

Developing a User-Centric Distributed

Middleware for SLA Monitoring in SaaS Cloud

Computing Using RESTful Services

Shaymaa Waleed Abdulatteef Al-Shammari

College of Science and Technology

School of Computing, Science and Engineering

University of Salford, Manchester, UK

Submitted in Partial Fulfilment of the Requirements of the

Degree of Doctor of Philosophy

February 2017

i

Table of Contents

Table of Contents ... i

List of Tables .. vii

List of Figures .. viii

Acknowledgments ... xiv

Declaration .. xv

List of Abbreviations ... xvi

Abstract .. xviii

1 CHAPTER ONE: INTRODUCTION ... 1

1.1 Service Level Agreement ... 3

1.2 Problem Statement ... 4

1.3 Research Motivation .. 5

1.4 Research Aim and Objectives .. 6

1.5 Research Contributions .. 7

1.6 Significance of the Study ... 7

1.7 Research Methodology ... 8

1.8 Thesis Outline .. 12

2 CHAPTER TWO: BACKGROUND IN CLOUD COMPUTING........................ 14

2.1 Introduction .. 14

2.2 Cloud Computing ... 15

2.2.1 Cloud Computing Models ... 16

2.3 Software-as-a-Service (SaaS) ... 16

2.4 Technologies Used in Cloud Computing ... 18

2.4.1 Service Oriented Architecture (SOA) ... 19

2.4.2 Web Services .. 19

2.4.2.1 SOAP... 21

2.4.2.2 REST ... 24

ii

2.4.2.3 REST vs SOAP ... 28

2.4.3 Middleware ... 29

2.4.3.1 Service Oriented Middleware (SOM) ... 32

2.5 Chapter Summary ... 34

3 CHAPTER THREE: MONITORING USER SATISFACTION IN CLOUD

COMPUTING ... 35

3.1 Introduction .. 35

3.2 Cloud Monitoring ... 36

3.2.1 Monitoring Frameworks ... 37

3.2.1.1 Server Centric Monitoring .. 38

3.2.1.2 User Centric Monitoring ... 41

3.2.1.3 Third Party Monitoring ... 43

3.2.2 Quality Models ... 47

3.2.2.1 SaaS-Qual Model .. 48

3.3 QoE Monitoring ... 50

3.3.1 Measuring QoE ... 56

3.3.2 Using Fuzzy Systems in Measuring QoE ... 57

3.4 SLA Monitoring ... 59

3.4.1 Managing SLA Monitoring Process ... 59

3.4.2 Representing the SLA Parameters in Web Services 63

3.4.3 Managing SLA using REST ... 64

3.5 Chapter Summary ... 65

4 CHAPTER FOUR: THE PROPOSED MIDDLEWARE 72

4.1 Introduction .. 72

4.2 REST Methods ... 73

4.3 The Proposed Solution – Monitoring SLA using REST (MonSLAR) 73

4.4 Architecture of MonSLAR ... 75

iii

4.4.1 Service Request ... 78

4.4.2 Monitoring Request .. 79

4.4.3 Management Request .. 84

4.5 Embedding Monitored Data in REST Services ... 85

4.6 Deploying MonSLAR in Multi-tenancy of SaaS ... 86

4.7 Chapter Summary ... 87

5 CHAPTER FIVE: ESTIMATING QoE OF SaaS ... 89

5.1 Introduction .. 89

5.2 Defining a Metric for Estimating QoE ... 90

5.3 Estimating QoE in Terms of User Satisfaction .. 91

5.4 Estimating QoE Value Using Fuzzy Logic .. 93

5.4.1 The Input/Output Design of the Fuzzy Inference Engine 95

5.4.2 The Inference Rules (Rule Selection) ... 96

5.4.3 The Defuzzification Method ... 97

5.5 Effect of the SaaS-Qual Factors on the QoE Value ... 98

5.6 Discussion .. 105

5.7 Chapter Summary ... 105

6 CHAPTER SIX: MonSLAR IMPLEMENTATION ... 107

6.1 Introduction .. 107

6.2 Message Flow of Monitoring in MonSLAR .. 107

6.3 Deploying MonSLAR in SaaS Providers and Clients.................................... 110

6.4 MonSLAR’s Components Implementation .. 110

6.4.1 Server side MonSLAR .. 110

6.4.2 The Client Side MonSLAR- System Front End 112

6.5 Implementing MonSLAR Requests ... 114

6.5.1 The Service Request ... 114

6.5.2 The Monitoring Request ... 115

iv

6.5.3 The Management Request .. 117

6.6 Chapter Summary ... 118

7 CHAPTER SEVEN: SYSTEM TESTING AND EVALUATION 119

7.1 Introduction .. 119

7.2 MonSLAR Test .. 119

7.2.1 Experiment Objectives .. 119

7.2.2 Experiment Setup .. 120

7.2.3 Experiment Results ... 121

7.3 Quantitative Evaluation of MonSLAR... 121

7.3.1 Message Size Overhead .. 122

7.3.1.1 Experiment Objectives .. 122

7.3.1.2 Experiment Description .. 122

7.3.1.3 Experiment Results ... 124

7.4 Qualitative Evaluation of MonSLAR... 125

7.5 The Fuzzy Engine Test ... 132

7.5.1 SaaS-Qual Test ... 132

7.5.2 Validating the Proposed Metric .. 133

7.5.2.1 Purpose of the Study ... 133

7.5.2.2 Study Process .. 134

7.5.2.3 Study Results ... 135

7.5.3 Adjusting the Fuzzy Engine Based on the User Study 142

7.5.3.1 Testing the Modified Fuzzy Engine .. 148

7.6 Discussions ... 150

7.7 Chapter Summary ... 152

8 CHAPTER EIGHT: CONCLUSIONS AND RECOMMENDATIONS 153

8.1 Introduction .. 153

8.2 Conclusions .. 153

v

8.3 Achievements of the Aim and Objectives .. 153

8.4 Research Limitations .. 155

8.5 Recommendations for Future Research ... 155

8.5.1 Research related to MonSLAR ... 155

8.5.2 Research related to the proposed QoE metric ... 156

8.6 Chapter Summary ... 157

REFERENCES ... 158

A. APPENDIX A: SLA EXAMPLE .. 175

A.1 SERVICE LEVEL AGREEMENT .. 175

B. APPENDIX B: DEFUZZIFICATION METHODS RESULTS 188

B.1 Testing Defuzzification Methods ... 188

B.2 Effect of Bisector Method .. 191

B.3 Effect of MOM Method .. 195

B4. Effect of LOM Method ... 200

B5. Effect of SOM Method ... 205

C. APPENDIX C : MONSLAR API SPECIFICATION ... 211

C.1 Introduction .. 211

C.2 HTTP methods.. 211

D. APPENDIX D: MONSLAR JAVA CODE... 214

D.1 HEAD Method (Monitoring Request-A) ... 214

D.2 POST Method (Monitoring Request-B) ... 215

D.3 OPTIONS Method (Monitoring Request-C) .. 216

D.4 OPTIONS Method (Management Request) ... 217

E. APPENDIX E : MONSLAR PERFORMANCE ... 218

E.1 Experiment Objectives .. 218

E.2 Experiment Setup .. 218

E.3 Experiment Results ... 219

vi

F. APPENDIX F: USER STUDY ... 220

F.1 Introduction ... 220

F.2 Deciding the users’ satisfaction .. 220

vii

List of Tables

Table 3-1 Comparison of software metric evaluation techniques (Gray & MacDonell,

1997) ... 57

Table 3-2 summarises the work related to the monitoring frameworks 67

Table 3-3 summarises the main quality models .. 70

Table 3-4 summarises the related work to SLA oriented Monitoring 70

Table 7-1 Quality Criteria ... 129

Table 7-2 Comparing MonSLAR to the other monitoring frameworks 130

Table 7-3 Test results of QoE values .. 132

Table 7-4 Comparison between the results of Fuzzy decision and the survey study ... 141

Table 7-5 Comparison between the results of the adjusted Fuzzy engine and the user

study .. 149

Table B- 1 Studying the effect of different defuzzification methods on QoE………...189

Table F- 1 User Study Cases………………………………………………………….221

viii

List of Figures

Figure 1-1 achieving the research objectives in thesis’s chapters 6

Figure 1-2 The research framework, adapted from Creswell (2013) 8

Figure 1-3 Research process ... 11

Figure 2-1 Mind map shows the background main fundamentals 14

Figure 2-2 SOAP envelop (Gustavo et al., 2004) ... 21

Figure 2-3 An example shows a WSDL, adapted from (Michael Papazoglou, 2008) ... 23

Figure 2-4 SOAP service invocation process (Michael Papazoglou, 2008) 23

Figure 2-5 depicts mapping WSDL to UDDI (Michael Papazoglou, 2008) 24

Figure 2-6 REST service invocation process .. 25

Figure 2-7 An example depicts a request message: (a) REST; (b) SOAP web services

(Upadhyaya et al, 2011) .. 26

Figure 2-8 Google search trend for RESTful API and SOAP API from 2004 to 2017

(Google-Trends) .. 27

Figure 3-1 mind map shows the influence of the literature review 35

Figure 3-2 weighted combination of the six factors of SaaS-Qual (Benlian et al., 2011)

 .. 50

Figure 3-3 The relationship between QoS disturbance and QoE value (Fiedler et al.,

2010) ... 52

Figure 3-4 Fuzzy system elements (Mendel, 1995) .. 57

Figure 4-1 A use case model describes the main actors in MonSLAR 75

Figure 4-2 MonSLAR’s architecture .. 76

Figure 4-3 A UML model for requests’ types in the proposed middleware 77

Figure 4-4 Handling the service request in MonSLAR .. 78

Figure 4-5 Using REST methods in the MonSLAR’s service request (collaboration

diagram) .. 79

Figure 4-6 Handling (monitoring request-A) in MonSLAR using HEAD method: (a)

Retrieve number of previous violation; (b) retrieve QoE value 80

Figure 4-7 Handling (monitoring request-B) in MonSLAR to detect violations in the

received services ... 81

Figure 4-8 Handling (monitoring request-C) in MonSLAR to retrieve the measured

parameters using OPTIONS method .. 81

file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090146
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090160

ix

Figure 4-9 Using REST services in the MonSLAR’s (monitoring request-A) using

HEAD - collaboration diagram: (a) Retrieve previous violations; (b) Retrieve QoE value

 .. 82

Figure 4-10 Using REST services in the MonSLAR’s (monitoring request-B) using

PUT&POST - collaboration diagram ... 83

Figure 4-11 Using REST services in the MonSLAR’s (monitoring request-C) using

OPTIONS - collaboration diagram ... 83

Figure 4-12 Handling the management request in MonSLAR 84

Figure 4-13 Using REST services in the MonSLAR’s management request

(collaboration diagram) ... 84

Figure 4-14 Extending HTTP headers to include SLA parameters 85

Figure 4-15 A UML diagram for embedding SLA parameters and monitored data within

the HTTP message .. 86

Figure 4-16 MonSLAR deployment in multi-tenancy- (shared component, tenant-

isolated component) .. 87

Figure 4-17 MonSLAR deployment in multi-tenancy - (dedicated component) 87

Figure 5-1 End-to-End QoE for SaaS ... 90

Figure 5-2 Methodology for studying SaaS-Qual to estimate QoE 92

Figure 5-3 The proposed fuzzy logic engine, adapted from (Mendel, 1995) 94

Figure 5-4 Membership function for the fuzzy input ... 96

Figure 5-5 Membership function of QoE (output) .. 96

Figure 5-6 Excerpt of the fuzzy rules ... 96

Figure 5-7 Methodology for implementing the defuzzification method 97

Figure 5-8 Effect of Features and Responsiveness ... 99

Figure 5-9 Effect of Features and Security ... 99

Figure 5-10 Effect of Features and Flexibility .. 99

Figure 5-11 Effect of Features and Rapport ... 100

Figure 5-12 Effect of Features and Reliability ... 100

Figure 5-13 Effect of Flexibility and Responsiveness .. 101

Figure 5-14 Effect of Rapport and Responsiveness .. 101

Figure 5-15 Effect of Security and Responsiveness ... 102

Figure 5-16 Effect of Reliability and Responsiveness .. 102

Figure 5-17 Effect of Security and Flexibility .. 103

Figure 5-18 Effect of Rapport and Flexibility .. 103

file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090178
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090180
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090183

x

Figure 5-19 Effect of Reliability and Flexibility .. 103

Figure 5-20 Effect of Rapport and Security .. 104

Figure 5-21 Effect of Reliability and Security .. 104

Figure 5-22 Effect of Reliability and Rapport .. 104

Figure 6-1 Sequence diagram describes the message flow of monitoring in MonSLAR

 .. 108

Figure 6-2 java code depicts isolating the retrieved measurements based on the client_id

 .. 111

Figure 6-3 The SaaS service web page with MonSLAR’s dashboard 113

Figure 6-4 MonSLAR’s dashboard with the monitored data 114

Figure 6-5 An example for saving the metrics in JSON file .. 115

Figure 6-6 HTTP message request of the HEAD method .. 115

Figure 6-7 HTTP message response of HEAD method .. 116

Figure 6-8 HTTP message request for the OPTIONS method (monitoring request-C) 116

Figure 6-9 HTTP message response for the OPTIONS method (monitoring request-C)

 .. 117

Figure 6-10 HTTP message request for the OPTIONS method (management request)

 .. 117

Figure 6-11 HTTP message response for the OPTIONS method (management request)

 .. 117

Figure 6-12 HTTP message response for the OPTIONS method (management request)

 .. 117

Figure 7-1 Experiment testbed architecture .. 120

Figure 7-2 Illustrates representing the monitored data in the response message: (a) PM;

(b) MonSLAR ... 123

Figure 7-3 Response message content: (a) PM (Zulkernine et al., 2008); (b) MonSLAR

OPTIONS .. 123

Figure 7-4 Message size overhead caused by varying no. of parameters for MonSLAR

compared with PM .. 125

Figure 7-5 Process of validating the proposed metric .. 135

Figure 7-6 participants’ results for Responsiveness parameter 135

Figure 7-7 participants’ results for Features parameter .. 136

Figure 7-8 participants’ results for Security parameter .. 136

Figure 7-9 participants’ results for Rapport parameter ... 137

file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090201
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090201
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090205
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090206
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090207
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090208
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090208
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090209
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090209
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090210
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090210
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090211
file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090211

xi

Figure 7-10 participants’ results for Flexibility parameter ... 137

Figure 7-11 participants’ results for Reliability parameter ... 138

Figure 7-12 participants’ results for the seventh question .. 138

Figure 7-13 participants’ results for the eighth question .. 139

Figure 7-14 participants’ results for the ninth question .. 139

Figure 7-15 participants’ results for the tenth question .. 140

Figure 7-16 Effect of Features and Responsiveness ... 142

Figure 7-17 Effect of Features and Flexibility .. 143

Figure 7-18 Effect of Features and Security ... 143

Figure 7-19 Effect of Security and Responsiveness ... 144

Figure 7-20 Effect of Security and Flexibility .. 144

Figure 7-21 Effect of Rapport and Security .. 144

Figure 7-22 Effect of Features and Reliability ... 145

Figure 7-23 Effect of Reliability and Responsiveness .. 145

Figure 7-24 Effect of Features and Rapport ... 145

Figure 7-25 Effect of Flexibility and Responsiveness .. 146

Figure 7-26 Effect of Rapport and Responsiveness .. 146

Figure 7-27 Effect of Rapport and Flexibility .. 146

Figure 7-28 Effect of Reliability and Flexibility .. 147

Figure 7-29 Effect of Reliability and Rapport .. 147

Figure 7-30 Effect of Reliability and Security .. 148

Figure 8-1 The progress of the objectives to achieve the research aim. 155

Figure B- 1 effect of defuzzification methods on an aggregated fuzzy membership

function (Naaz et al, 2011)……………………………………………………………188

Figure B- 2 Effect of Responsiveness and Features (bisector method) 191

Figure B- 3 Effect of Security and Features (bisector method) 191

Figure B- 4 Effect of Flexibility and Features (bisector method) 191

Figure B- 5 Effect of Rapport and Features (bisector method) 192

Figure B- 6 Effect of Reliability and Features (bisector method) 192

Figure B- 7 Effect of Responsiveness and Flexibility (bisector method) 192

Figure B- 8 Effect of Responsiveness and Rapport (bisector method) 193

Figure B- 9 Effect of Responsiveness and Security (bisector method) 193

Figure B- 10 Effect of Security and Flexibility (bisector method) 193

Figure B- 11 Effect of Rapport and Flexibility (bisector method) 194

file:///C:/Users/lzd981/Downloads/Shaymaa%20-%20thesis-corrections%20-%20v3.docx%23_Toc484090242

xii

Figure B- 12 Effect of Security and Reliability (bisector method) 194

Figure B- 13 Effect of Security and Rapport (bisector method) 194

Figure B- 14 Effect of Rapport and Reliability (bisector method) 195

Figure B- 15 Effect of Flexibility and Reliability (bisector method) 195

Figure B- 16 Effect of Features and Responsiveness (MOM method) 195

Figure B- 17 Effect of Features and Security (MOM method) 196

Figure B- 18 Effect of Features and Flexibility (MOM method) 196

Figure B- 19 Effect of Features and Rapport (MOM method) 196

Figure B- 20 Effect of Features and Reliability (MOM method) 197

Figure B- 21 Effect of Flexibility and Responsiveness (MOM method) 197

Figure B- 22 Effect of Rapport and Responsiveness (MOM method) 197

Figure B- 23 Effect of Security and Responsiveness (MOM method) 198

Figure B- 24 Effect of Reliability and Responsiveness (MOM method) 198

Figure B- 25 Effect of Security and Flexibility (MOM method) 198

Figure B- 26 Effect of Rapport and Flexibility (MOM method) 199

Figure B- 27 Effect of Reliability and Flexibility (MOM method) 199

Figure B- 28 Effect of Rapport and Security (MOM method) 199

Figure B- 29 Effect of Reliability and Security (MOM method) 200

Figure B- 30 Effect of Reliability and Rapport (MOM method) 200

Figure B- 31 Effect of Features and Responsiveness (LOM method) 200

Figure B- 32 Effect of Features and Security (LOM method) 201

Figure B- 33 Effect of Features and Flexibility (LOM method) 201

Figure B- 34 Effect of Features and Rapport (LOM method) 201

Figure B- 35 Effect of Features and Reliability (LOM method) 202

Figure B- 36 Effect of Responsiveness and Flexibility (LOM method) 202

Figure B- 37 Effect of Responsiveness and Rapport (LOM method) 202

Figure B- 38 Effect of Responsiveness and Security (LOM method) 203

Figure B- 39 Effect of Responsiveness and Reliability (LOM method) 203

Figure B- 40 Effect of Security and Flexibility (LOM method) 203

Figure B- 41 Effect of Rapport and Flexibility (LOM method) 204

Figure B- 42 Effect of Reliability and Flexibility (LOM method) 204

Figure B- 43 Effect of Security and Rapport (LOM method) 204

Figure B- 44 Effect of Security and Reliability (LOM method) 205

Figure B- 45 Effect of Rapport and Reliability (LOM method) 205

xiii

Figure B- 46 Effect of Responsiveness and Features (SOM method) 205

Figure B- 47 Effect of Security and Features (SOM method) 206

Figure B- 48 Effect of Flexibility and Features (SOM method) 206

Figure B- 49 Effect of Rapport and Features (SOM method) 206

Figure B- 50 Effect of Reliability and Features (SOM method) 207

Figure B- 51 Effect of Flexibility and Responsiveness (SOM method) 207

Figure B- 52 Effect of Rapport and Responsiveness (SOM method) 207

Figure B- 53 Effect of Security and Responsiveness (SOM method) 208

Figure B- 54 Effect of Reliability and Responsiveness (SOM method) 208

Figure B- 55 Effect of Flexibility and Security (SOM method) 208

Figure B- 56 Effect of Rapport and Flexibility (SOM method) 209

Figure B- 57 Effect of Reliability and Flexibility (SOM method) 209

Figure B- 58 Effect of Rapport and Security (SOM method) 209

Figure B- 59 Effect of Reliability and Security (SOM method) 210

Figure B- 60 Effect of Reliability and Rapport (SOM method) 210

Figure C- 1 MonSLAR API specification…………………………………………….213

Figure D- 1 depicts the java code of the HEAD method (monitoring request-A)…….214

Figure D- 2 depicts the java code of the POST method (monitoring request-B) 215

Figure D- 3 Depicts the java code of the OPTIONS method (monitoring request-C) . 216

Figure D- 4 Depicts the java code of the OPTIONS method (management request) ... 217

Figure E- 1 Experiment testbed architecture………………………………………….218

Figure E- 2 Response time overhead (With MonSLAR vs Without MonSLAR) 219

xiv

Acknowledgments

First and foremost, this research would not be possible without the blessing of my Lord

ALLAH, the most Merciful, who has given me the patience and strength to finish this

Ph.D. journey.

I would like to express my gratitude and sincere appreciation to my supervisor, Dr. Adil

Al-Yasiri, for his assistance, guidance, and feedback during this study. I would also like

to extend my thanks to the members of the School of Computing, Science, and

Engineering at the University of Salford, for supporting me in this study.

I gratefully acknowledge the help provided by the Iraqi Ministry of Higher Education in

funding this research. I owe a debt of gratitude to the Computer Engineering Department,

Al-Nahrain University in Iraq, for the scholarship which allowed me to achieve the Ph.D.

Thanks are also due to the Iraqi Cultural Attaché - London for their support during my

study.

I would like to sincerely thank my friends, your kindness and support have made the

journey more enjoyable, you have lifted me when I needed it the most.

Special thanks to my parents, my father Waleed Al-Shammari, his encouragement has

ensured that I continued the path, it is his dream that I have fulfilled. Thanks to my lovely

mother, Naheda Al-Bayati, for her love and prayers, which have sustained me throughout

the study. Thanks to my brother Hisham for his kindness, and warm gratitude to my

sisters, Wasan and Basma, who surrounded me with their love and care. I am eternally

grateful for your unconditional love and support.

xv

Declaration

Parts of the research presented in this thesis has been published in the following papers

and presentations:

1- Al-Shammari, S., & Al-Yasiri, A. (2014). Monitoring SLA’s QoE of SaaS.

Presented at the Proceeding of the College of Science and Technology Dean’s

Annual Research Showcase 18 June 2014, University of Salford, MediaCity UK,

Manchester, United Kingdom, pp. 38-39, 2014.

2- Al-Shammari, S., & Al-Yasiri, A. (2014). Defining a metric for measuring QoE

of SaaS cloud computing. Paper presented at the Proceedings of the 15th Annual

PostGraduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting (PGNET 2014), Liverpool, United Kingdom, pp.

251-256, 2014.

3- Al-Shammari, S., & Al-Yasiri, A. (2015). An Approach for Embedding SLA

Parameters in REST Services. Poster and abstract presented at the Dean’s Annual

Research Showcase 28 June 2015, University of Salford, MediaCityUK,

Manchester, United Kingdom, pp. 76-77, 2015.

4- Al-Shammari, S., & Al-Yasiri, A. (2015). MonSLAR: A Middleware for

Monitoring SLA for RESTFUL Services in Cloud Computing. Paper presented at

the IEEE 9th International Symposium on the Maintenance and Evolution of

Service-Oriented and Cloud-Based Environments (MESOCA), Bremen,

Germany, pp. 46–50, 2015.

5- Al-Shammari, S., & Al-Yasiri, A. (2016). Estimating the QoE Value in SaaS

Cloud Computing. Presented at the Proceedings of the CSE 2016 Annual PGR

Symposium (CSE-PGSym 16), University of Salford, Manchester, United

Kingdom, p. 8, 2016.

xvi

List of Abbreviations

API Application Programming Interface

ASP Application Service Provider

CRUD (Create, Read, Update, and Delete)

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

JSON Java Script Object Notation

KPI Key Performance Indicator

LOM Largest of Maximum

MCDM Multi Criteria Decision Making

MonSLAR Monitoring SLA of SaaS using REST

MOS Message Oriented Middleware

MOM Medium of Maximum

PaaS Platform as a Service

QoE Quality of Experience

QoS Quality of Service

REST Representational State Transfer

RPC Remote Procedure Call

SaaS Software as a Service

SLA Service Level Agreement

SLO Service Level Objectives

SMI Service Measurement Index

xvii

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOC Service Oriented Computing

SOM Service Oriented Middleware

TTP Trusted Third Party

UDDI Universal Description Discovery and

Integration

UML Unified Modelling Language

 URI Uniform Resource Identifier

 URL Uniform Resource Locator

WS-Agreement Web Services Agreement

WSDL Web Service Description Language

WSLA Web Service Level Agreement

xviii

Abstract

One of the most important discussions in the cloud computing field is user satisfaction

with the associated services. It is important to maintain trusted relationships between

clients and providers, for customers who pay subscriptions to receive these services in a

timely and accurate manner. Despite the overwhelming advantages of cloud services,

clients sometimes have problems in service outage and resource failure. This is due to the

failures that can happen in cloud servers, which cause outages to the received services.

For example, the failure of Microsoft Office 365 on 18th of January 2016, caused email

disruption which lasted for many days. New measures are needed to ensure that the

contract signed between the two parties, known as a Service Level Agreement (SLA) has

been adhered to. Measuring the quality of cloud computing provision from the client’s

point of view is, therefore, essential in order to ensure that the service conforms to the

level specified in the agreement; this is usually referred to as Quality of Experience.

In recent years, there has been an increase shift in using Simple Object Access Protocol

(SOAP) to Representational State Transfer (REST) technology as an alternative

technology in cloud applications APIs development. However, there is a penchant in most

of cloud monitoring solutions to use SOAP protocol in managing the monitoring process.

This trend has drawn the attention to the need for using REST technology in transferring

the monitored data between the provider side and the client side.

This thesis addresses the problem of monitoring the quality of Software as a Service from

the users’ perspective, and the need for developing a lightweight middleware for

delivering the monitored data in Software as a Service cloud computing. The aim of this

research is to propose a user centric approach for monitoring Software as a Service in

cloud computing, and to reduce the overhead caused by the monitoring process.

In order to achieve this aim, a user centric middleware capable of monitoring the Quality

of Experience has been developed. The developed middleware is a Service Oriented

middleware which uses RESTful web services and provides the monitoring process as an

add-on service. A new approach was developed for embedding the SLA parameters in

REST services through extending the HTTP messages and exploiting the HEAD and

OPTIONS methods to transmit the monitored data and to send notifications about any

xix

SLA violations. This reduces the need to exchange extra monitoring messages between

the two parties, and hence reduces the communication overhead.

Furthermore, the estimation of the user satisfaction was implemented by developing a

decision making approach to estimate the Quality of Experience value and to predict the

effect of the SLA parameters and the Quality of Service (QoS) on the user satisfaction.

Fuzzy logic techniques were employed in the decision making process.

The developed middleware is called MonSLAR, for Monitoring SLA for Restful services

in SaaS cloud computing environments. The middleware was implemented using the Java

programming language, and tested successfully in a cloud environment to prove the

proposed solution’s capability of transmitting the data using the REST methods, in

addition to providing automated and real time feedback. MonSLAR uses a distributed

monitoring architecture, which allows SLA parameters to be embedded in the requests

and responses of the REST protocol. The proposed middleware was evaluated by

measuring the overhead caused by using REST technology in terms of response time and

message size and compared to existing techniques. The results revealed that the message

size overhead of using REST is approximately five times less than the message size

overhead caused by SOAP. Furthermore, the response time overhead of the monitoring

process is comparable to the overhead caused by the available monitoring frameworks.

To sum up, the proposed middleware will help to strengthen the relationship between the

client and the provider by using real time notifications to the client about any degradation

in the cloud services, using a lightweight middleware.

1

1 CHAPTER ONE: INTRODUCTION

INTRODUCTION

Cloud computing can be defined as the provision of services by equipping the resources

of information technology via the Internet (Sarna, 2010). It is a huge aggregation of

resources, which has been considered as an alternative to classical resources, since they

are supplied on request (pay-as-you-go) (Chauhan et al., 2011). Cloud computing

provides great benefit to customers and developers; for developers, it augments the

computing power and the storage capacity to manage their applications, while for

customers it ensures the availability of their documents regardless of the status of their

machines (Miller, 2008). Cloud computing simplifies access to computing resources

distributed over the Internet. In other words, it is a technique of doing computations using

shared resources rather than using resources available on one site (Mathur & Nishchal,

2010).

Due to the important role played by cloud computing in individuals’ daily needs, it has

been considered as the 5th utility along with electricity, gas, water and telephony.

Customers of cloud computing systems desire a trustworthy service. Despite the efforts

of cloud providers to assure high availability of their services, customers need a guarantee

for their rights in case of breach of contract (Buyya et al., 2009).

It is essential to maintain confidence among cloud suppliers and their customers since the

customers expect to receive infrastructure services; so it is important to explain the ways

of using and delivering these services. Like other services based on subscriptions, the

relationship between suppliers and customers must be governed by a Service Level

Agreement (SLA) (Chauhan et al., 2011; Firdhous et al., 2013a). Telecom operators first

used SLA in the late 1980s within the contract with their customers (C. Wu et al., 2013).

In order to avoid violations of the SLA, this agreement should designate the main metrics

that are important to evaluate the provision of the SLA’s terms (Wieder et al., 2011). An

example of the SLA contracts in cloud computing are the services provided by Amazon

Storage Services (AWS). Amazon promises an uptime of 99.9% with compensation paid

to the client in the case of a violation of the SLA, provided the client submits evidence as

proof for the lack of service (Muller et al., 2014).

2

The outages in the cloud services due to the servers’ failure attracted the attention to the

importance of using techniques to verify the correct delivery of the received cloud

services. An example of this outage is the failure in Microsoft office 365 in 18th of January

2016, which caused an outage in the email services for many days. Another example is

the failure in Salesforce in 10th of May 2016, which took days to solve this failure

(Tsidulko, 2016).

Although the QoS is concerned with determining the quality of the network with respect

to transmitted data, it does not take the users’ needs into consideration. Quality of

Experience (QoE) is the performance of the network from the user’s perspective, in other

words, it is the acceptance of services from the customer’s point of view. The idea of QoE

can become the guiding paradigm in the management of quality in cloud computing

(Cicotti et al., 2012; Zeginis & Plexousakis, 2010).

User satisfaction is defined as “a measure of perceived performance relative to

expectation” (Larson, 1998), or someone’s feeling in a specific situation about factors

that affect this situation (Bailey & Pearson, 1983). In other words, QoE measurements

can be used as an indication to measure user satisfaction. This research attempts to

combine these ideas from a network and software engineering point of view.

It is a common practice for each service oriented architecture to have a middleware that

upholds the management of the SLA (Marinescu, 2013).

In SaaS cloud computing, service oriented architectures and web services are used to

provide a computing model that is globally accessible. According to Velte et al., a web

service is a software designed to support interaction from machine to machine (Velte et

al., 2009). Two main types of web services are available: SOAP and REST.

In SOAP protocol the services and the formal mechanism for invoking these services are

described in WSDL (Web Service Description Language), which contains the

information about the services, the expected QoS to be delivered to the consumer, and

details about SLA parameters (Marks & Lozano, 2010). However, this is not available in

REST services.

REST is an architectural style used in distributed systems, which supports stateless

communication and platform independence (R. T. Fielding, 2000; Marinescu, 2013).

Nowadays, there is an apparent shift from SOAP services to REST services, particularly

in cloud computing (Shroff, 2010) because of the advantages that REST offers such as

3

simplicity, ease of use, better response time, light weight, and improved server scalability

(Velte et al., 2009). Most cloud providers use REST and HTTP to represent their services

such as Windows Azure (Microsoft Azure, 2017) since REST is considered a lightweight

protocol (Marinescu, 2013). This trend to use REST in cloud computing has drawn

attention to finding a way to represent the SLA parameters in this style of architecture

and to include the SLA parameters that have emerged. Whereas SOAP has been used as

a technique for transferring the monitored data in the monitoring frameworks. However,

it is important to mention that the use of a lightweight technique (REST) has led to a

reduction of the overhead caused by SOAP. It is important to keep a balance between the

monitoring accuracy and the overhead caused (Lu et al., 2016).

1.1 Service Level Agreement

The (SLA) is defined by Jin et al (2002) as “an agreement regarding the guarantees of a

web service. It defines mutual understandings and expectations of a service between the

service provider and service consumers” (Jin et al., 2002). It is a contract held between

the client and the service provider which contains information about the expected levels

of services delivered to the clients, the provider’s guarantees for the QoS, the

commitments of both parties, and the penalties in case of violating the SLA (Marinescu,

2013). This agreement can help in managing long-term use of service business

relationships (Alhamad et al., 2010). The SLA document is composed of the following

parts: purpose, which explains the causes of building the SLA; parties, presents those

who are engaged in the agreement; validity period, which is the time in which the SLA

is active; scope, describes the services defined in the SLA; restrictions, defines the steps

required to provide the service to the customer; Service Level Objectives (SLO), which

specify the levels of services that have to be achieved such as availability and reliability;

penalties, presents the actions to be taken in case of violating the SLA which can be either

a termination of the agreement or reduction in the service’s price; optional services,

presents the services which may be required by the client as an exceptional; exclusions,

refers to items not defined in the agreement; and administration, which specifies how to

manage monitoring the objectives of the SLA (Jin et al., 2002). The common SLA

parameters give indication about the operation quality metrics, for instance the SLA

parameters of SaaS include scalability, reliability, availability, and usability (Alhamad et

al., 2010). An example of SLA document is presented in Appendix A.

4

SLA plays an important role in maintaining cloud customers’ rights through identifying

the resources and the services that the clients should get from the cloud. However, the

provider has the chance to mislead the customer by providing fewer resources which then

permits the providers to increase their earnings by supporting more customers (Ye et al.,

2012). Since the cloud services are offered to a wide range of customers, resources in the

cloud gained and freed effectively according to clients’ demands, means that this

resilience in resource provisioning makes the enforcement of an official model difficult

to implement (Rak et al., 2013). As a consequence, the QoS parameters should be

identified in details (Zhu et al., 2012).

Alhamad, et al. (2010) discussed the significance of an SLA document to manage the

relationship between the providers and the consumers in cloud computing. They proposed

the main criteria that should be considered at the stage of defining SLAs and classified

these criteria according to cloud computing services. The study also emphasized ways to

define and monitor SLA parameters and set penalties in case of violation of these

documents (Alhamad et al., 2010).

1.2 Problem Statement

Due to the nature of the cloud computing environment, which is varied and complex, it is

difficult to ensure that providers will honour their promises with respect to the level of

service being supplied to their clients. Therefore, it is essential to specify the contractual

obligations between cloud providers and clients in order to stipulate the technical terms

of the services provided as well as other legal requirements. The relationship between

providers and clients is normally captured in an SLA. SLAs contain a description of QoS

parameters that govern how the service level is determined (Zhu et al., 2012), QoS

parameters should be identified precisely and quantifiably. Monitoring SLA parameters

is usually carried out by cloud providers (Alsulaiman & Alturki, 2012) who leave the

detection of the SLA violations to the clients (Cedillo et al., 2015). However, this process

should be isolated from the provider to assure the client’s trust, for customers cannot rely

on the service providers to verify the SLA compliance. In other words, both cloud

providers and clients are not suitable for evaluating an SLA or received cloud services

(Ye et al., 2012), (Nguyen et al., 2014). One of the challenges of user side management

in a cloud environment is the absence of an approach to inform the user about changes in

the quality of the delivered services (Rehman et al., 2015). This presents a problem for

5

clients who pay for these services and require the ability to monitor compliance. In this

research, the aim is to investigate ways to enable the cloud’s clients to verify that the

services provided in the cloud conform to the stipulated SLA. To achieve this goal, an

SLA driven middleware is presented.

The limitations of monitoring and controlling the parameters of the SLA stem from the

difficulty in monitoring them in real time, which means that there is no way for the cloud

client to directly monitor the service level using the QoS metrics. The monitoring of SLA

forms an essential function in detecting situations where the SLA has been violated and

then deciding the best course of action that must be taken as a consequence of the

violation.

Although measuring QoE is subjective, it is important to find a way to determine any

deviation from it (Brooks & Hestnes, 2010), and to develop a system to monitor the QoE

as described in the SLA, taking into consideration the end user’s point of view. To date,

there has been a lack of research to address the presented problem, Chapter three will

provide more details in order to bridge this gap.

1.3 Research Motivation

The research is motivated by the fact that in previous research WSDL has been used in

conjunction with SOAP to represent the SLA measurements. WSDL is used to specify

the functionality of web services and their methods; hence, it seems logical to extend it

for specifying SLA measurements within one document. However, WSDL is a SOAP

related technology which cannot be used with REST services; this is in addition to the

high overhead associated with WSDL. It is, therefore, important to search for an

alternative method that can be used with REST and eliminate the need for technologies

like WSDL to manage the monitoring process and represent the SLA parameters. Section

3.4.2 introduces more details about the research.

The motivation for this research is twofold:

1- To increase the ability of the clients’ trust in the services provided by SaaS

providers, through developing a middleware that implicitly monitors the SLA

compliance from the clients’ perspectives. The research is motivated by noticing

the weakness of the available research in handling this problem. Chapter 3

presents a review of the related work.

6

2- To extend the methods of REST services to include the SLA parameters which

will improve the process of monitoring SLAs in cloud computing as existing

REST services frameworks lack an automated SLA management process.

1.4 Research Aim and Objectives

The aim of the research is to propose a user centric approach for monitoring Software as

a Service in cloud computing, and to reduce the overhead caused by the monitoring

process. The following objectives are relevant to achieve the aim of the research:

1- To gain a detailed understanding of monitoring SLAs and user satisfaction in

cloud computing.

2- To develop an approach for lightweight user-centric monitoring of SaaS in cloud

computing.

3- To develop an approach to measure client satisfaction with services provided in

cloud computing, in terms of QoE value.

4- To evaluate the proposed solution through using simulation experiments to test

the performance of the system.

Figure 1-1 shows the research questions and the chapters that present answers to these

questions.

Figure 1-1 achieving the research objectives in thesis’s chapters

Chapter 2 Chapter 3

To gain detailed

understanding of

monitoring SLAs and

user satisfaction in

cloud computing

Developing a User-Centric Distributed Middleware for

Monitoring SLA of SaaS Cloud Computing Using REST

To develop an approach

for user-centric

monitoring of SLA in

cloud computing

To develop an

approach to measure

client satisfaction with

services, in terms of

QoE value.

To evaluate the

proposed solution.

Chapter 4 Chapter 6 Chapter 5 Chapter 7

7

1.5 Research Contributions

The main contributions of the thesis are in the field of estimating the QoE in SaaS cloud

computing in order to achieve the goal of assuring user satisfaction about the SLA

compliance with the promised services. The main contributions are:

1- A new approach to support using REST in monitoring SLA of SaaS. This

approach considers embedding SLA parameters in REST services by transferring

the monitored data and the estimated QoE value using HEAD and OPTIONS

methods of REST architecture and embedding this data in the header of the HTTP

messages. This helps in reducing the need for the creation of dedicated messages

to transfer the data.

2- An approach for estimating QoE in SaaS cloud computing. The overall user

satisfaction about the SaaS service has been considered as an indication of the

QoE value. This approach considers estimating the value of QoE as a function for

both SLA parameters and QoS. The fuzzy logic engine is used for estimating the

value of the QoE based on the collected monitored data from the probes and the

negotiated SLA parameters in the SLA document. The proposed approach has

been published (Al-Shammari & Al-Yasiri, 2014) and presented in Chapter Five.

3- A novel framework for a user-centric middleware that provides an automated

estimation of the QoE value in SaaS cloud computing through employing the

approaches introduced in 1 and 2 respectively. The middleware is a service

oriented middleware, which provides the monitoring process as an add-on which

takes the advantage of REST technology for service binding instead of SOAP

technology which has been used so far in the available research. The framework

considers two versions of the middleware on both the provider side and the client

side without the need for a third party (broker) to manage the estimation process.

The proposed middleware has been published (Al-Shammari & Al-Yasiri, 2015).

1.6 Significance of the Study

Taking into consideration the research problem, handling the knowledge gap and the

importance of managing, the monitoring process with low overhead has revealed the need

for a lightweight monitoring middleware. The study presented a SOM with monitoring

services based on REST. The achievements of this thesis could benefit both academic

research and the cloud computing industry. The advantage in the academic field includes

8

the new approach for automated user centric monitoring, and the exploitation of REST as

a connecting technology in SOM. while in the industry, it is through keeping the

confidence between the client and the provider by supplying the client with a facility to

check the overall SLA compliance according to user requirements.

1.7 Research Methodology

This section presents the research methodology that has been developed and adopted for

this research. According to Creswell (2013), to develop a research, three different

concepts should be taken into consideration, which are the philosophical assumptions, the

research design, and the research methods used as shown in

Figure 1-2.

Figure 1-2 The research framework, adapted from Creswell (2013)

The philosophical overview used is the Postpositivist, which is also called the scientific

method, as it depends on empirical experiments and measurements. The research methods

involve data collection, analysis, and validation, which are depicted in Figure 1-3.

There are three different research approaches: quantitative, qualitative, and mixed

methods. The qualitative method includes understanding the person’s behaviour and

attitude. This method includes using interviews and focus groups and the investigator

interpreting the meaning of the collected data, whilst the quantitative method is “an

approach for testing objective theories by examining the relationship among variables.

These variables, in turn, can be measured, typically on instruments, so that numbered data

Research approaches

Quantitative

Qualitative

Mixed method

Philosophical overviews

Postpositivist

Constuctivist

Transformative

Pragmatic

Research methods

Questions

Data collection

Data analysis

validation

Designs

Quantitative (example :

experiments)

Qualitative (example :

ethnographies)

Mixed methods (example:

explanatory sequential)

9

can be analysed using statistical procedures”. The mixed method involves integrating the

quantitative and qualitative methods. The research design includes the strategies of

inquiry for each approach (Creswell, 2013) (Dawson, 2002).

The research approach used in this thesis leans to the quantitative approach as it depends

on quantitative rigour analysis, and the research design is based on experiments. A

scientific research process is used to achieve the goals of the research as shown in Figure

1-3. The main phases of the research methodology are as follows:

1- Investigate previous literature

This step includes reviewing previous relevant studies, to get a good

understanding, investigating the issues related to managing SLA documents in

cloud computing in general, as well as estimating QoE, and the available

frameworks for managing the cloud environments. This provided good

knowledge about monitoring SLAs in the cloud environment.

2- Identify the research problem

The literature review helped to diagnose the drawbacks found in the current

solutions for estimating the QoE in cloud computing. The research started by

identifying the requirements for a middleware in cloud computing systems to

assure the validity of the SLAs in cloud computing. To achieve this, the research

focused on studying the main parameters used to estimate the user satisfaction in

SaaS and investigate available SLA monitoring frameworks.

3- Design a new middleware capable of monitoring user’s satisfaction

Based on the research problem presented in the previous stage, this stage includes

presenting a new middleware (MonSLAR), to manage the estimation of the QoE.

MonSLAR presents a new approach for extending REST services methods to

include the SLA parameters by embedding the QoE and the SLA parameter values

in the responses of the REST protocol using the HEAD and OPTIONS methods.

MonSLAR is presented in Chapter Four.

4- Develop an approach for estimating the QoE value

This includes presenting an approach for estimating the QoE value taking into

consideration the characteristics of SaaS. QoE is defined as a function of both the

10

SLA parameters and the QoS values. Fuzzy logic is used to implement the

proposed approach, which is presented in Chapter Five.

5- Evaluate the proposed middleware

The evaluation step includes evaluating MonSLAR to analyse its performance in

terms of response time and message size, the acquired results for the message size

overhead is compared with the existing monitoring frameworks. The system is

evaluated by means of simulation results in comparison with another middleware,

in addition to a qualitative comparison between MonSLAR and the available

monitoring frameworks. This step also includes a survey study to evaluate the

proposed metric, then applying amendments where required based on the

evaluation results. The evaluation process is presented in Chapter Seven.

6- Publish the contributions and write up the Ph.D. thesis

The final stage includes presenting the final verified forms of the metric and the

middleware. This step also includes publishing the proposed approaches and

writing up the Ph.D. thesis.

11

4-Primary identification of a QoE metric for SaaS

6- Drawing conclusions and recommendations

3- Primary design for a framework for the system

1-Investigate previous literature

2-Identify research problem

Identify the characteristics of SaaS

services and deFine a metric For SaaS
services as a function of network’s QoS,

QoE of SaaS and SLA parameters

5-a- Evaluate the proposed middleware and
metric

Final verified
framework

5-b- Amendments to improve
performance

Develop an approach for estimating QoE

in SaaS

Final verified
middleware

Final verified

metric

Submit the results in the PhD thesis

Define an approach to embed SLA
parameters in REST services

Design the framework based on

the proposed metric and the new

approach

Figure 1-3 Research process

12

1.8 Thesis Outline

The thesis is organized into eight chapters as follows:

Chapter Two presents a background to the concepts and technologies related to the thesis

research area of cloud computing, web services technologies, together with the

middleware architectures.

Chapter Three presents an overview of the literature related to the research subject in

order to attract attention to the knowledge gap and the lack of previous research to

approve the research problem. The literature is selected to cover the research subject,

which is cloud monitoring, QoE measurement, and the SLA oriented monitoring concept.

Chapter Four presents an overview of the suggested solution; the architecture of

MonSLAR is presented as the proposed middleware, which is discussed with a

description of its characteristics. Furthermore, an approach for using REST methods to

manage the monitoring process is presented with a discussion on how it has been used to

solve the problem.

Chapter Five presents the approach used for estimating the QoE value, details of the

fuzzy logic engine. The main factors used for estimating the user satisfaction are

discussed.

Chapter Six presents the implementation of the proposed middleware, the technologies

used in the implementation and data formats used in transmitting the data. The chapter

discusses the implementation of the REST methods used in the monitoring process. and

a detailing of the main RESTful transactions used within the middleware in addition to

the representation of the monitored data on the client side.

Chapter Seven introduces the evaluation of the proposed middleware and tests the

performance and usefulness of the proposed REST approach. Simulation results are used

and a comparison is introduced for the proposed approach using REST with SOAP

protocol, in addition to qualitative comparisons with the available monitoring

frameworks. The chapter also presents a user study evaluation for the estimation of QoE

using the fuzzy logic engine.

13

Chapter Eight concludes the thesis by summarizing the most important outcomes of the

research and highlighting the main points; this chapter also suggests different directions

in which this research can be continued.

Appendices are presented to supplement the chapters of the thesis as follows:

Appendix A presents an example of SLA document for SaaS service.

Appendix B shows a study to investigate the effect of using different defuzzification

methods on the QoE level.

Appendix C displays the API specification of the proposed middleware.

Appendix D presents the java code of the proposed middleware.

Appendix E investigates the performance of the proposed middleware through studying

the overhead caused by the monitoring process in terms of response time.

Appendix F presents the user study survey used for evaluating the use of SaaS-Qual as a

model for estimating a QoE value.

14

2 CHAPTER TWO: BACKGROUND IN CLOUD COMPUTING

BACKGROUND IN CLOUD COMPUTING

2.1 Introduction

The main feature of cloud computing is the ability to relocate the software and IT industry

into services, and formalizing the way that these services are designed and purchased

(Armbrust et al., 2010). Accessing these services in the cloud environment is managed

using web services such as SOAP and REST (Shroff, 2010), it also requires the use of

SOA as an architecture to provide the software components as services. The distributed

nature of cloud computing presents the need for using the middleware as a tool to manage

its functionalities.

In this thesis, a middleware for monitoring SaaS services in cloud computing is presented.

This chapter introduces the main fundamentals related to the subject of the research, the

background knowledge is presented to better understand how to manage cloud computing

and the main elements used in cloud computing and exploited in this research. Figure 2-1

shows a mind map which summarizes the main topics related to the subject of the thesis

and the rationales for delving into the submitted details.

Developing a User-centric Distributed

Middleware for SLA Monitoring in SaaS

cloud computing Using RESTful Services

middleware

Involves building

SOM

Use the architecture

Cloud computing

Applied to

SLA

To manage

SaaS

Web services

Is a

REST

SOAP

Figure 2-1 Mind map shows the background main fundamentals

15

2.2 Cloud Computing

Cloud computing is a technique of doing computation through shared resources rather

than using resources available on one site. It simplifies the access to computing resources

distributed over the internet (Mathur & Nishchal, 2010). These resources are used in a

pay-as-you-go way (Vaquero et al., 2008). This way for providing the resources presents

many advantages in terms of cost saving and the need for IT maintenance services.

Furthermore, the scalability in getting the required resources on demand, which provides

unlimited resources’ capacities, leads to an improved performance by running the

applications on these resources instead of the client’s Personal Computer (Velte et al.,

2009) (Miller, 2008). Armbrust et al. described the cloud as “the long-held dream of

computing as a utility” as it turns most of the IT-industry into as a service delivery

(Armbrust et al., 2010).

The main characteristics of cloud computing were presented by Mell and Grance (2010),

this includes: network access, i.e. that the services are available and accessed by the

client’s devices through the network; self-service, where the user can directly customize

the received service as needed without the need for interaction with the service provider

which helps in saving both time and effort (Voorsluys et al., 2011); elasticity, which refers

to the extendibility of the capabilities of the services provided, proportional to the

required services; resource pooling, where this feature implies that the resources are

pooled in order to serve different users in a high level of abstraction so that those users

are unaware of the location of the resources provided; and measured services, where the

resources are measurable and controllable in the cloud computing systems, this feature is

usually offered on a pay-as-you-go basis (Mell & Grance, 2010).

Cloud computing can be categorized according to possession and administration to four

cloud deployment models (Mell & Grance, 2010). First, public cloud, in which services

are openly accessible to the public. This type of cloud can be possessed by government,

institutions or a mixture of them. Second, private cloud, where information is dominated

and secured for special firm by reserving the datacentres for that firm, where many clients

are included. Third, hybrid cloud is a combination of the other cloud deployment models

like private and public clouds through maintaining the security of the private firm cloud

with the ability to expand in case of a heavy workload (Furht, 2010). Finally, community,

16

in which many enterprises with comparable necessities partake in infrastructure to

increase scalability and decrease cost.

The next subsection presents the main cloud models.

2.2.1 Cloud Computing Models

Cloud computing can be defined as the provision of applications and infrastructure

resources as services (Xu, 2010). Three main services have been used to classify cloud

computing (Mell & Grance, 2010), these services are:

1- Infrastructure-as-a-Service (IaaS), which supplies infrastructure resources as-a-

service like storage and computing so that the client has control and can manage

the operating systems and the storage services. This kind of services suite the

institutions who needs a rapid and cheap extra resources.

2- Platform-as-a-Service (PaaS) is usually used by developers to build and run their

applications by providing the ability to build and test the user-created applications

in a cloud execution environment. In this kind of service, the client has the ability

to control the application deployed but has no control over the operating systems

and the storage services.

3- Software-as-a-Service (SaaS) fundamentally refers to the applications provided

on the cloud by the service provider to the end user in order to free the client from

the burden of installing and maintaining these applications (Mell & Grance, 2010)

(Hill et al., 2012).

These three services are the main cloud services, despite the tendency of many

providers to use other terms to distinguish their services from the others, such as

storage-as-a-service, communication-as-a-service, backup-as-a-service, and servers-

as-a-service, etc. (Finn et al., 2012; Rittinghouse & Ransome, 2009).

The next section discusses in more details SaaS, its characteristics, and advantages.

2.3 Software-as-a-Service (SaaS)

The concept of Software-as-a-service (SaaS) was first presented and defined by the

Software & Information Industry Association (SIIA) in 2001 as the deployment of

applications or services from the central data centre through the internet or LAN, as a

kind of paid subscription based network (Software & Association, 2001). It is the delivery

17

of an application to the client as a service, the management of the application delivered

to the client and the underlying infrastructure managed by the SaaS vendor (Kavis, 2014).

This kind of delivery of software via the internet represents a competitor to the traditional

applications installed on the clients’ devices (Cusumano, 2010).

Software as a Service first emerged in the 1990s. The application services were hosted by

the ASP (Application Service Provider) so that the client can get access to the application

through the internet, but this model of the software delivery was unfeasible because of

the limited network bandwidth and the slow speed of the internet at that time. In addition,

this model for delivering the applications did not support multi clients, in other words,

the applications were delivered on a one to one basis by storing the application for each

client in the ASP data centre. The use of the cloud computing helped the application

providers to host their applications in the cloud to take advantage of the cloud scalability

characteristics by managing the increased number of requests and the multi users of the

application (Menken & Blokdijk, 2009).

One of the main characteristics of SaaS is the segregation of the software usage from its

ownership. The SaaS provider owns the application while the client rents the service on

demand (Turner et al., 2003), while in the legacy application systems the user is the owner

of the application. Another feature of SaaS is the multi-tenancy support so that many

clients can access the same software application (Menken & Blokdijk, 2009). SaaS also

considers the management of the commercial software in a network based instead of

managing it on the client’s side as it is remotely accessed through the internet

(Rittinghouse & Ransome, 2009).

SaaS provides many advantages for both the client and the provider. On one hand, SaaS

helps to diminish the storage space in the users’ machine and helps them to save money

through paying on demand instead of buying the application in full. On the other hand, it

helps the vendors to reduce privateering and the making of unlicensed copies of the

software as it is kept in their hands, SaaS also allows the vendors’ to increase their profits

by receiving continuous subscriptions from clients instead of a one-off payment for the

purchase of the application (Menken & Blokdijk, 2009).

One of the main characteristics of SaaS is the ability to allow multi tenants sharing the

same cloud application resources, which is known as multi-tenancy (Cai et al., 2012).

Multi-tenancy helps applications providers to reduce the cost of deploying the

18

applications, where an instance of the software application can be used by many tenants.

The concept of multi-tenant means that different tenants can use the same application

with different configurations and hence an SLA of each tenant can be different (Bezemer

& Zaidman, 2010). It is essential to ensure a proper isolation between the tenants in SaaS

multi-tenancy environment which includes the data stored in the database. Different

architectures can be considered in designing multi-tenancy based on the degree of sharing

the resources among the tenants, this could be sharing the application itself, the database,

or the infrastructure resources of the cloud (Momm & Krebs, 2011).

Many vendors offer SaaS services, for example, Adobe software is one of the SaaS

services available online on a subscription basis, Google also offers Gmail and Google

Apps, which are offered for free with restricted features or on a payment basis. Microsoft

offers SaaS applications like Microsoft-Office and web emails, whilst Salesforce is one

of the well-known SaaS vendors, providing the Customer-Relationship-Management

(CRM) applications (Menken & Blokdijk, 2009). According to Gartner, SaaS sales are

predicted to be duplicated by 2019 (Gartner, 2015), which is an indication of the

importance of this kind of cloud services.

SaaS has been investigated by many researchers. For instance, the problem of adopting

SaaS was handled by Tan et al. (2013) through developing a methodology to assess the

advantages of adopting SaaS in an organization’s business (Tan et al., 2013). While the

work of Godse and Mulik (2009) set out to select the best SaaS that satisfies customer

requirements through prioritizing the features of the products, this work did not consider

the SLA parameters (Godse & Mulik, 2009).

This section presented SaaS as an application service delivered through the internet as a

web-based application. This concept is the basis of web services which assume that

functionalities provided by organizations are offered as services (Gustavo et al., 2004).

In the next section, the main technologies used in cloud computing are discussed.

2.4 Technologies Used in Cloud Computing

This section presents the main technologies that support cloud computing, and used in the

development of the proposed solution in this thesis. These technologies play an important

role in building, managing, and improving the cloud. The section is subdivided into many

subsections to introduce these technologies; to start with, SOA is presented due to its

properties which make it suitable for cloud computing. The software components are used

19

as services in the cloud architecture, so that the services are moved easily between the

cloud datacentres (Hurwitz et al., 2010). In addition to SOA, web services are discussed.

The web services facilitate the communication of the applications over the internet, which

in turn help in requesting the service in cloud computing (Shroff, 2010). Finally, due to

the heterogeneity of cloud computing, finding a way for managing its resources and

services is important which is accomplished using the middleware.

2.4.1 Service Oriented Architecture (SOA)

SOA was defined by Kurbel (2008) as “a software architecture that defines the use of

services to solve the tasks of a given software system” (Kurbel, 2008). SOA can be

considered as a combination of services; as such in reality, where users are interested

about receiving the services more than the software components in charge of

implementing these services. The aim of using SOA is to improve the efficiency and

productivity of companies; this is due to the fact that one piece of software can be reused

as a service which reduces the need for building this service again, where rebuilding the

software components causes a redundant functionality (Erl, 2008).

A service in SOA has features that distinguish it from the traditional software

components, this includes reusability, automaticity, in addition to its high portability

characteristic (Wei & Blake, 2010). The services can be a program code that can be used

in distributed systems, these services can be delivered using SOAP or REST as discussed

in the next subsections.

The appearance of cloud computing helped in improving the business consideration of

SOA (Hurwitz et al., 2010).

The terms of service in Service Oriented Architecture (SOA) is different from that in

cloud computing. Whilst in cloud computing it refers to the services and resources

available to the client, the service in service oriented technology indicates the software’s

function. The use of SOA in cloud computing helps in integrating its components (Yang

et al., 2015).

2.4.2 Web Services

Web services were defined by Jin et al. (2002) as “Internet based applications that

communicate with other applications to offer business data or functional services

programmatically” (Jin et al., 2002). According to (Velte et al., 2009), the web service is

20

a software designed to support interaction between machines. Web services allow

disparate systems to integrate and show the functions that can be invoked over HTTP

(Daigneau, 2011). The term ‘web services’ has been defined by Chavda (2004) as “A

programmable application component that can be accessed over the internet and used

remotely” (Chavda, 2004). This technology has changed the concept of business on the

web by enabling the applications to communicate and provide services to each of the

applications and the devices that support web access.

Another comprehensive definition for web services is presented by Papazoglou (2008) as

“A platform-independent, loosely coupled, self-contained, programmable web-enabled

application that can be described, published, discovered, coordinated, and configured

using XML artifacts (open standards) for the purpose of developing distributed

interoperable applications”. Where ‘loose coupling’ refers to how far the service is

independent of the underlying technologies; ‘self-contained’ as it implements a distinct

function which can be invoked by the client; ‘programmatically accessed’, as the web

services can be invoked and queried at the “code level” which can improve the web

service’s client efficiency (Papazoglou, 2008)

Web services are considered the basis for allowing the web applications to be deployable

and accessible through the internet using a distributed architecture. As it depends on

internet standards, they help in developing complex services by combining them

(Papazoglou, 2008). It allows integrating the services offered by web applications and

illuminates the need for the details of the services’ implementation in the interaction

process and the sharing of data between the organizations, based on a standardized

method regardless of the underlying platform and programming languages (Hill et al.,

2012).

Web services are different from web applications. Web services are provided as

accessible resources and can be requested by other web services independently from

direct human interference (Papazoglou, 2008).

The web services are used in cloud technology to request the services provided in cloud

computing (Shroff, 2010). The use of web services presents an advantage by simplifying

sharing and reusing common logic with a variety of clients, such as web applications,

desktops or laptops. This is because of the use of web standards that are interoperable

among the computing platforms, like HTTP, JSON, and XML.

21

There are two main ways for describing the web services, which are SOAP and REST

(Daigneau, 2011). These technologies are presented in the next subsections of this

chapter.

2.4.2.1 SOAP

SOAP (Simple Object Access Protocol) is a messaging protocol that uses HTTP (Hyper

Text Transfer Protocol) and XML (Extensible Markup Language) to hide the

heterogeneity in the distributed-platforms and manage the connection between the service

requester and receiver. This is achieved by exchanging XML documents. These

exchanged messages are known as SOAP envelopes. The SOAP message is comprised of

two main parts: the message header and the message body as shown in Figure 2-2. These

messages are used for invoking web services by encapsulating the SOAP request in the

transport protocol, this is done by transmitting the SOAP message in the body of an HTTP

POST request. SOAP is stateless as it is used with the HTTP (Papazoglou, 2008).

Figure 2-2 SOAP envelop (Gustavo et al., 2004)

SOAP protocol appeared as the technology for web services in the definition of web

services by the World Wide Web Consortium (W3C) that defined web services as, “a

software system designed to support interoperable machine-to-machine interaction over

a network. It has an interface described in a machine processable format (specifically

WSDL). Other systems interact with the web service in a manner prescribed by its

description using SOAP messages” (Booth et al., 2004).

In SOAP protocol, the web service requires to be defined. This is achieved by using

WSDL (Web Service Description Language), which provides a description of the web

service, the functions performed by this service and the type of data, in addition to the

22

interfaces of the service. The WSDL is represented using XML schema (Papazoglou,

2008). Figure 2-3 shows an example of a WSDL that displays its main parts.

For the web service to be discovered and used, there is a service registry, which consists

of the services offered by the providers. This registry is called UDDI (Universal

Description Discovery and Integration). UDDI emerged to cover the concept of business,

where a registry provides information about organizations and services provided by them,

and the interfaces for invoking these services. The process of invoking the web services

in SOAP protocol is illustrated in Figure 2-4. WSDL is used in the UDDI to provide

information about the description of the service (Gustavo et al., 2004). UDDI is

considered as “yellow pages” for the clients to find a WSDL of required web services,

this registry is an XML schema composed of business entity, business service, binding

template, and a tModel (Richardson & Ruby, 2008). The process of mapping the

information of the services in WSDL to the UDDI is depicted in Figure 2-5, this process

helps in extracting the required services’ information to be used in the UDDI, in order to

manage the interfaces in business’s applications.

23

Figure 2-3 An example shows a WSDL, adapted from (Michael Papazoglou, 2008)

Figure 2-4 SOAP service invocation process (Michael Papazoglou, 2008)

<wsdl:definitions name="PurchaseOrderService"
targetNamespace=http://supply.com/PurchaseService/wsdl
… …
xmlns:tns="http://supply.com/PurchaseService/wsdl">
<wsdl:types>

<xsd:schema
targetNamespace="http://supply.com/PurchaseService/wsdl">
... ...

<xsd:complexType name=“POType“>
... …
</xsd:complexType>
<xsd:complexType name=“InvoiceType“>
... …
</xsd:complexType>
</xsd:schema?

</wsdl:types>
<wsdl:message name="POMessage">
<wsdl:part name="PurchaseOrder" type="tns:POType"/>
</wsdl:message>
<wsdl:message name="InvMessage">

<wsdl:part name="Invoice" type="tns:InvoiceType"/>
</wsdl:message>
<wsdl:portType name="PurchaseOrderPortType"

<wsdl:operation name="SendPurchase">
<wsdl:input message="tns:POMessage"/>
<wsdl:output message =" tns:InvMessage"/>

</wsdl:operation>
:
</wsdl:portType>
</wsdl:definitions>

Data that

is sent

Abstract data

type definition

Data that

is returned

Port type

with one

operation

Service requester

Service registry

(UDDI)

Service provider
HTTP Bind

Find
Publish

http://supply.com/PurchaseService/wsdl

24

Figure 2-5 depicts mapping WSDL to UDDI (Michael Papazoglou, 2008)

2.4.2.2 REST

REST (Representational State Transfer) is an architectural style used in distributed

systems, which was first defined by Fielding (2000) in the dissertation submitted for his

doctoral degree, Fielding started to work on REST in 1994 as a guide for developing the

architecture of the web while developing the specifications of HTTP/1.0 and the proposed

HTTP/1.1. There are six main constraints of the REST architecture as follows: client-

server architecture, which gives an advantage in terms of scalability and portability

through separating the client and server; statelessness, which indicates that the state of

the requests is not saved which requires that the required information be contained in that

request, so that each request contains all the information required for the request to be

understood by the server; cacheable, which gives the client cache to reuse the response

data for similar requests; uniform interface, which improves simplicity and decoupling

of services in REST; layered system, in which it splits the functionalities into hierarchical

layers; on demand code, which improves the client’s ability to request codes on the

server side using scripts and applets (R. T. Fielding, 2000). Figure 2-6 shows the

communication style in REST architecture. It can be mentioned that it is a client-server

architecture and there is no need for a description of the service or a service registry as in

25

SOAP protocol, as the messages received from the resources in REST includes the

metadata related to the received service. This makes the REST easier to change, where

any changes on the server side require updating the WSDL to assure retrieving the

services on the client side (Bloomberg, 2013).

Figure 2-6 REST service invocation process

REST architecture is based on resources and representations. The resource is defined as

anything identifiable and accessible using URI (Uniform Resource Identifier) which is

used to represent each resource uniquely so the resource is not conflicted with other

resources (Papazoglou, 2008). The representation is the data that describe a resource state.

The representation data format is also known as media type such as HTML documents

(R. T. Fielding, 2000).

REST services are accessed using HTTP methods through supporting CRUD (Create,

Read, Update, and Delete) operations (Marinescu, 2013). HTTP messages can be either

a request from a client to server or a response in the reverse direction. Each message

contains an HTTP header fields and an HTTP message body (R. Fielding et al., 1999).

The main HTTP methods that can be used as requests are: GET, this method requests

service from the server; POST, sends data to be handled by the provider which results in

either creating or updating the service; PUT, used to upload representation for the

resource; DELETE, used to delete the resources; HEAD, is similar to a GET request by

neglecting the response body, this is important for retrieving metadata without receiving

the whole service. This request is used for retrieving the information required for the

monitoring process in the proposed middleware. Finally, the OPTIONS method, which

returns the HTTP methods supported by the server (Velte et al., 2009), OPTIONS is also

used in the proposed middleware to transmit the SLA parameters’ values without

affecting the requested services. Chapter 4 presents more details about using HEAD and

OPTIONS for transmitting the data in the proposed solution.

26

Figure 2-7 shows the request of services in both the REST and SOAP protocols It can be

seen that the GET request in REST is implemented using POST in SOAP in addition to

extra XML content being added in the body of the request to manage the communication

between the client and the provider (Upadhyaya et al., 2011).

Figure 2-7 An example depicts a request message: (a) REST; (b) SOAP web services

(Upadhyaya et al, 2011)

REST is considered as one of the architectures that is used in cloud computing which

provides a platform and language independent architecture style (Marinescu, 2013).

Nowadays, there’s an apparent shift from SOAP services to REST services particularly

in cloud computing platforms (Shroff, 2010) because of the advantages that REST offers

such as simplicity, ease of use, better response time, and improved server scalability

(Velte et al., 2009). Figure 2-8 shows the trend of Google search for the terms ‘SOAP

API’ and ‘RESTful API’ between the years 2004 and 2017. The figure reveals a clear

move from ‘SOAP API’ to ‘RESTful API’. This trend is due to the characteristics of

REST which makes it more preferable in API industry developments (Google Trends,

2016).

a)

b)

27

Figure 2-8 Google search trend for RESTful API and SOAP API from 2004 to 2017 (Google-

Trends)

Because of the features of the REST architecture, it is mentioned by Kavis (2014) that

REST is important in building cloud computing, as the cloud is dependent on a huge

number of resources. REST architecture helps in handling these resources independently

from the underlying infrastructure (Kavis, 2014).

REST services can be described using WADL (Web Application Description Language)

and WSDL2, which provides an XML description for the functionality and the resources

of the web services in REST architecture. However, WADL is not considered as

important as the WSDL in SOAP web services due to the simplicity of the REST

architecture (Richardson & Ruby, 2008).

Han et al. (2009) proposed the use of REST to manage cloud computing instead of SOAP

protocol. The authors presented CMS, which is a Cloud Management System that exploits

REST architecture in the managing process. The study suggested presenting the managed

components as resources in REST. The proposed architecture is composed of a user

interface to handle the user requests, a management module to handle the user requests,

and the managed elements which are the resources components to be managed in the

cloud environment. REST methods such as GET, PUT, POST, PUT, and DELETE were

used to manage the resources (Han et al., 2009). The study is considered one of the first

studies that considered using REST to manage the cloud, but it failed considering the

SLA concept in the management process.

28

It is important to mention that REST and SOA share the feature of loose coupling, which

facilities the development of distributed systems. This is applied in REST by using the

uniform interface through the URIs. A good understanding of the REST concepts can

assist in building high performance distributed systems (Vinoski, 2007).

2.4.2.3 REST vs SOAP

Several studies have revealed the difference between SOAP protocol and REST

architecture, where the most mentioned point is the use of a WSDL as an XML

technology to manage the communication between the client and the server side. This

characteristic is the reason for the lightweight feature of the REST architecture, which

provides better performance to the REST in comparison to SOAP. The researchers

Mumbaikar and Padiya presented a comparison study between using SOAP and REST in

multimedia-conferencing applications. They discussed the need for handling the XML

SAOP messages which are not used in REST. The study showed that SOAP messages

required more bandwidth and resource consumption. In conclusion, the researchers found

that SOAP protocol added an end-to-end delay of 3 to 5 times the delay caused by REST

architecture, and it added a network load 3 times of that caused by REST; their results

highlighted the message size in both cases (Mumbaikar & Padiya, 2013).

Another study by Mulligan and Gra (2009) proposed a middleware for independence

interaction using SOAP and REST technologies. They mentioned the concept of using

resources in REST against the use of XML encoded messages, then, they showed the

effect of this difference on the performance in terms of the packet size and the end-to-end

delay, they concluded that the REST added less delay and packet size overhead in

comparison to the SOAP protocol. Furthermore, the latency caused by synchronous

requests in SOAP was higher than that of REST (Mulligan & Gra, 2009).

A similar study by Bora and Bezboruah (2015) compared REST services with SOAP

protocol. The authors implemented two services for pharmacological data using SOAP

and REST, and compared the performance and stability of the tested services. They

argued for the use of client-server architecture in REST and accessing the resources using

URIs against the use of an XML WSDL to manage the communication in SOAP. The

results were that REST architecture outperforms the SOAP protocol (Bora & Bezboruah,

2015).

29

The work by Markey and Clynch (2013) studied the retrieval of database items using both

SOAP and REST web services architectures. The study considered the sent and received

bytes and showed that REST is the optimal selection for web services implementation,

especially with using JSON formats against the use of XML in SOAP (Markey & Clynch,

2013).

The research by Mohamed and Wijesekera (2012) introduced a comparative study about

using REST and SOAP based web services, and hosting these services in mobile devices.

Again, the features of REST and SOAP revealed that more resources were required to

parse the SOAP messages, which make REST services to be more efficient and require

less resource consumption in comparison with SOAP services. This is due to the increase

in the number of requests and the size of the transferred file (Mohamed & Wijesekera,

2012).

Finally, Upadhyaya et al. (2011) proposed converting SOAP based web services into

REST services. The study discussed the points to be considered, which involves

representing the operations included in the WSDL as resources to be retrieved using

CRUD HTTP methods. The study evaluated both of the used services, they mentioned

that REST is most popular and used on the web sites of the internet, providing a better

performance (Upadhyaya et al., 2011).

2.4.3 Middleware

Middleware has been developed as a model for managing distributed systems, where the

name ‘middleware’ indicates its location in the middle layer between the platform

operating system and the application layer (Bernstein, 1996). Middleware can be defined

as an infrastructure that supports the development and execution of distributed

applications (Puder, 2006). Practically, middleware plays an essential role in building any

distributed application (Gustavo et al., 2004). It is a software layer that resides between

the application and the operating system to hide the distribution and heterogeneity of the

underlying hardware details and programming paradigm (Krakowiak, 2007). The

heterogeneity types that a middleware can hide and manage are discussed by Puder

(2006), where the heterogeneity can be between different programming languages,

different operating systems, or among computer architectures (Puder, 2006).

Five main technologies have been used in middleware implementations:

30

 Remote-Procedure-Call (RPC) middleware provides an abstraction to the

interaction procedures, so that the application designer does not need to go

through the details of these interactions when calling procedures on other devices.

 Transaction-oriented middleware (TP) supports transactions that guarantee

consistent system transition through handling the errors caused wholly or in part

by the application failure itself by using transactions to ensure saving the state of

the invocations and avoiding the effect of the failure of one invocation on the

others. The transaction ensures that a set of invocations within a transaction are

guaranteed; this is considered by ACID (Atomicity, Consistency, Isolation, and

Durability) characteristics.

 Message-Oriented Middleware (MOM) is the interaction managed by exchanging

messages containing the request for service execution and the responses between

the clients and the providers, where the message is a structured data involving the

parameters of the message in a pair of name and value. This middleware supports

the asynchronous communication through the usage of message queues in which

the messages sent by the client are stored until the server is able to process them;

these queues must be reliable in terms of failure to assure the delivery of the

messages to the receiver.

 Distributed-Object Middleware (DOM) supports communication between

distributed objects based on the object oriented concept, so instead of invoking

procedures, it includes calling methods of objects on the remote machines.

CORBA (Common-Object-Request-Broker-Architecture) is a kind of object-

oriented architecture for managing applications through the internet (Gustavo et

al., 2004).

 The fifth type of middleware is the Service Oriented Middleware (SOM), presents

or uses the Service Oriented Architecture (SOA) technology which is a method

for providing services to clients’ applications or other services through a network.

The services in SOA are platform independent and reusable so that they can be

used by other software applications to fulfill tasks instead of building new services.

In SOM the providers are loosely coupled to the clients (Qilin & Mintian, 2010).

This thesis considers SOM in the design of the proposed middleware (MonSLAR)

because of its features of managing the heterogeneous environments in a loosely coupled

31

way through supporting the SOC principles in deploying, managing, and monitoring the

services. Chapter four presents more details about the proposed middleware.

In the scope of cloud computing, Marpaung et al. (2013) presented a survey of the

middleware solutions available that are used to integrate different cloud applications and

services or to manage deploying legacy applications into the cloud. They also mentioned

the important role played by the middleware to manage the development of the cloud

computing environment (Marpaung et al., 2013).

Many other types of research have been presented about developing a middleware to

support different tasks in cloud computing. Brandic et al. (2010) presented C3, which is

a middleware for ensuring compliance in cloud computing in terms of trust and privacy.

This included defining a compliance agreement for the user requirements by extending

the SLA document (Brandic et al., 2010). Although the authors discussed ensuring the

privacy of data in the compliance agreement, they lacked the technical details of web

services to transmit the data between the client and the provider.

SciCumulus is a middleware proposed by de Oliveria et al (2010) to manage the parallel

execution of distributed scientific workflows in cloud computing through collecting the

data and hiding the complexity and heterogeneity of the underlying resources of the cloud

infrastructure. SciCumulus is composed of three layers, the first one is the desktop layer

at the scientist’s side; the second layer manages the distributed activities in the cloud,

distributing the activities to the cloud instances; and the third layer is the execution layer

in the instances of the cloud resources (de Oliveira et al., 2010). This middleware lacked

the technical details of web services to transmit the data between the client and the

provider.

Presenting a middleware for managing SaaS in cloud computing has been discussed by

many researchers. For example, Decat et al. (2015) proposed Amusa, which is a

middleware for managing the access of multi-tenants of SaaS to the applications based

on their roles. The management considers the policies defined by the SaaS providers and

the tenants. The architecture of the proposed middleware contains components for

decision making which are based on the results obtained from authentication components,

in addition to dashboards to allow the parties to manage the policies’ attributes. (Decat et

al., 2015) However, the proposed middleware failed to consider monitoring the SLA

parameters violation or measuring the user’s satisfaction.

32

Bansal et al. (2016) discussed the concept of middleware to manage multi-tenancy of

cloud computing. The study introduced the main parties like the cloud hosts, the clients,

and the network communication. The cloud host may contain a middleware component,

the authors defined the function of the middleware as “a function that performs a

conditional filtering operation or a conditional transformation operation on network

traffic”. The services provided by the middleware are maintained in a ‘per-tenant’ policy

(Bansal et al., 2016).

Other attempts for developing middleware solutions dedicated to monitoring the cloud

services are discussed in section 3.2 Cloud Monitoring.

2.4.3.1 Service Oriented Middleware (SOM)

SOM is a middleware that supports the aggregation of services to manage and develop

service oriented applications and based on Service Oriented Computing (SOC). SOC

supports the loose coupling services through considering aggregating the components in

a network of services which allow the development of distributed applications with high

interoperability, code reusability, independence of underlying operating systems and

programming languages, in addition to reducing the cost. SOC is the base of web services

as they provide services on the internet using standard protocols to support the idea of

SaaS. Thus, developing a middleware with SOC capabilities can facilitate the design of

service oriented systems, by making software functionalities available as services to the

clients to be used later in any design without the need to rebuild these functionalities.

These services can be built using different technologies such as SOAP and REST web

services. Because of its aforementioned features, SOM is now considered to be the

preferred middleware by developers and researchers (Al-Jaroodi & Mohamed, 2012).

Several studies investigating SOM have been presented. Al-Jaroodi and Mohamed (2012)

submitted a survey about the available service oriented middleware solutions. This study

also discussed the main challenges and requirements for implementing this kind of

middleware. This survey emphasized the importance of middleware as a solution to SOC

through combining the advantages of both of these technologies. Besides this, to meet the

functional and non-functional requirements of the delivered services, they also mentioned

that there should be a balance between achieving these requirements and reducing the

overall overhead of the system.

33

Issarny et al. (2011) presented a study about SOM for the future of the internet. They

discussed the challenges of the internet’s future in terms of scalability, heterogeneity,

mobility, awareness and security. They proposed a SOM as a solution for this kind of

network which manages connecting services to the clients (Issarny et al., 2011).

Lee et al. (2005) proposed using an SOA to implementing a middleware, which adds a

service transparency feature and manages composing them to get complex services from

different service providers. The authors suggested using the XML as a technology for

managing the WSDL in the middleware through coordinating the connections among the

clients, service providers and the brokers (Y.-C. Lee et al., 2005). Although that the study

considered designing a middleware taking into consideration the SOA concept, it failed

supporting REST web services.

Wohlstadter et al. (2006) proposed Cumulus, which is an SOM for managing

interoperability of web services. Cumulus architecture is composed of a client-side, a

services’ registry and remote middleware services. The middleware allows run time

interoperability through attaching the client policies to the Business Process Execution

Language (BPEL) and attaching the provider policies to the WSDL. This enables the

middleware to select the middleware service from the registry (Wohlstadter et al., 2006).

This middleware’s functionality was dedicated to the interoperability of web services

with the use of WSDL, but it is impractical for cloud solutions or monitors user’s services.

The importance of using Service-Oriented-Architecture (SOA) to manage cloud

computing has been discussed by many researchers, through creating, organizing, and

reusing cloud components. SOCCA was proposed by Tsai et al. (2010), which is an SOA

architecture to allow the interoperation among different clouds. The researchers

mentioned the importance of using SOA to manage the SLA through separating the roles

of the service providers and the cloud provider. The researchers used the WSDL to

manage the web services in their implemented prototype (Tsai et al., 2010).

Another SOA middleware was developed by Azeez et al. (2010) to support multi tenancy

in cloud computing (Azeez et al., 2010). SOA middleware was proposed by Azeez et al

(2010) to manage the multi tenancy in cloud computing. The proposed solution presented

to allow sharing the infrastructure of cloud resources among many users in addition to

assuring isolating the data of each user. This architecture exploited SOA to present

services to the clients in the form of processes, data and security services. This

34

middleware was developed on top of WSO2 Carbon, which is an open source middleware

for building scalable servers (Azeez et al., 2010). Torkashvan et al. (2012) proposed using

service oriented in cloud computing to add an intelligence as a service layer which allows

automating the services in the cloud. The users can get the business or hardware services

in an even-driven base (Torkashvan & Haghighi, 2012b). Yang et al. (2015) submitted a

study about the use of SOA concept in managing a middleware in cloud computing. The

researchers discussed the SOA characteristics as well as mentioning the importance of

loose coupling and the reuse of software components in a cloud environment. Although

this study presented SOA architecture for the cloud middleware, it did not handle the

monitoring of services and the implementation details of the proposed architecture (Yang

et al., 2015).

On the other hand, MonSLAR utilizes SOA to provide Monitoring as a service through

separating these services from the SaaS providers.

There is different research related to the subject of middleware, however, this thesis

focuses on the middleware used for monitoring cloud computing and web services.

2.5 Chapter Summary

This chapter presented an overview of the main technologies related to the subject of the

thesis. The chapter is organized into two main directions. The first direction, which is an

overall introduction to cloud computing with a focus on the characteristics of SaaS as the

main topic of the presented thesis. The second direction, introduced the main technologies

used to manage cloud computing. SOA presented as an architecture for supporting

services as the main components of the information system. Web services were also

introduced as the basis of SaaS applications, with a focus on REST as the technology

used to manage the communication in the proposed solution. Finally, the third technology

introduced managing the services in a cloud environment by presenting the middleware

in addition to an overview of its types, elaborating on the SOM as the middleware type

used in this research. In the next chapter, the literature review related to monitoring cloud

computing is presented.

35

3 CHAPTER THREE : MONITORING USE R SATISFACTION IN CLOUD COMPUTING

MONITORING USER SATISFACTION IN CLOUD

COMPUTING

3.1 Introduction

The monitoring of cloud services from a user’s perspective has been the focus of much

research. Whereas the SLA is the contract that governs the relationship between the user

and the service provider, monitoring the SLA compliance is vital to ensure the user

satisfaction with the received services in cloud computing. As a result, the expediency of

developing a middleware for monitoring SaaS services in cloud computing can be proved

by reviewing the literature related to this subject and by highlighting the lack of reference

to it in previous researches. This chapter presents the literature review related to the

research topic. Figure 3-1 which summarises the influences from the literature review on

the subject of monitoring user satisfaction in cloud computing and the rationale for the

proceeding arguments.

This chapter discusses existing research related to monitoring user satisfaction in cloud

computing. This presentation of the literature review helps in to clarify the available

methods and frameworks employed in monitoring cloud systems in order to overcome

their shortcomings in the research.

Monitoring User Satisfaction in

Cloud Computing

QoE

Estimate user satisfaction

Cloud

monitoring

Applied to

Monitoring

framework

Involves developing

Quality modelsDefine the monitoring factors

SLA Monitoring

Requires managing

Figure 3-1 mind map shows the influence of the literature review

36

3.2 Cloud Monitoring

As cloud computing is the delivery of services based on a prescription, it is important to

check the delivery of the expected services to the client. Continuous monitoring of cloud

computing and the SLA is very important for both cloud providers and clients. It can

provide data about the size of the induced workload which helps in identifying ways to

prevent violating an SLA’s terms (Aceto et al., 2013). This section presents the main

studies concerned with monitoring cloud computing.

Lampesberger and Rady (2015) presented a study about the importance of monitoring the

client interaction in the cloud. The authors studied the difficulty faced by the client in

monitoring the cloud system as a black box, and introduced the monitoring as a method

to ensure receiving the required services. They discussed measuring the levels in the

service level agreement as an important issue in monitoring cloud computing. The study

focused on monitoring XML messages to detect intrusions in the web services

(Lampesberger & Rady, 2015). Although the researchers discussed the possible

monitoring points in the cloud to be in the hardware, network, middleware, and user level;

but they overlooked discussing the use of REST architecture as one of the web service

technologies, and measuring the QoE as an instrument for user satisfaction.

Many surveys have been conducted to study the monitoring of cloud computing. The

study submitted by Aceto et al., (2013) presented such a survey, the authors highlighted

the importance of continuously monitoring the cloud services in order to prevent breaches

of SLA through estimating the clients’ perceived services, they also discussed the issues

related to cloud monitoring and showed that one of the main issues is the importance of

notifying the monitored data timely, and provide automatic management for the

monitoring process (Aceto et al., 2013).

On the other hand, Gao et al. (2013) discussed the challenges of testing SaaS, and

mentioned the importance of defining new standards for testing SaaS. They defined

‘testing SaaS’ as “different types of validation activities in a test process to assure the

quality of SaaS in delivering the specified on-demand function services on a cloud

infrastructure”. The authors highlighted the importance of considering the multi-tenancy

characteristic of SaaS in SaaS monitoring, and the need for considering the QoS of SLA

parameters, in addition to checking the usability of the user interface (Gao et al., 2013).

37

Rehman et al. (2015) presented a state of the art assessment of the available management

systems in cloud computing. The authors discussed the main challenges for cloud

management, such as the lack of reference in previous research to monitoring cloud

services from the user’s perspective, the lack in using multi-criteria in estimating the QoS

levels in the cloud, in addition to the lack of an automated early warning system for the

users altering them for any degradation in QoS (Rehman et al., 2015). These challenges

are tackled in the current thesis through presenting MonSLAR with a user-centric

monitoring and a dashboard for monitoring QoE.

Incki et al. (2012) presented a survey about testing the software in cloud computing. The

authors mentioned the importance of considering an automated monitoring for the cloud

environment. They also highlighted the weakness in the research field to provide

acceptance tests for the cloud services, where these tests check the achievements of

contracts (Incki et al., 2012).

Another survey was submitted by Da Cunha Rodrigues et al. (2016) about cloud

monitoring. The study reviewed the available commercial monitoring tools, and

mentioned that they are owned by specific cloud providers. The researchers discussed the

importance of monitoring cloud computing to manage its resources, besides the need for

monitoring the SLA as it is considered one of the main features of cloud computing. They

also emphasised considering the cloud model whether it is IaaS, PaaS, or SaaS in the

monitoring process; in addition to considering whether the monitored data is from the

client or the provider point of view (Da Cunha Rodrigues et al., 2016).

These surveys illustrate that monitoring a user’s perception with received services is still

an unsolved issue. This issue is solved in this thesis through monitoring the SLA

compliance, which is considered as an indicator of the user’s satisfaction about received

services. A middleware is proposed to manage the monitoring process.

The literature review relating to cloud monitoring is categorised into two different

subsections, monitoring frameworks and quality models, as shown in the next two

subsections.

3.2.1 Monitoring Frameworks

In recent years, there has been an increasing number of monitoring tools to track cloud

resources in both scientific academic research and commercial fields. In this section, a

38

review of the literature related to the monitoring frameworks is presented, with a focus

on academic tools, these frameworks are compared in section 3.5. In spite of the

availability of variant commercial monitoring tools like CloudWatch from Amazon and

AzureWatch from Microsoft Azure SDK (Aceto et al., 2013), they are owned by specific

cloud providers, which means that they provide monitoring to those cloud providers and

from the providers’ perspective (Da Cunha Rodrigues et al., 2016). The presented

literature is classified according to the mode of monitoring, and divided into three

directions, server-centric, user-centric, and third party monitoring frameworks.

3.2.1.1 Server Centric Monitoring

The first direction of the literature relates to Server-centric monitoring. A considerable

amount of research has been published on monitoring frameworks in cloud computing.

However, most of the research to date has tended to focus on monitoring the provider side

of the cloud. The study presented by Shao and Wang (2011) introduced a monitoring

framework for measuring the performance of cloud applications, in order to manage the

provision of resources according to performance measurements. The authors proposed

using two metrics to measure the performance of the cloud applications: availability and

response time (Shao & Wang, 2011). The main limitations of this study are that it failed

to take into consideration the client side of the monitoring process, notifications to the

user about violations of SLA, or the kind of web services supported by the framework.

Another server-centric monitoring framework is M4CLOUD, presented by Mastelic et

al., (2012) to monitor applications in shared resources cloud environments. Taking into

consideration the SLA parameters, the monitored data is used to manage the allocation of

cloud resources; the researchers submitted an approach to classify the application metrics.

This research focused on monitoring the resources of the cloud application, and managing

the communication between the agents responsible for collecting the monitored metrics

(Mastelic et al., 2012), but it failed either to present a way of delivering the monitored

data to the client, or of estimating the overall user satisfaction regarding received services.

Another monitoring framework (JCatascopia) by Trihinas et al. (2014) claimed to provide

automatic monitoring for applications in cloud computing, to manage the allocation of

cloud resources. The proposed architecture considered collecting the metrics required for

the monitoring process from various layers of the cloud. The researchers also focused on

the collection of metrics from underlying resources, in addition to the provision of access

39

to the monitored data using a REST API (Trihinas et al., 2014), but they failed to manage

the communication between the client side and the provider side, to provide a user-centric

management for the monitoring process, or to notify the client about his/her overall

satisfaction about the received cloud services.

None of the above mentioned frameworks provides details about supporting REST

architecture or the kind of web services used for transmitting data between the provider

and the client. There is also a limitation in that they ignored the client side monitoring.

Povedano-Molina et al. (2013) presented DARGOS, which is an architecture for

monitoring multi-tenant cloud computing. They mentioned the importance of adapting

lightweight monitoring processes and communications to avoid any additional overhead

in the cloud environment. They also mentioned that avoiding using the broker ensures

more reliability and robustness as the failure of the broker may affect the whole system

(Povedano-Molina et al., 2013). This research focused on collecting the monitored data

from the cloud resources using a distributed architecture for monitoring cloud computing.

Although a REST API is used, it failed to consider user-centric monitoring for cloud

services, and the collected results provide no indication of the overall user satisfaction.

Another middleware has been presented by Cedillo et al. (2015) to monitor SLA

compliance in cloud computing and provides reports containing SLA violations. The

monitoring process includes measuring the cloud resources and compares their quality

with levels specified in the SLA document. The proposed framework consists of two main

components, the configurator, to derive a quality model based on the quality

requirements; and the monitoring and analysis, which compares the measurements with

the requirements to decide the SLA violations (Cedillo et al., 2015). This study was

extended by Cedillo et al. (2016) to present a monitoring framework to assess the quality

of cloud services. Additional non-functional requirements that are not part of the SLA

were taken into account, also the quality of SaaS (Cedillo et al., 2016). Although the

middleware presented in the two aforementioned studies comprises an attempt at

monitoring SLA parameters violations in cloud computing, they did not present a user-

centric control for the monitoring of an SLA. They also fail to mention the supported

types of web services in delivering the monitored data.

Smit et al. (2013) introduced MISURE, an architecture which uses streams for monitoring

cloud applications in heterogeneous environments. The authors focused on aggregating

40

and collecting the measurements from the cloud resources, and proposed presenting the

monitored data as a web service, or in other words Monitoring as a Service (MaaS). The

measurements can be retrieved using REST APIs, which can be used later to deliver

notifications to the client side (Smit et al., 2013). Although MISURE takes into

consideration monitoring the cloud computing resources and collecting the

measurements, it does not tackle the problem of providing a measure of user satisfaction

based on an SLA, and making a decision based on multi criteria; an adaption is required

for this architecture to consider an overall measurement for cloud services.

JTangCMS is another monitoring framework presented by Lu et al., (2016). The

researchers mentioned the importance of using a decision making system to handle the

collected monitored data. They also mentioned the importance of reducing overheads

generated by the monitoring process, which is countered in their study by controlling the

frequency of collection of the monitored data (Lu et al., 2016). The middleware employed

is a message queue, and the delivery model of data in this research is a push-pull model.

Although this research considered a monitoring cloud platform and presenting decision

making, it failed to introduce user-centric monitoring for cloud services and to deliver the

required data to the user side.

Another middleware by Lee et al., (2012) provided an SOA for an enterprise cloud

computing, and proposed a middleware to provide monitoring for the cloud which helps

in checking the performance of the system to provide requested services in order to

manage resource allocation processes, taking into consideration an SLA document

compliance level. The proposed middleware considered the use of a service description

language which is an expansion of a WSDL of web services, however, this middleware

neither presented user-centric monitoring for cloud services nor discussed how to manage

REST services in the monitoring process. Moreover, the middleware was theoretically

presented, but without giving any details about its performance evaluation (S.-Y. Lee et

al., 2012).

Muller et al. (2012) presented SALMonADA, which is a framework for monitoring the

QoS of service based systems. This framework is capable of monitoring the services’ QoS

and provides violation reports in terms of SLF (Self-Level-Fulfilment), taking into

consideration the SLA document (Müller et al., 2012). SOAP protocol was used for

invoking the Monitoring-Management-Documents, in addition to WSDL-documents to

41

manage the notifications. This study was extended by Oriol et al. (2015) by proposing

SALMon, a monitor for the service based systems through the whole SLA lifecycle.

Again, while this study employed a WSDL to transmit and represent the monitored data

and reporting the violations to the client, it also failed to present a comprehensive

evaluation of user satisfaction (Oriol et al., 2015). However, the delivery of the monitored

data is managed in MonSLAR by using REST architecture.

Perez-Espinoza et al. (2015) presented a distributed monitoring architecture for private

clouds. The architecture is composed of the following components, a collector to collect

the monitored data from the underlying physical and virtual resources; metasensors as the

monitoring tools used for monitoring the resources; a distributer to manage the monitored

data collected by the collectors; and a visualizer, which is used to allow the users check

the monitored data. The collector contains a classifier to check the workload and alerts in

case of critical high workloads cases (Perez-Espinoza et al., 2015). The study focused on

collecting the measurements from the cloud resources, but it failed in providing an

automated user-centric monitoring, in addition to overlooking the SLA document in

determining the user satisfaction and SLA violations.

3.2.1.2 User Centric Monitoring

The second direction in this section is the user-centric monitoring frameworks, in which

the monitoring process is managed by the client side of the cloud environment.

Emeakaroha et al. (2012) proposed CASViD, which is an architecture to monitor and

detect the violations in the SLAs of cloud computing applications, through monitoring

performance and usage the cloud resources according to the levels specified in the SLA

document (Vincent C Emeakaroha et al., 2012). The framework is considered to be user-

centric monitoring, as the SLA management is activated by client side requests. This

research was extended by Brandic et al. (2015) through proposing an algorithm for

determining the intervals between measurements of the applications in multi-tenancy

SaaS, this was achieved by considering the cost and the SLA objectives (Brandic et al.,

2015). Although violations of the SLA were detected in the two aforementioned studies,

but the framework failed to define a way for notifying the client about these violations,

and also to declare the web services used for transmitting the data between the client side

and the provider side.

42

GMonE, is a framework developed by Montes et al. (2013) for monitoring cloud

environments. The authors discussed the importance of considering user-centric

monitoring for cloud services, in addition to the QoS of the SLA parameters (Montes et

al., 2013). Although the authors claimed that GMonE provides client-oriented monitoring

for the cloud and a GUI access to the monitored data, this was considered in terms of the

type of measurements and collection of the data required for the client. However, they

provided no information about managing the monitoring process by the client, supporting

the REST architecture, or monitoring the overall user satisfaction.

Nguyen et al. (2014) presented a user-oriented monitoring framework for cloud

computing. The authors highlighted the importance of distinguishing the role of the cloud

user as a consumer of cloud resources, whether it is a client or a provider in the monitoring

which affects the required monitored data. They also discussed the fact that the cloud

application user is more interested in receiving clear notifications about the decline of a

service than the metrics details of used cloud resources. Although the researchers claimed

that it is a user-centric monitor, managing the monitoring was accomplished using a

trusted third party (Nguyen et al., 2014). The main limitation of this study is the failure

to consider SLA compliance in monitoring cloud services.

Serhani et al. (2014) presented a study to check SLA violations in SaaS cloud computing,

through measuring the QoS of the received services. The researchers discussed the

importance of monitoring the SaaS services for both the cloud clients and providers,

claiming that the framework can be both client- or provider-centric (Serhani et al., 2014).

However, this study failed to manage an automated monitoring for the SaaS services, and

there are no details about the types of web services supported. On the other hand,

MonSLAR manages the monitored data for a specific REST service provider, the

architecture of MonSLAR also provides more details for supporting the REST

architecture in handling the monitored data.

Rehman et al. (2015) presented UCSM, a framework that assists the user in the cloud

service selection process. The framework contains monitoring and early warning

components. The monitoring process took into consideration collection of the QoS

measurements of the cloud services and the users’ feedback about the services, to be used

later by the other components (Rehman et al., 2015). Although this study considered

monitoring the cloud services by considering the users’ feedback, it ignored the stated

43

services’ levels in the SLA. Furthermore, this framework lacked an overall estimation for

user satisfaction (QoE) based on selected parameters, and provided a poor description for

technical details such as the communication mechanisms and the types of supported web

services.

Moustafa et al. (2015) presented SLAM, an agent-based framework for monitoring SLA

in federated cloud computing. SLAM proposed allowing the user to measure the SLA

parameter through mapping it with low level metric, and uses dashboards to provide the

monitored data. SLAM allowed the client to evaluate the cloud provider service. This was

done by the coordinator component which sends requests to the specific provider and

evaluates its performance according to the collected data. The authors claimed that this

framework can be used by both the clients and the providers to monitor the cloud services

(Moustafa et al., 2015). However, the research failed to provide an automated online

monitoring for the cloud service, as well as consideration of the type of web services used

in the cloud service, and handling of the REST architecture. This research is considered

in Appendix E, through comparing the overhead caused by SLAM with that caused by

MonSLAR, as it is the most relevant one to the middleware presented in this thesis.

Another architecture was proposed by Tang et al. (2016) to assess trust in cloud

computing based on QoS monitoring and users’ feedback. The authors presented a

middleware to manage the evaluation process. In their study, trust considered as the

expectation of the user about the used service. The architecture proposed providing a list

of trusted services to the clients based on the middleware evaluation results and each

client SLA requirements, which could help the user in selecting the most trusted service

(Tang et al., 2016). Although users’ feedback was considered to evaluate the candidate

services, the study did not consider measuring the individual user satisfaction of the used

service. Little attention has been given to provide an automated monitoring in the

proposed architecture and delivering the data to the clients.

The main limitation of the research presented in this kind of monitoring frameworks is

the weakness of finding an automated monitoring environment to control SLA violations

cases or giving details about the web services used in the monitoring process.

3.2.1.3 Third Party Monitoring

The third direction of this section is third party monitoring. There has been some research

proposing using a third party component for monitoring frameworks to manage the

44

monitoring process. For example, Siebenhaar et al. (2013) proposed a monitoring

framework that enables estimating the availability of applications in cloud environments

from a user’s perspective, taking into consideration the measurements on both the client

and the provider side. The monitoring process was managed by using a broker, who is in

charge of coordinating the monitoring and collecting the data from both the provider and

the client side, and measuring the overall availability of the system by considering the

availability value in the SLA document (Siebenhaar et al., 2013). The main weakness of

this study is the use of a broker in managing the monitoring of the cloud. It also fails to

monitor overall user satisfaction about the cloud by focusing on only one parameter

(availability).

Katsaros et al. (2011) presented an architecture to manage the monitoring process in cloud

computing. The researchers discussed the advantages of REST over SOAP in managing

SOA, and proposed using REST to manage the collection of the monitored data from the

underlying resources of the cloud in the monitoring process. The monitored data is

collected by NEB2REST, which is a developed module as a broker to manage invoking

the monitored data, where the monitoring information is provided as the REST resources.

(Katsaros et al., 2011). Although this study presented REST to manage the monitoring

process, but it failed to present an automated user-centric monitoring for the data, it also

failed to present an approach for estimating the user satisfaction or the SLA violation.

Rak et al. (2011) proposed a monitoring framework for cloud computing applications that

support mOSAIC components. The proposed framework provides cautions in the case of

violating the SLA document through monitoring the quality of cloud resources. An

agency was suggested to provide the collected monitored data (Rak et al., 2011).

However, this framework is specific to monitoring mOSAIC applications and is not

applicable to other applications in cloud computing.

Another framework had been proposed by Ye et al. (2012) in order to verify and detect

SLA violations, achieved by presenting a third-party-auditor to check an SLA, which is

assumed to be trusted in this study (Ye et al., 2012). In spite of highlighting the

importance of splitting the monitoring of the SLA between cloud providers and clients to

ensure a trusted relationship, this has been managed by a third party which can at times

be considered unreliable. This issue is treated in MonSLAR by managing the monitoring

process automatically by the proposed middleware.

45

Alsulaiman and Alturki (2012) presented a model for SLA monitoring and evaluating the

services offered by cloud providers. The study focused on monitoring the QoS of

multimedia in the cloud. The researchers mentioned the importance of isolating the

monitoring process from a cloud provider to ensure client trust, suggesting the use of an

embedded agent independent of the provider side to accomplish the monitoring of the

SLA (Alsulaiman & Alturki, 2012). They overlooked notifying the client about violations

or discussing the supported types of web services.

Cicotti et al. (2012) presented QoS-MoNaaS, a Quality-Monitoring-as-a-service that

provides a solution for evaluating the quality of cloud services and identifying any SLA

breaches in cloud computing. The authors suggested presenting the monitored quality to

users as a service using a trusted third party (Cicotti et al., 2012). This study was extended

by Adinolfi et al. (2012) to consider portable monitoring for the QoS, through making it

possible to be ported to different cloud platforms and providing continuous monitoring

for QoS (Adinolfi et al., 2012). However, neither of the aforementioned studies

considered providing any notifications of violations of an SLA, nor did they consider

user-centric monitoring for cloud services.

The study presented by Amato et al. (2012) discussed evaluating an SLA in cloud

computing through using a third party broker. This proposal was claimed by the authors

to help in selecting providers with best offers of resources in the negotiation time and

selection of the provider (Amato et al., 2012). In spite of considering evaluating cloud

services in order to manage the relationship between the provider and the client, it focused

mainly on evaluating provider services in the negotiation phase and overlooked

monitoring the SLA state after service usage, and in addition there was the weakness

caused by the use of a broker to manage this process in the form of the increased costs

and overheads.

Badidi (2013) proposed a framework for managing an SLA in SaaS. The author

mentioned the importance of monitoring the QoS of the provided services in the selection

of cloud providers and allocation of the cloud resources, and of ensuring SLA compliance

on receipt of services. The management of SLA and monitoring QoS of the web services

are achieved by the use of a cloud broker (Badidi, 2013). Although this study discussed

the delivery of SaaS as web services and monitoring its QoS, it failed to consider the

different kinds of web services and the technical issues of the monitoring process.

46

Khaddaj et al. (2014) proposed a framework to assure SLA compliance in cloud

computing by monitoring the QoS. A broker was suggested to manage the cloud resources

allocation process according to the values of QoS defined in the SLA (Khaddaj et al.,

2014). Although it is claimed by the authors that the framework introduces a kind of user-

centric management for the SLA matching process, the monitoring and the measurement

process was managed by the broker, in contrary to MonSLAR, where the user-centric

monitoring is controlled by the client side of the middleware.

Aversa et al. (2015) proposed an architecture for monitoring cloud applications taking

into consideration the non-functional requirements and the performance of cloud

resources. The authors proposed agent-based monitoring to collect the monitored data

from cloud resources. The monitoring architecture considers monitoring resources with

requirements restrictions to decide the monitoring configurations that are used later in the

decision making process, in order to ensure SLA compliance of the provided services

(Aversa et al., 2015). Although this research monitors cloud applications based on

performance requirements, it lacks considering a user-centric monitoring for the overall

satisfaction about the cloud services.

Measuring user satisfaction with cloud services was considered by Hammadi and Hussain

(2012) through measuring the provider’s reputation to decide usage continuation. They

proposed a framework for monitoring SLA in cloud computing in terms of trust and risk.

The study emphasised the importance of monitoring the QoS of cloud services taking into

account the SLA. A third party monitor was suggested that used fuzzy logic for measuring

provider reputation, assisting in decision making about the continuous use of the service.

In their research, fuzzy logic used to measure the reputation based on the recommending

user opinions, who decide reputation according to experience with the provider; time

delay; and their credibility in the pre-interaction phase; the input to the fuzzy system is

not the SLA parameter values (Hammadi & Hussain, 2012). In MonSLAR, measuring

the SLA assurance has been used to monitor the provided services through checking the

measured SLA parameter values and assessing the services, eliminating the need for a

third party; this method is considered more reliable as will be explained in chapter 4. The

research presented in this thesis is dedicated to monitoring SaaS services.

You et al. (2015) proposed a framework for SLA management which considers providing

an SLM-as-a-service in cloud computing, which was presented by Motta et al. (2014).

47

This study suggested the use of a third party in the management process of an SLA. The

framework includes an agent in charge of monitoring the status of the cloud services in

terms of the QoS of the SLA. Although the authors mentioned the use of XML and UDDI

in the management process, they failed to give details about supporting REST services,

or to consider a user-centric monitoring process (You et al., 2015).

Regarding the literature review related to third party direction, it is important to mention

that the use of a broker is considered as a weakness point, because of additional

overheads, cost, and reliability issues. These issues can be eliminated by avoiding the use

of a broker and defining a new approach to managing the monitoring of the cloud

environment, which is handled in this thesis by proposing a client-server monitoring

middleware.

3.2.2 Quality Models

Definition of quality models has been investigated by many researchers as an indicator of

quality, many years before the commencement of the cloud computing concept. This

section introduces the various models which are in existence, and a comparison among

these models is presented in section 3.5. The quality model (SERVQUAL), which was

presented by Parasuraman et al. (1988) identified quality gaps in the consideration of

service quality. However, this model was developed in the late eighties and at the time,

cloud computing was not established as a possible source of service gap. Whilst this

model is therefore useful as an indicator of service level gaps for more traditional service

companies, it is not relevant to the development of SLAs in cloud computing. Five quality

dimensions were defined in this model which are: reliability, assurance, responsiveness,

tangibles, and empathy (Parasuraman et al., 1988).

Defining a quality model for cloud computing services has been investigated by many

researchers. The Service Measurement Index (SMI) model is the first and most generally

applicable in this field, which comprises a set of Key Performance Indictors (KPIs)

identified by the Cloud Services Measurement Initiative-Consortium (CSMIC) to offer a

comparative evaluation for the cloud services, taking into consideration the main QoS

requirements of the cloud user. This model is a standard that helps organisations in

measuring the cloud services based on their demands (CSMIC, 2011).

48

A similar model was proposed by Lee et al. (2009) to evaluate SaaS in cloud computing

according to the features of SaaS. This model was defined taking into consideration the

main features of SaaS which are: reusability, availability, scalability, reliability,

efficiency, and assessment (J. Y. Lee et al., 2009). However, the main drawback of this

research is the weakness in determining the quality dimensions which were heavily

dependent on the literature. This study would have been more original if the authors had

considered user opinion in the decision process.

CLOUDQUAL is another quality model proposed by Zheng et al. (2013) for cloud

computing services taking into consideration the QoS. The authors proposed six

dimensions for the proposed quality model which are: usability, availability, reliability,

responsiveness, security, and elasticity. Testing this model considered the cloud storage

services (Zheng, 2013). However, this study failed to determine the weight of the effect

of each of the quality dimensions on the overall user satisfaction, which is required in

MonSLAR to estimate the QoE value in the decision making process of the proposed

fuzzy logic engine.

Furthermore, SaaS-Qual was presented by Benlian et al. (2011), which is another quality

model used as an instrument to expect the continuity of using SaaS by the customers. This

model represents the most appropriate model to be used in predicting QoE in SaaS cloud

computing. The significance of SaaS-Qual model emerges from the need in this research

to define the main factors that affect the user satisfaction with the received services, where

these factors are proposed in SaaS-Qual. In addition to the fact that specifying these

factors were based on SaaS experts which make them more realistic and suitable for the

proposed solution in this thesis.

The next subsection presents more details about SaaS-Qual model, which is the used

quality model in this thesis.

3.2.2.1 SaaS-Qual Model

SaaS-Qual was presented by Benlian et al. (2011) as an instrument to predict the

continuity of using SaaS by the customers. The authors specified six metrics to measure

SaaS, which are rapport, responsiveness, reliability, flexibility, features, and security.

These factors are outlined here:

49

a) Responsiveness: Consists of all aspects of the SaaS provider’s ability to ensure an

availability and a performance of a SaaS-delivered application (e.g., through

professional disaster recovery planning or load balancing) as well as the

responsiveness of support staff (e.g., 24-7 hotline support availability) being

guaranteed.

b) Reliability: Comprises all features of the SaaS vendor’s ability to perform the

promised services timely, dependably, and accurately (e.g., providing services at

the promised time, provision of error-free services).

c) Flexibility: Covers the degrees of freedom customers have to change contractual

(e.g., cancellation period, payment model) or functional/technical (e.g.,

scalability, interoperability, or modularity of the application) aspects in the

relationship with the SaaS vendor.

d) Security: Includes all aspects to ensure that regular (preventive) measures (e.g.,

regular security audits, usage of encryption, or antivirus technology) are taken to

avoid unintentional data breaches or corruption (e.g., through loss, theft, or

intrusions).

e) Features: Refers to the degree the key functionalities (e.g., data extraction,

reporting, or configuration features) and design features (e.g., user interface) of

the SaaS application meet the business requirements of a customer.

f) Rapport: Includes all aspects of the SaaS provider’s ability to provide

knowledgeable, caring, and courteous support (e.g., joint problem solving or

aligned working styles) as well as individualized attention (e.g., support tailored

to individual needs).

These factors have been used as a base in monitoring SaaS cloud services. Deciding the

quality dimension was based on a comprehensive study which relied on a literature

review, in addition to interviews with experts in SaaS who were account managers in

SaaS companies, focus groups with information system managers, in addition to a pilot

study (Benlian et al., 2011). Their study defined the effect of each quality dimension on

the overall user satisfaction of the services as shown in Figure 3-2, which helps with the

decision making in the fuzzy logic engine of MonSLAR (see section 5.3). For these

reasons and the fact that it is one of the most cited quality models, and considering that

determining the factors was based on SaaS experts, SaaS-Qual has been considered in

estimating the QoE value in this thesis.

50

Figure 3-2 weighted combination of the six factors of SaaS-Qual (Benlian et al., 2011)

3.3 QoE Monitoring

QoE was defined by the European Network on Quality of Experience in Multimedia

Systems and Services as “the degree of delight or annoyance of the user of an application

or service”, which is affected by achieving the results expected from using a service

taking into consideration a user’s feeling and thinking of a specific situation (Le Callet et

al., 2012). QoE represents a measure of the level of received service (Matulin & Mrvelj,

2013). It can also be defined as the network performance from the user’s perspective

when using the service, while the Quality of Service (QoS) relates to the factors that affect

the quality of the network while transmitting the data in terms of packet loss and

bandwidth, but without considering the user’s point of view (Rifai et al., 2011).

According to Varela et al. (2014), “QoS is defined from a system’s perspective -

characteristics of a telecommunications service-, whereas QoE is entirely defined from

user’s perspective – degree of delight or annoyance of a person”. The authors stated that

QoS is a different concept from QoE, while they interfere as QoE depend on QoS, but

QoE provides better perception for the network performance. The study asserted that QoE

includes both technical and psychological features; it also discussed that QoE

measurement can be used for network management in terms of SLA management (Varela

et al., 2014).

Two basic approaches are available to measure the QoE value in networks. The first

approach considers using subjective or qualitative tests that can be interpreted using

human understanding, which are performed by real customers in a test panel. However,

this approach is considered time-consuming and expensive, as it requires a large number

51

of people to conduct the test and get the result, in addition to the varying views of the

users, which affect the accuracy of a result. The users of a service are asked to fill in a

questionnaire; Mean Opinion Score (MOS) is used to determine the level of the QoE.

The second approach considers using objective tests; this approach is based on the use of

measurable parameters to assign quantitative values to the performance that a customer

perceives; the objective test is used to acquire values comparable to those of the real users

of the services. Five models are available for the objective measurements of QoE: media

layer, the input in this model is the media signal; packet layer, the data used here is the

data from the IP header only; bistream layer, where the input is both the encoded

bistream information and the packet header; planning, “includes the quality planning

parameters of networks or terminals”; and the hybrid model, which is a combination of

the previous models. According to Matulin and Mrvelj (2011), the hybrid models use both

quantitative and qualitative inputs for the evaluation of QoE (Matulin & Mrvelj, 2013)

(Fiedler et al., 2010; Rifai et al., 2011). A hybrid-objective model is used in this thesis.

Estimating the value of QoE has been the subject of many researchers for many years.

The IQX-hypothesis is a model developed by Fiedler et al. (2010) to define an exponential

relationship between QoS and QoE. The proposed relationship is shown in Figure 3-3,

where three different regions were defined, taking into consideration two threshold values

(x1) and (x2). In the first region (QoS-disturbance <= (x1)), represents the optimal service

perceived by the client, because of the small value of QoS-disturbance; in the second

region ((x1) <= QoS-disturbance >= (x2)), the increase of the disturbance in QoS causes

a degradation in the QoE value; and in the third region (QoS-disturbance >= (x2)), the

clients perceive a low quality service, which represents a low value of QoE (Fiedler et al.,

2010). This model can be the base for an objective estimation of the QoE value, however,

it does not consider the cloud services, and hence the SLA is not considered in the

estimation process of QoE. This model is adapted to present a metric for estimating QoE

in SaaS services (See Chapter Five).

52

Figure 3-3 The relationship between QoS disturbance and QoE value (Fiedler et al., 2010)

Recently, researchers have paid attention to the use of a QoE as a measure for the quality

of the services paid for by a user. Reichl and Zwickl discussed using QoE in pricing the

services; in other words, charging users according to their preferences. They proposed the

use of the concept of “price/quality” and classifying the users according to the tariff they

are willing to pay for the service’s QoS level (Reichl & Zwickl, 2015). The idea of

considering a user-centric or QoE monitoring for the SLA was discussed by Varela et al.

(2015), who proposed presenting the SLA as an Experience Level Agreement (ELA). The

authors defined the ELA as “a special type of SLA designed to establish a common

understanding of the quality levels that the customer will experience through the use of

the service, in terms that are clearly understandable to the customer and to which he or

she can relate.” In other words, receiving the service with guaranteed QoE. The

researchers argued that although the SLA parameters present information about the

performance of the service, they fail to represent the perceived user experience. The study

discussed the need for an agreement upon metrics and quantifiable measurements, in

addition to an automatic monitoring architecture to manage the ELA assurance, by

suggesting the use of quality scales such as star-rates to reflect the user experience instead

of the usual QoS quality levels (Varela et al., 2015). This concept, as presented in their

study is comparable to the concept presented in this thesis about monitoring the QoE of

SLA. While their research emphasised the importance of defining a new agreement to

guarantee the QoE value, this thesis proposes estimating the value of QoE based on SLA

parameter values.

53

The importance of considering QoE in cloud computing is also discussed by Kafetzakis

et al (2012). The researchers presented QoE4CLOUD, a framework for managing

resources in cloud computing, taking into consideration the actual perception of received

services (QoE). This research considered handling three quality dimensions, which are

QoS, QoE, and Quality of Business (QoBiz) that represents the cost of the perceptual

service. The QoE is measured continuously using an agent on the cloud side, taking into

consideration the SLA. The authors claimed that considering this framework can improve

cloud resources usage though using a unified metric (Kafetzakis et al., 2012). Although

this study can be considered a reference to the importance of QoE in a cloud, it fails to

determine the main parameters and the analysis method that can be taken into account in

measuring the QoE.

Hasan et al. (2013) discussed the importance of defining a quantified value for the QoE

instead of a subjective one, where the latter is not adequate to manage the SLA. The

authors proposed an exponential relationship between QoE and SLA. They suggested

solving the problem of virtual machine and resources’ allocation through predicting SLA

violations, in order to improve the QoE and minimize the SLA violations (Hasan & Huh,

2013). Although this study proposed a way for quantifying the QoE, this reflects resource

allocation which is not adequate to predict the QoE of SaaS in the cloud, as it depends on

other factors related to the SaaS characteristics.

Many studies have emerged on the subject of monitoring QoE as a measure of the

performance of cloud services. Safdari and Chang (2014) presented a review of QoE in

cloud computing. The study emphasized the importance of considering the network QoS

and the SLA in addition to the monitoring of the datacentres in assessing QoE. The

authors also mentioned that the SLA is not enough to express cloud service user

satisfaction, and that quantifying the value of QoE is an open issue. The authors also

presented an expert survey by which they identified six main KPIs that affect the success

of IT service in the cloud, these KPIs were usability, performance, security, accuracy,

data portability, and scalability (Safdari & Chang, 2014).

There were many efforts for estimating the QoE value of services provided in cloud

computing, taking into consideration the network performance, such as (Casas et al.,

2012) (Casas, Seufert, et al., 2013) (Casas, Fischer, et al., 2013) (Jarschel et al., 2013).

Casas et al. (2012) studied the QoE in YouTube and Facebook, the authors proposed a

54

user-centric monitoring of QoE taking into account real time and different network

conditions. The study considered a lab experiment by asking the participants to use the

application and provide their opinion about the received service using the MOS (Casas et

al., 2012).

Casas, Seufert et al. (2013) proposed measuring the QoE of remote virtual desktop

services of cloud computing. The study, based on the use of lab experiments, investigates

the effect of network performance in terms of bandwidth and delay in terms of the

response time on the QoE. In other words, it discussed the effect of QoS on the QoE

value. The participants were asked to evaluate virtual desktop cloud services using the

MOS scale for different network conditions (Casas, Seufert, et al., 2013).

Casas, Fischer et al. (2013) proposed measuring the QoE in the cloud storage and file

sharing services. The study evaluated the QoE in terms of the network QoS, through the

use of lab tests and asking the participants to use the cloud storage service with different

file sizes and network conditions. The results of the study were evaluated using the MOS

scale, and the acceptance which shows whether the users’ continued using the service

with the network conditions considered in the test (Casas, Fischer, et al., 2013).

These studies showed that the QoE is affected by the QoS of the network, where user

satisfaction decreased in the case of declining network performance. The common theme

in the work presented in the aforementioned three papers is the use of subjective lab tests,

and evaluating the QoE using the Mean Opinion Score (MOS) as a measure to identify

the degree of user satisfaction. However, the main drawbacks of these researches were,

firstly, they overlooked considering the SLA document’s parameters in the measurement

of the QoE; and secondly, although these studies contribute to this field of the research in

terms of showing the effect of the QoS in monitoring the QoE of cloud services, they

concentrated on the network performance instead of the cloud provider service itself.

Casas and Schatz (2014) presented a survey about measuring QoE measurements in cloud

computing. The authors highlighted the importance of QoE and considered the QoE to be

a guiding paradigm for developing applications in cloud computing, where the

degradation in the levels of the perceived service quality leads the clients to reject the

service. The study introduced a detailed evaluation of different cloud services which are

remote desktop services, storage, telepresence, and video streaming It also considered

55

checking the difficulty of accomplishing the test and interacting with the cloud service by

the participants as a result of network degradation (Casas & Schatz, 2014).

Furthermore, Jarschel et al. (2013) presented another subjective study to measure QoE in

cloud gaming. The authors studied the effect of the network QoS on the QoE value, packet

delay and packet loss were chosen as the QoS parameters. To achieve this, the users were

asked to play online games and to rate the perceived cloud services in terms of the MOS,

which is used to estimate the QoE value. The obtained results showed that the QoE is

affected by the QoS, where the degradation in QoS caused the QoE to decrease (Jarschel

et al., 2013). Again, the study overlooked considering the effect of the SLA parameters;

it also concentrated on the network performance instead of the cloud provider’s service.

Tao et al. (2013) emphasized the importance of using QoE as an indication of the

perceived quality of the application in cloud computing. They argued that the network

QoS is not enough to estimate QoE, and proposed defining factors to measure QoE of the

cloud applications depending on experiential marketing dimensions like think, feel, and

sense of the received services (Tao et al., 2013). Although this research shed the light on

consideration of the user perception in measuring QoE, it lacked the details of the

monitoring process or the measurement of QoE.

Zhang et al. (2014) proposed a framework for ranking and selecting services in cloud

computing reliability. The authors suggested using QoE for ranking the cloud services

before selecting them, to help the user in the selection process. The study introduced a

middleware to manage the QoE monitoring process; the middleware uses agents on both

the customer and the cloud side to collect the clients’ feedback and the QoS parameters,

then, by comparing the monitored QoE value with the SLA parameters this can help in

estimating the reliability of the services (Zhang et al., 2014). Although the study

considered QoE estimation in a pre-use of the service, it failed to estimate the user

satisfaction after using it or specifying the parameters which affect the user satisfaction

about SaaS.

The study presented by Shin and Huh (2015) highlighted the importance of measuring

the QoE in cloud computing as an indicator of SLA compliance. The research focused on

considering the services provided by different providers and hence different SLAs in an

inter-cloud architecture. A broker was proposed to receive the users’ requests and

estimating the aggregated QoE value (Shin & Huh, 2015). Despite attempting to estimate

56

the QoE of the inter-cloud architecture, the study overlooked defining a metric for the

QoE for SaaS. Defining a metric for QoE is handled in this thesis by presenting a

middleware to manage the measurement of QoE without a need to a broker role. Another

drawback that has been noticed in their research, that the authors proposed calculating

QoE as a function of QoS for each parameter multiplied by a factor, but they failed in

defining a way for defining the weight of these factors (which is difficult to manage in an

automated way for different SLA cases).

3.3.1 Measuring QoE

As the QoE of SaaS is considered an estimation of the software quality from user’s

perspective, estimating a value of software metric requires a method to estimate its value.

According to the study presented by Gray and McDonell (1997), which introduced a

comparison of the evaluation techniques of software metric. Their study presented a set

of techniques which are: Least square regression, this technique is based on assessing

the coefficients’ values; Robust regression, which is based on increasing the robustness

of the model by modifying the error measure of the least square method; Neural

networks, this is one of the techniques used for software model design, which is based

on learning things using back-propagation, in order to make decisions similar to human’s

decision; Fuzzy system, this method is based on mapping the linguistic and numerical

values, and using rules to make decisions based on experts’ opinions; Hybrid Nero-

Fuzzy systems, this method is based on combining the neural and fuzzy systems; Rule

based systems, this method is based on set of rules activated by facts, this method is

different from fuzzy rule method through allowing only true or false values for the

“antecedents and consequents”, without considering degrees of these values; Case-based

reasoning, this method considers making decisions based on previous observations about

project’s requirements, in a way similar to experts’ decision making based on their

knowledge; and Regression trees and Classification trees, these methods are based on

training the rules based on known dataset. Gray and McDonell compared these techniques

by introducing a set of criteria that describes the main modelling attributes, the results

achieved by their study revealed that fuzzy logic engine outperforms the other techniques

as shown in Table 3-1 (Gray & MacDonell, 1997). Note that the underlined values mean

achieving the top level. Fuzzy system is the method used in this thesis to estimate the

QoE value.

57

Table 3-1 Comparison of software metric evaluation techniques (Gray & MacDonell, 1997)

Technique
Model

free

Can

resist

outliers

Explains

output

Suits

small

data sets

Can be

adjusted for

new data

Reasoning

process is

visible

Suit

complex

models

Include

known

facts

Least Square

Regression
No No Partially No No Yes No Partially

Robust

Regression
No Yes

Partially Partially
No Yes No Partially

Neural

Networks
Yes No No No

Partially
No Yes Partially

Fuzzy

Systems
Yes

Partially
Yes Yes

Partially
Yes Yes Yes

Hybrid Nero-

Fuzzy

Systems

Yes
Partially

Yes Partially
Partially

Partially Yes Yes

Rule Based

Systems
No N/A Yes N/A N/A Yes Yes Yes

Case-Based

Reasoning
Yes Partially Yes

Partially
Yes

Partially
Yes No

Regression

Tress
Yes Yes Yes

Partially
Yes

Partially
Yes

Partially

Classification

or Decision

Trees

Yes Yes Yes
Partially

Yes
Partially

Yes
Partially

3.3.2 Using Fuzzy Systems in Measuring QoE

The fuzzy logic system has been used by many researchers for measuring QoE value.

Fuzzy logic was defined by Zadeh as “… a precise logic of imprecision and approximate

reasoning” (Zadeh, 2008, p. 2751). Fuzzy systems are used for estimation and decision

making (McNeill & Thro, 1994); they are based on linguistic rules that make computers’

reasoning closer to that of humans (Jantzen, 2013). A fuzzy system is composed of the

following components: the Fuzzifier, which is used to map crisp data into fuzzy data; the

Inference, which combines the rules; and the DeFuzzifier, which is used to map fuzzy

data into crisp data (Mendel, 1995). Figure 3-4 shows the main components of the fuzzy

logic system.

Input:

Crisp data

Output:

Crisp data

Fuzzy

output

Fuzzy

input

Fuzzy Logic

System

Fuzzifier DeFuzzifier

Fuzzy Rule

Base

(Inference)

Decision

Making Logic

Figure 3-4 Fuzzy system elements (Mendel, 1995)

58

Evaluating user satisfaction in cloud computing has been handled by many researchers.

Several of these studies considered fuzzy logic in measuring QoE in monitoring cloud

computing. For example, Pilevari et al. (2013) proposed a model for evaluating user

satisfaction in cloud computing. They used fuzzy logic to estimate the value of QoE. The

study included deciding the attributes that affect user satisfaction. The selection process

of the attributes and defining the membership function of the fuzzy engine were

determined by using the literature and expert opinion about a cloud service provided by

an Internet Service Provider (ISP) company in Iran (Pilevari et al., 2013). The main

weakness of this study is ignoring the SLA parameters in measuring the QoE value;

furthermore, the selected criteria were not specified for SaaS.

Another model was proposed by Alhamad et al. (2011) to evaluate trust in e-learning

applications in IaaS cloud computing. In this research, trust was defined as a factor for

managing the relationship between the client and provider. Trust was considered vague

and depended on subjective factors; therefore, the study used fuzzy logic in the evaluation

process. The authors defined trust in terms of: availability, scalability, security, and

usability. The parameters were defined by domain experts, while the fuzzy rules were

defined using online surveys. According to the study, the weights of the fuzzy parameters

are decided by the service user, but this process is impractical and not useful to define a

generic metric, as it is difficult to adjust these values for each user (Alhamad et al., 2011).

However, this research did not consider SLA document parameters in evaluating trust

value.

Baliyan and Kumar (2013) submitted a study to assess the quality of SaaS in cloud

computing. They proposed a quality model for SaaS; the quality attributes were selected

based on literature review. A fuzzy logic model was used for evaluating the quality of

SaaS (Baliyan & Kumar, 2013). Although this research was dedicated to SaaS, the quality

attributes are not dedicated for measuring the QoE, and the study also failed to consider

SLA parameters in estimating the quality.

Another study was presented by Samet et al. (2016) to evaluate the QoE of video services

in cloud computing. The authors mentioned the importance of monitoring the multimedia

service from users’ perspective, they decided the factors affect user satisfaction based on

the video characteristics such as buffering time and QoS like packet delay. Fuzzy logic

was used as an approach for evaluating the QoE value, the authors discussed the benefit

59

of using the fuzzy approach because of the difficulty of assigning crisp values for some

factors like application’s easiness of use (Samet et al., 2016). The main weakness of this

study is overlooking the SLA document, where the SLA is a main factor in cloud services,

the study gives poor details about the generation of the membership functions of the

proposed fuzzy engine.

3.4 SLA Monitoring

Managing an SLA has attracted the attention of many researchers who proposed

managing the relationship between the cloud provider and cloud consumer through

mentioning the importance of considering the SLA parameters in the process of

monitoring a cloud computing service. This section introduces an overview of the related

work in the area of managing and monitoring an SLA.

3.4.1 Managing SLA Monitoring Process

The first direction of this section is the management of SLA monitoring. The importance

of monitoring an SLA as a way of deciding the reputation of a service provider was

discussed by Rana et al. (2008), this is essential to manage a relationship between a client

and a provider and to determine the violations of an SLA if any. The authors defined three

types of monitoring modules, these modules are: a model on the customer’s site to help

clients in deciding their trust in a service provider; a trusted independent third party (TTP)

which can monitor all the communications; or a trusted module that is included in the

provider side which helps to monitor the internal state of the service provider (Rana et

al., 2008). Whilst their study presented an architecture for monitoring the SLA

compliance using a third trusted party, it focused on defining penalties in case of violating

an SLA terms. Their research might have been more interesting if the authors had paid

more attention to defining approaches for monitoring the user satisfaction of SLA.

Another weakness of this study is the use of a third party, which is considered unreliable,

with additional cost and overhead. The monitoring framework proposed in this thesis

considers developing a middleware that has a combination of both a client and a server

side monitoring to accomplish full monitoring of the system.

A monitoring framework had been proposed by Comuzzi et al. (2009) to monitor SLAs

taking into account the relationship between monitoring and establishing SLAs. The

researchers mentioned the importance of a historical monitored data of QoS when

60

establishing or renegotiating an SLA between a client and a provider in case of changing

the SLA terms, however, the study was dedicated to server-side monitoring without

considering customer perspective or managing user-centric monitoring (Comuzzi et al.,

2009).

Another architecture is proposed by Kertesz et al. (2009) for managing the allocation of

resources in virtualised cloud environments by considering the QoS parameter values

specified in an SLA document at the negotiation phase. This management process

requires a monitoring service of provider resources (Kertesz et al., 2009). Although the

researchers mentioned the significance of monitoring an SLA, their focus was on the

resource allocation process, and the solution failed to present an approach for estimating

user satisfaction with services nor notifying the user about any violations in the SLA

document.

Brandic et al. (2009) presented a framework for managing an SLA through introducing a

middleware that uses mappings to handle unmatched SLA templates of cloud providers

and customers, with SLA mapping accomplished using WSDL. Although this framework

considered monitoring SLA parameters after the negotiation process, it overlooked the

presentation of user-centric monitoring or informing the client about any lack in the

received services (Brandic et al., 2009).

Emeakaroha et al. (2010) introduced LoM2HiS, a framework to manage an SLA in cloud

computing through mapping resource metrics to SLA parameters (Vincent Chimaobi

Emeakaroha, 2012; Vincent C Emeakaroha et al., 2010). Although the authors claimed

that this framework helps in detecting violations in an SLA through controlling the

resources allocated to the selected services, the main contribution of the study is to map

the low level monitored metrics to high level SLA parameters with a focus on collecting

the measurements on the server side, ignoring user-centric monitoring.

Several studies revealed the need for monitoring services provided in the cloud.

Torkashvan and Haghighi (2012) proposed the CSLAM framework to manage SLAs in

cloud computing. The researchers highlighted the importance of managing an SLA life

cycle in the cloud and of considering monitoring the SLA parameters as part of it; this is

achieved by adapting WSLA with some extensions to fit a cloud computing environment.

However, the study did not give enough details about how to notify the client side about

61

SLA violations or managing the transformation of the monitored data between the client

and provider (Torkashvan & Haghighi, 2012a).

Another framework was presented by Motta et al. (2013) to monitor the quality of SLA

in cloud computing. The authors mentioned the importance of considering the following

approaches in managing the monitoring of the quality: the cloud’s resources on the

provider side in terms of capacity and quality; the authority of a third party mediator,

proposed to manage the monitoring process; in addition to the SLA negotiation and QoS

analysis in the client side (Motta et al., 2013). Their study provides limited technical

details of the web services used in the monitoring process.

A proposal was submitted by Firdhous et al. (2013) to monitor services provided in the

cloud in which the researchers suggested developing monitoring techniques to monitor

the QoS in cloud computing, and evaluating these services taking into consideration the

SLA parameters values (Firdhous et al., 2013b). Although the research presented a

theoretical description of the research problem, it failed to present details about

implementing the monitoring process or techniques for managing the communication

between the provider side and the client side.

Many studies have been presented to manage an SLA in cloud computing taking into

consideration the QoS of the received services (Badidi, 2013), (Motta et al., 2014),

(Mosallanejad et al., 2014) and (Khaddaj et al., 2014). However, these studies did not

give sufficient detail regarding management of the communication between the provider

side and the client side and the types of web service.

Mosallanejad et al. (2014) proposed SH-SLA, which is a hierarchal self-healing SLA

management system in cloud computing which includes QoS monitoring and detecting

SLA violations. The proposed self-healing system takes into consideration the effect of

the relationship between the different layers in clouds (Mosallanejad et al., 2014). In spite

of considering the monitoring of the different types of services in the cloud and detecting

the SLA violations, the weakness of this study is ignoring the user-centric monitoring of

an SLA and communication management details.

Motta et al. (2014) presented a Service Level Management (SLM), a framework to

manage an SLA in cloud computing. The study proposed the use of a third party in

controlling the SLA life cycle such as the negotiation, compensation, billing, and

62

monitoring, and a monitoring agent was suggested as one of the SLM’s components to

analyse the cloud services based on the status of the QoS of provided services and the

contracted SLA document (Motta et al., 2014).

Wu et al. (2015) presented SLARMS, which is a framework for managing the SLA in

SaaS that detects SLA violations. The proposed study considered that the decision making

of the management process is used to manage the resource allocation in the cloud

environment taking into account the SLA requirements of the client (L. Wu et al., 2015).

Although this study considered SLA management, it failed to provide detailed

information about the web services used to manage the monitoring process.

Another framework was presented by Anithakumari and Chandrasekaran (2015) to

manage SLA in cloud computing. The study considered monitoring the SLO to check

breaches of the SLA. The authors claimed that monitoring the SLA parameters helps in

estimating the required resources to be allocated, which in turn can be used for predicting

the future violations in cloud computing (Anithakumari & Chandrasekaran, 2015).

Although the framework managed the SLA in the cloud, it failed to describe supporting

REST architecture or SOAP protocol.

Geebelen et al. (2012) presented a middleware to help SaaS providers in customizing the

services according to user requirements. Although the study emphasised the importance

of considering the QoS of SLA for each tenant in SaaS, it was dedicated for the services’

customization and configuration instead of estimating the user satisfaction and SLA

violations, it also failed to provide detailed description for managing the web services in

the monitoring process (Geebelen et al., 2012)

Managing the SLA of SaaS was introduced by Cheng et al. (2009). The authors mentioned

the importance of considering the SLA parameters in monitoring the performance of

SaaS, which is used to manage the resources’ allocation based on the SLA requirements.

The study emphasised considering the concept of multi-tenancy in the monitoring

process, in addition to the requirements of each client as presented in the SLA. However,

it considered using SOAP protocol in monitoring the web services (Cheng et al., 2009).

Khan et al. (2016) proposed a framework to monitor SLA compliance in SaaS cloud

computing taking into consideration the QoS. The authors mentioned the importance of

monitoring the responsibility and managing the relationship among the SaaS service

63

provider, client, and “cloud facilitator” who is in charge of providing the infrastructure

resources; this requires considering the QoS of both SaaS provider and IaaS provider in

detecting SLA’s violations. They also mentioned the significance of issuing a warning

detailing the parties responsible for the quality degradation (Khan et al., 2016). Although

the study handled the monitoring of SLA taking into consideration the QoS, but it failed

considering the subjective parameters in estimating the QoE or user satisfaction about the

received services.

The middleware developed in this thesis (MonSLAR) shares with the aforementioned

studies the concept of SLA management and monitoring in cloud computing. However,

MonSLAR focusses on SLA monitoring and the presentation of a user-centric monitoring

for user satisfaction of SaaS.

3.4.2 Representing the SLA Parameters in Web Services

The second direction in the SLA management field is the representation of the SLA

parameters and the monitored parameters of the SLA in web services in general and cloud

computing specifically. Two main frameworks have been used to define the SLA

specifications in web services: WSLA (Web Service Level Agreement) which is

introduced by IBM (Keller & Ludwig, 2003), and WS-Agreement (Web Service -

Agreement) which is introduced by a working group of Open Grid Forum (OGF) as a

protocol for defining the services in an SLA (Andrieux et al., 2007). These frameworks

provide standardised agreement templates (Wieder et al., 2008). These standards use an

XML based language schema for defining the agreement structure and define how the

SLA parameters can be implemented in the system and how their functions can be

handled in the SLA negotiation process; they help in automating the monitoring process

of the SLA (Bianco et al., 2008). Then, many attempts have been made in the field of the

SLA parameters monitoring and data management; these attempts were dedicated to

SOAP protocol web services, such as extending WSDL to include SLA parameters as in

(D'Ambrogio, 2006). Another study submitted by Torkashvan and Haghighi (2012)

proposed a new language to represent SLA parameters based on WSLA language

(Torkashvan & Haghighi, 2012a), while other researchers proposed embedding the SLA

parameters and the monitored data in the SOAP messages (Zulkernine et al., 2008).

D’Ambrogio (2006) discussed the problem of presenting the QoS parameters in the

WSDL of SOAP web services. The author proposed a model for extending the WSDL to

64

include the QoS data, this was accomplished by introducing the Q-WSDL meta-model

for the extended XML document of WSDL. According to the researcher, this model is

considered a base for representing the QoS of an SLA document to manage the web

services (D'Ambrogio, 2006).

Zulkernine et al. (2008) proposed monitoring the SLA in SOAP web services and sharing

the monitored data and violation reports between a provider and a client. The authors

introduced PM, a middleware for monitoring the web services which sends the monitored

data from the web service provider side to the client side and the SLA data from the client

side to the provider side by embedding this data in the header of the SOAP messages

(Zulkernine et al., 2008). This research will be compared to MonSLAR in the evaluation

chapter (section 7.3.1), as it introduces an approach for embedding the SLA monitored

data in SOAP messages, which is the most relevant for the approach used in this thesis;

comparing MonSLAR with PM gives a clear indication of the difference between using

REST and SOAP messages used in sharing the data.

Although the research in the second direction added contribution to the way of

representing the QoS of an SLA in SOAP web services, there is a failure to represent

these values in REST web services because WSDL is not a REST technology. This thesis

presents a new approach for representing and transforming the SLA parameters in REST

services, through extending the HTTP messages and embedding the monitored

parameters values in the HEAD and OPTIONS REST methods. Thus, it illuminates the

need for the use of additional technology such as WSDL.

3.4.3 Managing SLA using REST

The third direction in this section and the most relevant one to the approach presented in

this thesis, is the use of REST to manage SLAs. Many researches handled the concept of

using REST and HTTP in managing the SLA in web services in general and cloud

computing specifically. An approach was submitted by Blumel et al. (2011) to manage

the SLA document in cloud computing using a REST-based architecture by providing

electronic based contracts, and allowing users to create and modify SLAs by considering

these SLAs as the resources of the REST architecture. The proposed approach was

developed upon WS-Agreement XML documents (Blumel et al., 2011).

65

Another attempt is introduced by Kübert et al. (2011) to implement the WS-Agreement

using RESTful web services. The authors claimed that this study can help in managing

the SLA life cycle in an automated way, and discussed the fact that SLAs managed in

previous researches using SOAP and the need to manage them using REST. They

investigated presenting the specifications of WS-agreements in REST, this includes:

identifying and representing the SLA resources (Kübert et al., 2011).

The researchs presented by Blumel et al. (2011) and Kübert, et al. (2011) offered to

manage the SLA life cycle and focused on the negotiation and creating of an electronic

contract. However, it would be difficult to employ these methods in representing the

measured SLA parameters in an automated user-centric monitoring middleware, as these

methods are specified for managing the SLA creation and deletion rather than managing

monitoring the SLA parameters or transmitting the violations in the SLA documents. In

addition, there is the advantage taken from the approach presented by MonSLAR to

present their REST methods as add-on services for the SaaS provider services, where the

monitored data are presented as resources in MonSLAR.

Amato et al. (2014) presented a study which uses REST to manage the dynamic

negotiation of an SLA in cloud computing. The study proposed a negotiation interface

for the SLA to help in allocating the cloud IaaS resources in an automated way taking

into consideration the SLA parameters. In this study, a cloud broker agency was proposed

to manage the negotiation process, by selecting the resources required and monitoring

them after the execution of the service; however, this study focused on the negotiation

phase and ignored the monitoring process. REST messages were used to send requests

and manage the agreement with or refusal of the services (Amato et al., 2014), but this

research did not consider an SLA monitoring or violation detection.

3.5 Chapter Summary

This chapter reviewed literature related to the research subject of the thesis, in order to

identify knowledge gaps in previous research with a view to support the current research

problem. The literature reveals that many studies have been introduced in the field of

monitoring cloud computing.

The chapter began by introducing the cloud monitoring concept and presenting its related

literature review. The cloud monitoring section included two sub sections, the monitoring

66

frameworks and the available quality models. The monitoring frameworks are categorised

into three main categories, Table 3-2 summarises the main directions considered in the

monitoring framework section. These directions are:

1- Server-centric frameworks, where the monitoring process is managed by the cloud

provider.

2- User-centric frameworks, where the monitoring process is managed by the cloud’s

client side.

3- Third-party frameworks, where the monitoring process is managed by an

independent third party component.

It is important to mention that most of the presented monitoring frameworks focus on

monitoring cloud resources, and the transmission of monitored data between monitoring

agents and providers, but very little on how to deliver these data to the client side. It is

also worth noting that these frameworks consider the SOAP protocol in managing the

monitoring process, through exploiting the WSDL document in exchanging the

monitored data. However, these frameworks are inefficient in managing the cloud REST

services. The literature reveals a weakness in available research in tackling this issue.

The chapter also summarized the available quality models; this helped in choosing the

most suitable model for measuring the QoE of SaaS in cloud computing, taking into

consideration the SaaS user requirements. Table 3-3 summarizes the available quality

models.

The chapter also presented the previous research in the subject of QoE measurement,

while showing that QoE had been used as a measure of user satisfaction; it also revealed

a lack in defining a measure for QoE of SaaS. Most of the related research either ignored

the concept of cloud computing, or ignored the effect of the SLA on the QoE value.

Then, SLA-based monitoring in cloud computing was presented in Section 3.4. This

section is divided into three main subsections, which are:

1- The proposed SLA management frameworks.

2- Representation of the SLA parameters in the monitoring process.

3- The use of REST to manage the SLA document.

The researches presented in this section highlighted the importance of managing the SLA

in cloud computing, and showed the need for an approach to represent the SLA

parameters and the monitored data in the REST architecture. Table 3-4 summarises the

main directions considered in this section in presenting the SLA oriented Monitoring.

67

Table 3-2 summarises the work related to the monitoring frameworks

The reference Mode of

monitoring

Purpose Limitations

(Shao & Wang, 2011) Server-centric monitoring framework to measure the

performance of cloud applications

Lacked managing the communication between the

client side and the provider side, or providing user-

centric monitoring

(Mastelic et al., 2012) Server-centric M4CLOUD, a framework for monitoring

cloud applications

Lacked managing the communication between the

client side and the provider side, or providing user-

centric monitoring

(Trihinas et al., 2014) Server-centric JCatascopia, a framework to monitor

cloud applications

Lacked managing the communication between the

client side and the provider side, or providing user-

centric monitoring

(Povedano-Molina et

al., 2013)

Server-centric DARGOS, an architecture for monitoring

resources in cloud computing

Lacked managing the communication between the

client side and the provider side

(Cedillo et al., 2015)

(Cedillo et al., 2016)

Server-centric Presented a middleware to monitor SLA

violations in cloud computing

Lacked providing a user-centric monitoring

(Smit et al., 2013) Server-centric MISURE, an architecture for monitoring

cloud applications’ resources

Lacked providing a measure for user satisfaction

based on SLA

(Lu et al., 2016) Server-centric JTangCMS, a monitoring framework uses

a decision making for the monitored data

Lacked providing a user-centric monitoring

(S.-Y. Lee et al., 2012) Server-centric A middleware to monitor the cloud

computing using WSDL

Lacked providing a user-centric monitoring and

supporting REST in the monitoring process

68

(Müller et al., 2012)

(Oriol et al., 2015)

Server-centric SALMonADA, a framework for

monitoring the QoS of service based

systems using SOAP.

Lacked supporting REST in the monitoring process

(Perez-Espinoza et al.,

2015)

Server-centric Presented a monitoring architecture for

private clouds.

Overlooked presenting an automated user-centric

monitoring and SLA management.

(Vincent C Emeakaroha

et al., 2012)

User- centric CASViD, a framework to detect violations

in SLAs of cloud applications

Lacked the details of web services used in

transmitting data between the provider and the client

(Montes et al., 2013) User- centric GMonE, a framework to monitor cloud

computing

Lacked supporting REST in transmitting data

between the provider and the client

(Rehman et al., 2015) User- centric UCSM, a framework assists users in

making cloud service decision

Lacked supporting REST in transmitting data

between the provider and the client, and ignoring

SLA in the monitoring

(Nguyen et al., 2014) User- centric user-oriented monitoring for cloud

computing

Lacked considering SLA compliance in the

monitoring

(Siebenhaar et al., 2013) Third-party monitoring framework to measure

availability of cloud applications

Using a broker, and overlooked estimating an overall

user satisfaction about provided services

(Rak et al., 2011) Third-party A monitoring framework for the mOSAIC

applications in cloud computing

Not applicable to other cloud applications

(Ye et al., 2012) Third-party A framework for monitoring and detecting

SLA violations in cloud computing

Using a broker

(Alsulaiman & Alturki,

2012)

Third-party model to monitor and evaluate the cloud

services

Using a broker, overlooked notifying the user and the

details of supported web services

69

(Cicotti et al., 2012) Third-party QoSMoNaaS, a framework for monitoring

cloud services and detecting SLA

violations.

Lacked providing a user-centric monitoring, and

notifying clients about violations

(Amato et al., 2012) Third-party Evaluating the SLA in cloud computing in

the negotiation phase

Using a broker, overlooked monitoring services after

usage

(Badidi, 2013) Third-party A framework manages the SLA in SaaS

cloud computing

Lacked detailing the technical issues about web

services used in the monitoring process

(Khaddaj et al., 2014) Third-party A framework monitors the QoS and check

SLAs’ violations

Using a broker

(Aversa et al., 2015) Third-party An architecture for monitoring cloud

applications taking into consideration the

non-functional requirements and the

performance of cloud resources.

Lacked providing a user-centric monitoring for the

overall user satisfaction about the cloud services

(Hammadi & Hussain,

2012)

Third-party A framework for monitoring SLA

compliance in cloud computing

Using a broker

(You et al., 2015) Third-party A framework provides SLM-as-a-service

using the WSDL

Using a broker, and lacking supporting SaaS-

services

(Katsaros et al., 2011) Third-party NEB2REST, an architecture uses REST to

manage invoking the monitoring services

Failed in providing an automated user centric

monitoring, and SLA violation detection.

(Moustafa et al., 2015) user-centric SLAM, a framework for monitoring cloud

computing

Lacked providing online automated monitoring, it

also lacked supporting REST

(Serhani et al., 2014) user-centric A study to check SLAs’ violations in

cloud computing.

Lacked managing automated monitoring for SaaS

70

Table 3-3 summarises the main quality models

The quality model Purpose or principle Drawback

SERVQUAL

(Parasuraman et al.,

1988)

Measure users’ perception about

the quality of services in the retail

businesses

The model does not consider the

concept of SLA in cloud computing

SMI CSMIC (2011) Evaluate cloud services Very general cannot be used for SaaS

services

(J. Y. Lee et al.,

2009)

Quality model for evaluating SaaS Weakness in determining the quality

dimensions

CLOUDQUAL

(Zheng, 2013)

Quality model for evaluating cloud

services

Lack in determining the weights of

each parameter which is required for

the fuzzy engine in MonSLAR

SaaS-Qual (Benlian

et al., 2011)

Quality model used for measuring

usage continuous in SaaS
-

Table 3-4 summarises the related work to SLA oriented Monitoring

The reference Supported

web service

Purpose Limitation

WSLA (Keller

& Ludwig,

2003)

SOAP Presenting a standardized

template to represent

monitored QoS in the SLA

The model does not support

REST

WS-Agreement

(Wieder et al.,

2008)

SOAP Presenting a standardized

template to represent

monitored QoS in the SLA.

The model does not support

REST

(Torkashvan &

Haghighi,

2012a)

SOAP Represent SLA parameters

based on WSLA

The model does not support

REST

(Zulkernine et

al., 2008)

SOAP Embedding monitored data

in SOAP messages

The model does not support

REST

(D'Ambrogio,

2006)

SOAP Extending WSDL to include

the QoS

The model does not support

REST

(Blumel et al.,

2011)

REST Manage the SLA document

and presenting SLAs as

resources of REST

The method does not support

representing the measurements

of the SLA parameters

(Kübert et al.,

2011)

REST Implement WS-Agreement

using REST

The method does not support

representing the measurements

of the SLA parameters

71

(Amato et al.,

2014)

REST Using REST to manage the

negotiation of SLA

Overlooked managing the

monitoring process and

transmitting the measurements

To conclude, regarding SLA management, SOAP protocol and WSDL documents have

been widely used in previous research, but little research has considered using REST. It

is important to define a metric for measuring the QoE in SaaS.

According to the presented literature review in this chapter, it can be seen that none of

the available frameworks supported the estimation of QoE in REST services of SaaS

cloud computing based on a QoS monitoring.

In the next chapter, the proposed solution for the research problem is presented. The

solution introduces a new user-centric middleware for monitoring SaaS services using

REST architecture. The proposed middleware considers embedding the monitored SLA

parameters in the REST methods without the need to use the WSDL document, or to

exchange extra messages to handle the monitoring process. This kind of middleware helps

in bridging the gap in previous studies of both providing user centric monitoring and

supporting REST technology.

72

4 CHAPTER FOUR: THE PROPOSED MIDDLEWARE

THE PROPOSED MIDDLEWARE

4.1 Introduction

The previous chapters have shed light on the importance of proposing a user-centric

approach for monitoring SaaS. With a view to avoiding an SLA violation, the main

parameters should be determined in this agreement to evaluate the fulfillment of SLA

terms. This chapter presents MonSLAR, a framework to measure QoE through

monitoring SLA parameters using REST services in SaaS cloud computing. REST is an

element of MonSLAR, which is a lightweight framework as it is based on the REST

protocol for implementing the monitoring process.

As discussed in the previous chapter, delivering information about the monitored data to

the cloud user is very important in maintaining a trusted relationship between the provider

and the client. However, delivering this data adds extra overhead to the monitored cloud

environment, due to the use of the SOAP protocol in previous works. As discussed in

Chapter One, a motivation for this thesis is embedding the monitored data in the REST

messages instead of using SOAP protocol messages to transmit them, by exploiting the

REST architecture methods in the transmission of the monitored data.

Based on the knowledge that SOA implies the reuse of services in different environments,

the services provided in MonSLAR are reusable, loosely coupled and platform

independent. Taking into consideration that REST and SOA share the feature of loss

coupling, which facilities the development of distributed systems, this is considered in

REST by using the uniform interface through the URIs, as a full understanding of the

REST concepts can assist in building high performance distributed systems (Vinoski,

2007). SOMs that have been developed so far, build services on top of web services that

use SOAP and WSDL technology, while REST is used in MonSLAR to manage the web

services.

This design can provide a scalable capability to the middleware as new services can be

added to the system that can be managed using REST methods. The use of REST as a

73

mechanism for transmitting the data helps in reducing the overhead and improving the

performance of the system.

4.2 REST Methods

Rest services are based on HTTP protocol; so, managing the communication between

clients and servers is done by exchanging messages using CRUD methods. REST uses

HTTP methods to administer the web resources. These methods are:

 GET, which is used by the client to the server to receive a representation of the

particular resource;

 DELETE, this method is utilized to remove and destroy a resource;

 POST, is used to create a new web resource by sending a representation of that

resource by the client;

 PUT, is used to modify a resource.

Two additional methods can be employed by the client to scout an API;

 HEAD, is similar to GET method, but to retrieve the headers without the

representation of the requested resource, which reduces the bandwidth of the

exchanged signals;

 OPTIONS, to explore the supported methods by a resource. Both HEAD and

OPTIONS are considered safe methods (Richardson et al., 2013).

The features of the last two methods and the fact that they are not used to retrieve

resources’ representations have been the motivation for this research to exploit them

in exchanging the monitoring data in the proposed middleware.

4.3 The Proposed Solution – Monitoring SLA using REST

(MonSLAR)

In this research, a new framework is submitted to measure QoE in terms of SLA

parameters and the network’s QoS. This framework includes embedding the SLA

parameters in REST services and takes advantage of the requests sent by the user to

transfer the SLA parameters without affecting the original requests by including these

data in the header fields and reduces wasting extra signals in sending files to check SLA

parameters.

74

The proposed middleware is introduced to measure user satisfaction with cloud services

by measuring QoE as a function of both SLA parameters and the network’s QoS (Al-

Shammari & Al-Yasiri, 2014). The proposed middleware offers an automated monitoring

process to check service levels and to compare them with their determined values in the

signed SLA. The middleware has the ability to collect the required metrics and use them

to calculate QoE and decide user satisfaction levels according to the QoE’s estimated

value.

The proposed middleware is designed by taking advantage of the cloud computing

architecture and exploits the client and provider parties for the monitoring process without

the need for a third party to manage it.

In this research, the term ‘framework’ is used to describe a software environment

designed to simplify system management (Bernstein, 1996).

To ensure implementing safe methods on the server, REST’s HEAD and OPTIONS

methods are used to manage the monitoring process, as these two methods are considered

safe (Velte et al., 2009). In regard to using PUT and POST to manage the SLA parameters,

an approach has been suggested to create special services dedicated for middleware

management purposes; this ensures the expected response from the SaaS provider is

received. Although the HEAD and OPTIONS methods are part of the REST HTTP

specification, they are not usually used in the request-response cycle within an SOA. By

using these methods in the monitoring process, safety and backward compatibility are

ensured, and at the same time, the system remains compliant with the REST protocol.

Detecting user satisfaction has been considered in two ways; first, the system helps the

client to evaluate the level of services offered by the provider before invoking the service

from the selected provider and, second, it allows client notification about violations in the

delivered services. Monitoring the services in a pre-interaction before choosing the

service and after signing the contract is important to maintain confidence between the

client and the provider (Rehman et al., 2015). MonSLAR will help to sustain trust

between the client and the provider and gives the client flexibility in selecting providers.

The main functionalities and actors in the proposed middleware are presented in a UML

use-case diagram, as shown in Figure 4-1. The main actors are the service client, who is

the user of the cloud service looking to monitor an SLA in terms of QoE; and the second

actor is the SaaS provider, who is in charge of providing the SaaS services that are

75

measured to check the SLA compliance. The figure also summarises the main

functionalities of the middleware. It allows clients to ‘invoke the service’ which includes

requesting the service by the client and receiving the response from the SaaS provider.

The middleware also facilitates the functionality ‘monitor QoE’ which includes

aggregating the main metrics, calculating SLA parameters and the measurement of user

satisfaction. In the case of a violation, this functionality is extended to allow ‘notify for

violation’ which includes deciding the violation level, sending a notification and updating

the user’s satisfaction.

Figure 4-1 A use case model describes the main actors in MonSLAR

4.4 Architecture of MonSLAR

The proposed architecture presents two parts of the middleware on both the server and the

client sides, as shown in Figure 4-2. Each part exploits the REST protocol to manage the

monitoring process. The term ‘architecture’ here is used to describe the basic elements of

the proposed middleware and the relationships among them (Bass et al., 2013).

76

Figure 4-2 MonSLAR’s architecture

The client side version is composed of the following components: (1) Request/Response

handler, used to dispatch requests, receive responses and check the status of these

responses to differentiate the errors caused by the network’s failure from those caused by

the service provider; (2) Parser/Metrics aggregator, this component is used to extract the

main metrics to be used later for calculating the values of the measured SLA parameters;

(3) Repository is used to store the collected data; and (4) Quality Manager, is used to

decide user satisfaction with respect to the monitored services.

On the provider side, the main components are: (1) Request/Response handler which is

used to handle client requests and invoke the relevant service; (2) SLA parameter

calculator, which is used to calculate SLA parameters depending on the received metrics

from the client side; (3) SLA builder, used to create the SLA document; (4) Repository,

used to store parameter values that are used in the decision making process of the quality

manager and to generate the violation reports; (5) Probes-monitor resources are agents

used to monitor the underlying resources of the provider; and (6) Quality Manager is used

to decide the violation depending on the SLA parameter values stored in the repository.

The provider side middleware analyses the collected data and provides an automated

estimation of the QoE value or the user satisfaction which is displayed to the user.

MonSLAR handles three types of request as described in Figure 4-3: Service, Monitoring,

and Management requests. According to the type of request, three scenarios are specified

77

to describe how the middleware handles the REST protocol methods and the SLA

parameters management. The first type of request (Service request) is the client’s request

used to invoke a service from the provider. This request is passed (by the middleware) to

the SaaS provider to be handled. As shown in the diagram, this request uses the usual

REST methods (HTTP methods) for invoking the services.

The second type of request (Monitoring request) deals with three types of monitoring: the

first is used to allow the client check the level of services provided by the SaaS provider

before invoking them, and retrieve QoE value after using the service; this is done using a

HEAD method. The second monitoring request is invoked by the client side middleware

to update the server side with the measurements of the client side by sending PUT or POST

methods’ requests. The third monitoring request involves using OPTIONS method to

retrieve the parameters’ measurements values of the used service levels.

The third type of request (Management requests) includes permitting the middleware on

the client side to query the SLA threshold values of the SLA parameter specified in the

SLA document using the OPTIONS method. This function is used in two cases: the first

is to update the client side middleware with the threshold values of the SLA parameters

after the SLA negation process and creating the SLA document on the provider side, the

second is to update the client side middleware in case of updating the SLA document; the

management request is important in keeping the monitoring environment up-to-date.

Figure 4-3 A UML model for requests’ types in the proposed middleware

78

As described in the previous paragraph, the proposed framework only uses REST services

and HTTP protocol methods to implement the monitoring process, collect the metrics, and

exchange the monitored data on both sides between the client and the provider. This

approach adds little overhead to the service provision because no additional documents

need to be transferred between the client and the provider. Furthermore, no additional

brokers or agents are required to manage and control the process.

The three types of request mentioned earlier supported by MonSLAR are presented in the

next subsections.

4.4.1 Service Request

Figure 4-4 depicts the scenario of handling the service requests by MonSLAR. In this

scenario, the middleware in the client side passes the service request to the SaaS provider

that replies by providing the requested resources; the HTTP methods that represent this

request are the GET, PUT, POST, and DELETE methods.

Figure 4-4 Handling the service request in MonSLAR

In Figure 4-5, a collaboration diagram is used to describe how REST service methods

(GET, PUT, POST, and DELETE) are used to request services. After receiving the service

response, it is checked by the client middleware and the main metrics are saved in the

repository to be used later in deciding any violations.

79

Figure 4-5 Using REST methods in the MonSLAR’s service request (collaboration diagram)

4.4.2 Monitoring Request

Figure 4-6 (a, b) describes handling (monitoring request-A) by MonSLAR; in this

scenario, the request is handled by the server side middleware, taking into consideration

the use of HEAD method as illustrated previously in Section 4.4. Figure (4.6-a), illustrates

the monitoring process before invoking the service by sending an HTTP HEAD request

which is handled entirely by the middleware. In this scenario, the middleware replys to the

HEAD request by embedding the number of previous violations in the HTTP header.

These values are useful for the client to evaluate the quality of services provided by the

SaaS provider to its customers, where the number of previous violations provides a

proactive monitoring of the service and considered as a warning to the client about the

provided services. Figure (4.6-b) explains using the HEAD method to transmit the value

of QoE as an indicator of the user satisfaction with used services, HEAD method has been

used to retrieve the value of QoE in this request. As stated by the HTTP protocol

specification, a HEAD response will only contain the header part of the response.

80

Figure 4-6 Handling (monitoring request-A) in MonSLAR using HEAD method: (a) Retrieve

number of previous violation; (b) retrieve QoE value

Figure 4-7 introduces (monitoring request-B), the monitoring process includes sending

metric updates from the client to the provider. This occurs in order to report client

satisfaction to the provider; for example, whether a request is successful or a request has

generated an error. This allows the client to check the violation cases while using the

service, and report such violations through the middleware components. The middleware

uses a database as a service on the provider side to be used for saving the parameters values

and updating their values sent by the client side middleware.

a)

b)

81

Figure 4-7 Handling (monitoring request-B) in MonSLAR to detect violations in the received

services

Using OPTIONS to manage monitoring request-C is shown in Figure 4-8, in this request

the updated values of the measured parameters are retrieved from the repository of the

server side to give the client a detailed information about the enhancement or degradation

of the service if needed; this is achieved by delivering the values of the parameters used in

estimating the QoE value.

Figure 4-8 Handling (monitoring request-C) in MonSLAR to retrieve the measured parameters

using OPTIONS method

Figure 4-9 presents a collaboration diagram for using REST in MonSLAR’s (monitoring

request-A). In Figure (4.9-a), MonSLAR’s client side sends an HTTP HEAD request

asking for the number of previous breaches of SLAs by this provider which will be

embedded in the HTTP HEAD response. The user decides whether to use this service or

82

not depending on the number of previous violations. Figure (4.9-b) presents a detailed

description for retrieving the QoE value using HEAD.

Figure 4-9 Using REST services in the MonSLAR’s (monitoring request-A) using HEAD -

collaboration diagram: (a) Retrieve previous violations; (b) Retrieve QoE value

Figure 4-10 presents a collaboration diagram for the (monitoring request-B). In this

request, the values of the metrics to be used in calculating the SLA parameters should be

sent from the client side to the provider side. To do this, the middleware uses a database

as a repository service, and the PUT and POST methods are used for updating the database

with the sent parameter values.

a)

b)

83

Figure 4-10 Using REST services in the MonSLAR’s (monitoring request-B) using

PUT&POST - collaboration diagram

Figure 4-11 introduces a detailed illustration for using OPTIONS method in (monitoring

request-C).

Figure 4-11 Using REST services in the MonSLAR’s (monitoring request-C) using OPTIONS -

collaboration diagram

84

4.4.3 Management Request

Figure 4-12 demonstrates handling the management requests by MonSLAR. This process

includes embedding the values of the parameters specified in the SLA and updating the

middleware with the new values in case the SLA document has been updated. As stated

earlier, the HTTP method used in this request is the OPTIONS method.

Figure 4-12 Handling the management request in MonSLAR

Figure 4-13 presents a collaboration diagram for using the HTTP OPTIONS method to

retrieve the SLA threshold parameters specified in the SLA document to update the client’s

side with their values in case of any update.

Figure 4-13 Using REST services in the MonSLAR’s management request (collaboration

diagram)

85

4.5 Embedding Monitored Data in REST Services

As discussed in Section 3.4, the SLA parameters and measurements of QoS are represented

in SOAP web services by exploiting the WSDL document to involve this kind of data.

However, WSDL documents cannot be used in REST web services, and because of the

spread of REST in the current implementation of cloud computing environments, these are

motivations for defining a new approach for implementing the SLA parameters and

measurements in the REST architecture. This approach is used in MonSLAR to manage

the SLA document and QoS measurements.

The framework exploits existing HTTP methods to represent the SLA parameters and to

exchange monitoring data by defining custom HTTP headers for the number of violations

and for each SLA parameter with its name and value as shown in Figure 4-14 and Figure

4-15. This simplifies the process of exchanging SLA parameters between the provider and

the client. In the case where the client is not interested in asking for a service and the client

side middleware needs to update the middleware environment or to retrieve the number of

violations or QoE in MonSLAR, the middleware can send an HTTP HEAD or OPTIONS

request which is useful in retrieving the required data.

Figure 4-14 Extending HTTP headers to include SLA parameters

86

Figure 4-15 A UML diagram for embedding SLA parameters and monitored data within the

HTTP message

4.6 Deploying MonSLAR in Multi-tenancy of SaaS

The concept of multi-tenancy of SaaS is supported by MonSLAR. According to Leymann,

et al. (2014), designing SaaS includes three levels of multi-tenancy: shared component,

tenant-isolated component, and dedicated component (Leymann et al., 2014). These

levels were taken into consideration in deploying MonSLAR in multi-tenancy. These cases

have been presented in order to show the feasibility of handling the multi-tenancy concept

by MonSLAR.

The first case considers the shared component and tenant-isolated component as shown in

Figure 4-16. The figure shows that the application server contains different application

instances for each tenant, with a shared database that supports the metadata of SaaS

tenants. In this case, MonSLAR is deployed in the application server with a database for

MonSLAR, the isolation among the tenants in the database is managed through the use

of a dedicated tenant-id.

87

Figure 4-16 MonSLAR deployment in multi-tenancy- (shared component, tenant-isolated

component)

Figure 4-17 depicts supporting the dedicated component multi-tenancy by MonSLAR. The

figure shows that each tenant has its own application with a separated database for each

application to save the data related to the specific tenant. MonSLAR, in this case, is

deployed at the server side of each tenant with a database (MonSLAR DB) to save the

measurements and the data related to the user satisfaction.

Figure 4-17 MonSLAR deployment in multi-tenancy - (dedicated component)

4.7 Chapter Summary

This chapter introduced MonSLAR as a proposed solution for monitoring the SLA in SaaS

cloud computing taking into consideration the client’s perception. The proposed

middleware provides the following features:

88

1- SOM: MonSLAR is an SOM middleware which supports features like loose

coupling, reusability for the monitoring service and being platform independent.

This feature allows the provision of the monitoring process as an add-on service.

2- Using REST: REST technology is used for managing the communication between

the client side and the provider side, which is an alternative to using SOAP

technology as proposed in existing solutions. This includes finding ways for

embedding the monitored data in REST messages and reduces the need for extra

messages to exchange this data. HEAD and OPTIONS methods are suggested for

transmitting the monitored data. The use of REST technology adds a lightweight

characteristic to the proposed middleware.

3- User-centric: The use of a user-centric monitoring gives the user more control over

the management of the monitoring process, which helps maintain confidence

between the client and the service provider.

These aforementioned characteristics of the proposed middleware are tested and evaluated

in Chapters Six and Seven respectively.

The following chapter presents the use of a fuzzy logic engine as an approach for

estimating user satisfaction in terms of QoE value.

89

5 CHAPTER FIVE: ESTIMATING QoE OF SaaS

ESTIMATING QoE OF SaaS

5.1 Introduction

Chapter Four presented a description of the middleware for monitoring an SLA in cloud

computing. It is important and yet challenging in a cloud monitoring system to use a QoE

estimation method, which can take advantage of a large amount of collected monitored

data, and express it as essential information to the user (Lu et al., 2016), taking into

consideration the difficulty of understanding and analysing the measurements in cloud

computing by the user (Shao & Wang, 2011). This chapter introduces an approach for

estimating QoE in SaaS services based on the monitored data. Monitoring the quality of

cloud computing services from a user’s perspective is gaining more recognition in the

research field, the relationship between the client and the provider is managed by a signed

contract, which is expressed as an SLA. From the user’s point of view, it is very important

to estimate the value of a QoE as a measure of a user’s satisfaction with the perceived

services. However, there is a lack of general definition of a holistic metric for estimating

the QoE of SaaS services in cloud computing, and this omission highlights the importance

of finding a unified and general measure for QoE. To achieve this goal, the SaaS-Qual

model reviewed in section 3.2.2.1 is used as a measure of user’s satisfaction in cloud

computing.

This chapter presents a design of a fuzzy logic inference engine to estimate the value of

QoE through considering the SaaS-Qual as a quality model for estimating user

satisfaction in SaaS cloud computing; it also discusses the possibility of using it as a

unified metric for QoE in SaaS. By mixing the concept of estimating user satisfaction

based on the parameters of SaaS-Qual with the concept of measuring QoE in terms of

SLA parameters and the QoS of the network, this helps to define a new estimation of a

QoE.

90

5.2 Defining a Metric for Estimating QoE

As SaaS is an internet based application, it is important to take into consideration the

impact of the network as well as the impact of running the application of SaaS on the

provider’s side in defining QoE for SaaS. Similar to end-to-end QoS for a network, QoE

for SaaS can be defined as a function of three quantities based on the time taken to provide

the service to the client. This can be explained by defining three regions depending on the

level of delivering the service to the client as shown in Figure 5-1. The three regions are

denoted as TP, TX, and TC where:

 TP: preparation time, the time consumed at the server side preparing the

application to be used by the client.

 TX: transmission time, the time delay of the network transmission, which

represents the QoS of a network.

 TC: consuming time, the time delay using the application by the client.

Thus, QoE is not only related to the consumption of the service at the client’s side, but

also the effect of the network’s operating conditions. Therefore, according to this model

and in case the cloud provider is not responsible for the delivery of the network, it would

be unfair to penalise the cloud provider in the case of SLA violations due to degradation

in the network’s QoS.

By measuring these KPIs with corresponding QoS parameters and aggregating the values

of QoE taking into consideration values of the SLA parameters determined in the SLA,

any violation of the SLA terms can be determined.

Knowing that QoE is a function of QoS from Eq.5.1 (Fiedler et al., 2010), in other words,

QoEnetwork is a function of the QoSnetwork as shown in Eq.5.2

The overall provisioning time

R
e

q
u

e
st

 c
o

m
p

le
te

d

R
e

q
u

e
st

 s
e

n
t

Provider

TP TX TC

Client

Figure 5-1 End-to-End QoE for SaaS

91

QoE = f (QoS) …………………………………………………………….. (5.1)

QoEnetwork = f (QoSnetwork) …………………………………………………... (5.2)

In order to define QoE of SaaS, which is an internet based application, it is important to

consider the QoE for the application itself as well as the QoE of the underlying network.

Eq.5.3 is specified to take into account the QoE for the software provided to the client as

well as the QoS of the network as shown in Eq.5.4

QoESaaS = f (QoESW, QoEnetwork) ……………………………………………. (5.3)

QoESaaS = g (QoESW, QoSnetwork) …………………………………………….. (5.4)

Assuming that QoESW represents the negotiated SLA parameters in the SLA signed by

SaaS provider and client, Eq.5.5 can be shown as:

QoESaaS = F (SLAparameters, QoSnetwork) ………………………………………… (5.5)

The above equations stand in the case that the SaaS provider is the same as the network

provider [SaaS provider = Network provider]; in this case the SLA will be achieved for

both providers, in other words, the defined parameters will satisfy the network’s QoS as

well as the SLA parameters for the specified SaaS (Al-Shammari & Al-Yasiri, 2014).

When the SaaS provider is not the same as the network provider [SaaS provider ≠

Network provider], the SLA parameters are not expected to cover the network’s operating

conditions, and hence a decision support technique needs to be developed in order to

tackle this dissimilarity.

Therefore, it is important to develop an approach for measuring QoESaaS in terms of

SLAparameters, and QoSnetwork, which represents function F. This approach is explained in

more details in Section 5.4.

5.3 Estimating QoE in Terms of User Satisfaction

The success of cloud computing services depends mainly on the clients’ satisfaction about

the provided services taking into consideration the QoS defined in the SLA (Badidi,

2013). As discussed in Section 5.2, QoE was defined as the overall satisfaction about

received services in a cloud computing environment, and can be considered as a function

of both SLA parameters and a QoS network (Al-Shammari & Al-Yasiri, 2014). In other

92

words, measured SLA parameters as functions of a QoS can be used to estimate the QoE

or user satisfaction. However, in order to estimate the value of QoE of SaaS services in

terms of user satisfaction, it is important to define the main criteria to quantify this value.

To do so a unified and general model is required which considers the main characteristics

of SaaS services in cloud computing, such a model to be used as an index for

benchmarking SaaS services in cloud computing. As mentioned previously in the

literature review, many models have been proposed as an attempt to estimate the services

in cloud computing in general and SaaS services specifically. SaaS-Qual is considered as

one of the most cited pieces of research in this field (see Section 3.2.2.1). SaaS-Qual

introduced a set of six factors that affect usage continuance of SaaS, in addition to the

weights of each of these parameters. These weights helped in the decision making and

building the rules of the fuzzy engine.

A methodology is used to study SaaS-Qual as a model for estimating QoE value as shown

in Figure 5-2. This includes studying the effect of the SaaS-Qual parameters on QoE by

presenting a fuzzy logic engine (see section 5.4). Then, these results were analysed and

amendments are used to adjust the proposed fuzzy engine as presented in Chapter 7 (see

section 7.5).

Figure 5-2 Methodology for studying SaaS-Qual to estimate QoE

93

5.4 Estimating QoE Value Using Fuzzy Logic

As discussed in section 5.3, SaaS-Qual is proposed as a model for estimating QoE. An

approach is required to estimate the value of QoE taking into consideration its parameters

weights. A rule-based Mamdani fuzzy logic inference engine is used to estimate the QoE

value, where fuzzy logic was defined by Zadeh as “… a precise logic of imprecision and

approximate reasoning” (Zadeh, 2008, p. 2751). Fuzzy systems are used for estimation

and decision making (McNeill & Thro, 1994), it is based on linguistic rules which make

the computers’ reasoning closer to that of human (Jantzen, 2013). The choice of fuzzy

logic is based on the characteristics of the QoE as a subjective perception of the user to

the provided services (Hobfeld et al., 2012), in addition to the difficulty of deciding a

user’s satisfaction based on the changes in the values of the SLA parameters. For

example, there is no specific value that can be used to describe that the user is satisfied

or dissatisfied with the overall perceived services in SaaS. Furthermore, estimating the

value of QoE based on SaaS-Qual model involves a level of uncertainty in the form of

vagueness and impreciseness, where the value of QoE is affected by a set of different

parameters with different priorities; fuzzy logic was chosen for its ability of handling

uncertainty (Ross, 2009). This uncertainty is not described by a mathematical model that

can be used for calculating the QoE value based on the SLA parameters. It is the best

approach used for handling uncertain and imprecise values, which is the case for

estimating user satisfaction, based on the SLA parameters. Users are usually uncertain

about their satisfaction about measured SLA parameters, in addition to the fact that it is

difficult to decide the exact value of the measured SLA parameter that can be considered

acceptable or not. Because of the aforementioned reasons and the fuzzy logic

characteristics, fuzzy logic is the best approach that can work efficiently for this type of

application for estimating the QoE value in MonSLAR.

The proposed fuzzy system accepts the deviation of the measured values of the SLA

parameters from the threshold values as inputs, (where the deviation is the weighted

difference between the measured value and the required value as specified in the SLA

document); it then generates the fuzzy rules according to the weights of each SLA

parameter as decided in the SaaS-Qual model (Benlian et al., 2011). The result of this

process is the measured QoE value, which is used as an indicator for the user satisfaction

94

and violations in the SLA document. The architecture of the fuzzy logic engine is shown

in Figure 5-3.

The deviation value is used as an input to the fuzzy engine, to make sure that both the

actual measured values and the threshold values of the SLA parameters are considered in

the estimation of the QoE; this helps to detect a violation in the SLA document. The

deviation value of each of the parameters can be obtained by using the following formula:

Parameter deviation = |
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
| ∗ 100% …………. (5.6)

Algorithm 5-1 presents a pseudo code that describes the procedure used for evaluating

QoE in terms of SLA parameters.

Algorithm 5-1: Estimating QoE value

Input: SLA threshold parameters, SLA measured parameters.

Output: QoE value.

1 Initialize algorithm variables

2 Retrieve SLA parameters threshold values from SLA document

3 Retrieve updated SLA measured parameters values from the database

4 For each value of measured parameters

5 Calculate parameter deviation using equ.5.6

6 End for

7 Map parameters deviation values into membership functions.

Fuzzy Inference

Engine

Fuzzifier DeFuzzifier

Fuzzy Rules

(Inference)

Decision

Making Logic

parameter

threshold

value

Parameter

measured

value

Decide SLA

violation/ user

satisfaction

Deviation of each of

the parameters
QoE

Figure 5-3 The proposed fuzzy logic engine, adapted from (Mendel, 1995)

95

8 Apply fuzzy rules to input membership functions

9 Defuzzify output fuzzy set.

10 return QoE

5.4.1 The Input/Output Design of the Fuzzy Inference Engine

In order to map the crisp input data to the linguistic variables in the fuzzy engine, the

membership functions for the input parameters and the output QoE are defined, where the

membership function is “a curve to describe how the variable in fuzzy is mapped in a

degree of membership between 0 and 1” (Pilevari et al., 2013). According to (Ross, 2009),

different methods can be used to assign the membership functions’ as values in fuzzy

systems. These methods are: (1) intuition, which is derived from humans’ ability to derive

the membership functions based on their understanding and intelligence; (2) inference, in

this method, knowledge and facts are used to implement a deductive reasoning; (3) Rank

ordering, preferences is identified by research comparisons in this method; (4) Neural

networks, this method includes using training data to train a neural system; (5) Genetic

algorithms; and (6) Inductive reasoning, this method is not appropriate when the used

data is dynamic (Ross, 2009). In this research, the fact that there is no specific value for

the levels of the high-deviation and low-deviation of the SLA parameters was the

motivation for adopting the intuition method because of its suitability to solve this kind

of questions. Opinions of experts in the field are considered in defining the membership

functions in the proposed fuzzy engine.

A membership function with a range of input values [0.0, 100.0] is used. This range is

specified depending on the values of the deviation of the parameters obtained by equ.5.6,

three linguistic terms are used to describe the input to the fuzzy engine which are (high-

deviation, fair, and low-deviation) as shown in Figure 5-4. The membership function of

the output is trapezoidal, the range used is [0.0, 5.0], which considers five linguistic terms

(bad, poor, fair, good, and excellent) as shown in Figure 5-5. This range is considered

realistic as the QoE is usually measured using survey studies, these studies involves

asking the users about quality of services in means of scalers values (MOS).

96

Figure 5-4 Membership function for the fuzzy input

Figure 5-5 Membership function of QoE (output)

5.4.2 The Inference Rules (Rule Selection)

Fuzzy rules are submitted in the form of (IF … THEN), which represents human empirical

knowledge. In the proposed fuzzy engine, the rules are derived based on the submitted

study by Benlian et al, 2011. The rules are derived taking into consideration the weights

of the parameters (see Section 3.2.2.1). The generated fuzzy rules take into consideration

all the possible values (high-deviation, fair, and low-deviation) for the six inputs, in other

words (36 = 729 rules). Figure 5-6 introduces an excerpt of the generated fuzzy rules used

for estimating a QoE value.

IF Features IS high-deviation AND Responsiveness IS high-deviation AND Flexibility IS high-

deviation AND Security IS high-deviation AND Rapport IS high-deviation AND Reliability IS

high-deviation THEN QoE IS Bad

IF Features IS high-deviation AND Responsiveness IS high-deviation AND Flexibility IS high-

deviation AND Security IS fair AND Rapport IS fair AND Reliability IS fair THEN QoE IS Poor

IF Features IS high-deviation AND Responsiveness IS high-deviation AND Flexibility IS high-

deviation AND Security IS low-deviation AND Rapport IS low-deviation AND Reliability IS

fair THEN QoE IS Fair

IF Features IS low-deviation AND Responsiveness IS low-deviation AND Flexibility IS low-

deviation AND Security IS Good AND Rapport IS high-deviation AND Reliability IS high-

deviation THEN QoE IS Good

IF Features IS low-deviation AND Responsiveness IS low-deviation AND Flexibility IS low-

deviation AND Security IS low-deviation AND Rapport IS low-deviation AND Reliability IS

low-deviation THEN QoE IS Excellent

Figure 5-6 Excerpt of the fuzzy rules

97

5.4.3 The Defuzzification Method

Selecting the defuzzification method was based on a methodology to study the effect of

the different defuzzification methods and decide the best method for the proposed fuzzy

engine, a similar study presented to study the effect of defuzzification methods on Fuzzy

results (Naaz et al., 2011).

In this study, many experimental scenarios have been studied to observe the effect of

changing the defuzzification method on the estimated QoE value. Five different scenarios

have been used to examine the behaviour of the QoE measurement system as a result of

changing the defuzzification method Figure 5-7. The centroid method, Mom (Medium of

Maximum), LOM (Largest of Maximum), and SOM (Smallest of Maximum) are used as

defuzzification method for the first, second, third, fourth, and fifth scenarios respectively.

Please refer to Appendix B for more details.

Figure 5-7 Methodology for implementing the defuzzification method

According to Ross (2009), the criteria for selecting the defuzzification method are:

continuity, which means that small changes in input values should not cause a significant

change in an output value; disambiguity, which means the output to have one single

value; plausibility, which means to have a high degree of a result function;

98

computational simplicity, which means a less computational time needed to do

computations; and weighted method, which depends on the problem itself (Ross, 2009).

The used method for the defuzzification is the centroid method. Eq.5.7 is used to calculate

the output of the defuzzification process.

 ………………………………..…….…. (5.7)

Where: y is the output, μi(x) is the assembled membership function.

The other methods caused the value of the QoE value to drop, while in the centroid

method, the best results of QoE were achieved. This is because of the shape of the used

membership functions, in addition to having six input parameters. These reasons caused

the result of the fuzzification process (inference system) to have shape characteristics,

which may not suit the other defuzzification methods. For example: in the Maxima

method: there should be one single maximum point, the weighted average method where

membership functions should be symmetrical.

5.5 Effect of the SaaS-Qual Factors on the QoE Value

The behaviour of the fuzzy inference engine is described by using surface plots to show

the effect of each two of the SLA parameters on the QoE value. The significance of the

diagrams is to show the importance of the six parameters in estimating the user

satisfaction about SaaS. Given the difficulty of including all the six parameters in the

same diagram, the study considered each of two parameters in a separate diagram to

highlight the different results in each case.

Figure 5-8 and Figure 5-9 show the effect of both (Responsiveness, Features) and

(Security, Features) parameters’ pairs on the QoE value respectively. It is apparent that

in these two figures, the Responsiveness and Security have a higher effect on the QoE

than does Features parameter especially in the [low-deviation low-deviation] and [fair,

fair] pairs, which cause the QoE value to reach 1.5.

99

Figure 5-8 Effect of Features and Responsiveness

Figure 5-9 Effect of Features and Security

Figure 5-10 shows that both Flexibility and Features have a comparable effect on the QoE

value, where the increase in each of these parameters causes a clear increase in the QoE

value, especially in the [low-deviation low-deviation] pair. However, the effect of the

Features parameter is higher on the [fair, fair] pair.

Figure 5-10 Effect of Features and Flexibility

100

Figure 5-11 and Figure 5-12 show that (Features - Rapport) and (Features - Reliability)

pairs cause the maximum value for QoE to reach (0.56). In these figures, there is a clear

fluctuation in the value of QoE. While the [high-deviation, high-deviation] pairs caused

the QoE to be 0, the [fair, fair] pair increased the QoE value to reach 0.56 and to decrease

again in the [low-deviation, low-deviation] pair to reach 0.54. The reason for this is not

clear, but it may have something to do with the membership functions of the fuzzy input.

Figure 5-11 Effect of Features and Rapport

Figure 5-12 Effect of Features and Reliability

Figure 5-13 shows that both Responsiveness and Flexibility parameters have comparable

effects on the value of QoE especially in the [low-deviation, low-deviation] pair which

cause the QoE value to be 2.5. However, Responsiveness shows a higher effect on the

[fair, fair] pair of the input membership function.

101

Figure 5-13 Effect of Flexibility and Responsiveness

Similarly, Figure 5-14 shows similar behaviour for the Rapport and Responsiveness

parameters on the QoE value, which have the same influence on QoE.

Figure 5-14 Effect of Rapport and Responsiveness

Figure 5-15 shows the effect of both Security and Responsiveness on the QoE value, it is

clear that the pair of [high-deviation, high-deviation] of the fuzzy input results in a

neglected value of QoE value ≈ 0, while their fair range causes a significant increase in

QoE to reach 1.5. The highest values of both of them cause a dramatic increase in QoE

value to reach 2.5.

102

Figure 5-15 Effect of Security and Responsiveness

Figure 5-16 shows the effect of both Reliability and Responsiveness on the QoE value, it

is clear that the pair of [high-deviation, high-deviation] like in the other parameter pair

cases, results in a neglected value of the QoE value, but the [fair, fair] pair causes a

dramatic increase in the output especially Responsiveness which has a clear effect in this

region of the plot, all in all, the highest level achieved for QoE is 1.5.

Figure 5-16 Effect of Reliability and Responsiveness

Figure 5-17 shows that both Security and Flexibility parameters have comparable effects

on the value of QoE especially in the [high-deviation, high-deviation] and [low-deviation,

low-deviation] pair which cause the QoE value to be 0 and 2.5 respectively. However,

security shows a higher effect on the [fair, fair] pair of the input membership function to

raise the QoE value to 1.5.

103

Figure 5-17 Effect of Security and Flexibility

The effect of the (Rapport, Flexibility) and (Reliability, Flexibility) parameters pairs on

the QoE is depicted in Figure 5-18 and Figure 5-19 respectively. Where each pair has a

comparable effect on the QoE value. The highest achieved value is 1.5, while dropping

the input values causes a decline in the results to reach 0, but an observed rise is mentioned

in the [fair, fair] especially for the Reliability and Rapport parameter.

Figure 5-18 Effect of Rapport and Flexibility

Figure 5-19 Effect of Reliability and Flexibility

104

Similar to the previous last two figures, the maximum achieved value of QoE is 1.5 as a

result of the effect of (Rapport, Security) and (Reliability, Security) parameters’ pairs in

Figure 5-20 and Figure 5-21 respectively. However, Security causes a significant increase

in the QoE value in the [fair, fair] pair.

Figure 5-20 Effect of Rapport and Security

Figure 5-21 Effect of Reliability and Security

The same level of QoE is achieved in Figure 5-22, which shows the effect of Reliability

and Rapport on the QoE value.

Figure 5-22 Effect of Reliability and Rapport

105

What is interesting in these figures is that any pair of the parameters does not cause the

QoE value to reach its maximum level of 5. This means that its value does not depend on

one or two parameters but on the other input parameters as well. It is important to note

that the results reflect the users’ preferences in the negotiation process of the SLA

document through defining the (weights) of the SLA parameters.

5.6 Discussion

In this study, comparing the effect of each two of the SaaS-Qual model parameters reveals

the relationship between them and the QoE value. The results showed that these

combinations of the parameters are the most effective on the user satisfaction or the QoE

value (Flexibility, Responsiveness), (Security, Responsiveness), (Rapport,

Responsiveness), (Security, Flexibility). While these combinations of the parameters are

the less effect on the QoE value or the user satisfaction (Features, Rapport), (Features,

Reliability).

These results may explain the exponential relationship between QoE and QoS for some

of the parameters, like flexibility. However, the observed low value of QoE for the

reliability parameter contradicts this concept. This result contradicts the importance of

the response time of web services users, who expect to receive the services on time.

As expected, the higher deviation between the measured and threshold SLA parameters

causes a decline in the user satisfaction and as a result on the QoE value to drop to zero.

5.7 Chapter Summary

This chapter studied the estimation of the QoE of SaaS in cloud computing. A relationship

was introduced to define the QoE of SaaS based on the SLA parameters and the network’s

QoS. The QoE value has been estimated using a fuzzy logic rule based on an inference

engine.

Fuzzy logic was used as an approach for measuring the QoE value in SaaS cloud

computing through studying the influence of the SLA parameters’ degradation and

network’s status on a user’s satisfaction. Applying the deviation of the measured to the

threshold values of the SLA parameters as an input to the fuzzy engine helped in reflecting

realistic results on the QoE value. The rules of the proposed fuzzy engine were selected

based on SaaS-Qual as a model for evaluating a QoE taking into consideration the weights

106

of these parameters. The chapter also presented the effect of SaaS-Qual parameters on the

QoE.

This study can be a base for future studies to evaluate a QoE using a holistic unified

metric. The next chapter introduces the implementation of the proposed middleware in

both the client and provider sides and the main techniques used in the implementation.

107

6 CHAPTER SIX: MonSLAR IMPLEMENTATION

MonSLAR IMPLEMENTATION

6.1 Introduction

The architecture of the proposed middleware and the mechanism for the monitoring

process are presented in chapters Four and Five respectively. MonSLAR has the ability

to monitor an SLA from a user perspective with the ability to keep the client up-to-date

about any violation. This chapter presents the implementation of MonSLAR, which

includes a description of the implementation of the main components of MonSLAR on

both the client side and provider side, which manages communication using REST

technology; and the file formats used for transmitting the data, the delivery and the display

of the monitored data on the client side. The implementation of MonSLAR aims to

achieve the main functionalities for the proposed monitoring process mechanism.

6.2 Message Flow of Monitoring in MonSLAR

MonSLAR provides an automated real time monitoring for the services and the SLA

parameters. The communications between the client side and the provider side are

accomplished using REST technology.

MonSLAR middleware has two main responsibilities, the first one is invoking and

delivering SaaS services and the second is managing the monitoring process, which

involves both measuring the QoE value (user satisfaction) and delivering the monitored

measurements of the SLA parameters values.

Figure 6-1 presents a sequence diagram that shows the steps of the monitoring process in

the proposed middleware. When the user uses a SaaS service, the MonSLAR-client side

sends two types of requests to the MonSLAR-server side. The first one is to invoke the

SaaS service from the SaaS provider and delivers this service to the client side through

MonSLAR-client; the second one is the monitoring request.

108

Figure 6-1 Sequence diagram describes the message flow of monitoring in MonSLAR

109

In the monitoring request, the MonSLAR-server side retrieves all the monitored data from

the database and delivers it to the client through the MonSLAR-client side. This, in turn,

will use this data to show the user satisfaction and the SLA breaching state in the form of

dashboard; the monitoring request also activates the QoE decider component, which will

activate the SLA parameter updater component that updates the parameters’ values using

the main metrics in the database, which were already measured by the probes. These

values are used to calculate the QoE value, which is saved in the database. The user will

be able to retrieve this information whenever refreshing the dashboard. This process

ensures a real-time collection for the monitored data. Updating the SLA parameters’

values is done by computing the average for those parameters values. Algorithm 6-1

illustrates the process of updating the measured values.

For each parameter value p= [p1 p2 p3 … pn], n: is the number of measured valued.

The overall value of each parameter after the update process is as below:

𝑃𝑛𝑒𝑤 =
∑ 𝑃𝑛

𝑛
0

𝑛
+ 𝑃𝑛+1 …………………………………………………..……… (6.1)

𝑃𝑛𝑒𝑤 =
(∑ 𝑃𝑛

𝑛
0)+ 𝑃𝑛+1

𝑛+1
 ...……………………………………………..………… (6.2)

Algorithm 6-1: updating the values of the measured parameters

Input: Measured parameters’ values.

Output: Updated parameters’ values.

1 For each received measured parameter (𝑃𝑛+1) do

2 Retrieve the old value of the parameter (𝑃𝑛) from the database

3 Calculate the value of 𝑃𝑛𝑒𝑤 as in equ.6.2

4 Save the value of 𝑃𝑛𝑒𝑤 in the database

5 EndFOR;

6 END

In MonSLAR, the monitored metrics are collected from the probes on the server side,

which will then be used for calculating the SLA parameters’ values and measuring the

QoE value. This provides a trusted and reliable way for the measurement as the metrics

are collected in an automated way directly from the probes.

In the implementation of MonSLAR, it is assumed that the SLA document is available

and agreed on between the client and the service provider.

110

6.3 Deploying MonSLAR in SaaS Providers and Clients

The architecture of MonSLAR as an SOA facilitates the process of exploiting it and helps

in retrieving the measurements and the monitoring process in the form of services. This

concept enables customizing the collaboration between heterogeneous environments and

integrating software components from different technologies with each other.

Both SaaS clients and providers can use the proposed middleware. MonSLAR’s API

provides the main monitoring functionalities that can be used by the cloud developer to

use MonSLAR in monitoring the cloud service. On the other hand, the clients can use it

in the form of Add-ons in the web browsers of the clients, which enables them to retrieve

the monitored QoE values. The API specification of MonSLAR is introduced in

Appendix C.

6.4 MonSLAR’s Components Implementation

This section illustrates the implementation of the main components used in MonSLAR

(see Section 4.4) for both the server side and the client side. A prototype of MonSLAR is

implemented entirely using java programming language (Java Eclipse Kepler EE IDE for

web developers), Apache Tomcat 7 server, and the JAX-RS REST API to manage the

REST communications.

6.4.1 Server side MonSLAR

As described in chapter 4, the server side consists of the following components:

(a) Request/Response handler. This component processes the HTTP requests and

responses, distinguishing the type of request (service, monitoring, or management

request).

(b) SLA parameter calculator. This component is used to calculate the SLA parameter

values based on the metrics.

(c) Repository. This component represents a database used to store the monitored data

and the estimated values of the QoE for each client in addition to the SLA parameter

values. The MySQL server is used to implement the repository as a database management

system (MySQL, 2017), taking advantage of relational database management to assure

accuracy in collecting the data. The values stored in the repository are considered a backup

111

which is used later to notify the user about any degradation in the received service. It

introduces a fast retrieval of the data by the other methods in the developed middleware.

By considering the multi-tenant concept in SaaS, which allows different clients to use the

same provider’s application environment, an isolation should be taken into account when

saving the values of the metrics and QoE value. These are specified for each user, in

addition to the time of monitoring (time stamp), which gives an indication about the

history of violations for both the cloud client and the provider. The isolation among clients

in the shared database is considered by using a client-id field in the database which

ensures retrieving the measurements for the specific client. The client-id is retrieved for

each session. Figure 6-2 introduces an excerpt from MonSLAR’s code for retrieving the

value of QoE for the specific client.

(d) Quality Manager. This component represents the QoE estimator tool used to estimate

the value of QoE as an indicator of user satisfaction, which is implemented using the

jFuzzyLogic open source library and supports the implementation of the Fuzzy Inference

System (FIS) (Cingolani & Alcalá-Fdez, 2013). The use of this library allowed a

comprehensive implementation for the middleware’s components. This method returns

the value of the QoE which is retrieved later by the HEAD method. The decision in this

unit is made based on the metrics’ values retrieved from the database repository.

(e) The probes. In this research, it is supposed that the measured data for the quality of

service is collected from trusted probes and provides the correct database for the measured

data. The probes are the monitoring tools available in the cloud. It is also assumed that

the interval time for retrieving the measurements from the probes is agreed between the

provider and the client.

(f) SLA builder. This component performs the SLA parameters extraction process by

using an XML parser and save the values in the repository to be used later in the QoE

estimation process.

 Integer currentUserId = (Integer) request.getSession().getAttribute(

 "currentUserId");

 if (currentUserId != null) {

 File file = new File ("QoEstimator.fcl");

 FuzzyQoE fq = new FuzzyQoE();

 fq.RunFuzzy();

 Double value = new DBConnect().getQoE(new Integer(currentUserId));

Figure 6-2 java code depicts isolating the retrieved measurements based on the client_id

112

6.4.2 The Client Side MonSLAR- System Front End

The client side of MonSLAR aims to support reporting the data to the client. This section

introduces the dashboard used to visualize the user satisfaction to the user. The client side

of MonSLAR consists of the following components:

(a) Request/Response handler. The implementation of this component includes the use

of AJAX requests to call the REST methods that are used to retrieve the monitored data.

The client’s side monitoring requests are as follows:

HEAD method: [URL: Base_URL/qoe]

OPTIONS method: [URL: Base_URL/measure]

(b) The parser/metric aggregator. This component is used to monitor the current state

of the received responses for the requested services, which includes Ajax instructions to

measure the response time and the state of the received services that help in estimating

the reliability and availability. The collected metrics present the base of the calculated

SLA parameters to be used in estimating user satisfaction.

(c) Repository. the data collected from the different machines on the client side are stored

in the cookies, which can be accessed later by MonSLAR’s server side to be used in the

decision making process.

(d) Quality Manager. This component interprets the QoE value that is retrieved from the

provider side to show the level of user satisfaction about received services using a

dashboard representation as shown below.

These requests are sent automatically when the user loads the SaaS service page. The

retrieved data is displayed to the client in a dashboard, which gives a visualized and

meaningful display of the relevant information that the user needs to know about the

monitored data. Examples include the average value for each measured SLA parameter

and the QoE value, in addition to the status of the users’ satisfaction for this provider.

This information is going to be displayed on one page, which gives the user more control

and better administration of the SaaS application. The data is retrieved for the current user

from the MySQL database

The user interface for the dashboard uses a display chart. A bar chart is used to show the

measured values of the SLA parameters, while a meter chart is used to display the value

113

of QoE. The meter max value is set to 5 taking into consideration the maximum value

considered in the fuzzy logic system. The red colour is used to indicate service

degradation, while green is used to show a proper status of the used services. The graphs

created are based on the data gathered in real-time.

The user has the chance to use the SaaS service and at the same time monitors the SLA

violation state by getting a dashboard with monitoring facilities and information about

the user satisfaction status, as well as the values of the real measurements for the SLA

parameters. Figure 6-3 describes how the user will be able to use the service and to get a

dashboard that shows the QoE value. The user can also get detailed data about the factors

that caused the QoE value by pressing the button “service status”, as shown in Figure 6-4.

Figure 6-3 The SaaS service web page with MonSLAR’s dashboard

114

Figure 6-4 MonSLAR’s dashboard with the monitored data

6.5 Implementing MonSLAR Requests

As discussed in Chapter Four, MonSLAR deals with three types of requests, service,

monitoring, and management. These requests are initiated by Uniform Resource Locators

(URLs) used to access the REST methods. This section introduces the communications

and interfaces designed using REST technology by focusing on the implementation of the

monitoring requests as they handle the management of the monitoring process in the

proposed solution.

6.5.1 The Service Request

A REST service has been implemented for a weather forecast service. In this section the

client sends a REST request asking for the service, the request could be any of the REST

methods (GET, PUT, POST, and DELETE). After receiving the service on the client side,

the main metrics are collected in the response, as explained in Section 6.4.2 (the parser,

metric aggregator). The measured metrics are saved in a (JavaScript Object Notation)

JSON file (Bray, 2014) as shown in Figure 6-5. This file will be sent using a POST method

in the monitoring request-B presented in the following subsection. The use of JSON

provides a lightweight transmission for the monitored data.

115

Figure 6-5 An example for saving the metrics in JSON file

6.5.2 The Monitoring Request

This section depicts the implementation of the monitoring requests in MonSLAR. REST

technology offers a URI based technique to retrieve the information by sending an HTTP

request. This facility is used to retrieve the monitored data as resources using both HEAD

and OPTIONS methods.

In monitoring request-A, the client’s side middleware sends an HTTP HEAD request

asking for the QoE value of that provider. This value will be included in the response of

the HTTP response in a name-value pair. The value of QoE is retrieved from the

FuzzyQoE() method. The java code for the HEAD method is presented in (Appendix D,

Error! Reference source not found.).

The HTTP request for the HEAD method is shown in Figure 6-6. Figure 6-7 presents an

example of the response to the HTTP HEAD method, which includes the value of the QoE

in the monitoring request-A. It is obvious, from the response that the required information

is embedded in the header and the HEAD method does not return a message body in the

response. The retrieved data from this method is used in the dashboard to represent the

user satisfaction about the SaaS service. If an error occurs in retrieving the data from the

database, the client receives a message that there is no data to be displayed.

HEAD / MonSLAR /api/monitor/qoe HTTP/1.1

Referer: http://localhost:8080/MonSLAR/index.html

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko

Host: localhost:8080

Content-Length: 0

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: JSESSIONID=316E698A14960970CD1F90F4F32D7DB6

Figure 6-6 HTTP message request of the HEAD method

116

For monitoring request-B, the metrics measured on the client side are embedded in a JSON

file and sent to the provider side using the POST method. The retrieved data is saved in

the repository, to be used later for measuring the value of QoE in the decision maker on

the provider side. The Java code for the POST method is presented in Appendix D, Error! R

eference source not found..

To manage the connections of monitoring request-C of MonSLAR, the OPTIONS method

is used to retrieve the values of the metrics required to evaluate the user satisfaction and

the SLA compliance, transmitted in a JSON file format. This contains the metrics’ values

and names pairs measured by MonSLAR, and are received on the client side. The Java

code for the OPTIONS REST method is introduced in Appendix D, where the method

ReadMeasuredParameters() is used to retrieve the measured parameters values from

MonSLAR’s database on the provider side. The Java code for the POST method is

presented in (Appendix D, Figure D- 3).

The HTTP request and response for the OPTIONS method are shown in Figure 6-8 and

Figure 6-9 respectively, the data retrieved from this method is used in the user side

dashboard to show the measured values of the SLA parameters as in Figure 6-4.

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
QoE: 4.52
Content-Length: 0
Date: Tue, 19 Apr 2016 11:52:29 GMT

OPTIONS /MonSLAR/api/options/measure HTTP/1.1

Referer: http://localhost:8080/MonSLAR/index.html

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko

Host: localhost:8080

Content-Length: 0

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: JSESSIONID=C977E6F8406CFEB3525273453BFDB465

Figure 6-7 HTTP message response of HEAD method

Figure 6-8 HTTP message request for the OPTIONS method

(monitoring request-C)

117

6.5.3 The Management Request

This section discusses the implementation of the management request in MonSLAR. To

manage the connections of this request, the OPTIONS method is used to update the client

side of the middleware with the SLA parameters in case of any updates. The pair of

parameters’ names and values are transmitted in JSON file format. The java code for the

OPTIONS method is illustrated in (Appendix D, Error! Reference source not found.).

Figure 6-10 shows the HTTP request of the OPTIONS method, while an example of

OPTIONS response is depicted in Figure 6-12.

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

data:

[{"Value":99,"Name":"features"},{"Value":90,"Name":"responsiveness

"},{"Value":95,"Name":"flexibility"},{"Value":30,"Name":"security"},{"

Value":100,"Name":"rapport"},{"Value":95,"Name":"reliability"}]

Content-Length: 0

Date: Mon, 18 Apr 2016 17:04:22 GMT

Figure 6-9 HTTP message response for the OPTIONS method

(monitoring request-C)

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

data:

[{"Value":98,"Name":"reliability"},{"Value":99,"Name":"availability"}]

Content-Length: 0

Date: Mon, 18 Apr 2016 17:04:22 GMT

Figure 6-10 HTTP message request for the OPTIONS method

(management request)

OPTIONS /MonSLAR/api/sla HTTP/1.1

Referer: http://localhost:8080/MonSLAR/index.html

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko

Host: localhost:8080

Content-Length: 0

Connection: Keep-Alive

Cache-Control: no-cache

Cookie: JSESSIONID=C977E6F8406CFEB3525273453BFDB465

Figure 6-11 HTTP message response for the OPTIONS method

(management request)

118

6.6 Chapter Summary

This chapter discussed the implementation of MonSLAR with a description of the main

methods used for transmitting the monitored data and delivering it to the client side.

Technologies, such as JSON are used to provide a lightweight implementation. The use

of the dashboard helps in representing the monitored data in a human readable format and

simplifies the process of retrieving the data on the client side in an intuitive way. The

communications between the client side and the provider side were implemented and

managed using REST through providing the monitored data as services can be accessed

using URLs specified for each method.

The next chapter presents the system testing and evaluation which is used to check that

the thesis objectives have been achieved successfully.

119

7 CHAPTER SEVEN: SY STE M TE STING AND EVALUATION

SYSTEM TESTING AND EVALUATION

7.1 Introduction

This chapter presents the test and evaluation of the proposed system. The evaluation is

submitted as proof that the objectives presented in Chapter One were achieved and to

evaluate to what extent the proposed middleware achieved the aim of the study, which

implied building a lightweight monitoring framework using REST technology.

The proposed middleware is tested to check that the system’s tasks are working correctly.

Then the middleware is evaluated. The first evaluation includes a quantitative evaluation

to check the performance of the proposed middleware. The performance of MonSLAR is

evaluated in terms of the overhead caused by the monitoring process. The overhead is

measured taking into consideration the overhead added to the message size. The message

size overhead evaluation is compared to PM middleware (please refer to Chapter Three).

The second evaluation approach includes a qualitative study of the operations and features

of the proposed middleware, in comparison to existing monitoring frameworks which

were presented in Chapter Three.

The third evaluation approach evaluates the proposed fuzzy engine; this includes a test to

check the values acquired from SaaS-Qual in measuring the QoE value. Then the

proposed metric is validated using a user-study.

7.2 MonSLAR Test

This section discusses an algorithm for testing the functionality of MonSLAR. This is

achieved by using a scenario to check the middleware completeness, which examines

whether the system covers all the specified tasks or not. These tasks are (1) to estimate

QoE based on SLA parameters, and (2) to deliver measurements using HEAD and

OPTIONS RESTful methods.

7.2.1 Experiment Objectives

The objective of the experiment is to test the monitoring functionality of MonSLAR.

120

7.2.2 Experiment Setup

The proposed middleware was implemented and tested in a cloud environment.

The simulation environment is composed of two parts, the first section represents the

client side machine which is Intel core i7, 3.6 GHZ processor, 16 GB of RAM, windows

7 64 bit, a software testing tool for measuring the response time of the received responses;

while the second section of the testbed is the cloud computing implementation of the

proposed solution.

DigitalOcean (DigitalOcean) was used as a public cloud service to deploy MonSLAR.

The simulation environment for the virtual machine was 512 MB Memory / 20

GB Disk / LON1 - Ubuntu 16.04.1 x64. Docker (Docker, 2017) was used as a SaaS

container builder to deploy the application on the cloud virtual machine. The SaaS

container contained Apache Tomcat Server as the application server, in addition to the

MonSLAR extension. The requests received by the SaaS containers are managed by

MonSLAR, which is in charge of delivering these requests to the SaaS application server.

MonSLAR is deployed on this machine, and the test achieved by accessing the application

in the cloud environment. The results showed that MonSLAR executed and tested

correctly, this is tested by checking the HEAD and OPTIONS methods of the received

responses. Figure 7-1 shows the experiment testbed architecture used in the evaluation

process.

Figure 7-1 Experiment testbed architecture

Algorithm 7-1 is used to check the completeness of MonSLAR. This algorithm presents

the pseudo code for the steps utilized for the delivery of the monitored data using the

HEAD and OPTIONS methods. The algorithm initializes the used variables and checks

the headers’ fields of both HEAD and OPTIONS requests in lines (1-4), then according

to this value sets the value of completeness in lines 5 and 7.

121

Algorithm 7-1: Checking the completeness of functionalities of MonSLAR

Input: List of MonSLAR responses

Output: completeness status

1 Initialize algorithm variables, set completeness = false

2 For each response of MonSLAR do

3 Check the QoE and parameters in headers of HEAD and OPTIONS

requests

4 If (QoE header of HEAD or OPTIONS request = empty) then

5 completeness ← false;

6 else

7 completeness ← true;

8 end if

9 EndFOR;

10 Return completeness

11 END

7.2.3 Experiment Results

The proposed middleware was tested using a REST web application developed in the

laboratory for the purpose of testing MonSLAR. The experiment was repeated 150 times

in order to guarantee meaningful results, and the completeness status field was checked.

The result value was 150 true and 0 false in the completeness field. This test helped to

check the ability of the proposed middleware to present a user-centric monitoring and

delivery set of data using REST. More results related to the system behaviour in terms of

response time overhead is shown in Appendix E.

The next section introduces a quantitative evaluation of the proposed middleware.

7.3 Quantitative Evaluation of MonSLAR

Each monitoring process adds an additional overhead to the systems which it uses. This

is caused by the time required to do the monitoring, in addition to the size of the data

transmitted in this process. However, it is important to keep this value as low as possible.

This section presents the quantitative evaluation, which is used to evaluate the overhead

caused by MonSLAR in terms of the message size. Then, comparing its performance

characteristics with other monitoring frameworks found in the literature review.

122

7.3.1 Message Size Overhead

In this section, an evaluation for the proposed middleware (MonSLAR) is considered, by

comparing the usage of REST technology with the usage of SOAP technology in order to

show the lightweight properties of REST technology in transferring the monitored data.

MonSLAR is compared with PM (Zulkernine et al., 2008), PM is a performance

monitoring middleware used to monitor the SLA of web services. The reason for choosing

this middleware is because it delivers the monitored data to the client side by embedding

the monitored data in the SOAP message header. Whilst in MonSLAR, the monitored

data is delivered to the client side but embedded it in the REST header. Thus the use of

PM in the evaluation provides the opportunity to compare the message size in both cases.

7.3.1.1 Experiment Objectives

The objective of the experiment is to evaluate the performance of MonSLAR in terms of

the message size overhead.

7.3.1.2 Experiment Description

The experiment includes studying the size of the response message used in transferring

the monitored data in MonSLAR. To achieve this target, the amount of data added to the

header size is investigated for OPTIONS request which is used to exchange the

parameters values mainly in the monitoring process (please refer to Chapter Four).

In order to compare the response messages of PM and MonSLAR, it is important to

mention that PM delivers the data in the SOAP header while MonSLAR sends the data

in the header of the REST (OPTIONS) method. As both SOAP and REST are based on

HTTP protocol, the overhead caused by the HTTP message used to transfer the SOAP

envelop should be taken into consideration in the comparison process. Figure 7-2

illustrates the difference between the compared SOAP and REST messages. While PM’s

monitored data is sent in the SOAP message which is in the HTTP body, MonSLAR data

is sent in the OPTIONS header with no body entity.

Figure 7-3 shows a comparison between the response SOAP header message used in PM

and the REST header message used in MonSLAR OPTIONS method.

123

Figure 7-2 Illustrates representing the monitored data in the response message: (a) PM;

(b) MonSLAR

Figure 7-3 Response message content: (a) PM (Zulkernine et al., 2008); (b) MonSLAR

OPTIONS

The message size was investigated for PM and MonSLAR; algorithm 7-2 was used to

check the message size overhead (bytes). The message size was tested using File.length()

method in java. The algorithm computes the message size taking into consideration

different parameter values (0 – 6), in order to check the overhead caused by transferring

the parameters in each case. The reason for choosing this number of parameters is because

a)

b)

Added

data

a) b)

124

the proposed estimation for the QoE value is based on six different parameters (please

refer to Chapter Five). The results obtained for each case are discussed in Section 7.3.1.3.

Algorithm 7-2: Checking the message size overhead

Input: MonSLAR OPTIONS response, PM response

Output: message size (bytes)

1 Initialize algorithm variables, set OPTIONS_size=0, PM_size=0

 For i ← 1 to 6 do

2 If PM message

 Add (parameter_name, value), (HTTP header) to the message

 Compute message size (bytes)

3 PM_size (i) ← message size (bytes)

 Return PM_size

 Elseif OPTIONS message

 Add parameter_name, value to the message

 Compute message size (bytes)

3 OPTIONS_size (i) ← message size (bytes)

 Return OPTIONS_size

8 End if

9 EndFOR

10 END

7.3.1.3 Experiment Results

Figure 7-4 presents a comparison between the overhead added to the message response’s

header in bytes, for MonSLAR and PM middleware respectively. It is clear that the

overhead added by PM is approximately five times larger than the overhead caused by

MonSLAR. This overhead is due to the use of an XML based format for the parameters

in the SOAP message header in addition to the HTTP message header added in case of

PM, while the data is transmitted in a JSON format in the HTTP header in MonSLAR.

These results support the previous research about the performance of REST in

comparison to SOAP (please refer to section 2.4.2.3).

The next section presents a qualitative evaluation of the proposed solution.

125

Figure 7-4 Message size overhead caused by varying no. of parameters for MonSLAR

compared with PM

7.4 Qualitative Evaluation of MonSLAR

In this section, a qualitative evaluation is considered to evaluate MonSLAR by comparing

its features with existing monitoring frameworks from the literature. The evaluation

criteria are chosen as a proof for the user-centric objective set for the proposed

middleware (MonSLAR). Error! Reference source not found. presents the eight main c

riteria metrics used in the qualitative evaluation. The table also introduces the possible

values for each quality metric and the baseline of each criterion, while Table 7-2 presents

a comparison among MonSLAR and the available monitoring frameworks (from the

literature), which have been presented in Chapter Three.

The criteria’s metrics are chosen by taking into consideration the requirements of

achieving a user-centric monitoring of an SLA in SaaS, which is presented in the study

of MonSLAR.

The first criterion is the communication architecture; this criterion investigates whether a

middleware was used to manage the communication and monitoring process between the

provider side and the client side. Two values are considered for this criterion: ‘Yes’ for

using middleware, or ‘No’ if no middleware is used to manage the communication. Using

a middleware is considered the baseline, because of its characteristics for managing the

heterogeneity among the different systems. The top value is to use a SOM, because of the

features of service oriented to provide reusability and loose coupling to the overall

126

structure. Using SOM in this thesis helped in managing the overall monitoring process

through providing the monitored data as services by taking advantage of REST the

technology.

The second criterion is checking user satisfaction. It considers three different values:

either considering a ‘Check user satisfaction’ which is used to notify the user or manage

the cloud resources according to the estimated value; or it could be that a ‘no Check for

user satisfaction”; or a ‘comparison’ is used between measured values and SLA

parameters to check violation. According to the previous studies, measuring the user

satisfaction about the received services is an important issue, this can be achieved by

measuring QoE as the perceived services by the end user. For this reason, the baseline is

the use of comparison to check the provided services; the top value is to check user

satisfaction with the used services.

The third criterion is the notify-ability; this criterion considers three different values. Its

value can be either a dashboard with an automatic notification ability; or a dashboard with

manual notification, which requires user interaction to retrieve the results; or no

dashboard is used in a monitoring framework. The baseline for this criterion is set to the

use of manual check dashboard, while the top value is the use of automatic notify-ability.

Notify-ability helps the user in deciding the overall user satisfaction about received

services. It also helps in saving time and effort in checking each SLA parameter and

comparing that to a threshold value set in an SLA document, which is the function of the

fuzzy logic engine in the proposed middleware.

The fourth criterion is the mode of monitoring, this criterion considers three different

values which are: a server-centric monitoring, in which the monitoring process is

managed by the server side; a user-centric monitoring, in which the monitoring process

is managed by the client side; and a third party monitoring, in which the monitoring

process is managed by a third party broker. A user–centric is chosen as a baseline and the

top value for this criterion, which gives more control to the client side. The use of a user-

centric monitoring removes the need for a broker to manage the monitoring process. In

terms of monitoring architectures, the use of a broker as a third party is considered a

source of failure and service outage. As the architecture of MonSLAR is developed by

taking advantage of the cloud computing architecture, this provides high availability for

MonSLAR through avoiding the use of a broker in comparison with the other monitoring

127

architectures that use brokers to implement the monitoring process or delivering the

monitored data. MonSLAR assures higher availability, by avoiding the denial of services

caused by a broker failure.

The fifth criterion is the interaction type, which is used for delivering the monitored data

to the client side. Three different values are considered, either using a web services-REST

technology, or a web services-SOAP protocol, or no web services are used to deliver the

monitored data. The baseline is set to the use of web service (either SOAP or REST) to

manage the interaction. REST technology is considered the top value, because of the

characteristics of REST to have low overhead values compared to SOAP protocol (see

section 2.4.2.3), in addition to the trend of the cloud services to be managed by REST

because of its simplicity and ease of use. This takes into consideration the difficulty of

including the monitored data in a REST technology in comparison with SOAP. However,

MonSLAR handles this problem by embedding the monitored data in HEAD and

OPTIONS methods which add more flexibility in managing the monitored data and

delivering it to the client side.

The sixth criterion is SLA oriented, which has two possible values, either ‘Yes’, where

SLA parameters are taken into consideration in the monitoring process, or ‘No’, in which

the monitoring process does not consider the SLA parameters. SLA parameters are

considered an important issue in monitoring cloud environment, where SLA parameter

values represent the agreed levels of services between a client and a cloud provider. This

consideration could be a good indication of services’ levels achievement, where SLA

parameters represent threshold values to evaluate received services’. ‘Yes’ is considered

the baseline and the top value for this criterion.

The seventh criterion is the real-time measurement. This criterion accepts two values,

either ‘Yes’, which manages to deliver online real time measurements to the client-side;

or ‘No’, which does not consider real time measurements of the data. The baseline is set

to ‘No’ that considers the use of monitored data regardless of the real time measurement,

while the top value considers delivering real time measurements; this assures more

control of the monitored data and the violation detection process. The use of real time

data gives a realistic indication about breaching the SLA contract.

The eighth criterion is the automatic detection through providing automatic detection of

SLA violations by automatically monitoring the measured data. Two values are

128

considered for this criterion: ‘Yes, for the ability to provide an automatic detection of

SLA violation; or ‘No’, where no automatic detection is used in a monitoring process.

The baseline value and the top value are set to having the ability of automatic detection;

again this characteristic helps in keeping a monitoring process unbiased to any of the

parties in the system.

129

Table 7-1 Quality Criteria

Metric Description Possible values Baseline Top value

Communication

architecture

The type of communication used to manage the

monitoring process (a middleware used to manage

communication between provider and client?)

- Yes

- No

-Not mentioned

Yes SOM

Check user

satisfaction

The ability to check the user satisfaction and decide

SLA violation

- Check user satisfaction (CUS)

- No Check for user satisfaction (NCUS)

- Comparison

CUS CUS

Notify-ability

The ability to provide automatic notifications to the

user: a dashboard used to notify the user

automatically, or the dashboard requires the user to

take manual action to get data.

- Manual check (MC)

- Automatic Notification (AN)

- No Dashboard used (ND)
MC AN

Mode of

Monitoring

This criterion indicates which party is in charge of

managing the monitoring process

- User centric

- Server centric

- Third party

User centric User centric

Interaction type
The interaction type used to deliver the services to

the client side.

- web services-REST

- web service-SOAP

- (-) No web services were used to deliver

the measurements to the client side

Web

services

REST

SLA oriented
The ability of considering the SLA parameters in the

monitoring process.

- Yes

- No
Yes Yes

Real time

measurement

The ability of the monitoring system to provide real

time measurements of the used services.

- Yes

- No

- (-) not mentioned

No Yes

Automatic

detection

The ability of the system to provide automatic

measurements of the used services and automatic

detection of the SLA violation

- Yes

- No
Yes Yes

130

Table 7-2 Comparing MonSLAR to the other monitoring frameworks

Reference
Notify-

ability

SLA

oriented

Check user

satisfaction

Mode of

Monitoring

Interactio

n type

Communicatio

n Architecture

Real time

measuremen

t

Automati

c

Detection

MonSLAR AN* Yes* CUS* User-centric* REST* Yes* Yes* Yes*

SLAM (Moustafa et

al., 2015)
MC Yes* NCUS User-centric* - Not mentioned Yes* No

DARGOS

(Povedano-Molina et

al., 2013)

MC No NCUS Server-centric REST* No No No

(Serhani et al., 2014) MC Yes* Comparison User-centric* - No Yes* No

M4CLOUD

(Mastelic et al.,

2012)

ND Yes* CUS* Server-centric - Not mentioned Yes* Yes*

CASViD (Vincent C

Emeakaroha et al.,

2012)

ND Yes* CUS* User-centric* - Not mentioned Yes* Yes*

(Rak et al., 2011) MC Yes* NCUS Third party - No Yes* No

JCatascopia

(Trihinas et al.,

2014)

ND No NCUS Server-centric REST* No Yes* Yes*

GMONE (Montes et

al., 2013)
MC No NCUS User-centric* - No Yes* No

131

* indicates achieving the top value for the specified criterion.

Underlined values indicate achieving the baseline level.

LoM2HiS (Vincent

C Emeakaroha et al.,

2010)

ND Yes* Comparison Server-centric - No Yes* Yes*

(Shao & Wang,

2011)
ND Yes* CUS* Server-centric - No Yes* Yes*

SALmonADA

(Müller et al., 2012)
MC Yes* CUS* User-centric* SOAP Yes* Yes* Yes*

UCSM (Rehman et

al., 2015)
MD No CUS* User-centric* - No Yes* No

(Cedillo et al., 2015) MD Yes* Comparison Server -centric
-

No Yes* Yes*

JTangCMS (Lu et

al., 2016)
ND No CUS* Server-centric - No Yes* Yes*

(S.-Y. Lee et al.,

2012)
ND Yes* CUS* Server-centric SOAP Yes* Yes* No

(Ye et al., 2012) MD Yes* CUS* Third party - - - No

(Siebenhaar et al.,

2013)
ND Yes* CUS* Third party - No Yes* Yes*

(You et al., 2015) MD Yes* CUS* Third party - - Yes* No

QoSMONaaS

(Cicotti et al., 2012)
ND Yes* Comparison Third party - Not mentioned Yes* No

132

7.5 The Fuzzy Engine Test

7.5.1 SaaS-Qual Test

In order to study the SaaS-Qual as a model to estimate the QoE value, experimental

scenarios were used to examine the QoE behaviour (Section 5.3, Figure 5-2). The

proposed fuzzy engine was tested by feeding a set of different input data values to check

the result of the QoE value. Test data is used for these reasons: (1) Availability of the

data, where the used dataset represents measurements of parameters used for real cloud

users and the difficulty of obtaining this data in real experiment; (2) Ease of storage and

reproduction of the data; and (3) Repeatability, where the experiments can be repeated

with the generated data. A random input data for the deviation input to the fuzzy engine

was considered to examine the QoE value for these different values. A sample of the

results of the QoE obtained by testing different random values of SLA parameters is

shown in Table 7-3. This table gives an indication of the estimated QoE value as a result

of changing the input parameters’ values.

In an attempt to generate more realistic data for the input measured parameters values, a

random data set was generated taking into consideration the standard deviation and the

mean of the trusted feedback dataset available in the Cloud Armor web project (Cloud

Armor, n.d.). As the values in this dataset reflect the user’s opinion for each parameter,

this helps as they can be considered as the deviation of the measured parameters from the

SLA threshold values. The values’ range provided in this dataset was [1, 5] as it represents

users’ opinions in Likert scale, this required using a scale to convert it to [0, 100] to make

it compatible with the proposed fuzzy input membership functions.

Table 7-3 Test results of QoE values

Features Responsiveness Flexibility Security Rapport Reliability QoE

70 52 11 88 100 48 2.525

46 40 71 68 76 98 1.535

93 95 90 80 90 95 4.464

80 90 84 100 24 60 3.525

89 50 92 22 90 76 2.525

26 86 58 90 27 80 2.929

39 57 39 46 28 30 0.536

133

7.5.2 Validating the Proposed Metric

7.5.2.1 Purpose of the Study

As the QoE refers to the user satisfaction or dissatisfaction about a service, a questionnaire

survey is conducted to validate the proposed metric and the effect of the SaaS-Qual

parameters’ weights on the overall QoE value. The purpose of the study is to gather

information about user satisfaction with SaaS services. This survey allowed checking the

possibility of using the SaaS-Qual quality model as a measure for the QoE. The survey

included a questionnaire to study factors influence the QoE of SaaS services like email

and Google documents. Two phases are considered in the design of the questionnaire’s

questions. The first phase included a pilot study, which was held to design the

questionnaire’s questions before collecting the main data of the research. The pilot study

included sending the questionnaire to 10 different participants and discussing the results

with researchers from the field, to ensure that the questions are understandable, and to

derive the final version of the questionnaire; in addition to checking the applicability of

the questionnaire to this kind of study. The second phase of the study included sending

the questionnaire to 150 students at the University of Salford. The reason for choosing

this population is to ensure that all the participants have an experience with the email as

a kind of SaaS services as the participants are intended to be general users of the SaaS

services. The number of received responses were 100; 27 of the received responses are

not included in the analysis. Excluding these cases was because of the inaccurate results

obtained due to the same repeated results for all the questions in the study for a particular

participant. As a result, the actual number of answers included in the analysis is 73. The

reasons for selecting this population are: (1) because of their knowledge about the

technology of email as a kind of SaaS service; (2) the simplicity of gathering the data in

the form of a laboratory experiment. The questionnaire survey is presented in Appendix

F.

The questions in the questionnaire were designed to allow the researcher to evaluate the

rules of the fuzzy logic inference engine. Six questions were used to ask about the effect

of each of the six parameters on user satisfaction, in addition to the other four scenarios

to evaluate some cases from the fuzzy rules table with different levels of each parameter

(bad, medium, and high). Ten different scenarios were chosen so that the questions are

not too long for the participants, and at the same time gives an indication of the main

134

effects of the SLA parameters on the user satisfaction. Linguistic terms were used to

represent the values of the SLA parameters and the QoE, to ensure an easy understanding

of the questions and to avoid the misunderstanding of the numerical values by the

participants.

In the questionnaire, the participants needed to express their opinions using a Likert scale.

A Likert scale of five points ranging from 1 to 5 was used with the following values:

strongly satisfied, satisfied, neutral, dissatisfied, and strongly dissatisfied). This scale has

the advantage that it reflects the linguistic terms used in the fuzzy logic membership

function so that it was neither too hard for the researcher to express in the design of the

survey nor too hard for participants to understand and answer. The participants were

asked about their opinions about the effect of each of the SaaS-Qual parameters and their

satisfaction about the perceived cloud service. The questionnaire was designed and

implemented using the online survey tool (SurveyMonkey, 2016) to provide more visual

interaction with the users in addition to the ease of use and collection of the study data.

Data analysis of the obtained results were accomplished using SPSS.

7.5.2.2 Study Process

Figure 7-5 illustrates the process of validating the proposed metric. The process started

by generating random dataset taking into consideration the ten different scenarios of the

user study. The same data was used in the fuzzy engine and the user study to compare the

results obtained in each case. The numerical input data were mapped to equivalent

expressive linguistic terms, taken into consideration the fuzzy input membership function

(section 5.4.1, Figure 5-4). The results of the study were then expressed using linguistic

values comparable to the fuzzy results so that strongly dissatisfied, dissatisfied, neutral,

satisfied, and strongly satisfied mapped to bad, poor, fair, good, and excellent

respectively. Following this, the generated dataset was fed to the fuzzy engine, and the

computed QoE values were reported. Finally, the results were compared and analysed.

135

Figure 7-5 Process of validating the proposed metric

7.5.2.3 Study Results

The first question was about the effect of declining the Responsiveness parameter on the

QoE value. The results are shown in Figure 7-6, which shows that 39.7% of the

participants were satisfied with this scenario. Equivalent numeric values were fed to the

fuzzy engine to estimate the QoE value; the result was 3.525 that is equal to good; a

similar result has been achieved in the user study.

Figure 7-6 participants’ results for Responsiveness parameter

The second question was about the effect of declining the Features parameter on the QoE

value. The results are shown in Figure 7-7, with 43.8% of the participants choosing

136

neutral. Equivalent numeric values were fed to the fuzzy engine to estimate the QoE

value, the result of the fuzzy engine was 4.52 that is equal to excellent; while the result

obtained in the user study was fair.

Figure 7-7 participants’ results for Features parameter

The third question investigated diminishing the Security parameter on the QoE value. The

results are illustrated in Figure 7-8 with 41.1% of the participants strongly dissatisfied

with the scenario. The results obtained from inputting similar data to the fuzzy engine

reported that the QoE value was 3.525 which is equivalent to the good term, but the result

obtained in the questionnaire was bad. The results achieved from the survey reflects the

high effect of this parameter on user satisfaction.

Figure 7-8 participants’ results for Security parameter

137

The influence of declining the Rapport parameter on the QoE value was studied in the

fourth question. The results are as shown in Figure 7-9, with 42.5% of the participants

had been satisfied. On the other hand, the results obtained from running the fuzzy engine

with the same input data produced a QoE value of 4.52 which is excellent. The results

obtained in the survey were good.

Figure 7-9 participants’ results for Rapport parameter

Exploring the effect of dropping the Flexibility parameter on the QoE value was

considered in the fifth question. The results are presented in Figure 7-10, with 37% of the

participants being satisfied with this scenario. Nevertheless, the results acquired by

computing the QoE value using the fuzzy engine was 4.514 which is excellent; the results

obtained in the survey were good.

Figure 7-10 participants’ results for Flexibility parameter

138

The sixth question was about the impact of declining the Reliability on the QoE value.

The results are shown in Figure 7-11, with 52.1% of the participants were dissatisfied

with this scenario. Simulating the fuzzy engine with similar input data resulted in QoE

value equal to 4.52 which is excellent. However, the result obtained in the survey was

poor, which is an indicator of the high impact of this factor on QoE.

Figure 7-11 participants’ results for Reliability parameter

The seventh question considered a combination of the parameters values on the QoE

value. The input values of the parameters Responsiveness, Reliability, Flexibility,

Security, Features, and Rapport were set to bad, good, medium, medium, medium, and

medium respectively. The results are depicted in Figure 7-12, with 37% of the participants

were dissatisfied. While the results acquired by simulating the fuzzy engine with this set

of data resulted in a QoE value of 2.525 which is fair. On the other hand, the results

obtained in the survey were poor.

Figure 7-12 participants’ results for the seventh question

139

The eighth question introduced another combination of the parameters values to find their

effect on QoE. The values of Responsiveness, Reliability, Flexibility, Security, Features,

and Rapport were considered good, medium, good, good, good, and bad respectively. The

results are shown in Figure 7-13, with 43.8% of the participants were dissatisfied. While

the results of the fuzzy engine were 4.508 which is excellent, the result obtained in the

survey was poor.

Figure 7-13 participants’ results for the eighth question

The ninth question studied the effect of considering the values of Responsiveness,

Reliability, Flexibility, Security, Features, and Rapport parameters to good, good,

medium, good, bad, and bad respectively. The results are presented in Figure 7-14, with

37% of the participants were dissatisfied. While the results obtained from the fuzzy

engine showed that QoE was 2.525 which is good, the result obtained in the survey was

poor.

Figure 7-14 participants’ results for the ninth question

140

The tenth question considered a combination of the parameter values on the QoE value.

The parameters were selected as: Responsiveness: medium, Reliability: medium,

Flexibility: good, Security: bad, Features: good, and Rapport: good]. Figure 7-15 shows

the results of the study, with 52.1% of the participants dissatisfied. Whilst the results

obtained from the fuzzy simulation was 3.525 which is good, the result obtained in the

survey was bad.

Figure 7-15 participants’ results for the tenth question

The overall obtained results are summarized in Table 7-4, which shows a comparison

between the results achieved by the fuzzy engine and the results obtained by the user

study. This table gives a good indication of the difference between the expected results

and the realistic data.

141

Table 7-4 Comparison between the results of Fuzzy decision and the survey study

C
a

se

Input Data Fuzzy Output Study Output

Responsiveness

linguistic

Responsiveness

numeric

Reliability

linguistic

Reliability

numeric

Flexibility

linguistic

Flexibility

numeric

Security

linguistic

Security

numeric

Features

linguistic

Features

numeric

Rapport

linguistic

Rapport

numeric

Fuzzy

results

linguistic

Fuzzy

results

numeric

Study results Study

results

1 Bad 30 Good 88 Good 90 Good 95 Good 93 Good 99 Good 3.525 Satisfied Good

2 Good 98 Good 92 Good 89 Good 90 Bad 40 Good 94 Excellent 4.52 Neutral Fair

3 Good 99 Good 99 Good 92 Bad 22 Good 90 Good 91 Good 3.525 Strongly

dissatisfied

Bad

4 Good 90 Good 96 Good 100 Good 89 Good 95 Bad 34 Excellent 4.52 Satisfied Good

5 Good 100 Good 90 Bad 15 Good 99 Good 88 Good 95 Excellent 4.514 Satisfied Good

6 Good 95 Bad 8 Good 88 Good 100 Good 97 Good 90 Excellent 4.52 Dissatisfied Poor

7 Medium 73 Bad 20 Medium 75 Medium 70 Medium 73 Good 94 Fair 2.525 Dissatisfied Poor

8 Good 98 Good 89 Good 95 Good 90 Bad 22 Medium 74 Excellent 4.508 Dissatisfied Poor

9 Bad 50 Good 91 Medium 73 Good 95 Bad 18 Good 100 Fair 2.525 Dissatisfied Poor

10 Good 92 Medium 74 Good 93 Bad 21 Good 89 Medium 75 Good 3.525 Strongly

dissatisfied

Bad

142

7.5.3 Adjusting the Fuzzy Engine Based on the User Study

Based on the methodology presented in (section 5.3, Figure 5-2), the results obtained

from the user study were used for adjusting the design of the fuzzy logic engine. This

adjustment involved modifying the fuzzy rules to match the users’ opinions, this

modification then used to change the parameter weights according to the new rules.

In order to decide the final form of the rules of the fuzzy inference engine, the adapted

system behaviour was discussed with an expert. This section explains the behaviour of

the adjusted system by introducing the surface diagrams of each pair of SaaS-Qual

parameters. The most striking results to emerge from this study is the increase of the QoE

level especially for the security and reliability parameters.

The first set of figures are presented in Figure 7-16 and Figure 7-17, which shows the

effect of (Responsiveness – Features) and (Flexibility – Features) parameters’ pairs

respectively. The figures reveal a comparable behaviour in both cases, but the

Responsiveness parameter has a higher effect on the [fair fair] pair. The maximum value

of QoE is 1.5 in the [low-deviation low-deviation] pair.

Figure 7-16 Effect of Features and Responsiveness

143

Figure 7-17 Effect of Features and Flexibility

The influence of the (Security - Features), (Security - Responsiveness), and (Security –

Flexibility) parameters’ pairs is shown in Figure 7-18, Figure 7-19, and Figure 7-20

respectively. These pairs cause an increase in the QoE value to reach 3.5. As the figures

depict, Security has a higher effect on the QoE than Features, Responsiveness, and

Flexibility. This is obvious for the fair and low-deviation of Security to cause the QoE

value to reach 3.5. However, the QoE value is higher in the [low-deviation low-deviation]

pair in Figure 7-18 than this obtained in the other figures, and this is because the Features

parameter has higher priority than Responsiveness and Flexibility according to the user

study.

Figure 7-18 Effect of Features and Security

144

Figure 7-19 Effect of Security and Responsiveness

Figure 7-20 Effect of Security and Flexibility

Similar behaviour can be seen in Figure 7-21, which shows the effect of Security and

Rapport on QoE. It is clear that the Rapport causes to decline QoE value to 2.5 due to the

low impact of this parameter.

Figure 7-21 Effect of Rapport and Security

Figure 7-22 and Figure 7-23 show the effect of (Reliability – Features) and (Responsiveness

– Reliability) on QoE respectively. These parameters cause the QoE value to reach 2.5 in

145

the [low-deviation low-deviation] pairs. This is due to the high impact of Reliability. The

figures reveal that Reliability has a higher effect on QoE than Features and

Responsiveness.

Figure 7-22 Effect of Features and Reliability

Figure 7-23 Effect of Reliability and Responsiveness

Figure 7-24 presents the influence of Rapport and Features on QoE. The maximum

obtained value of QoE, in this case, is 1.5 in the [low-deviation low-deviation] pair, with

neglected value of QoE value otherwise.

Figure 7-24 Effect of Features and Rapport

146

From the data obtained in Figure 7-25, Figure 7-26, and Figure 7-27, it can be seen that

the adjusted fuzzy engine resulted in the lowest value of QoE which is 0.56. The reason

for this behaviour is the fact that the user study considered Flexibility, Responsiveness,

and Rapport as the least effective parameters on user satisfaction or QoE.

Figure 7-25 Effect of Flexibility and Responsiveness

Figure 7-26 Effect of Rapport and Responsiveness

Figure 7-27 Effect of Rapport and Flexibility

147

Figure 7-28 and Figure 7-29 show the effect of (Reliability - Flexibility) and (Rapport -

Reliability) parameters’ pairs on QoE respectively. The diagrams reveal that the

maximum achieved value is 1.5 in the [low-deviation low-deviation] pair. It is also clear

that the effect of Flexibility is higher in [fair fair] pair in Figure 7-28, due to the higher

priority of Flexibility in comparison to the Rapport.

Figure 7-28 Effect of Reliability and Flexibility

Figure 7-29 Effect of Reliability and Rapport

Figure 7-30 presents the effect of Reliability and Security on QoE, which shows a clear

trend of increasing the level of QoE to reach 4.5 approximately in the [low-deviation low-

deviation] values for this pair of parameters. The influence of the Security is higher than

Reliability, this is obvious in the [low-deviation high-deviation] pair where the QoE value

is 3.5.

148

Figure 7-30 Effect of Reliability and Security

7.5.3.1 Testing the Modified Fuzzy Engine

The adjusted fuzzy engine was tested again by applying the same data used in the user

study to check the produced results. Table 7-5 presents a comparison between the results

obtained from the modified fuzzy engine and the user study. It can be noticed from the

acquired results that the fuzzy engine results match the users’ opinions.

The next section introduces a discussion for the evaluation of the proposed middleware

and the metric validation, in addition to the overall conclusion obtained from the

presented studies.

149

Table 7-5 Comparison between the results of the adjusted Fuzzy engine and the user study

C
a

se

Input Data Fuzzy Output Study Output

Responsiveness

linguistic

Responsiveness

numeric

Reliability

linguistic

Reliability

numeric

Flexibility

linguistic

Flexibility

numeric

Security

linguistic

Security

numeric

Features

linguistic

Features

numeric

Rapport

linguistic

Rapport

numeric

Fuzzy

results

linguistic

Fuzzy

results

numeric

Study results
Study

results

1 Bad 30 Good 88 Good 90 Good 95 Good 93 Good 99 Good 3.525 Satisfied Good

2 Good 98 Good 92 Good 89 Good 90 Bad 40 Good 94 Fair 2.525 Neutral Fair

3 Good 99 Good 99 Good 92 Bad 22 Good 90 Good 91 Bad 0.504
Strongly

dissatisfied
Bad

4 Good 90 Good 96 Good 100 Good 89 Good 95 Bad 34 Good 3.525 Satisfied Good

5 Good 100 Good 90 Bad 15 Good 99 Good 88 Good 95 Good 3.525 Satisfied Good

6 Good 95 Bad 8 Good 88 Good 100 Good 97 Good 90 Poor 1.533 Dissatisfied Poor

7 Medium 73 Bad 20 Medium 75 Medium 70 Medium 73 Good 94 Poor 1.463 Dissatisfied Poor

8 Good 98 Good 89 Good 95 Good 90 Bad 22 Medium 74 Poor 1.781 Dissatisfied Poor

9 Bad 50 Good 91 Medium 73 Good 95 Bad 18 Good 100 Poor 1.531 Dissatisfied Poor

10 Good 92 Medium 74 Good 93 Bad 21 Good 89 Medium 75 Bad 0.523
Strongly

dissatisfied
Bad

150

7.6 Discussions

To conclude, the presented experiments showed that MonSLAR indicates a clear

improvement in terms of the message size overhead, where it introduces much better

performance than PM because of the use of REST technology in comparison to the SOAP

protocol. The study revealed that the message size overhead of MonSLAR is

approximately five times less than the message size overhead caused by using SOAP in

previous research (PM); this is due to the use of XML format in SOAP protocol. The

results produced in this study corroborate the findings of a great deal of the previous

research in this field (section 2.4.2.3). These results are consistent with those described

by Mumbaikar and Padiya (2013) that confirmed the increase in the message size to be

five times less in REST technology in comparison to SOAP (Mumbaikar & Padiya,

2013).

Moreover, there are similarities between the attitudes expressed by MonSLAR and those

presented by Markey and Clynch (2013). Their study showed the decrease in the message

size due to the use of REST technology in comparison with SOAP technology especially

in the case of using JSON files, this reduction in message size in REST was two times

less from that in SOAP (Markey & Clynch, 2013).

Furthermore, the study presented by Mulligan and Gra (2009) revealed that there was a

reduction in the packet size for the case of using REST in comparison to SOAP

technology, the results of their study showed that the packet size in REST is

approximately two times less than packet size in SOAP protocol (Mulligan & Gra, 2009).

It is important to be mentioned that their study considered the CRUD methods using GET,

PUT, POST, and DELETE methods; while in MonSLAR, embedding the data in the

header of OPTIONS method was investigated.

These results also accord with the study presented by Mohamed and Wijesekera (2012),

who discussed the difference between the message size of SOAP and REST. They

introduced a sample for each case showed that the payload’s message size overhead in

REST is twenty-five times less than in SOAP protocol (Mohamed & Wijesekera, 2012).

This is due to sending the data in the message payload. Again, the data in MonSLAR was

sent within the header of the message in REST OPTIONS method.

151

At the same time, MonSLAR makes an enhancement to the monitoring process by

delivering the monitored data to the client side in addition to the SaaS service using REST

architecture, by embedding the monitored data in the response of the SaaS REST service.

MonSLAR also provides information about overall user satisfaction using a decision

making tool. The experiments also explored the behaviour of the monitoring system,

which revealed that the response time overhead with and without using MonSLAR is

comparable.

The qualitative evaluation revealed that MonSLAR outperforms the other monitoring

frameworks in the research field. This was achieved by comparing the features of

MonSLAR with the available monitoring frameworks. These features involved the

following: the ability of MonSLAR to detect any SLA violations automatically; in

addition to real-time records of the monitored data. Furthermore, an automatic notify-

ability feature that helps the client of the SaaS services in controlling the negotiated

services. These features save the need for a third party service to achieve the monitoring

process. Not to forget the communication architecture feature, which considers the use of

a middleware as a tool to manage the monitoring process. MonSLAR uses SOM that

provides loose coupling and reuse capabilities to the provided services; besides the

interaction type used for managing the web services, MonSLAR uses REST technology,

which adds lightweight characteristics and reduces the need for the use of technologies

like SOAP to transmit the monitored data.

On the other hand, the user study for validating the SaaS-Qual metric showed that the

QoE value depends on the combination of the model’s parameters. However, the study

tells that some of the parameters have higher effects on user satisfaction than others. In

the current study, comparing the results obtained from both the fuzzy engine test with the

study survey results indicate that Security has the highest priority for the SaaS users.

Another finding was that Reliability has the second highest effect on user satisfaction.

Whereas Features parameter was found to have the third highest priority, followed by

Responsiveness and Flexibility having the fourth highest priority, while Rapport has the

lowest priority among the parameters.

The findings of the user study have implications for adjusting the rules of the proposed

fuzzy engine. It is interesting to note that the results obtained from the adjusted system

revealed an overall improvement in the QoE level.

152

One of the issues revealed from these findings was that the SaaS-Qual model parameters

can be used to estimate the QoE value, but an adaption is required to adjust the parameters

weights according to the users’ satisfaction and requirements.

7.7 Chapter Summary

This chapter presented a test for the main functionality of MonSLAR to present user-

centric monitoring, in addition to an evaluation of the performance of the proposed

middleware. The evaluation methods showed the ability of the middleware to achieve the

aim of the research of monitoring the QoE value, and provided user centric monitoring

using the REST architecture methods with an acceptable performance in comparison with

the monitoring frameworks in the literature review.

Three different approaches have been used to evaluate MonSLAR. Firstly, a quantitative

evaluation is used to investigate the overhead caused by MonSLAR in terms of the

message size. Secondly, the proposed middleware is evaluated using qualitative study by

comparing the main characteristics of MonSLAR with the available monitoring

frameworks presented in the literature review. Finally, another evaluation has been

introduced to evaluate estimating the QoE value using fuzzy logic; this was achieved by

conducting a questionnaire survey.

The next chapter concludes the thesis, discussing the main achievements of the research

and proposing a set of recommendations for improvements in future research.

153

8 CHAPTER EIGHT: CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

Monitoring Cloud services has become a leading driver in assuring the compliance of an

SLA and reserving the rights of both the cloud client and server. This thesis introduced a

set of approaches and techniques to monitor SaaS in cloud computing. The research

presented MonSLAR, a Middleware for Monitoring SLA in SaaS cloud computing using

REST technology. This chapter concludes the thesis by discussing the overall results of

the study; it reflects on the main objectives of this research and how these objectives were

fulfilled, it also discusses how these objectives were combined together to achieve the

aim, in addition to the directions that can be taken as a future extension of this research.

8.2 Conclusions

The importance of the proposed middleware appears in the ability to manage the client-

provider relationship through providing an autonomic real-time monitoring for SaaS, and

introducing REST as the connection technology in SOM instead of relying on a SOAP

protocol to achieve this, as SOAP technology adds a considerable amount of overhead to

the monitoring process caused by the use of XML messages to transmit the data. This

section presents an overall summary of this research. The thesis handled the problem of

monitoring an SLA of SaaS from a user’s perspective. The main contribution of this

research is the development of the proposed middleware. The monitoring of the services

from a user’s perspective considered estimating a QoE of SaaS by presenting a fuzzy

inference rule based engine, the study of estimating a QoE in this thesis can be a base for

future studies to evaluate a QoE using a holistic, unified metric.

8.3 Achievements of the Aim and Objectives

The aim of the submitted thesis was to propose a user centric approach for monitoring

SaaS in cloud computing and to reduce the overhead caused by the monitoring process.

The proposed monitoring approach was successfully developed using REST technology.

Four objectives were proposed and achieved successfully to fulfill the aim of the research

154

(see Section 1.4). The progress of developing each objective and the achievements of

each objective are as follows:

The first objective was to review the related work and define the research problem and

the weakness in the research area. This was addressed in Chapter Two and Chapter Three

of this thesis.

The second objective was to develop an approach for lightweight user-centric monitoring

of SaaS in cloud computing and to assure the delivery of the monitored data to the client

side. This is achieved by the design of a SOM capable of delivering the monitored data

to the client side; this middleware offers a loosely coupled, reusable, and platform

independent components that helped in managing the monitoring process between the

client side and the server side. The lightweight feature of MonSLAR was achieved by the

use of REST technology and proposing an approach for embedding the monitored data in

the requests and responses of HEAD and OPTIONS methods; this reduced the need to

use dedicated messages for transmitting the monitored data. Exploiting REST in

MonSLAR helped to reduce the overhead caused by the monitoring process. The use of

REST in the design and the implementation of the proposed middleware were detailed in

Chapters Four and Six respectively.

The third objective was to develop an approach to measure user satisfaction with services

provided in cloud computing in terms of QoE. The monitoring of the SLA and checking

the user satisfaction was achieved by estimating the QoE value as an indication of user

satisfaction, this was fulfilled by the design of a fuzzy logic system capable of estimating

the QoE based on the monitored QoS parameters and SLA parameters. The design of the

proposed fuzzy logic system was discussed in Chapter Five.

The fourth objective was to evaluate the proposed system to check its performance. This

was presented in Chapter Seven. Figure 8-1 illustrates the progression in the research

objectives and the use of the methods and techniques to achieve the aim of the research.

155

8.4 Research Limitations

The main limitation of this study lies in the fact that the measurement of the SLA

parameters and the SaaS-Qual factors are out of the scope of this research. The

measurements are considered available and stored in a database, as the current study was

not specifically presented to define measurements or estimations for these parameters.

8.5 Recommendations for Future Research

This section introduces a set of research directions that can be taken in future research.

Future research can follow two main directions, the first direction is related to extending

MonSLAR functionalities, while the second direction includes more research on the

proposed QoE metric. The next subsections present the recommendations for future

research.

8.5.1 Research related to MonSLAR

The first direction of the research considers MonSLAR middleware. The research

findings introduce the following insights for future research:

1- Further research might investigate extending the client side of MonSLAR, this

extension is proposed to perform the measurements of the QoS that are sent to the

provider side of MonSLAR. This extension is related to the monitoring request-b,

which includes sending the monitored data from the client side to the provider

side using PUT and POST methods.

Aim

Objective1

Objective2

Objective3

Objective4

Methods and Techniques

SOM

Fuzzy

REST

Figure 8-1 The progress of the objectives to achieve the research aim.

156

It is also important to consider how frequently should the measurements in the

client side be obtained, this can be decided by the service provider and the client

at the first time of using the SaaS service. For example, the Rapport and Features

can be measured once a week or once a month by asking the client to complete a

form to measure their values; while for Reliability, this can be measured

automatically for each received response.

The automation of the POST request activation can be managed either by using a

time-based invocation or event-based invocation. Time-based invocation requires

making a decision about how often to send this data, while the event-based

invocation requires a client action to manage sending this data, which includes

using a GUI with a mouse click to activate this process.

It is also important to define a way for mapping the parameter threshold factor

values which are not part of the negotiated SLA document, to be included in the

decision making process. This can be managed by using a GUI for inputting the

threshold values of the parameters that are not defined in the SLA document. The

use of GUI allows the user to input these values at the first time of using the

service. These values are sent to the MonSLAR-server side to be used later by the

fuzzy logic engine to measure the value of the QoE.

2- It would be interesting to investigate the action to be considered in the case of

SLA violation. This action could potentially mean terminating the contract

between the client and the service provider, or calculating a compensation to be

paid to the client as a result of violating the contract.

3- Further experimental investigations are required to perform more evaluations in a

cloud environment. This includes checking the effect of increasing the number of

clients, and the number of servers’ virtual machines and SaaS containers as an

indication of the multi-tenancy of SaaS on the performance of the proposed

middleware. This exploration can help to check the effect of changing the number

of underlying cloud resources like virtual machines on the performance of

MonSLAR.

8.5.2 Research related to the proposed QoE metric

The second direction is to extend the research with respect to the applicability of SaaS-

Qual as a model for estimating QoE. Considerably, more work will need to be done to

157

estimate each of the SaaS-Qual parameters, this includes studies for the main QoS metrics

and formulae to define these metrics.

8.6 Chapter Summary

This chapter has presented an overall conclusion for the thesis. The aim of the research,

the objectives, and the techniques that were used by the researcher to achieve the study

objectives were addressed; and in final conclusion, the chapter outlined potential future

directions which could be adopted as further research work.

158

REFERENCES

Aceto, G., Botta, A., De Donato, W., & Pescapè, A. (2013). Cloud monitoring: A

survey. Computer Networks, 57(9), 2093-2115.

Adinolfi, O., Cristaldi, R., Coppolino, L., & Romano, L. (2012). QoS-MONaaS: a

portable architecture for QoS monitoring in the cloud. Paper presented at the

2012 Eighth International Conference on Signal Image Technology and Internet

Based Systems (SITIS), Sorrento, Italy.

Al-Jaroodi, J., & Mohamed, N. (2012). Service-oriented middleware: a survey. Journal

of Network and Computer Applications, 35(1), 211-220.

Al-Shammari, S., & Al-Yasiri, A. (2014). Defining a metric for measuring QoE of SaaS

cloud computing. Paper presented at the 15th Annual PostGraduate Symposium

on the Convergence of Telecommunications, Networking and Broadcasting

(PGNET 2014), Liverpool, UK.

Al-Shammari, S., & Al-Yasiri, A. (2015). MonSLAR: a middleware for monitoring SLA

for RESTFUL services in cloud computing. Paper presented at the IEEE 9th

International Symposium on the Maintenance and Evolution of Service-Oriented

and Cloud-Based Environments (MESOCA), Bremen, Germany.

Alhamad, M., Dillon, T., & Chang, E. (2010). Conceptual SLA framework for cloud

computing. Paper presented at the 2010 4th IEEE International Conference on

Digital Ecosystems and Technologies (DEST), Dubai, United Arab Emirates.

Alhamad, M., Dillon, T., & Chang, E. (2011). Trust-evaluation metric for cloud

applications. International Journal of Machine Learning and Computing, 1(4),

416-421.

Alsulaiman, L. A., & Alturki, R. (2012). Monitoring multimedia quality of service in

public Cloud Service Level Agreements. Paper presented at the 2012

International Conference on Multimedia Computing and Systems (ICMCS),

Tangiers, Morocco.

Amato, A., Di Martino, B., & Venticinque, S. (2012). Evaluation and brokering of

service level agreements for negotiation of cloud infrastructures. Paper

presented at the 2012 International Conferece For Internet Technology And

Secured Transactions, London, United Kingdom.

159

Amato, A., Liccardo, L., Rak, M., & Venticinque, S. (2014). SLA-based negotiation

and brokering of cloud resources. International Journal of Cloud Computing,

3(1), 24-44.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., . . . Xu, M.

(2007). Web services agreement specification (WS-Agreement). Paper presented

at the Open Grid Forum.

Anithakumari, S., & Chandrasekaran, K. (2015). Monitoring and Management of

Service Level Agreements in Cloud Computing. Paper presented at the 2015

International Conference on Cloud and Autonomic Computing (ICCAC),

Boston, MA, USA.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica,

I. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-

58.

Aversa, R., Panza, N., & Tasquier, L. (2015). An Agent-Based Platform for Cloud

Applications Performance Monitoring. Paper presented at the 2015 Ninth

International Conference on Complex, Intelligent, and Software Intensive

Systems (CISIS), Brazil.

Azeez, A., Perera, S., Gamage, D., Linton, R., Siriwardana, P., Leelaratne, D., . . .

Fremantle, P. (2010). Multi-tenant SOA middleware for cloud computing. Paper

presented at the 2010 IEEE 3rd International Conference on Cloud Computing

(Cloud), USA.

Badidi, E. (2013). A framework for software-as-a-service selection and provisioning.

International Journal of Computer Networks & Communications, 5(3).

Bailey, J. E., & Pearson, S. W. (1983). Development of a tool for measuring and

analyzing computer user satisfaction. Management science, 29(5), 530-545.

Baliyan, N., & Kumar, S. (2013). Quality assessment of software as a service on cloud

using fuzzy logic. Paper presented at the 2013 IEEE International Conference on

Cloud Computing in Emerging Markets (CCEM), Bangalore, India.

Bansal, D., Patel, P., & Greenberg, A. (2016). Multi-tenant middleware cloud service

technology. US Patent Office 20160149813 A1 Retrieved from

https://www.google.com/patents/US20160149813

Bass, L., Clements, P., & Kazman, R. (2013). Software Architecture in Practice:

Addison-Wesley.

160

Benlian, A., Koufaris, M., & Hess, T. (2011). Service quality in software-as-a-service:

developing the SaaS-Qual measure and examining its role in usage continuance.

Journal of Management Information Systems, 28(3), 85-126.

Bernstein, P. A. (1996). Middleware: a model for distributed system services.

Communications of the ACM, 39(2), 86-98.

Bezemer, C.-P., & Zaidman, A. (2010). Multi-tenant SaaS applications: maintenance

dream or nightmare? Paper presented at the Joint ERCIM Workshop on

Software Evolution (EVOL) and International Workshop on Principles of

Software Evolution (IWPSE), Belgium.

Bianco, P., Lewis, G. A., & Merson, P. (2008). Service level agreements in service-

oriented architecture environments. Retrieved from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=A

DA528751

Bloomberg, J. (2013). The Agile Architecture Revolution: How Cloud Computing,

REST-based SOA, and Mobile Computing are Changing Enterprise IT.

Hoboken, NJ: John Wiley & Sons.

Blumel, F., Metsch, T., & Papaspyrou, A. (2011). A restful approach to service level

agreements for cloud environments. Paper presented at the 2011 IEEE Ninth

International Conference on Dependable, Autonomic and Secure Computing

(DASC), Sydney, Australia.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., & Orchard,

D. (2004). Web services architecture. Retrieved from

https://www.w3.org/TR/ws-arch/

Bora, A., & Bezboruah, T. (2015). A Comparative Investigation on Implementation of

RESTful versus SOAP based Web Services. International Journal of Database

Theory and Application, 8(3), 297-312.

Brandic, I., Dustdar, S., Anstett, T., Schumm, D., Leymann, F., & Konrad, R. (2010).

Compliant cloud computing (c3): Architecture and language support for user-

driven compliance management in clouds. Paper presented at the 2010 IEEE 3rd

International Conference on Cloud Computing (CLOUD), USA.

Brandic, I., Emeakaroha, V. C., Netto, M. A., & De Rose, C. A. (2015). Application-

Level Monitoring and SLA Violation Detection for Multi-Tenant Cloud

Services. Emerging Research in Cloud Distributed Computing Systems, 157.

161

Brandic, I., Music, D., Leitner, P., & Dustdar, S. (2009). Vieslaf framework: Enabling

adaptive and versatile sla-management Grid Economics and Business Models

(pp. 60-73): Springer.

Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format.

Brooks, P., & Hestnes, B. (2010). User measures of quality of experience: why being

objective and quantitative is important. Network, IEEE, 24(2), 8-13.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud

computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-

616.

Cai, H., Reinwald, B., Wang, N., & Guo, C. J. (2012). Saas multi-tenancy: Framework,

technology, and case study. Cloud Computing Advancements in Design,

Implementation, and Technologies, 67.

Casas, P., Fischer, H. R., Suette, S., & Schatz, R. (2013). A first look at quality of

experience in Personal Cloud Storage services. Paper presented at the 2013

IEEE International Conference on Communications Workshops (ICC),

Budapest, Hungary.

Casas, P., Sackl, A., Egger, S., & Schatz, R. (2012). YouTube & Facebook Quality of

Experience in mobile broadband networks. Paper presented at the 2012 IEEE

Globecom Workshops (GC Wkshps), Anaheim, CA, USA

Casas, P., & Schatz, R. (2014). Quality of Experience in Cloud services: Survey and

measurements. Computer Networks, 68, 149–165.

Casas, P., Seufert, M., Egger, S., & Schatz, R. (2013). Quality of experience in remote

virtual desktop services. Paper presented at the 2013 IFIP/IEEE International

Symposium on Integrated Network Management (IM 2013), Ghent, Belgium.

Cedillo, P., Gonzalez-Huerta, J., Abrahao, S., & Insfran, E. (2016). A Monitoring

Infrastructure for the Quality Assessment of Cloud Services Transforming

Healthcare Through Information Systems (pp. 17-32). New York: Springer.

Cedillo, P., Jimenez-Gomez, J., Abrahao, S., & Insfran, E. (2015). Towards a

Monitoring Middleware for Cloud Services. Paper presented at the 2015 IEEE

International Conference on Services Computing (SCC), New York, USA.

Chauhan, T., Chaudhary, S., Kumar, V., & Bhise, M. (2011). Service level agreement

parameter matching in cloud computing. Paper presented at the 2011 World

162

Congress on Information and Communication Technologies (WICT), Mumbai,

India.

Chavda, K. F. (2004). Anatomy of a Web service. Journal of Computing Sciences in

Colleges, 19(3), 124-134.

Cheng, X., Shi, Y., & Li, Q. (2009). A multi-tenant oriented performance monitoring,

detecting and scheduling architecture based on SLA. Paper presented at the

2009 Joint Conferences on Pervasive Computing (JCPC), Taiwan.

Cicotti, G., Coppolino, L., Cristaldi, R., D’Antonio, S., & Romano, L. (2012). QoS

monitoring in a cloud services environment: the SRT-15 approach. Paper

presented at the Euro-Par 2011: Parallel Processing Workshops, France.

Cingolani, P., & Alcalá-Fdez, J. (2013). jFuzzyLogic: a java library to design fuzzy

logic controllers according to the standard for fuzzy control programming.

International Journal of Computational Intelligence Systems, 6(sup1), 61-75.

Cloud Armor. (n.d.). The Project Website. Retrieved from

http://cs.adelaide.edu.au/~cloudarmor/ds.html

Comuzzi, M., Kotsokalis, C., Spanoudakis, G., & Yahyapour, R. (2009). Establishing

and monitoring SLAs in complex service based systems. Paper presented at the

2009 IEEE International Conference on Web Services, 2009. ICWS, Los

Angeles.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods

approaches. London: Sage.

CSMIC. (2011). Service Measurement Index Version 1.0: CSMIC.

Cusumano, M. (2010). Cloud computing and SaaS as new computing platforms.

Communications of the ACM, 53(4), 27-29.

D'Ambrogio, A. (2006). A model-driven wsdl extension for describing the qos ofweb

services. Paper presented at the 2006 IEEE International Conference on Web

Services. ICWS'06, Chicago, Illinois.

Da Cunha Rodrigues, G., Calheiros, R. N., Guimaraes, V. T., Santos, G. L. d., de

Carvalho, M. B., Granville, L. Z., . . . Buyya, R. (2016). Monitoring of cloud

computing environments: concepts, solutions, trends, and future directions.

Paper presented at the 31st Annual ACM Symposium on Applied Computing,

Pisa, Italy.

Daigneau, R. (2011). Service Design Patterns: fundamental design solutions for

SOAP/WSDL and restful Web Services: Addison-Wesley.

163

Dawson, C. (2002). Practical research methods: A user-friendly guide to mastering

research. Newtec Place, UK: How to Books Ltd.

de Oliveira, D., Ogasawara, E., Baião, F., & Mattoso, M. (2010). Scicumulus: A

lightweight cloud middleware to explore many task computing paradigm in

scientific workflows. Paper presented at the 2010 IEEE 3rd International

Conference on Cloud Computing (CLOUD), Miami, Florida, USA.

Decat, M., Bogaerts, J., Lagaisse, B., & Joosen, W. (2015). Amusa: middleware for

efficient access control management of multi-tenant SaaS applications. Paper

presented at the 30th Annual ACM Symposium on Applied Computing,

Salamanca, Spain.

DigitalOcean. Cloud computing, designed for developers. Retrieved from

https://www.digitalocean.com/

Docker. (2017). Docker is the world’s leading software containerization platform.

Retrieved from https://www.docker.com/

Emeakaroha, V. C. (2012). Managing Cloud Service Provisioning and SLA

Enforcement via Holistic Monitoring Techniques. (PhD Thesis), Vienna

University of Technology.

Emeakaroha, V. C., Brandic, I., Maurer, M., & Dustdar, S. (2010). Low level Metrics to

High level SLAs-LoM2HiS framework: Bridging the gap between monitored

metrics and SLA parameters in cloud environments. Paper presented at the 2010

International Conference on High Performance Computing & Simulation,

France.

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic, I., & De Rose, C. A.

(2012). Casvid: Application level monitoring for sla violation detection in

clouds. Paper presented at the 2012 IEEE 36th Annual Computer Software and

Applications Conference (COMPSAC), Turkey.

Erl, T. (2008). Soa: principles of service design (Vol. Prentice Hall): Upper Saddle

River.

Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship

between quality of experience and quality of service. Network, IEEE, 24(2), 36-

41.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee,

T. (1999). Hypertext transfer protocol–HTTP/1.1: RFC 2616, June.

164

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. University of California, Irvine.

Finn, A., Vredevoort, H., Lownds, P., & Flynn, D. (2012). Microsoft private cloud

computing: John Wiley & Sons.

Firdhous, M., Hassan, S., & Ghazali, O. (2013a). A Comprehensive Survey on Quality

of Service Implementations in Cloud Computing. International Journal of

Scientific & Engineering Research, 4(5), 118-123.

Firdhous, M., Hassan, S., & Ghazali, O. (2013b). Monitoring, Tracking and

Quantification of Quality of Service in Cloud Computing. International Journal

of Scientific & Engineering Research, 4(5).

Furht, B. (2010). Cloud computing fundamentals Handbook of cloud computing (pp. 3-

19): Springer.

Gao, J., Bai, X., Tsai, W.-T., & Uehara, T. (2013). SaaS Testing on Clouds-Issues,

Challenges and Needs. Paper presented at the 2013IEEE 7th International

Symposium on Service Oriented System Engineering (SOSE), USA.

Gartner. (2015). Market Trends: Future Look at SaaS in the Application Markets.

Retrieved from https://www.gartner.com/doc/3172034/market-trends-future-

look-saas

Geebelen, K., Walraven, S., Truyen, E., Michiels, S., Moens, H., De Turck, F., . . .

Joosen, W. (2012). An open middleware for proactive QoS-aware service

composition in a multi-tenant SaaS environment. Paper presented at the

International Conference on Internet Computing (ICOMP), Athens.

Godse, M., & Mulik, S. (2009). An approach for selecting software-as-a-service (SaaS)

product. Paper presented at the 2009 IEEE International Conference on Cloud

Computing. CLOUD'09, India.

Google Trends. (2016). REST vs SOAP search trend. Retrieved from

https://trends.google.co.uk/trends/explore?q=RESTful%20API,SOAP%20API

Gustavo, A., Casati, F., Kuno, H., & Machiraju, V. (2004). Web services: concepts,

architectures and applications. Berlin Springer.

Hammadi, A. M., & Hussain, O. (2012). A framework for SLA assurance in cloud

computing. Paper presented at the 2012 26th International Conference on

Advanced Information Networking and Applications Workshops (WAINA),

Japan.

165

Han, H., Kim, S., Jung, H., Yeom, H. Y., Yoon, C., Park, J., & Lee, Y. (2009). A

RESTful approach to the management of cloud infrastructure. Paper presented at

the 2009 IEEE International Conference on Cloud Computing, India.

Hasan, M. S., & Huh, E.-N. (2013). Maximizing SLA and QoE in Heterogeneous Cloud

Computing Environment. Paper presented at the International Conference on

Grid Computing and Applications (GCA), Athens.

Hill, R., Hirsch, L., Lake, P., & Moshiri, S. (2012). Guide to cloud computing:

principles and practice: Springer.

Hobfeld, T., Schatz, R., Varela, M., & Timmerer, C. (2012). Challenges of QoE

management for cloud applications. Communications Magazine, IEEE, 50(4),

28-36.

Hurwitz, J., Bloor, R., Kaufman, M., & Halper, F. (2010). Cloud computing for

dummies: John Wiley & Sons.

Incki, K., Ari, I., & Sözer, H. (2012). A survey of software testing in the cloud. Paper

presented at the 2012 IEEE Sixth International Conference on Software Security

and Reliability Companion (SERE-C), USA.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., . . .

Hamida, A. B. (2011). Service-oriented middleware for the future internet: state

of the art and research directions. Journal of Internet Services and Applications,

2(1), 23-45.

Jantzen, J. (2013). Foundations of fuzzy control: a practical approach: John Wiley &

Sons.

Jarschel, M., Schlosser, D., Scheuring, S., & Hoßfeld, T. (2013). Gaming in the clouds:

QoE and the users’ perspective. Mathematical and Computer Modelling, 57(11),

2883-2894.

Jin, L.-J., Machiraju, V., & Sahai, A. (2002). Analysis on service level agreement of

web services. HP June, 19.

Kafetzakis, E., Koumaras, H., Kourtis, M. A., & Koumaras, V. (2012). QoE4CLOUD:

A QoE-driven multidimensional framework for cloud environments. Paper

presented at the 2012 International Conference on Telecommunications and

Multimedia (TEMU), Greece.

Katsaros, G., Kübert, R., & Gallizo, G. (2011). Building a service-oriented monitoring

framework with rest and nagios. Paper presented at the 2011 IEEE International

Conference on Services Computing (SCC), USA.

166

Kavis, M. J. (2014). Architecting the cloud: Design decisions for cloud computing

service models (SaaS, PaaS, AND IaaS): John Wiley & Sons.

Keller, A., & Ludwig, H. (2003). The WSLA framework: Specifying and monitoring

service level agreements for web services. Journal of Network and Systems

Management, 11(1), 57-81.

Kertesz, A., Kecskemeti, G., & Brandic, I. (2009). An SLA-based resource

virtualization approach for on-demand service provision. Paper presented at the

3rd international workshop on Virtualization technologies in distributed

computing, Barcelona, Spain.

Khaddaj, S., Arul, J. M., Chung, H.-Y., Ko, H.-Y., Dugki, M., EunmiChoi, V. K. K., . . .

James, M. (2014). QoS and SLA in Cloud Computing. International Journal of

Emerging Trends in Computing and Communication Technology, 1(1), 1-6.

Khan, H. M., Chan, G.-Y., & Chua, F.-F. (2016). An adaptive monitoring framework for

ensuring accountability and quality of services in cloud computing. Paper

presented at the 2016 International Conference on Information Networking

(ICOIN), Kota Kinabalu, Malaysia.

Krakowiak, S. (2007). Middleware Architecture with Patterns and Frameworks.

Kübert, R., Katsaros, G., & Wang, T. (2011). A RESTful implementation of the WS-

Agreement specification. Paper presented at the Second International Workshop

on RESTful Design, Hyderabad, India.

Kurbel, K. E. (2008). The Making of Information Systems: Software Engineering and

Management in a Globalized World: Springer Science & Business Media.

Lampesberger, H., & Rady, M. (2015). Monitoring of client-cloud interaction Correct

Software in Web Applications and Web Services (pp. 177-228): Springer.

Larson, K. D. (1998). The role of service level agreements in IT service delivery.

Information Management & Computer Security, 6(3), 128-132.

Le Callet, P., Möller, S., & Perkis, A. (2012). Qualinet white paper on definitions of

quality of experience European Network on Quality of Experience in Multimedia

Systems and Services (COST Action IC 1003) Retrieved from

https://hal.archives-ouvertes.fr/hal-00977812/document

Lee, J. Y., Lee, J. W., & Kim, S. D. (2009). A quality model for evaluating software-as-

a-service in cloud computing. Paper presented at the 2009 Seventh ACIS

International Conference on Software Engineering Research, Management and

Applications. SERA'09, China.

167

Lee, S.-Y., Tang, D., Chen, T., & Chu, W.-C. (2012). A QoS Assurance middleware

model for enterprise cloud computing. Paper presented at the 2012 IEEE 36th

Annual Computer Software and Applications Conference Workshops

(COMPSACW), Izmir, Turkey.

Lee, Y.-C., Ma, C.-M., & Chou, S.-C. (2005). A service-oriented architecture for design

and development of middleware. Paper presented at the 12th Asia-Pacific

Software Engineering Conference (APSEC'05), Taipei, Taiwan.

Leymann, C., Fehling, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud

computing patterns. London: Springer.

Lu, X., Yin, J., Xiong, N. N., Deng, S., He, G., & Yu, H. (2016). JTangCMS: An

efficient monitoring system for cloud platforms. Information sciences, 370, 402-

423.

Marinescu, D. C. (2013). Cloud Computing: Theory and Practice: Newnes.

Markey, P., & Clynch, G. (2013). A performance analysis of WS-*(SOAP) and RESTful

Web Services for Implementing Service and Resource Orientated Architectures.

Paper presented at the 12th Information Technology and Telecommunications

(IT&T) Conference, Athlone.

Marks, E. A., & Lozano, B. (2010). Executive's guide to cloud computing: John Wiley

and Sons.

Marpaung, J. A., Sain, M., & Lee, H.-J. (2013). Survey on middleware systems in cloud

computing integration. Paper presented at the 2013 15th International

Conference on Advanced Communication Technology (ICACT), PyeongChang,

Korea (South).

Mastelic, T., Emeakaroha, V. C., Maurer, M., & Brandic, I. (2012). M4Cloud-Generic

Application Level Monitoring for Resource-shared Cloud Environments. Paper

presented at the 2nd International Conference on Cloud Computing and Services

Science (CLOSER), Portugal.

Mathur, P., & Nishchal, N. (2010). Cloud computing: New challenge to the entire

computer industry. Paper presented at the 2010 1st International Conference on

Parallel Distributed and Grid Computing (PDGC), India.

MathWorks. (2017). Defuzzification Methods. Retrieved from

http://uk.mathworks.com/help/fuzzy/examples/defuzzification-

methods.html#zmw57dd0e2380

168

Matulin, M., & Mrvelj, Š. (2013). State-of-the-practice in evaluation of quality of

experience in real-life environments. PROMET-Traffic&Transportation, 25(3),

255-263.

McNeill, F. M., & Thro, E. (1994). Fuzzy logic: a practical approach. London:

Academic Press.

Mell, P., & Grance, T. (2010). The NIST definition of cloud computing.

Communications of the ACM, 53(6), 50.

Mendel, J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of

the IEEE, 83(3), 345-377.

Menken, I., & Blokdijk, G. (2009). Saas and web applications specialist level complete

certification kit-software as a service study guide book and online course:

Emereo Pty Ltd.

Microsoft Azure. (2017). Microsoft Azure. Retrieved from

http://azure.microsoft.com/en-us/

Miller, M. (2008). Cloud computing: Web-based applications that change the way you

work and collaborate online: Que publishing.

Mohamed, K., & Wijesekera, D. (2012). Performance analysis of web services on

mobile devices. Procedia Computer Science, 10, 744-751.

Momm, C., & Krebs, R. (2011). A Qualitative Discussion of Different Approaches for

Implementing Multi-Tenant SaaS Offerings. Paper presented at the Software

Engineering (Workshops), Karlsruhe, Germany.

Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., & Antoniu, G. (2013). GMonE: A

complete approach to cloud monitoring. Future Generation Computer Systems,

29(8), 2026-2040.

Mosallanejad, A., Atan, R., Murad, M. A., & Abdullah, R. (2014). A Hierarchical Self-

Healing SLA for Cloud Computing. International Journal of Digital

Information and Wireless Communications (IJDIWC), 4(1), 43-52.

Motta, G., You, L., Sacco, D., & Sfondrini, N. (2013). Cloud computing: the issue of

service quality: an overview of cloud service level management architectures.

Paper presented at the 2013 Fifth International Conference on Service Science

and Innovation (ICSSI), Kaohsiung, Taiwan.

Motta, G., You, L., Sfondrini, N., Sacco, D., & Ma, T. (2014). Service level

management (slm) in cloud computing-third party slm framework. Paper

169

presented at the 2014 IEEE 23rd International WETICE Conference (WETICE),

Parma, Italy.

Moustafa, S., Elgazzar, K., Martin, P., & Elsayed, M. (2015). SLAM: SLA Monitoring

Framework for Federated Cloud Services. Paper presented at the 2015

IEEE/ACM 8th International Conference on Utility and Cloud Computing

(UCC), Cyprus.

Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortes, A., & Rodríguez,

M. (2014). Comprehensive explanation of SLA violations at runtime. IEEE

Transactions on Services Computing, 7(2), 168-183.

Müller, C., Oriol, M., Rodríguez, M., Franch, X., Marco, J., & Resinas, M. (2012).

SALMonADA: A platform for monitoring and explaining violations of WS-

agreement-compliant documents. Paper presented at the 4th International

Workshop on Principles of Engineering Service-Oriented Systems, Zurich,

Switzerland.

Mulligan, G., & Gra, D. (2009). A comparison of SOAP and REST implementations of a

service based interaction independence middleware framework. Paper presented

at the 2009 Winter Simulation Conference (WSC), Austin, Texas.

Mumbaikar, S., & Padiya, P. (2013). Web services based on soap and rest principles.

International Journal of Scientific and Research Publications, 3(5).

MySQL. (2017). MySQL Community Server. Retrieved from

https://dev.mysql.com/downloads/mysql/5.6.html

Naaz, S., Alam, A., & Biswas, R. (2011). Effect of different defuzzification methods in

a fuzzy based load balancing application. IJCSI, 8(5), 261-267.

Nguyen, T. A. B., Siebenhaar, M., Hans, R., & Steinmetz, R. (2014). Role-Based

Templates for Cloud Monitoring. Paper presented at the 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing (UCC), London,

United Kingdom.

Oriol, M., Franch, X., & Marco, J. (2015). Monitoring the service-based system

lifecycle with SALMon. Expert Systems with Applications, 42(19), 6507-6521.

Papazoglou, M. (2008). Web services: principles and technology: Pearson Education.

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). Servqual. Journal of retailing,

64(1), 12-37.

Perez-Espinoza, J., Sosa-Sosa, V. J., Gonzalez, J., & Tello-Leal, E. (2015). A

Distributed Architecture for Monitoring Private Clouds. Paper presented at the

170

2015 26th International Workshop on Database and Expert Systems

Applications (DEXA), Valencia, Spain.

Pilevari, N., Toloei, A., & Sanaei, M. (2013). A model for evaluating cloud-computing

users’ satisfaction. African Journal of Business Management, 7(16), 1405-1413.

Povedano-Molina, J., Lopez-Vega, J. M., Lopez-Soler, J. M., Corradi, A., & Foschini,

L. (2013). DARGOS: A highly adaptable and scalable monitoring architecture

for multi-tenant Clouds. Future Generation Computer Systems, 29(8), 2041-

2056.

Puder, A. (2006). Distributed systems architecture: a middleware approach: Elsevier.

Qilin, L., & Mintian, Z. (2010). The state of the art in middleware. Paper presented at

the 2010 International Forum on Information Technology and Applications

(IFITA), China.

Rak, M., Cuomo, A., & Villano, U. (2013). A Proposal of a Simulation-based Approach

for Service Level Agreement in Cloud. Paper presented at the 2013 27th

International Conference on Advanced Information Networking and

Applications Workshops (WAINA), Barcelona, Spain.

Rak, M., Venticinque, S., Máhr, T., Echevarria, G., & Esnal, G. (2011). Cloud

application monitoring: The mOSAIC approach. Paper presented at the 2011

IEEE Third International Conference on Cloud Computing Technology and

Science (CloudCom), Athens, Greece.

Rana, O., Warnier, M., Quillinan, T. B., & Brazier, F. (2008). Monitoring and

reputation mechanisms for service level agreements Grid Economics and

Business Models (pp. 125-139). Berlin: Springer.

Rehman, Z.-u., Hussain, O. K., & Hussain, F. K. (2015). User-side cloud service

management: State-of-the-art and future directions. Journal of Network and

Computer Applications, 55, 108-122.

Reichl, P., & Zwickl, P. (2015). The Economics of Quality of Experience: Recent

Advances and Next Steps. Invited Paper, IEEE COMSOC MMTC E-Letter,

10(3).

Richardson, L., Amundsen, M., Amundsen, M., & Ruby, S. (2013). RESTful Web APIs.

Sebastopol, Calif.: O'Reilly Media.

Richardson, L., & Ruby, S. (2008). RESTful web services. Sebastopol, Calif.: O'Reilly

Media.

171

Rifai, H., Mohammed, S., & Mellouk, A. (2011). A brief synthesis of QoS-QoE

methodologies. Paper presented at the 2011 10th International Symposium on

Programming and Systems (ISPS), Algeria.

Rittinghouse, J. W., & Ransome, J. F. (2009). Cloud computing: implementation,

management, and security: CRC press.

Ross, T. J. (2009). Fuzzy logic with engineering applications. Hoboken, NJ: John Wiley

& Sons.

SaaShost.net. (2016a). SaaShost.net. Retrieved from http://www.saashost.net/saashost-

services/

SaaShost.net. (2016b). Service Level Agreement. Retrieved from

http://www.saashost.net/service-level-agreement-2/

Safdari, F., & Chang, V. (2014). Review and analysis of Cloud Computing Quality of

Experience. Paper presented at the First International Workshop on Emerging

Software as a Service and Analytics, Barcelona.

Samet, N., Leta, A. B., Hamdi, M., & Tabbane, S. (2016). Real-Time User Experience

Evaluation for Cloud-Based Mobile Video. Paper presented at the 2016 30th

International Conference on Advanced Information Networking and

Applications Workshops (WAINA), Crans-Montana, Switzerland.

Sarna, D. E. (2010). Implementing and developing cloud computing applications:

Auerbach Publications.

Serhani, M. A., Atif, Y., & Benharref, A. (2014). Towards an adaptive QoS-driven

monitoring of cloud SaaS. International Journal of Grid and Utility Computing,

5(4), 263-277.

Shao, J., & Wang, Q. (2011). A performance guarantee approach for cloud applications

based on monitoring. Paper presented at the 2011 IEEE 35th Annual Computer

Software and Applications Conference Workshops (COMPSACW), Munich,

Germany.

Shin, Y.-R., & Huh, E.-N. (2015). QoE metrics aggregation for hierarchical Service

Level Agreement in Cross-Layered SLA architecture. Paper presented at the

2015 Seventh International Conference on Ubiquitous and Future Networks,

Japan.

Shroff, G. (2010). Enterprise cloud computing: technology, architecture, applications.

Cambridge Cambridge University Press.

172

Siebenhaar, M., Wenge, O., Hans, R., Tercan, H., & Steinmetz, R. (2013). Verifying the

Availability of Cloud Applications. Paper presented at the 3rd International

Conference on Cloud Computing and Services Science (CLOSER 2013),

Germany.

Smit, M., Simmons, B., & Litoiu, M. (2013). Distributed, application-level monitoring

for heterogeneous clouds using stream processing. Future Generation Computer

Systems, 29(8), 2103-2114.

Software, & Association, I. I. (2001). Software as a service: Strategic backgrounder.

Washington, DC, 31.

SurveyMonkey. (2016). SurveyMonkey. Retrieved from

https://www.surveymonkey.co.uk/

Tan, C., Liu, K., & Sun, L. (2013). A design of evaluation method for SaaS in cloud

computing. Journal of Industrial Engineering & Management, 6(1).

Tang, M., Dai, X., Liu, J., & Chen, J. (2016). Towards a trust evaluation middleware for

cloud service selection. Future Generation Computer Systems.

Tao, Y.-H., Wu, Y.-L., Chang, C.-J., & Chang, C.-W. (2013). Measuring of QoE for

Cloud Applications. Paper presented at the 3rd International Workshop on

Intelligent Data Analysis and Management, Taiwan.

Torkashvan, M., & Haghighi, H. (2012a). CSLAM: A framework for cloud service level

agreement management based on WSLA. Paper presented at the 2012 Sixth

International Symposium on Telecommunications (IST), Tehran, Iran.

Torkashvan, M., & Haghighi, H. (2012b). A service oriented framework for cloud

computing. Paper presented at the 3rd International Conference on Information

and Communication Systems, Irbid, Jordan.

Trihinas, D., Pallis, G., & Dikaiakos, M. D. (2014). JCatascopia: Monitoring

Elastically Adaptive Applications in the Cloud. Paper presented at the 2014 14th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

Chicago, IL, USA

Tsai, W.-T., Sun, X., & Balasooriya, J. (2010). Service-oriented cloud computing

architecture. Paper presented at the 2010 Seventh International Conference on

Information Technology: New Generations (ITNG), USA.

Tsidulko, J. (2016, July 27). The 10 Biggest Cloud Outages Of 2016 (So Far). CRN.

Retrieved from http://www.crn.com/slide-shows/cloud/300081477/the-10-

biggest-cloud-outages-of-2016-so-far.htm?itc=refresh

173

Turner, M., Budgen, D., & Brereton, P. (2003). Turning software into a service.

Computer., 36(10), 38-44.

Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., & Lau, A. (2011). Migration of SOAP-based

services to RESTful services. Paper presented at the 2011 13th IEEE

International Symposium on Web Systems Evolution (WSE), Williamsburg,

VA, USA.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the

clouds: towards a cloud definition. ACM SIGCOMM Computer Communication

Review, 39(1), 50-55.

Varela, M., Skorin-Kapov, L., & Ebrahimi, T. (2014). Quality of service versus quality

of experience Quality of Experience (pp. 85-96): Springer.

Varela, M., Zwickl, P., Reichl, P., Xie, M., & Schulzrinne, H. (2015). From Service

Level Agreements (SLA) to Experience Level Agreements (ELA): The Challenges

of Selling QoE to the User. Paper presented at the 2015 IEEE International

Conference on Communication Workshop (ICCW), London, United Kingdom.

Velte, T., Velte, A., & Elsenpeter, R. (2009). Cloud computing, a practical approach:

McGraw-Hill, Inc.

Vinoski, S. (2007). REST Eye for the SOA Guy. IEEE Internet Computing, 11(1), 82.

Voorsluys, W., Broberg, J., & Buyya, R. (2011). Introduction to cloud computing.

Cloud computing: Principles and paradigms, 1-44.

Wei, Y., & Blake, M. B. (2010). Service-oriented computing and cloud computing:

challenges and opportunities. IEEE Internet Computing, 14(6), 72.

Wieder, P., Butler, J. M., Theilmann, W., & Yahyapour, R. (2011). Service level

agreements for cloud computing: Springer.

Wieder, P., Seidel, J., Wäldrich, O., Ziegler, W., & Yahyapour, R. (2008). Using sla for

resource management and scheduling-a survey Grid Middleware and Services

(pp. 335-347): Springer.

Wohlstadter, E., Tai, S., Mikalsen, T., Diament, J., & Rouvellou, I. (2006). A service-

oriented middleware for runtime web services interoperability. Paper presented

at the 2006 IEEE International Conference on Web Services (ICWS'06),

Chicago, Illinois.

Wu, C., Zhu, Y., & Pan, S. (2013). The SLA Evaluation Model for Cloud Computing.

Paper presented at the International Conference on Computer, Networks and

Communication Engineering (ICCNCE 2013), Beijing, China.

174

Wu, L., Garg, S. K., & Buyya, R. (2015). Service Level Agreement (SLA) based SaaS

Cloud Management System. Paper presented at the 2015 IEEE 21st International

Conference on Parallel and Distributed Systems (ICPADS), Australia.

Xu, D. (2010). Cloud computing: an emerging technology. Paper presented at the 2010

International Conference on Computer Design and Applications (ICCDA),

China.

Yang, J., Zhang, L., & Wang, X. A. (2015). On Cloud Computing Middleware

Architecture. Paper presented at the 2015 10th International Conference on P2P,

Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland.

Ye, L., Zhang, H., Shi, J., & Du, X. (2012). Verifying cloud Service Level Agreement.

Paper presented at the 2012 IEEE Global Communications Conference

(GLOBECOM), Anaheim, CA, USA.

You, L., Motta, G., & Sfondrini, N. (2015). SLM as a Third Party Service in Cloud

Environment: A Reference Framework. Paper presented at the 2015 IEEE

International Conference on Services Computing (SCC), New York, USA.

Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information sciences, 178(13),

2751-2779.

Zeginis, C., & Plexousakis, D. (2010). Monitoring the QoS of Web Services using SLAs

Retrieved from https://www.ics.forth.gr/tech-

reports/2010/2010.TR404_Monitoring_QoS_Web_Services_using_SLAs.pdf

Zhang, Y., Liu, H., Deng, B., & Peng, F. (2014). A Reliable QoE-aware Framework for

Cloud Service Monitoring and Ranking. Paper presented at the 2013

International Conference on Electrical and Information Technologies for Rail

Transportation (EITRT2013)-Volume II, China.

Zheng, X., Martin, P. ; Brohman, K. ; Xu, L.D. (2013). CLOUDQUAL: A Quality

Model for Cloud Services. IEEE Transactions on Industrial Informatics(99).

doi:10.1109/TII.2014.2306329

Zhu, F., Li, H., & Lu, J. (2012). A service level agreement framework of cloud

computing based on the Cloud Bank model. Paper presented at the 2012 IEEE

International Conference on Computer Science and Automation Engineering

(CSAE), Zhangjiajie, China.

Zulkernine, F. H., Martin, P., & Wilson, K. (2008). A middleware solution to

monitoring composite web services-based processes. Paper presented at the

2008 IEEE Congress on services part II. SERVICES-2. IEEE, Beijing, China.

175

A. APPENDIX A: SLA EXAMPLE

SLA EXAMPLE

This appendix presents an example of an SLA introduced by a SaaS provider. This

company provides SaaS services like email, office suites and collaboration programmes

like Skype (SaaShost.net, 2016a). The agreement introduces in this appendix explains the

services levels and the actions to be taken in case of SLA violations.

A.1 SERVICE LEVEL AGREEMENT

This document outlines the service level agreement for USERs provisioned with Hosted

Services with SAASHOST.NET (SaaShost.net, 2016b).

Master Service Level Agreement

This document contains the Service Level Agreement for SAASHOST.NET. Please read

it carefully as this is the official agreement in force at the present time. The agreement

listed below supersedes any other written document you may have prior to today’s date.

Exhibits to this agreement are also available highlighting additional terms. If you have

questions or comments about this agreement, please do not hesitate to contact us.

SLA Objective

THIS SERVICE LEVEL AGREEMENT (“Agreement” or “SLA”) shall apply to all

Hosted Services provided by SAASHOST.NET expressly as an addendum to the Terms

Of Service (“TOS”) for each customer/client/consumer/domain/administrator/end

user/user (“USER”). SAASHOST.NET is committed to providing a highly available and

secure network to support its USERs. Providing the USER with consistent access to

Hosted Services is a high priority for SAASHOST.NET and is the basis for its

commitment in the form of a SLA. The SLA provides certain rights and remedies in the

event that the USER experiences service interruption as a result of failure of

SAASHOST.NET infrastructure. The overall service availability metric is 99.999%,

measured on a monthly basis.

Term Definitions

For the purpose of this Service Level Agreement, the terms in bold are defined as follows:

176

Available or Availability

When the USER who’s account is active and enabled has reasonable access to the Hosted

Service provided by SAASHOST.NET, subject to the exclusions defined in Downtime

Minutes below.

Total Monthly Minutes

The number of days in the month multiplied by 1,440 minutes per day.

Maintenance Time

The time period during which the Hosted Service may not be Available each month so

that SAASHOST.NET can perform routine maintenance to maximize performance, is on

an as needed basis.

Downtime

The total number of minutes that the USER cannot access the Hosted Service. The

calculation of Downtime Minutes excludes time that the USER is unable to access the

Hosted Services due to any of the following:

(a) Maintenance Time

(b) USER’s own Internet service provider

(c) Force Majeure event

(d) Any systemic Internet failures

(e) Enhanced Services

(f) Any failure in the USER’s own hardware, software or Network connection

(g) USER’s bandwidth restrictions

(h) USER’s acts or omissions

(i) Anything outside of the direct control of SAASHOST.NET

SAASHOST.NET Network

The network inside of SAASHOST.NET border routers.

Problem Response Time

The time period after SAASHOST.NET’s confirmation of the Service event, from receipt

of the information required from the USER for SAASHOST.NET’s Support Team to

begin resolution and open a trouble ticket in SAASHOST.NET’s systems. Due to the

wide diversity of problems that can occur, and the methods required to resolve them,

problem response time IS NOT defined as the time between the receipt of a call and

177

problem resolution. After receiving a report of fault, SAASHOST.NET shall use a

reasonable method to provide USER with a progress update.

Affected Seats

SAASHOST.NET’s Hosted Service are provided in a multi tenant architecture where

seats of a USER’s domain may be extended across numerous servers. USER may obtain

remedy only for affected seats residing on the server experiencing Downtime exceeding

the SLA.

Maintenance Notices

SAASHOST.NET will communicate the date and time that SAASHOST.NET intends to

make the Hosted Services un-Available via the front page of the support web site at least

forty-eight (48) hours in advance (or longer if practical). The USER understands and

agrees that there may be instances where SAASHOST.NET needs to interrupt the Hosted

Services without notice in order to protect the integrity of the Hosted Services due to

security issues, virus attacks, spam issues or other unforeseen circumstances. Below are

the Maintenance Windows and their definitions:

Emergency Maintenance

These change controls happen immediately with little notification ahead of time;

however,

we will post the information to our website soon after or during the change.

Preventative Maintenance

These change controls are when we detect an item in the environment that we need to

take action on, to avoid emergency change controls in the future. These change controls,

if possible, will usually occur in low peak hours with peak being defined by our network

metrics.

Planned Maintenance

These are change control’s being done to:

 Support on-going product and operational projects to ensure optimal performance

 Deploy non-critical service packs or patches.

 Periodic redundancy testing.

Where possible planned maintenance will be posted 5-days prior; however, certain

circumstances may preclude us from doing so, such as an external vendor issuing a change

178

control to SAASHOST.NET, e.g. the power company alerting us to perform power testing

48 hours ahead of time.

USER Responsibility

Minimum Requirements

The required configurations USER must have to access the Hosted Services include:

 Internet connection with adequate bandwidth

 Internet Browser

Control Panel

The Control Panel is provided to all USERs enabled with Hosted Services at

SAASHOST.NET, therefore the USER can manage their own account and services. The

USER should use discretion when granting administrative privileges to the Control Panel.

For liability purposes The Support Team is not permitted to access nor perform tasks via

the USER Control Panel. Mailboxes, services enabled, and storage quota facilitated in the

Control Panel are billable and SAASHOST.NET is unable to provide credits due to

negligence in the Control Panel. SAASHOST.NET is not responsible for downtime

related to negligence in the Control Panel. An example of negligence is service

unavailability caused by reaching quota limits set in the Control Panel. Another

negligence example is Hosted Services disabled/deleted in error. Please note that in the

case of negligence SAASHOST.NET may/may not have the ability to restore data as data

restoration is reserved for disaster recovery purposes. If data is lost due to negligence and

it is determined that the data or a fraction of the data can be restored, professional service

fees may be applied as stated in the SAASHOST.NET Backup and Restoration Policy.

Service Levels - Term of the Service Level Agreement

This Service Level Agreement shall only become applicable to the Hosted Services upon

the later of (a) completion of the “stabilization period,” as such term is defined in the

Statement of Work (if any), or (b) ninety (90) days from the provisioning of Hosted

Services.

Measurement

SAASHOST.NET uses a proprietary system to measure whether the Hosted Services are

Available and the USER agree that this system will be the sole basis for resolution of any

dispute that may arise between the USER and SAASHOST.NET regarding this Service

Level Agreement.

179

Availability is calculated based on the following formula:

A = (T – M – D) / (T – M) x 100%

A = Availability

T = Total Monthly Minutes

M = Maintenance Time

D = Downtime

Availability Credit Amount of Monthly Fee for Affected Seats

> 97.9% but < 99.999% 5%

> 96.9% but < 97.9% 7%

< 96.9% 9%

Problem Response Time

SAASHOST.NET’s failure to meet the Service level metric for Problem Response Time

for a month shall result in a Service Level Credit calculated per incident at a credit of

50% of the monthly invoice, up to a maximum Service Level Credit of $200, for the

Hosted Service (not including setup, activation fees or other services provided by

SAASHOST.NET) per month. The response time per incident will vary upon the degrees

defined below:

Category Level Criteria Problem Response

Time

1 Unplanned interruption rendering the

Services un-Available; no work-around

5 Minutes

2 Unplanned interruption rendering the

Services un-Available; work-around available

15 Minutes

3 Services are un-Available for a single User or

small percentage of USER affected

4 Hours

4 Intermittent problem 8 Business Hours

Remedy and Procedure

The USER’s remedy and the procedure for obtaining the USER’s remedy in the event

that SAASHOST.NET fails to meet the Service level metrics set forth above are as

follows:

To qualify for remedy:

180

(a) There must be a support ticket documenting the event within 24 hours of the service

interruption

(b) USER account must be in good standing with all invoices paid and up to date

The USER must notify SAASHOST.NET in writing within five (5) business days by

opening a support ticket and providing the following details:

 Subject of email must be: “Claim Notice – ‘USERDomain’.com” (USER’s

primary domain hosted with SAASHOST.NET must be listed in place of

‘USERDomain.com’)

 List the type of Hosted Service that was affected

 List the date the Downtime Minutes occurred

 List user(s) Display Name and E-mail address affected by Downtime Minutes

 List an estimate of the amount of actual Downtime Minutes

 Ticket number of the documented event

SAASHOST.NET will confirm the information provided in the Claim Notice within five

(5) business days of receipt of the Claim Notice. If SAASHOST.NET cannot confirm the

Downtime Minutes, then the USER and SAASHOST.NET agree to refer the matter to

executives at each company for resolution. If SAASHOST.NET confirms that

SAASHOST.NET is out of compliance with this Service Level Agreement, the USER

will receive the amount of Service Level Credits set forth above for the affected Service

level metric and the affected Seats for the affected month. The SLA credit will be

reflected in the SAASHOST.NET invoice to the USER in the month following

SAASHOST.NET confirmation of the Downtime Minutes. Please note that SLA credits

can only be applied to accounts that are in good standing with all invoices paid and up to

date.

SLA Exhibits

Exhibits to this Master Service Level Agreement may be available for Hosted Services

provided by SAASHOST.NET. The SLA Exhibits for each Hosted Service provides

additional terms specific to the Hosted Service. The SLA Exhibits must be agreed to in

addition to this Master Service Level Agreement prior to executing use of the Hosted

Service.

Service Level Agreement – Exchange Exhibit

This document contains the Service Level Agreement for SAASHOST.NET. Please read

it carefully as this is the official agreement in force at the present time. The agreement

181

listed below supersedes any other written document you may have prior to today’s date.

If you have questions or comments about this agreement, please do not hesitate to contact

us.

SLA Objective

THIS SERVICE LEVEL AGREEMENT (“Agreement” or “SLA”) shall apply to Hosted

Microsoft Exchange services provided by SAASHOST.NET expressly as an exhibit to

the Master Service Level Agreement (“MSLA”) for each customer/ client/ consumer/

domain/ administrator/ end user/ user (“USER”).

SAASHOST.NET is committed to providing a highly available and secure network to

support its USERs. Providing the USER with consistent email access is a high priority

for SAASHOST.NET and is the basis for its commitment in the form of a SLA. The SLA

provides certain rights and remedies in the event that the USER experiences service

interruption as a result of failure of SAASHOST.NET infrastructure. The overall service

availability metric is 99.999%, measured on a monthly basis.

Term Definitions

For the purpose of this Service Level Agreement, the terms in bold are defined as follows:

Downtime

The total number of minutes that the USER cannot access the mailbox on the Microsoft

Exchange Server. The calculation of Downtime Minutes excludes time that the USER is

unable to access the mailbox on the Microsoft Exchange Server due to any of the

following:

(a) Maintenance Time;

(b) USER’s own Internet service provider

(c) Force Majeure event

(d) Any systemic Internet failures

(e) Enhanced Services

(f) Any failure in the USER’s own hardware, software or Network connection

(g) USER’s bandwidth restrictions

(h) USER’s acts or omissions; e.g. mailbox inaccessible due to suspension or quota

overage

(i) Anything outside of the direct control of SAASHOST.NET; e.g. outage/latency due to

Spam Filtering Service outage.

182

 Mail Delivery Time

The time between an email sent from the USER’s email interface (containing valid

internet connection, header, and address information at our server) to a valid email

address inside or outside of the USER domain. SAASHOST.NET is not responsible for

undelivered mail that has departed SAASHOST.NET’s network, however routed

improperly due to recipient policies or configurations.

USER Responsibility

Minimum Requirements

The required configurations USER must have to access the Microsoft Exchange Server

include:

 Internet connection with adequate bandwidth

 Internet Browser

 Windows XP SP2

 Outlook 2003 SP2

 DNS settings provided by SAASHOST.NET must be configured in USER’s DNS

Zone

SAASHOST.NET recommends utilizing the latest Windows operating system, not in

beta; and the latest Outlook version, not in beta. Full Access mailboxes are recommended

to make use of the complete functionality of Microsoft Exchange and is fully supported

by the Support Team. Copies of Outlook and Entourage are made available for Full

Access mailboxes by SAASHOST.NET. Comparable operating systems and mail clients

to access Email via Full Access/POP3/IMAP/SMTP can be utilized, but may not be

supported. Once mail has been extracted from the Microsoft Exchange server via POP3,

archiving or any other method, SAASHOST.NET no longer has visibility and may only

provide limited support regarding the data.

Mobile Devices

SAASHOST.NET provides USER with access to the Microsoft Exchange server via

Windows Mobile (ActiveSync) or through add-on services by use of third party

software/servers. Accessing the Microsoft Exchange server via such devices are reliant

upon the device hardware, device operating system, and wireless carrier.

SAASHOST.NET will make commercially reasonable efforts to ensure Availability and

support in configuration, but cannot guarantee accessibility due to the many factors out

of SAASHOST.NET’s control.

183

Service Levels - Term of the Service Level Agreement

This Service Level Agreement shall only become applicable to the Services upon the later

of (a) completion of the “stabilization period,” as such term is defined in the Statement

of Work (if any), or (b) ninety (90) days from the MX records change over date.

Mail Delivery Time

The Service level metric for Mail Delivery Time is within 5 minutes or less, 95% of the

time measured on a monthly basis, subject to the exclusions defined in Downtime Minutes

above. The remaining 5% will be processed, but may take longer than 5 minutes. The

delivery time calculation does not include complications from outside forces including

but not limited to ISP delays or failures, USER Internet connectivity issues, datacenter

collocation failures, blacklisting, spam filtering, systemic Internet failures, DDOS

attacks, recipient policies, recipient network, and other foreseen interruptions.

Mail Delivery Time Credit Amount of Monthly Fee for Affected Seats

> 93% but < 95% 3%

> 91% but < 93% 5%

< 91% 7%

Service Level Agreement – SharePoint Exhibit

This document contains the Service Level Agreement for SAASHOST.NET. Please read

it carefully as this is the official agreement in force at the present time. The agreement

listed below supersedes any other written document you may have prior to today’s date.

If you have questions or comments about this agreement, please do not hesitate to contact

us.

SLA Objective

THIS SERVICE LEVEL AGREEMENT(“Agreement” or “SLA”) shall apply to

Hosted Microsoft SharePoint services provided by SAASHOST.NET expressly as an

exhibit to the Master Service Level Agreement (“MSLA”) for each

customer/client/consumer/domain/administrator/end user/user (“USER”).

SAASHOST.NET is committed to providing a highly available and secure network to

support its USERs. Providing the USER with consistent connectivity to the SharePoint

service is a high priority for SAASHOST.NET and is the basis for its commitment in the

form of a SLA. The SLA provides certain rights and remedies in the event that the USER

experiences service interruption as a result of failure of SAASHOST.NET infrastructure.

The overall service availability metric is 99.999%, measured on a monthly basis.

184

Term Definitions

Available or Availability

When the CUSTOMER who’s account is active and enabled has reasonable connectivity

to the Microsoft SharePoint Site provided by SAASHOST.NET, subject to the exclusions

defined in Downtime Minutes below. Availability is in regard to connectivity with

standard SharePoint functionality to the provisioned SharePoint site and its modification

tools. Availability does not refer to customization, installation of templates, mapped

drives, importing data from previous SharePoint sites or backups, or use of 3rd party

applications.

Downtime

The total number of minutes that the USER cannot access the SharePoint site provisioned

on the SASS PROVIDER’s network. The calculation of Downtime Minutes excludes

time that the USER is unable to access or modify the SharePoint site due to any of the

following:

(a) Maintenance Time;

(b) USER’s own Internet service provider

(c) Force Majeure event

(d) Any systemic Internet failures

(e) Enhanced Services

(f) Any failure in the USER’s own hardware, software or Network connection

(g) USER’s bandwidth restrictions

(h) USER’s acts or omissions; e.g. disabling SharePoint in the Control Panel

(i) Anything outside of the direct control of SAASHOST.NET; e.g. site inaccessibility

due to Browser or DNS caching

(j) Incorrect DNS Settings

USER Responsibility

Minimum Requirements

The required configurations USER must have to access the Microsoft SharePoint Server

include:

 Internet connection with adequate bandwidth

 Internet Browser

 Windows XP SP2

 DNS settings provided by SAASHOST.NET must be configured in USER’s DNS

Zone

185

Service Levels - Term of the Service Level Agreement

This Service Level Agreement shall only become applicable to the Services upon the later

of (a) completion of the “stabilization period,” as such term is defined in the Statement

of Work (if any), or (b) ninety (90) days from the CNAME configuration date.

Service Level Agreement – CRM Exhibit

This document contains the Service Level Agreement for SAASHOST.NET. Please read

it carefully as this is the official agreement in force at the present time. The agreement

listed below supersedes any other written document you may have prior to today’s date.

If you have questions or comments about this agreement, please do not hesitate to contact

us.

SLA Objective

THIS SERVICE LEVEL AGREEMENT (“Agreement” or “SLA”) shall apply to Hosted

Microsoft Dynamics CRM services provided by SAASHOST.NET expressly as an

exhibit to the Master Service Level Agreement (“MSLA”) for each

customer/client/consumer/domain/administrator/end user/user (“USER”).

SAASHOST.NET is committed to providing a highly available and secure network to

support its USERs. Providing the USER with consistent connectivity to the Dynamics

CRM service is a high priority for SAASHOST.NET and is the basis for its commitment

in the form of a SLA. The SLA provides certain rights and remedies in the event that the

USER experiences service interruption as a result of failure of SAASHOST.NET

infrastructure. The overall service availability metric is 99.999%, measured on a monthly

basis.

Term Definitions

For the purpose of this Service Level Agreement, the terms in bold are defined as follows:

Available or Availability

When the USER who’s account is active and enabled has reasonable connectivity to the

Microsoft Dynamics CRM Site provided by SAASHOST.NET, subject to the exclusions

defined in Downtime Minutes below. Availability is in regard to connectivity with

standard Dynamics CRM functionality to the provisioned Dynamics CRM site and its

modification tools. Availability does not refer to customization, installation of templates,

plug-ins, importing data from previous Dynamics CRM sites or backups, or use

of/mapping to 3rd party applications.

186

Downtime

The total number of minutes that the USER cannot access the Dynamics CRM site

provisioned on the SASS PROVIDER’s network. The calculation of Downtime Minutes

excludes time that the USER is unable to access or modify the Dynamics CRM site due

to any of the following:

(a) Maintenance Time

(b) USER’s and/or User’s own Internet service provider

(c) Force Majeure event

(d) Any systemic Internet failures

(e) Enhanced Services

(f) Any failure in the USER’s and/or User’s own hardware, software or Network

connection

(g) USER’s and/or Users bandwidth restrictions

(h) USER’s and/or User’s, acts or omissions; e.g. disabling Dynamics CRM in the Control

Panel

(i) Anything outside of the direct control of SAASHOST.NET; e.g. site inaccessibility

due to Browser caching

USER Responsibility Minimum Requirements

The required configurations USER must have to access the Microsoft Dynamics CRM

Server include:

 Internet connection with adequate bandwidth

 Internet Browser

 Windows XP SP2

Control Panel

The Control Panel is provided to all USERs/domains enabled with services at

SAASHOST.NET, therefore the USER can manage their own account and services. The

USER should use discretion when granting administrative privileges to the Control Panel.

For liability purposes The Support Team is not permitted to access nor perform tasks via

the USER Control Panel.

Service Levels - Term of the Service Level Agreement

This Service Level Agreement shall only become applicable to the Services upon the later

of (a) completion of the “stabilization period,” as such term is defined in the Statement

of Work (if any), or (b) ninety (90) days from the Dynamics CRM site is provisioned.

187

Measurement

SAASHOST.NET uses a proprietary system to measure whether the Services are

Available by sending “pings” to servers in the data center at regular intervals and by

monitoring the running services on the system. The USER agrees that this system will be

the sole basis for resolution of any dispute that may arise between the USER and

SAASHOST.NET regarding this Service Level Agreement.

188

B. APPENDIX B: DEFUZZIFICATION METHODS RESULTS

DEFUZZIFICATION METHODS RESULTS

B.1 Testing Defuzzification Methods

This appendix presents a study to investigate the effect of different defuzzification

methods on QoE level resulted from the proposed fuzzy engine. The compared methods

are: centroid, bisector, MOM (Mean of Maximum), LOM (Largest of Maximum), and

SOM (Smallest of Maximum). Figure B- 1 depicts these methods on an aggregated

membership function in Fuzzy logic.

Figure B- 1 effect of defuzzification methods on an aggregated fuzzy membership function

(Naaz et al, 2011)

Table B- 1 introduces a numerical comparison of five different defuzzification methods

by comparing the value of QoE value in each case. The table reveals that the results

obtained by centroid, bisector, and MoM are comparable. The results obtained from SOM

method were lower than the three aforementioned methods. On the other hand, the worst

results were acquired in LOM method which caused the OoE value to drop to zero. In

general, centroid method revealed the best results in terms of QoE level and continuity

criteria in defuzzification method.

The system behaviour of the fuzzy engine is investigated by using surface diagrams to

study the effect of each two parameters on the system output.

189

Table B- 1 Studying the effect of different defuzzification methods on QoE

Input parameters Fuzzy output

Features Responsiveness Flexibility Security Rapport Reliability Fuzzy Results

(Centroid)

Fuzzy Results

(Bisector)

Fuzzy Results

(SOM)

Fuzzy Results

(LOM)

Fuzzy Results

(MOM)

70 52 11 88 100 48 2.525 2.55 2.15 0 2.525

46 40 71 68 76 98 1.535 1.55 1.10 0 1.525

93 95 90 80 90 95 4.464 4.45 4 0 4.5

80 90 84 100 24 60 3.525 3.5 3 0 3.525

89 50 92 22 90 76 2.525 2.5 2.12 0 2.525

26 86 58 90 27 80 2.929 2.85 2 0 2.525

39 57 39 46 28 30 0.536 0.55 0 0 0.475

99 90 89 100 99 90 4.52 4.5 4.2 0 4.6

10 8 30 20 45 12 0.504 0.5 0 0 0.4

75 74 73 72 77 75 2.525 2.5 2.1 0 2.525

93 30 90 95 99 88 3.525 3.55 3.2 0 3.525

190

40 98 89 90 94 92 4.52 4.500 4.2 0 4.6

90 99 92 22 91 99 3.525 3.500 3.2 0 3.525

95 90 100 89 34 96 4.52 4.500 4.2 0 4.6

88 100 15 99 95 90 4.514 4.500 4.2 0 4.6

97 95 88 100 90 8 4.52 4.500 4.2 0 4.6

73 73 75 70 94 20 2.525 2.500 2.15 0 2.525

22 98 95 90 74 89 4.508 4.500 4.15 0 4.575

18 50 73 95 100 91 2.525 2.55 2.2 0 2.525

89 92 93 21 75 74 3.525 3.5 3.15 0 3.525

191

B.2 Effect of Bisector Method

Bisector is the vertical line that will divide the region into two sub-regions of equal area.

It is sometimes, but not always coincident with the centroid line (MathWorks, 2017).

Figure D-2 to Figure D-60 show surface diagrams of the system behaviour for each of the

two different parameters. It can be seen that the results obtained in the bisector method is

comparable to the centroid method (see section 5.4.3). however, the results obtained in

the centroid method were better.

Figure B- 2 Effect of Responsiveness and Features (bisector method)

Figure B- 3 Effect of Security and Features (bisector method)

Figure B- 4 Effect of Flexibility and Features (bisector method)

192

Figure B- 5 Effect of Rapport and Features (bisector method)

Figure B- 6 Effect of Reliability and Features (bisector method)

Figure B- 7 Effect of Responsiveness and Flexibility (bisector method)

193

Figure B- 8 Effect of Responsiveness and Rapport (bisector method)

Figure B- 9 Effect of Responsiveness and Security (bisector method)

Figure B- 10 Effect of Security and Flexibility (bisector method)

194

Figure B- 11 Effect of Rapport and Flexibility (bisector method)

Figure B- 12 Effect of Security and Reliability (bisector method)

Figure B- 13 Effect of Security and Rapport (bisector method)

195

Figure B- 14 Effect of Rapport and Reliability (bisector method)

Figure B- 15 Effect of Flexibility and Reliability (bisector method)

B.3 Effect of MOM Method

Figure B- 16 Effect of Features and Responsiveness (MOM method)

196

Figure B- 17 Effect of Features and Security (MOM method)

Figure B- 18 Effect of Features and Flexibility (MOM method)

Figure B- 19 Effect of Features and Rapport (MOM method)

197

Figure B- 20 Effect of Features and Reliability (MOM method)

Figure B- 21 Effect of Flexibility and Responsiveness (MOM method)

Figure B- 22 Effect of Rapport and Responsiveness (MOM method)

198

Figure B- 23 Effect of Security and Responsiveness (MOM method)

Figure B- 24 Effect of Reliability and Responsiveness (MOM method)

Figure B- 25 Effect of Security and Flexibility (MOM method)

199

Figure B- 26 Effect of Rapport and Flexibility (MOM method)

Figure B- 27 Effect of Reliability and Flexibility (MOM method)

Figure B- 28 Effect of Rapport and Security (MOM method)

200

Figure B- 29 Effect of Reliability and Security (MOM method)

Figure B- 30 Effect of Reliability and Rapport (MOM method)

B4. Effect of LOM Method

The LOM method caused the QoE value to drop to the zero level.

Figure B- 31 Effect of Features and Responsiveness (LOM method)

201

Figure B- 32 Effect of Features and Security (LOM method)

`

Figure B- 33 Effect of Features and Flexibility (LOM method)

Figure B- 34 Effect of Features and Rapport (LOM method)

202

Figure B- 35 Effect of Features and Reliability (LOM method)

Figure B- 36 Effect of Responsiveness and Flexibility (LOM method)

Figure B- 37 Effect of Responsiveness and Rapport (LOM method)

203

Figure B- 38 Effect of Responsiveness and Security (LOM method)

Figure B- 39 Effect of Responsiveness and Reliability (LOM method)

Figure B- 40 Effect of Security and Flexibility (LOM method)

204

Figure B- 41 Effect of Rapport and Flexibility (LOM method)

Figure B- 42 Effect of Reliability and Flexibility (LOM method)

Figure B- 43 Effect of Security and Rapport (LOM method)

205

Figure B- 44 Effect of Security and Reliability (LOM method)

Figure B- 45 Effect of Rapport and Reliability (LOM method)

B5. Effect of SOM Method

Figure B- 46 Effect of Responsiveness and Features (SOM method)

206

Figure B- 47 Effect of Security and Features (SOM method)

Figure B- 48 Effect of Flexibility and Features (SOM method)

Figure B- 49 Effect of Rapport and Features (SOM method)

207

Figure B- 50 Effect of Reliability and Features (SOM method)

Figure B- 51 Effect of Flexibility and Responsiveness (SOM method)

Figure B- 52 Effect of Rapport and Responsiveness (SOM method)

208

Figure B- 53 Effect of Security and Responsiveness (SOM method)

Figure B- 54 Effect of Reliability and Responsiveness (SOM method)

Figure B- 55 Effect of Flexibility and Security (SOM method)

209

Figure B- 56 Effect of Rapport and Flexibility (SOM method)

Figure B- 57 Effect of Reliability and Flexibility (SOM method)

Figure B- 58 Effect of Rapport and Security (SOM method)

210

Figure B- 59 Effect of Reliability and Security (SOM method)

Figure B- 60 Effect of Reliability and Rapport (SOM method)

211

C. APPENDIX C : MON SLAR A PI SPECIFICATION

MonSLAR API SPECIFICATION

C.1 Introduction

This appendix presents the main API specifications for MonSLAR. The API is based on

REST technology.

C.2 HTTP methods

HTTP methods are used to retrieve the resources of the REST, where these resources and

their representations are the required monitored data. The API specification for

MonSLAR is shown below:

{

 "swagger":"2.0",

 "info":{

 "version":"1.0.0",

 "title":""

 },

 "host":"localhost:8080",

 "basePath":"/MonSLAR/api",

 "tags":[

 {

 "name":"monitor"

 },

 {

 "name":"options"

 }

],

 "schemes":[

 "http"

],

 "paths":{

 "/monitor/qoe":{

 "head":{

 "tags":[

 "options"

],

 "summary":"Returns value of QoE",

 "description":"Returns qoe",

 "operationId":"HeadQOE",

212

 "produces":[

 "application/json"

],

 "parameters":[

],

 "responses":{

 "200":{

 "description":"successful operation",

 "schema":{

 "type":"double"

 }

 }

 }

 }

 },

 "/options/measure":{

 "options":{

 "tags":[

 "options"

],

 "summary":"Returns measured parameters values of options",

 "description":"Returns measured parameters values of options",

 "operationId":"getMeasures",

 "produces":[

 "application/json"

],

 "parameters":[

],

 "responses":{

 "200":{

 "description":"successful operation",

 "schema":{

 "type":"string"

 }

 }

 }

 }

 }

,

 "/sla ":{

 "options":{

 "tags":[

 "options"

213

],

 "summary":"Returns SLA updated parameters",

 "description":" Returns SLA updated parameters",

 "operationId":"getSLA",

 "produces":[

 "application/json"

],

 "parameters":[

],

 "responses":{

 "200":{

 "description":"successful operation",

 "schema":{

 "type":"string"

 }

 }

 }

 }

 }

 }

}

Figure C- 1 MonSLAR API specification

214

D. APPENDIX D: MONSLAR JAVA CODE

MonSLAR JAVA CODE

This appendix presents the java code for implementing the main requests used in

MonSLAR. Figure D-1 introduces the code of the HEAD method used in the monitoring

request-A, Figure D-2 shows the java code of the POST used for sending the

measurements in monitoring request-B. The java code for the OPTIONS method used to

implement the monitoring request-C is depicted in Figure D-3, whilst Figure D-4

introduces the code for the OPTIONS REST method used for the management request in

the proposed middleware.

D.1 HEAD Method (Monitoring Request-A)

/*

Code shows the HEAD method to return the value of QoE

*/

@HEAD

 @Path("/qoe")

public Response getHeader(@Context HttpHeaders headers, @Context

HttpServletRequest request) throws Exception{

// Manage client details

 Integer currentUserId = (Integer) request.getSession().getAttribute(

 "currentUserId");

 if (currentUserId != null) {

 File file = new File ("QoEstimator.fcl");

 FuzzyQoE fq = new FuzzyQoE();

// Retrieve the data from Fuzzy Logic

 fq.RunFuzzy();

 Double value = new DBConnect().getQoE(new Integer(currentUserId));

 long result = new ReadFromJSON().GetValue();

// Return the QoE value in the header of the HEAD response

 return Response.ok().header("QoE", value).header("Violation", result).build();

 } else {

// Return error message

 return Response.status(Response.Status.FORBIDDEN).build();

 }

 }

Figure D- 1 depicts the java code of the HEAD method (monitoring request-A)

215

D.2 POST Method (Monitoring Request-B)

/*

Code shows the POST method to send the measurements from the client side

*/

@POST
// Create a new data base
 @Path("/post")
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 public Response uploadFile(@FormDataParam("file") InputStream incomingData)
 {
 StringBuilder JSONBuilder = new StringBuilder();
 try {
 BufferedReader in = new BufferedReader(new InputStreamReader(incomingData));
 String line = null;
 while ((line = in.readLine()) != null) {
 JSONBuilder.append(line);
 }
 }
 catch (Exception e)
 {
 System.out.println("Error Parsing: - ");
 }

 try {
 FileWriter file = new FileWriter("c:\\MonitoredMetrics.json");
 file.write(JSONBuilder.toString());
 file.flush();
 file.close();

 } catch (IOException e) {
 e.printStackTrace();
 }

return Response.status(200).entity("measurements has been uploaded
successfully").build();

 }
}

Figure D- 2 depicts the java code of the POST method (monitoring request-B)

216

D.3 OPTIONS Method (Monitoring Request-C)

/*

Code shows the OPTIONS method to return the values of the measured parameters

*/

@OPTIONS

 @Path("/measure")

 public Response getHeader1(@Context HttpServletRequest request)

 throws JsonGenerationException, JsonMappingException, IOException {

// Manage client details

Integer currentUserId = (Integer) request.getSession().getAttribute(

 "currentUserId");

 if (currentUserId != null) {

List<MeasuredParameters> measuredParametersList = new

// Retrieve the values from the repository for the specific user

ReadMeasuredParameters()

 .getAllMeasuredParameters(new Integer(currentUserId));

 ResponseBuilder responseBuilder = Response.ok();

 responseBuilder = responseBuilder.header("result",

new

ObjectMapper().writeValueAsString(measuredParametersList));

// Embed the data in the header of OPTIONS response

return responseBuilder.build();

 }

// Return a forbidden http status error if data is not available

else {

 return Response.status(Response.Status.FORBIDDEN).build();

 }

 }

Figure D- 3 Depicts the java code of the OPTIONS method (monitoring request-C)

217

D.4 OPTIONS Method (Management Request)

/*

Code shows using the OPTIONS method to retrieve the SLA parameters values

*/

@OPTIONS

 @Path("/sla")

 public Response getHeader1(@Context HttpServletRequest request)

 throws JsonGenerationException, JsonMappingException, IOException {

// Manage client details

Integer currentUserId = (Integer) request.getSession().getAttribute(

 "currentUserId");

 if (currentUserId != null) {

List<SLAParameters> SLAParametersList = new ReadSLAParameters()

 .getSLAParameters(new Integer(currentUserId));

 ResponseBuilder responseBuilder = Response.ok();

 responseBuilder = responseBuilder.header("result",

new

ObjectMapper().writeValueAsString(measuredParametersList));

// Embed the SLA parameters in the header of OPTIONS response

return responseBuilder.build();

 } else {

// Return a forbidden http status error if data is not available

 return Response.status(Response.Status.FORBIDDEN).build();

 }

 }

Figure D- 4 Depicts the java code of the OPTIONS method (management request)

218

E. APPENDIX E : MONSLAR P ERFORMANC E

MonSLAR PERFORMANCE

Additional measurements have been presented to study the behaviour of the proposed

middleware. This considered evaluating the overhead caused by the proposed middleware

in terms of the time that it adds to the overall response time of the system.

In order to get the required performance measurements, a number of request-response

pairs have been exchanged. This allowed the researcher to study the behaviour of the

proposed middleware and acquire the overall response time caused by the monitoring

dashboard, which includes the HEAD requests, in addition to the time required for

collecting the monitored data from the database repository.

E.1 Experiment Objectives

The objective of the experiment is to evaluate the performance of MonSLAR in terms of

the response time overhead.

E.2 Experiment Setup

The simulation environment is shown in Error! Reference source not found.. To i

nvestigate the overhead caused by the proposed middleware, two scenarios were used.

The first scenario ‘With MonSLAR’ was used to measure the response time overhead as

a result of implementing MonSLAR, where the measured response time represents the

use of the SaaS application in addition to the use of MonSLAR to monitor the user’s

satisfaction; while the second scenario ‘Without MonSLAR’ is about measuring the

response time overhead caused by the SaaS application without MonSLAR.

Figure E- 1 Experiment testbed architecture

219

For each of the aforementioned scenarios, the effect of changing the number of users on

the response time was studied. The evaluation process considered evaluating the

monitoring system with a different number of users (50, 100, 150, and 200). The

measurements are collected for the four different numbers of users, to study the behaviour

of the system in each of these cases. The results for these scenarios are discussed in the

results section.

E.3 Experiment Results

The results for the measured overhead are presented in Figure E-2, which at the same

time provide an indication of the ability of MonSLAR to manage the different number of

users. Considering this set of user numbers helped in studying the behaviour of the

monitoring system with increasing the number of users, as this set was considered in

SLAM (Moustafa et al., 2015). Although the comparison with the available monitoring

frameworks is not conclusive because of the different monitored applications and

environments, it shows that additional response time overhead caused by the monitoring

process is comparable to the overhead caused by the available monitoring frameworks.

Figure E-2 shows the average response time for four different group of users. It can be

seen in Figure E-2 that the amount of the overhead for each case with and without using

the monitoring system are comparable.

Figure E- 2 Response time overhead (With MonSLAR vs Without MonSLAR)

220

F. APPENDIX F: USER STUDY

USER STUDY

This appendix presents the survey used to investigate the effect of SaaS-Qual parameters

on QoE value. The survey involved a questionnaire to ask the participants about user

satisfaction with respect to SaaS cloud computing.

F.1 Introduction

Thank you for agreeing to participate in this study that is being conducted at the

University of Salford to help understanding the users’ experience about cloud computing

services based on parameters defined in the Service Level Agreement (SLA) which is the

contract signed between the user and the provider that states the level of services delivered

to the user.

Your feedback is very important. The results derived from the questionnaire will be used

to evaluate the QoE value which has been estimated as part of the research.

F.2 Deciding the users’ satisfaction

Suppose that you are receiving a service and you signed a contract with the provider, this

contract states six different parameters. These parameters are: 1- Responsiveness: (The

service provider’s ability to ensure the availability and performance of the delivered

application (e.g., disaster recovery planning) as well as the responsiveness of support staff

(e.g., 24-7 hotline support availability));2- Reliability: (The provider’s ability to perform

the promised services timely, dependably, and accurately), 3- Flexibility: (The customers’

ability to change the contract with the provider (e.g., cancellation period, payment

model)), 4-Rapport: (The provider’s ability to provide knowledgeable and support (e.g.,

joint problem solving)), 5- Features: (Means "application meet the business requirements

of a customer" (e.g., user interface, reporting)); 6- Security: (usage of encryption, or

antivirus technology).

In the cases below, please tick the answer that indicates how satisfied are you with the

delivered services for the given cases, taking into your consideration: Bad, the user is not

satisfied with the service (the service level is too low); medium, the user is not sure and

can’t decide whether the received service is good or bad (not clear); good, means the user

is satisfied with the received service (this level of the SLA parameter is acceptable).

221

Table F- 1 User Study Cases

C
a
se

Responsiveness Reliability Flexibility Security Features Rapport

User Satisfaction

Strongly

dissatisfied

Dissatisfied Neutral Satisfied Strongly

satisfied

1 Bad Good Good Good Good Good

2 Good Good Good Good Bad Good

3 Good Good Good Bad Good Good

4 Good Good Good Good Good Bad

5 Good Good Bad Good Good Good

6 Good Bad Good Good Good Good

7 Medium Bad Medium Medium Medium Good

8 Good Good Good Good Bad Medium

9 Bad Good Medium Good Bad Good

10 Good Medium Good Bad Good Medium

