

 Recently the automated robot, referred as Mars rover is equipped with a front-line panoramic camera (Pancam) instrument. A great deal 

of information can be extracted and organized from Mars images. The transformation cost from Mars to earth is very high in the term of 

Mars rover supply power. Therefore, automated image analysis systems with a high degree of accuracy are required [3]. The main task in 

these systems is the classification of rocks and other objects in the images. This procedure is so important because it avoids sending the 

irrelevant and redundant images to the earth. It also helps Mars rover for navigation and localization in the Mars surface. The rocks in 

Mars have diverse colors and textures, covered by dust soil with various intensities, rotation and scale. In addition, these images are 

blurred by instrument movement and are contaminated by environment noise. In [4], a theorem for the efficient segmentation and 

detection of motion blur was presented which led to the classification of pixels as either blurred or unblurred. Furthermore, in [5], a new 

kernel-specific feature vector with a good discrimination property was proposed and then presented for the classifiers to detect different 

types of blur including motion and defocus blurs. All of the above items address the main challenges in Mars images analysis [6].  

  Our goal in this research is to develop a new method for automatic pixel classification in Mars images. The first step in this method is 

extraction of a set of features from image pixels. There are many features proposed in the literature for accurate classification of the pixels 

[7 and 8]. Increasing dimension of feature set leads to more computational time which is not acceptable in our interest, especially in on-

board applications such as Mars rover, with its limited amount of power, memory and processing rate. On the other hand, there is an 

opinion that not all extracted features are relevant in classification and these extracted features decrease the accuracy [9]. A good feature 

vector should be easily extractable from the images, discriminative, robust against noise and distortion. A key issue is that the feature 

vector must be short and efficient. Most of the classification methods presented for Mars rover involve high computational costs because 

of high dimensionality of feature vectors [3]. Some feature selection approaches are ant colony optimization (ACO) [10], particle swarm 

optimization (PSO) [11], genetic algorithm (GA) [12], feature selection with harmony search [13] and so on. Many feature selection 

approaches have been proposed for different applications such as face recognition [14], data mining and pattern recognition [15], speaker 

verification [16] and classifier ensemble reduction [17]. Feature selection has been applied in Mars image classification in the term of 

minimizing feature subset by fuzzy-rough feature selection [3 and 21] and information gain ranking technique [18]. 

mailto:a.rashno@ec.iut.ac.ir
mailto:nazari@cc.iut.ac.ir
mailto:m.saraee@salford.ac.uk


 The main contributions of this paper that lead to a high accurate pixel classifier for the classification of different types of rocks and sands 

from their surrounding background in Mars images are summarized as follows: 

 1) The texture and structure of difference types of rocks in Mars images are analyzed and then a new feature set for pixel description is 

proposed. The feature set includes texture and color features and makes difference between all types of rocks and lead to better pixel 

classification. For texture features, statistical parameters of LH and HL components in wavelet domain are considered. This idea is very 

useful for distinguishing rocks with layered and waved structures since wavelet decomposition provides vertical and horizontal frequency 

components of images. Dominant color descriptor, local color histogram and color statistic features are all used as color features. These 

features are useful for describing structures such as small black stone and sand, dark large size rocks with shadow and flat rocks. Then, a 

recent efficient classifier referred as extreme learning machine (ELM) is used for pixel classification. We will show that this classifier 

with the proposed feature set not only lead to a high accurate pixel classifier but also outperforms other classifiers such as SVM and 

KNNs with respect to both accuracy and run time. 

 2) Because of the limitation of the power, memory and processing rate in on-board applications such as Mars rover for Mars image 

analysis, dimension reduction with preserving classification accuracy is addressed as another contribution of this research. For this goal, 

two feature selection methods based on ACO are proposed to select the most relevant and significant features from the complete feature 

set. For feature selection methods a new idea named as feature grouping is proposed and it’s efficiency is shown for feature selection 

algorithms. Applying these feature selection methods in pixel classification, decreases the computational time and preserves classification 

performance simultaneously not only in our proposed system with ELM but also in SVM and KNNs classifiers. The first feature selection 

method selects the same feature subset for all pixel classes while the second one presents a feature subset for each pixel class separately. 

Both feature selection methods, with the same degree, decrease the run time of classifiers in both train and test phases considerably. The 

first proposed method preserves the classification accuracy with just a little decrease while the second one increases it.  

3) The pixel classification accuracies of ELM, SVM and KNNs classifiers with different parameters and different feature subsets 

(complete feature set, feature subsets found by the first and second proposed methods and genetic algorithm) will be shown quantitatively 

followed by statistical interpretations of the results. 

 The rest of this paper is organized as follows: Section 2 describes the extraction of feature set from image pixels. Pixel classifiers are 

explained in more details in Section 3 and 4. Our two proposed feature selection methods are described completely in Section 5. 

Experimental setup and results are described in Sections 6 and 7 respectively. Finally, the conclusion and future works are discussed in 

Section 8. 

2. FEATURE EXTRACTION 

 Converting complex image data to their corresponding feature vector is the task of feature extraction. Feature vectors represent a large set 

of data accurately as well as simplifying the amount of memory and computation cost required for data processing [19]. The main purpose 

of this research is pixel classification. Corresponding feature vector for each pixel is extracted from a surrounding window of that pixel. 

Proposing features with better pixel representation is a challenging task. For this task, many experiments were performed and the 

following features are proposed. Some types of layered rocks contain horizontal and vertical frequency components. A very good 

descriptor for these types of rocks is the texture features extracted from wavelet transform. Therefore, statistical parameters in wavelet 

domain are used as pixel representation. Other rock types such as rover tracks (which have a darker surface in comparison with other 

rocks), Small black stone and sand flat rocks could be easily identified by color features. Finally, a feature set including wavelet 

coefficient features, dominant color descriptor features, local color histogram features and color statistic features is proposed to be used in 

this experiment and is explained in the next sections. 

2.1. Wavelet Features 

 Each pixel of the input image is windowed and a one level two-dimensional wavelet decomposition of the window is obtained. Then 

Euclidean norm is incorporated to the wavelet coefficients of rows and columns of LH and HL, separately. Finally, the mean and variance 

of Euclidean norms of rows and columns are calculated which leads to 8 parameters. 

2.2. Color Features 

 Color features are considered as low-level features which are very stable and robust in comparison with other image features such as 

texture and shape. Since, these features are not sensitive to rotation, translation and scale changes; they could be so applicable to pixel 

classification of Mars images which are noisy and degraded by rotation and camera transformations. In this work, we have used the 

dominant color descriptor (DCD) features, local color histogram features and color statistic features. 

2.2.1. Dominant Color Descriptor 

 DCD is one of the approved color descriptors in the MPEG-7 Final Committee Draft among several number of histogram descriptors 

[20]. Both representative colors and the percentage of each color are included in DCD. In DCD, colors of an image are divided into a 

number of partitions named coarse partitions.  All points in a partition are assumed to be similar. Partition centers are the average value of 

all pixel colors in each partition and are calculated with by Eq. 1. 

𝐶𝑗 =
∑ 𝑝𝑝∈𝑃𝑖

∑ 1𝑝∈𝑃𝑖

 
 

(1) 



 In which 𝑃𝑖 is the ith partition. In this research, the DCD features are extracted in RGB domain. Each pixel color is assigned to a partition 

and its color is replaced by the center value of that partition. Therefore, the image colors are quantized. For each pixel, the DCDs of a 

window around that pixel are calculated and presented as a feature vector corresponding to it. We assumed 8 color dominants in this 

research. In Fig. 1, the right image is an image in RGB domain and the left image shows the result of applying DCD.  

 

 
Fig. 1. DCD of an image in RGB color space. 

2.2.2. Local Color Histogram Features 

 Histogram is the discrete statistical probability density of the image [21]. Mars images are in RGB domain with the range 0-255 in each 

component. If all 256 bins are considered per R, G and B components in each histogram, it will be computationally expensive. 

Accordingly the range is divided to 8 equal sub-ranges for each component. To localize these features, a window is considered around 

each pixel and histogram of the window is computed. Therefore, each pixel of the image is mapped to a 24-dimensional feature vector in 

the term of local color histogram features. 

2.2.3. Color Statistic Features 

 The first and the second moments of a window around pixels are mean and standard deviation, respectively. These features are also 

applied in RGB domain. The mean and standard deviation corresponding to each pixel are considered as color statistic features for each 

component (R, G and B). Table.1 shows the abbreviation names of all extracted features that will be used in this paper. 

TABLE 1 

ABBREVIATION NAMES OF ALL EXTRACTED FEATURES. 
    Wavelet                      Feature Meaning           Color      Feature  Meaning        Color  Feature Meaning 

LH_meanL Mean of norms of L Components of LH  𝐃𝐂𝐃𝐑𝟏−𝟖 Dominant colors of R 𝑩𝒔 Std of B component 

LH_meanH Mean of norms of H Components of LH 𝐃𝐂𝐃𝐆𝟏−𝟖 Dominant colors of G 𝑹𝟏−𝟖 Histogram bins of R component 

LH_stdL Std of norms of L Components of LH 𝐃𝐂𝐃𝐁𝟏−𝟖 Dominant colors of B 𝑮𝟏−𝟖 Histogram bins of G component 

LH_stdH Std of norms of H Components of LH 𝑹𝒎 Mean of R component 𝑩𝟏−𝟖 Histogram bins of B component 

HL_meanH Mean of norms of L Components of HL 𝑮𝒎 Mean of G component   
HL_meanL Mean of norms of L Components of HL 𝑩𝒎 Mean of B component   
HL_stdH Std of norms of H Components of HL 𝑹𝒔 Std of R component   
HL_stdL Std of norms of L Components of HL 𝑮𝒔 Std of G component   

3. PIXEL CLASSIFIER BY SVM 

 There are different pixel classes in Mars images. Extracted features should be presented for classifiers to train model parameters in 

classification. For each pixel class, a one-against-all binary SVM is trained. Pixels of the main class are assumed as positive and pixels of 

all other classes are assumed as negative samples. The main problem is that the number of pixels in the main class is much less than the 

number of pixels of the other classes. This leads our model to unbalanced train data in SVM classifier and the model may be biased to 

negative samples. We address this issue by random selection of k samples among all negative samples and then introducing selected 

samples as training data of negative class. Fig. 2 shows the result of the process of train data balancing for SVM classification. 



 
Fig. 2. Balancing train data for SVM classification. 

4. PIXEL CLASSIFIER BY ELM 

 ELM originally stems from biological learning and is first proposed for the single-hidden layer feed-forward neural networks (SLFNs) 

and then for the generalized single-hidden layer feed-forward networks [22]. The output function of the ELM for generalized SLFNs case 

is computed by Eq. 2. 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥)𝐿
𝑖=1                  (2)  

(2) 

 where 𝛽𝑖  is a weight between ith hidden node and the output nodes and ℎ𝑖(𝑥) is the output of the ith hidden node. It is clear that the 

output functions of the hidden nodes could be different. In general, ℎ𝑖(𝑥) is a non-linear piecewise continuous function such as sigmoid, 

hardlimit, gaussian and multi-quadratic.  

 The feed-forward neural networks try to reach to smaller training errors. In ELM, both the smaller training error and the smaller norm of 

output weights are considered. The smaller norm of weights, the better generalization performance could be achieved. So, ELM has a 

higher performance in comparison with classic feed-forward networks. ELM could be expressed as an optimization problem in Eq. 3. 

min: ‖𝛽‖𝑝
𝜎1 + 𝐶 ‖𝐻𝛽 − 𝑇‖𝑞

𝜎2    (3) (3) 

 where 𝜎1 and 𝜎2 are positive values and p,q=0,0.5,1,2, … . H is the matrix of h functions named as hidden layer output matrix and T is 

the training data target matrix. The learning rules and mathematical theory of ELM are discussed in deeper details in [23 and 24]. 

 ELM can be used in both classification and regression. Here, similar with SVM, ELM is used for pixel classification with a one-against-

all classification scheme. For this task, ELM is trained with the training set of pixel feature vectors and then the feature vectors of unseen 

pixels are presented for classification. The similar idea for train data balancing, which was proposed for SVM, is applied here, too. We 

have used the ELM toolbox in MATLAB for ELM classification1.  

5. FEATURE SELECTION 

 Feature selection is a discrete optimization problem which selects m features among n ones [26]. The whole search space includes all 

possible feature subsets of the main feature set. The number of all possible subsets is computed by Eq. (4). 

 

∑ (
𝑛

𝑠
) = (

𝑛

0
) +

𝑛

𝑠=0

(
𝑛

1
) + ⋯ + (

𝑛

𝑛
) = 2𝑛 

(4) 

 where n represents feature vector dimension and s is the size of the current feature subset. 

 Alleviating the effect of the dimensionality, enhancing generalization capability, improving model interpretability and speeding up the 

learning process are all the benefits of removing irrelevant and redundant features from the main features [26 and 27]. Two types of 

feature selection methods are filter and wrapper methods. Filter methods use some metrics such as inter-class distance, probabilistic 

distance, class separability, entropy, error probability, consistency and correlation. In wrapper methods, classification accuracy is used for 

feature evaluation, show that the classifier model should be trained and tested in each step. In the filter methods, feature subset evaluation 

does not depend on the classification model because it does not need to train the system for each feature subset. On the other hand, 

wrapper methods are computationally expensive and have a risk of model over-fitting. As a result, filter methods have better 

generalization as well as lower complexity and over-fitting, although generally wrapper methods usually have a higher accuracy [28, 29 

and 30].  

 

                                                           
1 http://www.ntu.edu.sg/home/egbhuang/elm_codes.html 

http://en.wikipedia.org/wiki/Entropy_(Information_theory)


5.1. Genetic Algorithm for Feature Selection 

 GA introduced by Holland in 1975, is a randomized heuristic search technique based on biological evolution strategies. Many complex 

optimization problems could be solved by GA in which chromosomes represents candidate solutions in a large population. Initial 

chromosomes (solutions) usually are created randomly and then next generations are generated from chromosomes with higher fitnesses. 

GA has been applied to our problem of interest as feature selection and feature weighting. A binary vector with the same size of the 

feature vector is a chromosome (solution). If the corresponding bit of a feature is one, that feature is selected and it is dropped in case it is 

zero. The purpose of GA in feature selection task is to find an optimal binary vector with the smallest number of 1s such that the 

performance of the classifier is maximized [19 and 30]. Another application of GA is feature weighting which assigns numerical weights 

to features instead of binary weights zero and one [31].  

5.2. Ant Colony Optimization for Feature Selection 

 Ant colony optimization (ACO) is an iterative and probabilistic meta-heuristic method. It simulates the natural behavior of ants, 

consisting of mechanisms of adaptation and cooperation [32]. The ants travel among nodes of a graph and deposit pheromone for finding 

the shortest path. As pheromone decays over the time, each ant probabilistically prefers to follow a direction with the higher pheromone 

density. Accordingly the shortest path on the graph will has more pheromone and higher chance to be selected by ants and will be 

reinforced while pheromone of other paths’ diminished [33]. Similar to GA, ACO can be reformulated for feature selection problem by 

finding a path with minimum cost on a graph. In contrast with classic ACO, here, nodes in the graph represent features and the edges 

between nodes denote the choice of the next feature [34]. ACO starts to search for the optimal feature subset with the ant’s traverse 

through the graph until a minimum number of nodes are visited and traversal stop criterion is satisfied i.e. the minimum number of 

features with the highest classification accuracy are achieved. Any feature is allowed to be selected in each step of ant traverse, so the 

graph is fully connected. The pheromone update rule and transition rule of ACO algorithm can be used by a little reformulation for feature 

selection. In this case, pheromone and heuristic values are associated to nodes (features) rather than edges. The probability that ant k 

selects feature i at time step t is computed from Eq. (5). 

𝑃𝑖
𝑘(𝑡) = {

|𝜏𝑖(𝑡)|𝛾|𝜂𝑖|𝛿

∑ |𝜏𝑢(𝑡)|𝛾|𝜂𝑢|𝛿
𝑢∈𝐽𝑘

       𝑖𝑓 𝑖 ∈ 𝐽𝑘

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

      (5) 

 

 where 𝐽𝑘 is the set of features that are allowed to be added to the partial solution in case that they haven’t been visited so far. τi(t) and ηi 

are the pheromone value and heuristic desirability associated with feature i respectively. γ and δ are weights of pheromone value and the 

heuristic information respectively[35]. The amount of deposited pheromone of ant k on feature i in step t is obtained by Eq. (6). 

 

∆τi
k(t) = {ϕ. Η(Sk(t)) +

ψ. (FeatutesNumber − |Sk(t)|)

FeatutesNumber 
    if i ∈ Sk(t)

0      otherwise

 

 

 

  (6)                 

 where FeatutesNumber is the number of all features, Sk(t) and |Sk(t)| are the feature subset and its length found by ant k at iteration 𝑡, 

respectively. Η(Sk(t)) is the evaluation of subset Sk(t) which is the classifier performance in this literature, 𝜙 and 𝜓  are parameters that 

determine the importance of the classifier performance and feature subset length, respectively.  Finally, the node pheromone is updated by 

Eq. (7). 

τi(t + 1) = (1 − ρ). τi(t) + ∑ ∆τi
k(t)

m

k=1

+ ∆τi
g(t) 

 

 

         (7) 

 where m is the number of ants, 𝜌 is an evaporation rate which is constant and g is the best ant in previous iteration. It means that nodes 

pheromone are affected by all ants and more affected by the best ant which deposits additional pheromone on nodes. This causes the 

search of ants to stay around the optimal solution in the next iterations [27]. ACO feature selection is shown in Fig. 3. 

 

Fig. 3. ACO feature selection. 



5.3. The Proposed Feature Selection Methods based on ACO 

 Selecting the most relevant features and dropping irrelevant ones not only decreases feature vector dimension and computation cost of 

classifiers but also increases accuracy of such systems. In the proposed pixel classification system, feature selection is done after feature 

extraction stage. In feature extraction stage, a feature vector is extracted corresponding to each pixel, from a window around that pixel. In 

this research, two feature selection methods are proposed based on ACO.  

 

5.3.1. The first method 

 It is clear that ACO feature selection is a wrapper method. In conventional ACO feature selection, each ant selects features in its path 

based on thier efficiency. Suppose that there are n features in feature vector. Each ant is assigned an initial feature randomly and then train 

the model n-1 times to select the second feature. After that, n-2 times of model training are required for the selection of the third feature. 

This continues until the ant exit from its traverse. In the worst case, each ant trains the model 
n(n−1)

2
 times in each iteration. The 

computation cost is explosively high. Although the feature selection is done only once in the offline phase, we propose a new procedure to 

decrease the feature reduction cost while preserving the accuracy of classification.  

 At each iteration, there is a high computational cost to evaluate all ‘non-visited’ features to select one of them. Experiments show that 

there is no need for each ant to do that. To remedy this issue we divided features into 13 groups as shown in Table 2. 

TABLE 2 

GROUPING FEATURES OF A PIXEL IN ACO FEATURE SELECTION.  
Group Name Group Features Group Name Group Features 

Group 1 LH_meanL and LH_stdL Group 8 𝑹𝒎 𝒂𝒏𝒅  𝑹𝒔 

Group 2 LH_meanH and LH_stdH Group 9 𝑮𝒎 𝒂𝒏𝒅  𝑮𝒔 

Group 3 HL_meanH and HL_stdH Group 10 𝑩𝒎 𝒂𝒏𝒅  𝑩𝒔 

Group 4 HL_meanL nad HL_stdL Group 11 𝑹𝒊: All histogram bins of R component 

Group 5 𝐃𝐂𝐃𝐑𝒊 : All color dominants of R component Group 12 𝑮𝒊: All histogram bins of G component 

Group 6 𝐃𝐂𝐃𝐑𝒊 : All color dominants of G component Group 13 𝑩𝒊: All histogram bins of B component 

Group 7 𝐃𝐂𝐃𝐑𝒊 : All color dominants of B component   

 

 The idea of feature grouping has this benefit that each ant only evaluates just one feature among each group. This is important since 

selection of each feature involves model training and testing. This idea stems from the fact that features in each group have similar effects 

in classification accuracy. Therefore, evaluation of all features in each group simultaneously is not necessary. On the other hand, all 

features of a group have a chance to be selected by ants in the next iterations. For example, if LH_meanL is a selected feature from group 

1 at step k by an ant, feature LH_stdL will be a candidate to be selected by that ant from step k+1 onwards. This shows that all features 

have a chance to be selected by ants.  

 In the first proposed method, feature selection is applied to all pixel classes simultaneously. This means that the feature selection scheme 

tries to select the most relevant features by maximizing the classification accuracy of all pixel classes simultaneously. Therefore, the same 

feature subset is selected for all classes.  

 The following pseudo-code describes the proposed feature selection method in more details: 

1. Initialization: 

         - Set the population size of ants. 

         - Assign each feature to a node of graph and set a random intensity of pheromone to it. 

         - Set the maximum number of iterations. 

2. Divide the features into groups.   

3. Each ant builds its own solution. So, each ant should start its job from a feature(node), this feature is assigned to each ant 

randomly in this step and marked as ‘visited’. 

4. For each ant, select one feature from each feature group randomly and save them in array 𝑎.  Among features in 𝑎, select the 

feature with the highest probability calculated by Eq. (5) and mark this feature as ‘visited’. 

5. If the ant has not reached to its proposed threshold in Eq. (8), go to 4. 

 

Ant_Threshold =  φ ∗ exp− 
FN

N + ω ∗ expF_Measure     
(8) 

 

 where 𝐹𝑁 is the feature cardinality of the selected feature by the ant so far, 𝑁 is the number of all features, 𝜑 and 𝜔 are the parameters 

that control the effect of feature size and F_measure, respectively with restriction φ + ω = 1. Afterwards, all ants complete their search as 

a term of finding feature subsets. 

 The pheromone update is then started by three rules: 1) each ant deposits some pheromone on features. This idea stems from the natural 

behavior of ants. 2) Some pheromone is evaporated by time. 3) The best ant has more effect in path pheromone update since it could be a 

sign for other ants to follow its path in the next steps. The amount of pheromones in all features is affected by the classification accuracy 

and the number of features which are selected by ants.  

 

6. For all ants, do steps 3-5. 

7. Each ant deposits a quantity of pheromone on features which is marked as ‘visited’ in its path by Eq. (9). 



∆pheromone(i, k) = ∝. (Model Accurarcy(k)) + β. (
FeaturesNumber−FeaturesNumber(k)

FeaturesNumber
)                      (9) 

                                                      

 

 where ∆pheromone(i, k) is the amount of pheromone which is deposited by ant k on feature i, model accuracy is either Fmeasure or 

accuracy of the classification model (which will be explained in experimental section) trained by features founded by ant k. 

FeatutesNumber and FeaturesNumber(k) are the number of all features and the number of features in the path of ant k respectively. 

Finally, α and β  are two parameters that control the relative weights of classifier performance and feature subset length, respectively, 

according to α + β = 1. 

 

8. Find the best ant with the highest F-measure. 

9. Pheromone update )the pheromone of all features is evaporated, all ants deposit a pheromone on the features in their paths and 

the best ant has extra effect on pheromone update(: 

 

pheromonei(t + 1) = (1 − ρ). pheromonei(t) + ∑ ∆pheromone(i, k) + ∆pheromone(i, BestAnt)m
k=1      

                 

(10) 

 

  

10. Previous ants are removed and new ants are generated randomly.   

11. If the stop criterion )ants follow the same path or maximum number of iteration is reached( is not achieved (go to 3, else go to 

12 

12. The path of ant with maximum F-measure is the best solution. 

13. End   

 

 The block diagram of the first proposed feature selection algorithm is shown in Fig. 4. 

 

5.3.2. The second method 

 Our first proposed feature selection method returns the most relevant features as optimal feature subset for all seven pixel classes. The 

first method reduces the feature vector length with maximizing Fmeasure or accuracy (to be defined later). In feature reduction phase of 

the first method, the main properties of all pixel classes were investigated and a feature vector including wavelet and color features was 

proposed. This was based on the fact that all pixels in different classes could be classified from other classes by using a single feature 

vector. It is clear that using an optimal feature vector for each of seven classifiers can improve the performance of the overall 

classification. For example, horizontal and vertical frequency components of wavelet decomposition in wavelet features are irrelevant 

feature for classifying pixels of class C7 while these features are strongly relevant features for classifying pixels in class C4 in Fig.5. 

 

Fig 5. Structure of classes C4 and C7. 

 Accordingly in the second proposed feature selection method, an optimal feature subset is extracted for each class separately. 

This idea cannot be applied to ordinary classification methods such as KNNs while it can be applied to one-against-all ELMs and 

SVMs of all seven classes. Although this is a time consuming task, it is offline which needs to be done only once. The block 

diagram of this method is depicted in Fig. 6. 

 This type of feature selection presents an optimal feature subset for each pixel class which increases the classification accuracy 

in comparison with the complete feature set since all irrelevant and redundant features are omitted from the feature set in each 

class. The pseudo-code for the second proposed algorithm is presented as follows: 

1- For each pixel class do 2-4. 

2- Apply the first proposed feature selection. 

3- Compute an optimal feature set for each class separately. 

4- Train each binary pixel classifier by its own feature set. 
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Fig 4. Proposed first feature selection method based on ACO. 
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Fig. 6. Second proposed feature selection method. 

 



6. EXPERIMENTAL SETUP 

 Mars Exploration Rover Spirit dataset; which has 90 images with the size of 512x512; is used as an image dataset in this 

research [25]. These images are the sub images of Home Plate South panorama image. Some parts of this dataset are shown in 

Fig. 7. Seven classes of rocks and sands are determined in [3] for the task of pixel classification which are depicted in Table 3. 

 

 

 

 

Figure.7. Some parts of Home Plate South panorama image 

  

TABLE 3 

PIXEL CLASSES. 
CLASS 

SYMBO

L 

C1 (ROVER TRACKS) C2 (SMALL BLACK 

STONE AND SAND) 

C3 (MEDIUM 

BLACK STONE AND 

SAND) 

C4 (LAYERED 

ROCKS) 

C5 (WAVE 

ROCKS) 

C6(DARK 

LARGE SIZE 

ROCKS WITH 

SHADOW) 

C7 (FLAT 

ROCKS) 

 
IMAGE 

SAMPLE 

       

 

 To show the utility of the proposed feature selection algorithms a series of experiments are conducted. We implement the 

proposed algorithms on a machine with 2.26 GHz Corei7 CPU and 6GB of RAM. First, the images are zero padded by 10 pixels 

per side. Each pixel is windowed with a 21×21 window around it. Wavelet decomposition is computed in each window for the 

gray image, norm of rows and columns of LH and norm of rows and columns of HL lead to 4 vectors. The mean and standard 

deviation of these vectors are 8 wavelet features per pixel. In color features, the number of dominant colors is set to 8, so, 24 

features are computed for R, G and B components. Also, mean and standard deviation of R, G and B components form 6 color 

statistic features. Finally, with 4 bins for the histogram of R, G and B, 12 features are computed. Therefore, a feature vector of 

dimension 50 is extracted for each pixel. 

 We have seven SVMs and ELMs for seven classes; each one classifies only one type of rock. To train each classifier, the pixels 

corresponding to each rock are considered as positive samples and the remaining pixels are considered as negative samples. 

Table 4 shows the number of positive and negative samples for all pixel classes used in this research.  All classifiers are trained 

for 60% of these positive and negative pixels and the remained 40% is used as unseen data in test phase. 

 In these experiments, various parameter values were tested for KNNs, GA and the proposed algorithms in both feature selection 

and pixel classification tasks. According to our experiments, the highest performance in each method is achieved by setting the 

parameters to values shown in Table 5. For classification task, sequential minimization optimization (SMO) is selected as 

learning method in SVM with maximum iteration of 20000 and kernel cache limit of 1000. The Multilayer Perceptron (MLP) 

with scale [-0.01, 0.01], Gaussian kernel with 𝜎 = 4 and linear kernel functions are used. 

 

 



TABLE 4 

NUMBER OF POSITIVE AND NEGATIVE SAMPLES FOR ALL PIXEL CLASSES. 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Number of positive samples 5651 5470 4941 10771 8682 4959 5475 

Number of negative samples 5734 4365 5412 12544 9322 4566 7165 

Sum 11385 9835 10353 23515 18004 9525 11640 

 

TABLE 5 

PARAMETER SETTINGS FOR GA AND THE PROPOSED ALGORITHMS. 
Methods Iteration Population Initial 

pheromone 

Crossover 

Probability 

Mutation 

Probability 
𝛿 𝛾 𝛼 𝛽 𝜌 𝜑 𝜔 

GA 100 100 - 0.6 0.008 - - - - - -  

Proposed 

Algorithms 

100 100 1 - - 1 1 0.6 0.4 0.3 0.1 0.9 

7. EXPERIMENTAL RESULTS 

 Our proposed pixel classification scheme with feature selection methods are evaluated by precision, recall, Fmeasure and 

accuracy metrics which are computed by the Eqs. (11)-(14).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
            (11)                                     

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                            (12)                                                                         

 

 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙            (13)  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  (14)                                                                                                 

 The results are divided into six parts. The results of classification accuracy with complete feature set, selected features by the 

first and second feature selection methods are reported in the following first three parts. In part 7.4, run time comparison is 

discussed. Statistical comparisons are reported in part 7.5 and finally segmentation results are depicted in part 7.6. 

7.1. Proposed Pixel Classifier with Complete Feature Set 

 First experiment is done for the comparison between ELM, SVM and KNNs performances for complete feature set. Table 6 

shows the precision, recall, Fmeasure and accuracy for these classifiers with complete feature set. Average results in table 6 show 

that ELM classifier outperforms other classifiers with complete feature set. ELM classifier with RBF kernel has the best average 

Fmeasure and accuracy of 0.9107 and 0.9023, respectively. It outperforms the SVM with the average Fmeasure and accuracy of 

0.8726 and 0.8670, respectively and KNNs with 0.8463 and 0.8439.  

 

 

 

TABLE 6 

CLASSIFICATION ACCURACY FOR COMPLETE AND OPTIMAL FEATURE SET WITH SVM, ELM AND KNNS. 

 
 Complete Feature set Selected Features by first 

method 

Complete Feature 

set 

Selected Features by 

first method 

Complete Feature 

set 

Selected Features by 

first method 

SVM 

MLP 

SVM 

Linear 

SVM 

Gaussian 

SVM 

MLP 

SVM 

Linear 

SVM 

Gaussian 

KNNs(k

=5) 

KNNs(k

=3) 

KNNs(k

=5) 

KNNs 

(k=3) 

ELM 

RBF 

ELM 

Linear 

ELM 

RBF 

ELM 

Linear 

 

 

C1 

Precision 0.6139 0.6553 0.6508 0.6110 0.6706 0.6453 0.6254 0.6342 0.6043 0.6234 0.6203 0.8223 0.6187 0.7786 

Recall 0.9874 0.9511 0.9208 0.9867 0.9039 0.9067 0.9463 0.9533 0.9421 0.9243 0.9860 0.8906 0.9832 0.9381 

Fmeasure 0.7571 0.7760 0.7626 0.7546 0.7700 0.7540 0.7530 0.7616 0.7363 0.7447 0.7615 0.8551 0.7594 0.8509 

Accuracy 0.6855 0.7274 0.8536 0.6816 0.7319 0.8197 0.6920 0.7039 0.6651 0.6853 0.6935 0.8502 0.6909 0.8369 

 

C2 

Precision 0.9975 0.9991 0.9978 0.9978 0.9989 0.9876 0.9535 0.9632 0.9418 0.9612 0.9637 0.9658 0.8914 0.9611 

Recall 0.8600 0.8348 0.8603 0.8526 0.8328 0.8633 0.8245 0.8043 0.8175 0.7944 0.9766 0.9427 0.9872 0.8613 

Fmeasure 0.9237 0.9096 0.9240 0.9195 0.9083 0.9213 0.8843 0.8766 0.8752 0.8698 0.9701 0.9541 0.9368 0.9084 

Accuracy 0.9209 0.9077 0.8750 0.9170 0.9065 0.8710 0.8800 0.8741 0.8704 0.8678 0.9665 0.9496 0.9260 0.9035 

 

C3 

Precision 0.9952 0.9981 0.9976 0.9791 0.9981 0.9765 0.9032 0.9243 0.9008 0.9150 0.9421 0.9918 0.9931 0.8518 

Recall 0.7520 0.6800 0.7363 0.7770 0.6811 0.7098 0.7357 0.7466 0.7380 0.7281 0.9458 0.7942 0.7993 0.8369 

Fmeasure 0.8567 0.8089 0.8473 0.8664 0.8097 0.8221 0.8108 0.8260 0.8113 0.8109 0.9439 0.8820 0.8857 0.8442 

Accuracy 0.8799 0.8467 0.7922 0.8857 0.8472 0.7849 0.8362 0.8499 0.8362 0.8380 0.9464 0.8986 0.9016 0.8527 

 

C4 

Precision 0.9062 0.9436 0.8971 0.8937 0.9501 0.8876 0.8622 0.8865 0.8431 0.8734 0.9291 0.9209 0.9143 0.9642 

Recall 0.9440 0.9174 0.9516 0.9541 0.9136 0.9312 0.9233 0.9543 0.8876 0.9354 0.9414 0.9180 0.9498 0.9231 

Fmeasure 0.9247 0.9303 0.9236 0.9229 0.9315 0.9089 0.8917 0.9191 0.8647 0.9033 0.9352 0.9194 0.9317 0.9432 

Accuracy 0.9290 0.9365 0.8906 0.9264 0.9379 0.8788 0.8964 0.9225 0.8718 0.9075 0.9397 0.9257 0.9357 0.9486 



 

C5 

Precision 0.8705 0.8524 0.8965 0.8812 0.8532 0.8931 0.8565 0.8578 0.8523 0.8412 0.9178 0.8302 0.9107 0.8743 

Recall 0.9357 0.9423 0.8942 0.9100 0.9301 0.8879 0.9133 0.9104 0.8831 0.9097 0.9034 0.9929 0.8991 0.9315 

Fmeasure 0.9020 0.8951 0.8953 0.8954 0.8900 0.8905 0.8832 0.8833 0.8674 0.8741 0.9105 0.9043 0.9048 0.9019 

Accuracy 0.9019 0.8935 0.8697 0.8974 0.8891 0.8602 0.8844 0.8840 0.8698 0.8736 0.9144 0.8986 0.9088 0.9024 

 

 

C6 

Precision 0.8080 0.9373 0.8024 0.7082 0.9017 0.7937 0.7976 0.9155 0.7732 0.9015 0.8985 0.8951 0.8682 0.8514 

Recall 0.9020 0.5824 0.8843 0.8543 0.5647 0.8518 0.9031 0.6534 0.8942 0.6016 0.9060 0.7893 0.8725 0.7654 

Fmeasure 0.8524 0.7184 0.8413 0.7744 0.6945 0.8217 0.8470 0.7625 0.8293 0.7216 0.9022 0.8388 0.8703 0.8061 

Accuracy 0.8374 0.7623 0.9013 0.7409 0.7413 0.8619 0.8302 0.7882 0.8084 0.7584 0.8978 0.8421 0.8647 0.8083 

 

C7 

Precision 0.9936 0.9400 0.9989 0.9926 0.9178 0.9776 0.9878 0.9900 0.9653 0.9742 0.9448 0.9704 0.9989 0.8456 

Recall 0.8087 0.8537 0.6727 0.8107 0.8494 0.6856 0.7524 0.7764 0.7442 0.7601 0.9591 0.8011 0.8454 0.9302 

Fmeasure 0.8917 0.8948 0.8040 0.8925 0.8822 0.8060 0.8541 0.8702 0.8404 0.8539 0.9519 0.8776 0.9157 0.8858 

Accuracy 0.9149 0.9130 0.8981 0.9154 0.9018 0.8668 0.8887 0.8998 0.8776 0.8874 0.9580 0.9033 0.9326 0.8962 

Average Precision 0.8835 0.9036 0.8915 0.8662 0.8986 0.8802 0.8551 0.8816 0.8401 0.8699 0.8880 0.9137 0.8850 0.8467 

Average Recall 0.8842 0.8231 0.8457 0.8779 0.8108 0.8337 0.8569 0.8283 0.8438 0.8076 0.9454 0.8755 0.8952 0.8837 

Average   

F-measure 

0.8726 0.8475 0.8568 0.8608 0.8408 0.8463 0.8463 0.8427 0.8320 0.8254 0.9107 0.8901 0.8802 0.8579 

Average 

Accuracy 

0.8670 0.8553 0.8686 0.8520 0.8508 0.8490 0.8439 0.8460 0.8284 0.8311 0.9023 0.8954 0.8800 0.8783 

Optimal feature subset found by first 

proposed method and SVM  

LH_meanL, HL_stdH, HL_stdL,  DCDR1, DCDR5, DCDG4, DCDB1, Bm, Bs, R1, R6, G2,G3, B1,B4,B6,B7 

Optimal feature subset found by first 

proposed method and KNNs  

LH_stdL, HL_meanL, HL_stdL, DCDR1, DCDR7, DCDG1, DCDB1,DCDB3, Bm,Bs,R1 ,R6, G2,G3, G4,B1,B6,B8 

Optimal feature subset found by first 

proposed method and ELM classifier 

HL_stdH, HL_stdL, DCDR4, DCDR8, DCDG5, DCDB1, DCDB5, DCDB7, Bs, R4, G8, B2, B6 

 

 

 

 

  

7.2. First Feature Selection Method 

 As it was mentioned before, two feature selection methods were proposed in this research. The last 3 rows of table 6 show that 

the first proposed method selects 13, 17 and 18 features for ELM, SVM and KNNs classifiers, respectively. From these results, it 

can be concluded that after dimension reduction by the first proposed method, the classification performance is preserved with a 

little decrease. However, we’ll show later that the main advantage of the first feature selection method is that it decreases the run 

time of classifiers in both train and test phases considerably. Also, there is a difference in optimal feature subsets for a system 

with ELM, SVM and KNNs, which stems from differences in performance of subsets in different classifiers; this leads ants to 

select different paths and consequently different features. 

 It is shown that how the first feature selection method is in correlation with the features efficiencies in classification 

performance. For this task, features are first sorted based on their pheromone. Then, the classification accuracies are computed 

for first ranked feature, two top ranked features, three top ranked features and so on. These accuracies are depicted in Fig. 8 for 

ELM, SVM and KNNs in their best parameters as RBF kernel, MLP kernel and k=5, respectively. For ELM, SVM and KNNs 

classifiers, after respectively, 13, 17 and 18 top ranked features, accuracies do not increase any more. This means that our first 

proposed feature selection algorithm converged correctly in 13, 17 and 18 features for these classifiers. 



 

Fig. 8. Classification accuracies for highly ranked feature subsets. 

7.3. Second Feature Selection Method 

 The second proposed feature selection method provides an optimal feature subset for each pixel classifier separately. For the 

majority of classifiers such as KNNs this task is not applicable, since only one model is trained for all classes and it is not 

possible to introduce different feature subsets for each class. In the proposed scheme, since each class has its own classifier as 

either ELM or SVM, it is possible to train each classifier by its own feature subset. Optimal feature subsets and reduction 

percents are presented in table 7. The lowest cardinality is appeared for the selected features for class C5 by ELM classifier with 

RBF kernel which selects 12 features among all 50 features. 

 The second feature selection method decreases the dimension of the feature set and increases the classification accuracy for the 

majority of pixel classes. Precision, recall, Fmeasure and accuracy of the second proposed method are reported for ELM and 

SVM classifiers with their different kernels in Table 8. This table also shows that how performances are affected by four feature 

sets including complete feature set, selected features by the first and second method and selected features by genetic algorithm. 

The second proposed feature selection method outperforms the first proposed feature selection method and genetic algorithm-

based feature selection. Furthermore, the second proposed algorithm slightly outperforms the classification performance of 

classifiers with complete feature set. Therefore, the second feature selection method not only decreases the feature set cardinality 

but also slightly increases the classification accuracy.  

TABLE 7 

OPTIMAL FEATURE SUBSETS FOR EACH PIXEL CLASS. 
      ELM_RBF         ELM_Linear       SVM_MLP SVM_Linear 

 Selected 

Features 
Reduction 

Percent 

Selected 

Features 
Reduction 

Percent 

Selected 

Features 
Reduction 

Percent 

Selected 

Features 
Reduction 

Percent 

C1 14 72% 13 74% 16 68% 17 66% 

C2 13 74% 15 70% 19 62% 19 62% 

C3 16 68% 17 66% 17 66% 18 64% 

C4 13 74% 14 72% 19 62% 21 58% 

C5 12 76% 20 60% 21 58% 20 60% 

C6 14 72% 19 62% 15 70% 17 66% 

C7 17 66% 16 68% 18 64% 18 64% 

 

TABLE 8 

CLASSIFICATION ACCURACY FOR SECOND PROPOSED METHOD AND GA. 
 Complete Feature set Selected Features by 

 first method 

Selected Features by  

second method 

Selected Features by GA 

SVM_MLP ELM_RBF SVM_MLP ELM_RBF SVM_MLP ELM_RBF SVM_MLP ELM_RBF 

 

 

C1 

Precision 0.6139 0.6203 0.6110 0.6187 0.5889 0.6219 0.6122 0.6054 

Recall 0.9874 0.9860 0.9867 0.9832 0.9892 0.9785 0.9619 0.9614 

Fmeasure 0.7571 0.7615 0.7546 0.7594 0.7390 0.7604 0.7482 0.7429 

Accuracy 0.6855 0.6935 0.6816 0.6909 0.6519 0.6940 0.6787 0.6698 

 

 

C2 

Precision 0.9975 0.9637 0.9978 0.8914 0.9960 0.9575 0.9935 0.8854 

Recall 0.8600 0.9766 0.8526 0.9872 0.8883 0.9940 0.8415 0.9743 

Fmeasure 0.9237 0.9701 0.9195 0.9368 0.9391 0.9754 0.9112 0.9277 

Accuracy 0.9209 0.9665 0.9170 0.9260 0.9359 0.9721 0.9088 0.9156 

 Precision 0.9952 0.9421 0.9791 0.9931 0.9953 0.9923 0.9713 0.9834 
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ELM-RBF

SVM-MLP

KNNs(k=5)



C3 Recall 0.7520 0.9458 0.7770 0.7993 0.7779 0.9443 0.7455 0.7923 

Fmeasure 0.8567 0.9439 0.8664 0.8857 0.8732 0.9677 0.8436 0.8775 

Accuracy 0.8799 0.9464 0.8857 0.9016 0.8922 0.9699 0.8680 0.8945 

 

 

C4 

Precision 0.9062 0.9291 0.8937 0.9143 0.9077 0.9396 0.8965 0.9145 

Recall 0.9440 0.9414 0.9541 0.9498 0.9517 0.9714 0.9576 0.9321 

Fmeasure 0.9247 0.9352 0.9229 0.9317 0.9293 0.9552 0.9260 0.9232 

Accuracy 0.9290 0.9397 0.9264 0.9357 0.9330 0.9579 0.9293 0.9284 

 

 

C5 

Precision 0.8705 0.9178 0.8812 0.9107 0.8945 0.9587 0.8633 0.8954 

Recall 0.9357 0.9034 0.9100 0.8991 0.9317 0.9111 0.9042 0.8933 

Fmeasure 0.9020 0.9105 0.8954 0.9048 0.9127 0.9342 0.8833 0.8943 

Accuracy 0.9019 0.9144 0.8974 0.9088 0.9141 0.9382 0.8848 0.8982 

 

 

C6 

Precision 0.8080 0.8985 0.7082 0.8682 0.8037 0.8854 0.7854 0.8546 

Recall 0.9020 0.9060 0.8543 0.8725 0.8992 0.8986 0.8945 0.8632 

Fmeasure 0.8524 0.9022 0.7744 0.8703 0.8487 0.8919 0.8364 0.8588 

Accuracy 0.8374 0.8978 0.7409 0.8647 0.8332 0.8867 0.8178 0.8523 

 

 

C7 

Precision 0.9936 0.9448 0.9926 0.9989 0.9863 0.9912 0.9932 0.9738 

Recall 0.8087 0.9591 0.8107 0.8454 0.8247 0.8965 0.7913 0.8055 

Fmeasure 0.8917 0.9519 0.8925 0.9157 0.8983 0.9415 0.8808 0.8816 

Accuracy 0.9149 0.9580 0.9154 0.9326 0.9191 0.9517 0.9073 0.9064 

Average Precision 0.8835 0.8880 0.8662 0.8850 0.8817 0.9066 0.8736 0.8732 

Average Recall 0.8842 0.9454 0.8779 0.8952 0.8946 0.9406 0.8709 0.8888 

Average F-measure 0.8726 0.9107 0.8608 0.8802 0.8771 0.9172 0.8613 0.8722 

Average Accuracy 0.8670 0.9023 0.8520 0.8800 0.8684 0.9100 0.8563 0.8664 

 

 

7.4. Run Time Comparison 

 Run time is so important especially for the on-board applications of Mars image segmentation. Here, the run time is considered 

for both train and test phases. Table 9 reports the run time of train and test phases in three classifiers with complete feature set for 

different parameters. Although KNN has no training time, its classification accuracy is very lower than SVM and ELM. 

Generally, ELM with linear kernel has the lowest run time with an average of 4402ms and 180ms for train and test phases 

respectively.  

 The first proposed feature selection algorithm selects the most relevant features for all classes simultaneously. Train and test 

samples of all classes are involved in steps 4, 5 and 7 of this algorithm while in the second feature selection algorithm the train 

and test samples of only one class are involved at the same time. The run times of the first and second feature selection 

algorithms are 1286 and 353 seconds, respectively. Note that 353 seconds is only for one class in the second feature selection 

method. Feature selection for other classes can be run with parallel procedures. These run times are the average run times of 

using different classifiers in feature selection process.  It should be noted that the proposed feature selection algorithms are done 

once in offline phase and then selected features will be used for the train and test phases of classifiers. Therefore, their run times 

are not the concern for pixel classification application. The main advantage of the proposed feature selection methods is 

dimension reduction which decreases the run time considerably. Therefore, we also have reported the run time of classifiers with 

selected features by two proposed feature selection algorithms in train and test phases in Fig. 9 and Fig. 10, respectively. For 

these two figures some abbreviations are used for each bar. For example, ‘SVM-Linear-Comp’ means that SVM classifier with 

linear kernel is used for complete feature set and ‘SVM-Linear-First’ means that SVM classifier with linear kernel is used for 

selected features by the first proposed method. For train run times, only ELM and SVM are compared since KNNs has no train 

run time. It is concluded from these figures that classifiers with selected features by feature selection methods have lower run 

times in train and test phases. Another conclusion is that each classifier with selected features from the first and second feature 

selection methods has the same run time. However, the main advantage of the second proposed method is its higher accuracy 

which was reported in Table 8 in more details. 

 

 

TABLE 9 

RUN TIME OF SVM, KNN AND ELM FOR COMPLETE FEATURE SET. 
 ELM_RBF ELM_Linear SVM_MLP SVM_Linear KNNs(k=3) KNNs(k=5) 

C1 Train time(ms2) 2734 2032 7554 20041 - - 

Test time(ms) 719 106 368 125 5228 7242 

C2 Train time(ms) 1677 1172 2471 1233 - - 

Test time(ms) 463 72 133 46 4338 4845 

C3 Train time(ms) 2244 1562 6792 11011 - - 

Test time(ms) 610 89 316 106 6876 7929 

C4 Train time(ms) 18318 12954 25054 32767 - - 

Test time(ms) 4150 442 1214 432 26545 29415 

                                                           
2 The time unit for algorithms run time is millisecond with the ‘ms’ abbreviation. 



C5 Train time(ms) 11588 9046 17350 29637 - - 

Test time(ms) 2333 320 811 352 18337 20980 

C6 Train time(ms) 1882 1254 5594 6517 - - 

Test time(ms) 519 88 291 98 5842 6835 

C7 Train time(ms) 4608 2795 9603 23052 - - 

Test time(ms) 1204 147 509 166 11589 14516 

Average Train Time 6150 4402 10631 17751 - - 

Average Test Time 1428 180 520 189 11250 13108 

 

 
Fig. 9. Train run time for ELM and SVM classifiers with selected features of first and second feature selection methods. 

 
Fig. 10. Test run time for ELM, SVM and KNNs classifiers with selected features of first and second feature selection methods. 

 

7.5. Statistical Comparison 

 Tables 6 and 8 reported the Fmeasure and accuracy of all 7 pixel classes for each method. Average Fmeasures and accuracies in 

all 7 classes could be used as overall performance criteria. Furthermore, a statistical test is used for the overall performance 



comparison too. In this research, for overall comparison of methods, two sets with seven elements should be compared. 

Therefore, parametric statistical tests aren’t applicable here and pairwise U-Mann-Whitney test is used which is a non-parametric 

test. In this test, the null hypothesis is that two samples come from the same population against an alternative hypothesis with the 

meaning that the two samples are from different populations. This test provides the confidence level for the differences between 

sets as well as a mean rank for each set. We first determine that two sets are different with a confidence level and then determine 

the better set which is the set with higher mean rank. Different pairwise comparisons between classifiers with different feature 

sets are reported in table 10. This table shows the mean rank and confidence level between each two sets and its last column 

determines which set is statistically better than another. The confidence level threshold of 90% is considered. The main 

conclusion is that ELM with the complete feature set outperforms other classifiers statistically with a confidence level of 94%. 

Furthermore, the classification performance of classifiers with complete feature set and with selected features are statistically the 

same. This means that after dimension reduction the classification performance isn’t decreased statistically. Although the mean 

rank of classifier performances with the selected features by second feature selection method is higher than classifier 

performances with complete feature set, its confidence level is very low and under predefined threshold. Therefore, we reported 

that none of which is better than other. Finally, it is resulted that the second proposed feature selection method outperforms the 

genetic algorithm with the confidence level of 95.2%.  

TABLE 10 

PAIRWISE STATISTICAL COMPARISON OF ALL METHODS. 
 Comparative 

Mean Ranks 
Confidence Level Which one is better 

statistically? 

 
 
 
 
 
 

F-Measure 

Complete 
Feature Set 

ELM and SVM 9.57 and 5.43 94.4% ELM 

ELM and KNNs 10.14 and 4.84 98.2% ELM 

 
First Method and 

Complete 

ELM_Com and ELM_First 9.00 and 6.00 82% None 

SVM_Com and SVM_First 7.86 and 7.14 25.1% None 

KNNs_Com and KNNs_First 8.43 and 6.57 59.4% None 

Second Method 
and Complete 

ElM_Com and ELM_Second 7.14 and 7.86 25.1% None 

SVM_Com and SVM_Second 7.14 and 7.86 25.1% None 

Second Method and 
GA 

ELM_Second and ELM_GA 9.71 and 5.29 95.2% ELM_Second 

SVM_Second and SVM_GA 8.43 and 6.57 59.4% None 

 
 
 
 
 
 
 
 

Accuracy 

Complete 
Feature Set 

ELM and SVM 9.14 and 5.86 85.8 None 

ELM and KNNs 10.14 and 4.86 98.2 ELM 

 
First Method and 

Complete 

ELM_Com and ELM_First 9 and 6 82% None 

SVM_Com and SVM_First 7.71 and 7.29 15.2% None 

KNNs_Com and KNNs_First 8.79 and 6.21 75% None 

Second Method 
and Complete 

ElM_Com and ELM_Second 6.86  and 8.14 43.5% None 

SVM_Com and SVM_Second 7.14 and 7.76 25.1% None 

Second Method and 
GA 

ELM_Second and ELM_GA 9.43 and 5.57 91.5% ELM_Second 

SVM_Second and SVM_GA 8.57 and 6.43 66.2% None 

 

7.6. Segmentation Results 

 The final results of this research are pixel classification. All seven types of rocks including Rover tracks, small black stone and 

sand, medium black stone and sand, layered rocks, wave rocks, dark large size rocks with shadow and flat rocks are all classified 

in Home Plate South sub images. However, some parts of images which were far away from Pancom are not classified to one of 

seven rock types. The reason is that their details are not visible. As it is clear from classified images, most errors occur in region 

boundaries. Since the feature vector of a pixel is derived from a window around that pixel, the pixels which are near to region 

boundaries are also windowed by the pixels from other classes, so they are incorrectly classified to other class labels. We 

assigned eight colors including red, green, blue, yellow, indigo, pink, gray and violet for classes 1-7 and non-classified parts, 

respectively. Fig. 11(a-c) shows some samples of classified images. 

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis


 
Fig. 11. Samples of classified images. 



8. CONCLUSION 

 Home plate south panorama images contain information about Mars, taken by Mars rover, a robot which explores on Mars 

surface. In this paper, a new pixel classification scheme was proposed which leads to Mars image segmentation. Firstly, each 

pixel is windowed and mapped to a feature vector including wavelet and color features. The type of extracted features was 

proposed by the way that all pixel classes could be discriminated from other classes and appropriate segmentation of images are 

achieved. Then, most relevant features among complete feature set were selected by two proposed feature selection schema based 

on ACO. Finally, optimal feature sets were presented for the classifiers for pixel classification. Classification of pixels segments 

the images into pixel groups. Our proposed model for image segmentation was compared with other methods; results showed that 

the proposed pixel classification scheme with complete feature set and ELM classifier outperforms other classifiers include SVM 

and KNNs in both accuracy and run time. Furthermore, the first feature selection method presents a feature subset which 

decreases the run times and preserves the accuracies of not only ELM classifier but also SVM and KNNs classifiers. Finally, the 

second proposed feature selection method selects an optimal feature subset for each pixel class separately. This method decreases 

the run time and increases the accuracies of most of classifiers simultaneously. It also outperforms the first proposed feature 

selection method and genetic algorithm-based feature selection. For future works, the performance of the proposed approaches 

can be evaluated by taking into account other classifiers such as artificial neural networks and decision trees. Other feature 

selection methods can be improved and applied to such systems. In addition, intrinsic property of data such as Relief weights can 

be used in population-based techniques such as ACO, GA and Particle swarm optimization (PSO) algorithms to increase 

convergence speed. Finally, other features like shape and texture features and color features in other color systems can also be 

applied for pixel classification task.  
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