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ABSTRACT 

The development of an automated system for the classification and segmentation of brain 

tumours in MRI scans remains challenging due to high variability and complexity of the brain 

tumours. Visual examination of MRI scans to diagnose brain tumours is the accepted standard. 

However due to the large number of MRI slices that are produced for each patient this is 

becoming a time consuming and slow process that is also prone to errors.  

This study explores an automated system for the classification and segmentation of brain 

tumours in MRI scans based on texture feature extraction. The research investigates an 

appropriate technique for feature extraction and development of a three-dimensional 

segmentation method. This was achieved by the investigation and integration of several image 

processing methods that are related to texture features and segmentation of MRI brain scans. 

First, the MRI brain scans were pre-processed by image enhancement, intensity normalization, 

background segmentation and correcting the mid-sagittal plane (MSP) of the brain for any 

possible skewness in the patient’s head. Second, the texture features were extracted using 

modified grey level co-occurrence matrix (MGLCM) from T2-weighted (T2-w) MRI slices and 

classified into normal and abnormal using multi-layer perceptron neural network (MLP). The 

texture feature extraction method starts from the standpoint that the human brain structure is 

approximately symmetric around the MSP of the brain. The extracted features measure the 

degree of symmetry between the left and right hemispheres of the brain, which are used to detect 

the abnormalities in the brain. This will enable clinicians to reject the MRI brain scans of the 

patients who have normal brain quickly and focusing on those who have pathological brain 

features. Finally, the bounding 3D-boxes based genetic algorithm (BBBGA) was used to 

identify the location of the brain tumour and segments it automatically by using three-

dimensional active contour without edge (3DACWE) method.  

The research was validated using two datasets; a real dataset that was collected from the MRI 

Unit in Al-Kadhimiya Teaching Hospital in Iraq in 2014 and the standard benchmark 

multimodal brain tumour segmentation (BRATS 2013) dataset.  

The experimental results on both datasets proved that the efficacy of the proposed system in the 

successful classification and segmentation of the brain tumours in MRI scans. The achieved 
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classification accuracies were 97.8% for the collected dataset and 98.6% for the standard 

dataset. While the segmentation’s Dice scores were 89% for the collected dataset and 89.3% 

for the standard dataset.
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CHAPTER ONE 

Introduction 

___________________________________________________________________________ 

Overview 

This chapter provides an introduction to the research conducted in this study followed by the 

research questions and the aim and objectives. The chapter concludes with asserting the 

contributions of the study and the research methodology used. Finally, a brief description of the 

remainder chapters of the thesis is outlined. 

___________________________________________________________________________ 

1.1 Introduction 

Medical imaging is a powerful technology used for gaining an insight into medical 

abnormalities by creating visual representations of the internal organs or tissues of the body and 

is used for clinical diagnosis. Image processing has been embedded in medical systems and 

applications and is used now widely in medicine from diagnosis to therapy. It has a significant 

impact on the performance of digital medical diagnostic workflows and the clinicians who use 

them. The auto classification and segmentation of brain tumours has potential to further improve 

the accuracy of diagnosis of all acquired medical images. 

In 2004, the Iraqi Ministry of Health reported that the average annual number of registered 

cancerous tumour cases between 1995 and 1997 were 8000 to 9000 cases. This rate rose to 

approximately 11,000 in 2000. The majority of these cases were from the south and the middle 

of Iraq (Fathi et al., 2013; Alwan, 2004). These regions were the battlefields during the First 

and Second Gulf Wars in 1990 and 1997 respectively and led to significant environmental 

pollution. There are more than 350 sites that were polluted with Depleted Uranium (DU) and 

other toxins as shown in Fig. 1.1. In addition to the impact of sanctions and occupation, Iraq 

medical health services have completely deteriorated and many skilled health workers and 

clinicians have left the country. All these factors have contributed to the disastrous decline in 

the medical health sectors in Iraq and resulted in an increase of a wide range of different tumours 

and diseases throughout the country (Al Hilfi et al., 2013). 
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Figure 1.1: The major polluted sites with DU in Iraq (Al Hilfi et al., 2013). 

This research study was conducted in collaboration with the MRI Unit of Al-Kadhimiya 

Teaching Hospital in Iraq. This unit has faced many problems in diagnosing and issuing 

diagnostic reports for the massively increased number of inpatient and outpatient cases. The 

average number of patients received daily by the MRI unit is over 110 patients, totalling about 

2640 patients scanned monthly (Hasan and Meziane, 2016; Hasan et al., 2016a). 

Brain tumours are relatively less common than other neoplasms, such as those of the lung and 

breast, but are considered highly important because of prognostic effects and high morbidity. 

They require specific studies due to their complicated pathology, making them difficult to 

diagnose (Karkavelas and Tascos, 2011). According to the statistical report published by the 

Central Brain Tumour Registry of the United States (CBTRUS),  brain tumours are the second 

leading causes of death among children and young adults (Tonarelli, 2013). There are no 

specific known causes for brain tumours and these are most likely wide and varied. Many risk 

factors have been suggested such as head injuries, hereditary syndromes, immunosuppression, 

ionizing radiation, cell phones, chemicals, etc. Symptoms of brain tumours include headache, 

nausea, vomiting, eyesight, hearing, speech problem, balance difficulties, personality changes, 

memory slips, loss of concentration, seizures and in extreme cases death.  
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Accurate visual detection and segmentation of brain tumours are essential for clinical diagnosis, 

predicting prognosis and treatment and beneficial for the general modelling of pathological 

brain topology and the exploration of the anatomical construction of the brain and any tumours 

it may contain (Nabizadeh, 2015; Guo et al., 2015). The generation of detailed descriptive brain 

tumour information can be used to index large archival databases of medical images of brain 

tumours which can then be used for studies and training purposes. Ultimately this information 

may help clinicians and radiologists to diagnose and treat current patients by determining the 

previous effectiveness of applied treatments and procedures with similar tumour characteristics 

(Saha et al., 2012; Ray et al., 2008a; Ray et al., 2008b).  

Imaging studies are important to reach a diagnosis of brain tumours (Tonarelli, 2013). 

Diagnostic imaging has become an invaluable tool in medicine today. Typical medical imaging 

techniques such as ultrasonography (US), Computed Tomography (CT) and Magnetic 

Resonance Imaging (MRI) and other imaging modalities have significantly increased the 

knowledge of anatomy and disease diagnosis in medical research and are considered a vital 

component in diagnosis and treatment planning (Pham et al., 1998). Among these medical 

technologies, MRI is the more useful and appropriate imaging technique for brain tumours. It 

presents detailed information about the type, position and size of the tumours in a non-invasive 

manner. Additionally, it is capable of differentiating soft tissue, with high resolution and more 

sensitive to local changes in tissue density since this reflects the physiological alternation that 

can be detected and visualized by MRI. Spatial resolution which represents the digitization 

process to assign a number to each pixel in the original image, has increased significantly in 

recent years and a 1×1×1 mm voxel size is now achievable (Mortazavi et al., 2012; Berry, 2007). 

Furthermore, MRI is different from other technologies because of its ability to produce multiple 

images of the same tissue with different contrast visualization and different image acquisition 

protocols. These multiple MRI images provide additional useful anatomical information to help 

the clinicians to study the brain pathology more precisely. Indeed, quantitative analysis of MRI 

brain scans to acquire knowledge about the human brain structure has increased dramatically in 

recent years because of a variety of diseases that can alter the brain structure. By analysing these 

alternations, it is possible to understand clearly these diseases and potentially diagnose them 

quickly and accurately (Mortazavi et al., 2012; Nabizadeh, 2015). Most common MRI 

modalities are T1-weighted image (T1-w), T2-weighted image (T2-w), fluid attenuated 
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inversion recovery (FLAIR) and T1 weighted images with contrast enhancement (T1c-w) 

(Mortazavi et al., 2012; Drevelegas and Papanikolaou, 2011). Most of the brain tumours appear 

as hypo-intense relative to normal brain tissues on T1-w images and hyper-intense on T2-w 

images. Therefore, T2-w images are commonly used to determine an initial assessment, 

identifying tumour types and distinguishing tumours from non-tumour tissues (Tonarelli, 2013). 

A contrast material is commonly used to enhance the tumour boundary against the surrounding 

normal brain tissue on T1-w images. This enables tumour detection that cannot be distinguished 

and recognized from T2-w and T1-w images, because of similarity with adjacent normal brain 

tissue (Drevelegas and Papanikolaou, 2011; Belkic and Belkic, 2010). Figure 1.2 shows samples 

of T2-w, T1-w, FLAIR and T1c-w pathological slices. In clinical routine, a T2-w scan is 

performed immediately after patient positioning to identify the tumour location. T1-w scan is 

used before and after contrast administration for tumours showing contrast enhancement. The 

T2-w scan in axial viewing with FLAIR is used to show non-enhanced tumours (Tonarelli, 

2013).  

 

 

                   A                                   B                                 C                                   D 

Figure 1.2: Samples of four pathological MRI slices: A) T2-w, B) T1-w, C) FLAIR and D) 

T1c-w. 

One particular challenge in imaging features is the similarity between tumours located inside 

the brain white matter (WM) and those that overlap intensity distributions with the grey matter 

(GM). Ambiguity in classification of pixels within the tumour region can lead to inaccurate 

segmentation occurring when some parts of the tumour cannot be distinguished from WM/GM, 

due to the finite intensity resolution of the MRI image and the complexity of the human brain 
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anatomy. This pattern is particularly evident at the boundary between a tumour and the 

surrounding tissue. These boundary features are generally known as partial volumes (PV) and 

contain a mixture of different tissue types (Tohka, 2014). Practically, the PV affects a much 

wider area of the MRI image by blurring effects and mixing the intensity value of each voxel 

with its neighbours (Zhang et al., 2001). For instance, a 50/50 mixture of fat (hyper-intense) 

and bone (hypo-intense) will give a mid-range intensity value (McRobbie et al., 2007). The 

thicknesses of the MRI slices (5–7 mm) produce significant PV effects, in which individual 

slice pixels describe more than one tissue type. As a result, peripheral tumour regions are 

misclassified. A similar problem occurs toward the outer brain edge, where the cerebrospinal 

fluid (CSF) and GM overlap with the image sample. This circumstance may generate image 

intensities that erroneously indicate tumour presence (Mortazavi et al., 2012). 

For any segmentation algorithm that has potential use in medical application and brain tumours 

are evaluated by either qualitative analysis, which compares the result of segmentation with 

reference to a standard visually (gold truth dataset or clinician evaluators) or quantitative 

analysis that concerns the accuracy of segmentation and how the result of segmentation is close 

to the reference standard by counting the number of pixels which are correctly/incorrectly 

identified (Berry, 2007).   

In clinical routine, clinicians spend an increasing time in diagnosing and interpreting medical 

images due to the increased utilization of diagnostic imaging. High levels of experience are 

required to carry out manual and accurate delineation and classification of these medical 

images. As scanner resolutions improved and slices’ thickness decreased, an increasing number 

of slices are produced. Therefore, clinicians need more time to diagnose each patient from the 

image set, because of the increasing magnitude of data. Coupled with the increase in inpatient 

numbers, this puts pressure on resources and services resulting in significant delays to both 

diagnosis and treatment. Therefore, automated tumour classification and segmentation have 

attracted considerable attention in the past two decades, resulting in many algorithms being 

developed for automated, semi-automated and interactive segmentation of brain tumours 

(Menze et al., 2015). While there has been a significant development of segmentation 

algorithms, they are rarely used due to wide variations of size, shape, location and feature 

intensity of brain tumours (Prastawa et al., 2004).  
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This study is concerned with developing and evaluating an efficient automated screening system 

for the classification and segmentation of tumours in MRI scans. It comes up with a new brain 

tumours classification method to discriminate normal and pathological patients based on single 

MRI modality and without any clinician’s interception; hence reducing clinicians’ examination 

and interpretation time. The challenge is to detect the pathological cases and identifying the 

most important MRI tumour slices for further detailed investigation by clinicians. The vast 

majority of previous studies have focused on two dimensional segmentation methods to 

segment the brain tumours, these are then merged to obtain a three-dimensional model 

(Nabizadeh and Kubat, 2015; Mikulka and Gescheidtov, 2013; Kaus et al., 2001; Prastawa et 

al., 2004). These methods do not exploit all the features of volumetric MRI scan and achieved 

lower quality of segmentation (Rousseau, 2009). 

1.2 Research Questions  

In order to reduce erroneous diagnostic interpretation of brain tumours in MRI scans and 

workload, as well as helping the clinicians to ignore the MRI brain scans of the patients who 

have normal brain quickly and focus on those who have pathological brain, the following 

research questions need to be addressed. 

1. How to develop a new brain tumour detection system that classifies the MRI brain scans 

into normal and pathological patients more accurately?  

2. Which pre-processing methods that should be used to improve the classification accuracy 

of brain tumours in MRI scans? 

3. Which texture features can be used to classify MRI brain scans into normal and abnormal? 

4. How to identify the location of brain tumours in MRI scans? 

5. How to increase the segmentation accuracy of brain tumours in MRI scans? 

1.3 Aim and Objectives 

In attempting to answer these questions, this study aims to come out with an automated system 

for the classification and segmentation of brain tumours in MRI scans which will enhance the 

classification and segmentation accuracies. A successful system would then enable clinicians 

to trivially reject the MRI brain scans of healthy patients quickly and focus on those who have 
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high likelihood pathological brain features. This should also improve the accuracy of the 

diagnosis process because they will spend more time with the patients with identified abnormal 

MRI brain scans. 

The above aim will be accomplished by fulfilling the following research objectives: 

1. To investigate different brain tumour detection systems that classify the MRI brain scans 

into normal and pathological patients more accurately. 

2. To identify which image pre-processing methods can be used to improve the classification 

accuracy of brain tumours in MRI scans. 

3. To develop a new texture feature extraction method from MRI brain scans to improve the 

classification accuracy of brain tumours.  

4. To develop a new automatic method for locating and identifying brain tumours in MRI 

scans. 

5. To develop an efficient segmentation technique of brain tumours in MRI scans. 

In order to answer the research questions and achieve the objectives of the research, a set of 

algorithms and methods are reviewed, studied and evaluated in this study.  

1.4 Contribution of the Study 

The main contribution of this study is to enhance the classification performance of detecting 

brain abnormality based on statistical texture features of MRI brain scans and the segmentation 

accuracy based on three-dimensional technique. Several image processing, classification, 

segmentation techniques that are more suitable for this domain, were selected based on previous 

studies as reported in the literature review. The classification and segmentation accuracies were 

further improved by developing novel methods. 

The datasets include conventional MRI scans that were collected from Al-Kadhimiya Teaching 

Hospital in Iraq and BRATS 2013 which is a standard dataset was used for evaluating the 

classification and segmentation of brain tumours. The main contributions of this study are 

summarised as follows: 
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1. A single statistical texture feature method (MGLCM) is proposed to extract the texture 

features for classifying MRI brain scans into normal and abnormal with a high accuracy 

rate. The texture features will be extracted from a single modality of MRI (T2-w images) 

in an axial viewing instead of using multi-modalities of MRI (e.g. sagittal images and 

coronal images). The existing algorithms concentrate on combining different feature 

extraction methods and handling high dimensional and redundant features. As well as, 

utilizing multi-modalities can bring a lot of redundant information that increase the 

computational time and segmentation error. The study conducted comprehensive 

comparative studies with the existing algorithms to ensure the accuracy of the results. 

2. The development of a new method (BBBGA) for identification and localisation of the 

abnormality in MRI brain scans, which is used to enable clinicians to look immediately at 

the pathological slices and avoid wasting time with investigating normal slices. 

Additionally, this helps to initialize the segmentation process to start automatically without 

the need for any human intervention or initialization. 

3. The three-dimensional segmentation method (3DACWE) is used for the first time in MRI 

brain tumour segmentation. 

1.5 Research Methodology 

The work is predominately formative, being concerned with the definition of methods and 

concepts of the proposed system. The process of research was devised to achieve the aim and 

objectives of this study by determining what should be done within the system development 

lifecycle and how the system could be managed. The methodology that was used in this research 

includes the following four phases.  

A. Requirement gathering and analysis 

- A critical review of previous relevant works was undertaken to get a good understanding of 

all requirements for developing the system. These requirements are vital to identify the aim, 

objectives and the research problems. In addition to identify the advantages and weaknesses 

of existing systems by evaluating and analysing them to discover problems of previous 

automated systems for screening MRI brain scans. 
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- An MRI dataset was collected from MRI unit of Al-Kadhimiya Teaching Hospital in Iraq 

to evaluate the proposed system. This dataset was collected from different MRI scanners 

of different manufactures. In addition, BRATS 2013 dataset (Menze et al., 2015) was used 

to evaluate the proposed system. Both datasets include four modalities of MRI scanning; 

T2-w images, T1-w images, T1c-w images and FLAIR images, and are anonymous to the 

author and the number of patients used in each experiment is the maximum number of cases 

available at the time of the study. 

B. System design 

- All the necessary requirements to develop a system were collected, such as the requirements 

for pre-processing, classification and segmentation of MRI brain scans. This phase includes 

smoothing MRI slices in order to reduce motion artefacts and field inhomogeneity, 

background of MRI slices elimination, intensity standardization in order to deal with MRI 

slices from different MRI scanners. Finally, correcting the MSP of the brain if there is a 

skewness in the patient head.  

- The textural features extraction that could be used to detect the abnormality of MRI brain 

scan by measuring the symmetry between the left and right hemispheres of the brain. These 

features were used to discriminant the normality and abnormality of MRI brain scans. 

Features preparation included feature selection and normalization. 

- Two methods were used to prepare the extracted features for classification to improve the 

classification accuracy. 

- Three classifiers were used to distinguish and differentiate brain tumours in MRI scans. 

These classifiers are linear discriminant analysis (LDA), support vector machine (SVM) 

and MLP. 

- A novel brain tumour locating method was used to search and identify the location of the 

most dissimilar regions between the left and right hemispheres of the brain automatically 

without the need for user interaction. 
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- A fully automated brain tumour segmentation method independent of atlas registration was 

applied on T1-w, T2-w, T1c-w and FLAIR images.  

C. Implementation  

- MATLAB R2013a software was used to implement the proposed system. 

D. Evaluation 

- Evaluate the performance of the proposed system to ensure that the aim and objectives are 

achieved by using qualitative and quantitative measures. 

Figure 1.3 illustrates how our research was designed and distributed over the four phases.   

1.6 Thesis Organization 

The thesis is organised into nine chapters describing the various phases of the research 

development process. These are summarised as follows:  

Chapter 1: This chapter provides a brief introduction to the research described in this study. It 

includes a brief introduction to the clinical background to diagnosis using MRI 

scans, which leads to the important task of identifying brain normalities and 

abnormalities. The chapter states the research questions and the aim and objectives 

of the research. The contribution of the study, research methodology and a brief 

description of the remaining chapters of the thesis complete the content of the first 

chapter.  

Chapter 2: This chapter gives a comprehensive survey of previous works related to the 

automated detection and segmentation of brain tumours in MRI scans. The full 

analysis of the techniques and methods used are also described. In addition to 

providing some background and investigations into some image processing 

techniques such as image enhancement techniques, intensity normalization, 

features extraction techniques, features transformation techniques, classification 

techniques and image segmentation techniques. 
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Figure 1.3: The research phases of the proposed system. 

Chapter 3: This chapter presents a brief introduction to digital image representation, followed 

by describing the important characteristics of MRI. In addition, a brief description 

of Al-Kadhimiya Teaching Hospital and brain tumours are included.  

Chapter 4: This chapter presents the pre-processing algorithms that are primarily implemented 

on MRI brain scanning images. These algorithms include resizing MRI slices 

dimensions, MRI enhancement algorithms, intensity normalization, background 

elimination and MSP detection and correction. 
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Chapter 5: This chapter describes in details the proposed method for texture feature extraction 

by MGLCM. It also includes the implementation of the stepwise Analysis of 

Variance (ANOVA) based feature selection method. The ANOVA is assessed by 

comparing it with other methods by observing the classification performance of 

used classifiers. This chapter presents a comparison between the outcomes of three 

classifiers for classifying MRI brain scans. These classifiers are LDA, SVM and 

MLP as an intelligent classifier.  

 Chapter 6: This chapter presents and describes the proposed method for texture feature 

extraction by three-dimensional modified grey level co-occurrence matrix 

(3DMGLCM). It includes an implementation of the stepwise ANOVA based 

feature selection method. It also includes a comparison between the performance 

of MGLCM and 3DMGLCM.  

Chapter 7: This chapter presents the detailed design of the proposed BBBGA method. This 

method is used to locate and identify the location of brain tumour in axial viewing 

of MRI scan. The implementation of this method is described in details.  

Chapter 8: This chapter presents experiments conducted to segment brain tumours 

automatically by using 3DACWE after being initialized by BBBGA. A summary 

of all the experiments is given and compared with the two-dimensional active 

contour without edge (2DACWE) to evaluate the effectiveness of 3DACWE.   

Chapter 9: This chapter reviews the proposed system that has been done and the techniques that 

have been used in this study. The chapter concludes by discussing the system, issues 

and results achieved in this research followed by suggestions for future works and 

improvements.   



 

 13 
 

CHAPTER TWO 

Literature Review 

___________________________________________________________________________ 

Overview 

This chapter presents a survey of previous works and the theoretical background of three main 

topics; texture feature extraction, classification and segmentation. The best techniques will be 

identified to justify their use in the current research. 

___________________________________________________________________________  

2.1 Introduction 

The development of medical imaging over the last four decades has revolutionised medical 

diagnosis and it is widely used in many procedures that include three-dimensional volumetric 

visualization of CT and MRI data of the spine, internal organs and brain. The medical imaging 

techniques are now able to investigate the structure, function and pathology of the human body 

with a variety of imaging systems and used to plan treatment and surgery (Brody, 2009). 

Medical imaging is a discipline within the medical field which involves the use of technologies 

to produce images of the internal structures of the human body in a way which is as non-invasive 

as possible (Birry, 2013). There is a variety of medical imaging technologies which are used to 

help the clinicians to identify pathological conditions inside the body, congenital defects, 

functionality of the organs and vessels, broken bones and tumours. Due to the increasing 

number of medical imaging technologies, the use of computers in facilitating their processing 

and analysis has become essential. Practically, computer algorithms for the delineation of 

anatomical and other regions of interest are a key component in assisting and automating 

specific radiological tasks such as the detection and classification of tumours, construction of 

grey-scale or colour histogram, segmentation, area measurement, etc. (Pham et al., 1998, Birry, 

2013).  

The computer applications that support medical imaging techniques, are using image processing 

algorithms for quantitative analysis to help clinicians who are currently assessing and 

diagnosing medical images visually, which has some limitations in terms of time and accuracy. 
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The reasons behind these limitations are inter-observer variations and error due to stress, 

oversight and limited experience. The observer usually hangs and reads films on the alternators 

and the inspection of the scans is prone to errors owing to visual exhaustion after spending long 

hours of reading. The diagnosis of  medical images by experts is known to be a subjective 

assessment (Liu, 2009). Hence, computer analysis can be used to add more objectivity to the 

subjective diagnosis. Therefore, computer analysis becomes essential in improving diagnostic 

accuracy and confidence even for experts with high experience. The imaging of human organs 

using MRI has been the subject of many research projects including the detection of different 

types of tumours such as breast, lung, liver and brain. Of particular interest to this research, is 

the reduction of the time spent by the clinicians on normal cases to allow them to spend more 

time on abnormal ones.  

The need to develop an automated screening and segmentation system of brain tumours has 

increased rapidly over the last decade. A general framework of screening system includes 

dataset collection, pre-processing, features extraction, feature selection, classification and brain 

tumour segmentation as illustrated in Fig. 2.1. In order to choose the most suitable methods for 

each step in the proposed system, a thorough review of the research undertaken in the various 

phases is reviewed and used as the justification of the choices we have made in this work.   

 

 

 

 

 

 

 

Figure 2.1: A general framework of the screening system. 
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2.2 Pre-processing Analysis 

Pre-processing analysis is an important step in the proposed systems. Typically, it includes 

image enhancement to reduce the effects of corruptions that could contaminate medical images 

during the acquisition or transmission process (Nowak, 1999; Aelterman et al., 2008; Lauwers 

et al., 2009; Anju et al., 2013; Bovik, 2009). 

2.2.1 Image Enhancement 

Image enhancement techniques are widely used to refine medical images in order to improve 

the visibility of important structures and assess the visual information. The desired features 

become easier to perceive for the human visual system or more likely to be detected by 

automated image analysis systems. The goal of image enhancement is simply that the enhanced 

image should be more appropriate than the original image for the required task (William, 2001; 

Solomon and Breckon, 2011). Image enhancement depends strongly on the details and the 

specific information of medical images that users are attempting to extract but that are not 

visible to them. For instance, if there is an automated image analysis system that traces the 

outline of the edges and measures the shape and size of the outline, the image enhancement 

system would enhance the edge outline of the objects in the medical image (William, 2001).  

Image enhancement techniques can be divided into two categories; spatial domain and 

frequency domain. The image enhancement in spatial domain includes convolution operation, 

that uses specific masks or kernels to produce smoothing or sharpening of an image (El-

Shenawy, 2013; Dougherty, 2009). While the image enhancement in frequency domain is 

performed after transforming the images into frequency domain using transformation methods. 

Generally, the image enhancement in spatial domain is efficient computationally and require 

less processing resources to implement (Gonzalez and Woods, 2002; Birry, 2013).  

The MRI data is probably affected by several sources of quality deterioration such as scanning 

times, movement of patients, motion of molecules in the scanning subject, respiration motion, 

heartbeat and the acquisition process. The noise may be propagated in MRI scans and it is 

required to remove it carefully in the pre-processing step. The typical and common smoothing 
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approaches will be used in this study for reducing noise in MRI brain scans (Nabizadeh and 

Kubat, 2015; Tantisatirapong, 2015; Birry, 2013; Verma et al., 2008). 

2.2.2 MRI Intensity Normalization 

MRI technology has become an efficient tool for the diagnosing of brain diseases. However, 

there is an obstacle with quantitative texture analysis of MRI images due to intra-scan and inter-

scan image intensity variations between the same and consecutive MRI slices due to MRI 

scanners. Thus, the extracted results are not comparable between consecutive or repeated scans 

or within the same scan, between different anatomic regions (Loizou et al., 2009; Nabizadeh, 

2015). In addition, acquiring MRI data from different scanners at different sites produces 

variance in the dynamic intensity range of the brain tissue even though they are used identical 

acquisition protocol. Furthermore, the variation in the intensity of MRI brain scans can vary 

significantly due to different manufacturers and scanner-models, bias field and different pulse 

sequence parameters (Tantisatirapong, 2015). Therefore, image intensity of MR slices should 

be normalized and standardized and this may have a significant impact on the clinical diagnosis, 

image analysis and computer aided diagnosis. There are six MRI intensity normalization 

techniques; contrast stretch normalization, intensity scaling, histogram stretching, histogram 

normalization, Gaussian kernel normalization and histogram equalization. In this study, the 

histogram normalization method will be used in the pre-processing step before texture feature 

extraction due to its performance compared to other normalization techniques (Loizou et al., 

2009; Nixon and Aguado, 2008). It stretches and shifts the original MRI slice histogram in order 

to cover all the grey scale levels in the MRI slice as given in Eq. 2.1 (Loizou et al., 2009; Watt 

and Policarpo, 1998; Tantisatirapong, 2015; Nabizadeh and Kubat, 2015). 

𝑓(𝑥, 𝑦) =
𝐺𝐻𝑖𝑔ℎ𝑒𝑟 − 𝐺𝐿𝑜𝑤𝑒𝑟
(𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛)

(𝐺(𝑥, 𝑦) − 𝐺𝑚𝑖𝑛) + 𝐺𝐿𝑜𝑤𝑒𝑟                                2.1 

where 𝐺(𝑥, 𝑦) is the original MRI slice, starting at a minimum grey level value 𝐺𝑚𝑖𝑛  and 

extending to 𝐺𝑚𝑎𝑥, 𝑓(𝑥, 𝑦) is the normalized MRI slice within a minimum grey level 𝐺𝐿𝑜𝑤𝑒𝑟, 

and a maximum grey level 𝐺𝐻𝑖𝑔ℎ𝑒𝑟. 𝑥 and 𝑦 are the coordinates of pixels in MRI slice. 
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2.2.3 Mid-Sagittal Plane of Brain Detection 

The Mid-Sagittal Plane (MSP) of the brain is a plane that separates it into two halves known as 

the two hemispheres of the brain. Identifying this plane is considered important for many 

automated systems that measure the similarity between the two hemispheres. Therefore, the 

detection of MSP is a topic that has been investigated for decades (Kuijf et al., 2014). Liu et al. 

(1998), Liu and Collins (1996) and Ardekani et al. (1997) proposed an automated algorithm for 

detecting the MSP based on the symmetry axis that should have the same orientation of the 

patient’s head. Hence, the process is based on searching for the orientation of the reflection line 

that maximizes the cross-correlation between the original image and the rotated image. Bergo 

et al. (2008) proposed an automated method for detecting the longitudinal fissure, which is 

clearly visible in T1-w images. The author assumed that the MSP contains a maximal area of 

CSF, which appeared as a low intensity area. Therefore, the proposed method was based on 

searching for a sagittal plane that minimized the intensity mean. Ruppert et al. (2011) proposed 

an algorithm for extracting the MSP by searching the plane that maximizes a bilateral symmetry 

measure. The bilateral symmetry measurement was based on extracting the edge features from 

the MRI brain slice. Then measuring the similarity using the correlation between the left and 

right hemispheres with respect to a candidate cutting plane. Jayasuriya and Liew (2012) 

proposed an automated algorithm for detecting the MSP of the brain by exploiting the property 

that the longitudinal fissure in T1-w images appears as a dark area. A set of lines were drawn 

in multiple angles to analyse the intensity along these lines. The best possible line that fits the 

inter-hemispheric fissure which represents the angle of the MSP to the vertical axis was chosen. 

Nabizadeh and Kubat (2015), Ray et al. (2008a) and Saha et al. (2012) separated the brain into 

two hemispheres by finding the longest diameter that represents the MSP of the brain. Their 

algorithms included separating the brain from the background, finding the brain centre, finding 

the brain’s borderline, determining the lengths of all possible brain diameters and assigning the 

longest diameter as the MSP of the brain.  

Previous works have used different techniques for detecting MSP of the brain as summarized 

in Table 2.1. However, the intensity-based analysis methods (symmetry, fissure) might not be 

the optimal solution to identify the MSP, because they are sensitive to any pathological 

conditions that could induce asymmetries and displacement of anatomical structures of the brain 
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(Kuijf et al., 2014; Liu et al., 1998; Liu and Collins, 1996). In this study, the emphasis is on 

estimating the orientation of the skull that is identical to the reflection line and passes through 

the MSP of the brain (Hu and Nowinski, 2003; Liu and Collins, 1996).   

Table 2.1: Summary of existing MSP methods. 

Method Features  Measure 

Junck et al. (1990) 

Liu and Collins (1996) 

Ardekani et al. (1997) 

Liu (2009) 

Prima and Ourselin (2002) 

Tuzikov et al. (2003) 

Hu and Nowinski (2003) 

Ruppert et al. (2011) 

Symmetry 

Symmetry 

Symmetry 

Symmetry 

Symmetry 

Symmetry 

Symmetry 

Symmetry 

Intensity cross correlation 

Intensity cross correlation 

Intensity cross correlation 

Intensity cross correlation 

Intensity cross correlation 

Intensity cross correlation 

Local symmetry index 

Correlation 

Jayasuriya and Liew (2012) 

Bergo et al. (2008) 

Fissure 

Fissure 

Minimized the intensity mean 

Minimized the intensity mean 

Ray et al. (2008a) 

Saha et al. (2012) 

Nabizadeh and Kubat (2015) 

Longest diameter 

Longest diameter 

Longest diameter 

Lengths of all possible brain diameters 

Lengths of all possible brain diameters 

Lengths of all possible brain diameters 

2.3 Texture Analysis 

The texture is a variation of the data at scales smaller than the scales of interest. It represents an 

intrinsic property of the imaged object and becomes a valuable cue in relation to the object 

classification and it is essential to describe the texture in an objective way, independent of 

human perception and visual abilities (Petrou, 2011). The fundamental objective of any 

diagnostic imaging investigation is tissue characterization; therefore, the texture analysis is 

considered to be an efficient way to extract higher-level information. This information could be 

used to distinguish a primitive characteristic or attribute of medical images (Nabizadeh and 

Kubat, 2015; William, 2001). Texture analysis is  one of the image processing fields that is still 

a challenging problem in computer vision (Jähne, 2005). It is a potentially valuable and versatile 

tool in neuro-MR imaging and provides an alternative diagnostic tool for MR image analysis 

(Kassner and Thornhill, 2010). It has been used to assess MRI slices of biological tissues, which 

contain large amounts of microscopic details that are scarcely addressed by visual inspection. 

Moreover, texture analysis can characterize patterns of tissues in MR slices better than the 

human visual system because it is more sensitive to variations of grey-level intensity in medical 

images. However, texture analysis was proved to produce better discrimination between healthy 
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and pathological tissues compared to human visual examination (Tantisatirapong, 2015). It is 

more robust for monitoring disease progression or treatment response with time (Kassner and 

Thornhill, 2010).  

Texture features techniques are classified according to their domain and are categorized into 

spatial texture features and spectral texture features. The spatial techniques are used to analyse 

the spatial distribution of grey values by computing local features at each point in the image, 

and deriving a set of statistics from the distributions of the local features such as convolution 

filters, co-occurrence matrix and spatial autocorrelation. While the spectral techniques 

transform an image to frequency domain and then texture features are determined from the 

transformed image such as Fourier transform, wavelet transform and cosine transform (Tian, 

2013; Haralick et al., 1973). However, the spatial techniques have been more prevalent and 

advantageous than spectral techniques because the spatial distribution of grey values provides 

the defining qualities of texture (Nabizadeh, 2015). 

There are several studies that used statistical features in discriminating objects in images and 

sometimes they are combined with other features extraction techniques. Liu et al. (2012) 

proposed a hybrid method by combining two-dimensional discrete wavelet transform (2D 

DWT) and Gabor wavelet for texture feature extraction which can be used to recognize different 

categories of brain tumours. Where, the Gabor wavelet was used with eight orientations and 

various frequencies, while the 2D DWT was used for noise removing as a prior pre-processing 

step. LDA was used to evaluate these features based on k-fold cross-validation method. 

Similarly, Lahmiri and Boukadoum (2013) developed a new methodology for automatic 

features extracting from biomedical images using 2D DWT and Gabor wavelet with different 

frequencies and spatial orientations. The classification was performed using SVM and 

accuracies of 86%, 68% and 50% were achieved on MRI brain images, mammograms and retina 

respectively. Kharrat et al. (2010) and Beura et al. (2015) used grey level co-occurrence matrix 

(GLCM) and 2D DWT to extract texture features in their studies. Kharrat et al. (2010) presented 

work that classified brain tumours in MRI brain scans into normal, benign and malignant. The 

proposed system worked on T2-w images in axial viewing. Generally, in medical image 

analysis, the determination and classification of tissue type (normal or abnormal) are performed 

using texture features, where MRI image texture is sufficient to be used to determine the tumour 
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type. The texture features were extracted by using GLCM from low frequency band after 

decomposing the MRI image using 2D DWT into two levels. The genetic algorithm (GA) was 

used to extract the most relevant texture features and the classification was done using SVM. 

97% accuracy was achieved in classifying a dataset of 83 MRI brain slices. Beura et al. (2015) 

used these texture features to classify the breast tissues into normal, benign and malignant 

tumours by using mammogram images. Then the most relevant features were selected using the 

F-statistic method. The classification was performed using the back propagation neural network 

(BPNN). As well as, 2D DWT was also used for feature extraction from MRI brain scans in 

(Saritha et al., 2013; Kalbkhani et al., 2013). However, 2D DWT has some limitations in 

capturing relevant information, and a lack of translation-invariant where any simple shift in the 

image results to significant modifications in values of wavelet coefficients (Baaziz et al., 2010; 

Du et al., 2016; Tantisatirapong, 2015). While, Gabor wavelet has some drawbacks such as 

computation complexity, production a huge number of redundant features at different scales 

and difficult to localise a spatial structure of natural textures (Tantisatirapong, 2015; Baaziz et 

al., 2010). Pantelis (2010) developed a medical system to classify and discriminate the 

normality and abnormality of MRI brain slices by combining three approaches for texture 

features; GLCM, first order statistical method and grey level run length matrix (GLRLM). 

Additionally, the dimensionality of the extracted features was reduced using the Wilcoxon test 

method which is a non-parametric statistical hypothesis test method. The most relevant features 

were retained when the P-value is less than 0.001, and SVM was used to classify a dataset of 

67 patients and the maximum classification accuracy obtained was 93%. First order statistical 

method was also used in (Bauer et al., 2011). However, the power of first order statistical 

method for distinguishing between textures with different spatial arrangement and having the 

same grey value distribution is limited. Thus many textures cannot be distinguished using first 

order statistical features (Pantelis, 2010; Jähne, 2005; William, 2001; Padma and Sukanesh, 

2011; Nailon, 2010; Kassner and Thornhill, 2010). As well as, GLRLM is inefficient compared 

with other feature extraction techniques such as GLCM (Tantisatirapong, 2015). Where, the 

extracted features by GLRLM do not include maximum texture information and many of these 

features are highly correlated with each other (Tang, 1998). Gomez et al. (2012) proposed an 

automated system to classify breast lesions in ultrasound images using GLCM method. LDA 

was used to classify the extracted features and the maximum acceptable classification rate was 
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87%. Qinggang et al. (2015) combined in their algorithm two texture features extraction 

methods; Gabor wavelet and GLCM methods in addition to principal component analysis 

(PCA) that was used to optimize the extracted features. Similarly, Sachdeva et al. (2013) 

proposed a multiclass brain tumour classification algorithm using various techniques for feature 

extraction; Laplacian of Gaussian (LoG), GLCM, rotation invariant local binary patterns 

(RILBP), intensity-based features (IBF) and Gabor wavelet. Finally, these features were 

classified using an artificial neural network (ANN) after using PCA for data reduction. An 

overall classification accuracy of 91% was achieved to classify a dataset of 428 MRI brain 

scans. However, the main drawback of local binary pattern (LBP) is that the spatial relations 

among LBPs are mostly discarded within the LBP histogram generation process, because they 

are picked into a single histogram and leads to a loss of global image information (Mohammadi 

et al., 2012). Nabizadeh and Kubat (2015) proposed a fully automated algorithm using five 

effective texture-based statistical feature extraction methods; first order statistical features, 

GLCM, GLRLM, histogram of oriented gradient (HOG) and LBP. PCA was used for feature 

dimension reduction and 97.4% accuracy was achieved for classifying the brain scans of 25 

pathological patients using SVM. Hackmack et al. (2012) proposed an approach for analysing 

MRI brain slices for diseases classification. Dual-tree complex wavelet transform was used for 

feature extraction. The classification was performed using SVM to classify the extracted 

features into normal and abnormal MRI brain scan. Ain et al. (2010) used discrete cosine 

transform (DCT) method for feature extraction to develop an automated system to classify the 

MRI brain slices into normal and abnormal. A Bayesian classifier was used as a statistical 

classifier in this study. Sachdeva et al. (2016) developed a system for assisting radiologists to 

classify brain tumours. The proposed system is composed of three main modules; first brain 

tumours were segmented using a semi-automatic content based active contour model (CBAC). 

Second features extraction using GLCM, LoG, Gabor wavelet, RILBP, IBF and shape based 

feature (SBF) were performed. Then it was followed by features selection to measure the 

significance of features using GA. Finally, SVM and MLP were used independently to classify 

brain tumours and a comparison of their performance was conducted. The accuracies achieved 

by SVM and MLP were 91.7% and 94.9% respectively.   

The previous works showed different algorithms and techniques that were used for features 

extraction from MRI scans (e.g. brain and breast). The detection of brain tumours is generally 
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a more complex task than the detection of any other objects in image processing. Pattern 

recognition algorithms usually depend on the shape of the objects or colour information while 

brain tumours have irregular shapes and no colour information that could be used to 

discriminate the pathological brain. Another widely used knowledge about brain tumours, is the 

symmetry features between the hemispheres of a healthy brain (Dvořák et al., 2013; Saha et al., 

2012; Ray et al., 2008b). This study is primarily concerned with adapting texture feature from 

single MRI modality in order to measure the degree of symmetry between the two hemispheres 

of the brain to discriminate abnormality. The second order statistical features techniques (e.g. 

GLCM) will be considered because it is still the most popular approach for deriving the most 

popular spatial statistical features for texture analysis of biomedical images and provide 

information about the spatial arrangement and intensities distribution in MRI slices. It has a 

good performance that outperforms other techniques such as wavelet features, Fourier features 

and Gabor wavelet (Materka and Strzelecki, 1998; Kharrat et al., 2010).  

In the following subsections, we review some of the approaches and techniques used for texture 

analysis as used in previous researches on MR brain scans.   

2.3.1 Grey Level Co-occurrence Matrix 

The grey level co-occurrence matrix is one of the most popular statistical techniques for 

extracting second order statistical texture features from grey-level images and estimating the 

relationship among pixels or groups of pixels. It considers the spatial relationship between pairs 

of pixels by determining the occurrence appearing in the image (Haralick et al., 1973; William, 

2001; Nabizadeh, 2015; Nailon, 2010). The GLCM considers the relative distance between 

pixels instead of their position. Consequently, unlimited GLCMs can be constructed (Petrou, 

2011). It is still the most popular approach today due to its good performance and the extracted 

features carry information about the distribution of intensities relative to the position of pixels 

(William, 2001; Nixon and Aguado, 2008; Kassner and Thornhill, 2010). The GLCM has rows 

and columns that are equal to the number of grey levels in the image and includes information 

about the number of pairs of intensity value of pixels at different offset distances d in four 

different orientations (𝜽=0o, 45o, 90o and 135o) as illustrated in Fig. 2.2. 
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Figure 2.2: Representation of GLCM. 

For an image I of size (N×N), the GLCM is calculated using Eq. 2.2. 

GLCM𝜃(𝑖, 𝑗) = ∑∑{
1,         𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗 

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         

𝑁

𝑦=1

𝑁

𝑥=1

                   2.2 

where ∆𝑥 and ∆𝑦 are the offset distances between the reference pixel of coordinates 𝑥, 𝑦, and 

its neighbours. 𝑖 and 𝑗 are the coordinates of GLCM (Eleyan and Demirel, 2009). 

The 19 co-occurrence statistics that are used in this study, are derived from each GLCM and 

they will be explained in details in chapter five and are listed in Table 2.2 (Haralick et al., 1973; 

Tantisatirapong, 2015; Gomez et al., 2012; Pantelis, 2010; Zulpe and Pawar, 2012; Gebejes and 

Huertas, 2013; Albregtsen, 2008; Yang et al., 2012; Sonka et al., 2014; Wilson and Ritter, 2000; 

Nabizadeh and Kubat, 2015; Qinggang et al., 2015).  

Table 2.2: List of the 19 co-occurrence statistics extracted from GLCM. 

Texture Features Texture Features 

Contrast Inverse Difference Moment Normalized 

Correlation Sum Average 

Entropy Sum Entropy 

Energy Sum Variance 

Homogeneity Difference Entropy 

Dissimilarity Information Measure of Correlation I 

Sum of Square Variance Information Measure of Correlation II 

Cluster Shade Autocorrelation 

Cluster Prominence Maximum Probability 

Inverse Difference Normalized  

0o 

45o 135o 

90o 
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Although, the GLCM is an efficient technique for extracting spatial texture features from grey 

scale images, it requires more computational time as more levels are included in the GLCM 

(Tantisatirapong, 2015; Gomez et al., 2012). The example given in Fig. 2.3, shows how the 

GLCM can be determined for a given matrix with four orientations (𝜽=0o, 45o, 90o and 135o) 

and an offset distance of 1. 

 

Figure 2.3: Implementation of GLCM; A) Original Matrix, B) The four GLCM with d=1 and 

orientations (𝜽 =0o, 45o, 90o and 135o). 

2.3.2 Gabor Wavelet 

Gabor wavelet is a frequency transform method and one of the most popular signal processing 

based texture features extraction method. It was proposed to be used to model the responses of 

the human visual system. It includes a bank of filters with different spatial frequencies and 

orientations. It encodes the texture features of an image into multiple narrow corresponding 

spatial frequency and orientation channels (Howarth and Ruger, 2005; Nabizadeh and Kubat, 

2015). In the spatial domain, a two-dimensional Gabor function is a Gaussian modulated 

complex sinusoidal function, the complex exponential has a spatial central frequency f and an 

orientation 𝜽. A two dimensional Gabor function can be defined as Eq. 2.3 (Howarth and Ruger, 

2005; Qinggang et al., 2015; Kong et al., 2003; Nabizadeh, 2015). 
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𝐺(𝑥, 𝑦) =
𝑓2

𝜋𝛾
(−

(𝑥′2 + 𝛾2𝑦′2)

2𝜎2
)𝑒𝑥𝑝(𝑗2𝜋𝑓𝑥′ + 𝜙)                                    2.3 

where 𝑥′ and 𝑦′ are determined by using Eq. 2.4 and Eq. 2.5. 

𝑥′ = (𝑥 cos 𝜃 + 𝑦 sin 𝜃)                                                               2.4 

𝑦′ = (−𝑥 sin 𝜃 + 𝑦 cos 𝜃)                                                            2.5 

where 𝜎 is the width of the Gaussian envelope, 𝛾 is the spatial aspect ratio which specifies the 

ellipticity of the support of the Gabor function, and 𝜙 is the phase offset (Nabizadeh, 2015; 

Sachdeva et al., 2013).  

Image texture features 𝑔 can be extracted by convolving the MRI image I with Gabor wavelet 

G at specific frequency f and orientation 𝜃, as given by Eq. 2.6 (Liu et al., 2012).  

𝐺(𝑥, 𝑦, 𝜎, 𝑓, 𝜃) = 𝐼 ∗ 𝑔(𝑥, 𝑦, 𝜎, 𝑓, 𝜃)                                                  2.6 

The majority of researchers (Nabizadeh and Kubat, 2015; Liu et al., 2012; Lahmiri and 

Boukadoum, 2013) and in this work use Gabor wavelet in five scales and eight orientations, 

meaning that  there are forty Gabor wavelets. Since the adjacent pixels in the MRI image are 

highly correlated, there are many redundant features that are produced by Gabor wavelet. 

Consequently, dimensionality reduction methods are required to reduce the size of feature 

vectors (Kharrat et al., 2010; Haghighat et al., 2015).    

2.4 Preparing the Extracted Features for Classification 

There are some pre-processing steps that should be performed to prepare the extracted features 

for classification to improve the accuracy, performance, efficiency and scalability of the 

classification process (Han et al., 2011).  

2.4.1 Relevance Analysis 

It is a process of removing irrelevant and redundant features by finding a minimum set of 

features such that the resultant probability distribution of the data classes is as close as possible 

to the original distribution of features (Han et al., 2011; Tang et al., 2014). High dimensional 
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datasets usually include hundreds of features and some of these features are irrelevant or 

redundant and may lead to deteriorating the classification performance. The irrelevant feature 

can be removed without any effect on distinguishing classes or the classification performance. 

While, some of these features behave in a similar way and then simultaneous presence as 

redundant features. Therefore, removing one of them will not affect the classification 

performance (Gomez et al., 2012). It is expected that the result of relevance analysis is 

completely correlated with the results of the classification (Stańczyk and Jain, 2015). Most 

machine learning algorithms can suffer from both insufficient and excessive number of features 

and they are designed to use the most appropriate features for making their decisions. The most 

appropriate features denote the most promising features that are used to split the given data into 

classes with more discriminating power (Witten et al., 2011). Therefore the relevance analysis 

becomes most popular and widely used in pattern recognition, data analysis, multimedia 

information retrieval, medical data processing, machine learning and data mining applications 

(Tu et al., 2007; Stańczyk and Jain, 2015). The relevance analysis makes features easier to 

understand, reduces complexity and computational cost, enhances interpretability of feature, 

reduces storage requirements, reduces training and utilization times and improving the classifier 

performance by reducing misclassified data and generalization error (Nabizadeh, 2015; Han et 

al., 2011; Tantisatirapong, 2015; Pantelis, 2010). There are two methods that are used to 

perform the relevance analysis: correlation analysis and features selection. Correlation analysis 

is to recognize whether any two given features are related statistically. Once they are strongly 

correlated, one of the features could be discarded from further analysis; "a good feature subset 

is one that contains features highly correlated with the class and uncorrelated with each other" 

(Hall, 1999). Feature selection methods are used to remove the irrelevant features 

(Tantisatirapong, 2015), and  are  divided into two categories; the first is to make features 

assessment based on general characteristics of the data and these are called the filter method 

because the features are filtered to produce the most promising subset. The second category  

evaluates features using machine learning algorithm and they are called the wrapper methods 

because the learning algorithm is wrapped into the selection procedure (Witten et al., 2011; 

Pantelis, 2010). There are many techniques that are used for relevance analysis such as ANOVA 

(Johnson and Synovec, 2002; Baboo and Sasikala, 2010), PCA (Petrov and Jordanov, 2011), 

GA (Ortiz et al., 2013) and kernel PCA (Moghaddasi et al., 2014; Wang, 2012). 
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2.4.1.1 One-Way Analysis of Variance 

The one-way analysis of variance (ANOVA) is a robust statistical technique that is used for 

data analysis for assessing the discriminatory power of each sample in the features vector based 

on testing whether the means of multiple groups are significantly different. The null hypothesis 

in ANOVA is always that there is no difference in the means of groups. The variance based on 

within-group variability should be equal to the variance based on between-group variability. It 

assumes that all the samples are normally distributed with equal variance and all samples are 

mutually independent (Dubitzky et al., 2007).  

The ANOVA predicts the significance of feature using F-statistic and P-value. Where, the F-

statistic is defined as a ratio of between-group variance to the within-group variance that is used 

to assess whether the ratio of these variance estimates is significantly greater than 1. While P-

value is the probability of the test statistic being at least equal to or less than the critical value 

of the test (5% or 1%) (Dubitzky et al., 2007). When applying "the ANOVA on a two-class 

scenario, it is equivalent to the two-sample t-test assuming equal variances" (Dubitzky et al., 

2007; Beura et al., 2015; Crawley, 2012).  

The between-group variance is calculated by Eq. 2.7 (Johnson and Synovec, 2002). 

𝑀𝑆𝑆𝐵 =
∑ (𝑀𝑖 − �̅�)

2𝑛𝑛
𝑖

𝑘 − 1
                                                         2.7 

where M and �̅� denote the predictor and mean of predictors within each group respectively, k 

denotes the number of groups and n denotes number of predictors for each group. 

The within-group variance is calculated using Eq. 2.8: 

𝑀𝑆𝑆𝑤 =
∑ ∑ (𝑀𝑖𝑗 − �̅�𝑗)

2
𝑗𝑖

𝑁 − 𝑘
                                                   2.8 

where 𝑀𝑖𝑗 is the predictor of the jth class and N is the total number of predictors of all classes. 
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Then, the F-statistic is a ratio between the two variances, as given by Eq. 2.9. 

𝐹 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑀𝑆𝑆𝐵
𝑀𝑆𝑆𝑤

                                                        2.9 

From the ANOVA table, when the P-value for the F-statistic value is less than the critical value 

α, then the feature will be significant. The critical value α is proposed and fixed by Fisher in 

1956 (Quinn and Keough, 2002). He suggested the idea of a conventional probability for 

accepting or rejecting a hypothesis and it was one in twenty (0.05 or 5%). The probability of 

the F-statistic rising from multiple groups’ distributions give us a measure of the significance 

of the between group variation as compared to the within group variation (Baboo and Sasikala, 

2010). Consequently, the predictor will be significant when P<0.05, very significant when 

P<0.01 and highly significant when P<0.001 (Quinn and Keough, 2002). In order to achieve 

more efficient feature by ANOVA, it is necessary that the number of features is greater than the 

number of samples or patients within the dataset (Dubitzky et al., 2007). In this study, we will 

use ANOVA to analyse and measure the relevance of the extracted texture features. Because 

the P-value does not indicate actually to what degree each group is separated from the others 

and ignores the redundancy of features (Johnson and Synovec, 2002; Chen et al., 2005). This 

drawback is overcome by using the F-statistic to determine the power of discrimination of the 

features by thresholding. Where, different threshold values will be taken to ignore the redundant 

features and evaluate the selected features at each time by observing the performance of the 

classifier.   

2.4.1.2 Principle Component Analysis 

The principle component analysis (PCA) is a powerful linear transformation technique that has 

been widely used for different purposes such as dimensionality reduction, finding the most 

relevant variables, orientation detection, face recognition and image compression (Smith, 2002; 

Moghaddasi et al., 2014). It is an unsupervised feature selection technique that transforms a 

number of possibly correlated variables into a smaller number of uncorrelated variables, called 

principal components (PCs) (Petrov and Jordanov, 2011). These PCs are a linear combination 

of the original features with different coefficients associated to each original features, and they 

are orthogonal to each other to maintain most of the variability of the features (Tantisatirapong, 
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2015). The PCA normalizes the input feature set to zero mean by subtracting the mean from 

each feature to ensure that features with a large scale will not dominate features with smaller 

one. The PCs are unit vectors and each PC points in the direction of a new axis and is 

perpendicular to the others. The desirable axis (PC1) that has the highest eigenvalue and the 

most variance among the features set. The second orthogonal axis (PC2) has as much of the 

remaining variance in the feature set and so on. The PCs that have low variance, can be ignored 

and only the strongest ones are retained which can be used to obtain a good approximation of 

the original data (Han et al., 2011; Wallisch et al., 2014; Sonka et al., 2014). 

Let us assume that there are N  PCs as the output of the PCA, and M is the number of selected 

PCs corresponding to the highest eigenvalues. The optimal number of selected feature M 

depends on the reconstruction ratio 𝛾. Where 𝛾 is defined as the ratio of the summation of the 

M selected eigenvalues to the total sum of all eigenvalues and computed by Eq. 2.10 

(Nabizadeh, 2015).   

𝛾 =
∑ 𝛾𝑖
𝑀
𝑖=1

∑ 𝛾𝑖
𝑁
𝑖=1

                                                                  2.10 

where 𝛾𝑖 is the eigenvalues that are sorted in a descending order, and 𝛾 is the reconstruction 

ratio. The number of the selected feature will increase when 𝛾 values approach 1.  

PCA is computationally inexpensive and can be applied to sparse and skewed data but its main 

drawback is that it is not appropriate for more than two-dimensional data because the covariance 

matrix is proportional to the dimensionality of the data. As a result, the computation of the 

eigenvectors might be infeasible (Han et al., 2011; Van der Maaten, 2007). In addition,  if the 

data has more complicated structures which cannot be represented in a linear space, the use of 

the traditional PCA will not be appropriate and helpful (Wang, 2012).      

2.4.2 Features Transformation  

Features transformation is a process of transforming and scaling the extracted features into new 

predetermined ranges due to the different dynamic range of the feature across all cases in the 

dataset (Tantisatirapong, 2015; Han et al., 2011). Therefore, the extracted features should be 

normalized to standardize the scale of the effect of each feature to be more appropriate for the 
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classification process. In addition, to avoid features with initially large numeric ranges 

dominating the features with initially smaller numeric ranges, and also avoid numerical 

complexities during the learning phase of the classification process (Kalbkhani et al., 2013). 

There are many normalization techniques and some of them are described in the following 

subsections. 

2.4.2.1 Min-Max Normalization  

Min-Max normalization performs a linear transformation on the extracted features with 

preserving the relationships among the feature vector values. The feature values are scaled from 

the predetermined range to the interval range between 0 and 1, as defined in Eq. 2.11 

(Tantisatirapong, 2015; Han et al., 2011; Larose, 2005; Kalbkhani et al., 2013; Zhang et al., 

1998; Jayalakshmi and Santhakumaran, 2011). 

𝑣′ =
𝑣 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
                                                                2.11 

where 𝑣′  is the normalized value of feature vector 𝑣, min is the minimum value of texture 

feature in the features vector, and max is the maximum value of texture feature in the features 

vector. In this study, the extracted features will be normalized using this method to the range 

[0, 1] (Tantisatirapong, 2015). 

2.4.2.2 Z-Score Normalization 

Z-Score normalization is widely used in statistical analysis, and is also known as zero mean 

normalization. The values of feature vector are normalized based on the mean and standard 

deviation of features vector as defined in Eq. 2.12 (Han et al., 2011; Larose, 2005; Takayanagi 

et al., 2011; Jayalakshmi and Santhakumaran, 2011). 

𝑣′ =
𝑣 −𝑚

𝜎
                                                                       2.12 

where m and 𝜎 are the mean and standard deviation respectively of the feature vector. This 

method is preferable when the actual minimum and maximum values of the feature vector are 

unknown (Han et al., 2011). 
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2.4.2.3 Decimal Scaling Normalization  

Decimal scaling normalization is performed by moving the decimal point of values of texture 

features. The number of decimal points moved depends on the maximum absolute value of the 

features vector, as defined in Eq. 2.13 (Han et al., 2011). 

𝑣′ =
𝑣

10𝑗
                                                                        2.13 

where j is the smallest integer and Max (𝑣′)<1. 

2.4.2.4 Median Normalization  

Median normalization uses the median value for each features vector to normalize each feature. 

It is a useful method when there is a need to compute the ratio between two hybridized samples, 

and the median value is not effected by the magnitude of extreme deviation. It is determined 

using Eq. 2.14 (Jayalakshmi and Santhakumaran, 2011). 

𝑣′ =
𝑣𝑖

𝑚𝑒𝑑𝑖𝑎𝑛(𝑣)
                                                             2.14 

where 𝑣 denotes the input features vector, and 𝑣𝑖 is the required sample in the feature space.   

2.4.2.5 Sigmoid Normalization 

Sigmoid normalization is a non-linear method used to normalize the extracted features within 

range of 0 to 1 or -1 to +1, as defined in Eq. 2.15 (Jayalakshmi and Santhakumaran, 2011). 

𝑣′ =
𝑒𝑣 − 𝑒−𝑣

𝑒𝑣 + 𝑒−𝑣
                                                               2.15 

where 𝑣 denotes the input features vector, and 𝑣𝑖 is the required sample in feature space.   
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2.5 Classification 

Classification is the process of sorting objects in images into separate classes and plays an 

important role in medical imaging, especially in the detection and recognition tumours and 

many other applications such as robotic and speech recognition (Dougherty, 2009). 

Classification is concerned with identifying criteria that can be used to discriminate different 

objects that may appear in images (Russ, 1990). Data classification includes two essential steps; 

in the first step, the classifier is built describing a predetermined set of data classes. This phase 

is known as the learning phase or training phase (Sonka et al., 2014; Han et al., 2011). Once the 

class labels of the given data has  been assigned, we say that the classifier is supervised learning,  

otherwise if the class labels  are unknown, the classifier is said to be unsupervised (Han et al., 

2011; Larose, 2005; Solomon and Breckon, 2011). In the second step, the classifier performance 

is assessed on a new set of data know as test data and this phase is known as the “test phase”. 

The classification techniques are grouped into statistical approaches and intelligent approaches. 

The statistical approaches are based on computing the probability distributions and estimate 

some parameters such as the mean and standard deviation to provide a better representation of 

the classes such as LDA, SVM and k-nearest neighbour (KNN) (Li and Ogihara, 2006; Han et 

al., 2011; Dougherty, 2009; Dubitzky et al., 2007). Intelligent approaches include learning 

capabilities and involves to use an artificial intelligence techniques in the classification process, 

such as ANN (Hagan et al., 1996; Lekutai, 1997). A number of common classification methods 

have been used to distinguish and differentiate brain tumours in MRI images and the three most 

popular classifiers are LDA (Zacharaki et al., 2009; Takayanagi et al., 2011), SVM with radial 

basis function (Nagarajan et al., 2013; Kharrat et al., 2010; Bauer et al., 2011; Hackmack et al., 

2012; Kalbkhani et al., 2013) and MLP (Pantelis, 2010; Saritha et al., 2013; Antkowiak, 2006). 

2.5.1 Linear Discriminant Analysis 

The linear discriminant analysis (LDA) is a classification method originally developed by 

Fisher in 1936, it is based on searching for a linear combination of the variables that best 

discriminate among classes (Li and Ogihara, 2006). The classification is implemented on the 

transformed space based on maximizing the ratio of between-class variance to the within-class 

variance to find the optimal vector 𝚽  to separate the classes. It computes the probability 

distributions and derives the mean and standard deviation to provide a better representation of 
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classes. It is commonly used for data classification and dimension reduction (Li and Ogihara, 

2006; Chen and Tian, 2011; Balakrishnama and Ganapathiraju, 1998).  Let us assume that there 

is a set of m  p-dimensional samples x1, x2, ….., xm (where, xi = (xi1, xi2,…, xip)) belonging to 

two different classes C1 and C2. The with-in classes scatter matrix Sw is computed using Eq. 

2.16 (Li and Ogihara, 2006; Zacharaki et al., 2009; Mihelič and Žibert, 2008). 

𝑆𝑤𝑖 =∑(𝑥𝑖 − 𝜇𝑖)(𝑥𝑖 − 𝜇𝑖)
𝑇

𝑖∈𝑐

                                                2.16 

where i is the number of classes and 𝝁𝒊 is the overall mean of points within the same class that 

is calculated using Eq. 2.17. 

𝜇𝑖 =
1

𝑁𝑖
∑𝑥𝑖
𝑖∈c

                                                                2.17 

where N is the number of samples in C. 

Similarly, the difference between the classes’ means is known as the between-class scatter 

matrix 𝑺𝒃 and it is computed using Eq. 2.18. 

𝑆𝑏 =∑(𝜇1 − 𝜇2)(𝜇1 − 𝜇2)
𝑇

c

                                           2.18 

where 𝝁𝟏 and 𝝁𝟐 are the mean of all points in the first and second class respectively. 

As defined earlier, the main objective of LDA is to maximize the distance between the classes 

by increasing the ratio of between-class scatter to the within-class scatter as shown in Fig. 2.4. 

This ratio is known as the Fisher criterion and is defined in terms of 𝑺𝒘 and 𝑺𝒃 as given in Eq. 

2.19 (Zacharaki et al., 2009). 

 J(Φ)v
max =

ΦTSbΦ

ΦTSwΦ
                                                              2.19 

By taking the derivative of 𝐉(𝚽), then it is easy to find a vector 𝚽 that maximizes 𝐉(𝚽). 
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Figure 2.4: Separation between two classes. 

Finally, each group of features will have a normal distribution of discriminant scores, the 

success of separation and classification depends on the degree of overlapping between the 

discriminant score distributions. A poor classification happens when the discriminant scores 

overlap widely, and a good classification happens when the discriminant scores do not overlap 

meaning that misclassification will be minimal as shown in Fig. 2.5. 

 

A) Poor distribution                                         B) Good distribution 

Figure 2.5: The discriminant distributions. 

2.5.2 Support Vector Machines 

The support vector machine (SVM) was developed in 1992 by Vapnik and colleagues Boser 

and Guyon. It is considered as the state-of the-art supervised learning model and it has been 

used in various application such as handwriting recognition, object recognition, speaker 

identification and medical diagnosis (Han et al., 2011; Tantisatirapong, 2015). It is a statistical 

First Distribution Second Distribution First Distribution Second Distribution 

𝑺𝒃 

𝑺𝒘 
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approach for performing both linear and nonlinear classification by transforming the features 

into a higher dimension using a nonlinear mapping. It searches for the linear or nonlinear 

optimal separating hyperplane to separate the features into classes (Han et al., 2011). SVM 

provides a robust classification framework that works efficiently for situations with a 

moderately large number of features and relatively small sample size (Dubitzky et al., 2007). 

The optimal separating hyperplane is constructed when the maximum distance between the two 

closest data points in the two classes is found as shown in Fig. 2.6 (Han et al., 2011; Dubitzky 

et al., 2007). The decision function d is defined by Eq. 2.20. 

𝑑(𝑥, 𝜔, 𝑏) = 𝜔. 𝑥 + 𝑏 =∑𝜔𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

                                       2.20 

where x is the attributes vector, 𝝎 is the weight vector, b is a scalar and represents a bias or also 

known as an additional weight wo, and n is the number of attributes. If there are two attributes 

(A1, A2), then X= (x1, x2), where x1 and x2 are the values’ vectors of these two attributes. The 

separating hyperplane function can be estimated from the decision function when sets it equal 

to zero as given in Eq. 2.21. 

𝜔. 𝑥 + 𝜔0 =∑𝜔𝑖𝑥𝑖 + 𝜔0

𝑛

𝑖=1

= 0                                                2.21 

Therefore, any point that lies above the separating hyperplane will satisfy Eq. 2.22: 

𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 > 0                                                  2.22 

 

 

 

 

 

 

Figure 2.6: Two classes separated by a hyperplane. 
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Similarly, any point that lies below the separating hyperplane will satisfy Eq. 2.23: 

𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 < 0                                                  2.23 

While the expression of the margins “sides” can be written as Eq. 2.24 and Eq. 2.25: 

H1: 𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 ≥ 1                                            2.24 

H2:𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 ≤ 1                                            2.25 

where H1 and H2 are the hyperplanes also called support vectors. 

By combing Eq. 2.24 and Eq. 2.25, Eq. 2.26 is obtained. 

𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 ≥ 1,  ∀i                                           2.26 

Any attribute sample which falls on the support vectors H1 or H2 will satisfy Eq. 2.26 and it 

becomes as Eq. 2.27: 

𝜔0 + 𝜔1𝑥1 +⋯+𝜔𝑛𝑥𝑛 = 1                                              2.27 

Consequently, it is easy to find the size of the maximal margin m, which represents the distance 

from any point that is located on the support vector H1 to the hyperplane is 
𝟏

‖𝝎‖
, where the ‖𝝎‖ 

is the Euclidean norm of 𝝎, which it is √𝝎𝟏
𝟐 +𝝎𝟐

𝟐 +⋯+𝝎𝒏
𝟐 , and this is equal to the distance 

from any point which is located on the support vector H2 to the hyperplane. Thus, the maximal 

distance between the support vectors is 
𝟐

‖𝝎‖
.  

In order to get the maximum separability, the maximal distance should be maximized 
𝟐

‖𝝎‖
 or 

minimized ‖𝝎‖. The latter term is equivalent to minimizing 
𝟏

𝟐
‖𝝎‖𝟐 and it could be solved by 

using the Lagrangian method by minimizing Eq. 2.28 (Sonka et al., 2014; Hamel, 2009). 

 𝐿 =
1

2
‖𝜔‖2 −∑ ∝𝑛 [𝑦𝑛(𝜔. 𝑥𝑛 + 𝜔𝑜) − 1]                                      2.28

𝑛
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By deriving Eq. 2.28, Eq. 2.29 is obtained: 

𝜕𝐿

𝜕𝜔
= 𝜔 −∑ ∝𝑛 𝑦𝑛𝑥𝑛 = 0

𝑛

                                                      2.29 

and 𝝎 is given in Eq. 2.30 

𝜔 =∑ ∝𝑛 𝑦𝑛𝑥𝑛
𝑛

                                                                2.30 

By substituting 𝝎 in Eq. 2.28, Eq. 2.31 is obtained. 

𝜕𝐿

𝜕𝜔𝑜
= −∑ ∝𝑛 𝑦𝑛 = 0

𝑛

                                                         2.31 

Then the discriminant function of SVM classifier can be deduced as Eq. 2.32. 

𝑑(𝑥𝑇) =  ∑𝑦𝑛 ∝𝑛 𝑥𝑛𝑥
𝑇 + 𝜔𝑜

𝑛

                                                 2.32 

where yn is the class label of support vector xn, x
T is the set of attributes and ∝𝐧 is a numeric 

parameter which is determined automatically by the optimization process (Han et al., 2011; 

Hamel, 2009). 

2.5.3 Artificial Neural Network 

The artificial neural network (ANN) is a technique that is used to seek and build an intelligent 

model that simulates the working network of the neurons in the human brain (Ross, 2009). It 

has been successfully used to solve many problems. There are many types of ANNs that are 

designed to address a wide range of problems in the area of pattern recognition and 

classification, signal processing, object recognition and robotics. These types of ANNs are 

determined by the processing elements, pattern of connectivity, the strength of weights and 

training or learning rules which specify an initial set of weights and how these weights adapt 

during implementation (Lekutai, 1997; Birry, 2013; Wilson and Ritter, 2000). 
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2.5.3.1 Multilayer Perceptron 

The multilayer perceptron (MLP) neural network model is well known and most popular among 

all ANNs. It has been widely used to provide a nonlinear mapping between its input and output 

to solve different kinds of problems such as prediction and diagnosing of many medical 

applications (Birry, 2013; Jiang et al., 2010; Hu and Hwang, 2001). Typically, the MLP network 

configuration as shown in Fig. 2.7, has an input layer, one or more hidden layers and an output 

layer. Such that the size of input layer corresponds to the number of descriptors in features 

vector. Usually, there is no neuron function implemented in that layer (Hu and Hwang, 2001). 

While the number of neurons in output layer depends on the particular problem at hand. The 

neurons of MLP are fully connected, that’s mean that every neuron in a given layer is connected 

to all neurons in next layer (Larose, 2005; Han et al., 2011; Günther and Fritsch, 2010). 

Typically, there is no theoretical limit for choosing the number of hidden layers, but practically 

most purposes of pattern recognition algorithms use one or two hidden layers and maximally 

three hidden layers are acceptable to solve problems of any complexity. Increasing the number 

of hidden layer does not benefit to improve the accuracy of the classification process. It may 

lead to overfitting, memorizing the training set and increasing computation time. While 

increasing the number of neurons in hidden layer leads to increase the power and flexibility of 

the network for tackling complex problems. Therefore, the number of hidden layers and number 

of neurons in each hidden layer are chosen experimentally by user. If overfitting is occurred, 

reducing the number of neurons in the hidden layer may considered is an important (Larose, 

2005; Birry, 2013). It has been proven that it is possible to approximate an arbitrarily complex 

mapping within a finite support by using two hidden layers and a sufficient number of neurons 

in hidden layer (Hu and Hwang, 2001). 

Many activation functions have been used with neural network but only a few have been used 

in practical application. The most common activation functions that are used widely in decision-

making neurons for classification and pattern recognition tasks are the sigmoid function and 

hyperbolic tangent function. Such that, they are satisfying the approximation conditions of 

ANNs, nonlinear functions and more differentiable (Lekutai, 1997; Özkan and Erbek, 2003; 

Negnevitsky, 2005). The differentiable activation function makes the function that is computed 

by a neural network is differentiable (Rojas, 1996).  
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Figure 2.7:  Multilayer perceptron configuration (Hu and Hwang, 2001). 

The sigmoid function is computed as Eq. 2.33. 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
                                                                2.33 

This function has ability to map a large input domain of any value between plus and minus 

infinity, into the small range of 0 to 1. Usually neurons with this function are used in the back-

propagation networks (Negnevitsky, 2005). Because of it is nonlinear function, it allows the 

MLP to classify the data that it is linearly inseparable (Han et al., 2011). As well as, the error 

function that is produced by a sigmoid function is smooth or flat and it is always has a positive 

derivative (Birry, 2013; Rojas, 1996). 

The second most widely used function is the hyperbolic tangent function, it is computed as 

following Eq. 2.34 (Graupe, 2013): 

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
                                                  2.34 
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It is a bipolar version of the sigmoid function and used to map data onto the range of -1 to +1. 

Such that, the -1 and +1 output values represent minus and plus infinity respectively. The 

hyperbolic tangent function has faster convergence of learning algorithm than sigmoid function 

in addition it is more efficient for the classification (Özkan and Erbek, 2003).  

The most popular and successful learning algorithm for training the MLP is the back 

propagation algorithm. It was developed by Rumelhart Hinton and Williams in 1986 (Lekutai, 

1997). It is based on using an iterative descent method (Larose, 2005) for minimizing mean 

squared error between target and the actual output of MLP network. There are several issues 

associated with designing and training a MLP network such as number of hidden layers and 

number of neurons in hidden layers. These issues will be discussed in section 2.5.3.2.   

2.5.3.2 Determining Number of Neurons in the Hidden Layers of MLP 

Deciding the number of neurons in the hidden layers is an important issue because the hidden 

layers do not deal immediately with the external environment. They have a vital influence on 

the final output of the network. Therefore, both the number of hidden layers and the number of 

neurons in the hidden layers must be chosen carefully (Panchal et al., 2011). There are some 

guidelines are followed for determining the number of neurons in the hidden layers (Xu and 

Chen, 2008; Gunasekara et al., 2009): 

 The number of neurons in the hidden layer should be in between the size of the input layer 

and the size of the output layer. 

 The number of neurons in the hidden layer should be around 2/3 of the input layer size, plus 

size of the output layer. 

 The number of neurons in the hidden layer should be less than twice the size of the input 

layer. 
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2.6 Image Segmentation 

The principle goal of the segmentation process is partitioning an image into meaning and 

homogeneous regions with respect to one or more characteristics (Solomon and Breckon, 2011; 

Dougherty, 2009; Sonka et al., 2014; William, 2001; Russ, 1990). Subdivision levels of 

segmentation depend on the problem being solved (Gonzalez and Woods, 2002). In medical 

imaging, segmentation is an important tool for feature extraction, image measurements and 

image display. It has been useful in many applications such as coronary border in angiograms, 

multiple sclerosis lesion quantification, surgery simulations, surgical planning and measuring 

tumour volume. Segmentation is useful to classify image pixels to different anatomical regions, 

such as bones, muscles and blood vessels. Furthermore, it is used to classify the pixels of 

pathological regions, such as cancer, tissue deformities and multi sclerosis lesions (Ho et al., 

2002; Dvořák et al., 2013; Prastawa et al., 2009; Bankman, 2009). The segmented image should 

have the following aspects in order to get a good image segmentation;  

1. The regions of the segmented image should be uniform.  

2. The internal area of the regions should be clear without small holes.  

3. The adjacent regions of the segmented image should have a significant difference.  

4. The boundary of the segmented regions should be smooth and not coarse (William, 2001). 

Segmentation techniques are divided into manual, semi-automated and fully automatic based 

on the degree of user interaction. The manual segmentation depends on the domain-knowledge 

of the user and the resulting output from an expert. This is known as the ground truth or the 

gold standard. Fully automatic segmentation does not need for user interaction and it requires 

less processing time but it is likely to perform less satisfactorily on medical images due to the 

complexity and inhomogeneity of anatomical texture. Semi-automatic segmentation method is 

used when the pathological area can be easier to identify visually but not automatically, then 

the user's supervision is integrated with computer algorithm to achieve an optimal segmentation 

of the region of interest (RoI) (Tantisatirapong, 2015). A wide variety of brain tumour 

segmentation techniques have been proposed and still now there is no standard segmentation 

technique that can produce satisfactory results (Gordillo et al., 2013). There are many 

segmentation techniques of very different nature each one has benefits and drawbacks. 
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Different applications need different segmentation techniques and the main factors that could 

be used to choose an appropriate segmentation techniques are (Rousseau, 2009): 

1- Level of noise in the image. 

2- Characteristics of the required object such as topology, homogeneity and size. 

3- Sharpness of the object's contour. 

4- Image contrast.    

In the last few decades the number of publications that are devoted to automated brain tumour 

segmentation has grown rapidly due to the progress in the medical imaging field (Menze et al., 

2015). Prastawa et al. (2004) described a framework for automated brain tumour segmentation 

of MRI brain scans where the detection of edema was implemented simultaneously with tumour 

segmentation. This framework is composed of three stages of analysis of T2-w images; 

detection of brain abnormalities by using atlas registration, determination of the presence of 

edema within the abnormality (tumour), and generation of geometric and spatial constraints to 

discriminate tumour and edema regions. Parametric deformable models, also known as active 

contour models or snakes, are shown to be strongly suitable for determining these boundaries 

(Gordillo et al., 2013). These approaches enable segmentation, matching and tracking of 

anatomical areas by exploiting conditions derived from anatomical and biological knowledge 

about location, size and shape of the anatomical areas (Nabizadeh, 2015). These deformable 

models are defined as curves or surfaces that move under the influence of weighted internal and 

external forces. Internal forces are responsible for the smoothness of the curves, while external 

forces are responsible for pushing and pulling the curves toward the boundaries of anatomical 

area. An automated brain tumour and edema segmentation algorithm was proposed to 

implement a fast segmentation of MRI brain slices based on bounding boxes method (Saha et 

al., 2012). The Bhattacharya coefficient of grey scale intensity histograms has been used as a 

score function to measure the similarity between two intensity histograms to locate bounding 

boxes around the abnormal area in MRI brain slices. This method parallelizes searching for the 

most dissimilar region in the MRI brain slice between the left and right hemispheres of the brain 

in the axial view of the MRI scan (Saha et al., 2012; Ray et al., 2008b). An automated algorithm 

for detecting the tumour location in a single MRI brain slice and identifying the tumour 

boundaries by using an unsupervised learning algorithm called Force algorithm, was proposed 
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in (Khandani et al., 2009). A set of prior operations for skull and non-tumour pixel removal, 

using histogram analysis and exponential transformation, was applied with subsequent 

segmentation of the tumour area by histogram thresholding. Mikulka and Gescheidtov (2013) 

proposed an automated segmentation algorithm to recognize brain tumours, edema and necrosis 

in T1-w and T2-w images. A binary mask was created to enable measurement in perfusion 

weighted images, where the tumour type could be recognized by detecting the level of perfusion 

of contrast agent in the pathological tissue. Havaei et al. (2017) presented a fully automatic 

brain tumour segmentation method based on convolutional neural network (CNN), that exploits 

both local features as well as more global contextual features simultaneously. In this approach 

segmentation was performed slice by slice from the axial viewing and each pixel was associated 

with different MR modalities; T1-w, T2-w, T1c-w and FLAIR images. The CNN architecture 

included several layers that are stacked on top of each other and were used to form a hierarchy 

of features called a feature map, corresponding to neurons within a neural network. The reported 

maximum achievable accuracy of this approach was 88%, and the specificity and sensitivity 

were 89% and 87% respectively. Previous studies commonly focus on segmenting each slice 

individually (“slice-by-slice”), then merge these to obtain a three-dimensional volume or a 

continuous surface. However, the resulting segmentation can include inconsistencies and non-

continuous surface due to missing important anatomical information in three-dimensional 

space. These approaches do not exploit all the features of the full MRI slices (Mikulka and 

Gescheidtov, 2013; Despotović et al., 2015). Ho et al. (2002) developed a new method for the 

automatic segmentation of anatomical structures from volumetric T2-w and T1c-w MR brain 

scans by using a three-dimensional level-set and a probability map. The probability map was 

used locally to guide the propagation direction and speed of a level-set snake as well as to derive 

an automatic initialization of the snake. The snake can grow inside the tumour area even if the 

initialization seed point covers a small portion of the tumour. Rousseau (2009) proposed an 

automated algorithm for heart segmentation, known to be a difficult task due to the complexity 

of the organ shape and its topology. A three-dimensional deformable model approach was used 

as a best segmentation method that does not require training data. As well as, it requires a careful 

initialization with an initial contour that is close to the object of interest. The approach also 

requires user guidance to place landmarks in the image to steer the segmentation. Klotz (2013) 

proposed an automated algorithm to determine the thickness of the retinal nerve fibre layer 
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which can serve as an early indicator of glaucoma. The two-dimensional active contour without 

edge (2DACWE) and three-dimensional active contour without edge (3DACWE) were used to 

segment synthetic and real human retina. All the above mentioned active contour segmentation 

approaches require the estimation of the initial close snake contour for the tumour (Loizou et 

al., 2009). Alternatively, an automated three-dimensional segmentation algorithm based on 

kernel-based fuzzy C-means (KFCM) was proposed to separate the MRI breast slices into 

different parts by Song et al. (2013). However, no evaluation in terms of accuracy of their 

method was presented. Another use of fuzzy rules for MRI brain scans was reported in (Dou et 

al., 2007).  

In general, to distinguish segmentation techniques, they are classified into groups based on the 

image information which is used to implement the segmentation. These are described in the 

following subsections.  

2.6.1 Pixel Based Segmentation 

This type of segmentation is also known as threshold-based methods. They are conceptually the 

simplest approaches of segmentation and commonly used in two dimensional images. They 

consider only intensity value of the current pixel and discarding its neighbouring pixels. 

Actually, it is noted that these methods are not segmentation procedures because each pixel is 

isolated from its neighbourhood. Therefore, it cannot be guaranteed that actually only the 

connected segments are obtained. Most of pixel based techniques depend essentially on 

measuring thresholds from the histogram of an image (Petrou, 2011; Dougherty, 2009; Naji et 

al., 2012; Watt and Policarpo, 1998). In these methods, the objects of the image are classified 

by comparing their pixels' intensities with one or more intensity thresholds. These thresholds 

can be either global or local. If the object can be separated from the background of the image 

by a single threshold this is named as global thresholding. However, if there are more than two 

objects, then the segmentation should be implemented using local thresholding (Jin et al., 2014; 

Gordillo et al., 2013; Naji et al., 2012; Russ, 1990). Automated threshold selection is essentially 

based on considering the image histogram, such that the histogram typically includes two peaks; 

one corresponding to the pixels of the objects and the other one to the pixels of the background. 

The threshold needs to be chosen so that these two peaks are clearly separated from each other 

(Solomon and Breckon, 2011). The major problem with thresholding is that only the intensity 
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information is considered and the relationships between the pixels are ignored. There is no 

guarantee that the segmented pixels by thresholding are contiguous. As well as it probably 

includes extraneous pixels that do not attend to the desired region or attend to the background 

region. Sometimes isolated pixels within the region especially near the boundaries of the region 

are ignored. Generally, threshold-based segmentation methods are unable to exploit all the 

information that is provided by MRI slice and in most cases are usually used to separate and 

eliminate the background of MRI slice (Gordillo et al., 2013; Wilson and Ritter, 2000; Russ, 

1990).     

2.6.2 Region Based Segmentation 

This type segmentation is considered as one of the conceptually simplest approaches for image 

segmentation. It is based on dividing the image into regions according to predefined similarity 

criteria. It is also called region merging and starts with a single pixel or a group of pixels that 

are called seeds. Neighbours of the seed are checked and those satisfying the similarity criteria 

are added to the same structure of interest (Solomon and Breckon, 2011). The similarity 

between pixels can be based on intensity information and/or edges in the image (Pham et al., 

1998). The procedure repeats until no more pixels can be added to the structure of interest. The 

similarity criteria are determined according to the features of the image and the seeds can be 

chosen manually by the user or automatically by a computer algorithm. The main characteristic 

of region growing is that it is capable to segment regions that have similar properties and 

generating connected region (Rogowska, 2009). The main disadvantage of region growing 

methods is the PV effect which limits the accuracy of MR brain image segmentation. Such that, 

PV blurs the borders between different tissues because the voxel may contain more than one 

kind of tissue types  (Gordillo et al., 2013; Sato et al., 2000; Jin et al., 2014). It is more sensitive 

to noise, causing extracted regions to have holes or become disconnected (Pham et al., 1998). 

Additionally, if the seed point is not properly chosen, the region grows outside the object of 

interest or merges with another region that does not belong to the desired object (Dougherty, 

2009).   
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2.6.3 Edge Based Segmentation 

It is based on finding the differences instead of similarity between pixels to determine the close 

boundaries which correspond to objects of an image (Dougherty, 2009). It is computationally 

fast and does not need any prior information about image content. Usually, it operates on edge 

magnitude and/or phases’ images that are produced by an edge operator suited to the expected 

characteristics of the image (Rogowska, 2009). It has been developed to be strongly sensitive 

to the significant variations in grey level values and decide whether or not a pixel lies on an 

edge independently of the neighbouring pixels (Birry, 2013). The variations in a grey level value 

mean that is gradually changing from the background to the object value. This approach can be 

used to avoid a bias in the size of the segmented object without a complex thresholding scheme 

because it is based on the fact that the position of an edge is given by an extreme of the first 

order derivative of the image function (Jähne, 2005). The main problems of edge based 

segmentation is that often the edges do not enclose the object completely. To solve this problem, 

an extra post-processing steps of linking or grouping edges that correspond to a single boundary 

is required to combine edges into edge chains that correspond better with edges in the image. 

They are more sensitive to image noise, unsuitable information in an image, and if the image's 

region features differ by only a small amount between regions, a detected edge may be broken 

(Sonka et al., 2014; William, 2001; Rogowska, 2009). 

2.6.4 Deformable Model  

The basic idea of the deformable model for image segmentation is to embed an initial contour 

into the image, then let it evolves according to constraints derived from the image together with 

a prior knowledge about the location of RoI. The contour continues to evolve under the 

influence of internal and external forces until stopping on the edge of RoI. It is also variously 

named snakes, active contour, balloon and deformable contour (Dougherty, 2009; Jähne, 2005). 

Among all segmentation techniques, the deformable model has proved to be a successful and 

efficient segmentation technique for a wide range of application especially medical application 

due to its capability of accommodating the often significant variability of biological structures 

over time and cross different patients (Rousseau, 2009; Tantisatirapong, 2015). Jin et al. (2014) 

and Gordillo et al. (2013) concluded that the good results of brain tumour segmentation using 

conventional methods (e.g. pixel based method, region based method and edge based method) 
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are hard to achieve. In most situations, these methods were used as a pre-processing step in the 

segmentation of brain tumour. Additionally, due to the appearance of volumetric three-

dimensional medical imaging data, the segmentation of this data has become a challenging 

problem to extract boundary elements that belong to the same structure. Therefore, the 

deformable model was proposed to improve this problem by combing constraints which are 

derived from the image and a prior knowledge of the object such as location, shape and 

orientation. The deformable models were originally developed to address the problems in 

computer vision and medical image analysis. Two-dimensional and three-dimensional 

deformable models have been applied to segment, visualize, track and quantify a variety of 

anatomic structures such as the brain tumours, heart, face, cerebral, coronary and retinal arteries, 

kidney, lungs, etc. (McInerney and Terzopoulos, 2009). The deformable model is susceptible 

to fall in local minimum due to some the local features of the image, or when some of the 

object's edges are missing. Therefore the brain tumours segmentation with deformable model 

require a careful initialization with the initial contour that is close to the tumour's boundaries 

(Rousseau, 2009). Although there are several general segmentation methods such as 

thresholding (Petrou, 2011; Dougherty, 2009; Naji et al., 2012; Jin et al., 2014) and region 

growing (Fabijańska, 2009; Jin et al., 2014), they are not applicable on the brain lesions 

segmentation. Active shape model and active appearance model are avoided because these 

methods require a training set that consists of many images that are manually segmented. 

Similarly, a model based method is avoided because it requires atlas registration. Such that atlas 

is built from a given training set, for the same reason that the segmentation based on training 

set is not preferable and the registration remains challenging and yet not solved for the general 

use (Nabizadeh, 2015; Nabizadeh and Kubat, 2015). Furthermore the atlas registration 

introduces a bias in the segmentation because the algorithm searches for a shape similarity to 

one of the atlas (Rousseau, 2009). Therefore, the concentration in this study will be on using a 

deformable model approach (e.g. 2DACWE) due to its simplicity and robustness, appearance 

of three-dimensional MRI data, ability to extract boundary elements belonging to the same 

structure and integrate these elements into a single object. In addition to the ability of 

segmenting anatomic structures by using derived constraints from the image and a prior 

knowledge about the location of these structures and capability of segmenting the biological 

structures which are often significant variability over time and across different individuals. 
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Furthermore, the deformable model provides highly intuitive interaction mechanisms that allow 

clinicians and radiologists to bring their expertise to image interpretation task (Jin et al., 2014; 

Rousseau, 2009).   

2.6.4.1 Active Contour 

Active contour (AC) is the most popular method and was introduced by Kass et al. (1988). It is 

defined by an energy function and a solution is found using techniques of variation calculus and 

the finite difference methods where a set of curves are defined and deformed within digital 

images to recover object shapes (Loizou et al., 2009). It has been widely applied to image 

segmentation, analysis of dynamic image data or three-dimensional image data and medical 

images. There are several distinct advantages of AC models over other conventional 

segmentation methods. First, AC models can achieve sub-pixel accuracy of object boundaries. 

As well as it can be easily formulated under a principled energy minimization framework, and 

allow the incorporation of various prior knowledge such as shape and intensity distribution for 

robust image segmentation (Chunming et al., 2008). It generates snake or contour within an 

image domain, the contour can be moved and directed under the effect of its internal and 

external forces from the image data. The internal and external forces of the contour correspond 

to the object boundary and desired features in an image (Xi-ping et al., 2002; Pham et al., 1998). 

The contour does not solve the entire problem of finding objects in images. It depends on the 

user interaction and information from image data that is related with time or space. The 

interaction means that the approximate shape or the starting point of the contour somewhere 

inside the desired object should be specified in addition to image-based information. All these 

information are used to push the contour toward the desired object’s contour (Sonka et al., 

2014). The location of contour in the given image associates with the energy function. 

Mathematically, a deformable contour moves through an iterative process and adapts itself by 

a dynamic process that minimizes an energy function. Where, the energy function achieves the 

minimum when the contour reaches the object boundary within the image. Initially, the initial 

contour C is defined close to the edge of the desired object and it is guided by defining the 

corresponding energy function that is given by Eq. 2.35 (Rousseau, 2009; Kass et al., 1988; Xi-

ping et al., 2002; Talebi et al., 2010; Xu and Prince, 1998; Sonka et al., 2014). 
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𝐸(𝐶) = 𝐸(∅(𝑥, 𝑦)) = 𝑤1𝐸𝑖𝑛𝑡(∅(𝑥, 𝑦)) + 𝑤2𝐸𝑖𝑚𝑎𝑔𝑒(∅(𝑥, 𝑦)) + 𝑤3𝐸𝑒𝑥𝑡(∅(𝑥, 𝑦))       2.35  

where E is the energy function, 𝑤1, 𝑤2 and 𝑤3 are real positive values, and ∅(𝑥, 𝑦) is the level 

set that uses the signed distance function (SDF) and represents the mathematical description of 

C, and makes it always continuous and closed. 𝐸𝑖𝑛𝑡 denotes the energy inside C that is used to 

control the rate of stretching and smoothing and preventing the discontinuity in C, as given in 

Eq. 2.36 (Sonka et al., 2014; Loizou et al., 2009). 

𝐸𝑖𝑛𝑡(∅(𝑥, 𝑦) ) = 𝛼|∅(𝑥, 𝑦) , |2 + 𝛽|∅(𝑥, 𝑦) ,,|2                                     2.36 

where the first order term is the elasticity and is controlled by 𝛼, and the second order term is 

the stiffness and controlled by 𝛽. They are responsible for controlling the natural behaviour of 

C and makes it like a membrane. They can be adjusted by balancing this term against an external 

energy 𝐸𝑖𝑚𝑎𝑔𝑒 from the image (Toennies, 2012). 

Whereas, 𝐸𝑖𝑚𝑎𝑔𝑒 is related to the image gradient and includes a combination of some relevant 

features such as the gradient of the edge, lines, regions and textures that attract the contour to 

follow high gradients in the image, as given in Eq. 2.37 (Loizou et al., 2009; Toennies, 2012). 

𝐸𝑖𝑚𝑎𝑔𝑒 (∅(𝑥, 𝑦)) = ∫𝑃(∅(𝑥, 𝑦))𝑑𝑥𝑑𝑦                                   2.37

1

0

 

where P is a scalar potential function defined on the image plane, and it is defined by given Eq. 

2.38. 

𝑃(∅(𝑥, 𝑦) ) = −𝑐|𝛻[𝐺𝜎(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)]|
2                                2.38 

where c controls the magnitude of potential function, 𝐺𝜎(𝑥, 𝑦) is a two-dimensional Gaussian 

function whose characteristic standard deviation is 𝜎, ∇ is the gradient operator and * denotes 

the convolution process between the Gaussian function and given image I(x,y).  
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While, 𝐸𝑒𝑥𝑡 is defined by the user and it is optional. Occasionally it includes two different 

functions that attract the snake to lines and edges. It is given in Eq. 2.39 (Sonka et al., 2014; 

Loizou et al., 2009).  

𝐸𝑒𝑥𝑡 = 𝑤𝑙𝑖𝑛𝑒 𝐸𝑙𝑖𝑛𝑒 + 𝑤𝑒𝑑𝑔𝑒 𝐸𝑒𝑑𝑔𝑒                                           2.39 

The line function is given in Eq. 2.40 (Sonka et al., 2014). 

𝐸𝑙𝑖𝑛𝑒 = 𝐼(𝑥, 𝑦)                                                         2.40 

where 𝐼(𝑥, 𝑦) denotes the image intensity at the specific locations (𝑥, 𝑦), and the sign of 𝑤𝑙𝑖𝑛𝑒 

specifies whether attraction of the snake is to the light or dark lines. 

The edge function is given in Eq. 2.41 (Sonka et al., 2014). 

𝐸𝑒𝑑𝑔𝑒 = −|∇ 𝐼(𝑥, 𝑦)|2                                                2.41 

where ∇ is the gradient operator that attracts the snake to the large image gradients that have 

strong edges. 

The main drawbacks of AC are sensitive to the initial conditions and the difficulties associated 

with the topological changes for merging and splitting of the evolved contour. Such that the 

initial contour should be closed to the desired boundary or it will  likely converge to the wrong 

boundary (Thapaliya et al., 2013; Xu and Prince, 1998). Additionally, due to AC relying on 

image gradient to guide and stop contour evolution, the intensity homogeneity is essential to 

achieve efficient segmentation. In fact, intensity inhomogeneity occurs significantly in real 

medical images from different modalities due to technical limitations, artefacts introduced by 

the scanned object and variations in object susceptibility (Chunming et al., 2008). Additionally, 

reliance on the gradient method is bounded because it is sensitive to noise and some objects 

have boundaries that are not well defined through the gradient. This makes the energy function  

never approaching zero on the edges (Chan and Vese, 2001). Finally, there are series of slices 

in medical images where objects boundaries are not clear and region statistics change 

dramatically in some parts of the objects’ boundaries between neighbourhood slices (Xi-ping et 
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al., 2002). All of these issues are addressed by the 2DACWE method (Chan and Vese, 2001), 

that it will be described in details in 2.6.4.3. 

2.6.4.2 Level Set Method 

The level set method was introduced in the late 80's by Sethian and Osher (Rousseau, 2009). It 

is a powerful tool for implementing contour evolution and managing automatic topology 

adaptation using only geometric measures and some prior information from image data to 

recover RoI boundaries (Sonka et al., 2014). It also provides the basis for a numerical scheme 

that is used by geometric deformable models. In level set method, an evolving contour 𝐶 is 

implicitly represented as a zero level set of a higher-dimensional scalar function referring to the 

level set function ∅(𝐶) which is defined on the same domain of the image. Instead of tracking 

a contour 𝐶 through time, the level set method evolves the contour by updating the level set 

function ∅(𝑥, 𝑦, 𝑡) at fixed coordinates through time. It remains a valid function while the 

embedded contour 𝐶  can change its topology (Xu et al., 2000). Figure 2.8 shows how the 

contour 𝐶 is embedded at zero level set in the evolving surface ∅(𝑥, 𝑦, 𝑡), and can be written as 

Eq. 2.42 (Rousseau, 2009; Chan and Vese, 2001; Crandall, 2009; Thapaliya et al., 2013; Xu et 

al., 2000; Parisot, 2013). 

∅(𝐶, 𝑡) = 0                                                                   2.42 

By differentiating, Eq. 2.42 with respect to t and using the chain rule method, Eq. 2.43 is 

obtained (Xu et al., 2000; Rousseau, 2009). 

 

 

 

 

 

Figure 2.8: Evolving of contour 𝐶. 

Inside 𝐶 (∅ > 0) 

Outside 𝐶 (∅ < 0) 

𝐶 (∅ = 0) 
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𝜕∅

𝜕𝑡
+ ∇∅ .

𝜕𝐶

𝜕𝑡
= 0                                                              2.43 

Accordingly, the unit normal to the level set curve is given by Eq. 2.44. 

𝑁 =
∇∅

|∇∅|
                                                                       2.44 

Then, by using Eq.2.44, we can rewrite Eq. 2.43, as Eq. 2.45. 

𝜕∅

𝜕𝑡
+ |𝛻∅|𝑁 .

𝜕𝐶

𝜕𝑡
= 0                                                         2.45 

Since the normal speed 𝑉(𝑘) is 𝑁 .
𝜕𝐶

𝜕𝑡
 , then the evolution equation can be written as Eq. 2.46 

(Parisot, 2013). 

𝜕∅

𝜕𝑡
+ |𝛻∅| 𝑉(𝑘) = 0                                                         2.46 

Finally, the curvature 𝑘 at zero level set measures how sharply the contour C bends or how 

quickly it changes direction, is given in Eq. 2.47 (Chan et al., 2000; Chan and Vese, 2001; 

Klotz, 2013). 

𝑘 = 𝑑𝑖𝑣 (
∇∅

|∇∅|
) =

∅𝑥𝑥∅𝑦
2 − 2∅𝑥∅𝑦∅𝑥𝑦 + ∅𝑦𝑦∅𝑥

2

(∅𝑥2 + ∅𝑦2)3/2
                                  2.47 

where ∅𝑥 , ∅𝑦 , ∅𝑥𝑥 , ∅𝑦𝑦and ∅𝑥𝑦  are derivatives of level set function ∅, they are derived by 

using a finite difference implicit scheme as given in Eq. 2.48, Eq. 2.49, Eq. 2.50, Eq. 2.51 and 

Eq. 2.52. 

∅𝑥 =
∅𝑥+∆𝑥,𝑦 − ∅𝑥−∆𝑥,𝑦

2∆𝑥
                                                         2.48 

∅𝑦 =
∅𝑥,𝑦+∆𝑦 − ∅𝑥,𝑦−∆𝑦

2∆𝑦
                                                       2.49 
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∅𝑥𝑥 =
∅𝑥+∆𝑥,𝑦 − 2∅𝑥,𝑦 + ∅𝑥−∆𝑥,𝑦

∆𝑥2
                                              2.50 

∅𝑦𝑦 =
∅𝑥,𝑦+∆𝑦 − 2∅𝑥,𝑦 + ∅𝑥,𝑦−∆𝑦

∆𝑦2
                                              2.51 

∅𝑥𝑦 =
∅𝑥+∆𝑥,𝑦+∆𝑦 − ∅𝑥−∆𝑥,𝑦+∆𝑦 − ∅𝑥+∆𝑥,𝑦−∆𝑦 + ∅𝑥−∆𝑥,𝑦−∆𝑦

4∆𝑥∆𝑦
                      2.52 

The segmentation by using two-dimensional contours has many problems especially when 

dealing with cross-sectional images such as MRI scan. Where, there is information loss because 

of neglecting the third dimension, broken boundary between slices and overlapping intensities 

(Aloui and Naceur, 2011). In order to avoid these issues, a three-dimensional level set method 

is used for segmenting a volumetric data where the curvature 𝑘 at zero level set is given in Eq. 

2.53 (Klotz, 2013; Sonka et al., 2014; Hasan et al., 2016b). 

𝑘 = 𝑑𝑖𝑣 (
∇∅

|∇∅|
) =

√(∅𝑧𝑧∅𝑦 − ∅𝑦𝑦∅𝑧)
2
+ (∅𝑥𝑥∅𝑧 − ∅𝑧𝑧∅𝑥)2 + (∅𝑦𝑦∅𝑥 − ∅𝑥𝑥∅𝑦)

2

(∅𝑥2 + ∅𝑦2 + ∅𝑧2)3/2
        2.53 

where ∅𝑥, ∅𝑦, ∅𝑧, ∅𝑥𝑥, ∅𝑦𝑦 and ∅𝑧𝑧 are derivatives of the level set function ∅, they are derived 

by using a finite difference implicit scheme as given in Eq. 2.54, Eq. 2.55, Eq. 2.65, Eq. 2.57, 

Eq. 2.58 and Eq. 2.59: 

∅𝑥 =
∅𝑥+∆𝑥,𝑦,𝑧 − ∅𝑥−∆𝑥,𝑦,𝑧

2∆𝑥
                                                        2.54 

∅𝑦 =
∅𝑥,𝑦+∆𝑦,𝑧 − ∅𝑥,𝑦−∆𝑦,𝑧

2∆𝑦
                                                       2.55 

∅𝑧 =
∅𝑥,𝑦,𝑧+∆𝑧 − ∅𝑥,𝑦,𝑧−∆𝑦

2∆𝑧
                                                       2.56 

∅𝑥𝑥 =
∅𝑥+∆𝑥,𝑦,𝑧 − 2∅𝑥,𝑦,𝑧 + ∅𝑥−∆𝑥,𝑦,𝑧

∆𝑥2
                                            2.57 
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∅𝑦𝑦 =
∅𝑥,𝑦+∆𝑦,𝑧 − 2∅𝑥,𝑦,𝑧 + ∅𝑥,𝑦−∆𝑦,𝑧

∆𝑦2
                                            2.58 

∅𝑧𝑧 =
∅𝑥,𝑦,𝑧+∆𝑧 − 2∅𝑥,𝑦,𝑧 + ∅𝑥,𝑦,𝑧−∆𝑦

∆𝑧2
                                            2.59 

To implement the segmentation, an initial level set function (Eq. 2.42), must be defined and it 

is frequently based on SDF from each point in the grid to the zero level set at level set function 

with a sign depending on being inside or outside C, as given in Eq. 2.60 (Sonka et al., 2014): 

∅(𝐶, 𝑡 = 0) = SDF                                                       2.60 

        where,         

SDF = {
> 0        𝑖𝑛𝑠𝑖𝑑𝑒 𝐶
= 0                𝑜𝑛 𝐶
≤ 0      𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝐶

 

Since the stopping criteria is based on the speed function 𝑉(𝑘) that uses the image gradient to 

stop contour evolution. Considering the region properties of the segmented objects is essential 

and helpful. Therefore, we will focus on this study to use a piecewise constant minimal variance 

criterion based on the Mumford-Shah functional (Sonka et al., 2014) proposed by Chan and 

Vese (2001) to deal with such situations.  

2.6.4.3 2D Active Contour without Edge 

The two-dimensional active contour without edge (2DACWE) method, also known as Chan-

Vese model, is an example of a geometric active contour model (Chan and Vese, 2001). The 

initial contour is evolved using a level set method and does not rely on the gradient of the image 

for stopping process. It integrates the statistical information which is related to the wanted 

regions to improve the quality of segmentation and is based on minimizing the Mumford-Shah 

function. The Mumford-Shah function is a function that is used to establish an optimum 

criterion for segmenting an image into sub-regions and suggested the energy function given in 

Eq. 2.61. It can be used for segmenting an image I into non-overlapping regions (Rousseau, 

2009; Chan and Vese, 2001; Getreuer, 2012; Chunming et al., 2008; Pock et al., 2009). 
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ℱ𝑀𝑆(𝑢, 𝐶) = 𝜆 ∫(𝑢 − 𝐼)2 𝑑𝑥𝑑𝑦 +

𝛺

∫|∇𝑢|2 𝑑𝑥𝑑𝑦 

𝛺/𝐶

+ 𝜇 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶)                            2.61 

where u denotes a set of piecewise smoothing functions that approximate the original image I, 

and smooths each of the connected components in the image domain 𝛺 separated by the contour 

C. Therefore, 2DACWE can detect object boundaries both with and without gradients. For 

instance objects that are very smooth, or even have discontinuous boundaries (Chan and Vese, 

2001; Crandall, 2009). To overcome the time complexity of solving the general Mumford-Shah 

function, it is required to suppose u to be constant on each connected component (Getreuer, 

2012). An active contour approach was proposed by Chan and Vese (2001) based on minimizing 

Mumford-Shah functional by penalizing the enclosed area assuming that u is supposed to have 

only the two values which are given in Eq. 2.62 (Getreuer, 2012; Chunming et al., 2008). 

𝑢(𝑥, 𝑦) = {
𝑐1    𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 𝑎𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒     𝐶                                                         
𝑐2    𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 𝑎𝑟𝑒 𝑜𝑢𝑡𝑠𝑖𝑑𝑒  𝐶                                                 2.62

 

where 𝑐1 and  𝑐2 are the values of u inside and outside 𝐶 respectively. The Chan-Vese energy 

function is given in Eq. 2.63 (Getreuer, 2012; Chunming et al., 2008; Chan and Vese, 2001; 

Thapaliya et al., 2013). 

ℱ𝐶𝑉(𝐶, 𝑐1, 𝑐2) = 𝜇 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)) + 𝜆1 ∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝑑𝑥𝑑𝑦 

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2𝑑𝑥𝑑𝑦 

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                                                                     2.63 

The regularity is controlled by penalizing the length in the first term, and the size is controlled 

by penalizing the enclosed area of 𝐶 in the second term. These terms are called regularizing 

terms and are given in Eq. 2.64 and Eq. 2.65, and encourage the contour 𝐶 to be smooth and 

short, and can be written by using level set form ∅ (Chan and Vese, 2001; Klotz, 2013) as. 
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𝑙𝑒𝑛𝑔𝑡ℎ(∅(𝑥, 𝑦)) =  ∫ 𝛿𝑜(∅(𝑥, 𝑦))|∇∅(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

𝛺

                               2.64 

𝑎𝑟𝑒𝑎(∅(𝑥, 𝑦)) = ∫ 𝐻(∅(𝑥, 𝑦))𝑑𝑥𝑑𝑦 

𝛺

                                        2.65 

𝜆1, 𝜆2, 𝜇 ≥ 0 and 𝑣 ≥ 0 are fixed parameters controlling selectivity, where the energy function 

is minimized by fixing these parameters optimally. Meanwhile, 𝜆1,  𝜆2 control the internal and 

external forces respectively. These terms usually hold the same constant and hence a fair 

competition between these two forces (Chunming et al., 2008). Generally, 𝜆1 = 𝜆2 = 1 (Chan 

and Vese, 2001; Nixon and Aguado, 2008). Meanwhile, 𝜇 controls the smoothness of contour 

𝐶 and assumes a scaling role. However, the parameter is not constant across all experiments. If 

𝜇 is large, only larger objects with smooth boundaries are segmented. If 𝜇 is small, objects of 

smaller size are segmented accurately (Tai et al., 2005; Chan and Vese, 2001; Getreuer, 2012). 

Typically, 𝜇 depends on image resolution (IRe), where 𝜇 = 0.1 × IRe2  (Nixon and Aguado, 

2008). Rousseau (2009) concluded that there is no automatic way to set these parameters and 

they are usually tuned by letting them vary and observing the results. Once the object has sharp 

boundaries, only a small influence of the curvature term is needed, meaning that the ratio 𝜇/𝜆 

is small. Otherwise, if the required object is inhomogeneous, does not have a sharp boundary 

or contains a lot of noise and texture, a higher value of the ratio 𝜇/𝜆 is needed. Meanwhile, v 

sets the penalty for the area inside the contour 𝐶. This parameter is essential only when two 

sides of boundaries (internal and external boundaries) are presented in the desired object 

(Getreuer, 2012). 𝛿𝑜is a two-dimensional Dirac function that represents 
𝑑

𝑑∅
 𝐻(∅(𝑥, 𝑦)), ∇ (Eq. 

2.75) is the gradient operator, and H is the Heaviside function (Chan and Vese, 2001; Klotz, 

2013; Rousseau, 2009). Accordingly, by using level set function the Chan–Vese energy 

function can be rewritten as in Eq. 2.66 (Chan and Vese, 2001; Crandall, 2009; Hasan et al., 

2016b) as follows. 
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ℱ𝐶𝑉(∅(𝑥, 𝑦)) = 𝜇 ∫ 𝛿𝑜(∅(𝑥, 𝑦)) |∇∅(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

𝛺

+ 𝑣 ∫ 𝐻(∅(𝑥, 𝑦))𝑑𝑥𝑑𝑦      

𝛺

+ 𝜆1 ∫ |𝐼(𝑥, 𝑦) − 𝑐1|
2𝐻(∅(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝐼(𝑥, 𝑦) − 𝑐2|
2(1 − 𝐻(∅(𝑥, 𝑦))𝑑𝑥𝑑𝑦

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                                         2.66 

The minimization is solved by alternatively updating 𝑐1, 𝑐2  and ∅ . Keeping ∅  fixed and 

minimizing the energy function ℱ𝐶𝑉with respect to the optimal values 𝑐1and 𝑐2. Consequently, 

Eq. 2.67 and Eq. 2.68 are attained for 𝑐1 and 𝑐2 as functions of ∅ (Thapaliya et al., 2013; Chan 

and Vese, 2001; Tai et al., 2005; Hasan et al., 2016b). 

𝑐1(∅(𝑥, 𝑦)) =
∫ 𝐼(𝑥, 𝑦)
𝛺

. 𝐻(∅(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

∫ 𝐻(∅(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
𝛺

 
                                       2.67 

𝑐2(∅(𝑥, 𝑦)) =
∫ 𝐼(𝑥, 𝑦)
𝛺

. (1 − 𝐻(∅(𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦

∫ (1 − 𝐻(∅(𝑥, 𝑦))) 𝑑𝑥 𝑑𝑦
𝛺

 
                              2.68 

To minimize the energy function ℱ𝐶𝑉with respect to ∅ and fix the 𝑐1 and 𝑐2, a gradient descent 

method is adopted and has yielded the associated Euler-Lagrange equation for ∅, which is given 

by Eq. 2.69 (parameterizing the descent direction by an artificial time) (Thapaliya et al., 2013; 

Chan and Vese, 2001; Tai et al., 2005; Chan et al., 2000). 

{
 

 
𝜕∅

𝜕𝑡
= 𝛿(∅) [𝜇 𝑑𝑖𝑣 (

∇∅

|∇∅|
) − 𝑣 − 𝜆1(𝐼(𝑥, 𝑦) − 𝑐1)

2 + 𝜆2(𝐼(𝑥, 𝑦) − 𝑐2)
2]  in  𝛺                               

𝛿(∅)

|∇∅|
 
𝜕∅

𝜕�⃗� 
= 0  𝑜𝑛  𝜕𝛺                                                                                                                             2.69  

     

where �⃗�  represents the exterior normal to the boundary of 𝜕𝛺 and 
𝜕∅

𝜕�⃗� 
 represents the normal 

derivative of  ∅ at the boundary. 
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2.6.4.4 3D Active Contour without Edge 

The three-dimensional active contour without edge (3DACWE) method has the same principles 

of 2DACWE method that was explained in details in 2.6.4.3. The 3DACWE algorithm evolves 

the three-dimensional level set function and minimizes the Mumford-Shah functional. The 

initial contour 𝐶 is defined as a 3D-box with x, y and z coordinates inside the desired object, 

such that x and y denotes the dimensions of 3D-box within each MRI slice and z denotes the 

number of MRI slices that are covered by 3D-box. Then the Chan-Vese energy function is given 

in Eq. 2.70 (Rousseau, 2009; Klotz, 2013; Hasan et al., 2016b).  

ℱ𝐶𝑉(𝐶, 𝑐1, 𝑐2) = 𝜇 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)) + 𝜆1 ∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐1|
2𝑑𝑥𝑑𝑦𝑑𝑧

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐2|
2𝑑𝑥𝑑𝑦𝑑𝑧

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                                                               2.70 

where the first and second terms are given in Eq. 2.71 and Eq. 2.72 respectively (Chan and 

Vese, 2001; Klotz, 2013; Hasan et al., 2016b).  

𝑙𝑒𝑛𝑔𝑡ℎ(∅(𝑥, 𝑦, 𝑧)) = ∫ 𝛿𝑜(∅(𝑥, 𝑦, 𝑧))|∇∅(𝑥, 𝑦, 𝑧)|𝑑𝑥𝑑𝑦𝑑𝑧

𝛺

                      2.71 

𝑎𝑟𝑒𝑎(∅(𝑥, 𝑦, 𝑧)) = ∫ 𝐻(∅(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧

𝛺

                               2.72 

Accordingly, by using three-dimensional level set function the Chan–Vese energy function can 

be rewritten as in Eq. 2.73 (Chan and Vese, 2001; Crandall, 2009). 
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ℱ𝐶𝑉(∅(𝑥, 𝑦, 𝑧))

= 𝜇 ∫ 𝛿𝑜(∅(𝑥, 𝑦, 𝑧)) |∇∅(𝑥, 𝑦, 𝑧)|𝑑𝑥𝑑𝑦𝑑𝑧

𝛺

+ 𝑣 ∫ 𝐻(∅(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧

𝛺

+ 𝜆1 ∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐1|
2𝐻(∅(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2 ∫ |𝐼(𝑥, 𝑦, 𝑧) − 𝑐2|
2(1 − 𝐻(∅(𝑥, 𝑦, 𝑧))𝑑𝑥𝑑𝑦𝑑𝑧

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

                           2.73 

The minimization is solved by alternatively updating c1, c2 and ∅. Keeping ∅ fixed and 

minimizing the energy function ℱ𝐶𝑉 with respect to the optimal values of 𝑐1 and 𝑐2 . 

Consequently, Eq. 2.74 and Eq. 2.75 are attained for 𝑐1and 𝑐2 as functions of ∅ (Rousseau, 

2009; Klotz, 2013; Crandall, 2009; Hasan et al., 2016b).   

𝑐1(∅(𝑥, 𝑦, 𝑧)) =
∫ 𝐼(𝑥, 𝑦, 𝑧)
𝛺

. 𝐻(∅(𝑥, 𝑦, 𝑧)) 𝑑𝑥 𝑑𝑦 𝑑𝑧

∫ 𝐻(∅(𝑥, 𝑦, 𝑧)) 𝑑𝑥 𝑑𝑦
𝛺

𝑑𝑧
                                  2.74 

𝑐2(∅(𝑥, 𝑦, 𝑧)) =
∫ 𝐼(𝑥, 𝑦, 𝑧)
𝛺

. (1 − 𝐻(∅(𝑥, 𝑦, 𝑧))) 𝑑𝑥 𝑑𝑦 𝑑𝑧

∫ (1 − 𝐻(∅(𝑥, 𝑦, 𝑧))) 𝑑𝑥 𝑑𝑦
𝛺

𝑑𝑧
                        2.75 

To minimize the energy function ℱ𝐶𝑉with respect to ∅ and fix 𝑐1and 𝑐2, a gradient descent 

method is adopted and has yielded the associated Euler-Lagrange equation for ∅, which is given 

by Eq. 2.76 (parameterizing the descent direction by an artificial time) (Rousseau, 2009; Klotz, 

2013; Crandall, 2009; Hasan et al., 2016b).  

{
 

 
𝜕∅

𝜕𝑡
= 𝛿(∅) [𝜇 𝑑𝑖𝑣 (

∇∅

|∇∅|
) − 𝑣 − 𝜆1(𝐼(𝑥, 𝑦, 𝑧) − 𝑐1)

2 + 𝜆2(𝐼(𝑥, 𝑦, 𝑧) − 𝑐2)
2]  in  𝛺                

𝛿(∅)

|∇∅|
 
𝜕∅

𝜕𝑛
= 0  𝑜𝑛  𝜕𝛺                                                                                                                        2.76

     

where �⃗�  represents the exterior normal to the boundary of 𝜕𝛺, and 
𝜕∅

𝜕�⃗� 
 represents the normal 

derivative of  ∅ at the boundary. 
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To segment the brain tumour, it is essential to define an initial contour through tumour 

boundary. Then within iterations of 3DACWE, this contour evolves until reaching the actual 

border of the tumour. Several criteria can be used to stop the segmentation process; when the 

area of contour becomes constant or the energy function reaches the minimum value. The latter 

criteria will be sufficient to use in this study to stop the segmentation process.         

2.7 Conclusion 

In this chapter, a comprehensive literature on brain tumours analysis in MRI images was 

reviewed to select the most appropriate techniques and methods that were used for analysing 

MRI brain scans. The techniques were investigated based on various aspects such as feature 

extraction scheme and classification accuracy. The framework of this study includes image pre-

processing, texture feature extraction, feature selection, classification and segmentation and a 

theoretical background for evaluating the selected methods were also demonstrated.  

In the next chapter, the basics of magnetic resonance imaging and the characteristics of brain 

tumours will be introduced and explained in details. 
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CHAPTER THREE 

Basics of Magnetic Resonance Imaging 

 _________________________________________________________________________________ 

Overview 

This chapter includes an introduction to digital image representation, followed by fundamental 

principles of MRI with its important characteristics. Finally, a brief description about Al-

Kadhimiya Teaching Hospital and some basic information about brain tumours are included.  

__________________________________________________________________________________ 

3.1 Introduction 

Image processing tools have been used significantly in medical imaging technologies and could 

improve the accuracy of the diagnostic processes. Medical imaging has been considered as a 

powerful technology used for clinical diagnosis. MRI has become one of the major research 

subjects in medical image processing field. Recently it has begun to be applied widely in 

screening of brain tumours, due to its sensitivity to locate changes in tissue density. 

MRI is the standard important step for diagnosing and evaluating patients who have symptoms 

and signs of a brain tumour. It provides MR slices from different angles that enables clinicians 

to be more precise in diagnosing. In addition, it plays an important role in providing essential 

information such as tumour types (e.g. tumour or stroke), assessing tumour site, tumour area 

and volume, directing biopsies, planning the proper therapy and evaluating the therapeutic 

results (Drevelegas and Papanikolaou, 2011; Tonarelli, 2013; Mechtler, 2009). 

3.2 Digital Image Representation 

A digital image can be considered as a discrete representation of data which includes both 

spatial and intensity information. The digital image I(m, n) can be represented by a series of 

numerical values of fixed positions (m=1, 2,…, M; n=1, 2,…, N) in a two dimensional array as 

shown in Fig. 3.1. The indices m and n specify the rows and columns of the image (Solomon 

and Breckon, 2011; El-Shenawy, 2013). A single position in a digital image is called picture 

element or pixel and is designated by (m, n) indices. 
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Figure 3.1: The representation of a digital image. 

The associated numerical value refers to a grey value or colour information. In the case of grey 

scale image (8-bits), each pixel has a numerical value that is called intensity value and is 

typically in the range 0 to 255. Where, 0 represent the black colour and 255 represents the white 

colour.  

In a three dimensional representation or volumetric data, a medical image is represented as I(m, 

n, k), each picture element is called a voxel or volume element and represents the dimensions 

of the actual tissue. The indices m, n and k specify rows and columns of the medical image and 

the thickness of the voxel respectively (Sonka et al., 2014; Guy and Ffytche, 2005). The MRI 

scans includes a series of slices. Figure 3.2 shows an example of MRI brain scanning slices with 

the following MR sequences; the width is 512 pixel, the height is 512 pixel and the space 

between slices is 5.5 mm. 

3.3 Magnetic Resonance Imaging 

Medical imaging technology has experienced a dramatic change in the last 30 years (Christos, 

2005). MRI is a vision and non-ionizing technology that has become most popular and widely 

used because of more precise and accurate imaging and diagnose of pathology in addition to 

excellent image contrast resolution. In contrast with other medical technologies such as X-ray 

and CT, it is harmless to the human body because of using radio frequency (200 MHz- 2 GHz) 

electromagnetic radiation and large magnetic field around (1-3 Tesla) to build cross sectional 

soft tissue visualization for all internal organs of the human body and vessels (Blink, 2004). 
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Figure 3.2: MRI brain slices with 5.5 mm thickness. 

The MRI scanner has a powerful magnetic field which is generated by using a superconducting 

magnet. The wire has been used to construct the superconducting magnet with a resistance 

which approach to zero (Dougherty, 2009). The MRI has played an important role in the medical 

imaging and helped clinicians to diagnose and plan treatment such as surgery or radiation 

therapy. The majority of researches on medical imaging use MRI scans because it provides high 

resolution images, excellent soft tissue contrast and high signal to noise ratio (Pham et al., 1998; 

Blink, 2004). The MRI technology is based on the interaction between an external magnetic 

field and protons of hydrogen which possesses spin, since the human body consists of about 

70% water. This mean that the biological tissue is composed of billions of hydrogen atoms. 

Therefore, the concentration is on the hydrogen nucleus which has a single proton (Petrou, 

2011). The MRI is particularly well suited for the imaging of biological tissue such as brain, 

eyes and others rather than bones because they do not have many hydrogen atoms. The protons 

of the hydrogen are continuously moving. This movement is a self-rotation or spinning around 

an internal axis with a given value of angular momentum P. This rotation creates a magnetic 

field oriented with the direction of the internal axis of the rotation. Therefore, the proton has a 

magnetic moment μ as shown in Fig. 3.3. The magnitude of the angular momentum is a constant 

value and the magnetic moment of the proton can be calculated using Eq. 3.1 (Blink, 2004). 

|𝜇 | = 𝛾|�⃗� |                                                                               3.1 
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where 𝛾 is a precession frequency of hydrogen protons; it is also known as the “gyromagnetic” 

ratio and it is equal to 42.576 MHz/Tesla.  

 

 

 

 

Figure 3.3: Internal rotation of a hydrogen proton. 

This means that the hydrogen protons precess around the axis of external magnetic field about 

42 million times per second (Schild, 1990). Normally, the direction of μ is randomly oriented 

in the absence of an external magnetic field as shown in Fig. 3.4, and it is aligned to an outer 

magnetic field if it is available (Petrou, 2011). Once applying a very strong external magnetic 

field on the human body, all the hydrogen protons align themselves along one of the two 

directions; parallel or anti-parallel to the external magnetic field Bo. Where, some of the protons 

align their magnetic moments with the same direction of Bo, they are called parallel protons. 

These protons have lower energy state. While the other protons align their magnetic moments 

in the opposite direction of the external magnetic field Bo and they are called anti-parallel 

protons. These protons have a higher energy state. 

 

 

 

 

 

 

 

 

Figure 3.4: Random oriented poles of hydrogen protons. 
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Generally, the numbers of parallel protons are slightly more than anti-parallel protons as shown 

in Fig. 3.5. For instance, in 1.5 Tesla MRI scanner, for every 2 million protons, there are only 

9 protons aligned along the direction of the external magnetic field Bo more than those which 

are aligned against it (Dougherty, 2009). 

 

 

 

 

 

 

 

Figure 3.5: Aligned poles of hydrogen protons in external magnetic field. 

Consequently, there is a net magnetization Mo which has the same direction of Bo as shown in 

Fig. 3.6, and created by finding the difference between the magnetic moments of parallel and 

anti-parallel protons by using Eq. 3.2 (Blink, 2004; Schild, 1990).  

𝑀𝑜 = ∑ 𝜇

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

− ∑ 𝜇

𝐴𝑛𝑡𝑖 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

                                                     3.2 

This means that the magnetic moment of the parallel protons cancels the magnetic moment of 

the anti-parallel protons. Precisely, these protons do not just orient their magnetic moment μ 

with the external magnetic field Bo but they start to spin around the axes of the external magnetic 

field Bo in a certain way as shown in Fig. 3.7. This process is called precession frequency or 

Larmor frequency. It is defined as the number of times that the protons precess per second. 
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Figure 3.6: Direction of the net magnetization. 

 

Figure 3.7: The precession movement of the proton. 

It is not constant and depends on the intensity of the external magnetic field and  is calculated  

using Eq. 3.3 (Blink, 2004; Schild, 1990). 

𝜔𝑜 = 𝛾𝐵𝑜                                                                        3.3 

where 𝜔𝑜  is the Larmor frequency, Bo is the external magnetic field and 𝛾  is a precession 

frequency for the hydrogen proton. 

In order to create detailed MRI slices, a second magnetic field is needed to excite the hydrogen 

protons and manipulate the net magnetization. An electromagnetic pulse, also known as a radio 

frequency (RF) pulse with frequency equal to precession frequency and perpendicular to the 
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direction of the external magnetic field Bo. It is applied to incite resonance and causes some 

parallel protons to jump and to be in the higher energy anti-parallel direction (Dougherty, 2009). 

If 1.5 Tesla MRI scanner is used, RF pulse at frequency 63.855 MHz is applied and only protons 

that precess with the same frequency of RF pulse will respond to that RF pulse (Blink, 2004). 

Depending on time and amplitude of excitement; the net magnetization Mo is effected and starts 

to tilt from the z-axis to the x-y plane as shown in Fig. 3.8, because the protons absorb energy 

from RF pulse and the number of high energy protons increases. Once the RF pulse is switched 

off, the excited net magnetization starts to relax slowly back to the original orientation along 

the z-axis which represent the system equilibrium state. This process is known as the relaxation 

process as shown in Fig. 3.9. The time that the net magnetization takes to return back to the 

original state includes essential information about the dynamics of the molecules in the patient 

(Petrou, 2011). 

 

 

 

 

 

 

Figure 3.8: The net magnetization tilts toward the x-y plane. 

 

 

 

 

 

Figure 3.9: The net magnetization is relaxed after switching off the RF pulse. 
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There are two relaxations times that could be measured for protons namely T1 and T2 relaxation 

times; T1 relaxation is known as the longitudinal or spin-lattice relaxation that represents the 

required time for relaxing the excited net magnetization or protons back to recover 63% of the 

original net magnetization Mo after the RF pulse is switched off. The stored energy of protons 

is released as emitted signal during the relaxation process, which can be picked up by lattice 

(Petrou, 2011). Each tissue has different rate of relaxation process or energy releasing (e.g. T1 

relaxation time is about 100 ms for fat and about 2000 ms for water) (Dougherty, 2009; Guy 

and Ffytche, 2005).   

T2 relaxation is also known as spin-spin relaxation because it describes the interactions between 

the hydrogen protons in molecules (Blink, 2004). It represents the required time for declining 

the excited net magnetization Mxy to 37% of the original state due to all protons start to rotate 

at slightly different frequencies around the z-axis and start to exchange energy between each 

other (Dougherty, 2009; Blink, 2004; Guy and Ffytche, 2005).  

T1 and T2 relaxations are two independent processes that happen simultaneously and are not 

correlated. Where, the T1 relaxation describes what happens in the z-axis, and the T2 relaxation 

describes what happens in the x-y plane. Additionally, the required time for T1 relaxation is 

always longer than T2 relaxation time. Different types of tissue have different relaxation time 

(e.g. fat tissue is de-phased quickly, while the water is de-phased much slower) (Blink, 2004). 

When both relaxation processes are terminated, the net magnetization returns to the original 

orientation along the direction of the external magnetic field Bo. Figure 3.10 shows the steps of 

excitation and relaxation of hydrogen protons in MRI. The hydrogen protons return to spin out 

of phase and lose the acquired energy as radio frequency waves. The RF coils that represent one 

of the most important components of MRI scanners, are used to transmit and collect the radio 

frequency waves. These waves are raw data, and picked up before disappearing in the space 

(Blink, 2004).  

An MRI sequence, also known as the pulse sequence is defined as a sequence of events; RF 

pulses, gradient switches, data sampling periods and the timing between each of them are used 

to acquire the data from the human body and convert it to an image. The data is obtained by 

using a series of steps. First, switching on the slice selection gradient and simultaneously 
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applying an RF pulses to excite the net magnetization into the x-y plane. In addition, two 

essential elements of the sequence are the phase encoding and the frequency encoding which 

are required to localize the spatial resolution. Finally, the process is repeated many times by 

applying a series of excitation pulses, each separated by a repetition time (TR), the process of 

repetition is called gradient echo (GE) sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Excitation and relaxation of the hydrogen protons (Petrou, 2011), A) without 

excitation, B) with excitation, C,D,E) T2 relaxation (Spin-Spin Relaxation), F, G) T1 

relaxation (Spin-Lattice Relaxation) and H) relaxation complete. 
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The TR is associated with T1 and T2 relaxations because T1 relaxation takes much longer than 

T2 relaxation therefore the TR should be short enough to allow T1 relaxation to fully complete 

and return to the equilibrium state. If there is not enough time for T1 to return to the equilibrium 

state, there will not be enough net magnetization available for the next repetition and this will 

lead to the loss of the signal (Blink, 2004). Additionally, collecting MRI signal requires an 

interval of time before applying a new excitation pulses and this time is called the echo time 

(TE). Changing TR and TE have an immediate effect  on the contrast of the image (Nabizadeh, 

2015). 

To avoid the immediate dephasing process after switching off the RF pulse and to collect the 

best signal, a second 180o pulse is given, causes the spins to rephrase. When all the spins are 

rephased, the signal to be higher again and ensure the acquisition of a much better signal. This 

process is called Spin Echo (SE) (Nabizadeh, 2015; Blink, 2004). 

Inversion recovery (IR) sequence is a SE sequence preceded by another 180o invert excitation 

pulse (Blink, 2004). This inverts the initial longitudinal net magnetization of all tissues in the 

MRI slices to produce a heavily T1-w images to demonstrate anatomy and produce a large 

contrast difference between fat and water. Where, the full saturation of the fat and water vectors 

can be achieved when using the appropriate time to start IR (Nabizadeh, 2015). 

Fluid attenuated inversion recovery (FLAIR) sequence is a special IR sequence that produces 

adaptive T2-w images by removing the signal of the brain edema and other structures with a 

high water content such as CSF (Mechtler, 2009). FLAIR is superior to T2-w images with 

respect to tumour delineation, better definition between edema and tumour, small hyper-intense 

tumours and the tumours that are adjacent to CSF (Kaal and Vecht, 2004; Nabizadeh, 2015).  

3.4 Al-Kadhimiya Teaching Hospital 

Al-Kadhimiya teaching hospital is one of the biggest hospitals in Iraq as shown in Fig. 3.11. It 

is located in Baghdad city and was established in 1984 with a capacity of 655 beds and then in 

2000, it has been expanded to 812 beds. It provides care seven days a week, 24 hours a day. As 

well as there are 24 Consulting Clinics, each one receiving 100 patients daily. There are 2400 

patients that are diagnosed daily. It includes three main centres:  
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1- Al-Jawad centre for tumours.  

2- Hameda Al-Musaffa centre for dialysis.  

3- Um Al-Baneen centre for in vitro fertilization and test tube baby.  

The MRI Unit was established in the beginning of 2000 using a Philips Gyroscan 1.5 Tesla 

scanner. It received 25-35 patients daily and then it upgraded by installing a Siemens Avanto 

1.5 Tesla scanner then followed by a Philips Achieva 1.5 Tesla scanner. Recently, it has been 

upgraded by installing a Philips Achieva 3.0 Tesla. Currently, the MRI unit provides services 

to more than 110 patients daily including brain test, abdomen test, spine test, etc. 

 

Figure 3.11: Al-Kadhimiya Teaching Hospital. 

3.5 Brain Tumours  

The human nervous system is divided into two main parts; the central and the peripheral 

systems. The central nervous system is composed of the brain and the spinal cord. The 

peripheral nervous system is composed of the spinal nerves and the cranial nerves (Mayfield 

clinic for brain & Spine Institute, 2013). The human brain is divided into the left and right 

hemispheres that are approximately symmetric around the MSP. 
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Brain tumours are a heterogeneous group of neoplasms that vary significantly by morphological 

features, genetic alterations, growth potential, extent of invasiveness, tendency for progression 

or recurrence and treatment response (Mechtler, 2009). Brain tumours are abnormal and 

uncontrolled proliferations of cells. Some of these cells originate in the brain itself and they are 

called primary tumours. Others spread to the brain from somewhere else in the body through 

the blood stream and these are called secondary tumours. Primary brain tumours do not spread 

to other parts of the human body and they can be malignant or benign, while the secondary brain 

tumours are always malignant. The main characteristics of the benign tumour are that it grows 

very slowly and remain in the same part of the brain where it starts with clear defined 

boundaries. It does not destroy the surrounding area of the brain and does not spread to the other 

parts of the body. While malignant tumours represent life-threatening conditions because of 

their aggressive and invasive nature and their uncontrolled and fast growth. They have the 

ability to spread and damage the surrounding normal brain tissue (Pantelis, 2010). Both types 

of brain tumours are life threatening because the growth of brain tumours increases intracranial 

pressure inside the skull which has limited space and may cause edema, reduce blood flow and 

displacement with decaying of healthy tissue that controls vital functions (Tonarelli, 2013). 

Furthermore, stroke is also considered as one type of the brain abnormalities. It happens when 

the blood supply is cut off to some parts of the brain due to a blockage in the blood vessels. The 

strokes can affect patients in different ways depending on the part of the brain that has not 

received enough supply of the blood. 

Generally, surgery is considered as the first step that should be taken to treat and achieve a gross 

total resection (GTR) of brain tumours. It is the preferable treatment when a tumour could be 

removed without any risks and side effects to the brain, in addition to reducing pressure that it 

generates inside the skull (American Brain Tumor Association, 2015). To determine the 

resection extent, MRI brain scanning should be used to calculate and compare the tumour 

volume on preoperative and postoperative MRI scan (Kim and Kim, 2012; American Brain 

Tumor Association, 2015). Generally, the MRI modalities can be categorized based on their 

advantages; T1-w images are not usually pathological but anatomical images and they are 

beneficial for black holes’ detection which appear as hypo-intense or dark area relative to the 

WM intensities. On the other hand, T2-w images are sensitive to tissue pathology and show 

well-defined tumour delineation. They show the WM lesions as hyper-intense or bright area 



 

 73 
 

relative to the WM intensities since most brain tumours are characterized by increased water 

content in tissues. Therefore, T2-w images are particularly useful for pathological detection 

(Tantisatirapong, 2015). The main drawback of this modality is that the CSF, GM and tumours 

have close intensities (Mortazavi et al., 2012). Clinically, T2-w and T1c-w are the mainstay of 

brain tumour diagnosis but using these two MRI modalities have sometimes difficulties in  

differentiating between the new and the old tumours or tumours from non-tumoural lesions in 

addition to grading (Tonarelli, 2013). Analysis of these diverse types of MRI images requires 

advanced computerized quantification and visualization tools and this could be supported by 

digital image processing technology. Image processing is concerned with the manipulation and 

interpretation of the objects in digital images by removing the effect of noise that is acquired 

during the acquisition process, deriving features and properties that could be used to 

discriminate the pathological patients and identify the location of abnormalities in the brain 

scans. 

3.6 Conclusion 

The representation of the digital image was explained throughout this chapter. The general 

basics of MRI scan was presented and described as well. Finally, the brain tumours section 

followed in this chapter was explained in detail.  

In the next chapter, the pre-processing analysis of MRI brain scans techniques such as image 

enhancement and MSP detection and correction will be demonstrated and explained in details. 
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CHAPTER FOUR 

Image Pre-processing Analysis of MRI 

__________________________________________________________________________________ 

Overview 

This chapter introduces different image pre-processing techniques that are used in this study to 

pre-process and enhance the MRI brain scans. It includes data collection, image resizing, image 

enhancement, intensity normalization and MSP detection and correction of the patient’s brain. 

__________________________________________________________________________________ 

4.1 Introduction 

The main objective of this study is to develop and evaluate an automated screening system for 

MRI brain scans to discriminate normal and pathological patients without any clinician’s 

interception; hence reducing clinicians’ examination and interpretation time. The work will take 

place in five main stages; data collection phase from the Iraqi hospital, image pre-processing, 

feature extraction and classification, brain tumours location identification and segmentation. 

Figure 4.1 shows the overall flow chart of the proposed system. 

The pre-processing step involves performing a set of algorithms on MRI brain scan slices as a 

preparation for the feature extraction step. This step includes resizing the dimensions of MRI 

slices, MRI slice enhancement by the Gaussian filter, intensity normalization of MRI slices and 

MSP of brain detection and correction algorithm. All the mentioned algorithms will be 

described in details with examples in this chapter. 

4.2 Data Collection 

Data collection is an essential step in this study and where two datasets are used. The clinical 

image dataset consists of 165 MRI brain scans acquired during routine diagnostic procedures at 

the MRI Unit of Al-Kadhimiya Teaching Hospital in Baghdad, Iraq. This dataset was diagnosed 

and classified into normal and abnormal by the clinicians of this unit. The MRI scans were 

obtained using a SIEMENS MAGNETOM Avanto 1.5 Tesla scanner (USA) and PHILIPS 

Achieva 1.5 Tesla scanner (Netherlands) as shown in Fig. 4.2. 
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Figure 4.1: Overall flow chart of the proposed system. 

The provided dataset consists of tumours with different sizes, shapes, locations, orientations 

and types. A total of 88 patients in this dataset exhibited different brain abnormalities with 

tumour sizes, shapes, locations, orientations and types.  
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Figure 4.2: SIEMENS MAGNETOM Avanto MRI scanner in MRI Unit of Al Kadhimiya 

Teaching Hospital- Iraq. 

The remaining patients exhibited no detectable pathologies. The dataset included the four MRI 

image modalities, namely, T2-w, T1-w, T1c-w and FLAIR images under axial viewing and 1–

5 mm slice thickness. 50 pathological patients in this dataset were manually segmented and 

labelled by an expert in this unit who evaluated the segmentation algorithm accuracy. 

The standard benchmark multimodal brain tumour segmentation dataset (BRATS 2013) 

obtained from the international conference on medical image computing and computer-assisted 

interventions (Menze et al., 2015) was also used. This dataset includes 25 patients that were 

segmented manually by several human experts in addition to realistically generated synthetic 

brain tumours for which the ground truth segmentation is known. The synthetic MRI brain scans 

have a high variability in tumour shape and location, but they have less variability in intensity 

and less artefact-loaded than the real images to measure the capability of the algorithm to deal 

with variability in shape and the location of brain tumours. Few examples of the real and 

standard datasets that are used in this study with different modalities T2-w, FLAIR and T1c-w 

are shown in Fig. 4.3.  
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Figure 4.3: Examples from the used datasets: The collected dataset in the first row and the 

standard dataset in the second row.  

4.3 Resizing the Dimensions of MRI slices 

The provided MRI brain scans were collected from two scanners with different spatial 

resolutions. To enable the use of the full set without bias, the MRI scans were resized to 512 × 

512 pixels. All algorithms developed in this study were implemented on squared slices. When 

the dimensions of the given MRI slices were changed to a square, care was taken to maintain 

the ratio of voxels to pixels (e.g., pixel spacing). Zero padding technique was used to adjust the 

MRI slice dimensions to become 512 × 512 pixels in resolution as shown in Fig. 4.4.   
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                                          A                                                                B 

 

Figure 4.4: MRI slices resizing process, A) Original MRI slice with dimensions 512 × 470, B) 

Resized MRI slice with dimensions 512 × 512. 

4.4 MRI Enhancement Algorithm  

Image enhancement is a complex task that is highly dependent on the nature of the image. 

Several types of noise can be found in images and they require different image enhancement 

techniques. The typical noise in MRI slices appears as a small random modification of the 

intensity in an individual or small groups of pixels. These differences can be sufficiently large 

to lead to erroneous segmentation (Rousseau, 2009). The medical image visual quality plays an 

important role in the accuracy of clinical diagnosis because clinicians are usually trained and 

have experience with specific and high quality medical images. Generally, medical images are 

often contaminated by impulsive, additive or multiplicative noise during the acquisition and 

transmission processes. This leads to making the automatic feature extraction and analysis of 

clinical data a complicated task (Mohan et al., 2014; Pujar et al., 2010; William, 2001). As 

mentioned in chapter two, image enhancement algorithms are classified into spatial domain 

methods and frequency domain methods. A spatial domain low-pass filter (Gaussian filter) was 

applied for noise removal (Nabizadeh, 2015), such that the neighbourhood pixels are weighted 

according to the variance value 𝜎 in the Gaussian function (Birry, 2013; Gonzalez and Woods, 

2002; Rogowska, 2009). The two dimensions Gaussian kernel operator H(x, y) is given in Eq. 

4.1 (Sonka et al., 2014). 

Padding 
area 
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𝐻(𝑥, 𝑦) = 𝑒
(
−(𝑥2+𝑦2)

2𝜎2
)
                                                             4.1 

where x and y are the pixel coordinates in the image and σ is the standard deviation. The σ is 

proportional to the size of the neighbourhood pixels in the kernel operator which controls the 

degree of image smoothing. Consequently, a greater amount of smoothing is achieved when 

larger σ is selected (Birry, 2013; Nixon and Aguado, 2008; Schmid, 1999b; Rogowska, 2009). 

The results of applying Gaussian filters with different values of σ (0.5, 1 and 2) are shown in 

Fig. 4.5. This process is implemented by using fspecial and imfilter functions with Gaussian 

type in MATLAB R2013a Image Processing Toolkit (Matlab, 2013). The best value of σ was 

fixed to 0.5 experimentally. 

4.5 Intensity Normalization 

The pixel intensity values of each MRI slice were normalized to the same intensity interval to 

achieve dynamic range consistency. Histogram normalization was applied to stretch and shift 

the original histogram of the image and cover all the grayscale levels in the image using Eq. 

2.1. The resulting normalized MRI slice achieved a higher contrast than that of the original slice 

because the histogram normalization method enhanced image contrast and provided a wider 

range of intensity transformation (Loizou et al., 2009; Tantisatirapong, 2015; Nabizadeh and 

Kubat, 2015; Sachdeva et al., 2012).  

 

                  A                                   B                                   C                                   D 

Figure 4.5: MRI brain scan image, A) Original image, B) Filtered image using Gaussian filter 

with (σ=0.5), C) Filtered image using Gaussian filter with (σ=1), D) Filtered image using 

Gaussian filter with (σ=2). 
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This approach demonstrated an enhanced classification of pathological tissues that can be 

achieved using the unmodified image (Tantisatirapong, 2015). Figure 4.6 shows the result of 

MRI slice normalization by the histogram normalization method. 

                                          A                                                           B 

Figure 4.6: Histogram normalization method implementation, A) Original MRI slice,  

B) Normalized MRI slice. 

4.6 Background Segmentation 

Prior knowledge suggests that the background intensity values of MRI brain slices often 

approaches zero. The ability to eliminate and exclude the background of MRI brain slices is 

important because the background normally contains a much higher number of pixels than that 

of the brain region but without meaningful information (Liu et al., 1998; Nabizadeh, 2015). In 

this study, histogram thresholding was used as a segmentation method to isolate the 

background. This approach is based on the thresholding of intensity values by a specific T value. 

If the intensity value of a pixel is greater than T then the pixel is considered as a brain region, 

otherwise it is considered as a background (Naji et al., 2013). The T can be determined either 

manually which is specified by the user or automatically by using different approaches 

(Dougherty, 2009; Morris; Wilson and Ritter, 2000). Notably, the T2-w image histograms 

attained almost identical distribution shapes as shown in Fig. 4.7 (Udomchaiporn et al., 2013). 

Therefore, the T value was selected experimentally and set to 25 after the effects of a range of 

threshold values (13, 25, 50 and 76) were visually observed. This histogram thresholding is 

implemented by using im2bw function with specific value of threshold in MATLAB R2013a 

Image Processing Toolkit (Matlab, 2013).   
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     (A) 

 

 

 

    (B) 

 

Figure 4.7: T2-w images of two different patients and corresponding histograms. 

Subsequently, the application employs a set of morphological operators to remove any hole 

appearing in the region. There are many morphological operators but only two operators are 

essential and can be combined in many ways to produce more complex morphological operators 

which can solve different problems in image analysis. These two operators are dilation and 

erosion. The dilation is an operation that is used to increase the size of objects which are as 

foreground objects in binary images. While, the erosion is an operation that is used to increase 

the size of background and decrease the foreground objects in binary images (Dougherty, 2009; 

Bovik, 2009; Sonka et al., 2014). Additionally, holes filling morphological operator is used to 

fill holes that are defined as a background region of a binary image and surrounded by connected 

borders of foreground regions (Gonzalez and Woods, 2002; Soille, 2003; Wilson and Ritter, 

2000). In this study, the deficiencies of the segmentation process are overcome by dilating the 

segmented MRI brain slice using the dilation morphological operator. Then the internal holes 

are filled using holes filling morphological operator. Consequently, a binary mask with ones 

denotes the patient's head, and zeros denotes the background. This mask is then multiplied with 

the original MRI brain slice to produce a new slice image without the background. Figure 4.8 

shows an example of how an MRI slice is segmented, dilated and holes filled. 
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                      A                                 B                                C                               D 

Figure 4.8: An example of skull boundary identification, A) Original MRI slice, B) 

Segmented MRI slice with threshold equal to 25, C) Dilated MRI slice and D) Filled holes in 

MRI slice. 

4.7 MSP Detection and Correction 

The advances in medical imaging techniques provide facilities for the internal visualization of 

the brain. These medical images are used for diagnosing and visual interpretation by clinicians. 

The MSP identification is an important initial step in brain image analysis because this method 

provides an initial estimation of the brain’s pathology assessment and tumour detection 

(Jayasuriya and Liew, 2012). The human brain is divided into two hemispheres with an 

approximately bilateral symmetry around the MSP. This means that most structures in one side 

of the brain have a counterpart on the other side with similar shape and location. The two 

hemispheres are separated by a longitudinal fissure that represents a membrane between the left 

and right hemispheres. This longitudinal fissure is filled with CSF and it can be used to 

recognize the two hemispheres visually (Ruppert et al., 2011). The two hemispheres separation 

process in the axial MRI brain slices can be done by recognizing the MSP along the longitudinal 

fissure which can be used as a reference for asymmetry analysis. The MSP of the brain has the 

same orientation of the patient’s head. The symmetry of the brain is an important indicator about 

its normality or abnormality such that most pathologies such as tumours, bleeding and stroke 

can be determined by a symmetry based analysis of MRI brain scan. However, the growth of 

tumour cells can destroy the symmetry and curve the MSP of the brain (Liu et al., 1998). The 

MSP extraction methods can be divided into two groups: content-based methods and shaped-

based methods (Ruppert et al., 2011; Liu, 2009).  
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The content-based methods are based on finding a plane that maximizes a symmetrical measure 

between both sides of the brain (Christensen et al., 2006; Ardekani et al., 1997; Khotanlou et 

al., 2009; Ruppert et al., 2011; Liu, 2009; Schmid, 1999a). The major obstacle preventing these 

methods from a wide adoption in realistic neuro-application is the difficulty of measuring 

symmetry and identifying the MSP of the brain for the pathological cases e.g. the air pockets 

and the presence of lesions should be ignored when computing the axis of symmetry (Liu et al., 

1998; Hu and Nowinski, 2003). By contrast, shaped-based methods use the inter-hemispheric 

fissure as a simple landmark to extract and detect the MSP of the brain which denotes the 

symmetry plane (Bergo et al., 2008; Liu, 2009). All parallel axial slices, the inter-hemispheric 

fissure lines are parallel with the same orientation of patient’s head (Hu and Nowinski, 2003). 

In this study, we focused on determining the orientation of the patient’s head instead of 

measuring the symmetry to identify the MSP of the brain (Hasan and Meziane, 2016). The 

proposed method is based essentially on using the PCA method to compute the distinctive 

principle axes that are orthogonal to each other. Those axes are used to characterize the patient’s 

head by representing the spatial distribution of the mass. Where, any plane of symmetry in the 

body is orthogonal to a principle axis (Liu, 2009; Hasan and Meziane, 2016).  

4.7.1 Orientation Determination Based PCA 

Several methods have been proposed to determine the orientation of objects in images. The 

most widely used method is PCA (Schmid, 1999b) that was explained in details in section 

2.4.1.2. The PCA method essentially attempts to transfer the coordinates of the original data to 

a new coordinate system such that the maximum variation in the data comes to lie on the first 

coordinate. This is known as the first principal component. The second maximum variation in 

the data lies on the second coordinate and so on. The most common steps that are followed by 

radiologists and clinicians in MRI units and specifically in MRI Unit of Al-Kadhimiya Teaching 

Hospital, include positioning and aligning the patient’s head inside the head coil according to 

the laser light indicator as shown in Fig. 4.9, and using sponges to support and minimize the 

head tilt and rotation. This gives better MRI image quality (UC Davis Medical Center, 2016).  

 



 

 84 
 

 

Figure 4.9: How the patient's head lies in the MRI head coil  

(UC Davis Medical Center, 2016). 

Due to all brain slices in the same scan having the same symmetry axis orientation (Liu et al., 

1998), it is possible to detect the degree of skewness to the left or right by using single slice in 

axial viewing instead of using all brain slices in the context of reducing computational 

complexity. In this study, we assume that the patient's head may be skewed only either left or 

right. Let D be an original two-dimensional data with two observations that are plotted on X 

and Y coordinates. The PCA is used to map linearly these coordinates into new X’ and Y’ 

coordinates, where X’ extends along the direction of the maximum variation of a given data and 

Y’ is perpendicular to X’ and extends along the direction of the minimum variation of a given 

data as shown in Fig. 4.10 (Wallisch et al., 2014). 

 

 

 

 

 

 

 

 

 

Figure 4.10: Remapping the axes (X, Y) of the original data into new axes (X’, Y’). 
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In this study, D represents the coordinates of pixels in the foreground part of the segmented 

MRI brain slice, such that X= [X1, X2,…., Xn], and Y= [Y1, Y2, ….., Yn]. These coordinates are 

normalized by subtracting the mean from each one according to Eq. 4.3 and Eq. 4.4. 
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The covariance matrix (cov) that is a symmetrical and a semi-positive definite matrix, is used 

to measure to which extent these coordinates are linearly related and is given in Eq. 4.5.  

𝑐𝑜𝑣(𝑥, 𝑦) =
1

(𝑛 − 1)
∑(𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)

𝑇                                             4.5

𝑛

𝑖=1

 

If the given data has m dimensions, the covariance matrix is an m by m matrix (Wallisch et al., 

2014; Manly, 1994). Then the eigenvectors and eigenvalues can be calculated by using Eq. 4.6 

and Eq. 4.7 respectively.  

|𝑐𝑜𝑣 − 𝜆𝐼| = 0                                                                    4.6 

𝑐𝑜𝑣. 𝑉 = 𝜆𝑉                                                                      4.7 

where λ is the eigenvalues of the covariance matrix, I is the identity matrix and V is the 

eigenvectors matrix.  

The eigenvectors and eigenvalues include useful information about the new coordinates of the 

given data (Smith, 2002). Each eigenvector points in the direction of a new coordinate axis. The 

desirable coordinate that has the highest eigenvalues and passing through the maximum 

variation of data, represents the orientation of the patient’s head (Wallisch et al., 2014; Sonka 

et al., 2014). Then, the angle θ between the X-axis and X’-axis represents the degree of skewness 

of patient’s head during the MRI test as shown in Fig. 4.11 and is calculated using Eq. 4.8. 
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Figure 4.11: Original and new coordinates of brain. 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑉2
𝑉1
)                                                                   4.8 

where V1 and V2 are the eigenvectors which are related to the maximum eigenvalues. 

The main shortfall of PCA that it is not efficient in distinguishing between the axis of symmetry 

and axis of orientation. However, it is still an interesting approach because of its simplicity and 

the low processing time (Schmid, 1999a). The PCA algorithm is implemented  using princomp 

function in MATLAB R2013a Image Processing Toolkit (Matlab, 2013). 

4.7.2 Geometrical Transformation of Patient’s Head 

Geometrical transformation methods are widely used in computer graphic and image analysis. 

They help to eliminate the geometric distortion that occurs within image capturing (Sonka et 

al., 2014). They can be used to estimate the unknown pixels by the interpolation of the input 

pixels and rotating the object around a fixed point known as the centre of rotation (William, 

2001). A geometric transformation includes two basic steps. First, the pixel coordinates 

transformation and second, the brightness interpolation (Sonka et al., 2014). There are two types 

of interpolation methods; nearest neighbour interpolation and bilinear interpolation (Wilson and 

Ritter, 2000; William, 2001). 
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A- Nearest Neighbour Interpolation 

Nearest neighbour interpolation method is used to rotate an image through a given angle θ 

by using Eq. 4.9, Eq. 4.10 and Eq. 4.11 respectively. Where, the pixel with x and y 

coordinates in the original image is mapped into x’ and y’ coordinates in the resultant image 

by interpolating an output pixel location between four input pixels (Wilson and Ritter, 2000; 

William, 2001). 

𝑥 ′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃                                                           4.9 

𝑦 ′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃                                                        4.10 

𝑓′(𝑥, 𝑦) = 𝑓([𝑥 ′], [𝑦 ′])                                                       4.11 

where 𝑓′ is the new interpolated image and [ ] denotes the rounding of the new mapped 

coordinates. The main problem of this method is the probability of mapping the positions 

of the input pixels with integral coordinates to non-integral coordinates positions in the 

output image. The new pixel locations are generally in somewhere between four 

neighbouring pixels in the given image as shown in Fig. 4.12. 

 

 

 

 

  

 

 

  

 

 

Figure 4.12: Mapping pixels by nearest neighbour interpolation. 

 

𝑥’ 

𝑦’ 

𝑓 

𝑥 

𝑦 



 

 88 
 

B- Bilinear Interpolation 

Bilinear Interpolation method is used to rotate an image by locating the new pixel 

somewhere between four neighbouring pixels of a given image as shown in Fig. 4.13, and 

using Eq. 4.12.  

 

 

 

 

 

 

 

 

 

Figure 4.13: Mapping pixels by bilinear interpolation. 

 

𝑓′(𝑥′, 𝑦′) = 𝑓(𝑥, 𝑦) + 𝑓(𝑥 + 1, 𝑦)(𝑥′ − 𝑥) − 𝑓(𝑥, 𝑦)(𝑥′ − 𝑥) + 𝑓(𝑥, 𝑦 + 1)(𝑦′ − 𝑦)

− 𝑖𝑓(𝑥, 𝑦)(𝑦′ − 𝑦)

+ [𝑓(𝑥 + 1, 𝑦 + 1) + 𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥 + 1, 𝑦)] (𝑥′ − 𝑥)(𝑦′

− 𝑦)                                                                                                                               4.12 

It is a more desirable method but it has a problem with computational complexity (Wilson and 

Ritter, 2000). It is used in this study to rotate and correct the patient’s head after the degree of 

wobbling θ is calculated and it is implemented using Geometric Rotator system object in 

MATLAB R2013a Image Processing Toolkit (Matlab, 2013). 

4.7.3 Centralize Patient’s Head in the Centre of MRI Slice 

The patient’s head is positioned in the centre of the MRI slice because of identifying the brain’s 

abnormality depends essentially on measuring the symmetry between the two brain’s 

hemispheres and the centroid of the patient’s head is identical with the MSP of the brain (Liu 

et al., 1998). Therefore, it becomes easy to make the MSP of the brain exactly in the centre of 

the MRI brain slice by shifting the patient’s head either left or right using Eq.4.13 and Eq. 4.14. 

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦 + 1) 

𝑓(𝑥 + 1, 𝑦) 𝑓(𝑥 + 1, 𝑦 + 1) 

𝑓′(𝑥′, 𝑦′) 
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1
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∑𝑥𝑖

𝑁

𝑖=1

                                                               4.13 

𝑔𝑦 =
1

𝑁
∑𝑦𝑖

𝑁

𝑖=1

                                                               4.14 

where N is the number of pixels within the segmented patient’s head, and 𝑔𝑥 and 𝑔𝑦 are the 

coordinates of the centroid. Then the patient’s head is shifted by a number of pixels that is equal 

to the difference between 𝑔𝑦 and 256, which represent the coordinates of the middle line of the 

MRI brain slice.  

Since the MRI brain slices of each patient have the same MSP orientation (Liu and Collins, 

1996), the MSP detection and correction algorithm is implemented on a single slice instead of 

using all the slices to avoid computational complexity. The preferable slice for implementing 

the MSP detection and correction algorithm is the slice which locates in the lower of the brain 

and contains the largest number of pixels. It provides more accurate detection rate compared to 

slices higher in the brain (at the tip of the head) which have ovals or near-circular shape (Liu et 

al., 1998). Figure 4.14 shows the result of the MSP detecting and correcting of the three MRI 

brain slices which are shown in different orientation in the first column on the left of the figure. 

In the fifth column on the right of the same figure, the MRI slices are corrected and aligned in 

the middle of the slice. 

To compare with an expert clinicians’ delineation, the MSPs of 50 MRI scans from the collected 

dataset were manually identified by expert clinicians from the MRI Unit in Al-Kadhimiya 

Teaching Hospital. These MRI scans were given to the experts after correcting and aligning the 

MSPs of these scans. The proper location of the fitted line was drawn with the computer mouse 

by the experts. Figure 4.15 shows the results of delineation of MSPs of three MRI slices by the 

expert clinicians and our algorithm. Figure 4.16 shows the mean squared error (MSE) 

distribution between manual and our algorithm delineation of MSPs. Consequently, 86% of the 

computed MSPs are matched approximately with the clinicians’ delineation within MSE≤3o. 
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Figure 4.14: Steps for detecting and correcting the MSP of the brain in MR 

brain slices. 

For further evaluation, the MRI brain slices shown in Fig. 4.17, are re-sampled using the 

Geometric Rotator system object in MATLAB R2013a Image Processing Toolkit (Matlab, 

2013), to rotate the patient’s head with yaw angles from -10 to 10 degrees in 2.5 degree intervals.  

 

 

 

 

 

 

 

Figure 4.15: The solid yellow lines denote the computed MSPs and the dashed red lines 

denote the clinicians’ delineation. 
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Figure 4.16: Distribution of MSE between manual and our algorithm delineation of MSPs. 

Table 4.1 shows the experimental results of the predicted yaw angles of patient’s head with the 

average MSE value. It seems that the predicted yaw angles approach to the actual yaw angles 

of patient’s head. 

 

 
 

 

 

 

Figure 4.17: Resampling of one slice from the axial MRI brain scanning image  

with varied rotate angles. 

 

Table 4.1: The results of predicted yaw angle. 
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4.8 Conclusion 

In this chapter, we described how the datasets were collected and unified to dimensions 512 × 

512. This was followed by the description of four main pre-processing algorithms; MRI 

enhancement, intensity normalisation, background segmentation and MSP detection and 

correction. The MSP of the brain detection and correction algorithm can automatically locate 

the MSP of given MRI brain scans. The algorithm works on both normal and pathological brain 

scans. These algorithms were used to prepare the MRI brain scans for next step of texture feature 

extraction and classification that will be explained in details in the next chapter.  
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CHAPTER FIVE 

Features Extraction and Classification 

___________________________________________________________________________ 

Overview 

This chapter covers the implementation of the proposed MGLCM method for texture feature 

extraction in addition to some prior processing steps that should be implemented primarily to 

prepare the MRI brain scans. It includes also the implementation of ANOVA for selecting the 

most relevant predictors and different techniques for classification such as LDA, SVM and 

ANN as an intelligent classifier.  

___________________________________________________________________________ 

5.1 Introduction 

The fundamental objective of any diagnostic medical imaging investigation is tissue 

characterization. The texture analysis is an important way to provide unique information on the 

texture or spatial variation of pixels from medical images (Nabizadeh, 2015). Texture analysis 

methods are useful for studying and discriminating between pathologically different regions on 

medical images. It provides better performance than human eyesight in discriminating certain 

classes of texture. Practically, it requires careful consideration of the significance of the 

individual features to achieve high discrimination by reducing the effect of heavily correlated 

features and the features with little discriminatory power (Nailon, 2010). Texture refers to 

properties that represent the surface or structure of an object such as smoothness, coarseness 

and regularity. These properties are used to quantify the texture content of an object. Texture 

can be defined as an existing relationships of related pixels and group of pixels, this group of 

pixels is known as texture primitives or texture elements (Sonka et al., 2014; Nabizadeh, 2015).  

In this study, only the textural features are considered because there is no colour information or 

regular shapes of the tumours that could be extracted, in addition they may appear in different 

image intensities (Prastawa et al., 2004). The texture features will be extracted from MRI brain 

slices to encode clinically valuable information using the proposed modified grey level co-

occurrence matrix (MGLCM) method. The texture features will also be used to measure 
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statistically the similarity between the two separated hemispheres of the brain. A prior pre-

processing algorithms that should be taken to prepare the MRI brain slices for texture features 

extraction by the proposed method as shown in Fig. 5.1.  

 

 

 

 

 

 

 

 

 

Figure 5.1: Flowchart of implementing feature extraction,  

selection and classification. 

5.2 Preparing MRI Brain Slices for Feature Extraction 

This step includes the implementation of a set of image pre-processing algorithms to prepare 

and make the MRI brain slices more appropriate for implementing the MGLCM method. The 

input for this step is a corrected MRI brain scans and the output includes only the patient’s head 

with dimensions of (512×512) pixels.  

5.2.1 Image Cropping 

The MRI slices are cropped from the upper margin of the slices to the upper boundary of the 

skull. The same procedure is then used for cropping the MRI slices from the bottom margin of 

the slices to the bottom boundary of the skull. The left and right boundaries can be identified 

Start 

Classification 

Image Cropping 

End 

Image Resizing 

Feature Selection by ANOVA 

Modified Grey Level Co-occurrence Matrix 

(MGLCM) method 
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by measuring the distance between the upper and bottom boundaries. In fact, the left and right 

boundaries are away from the middle of the MRI slices which denotes the brain MSP by a half 

distance between the top and bottom boundaries as shown in Fig. 5.2.  

 

Figure 5.2: MRI brain slice cropping. 

5.2.2 Image Resizing 

Image resizing or specifically image zooming is an important process that is used in a variety 

of applications where specific number of pixels are inserted between the actual pixels of MRI 

brain slice to expand its size. The intensity values of the new pixels are interpolated from the 

surrounding original pixels (Bovik, 2009). In this study, every cropped MRI brain slice is 

resized to (512 × 512) pixels before using the MGLCM method. The image resizing algorithm 

is implemented by using imresize function in MATLAB R2013a Image Processing Toolkit 

(Matlab, 2013). 

5.2.3 Modified Grey Level Co-occurrence Matrix Method 

Modified grey level co-occurrence matrix (MGLCM) is a second-order statistical method 

proposed by Hasan and Meziane (2016) to generate textural features and provide information 

about the patterning of MRI brain scans textures. These features are used to measure statistically 

the degree of symmetry between the two brain hemispheres. Symmetry is an important indicator 

that can be used to detect the normality and abnormality of the human brain. MGLCM generates 

texture features by computing the spatial relationship of the joint frequencies of all pairwise 

Left Boundary Right Boundary 

Upper Boundary 

Bottom Boundary 
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combinations of grey-level configuration of each pixel in the left hemisphere which is 

considered as a reference pixel, with one of nine opposite pixels existing in the right hemisphere 

under nine offsets θ = (45,45), (0,45), (315,45), (45,0), (0,0), (315,0), (45,315), (0,315), 

(315,315), and one distance d=1, as shown in Fig. 5.3. Consequently, because each pixel on the 

left hemisphere has nine opposite pixels on the right hemisphere, nine co-occurrence matrices 

are obtained for each MRI brain scanning image.  

 

Figure 5.3: How reference pixel relates with opposite nine pixels. 

Thereafter, each co-occurrence matrix is normalized by the total number of all its elements to 

calculate the co-occurrence relative frequency between the grey levels of joint pixels in the 

brain hemispheres. The nine co-occurrence matrices are defined by Eq. 5.1. 

𝑃(𝑖, 𝑗)(𝜃1,𝜃2) =
1

2562
∑∑{

1  , 𝑖𝑓 𝐿(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝑅(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
       

 0   , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         
                5.1

256

𝑦=1

512

𝑥=1

 

where L and R denote the left and right hemispheres respectively and both of them have a size 

of (512×256) pixels. P is the resultant co-occurrence matrix. i and j are the coordinates of the 

co-occurrence matrix. ∆x and ∆y values depend upon the directions of measured matrix and are 

obtain using the following rules: 

Left Hemisphere Right Hemisphere 
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If θ1=0 and θ2=0 then ∆x=0 and ∆y=0,  

If θ1=0 and θ2=45 then ∆x=-1 and ∆y=0 

If θ1=0 and θ2=315 then ∆x=1 and ∆y=0, 

If θ1=45 and θ2=0 then ∆x=0 and ∆y=1,  

If θ1=315 and θ2=0 then ∆x=0 and ∆y=-1,  

If θ1=45 and θ2=45 then ∆x=-1 and ∆y=1,  

If θ1=315 and θ2=45 then ∆x=-1 and ∆y=-1,  

If θ1=315 and θ2=315 then ∆x=1 and ∆y=-1,  

If θ1=45 and θ2=315 then ∆x=1 and ∆y=1. 

The resultant co-occurrence matrices are approximately symmetric around the forward diagonal 

of the matrix for a healthy brain and asymmetrical for pathological patients. Figure 5.4 shows 

two examples of normal and abnormal MRI brain scans and the corresponding co-occurrence 

matrix at angles θ1=0 and θ2=0. On the left is the MRI scan and corresponding co-occurrence 

matrix of a normal brain scan. The MRI scan of normal patient shows that the hemispheres of 

brain are approximately symmetry around the MSP and the corresponding co-occurrence matrix 

is slightly narrower and symmetry around the forward diagonal. While on the right is the MRI 

scan and corresponding co-occurrence matrix of an abnormal brain scan. The patient has a 

tumour in left hemisphere of his brain and it makes his brain asymmetry around MSP. Again, 

the corresponding co-occurrence matrix is significantly wider and asymmetry around the 

forward diagonal.  

To reduce the dimensionality of the feature space, the resultants MGLCM matrices of all the 

MRI slices at all orientations were added. The maximum number of grey levels considered for 

each slice was typically scaled down to 256 grey levels (8 bits/pixel), rather than using the full 

dynamic range of 65,536 grey levels (16 bits/pixel) before computing the MGLCM. This 

quantization step was essential to reduce the large number of zero-valued entries in the co-

occurrence matrix (Kassner and Thornhill, 2010; Gomez et al., 2012). The computing time for 

implementing MGLCM for each slice was about 150 sec. by using an HP workstation Z820 

with Xeon E5-3.8GHz (Quad-Core) and 16GB of RAM (random access memory). 
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Figure 5.4: A) MRI normal brain slice, B) MRI abnormal brain slice, C) MGLCM of normal 

brain scanning and D) MGLCM of abnormal brain scanning. 

Finally, nineteen texture descriptors are extracted from each co-occurrence matrix using the 

expressions given in the next section, representing the most common features derived from co-

occurrence matrices (Haralick et al., 1973; Gomez et al., 2012; Birry, 2013; Yang et al., 2012; 

Hasan and Meziane, 2016; Bankman et al., 2009). These will be used in addition to the weighted 

mean and weighted distance predictors that are proposed in (Hasan and Meziane, 2016) and 

explained in detail in the next section. These predictors are used to measure statistically the 

degree of symmetry between the two hemispheres of the brain because the symmetry represents 

the main indicator in detecting pathological brains. 

5.3 Texture Descriptions 

In this study, nineteen texture descriptors that represent the most common descriptors are 

derived from co-occurrence matrices for each offset θ to classify a particular textures (Haralick 

et al., 1973; Gomez et al., 2012; Yang et al., 2012; Birry, 2013; Gadkari, 2004; Hasan and 

Meziane, 2016; Bankman et al., 2009). These are described in the following subsections in 

addition to the two newly proposed descriptors: 
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5.3.1 Contrast 

The contrast descriptor is used to measure the local variations between the reference pixels in 

the left hemisphere of the brain and the opposite pixels in the right hemisphere of the brain. 

Where, the variation increases between both pixels when any abnormality or tumour appears in 

the brain and the increasing of variations lead to make the elements of the MGLCM are 

distributed away from the diagonal. It is defined by Eq. 5.2 (Haralick et al., 1973). 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑∑(𝑖 − 𝑗)2𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                                            5.2 

where P is the MGLCM matrix. 𝑖 and 𝑗 are the cell coordinates in the MGLCM and N is the 

number of grey levels used. 

When 𝑖 and 𝑗 are equal, then the coefficient is located on the diagonal and according to the 

contrast equation there is not weight for all coefficients that are located on the diagonal. If 𝑖 and 

𝑗 differ by 1, there is a very little displacement with weight equal to 1, and if they differ by 2, 

the weight is 4. Consequently, when there is a large amount of variation between the 

hemispheres of the brain the contrast will weight high value (Yang et al., 2012).   

5.3.2 Correlation 

The correlation descriptor is used to measure the strength of the linear dependencies of the 

reference pixels in the left hemisphere of the brain with opposite pixels in the right hemisphere. 

The correlation weights high values for normal brain scans and low values for pathological 

brain scans. It is defined by Eq. 5.3 (Yang et al., 2012; Haralick et al., 1973). 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑∑𝑃(𝑖, 𝑗)
(𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
                                   5.3

𝑁−1

𝑗=0

𝑁−1

𝑖=0

 

where μx, μy, σx and σy are the means and the standard deviations of Px and Py respectively that 

are defined by Eq. 5.4, Eq. 5.5, Eq. 5.6, Eq. 5.7, Eq. 5.8 and Eq. 5.9: 

𝑃𝑥(𝑗) = ∑ 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

                                                              5.4 
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𝑃𝑦(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁−1

𝑖=0

                                                             5.5 

𝜇𝑥 = ∑ 𝑖. 𝑃𝑥(𝑗)

𝑁−1

𝑖=0

                                                            5.6 

𝜇𝑦 = ∑ 𝑖. 𝑃𝑦(𝑗)

𝑁−1

𝑖=0

                                                           5.7 

𝜎𝑥 = √∑(𝑖 − 𝜇𝑥)2. 𝑃𝑥(𝑖)

𝑁−1

𝑖=0

                                                    5.8 

𝜎𝑦 = √∑(𝑖 − 𝜇𝑦)
2
. 𝑃𝑦(𝑖)

𝑁−1

𝑖=0

                                                   5.9 

5.3.3 Entropy 

The entropy descriptor is used to measure the irregularity or complexity between the two 

hemispheres of the brain. It weights high values for pathological brain scans and low values for 

normal brain scans. It is defined by Eq. 5.10 (Pantelis, 2010). 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑∑𝑃(𝑖, 𝑗) log 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                                           5.10 

5.3.4 Energy 

The energy predictor is used to measure the uniformity of MRI brain scans. It weights high 

values for normal brain scans and low values for normal brain scans. It is defined by Eq. 5.11 

(Haralick et al., 1973; Yang et al., 2012). 



 

 101 
 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑∑𝑃(𝑖, 𝑗)2
𝑁−1

𝑗=0

𝑁−1

𝑖=0

                                                   5.11 

5.3.5 Homogeneity 

The homogeneity descriptor is used to measure the dissimilarity and contrast between both 

hemispheres of the brain. The dissimilarity leads to distribute the coefficients of MGLCM 

matrix away from the diagonal. The homogeneity descriptor is highly correlated with contrast 

descriptor. Such that, the homogeneity always weights values by the inverse of the contrast 

weight. It is defined by Eq. 5.12. (Yang et al., 2012; Haralick et al., 1973; Birry, 2013; Pantelis, 

2010).  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑∑
1

1 + (𝑖 − 𝑗)2
. 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                             5.12 

5.3.6 Dissimilarity 

The dissimilarity descriptor is used to measure the variation in the intensity value between the 

reference pixels in the left hemisphere and the opposite pixels in the right hemisphere. It weights 

high values for pathological brain scans and low values for normal brain scans. It is defined by 

Eq. 5.13 (Gomez et al., 2012; Gebejes and Huertas, 2013). 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑∑|𝑖 − 𝑗| 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                                         5.13 

5.3.7 Sum of Square Variance 

The sum of square variance descriptor weights high values for the coefficients which are 

differed significantly from the mean value of MGLCM. It is high for pathological brain scans 

and low for normal brain scans. It is defined by Eq. 5.14 (Gomez et al., 2012; Haralick et al., 

1973; Pantelis, 2010). 
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𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑∑(𝑖 − 𝜇)2. 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                               5.14 

5.3.8 Cluster Shade 

The cluster shade descriptor is used to measure the skewness of the MGLCM matrix or the lack 

of symmetry. It is considered as a gauge of uniformity. It weights high values for pathological 

brain scans and low values for normal brain scans. It is defined by Eq. 5.15 (Yang et al., 2012; 

Haralick et al., 1973). 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑠ℎ𝑎𝑑𝑒 =  ∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                             5.15 

5.3.9 Cluster Prominence 

The cluster prominence descriptor is also used to measure the skewness or asymmetry of the 

MGLCM. It weights high values for pathological brain scans and low values for normal brain 

scans. It is defined by Eq. 5.16 (Yang et al., 2012). 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =  ∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                          5.16 

5.3.10 Inverse Difference Normalized 

The inverse difference normalized descriptor is used to measure the homogeneity of MRI brain 

scans. It weights relatively high values when the texture of the brain scans are homogeneous 

and small values when there is heterogeneity in the texture of the brain scans due to the 

abnormality. It is defined by Eq. 5.17 (Gomez et al., 2012). 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = ∑∑
1

1 +
|𝑖 − 𝑗|
𝑁

 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

                      5.17 
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5.3.11 Inverse Difference Moment Normalized 

The inverse difference moment normalized descriptor is also used to measure the homogeneity 

of MRI brain scan. It weights low values for pathological brain scans and high values for normal 

brain scans. It is defined by Eq. 5.18 (Gomez et al., 2012). 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = ∑∑
1

1+
(𝑖 − 𝑗)2

𝑁

 𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

               5.18 

5.3.12 Sum Average, Sum Entropy, Sum Variance and Difference Entropy 

These descriptors weight high values for pathological brain scans and slightly low values for 

normal brain scans. The sum average, sum entropy, sum variance and difference entropy 

predictors are defined by Eq. 5.19, Eq. 5.20, Eq. 5.21 and Eq. 5.22 respectively (Pantelis, 2010; 

Gomez et al., 2012; Haralick et al., 1973; Albregtsen, 2008).     

𝑆𝑢𝑚 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ 𝑖 𝑃𝑖+𝑗(𝑖)

2𝑁−1

𝑖=1

                                                5.19 

𝑆𝑢𝑚 𝑒𝑛𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑖+𝑗(𝑖)

2𝑁−1

𝑖=1

log 𝑃𝑖+𝑗(𝑖)                                    5.20 

𝑆𝑢𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ (𝑖 − 𝑠𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦)2 𝑃𝑖+𝑗(𝑖)

2𝑁−1

𝑖=1

                          5.21 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑃𝑖−𝑗(𝑖)

𝑁

𝑖=1

log 𝑃𝑖−𝑗(𝑖)                            5.22 

where 𝑃𝑖+𝑗 and 𝑃𝑖+𝑗 are defined by Eq. 5.23 and Eq. 5.24 respectively. 

𝑃𝑖+𝑗(𝑘) =∑∑𝑃(𝑖, 𝑗)        , 𝑖 + 𝑗 = 𝑘 𝑎𝑛𝑑 𝑘 = 2,3, …… .2𝑁 − 1

𝑁

𝑗=1

𝑁

𝑖=1

             5.23 
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𝑃𝑖−𝑗(𝑘) =∑∑𝑃(𝑖, 𝑗)        , |𝑖 − 𝑗| = 𝑘 𝑎𝑛𝑑 𝑘 = 2,3, …… .𝑁 − 1

𝑁

𝑗=1

𝑁

𝑖=1

            5.24 

5.3.13 Information Measure of Correlation I and Correlation II 

The information measure of correlation I descriptor is used to measure the linear dependency 

of grey levels of neighbouring pixels between both hemispheres of the brain. Furthermore, it is 

used to measure the deformation, displacement, strain and optical flow of a given MRI brain 

scan. It weights high values for pathological brain scans and slightly low values for normal 

brain scans. While the information measure of correlation II descriptor in the reverse state, it 

weights low values for pathological brain scans and high values for normal brain scans. They 

are defined by Eq. 5.25 and Eq. 5.26 (Gomez et al., 2012; Haralick et al., 1973). 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐼 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max (𝐻𝑋,𝐻𝑌)
                        5.25 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐼𝐼 = √1 − 𝑒(−2(𝐻𝑋𝑌2−𝐻𝑋𝑌))                5.26 

where HX, HY, HXY, HXY1 and HXY2 are defined by Eq. 5.27, Eq. 5.28, Eq. 5.29, Eq. 5.30 and 

Eq. 5.31 respectively.  

𝐻𝑋 = −∑ 𝑃𝑥(𝑖)

𝑁−1

𝑖=0

log 𝑃𝑥(𝑖)                                                    5.27 

𝐻𝑌 = −∑𝑃𝑦(𝑖)

𝑁−1

𝑖=0

log 𝑃𝑦(𝑖)                                                   5.28 

𝐻𝑋𝑌 = −∑∑𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

log 𝑃(𝑖, 𝑗)                                             5.29 

𝐻𝑋𝑌1 = −∑∑𝑃(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

log(𝑃𝑥(𝑖) 𝑃𝑦(𝑗))                                     5.30 
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𝐻𝑋𝑌2 = −∑∑𝑃𝑥(𝑖)𝑃𝑦(𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

log(𝑃𝑥(𝑖) 𝑃𝑦(𝑗))                                5.31 

5.3.14 Autocorrelation 

The autocorrelation descriptor is used to measure the linear spatial relationship between the 

hemispheres of the brain and estimate the intensity value concentration on MRI brain scanning 

image. It weights high values for pathological brain scans and relatively low values for normal 

brain scans. It is defined by Eq. 5.32 (Gomez et al., 2012). 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =∑∑(𝑖 . 𝑗)𝑃(𝑖, 𝑗)

𝑁

𝑗=0

𝑁

𝑖=0

                                         5.32 

5.3.15 Maximum Probability 

Maximum probability descriptor is the maximum value of the MGLCM coefficients. It is 

defined by Eq. 5.33 (Gomez et al., 2012). 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑚𝑎𝑥𝑖,𝑗𝑃(𝑖, 𝑗)                             5.33 

5.3.16 Weighted Mean 

The weighted mean descriptor is proposed by Hasan and Meziane (2016) to detect the 

irregularity of MRI brain scans by calculating the nearest distance between the weighted mean 

to the diagonal of the MGLCM as shown in Fig. 5.5. It weights high values for pathological 

brain scans and low values for normal brain scans. It is defined by Eq. 5.34 and Eq. 5.35 (Hasan 

and Meziane, 2016). 

𝑥 =
1

2562
∑∑𝑖.

256

𝑗=1

256

𝑖=1

𝑃(𝑖, 𝑗)                                                     5.34 

𝑦 =
1

2562
∑∑𝑗.

256

𝑗=1

256

𝑖=1

𝑃(𝑖, 𝑗)                                                     5.35 
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where x and y are the coordinates of weighted mean in the MGLCM as given in Eq. 5.36. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 = |𝑦 − 𝑥| 𝑠𝑖𝑛 450                                        5.36 

 

 

Figure 5.5: Weighted mean representation on MGLCM. 

5.3.17 Weighted Distance 

Weighted distance descriptor is also proposed by Hasan and Meziane (2016) to detect the 

irregularity of MRI brain scan by multiplying each coefficient in the MGLCM by the nearest 

distance d to the diagonal as shown in Fig. 5.6. It weights high values for pathological brain 

scans and low values for normal brain scans. It is defined by Eq. 5.37 and Eq. 5.38 (Hasan and 

Meziane, 2016). 

𝑢𝑝𝑝𝑒𝑟𝑡𝑟𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =∑∑𝑑𝑖𝑗 . 𝑃(𝑖, 𝑗)

𝑗𝑖

                                      5.37 

where i and j are the elements’ coordinates that locate in the upper triangular of MGLCM.  

𝑙𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =∑∑𝑑𝑖𝑗 . 𝑃(𝑖, 𝑗)

𝑗𝑖

                                     5.38 

where i and j are the elements’ coordinates that locate in the lower triangular of MGLCM. 
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Then the weighted distance is determined by Eq. 5.39. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝑢𝑝𝑝𝑒𝑟𝑡𝑟𝑎𝑛𝑔𝑢𝑙𝑎𝑟 − 𝑙𝑜𝑤𝑒𝑟𝑡𝑟𝑎𝑛𝑔𝑢𝑙𝑎𝑟|            5.39 

 

Figure 5.6: Weighted distance representation on MGLCM. 

5.3.18 Cross-Correlation Coefficients 

Cross-Correlation Coefficient represents one of the most important and most useful statistics 

for measuring the similarity between two sets of data. Usually, it is quantified by a single 

number that is called the correlation-coefficient (r), between brain hemispheres. Such that the 

left hemisphere of brain L is the reference image and the right hemisphere of brain R is the other 

image. It is defined by Eq. 5.40 (Birry, 2013). 

𝑟 =
1

(𝑛 − 1)
∑(

(𝐿𝑛 − �̅�)

𝜎𝐿
×
(𝑅𝑛 − �̅�)

𝜎𝑅
)

𝑛

                                        5.40 

where n is the total number of pixels in the brain hemisphere image. �̅� and �̅� are the means of 

left and right hemisphere images respectively. 𝜎𝐿 and 𝜎𝑅  are the standard deviations of the left 

and right hemisphere images respectively. For strong similarity between both hemispheres of 

the brain, the correlation coefficient approximates to 1 and decreases significantly to 0 when 

there is abnormality that appears in one or both hemispheres of the brain (Birry, 2013). 
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5.4 Feature Aggregation 

The MGLCM method determines nine co-occurrence matrices. For each matrix, 21 statistical 

descriptors are determined, generating 189 descriptors for each MRI brain scan (Hasan and 

Meziane, 2016). The cross-correlation descriptor is also determined for the original MRI brain 

scan. Accordingly, 190 descriptors are attained for each MRI brain scan. These features are 

used by the subsequent classification to differentiate between normal and abnormal MRI brain 

scans.  

5.5 Feature Selection 

High dimensional feature sets can negatively affect the classification results because high 

number of features may reduce the classification accuracy owing to the redundancy or 

irrelevance of some features (Babatunde et al., 2014). Feature-selection techniques aim to 

identify a small subset of features that minimizes redundancy and maximizes relevancy (Tang 

et al., 2014). Therefore, feature selection is an important step in exposing the most informative 

features and for optimally tuning the classifier's performance to reliably classify unknown data 

(Pantelis, 2010). 

In this study, ANOVA was employed to measure feature significance and relevance as 

explained in details in section 2.4.1.1. It is a robust statistical technique used for data analysis 

and for detecting the level of significance of each predictor in the feature. The critical value α 

is set at 0.001 to obtain highly significant features (Johnson and Synovec, 2002). The 

assessment of predictors depends on both F-statistic value and P-value because a P-value less 

than 0.001 is insufficient for measuring significance of a predictor. Instead, the predictor must 

also hold a high F-statistic value. The high F-statistic value indicates that the classes are 

significantly separated from one another (Hasan and Meziane, 2016). The differences between 

the features of normal and abnormal MRI brain scan groups of the co-occurrence matrix at θ1=0 

and θ2=0 is shown in Table 5.1. All features seemed acceptable except the weighted mean 

descriptor. Nevertheless, significant variation existed in the F-statistic values between features, 

indicating a degree of significant difference between the selected features.   
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The P-value does not actually signify the degree of separation of each group from others and 

ignores feature redundancy (Johnson and Synovec, 2002). This drawback is overcome by using 

the F-statistic to determine the power of feature discrimination through thresholding. Such that, 

different threshold values are taken to ignore the redundant features and evaluate the selected 

features at each time by observing the performance of the classifier. When the F-statistic 

threshold value increases, the numbers of selected descriptors and the vector of the features 

decrease. The ANOVA was implemented by using IBM SPSS Statistics software Version 20 

(Burns and Burns, 2008).   

5.6 Feature Normalization 

It is noted, that there is a variation in the ranges from the extracted descriptors. These differences 

in ranges can lead to making some descriptors that have large values influence more than other 

descriptors with small values on the behaviour of the classifier (Larose, 2005). Therefore, data 

normalization is an essential step that prepares and normalizes the given descriptors to 

standardize the scale of effect of each descriptor. It helps to improve the performance of the 

classifier by transforming the given raw descriptors into better form and more suitable for the 

training process (Jayalakshmi and Santhakumaran, 2011). In this study, min-max normalization 

approach is used to perform a linear transformation on the extracted descriptors with preserving 

the relationships between the original descriptors. It was described in details in section 2.4.2.1. 

5.7 Feature Classification 

For classification, the three most common supervised classification techniques are used in this 

study to classify the extracted features. These classifiers are LDA (Zacharaki et al., 2009; 

Takayanagi et al., 2011), SVM (Nagarajan et al., 2013; Kharrat et al., 2010; Bauer et al., 2011; 

Hackmack et al., 2012; Kalbkhani et al., 2013) and MLP (Pantelis, 2010; Saritha et al., 2013; 

Antkowiak, 2006). The confusion matrix is a useful tool used for analysing the performance of 

the classifiers. It is a matrix of size m by m, that allows to assess and describe the classification 

performance, where m denotes number of classes (Han et al., 2011). In this study, there are two 

classes; the positive class refers to the pathological brain scans and the negative class refers to 

the normal brain scans.   
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Table 5.1: Comparison of MRI brain scans features (mean ± standard deviation (SD)) between 

normal and abnormal patients 

Features 
Abnormal 

MRI scans 

Normal 

MRI scans 
F-statistic P-value 

Auto correlation (×103) 5.626±1.2 4.92±1.24 13.67 <0.001 

Contrast (×103) 1.89±0.618 0.918±0.229 166.2 <0.001 

Correlation (÷10) 7.1±0.91 8.07±0.72 291.5 <0.001 

Cluster Prominence (×108) 3.64±1.87 2.7±1.09 14.62 <0.001 

Cluster Shade (×105) 7.6±4.26 5.5±2.9 13.14 <0.001 

Dissimilarity (×10) 2.42±0.47 1.58±0.21 209 <0.001 

Energy (÷10) 1.022±0.2 1.05±0.18 368.15 <0.001 

Entropy 7.07±0.336 6.87±0.25 15.21 <0.001 

Homogeneity (÷10) 3.55±0.34 3.76±0.26 451.3 <0.001 

Max. Probability (÷10) 3.178±0.33 3.23±0.28 444.96 <0.001 

Sum of Square Variance (×103) 6.5±1.6 5.384±1.23 24.36 <0.001 

Sum Average (×102) 1.15±0.112 1.06±0.15 20.84 <0.001 

Sum Variance (×104) 2.337±0.47 1.97±0.48 24.25 <0.001 

Sum Entropy 4.46±0.177 4.16±0.147 35.98 <0.001 

Difference Entropy 3.64±0.2 3.34±0.124 132.2 <0.001 

Information Measure of Correlation I (÷10) -2.24±0.3 -2.53±0.26 430.15 <0.001 

Information Measure of Correlation II (÷10) 9.11±0.2 9.26±0.18 355.48 <0.001 

Inverse Difference Normalized (÷10) 9.25±0.12 9.48±0.06 407.8 <0.001 

Inverse Difference Moment Normalized (÷10) 9.78±0.07 9.87±0.028 316.89 <0.001 

Weighted Mean (÷10) -8.73±84 0.53±18.7 0.92 0.339 

Weighted Distance 3.05±2.91 0.77±0.52 46.1 <0.001 

Cross Correlation (÷10) 7.1±0.91 8.07±0.72 291.5 <0.001 

 

So, the confusion matrix includes the following four terms; TP (true positive), FP (false 

positive), TN (true negative) and FN (false negative). Such that, TP is the patients who are 

correctly classified as pathological, TN is the patients who are correctly classified as healthy, 

FN is the patients who are incorrectly classify as pathological and FP is the patients who are 

incorrectly classified as healthy. Good performance corresponds to large numbers down the 

main diagonal of confusion matrix and ideally tend to be zero on its off diagonal (Witten et al., 

2011). 

Set of statistical measures that are useful in analysing, evaluating and quantifying a classifier's 

performance: the overall accuracy is given in Eq. 5.41 (Witten et al., 2011). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
×100%                                        5.41 
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The accuracy is not sufficient to evaluate the performance of a classifier, the sensitivity and 

specificity measures can be used respectively to assess how the classifier can discriminate 

pathological patients (positive class) and how it can discriminate normal patients (negative 

class). Sensitivity refers to the TP rate that is proportional to the pathological patients that are 

correctly classified, while the specificity refers to the TN rate that is proportional to the healthy 

patients that are correctly classified (Han et al., 2011), these measures are calculated using Eq. 

5.42,and Eq. 5.43. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×100%                                             5.42 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
×100%                                             5.43 

In this study, the collected dataset is randomly partitioned into k folds D1, D2,…Dk, that are 

approximately of equal size. The training and testing are repeated k times and the classification 

result is determined as the average of the overall classification accuracies (Dubitzky et al., 

2007). For instance, in the first iteration, partition D1 is reserved for testing and the remaining 

partitions D2, D3,…Dk are reserved collectively for training the model and so on (Han et al., 

2011). Each fold is held out only one time for testing and k-1 for learning. In general, 10-fold 

and 5-fold cross validation are recommended for estimating the accuracy due to its relatively 

low bias and low variance (Tantisatirapong, 2015; Han et al., 2011; Nabizadeh and Kubat, 2015; 

Birry, 2013). The cross-validation was implemented by using crossvalind function with kfold 

in MATLAB R2013a Image Processing Toolkit (Matlab, 2013). Figure 5.7 shows the flowchart 

and steps of training and testing of the classification techniques.  

As mentioned in chapter four, the collected dataset in this study includes MRI brain scans of 

165 cases and it was clinically classified into normal and abnormal by the clinicians. The highest 

classification accuracy with the best performance was achieved using the MLP network at 91% 

while LDA and SVM achieved 77% and 87% respectively. The LDA is implemented  using 

classify function and the SVM is implemented using svmtrain and svmclassify functions in 

MATLAB R2013a Image Processing Toolkit (Matlab, 2013). While the MLP requires to be 

configured optimally by setting the number of hidden layers and the number of neurons in the 

hidden layer as explained in details in sections 2.5.3.2. 

javascript:void(0)
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Figure 5.7: Flowchart and steps of training and testing of classification techniques. 

The number of neurons in the input layer is usually equal to the number of descriptors in the 

input feature vector; therefore, it is set to 190. The output layer of MLP network is set to one 

neuron because we have only two classes (normal and abnormal brain scans). The number of 

hidden layers is chosen approximately by the user and generally, one hidden layer is sufficient 

for approximating and classifying MRI brain scans. While the number of neurons in the hidden 

layer is tuned by changing the number of neurons in the hidden layer every experiment until 

getting the lowest root mean square error (RMSE) value (Gunasekara et al., 2009), as defined 

using Eq. 5.44. 

Start 

Input MRI brain scans 

 (Collected dataset) 

 

189 descriptors are extracted by 

using MGLCM method (9 co-

occurrence matrices and 21 

descriptors for each matrix) 

Randomly partitioned into 10-folds 

(9/10 and 1/10 for training and 

testing respectively)   

Train a classifier using 9/10 folds of 

feature set 

Cross correlation descriptor is 

computed between the two 

hemispheres of brain 

End 

Test a classifier using 1/10 folds of 

feature set 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑔𝑖 − 𝑦𝑖)2
𝑛
𝑖=1

𝑛
                                                   5.44 

where 𝒈 denotes the actual predicted value by neural network, 𝒚 denotes the target value of the 

given dataset and 𝒏 is the number of observation in the dataset. The newff function in (Matlab, 

2013) is used to create and train the MLP network. The transfer function that is used is the 

sigmoid function and the training function that is used to update weights and bias values is the 

scaled conjugate gradient method (trainscg). It is faster than the default function (trainlm) for 

larger datasets. The target values are set to 0 and 1, where 0 denotes the normal brain scans and 

1 denotes the abnormal brain scans. In order to decide the number of neurons in the hidden 

layer, 10 runs with different number of neurons in hidden layer are implemented and the RMSEs 

of runs are shown in Table 5.2. Figure 5.8 shows the mean values of RMSE for runs and it can 

be clearly seen that the minimum mean value occurred at 75 neurons in hidden layer with 

average value of RMSE is 0.2971. Therefore, in this study the number of neurons in hidden 

layer is set at 75 neurons to achieve the maximum classification accuracy by MLP network and 

the training of MLP network with this configuration is shown in Fig. 5.9. 

The same co-occurrence statistics which were used in this study were computed using the 

traditional GLCM method in order to perform a comparison between the two methods. Four co-

occurrence matrices with four orientations (0o, 45o, 90o and 135o) and distance 1 were computed. 

The maximum classification accuracy was achieved by MLP at 86%, followed by 82% for SVM 

and the LDA classifier achieved 74%. Additionally, the performance of the features which were 

extracted by MGLCM was compared with the Gabor wavelet that was applied with five 

different scales and eight orientations. 

Table 5.2: The results of 10 runs for 190 input descriptors with different number 

 of neurons in hidden layer. 

Neurons No. 
RMSE of Runs 

Average 
1 2 3 4 5 6 7 8 9 10 

50 0.35 0.36 0.43 0.335 0.267 0.3 0.285 0.47 0.32 0.3 0.3417 

75 0.285 0.226 0.285 0.335 0.32 0.335 0.3 0.3 0.285 0.3 0.2971 

100 0.378 0.226 0.35 0.36 0.267 0.335 0.247 0.285 0.3 0.285 0.3033 

125 0.463 0.335 0.267 0.285 0.428 0.335 0.3 0.378 0.335 0.3 0.3426 

150 0.226 0.226 0.364 0.416 0.378 0.416 0.378 0.35 0.247 0.3 0.3301 
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Figure 5.8: Number of neurons vs. the mean of RMSE of runs. 
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Figure 5.9: A) MLP network structure and B) The performance of MLP network. 
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The length of the Gabor feature vector was 655360 features for each MRI brain scans. The 

achieved classification accuracy by the three classifiers was 90% by SVM, 87.4% by MLP and 

62.5% by LDA (Hasan et al., 2016c). It is noted that there is a prevalence in classification 

accuracy of texture features that were extracted using MGLCM than those extracted using 

GLCM and Gabor wavelet in both LDA and MLP classifiers. While in SVM, the performance 

of the extracted features using Gabor wavelet outperforms those achieved by others as shown 

in Fig. 5.10.  

 

Figure 5.10: A comparison between MGLCM, GLCM and Gabor wavelet  

regards classification accuracy. 

It is beneficial to select the most significant extracted features by MGLCM in order to improve 

the classifier performance by reducing misclassified data. ANOVA method was implemented 

with different F-statistic threshold values as a feature selection method. At each run the 

descriptors which have an F-statistic value greater than the threshold value, were determined. 

The results of the classification are shown in Table 5.3.  

  Table 5.3: The result of using four different F-statistic threshold  

values on the classification accuracy. 
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0 181 80% 87% 85 92.5% 
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35 100 83% 96% 55 97.8% 
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It is noted that the best performance of the three classifiers have improved significantly when 

the threshold value is experimentally fixed to 35, where the number of descriptors were reduced 

to 100 as shown in Fig. 5.11. The achieved classification accuracies of LDA and SVM 

classifiers have increased to 83% and 96% respectively. While, the average performance of the 

MLP network was 97.8±0.1%. The sensitivity and specificity rates were 98.1±0.3% and 

97.6±0.4% respectively. 

 

Figure 5.11: The optimal number of features corresponding with classification accuracy.  

The transfer function used in the MLP network was the tangent function. To update the weights 

and bias value, the scaled conjugate gradient method (trainscg) in MATLAB R2013a Image 

Processing Toolkit (Matlab, 2013), was used to be faster than the default function (trainlm) for 

larger datasets. In order to decide the number of neurons in the hidden layer, 10 runs with 

different number of neurons in hidden layer were implemented and the RMSEs of runs are 

shown in Table 5.4. 

 

Table 5.4: The results of 10 runs for 100 input descriptors with different number 

 of neurons in hidden layer. 

Neurons No. 
RMSE of Runs 

Average 
1 2 3 4 5 6 7 8 9 10 

40 0.322 0.288 0.3 0.35 0.35 0.25 0.25 0.322 0.202 0.27 0.29 

45 0.456 0.247 0.32 0.32 0.285 0.322 0.25 0.288 0.322 0 0.28 

50 0.322 0.204 0.247 0.204 0.202 0.144 0.202 0.143 0.35 0.204 0.22 

55 0.13 0.13 0.1 0.12 0.11 0.144 0.144 0.13 0.14 0.143 0.129 

60 0.25 0.202 0 0.288 0.144 0.143 0.202 0.204 0.202 0.143 0.178 

65 0.19 0.27 0.288 0.23 0.16 0.12 0.2 0.25 0.202 0.23 0.214 
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Figure 5.12 shows the average values of RMSE for runs and it can be clearly seen that the 

minimum value of RMSE occurred at 55 neurons in hidden layer with average value of 0.129. 

The training of the MLP network with 100 input layer neurons, 55 hidden layer neurons and 

single output layer is shown in Fig. 5.13.  

 

Figure 5.12: Number of neurons vs. RMSEs of runs. 

Consequently, the number of descriptors in the feature vector is reduced from 190 to 100. 

Where, 90 descriptors were discarded and considered as irrelevant or redundant features, and 

11 relevant and significant descriptors for each angle of the MGLCM are selected by ANOVA, 

namely, contrast, correlation, dissimilarity, sum of square variance, sum average, sum 

variance, difference entropy, information measure of correlation I, inverse difference 

normalized (IDN), inverse difference moment normalized (IDMN) and weighted distance in 

addition to the cross correlation. Figure 5.14 shows how these selected descriptors are 

significantly different in means and standard errors (SE) between the two groups. 

The ANOVA method was also applied on the texture features which were extracted by the 

traditional GLCM. The best classification accuracy was achieved when the F-statistic threshold 

value was 35, such that the selected texture features were auto correlation, cluster prominence, 

cluster shade, sum of square variance, sum variance and cross correlation. The maximum 

classification accuracy with the best performance of GLCM achieved was 92% for MLP, 90% 

for SVM and 79% for LDA. While, the maximum classification accuracy with the best 

performance of Gabor features achieved was 92% for MLP, 94% for SVM and 79% for LDA 

(Hasan et al., 2016c).  
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Figure 5.13: A) MLP network structure and B) The performance of MLP network. 
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Figure 5.14: Textural features (mean ± standard error (SE)) of the normal  

and pathological MRI brain scans. 

It can be clearly seen that there is a prevalence in classification accuracy of texture features that 

were extracted using MGLCM than those extracted using GLCM and Gabor wavelet in all 

classifiers as shown in Fig. 5.15. 

 

Figure 5.15: A comparison of classification accuracies for MGLCM, GLCM and Gabor 

wavelet using ANOVA method. 
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The performance of ANOVA is validated by comparing its results against those obtained by 

other techniques for feature selection mainly PCA and Kernel PCA methods which were  

implemented and used by (Van der Maaten, 2007; Moghaddasi et al., 2014). Table 5.5 and 

Table 5.6 show the results of classification when using PCA and Kernel PCA respectively with 

same dimensions that was used in ANOVA (127, 100 and 55). 

Table 5.5: Classification accuracy for the three classifiers with PCA                                    

method for feature selection. 

No. of selected 

predictors 

LDA 

Accuracy 

SVM 

Accuracy 

MLP 

Neurons in hidden 

layer 
Accuracy 

127 65% 78% 65 66% 

100 63% 80% 55 77% 

55 63% 78% 25 78% 

 

Table 5.6: Classification accuracy for the three classifiers with Kernel PCA  

method for feature selection. 

No. of selected 

predictors 

LDA 

Accuracy 

SVM 

Accuracy 

MLP 

Neurons in hidden 

layer 
Accuracy 

127 60% 81% 65 62% 

100 61% 74.5% 55 67% 

55 58% 76% 25 72% 

 

The Correlation Feature Selection Subset Evaluator (CFS-SE) method was also used for the 

evaluation and validation of the extracted features. This method was implemented using the 

WEKA software (Witten et al., 2011; M. Hall, 1999). In total, six descriptors for all angles were 

chosen as the most relevant by this method and they are weighted distance (0,0), sum of square 

variance (0,315), dissimilarity (315,45), inverse difference normalize (315,45), inverse 

difference normalize (315,315) and inverse difference moment normalize (45,315). Table 5.7 

summarizes the result of the classification of the selected features using the WEKA CFS-SE 

method with the same classifiers that were used previously. 

Table 5.7: Classification accuracy for the three classifiers with WEKA CFS-SE  

method for feature selection. 

No. of selected 

predictors 

LDA 

Accuracy 

SVM 

Accuracy 

MLP 

Neurons in hidden 

layer 
Accuracy 

6 75% 89% 3 91% 
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Figure 5.16 summarizes the behaviour of the implemented features selection methods and 

shows that the ANOVA outweighs the performance of the other techniques for detecting the 

most relevant predictors. 

 

Figure 5.16: Performance of the implemented feature selection methods. 

The experimental results of the proposed algorithm are compared with previous studies as 

shown in Table 5.8 (Hasan and Meziane, 2016). 

 

Table 5.8: Comparison with previous proposed methods 

Reference Features methods No. of Patients Classifier Accuracy 

(Nabizadeh and 

Kubat, 2015) 

- First-order statistical 

- GLCM (4 orientations and 2 distances) 

- GLRLM (4 orientations) 

- HOG 

- LBP 

25  

(BRATS 2013) 
SVM 97.4% 

(Gomez et al., 

2012) 
- GLCM (4 orientations and 10 distances) 436 LDA 87% 

(Sachdeva et al., 

2016) 

- GLCM (4 orientations and 1 distances) 

- LoG 

- DGTF 

-  RICGF 

-  RILBP 

-  IBF 

-  SBF 

55 

SVM 91.7% 

MLP 94.9% 

Proposed 

algorithm 
- MGLCM (9 orientations and 1 distance) 

165 

MLP 

97.8% 

25  

(BRATS 2013) 
98.6% 
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Nabizadeh and Kubat (2015) used five methods for feature extraction; first-order statistical 

features, GLCM with four orientations (0o, 45o, 90o and 135o) and two distances (1 and 2), 

GLRLM with four orientations (0o, 45o, 90o and 135o), HOG and linear LBP. The feature vector 

included 475 descriptors. The dataset included 25 patients (BRATS 2013). A classification 

accuracy of 97.4% was achieved by SVM.  

Gomez et al. (2012) used the GLCM method for feature extraction to classify breast ultrasound 

images (BUS) with 22 descriptors computed from four co-occurrence matrices with orientations 

(0o, 45o, 90o and 135o), ten distances (1-10 pixels) and six quantization levels (8, 16, 32, 64, 128 

and 256). To reduce the dimensionality of the feature space, the texture descriptors of the same 

distance were averaged over all orientations from 880 to 220. Additionally, mutual information 

(MI) is used for evaluating the quality of the features subset. The maximum classification 

accuracy was achieved by the LDA classifier at 87% for classifying 436 BUS images. The 

selected descriptors were feature /θ/d; correlation I/90/8, cluster prominence /0/1, correlation 

II/90/8, contrast /90/1, correlation I/90/9, difference variance /90/1, correlation II/90/9, 

correlation I/90/2, correlation I/90/7, inverse difference moment normalize/90/1, correlation 

II/90/7, correlation I/90/10, correlation I/90/6, correlation II/90/10, correlation II/90/6, 

correlation I/90/5 and inverse difference moment normalize /90/1. 

The automated screening system in this study (Hasan and Meziane, 2016) depends essentially 

on the single proposed method for texture feature extraction MGLCM with nine orientations. 

The significant features were selected using ANOVA method and reduced to 100 descriptors. 

Over the entire collected dataset which included 165 patients and the standard dataset (BRATS 

2013), the average achievable accuracy was 97.8% and 98.6% respectively by using MLP.  

5.8 Conclusion 

Since the visual diagnosis of the MRI scans is subjective and depends on the expertise of the 

radiologist, texture analysis has been widely studied for improving the diagnosis of MRI brain 

scans. In this study, 19 co-occurrence statistics which were most popular and common in 

previous studies, in addition to two proposed descriptors (weighted distance and weighted 

mean), were extracted from nine MGLCM matrices to discriminate brain abnormalities. Only 

11 co-occurrence statistics, in addition to cross correlation descriptor, were chosen as the most 

significant features by ANOVA. The weighted distance feature was included within these 11 



 

 123 
 

co-occurrence statistics and was chosen by ANOVA as a significant feature. ANOVA 

contributed to improve the behaviours of the classifiers in this study, the highest classification 

accuracy was 97.8±0.1%, and was achieved by combining MLP network with ANOVA method 

by taking only 100 relevant descriptors with 55 neurons in the hidden layer. Compared to the 

highest classification accuracy of combining SVM with PCA method which was 80% and 81% 

by combining the SVM with Kernel PCA method. Finally, 91% was achieved by combining the 

MLP with the WEKA CFS-SE method.  

It is concluded, that the statistical texture features which were extracted by MGLCM are 

sufficient to discriminate the pathological patients from non-pathological patients by using T2-

w images because most of the brain tumours appear hyper-intense in these images relative to 

normal brain tissue. A further advantage of our approach is that it uses a single MRI scan 

modality (T2-w image). The MGLCM gives high performance and accuracy in discriminating 

the normality and abnormality of the brain. However, the method is computational expensive 

and memory requirements represent the main disadvantages. Therefore, we will try to find a 

new method with less computation time and it will be demonstrated in next chapter.  



 

 124 
 

CHAPTER SIX 

Three-Dimensional Modified Grey Level Co-occurrence Matrix 

___________________________________________________________________________ 

Overview  

This chapter covers the implementation of the proposed 3DMGLCM method for texture feature 

extraction in addition to comparing different techniques for classification such as LDA, SVM 

and ANN. Finally, a comparison between 2DMGLCM and 3DMGLCM was concluded. 

___________________________________________________________________________ 

6.1 Introduction 

Medical image analysis is a rewarding field for investigating, developing and applying methods 

of image processing, computer vision and pattern recognition. Medical images are different 

from other images, as they show distributions of various physical features measured from the 

human body and attributes that are not otherwise accessible (Toennies, 2012). Many medical 

technologies show a projection of the three-dimensional human body onto a two-dimensional 

(2D) plane and slice images in such a way that the slices may be stacked to create a volume 

model. Most of the clinicians’ time is spent on data examination and interpreting medical 

images. Therefore, it is essential to have a high level of experience to carry out manual and 

accurate segmentation and classification of these images in order to achieve the final diagnosis. 

However, due to the large number of slices which are produced by medical scanners, the manual 

detection of tumours is considered to be very cumbersome, a time consuming task and prone to 

human errors (Mortazavi et al., 2012; Menze et al., 2015). Texture analysis is one of the major 

features extraction techniques to identify RoI in an image or to classify an object (Rahim et al., 

2014). Most of the proposed anatomical feature extraction techniques utilize 2D texture 

analysis, and the 2D approaches have some difficulties especially when the major axis of the 

desired object is not perpendicular to the image plane or there might be a degree of skewness 

(Ashton et al., 1997). Although the 2D approaches are relatively fast, they might lose relevant 

information present in neighbouring slices of MRI, contribute to obtain high dimensional 

feature vector because they aggregate feature from multiple slices are used for implementing 

2D approaches. In this study, the concentration will be on textural feature in a three-dimensional 
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scheme from all MRI slices at the same time in order to reduce the computation time and 

complexity. The texture features will be extracted from MRI brain slices to encode clinically 

valuable information by the proposed 3DMGLCM method that will be used to measure 

statistically the similarity between the two separated volumetric hemispheres of brain. 

Initially, prior pre-processing algorithms that should be used to prepare the MRI brain slices for 

texture features extraction by 3DMGLCM are explained in details in section 5.2 and illustrated 

in Fig. 6.1. 

 

 

 

 

 

 

 

 

 

Figure 6.1: Flowchart of the implementation of the three-dimensional feature extraction, 

selection and classification. 

6.2 Three-Dimensional Modified Grey Level Co-occurrence Matrix 

Three-dimensional modified grey level co-occurrence matrix (3DMGLCM) method gives 

information about the patterning of the texture of MRI brain scans which could be used to 

calculate textural features. These features are extracted from volumetric data of MRI brain scan 

and used to measure statistically the degree of symmetry between the two hemispheres of the 

brain. It is a second order statistical method, used to generate texture features of MRI brain 
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scans by computing a spatial relationship of the joint frequencies of all pairwise combinations 

of grey levels configuration of each pixel in the left hemisphere of brain, which is considered 

as a reference pixel, with one of the nine opposite pixels in the right hemisphere according to 

the nine offsets. These nine pixels are distributed among three opposite successive slices 

according to the nine offsets θ= (45,45), (0,45), (315,45), (45,0), (0,0), (315,0), (45,315), 

(0,315), (315,315), and one distance d=1. Figure 6.2 shows how the joint frequencies of all 

pairwise combinations of grey levels configuration of reference pixel in slice z with nine 

opposite pixels which are distributed over slices z+1, z and z-1. Consequently, because each 

pixel on the left hemisphere has nine opposite pixels on the right hemisphere, nine co-

occurrence matrices are determined for each MRI brain scan.  

 

Figure 6.2: How reference pixel relates with opposite nine pixels. 

Thereafter, each co-occurrence matrix is normalized by the total number of its elements to 

calculate the co-occurrence relative frequency between the grey levels of joint pixels in the 

brain hemispheres. The nine co-occurrence matrices are defined using Eq. 6.1. 
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where L and R denote the left and right volumetric hemispheres respectively, both of them have 

size of (512×256×z) pixels. z  represents the number of MRI slices of scan. P is the resultant 

co-occurrence matrix. ∆x, ∆y and ∆z are changed upon the directions of measured matrix.  

For slice z 

If θ1=0 and θ2=0 then ∆x=0 and ∆y=0 and ∆z=0,  

If θ1=0 and θ2=45 then ∆x=-1 and ∆y=0 and ∆z=0, 

If θ1=0 and θ2=315 then ∆x=1 and ∆y=0 and ∆z=0. 

For slice z+1 

If θ1=45 and θ2=0 then ∆x=0 and ∆y=0 and ∆z=1,  

If θ1=45 and θ2=45 then ∆x=-1 and ∆y=0 and ∆z=1,  

If θ1=45 and θ2=315 then ∆x=1 and ∆y=0 and ∆z=1. 

For slice z-1 

If θ1=315 and θ2=45 then ∆x=-1 and ∆y=0 and ∆z=-1,  

If θ1=315 and θ2=315 then ∆x=1 and ∆y=0 and ∆z=-1,  

If θ1=315 and θ2=0 then ∆x=0 and ∆y=0 and ∆z=-1.  

The resultant co-occurrence matrices are approximately symmetric around the forward diagonal 

for patients who have healthy brain, and asymmetrical for pathological patients.  

Figure 6.3 shows two examples of abnormal and normal MRI brain scans and corresponding 

co-occurrence matrix at θ1=0 and θ2=0. On the left, the MRI brain scans of two patients who 

have pathological and normal brain scans respectively. On the right, the corresponding co-

occurrence matrices of those patients. It can be clearly seen that the corresponded co-occurrence 

matrix of pathological brain is wider and asymmetry around the forward diagonal. Whereas it 

is slightly narrower and symmetry around the forward diagonal of normal patient. The 

computing time for implementing 3DMGLCM for the patient who has 10 MRI slices is about 

920 sec. by using an HP Workstation Z820 with Xeon E5-3.8GHz (Quad-Core), and 16GB of 

RAM (Random Access Memory). That means, each slice is required 920/10=92 sec. to 

determine its co-occurrence matrix. 
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Figure 6.3: A) MRI abnormal brain scan, B) MRI normal brain scan, C) 3DMGLCM of 

abnormal brain scan and D) 3DMGLCM of normal brain scan. 

Finally, 21 co-occurrence statistics that were explained and described in details in section 5.3, 

are extracted from each co-occurrence matrix. These features are used to measure statistically 

the degree of symmetry between the two volumetric hemispheres of the brain.  

6.3 Feature Aggregation 

Due to the proposed 3DMGLCM method determining nine co-occurrence matrices for all MRI 

slices for each patient, there are 21 descriptors that are determined for each co-occurrence 

matrix. This mean, there are 189 descriptors for each MRI brain scan. Additionally, the cross-

correlation descriptor that is determined for volumetric MRI brain scan. Consequently, there 

are 190 descriptors for each MRI brain scan.  
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6.4 Feature Selection 

ANOVA method as utilized in the previous chapter in section 5.5, to measure the significance 

and relevance of features, is used to measure the significance of descriptors which are extracted 

by 3DMGLCM. As shown in Table 6.1, the differences between the descriptors of normal and 

abnormal MRI brain scan groups of co-occurrence matrix at θ1=0 and θ2=0. It can be clearly 

seen that some descriptors are highly significant because they have significant P-value, but the 

degree of significance depends on the F-statistic values. Therefore, different F-statistic 

threshold values were used to eliminate the descriptors that have small significance as well as 

minimize the redundancy between features. For instance, once the threshold value is set to 0, 

the most significant descriptors will be; contrast, correlation, dissimilarity, energy, 

homogeneity, maximum probability, difference entropy, information measure of correlation I, 

information measure of correlation II, inverse difference normalised, inverse difference moment 

normalised and cross correlation. 

6.5 Feature Normalization 

As explained in section 5.6, all extracted features are normalized by using the min-max 

normalization approach due to the significant variation between the extracted features that 

makes some descriptors with larger values influenced more than other descriptors with small 

values on the behaviour of the classifier (Larose, 2005; Hasan and Meziane, 2016).  

6.6 Feature Classification 

The same classifiers that were used previously in chapter 5 to classify the extracted features by 

MGLCM method from MRI brain scans, are used to classify the extracted features by 

3DMGLCM. These classifiers are LDA (Zacharaki et al., 2009; Takayanagi et al., 2011), SVM 

(Nagarajan et al., 2013; Kharrat et al., 2010; Bauer et al., 2011; Hackmack et al., 2012; 

Kalbkhani et al., 2013) and MLP (Pantelis, 2010; Saritha et al., 2013; Antkowiak, 2006). The 

training samples are randomly selected and the robustness of the classifiers is validated using 

the 10-folded cross-validation method. Figure 6.4 shows the flowchart and steps of training and 

testing of classification techniques. As mentioned in chapter four, the collected dataset includes 

165 patients and it was clinically classified into normal and abnormal by the clinicians. 

javascript:void(0)
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Table 6.1: Comparison of MRI brain scans feature (mean ± standard deviation (SD)) between 

normal and abnormal patients. 

Features 
Abnormal 

MRI scans 

Normal 

MRI scans 
F-statistic P-value 

Auto correlation (×103) 6.3±1 6.63±1.2 0.006 0.939 

Contrast (×103) 1.96±0.54 1.243±0.44 31.578 <0.001 

Correlation (÷10) 7.17±0.72 7.99±0.73 235.158 <0.001 

Cluster Prominence (×108) 3.76±1.34 3.33±0.8 1.254 0.266 

Cluster Shade (×105) 6.77±3.29 4.64±2.9 2.090 0.152 

Dissimilarity (×10) 2.5±0.43 1.92±0.34 36.270 <0.001 

Energy (÷100) 9±1.8 8.8±1.9 328.162 <0.001 

Entropy 7.4±0.29 7.35±0.3 11.069 0.001 

Homogeneity (÷10) 3.37±0.315 3.44±0.311 757.204 <0.001 

Max. Probability (÷10) 2.99±0.318 2.95±0.325 689.810 <0.001 

Sum of Square Variance (×103) 7.12±1.2 7.27±1.2 0.424 0.517 

Sum Average (×102) 1.24±0.1 1.27±0.12 0.250 0.619 

Sum Variance (×104) 2.6±3.99 2.66±4.6 0.360 0.55 

Sum Entropy 4.63±0.15 4.61±0.158 0.108 0.744 

Difference Entropy 3.74±0.17 3.55±0.17 21.444 <0.001 

Information Measure of Correlation I (÷10) -1.8±0.23 -2.06±0.26 561.403 <0.001 

Information Measure of Correlation II (÷10) 8.78±0.225 9.02±0.2 378.739 <0.001 

Inverse Difference Normalized (÷10) 9.22±0.11 9.38±0.092 485.585 <0.001 

Inverse Difference Moment Normalized (÷10) 9.75±0.064 9.83±0.052 232.709 <0.001 

Weighted Mean -5.96±28.7 0.57±6.36 0.726 0.397 

Weighted Distance 3.2±3.02 0.8±0.58 12.733 0.001 

Cross Correlation (÷10) 7.17±0.72 7.99±0.37 235.158 <0.001 

The average performance of classifying the MRI brain scans into normal and abnormal scans 

by LDA and MLP are 73.6% and 87.68% respectively. While the highest achieved accuracy 

with best performance was achieved by SVM with 88.2%. The performance of 3DMGLCM 

method was compared with the achieved results by MGLCM, GLCM and Gabor wavelet 

methods that were demonstrated in chapter 5. It is noted that there is a superiority in 

classification accuracies of MGLCM than others in LDA and MLP. While, 3DMGLCM 

outweighed MGLCM and GLCM when using SVM classifier as shown in Fig. 6.5.   

After implementing ANOVA method for relevance analysis, different F-statistic threshold 

values were tested at each run and the results of the classification are shown in Table 6.2. 
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Figure 6.4: Flowchart and steps of training and testing of classification techniques. 

 

Figure 6.5: A comparison of classification accuracies for 3DMGLCM, MGLCM, Gabor 

wavelet and GLCM.  
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  Table 6.2: The result of using four different F-statistic threshold  

values on the classification accuracy. 

 

It is noted that the classification accuracies of the three classifiers have improved and the best 

performance of MLP was 93.3% at 0 threshold value, compared to SVM was 89.3% at 200 

threshold value and 77.3% was achieved by LDA at 30 threshold value as shown in Fig. 6.6.  

The transfer function that was used in the MLP network was the tangent function. To update 

the weights and bias value, the scaled conjugate gradient method (trainscg) in MATLAB 

R2013a Image Processing Toolkit (Matlab, 2013), was used to be faster than the default 

function (trainlm) for larger datasets. In order to decide the number of neurons in the hidden 

layer, 10 runs with different number of neurons in the hidden layer are implemented and the 

RMSEs of runs are shown in Table 6.3. 

 

 

Figure 6.6: The optimal number of features corresponding with classification accuracy.  
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Table 6.3: The results of 10 runs for 100 input descriptors with different number 

 of neurons in hidden layer. 

Neurons No. 
RMSE of Runs 

Average 
1 2 3 4 5 6 7 8 9 10 

50 0.463 0.422 0.422 0.463 0.378 0.5 0.5 0.415 0.422 0.5 0.448 

70 0.463 0.5 0.463 0.327 0.463 0.415 0.463 0.422 0.463 0.378 0.435 

80 0.5 0.267 0.267 0.422 0 0.378 0.267 0.327 0.378 0.267 0.307 

100 0.422 0.185 0.267 0.327 0.185 0.262 0.189 0.189 0.267 0.189 0.248 

110 0.5 0.327 0.267 0.327 0 0.327 0.372 0.378 0.378 9.267 0.31 

Figure 6.7 shows the average values of RMSE for runs and it can be clearly seen that the 

minimum value of RMSE occurred at 100 neurons in hidden layer with average value of 0.248. 

 

Figure 6.7: Number of neurons vs. RMSEs of runs. 

The training of the MLP network with 100 input layer neurons, 100 hidden layer neurons and 

single output layer is shown in Fig. 6.8. The average performance of the MLP network was 

93.3±0.15%. The sensitivity and specificity rates were 94.1±0.3% and 92.8±0.3% respectively. 

Consequently, the number of descriptors in the feature vector was reduced from 190 to 100. 

Where, 90 descriptors were discarded and considered as irrelevant or redundant features. Eleven 

relevant and significant features for each angle of the 3DMGLCM were chosen by the ANOVA 

method namely: contrast, correlation, dissimilarity, energy, homogeneity, maximum 

probability, difference entropy, information measure of correlation I, information measure of 

correlation II, inverse difference normalized (IDN), inverse difference moment normalized 

(IDMN) and cross correlation.  
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Figure 6.8: A) MLP network structure and B) The performance of MLP network. 

Figure 6.9 shows how these selected descriptors are significantly different in means and 

standard errors (SE) between these two groups. 
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Figure 6.9: Textural features (mean ± standard error (SE)) of the normal and pathological 

MRI brain scans. 

6.7 Conclusion 

In this chapter, a novel 3DMGLCM method was implemented on volumetric data of MRI scans 

instead of extracting texture features from each MRI slice separately with low computational 

complexity. Over the entire collected dataset and standard dataset (BRATS 2013), the average 

achieved accuracies by 3DMGLCM were 93.30% and 95.30% respectively by using MLP 

classifier. Consequently, the computation time for extracting texture features from MRI brain 

scans is reduced by 38% based on 3DMGLCM method using a single MRI scan modality (T2-

weighted image). The 3DMGLCM gives high performance and accuracy in discriminating the 

normality and abnormality of the brain scans. However, this method has one disadvantage here 

regarding the high memory requirements.  

The identification of the location of the abnormality in MRI brain scan will be investigated in 

the next chapter. 
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CHAPTER SEVEN 

Detection of the Tumour Location and Slices 

___________________________________________________________________________ 

Overview  

This chapter includes an explanation in details of the proposed method to identify brain tumours 

location and tumour slices detection automatically based on GA. The proposed method works 

in a three-dimensional space and does not need for skull elimination.  

___________________________________________________________________________ 

7.1 Introduction 

Automated detection of abnormalities in MRI brain scans is important and necessary in medical 

diagnostics, planning and treatment. It is more complex than other image objects recognition 

due to the brain tumours not having regular shapes and standard properties. The general property 

of a healthy brain is the approximate left-right symmetry (Dvořák et al., 2013). This merit is 

investigated in this study to detect the location of abnormalities in the brain in order to be able 

to initiate the segmentation algorithm automatically. Many tumour segmentation methods are 

not fully automated. These approaches require user involvement in selecting a seed point. Since 

the main factor in detecting tumours from healthy tissues is the difference in intensity level, 

such that the tumour appears brighter than the surrounding brain tissue. Tumours are more 

condensed than the surrounding material and present as brighter pixels than the surrounding 

brain tissue. Therefore, the basic concept of brain tumour detection algorithms is finding pixel 

clusters with a different or a higher intensity than that of their surroundings (Khandani et al., 

2009). In this study, a bounding 3D-boxes based genetic algorithm (BBBGA) (Hasan et al., 

2016a; Hasan et al., 2016b) was introduced for locating the clusters of brain tumours 

automatically without user interaction. Then the centre of this region can be used as a seed point 

for initializing the segmentation algorithm.  

7.2 Overview of Genetic Algorithms 

In the early 1970s, John Holland  one of the founders of evolutionary computation, introduced 

the concept of GA (Haupt and Haupt, 2004). His aim was to make computers emulates what 
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nature does (Negnevitsky, 2005). The GA is an efficient, adaptive and robust optimization and 

stochastic search technique based on biological evolution. It is particularly suited for 

applications involving search and optimization where the space is huge, complex and 

multimodal (Bandyopadhyay and Pal, 2007). It is similar to other optimization techniques by 

defining optimization variables, cost function and termination criterion. GA emulates the 

principle of biological genetics and the principle of the fittest to guide the search and to solve 

complex optimization problems. It includes a sequence of procedural steps to move from one 

population which includes a set of individuals to a new one using natural selection and genetic-

inspired techniques known as crossover and mutation. These individuals represent the variable 

domain of the given problem. Some of these individuals that have a higher probability are more 

likely to be selected to generate better and better populations from old one. Only those 

individuals in a population who are better suited to solve complex optimization problems are 

likely to survive and selected according to their fitness in the problem domain. The fitness 

function is used to measure the performance of each chromosome in the problem domain, and  

represents the basis for selecting individuals that will be mate during reproduction  

(Negnevitsky, 2005). Then they are breed together using GA operators to generate new 

generation (Chipperfield et al., 1994; Grefenstette, 1986; Negnevitsky, 2005). Figure 7.1 shows 

the flowchart of a GA (Haupt and Haupt, 2004). 

GA is different from other optimization and search techniques in (Grefenstette, 1986): 

1- GA does not work immediately with the parameters of the problem, but it works with 

the encoding of these parameters. 

2- GA works simultaneously in parallel with multiple points, not with a single point 

therefore it has very little chance to fall at a local minimum when using optimization 

technique. 

3- GA is considered a blind search technique because it uses only the payoff information. 

4- GA searches using stochastic operators instead of deterministic rules. 

5- GA does not need essentially that the search space is continuous and no auxiliary 

information is required such as the derivative of the optimizing function. 
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Figure 7.1: Flowchart of GA. 

To solve an optimization problem, the GA begins by encoding the individuals as a string, these 

individuals represent solutions of the problem in the search space. Each of these individuals is 

comprised of a set of variables or genes to be optimized in a binary form (Chipperfield et al., 

1994; Ross, 2009). For instance, if the problem to be solved has two variables x1 and x2, these 

variables are mapped into the individual structure as shown in Fig 7.2, where x1 is encoded with 

9 bits and x2 with 12 bits. Now, it is possible to assess and evaluate the performance of each 

individual in the population by using the fitness function, or it is also known as the objective 

function. 
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Figure 7.2: How the variables are organized in the chromosome. 

After the fitness function is computed for each individual in the population, the survival of the 

fittest and the death of the poor individual is achieved by applying the three basic operators of 

GA: selection, crossover and mutation (Talebi et al., 2010; Sonka et al., 2014): 

 Selection operator is a process of choosing the individuals as parents with the highest fitness 

from the current population into the new population (Sonka et al., 2014). Then, only the best 

individuals are selected to continue to the next generation, while the rest is discarded (Haupt 

and Haupt, 2004). Different selection methods exist for choosing the most fit individuals; 

roulette wheel selection method, stochastic universal selection method and binary tournament 

selection method.  

Roulette wheel selection method is widely used in many applications of GA. It depends on a 

probability distribution to choose the fittest individuals. Such that the selection probability of 

the given individual is directly proportional to its fitness (Colin and Jonathan, 2002). Figure 

7.3 shows the roulette wheel of six individual’s fitness probability values, individual 2 is the 

most popular fit and invade the large interval, while individuals 1 and 3 are the least fit and 

occupy smaller intervals in the roulette wheel. The individual is selected by multiplying the 

total sum of individual’s probability values by a random number that is generated within the 

interval 0 and 1 (Chipperfield et al., 1994). 

Stochastic universal selection method depends on placing P equidistant markers on the wheel 

as shown in Fig. 7.4, such that all the P individuals are chosen by spining the wheel and the 

number of selected individuals are equal to the number of markers that points within the 

corresponding slot (Bandyopadhyay and Pal, 2007). Practically, instead of a single choice at 

roulette wheel selection method, this method may be used to choose P individuals at each 

time (Colin and Jonathan, 2002; Negnevitsky, 2005).  

x1 x2 
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Binary tournament selection method depends on choosing two individuals randomly, and the 

better of them is chosen as a parent for next generation. This process is repeated till all 

population is filled (Bandyopadhyay and Pal, 2007). This method is more suitable for larger 

population sizes because it does not need for sorting as sorting becomes time-consuming for 

large populations (Haupt and Haupt, 2004). In this study, the roulette wheel selection method 

will be used in the implementation of GA because it is more popular and efficient in different 

application (Talebi et al., 2010). 

 

 

 

 

 

 

 Figure 7.3: Roulette wheel selection method. 

 

 

 

 

 

   

 

 

 

Figure 7.4: Stochastic universal selection method. 
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 Crossover operator is a process of mating the selected parents to exchange information by 

recombining parts of their genetic materials. The process is performed probabilistically by 

choosing randomly crossover point and crossing the individuals over to produce new off 

springs for next generation (Bandyopadhyay and Pal, 2007). The most common form of 

crossover involves two parents to produce two off springs. The selected pair of individuals 

undergo crossover with probability Pc. A random number Rc is generated in the range 0 to 1, 

and compared with Pc. if Rc≤Pc then the two individuals are undergoing crossover, otherwise 

they are processed without crossover. Typically the value of Pc is in range  0.4 to 0.9, and if 

Pc=0.5, then half of the new population is formed by selection and crossover, and the other 

half by selection only (Coley, 1999). There are two types of crossover operators; single point 

crossover and multi-points crossover. Single point crossover is one of the most commonly 

used method, it involves generating randomly single crossover point between the first and last 

bits of the parent’s individuals. Such that, the partitions that are located to the right of 

crossover point for both parents are swapped to produce the first and second offspring (Haupt 

and Haupt, 2004; Bandyopadhyay and Pal, 2007; Negnevitsky, 2005) as shown in Fig. 7.5.    

 

 

  

                    

Figure 7.5: Single point crossover operation. 

Multi-points crossover involves generating randomly multi-points crossover positions within 

the length of individual. These multi-points should be without duplication and in an 

ascending order. Then the parts of individuals between the consecutive crossover points are 

swapped between the two parents to reproduce two new offspring (Chipperfield et al., 1994) 

as shown in Fig. 7.6. It will be used in this study within the implementation of GA. 
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Figure 7.6: Multi-points crossover operation. 

 Mutation operator is a process of a random alternation in the genetic structure of an individual 

to make genetic diversity into the population. It helps to converge to the optimal solution in 

the search space, if it is not represented in the population (Bandyopadhyay and Pal, 2007). It 

is implemented by generating a random number within the length of individual and 

complement the chosen bit according to the random number (Colin and Jonathan, 2002). The 

probability of mutation Pm is typically of the order 0.001, that means one bit in every 

thousand will be mutated (Coley, 1999). Similarly, to other genetic operators, there are a 

single point mutation and multi-points mutation. The single point deals with a single bit by 

changing a 1 to a 0 and vice versa for each individual as shown in Fig. 7.7. Whereas the 

multi-points mutation deals with multi-bits for each individual and it helps to increase the 

algorithm’s freedom to search outside the current region of the variable space (Haupt and 

Haupt, 2004). After implementing all GA operators on the selected parents, the two new 

offspring are generated and this process is repeated until a new set of N individuals are 

generated, where N represents the population size. In order to ensure the survival of the best 

individuals, the bottom half of current population is discarded and replaced by the top half 

after resorting all the individual descending according to the fitness value (Haupt and Haupt, 

2004; Negnevitsky, 2005).   

 

  

 

 

Figure 7.7: Single point mutation operation. 
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7.3 Termination of GA 

Since the GA is considered as a stochastic search method, it is possible to run continuously 

forever because there are no convergence criteria that can be specified. As well as the fitness 

value of individuals may remain static for several iterations before the best individual is found. 

Therefore, there are several criteria that can be used to terminate the GA; specify the maximum 

number of generations, test the quality of the best individuals of the population against the 

problem definition and compute the error between current and previous generation. If there is 

no acceptable solutions may be found, the GA should be restarted (Chipperfield et al., 1994; 

Colin and Jonathan, 2002; Negnevitsky, 2005).   

In this study, two criteria are used to terminate the GA; the maximum number of iterations that 

is set experimentally at 100 and RMSE between current and previous generations. Such that the 

RMSE value is compared with threshold value that it was set experimentally to 0.5 which 

denotes the acceptable approximate solution.   

7.4 Bounding 3D-Boxes Based Genetic Algorithm Method 

The novel bounding 3D-boxes based genetic algorithm (BBBGA) method is proposed in (Hasan 

et al., 2016a; Hasan et al., 2016b) to search and identify the location of the most dissimilar 

regions between the left and right hemispheres of the brain automatically without the need for 

user interaction. The input is a set of MR slices belonging to the scans of a single patient, and 

its output is a subset of slices covering and circumscribing the tumour with 3D-box. The 

BBBGA method exploits the symmetry feature of axial viewing of MRI brain slices to search 

for the most dissimilar region between the left and right brain hemispheres. This dissimilarity 

is detected using GA and an objective function based mean intensity computation. The process 

involves randomly generating hundreds of 3D-boxes with different sizes and locations in the 

left brain hemisphere. Such boxes are then compared with the corresponding 3D-boxes in the 

right brain hemisphere through the objective function. These 3D-boxes are moved and updated 

during the iterations of the GA toward the region that maximized the objective function value. 

The objective function value is high when the 3D-box stands on the tumour region and low 

when standing on soft tissue because the tumour is always brighter than the soft surrounding 

tissue of the brain in T2-w images (Khandani et al., 2009). The BBBGA is applied to a collected 
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dataset that was already pre-processed, and the output is the MRI slices that contain the tumour 

and corresponds to the optimized 3D-box that bounded the tumour over the relevant subset of 

slices. Many studies have investigated this idea of symmetry of human brain for various 

applications (Saha et al., 2012; Ray et al., 2008b; Dvořák et al., 2013). These studies have 

exploited the symmetry of the brain for detecting brain tumours and made the detection task 

robust. An advantage of BBBGA method is its lack of necessity for image registration. The 

approach is an unsupervised method; hence, the problems on observer variability in supervised 

techniques are ignored. It can be implemented in real time as well as it can be used as a seed 

point to initialize the segmentation process.   

7.4.1 Exponential Transformation of MRI Brain Slices 

Prior to BBBGA, exponential transformation is implemented to compress the low-contrast 

regions in MRI brain images and expand the high-contrast regions in a nonlinear manner. This 

action would increase the intensity difference between the brain tumour and the surrounding 

soft tissue (Khandani et al., 2009) as shown in Fig. 7.8. This will help the GA to converge and 

move the generated 3D-boxes faster and accurately to the abnormal region of the brain. Figure 

7.9 illustrates the pseudo-code for BBBGA 

                                               

     A                                                              B 

Figure 7.8: Image exponential transformation, A) Original MRI brain slice,  

B) Transformed MRI brain slice. 
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Figure 7.9: Pseudo-code for BBBGA. 

7.4.2 Designing of GA 

There are several issues involved in designing of GAs such as individual size and population 

size in addition to choose the most appropriate operations such as selection, crossover and 

mutation methods. 

7.4.2.1 Individual Construction 

For additional details on how each individual in the GA population is mapped into binary form, 

we use the following scenario. Suppose we have a MRI brain scan (dimensions 512 × 512 × 32 

pixels) of a pathological patient, each individual in the GA population is denoted by the binary 

representation of the coordinates of one 3D-box (x1, x2, y1, y2, z1 and z2). In this case, x1 and x2 

represent the height of the 3D-box and are subject to the constraints 1 ≤ x1 < 512 and x1 < x2 ≤ 

512. Meanwhile, y1 and y2 signify the width of the 3D-box and are subject to the constraints 1 

≤ y1 < 256 and y1 < y2 ≤ 256. Finally, z1 and z2 represent the depth of the 3D-box and are subject 

to the constraints 1 ≤ z1 < 32 and z1 < z2 ≤ 32. Herein, we assume that the maximum number of 
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MRI slices is 32. Figure 7.10 shows the original generated 3D-boxes by GA, such that each 

generated red 3D-box in the left brain hemisphere has a corresponding yellow 3D-box in right 

brain hemisphere. Figure 7.11 shows an example of how the coordinates of 3D-box (x1, x2, y1, 

y2, z1, z2) are mapped to the individual of the GA in a binary form. 

 

  

 

 

 

 

 

 

 

 

 

Figure 7.10: Representation of one 3D-box in the left hemisphere of brain using (x1, x2, y1, y2, 

z1, z2) coordinates and opposite region. 

 

 

 

Figure 7.11: Individual structure. 
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Consequently, the individual size becomes equal to 44 bits. By using the objective function, we 

can measure the performance of individuals in the problem domain (Chipperfield et al., 1994). 

In this study, the fittest individuals that have the highest numerical value of the associated 

objective function are preserved.  

The objective function 𝒈 that is used in this study is based on finding the absolute value of 

subtracting the means of the intensities inside the generated 3D-box in the left hemisphere from 

the corresponding 3D-box in the right hemisphere using Eq. 7.1. 

𝒈 =
𝟏

𝒙, 𝒚, 𝒛
|∑ 𝑰𝑳(𝒊, 𝒋, 𝒌) − ∑ 𝑰𝑹(𝒊, 𝒋, 𝒌)

𝒙,𝒚,𝒛

𝒊,𝒋,𝒌

𝒙,𝒚,𝒛

𝒊,𝒋,𝒌

|                                            𝟕. 𝟏 

where 𝒙, 𝒚 and 𝒛 are the coordinates of the generated 3D-box on the left hemisphere 𝑰𝑳 and the 

corresponding opposite 3D-box in right hemisphere 𝑰𝑹. 

7.4.2.2 Population Size 

The choice of the population size is considered as an important issue in GA applications because 

it affects both the ultimate performance and the efficiency of the GA. However, a too small 

population size would be insufficient for exploring the entire search space effectively and a too 

large population size would be efficient but it requires a significant amount of computations 

and more evaluations per generation. This leads to possibly resulting in an unacceptable slow 

rate of convergence (Colin and Jonathan, 2002). Grefenstette (1986) suggested that the adequate 

population size is as small as 30 in many cases and the best off-line GA had population size 

equal to 80 (Haupt and Haupt, 2004). While Haupt (2000) reported that there is a relationship 

between the population size and mutation rate and the choice of them can impact on the run 

time and ability of GA to converge to optimal solution.  

Table 7.1 illustrates the average number of iterations to converge to the optimal solution of 

locating the brain tumour in MRI brain scans of 40 patients, by running the BBBGA, 5 times 

for different population sizes ranging from 20 to 100 in increments of 20, and 5 different 

mutation rates ranging from 0.05 to 0.25 in increments of 0.05. It is noted that the minimum 
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average number of iterations was achieved by setting population size to 100 and mutation rate 

to 0.05 as shown in Fig. 7.12. 

 

Table 7.1: An average number of iterations with different population size 

and mutation rates. 

Mutation rate 
Population size 

20 40 60 80 100 

0.05 85 52 44 29 18 

0.1 92 72 50 45 36 

0.15 99 77 68 47 43 

0.2 124 84 76 62 50 

0.25 130 104 79 67 74 

 

 

Figure 7.12: Average of GA iterations for different values of  

population size and mutation rate. 

After the MRI brain scans are classified into normal and pathological images, the BBBGA 

method was applied on those identified as pathological cases as shown in the pathological 

patient in Fig. 7.13. The red rectangles denoting the optimized 3D-box refer to the pathological 

area in slices 6–9 where the tumour appears. Figure 7.14 shows how the RMSE decreases 

significantly over 18 iterations by GA.    
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Figure 7.13: MRI brain slices: the output of the BBBGA implementation on pathological MRI 

brain slices with a population size equal to 100 and a mutation rate equal to 0.05. The red 

rectangles that denotes the optimized 3D-box stands on pathological area in slices 6 to 9, 

where the tumour are appeared. 

The BBBGA method was implemented on MRI brain scans of pathological patients with 

population size (N) equal to 100. The individuals were selected using the roulette wheel 

selection method because this approach is more popular and efficient in different applications 

(Talebi et al., 2010). The selected individuals were then mated using a multi-point crossover 

with probability of 0.5 (Chipperfield et al., 1994). Finally, a single-point mutation was 

implemented with a probability of 0.05. 

Evidence extracted from previous studies (Khandani et al., 2009; Saha et al., 2012) indicates 

the lack of a standard method for evaluating the BBBGA method. Saha et al. (2012) used an 

example to observe and measure the noise sensitivity of his approach by adding Gaussian noise 

with different values of 𝜎 = 0, 0.1, 0.2, 0.3 and 0.4 although this addition is not important and 

irrelevant for the evaluation. 
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Figure 7.14: RMSE decreases within 18 iterations by GA.  

The noise sensitivity of BBBGA is measured after the addition of the Gaussian noise of the 

same noise amounts and this is shown in Appendix A. Figure 7.15 shows that FP is proportional 

to the amount of noise in the MRI scan. Hence, our approach was evaluated using the collected 

dataset that included 88 pathological cases. Among 84 pathological cases, an abnormality was 

successfully located. Only four cases remained undetected because of the method’s inability to 

detect hardly visible tumours of size less than 1 cm3. Moreover, tiny tumours hold a spatial 

scale relatively similar to normal anatomic variability (Sanjuán et al., 2013). 

Table 7.2 shows the comparison of identifying clinically and experimentally the most important 

slices of 12 pathological patients. It is noted, that the BBBGA method has succeeded to identify 

number of pathological MRI slices for each patient. The located pathological MRI slices are 

within the range of important slices that were identified clinically. 
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Figure 7.15: FP increases with increasing noise amount in the MRI scan. 

 

Table 7.2: A comparison between clinical and experimental slice identification. 

Patient 

No. 

Clinically Identified Experimentally Identified 

Tumour Starting 

Slice 

Tumour Ending 

Slice 

Tumour Starting 

Slice 

Tumour Ending 

Slice 

1 5 11 5 8 

2 4 11 7 9 

3 3 11 9 10 

4 3 9 3 7 

5 2 12 9 11 

6 5 14 5 12 

7 8 13 9 13 

8 16 22 20 22 

9 6 10 8 10 

10 4 10 8 9 

11 2 11 9 10 

12 1 13 6 8 

7.5 Conclusion 

In this chapter, the novel BBBGA method was presented for localizing brain tumours and 

recognizing the most relevant pathological slices that will draw the attention of clinicians to 

diagnose these slices immediately without requiring the inspection of all the patients’ slices. It 

exploits the symmetry feature of axial viewing of MRI brain slices (T2-w images) to search for 

the most dissymmetric region in the volume of the brain using GA and region score function 

that uses the mean of intensity. It is a completely unsupervised method that does not require a 

training phase and does not need for image registration, intensity standardization and skull 
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removing. The achieved accuracy by the BBBGA to locate the brain tumours was 95%, with 

only 4 cases out of 88 pathological patients whose tumour's size is less than 1 cm3, have failed 

to be identified the abnormality because the relative similarity of spatial scale between the tiny 

brain tumours and normal variability in anatomy (Hasan et al., 2016b). Consequently, the 

proposed BBBGA has achieved acceptable result in indexing brain tumours that make it eligible 

to initialize the seed point of segmentation process as it will be demonstrated in next chapter.
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CHAPTER EIGHT 

Brain Tumour Segmentation 

___________________________________________________________________________ 

Overview  

This chapter demonstrates the results of the brain tumours segmentation that are obtained from 

implementing 3DACWE in addition to identifying the most important MRI slices that present 

brain tumour. It also includes a comparison between the achieved results by 3DACWE and 

2DACWE, and other proposed techniques for segmenting brain tumours. 

___________________________________________________________________________ 

8.1 Introduction 

In the medical diagnostics field, brain tumours are relatively less common compared to other 

neoplasms such as lung and breast, but are considered highly important due to their effect on 

the patient and present a high morbidity (Karkavelas and Tascos, 2011). They require specific 

studies because of the complicated pathologies which make them difficult to diagnose. Accurate 

detection and segmentation of brain tumours have a significant influence on clinical diagnosis, 

predicting prognosis and treatment. In addition, they are beneficial for general modelling of 

pathological brains and the anatomical construction of the brain (Nabizadeh and Kubat, 2015). 

In section 2.6.4, the deformable model has been proved to be efficient. It is one of the most 

recommended method that have been used for different applications of medical images 

segmentation due to its capability of accommodating the often significant variability of 

biological structures over time and cross different patients (Rousseau, 2009; Tantisatirapong, 

2015).  

An evaluation procedure is important to estimate the reliability and quality of segmentation 

techniques. Image segmentation evaluation can be categorized into subjective and objective 

evaluations. The subjective evaluation method requires to compare visually the result of the 

image segmentation with one or more human experts. Since each human expert has his own 

experience and distinct standards for evaluating and assessing the segmentation results, the 

evaluation results may significantly differ from one expert to another. Consequently, the 
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subjective evaluation is considered a very tedious procedure and time consuming (Zhang et al., 

2008). While the objective evaluation is divided into supervised and unsupervised techniques. 

Supervised evaluation methods evaluate segmentation algorithms by comparing segmentation 

results with manually-segmented reference images which are segmented by experts and reflects 

the optimum of the resulting segmentation. It is also known as ground truth reference images 

or gold standard. The degree of similarity between the human and machine segmented images 

determines the quality of the segmentation (Zhang et al., 2008). While unsupervised evaluation 

methods do not require to compare with any additional reference images, it just relies on the 

degree of matching among the characteristics of segmented images as desired by humans. The 

main advantage of unsupervised evaluation method is that it does not need to compare against 

a manual segmented reference image. This merit makes it more suitable for real-time 

application where a large number of images with unknown content and no ground truth need 

(Tantisatirapong, 2015; Beneš and Zitová, 2015; Menze et al., 2015; Christos, 2005; Zhang et 

al., 2008). 

In this study, supervised evaluation is preferred because of the complexity of the brain tissue 

and variety of brain tumours as well as its ability to distinguish slight differences between the 

outputs of different segmentation techniques (Beneš and Zitová, 2015; Zhang et al., 2008). This 

evaluation method measures the degree of similarity between the segmented brain tumours and 

those that are segmented manually or with a ground truth dataset. A set of statistical measures 

have been used to evaluate the segmentation outcomes. They are TP, FP, TN and FN. The TP 

denotes the number of pixels that are correctly segmented as part of a tumour, FP denotes the 

number of pixels that are incorrectly segmented as part of a tumour, TN denotes the number of 

pixels that are correctly segmented as a healthy pixels and FN denotes the number of pixels that 

are incorrectly segmented as a healthy pixels as shown in Fig. 8.1 (Anbeek et al., 2005; 

Tantisatirapong, 2015). These measures are used to evaluate the segmentation process; 

accuracy, sensitivity and specificity. Accuracy is defined as the ratio of numbers of pixels that 

are correctly segmented to the total number of pixels in MRI slices and given in Eq. 5.41. 

Sensitivity considers the proportion of the tumour that is correctly segmented and given in Eq. 

5.42. Specificity refers to non-tumour portion that is correctly segmented and given in Eq. 5.43. 

(Nabizadeh, 2015; Udomchaiporn et al., 2013; Menze et al., 2015). 
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Figure 8.1: Comparison of a binary segmentation image (Seg.) with the reference  

image (Ref.) and the statistical measures. 

In the evaluation of the segmentation, both accuracy and specificity are not highly relevant 

because these two measures adopt the TN, which depends on the relative size of the MRI slices. 

Therefore, the following additional metrics are used to evaluate the segmentation results: Dice, 

Jaccard and matching coefficients. The Dice coefficient is used to measure the percentage of 

spatial overlapping between two binary images. It is more popular in reporting the performance 

of segmentation. The mathematical representation of the Dice coefficient is given in Eq. 8.1 

(Agrawal and Sharma, 2014). 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝑆𝑒𝑔 ∩ 𝑅𝑒𝑓|

|𝑆𝑒𝑔| + |𝑅𝑒𝑓|
=

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                       8.1 

Jaccard coefficient is another popular measure that is also used to measure the percentage of 

overlapping between two binary images. The mathematical representation of the Jaccard 

coefficient is given in Eq. 8.2 (Agrawal and Sharma, 2014). 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
|𝑅𝑒𝑓 ∩ 𝑆𝑒𝑔|

|𝑅𝑒𝑓 ∪ 𝑆𝑒𝑔|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                          8.2 

Matching coefficient is used to measure the percentage of matching between two binary images. 

It is calculated as the ratio of the TP to the number of ground truth tumour pixels as given in 

Eq. 8.3 (Fletcher-Heath et al., 2001). 

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                            8.3 

TP 

FP 

TN 

FN 

Seg. Ref. 
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The ACWE segmentation method was combined with BBBGA to implement it automatically 

to improve the capture range of brain tumour boundary in volumetric MRI scans. This method 

is applied in two and three-dimensional spaces on four modalities of MRI: T2-w, T1-w, FLAIR 

and T1c-w images.  

8.2 Brain Tumour Segmentation 

This section includes implementation of 2DACWE and 3DACWE segmentation methods of 

brain tumours and their evaluation by comparing them with manual segmentation (clinical 

segmentation) and standard dataset (BRATS 2013). To fully segment the brain tumours, the 

segmentation algorithm is applied on MRI slices either on slice by slice using 2DACWE or on 

volumetric MRI scans using 3DACWE. The implementation of these two methods will be 

described in this chapter using different examples. Finally, a conclusion and a comparison 

between these two methods will be performed. We first set the initial condition of the level set 

function ∅  using the BBBGA method as illustrated in chapter seven to choose a seed point to 

start the segmentation process. The outputs of the brain tumour segmentation method were 

compared with 25 patients in the standard dataset BRATS 2013 and 50 patients in the collected 

dataset which were manually segmented by expert clinicians.  

8.2.1 2DACWE Segmentation Outcome   

After the brain tumour location was recognized and identified by BBBGA, the 2DACWE 

approach was initialized and applied to the T2-w MRI brain slices of a pathological patient from 

the collected dataset in a slice by slice manner as shown in Fig. 8.2. The ground truth provided 

by the clinician is marked in green and the tumour boundaries extracted by 2DACWE are 

marked in red. This patient holds a brain tumour in the right brain hemisphere. The 2DACWE 

was initialized by the following parameters: λ1 = λ2 = 1 and length penalty μ = 102. This patient’s 

MRI scan was segmented with a Dice score of 81% by comparing with manual segmentation. 
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 Figure 8.2: Comparative segmentation results on T2-w MRI slices by 2DACWE. The 

ground truth is marked in green and the output of 3DACWE is marked in red. 

8.2.2 3DACWE Segmentation Outcome 

After the brain tumour location was recognized and identified by BBBGA, the 3DACWE 

approach was initialized and applied to 12 T2-w slices of pathological MRI scan from the 

collected dataset as shown in Fig. 8.3. The ground truth provided by the clinician is marked in 

green and the tumour boundaries extracted by 3DACWE are marked in red. This patient holds 

a brain tumour in the left brain hemisphere. The 3DACWE was initialized by the following 

parameters: λ1 = λ2 = 1 and length penalty μ = 106. The Chan–Vese energy function was 

minimized within the iterations of 3DACWE and reached a steady state in 1250 iterations as 

shown in Fig. 8.4. This patient’s MRI scan was segmented with a Dice score of 88.4% by 

comparing with manual segmentation. 
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Figure 8.3: Comparative segmentation results on T2-w MRI slices by 3DACWE. The ground 

truth is marked in green and the output of 3DACWE is marked in red. 

 

 

Figure 8.4: The Chan-Vese energy function convergence to steady state. 
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The 3DACWE approach was initialized and applied to 6 T1-w slices of pathological MRI scan 

from the collected dataset as shown in Fig. 8.5. The ground truth provided by the clinician is 

marked in green, and the tumour boundaries extracted by 3DACWE are marked in red. This 

patient holds a brain tumour in the right brain hemisphere. The 3DACWE was initialized by the 

following parameters: λ1 = λ2 = 1 and length penalty μ = 106. The Chan–Vese energy function 

was minimized within the iterations of 3DACWE and reached a steady state in 1250 iterations 

as shown in Fig. 8.6. This patient’s MRI scan was segmented with a Dice score of 93.6% by 

comparing with manual segmentation. 

 

 

Figure 8.5: Comparative segmentation results on T1-w MRI slices by 3DACWE. The ground 

truth is marked in green and the output of 3DACWE is marked in red. 
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Figure 8.6: The Chan-Vese energy function convergence to steady state. 

 

The 3DACWE approach was initialized and applied to 32 FLAIR slices of pathological MRI 

scan from the standard dataset (BRATS 2013) as shown in Fig. 8.7. The ground truth provided 

by BRATS 2013 is marked in green, and the tumour boundaries extracted by 3DACWE are 

marked in red. This patient holds a brain tumour in the left brain hemisphere. The 3DACWE 

was initialized by the following parameters: λ1 = λ2 = 1 and length penalty μ = 106. The Chan–

Vese energy function was minimized within the iterations of 3DACWE and reached a steady 

state in 1750 iterations as shown in Fig. 8.8. This patient’s MRI scan was segmented with a 

Dice score of 94.3% by comparing with the standard dataset of BRATS 2013. 

The 3DACWE approach was initialized and applied to 28 T1-w slices of pathological MRI scan 

from the collected dataset as shown in Fig. 8.9. The ground truth provided by the clinician is 

marked in green, and the tumour boundaries extracted by 3DACWE are marked in red. This 

patient holds a brain tumour in the left brain hemisphere. The 3DACWE was initialized by the 

following parameters: λ1 = λ2 = 1 and length penalty μ = 106. The Chan–Vese energy function 

was minimized within the iterations of 3DACWE and reached a steady state in 1100 iterations 

as shown in Fig. 8.10. This patient’s MRI scan was segmented with a Dice score of 93.7% by 

comparing with manual segmentation. 
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Figure 8.7: Comparative segmentation results on FLAIR slices by 3DACWE. The ground 

truth is provided by BRATS 2013 in green and the output of 3DACWE is marked in red. 

Table 8.1 and Table 8.2 show the results of the segmentation for both collected and BRATS 

2013 datasets respectively. The overall results of the segmentation of the four MRI modalities 

(T1-w, T2-w, T1c-w and FLAIR) for the collected dataset are summarized in Fig. 8.11. 
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Figure 8.8: The Chan-Vese energy function convergence to steady state. 

The T1c-w-based segmentation attained the highest average metric rates because of the contrast 

enhancement of the pathological tissues. The T2-w-based segmentation was rated as the lowest 

among all metrics because of highly inhomogeneous intensity distribution despite the sharp 

edges and high intensity of the brain tumour with respect to the surrounding tissues, where the 

necrotic tissue of tumour appears with highest intensity and sharp edge. Whilst the edema is of 

low intensity and with very smooth edges (Mikulka and Gescheidtov, 2013).   

Clinically, the delineation of a brain tumour is performed on a single modality of MRI. Lesley 

Macpherson,  a radiologist at the University Hospital Birmingham NHS Foundation Trust  gave 

her opinion about how to delineate brain tumour boundaries in children and concluded that these  

depends essentially on T2-w, moderately depends on FLAIR and occasionally depends on T1c-

w (Tantisatirapong, 2015). While Nigel P. Davies, a lead MRI physicist at the University 

Hospital Birmingham NHS Foundation Trust, has a different opinion about outlining adult brain 

tumours. For high grade tumour, he stated that more depend on T1c-w and for outlining low 

grade tumour, it depends on T2-w and FLAIR (Tantisatirapong, 2015).  
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Figure 8.9: Comparative segmentation results on T1-w slices by 3DACWE. The ground truth 

is marked in green and the output of 3DACWE is marked in red.  

Consequently, it is possible to identify the most important slices after implementing 3DACWE 

method to draw the attention of the clinicians about these slices instead of spending long time 

on diagnosing and interpreting MRI slices. Table 8.3 shows a comparison of identifying 

clinically and experimentally the most important slices of 12 pathological patients.  
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Figure 8.10: The Chan-Vese energy function convergence to steady state. 

 

Table 8.1: Segmentation results for each patient in the collected dataset. 
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1 T2-w 13 31908 9070 3363603 3291 0.907 0.997 0.996 0.838 0.721 0.907 

2 T2-w 12 32699 3562 3104487 4980 0.868 0.999 0.997 0.884 0.793 0.868 

3 T2-w 14 84230 6459 3572824 6503 0.928 0.998 0.996 0.929 0.867 0.928 

4 T2-w 13 19915 0 3383244 4713 0.809 1.000 0.999 0.894 0.809 0.809 

5 T2-w 14 112876 13932 3535931 7277 0.939 0.996 0.994 0.914 0.842 0.939 

6 T2-w 11 13767 892 2864378 4547 0.752 1.000 0.998 0.835 0.717 0.752 

7 T2-w 15 20511 379 3906820 4450 0.822 1.000 0.999 0.895 0.809 0.822 

8 T1-w 8 1862 51 2094601 638 0.745 1.000 1.000 0.844 0.730 0.745 

9 T1-w 11 19448 2432 2856952 4752 0.804 0.999 0.998 0.844 0.730 0.804 

10 T1c-w 15 16099 417 3911979 3665 0.815 1.000 0.999 0.887 0.798 0.815 

11 T1c-w 13 65111 1006 3320724 21031 0.756 1.000 0.994 0.855 0.747 0.756 

12 FLAIR 8 18623 3115 2067044 8370 0.690 0.998 0.995 0.764 0.619 0.690 

13 T1-w 26 35185 2938 6774629 2992 0.922 1.000 0.999 0.922 0.856 0.922 

14 T1-w 34 47567 3860 8853060 8409 0.850 1.000 0.999 0.886 0.795 0.850 

15 T2-w 9 5325 1843 2351799 329 0.942 0.999 0.999 0.831 0.710 0.942 

16 T1-w 7 2155 229 1831766 858 0.715 1.000 0.999 0.799 0.665 0.715 

17 T1-w 13 49476 15051 3341842 1503 0.971 0.996 0.995 0.857 0.749 0.971 

18 T2-w 9 15062 3844 2336737 3653 0.805 0.998 0.997 0.801 0.668 0.805 

19 T2-w 7 6066 591 1826954 1397 0.813 1.000 0.999 0.859 0.753 0.813 

20 T2-w 11 48010 417 2824383 10774 0.817 1.000 0.996 0.896 0.811 0.817 

21 T1-w 28 99779 894 7226939 12420 0.889 1.000 0.998 0.937 0.882 0.889 

22 T1-w 35 132451 2493 9023249 16847 0.887 1.000 0.998 0.932 0.873 0.887 

23 T2-w 7 2007 422 1832022 557 0.783 1.000 0.999 0.804 0.672 0.783 

24 T2-w 5 4271 1072 1305133 244 0.946 0.999 0.999 0.867 0.764 0.946 

25 T2-w 12 92631 1467 3036437 15193 0.859 1.000 0.995 0.917 0.848 0.859 

26 T2-w 12 50081 5571 3080231 9845 0.836 0.998 0.995 0.867 0.765 0.836 

27 FLAIR 21 51692 756 5444340 8236 0.863 1.000 0.998 0.920 0.852 0.863 

28 T2-w 17 47693 3962 4397953 6840 0.875 0.999 0.998 0.898 0.815 0.875 

29 T2-w 18 53821 4944 4656360 3467 0.939 0.999 0.998 0.928 0.865 0.939 
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30 T1-w 18 28236 1320 4686303 2733 0.912 1.000 0.999 0.933 0.874 0.912 

31 T2-w 13 4002 20 3403080 770 0.839 1.000 1.000 0.910 0.835 0.839 

32 FLAIR 23 138140 2930 5863542 24700 0.848 1.000 0.995 0.909 0.833 0.848 

33 FLAIR 16 144058 2449 4028693 19104 0.883 0.999 0.995 0.930 0.870 0.883 

34 T2-w 10 20860 1784 2590147 8649 0.707 0.999 0.996 0.800 0.667 0.707 

35 FLAIR 24 195121 1367 6060609 34359 0.850 1.000 0.994 0.916 0.845 0.850 

36 T1-w 7 9700 656 1821330 3322 0.745 1.000 0.998 0.830 0.709 0.745 

37 T1-w 6 3042 86 1569408 328 0.903 1.000 1.000 0.936 0.880 0.903 

38 T1-w 50 66764 1 13031194 9241 0.878 1.000 0.999 0.935 0.878 0.878 

39 T2-w 12 11663 498 3130606 2961 0.798 1.000 0.999 0.871 0.771 0.798 

40 T1-w 22 8766 13 5756463 1926 0.820 1.000 1.000 0.900 0.819 0.820 

41 T1-w 25 120093 794 6420293 12420 0.906 1.000 0.998 0.948 0.901 0.906 

42 T2-w 13 80631 867 3311274 15100 0.842 1.000 0.995 0.910 0.835 0.842 

43 T1c-w 30 141791 1493 7705236 15800 0.900 1.000 0.998 0.943 0.891 0.900 

44 T1c-w 26 40185 938 6770529 4092 0.908 1.000 0.999 0.941 0.889 0.908 

45 T2-w 15 60010 1266 3862110 8774 0.872 1.000 0.997 0.923 0.857 0.872 

46 T1c-w 17 76001 2179 4365195 13073 0.853 1.000 0.997 0.909 0.833 0.853 

47 T1c-w 27 55031 2179 7011605 9073 0.858 1.000 0.998 0.907 0.830 0.858 

48 T2-w 18 44925 1337 4666537 5793 0.886 1.000 0.998 0.926 0.863 0.886 

49 T2-w 10 14699 962 2605199 580 0.962 1.000 0.999 0.950 0.905 0.962 

50 T1c-w 17 20088 1107 2256000 756 0.964 1.000 0.999 0.956 0.915 0.964 

Average  0.854 0.999 0.998 0.890 0.804 0.854 

STD  0.069 0.001 0.002 0.047 0.075 0.069 

Min  0.690 0.996 0.994 0.764 0.619 0.690 

Max  0.971 1.000 1.000 0.956 0.915 0.971 

 

Table 8.2: Segmentation results for each patient in the BRATS 2013 dataset. 
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1 T1c-w 23 3992 8 6024139 1173 0.773 1.000 1.000 0.871 0.772 0.773 

2 FLAIR 42 19832 1075 10987391 1750 0.919 1.000 1.000 0.934 0.875 0.919 

3 T1c-w 26 4698 488 6810273 285 0.943 1.000 1.000 0.924 0.859 0.943 

4 FLAIR 53 55793 1065 13819891 16883 0.768 1.000 0.999 0.861 0.757 0.768 

5 T2-w 48 26109 1115 12546345 9343 0.736 1.000 0.999 0.833 0.714 0.736 

6 T2-w 24 7752 3131 6279025 1548 0.834 1.000 0.999 0.768 0.624 0.834 

7 FLAIR 49 50448 3490 12788270 2848 0.947 1.000 1.000 0.941 0.888 0.947 

8 T2-w 56 49417 730 14617608 12309 0.801 1.000 0.999 0.883 0.791 0.801 

9 T1c-w 72 236141 16438 18611652 10137 0.959 0.999 0.999 0.947 0.899 0.959 

10 T2-w 49 44418 6014 12792678 1946 0.958 1.000 0.999 0.918 0.848 0.958 

11 T2-w 43 34509 7401 11229012 1270 0.965 0.999 0.999 0.888 0.799 0.965 

12 T1c-w 58 101547 5968 15090734 6103 0.943 1.000 0.999 0.944 0.894 0.943 

13 T1c-w 45 34156 1695 11757396 3233 0.914 1.000 1.000 0.933 0.874 0.914 

14 T1c-w 43 39138 8707 11224152 195 0.995 0.999 0.999 0.898 0.815 0.995 

15 T2-w 49 49259 11777 12777738 6282 0.887 0.999 0.999 0.845 0.732 0.887 

16 FLAIR 46 53545 3826 11997820 3433 0.940 1.000 0.999 0.937 0.881 0.940 

17 T1c-w 36 23651 1243 9409786 2504 0.904 1.000 1.000 0.927 0.863 0.904 

18 T1c-w 37 26750 5782 9666577 219 0.992 0.999 0.999 0.899 0.817 0.992 

19 T1c-w 41 34498 5694 10706266 1446 0.960 0.999 0.999 0.906 0.829 0.960 

20 T1c-w 39 25586 5480 10191639 911 0.966 0.999 0.999 0.889 0.800 0.966 
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21 T1c-w 40 19980 4654 10458884 2242 0.899 1.000 0.999 0.853 0.743 0.899 

22 T1c-w 34 21985 4500 8886231 180 0.992 0.999 0.999 0.904 0.824 0.992 

23 T1c-w 33 19156 3576 8626033 1987 0.906 1.000 0.999 0.873 0.775 0.906 

24 T1c-w 41 28023 0 10714312 5569 0.834 1.000 0.999 0.910 0.834 0.834 

25 FLAIR 56 64018 24354 14591612 80 0.999 0.998 0.998 0.840 0.724 0.999 

Average  0.909 1.000 0.999 0.893 0.809 0.909 

STD  0.076 0.000 0.000 0.043 0.068 0.076 

Min  0.736 0.998 0.998 0.768 0.624 0.736 

Max  0.999 1.000 1.000 0.947 0.899 0.999 

 

 

Figure 8.11: The overall results of the segmentation of the four MRI modalities. 

   

Table 8.3: A comparison between clinical and experimental slice identification. 

Patient 

No. 

Clinically Identified Experimentally Identified 

Tumour Starting 

Slice 

Tumour Ending 

Slice 

Tumour Starting 

Slice 

Tumour Ending 

Slice 

1 5 11 4 11 

2 4 11 4 11 

3 3 11 3 11 

4 3 9 3 9 

5 2 12 3 11 

6 5 14 5 14 

7 8 13 8 13 

8 16 22 16 22 

9 6 10 6 10 

10 4 10 5 10 

11 2 11 2 11 

12 1 13 1 13 
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In this study, the three-dimensional segmentation has been proved that is more successful than 

the two-dimensional segmentation due to the greater number of pixels that occupied a volume 

inside and outside the boundary of brain tumours that are used within the segmentation process. 

The achieved average Dice score of the 2DACWE method (slice by slice) on the collected 

dataset was 84.18±4.5%. Fig. 8.12 shows a comparison of average Dice scores of four 

modalities of MRI using 2DACWE and 3DACWE segmentation techniques. 

 

Figure 8.12: Comparing tumour segmentation average Dice scores of  

four modalities of MRI using 2DACWE and 3DACWE. 

Figure 8.13 illustrates the comparison between the 3DACWE and 2DACWE segmentation 

results of the collected dataset of 50 pathological patients. Notably, 3DACWE outweighs the 

2DACWE method for all patients in the given dataset due to exploiting all important anatomical 

information and the features of the full MRI scans. 

Tables 8.4 show a comparison between the existing segmentation methods and our proposed 

segmentation method based on number of patients (training/testing), Accuracy, Match, Jaccard 

and Dice evaluators in different MRI modalities. It is observed from the table that the best 

performance is for proposed segmentation method with Dice score of 89 % for 50 patients of 

the collected dataset and 89.3% for BRATS 2013 dataset. Generally, it is observed from the 

comparison table the 3DACWE proposed method has achieved the best performance in low 

computational time with high segmentation Dice score compared to the other recently 

developed MRI image segmentation techniques.  
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Figure 8.13: Comparison between 3DACWE and 2DACWE segmentation  

results for collected dataset (50 patients). 

8.3 Conclusion 

The quantitative measures of the automated 3DACWE segmentation come closer to the manual 

expert segmentation. Such that, the achieved average Dice score of segmenting the collected 

dataset was 89±4.7% with a sensitivity rate of 85.4%. While the achieved average Dice score 

of BRATS 2013 dataset was 89.3±4.3% with a sensitivity rate of 91%. It was noted that the 

segmentation accuracy of 3DACWE decreases significantly with increasing in the summation 

of slice thickness and space between slices as shown in Fig. 8.14. The scatter plot shows a 

negative correlation between the Dice score and the summation of slice thickness and space 

between slices. Therefore, to achieve a high segmentation accuracy, a reduction of the slice 

thickness and space between slices to a minimum is essential and diminishes the PV effect.  

We conclude that the 3DACWE method is effective in brain tumour segmentation because the 

approach does not only consider local tumour properties (gradients), but also relies on global 

properties (intensity), contour length and region length. Although the achieved accuracy was 

high relative to state-of-arts segmentation techniques, the 3DACWE was relatively slow for 

brain tumour segmentation due to processing of a volumetric data of MRI of 512 × 512 pixel 

resolution. 
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Table 8.4: An overview of segmentation methods compared to proposed system. 

Reference 
MRI 

Modalities 
Approach 

No. of Patients 

(training/Testing) 

Performance 

Accuracy Match Jaccard Dice 

(Fletcher-

Heath et al., 

2001) 

T1, T2 and 

PD 

Fuzzy 

clustering 
2/4 - 53-91% - - 

(Kaus et al., 

2001) 
T1 

Template-

moderated 

classification 

10/10 95% - - - 

(Ho et al., 

2002) 

T1 and 

T1-c 
Level-sets Na./5 - - 85-93% - 

(Prastawa 

et al., 2004) 
T2 

Generative 

model 
Na./3 - - 59-89% - 

(Corso et 

al., 2008) 

T1, T1c, 

T2 and 

FLAIR 

Weighted 

aggregation 
10/10 - - 62-69% - 

(Verma et 

al., 2008) 

T1, T1c, 

T2 and 

FLAIR 

SVM 14 34-93% - - - 

(Menze et 

al., 2010) 

T1, T1c, 

T2 and 

FLAIR 

Generative 

model 
25 - - - 40-70% 

(Havaei et 

al., 2017) 

T1, T1c, 

T2 and 

FLAIR 

Deep Neural 

Network 

30/10  

(BRATS 2013) 
- - - 88% 

(Nabizadeh, 

2015) 

T1, T1c, 

T2 and 

FLAIR 

Skippy 

greedy snake 

25  

(BRATS 2013) 
96.8±0.3% - - - 

(Guo et al., 

2015) 
T1 SVM 

60 98.5±1.1% 

- - 

73.1±10.6% 

30 

(BRATS 2012) 
99.2±1.1% 66.5±12% 

Proposed 

System 

T1, T1c, 

T2 and 

FLAIR 

3DACWE 

50 (collected 

dataset) 
99.8±0.2% 85.4±6.9% 80.4±7.4% 89±4.7% 

25  

(BRATS 2013) 
99.9% 91±7.6% 81±6.8% 89.3±4.2% 

A major difficulty was encountered during white matter tumours segmentation because of the 

overlapping WM/GM intensity distributions in such cases. Some parts of the tumours in GM 

were not distinguished because of the restricted image resolution and the complex network of 

brain tissue with various shapes and sizes. These factors significantly affect many voxels 

located in the tissue borders. Moreover, central tumour image intensity slightly differs from the 

peripheral tumour intensity. As such, the intensity near the borders can be considered similar to 

that of the grey matter. Consequently, the tumour and GM may be confused and the peripheral 

tumour regions may be misclassified.  
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Figure 8.14: Scatter plot of Dice score to the summation of slice thickness 

and space between slices, showing mean of Dice score (R2) as the dotted red line. 

Tumour size affects segmentation accuracy and errors usually occur at the tumour boundaries. 

Large brain tumours contain a high number of image pixels that can be misclassified. Moreover, 

large tumours likely ingress into the brain boundary and CSF and render the precise 

determination of the tumour boundary challenging. With regard to the overall execution time, 

the proposed system handled volumetric MRI data with different characteristics, such as the 

number of slices and tumour size, type, boundary and location. These characteristics make the 

overall segmentation process time consuming. Hence, the processing time of the proposed 

system was measured by second per MRI slice. An average processing time of our proposed 

system requires 35 s/MRI slice to run the segmentation. 
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CHAPTER NINE 

Conclusion and Future Work 

___________________________________________________________________________ 

Overview 

This chapter concludes and summarizes the work that has been developed as part of the PhD 

programme and the techniques that have been investigated to discriminate and differentiate 

pathological MRI brain scans from the normal brain scans and segment the brain tumours. The 

main achievements are discussed and suggestions for future work are made.  

___________________________________________________________________________ 

9.1 Introduction 

Medical image processing has expanded dramatically during the last decade and has been an 

interesting research field that attracted expertise from other fields such as mathematics, 

computer sciences, engineering, biology and medicine. The main aim of this study is to come 

out with an automated system for the classification and segmentation of brain tumours in MRI 

scans. These aspects were considered and addressed in this study that has scientifically 

contributed in many ways. Most of previous studies in the brain tumour segmentation field were 

based on multi-spectral MRI, multi-scale classification, local or global registration, high 

resolution and non-noisy data. The research was conducted through its objectives as presented 

in section 1.3.  

The first and second objectives were developed as described in chapters 2 and 4 respectively, 

through evaluating and comparing recent algorithms of brain tumours classification and 

segmentation of MRI brain scans. In chapter 2, several related works and methods were 

presented, investigated, analysed, and the reader was given a comprehensive knowledge about 

different related techniques, in addition to advantages and disadvantages. While, chapter 4 

demonstrates how to prepare the MRI brain slices to achieve high brain tumours classification 

and segmentation accuracies, a set of image pre-processing algorithms were implemented on 

the collected dataset from Al-Kadhimiya Teaching Hospital in Iraq. These algorithms were 

resizing the dimensions of MRI slices, MRI image enhancement, intensity normalization, 
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background segmentation and MSP detection and correction algorithms. The third objective 

was also achieved as described in chapters 5 and 6. This objective represents the most important 

part of this research that aimed to design and develop an efficient automated screening system 

of MRI brain scanning. Two novel methods were proposed to extract the second order statistical 

features that were used to discriminate and classify the MRI brain scans into normal and 

pathological brain scanning in high enough accuracy and with a reasonable computation 

complexity. The first method was called modified grey level co-occurrence matrix (MGLCM), 

which was based on using single modality of MRI (T2-w images) and exploited the symmetry 

property of the two hemispheres of a normal brain. Nine matrices and 100 co-occurrence 

statistics were extracted from each MRI slice after eliminating the irrelevant and redundant 

features by ANOVA. The remarkable accuracy of this method in classifying the MRI brain 

scans by MLP (97.8±0.1% for the collected dataset and 98.6±0.15% for the standard dataset) 

demonstrates its efficiency. The second method was called three-dimensional modified grey 

level co-occurrence matrix (3DMGLCM) and was based on using a single volumetric modality 

of MRI (T2-w images). It has the same principles of MGLCM method but the difference is that 

the 3DMGLCM works on all MRI brain slices at the same time, while the MGLCM works on 

each MRI slice separately. Nine matrices and 100 co-occurrence statistics were extracted from 

volumetric data of MRI scan after eliminating the irrelevant and redundant features by ANOVA. 

The accuracy of this method in classifying the volumetric data of MRI by MLP (93.3±0.15% 

for the collected dataset and 95.3±0.2% for the standard dataset) was very high.  

The fourth objective was developed in chapter 7 where a new method was proposed and named 

bounding 3D-boxes based genetic algorithm (BBBGA) for localizing the brain tumours of 

pathological patients by generating a hundred of 3D-boxes within the volumetric data of MRI 

scan. These 3D-boxes are being moved during the iterations of GA toward the area that has less 

similarity representing a candidate tumour region. Then the final location of 3D-boxes can be 

used to construct the initial seed points inside the brain tumour to initialize the segmentation 

algorithm automatically without the need for user interaction as presented in chapter 8, which 

represents the fifth objective. The main advantages of BBBGA is being an unsupervised method 

and there is no need for atlas registration, intensity standardization of MRI slices and skull 

removing as well as it uses a single modality of MRI (T2-w images). The achieved accuracy by 

BBBGA was 95%, as there were only 4 cases whose tumour's size is less than 1 cm3, have failed 
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to identify the abnormality because of the relative similarity of spatial scale between the tiny 

brain tumours and normal variability in anatomy. Chapter 8 included the implementation of the 

2DACWE and 3DACWE respectively. A comparison was made between these two methods of 

segmentation and the best segmentation accuracy of brain tumours was achieved by 3DACWE 

because it exploits the entire volumetric MRI data within the segmentation process instead of 

segmenting each slice separately. The achieved average Dice scores for segmenting the 

collected dataset and the standard dataset (BRATS 2013) were 89±4.7% and 89.3±4.3% 

respectively. Furthermore, a comparison was made with other state-of-the art of classification 

and segmentation of brain tumours in MRI scans. This comparison stated that the proposed 

system outperformed the other recently developed systems.  

The overall automated system in this study has some advantages that can be summarised as 

follows:  

 It is independent of atlas registration, as depending on atlas registration means that the 

performance depends on how well the atlas is constructed and how well the registration 

algorithm can register the test data to the atlas.  

 It is independent of prior anatomical knowledge, as the dependence means that the 

algorithm must be trained to incorporate such information which can lead to errors in 

classification and segmentation.  

 The proposed system does not need to initialize assumptions about the number of classes 

in MRI scan.  

 All the proposed methods are fully automatic.  

9.2 Future Works 

According to the conclusion and contribution that are provided in this study, there is a set of 

recommendations for the researchers who are interested in brain tumours classification and 

segmentation. The future developments of this work can be summarised as follows: 

 Further studies should involve in the pre-processing stage that can be improved and enhanced 

the performance of the classification and segmentation of the system. 
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 Investigate and quantify the features that are extracted from other modalities of MRI such as 

T1-w, T1c-w and FLAIR slices and combine them with the features that were employed in 

this study to classify the pathological MRI scans further according to the various types of 

brain tumours, such as primary gliomas from metastases, grading of gliomas, very small 

tumours, lesions caused by injury and dementia.  

 Reduction of computer processing time is another important issue, because the clinical 

diagnostic routine applications should not exceed the order of minutes. Therefore, it is 

essential to be optimized with respect to faster implementation in computers network that 

will run in parallel mode. 
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APPENDIX A 

To measure noise sensitivity of BBBGA, Gaussian noise of zero mean with different 𝜎 =

0, 0.1, 0.2, 0.3 and 0.4 are used to contaminate the pathological T2-w MRI slices (Fig. A.1, Fig 

A.2, Fig. A.3, Fig. A.4 and Fig. A.5). It is notted that the efficacy of BBBGA to identify the 

location of brain tumour decreases with increasing amount of noise in MRI scan. By increasing 

the amount of noise the overall brightness of MRI slices increases and the spatial scale of normal 

tissue becomes relatively similar to normal variability in the pathology. As shown in Fig. 7.15, 

the FP in this example represents the part of the generated 3D-box by BBBGA, which is located 

outside the brain tumour boundary. Therefore, the FP at noise-free MRI scan is relatively small, 

meaning that the major area of the generated 3D-box is located inside the boundary of the brain 

tumour. Increasing the amount of noise in MRI scan leads to increase the normal anatomy tissue 

that is covered by 3D-box, resulting in increasing the propability of the error in choosing the 

seed point to initialize the segmentation process.    

 

 

Figure A.1: Result of the BBBGA implementation on MRI brain scan of a pathological patient 

when there is no additive Gaussian noise (𝜎 = 0). 
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Figure A.2: Result of the BBBGA implementation on MRI brain scan of a pathological patient 

when there is additive Gaussian noise (𝜎 = 0.1). 

 

 

Figure A.3: Result of the BBBGA implementation on MRI brain scan of a pathological patient 

when there is additive Gaussian noise (𝜎 = 0.2). 
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Figure A.4: Result of the BBBGA implementation on MRI brain scan of a pathological patient 

when there is additive Gaussian noise (𝜎 = 0.3). 

 

 

Figure A.5: Result of the BBBGA implementation on MRI brain scan of a pathological patient 

when there is additive Gaussian noise (𝜎 = 0.4). 


