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Abstract 

Several mining algorithms have been invented over the course of recent decades. However, 

many of the invented algorithms are confined to generating frequent patterns and do not 

illustrate how to act upon them. Hence, many researchers have argued that existing mining 

algorithms have some limitations with respect to performance and workability. 

Quantity and quality are the main limitations of the existing mining algorithms. While 

quantity states that the generated patterns are abundant, quality indicates that they cannot be 

integrated into the business domain seamlessly. Consequently, recent research has suggested 

that the limitations of the existing mining algorithms are the result of treating the mining 

process as an isolated and autonomous data-driven trial-and-error process and ignoring the 

domain knowledge. Accordingly, the integration of domain knowledge into the mining 

process has become the goal of recent data mining algorithms.   

Domain knowledge can be represented using various techniques. However, recent research 

has stated that ontology is the natural way to represent knowledge for data mining use. The 

structural nature of ontology makes it a very strong candidate for integrating domain 

knowledge with data mining algorithms. It has been claimed that ontology can play the 

following roles in the data mining process: 

 Bridging the semantic gap. 

 Providing prior knowledge and constraints. 

 Formally representing the DM results. 

Despite the fact that a variety of research has used ontology to enrich different tasks in the 

data mining process, recent research has revealed that the process of developing a 

framework that systematically consolidates ontology and the mining algorithms in an 

intelligent mining environment has not been realised. Hence, this thesis proposes an 

automatic, systematic and flexible framework that integrates the Hierarchical Bayesian 

Network (HBN) and domain ontology.  

The ultimate aim of this thesis is to propose a data mining framework that implicitly caters 

for the underpinning domain knowledge and eventually leads to a more intelligent and 

accurate mining process. To a certain extent the proposed mining model will simulate the 

cognitive system in the human being.  
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The similarity between ontology, the Bayesian Network (BN) and bioinformatics 

applications establishes a strong connection between these research disciplines. This 

similarity can be summarised in the following points:  

 Both ontology and BN have a graphical-based structure. 

 Biomedical applications are known for their uncertainty. Likewise, BN is a powerful 

tool for reasoning under uncertainty. 

 The medical data involved in biomedical applications is comprehensive and 

ontology is the right model for representing comprehensive data.  

Hence, the proposed ontology-based Semantically Aware Hierarchical Bayesian Network 

(SAHBN) is applied to eight biomedical data sets in the field of predicting the effect of the 

DNA repair gene in the human ageing process and the identification of hub protein. 

Consequently, the performance of SAHBN was compared with existing Bayesian-based 

classification algorithms. Overall, SAHBN demonstrated a very competitive performance. 

The contribution of this thesis can be summarised in the following points.  

 Proposed an automatic, systematic and flexible framework to integrate ontology and 

the HBN. Based on the literature review, and to the best of our knowledge, no such 

framework has been proposed previously. 

 The complexity of learning HBN structure from observed data is significant. Hence, 

the proposed SAHBN model utilized the domain knowledge in the form of ontology 

to overcome this challenge.  

 The proposed SAHBN model preserves the advantages of both ontology and 

Bayesian theory. It integrates the concept of Bayesian uncertainty with the 

deterministic nature of ontology without extending ontology structure and adding 

probability-specific properties that violate the ontology standard structure.  

 The proposed SAHBN utilized the domain knowledge in the form of ontology to 

define the semantic relationships between the attributes involved in the mining 

process, guides the HBN structure construction procedure, checks the consistency 

of the training data set and facilitates the calculation of the associated conditional 

probability tables (CPTs). 

 The proposed SAHBN model lay out a solid foundation to integrate other semantic 

relations such as equivalent, disjoint, intersection and union.  
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Chapter 1 Introduction 

The term data mining (DM) is used to refer to methods that aim to extract useful 

information and knowledge from data. Fayyad et al. defined these methods as the non-trivial 

process of identifying valid, novel, potentially useful and ultimately understandable patterns 

in a database [1], [2]. 

Despite the fact that the ultimate goal of DM algorithms is to identify useful and 

understandable knowledge from data, many of the existing mining algorithms are confined 

to generating frequent patterns and do not illustrate how to act upon them. Accordingly, 

some researchers have argued that existing mining algorithms demonstrate some serious 

drawbacks with respect to performance and workability [3]–[5]. 

These drawbacks have affected the extracted knowledge in terms of both quantity and 

quality. While the former states that the generated patterns are abundant, the latter indicates 

that they cannot be integrated into the business domain seamlessly [4], [6]. There is some 

evidence to suggest that these drawbacks have been partially caused as a result of viewing 

the mining process as data-driven, trial-and-error practices that ignore the domain 

knowledge [4], [7]. Consequently, DM philosophy has faced a paradigm shift from being a 

data-centred to a knowledge-centred process that aims to accommodate the domain 

knowledge in the mining process [5], [8].  

Although domain knowledge can be represented through various techniques, recently 

ontology has played a significant role in the process of knowledge acquisition and 

representation. The term ontology has different interpretations in different communities. 

Nevertheless, this thesis has used the interpretation provided by the knowledge engineering 

community, which defines ontology as “explicit specification of conceptualizations”. In 

other words, ontology is a simplified, abstract and formal representation of an area of 

interest, which describes the concepts, entities and relationships that hold among them. 

Hence, ontology has bundled data and its semantics into one package [9], [10].  

The formal structure of ontology makes it a strong candidate for knowledge incorporation 

on DM algorithms. It is believed that ontology can be intertwined with DM algorithms to 

perform the following tasks: 

 Bridging the semantic gap. 

 Providing prior knowledge and constraints. 



2  

 

 Formally representing the DM results. 

However, the process of developing a framework that systematically consolidates ontology 

and mining algorithms in an intelligent mining environment remains an open research 

question [11], [12].  

Hence, this thesis studied the potential advantages of consolidating the surrounding 

knowledge in the form of ontology, and the extant mining algorithms then proposed an 

automatic, systematic and flexible framework that integrates the Hierarchical Bayesian 

Network (HBN) and domain ontology. The proposed Semantically Aware Hierarchical 

Bayesian Network (SAHBN) framework uses gene ontology (GO) to define the semantic 

relations between the attributes involved in the mining process, guides the BN structure 

construction process, checks the consistency of the training data set and facilitates 

calculation of the associated conditional probability tables (CPTs).  

Consequently, a data classification model was developed based on the proposed SAHBN 

framework, and tested using eight real-life data sets in the biomedical domain. Finally, the 

obtained results were compared with the results of the existing Bayesian-based mining 

algorithms. In conclusion, the proposed SAHBN framework demonstrated a very 

competitive performance in comparison to the existing algorithms.   

1.1 Problem Statement 

It is widely agreed that integration of the domain knowledge in DM algorithms enriches 

various stages of the knowledge-extraction process. Furthermore, it is believed that 

ontology is the most appropriate approach to represent the domain knowledge for data 

mining use because of its structural format [1], [11]–[13]. However, to the best of our 

knowledge, the challenges associated with ontology and DM algorithm integration have 

not been solved. For example: 

 There is no standard framework that systematically integrates ontology and DM 

algorithms. 

 Ontology is developed based on description logic and does not accommodate the 

uncertainty factor that is characteristic of many real-life situations. 

 The majority of existing DM algorithms follow an interactive data-driven process, 

which does not cater for any external source of knowledge.  
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Hence, this thesis proposes a SAHBN frame to address the above challenges.  

1.2 Research Motivations 

Many researchers hold the view that domain knowledge can play an important role in the 

DM process and bridge the gap between business requirements and DM algorithms. Thus, 

this research is motivated by the following facts: 

1. The gap between the output of the current DM algorithms and business 

requirements. While end-users expect a consistent set of understandable, 

actionable and usable patterns, the output of the existing mining algorithms is 

abundant and cannot be integrated into the business domain transparently [8], [14]. 

2. The vast proliferation of ontology forms an attractive environment for data mining. 

Recently, many domains have constructed an ontology knowledge base that 

embodies the domain knowledge. Health care is one of the leading sectors to have 

embraced this concept and used it voraciously [15]–[17]. 

3. The new philosophy in knowledge representation, coined in the form of linked data 

(LD), ontology and the Semantic Web (SW), has presented new techniques to 

couple data with its semantics in one package. Hence, these techniques can be a 

vital source of external knowledge in various steps of the data mining process [13].  

4. Existing DM algorithms are designed to analyse a domain-specific silo of data. 

Hence, they cannot cope with the multidisciplinary nature of LD and ontology. As 

a result, multidisciplinary knowledge cannot be obtained using the existing DM 

algorithms [18]. 

5. The open source nature of ontology releases research in the DM field from the 

burdens of the strict data access approval process, especially medical data, when 

data sets are safeguarded by various rules and the police [19].  

1.3 Research Objectives 

The ultimate aim of this research is to propose an automatic, systematic and flexible 

framework that analyses and exploits the semantic nature of ontology in the mining 

process. In fact, there is an absolute necessity and high demand for an ontology-based DM 

framework in various domains. Accordingly, in order to materialise the aim of this 

research, the following objectives must be fulfilled.  

1 Develop an ontology-based DM framework that analyses, exploits and preserves the 

semantic nature of the targeted domain. 
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2 Convert the conceptual model of ontology structure into a graphical probabilistic 

model, namely, the HBN, which compactly represents the logical relations between 

concepts in the targeted domain.  

3 Use the maximum a posteriori estimation (MAP) parameter estimation techniques to 

calculate the probabilistic values associated with the targeted domain concepts in 

such a way that reflects the semantic relationship between them.  

4 Evaluate the proposed framework by applying it to various data sets in the 

biomedical domain and measure its performance using different performance 

criteria. 

The primary research hypothesis is that integration of the domain knowledge in the form 

of ontology can help to improve the DM algorithms’ performance. Furthermore, 

exploiting the semantic relation attached to the domain ontology will lead to better DM 

and KDD processes.   

1.4 Research Methodology 

Research is defined as the art of scientific investigation, which aims to know the unknown 

and to gain new knowledge. However, in the academic environment the term “research” is 

used in a technical sense to refer to the following activities [20]. 

1. Defining and redefining problems. 

2. Formulating hypothesis or suggest solution. 

3. Collecting, organising and evaluating data. 

4. Finally, testing the original hypothesis. 

Kothari et al. summarised the steps involved in the research process in a flow chart, which 

is depicted in Figure 1-1 (below).  
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Figure 1-1 Research process in flow chart [20] 
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Having defined what is meant by research and the main steps involved in the research 

process, the next subsections will discuss the basic types of research. 

1. Descriptive versus analytical research 

Social science and business research mainly use the descriptive research approach, 

which includes various types of survey and fact-finding enquiry. The term ex post 

facto has been used to refer to descriptive research studies when researchers report 

what has happened or what is happening and have no control over the input 

variables. On the other hand, the analytical research approach is used to analyse 

and study existing information and to make a critical evaluation of the available 

information [20]–[22]. 

2. Applied versus fundamental research 

Research that aims to find the solution to a current problem in society or an 

industrial/business organisation is called applied research. Meanwhile, research 

deals with generalisations, and the formulation of a theory is fundamental. For 

example, research related to natural phenomena or pure mathematics is an example 

of fundamental research. Likewise, studies concerned with human behaviour are 

also an example of fundamental research. In contrast, research that investigates 

whether particular social, economic or political trends may affect the problem 

facing a certain organisation is an example of applied research [20]. 

3. Quantitative versus qualitative research 

Quantitative research is concerned with an experimental process, which could be 

measured using certain statistical and mathematical criteria. In contrast, qualitative 

research deals with phenomena in which quality or kind are involved, for example, 

when researchers investigate a human behaviour such as why people think or do 

certain things. How do they feel or what do they think about a particular 

subject?[20]. 

4. Conceptual versus empirical research 

Research studying an abstract idea(s) or theory is known as conceptual research. 

Philosophers and thinkers use this approach to define new concepts or to redefine 

an existing one. On the other hand, an experience or data-based driven research is 

known as empirical research. In this type of research, researchers must propose a 

working hypothesis and gather enough data to prove or disapprove it. Hence, the 

researcher has complete control over the variables under study and can purposely 
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modify the values to study their effects. It has been argued that empirical research 

is the most powerful approach to justify a hypothesis under investigation [20]. 

It is common practice for researchers to use various types of the above research approaches 

to conduct their research. Likewise, the research presented in this thesis has used a 

combination of quantitative and empirical research approaches. In fact, the proposed 

framework was applied to eight real-life data sets, and statistical criteria such as accuracy 

were used to measure the performance and to compare it with the existing algorithms. 

Hence, the approach used in this research is in line with quantitative and empirical research 

approaches. The following steps were followed to identify the research gap and define a 

hypothesis. 

1. Identifying the research gap and highlighting the key concepts that lay out the 

foundations of the identified gap. This step is derived by the fact that there is wide 

acceptance that DM is a knowledge-intensive process, which could be further 

improved by integrating the domain knowledge in the form of ontology. However, 

no standard framework to integrate ontology and DM algorithms has been 

proposed yet.  

2. Carrying out an in-depth literature review of the state-of-the-art literature, which 

covers the following topics: 

 Data mining and knowledge discovery process. 

 Linked data (LD), ontology and the Semantic Web (SW). 

 Semantic data mining. 

 Ontology-based data classification methods. 

 Integration ontology and Bayesian Network (BN). 

3. Designing and implementing a solution that aims to propose an automatic, 

systematic and flexible framework to consolidate ontology and HBN in such a way 

that preserves the advantages of both. 

4. Empirical evaluation, including implementation of the proposed model using 

different real-life data sets. Additionally, the performance of the proposed model 

was measured using various quality criteria and compared against existing 

Bayesian-based mining algorithms using the 10-fold cross-validation. 

5. Results analysis, including studying and contrasting the results of the empirical 

implementation and then drawing a conclusion and outlining future work from the 

established findings.   
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1.5 Thesis Overview 

This section summarises the organisation of this thesis. The structure of this thesis is 

divided into six chapters, as follows: 

 Chapter 1: Introduction 

Chapter 1 gives an introduction to the work presented in this thesis and covers the 

research motivation, objectives, methodologies and hypothesis.  

 Chapter 2: Background and Literature Review 

Chapter 2 presents the background techniques and reviews the state-of-the-art 

literature, which covers the following topics: 

 Data mining and knowledge discovery process; 

 Linked data (LD), ontology and the Semantic Web (SW); 

 Semantic data mining; 

 Ontology-based data classification methods; 

 Integrating ontology and the Bayesian Network. 

 Chapter 3: Fundamental Techniques and Proposed Framework 

Chapter 3 covers the technical aspects that form the scientific foundations of the 

proposed framework. Additionally, it presents the steps involved in the 

development of the proposed Semantically Aware Hierarchical Bayesian Network 

(SAHBN) framework. 

 Chapter 4: Empirical Implementation and Experimental Results 

Chapter 4 explains the structure of the empirical implementation in terms of the 

tested data sets and the measured performance criteria. It covers performance 

quality criteria, data pre-processing, attribute selection methods, implementation of 

the SAHBN framework and the existing algorithms.  

 Chapter 5: Conclusions and Future Work 

Finally, Chapter 5 concludes the thesis by revisiting the initial research objectives 

and discussing potential future work.  

1.6 Research Limitation 

The model proposed in this thesis addressed an important topic of integrating the SW and 

HBN classifier. However, it yet has the following limitations: 

1. It has been assumed that there is an ontology which describes the hierarchical 

relationship between attributes in the targeted domain. 
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2. Only attributes and their parent’s classes are utilized to construct the structure of 

the HBN. Hence, synonyms of attributes are ignored. 

3. The calculation of the conditional probability tables relied heavily on the observed 

data (i.e. A-Box) and does not reflect all semantic relationships between attributes. 

4. The description logic sentences associated with the underpinning ontology were 

not exploited to elect more semantic knowledge.  
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Chapter 2 Background and Literature Review 

As mentioned in the previous chapter, this thesis investigates the advantages of integrating 

ontology with an existing data mining algorithm, namely, the Hierarchical Bayesian 

Network (HBN) classifier. Hence, in order to develop a DM framework that exploits the 

semantic nature of ontology in the data classification process, the following areas must be 

studied. 

a. Data mining and knowledge discovery process; 

b. Linked data, ontology and the Semantic Web; 

c. Semantic data mining; 

d. Ontology-based data classification; 

e. Integrating ontology and the Bayesian Network. 

Consequently, the purpose of this chapter is to review the state-of-the-art literature on the 

above-mentioned topics in such a way that rationalises their connections to the proposed 

research hypothesis. Figure 2-1 (below) depicts the studied areas and explains the relations 

between them.  

  

Figure 2-1 Literature Review Structure 
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2.1 Data Mining and Knowledge Discovery Process 

The steady development of modern computers has accumulated enormous amounts of data 

at a rapid pace. Furthermore, the affordable cost of electronic storage devices has 

encouraged various organisations to collect data on a daily basis. Consequently, it has 

been reported that the volume of data is doubled every 20 months. This situation has 

rightly been described as “data rich but knowledge poor” [18], [23], [24]. Useful examples 

of sources for data generation may include, but are not limited to, the following: 

a. NASA Earth observation satellites generate a terabyte of data every day. 

b. The human genome project generates thousands of bytes for several billions of 

genetic bases. 

c. A hundred million customer transactions have been maintained by many companies.  

d. There are a vast number of automatic recording devices, such as cash machines, 

sensors, CCTV recording, Web logs, and many others.  

e. Hundreds of millions of websites generate a vast volume of data every day. 

f. Hundreds of millions of Facebook and Twitter users are sending and sharing a huge 

volume of data every day. 

It is commonly believed that the availability of a huge amount of data has resulted in an 

imminent need for tools that can analyse the existing data and generate some useful 

knowledge. The extracted knowledge could be used in market analysis, fraud detection, 

customer retention, production control, science exploration, Internet agents, 

telecommunication and manufacturing, among other things. Hence, in order to respond to 

this need, the concept of knowledge discovery in database (KDD) was formally introduced 

at the first KDD workshop in 1989. 

KDD is defined as the non-trivial process of identifying valid, novel, potentially useful, 

and ultimately understandable, patterns in data. The notion of extracting knowledge from 

data has been investigated under various titles such as data mining, knowledge extraction, 

information discovery, information harvesting, data archaeology and data pattern 

processing. However, it is widely agreed that the term KDD is used to refer to a practical, 

interactive and iterative process, which consists of many steps, coupled with the data 

mining (DM) process. Although DM is only one step in the KDD process, it is an essential 

one [1], [23]–[26]. 

The steps involved in the KDD process vary from one DM model to other. For example, 

the academic-oriented model proposed by Fayyad consists of nine steps, while the cross-
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industry standard process for DM (CRISP-DM) models consists of six steps. Figure 2-2 

(below) summarises the steps used in each model [27]. 



Page | 13  

 

 

 

Figure 2-2 Side-by-side comparison of the major existing KDDM models [27] 
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It is evident that some steps are common to all models. The following points give a brief 

description of the actions taken in each step [23]. 

a. Developing an understanding of the application domain: this is an opening step 

in the mining process, which includes analysis of the business domain and 

understanding the goal of the mining task from the domain experts. Furthermore, 

an initial decision about the forthcoming activities such as transformation, mining 

algorithms, representation, and so on, must be taken. However, the mining process 

is an iterative and interactive process; therefore, when the process is advancing, 

decisions can always be reviewed.    

b. Selecting and creating a data set on which discovery will be performed: the 

formation of the data that will be used in the KDD process is a crucial step. The 

quality of the data created in this step will affect the quality of the generated 

patterns. This step includes the following activities: 1) Identifying what data is 

available. 2) Collecting extra data if required. 3) Merging the data into one set and 

identifying the attributes that will be utilised in the KDD process.  

c. Pre-processing and cleansing: the main goal of this step is to improve the quality 

of the targeted data. This step includes the removal of noise or outliers and 

handling missing data.  

d. Data transformation: this step varies from one project to other. It is described as 

a project-specific activity. However, the essential actions involved in this step 

include two major tasks. The first task is dimension reduction, such as feature 

selection, and the second task is attribute transformation, such as discrimination of 

numerical attributes.  

e. Choosing the appropriate Data Mining task: as explained earlier, the goal of the 

KDD process identified in the initial step affects the later decisions. Consequently, 

the type of mining algorithm must meet the goals identified in the first step. 

Generally speaking, there are two types of mining algorithm, namely, prediction 

and description. The prediction algorithms are also known as supervised 

algorithms such as classification and regression. Meanwhile, the description 

algorithms are referred to as unsupervised algorithms such as clustering.  

f. Choosing Data Mining algorithm: having defined the goal and type of the KDD 

process in the previous step, the next step is to define the tool needed to 

accomplish this goal. This stage includes identification of a specific mining 

algorithm to generate the required knowledge.  
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g. Employing the Data Mining algorithm: applying the chosen mining algorithm to 

the created data set is at the core of the KDD process. This step may include 

execution of the mining algorithm many times until the required knowledge is 

generated.  

h. Evaluation:  taking into consideration the initial goal identified in the first step, 

the generated knowledge is evaluated and interpreted. Additionally, it is 

documented for future use.  

i. Using the discovered knowledge:  finally, in this step the generated knowledge is 

integrated into other systems for further actions. 

It is a widely held view that the KDD process is multidisciplinary, which requires a 

combination of tools from various domains such as database and data warehouse 

technology, statistics, machine learning, high-performance computing, pattern recognition, 

machine learning, artificial intelligence, knowledge acquisition for expert systems, 

information retrieval, image and signal processing, visualisation and social science 

methodologies [25], [28], [29]. 

As mentioned earlier, various types of mining algorithm are used to achieve different 

tasks. Rokach et al.’s book classifies the mining algorithms into two main categories: 

verification and discovery. While verification algorithms are concerned with 

authenticating user hypotheses, discovery methods aim to generate new rules and patterns. 

Discovery methods have been further divided into two types: predictive and descriptive. 

Alternatively, the machine learning community has used the term supervised learning to 

refer to the prediction methods, and unsupervised learning to refer to the descriptive 

methods. Figure 2-3 (below) gives detailed information about the taxonomy of the data 

mining algorithms [23], [24], [30]. 
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Figure 2-3 Taxonomy of data mining methods [30] 

Although there is large number of published researches in data mining field, only few of 

them are applicable in real life applications. In fact, much research has argued that there is 

a significant imbalance in the data mining field with respect to workability and 

performance. This situation can be summarised in the following points [4], [5], [7]. 

a. Algorithm imbalance: many published algorithms versus several really 

workable ones in the business environment. 

b. Pattern imbalance: many patterns mined versus only a small portion of, or no, 

satisfying business expectations. 

c. Decision imbalance: many patterns identified versus effectively very few able to 

be taken over for business use.  

Consequently, it is believed that there is a gap between the outputs of existing DM 

algorithms and business requirements. This is evident in the differences between the 

output of the existing data mining algorithms and end-user expectations. Therefore, initial 

observation suggests that the extracted patterns and knowledge do not offer the desired 

workable, actionable and operable capabilities [4], [31]. It seems possible that the 

limitations of the extracted patterns and knowledge is due to considering the mining 

process as a data-driven, trial-and-error process that overlooks the domain knowledge. It is 

a widely held view that the mining algorithms extract patterns that meet the technical 

interestingness measures and ignore business interest. As a result, the data mining process 

has faced a paradigm shift from being a data-centred process to domain-driven knowledge 

discovery. The ultimate aim of domain-driven knowledge discovery is integrating the 
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background knowledge into the mining process. In fact, it has been proven that integrating 

the background knowledge can improve the quality of the generated patterns [32], [33].  

In recent years, the emergence of linked data (LD), ontology and the Semantic Web (SW) 

has played a significant role in the process of knowledge acquisition and representation. 

Hence, the aim of this thesis is to integrate background knowledge in the form of ontology 

with the DM algorithm. The proposed framework not only caters for the domain 

knowledge integration but also facilitates the integration of different silos of data. 

Therefore, more comprehensive knowledge could be generated in contrast to an area-

based data mining approach [4], [7], [16], [18]. 

2.2 Linked Data (LD), Ontology and the Semantic Web (SW) 

The conventional Web has met its objectives as a global document repository that can be 

easily accessed and consumed by human beings. However, the goal of constructing a 

document repository that is processed by not only humans but also machines has not been 

realised. Hence, the SW was introduced as an extension of the current Web, providing the 

technical capabilities to publish data in a machine-understandable format [34]–[37]. 

The ultimate vision of the SW is to provide a common framework that intertwines data 

and its semantics in one package. Furthermore, it facilitates data sharing and reuse across 

different applications. Thus, the essential step that must be materialised to meet the SW 

vision is the development of a technique for publishing and connecting data over the Web. 

This technique is the backbone of the SW and lies at the heart of its architecture. 

Accordingly, the concept of linked data (LD) was introduced in response to this need 

[38]–[40]. Figure 2-4 (below) depicts the architecture of the SW. 
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Figure 2-4 The SW reference architecture [41] 

Linked data (LD) was introduced by Sir Tim Berners-Lee in 2006 and defined as the set of 

best practices for publishing and connecting structured data on the Web. These practices 

are currently known as LD principles. They can be summarised in the following points 

[42]. 

a. Uniform resource identifiers (URIs), used to name things. 

b. They use Hypertext Transfer Protocol (HTTP) and URIs, so that people can look 

up names. 

c. When someone looks up a URI, they provide useful information, using the 

standard resource description framework (RDF) and the simple protocol & RDF 

query language (SPARQL). 

d. They include links to other URIs, so that they can discover more things.  

The technical foundation of the LD concept is the use of HTTP and URI, not only to 

access Web documents but also to define and access real-world entities. Additionally, 
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RDF is used to represent the defined entities [43]. ]. In fact, RDF is the basic building-

block for information representation in the SW. 

The structure of the RDF statement is built based on a triple format, that is, subject–

predicate–object, which forms a graph-based data model. Furthermore, RDF is enriched 

by the RDF schema (RDFS for short). RDFS is utilised to define the vocabularies used in 

a specific RDF data model. It uses a sub-class, sub-property relationship, in addition to 

domain and range restrictions, to describe the relationship between objects and to identify 

which property applies to which object. In contrast to RDF and RDFS, the Web Ontology 

Language (OWL) has added more vocabularies to describe properties and classes, leading 

to better machine readability of the Web content [42], [44], [45].  

The word “ontology” is rooted in philosophy. Philosophers used ontology to refer to the 

study of the nature of existence. Nevertheless, the concept of ontology has been hijacked 

by the computer science field and used in a different sense. In computer science literature, 

ontology is used to provide a shared understanding of domain knowledge and treated as a 

special kind of information object or computational artefact. It has been defined as 

“formal, explicit specification of shared conceptualization”. The terms used in the 

ontology definition could be further explained as follows [9], [36], [37], [46]: 

a. Formal indicates that ontology must be machine-readable. 

b. Explicit refers to the fact that the types of concept, and the constraints on their use, 

are explicitly defined. 

c. Shared means that the notation captured by ontology must reflect a consensual 

knowledge that is accepted by a group, and not a private vision of certain 

individuals. 

d. Conceptualisation refers to an abstract model of some phenomenon in the world, 

having identified the relevant concepts of the phenomenon. 

A number of researchers hold the view that computational ontology has been used to 

formally represent the conceptual structure of a domain. Different entities in the targeted 

domain and their relations can be encoded in the term ontology [9], [47], [48]. Figure 2-5 

(below) shows an example of how ontology is used to represent a publication domain. 
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Figure 2-5 Ontology RDF triple relation [44] 

According to [44], the structure of ontology is defined as tuple consisting of the following 

elements: S = (C, R, H, rel, A) [44], where: 

 C is the set of entities describing the conceptual structure for the targeted system; 

 R is the set of relation types; 

 H is the set of taxonomy relationship of C; 

 rel is the set of relationship of C with relation of type R, where rel ⊆ C X C; 

 A is the set of description logic sentences.  

Furthermore, rel has been further defined as a set of three tuple relations, that is, rel = (s, r, 

o), which represents the subject–relation–object relationship, where: 

 s is the subject, which is an element from C; 

 r is the relation, which is an element from R; 

 o is the object, which is an element of C.  

To further illustrate the structure of ontology and to gain a better understanding of its basic 

components, the following example converts the ontology model given in Figure 2-5 

(above) into its equivalent RDF statements.  

Example: the RDF triples for the ontology model of the publication system (Figure 2-5). 

 hasAuthor(article001,person002). 

 hasTitle(articale001,”Science of nature). 

 hasName(person002,”John Ken). 

The above RDF statements can be serialised in RDF/XML syntax, as shown in Figure 2-6 

(below). 

 

Figure 2-6 RDF/XML Syntax [44] 
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It has been reported that ontology can be broadly classified into two categories, namely, 

lightweight and heavyweight ontologies. The lightweight ontology is mainly concerned 

with taxonomies and includes concepts, concept taxonomies, and the relationship between 

concepts and properties that describe concepts. On the other hand, heavyweight ontology 

addresses the domain in a deeper way and provides more restrictions by adding axioms 

and constraints to the lightweight ontology. Figure 2-7 (below) categorises ontology based 

on its structural complexity. It follows a line where ontologies move from lightweight to 

heavyweight [46], [49]. 

 

Figure 2-7 McGuiness Ontology Spectrum Classification [49] 

The process of ontology development and management is not a trivial process; nor can it 

be implemented in a simple way. In fact, the objectives of the constructed ontologies and 

the development methodology must be critically assessed and closely pursued by the 

organisation or the individual pushing for their creation. The field that studies the methods 

and tools for ontology development and maintenance is known as ontology engineering. 

Ontology engineering refers to the set of activities that deal with the ontology 

development process, which includes the ontology life cycle, methodologies, tools and 

languages for building ontologies. It has been advised to implement the following 

activities during the ontology development process [9], [46]. 

a. Ontology management activities include scheduling, control and quality assurance. 

b. Ontology-development-oriented activities are grouped into pre-development, 

development and post-development. 

c. Ontology support activities include knowledge acquisition, evaluation, integration, 

merging, alignment, documentation and configuration management. 

The ontology development activities have been summarised in Figure 2-8 (below).  
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Figure 2-8 Ontology development process [46] 

Having defined what ontology is and explained its structure and how it can be used to 

represent domain knowledge, the next section discusses the integration of ontology in the 

DM techniques.  

2.3 Traditional Data Mining Versus Semantic Data Mining 

As mentioned in the previous section, the KDD and DM processes have been defined as 

the non-trivial process of identifying valid, novel, potentially useful and ultimately 

understandable patterns from data. Additionally, it has been believed that KDD is a 

multidisciplinary process, which requires the integration of various techniques spanning 

different disciplines such as database and data warehouse technology, statistics, machine 

learning, high-performance computing, pattern recognition, machine learning, artificial 

intelligence, knowledge acquisition for expert systems, information retrieval, image and 

signal processing, visualisation and social science methodologies. Furthermore, many 

researchers hold the view that the incorporation of domain knowledge with the KDD 

process enriches the mining process and improves the quality of the generated knowledge 

[1], [25], [29].  

Although domain knowledge can be expressed in various formats, recent research in the 

data mining field suggests that ontology is the natural way to encode domain knowledge 

for data mining use. The process of integrating domain knowledge with the data mining 

task is known as semantic data mining. At this stage, it is necessary to clearly define what 
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is meant by semantic data mining. It refers to data mining tasks that systematically 

incorporate domain knowledge, especially formal semantic, into the mining process. The 

branch of semantic data mining that uses ontology to represent the domain knowledge is 

called ontology-based semantic data mining, which forms the core of this thesis [11], [13], 

[50], [51]. Figure 2-9 (below) depicts the schema of the ontology-based semantic data 

mining methodology, as proposed by Novak et al. [51]. 

 

Figure 2-9 The proposed semantic data mining methodology schema [51] 

Recent research has suggested that ontology can play various roles in the DM task. For 

example, [51] exploited the “is-a” hierarchical structure of ontology to prune the pattern 

search space and obtain efficient search techniques. Meanwhile, [11] reported that using 

ontology for semi-structured data semantic annotation is an essential step in the semantic 

data mining process. He claimed that semantic annotation intertwines the data with its 

semantics. However, the survey conducted by [50] concluded that ontology can contribute 

to the mining task in three ways:  

a. Bridging the semantic gap between the data, application, data mining algorithms 

and data mining results. 

b. Providing data mining algorithms with a priori knowledge, which either guides the 

mining process or reduces/constrains the search space. 

c. Providing a formal way of representing the data mining flow, from data pre-

processing to the mining results. 

The findings of recent research in the semantic data mining area have argued that the 

challenge of developing a fully automatic and systematic approach to integrating ontology 

and the data mining process has not been realised. Furthermore, it has been reported that 

semantic data mining is still in its early stages and has a promising future [13], [50]. 

Hence, this thesis studied the advantages of integrating the Bayesian Network classifier, 

and ontology then proposed a Semantically Aware Hierarchical Bayesian Network 

classifier, which is explained in detail in the next chapter. 
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2.4 Ontology-based Data Classification 

Ontology has played various roles in the data classification process at different domains. 

Several studies have reported that text data classification methods have used ontology to 

represent the semantic aspects of text data and to inject it into the mining process.   

For instance, the authors of [52] developed lexical variations and a synonyms ontology to 

define the logical relation between different words used in customers’ reviews. Hence, 

even though the online product reviews are written using different words that share the 

same meaning, they can still be classified using the proposed support vector machine 

(SVM) augmented by the developed lexical variation ontology. The basic idea is that the 

weight of a word can be measured based on the weight of its synonym or lexical variant. 

Thus, if word-1 is a synonym of word-2 and the weight of word-2 has been calculated, 

then the weight of word-1 can be measured based on the weight of word-2. Similarly, the 

SAHBN model proposed in this thesis used the “is-a” relation enriched by the true path 

rule (TPR) to generate the values of the semantically related attributes. Although the 

authors of [52] claim that their model was tested using 20,000 product reviews for training 

and 6,000 reviews for testing, and that good classification accuracy was obtained, the key 

limitation of this approach is that the training data set must be tokenised based on the 

developed lexical variation ontology, and no evidence has been given to prove that the 

developed ontology is comprehensive enough to cover all the identified words. 

Additionally, it has not been discussed what alternative actions can be taken if the 

identified word does not match any concept class in the developed ontology. In contrast to 

this approach, our method guarantees that the identified prediction attributes always match 

a concept class in the used ontology.  

Likewise, [53] used the WordNet ontology to enrich the selected attributes. For each 

singular and plural substantive term, the lexemes, synonyms, hyponyms and meronyms 

were introduced. The introduction of term variation was done based on semantic similarity 

measure techniques and the “is-a”, “is-part-of”, “is-member-of” and “is-substance-of” 

relations. The semantic enrichment process was started using the Wu-Palmer similarity 

measure to extract synonyms from a sub-tree of the WordNet ontology. The “is-a” 

synonyms were studied first and then the search was extended to cover other relations 

such as “is part-of”, “is-member-of”, and “is-substance-of”. This process was applied for 

each attribute or term of each phrase sequentially. Consequently, the authors evaluated the 

performance of the proposed model using six classification algorithms and compared their 
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discriminatory power. Eventually, they concluded that the support vector machines (SVM) 

obtained the highest performance. 

Despite the various advantages of the work presented by [53], it would have been more 

interesting if it had utilised the extracted ontological knowledge, not only in the attributes 

enhancement stage but also in the subsequent stages of the mining process. Hence, the 

SAHBN model proposed in this thesis was designed to use the ontological knowledge, not 

only to identify the semantic relations between attributes but also to guide the structure 

construction of the BN classifier, to check training data consistency and to assist the CPT 

estimation process. 

In a similar way, [54] exploited the “is-a” relation in the domain ontology to extract the 

ancestors’ concepts. Accordingly, the authors claim that extending the number of the word 

vector to include semantically extended words generated better results. In fact the authors 

used ontology not only to identify the semantically related concepts, but also to calculate 

the weight for each concept and its parents. Likewise, the SAHBN model proposed in this 

thesis used the “is-a” relation to anticipate the values of the semantically related variables, 

eventually using these values to calculate the conditional probability tables to quantify the 

strength of the semantic relation.  

The work proposed by [54] was validated using a data set consisting of 952 CT abdomen 

and 1,128 CT neuron reports, which were classified using the k-nearest-neighbour (KNN) 

algorithm, with and without integrating the semantic aspect. Consequently, the authors 

concluded that the semantically extended vector achieved a better performance compared 

to the non-semantic case.  

In slightly different way, [55] used ontology to calculate the weight for the concept vector 

space (CVS). The authors used ontology and the page-ranking algorithm to calculate the 

importance of each concept and then form the result as an improved concept vector space 

(ICVS). In fact, concept weight is an aggregation of the concept’s importance and 

relevance. The proposed model consists of three steps:   

1. Convert the domain ontology into a graph. 

2. Calculate the weight of each concept using the page-ranking algorithm.  

3. Construct the improved concept vector space (ICVS). 

A total of 348 grant documents were randomly divided into two unequal parts (70%, 30%) 

and used for training and testing the classifier respectively. Consequently, various 
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classification algorithms were used to evaluate the performance of the proposed model. 

Eventually, the authors reported that the semantically improved concept vector space leads 

to better classification performance in terms of F1 measure compared to the standard 

concept vector space.  

Although this research utilised the structure of ontology to identify the importance of 

concepts, it main weakness is that only the number of links (i.e. relations) was considered. 

In other words, all links were given the same importance regardless of their semantic 

meaning. In contrast to this approach the SAHBN model proposed in this thesis was 

designed to exploit the implicit semantics of the “is-a” ontological relation. 

In the same way, [56] used the Unified Medical Language System (UMLS) ontology to 

construct a semantically aware classifier. UMLS ontology was used in two different 

phases, before and after the classifier training stage. In the first phase, before the training 

stage, the semantic kernel method was used to transfer the traditional bag of words into a 

bag of concepts. Consequently, the enriching vectors method was applied in the second 

phase after the training stage and before the prediction stage to overcome the shortage of 

the lexical matching.  

The ultimate aim of Albitar et al.’s [56] research was to investigate the advantages of two 

semantic enrichment strategies, semantic kernel and enriching vectors, on conceptualised 

text classification. The authors concluded that the classifier’s performance depends on the 

semantic similarity measure used in the enrichment and prediction phases. Perhaps the 

most important advantage of this method is the integration of ontology at two different 

stages of the mining process, which highlighted the increasing role of ontology. Hence, 

the SAHBN model proposed in this thesis used ontology, not only to define the 

relationship between attributes but also to guide the classifier structure construction 

process and assist in the conditional probability calculation stage.     

In a slightly different way, the UMLS terminology was used by [57] as a basis to develop 

ontology that defines an entity for each word and finds the relations and rules between 

words. The authors argued that adding extra knowledge in the form of ontology makes it 

possible to find expressions that facilitate the epilepsy classification process. The model 

proposed by [57] used a java-based annotation engine, which makes use of ontology 

expressions such as anatomy or events that are necessary for classification and then use 
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this extra knowledge to select the most relevant features. A real data set consisting of 18 

anonymous records was used to test the proposed model.  

Although the testing data set was small, the authors asserted that the proposed approach 

demonstrated a good performance. However, the authors did not offer a clear explanation 

about the exact rules and relations extracted from ontology and how they empowered the 

entity recognition stage. 

It is reported that ontology can be used not only in the classifier training and prediction 

stages, but also in the pre-processing steps, such as dimension reduction, and post-

processing steps, such as result interpretations. For example, [58] used the Medical 

Section Head (MeSH) ontology during the attribute-selection stage to transform a 

traditional bag of words into a bag of concepts. The produced bag of concepts covers not 

only the extracted words but also their hyponyms. The authors’ ultimate goal was to 

reduce the dimension of the vector and enrich its contents. This goal was met in the 

following ways:  

1. Disambiguation mapping strategies were used to map each term onto ontology 

concepts.  

2. Hyponyms were added to enrich the generated vector. 

Elberrichi et al. [58] claimed that the proposed ontology-based bag of concepts approach 

led to a 30% better performance compared to the standard bag of words’ method. Even 

though natural language disambiguation has a complex nature, since there is no definite 

interpretation of the meaning of words, the findings of this research reported that 

ontological semantic knowledge has improved the classification process by using more 

comprehensive ontology concepts as prediction attributes instead of using simple words. 

Likewise, the SAHBN model presented in this thesis represented the prediction attributes 

in the form of ontology concepts. However, unlike the work of Elberrichi et al. [58], our 

research used ontology not only to represent the prediction attributes but also ontological 

semantic knowledge to construct the classification model structure and assist the process 

of quantifying the strength of relations between various concepts.  

Similarly, [59] argued that mapping the original text features into a node in the MeSH 

ontology using the Least-Max-Cover approach generated a better performance. The 

proposed concept-based, dimension-reduction method was compared with the state-of-the-

art feature selection, such as IG, CHI, One-R and LARS, and the obtained results 
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suggested a significant improvement in the F-measure value (3.5%) and recall (5.25%), on 

average.  

The model proposed by [59] was tested using the most recent 1,000 abstracts of 12 

journals in the MEDLINE database. The journals were selected and organised into 

different groups in such a way as to ensure classification accuracy. Eventually, the C4.5 

classification algorithm and cross-validation technique were applied to evaluate the overall 

performance. However, the research of J. Wang et al. [59] would be more robust if it had 

included other classification algorithms such as decision trees and support vector 

machines, among other things.  Additionally, one question that needs to be asked is why 

the authors did not use accuracy to measure the quality of their classification model, 

relying instead on the precision, recall and F1-measure. 

Likewise, [60] reported that using ontology to direct and filter the results obtained by the 

term frequency-inverse document frequency (tf-idf) classification algorithm led to 3.125% 

more subjects being correctly classified. The authors used ontology in the second and third 

stages of the proposed process. A program has been developed to direct the broad 

classification of results into ontology classes. Consequently, a set of candidate classes for 

each input document was generated in the second stage. Finally, in the third stage 

candidate ontology classes were further purified to obtain one ontology class for each 

input document. 

Perhaps the most serious weakness of the work proposed by [60] is that the developed 

ontology is very limited in terms of size and applicability. Unlike this study, the SAHBN 

model proposed in this thesis utilised the GO, which is known to be a comprehensive and 

high-quality source of ontological knowledge. Additionally, the GO is subject to regular 

maintenance and upgrading by various research groups. 

In a different way, [61] used ontology to predefine the classification semantic concepts. 

Hence, it could be considered a step in the pre-processing stage. Ontology was developed 

based on the information extracted from the reviews and requirements of travellers. The 

proposed model consists of two main components, subject classifier and sentiment 

classifier, with the former used to determine the ontology class of the subject that 

appeared in the review text. The latter, meanwhile, was utilised to assess the sentiment 

value of the text with regard to the identified subject.  
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Consequently, various machine learning algorithms were used for each classifier. J48, 

Naïve Bayes and LibSVM were applied by the subject classifier, and the Linear 

Regression, LibSVM and SMOreg models were used by the sentiment classifier. 

Eventually, the proposed model was evaluated using a manually created training data set, 

and the authors concluded that the developed model accurately classified the text subject 

into predefined classes and evaluated the emotional expression presented in the text.  

One major drawback of this approach is that ontology was used to predefine the possible 

classification classes. Hence, the quality of the classifier is totally dependent upon the 

quality of the developed ontology. Unlike this approach, our model did not restrict the 

possible classification classes based on the created ontology concepts.  

In contrast to the work presented in [58]–[61], this thesis proposed a model that not only 

used ontology in the pre-processing or post-processing stages of the classification process 

but also contributed to the core classification stages, as will be discussed in the third 

chapter. 

It is a commonly held view that the quality of the text classification algorithm relies 

heavily on a well-classified training corpus. However, in a real-life scenario very often the 

training corpus is scarce or even not available. Hence, many scholars have proposed the 

use of background knowledge in the form of ontology as a classifier to eliminate the need 

for a training data set. This is exemplified in the work undertaken by [62].  

The authors of [62] converted the English language Wikipedia to ontology that divides 

news documents into topics of interest. The main argument of the proposed work was that 

the semantic similarity between the news text document and a fraction of the developed 

news ontology could be used for news document classification.  

In the first step a group of words extracted from the news text was matched to a set of 

concepts in the ontology. A disambiguation technique was applied in the second step to 

identify more accurate entities during the matching process. Furthermore, a sub-graph of 

the news ontology was extracted after eliminating the less important connections. Finally, 

the semantic similarity measure between the news document and the news ontology was 

calculated to identify the class of the news.  

Consequently, the model proposed by [62] was evaluated using three data sets obtained 

from Reuters RSS feed and the micro averaged precision (MAP) calculated. Overall, the 
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authors claimed that the proposed ontology-based news classification methods produced 

very good results. 

Similar to the work presented by [61], the authors of [62] used ontology to predefine the 

classification classes. Hence, they restricted the application domain of the proposed 

models into specific cases. Unlike these studies, our approach used semantic knowledge in 

the form of ontology to enrich the classification process and did not restrict the domain of 

application. 

A more recent example of a similar approach was proposed by [63] when the authors 

developed ontology in the domain of occupational health and security application in the 

oil and gas industry. The developed ontology was used as a classifier to detect accidents 

from unstructured text and to eliminate the need for a training data set.  

The model proposed by [63] started with the standard text pre-processing tasks such as 

lemmatisation, stemming and stop-word removal; then a customised version of the 

OpenOffice Brazilian Portuguese thesaurus was used to locate words that appeared in the 

text and to match them to the developed ontology. The degree of matching was calculated 

by the crawling algorithm, which counts the number of jumps needed to get from the word 

to the term using the thesaurus. A smaller number of jumps indicates a higher similarity.  

Consequently, the experimental results showed that the proposed algorithm outperformed 

the state-of-the-art machine learning approach. Although the authors of [63] exploited the 

structure of the developed ontology to calculate similarity between words and ontology 

concepts, the main drawback of this approach is that different types of relation between 

ontology were considered to have the same weight regardless of their semantic meaning. 

Hence, the notion of integrating the explicit semantics of ontology has not been fully met. 

Another significant aspect of ontology-based data classification is the use of ontology, not 

only to integrate domain knowledge in the mining process, but also to perform reasoning 

and to predict the target class. An example of this is the study carried out by [64], in which 

the authors attempted to merge the output of various types of decision tree and ontology 

with the expectation that the proposed model would improve classification accuracy.  

The spambase database and Weka package were used to create three different types of 

decision tree, namely j48, AD and LAD. The created decision trees were considered to be 

a kind of ontology and represented in RDF format. Finally, the Jena reasoner was used to 
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read the RDF file to create ontology and to check whether or not the test email was spam. 

In total, 500 test emails were used to evaluate the performance of the proposed model and 

to compare it with the output of the SVM and Naïve Bayesian classifier.  

Consequently, the authors of [64] claimed that their model was more successful than other 

methods used to detect spam and valid emails. However, a key problem with this approach 

is that converting a domain-specific database into an ontology using Weka decision trees 

conflicts with the basic principle of ontology development rules, which state that ontology 

must reflect a common knowledge that could be shared unambiguously between various 

domains [9]. 

In a slightly different way, [65] developed an ontology-based classifier for tumour staging 

using the tumour-node-metastasis ontology (TNM-O) classification system. The first step 

in the proposed model is to convert the pathological information into RDF individuals, 

which matches the concepts presented in the TNM-O ontology. Then, the HermiT 

description logic reasoner was used to classify the created individuals. A total of 382 

entries in the pathological data set was used to test the proposed model and to compare the 

results with the experts’ decisions. Accordingly, the authors concluded that their model 

accurately classified all the 382 entries and helped to detect and explain the 

inconsistencies between the expert and automatic classifications. 

Perhaps the most serious drawback of the work presented by [64] and [65] is that the 

classification was made based on an ontology reasoner that was developed based on 

description logic. Description logic has been defined as a decidable fragment of first-order 

logic. In other words, an instance either belongs or doesn’t belong to a concept [66]. 

Hence, the uncertainty factor has not been taken into consideration, which goes against the 

nature of many real-life situations, especially in the health-care sector. In contrast to these 

methods, the model implemented in our thesis overcomes this drawback by integrating 

ontology and uncertainty in the form of the Hierarchal Bayesian Network (HBN). 

Having discussed how ontology can be used in text data classification, the final part of this 

section explains examples of using ontology in image and relational data classification. 

This is exemplified in the work undertaken by [67], in which the authors represented the 

experts’ knowledge on how to identify the family of a protein in the form of ontology.  

Then they used the developed ontology and description logic reasoner to assign a new 

protein instance into the protein family.  
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The work presented by [67] did not introduce any new bioinformatics techniques or 

algorithms to discover sequence features. Rather, it enhanced the existing tools used by 

ontology and proposed an approach to automate the protein classification process. In other 

words, the structure and reasoning power of ontology were exploited to formally represent 

the phosphate protein family classification and to automate the assignment of a new 

protein instance into the phosphatase family.  

Accordingly, the proposed model was tested on the human and Aspergillus fumigatus 

genomes, and the authors claimed that their ontology-based automatic protein 

classification approach matched and sometimes outperformed the experts’ annotation 

process. However, this study would have been more interesting if it had included the 

notion of uncertainty in the reasoning stage and not relied solely on the description logic 

reasoner. 

Another possible example would be the research carried by [68], in which the existing 

medical ontology was enriched by domain ontologies to represent specific hospital 

requirements. Ontology played two different roles: 

1. Ontology was used to explain the semantic meaning of the time point in the 

medical data. For example, the time associated with the white blood cell (WBC) 

count process did not explicitly indicate whether it was the time when the blood 

sample was taken or when it was analysed in the laboratory. Hence, ontology was 

used to overcome this challenge.  

2. The uncertainty of the prediction was represented in the form of ontology. In the 

medical domain, the clinical decision support system (CDSS) is designed to help 

junior or non-expert clinicians to make more informed decisions. Hence, it is 

necessary to convey the accuracy of the prediction to the medical staff. In this 

work ontology was used to represent this information. For instance, the probability 

of a patient with low WBC having sepsis is 17%.  

As we have seen, this study used ontology not only to enrich the semantic meaning of the 

data but also to convey the uncertainty of the information to the end-users. However, it 

seems that the study focused on the time dimension of the data and overlooked other 

semantic aspects in the data. 

In a different way, [69] developed a seizure ontology to represent human knowledge in the 

field of detection of types of epilepsy. The core of the constructed ontology is the 
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interactions between epileptic symptoms. Thus, the structure of the seizure ontology and 

the Ck matrix were used to quantify the degree of association between each pair of 

symptoms. The number of arcs in seizure ontology was used to measure the distance 

between symptoms.  Consequently, the mean for all the matrices was computed and 

seizure assigned to epileptic type with the minimum distance from the mean.  

Consequently, the authors tested the proposed ontology-based classification model using a 

data set consisting of 129 patients, and compared the results with 7 clinicians with 

different degrees of expertise; they concluded that their model represented an essential 

step in performing automatic epilepsy classification and that it helps in the identification 

of symptoms that are necessary for the classification process. However, the findings of 

this research would be more useful if a larger data set had been used. Additionally, it 

seems that the authors only relied on the structure of the developed ontology by utilising 

the number of arcs to classify the epileptic type. Hence, all arcs were given the same 

weight, regardless of their semantic meaning. 

As indicated previously, ontology has been used in image data classification. Hence, the 

following part of this section gives examples of ontology-based image data classification. 

This can be seen in the work presented by [70], in which the authors developed an 

ontology model to classify the objects in the images collected by the Airborne Laser 

Scanner (ALS) into various building types, such as “residential/small buildings”, 

“apartment buildings” and “industrial and factory buildings”. 

The first step of the model proposed by [70] sought to extract the features of different 

building types from text data using the ensemble random forest (RF) algorithm. Then 

ontology was constructed based on the information generated by the RF algorithm. 

Finally, the FaCT++ description logic reasoner was used to classify an object in a given 

image.  

Consequently, the proposed model was tested using a data set recorded by the Trimble 

Harrier 68i system, which covers 1.1 square kilometres in the area of Biberach and der 

Riss town in Germany. The authors claimed that a 97.7% F-Measure was obtained for the 

residential/small building type and a lower result was achieved for other building types, 

such as industrial and factory buildings, with an F-Measrue of 60% and 51% respectively. 

However, the main weakness of the study was its failure to integrate the uncertainty 
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concept into the reasoning stage. Since the authors used the FaCT++ reasoner, which is 

built based on description logic, it did not accommodate uncertainty. 

Likewise, [71] proposed an ontology-based classification model that was designed to help 

radiologists in staging cancer. The proposed model utilised Semantic Web reasoning 

capabilities, ontologies and semantic image annotation. It includes, but is not limited to, 

the following steps:  

a. Annotating the medical image using the ePAD tool.  

b. Converting the annotation result into OWL instance format. 

c. Developing or extending an existing ontology to represent the tumour staging 

criteria. 

d. Classifying new instances using the OWL reasoner. This is done by integrating the 
information represented by the semantic image annotation and cancer staging 
ontology. 

Similar to the work presented by [70], the authors of [71] used Semantic Web reasoning 

capabilities. Hence, the uncertainty dimension was not included in the reasoning phase. 

To summarise, to the best of our knowledge, and based on the findings extracted from 

reviewing state-of-the-art literature in the ontology-based data classification field, it can be 

concluded that existing studies have the following drawbacks: 

a. The majority of the existing work has investigated the advantages of integrating 
ontology and text data classification. Meanwhile, the relational data set has 
received less attention. 

b. Some studies have relied heavily on ontology and the description logic reasoner to 
classify the test data. Hence, the notion of uncertainty, which is characteristic of 
many real-life situations, has been ignored and not included in the proposed model.  

c. Some studies have only considered the graphical structure of ontology and not the 
explicit semantic meaning of ontology. Thus, it has been assumed that all arcs in 
the ontology structure have the same semantic weight.  

d. Most of the available approaches are case-specific, which can only be applied to a 
specific data set in a certain domain. Hence, it could be concluded that there was 
no attempt to propose a general framework that systematically integrates ontology 
in the classification process.  

e. Some of the proposed models used ontology to predefine the relation between the 
classification classes. Thus, they further restricted the application domains to those 
classes included in the ontology instead of defining the semantic relation between 
attributes included in the classification problem and widening the range of the 
application domains. 
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f. Some of the existing studies only investigated the advantages of ontology in the 
pre-processing/post-processing stages of the classification process and did not 
investigate the possibility of integrating ontology in the core phases of the 
classification process.  

g. Some of the studies misunderstood the conceptualising nature of ontology, which 
aims to provide shared knowledge about a specific domain, which can be shared 
unambiguously.  

Hence, the model proposed in this thesis aims to overcome the above drawbacks and to 

suggest a classification model that meets the following criteria:  

a. Merges ontology and the concept of uncertainty by developing an ontology-based 
hierarchical Bayesian Network.  

b. Introduces a more general framework that can be applied to different domains and 
systematically integrates ontology to the classification process. 

c. Exploits the semantic meaning of ontology relations and not just the structure of 
ontology. 

d. Increases the roles of ontology to contribute to different stages of the classification 
process.  

e. Applies the proposed model to a relational data set in order to highlight the 
advantages of ontology in relational database classification in the biomedical 
domain.  

2.5 Integrating Ontology and Bayesian Network 

The concept of the Semantic Web (SW) introduced ontology as a means to represent and 

share knowledge. Although ontology has played an important role in SW technology, it 

has serious limitations, which restrict its use in real-life applications. Unlike many real-life 

problems, which are known for their uncertainty and vagueness, ontology is constructed 

based on description logic, which is known for its deterministic nature. Hence, much effort 

has been spent integrating ontology and uncertainty [72], [73]. 

The aim of this section is to shed some light on the notion of uncertain Bayesian ontology; 

a good starting point would be the overview conducted by [74], in which the integration of 

ontology and the Bayesian Network, and their applications in different domains, were 

summarised. For instance, the BayesOWL and OMEN approaches were introduced as 

ontology mapping techniques. These approaches are explained in the following 

subsections.  

1. BayesOWL: The ultimate aim of the BayesOWL framework is to enrich traditional 

ontology by adding the capability of uncertainty. It consists of a set of construction 
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rules that convert ontology into a Bayesian Network directed a cyclic graph 

(DAG), which preserves the semantics of the original ontology. Furthermore, the 

iterative proportional fitting procedure (IPFP) is used to modify the values of the 

conditional probability tables (CPTs) attached to the variables in the constructed 

BayesOWL so that they can meet certain constraints [74]. The construction of 

BayesOWL has two main phases. In the first phase the BayesOLW graph structure 

is constructed and the attached conditional probability tables (CPTs) are initialised 

with default values. Then, in the second phase the given constraints are integrated 

[75], [76]. It was reported by [77] that the framework of BayesOWL has been 

developed and published as an open source java API, which contains the following 

components: 

a. Taxonomy parser (T-Parser): this component reads an ontology file, which 

represents the conceptual model of the targeted domain and generates three 

arrays, namely, 1) nodes name array, 2) nodes type array and 3) parent–child 

relationships array. 

b. Bayesian Network structure constructor: this component converts the three 

arrays generated by the first component into a BN graph and initialises the 

CPTs with default values. 

c. Probability parser (P-Parser): the functionality of this component is to 

extract the probability constraints given in the form of a probability file and 

then generate a constraints array, which is used by the next component.  

d. CPT’s constructor: this component uses the IPFP to modify the values in the 

CPTs so they become consistent with the given constraints.  

In BayesOWL, the process of constructing a BN DAG from the given ontology file 

is governed by a set of rules. The conventions underpinning these rules are 

summarised as follows [74], [78]. 

i. Every primitive or defined class is mapped onto a binary variable. 

ii. Each parent superclass is connected with its child subclass by an arc. 

iii. For each concept class, C, defined as the intersection of a set of classes, Ci = 

(C1, ….. , Cn), a subnet is created in such a way that there is a link from 

each class in the set, Ci, towards the class, C. Furthermore, there is a link 
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from C and each class in the set Ci towards a logical node classed 

LNodeIntersection. Figure 2-10 (below) depicts the creation of the 

intersection subnet. 

 

Figure 2-10 OWL:IntersectionOf [74] 

iv. For each concept class, C, defined as the union of classes, Ci = (C1, ……, 

Cn), a subnet is created in such a way that there is a link from C to each 

class in the set Ci. Furthermore, there is a link from C and each class in the 

set Ci towards a logical node called LNodeUnion. Figure 2-11 (below) 

depicts the creation of the union subnet.  

 

Figure 2-11 OWL:UnionOf [74] 

v. For each two concept classes, C1 and C2, defined as a complement of, 

equivalent to, disjoint with, each other, a logical node, LNodeComplement, 

LNodeEquivalent, LNodeDisjoint, is created, which takes two input links 

from C1 and C2. Figure 2-12 (below) depicts the creation process for 

LNodeComplement, LNodeEquivalent and LNodeDisjoint respectively. 
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Figure 2-12 OWL:complementOf, OWL:equivalentClass, 
OWL:disjoitnWith [74] 

It could be concluded that the generated BayesOWL contains two types of node, 

namely, regular nodes, which represent classes, and logical nodes, which show the 

logical relation among classes. Hence, the combination of these two types of node 

forms the structure of the BayesOWL network. 

Having discussed how to construct the structure of BayesOWL, the following 

paragraph addresses ways to calculate probability. As indicated previously, 

BayesOWL contains two types of node, logical and regular; thus, the CPT for each 

type is calculated as follows [74], [77], [78]. 

a. CPTs calculation for logical nodes: the CPT for each logical node is 

determined by its logical relation. BayesOWL accommodates five different 

logical relations, and their CPTs are calculated accordingly. The following 

subsection explains the CPT calculation process for each logical node.  

i. Complement of: the complement relation between two concept 

classes, C1 and C2, is true if �1�2˅�1�2, which generates the CPT 

in Table 2-1 (below). 

Table 2-1 CPT of Lnode Complement [74] 

C1 C2 True False 

True True 0 1 

True False 1 0 

False True 1 0 

False False 0 1 

ii. Disjoint with: the disjoint with relation between two concept 

classes, C1 and C2, is true, if �1�2˅�1�2 ˅�1�2, which results in the 

CPT in Table 2-2. 
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Table 2-2 CPT of LNode Disjoint [74] 

C1 C2 True False 

True True 0 1 

True False 1 0 

False True 1 0 

False False 1 0 

iii. Equivalent to: the equivalent to relation between two concept 

classes, C1 and C2, is true if c1c2˅c1c2, which leads to the CPT in 

Table 2-3. 

Table 2-3 CPT of LNode Equivalent [74] 

C1 C2 True False 

True True 1 0 

True False 0 1 

False True 0 1 

False False 1 0 

iv. Intersection of: the relation that C is the intersection of C1 and C2 

is true if cc1c2˅cc1c2˅cc1c2˅cc1c2, which is expressed by the 

CPT in Table 2-4. 

Table 2-4 CPT of LNode Intersection [74] 

C C1 C2 True False 

True True True 1 0 

True True False 0 1 

True False True 0 1 

True False False 1 0 

False True True 0 1 

False True False 1 0 

False False True 0 1 

False False False 1 0 

v. Union of: the relation that C is the union of C1 and C2 is true if 

��1�2˅��1�2˅��1�2˅��1�2, which is represented by the CPT in 

Table 2-5. 

Table 2-5 CPT of LNode Union [74] 

C C1 C2 True False 

True True True 1 0 
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True True False 0 1 

True False True 1 0 

True False False 0 1 

False True True 1 0 

False True False 0 1 

False False True 0 1 

False False False 1 0 

b. CPTs calculation for regular nodes: the CPTs for regular nodes are 

computed by applying the Bayesian theorem, as follows. P(C|⫪c), where C 

is the concept for the regular node and ⫪c is the set of its parents. The 

P(C|⫪c) = 0 if any of its parents is false. Hence, the probability for any child 

concept, C, is calculated only when all of its parents are in true status. This 

scenario is denoted as P(C|⫪C
+), where ⫪C

+ represents the set of parent 

classes in true status. This method is used to calculate probability when data 

is available. Otherwise, a default value (0.5) is assigned based on equation 

2.1 (below) [74], [75], [79]. 

 �(� = True| ⫪ c+)  =  P(C = False| ⫪ c+)  =  0.5 2.1 

Similar to the BayesOWL approach, this thesis proposes a model that 

represents each ontology concept as a binary variable in the BN structure 

and connects it to its superclass using the parent–child relation. However, 

BayesOWL has further augmented the BN structure by creating logical 

nodes corresponding to five logical relations. Hence, the future work of this 

thesis will investigate the advantages of integrating the logical nodes in the 

ontology-based hierarchical Bayesian Network. Additionally, BayesOWL 

used the IPFP to integrate the probabilistic information in the form of a 

constraint. Alternatively, our approach utilised the observed data and the 

maximum a posteriori estimation (MAP) parameter estimation method to 

compute the probabilistic information. 

2. OMEN: an ontology mapping enhancer tool that aims to improve the ontology 

mapping process by amalgamating the ontology structure and Bayesian 

probability. The structure of ontology is exploited to construct a BN, which 

represents the influences and inter-relationships between ontology. Hence, nodes 

that are neighbours with the matched node are included in the matching process 

[80]. 
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The creation of the OMEN BN structure is started by constructing m X n nodes, 

which represent all the possible matches between nodes across the source 

ontologies. Then, the semantic relation described in the given ontology is used to 

create links between nodes, and the down-flow edges generation process is 

implemented as follows: for each concept, C1 and C2, which are the children of P1 

and P2, a directed edge between two nodes is added to the graph, which represents 

the match between (P1 & P2) and (C1 & C2) respectively. Finally, nodes that have 

no parents or children are removed to minimise the number of nodes. 

With respect to the conditional probability tables (CPTs), the OMEN framework 

provides external functions to compute and produce the required CPTs. These 

functions are invoked based on per of nodes and their neighbour nodes, as 

explained in the source ontologies. Additionally, OMEN designed internal 

functions based on meta-rules to produce the CPTs. 

In summary, OMEN utilised source ontologies, the output of other mapping tools 

and a set of meta-rules probability distribution to generate more accurate ontology 

mapping results [80]–[82]. Perhaps the most serious weakness of this model is that 

it does not work independently. In other words, it requires the output of other 

mapping tools and the initial probability distribution as input to perform the 

mapping process. 

The following paragraphs explain the applications of BN reasoning on ontology; a good 

example is the work undertaken by [83], in which an extended form of BN is constructed 

based on the semantic relation of TBox and ontology, and CPTs are computed from the 

instances on the associated ABox. The authors claimed that the conditional dependencies 

for the BN structure can be extracted from the ontology semantic structure and the 

instance frequencies provide the required probability distribution. Hence, ontology can be 

used to perform probabilistic reasoning without any modification. The proposed method 

consists of three steps:  

1) Convert the ontology TBox into a layered BN,  

2) Compute prior and conditional probability based on the instance frequencies in the 

ontology ABox,  

3) Use the structure of the generated layered BN to implement probabilistic reasoning.  

The authors of [83] concluded that the developed layered BN model could cater for the 

“is-a” and object properties in the reasoning process. However, it lacks other relations 
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such as disjoint and cardinality, among other things [81]. Similar to the study presented by 

[83], the framework proposed in this thesis exploited the “is-a” relation in the TBox to 

construct the BN structure. However, each node in the BN structure created by our model 

represents an aggregation of its subclasses, while each node in the structure created by 

[83] is a high-level node, which in turn represents a BN. Figure 2-13 (below) depicts the 

structure of the two-level BN model proposed by [83]. 

 

Figure 2-13 2LBN Structure [83] 

According to [81], another significant domain of BN and ontology integration is the semi-

automated construction of BN. Many scholars hold the view that the construction of 

complex BN is naturally difficult. Hence, an external knowledge base in the form of 

ontology could be used to help identify the variables of interest and their effect on one 

another. Additionally, ontology can assist in the process of probability calculation. An 

example of this is the study carried out by [84], in which the authors exploited the 

knowledge and inference capabilities of ontology to automate the construction of a BN. 

Ontology was used in four different steps, as follows: 

a. BN variable identification: the aim of this step is to identify the set of concepts 

that exhibit a causal relationship, which can contribute to the construction of the 

BN structure. The concept selection process was built based on the assumption that 

there is an existing or developed ontology to represent the domain of interest. So, 

in order to identify the concepts that contribute to the construction of the BN, the 

authors proposed BN ontology and linked it to the original domain ontology. The 

root concept of the BN ontology is the BN node, and all BN variables were 
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initiated from the BN node root node. Finally, the combined domain ontology and 

BN ontology were utilised to generate the structure of the BN.  

b. BN node properties extractions: the BN node attributes were extracted from the 

combined ontology created in the previous step. The concept of attribute 

constraints was used to restrict the values, which can be assigned to the newly 

created BN nodes. For example, constraints such as “hasValue” were used to 

specify the values a property can assume.   

c. Finding parent nodes: the ontology reasoner was applied over the combined 

ontology to extract the BN nodes and assign their properties. An instance was 

created for each subclass of the BehaviourModelNode. The BehaviourModelNode 

was used to define the specifications of BN nodes in a certain application domain. 

Additionally, the properties were represented by nodes and assigned the 

appropriate values. Finally, links between nodes were created based on the domain 

rules, which specify the relations between concepts in BN.  

d. Calculation of the Conditional Probability Table (CPTs): the proposed 

approach used existing parameter estimation methods. However, ontology 

semantic knowledge was used to estimate the initial probability distribution for 

some nodes. For instance, the CPT of the child concept can be encoded to reflect 

the effect of the deterministic relation with its parent.  

A serious weakness of this approach, however, is that it relies heavily on the experts’ 

knowledge to identify the concepts and relations to construct the BN structure. 

Additionally, it requires the extension of the domain ontology to include specific ontology 

concepts and properties to define the structure of the BN. Unlike this method, our 

approach sought to automate the creation process of the BN without any extension to the 

existing domain ontology or modification to its structure. 

Another example of the semi-automated construction of BN is the work undertaken by 

[85], in which uncertainty was merged with the clinical practice guidelines (CPG) to 

generate an ontology-based BN, which helps doctors to estimate the risk of uncertain 

actions in the medical process. The proposed approach converted the CPG graph into 

ontology-based BN, which contains uncertainty features and provides an algorithm to 

construct the CPTs. Hence, medical staff can upload their observation as evidence to the 

developed Bayesian model and reason out the probabilities of the targeted actions. 
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Another attempt at an ontology-based BN construction was made by [86], in which 

ontology was used to: 

1) Create the BN nodes based on existing ontology concepts.  

2) The semantic relations between ontology were used to define the links between 

nodes in the BN.  

3) Ontological semantic knowledge was utilized to facilitate the conditional 

probability calculation.  

The proposed approach was tested in the area of threat detection using security ontology 

as the underpinning knowledge base. Accordingly, the authors claimed that their approach 

achieved the following:  

1) Enabled the semi-automatic creation of a BN based on existing ontology.  

2) Reduced the complexity of the created BN using the high-level concepts and sub-
concept relation in ontology.  

3) An uncomplicated maintenance process to the BN’s underlying knowledge in the 
form of ontology.  

However, the main weakness of this study is that expert intervention is required not only 

to select the concepts that best describe the problem but also to interpret the semantic 

meaning of the selected relation. 

The final class of ontology and BN integration, classified by is the PR-OWL, which is a 

probabilistic extension of the existing OWL language. The Multi-Entity Bayesian 

Networks (MEBN) logic forms the logical base of the PR-OWL approach, which aims to 

merge first-order logic with the Bayesian Network. The ultimate aim of MEBN is to 

represent first-order logic as probabilistic fragments (MFrags) of BN, which can be 

combined to form a graphical probability model. MFrags are used to encode the 

uncertainty relations among a group of logically related hypotheses. In other words, 

MFrags represent a group of nodes in the BN that are logically connected [87], [88]. 

Despite its many advantages, PR-OWL is not included in the W3C standards. Hence, the 

existing ontology did not comply with the PR-OWL syntax, which restricted its 

applicability. 

Having discussed the approaches presented in [81]’s survey, the following paragraphs 

discuss other methods that have been either overlooked by Larik et. al.’s survey or 
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introduced recently. This can be seen in the work implemented by [89], in which the 

domain of interest was represented in the form of ontology, which was then converted into 

BN following a predefined sequence of steps. Consequently, the associated probability 

distribution was calculated using the existing parameter estimation method.  

The construction of the BN structure is implemented in two phases. In the first phase, the 

concepts and relations related to the knowledge of interest are selected, while the rest of 

the concepts in the ontology serve as background knowledge. It is notable that 

representing the domain of interest using concepts and the associated attributes provides a 

solid base from which to convert these attributes into statistical variables, which are 

represented as nodes in the BN structure. Different possible combinations of the selected 

concepts and attributes can form different network structures. Hence, careful selection 

must be followed to avoid redundancy.  

In the second phase, the structure produced in the first phase is further optimised and 

improved. The authors tested their approach in the domain of oesophageal cancer and 

claimed that the proposed approach helped to address complex factors involved in the 

modelling process. Additionally, they compared the newly generated structure with the 

original network, which explains some ambiguous decisions made in the original network 

construction process. However, the main weakness of the study was its failure to eliminate 

the need for manual intervention to select the required concepts and relations related to the 

problem under investigation. 

In similar way, [90] proposed a model to incorporate the BN and ontology. The proposed 

approach consists of the following steps:  

1) Extend the existing OWL to encode probabilistic information for concepts and 

properties. 

2) The probabilistically annotated OWL is converted into a BN using a set of 

translation rules. 

3) The CPT for each node in the BN is constructed.  

For the first step the authors considered the probability information as a kind of resource 

and proposed three different types of “WOL:Class”, namely, “PriorProbObj”, 

“CondProbObjT” and “CondProbObjF”. The prior probability in the form of P(A) is 

represented as an instance of “PriorProbObj” and has two properties, “hasVAriable” and 

“hasProbValue”. Additionally, conditional probability in the form of P(A|B) and P(A|�) is 
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defined as instances of “CondprobObjT” and “CondProbObjF” respectively. All 

conditional probability has the following properties: “hasCondition”, “hasVariable” and 

“hasProbValue”. While the type of “hasCondition” and “hasVariable” are object 

properties, the type of “hasProbValues” is a datatype property.  

Moving on to the second step, which is the structural translation rules, the core of these 

rules is that each subject or object class and object properties are converted into binary 

nodes in the BN. Additionally, an arc is created between nodes if there is a predicted link 

to the corresponding classes.  

In the third and final step the associated CPTs are determined. In many cases the semantic 

and logical relations are utilised to specify the values of the CPTs. For example, the 

P(Man|Human,Male) = 1, which means that a man is an intersection of human and male, 

so the probability that man equals true, given that human and male are true, is one. 

Although the authors did not test the proposed approach in a real-life scenario, they argued 

that the proposed OWL extension and BN translation rules are consistent with OWL 

semantics and the BN inference procedure. Hence, standard probability inference 

algorithms such as belief propagation or a junction tree can be implemented in a real-life 

situation. However, the key problem with this approach is that it requires the extension of 

the existing ontology to include the probability and BN structure information in the form 

of resources. Although the authors explained how to translate the BN-related resources 

included in the ontology, they did not comment on the sources of this information. It 

seems that the authors relied on human experts to provide this information; hence, manual 

intervention is essential to this approach. 

Another example of BN and ontology integration is the “OntoBayes” model presented by 

[91], in which an ontology-driven uncertainty approach was proposed. The proposed 

approach used probabilistic information and dependency relationships of the Bayesian 

Network to annotate the underpinning ontology model in such a way that preserved the 

advantages of both. The first step in the ontology and BN integration process was 

ontology probabilistic extension. This was done by defining three classes, namely, 

“PriorProb”,”condProb” and “FullProbDist”. A “ProbValue” datatype property was 

defined for the first two classes and used to represent the prior and conditional probability, 

respectively. Additionally, “hasPrior” and “hasCond”, two disjoint object properties, were 

used to describe the full disjoint probability distribution class.  
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Turning now to the second step, which is defining the dependency relations between 

nodes, the authors proposed a property element called <rdfs:dependsOn> to encode the 

dependency information in OWL ontology. Dependency has been defined as pair X  Y, 

where X and Y are either a data property or an object property and read as X depends on 

Y. Thus, the variables in the OntoBayes model consist only of datatype and object 

property. 

Finally, in the third step the structure of the OntoBayes was constructed by extracting all 

dependency triples in the form of object, predicate and subject, where the predicate is the 

primitive <rdfs:dependesOn>. Then, when dependency triples were merged nodes with the 

same identifier were aggregated to a single node. The OntoBayes approach was applied to 

the insurance and natural disaster management field, and the authors claimed that their 

approach conserves the powerful expression capability of ontology and the uncertain 

reasoning capability of BN.  

Similar to the work presented by [90], the authors of [91] extended the existing syntax of 

ontology to include the information related to the BN probabilistic dependency. However, 

the authors of [91] introduced the <rdfs:dependsOn> property, which explicitly defines the 

dependency relation between variables in the BN. Hence, both approaches have the same 

drawbacks, in that they require the extension of the existing ontology and rely on human 

experts to define the dependency relation instead of deducing these relations from the 

semantic knowledge of ontology. 

Another attempt to amalgamate ontology and BN is exemplified in the work undertaken 

by [92], in which the authors investigated the advantages of exploiting ontology semantic 

knowledge in the construction process of the Object-oriented Bayesian Network (OOBN). 

The proposed approach suggested the use of a set of mapping rules, which aims to 

compile an ontology graphical representation into OOBN. The ontology into OOBN 

compilation process consists of three main steps, namely, initialisation, discovery and 

closing.  

In the initialisation step all concepts are undiscovered. Then, for each concept the OOBN 

class is generated. Additionally, the actions that must be taken at each detected concept are 

determined in the discovery step. The actions taken define input, internal and output sets 

for each class. Finally, for each root vertex that has no predecessor, an instance of this 

vertex class is added to the OOBN.  
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The authors argued that the proposed ontology to the OOBN mapping approach 

established a new connection between the two disciplines and made use of the semantic 

enrichment of ontology. Furthermore, it overcomes the limitations of using standard BN. 

Although the authors of [92] argued that the problem of constructing a BN is an NP hard, 

and they intended to tackle this problem by exploiting ontology semantic knowledge, they 

suggested the use of the depth first search (DFS) to traverse the entire ontology. Hence, it 

seems that this study does not take into account the size of the ontology. In contrast to this 

approach, the SAHBN model only extracts concepts related to the problem under 

investigation. 

Another possible example would be the work carried out by [93], in which ontology was 

utilised to predefine the structure of the BN. In fact, the authors proposed the use of a two-

layer network where the pathologies are represented as nodes in one layer and the 

symptoms forming the nodes in the other layer. The symptoms layer not only includes 

observations or symptoms but also represents other elements contributing to the diagnosis 

process, such as disease proneness, results of medical tests, effects of treatments, multi-

pathology conditions and phenomena that evolve over time. Accordingly, the probability 

of positive diagnosis for a certain disease is conditioned by the probabilities of the 

presence of symptoms and other related factors.  Figure 2-14 (below) depicts the structure 

of the proposed two-layer BN.  

 

Figure 2-14 The topology of a Bayesian network for medical diagnosis [93] 

The authors argued that the main advantage of their approach is that the structure of the 

BN is predefined; hence, ontology did not encode the information required for BN 

construction. Furthermore, the backbone knowledge can be easily enriched by specialist 

users.  Such an approach, however, failed to address the point of dynamically exploiting 
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the explicit knowledge of ontology to create the structure of BN. Instead, they used 

ontology to predefine the BN structure based on existing knowledge.   

Another attempt in the area of ontology-based BN construction is the work undertaken by 

[94], in which a semi-automatic approach to construct a BN based on existing ontology 

was proposed. The author claimed that ontology was used to facilitate the following BN 

construction steps: 

1) The identification of BN nodes using ontology classes/individuals. 

2) Connecting BN nodes using ontology properties. 

3) Calculation of the conditional probability table based on an ontology knowledge 

base. 

4) Findings extracted from an ontology knowledge base are used to augment the 

constructed BN.  

The proposed model consists of the following phases: 

a. Selection of relevant classes, individuals and properties: an expert in the 

targeted domain is required to select the classes, individuals and properties that 

contribute to the task under investigation. Care must be taken when experts are 

selecting the relevant entities to avoid any redundant edges. For example, transitive 

relation must not be considered. Hence, if A is affected by B and B is affected by 

C, only links from B to A and from C to B are added, and links from C to A must 

not be included. Although intervention of the domain expert is required in the first 

step, the other steps are conducted automatically based on the output of the first 

step. 

b. Creation of Bayesian network structure: the classes and properties selected in 

the previous step are utilised to automatically construct the BN structure. The 

construction process adheres to the following rules: 1) the selected 

classes/individuals are used to create the BN nodes; 2) only the sub-classes of 

specific selected class are added to the BN graph; 3) for all elected individuals, 

their asserted individuals are included in the BN graph; 4) the selected value 

properties are used to assign a numerical value for each class/individual in the BN 
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graph. Furthermore, value properties are used to compute the CPT of the BN 

nodes; and, finally, 5) classes connect to their parent class using the link property.  

c. Construction of CPTs: in order to calculate the CPTs, the entire constricted BN is 

scanned and nodes that have at least one parent are identified. Then, the weight 

property is used to define the weight of each node parent. The CPT calculation 

process for each node is affected by the following factors: 1) the parent state space; 

2) the parent’s context-specific weight; and 3) the parent distribution function, 

which determines the state of the targeted node. The complexity of the CPT 

calculation is reduced by limiting the number of states for nodes with parents to 

two, while nodes with no parents can have more than two states.  

d. Incorporation of existing knowledge facts: in order to integrate ontology 

knowledge into the constructed model, the finding properties such as OWL object 

property, property assertion, some restrictions, all restrictions, minimum 

restriction, maximum restriction and value restriction must be considered. 

However, finding properties can be ignored and the BN can be kept general. If a 

finding property is selected, a new node must be added to the network and linked 

to the associated node. The state of the created node has to comply with the parent 

state of the associated node.  

To sum up, the proposed model was used to estimate the threat probability, which uses 

security ontology as background knowledge. Consequently, the authors argued that their 

approach outperforms the existing method in the following perspectives:  

1) Using existing ontology without any required extension. 

2) Integrating facts in the construction process. 

3) The constructed CPTs accommodate the semantics ontology aspects.  

Perhaps the most notable drawback of this approach is that its quality relies heavily on the 

domain experts to select the most appropriate classes, individuals and properties. Hence, 

human expert intervention is essential and must be carefully implemented; otherwise, the 

consequent steps will be affected. 

Another recent example is the work implemented by [95], in which the failure mode and 

effect analysis (FMEA) information was integrated into industrial design ontology and 

then the extended ontology was used to construct the structure of the Bayesian diagnostic 
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networks. The principle of the proposed model is to represent each ontology class as 

discrete random variables, which are represented as nodes in the BN, and the casual 

relationship is represented as arcs linking these nodes. The authors proposed an algorithm 

that searches the ontology model for objects and creates a node in the BN for each 

encountered object. The proposed algorithm consists of the following steps: 

a. A node is created for each “FailureEffect” instance. 

b. The “effectOf” relation is used to represent the conditional dependency between 

nodes in the BN. Hence, a node is created for each instance of the 

“QualityCharacterisitc” class, which is linked via the “effectOf” relation.  

c. The “requires” relationship is used to identify the “ProcessSteps”, which 

contributes to each “QualityCharacteristic”. Then, a node is created for each 

“ProcessSteps” and a link to the “QualityCharacteristic” node.  

d. For every “EquimentModule(s)” instance that is linked to the “ProcessStep” 

instance via “ImplementedBy” relations, a node is created in the BN and linked to 

the “ProcessStep”.  

e. For every instance of “EquimpmentCharacteristics” that is linked to 

“EquimentModule(s)” via the “hasCharacteristics” relationship, a node is created 

in the BN and linked to the associated equipment node. 

f. Finally, detect and remove any cyclicity in the BN graph. 

The proposed approach was tested using a typical industrial assembly system and the 

authors argued that their approach follows a systematic way to construct the diagnostic 

models and that it is more accurate and consistent than the model constructed based on 

human experts. Furthermore, the time and effort required to construct the model is 

extremely small and integrated into the system design process. Although this approach 

managed to exploit the implicit knowledge in ontology to identify the dependency relation 

between nodes in the BN structure, its main limitations are that it is focused on a very 

domain-specific relation such as “effectOf”. Additionally, this approach requires manual 

intervention to remove cycles in the created BN structure. 

To sum up, all the works reviewed so far suffer from the fact that they either require a 

domain expert’s intervention or they are domain-specific, which means they cannot be 
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generalised to other domains. Additionally, some of them had to extend the standard 

syntax of existing ontologies, which restrains their applicability. Furthermore, some of the 

reviewed work used ontology in a static manner to predefine the BN structure. Hence, the 

model proposed in this thesis sought to automate the integration of ontology and 

uncertainty in such a way that overcomes some of the previously stated challenges. Our 

approach aimed to achieve the following objectives: 

a. Automate the process of BN and ontology integration and eliminate human 

intervention.  

b. Utilize the implicit knowledge of ontology in BN structure creation. 

c. Propose a general integration framework that can be applied to different domains.  
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Chapter 3 Fundamental Techniques and the Proposed Model 

3.1 Introduction 

There is some evidence to suggest that the process of BN structure construction and 

parameter learning can either be done manually by domain experts or learned for data. 

Although various expert-based and data-based approaches have been studied and applied 

in different domains, it is believed that both approaches have their disadvantages. The 

main weaknesses of the expert-based approach are that it is time-consuming, error-prone 

and costly and experts are not always available. On the other hand, data-based approaches 

suffer from bias and a lack of training data [94], [96], [97]. Hence, this research 

investigates the advantages of integrating an external source of knowledge in the form of 

ontology to improve the overall quality of the Bayesian classification model. Our ultimate 

aim is to construct a generic BN classifier that integrates the targeted domain knowledge 

in the form of ontology and seamlessly exploits this knowledge in the mining process. The 

proposed model is generic in the sense that using different ontology will lead to the 

integration of different domain knowledge to the proposed BN classification model. 

Hence, the proposed model can be applied into different domain.  

This chapter discusses in detail the proposed SAHBN model and the associated 

techniques. The first five sections cover the underpinning techniques, which include the 

following: 

1) the gene ontology (GO); 

2) the chi-squared test for independency; 

3) the Bayesian Network; 

4) the Hierarchical Bayesian Network; 

5) the parameter estimation methods for the Bayesian Network. 

 Finally, the last section discusses the proposed SAHBN model in detail.  

3.2 Gene Ontology 

Gene ontology (GO) is a collaborative effort to construct controlled vocabularies that 

describe in a consistent manner the roles that genes play in the life of various organisms. 

Its main objectives are: 
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1) To assemble a set of structured vocabularies to describe the domain of molecular 

biology. 

2) To use the assembled vocabularies to annotate the gene and gene products. 

3) To make the gene annotation data sets available to other researchers via the open-

access gene data-set repositories.  

The structure of the GO consists of three hierarchies, which cover the following biological 

aspects [98]–[100]: 

a. Molecular Function (MF): MF terms are used to describe the abilities that gene 

products have or the jobs they may implement. This includes activities such as 

transporting things around, binding to things, holding things together and changing 

one thing into another. Examples of these include, but are not limited to, the 

following: 1) nuclease: enzymatic activities; 2) structural constituents of 

chromatin: structural activities [98], [101], [102]. 

b. Biological Process (BP): BP terms are used to define a biological goal or 

objective implemented by an ordered series of molecular functions. The beginning 

and end of the MF activities that contribute to the BP are precisely defined. For 

example, “mitosis” is the biological process that divides the eukaryotic cell 

nucleus into two daughter nuclei. A more comprehensive example is the “calcium-

dependent cell-matrix adhesion” process, which binds a cell to the extracellular 

matrix via adhesion molecules with the presence of the calcium for the interaction 

[98], [101], [102]. 

c. Cellular Component (CC): the locations where the activities of the gene products 

take place are defined by cellular component terms. The locations may include a 

structural component of a cell such as the nucleus or it may refer to a location as 

part of a molecular complex such as a ribosome [98], [101], [102]. 

As indicated previously, the GO structure consists of three hierarchies, which organise the 

GO terms as a directed acyclic graph (DAG), where each GO term is represented as a 

node and the relationships between nodes are defined as arcs. The parent–child relation is 

the backbone of the GO structure, which indicates that the parent nodes are more general 

than the child nodes. Table 3-1 (below) lists some of the widely applied relations in the 

GO DAG. However, it is not a comprehensive list covering all relations in GO [98], [102], 

[103]. 
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Table 3-1 Widely Applied Relations in the GO DAG 

Relation Name Description 

is a (a subtype of) 

The “is a” relation shapes the fundamental structure of the GO. 

Whenever GO states that there is an “is a” relation between node 

A and node B (A is a B), this means that A is a subtype of B. It is 

worth mentioning that the “is a” relation does not mean an 

“instance of”. An example of the “is a” relation in GO is “mitotic 

cell cycle is a cell cycle”. 

part of 

The “part of” connection is used to express the part–whole 

relation between nodes. If node B is “part of” node A, it means 

that whenever B exists then A must exist as a whole part of B. 

However, the presence of A does not indicate the presence of B.  

has part 

The “has part” relation is the logical complement of “part of”. It 

is used to express the whole–part relation from the parent’s 

perspective. If node A has node B as part of it, it means that B is 

a necessary part of A, and whenever A is present B is also 

present. However, the presence of B does not indicate the 

presence of A.  

regulates 

The “regulates” relation is used to represent the influence of one 

process on the appearance of other processes, or its quality, such 

as the enzymatic reaction or cell size. It refers to certain effects 

of one node on the other. For example, if nodes A and B exist 

then B always regulates A. However, A may not be solely 

regulated by B; a more specific example is: the cell cycle 

checkpoint always regulates the cell cycle. However, the cell 

cycle is not only regulated by the cell cycle checkpoint.  

negatively regulates 

and 

positively regulates 

More specific types of the “regulates” relation are the 

“negatively regulates” and “positively regulates”. These two 

relations are sub-relations of the “regulates” relation. Hence, if A 

“negatively regulates” B, it is valid to infer that “A regulates B”. 

Likewise, if A “positively regulates” B, it is valid to conclude 

that “A regulates B”.  

Another significant aspect of the GO structure consistency constraints is the true path rule 

(TPR). The “is a” (parent–child) GO relation is obligated to follow the TPR, which states 

that if an instance of the GO node is proved to be true, its ancestors, all the way to the 

root, must also be true. Otherwise, if an instance is found to be false, all its descendants to 
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the leaf nodes must also be false [98], [103], [104]. Figure 3-1 (below) depicts part of the 

GO structure to illustrate some of its components. 
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Figure 3-1 GO as Graph [105] 
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Many studies have reported that gene ontology provides a comprehensive resource for 

annotating gene products [106]. According to [101], the gene ontology consortium (GOC) 

published 126 million annotations, which cover more than 347,000 species. These 

annotations are created either automatically using a computerised method or manually by 

experts who have studied the relevant literature or examined the biological data. Hence, 

this research not only uses the gene ontology to annotate the mined data but also exploits 

the semantic information integrated in the GO to enrich the proposed mining model.  

3.3 Chi-squared Test of Independence 

The chi-squared test is a non-parametric statistical approach used to test the independency 

or association between two categorical variables. It checks whether the frequencies of one 

variable category have an effect on the frequencies of another variable category. If the 

occurrence frequencies of two categorical variables are related, it can be claimed that the 

tested variables are dependent; otherwise, they are independent [107]. 

An initial step in the chi-squared calculation process is to represent the occurrence of the 

observed data in a two-way table, which is also known as the contingency table [107]. The 

contingency table is an excellent tool to test the dependency relation between categorical 

variables, where each cell in the table represents the frequency counts of the associated 

row and column variables. In fact, the chi-squared test uses the contingency table not only 

to represent the observed data, but also to calculate the degree of freedom (denoted as df), 

which is essential to specifying the level of significance for the statistical test. The degree 

of freedom is calculated according to equation (3.1) (below) [108]. 

 �� = (������ �� ���� − 1) ∗ (������ ��������� − 1)  (3.1) 

So, the degree of freedom for 3 rows X 3 columns table is (3-1)*(3-1) = 4. According to 

[109], the chi-squared distribution forms different families and each family is associated 

with a specific degree of freedom. Figure 3-2 (below) depicts various distribution families 

with the associated degree of freedom. 
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Figure 3-2 Chi-square Distributions for Different Degrees of Freedom [109] 

The following example gives a full explanation of the chi-squared calculation process and 

discusses how to analyse and understand the obtained result. It is assumed that an owner 

of a company wanted to keep the health problems among his employees as low as 

possible. Hence, he decided to vaccinate half of the company employees with the 

pneumonia vaccine. Consequently, the chi-squared test was used to answer the question of 

whether using the pneumonia vaccine helped to reduce the number of problems related to 

health issues [108]. 

As indicated previously, the initial step in the chi-squared calculation process is to 

represent the observed data as a contingency table. Thus, Table 3-2 (below) represents the 

contingency table for a population consisting of 184 employees, of which half received the 

vaccine, and three possible health outcomes, namely, sick with pneumococcal pneumonia, 

sick with non-pneumococcal pneumonia and no pneumonia. 

Table 3-2 Contingency Table Sample [108] 

Health Outcome Unvaccinated Vaccinated 

Sick with pneumococcal pneumonia 23 5 

Sick with non-pneumococcal pneumonic 8 10 

No pneumonia 61 77 

In this example the hypothesis that needs to be validated is whether or not the action of 

taking the vaccine and the health outcome are independent. The no relation or null 
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hypothesis indicates that vaccination and health outcome are independent; the alternative 

hypothesis is that they are related or dependent. The null and alternative hypothesis can be 

formulated as follows.  

H0: No relationship between vaccination and health outcome. 

H1: Some relationship between vaccination and health outcome. 

Or: 

H0: Vaccination and health outcome are independent. 

H1: Vaccination and health outcome are dependent. 

The step that follows the representation of the observed data as a contingency table and 

states the null and alternative hypothesis is to calculate the marginal for each row and 

column in the contingency table. The row marginal is the sum of that row. Likewise, the 

column marginal is the sum of that column. Table 3-3 (below) presents the updated 

contingency table along with the marginal values. 

Table 3-3 Contingency Table with Marginal Values [108] 

Health Outcome 
Unvaccina

ted 
Vaccinated 

Row Marginal 

(Row Sum) 

Sick with pneumococcal pneumonia 23 5 28 
Sick with non-pneumococcal pneumonic 8 10 18 
No pneumonia 61 77 138 
Column marginal (sum of the column) 92 92 N = 184 

The next step is to calculate the expected values, which represent the estimated 

distribution of the data if there is no relation between the vaccination and the employees’ 

health condition. The expected value for each cell in the contingency table is calculated 

according to equation number (3.2) (below). 

 E = ���
 ��

�
 (3.2) 

Where: 

 E = the expected value for a specific cell 

 ��= the sum of the row where the cell is located. 

 ��= the sum of the column where the cell is located. 

 n = the size of the population sample.  

Once the expected values have been calculated the chi-squared for each cell is computed 

according to equation number (3.3).  
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 Chi − Squared (x�) =
(O − E)�

�
 (3.3) 

Where: 

 �� = the Chi-Squared value for specific cell. 

 O = the observed value of the cell. 

 E = the estimated value of the cell. 

Table 3-4 (below) presents the results of applying equations (3.2) and (3.3) for each cell in 

the vaccination and health outcome contingency table to calculate the expected and chi-

squared values respectively. 

Table 3-4 Expected and Chi-squared Values [108] 

Health Outcome Unvaccinated Vaccinated 
Sick with pneumococcal pneumonia 13.92 (5.92) 12.57 (4.56) 
Sick with non-pneumococcal pneumonic 8.95 (0.10) 9.05 (0.10) 
No pneumonia 69.12 (0.95) 69.88 (0.73) 

The final step is to sum the chi-squared value of each cell to obtain the table total chi-

squared value. For this specific example, the result is 12.35 (rounded) [108]. 

Having discussed how to calculate the chi-squared value from a contingency table, the 

next step is to explain how to act upon the obtained result. The basic principle of the chi-

squared statistic test is to use the calculated value either to reject or accept the null 

hypothesis. This is done based on two important factors, precisely, the chi-squared critical 

value at different degrees of freedom and the level of probability. These values are 

organised in a table, known as the standard chi-squared distribution table, depicted in 

Figure 3-3 [107][109]. 

The values in the left column of the chi-squared standard distribution table represent the df 

of the contingency table. Additionally, the associated chi-squared critical values for each 

df are presented at the intersected row. For example, if the df is equal to 1, the critical 

value at the level of probability of 0.10 is 2.706. Hence, if the calculated chi-squared result 

is greater than or equal to 2.706, then the null hypothesis is rejected; otherwise, it is 

accepted [107]. 
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Figure 3-3 Critical Values of Chi-Squared Distributions [109] 
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3.4 Bayesian Network (BN) 

The Bayesian Network (BN), or belief network, has been categorised as a breed of the 

probabilistic graphical model family. It is a concise representation of the joint probability 

distribution (JPD) for a set of random variables that represent the domain of interest. The 

random variables depicted as vertices in the BN structure, and the conditional probability 

independency between these variables, are represented in the form of arcs. Thus, the BN 

structure is a combination of vertices (random variables) and arcs (independency relation), 

which form a directed acyclic graph (DAG). The conditional probability table (CPT) has 

been used to quantify the strength of connections between variables in the BN. For this, a 

CPT table is calculated and attached to each vertex in the BN DAG [110]–[112]. Figure 

3-4 (below) depicts an example of a BN structure along with the associated probabilistic 

information and the variable status interpretation. 

Figure 3-4 A Bayesian network [113] 

The variables presented in the above BN represent a medical condition, which could be 

used as symptoms or signs of bronchitis or lung cancer. The possible values these 

variables may take are explained in Table 3-5 (below). 
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Table 3-5 Bayesian Network Variables Possible Values [113] 

Variable Value When the Feature Takes this Value 

H 
h1 

h2 

There is a history of smoking 

There is no history of smoking 

B 
b1 

b2 

Bronchitis is present 

Bronchitis is absent 

L 
l1 

l2 

Lung cancer is present 

Lung cancer is absent 

F 
f1 

f2 

Fatigue is present 

Fatigue is absent 

C 
c1 

c2 

Chest X-ray is positive 

Chest X-ray is negative 

According to [114], a BN consists of the following elements: 

a. A set of random variables and the associated set of directed edges between 

variables. 

b. The status of the variables is mutually exclusive. 

c. The acyclic directed graph is generated by combining the variables with the 

attached edges. 

d. A conditional probability table in the form of P(Variable|Parents) is attached to 

each variable in the graph.  

As discussed above, a BN consists of two main components, namely, structure and 

probabilistic information. Hence, the process of BN learning includes structure 

construction and CPT calculation.  

The BN structure can be manually created by experts, learned from observed data or a 

combination of the two. Likewise, the probabilistic information can be assigned by 

experts, deduced from the observed data or a combination of both techniques [113], [115].  

Although the process of BN structure learning from data has been heavily investigated and 

several approaches have been proposed, there is some evidence to suggest that these 

approaches have been categorised into two main categories [116]–[119] as follows: 

a. Constraint-based methods:  the basic principle of methods under this category is 

to find the BN structure that best fits the constraints in the form of conditional 

independency between a subset of variables representing the targeted domain.  
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b. Search-based methods: the ultimate aim of the approaches belonging to this 

category is to find the structure with the highest scoring function. They start by 

using a search algorithm to find all the possible structures, and then a scoring 

function is used to measure the quality of the candidate network with respect to the 

given data set.      

As discussed above, there are two main approaches to constructing the BN structure, 

namely, expert-based and data-based. However, there is some evidence to suggest that 

both approaches have their drawbacks. While the expert-based method is time-consuming, 

error-prone and costly, and experts are not always available, the data-based approaches are 

biased for the sample of the data used to construct the BN model, and in many real-life 

scenarios training data is scarce [94], [96], [97]. Hence, alternative approaches have been 

investigated to overcome the current shortages of the BN structure learning process and to 

construct a more accurate BN model [84], [94]. Likewise, one of the objectives of the 

work implemented in this thesis is to investigate the advantages of constructing a 

hierarchical Bayesian Network based on GO. However, before the SAHBN model is 

presented in detail, the concept of the Hierarchical Bayesian Network is covered in the 

next section.  

3.5 Hierarchical Bayesian Network (HBN) 

The Hierarchical Bayesian Network (HBN) is defined as an extension or generalisation of 

the standard Bayesian Network (BN), where the structure of the HBN provides more 

knowledge about the organisation of the variables involved in the network and builds a 

more realistic probabilistic model. In contrast to standard BN, which cannot represent non-

propositional domains, each variable in the HBN structure represents an aggregation of 

simpler variables. Hence, it has been argued that HBN is an effective model, which 

decomposes the investigated problem into smaller sub-tasks and provides more control 

over the data flow and better modelling techniques [120]–[122]. 

Similar to standard BNs, HBNs consist of sets of nodes and arcs, which form the structure 

of the HBN. Additionally, the strength of the arcs between the nodes is quantified by a set 

of CPTs. However, unlike the standard BNs the arcs between the nodes in the HBN 

represent not only the probabilistic dependency between nodes but also the “part-of” 

relationship. The “part-of” relationship can be represented as either nested nodes or a tree-

like hierarchical structure. Figure 3-5(below) depicts both interpretations of the “part-of” 

relationship [121], [123]. 
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Figure 3-5 a. Nested Representation of the HBN, 
and b. Tree Representation of the HBN [121] 

 

The basic dependency rule that underpins the HBN structure is that a node is conditionally 

independent of its non-descendant nodes given the value of its direct parent in the graph 

[120], [121]. 

To further illustrate the notion of HBN, the PlayGolf example is discussed in this section. 

This example investigates whether a particular day is suitable for a person to practise 

his/her hobby of playing golf. It is assumed that there are two independent factors 

affecting the action of playing golf, namely, weather and business. Furthermore, it is 

assumed that the weather factor is an aggregation of three variables (outlook, temperature, 

wind). Additionally, the business factor consists of two variables, precisely, meeting and 

market, where the market comprises currency and shares. 

Figure 3-6 (below) depicts the structure of the HBN, which represents the hypothetical 

scenario explained in the PlayGolf example. It can be seen that the proposed HBN 

structure is very informative. For example, it explicitly shows that weather and business 

are independent. Furthermore, it can be readily extended or refined [121]. 
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Figure 3-6 The HBN Structure of the PlayGolf Example [121] 

Having discussed the structural construction of the BN and HBN networks, the next 

section explains the second part of the BN, namely, the parameter estimation methods. 

3.6 Parameters Estimation Methods for Bayesian Network 

In the preceding sections the concepts of BN structure construction were covered. What 

follows is a brief description of the BN parameter estimation methods. It is argued that 

there are two main models for estimating the parameters’ probabilistic values for complete 

data in BN, that is, maximum likelihood estimation (MLE) and Bayesian estimation [114], 

[124], [125], [126]. The following subsections cover these models in detail. 

a. Maximum Likelihood Estimation (MLE): the aim of the MLE method is to find 

the value of Ɵ that quantifies the maximum probability of the incoming event. In a 

given data set, D, which consists of n instants, represents the outcome of the 

binominal random variable X. MLE aims to estimate the maximum likelihood of 

the occurrence of n+1 incoming event [124], [127], [128]. 

Let X represent the event of flipping a thumbtack, which has two possible 

outcomes, heads and tails, and D is a set of the observed data. For the sake of 

simplicity, let us assume that the size of D is five observations, such that D = {X1 

= H, X2 = T, X3 = T, X4 = H, X5= H}, where H stands for heads and T stands for 

tails. Furthermore, the probability of X = H is equal to Ɵ and the probability of X = 
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T is 1-Ɵ. Since the probability of X1, X2, X3, X4 and X5 are independent and 

identically distributed (IID), the probability of D is defined as follows. 

 P (‹H, T, T, H, H›: ϴ) = ϴ (1- ϴ) (1- ϴ) ϴ ϴ = ϴ3 (1- ϴ)2 (3.4) 

It can be seen that the probability depends on the value of Ɵ. A different value of 

Ɵ results in a different probability. Hence, the likelihood function is defined as 

follows. 

 L (ϴ: ‹H, T, T, H, H›) = P (‹H, T, T, H, H›: ϴ) = ϴ3 (1- ϴ)2 (3.5) 

To generalise the likelihood function, let us assume that the number of heads is 

M[1] and the number of tails is M[0]. Then the general form of the likelihood 

function would be. 

 L (ϴ: d) = ϴ XH (1- ϴ) XT (3.6) 

It has been realised that it is easier to maximise the likelihood function by applying 

the log-likelihood. Consequently, the likelihood function would be.  

 L (ϴ: d) = XH log ϴ + XT log (1- ϴ) (3.7) 

Finally, the maximum likelihood parameter � � would be obtained by setting the 

derivative to 0, differentiating the log-likelihood and solving for Ɵ. Accordingly, 

the final form of the likelihood function would be. 

 � � =
�� 

�� + ��  
 (3.8) 

It can clearly be seen that the likelihood function is maximised by dividing the 

number of correct trials over the total number of trials. Although the MLE 

approach has various advantages, it also has some limitations. For example, the 

size of the observed data set has no effect on the estimation process. Furthermore, 

MLE does not take prior knowledge into consideration, relying entirely on the 

observed data set. Therefore, the Bayesian method, which integrated the prior 

knowledge into the estimation process, is introduced [114], [124], [127]. In the 

next subsection the Bayesian estimation method will be explained. 

b. Maximum a Posterior Estimation (MAP): an alternative approach to parameter 

estimation, which injects prior knowledge in the form of prior distribution into the 

estimation process, is MAP. MLE aims to maximise the likelihood function. 
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Likewise, MAP aims to maximise the posterior of Ɵ given the observed data. This 

hypothesis is formalised in equation (3.9) [124], [127].  

 � �
��� =  ������

Ɵ
 �(Ɵǀ�) (3.9) 

Equation number (3.9) can be rewritten using Bayes rule.  

�  �
��� =  argmax

Ɵ
 
p(dǀƟ)p(Ɵ)

p(d)
  where p(d) ≠  ⨍(Ɵ) (3.10) 

� �
��� =  ������

Ɵ
 (��� �(�ǀƟ) + ��� �(Ɵ)) (3.11) 

Hence, the � �
��� function is calculated by summing the likelihood (�(�ǀƟ)) and 

the prior knowledge (�(Ɵ)).  

It is reported that a binominal random variable, X, which has two possible 

outcomes, true and false, with probability Ɵ and 1-Ɵ for true and false status, 

respectively, follows the Bernoulli distribution. Furthermore, the Bernoulli 

distribution is conjugated with the Beta distribution. Hence, it turns out that the 

Beta distribution is the best option for prior knowledge (�(Ɵ)) representation. 

Consequently, calculating �  �
��� by summing the likelihood (p(dǀƟ)), which is a 

Bernoulli distribution, with the prior knowledge (p(Ɵ)) in the form of Beta 

distribution, will result in a posterior that complies with the Beta distribution law 

[124], [127]. 

The probability distribution function (p.d.f) for Beta distribution is defined in 

equation (3.12) (below). 

 �(Ɵ) = � Ɵ��� (1 −  Ɵ)���   (3.12) 

where ⍺ and β are two real positive hyper-parameters and � is a normalising 

constant, which is defined in equation (3.13) (below) [129], [130]. 

 � =
Ґ ( � +  �)

Ґ(�)Ґ(�)
 (3.13) 

The probability distribution function for binomial random variable, X, which 

follows the Bernoulli distribution, is illustrated in equation (3.14) (below). 

 �(�ǀ�, Ɵ) ⍺ Ɵ� (1 −  Ɵ)���  (3.14) 

where n is the total outcomes of which r are in true status [129]. 

The preceding paragraphs have argued that the posterior probability (P(Ɵ|d)) is a 

Beta distribution, which is obtained by summing the Bernoulli distribution for 

likelihood and the Beta distribution of the prior knowledge. Hence, the posterior 

probability could be summarised as Beta distribution with (⍺+r) success trials out 
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of (⍺+β+n) total number of trials. Accordingly, the prior and posterior statistics for 

Beta distribution could be summarised in Table 3-6 (below) [125], [130]. 

Table 3-6 Prior and Posterior Statistics for Beta Distribution with 
R Success in N Trials [125] 

Statistic Prior Posterior 

Law Beta(a,b) Beta(a+r,b+(n-r)) 

Mean 
�

� + �
 

� + �

� + � + �
 

Mode 
� − 1

� + � − 2
 

� + � − 1

� + � + � − 2
 

Variance 
��

(� + �)� + (� + � + 1)
 

(� + �)(� + � − �)

(� + � + �)� + (� + � + � + 1)
 

 

Having discussed the techniques used to lay out the foundations for the proposed model, 

the next section explains in detail the proposed SAHBN model. 

3.7 Semantically Aware Hierarchical Bayesian Network (SAHBN) 

As mentioned in the previous chapter, ontology can play various roles in the DM process 

[50] and facilitate different tasks in the BN construction processes [94]. Hence, this thesis 

investigated the advantages of utilising the GO to construct the Semantically Aware 

Hierarchical Bayesian Network (SAHBN) data classifier.  

GO was used in this research because of its high quality and comprehensive nature in 

biomedical domain [106]. Meanwhile, the structure of the HBN implicitly provides more 

knowledge about the targeted domain [120]. As a result, the integration of these two 

concepts, GO and HBN, generate a classification model which seamlessly reflects the 

domain knowledge.     

The proposed SAHBN model was tested using different case studies and its performance 

quality was compared against existing Bayesian-based classification methods. Although 

SAHBN shares some initial steps with the standard data classification algorithms, the 

essential steps related to structure learning and parameter probability estimation are 

designed in such a way that exploits the semantic nature of the GO. Figure 3-7 (below) 

compares the process sequence of the standard BN classification algorithm and SAHBN 

model.  
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Figure 3-7 SAHBN Process Sequence Versus Standard BN Classification 
Algorithm Process Sequence. 
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It can be seen that the process sequence of the proposed model follows some standard 

preliminary steps, such as data pre-processing and attribute selection. However, the 

selected attributes were further processed based on the semantic knowledge extracted from 

the associated ontology (GO in this research). This can be noticed in the steps surrounded 

by the red dotted line in Figure 3-7. Furthermore, the new steps can be further highlighted 

by comparing them with the standard process sequence, which is surrounded by the blue 

dotted line in the same figure.  

The new steps introduced by SAHBN can be summarized in the following points. 

1. Sub-Super class checking: The first step that follows the attribute selection task is 

to check whether there is a semantic relation between the selected attributes. This 

is done by matching the selected attributes to the GO concepts. The data sets 

covered in this thesis used the GO terms as a prediction attributes. Hence, one-to-

one matching between the selected attributes and the GO concepts was 

implemented. Consequently, the GO structure was exploited to extract the 

semantic relation between these attributes.  

The relation that was targeted in this research is the parent–child class relation (“is-

a”). GO used the “is-a” relation to represents the subtype relation between 

concepts. For example, “Replicative Cell Aging” is a subtype of and less general 

than the “Cell Aging” process as depicted in Figure 3-8 (below). Likewise, the 

intermediate nodes in the HBN structure represent an aggregation of simpler 

nodes. Hence, the “is-a” relation was selected to identify the structure of the HBN. 

Additionally, it also achieves the following objectives.   

a. Maintain data consistency: as explained earlier, the “is-a” relation in the 

GO is subject to the TPR. The TPR states that if a GO term is observed to 

be true, all its super-classes, all the way to the root node, must be true. 

Otherwise, if it is observed to be false, then all its sub-classes, all the way 

to the leaf nodes, must be false. Hence, for any two GO terms connected 

via the “is-a” relation and used as prediction attributes, they must follow 

the TPR. Otherwise, an inconsistent data set can be used to train the 

classification model, which may lead to an inaccurate result. 
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For example, let us assume that there is an “is-a” relation between the first 

and fifth terms in a particular observed record, R1, which consists of n GO 

prediction terms. This example can be symbolised as follows: 

R1 = {GO1, GO2, GO3, GO4, GO5, ……. , GOn, label class} 

where, GO5 “is-a” GO1 and the observed data consists of a sequence of true 

and false values, as follows: 

R1 = {False, True, True, False, True, ……. , False, True} 

It can be seen that the value of GO5 = True, while the value of its parent 

class GO1 = False, which is contradictory to the TPR stated earlier. This is 

an example of inconsistent data, which could mislead the training phase of 

the classifier model. Hence, SAHBN proposed a method to delete one of 

the contradictory terms and eliminate the inconsistency. 

Table 3-7 (below) shows some records from the DNA repair gene–PPI data 

set (discussed in Chapter 4), which highlights the inconsistency in the 

training data. 

Table 3-7 Sample of Inconsistent Training Data Set 

ROW No. GO:0007568 GO:0001302 Label Class 
1 TRUE FALSE TRUE 
2 FALSE FALSE FALSE 
3 FALSE TRUE FALSE 
4 FALSE FALSE FALSE 
5 FALSE FALSE FALSE 
6 FALSE TRUE TRUE 
7 TRUE FALSE TRUE 
8 FALSE TRUE TRUE 
9 FALSE TRUE TRUE 
10 FALSE FALSE FALSE 
11 FALSE FALSE TRUE 
12 FALSE TRUE TRUE 
13 FALSE FALSE FALSE 

According to the GO structure, the GO: 0001302 attribute is a child class of 

the GO: 0007568. While the former refers to the replicative cell ageing, the 

latter refers to the ageing biological process, and there is an indirect “is-a” 

relation between them, as explained in Figure 3-8 (below). Hence, it can be 

seen that records 3, 6, 8, 9 and 12 (highlighted in red) are inconsistent 

because the value of the parent class is false, while the value of its child 

class is true and this violates the TPR. 
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Thus, SAHBN has utilised the concept of chi-squared, which was discussed 

in the third section of this chapter, to break the conflict between the 

contradicted terms. This is done in three steps, as follows: 

1. Identify the GO prediction terms, which are connected via the 

“is-a” relation. 

2. Calculate the chi-squared value between each term and the label 

class.  

3. Delete the GO term that has the lowest dependency with the label 

class. 

 

Figure 3-8 GO Attributes “is-a” Relation 

The ultimate aim of the above steps is to delete one of the contradicted GO 

prediction terms that has the lowest prediction capability to the label class. 

Accordingly, the java program was developed to implement this task. The 

following pseudo-code describes the main steps in this process. 

Read the prediction attributes list 
For each GO term in the prediction attributes list 

FIRST_GO_TERM get the current GO term 
For each GO term in the prediction attributes list except the 
FIRST_GO_TERM 

SECOND_GO_TERM get the current GO term 
If FIRST_GO_TERM “is-a” SECOND_GO_TERM then 

GET the CHI_SQUARED value for the FIRST_GO_TERM 
GET the CHI_SQUARED value for the SECOND_GO_TERM 
If CHI_SQUARED_1st >= CHI_SQUARED_2nd 
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Delete SECOND_GO_TERM 
Else 

Delete FIRST_GO_TERM 
End If 

End IF 
End For  

End For 
  

Figure 3-9 Pseudo Code to Delete Contradicted GO Terms 

b. Reduce the attributes dimension: checking the “is-a” relation between 

the selected attributes not only eliminates the inconsistency in the training 

data but also reduces the dimension of the prediction attributes. High-

dimensional data poses a serious challenge for data mining techniques, 

especially in the medical domain. A clear example of attribute dimension 

reduction in this research can be seen in the second experiment of the 

Homo sapiens protein hub data set presented in Table 6-8 in Appendix A 

(discussed in Chapter 4) when 94 attributes were deleted. 

It is believed that reducing the attributes dimension may affect the 

prediction quality of the classification model. However, in this research we 

argued that implementing dimension reduction based on the semantic 

knowledge extracted from the underpinning ontology does not degrade the 

quality of the classification model. In fact, some results suggested that the 

reduced attribute list obtained better classification accuracy in various 

cases. A detail discussion of the experimental results, along with the 

associated data set, is presented in Chapter 4. 

2. Ontology-based HBN structure learning: the second step, which follows the 

parent–child class checking, is HBN structure learning. The structure learning task 

is implemented based on the reduced attributes list and the structure of the GO. 

The steps involved in this process are summarised in the following points: 

a. Match each attribute in the reduced list generated after parent–child class 

checking step to node in the GO. 

b. Extract the path for each matched node (i.e. attribute node) using the “is-a” 

relation and the GO structure. The path is extracted from the matched node 

all the way to the root node. We began by extracting the parent class of the 

attribute node, and then the extracted parent class was considered as an 
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attribute node and its parent class extracted. This process was repeated until 

the root node was reached.  

c. Combine the extracted paths to form a tree-like hierarchical structure. 

To further illustrate the process of HBN structure learning, let us assume that the 

reduced attributes list consists of five GO terms, as follows: 

Attributes List = {GO1, GO2, GO3, GO4, GO5}. And the parent classes for each 

GO term in the attributes list are listed in Table 3-8 (below).  

Table 3-8 Attribute List with Super-classes 

Attribute Term Super-Classes list 
GO1 {GO6, GO9, GO12, Root} 
GO2 { GO9, GO12, Root} 
GO3 { GO7, GO10, GO12, Root} 
GO4 { GO7, GO10, GO12, Root} 
GO5 { GO8, GO11, GO13, Root} 

Accordingly, the structure of the HBN, which is constructed as a result of 

combining the terms in Table 3-8 (above), is depicted in Figure 3-10 (below).  

 

Figure 3-10 HBN Structure Example 

In order to implement the HBN construction task, the java program was developed. 

The pseudo code presented in Figure 3-11describes the functionality of this 

program. 

Read the prediction attributes list 
For each GO term in the reduced attribute list 

CURRENT_TERM Get the current attribute term. 
Match the CURRENT_TERM to GO node 
CURRENT_TERM_PATH Get the path started fro the matched node to the root node 
ADD the extracted path to the paths list 

End For 
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SAHBN_STRUCTURE Combine all the extracted paths 

Figure 3-11 Pseudo Code for SAHBN Structure Construction Process 

3. Pruning: the step that follows the HBN structure learning process is structure 

pruning. The structure pruning step exploits the transitive nature of the “is-a” 

relationship in the GO. The “is-a” relation is transitive which mean that if A is-a B, 

and B is-a C, we can infer that A is-a C. Hence, it is safe to aggregate terms 

connected by the “is-a” relationship [105]. Error! Reference source not found. 

(below) explains the transitive nature of the “is-a” relation.  

 

          Figure 3-12 The Transitive Nature of the “is-a” Relation [105] 

The aim of this step is to remove redundant nodes that do not affect the principles 

of the HBN structure. As described in the previous sections, there are two main 

basic principles underpinning the structure of the HBN. These principles can be 

summarised in the following points: 

a. Aggregation: each node in the HBN structure represents an aggregation of 

simpler nodes. 

b. Independency: each node in the HBN structure is conditionally 

independent of its non-descendant node given the value of its direct parent. 

Consequently, and in order to prune the created HBN structure without violating 

the above principles, the following steps were followed: 

a. Delete all intermediate nodes that have only one child class.  

b. The child class of the deleted node will be a child class of the deleted node 

parent class.  

To demonstrate the pruning process, the above steps were applied to the structure 

of the HBN depicted in Figure 3-10, which was constructed in the previous step. 

As a result GO6, GO8, GO10, GO11 and GO13 terms, and the associated arcs, 

were deleted. The steps of the pruning process are summarised in Figure 3-13 

(below). 
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Figure 3-13 Pruning Process 

As mentioned on the previous page, the java program was developed to construct 

the HBN structure. Likewise, the java program was used to implement the pruning 

task. The pseudo code presented in Figure 3-14 explains the functionality of the 

pruning java program. 

READ the SAHBN structure 
FOR each node in SAHBN structure 

CURRENT_NODE Get the current node 
If CURRENT_NODE is not root and not terminal node 

IF CURRENT_NODE has one sub-class 
DELETE the CURRENT_NODE and the associated arcs 
CONNECT the super-class of the deleted node to the deleted node sub-class 

END IF 
END IF 

END FOR 

Figure 3-14 Pseudo Code for SAHBN Structure Pruning Process 

4. Generate intermediate nodes: by examining Figure 3-13, it can be seen that three 

intermediate nodes were added to the structure of the HBN, namely, GO7, GO9 

and GO12. Unlike the terminal nodes (i.e. prediction attributes), the values of the 

intermediate nodes are unknown. Thus, this section is devoted to explaining the 

technique followed to assign values to the unobserved intermediate nodes. 

As was pointed out in the previous sections, the subtype relation between GO 

terms was built based on the TPR. Hence, the concept of the TPR was exploited to 

define the values of the intermediate nodes. This was done by implementing the 

following rule. 

“The value of any intermediate node is equal to true if and only if the value of any of its 

child classes is equal to true. Otherwise, its value is equal to false”. 
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Applying the above rules to generate the values of the intermediate nodes leads to 

the creation of a more consistent and accurate data set, which is used to train the 

classification model and can lead to more solid results.  

The task of generating the values of the intermediate nodes was implemented with 

the help of java programming language. The pseudo code presented in Figure 3-15 

explains the actions taken in this task. 

REPEAT_UNTIL the values of all intermediate nodes are generated 
FOR_EACH intermediate node in the SAHBN structure  

CURRENT_INTERMEDIATE_NODE Get the current intermediate node 
GET the current intermediate node sub classes list 

FOR_EACH node in the sub-classes list 
IF the sub-class value is equal to true 

CURRENT_INTERMEDIATE_NODE_VALUE is equal to true 
ELSE 

CURRENT_INTERMEDIATE_NODE_VALUE is equal to false 
END IF 

END FOR 
END FOR 

END REPTEAT 

Figure 3-15 Pseudo Code for SAHBN Intermediate Nodes Value 
Generation Process 

5. Parameters learning: having filled the intermediate nodes with values, we have a 

completed training data set, which can be used to learn the variable probability. 

The MAP method, which was explained in Section 3.6 of this chapter, was used to 

calculate the probability values for each variable in the SAHBN model.  

3.8 Chapter Summary 

In summary, this chapter has argued that the dependency rule that forms the basis of the 

HBN structure states that each node is conditionally independent of its non-descendant 

node, given the value of its direct parent in the graph. Additionally, each node in the HBN 

structure represents an aggregation of simpler nodes. Likewise, the GO structure organises 

its terms in a hierarchical structure using the “is-a” relation, where each GO parent term is 

more general than the child term. Hence, the assumption made in this thesis claims the 

following: 

“Each prediction attribute is represented as a terminal node, which is independent of other 

prediction attributes given the value of its parent class. Furthermore, each intermediate node 

represents an aggregation of its child classes (i.e. subtype), which is independent of its non-
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descendant nodes given its parent. Finally, the label class is placed as the root node. These 

assumptions meet the principles of the HBN model and GO structure”. 

Having discussed how to construct the SAHBN model and the associated techniques, the 

experimental implementation is discussed in detail in the next chapter.  
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Chapter 4 Empirical Implementations and Experimental Results 

4.1 Introduction 

This chapter explains in detail the experimental implementation and the obtained results. It 

discusses the evaluation process, data sets creation, the SAHBN model implementation, 

comparisons with existing algorithms and analysis of the results. Accordingly, to achieve 

these tasks, the following software tools were used. 

a. Weka: data mining software written in Java [131]. 

b. RStudio: open source edition [132]. 

c. Netic-J API from Norsys Software Corp [133]. 

It is worth mentioning that for each tested data set 11 attribute selection methods were 

used. Table 4-1 (below) summarises the combinations of the attribute selection methods 

used.  

Table 4-1 Attribute Selection Methods 

No. Attributes Selection Method 
Evaluation Method Search Method 

1 CfsSubSetEval BestFirst 
2 CfsSubSetEval GreedyStepwise 
3 ConsistencySubsetEval BestFirst 
4 ConsistencySubsetEval GreedyStepwise 
5 FilteredSubsetEval BestFirst 
6 FilteredSubsetEval GreedyStepwise 
7 InfoGainAttributeEval Ranker 
8 GainRatioAttributeEval Ranker 
9 CorrelationAttributeEval Ranker 
10 ReliefFAttAttributeEval Ranker 
11 OneRAttributeEval Ranker 

All in all, the proposed model was tested using eight data sets organised in three case 

studies. In total, 1,093 experiments were implemented. Additionally, six performance 

criteria were calculated to evaluate the performance of the SAHBN model. 

Finally, the results produced by SAHBN were compared with the results generated by the 

standard Bayesian-based classification algorithm, such as ICSS, K2, TAN, Hill-Climbing 

and Tabu Bayesian classifier (hereafter, we refer to them as existing algorithms).  

Having discussed the software tools and structure of the experimental implementation, the 

next section explains the evaluation process and metrics.  
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4.2 Cross-validation 

The ultimate aim of classification models in a real-life application is to predict the class of 

some unknown instances based on their observed attributes. However, in an experimental 

environment, and as stated by the CRISP-DM model, the performance of the developed 

classifier must be measured before it can be deployed [27], [134]. 

It has been reported that the performance of a classification model is measured in order to 

address the following points [135]: 

a. To identify the most suitable model for a given task. 

b. To anticipate the model performance when deployed. 

c. To prove that the developed model meets the objectives for which it has been 

developed. 

The basic principle of the classifier cross-validation process is to test the developed 

classification model using a testing data set that has not been used during the classifier 

training phase. Since the classes of the instances in the testing data set are known in 

advance, the performance of the classifier is determined by counting the frequencies when 

the developed classifier predicts the correct/incorrect instance class. The output of the cross-

validation process is a two-dimensional matrix known as the confusion matrix [134], [135]. 

 

Figure 4-1 Confusion Matrix Structure [134] 

Figure 4-1shows that the confusion matrix contains four values. Each one has captured a 

certain performance aspect. The confusion matrix values were interpreted as follows [135]: 

a. True positive (TP): this is the number of instances that have a positive value in 

the test data set and predicted to have a positive value by the classifier.  

b. True negative (TN): this is the number of instances that have a negative value in 

the test data set and predicted to have a negative value by the classifier.   

c. False positive (FP): this is the number of instances that have a negative value in 

the test data set and predicted to have a positive value by the classifier. 



Page | 83  

 

d. False negative (FN): this is the number of instances that have a positive value in 

the test data set and predicted to have a negative value by the classifier. 

The confusion matrix not only provides detailed information about the predicted results, but 

also forms the basis for calculating other performance measures [135]. The following points 

cover the measures used in this thesis and calculated based on the confusion matrix: 

a. Classification accuracy: this can take values in the range between 0 and 1; higher 

accuracy indicates a better performance. Equation   (4.1) explains the calculation 

process for classification accuracy [135].  

Classification accuracy =
(TP + TN)

(�� + �� + �� + ��)
   (4.1) 

a. Precision: this measures the certainty that a positive instance in the testing data 

has been correctly classified as positive by the developed classifier. It takes values 

in the range between 0 and 1. Higher precision indicates a better performance. 

Equation (4.2) shows the calculation of classifier precision [135].  

Precision =
TP

( �� + �� )
 (4.2) 

b. Recall: this measures the certainty that all positive instances in the testing data set 

have been found by the proposed model. It takes values in the range between 0 and 

1. A higher recall value indicates a better classification performance. 

EquationError! Reference source not found. shows the calculation of recall 

[135]. 

������ =
��

( �� + ��)
 (4.3) 

c. F1 Measure: this represents the combination of precision and recall into one 

measure, which is a simpler alternative to the misclassification rate. 

EquationError! Reference source not found. defines the F1 measure calculation 

[135]. 

F1 measure = 2 ⨉
(��������� ⨉ ������)

( ��������� + ������)
 (4.4) 

d. Average class accuracy: the classification accuracy defined in equationError! 

Reference source not found. (above) can misjudge the classifier performance if 

the tested data set is imbalanced. Hence, the average accuracy was used to 

overcome this issue. Average accuracy is defined in equationError! Reference 

source not found. (below) [135].  
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������� ����� �������� =
1

|������(�)|
� recall�

 

� ∈������(�)

 (4.5) 

Where ������(�) refers to the set of levels the targeted feature t can take; 

|������(�)| is the set of levels size and recall� is the recall value obtained by the 

model for level l.  

e. Average class accuracy (harmonic mean): the average accuracy defined in 

equation (4.5) (above) used the arithmetic mean. However, other research prefers 

to use the harmonic mean, which highlights the effect of smaller values and 

produces a more realistic measure of how a model is performing. EquationError! 

Reference source not found. (below) defines how the harmonic mean accuracy is 

measured.    

Average class accuracy HM = 
�

�

|������(�)|
�

�

�������

 

� ∈������(�)

 
(4.6) 

Although various approaches are available to create the test data set, recent research 

indicates that the 10-fold cross-validation approach has been widely used [134]. In this 

approach the available data was divided into 10 equal-sized partitions, and then in each run 

1 partition was used as test data, while the other 9 partitions were used as training data. This 

process was repeated 10 times until all partitions had been used as testing data. The overall 

prediction model performance represents the aggregation of the model performance in each 

run. Figure 4-2 (below) explains the k-folds process in the form of pseudo code [134], 

[135]. 

 

Figure 4-2 K-fold Cross-validation Process [134] 

Having discussed the performance measures taken to compare the proposed SAHBN 

model with the existing Bayesian-based classification algorithms, the next section explains 

the data sets created in the human ageing case studies.  
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4.3 Human Ageing Case Studies 

Human ageing has been defined as the gradual failure of the physiological functions of 

various cells, tissues and organs in the human body, which ultimately leads to the fragility 

of body functionalities within time and increases the probability of death [136]–[138]. 

Recent research suggested that advances in the health-care sector in developed countries 

have led to a substantial increase in the human lifespan. In fact, some research has 

reported that almost 20% of the world’s population will be aged 60 or older by 2050. 

Furthermore, some statistics show that the human lifespan has increased by almost three 

months per year since 1840. For example, the expected lifetime of Japanese women is 85 

years, which is the highest in developed countries. Additionally, the number of elderly 

people in the US population rose from 3,700 in 1940 to approximately 61,000 in 2006. 

Accordingly, the boost in the percentage of centenarians in different country’s populations 

has resulted in many challenges. These challenges can be summarised in the following 

points:  

a. An increase in diseases such as heart failure, cancer, diabetes and Alzheimer’s.  

b. An increase in health-care costs. 

c. A shortage of caregivers. 

d. Dependency. 

e. A large impact on society. 

Hence, the task of understanding the human ageing process has been the focus of many 

researchers in various developed countries. The ultimate aim of those researchers has been 

to develop new techniques to prevent or delay diseases associated with the ageing process, 

or even to treat them in more successful and rational ways[136]–[139]. 

Recent research has revealed some interesting findings about the human ageing process. 

However, it is a widely held view that human ageing is an extremely complex, mysterious, 

controversial and puzzling process, which requires further investigation. Studying the 

human ageing process has presented some challenges, such as ethical factors associated 

with doing experiments on human data. Additionally, a long timescale is required to 

implement experiments on humans. Finally, there are comprehensive elements that must 

be taken into account when analysing the ageing process. Thus, research has alternatively 

used the gene/protein data of short living organism models to implement experiments. 

Consequently, data mining techniques were recently applied to analysing the large amount 
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of openly available gene/protein databases and to gain some insights into the human 

ageing process[140]–[143]. Likewise, the SAHBN model proposed in this thesis was 

applied to two case studies, which predicted the gene effect in the human ageing process. 

The data sets used in these case studies and the obtained results are discussed in detail in 

the next subsections. 

4.3.1 DNA Repair Genes Case Study 

The human genome preserves its integrity by protecting the cellular DNA from both 

internal and external attacks. While external attacks can be caused by exposure to 

ultraviolet (UV) light from the sun, inhaled cigarette smoke or incompletely defined 

dietary factors, internal attacks caused by mutagens elements implicitly appeared in 

the cells such as water, reactive oxygen species and metabolites that can act as 

alkylating agents. Thus, cellular DNA is steadily monitored by the repair enzymes to 

correct the damage resulting from these attacks. Accordingly, it has been reported that 

modification of the DNA repair process will result in an advanced understanding of 

the cellular ageing process [144]. Additionally, it has been agreed that DNA damage is 

an essential element in the ageing process [142]. Hence, the SAHBN model proposed 

in this thesis was applied to the DNA repair gene databases to classify their effects as 

either ageing-related or non-ageing-related genes. 

4.3.1.1 Data Set Characteristics and Pre-processing 

The data sets used in this case study were created using two different approaches. 

In the first one the protein–protein interactions (PPI) database was used to 

represent each DNA repair gene in the form of its gene ontology biological process 

(GO BP) terms. Meanwhile, the second approach directly converted each DNA 

repair gene into its GO BP terms using the Gene2GO database, as clarified in 

Figure 4-3 (below).  
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Figure 4-3 DNA Repair Gene Case Study Data Set Creation Process 

The following steps explain the data set creation process for the PPI and Gene2GO 

approaches. 

 DNA repair gene – PPI data set creation approach: 

I. Download the DNA repair gene database from the human DNA repair 

gene website [145]. 

II. The downloaded DNA repair genes were classified into two categories: 

ageing-related and non-ageing-related. The DNA repair genes 

appearing in the GenAge [146] database were classified as ageing-

related, while the other DNA repair genes that did not appear in the 

GenAge database were classified as non-ageing-related. 



Page | 88  

 

III. The protein–protein interaction was extracted from the human protein 

reference database [147]. The extracted protein interactions meet the 

following criteria: 

 At least one of the interacted proteins is located in a DNA repair 

gene. 

 The type of evidence for the interactions is either in vitro or in 

vivo experiments. 

IV. The extracted protein pair was represented in the form of GO BP terms 

using the database available at the UniProt [148] website. 

V. Finally, each DNA repair gene is represented by a set of GO BP terms 

associated with the proteins that represent the gene. The value of the 

GO BP term is equal to 1 if it appeared in the protein associated with 

the gene; otherwise, it is equal to 0. 

Eventually, the created data set consisted of 178 records, each representing a DNA 

repair gene, and 3,163 GP BP terms, which represent the prediction attributes. 

 DNA repair gene–Gene2GO data set creation approach:  

The first and second steps of the DNA repair gene–Gene2GO approach are 

similar to the corresponding steps in the DNA repair gene–PPI approach. 

Hence, this approach is explained starting from the third step. 

III. Represent each DNA repair gene for its GO BP terms using the 

national Center for Biotechnology Information (NCBI) Gene2GO 

database [149].  

IV. Remove GO terms that have low frequency and possess no or very low 

prediction power. [142] used a predefined frequency threshold to 

remove low-frequency terms. In a slightly different manner, this 

research used the chi-squared to measure the dependency between each 

attribute and the label class and then remove those attributes that 

appeared to be independent from the label class. Two critical values 

were used in the chi-squared test, namely, 2.706 and 3.841. 

V. Finally, each DNA repair gene is represented by a set of GO BP terms. 

The value of the GO terms is equal to 1 if it is associated with the given 

gene; otherwise, it is equal to 0. 

Eventually, two data sets were created, one for each chi-squared critical value. 

The characteristics of these data sets are summarised in Table 4-2 (below): 
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Table 4-2 Repair Gene–Gene2GO Data Set Characteristics 

Chi-Squared 
Critical Value 

Number of 
Records 

Initial Attributes 
Number  

Chi-Squared Reduced 
Attr. Number 

2.706 177 735 335 
3.841 177 735 89 

In summary, three data sets were created for the DNA repair gene case study. 

The DNA repair gene–PPI data set used the protein–protein interactions 

database, while the DNA repair gene–Gene2GO data sets relied on the 

Gene2GO database. Consequently, the SAHBN model was applied to these 

data sets and the results compared against the existing classification 

algorithms. The next subsection explains the results obtained in detail.  

4.3.1.2 Experimental Results 

As discussed in the previous subsection, the data sets tested in the DNA repair gene 

case study were pre-processed in two different ways and produced three data sets. One 

data set was created based on the DNA repair gene-PPI approach, and two data sets 

were created based on the DNA repair gene–Gene2OG approach, using different chi-

squared critical values. Hereafter, the results obtained from applying the SAHBN 

model to these data sets are presented in detail. Additionally, the obtained results were 

compared with different existing classification algorithms. 

 DNA repair gene–PPI data set results discussion 

Table 6-1 in Appendix A presents the results obtained from the DNA repair gene–PPI 

data set. It shows that the SAHBN model produced a very competitive classification 

quality compared to the existing algorithms. For example, in the first and second 

experiments the classification accuracy of SAHBN was either as good as, or 

outperformed, the existing algorithms.  Likewise, the average and harmonic accuracies 

of the existing algorithms did not exceed the SAHBN model. Another good example is 

the fourth experiment, when all the six performance criteria (i.e. precision recall, F1 

measure, accuracy, average accuracy and harmonic accuracy) of the SAHBN model 

outperformed the existing algorithms, with the exception of one test, when the recall 

of the K2 algorithm was equal to the recall of the proposed model. 

To further illustrate the results obtained from the DNA repair gene–PPI data set, the 

frequency of experiments when the SAHBN model outperformed, was equal to or less 
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than the existing algorithms for all six performance criteria is summarised in Table 4-3 

(below). 

Table 4-3 DNA Repair Gene–PPI Data Set Results Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 13 23 18 15 24 27 120 
Equal to 6 9 5 10 5 2 37 
Less than 14 1 10 8 4 4 41 
Total 33 33 33 33 33 33  

Table 4-3 (above) shows that the total number of tests when the SAHBN model 

outperformed the existing algorithms is almost triple the number of tests when the 

SAHBN model was exceeded by the existing algorithms. Additionally, it shows that 

harmonic accuracy has the highest number of experiments when the proposed model 

outperformed the existing algorithms. This can be further explained in Figure 4-4 

(below). 

 

Figure 4-4 DNA Repair Gene–PPI Data Set Results Summary 

Having discussed the overall results obtained from the DNA repair gene–PPI data set, 

hereafter the result of each experiment will be discussed individually. The result of 

each experiment will be briefly explained and then represented in the form of a graph.   

 Experiment 1  

The first experiment used the (CfsSubSetEval+BestFirst) attributes selection method. 

Accordingly, the results of the first experiment show that the SAHBN model 

outperformed the ICSS algorithm in all performance criteria. Additionally, it exceeded 

the K2 and TAN algorithms in terms of recall, average and harmonic accuracies. 

However, for other performance criteria, it was either as good as, or outperformed by, 

the K2 and TAN algorithms. Figure 4-5 (below) depicts the results obtained. 
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 Experiment 2   

The second experiment used the (CfsSubSetEval + GreedyStepwise) attributes 

selection method. Accordingly, the results of the second experiment indicate that the 

SAHBN model outperformed the ICSS and TAN algorithms in terms of all 

performance criteria. However, it was as good as the K2 algorithm. Figure 4-6 (below) 

describes the obtained results. 

 

Figure 4-6 DNA Repair Gene–PPI Data Set Second Experiment Results 

 Experiment 3  

The third experiment used the (ConsistencySubsetEval+BestFirst) attributes selection 

method. Accordingly, the results of the third experiment show that the SAHBN model 

outperformed the existing algorithms in terms of average and harmonic accuracies. 

Additionally, it was as good as the existing algorithms in terms of recall. However, 

SAHBN was outperformed by the existing algorithms in terms of precision, F1 

measure and accuracy. Figure 4-7 (below) explains the obtained results. 
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Figure 4-5 DNA Repair Gene–PPI Data Set First Experiment 
Results 
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Figure 4-7 DNA Repair Gene–PPI Data Set Third Experiment Results 

 Experiment 4  

The fourth experiment used the (ConsistencySubsetEval + GreedyStepwise) attributes 

selection method. Accordingly, the results of the fourth experiment reveal that the 

SAHBN model outperformed all the existing algorithms in all performance criteria, 

except for the recall value of the K2 algorithm, which was equal to the recall value of 

the SAHBN model. Figure 4-8 (below) depicts the results obtained.  

 

Figure 4-8 DNA Repair Gene–PPI Data Set Fourth Experiment Results 

 Experiment 5   

The fifth experiment used (FilteredSubsetEval+BestFirst) attributes selection methods. 

Accordingly, the results of the fifth experiment indicate that the SAHBN model 

outperformed the ICSS algorithm in all performance criteria. Additionally, the recall, 

average and harmonic accuracy values of the TAN algorithm were slightly lower than 

the corresponding values of the SAHBN model. However, the K2 algorithm was 

marginally better in terms of precision. Figure 4-9 (below) depicts the results 

obtained. 
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Figure 4-9 DNA Repair Gene–PPI Data Set Fifth Experiment Results 

 Experiment 6  

The sixth experiment used (FilteredSubsetEval + GreedyStepwise) attribute selection 

methods. Accordingly, the results from the sixth experiment reveal that the SAHBN 

model outperformed the ICSS and TAN algorithms in all performance criteria. 

However, the K2 algorithm was almost as good as the SAHBN model. Figure 4-10 

(below) depicts the results obtained. 

 

Figure 4-10 DNA Repair Gene–PPI Data Set Sixth Experiment Results 

 Experiment 7  

The seventh experiment used (InfoGainAttributeEval+Ranker) attribute selection 

method. Accordingly, the results of the seventh experiment show that the SAHBN 

model significantly exceeded the ICSS algorithm in all performance criteria. However, 

it was slightly outperformed by the K2 and TAN algorithms. Figure 4-11 (below) 

depicts the results obtained. 
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Figure 4-11 DNA Repair Gene–PPI Data Set Seventh Experiment Results 

 Experiment 8  

The eighth experiment used (GainRatioAttributeEval+Ranker) attribute selection 

methods. Accordingly, the results of the eighth experiment indicate that the SAHBN 

model was either as good as, or slightly better than, the existing algorithms in terms of 

precision and accuracy. Additionally, it outperformed the K2 and TAN algorithms in 

terms of recall, F1 measure, average and harmonic accuracies. However, SAHBN was 

exceeded by the ICSS algorithm for the same performance criteria. Figure 4-12 

(below) depicts the results obtained. 

 

Figure 4-12 DNA Repair Gene–PPI Data Set Eighth Experiment Results 

 Experiment 9  

The ninth experiment used (CorrelationAttributeEval + Ranker) attribute selection 

methods. Accordingly, the results of the ninth experiment show that the SAHBN 

model outperformed the ICSS algorithm in all performance criteria. Additionally, it 

exceeded the performance of the TAN algorithm in terms of recall and harmonic 

accuracy. However, the performance of the K2 algorithm was slightly better than the 

SAHBN model. Figure 4-13 (below) depicts the results obtained. 
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Figure 4-13 DNA Repair Gene–PPI Data Set Ninth Experiment Results 

 Experiment 10  

The tenth experiment used (ReliefFAttributeEval + Ranker) attribute selection 

methods. Accordingly, the results of the tenth experiment show that the SAHBN 

model outperformed the ICSS and K2 algorithms in terms of recall, F1 measure, 

average and harmonic accuracies. However, it was exceeded by the TAN algorithm in 

all performance criteria. Figure 4-14 (below) depicts the results obtained. 

 

Figure 4-14 DNA Repair Gene–PPI Data Set Tenth Experiment Results 

 Experiment 11  

The eleventh experiment used (OneRAttributeEval + Ranker) attribute selection 

methods. Accordingly, the results of the eleventh experiment show that the SAHBN 

model outperformed the ICSS and K2 algorithms in terms of all performance criteria. 

Additionally, it exceeded the TAN algorithm in terms of recall, F1 measure, average 

and harmonic accuracies. Figure 4-15 (below) depicts the results obtained. 
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Figure 4-15 First DNA Repair Gene–PPI Data Set Eleventh Experiment 
Results 

Having discussed the results obtained from the DNA repair gene–PPI data set, the next 

subsection of this chapter will explain the results of the DNA repair gene–Gene2GO 

data sets. 

 DNA repair gene–Gene2GO (critical value = 2.706) data set  

Table 6-2 in Appendix A presents the results obtained from applying the SAHBN 

model to the DNA repair gene–Gene2GO (critical value = 2.706) data set and 

compares it with the Hill-Climbing and Tabu Bayesian classification algorithms. It can 

be seen that six scoring methods were used for each algorithm, namely, loglik, bde, 

mbde, aic, bic and K2. Additionally, the process was repeated 11 times using different 

combinations of attribute selection method. Thus, the total number of experiments 

implemented for this data set is 132 experiments.  

Accordingly, the implemented tests were summarised in terms of the number of 

experiments when the SAHBN model outperformed, was equal to or less than the 

existing methods. This was done for all performance criteria, and the results are 

explained in Table 4-4 (below). 

Table 4-4 DNA Repair Gene–Gene2GO (CV = 2.706) Data Set Result Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 62 74 72 67 70 74 419 
Equal to 21 10 11 22 10 10 84 
Less than 49 48 49 43 52 48 289 
Total 132 132 132 132 132 132  

Table 4-4 (above) reveals that the SAHBN model outperformed the existing 

algorithms in all performance criteria. For instance, SAHBN exceeded the existing 

algorithms in 74 experiments out of 132 experiments with respect to recall and 
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harmonic accuracy. Additionally, the number of experiments when SAHBN exceeded 

the existing algorithms in terms of F1 measure and average accuracy was 72 and 70 

respectively. Overall, SAHBN surpassed the existing algorithms in more than 50% of 

the total number of tests for all performance criteria except for precision. This can be 

seen clearly in Figure 4-16 (below). 

Figure 4-16 DNA Repair Gene–Gene2GO (CV = 2.706) Data Set Result 
Summary 

Although the SAHBN model outperformed the existing algorithms in 419 

experiments, its overall performance declined compared to the results obtained from 

the DNA repair gene–PPI data set. It seems possible that this decline is due to the chi-

squared critical value used to remove attributes with low prediction power. 

Consequently, the same process was repeated using a higher critical value, and the 

results are presented in the next subsection.   

 DNA repair gene–Gene2GO (critical value = 3.841) data set  

As mentioned in the previous subsection, the performance of the SAHBN model 

declined slightly in the DNA repair gene–Gene2GO (CV = 2.706) data set compared 

to its performance when it was applied to the DNA repair gene–PPI data set. Hence, a 

higher critical value was used to preserve only those attributes with a higher 

dependency on the label class. Accordingly, the results are presented in Table 6-3 in 

appendix A.  

The DNA repair gene–Gene2GO (CV = 2.706) data set was tested using the SAHBN 

model, Hill-Climbing and Tabu Bayesian classification algorithms. Likewise, the 

DNA repair gene–Gene2GO (critical value = 3.841) data set used the same algorithms, 

with the same scoring and attribute selection methods. Accordingly, 132 experiments 

were performed and summarised in terms of the number of times the SAHBN model 
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was outperformed, equal to or less than the existing algorithms, as explained in Table 

4-5 (below). 

Table 4-5 DNA Repair Gene–Gene2GO (CV = 3.841) Data Set Result Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 62 75 81 71 78 73 440 
Equal to 14 7 5 24 11 6 67 
Less than 56 50 46 37 43 53 285 
Total 132 132 132 132 132 132  

The results presented in Table 4-5 indicate that the SAHBN model outperformed the 

existing algorithms in all performance criteria. For example, the number of 

experiments when SAHBN outperformed the existing algorithms in terms of F1 

measure was 81 out of 132 experiments. Additionally, SAHBN exceeded the existing 

algorithms with respect to harmonic accuracy and average accuracies in 71, 73 and 78 

experiments respectively. Overall, SAHBN outperformed the existing algorithms in 

440 tests out of 792 tests. Compared to the results of the DNA repair gene–Gene2GO 

(CV = 2.706) data set, the total number of tests when the SAHBN model outperformed 

the existing algorithms increased slightly. Hence, it could be claimed that using a 

higher critical value in the chi-squared test led to better results. Figure 4-17 (below) 

clarifies the summary of the third data set results, as presented in Table 4-5.  

 

Figure 4-17 DNA Repair Gene–Gene2GO (CV = 3.841) Data Set Results 
Summary 

In summary, in the first case study, the SAHBN model was tested using three data 

sets. While the first data set was created based on the protein–protein interaction 

database, the second and third data sets used the Gene2GO annotation database. The 

testing process was designed to include five classification algorithms, six scoring 

approaches and eleven combinations of attribute selection methods. In total 330 
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experiments were implemented and six performance criteria (i.e. precision, recall, F1 

measure, accuracy, average accuracy and harmonic accuracy) were measured.  

The analysis of these tests indicates that the proposed SAHBN model did better in the 

first database than the second and third data sets. Additionally, SAHBN demonstrated 

a very competitive performance compared to the existing classification algorithms. 

In the next section the experimental results of the second case study are discussed in 

detail.  

4.3.2 Model Organisms Case Study 

As discussed in the previous pages, studying the human ageing process has faced 

many challenges. A long time frame and ethical difficulties are good examples of 

these challenges. Hence, researchers have used various model organisms to study the 

ageing process [137], [140]. Likewise, the classification SAHBN model proposed in 

this thesis was applied to the data of two model organisms and the obtained results 

compared with the existing classification algorithms. The data pre-processing and the 

experimental results are explained in the following subsections. 

4.3.2.1 Data Set Characteristics and Pre-processing 

In order to create the data sets used in this case study, the HAGR gene age [146] and 

the Gene2GO [149] databases were used. Accordingly, the actions involved in the data 

set creation process is summarised in Figure 4-18 (below).  
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Figure 4-18 Model Organisms’ Case Study Data Set Creation Process 

The data set creation process is explained further in the following steps: 

I. Download the HAGR gene age database for the following model organisms: 1) 

Caenorhabditis elegans (C.elegans); 2) Drosophila melanogaster. 

II. Match each entry in the downloaded HAGR gene age database to a gene in the 

Gene2GO database and then extract the associated GO BP terms. 

III. Remove GO terms that have low frequency and possess no or very low 

prediction power. [143] used a predefined threshold range from 4 to 10. In a 

slightly different way, this research used the chi-squared test to measure the 

dependency between each attribute and the label class and then to remove 

those attributes that appeared to be independent from the label class. Two 

critical values were used in the chi-squared test, namely, 2.706 and 3.841.   
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IV. Finally, each entry in the HAGR database is represented by a set of BP GO 

terms associated with its gene. The value of the GO terms is equal to 1 if it is 

associated with the given gene; otherwise it is equal to 0. 

Eventually, two data sets were created for each model organism (one data set for each 

critical value). The characteristics of these data sets are summarised in Table 4-6  

(below), 

Table 4-6 Model Organisms’ Case Study Data Set Characteristics 

No. Organism Model 
Chi-Squared 

Critical Value 
Number of 

Records 

Initial 
Attributes 
Number 

Chi-
Squared 
Reduced 

Attr. 
Number 

1 
C. elegans 

2.706 500 1012 65 
2 3.841 500 1012 36 
3 Drosophila 

melanogaster 
2.706 115 860 44 

4 3.841 115 860 15 

4.3.2.2 Experimental Results 

As described on the previous page, two data sets were created for each model 

organism using two critical values in the chi-squared test. Consequently, four data sets 

were created for two model organisms, namely, C.elegans and Drosophila 

melanogaster. The experimental results obtained from applying the SAHBN model to 

these data sets are explained in the following subsections.  

 C.elegans–Gene2GO (CV = 2.706) data set  

Table 6-4 in Appendix A presents the results obtained from applying the SAHBN 

model, Hill-Climbing and Tabu Bayesian algorithms to the first data set listed in Table 

4-6 (above). Similarly to the previous case study, eleven attribute selection and six 

scoring methods were used. Additionally, the initial attributes list was reduced using 

the chi-squared test, with critical value equal to 2.706 to remove those attributes with 

low prediction power. Consequently, 124 experiments were implemented on the 

C.elegans–Gene2GO (CV = 2.706) data set, and the overall results were summarised 

in terms of when the SAHBN model outperformed, was equal to or less than the 

existing algorithms. Table 4-7 (below) summarises the results obtained. 

Table 4-7 C.elegans–Gene2GO (CV = 2.706) Data Set Results Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 94 33 38 92 92 112 461 
Equal to 0 3 3 4 6 2 18 
Less than 30 88 83 28 26 10 265 
Total 124 124 124 124 124 124  
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It can be seen that the overall number of experiments show that the SAHBN model 

significantly outperformed the existing algorithms in terms of precision, accuracy, 

average accuracy and harmonic accuracy. However, it was exceeded by the existing 

algorithms with respect to the recall and F1 measure. For example, out of 124 

experiments the SAHBN model outperformed the existing algorithms in 112 

experiments in terms of harmonic accuracy. Likewise, the number of experiments 

when the accuracy of the SAHBN model was higher than the existing algorithms is 

92. This can be seen clearly in Figure 4-19 (below). 

 

Figure 4-19 C.elegans–Gene2GO (CV = 2.706) Data Set Results Summary 

Table 4-7 reveals that the SAHBN model generated good results compared to the existing 

algorithms. In the next subsection the experimental results of the C.elegans–Gene2GO 

(CV = 3.841) data set will be discussed in detail.  

 C.elegans–Gene2GO (CV = 3.841) data set  

In contrast to the C.elegans–Gene2GO (CV = 2.607) data set pre-processing procedure, 

the C.elegans–Gene2GO (CV = 3.841) data set attributes list was reduced using the chi-

squared test with higher critical value (CV = 3.841), which attempts to preserve only those 

attributes that have higher dependency with the label class. Accordingly, the created data 

set was tested using the same combinations of attribute selection methods, Bayesian 

classification algorithms and scoring methods used to test the C.elegans–Gene (CV = 

2.607) data set. Consequently, the results obtained are explained in Table 6-5 in Appendix 

A.  

The results presented in Table 6-5 in Appendix A show that the SAHBN model 

outperformed the existing algorithms in many experiments. For instance, SAHBN model 

accuracy, average and harmonic accuracy values for the first, second, sixth, seventh, ninth 
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and tenth attribute selection methods were higher than their corresponding values for all 

the existing algorithms. Thus, and in order to further illustrate the obtained results, Table 

6-5 was summarised to reflect the number of experiments when the SAHBN model 

outperformed, was equal to or less than the existing algorithm. Table 4-8 (below) 

summarises the C.elegans–Gene2GO (CV = 3.841) data set results.  

Table 4-8 C.elegans–Gene2GO (CV = 3.841) Data Set Results Summary 
Proposed 

Model 
Precision Recall 

F1 
Measure 

Accuracy 
Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 102 37 54 111 119 120 543 
Equal to 0 3 0 6 3 0 12 
Less than 30 92 78 15 10 12 237 
Total 132 132 132 132 132 132  

The results summary of the C.elegans–Gene2GO (CV = 3.841) data set presented in Table 

4-8 (above) confirms the findings of the C.elegans–Gene2GO (CV = 2.706) data set. It 

shows that the SAHBN model did much better in terms of precision, recall, accuracy, 

average and harmonic accuracies compared to the existing algorithms. However, it was 

beaten by the existing algorithms with respect to recall and F1 measure. Additionally, 

using higher critical values in the chi-squared test led to better overall quality. This can be 

seen in the total number of tests when the SAHBN model outperformed the existing 

algorithms. While the total number of tests when SAHBN outperformed the existing 

algorithms in the C.elegans–Gene2GO (CV = 2.706) data set was 461 tests, it increased to 

543 tests in the C.elegans–Gene2GO (CV = 3.841) data set.  

The findings summary of the C.elegans–Gene2GO (CV = 3.841) data set presented in 

Table 4-8 is depicted in Figure 4-20 (below). 
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Figure 4-20 C.elegans–Gene2GO (CV = 3.841) Data Set Results Summary 

Thus far, the data sets related to the C.elegans organism model have been discussed; the 

next subsections will explain the Drosophila melanogaster organism model and discuss the 

third and fourth data sets listed in Table 4-6 (above).  

 D.melanogaster–Gene2GO (CV = 2.706) data set  

Similar to the C.elegans–Gene2GO (CV = 2.706) and C.elegans–Gene2GO (CV = 3.841) 

data sets of this case study, the D.melanogaster–Gene2GO (CV = 2.706) data set was 

tested using eleven attribute selection methods and then the performance of the SAHBN 

model was compared with two Bayesian-based classification algorithms using six scoring 

approaches in each. Accordingly, the results are presented in Table 6-6 in appendix A. 

Table 6-6 indicates that the SAHBN model demonstrated a good performance quality 

compared to the existing algorithms. For instance, the SAHBN model outperformed the 

existing algorithms in terms of accuracy, average and harmonic accuracies in the third, 

ninth and eleventh attribute selection methods. The results presented in Table 6-6 were 

further summarised in terms of when the SAHBN model outperformed, was equal to or 

less than the existing algorithms. The results summary is presented in Table 4-9 (below).  

Table 4-9 D.melanogaster–Gene2GO Data Set Results Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 50 104 102 96 94 122 568 
Equal to 3 2 2 17 14 0 38 
Less than 79 26 28 19 24 10 186 
Total 132 132 132 132 132 132  

Table 4-9 shows that the number of experiments when the SAHBN model outperformed 

the existing algorithms was significantly higher in terms of recall, F1 measure, accuracy, 

average and harmonic accuracies. However, the existing algorithm outperformed the 
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proposed SAHBN model with respect to precision. This can be seen clearly in Figure 4-21 

below. 

 
Figure 4-21 D.melanogaster–Gene2GO (CV = 2.706) Data Set Results Summary 

 
As described in Table 4-6 on page 101, four data sets were created in the organism model 

case study. Thus, in the next subsection the results of the fourth data set will be discussed.  

 D.melanogaster–Gene2GO (CV = 3.841) data set  

Unlike the D.melanogaster–Gene2GO (CV = 2.706) data set, the attribute list of the 

D.melanogaster–Gene2GO (CV = 3.841) data set was reduced using a higher critical value 

in the chi-squared test, namely, 3.841. However, the numbers of algorithms, scoring and 

attribute selection methods were similar to the D.melanogaster–Gene2GO (CV = 2.706) 

data set. Accordingly, the obtained results are presented in Table 6-7 in appendix A.  

The results presented in Table 6-7 show that the SAHBN model outperformed the existing 

algorithms in various experiments. For instance, the values of accuracy, average and 

harmonic accuracies for the third and fourth attribute selection methods of the SAHBN 

model were higher than the corresponding values of the existing algorithms. Similar to 

other data sets, the results presented in Table 6-7 were further explained in terms of when 

the SAHBN model outperformed, was equal to or less than the existing algorithms. 

Accordingly, the results summary is described in Table 4-10 (below). 

Table 4-10 D.melanogaster–Gene2GO Data Set Results Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 105 37 85 110 98 105 540 
Equal to 12 30 8 7 17 4 78 
Less than 15 65 39 15 17 23 174 
Total 132 132 132 132 132 132  
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Table 4-10 (above) indicates that the SAHBN model outperformed the existing algorithms 

in terms of precision, F1 measure, accuracy, average and harmonic accuracy. However, it 

was exceeded by the existing algorithms with regard to recall. This can be seen clearly in 

Figure 4-22 (below).  

 

Figure 4-22 D.melanogaster–Gene2GO Data Set Results Summary 

So far, this chapter has analysed the results obtained from the first and second case studies 

and has argued that the proposed model demonstrated a very competitive performance 

compared to the existing algorithms. The last part of this chapter is devoted to discussing 

in detail the results obtained from the third case study.      

4.4 Protein Hub Case Study 

Hub proteins have been defined as proteins with special topological and functional 

significance. There is some evidence to suggest that hub proteins are engaged in a large 

number of protein interactions. Additionally, they play an essential role in the organisation 

and function of cellular protein interaction networks (PINs). Hence, the identification of 

hub proteins will help in the understanding of cellular functions, identifying novel drug 

targets and the rational design of large-scale pull-down experiments. Therefore, it is 

important to identify hub proteins not only via experimental data but also using 

bioinformatics prediction techniques [150], [151]. Thus, the SAHBN classification model 

proposed in this thesis was applied to the protein data set of the Homo sapiens species. 

4.4.1 Homo Sapiens Protein Hub Data Set  

The term Homo sapiens has been used as a scientific name to refer to the human 

species. While Homo is the human genus, which includes Neanderthals and other 

species similar to humans, Homo sapiens is considered to be the only surviving 
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species of the genus Homo [152]. The following subsection gives a brief outline of the 

steps involved in the process of Homo sapiens protein hub data set creation. 

4.4.1.1 Data Set Characteristics and Pre-processing 

The IntAct [153] and the protein Uniprot [154] GO annotation databases were 

used to create the Homo sapiens protein data set. The data set creation process 

followed the following steps: 

I. Download the protein–protein interaction database from the IntAct database 

for the Homo sapiens species. 

II. Extract the UniPort Code for the first interacted protein.  

III. Count the number of interactions for each protein. 

IV. [150] used the position of the sharp turn in the accumulative protein interaction 

distribution plot to define hub/non-hub proteins. Likewise, this thesis used the 

same approach to classify the downloaded protein database into either hub or 

non-hub proteins. 

V. Each protein is represented in the form of GO BP terms based on the 

annotation data provided by the UniPort database. 

VI. Finally, each protein is represented by a set of GO BP terms. The value of the 

GO BP term is equal to 1 if it is associated with the given gene; otherwise, it is 

equal to 0. 

Eventually, the created data set consisted of 500 records, each representing a 

protein, and 6,455 GO BP terms, which represent the prediction attributes.  

4.4.1.2 Experimental Results 

So far, the empirical implementations have only used the score-based Bayesian-

based classification algorithms provided by RStudio. However, according to [155], 

RStudio provides other types of Bayesian-based classification algorithms, namely, 

constraint-based algorithms. Hence, this case study used four constraint-based and 

two score-based algorithms.  Additionally, three scoring and five constraint 

methods were used with the score-based and constraint-based algorithms 

respectively. In total, the proposed model was compared against 26 different 

combinations of score- and constraint-based algorithms for each attribute selection 

method. Finally, similar to other case studies, 11 attribute selection methods were 

used. Accordingly, the obtained results are presented in Table 6-8 in Appendix A. 
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The results presented in Table 6-8 reveal that the SAHBN model significantly 

outperformed the constraint-based algorithms. Additionally, it exceeded some of 

the score-based algorithms in various tests. For example, the SAHBN model 

outperformed all other existing algorithms (score-based and constraint-based) in 

terms of recall, F1 measure, accuracy, average and harmonic accuracy in the 

fourth, fifth and sixth attribute selection methods. The results presented in Table 

6-8 were further illustrated in terms of when the SAHBN model outperformed, 

was equal to or less than the existing algorithms. Accordingly, the summarised 

results are presented in Table 4-11 (below).  

Table 4-11 Homo Sapiens Protein Hub Data Set Result Summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 167 274 272 270 270 272 1525 
Equal to 5 0 2 2 2 1 12 
Less than 104 2 2 4 4 3 119 
Total 276 276 276 276 276 276  

Table 4-11 (above) shows that the SAHBN model outperformed the existing 

algorithms in all quality measures. For instance, out of 276 experiments the 

proposed model exceeded the existing algorithms in 270 experiments with respect 

to accuracy and average accuracy. Likewise, the proposed model exceeded the 

existing algorithms in terms of F1 measure and harmonic accuracy in 272 

experiments out of 276 experiments, and in 274 experiments with regard to recall. 

This can be further clarified in Figure 4-23 (below). 

Figure 4-23 Homo Sapiens Protein Hub Data Set Results Summary 
 

In summary, this chapter has discussed the experimental results obtained from applying the 
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and five Bayesian-based classification algorithms. Additionally, three scoring and five 

constraint methods were used.  

The findings extracted from the experimental results suggested that the SAHBN model 

demonstrated a very competitive performance compared to the existing algorithms. 

However, it cannot be claimed that SAHBN surpassed all the existing algorithms in all 

experiments. In the next chapter the overall experimental results will be comprehensively 

analysed.  

4.5 Results Analysis 

In order to analyse the overall performance of the proposed SAHBN model, the obtained 

results were summarised in two different ways: 

a. Frequency table: this summarises the obtained results in terms of the frequency 

when the SAHBN model outperformed, was equal to or less than other Bayesian-

based classification algorithms. This was done for all six performance criteria 

discussed in Section 4.2. Accordingly, the final results are presented in Table 4-12 

(below). 

Table 4-12 total results summary 

Proposed 
Model 

Precision Recall 
F1 

Measure 
Accuracy 

Average 
Accuracy 

Harmonic 
Accuracy 

Row 
Total 

Outperform 655 657 722 832 845 905 4616 

Equal to 61 64 36 92 68 25 346 

Less than 377 372 335 169 180 163 1596 

Total 1093 1093 1093 1093 1093 1093   

Table 4-12 reveals that the proposed SAHBN model outperformed the existing 

algorithms in all quality criteria. For instance, out of 1,093 experiments SAHBN 

outperformed the existing algorithms in 905 tests with respect to harmonic 

accuracy. Additionally, it exceeded the existing algorithms in 845 and 832 tests in 

terms of average accuracy and accuracy, respectively. The results presented in 

Table 4-12 are visualized in Figure 4-24 (below).  
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Figure 4-24 Total Results Summary 

b. Arithmetic mean table: as a result of the fact that the proposed SAHBN model 

was compared with a wide range of Bayesian-based classification algorithms 

provided by Weka and Rstudio, the performance of SAHBN was compared against 

each one of these algorithms. This was done by calculating the arithmetic mean for 

each performance criteria for SAHBN and comparing it with the corresponding 

arithmetic mean of the same quality criteria of other algorithms. For example, the 

arithmetic mean of SAHBN’s accuracy was calculated by summing the values of 

SAHBN accuracies in all experiments and then dividing the summed value by the 

number of experiments. Likewise, the accuracy arithmetic mean for algorithm “A” 

was calculated in the same way. Eventually, the two values were compared. This 

process was repeated for all 6 performance criteria and for all 35 algorithm 

combinations against which SAHBN was compared. Consequently, the obtained 

results are presented in Table 4-13 (below). 

Table 4-13 Overall Performance Arithmetic Mean Results 

No. Algorithm 
Precisio

n A. 
Mean 

Recall  
A. Mean

F1 
Measure A. 

Mean 

Accuracy 
A. Mean 

Ave. Acc. 
A. Mean 

H. Acc. 
A. Mean 

1 SAHBN 0.78 0.59 0.64 0.75 0.71 0.64 
2 ICSS 0.69 0.61 0.64 0.85 0.76 0.73 
3 K2 0.79 0.75 0.76 0.89 0.84 0.83 
4 TAN 0.80 0.72 0.75 0.90 0.83 0.82 
5 hc(loglik) 0.71 0.68 0.63 0.70 0.65 0.48 
6 hc(bde) 0.76 0.55 0.60 0.70 0.66 0.54 
7 hc(mbde) 0.77 0.56 0.60 0.71 0.67 0.54 
8 hc(aic) 0.70 0.58 0.54 0.65 0.59 0.36 
9 hc(bic) 0.71 0.56 0.49 0.64 0.58 0.30 
10 hc(K2) 0.77 0.58 0.61 0.71 0.67 0.57 
11 tabu(loglik) 0.72 0.69 0.63 0.70 0.65 0.48 
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12 tabu(bde) 0.72 0.59 0.60 0.68 0.64 0.51 
13 tabu(mbde) 0.72 0.58 0.60 0.68 0.64 0.51 
14 tabu(aic) 0.69 0.54 0.51 0.64 0.59 0.36 
15 tabu(bic) 0.69 0.56 0.50 0.63 0.57 0.31 
16 tabu(K2) 0.75 0.61 0.63 0.71 0.67 0.58 
17 gs(mi) 0.48 0.45 0.44 0.46 0.46 0.41 
18 gs(mi-adf) 0.49 0.43 0.43 0.46 0.46 0.41 
19 gs(mi-sh) 0.53 0.39 0.41 0.48 0.48 0.41 
20 gs(X2) 0.45 0.46 0.45 0.45 0.45 0.44 
21 gs(X2-adf) 0.44 0.44 0.44 0.45 0.45 0.42 
22 iamb(mi) 0.81 0.35 0.46 0.62 0.62 0.48 
23 iamb(mi-adf) 0.65 0.43 0.50 0.57 0.57 0.51 
24 iamb(mi-sh) 0.80 0.36 0.47 0.62 0.62 0.48 
25 iamb(X2) 0.60 0.41 0.45 0.52 0.52 0.44 
26 iamb(X2-adf) 0.48 0.44 0.45 0.47 0.47 0.44 
27 fast.iamb(mi) 0.73 0.43 0.49 0.58 0.58 0.47 
28 fast.iamb(mi-adf) 0.68 0.47 0.53 0.59 0.59 0.53 
29 fast.iamb(mi-sh) 0.63 0.48 0.52 0.56 0.55 0.50 
30 fast.iamb(X2) 0.64 0.38 0.46 0.55 0.55 0.47 
31 fast.iamb(X2-adf) 0.59 0.43 0.48 0.54 0.54 0.49 
32 inter.iamb(mi) 0.81 0.36 0.47 0.62 0.62 0.48 
33 inter.iamb(mi-adf) 0.66 0.46 0.51 0.57 0.57 0.50 
34 inter.iamb(mi-sh) 0.80 0.35 0.46 0.62 0.62 0.48 
35 inter.iamb(X2) 0.67 0.37 0.44 0.55 0.55 0.45 
36 inter.iamb(X2-adf) 0.48 0.48 0.47 0.47 0.47 0.44 

Table 4-13 reveals that the proposed SAHBN model was outperformed by TAN, 

K2 and ICSS algorithms in almost all quality criteria except for ICSS precision and 

F1 measure, when SAHBN either outperformed or was equal to ICSS. 

Additionally, it shows that SAHBN exceeded all other algorithms in almost all 

quality criteria, except for the following seven experiments (highlighted in red on 

Table 4-13): 

 Precision arithmetic mean: for the following algorithms: iamb(mi), 

iamb(mi-sh), inter.iamb(mi) and inter.iamb(mi-sh). 

 Recall arithmetic mean: for the following algorithms: hc(loglik), 

tabu(loglik) and tabu(K2).  

The arithmetic mean results summary was further clarified in Figure 4-25 (below).  
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Figure 4-25 Overall arithmetic mean performance results summary 
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4.6 Discussion 

The overall performance results presented in Table 4-12 and Table 4-13 and visualised in 

Figure 4-24 and Figure 4-25 reveal that the proposed SAHBN model demonstrated a very 

competitive performance when compared to the existing algorithms. For instance, Table 

4-12 which summarise the results obtained in terms of frequency shows that SAHBN 

model outperformed existing algorithms in all performance criteria. However, Table 4-13 

which analysis the experimental results using the arithmetic mean indicates that SAHBN 

model was surpassed by TAN,K2 and ICSS algorithms in all performance criteria.  

TAN, K2 and ICSS algorithms were used to compare the performance of SAHBN in the 

first data set which consists of 178 records and 3,163 prediction attributes. Hence, it seems 

possible that these algorithms are able to handle data sets which have a large number of 

attributes and relatively small number of records.  

Although SAHBN was outperformed by the TAN, K2 and ICSS algorithms, its 

performance exceeded all the other algorithms in Table 4-13. Hence, a deeper 

investigation into the aspects accommodated by the TAN, K2 and ICSS algorithms and 

overlooked by SAHBN is required. Furthermore, it seems that integration of the “is-a” 

semantic relation to check for data consistency and guide the SAHBN structure process 

did not cover the entire ontological knowledge for the targeted domain. Thus, further 

studies to integrate additional ontological knowledge are worth exploring. 

In conclusion, the SAHBN model has laid the foundations for a systematic approach to 

integrating ontology and the HBN classifier in a flexible framework that can be applied to 

different domains. In fact, it is a step towards transforming the traditional BN learning 

process from being data-centred process which relies solely on the training data set into 

knowledge-centred process which accommodates a consensual knowledge in the form of 

ontology.  

Additionally, it proposed an automatic way to consolidate ontology and BN theory in such 

a way that preserves the advantages of both. Finally, SAHBN highlighted the similarity 

between ontology and HBN concepts, which could be invested to represent the targeted 

domain in a consistent manner that reflects semantic relations between attributes. Overall, 

SAHBN investigated cutting-edge concepts in the semantic data mining area and explored 

some very challenging questions.   
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Chapter 5 Conclusion and Future Directions 

Data classification is a branch of DM technology that aims to train a prediction model using 

a data set with a known label class. Then the trained model is used to predict the label class 

for unknown instances based on their observed attributes. However, recent research has 

argued that traditional DM techniques are a data-driven process and have not 

accommodated domain knowledge in the mining process. Hence, DM has faced a paradigm 

shift from a data-centred to a knowledge-centred process that aims to integrate domain 

knowledge into the mining process.  

Although various approaches could be used to represent domain knowledge, the latest 

research in the DM field reported that ontology is the most convenient approach to represent 

domain knowledge for DM use because of its structural way of knowledge representation. 

Accordingly, the concept of semantic DM has been introduced recently. Semantic data 

mining has been defined as the DM task that systematically incorporates domain 

knowledge, especially formal semantics, into the mining process.  

Despite its various advantages, ontology has been built based on description logic, which is 

a decidable fraction of the first-order logic. Hence, it cannot accommodate the uncertainty 

factor that is characteristic of many real-life situations. In contrast to ontology, Bayesian-

based DM algorithms are well known for their powerful capability to work under 

uncertainty.  

Recent research has pointed out that semantic DM is still in its early stages and ontology-

based semantic DM approaches provide the most promising approach. Additionally, the 

challenges of developing automatic semantic data mining algorithms that systematically 

consolidate ontology and DM algorithms have not yet been met. Hence, this thesis proposed 

a flexible framework that automatically integrates ontology and the HBN classification 

algorithms in such a way that preserves the advantages of both. The objectives of this thesis 

are revisited in Section Error! Reference source not found.below.  

5.1   Review of Research Contributions 

The points presented in this section discuss the research objectives and investigate the 

degree to which they have been fulfilled: 

1. Conduct a comprehensive literature review centred on semantic DM, 

ontology-based data classification and integrating ontology with BN: Chapter 2 
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reviewed the state-of-the-art literature in the area of semantic DM, ontology-based 

classification and integration ontology with BN. The findings of Chapter 2 

highlighted the potential advantages of integrating ontology with the BN classifier. 

However, to the best of our knowledge, no framework that systematically 

consolidates ontology and a BN classifier has been proposed. Furthermore, despite 

the structural similarity between ontology and the HBN classifier, the advantages 

of integrating these two concepts have not been comprehensively investigated. 

Hence, the SAHBN classification model (discussed in Section 3.7) proposed in this 

thesis suggested an automatic, systematic and flexible framework to integrate 

ontology and HBN, as will be discussed in the next point.  

2. Develop an ontology-based HBN classification framework: the proposed 

SAHBN classification model not only integrated ontology and HBN but also 

achieved the following objectives:  

 Automatic: unlike many of the approaches reviewed in the second chapter, 

the framework proposed in this thesis integrated ontology and the HBN 

classifier automatically without the need for human intervention.  

 Systematic:  the SAHBN model proposed a predefined sequence of actions 

that have to be implemented in order regardless of the data set or the 

domain to which the model was applied. Hence, it is a standardised 

framework that is neither domain nor data-set-dependent.   

 Flexible: the proposed SAHBN model used the “is-a” ontological relation, 

which is used to represent domain knowledge as a hierarchical structure. 

Hence, any ontology using the “is-a” relation to represent domain 

knowledge can be converted into a SAHBN model and used as a classifier. 

Therefore, the proposed SAHBN framework is flexible and can be applied 

to different domains.  

3. Apply the proposed model into real-life datasets: the proposed SAHBN 

classification model was applied to eight data sets organised in three case studies. 

In the first case study the SAHBN model was used to predict the effect of the DNA 

repair gene in the human ageing process. The second case study utilised the 

SAHBN model to classify genes in various model organisms as either an ageing-

related or non-ageing-related gene. Finally, the SAHBN model was used to 

identify the protein hub in the third case study. In total, 1,093 experiments were 
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implemented and six quality criteria measured, namely, precision, recall, F1 

measure, accuracy, average and harmonic accuracy. The process of SAHBN model 

implementation and data set pre-processing are discussed in detail in Chapter 4.  

4. Evaluate the performance of the SAHBN model against existing Bayesian-

based classification algorithms: as mentioned in the previous points the SAHBN 

model was tested using eight data sets, and six quality criteria were measured. 

Likewise, various Bayesian-based classification algorithms were applied to the 

same data sets and the same quality criteria were calculated. Then, the performance 

of the SAHBN model was compared against the existing algorithms. Additionally, 

the overall performance in terms of the frequency of when SAHBN outperformed, 

was equal to or less than the existing algorithms was summarised for all 1,093 

experiments. Furthermore, the arithmetic mean for each quality criteria was 

measured for the SAHBN model and compared with the same quality criteria 

arithmetic mean for the existing algorithms. A detailed discussion of the evaluation 

process is presented in Chapters 4 and 5. Overall, SAHBN demonstrated a very 

competitive performance when compared to the existing algorithms.  

In conclusion, the contribution of this thesis could be summarised in the following points:  

1. Proposed an automatic, systematic and flexible framework to integrate ontology and 

the HBN. Based on the literature review, and to the best of our knowledge, no such 

framework has been proposed previously.  

2. The proposed framework preserves the advantages of both ontology and Bayesian 

theory. It integrates the concept of Bayesian uncertainty with ontology without 

extending the ontology structure and adding probability-specific properties that 

violate the ontology standard structure.  

3. The proposed model lays out a solid foundation to integrate other semantic relations 

such as equivalent, disjoint, intersection and union, as will be discussed in Section 

5.2.  

5.2 Future Directions 

The future work of this thesis will focus on the following directions: 

1. Integrate more ontological relations: at the current stage of this research only the 

“is-a” ontological relation has been used to check training data set consistency, the 

semantic relation between attributes, and to guide the HBN structure learning and 
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assist the CPT calculation. However, the SAHBN framework established a solid 

base to inject more semantic information into the mining process. Hence, the future 

work of this research will include the integration of ontological relations such as 

equivalent, disjoint, intersection and union. This can be done in two different 

ways, as follows: 

a. The BayesOWL [74] model introduced the concept of logical nodes to the 

BN structure. In a similar way, the SAHBN model will construct four 

logical nodes to cover more ontological relations and investigate their 

effects on SAHBN’s performance quality. 

b. As was mentioned in Section 3.6, the proposed SAHBN model used the 

MAP probability estimation approach. Accordingly, the MAP approach 

used two positive real hyper-parameters to represent the imaginary true and 

false frequency of instances observed before starting the experiment [124]. 

Hence, the hyper-parameters can be utilised to reflect the semantic relation 

between concepts in the SAHBN model. For instance, if there is an 

“equivalent” relation between two ontology concepts, A and B, the hyper-

parameters could be used to reflect this relation in terms of the frequency of 

the observed true and false instances. Consequently, the calculated CPTs 

will accommodate the ontological relations between concepts. Likewise, 

this can be done for other logical relations such as disjoint, union and 

intersection.  

2. Test the proposed SAHBN model using different hierarchical ontologies:  at 

the current stage of this research, the proposed SAHBN model has been tested 

using the GO. Thus, future work will include implementation of the SAHBN 

model in different domains using other hierarchical ontologies. In theory, the 

SAHBN model can be applied for any ontology using the “is-a” relation to 

represent the “general to specific” or “broader-than to narrow-than” relation 

between concepts to describe the domain knowledge.   

3. Use other GO hierarchies:: According to [98], the structure of the GO consists of 

three hierarchies covering the biological process, molecular functions and cellular 

component concepts. However, SAHBN was tested using only the biological 

process hierarchy. Hence, future work will include integration of other hierarchies 

covering the molecular functions and cellular component concepts. 
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Appendix “A” Experimental Results 

6.1 DNA repair gene-PPI dataset experimental results 

Table 6-1 DNA repair gene-PPI dataset experimental results 

No. 

Attributes Selection Initial 

Attr. 

No. 

Attr. 

Selection  

Reduction. 

Sub-Super 

Class 

Reduction 

Algorithm P R F1 A AVA HA 
Evaluation Method Search Method 

1 

CfsSubSetEval 

BestFirst 3163 16 15 

SAHBN 0.84 0.82 0.83 0.93 0.89 0.88 
ICSS algo. 0.68 0.54 0.60 0.84 0.73 0.68 
K2 algo. 0.86 0.79 0.83 0.93 0.88 0.87 

TAN algo. 0.86 0.79 0.83 0.93 0.88 0.87 

2 GreedyStepwise 3163 24 23 

SAHBN 0.89 0.82 0.85 0.94 0.90 0.89 
ICSS algo. 0.77 0.59 0.67 0.87 0.77 0.73 
K2 algo. 0.89 0.82 0.85 0.94 0.90 0.89 

TAN algo. 0.81 0.77 0.79 0.91 0.86 0.85 

3 

ConsistencySubsetEval 

BestFirst 3163 10 9 

SAHBN 0.62 0.72 0.67 0.84 0.84 0.84 
ICSS algo. 0.80 0.72 0.76 0.90 0.83 0.82 
K2 algo. 0.78 0.72 0.75 0.89 0.83 0.82 

TAN algo. 0.78 0.72 0.75 0.89 0.83 0.82 

4 GreedyStepwise 3163 12 12 

SAHBN 0.60 0.69 0.64 0.83 0.78 0.77 
ICSS algo. 0.55 0.56 0.56 0.80 0.72 0.68 
K2 algo. 0.50 0.69 0.58 0.78 0.75 0.74 

TAN algo. 0.58 0.59 0.58 0.81 0.73 0.71 

5 FilteredSubsetEval BestFirst 3163 16 15 

SAHBN 0.84 0.82 0.83 0.93 0.89 0.88 
ICSS algo. 0.68 0.54 0.60 0.84 0.73 0.68 
K2 algo. 0.86 0.82 0.84 0.93 0.89 0.89 

TAN algo. 0.86 0.79 0.83 0.93 0.88 0.87 
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6 GreedyStepwise 3163 24 23 

SAHBN 0.89 0.82 0.85 0.94 0.90 0.90 
ICSS algo. 0.77 0.59 0.67 0.87 0.77 0.73 
K2 algo. 0.89 0.82 0.85 0.94 0.90 0.89 

TAN algo. 0.81 0.77 0.79 0.91 0.86 0.85 

7 InfoGainAttributeEval Ranker 3163 24 22 

SAHBN 0.67 0.79 0.73 0.87 0.84 0.84 
ICSS algo. 0.51 0.49 0.50 0.79 0.68 0.62 
K2 algo. 0.75 0.77 0.76 0.89 0.85 0.84 

TAN algo. 0.82 0.72 0.77 0.90 0.84 0.82 

8 GainRatioAttributeEval Ranker 3163 24 22 

SAHBN 0.96 0.64 0.77 0.92 0.82 0.78 
ICSS algo. 0.88 0.74 0.81 0.92 0.86 0.84 
K2 algo. 0.96 0.59 0.73 0.90 0.79 0.74 

TAN algo. 0.96 0.62 0.75 0.91 0.80 0.76 

9 CorrelationAttributeEval Ranker 3163 24 22 

SAHBN 0.71 0.77 0.74 0.88 0.84 0.84 
ICSS algo. 0.61 0.59 0.60 0.83 0.74 0.71 
K2 algo. 0.79 0.77 0.78 0.90 0.86 0.85 

TAN algo. 0.82 0.72 0.77 0.90 0.84 0.82 

10 ReliefFAttributeEval Ranker 3163 24 22 

SAHBN 0.63 0.77 0.69 0.85 0.82 0.82 
ICSS algo. 0.67 0.67 0.67 0.85 0.79 0.77 
K2 algo. 0.63 0.74 0.68 0.85 0.81 0.81 

TAN algo. 0.67 0.77 0.71 0.87 0.83 0.83 

11 OneRAttributeEval Ranker 3163 24 22 

SAHBN 0.76 0.72 0.74 0.89 0.83 0.81 
ICSS algo. 0.68 0.64 0.66 0.85 0.78 0.75 
K2 algo. 0.76 0.67 0.71 0.88 0.80 0.78 

TAN algo. 0.79 0.67 0.72 0.89 0.81 0.78 
P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  
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6.2 DNA repair gene-Gene2GO (CV = 2.706) dataset experimental results 

Table 6-2 DNA repair gene-Gene2GO (CV = 2.706) dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  
Reduction 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 735 335 35 30 

SAHBN NA 0.92 0.59 0.72 0.90 0.79 0.74 

Hill-
Climbing 

(hc) 

loglik 0.75 0.38 0.51 0.84 0.67 0.55 
bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.92 0.59 0.72 0.90 0.79 0.74 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.84 0.54 0.66 0.88 0.75 0.69 

Tabu 
Search 
(tabu) 

loglik 0.80 0.41 0.54 0.85 0.69 0.58 
bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.92 0.59 0.72 0.90 0.79 0.74 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.84 0.54 0.66 0.88 0.75 0.69 

2 CfsSubSetEval 
GreedyStep

wise 
735 335 37 32 

SAHBN NA 0.86 0.62 0.72 0.89 0.79 0.75 

Hill-
Climbing 

(hc) 

loglik 0.87 0.33 0.48 0.84 0.66 0.50 

bde 0.93 0.64 0.76 0.91 0.81 0.78 

mbde 0.93 0.64 0.76 0.91 0.81 0.78 

aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.89 0.62 0.73 0.90 0.80 0.76 

Tabu 
Search 
(tabu 

loglik 0.77 0.44 0.56 0.85 0.70 0.60 

bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.92 0.56 0.72 0.90 0.79 0.74 
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aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.86 0.62 0.72 0.89 0.75 0.75 

3 
ConsistencySub

setEval 
BestFirst 735 335 20 18 

SAHBN NA 0.75 0.38 0.51 0.84 0.67 0.55 

Hill-
Climbing 

(hc) 

loglik 0.81 0.56 0.67 0.88 0.76 0.71 
bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
aic 0.91 0.26 0.40 0.83 0.62 0.41 
bic 0.91 0.26 0.40 0.83 0.62 0.41 
K2 0.83 0.51 0.63 0.87 0.74 0.67 

Tabu 
Search 
(tabu 

loglik 0.84 0.54 0.66 0.88 0.75 0.69 
bde 0.92 0.62 0.74 0.90 0.80 0.76 

mbde 0.92 0.59 0.72 0.89 0.79 0.74 
aic 0.91 0.26 0.40 0.83 0.62 0.41 
bic 0.91 0.26 0.40 0.83 0.62 0.41 
K2 0.86 0.62 0.72 0.89 0.79 0.75 

4 
ConsistencySub

setEval 
GreedyStep

wise 
735 335 20 17 

SAHBN NA 0.60 0.23 0.33 0.80 0.59 0.37 

Hill-
Climbing 

(hc) 

loglik 0.61 0.59 0.60 0.82 0.74 0.71 
bde 0.61 0.28 0.39 0.80 0.62 0.43 

mbde 0.61 0.28 0.39 0.80 0.62 0.44 
aic 0.89 0.21 0.33 0.82 0.60 0.34 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.62 0.41 0.49 0.81 0.67 0.57 

Tabu 
Search 
(tabu 

loglik 0.55 0.44 0.49 0.80 0.67 0.59 
bde 0.59 0.26 0.36 0.80 0.60 0.40 

mbde 0.63 0.26 0.36 0.80 0.61 0.40 
aic 0.00 0.00 0.00 0.78 050 0.00 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.62 0.46 0.53 0.82 0.61 0.61 
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5 
FilteredSubsetE

val 
BestFirst 735 335 35 30 

SAHBN NA 0.92 0.56 0.70 0.89 0.77 0.72 

Hill-
Climbing 

(hc) 

loglik 0.80 0.41 0.54 0.85 0.69 0.58 
bde 0.92 0.62 0.74 0.90 0.80 0.76 

mbde 0.92 0.62 0.74 0.90 0.80 0.76 
aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.79 0.59 0.68 0.88 0.77 0.73 

Tabu 
Search 
(tabu 

loglik 0.79 0.38 0.52 0.84 0.68 0.55 

bde 0.92 0.62 0.74 0.90 0.80 0.76 

mbde 0.92 0.59 0.72 0.90 0.79 0.74 

aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.81 0.54 0.65 0.87 0.75 0.69 

6 
FilteredSubsetE

val 
GreedyStep

wise 
735 335 37 32 

SAHBN NA 0.86 0.62 0.72 0.89 0.79 0.75 

Hill-
Climbing 

(hc) 

loglik 0.78 0.54 0.64 0.86 0.75 0.69 
bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.84 0.54 0.66 0.88 0.88 0.75 

Tabu 
Search 
(tabu 

loglik 0.77 0.44 0.56 0.85 0.70 0.60 
bde 0.92 0.62 0.74 0.90 0.80 0.76 

mbde 0.92 0.59 0.72 0.90 0.79 0.74 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.85 0.59 0.70 0.89 0.78 0.73 

7 
InfoGainAttribut

eEval 
Ranker 735 335 37 28 

SAHBN NA 0.77 0.59 0.67 0.87 0.77 0.73 

Hill-
Climbing 

loglik 0.83 0.51 0.63 0.87 0.74 0.67 
bde 0.79 0.49 0.60 0.86 0.73 0.65 
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(hc) mbde 0.79 0.49 0.60 0.86 0.73 0.65 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
K2 0.80 0.51 0.63 0.86 0.74 0.67 

 
Tabu 

Search 
(tabu) 

loglik 0.85 0.44 0.58 0.86 0.71 0.60 
bde 0.79 0.49 0.60 0.86 0.73 0.65 

mbde 0.79 0.49 0.60 0.86 0.73 0.65 
aic 0.87 0.33 0.48 0.84 0.66 0.50 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
K2 0.84 0.54 0.66 0.88 0.75 0.69 

8 
GainRatioAttrib

uteEval 
Ranker 735 335 37 32 

SAHBN NA 1.00 0.33 0.50 0.85 0.67 0.50 

Hill-
Climbing 

(hc) 

loglik 1.00 0.54 0.70 0.90 0.77 0.70 
bde 1.00 0.49 0.66 0.89 0.74 0.66 

mbde 1.00 0.51 0.68 0.89 0.76 0.68 
aic 1.00 0.15 0.27 0.81 0.58 0.27 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 1.00 0.51 0.68 0.89 0.76 0.68 

Tabu 
Search 
(tabu) 

loglik 1.00 0.54 0.70 0.90 0.77 0.70 
bde 1.00 0.46 0.63 0.88 0.73 0.63 

mbde 1.00 0.51 0.68 0.89 0.76 0.68 
aic 1.00 0.15 0.27 0.81 0.58 0.27 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 1.00 0.51 0.68 0.89 0.76 0.68 

9 
CorrelationAttri

buteEval 
Ranker 735 335 37 27 

SAHBN NA 0.77 0.59 0.67 0.87 0.77 0.73 

Hill-
Climbing 

(hc) 

loglik 0.85 0.59 0.70 0.89 0.78 0.73 
bde 0.79 0.49 0.60 0.86 0.73 0.65 

mbde 0.79 0.49 0.60 0.86 0.73 0.65 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
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K2 0.86 0.62 0.72 0.89 0.79 0.75 

Tabu 
Search 
(tabu) 

loglik 0.87 0.51 0.65 0.88 0.75 0.67 
bde 0.80 0.51 0.63 0.86 0.74 0.67 

mbde 0.79 0.49 0.60 0.86 0.73 0.65 
aic 0.87 0.33 0.48 0.84 0.66 0.50 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
K2 0.87 0.67 0.75 0.90 0.82 0.79 

10 
ReliefFAttAttrib

uteEval 
Ranker 735 335 37 25 

SAHBN NA 0.92 0.31 0.46 0.84 0.65 0.50 

Hill-
Climbing 

(hc) 

loglik 0.65 0.51 0.57 0.83 0.72 0.66 
bde 0.69 0.51 0.59 0.84 0.72 0.66 

mbde 0.73 0.49 0.58 0.85 0.72 0.64 
aic 0.88 0.38 0.54 0.85 0.69 0.55 
bic 1.00 0.15 0.27 081 0.58 0.27 
K2 0.72 0.54 0.62 0.85 0.74 0.69 

Tabu 
Search 
(tabu) 

loglik 0.73 0.62 0.67 0.86 0.78 0.74 
bde 0.69 0.46 0.55 0.84 0.70 0.62 

mbde 0.69 0.56 0.62 0.85 0.75 0.70 
aic 0.88 0.38 0.54 0.85 0.69 0.55 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 0.73 0.49 0.58 0.85 0.72 0.64 

11 
OneRAttributeE

val 
Ranker 735 335 37 28 

SAHBN NA 0.83 0.49 0.61 0.86 0.73 0.65 

Hill-
Climbing 

(hc) 

loglik 0.62 0.46 0.53 0.82 0.69 0.61 
bde 0.76 0.49 0.59 0.85 0.72 0.65 

mbde 0.68 0.49 0.57 0.84 0.71 0.64 
aic 0.88 0.38 0.54 0.85 0.69 0.55 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 0.77 0.51 0.62 0.86 0.73 0.67 

Tabu 
Search 

loglik 0.68 0.54 0.60 0.84 0.73 0.68 
bde 0.75 0.54 0.63 0.86 0.74 0.69 
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(tabu) mbde 0.73 0.56 0.64 0.86 0.75 0.71 
aic 0.88 0.38 0.54 0.85 0.69 0.55 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 0.76 0.56 0.65 0.86 0.76 0.71 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 



Page | 126  

 

6.3 DNA repair gene-Gene2GO (CV=3.841) dataset experimental results 

Table 6-3 DNA repair gene-Gene2GO (CV=3.841) dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  

Reduction. 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 7 35 89 24 20 

SAHBN NA 0.86 0.62 0.72 0.89 0.79 0.75 

Hill-
Climbing 

(hc) 

loglik 0.78 0.46 0.58 0.85 0.71 0.62 
bde 0.91 0.54 0.68 0.89 0.76 0.70 

mbde 0.92 0.59 0.72 0.90 0.79 0.74 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.74 0.36 0.48 0.83 0.66 0.52 

Tabu 
Search 
(tabu) 

loglik 0.84 0.41 0.55 0.85 0.69 0.58 
bde 0.91 0.51 0.66 0.88 0.75 0.67 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.92 0.59 0.72 0.90 0.79 0.74 

2 CfsSubSetEval 
GreedyStep

wise 
735 89 30 24 

SAHBN NA 0.95 0.46 0.62 0.88 0.73 0.63 

Hill-
Climbing 

(hc) 

loglik 0.71 0.38 0.50 0.83 0.67 0.55 

bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 

aic 0.75 0.38 0.51 0.84 0.67 0.55 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.87 0.51 0.65 0.88 0.75 0.67 

Tabu 
Search 
(tabu 

loglik 0.79 0.56 0.66 0.87 0.76 0.71 

bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
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aic 0.66 0.64 0.65 0.85 0.77 0.75 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.92 0.59 0.72 0.90 0.79 0.74 

3 
ConsistencySub

setEval 
BestFirst 735 89 15 13 

SAHBN NA 0.88 0.38 0.54 0.85 0.69 0.55 

Hill-
Climbing 

(hc) 

loglik 0.72 0.54 0.62 0.85 0.74 0.69 
bde 0.90 0.49 0.63 0.88 0.74 0.65 

mbde 0.91 0.51 0.66 0.88 0.75 0.67 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.88 0.54 0.67 0.88 0.76 0.69 

Tabu 
Search 
(tabu 

loglik 0.71 0.51 0.60 0.85 0.73 0.66 
bde 0.92 0.31 0.46 0.84 0.65 0.47 

mbde 0.92 0.31 0.46 0.84 0.65 0.47 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.83 0.51 0.63 0.87 0.74 0.67 

4 
ConsistencySub

setEval 
GreedyStep

wise 
735 89 15 13 

SAHBN NA 0.86 0.46 0.60 0.86 0.72 0.63 

Hill-
Climbing 

(hc) 

loglik 0.74 0.51 0.61 0.85 0.73 0.67 
bde 0.68 0.49 0.57 0.84 0.71 0.64 

mbde 0.70 0.54 0.61 0.85 0.74 0.68 
aic 0.68 0.49 0.57 0.84 0.71 0.64 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.87 0.51 0.65 0.88 0.75 0.67 

Tabu 
Search 
(tabu 

loglik 0.74 0.51 0.61 0.85 0.73 0.67 
bde 0.70 0.54 0.61 0.85 0.74 0.68 

mbde 0.68 0.49 0.57 0.84 0.71 0.64 
aic 0.68 0.49 0.57 0.84 0.71 0.64 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.84 0.41 0.55 0.85 0.69 0.58 
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5 
FilteredSubsetE

val 
BestFirst 735 89 24 20 

SAHBN NA 0.86 0.62 0.72 0.89 0.79 0.75 

Hill-
Climbing 

(hc) 

loglik 0.76 0.41 0.53 0.84 0.69 0.58 
bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.94 0.41 0.57 0.86 0.70 0.58 

Tabu 
Search 
(tabu 

loglik 0.81 0.44 0.57 0.85 0.70 0.60 

bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 

aic 0.93 0.36 0.52 0.85 0.68 0.53 

bic 0.89 0.21 0.33 0.82 0.60 0.34 

K2 0.95 0.54 0.69 0.89 0.77 0.70 

6 
FilteredSubsetE

val 
GreedyStep

wise 
735 89 30 24 

SAHBN NA 0.90 0.49 0.63 0.88 0.74 0.65 

Hill-
Climbing 

(hc) 

loglik 0.74 0.44 0.55 0.84 0.70 0.60 
bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.92 0.62 0.74 0.90 0.80 0.76 
aic 0.78 0.36 0.49 0.84 0.66 0.52 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.83 0.51 0.63 0.87 0.74 0.67 

Tabu 
Search 
(tabu 

loglik 0.80 0.51 0.63 0.86 0.74 0.67 
bde 0.92 0.59 0.72 0.90 0.79 0.74 

mbde 0.91 0.54 0.68 0.89 0.76 0.70 
aic 0.63 0.56 0.59 0.83 0.73 0.70 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.88 0.54 0.67 0.88 0.76 0.69 

7 
InfoGainAttribut

eEval 
Ranker 735 89 30 22 

SAHBN NA 0.88 0.54 0.67 0.88 0.76 0.69 

Hill-
Climbing 

loglik 0.88 0.56 0.69 0.89 0.77 0.72 
bde 0.91 0.54 0.68 0.89 0.76 0.70 
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(hc) mbde 0.91 0.51 0.56 0.88 0.75 0.67 
aic 0.76 0.41 0.53 0.84 0.69 0.58 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.76 0.41 0.53 0.84 0.69 0.58 

 
Tabu 

Search 
(tabu) 

loglik 0.90 0.49 0.63 0.88 0.74 0.65 
bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.91 0.51 0.66 0.88 0.75 0.67 
aic 0.77 0.44 0.56 0.85 0.70 0.60 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.86 0.46 0.60 0.86 0.72 0.63 

8 
GainRatioAttrib

uteEval 
Ranker 735 89 30 28 

SAHBN NA 1.00 0.51 0.68 0.89 0.76 0.68 

Hill-
Climbing 

(hc) 

loglik 1.00 0.44 0.61 0.88 0.72 0.70 
bde 1.00 0.46 0.63 0.88 0.73 0.63 

mbde 1.00 0.46 0.63 0.88 0.73 0.63 
aic 1.00 0.15 0.27 0.81 0.58 0.27 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 1.00 0.44 0.61 0.88 0.72 0.61 

Tabu 
Search 
(tabu) 

loglik 1.00 0.46 0.63 0.88 0.73 0.63 
bde 1.00 0.51 0.68 0.89 0.76 0.68 

mbde 1.00 0.46 0.63 0.88 0.73 0.63 
aic 1.00 0.15 0.27 0.81 0.58 0.27 
bic 1.00 0.15 0.27 0.81 0.58 0.27 
K2 1.00 0.46 0.63 0.88 0.73 0.63 

9 
CorrelationAttri

buteEval 
Ranker 735 89 30 23 

SAHBN NA 0.87 0.51 0.65 0.88 0.75 0.67 

Hill-
Climbing 

(hc) 

loglik 0.70 0.49 0.58 0.84 0.71 0.64 
bde 0.91 0.51 0.66 0.88 0.75 0.67 

mbde 0.91 0.51 0.66 0.88 0.75 0.67 
aic 0.78 0.36 0.49 0.84 0.66 0.52 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
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K2 0.81 0.44 0.57 0.85 0.70 0.60 

Tabu 
Search 
(tabu) 

loglik 0.77 0.51 0.62 0.86 0.73 0.67 
bde 0.91 0.51 0.66 0.88 0.75 0.67 

mbde 0.92 0.56 0.70 0.89 0.77 0.72 
aic 0.80 0.41 0.54 0.85 0.69 0.58 
bic 0.89 0.21 0.33 0.82 0.60 0.34 
K2 0.91 0.54 0.68 0.89 0.76 0.70 

10 
ReliefFAttAttrib

uteEval 
Ranker 735 89 30 25 

SAHBN NA 0.85 0.44 0.58 0.56 0.71 0.60 

Hill-
Climbing 

(hc) 

loglik 0.67 0.56 0.61 0.84 0.74 0.70 
bde 0.92 0.56 0.70 0.89 0.77 0.72 

mbde 0.95 0.54 0.69 0.89 0.77 0.70 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.58 0.28 0.38 0.80 0.61 0.43 
K2 0.72 0.54 0.62 0.85 0.74 0.69 

Tabu 
Search 
(tabu) 

loglik 0.55 0.54 0.55 0.80 0.71 0.67 
bde 0.95 0.54 0.69 0.89 0.77 0.70 

mbde 0.95 0.54 0.69 0.89 0.77 0.70 
aic 0.93 0.36 0.52 0.85 0.68 0.53 
bic 0.58 0.28 0.38 0.80 0.61 0.43 
K2 0.70 0.54 0.61 0.85 0.74 0.68 

11 
OneRAttributeE

val 
Ranker 735 89 30 26 

SAHBN NA 0.83 0.49 0.61 0.86 0.73 0.65 

Hill-
Climbing 

(hc) 

loglik 0.91 0.51 0.66 0.88 0.75 0.67 
bde 0.81 0.54 0.65 0.87 0.75 0.69 

mbde 0.79 0.49 0.60 0.86 0.73 0.65 
aic 0.75 0.38 0.51 0.84 0.67 0.55 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
K2 0.78 0.54 0.64 0.86 0.75 0.69 

Tabu 
Search 

loglik 0.91 0.51 0.66 0.88 0.75 0.67 
bde 0.83 0.51 0.63 0.87 0.74 0.67 
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(tabu) mbde 0.80 0.51 0.63 0.86 0.74 0.67 
aic 0.75 0.38 0.51 0.84 0.67 0.55 
bic 0.92 0.28 0.43 0.84 0.64 0.44 
K2 0.80 0.51 0.63 0.86 0.74 0.67 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 



Page | 132  

 

6.4 C. elegan-Gene2GO (CV = 2.706) dataset experimental results 

Table 6-4 C. elegan–Gene2GO (CV = 2.706) dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  

Reduction. 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 1012 65 12 11 

SAHBN NA 0.80 0.46 0.58 0.67 0.67 0.60 

Hill-
Climbing 

(hc) 

loglik 0.57 1.00 0.72 0.61 0.61 0.36 
bde 0.76 0.37 0.50 0.63 0.63 0.52 

mbde 0.76 0.37 0.50 0.63 0.63 0.52 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 1.00 0.19 0.32 0.59 0.60 0.32 

Tabu 
Search 
(tabu) 

loglik 0.57 1.00 0.72 0.61 0.61 0.36 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.48 0.75 0.58 0.46 0.46 0.28 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 1.00 0.19 0.32 0.59 0.60 0.32 

2 CfsSubSetEval 
GreedyStep

wise 
1012 65 30 26 

SAHBN NA 0.75 0.43 0.55 0.64 0.64 0.57 

Hill-
Climbing 

(hc) 

loglik 0.57 0.99 0.73 0.63 0.62 0.40 

bde 0.78 0.41 0.54 0.65 0.65 0.56 

mbde 0.78 0.41 0.54 0.65 0.65 0.56 

aic 0.54 1.00 0.70 0.57 0.56 0.23 

bic 0.54 1.00 0.70 0.57 0.56 0.23 

K2 0.54 0.75 0.63 0.56 0.56 0.56 

Tabu 
Search 
(tabu 

loglik 0.57 0.99 0.73 0.62 0.62 0.40 

bde 0.78 0.40 0.53 0.64 0.64 0.56 

mbde 0.78 0.41 0.54 0.64 0.65 0.56 
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aic 0.54 1.00 0.70 0.57 0.56 0.23 

bic 0.54 1.00 0.70 0.57 0.56 0.23 

K2 0.55 0.84 0.67 0.58 0.58 0.46 

3 
ConsistencySub

setEval 
BestFirst 1012 65 30 27 

SAHBN NA 0.73 0.52 0.60 0.66 0.66 0.63 

Hill-
Climbing 

(hc) 

       
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.56 0.95 0.70 0.59 0.59 0.37 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.81 0.51 0.63 0.69 0.69 0.65 

Tabu 
Search 
(tabu 

       
bde 0.47 0.69 0.56 0.45 0.45 0.33 

mbde 0.48 0.61 0.54 0.47 0.46 0.42 
aic 0.56 0.95 0.70 0.59 0.59 0.37 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.80 0.52 0.63 0.69 0.69 0.65 

4 
ConsistencySub

setEval 
GreedyStep

wise 
1012 65 33 31 

SAHBN NA 0.73 0.51 060 0.66 0.66 0.63 

Hill-
Climbing 

(hc) 

       
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.56 0.95 0.70 0.59 0.59 0.37 
bic 0.54 1.00 0.70 .57 0.56 0.23 
K2 0.81 0.49 0.61 0.68 0.69 0.63 

Tabu 
Search 
(tabu 

       
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.56 0.95 0.70 0.59 0.59 0.37 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.80 0.49 0.61 0.68 0.68 0.63 
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5 
FilteredSubsetE

val 
BestFirst 1012 65 2 2 

SAHBN NA 0.78 0.37 0.51 0.63 0.63 0.53 

Hill-
Climbing 

(hc) 

loglik 0.54 1.00 0.70 0.57 0.56 0.23 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.54 1.00 0.70 0.57 0.56 0.23 

bic 0.54 1.00 0.70 0.57 0.56 0.23 

K2 0.54 1.00 0.70 0.57 0.56 0.23 

Tabu 
Search 
(tabu 

loglik 0.54 1.00 0.70 0.57 0.56 0.23 

bde 0.48 0.71 0.58 0.47 0.47 0.34 

mbde 0.47 0.65 0.54 0.45 0.45 0.36 

aic 0.54 1.00 0.70 0.57 0.56 0.23 

bic 0.54 1.00 0.70 0.57 0.56 0.23 

K2 0.54 1.00 0.70 0.57 0.56 0.23 

6 
FilteredSubsetE

val 
GreedyStep

wise 
1012 65 30 26 

SAHBN NA 0.75 0.43 0.55 0.64 0.64 0.57 

Hill-
Climbing 

(hc) 

loglik 0.57 0.99 0.73 0.63 0.62 0.40 
bde 0.78 0.41 0.54 0.65 0.65 0.56 

mbde 0.79 0.41 0.54 0.65 0.65 0.56 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.55 0.85 0.67 0.58 0.58 0.45 

Tabu 
Search 
(tabu 

loglik 0.57 0.99 0.73 0.62 0.62 0.39 
bde 0.78 0.40 0.53 0.64 0.64 0.56 

mbde 0.78 0.41 0.54 0.64 0.65 0.56 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.56 0.89 0.69 0.59 0.59 0.42 

7 
InfoGainAttribut

eEval 
Ranker 1012 65 30 26 

SAHBN NA 0.72 0.49 0.58 0.65 0.65 0.61 

Hill-
Climbing 

       
bde 0.76 0.37 0.50 0.62 0.63 0.52 
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(hc) mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.57 1.00 0.73 0.62 0.62 0.39 

 
Tabu 

Search 
(tabu) 

       
bde 0.47 0.67 0.56 0.46 0.46 0.36 

mbde 0.47 0.65 0.54 0.45 0.45 0.36 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.57 1.00 0.73 0.62 0.62 0.39 

8 
GainRatioAttrib

uteEval 
Ranker 1012 65 30 26 

SAHBN NA 0.76 0.14 0.23 0.54 0.54 0.24 

Hill-
Climbing 

(hc) 

loglik 0.58 1.00 0.74 0.64 0.64 0.43 
bde 0.58 1.00 0.73 0.63 0.63 0.41 

mbde 0.58 1.00 0.73 0.63 0.63 0.41 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.58 1.00 0.73 0.63 0.63 0.41 

Tabu 
Search 
(tabu) 

loglik 0.58 1.00 0.74 0.64 0.64 0.43 
bde 0.58 1.00 0.73 0.63 0.63 0.41 

mbde 0.58 1.00 0.73 0.63 0.63 0.41 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.58 1.00 0.73 0.63 0.63 0.41 

9 
CorrelationAttri

buteEval 
Ranker 1012 65 30 27 

SAHBN NA 0.70 0.51 0.59 0.64 0.65 0.62 

Hill-
Climbing 

(hc) 

       
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.51 1.00 0.67 0.51 0.51 0.04 
bic 0.54 1.00 0.70 0.57 0.56 0.23 



Page | 136  

 

K2 0.57 1.00 0.73 0.62 0.62 0.39 

Tabu 
Search 
(tabu) 

       
bde 0.48 0.71 0.57 0.47 0.46 0.34 

mbde 0.48 0.77 0.59 0.47 0.47 0.27 
aic 0.50 0.88 0.64 0.49 0.49 0.18 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.57 1.00 0.73 0.62 0.62 0.39 

10 
ReliefFAttAttrib

uteEval 
Ranker 1012 65 30 23 

SAHBN NA 0.74 0.45 0.56 0.64 0.65 0.59 

Hill-
Climbing 

(hc) 

loglik 0.59 0.98 0.74 0.64 0.64 0.46 
bde 0.76 0.40 0.52 0.63 0.64 0.55 

mbde 0.76 040 0.52 0.63 0.64 0.55 
aic 0.51 1.00 0.67 0.51 0.51 0.04 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.58 0.99 0.74 0.64 0.64 0.44 

Tabu 
Search 
(tabu) 

loglik 0.59 0.98 0.73 0.64 0.64 0.45 
bde 0.76 0.40 0.52 0.63 0.64 0.55 

mbde 0.76 0.40 0.52 0.63 0.64 0.55 
aic 0.48 0.76 0.59 0.47 0.47 0.28 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.58 0.99 0.73 0.64 0.64 0.43 

11 
OneRAttributeE

val 
Ranker 1012 65 30 25 

SAHBN NA 0.69 0.50 0.58 0.63 0.63 0.60 

Hill-
Climbing 

(hc) 

loglik 0.60 0.94 0.73 0.65 0.65 0.52 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.50 0.88 0.64 0.49 0.49 0.17 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.59 0.99 0.74 0.65 0.64 0.45 

Tabu 
Search 

loglik 0.60 0.94 0.73 0.65 0.65 0.51 
bde 0.49 0.71 0.58 0.48 0.48 0.37 
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(tabu) mbde 0.49 0.69 0.57 0.48 0.48 0.38 
aic 0.48 0.75 0.59 0.46 0.46 0.28 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.59 0.99 0.74 0.64 0.64 0.45 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy. 
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6.5 C. elegans-Gene2GO (CV=3.841) dataset experimental results 

Table 6-5 C. elegans-Gene2GO (CV = 3.841) dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  
Reduction 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 1012 36 12 11 

SAHBN NA 0.81 0.46 0.59 0.67 0.67 0.61 

Hill-
Climbing 

(hc) 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 
bde 0.47 0.21 0.29 0.48 0.48 0.32 

mbde 0.53 0.13 0.21 0.50 0.51 0.23 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.54 0.89 0.67 0.56 0.56 0.37 

Tabu 
Search 
(tabu) 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 
bde 0.47 0.56 0.51 0.45 0.45 0.43 

mbde 0.48 0.48 0.48 0.47 0.47 0.47 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.54 0.90 0.68 0.57 0.57 0.37 

2 CfsSubSetEval 
GreedyStep

wise 
1012 36 15 14 

SAHBN NA 0.80 0.48 0.60 0.68 0.68 0.62 

Hill-
Climbing 

(hc) 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 

bde 0.51 0.88 0.64 0.51 0.51 0.23 

mbde 0.50 0.87 0.64 0.50 0.50 0.21 

aic 0.54 1.00 0.70 0.57 0.56 0.23 

bic 0.54 1.00 0.70 0.57 0.57 0.23 

K2 0.69 0.36 0.48 0.60 0.60 0.50 

Tabu 
Search 
(tabu 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 

bde 0.52 1.00 0.69 0.54 0.53 0.13 

mbde 0.52 0.95 0.67 0.53 0.53 0.19 
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aic 0.54 1.00 0.70 0.57 0.57 0.23 

bic 0.50 0.83 0.62 0.49 0.49 0.25 

K2 0.73 0.33 0.45 0.60 0.60 0.47 

3 
ConsistencySub

setEval 
BestFirst 1012 36 24 22 

SAHBN NA 0.75 0.52 0.62 0.67 0.67 0.64 

Hill-
Climbing 

(hc) 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 
bde 0.77 0.44 0.56 0.65 0.66 0.56 

mbde 0.77 0.44 0.56 0.65 0.66 0.59 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.78 0.53 0.63 0.69 0.69 0.65 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.77 0.45 0.57 0.66 0.66 0.59 

mbde 0.77 0.45 0.57 0.66 0.66 0.59 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.76 0.37 0.50 0.62 0.63 0.52 
K2 0.79 0.54 0.64 0.69 0.70 0.66 

4 
ConsistencySub

setEval 
GreedyStep

wise 
1012 36 24 22 

SAHBN NA 0.76 0.52 0.62 0.68 0.68 0.64 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.77 0.45 0.57 0.66 0.66 0.59 

mbde 0.77 0.45 0.57 0.66 0.66 0.59 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.78 0.54 0.64 0.69 0.69 0.66 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.77 0.44 0.56 0.65 0.66 0.59 

mbde 0.77 0.45 0.57 0.66 0.66 0.59 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.76 0.37 0.50 0.62 0.63 0.52 
K2 0.80 0.54 0.64 0.70 0.70 0.66 
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5 
FilteredSubsetE

val 
BestFirst 1012 36 2 2 

SAHBN NA 0.78 0.37 0.51 0.63 0.63 0.53 

Hill-
Climbing 

(hc) 

loglik 0.54 1.00 0.70 0.57 0.57 0.23 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.54 1.00 0.70 0.57 0.57 0.23 

bic 0.54 1.00 0.70 0.57 0.57 0.23 

K2 0.54 1.00 0.70 0.57 0.57 0.23 

Tabu 
Search 
(tabu 

loglik 0.54 1.00 0.70 0.57 0.57 0.23 

bde 0.46 0.64 0.54 0.44 0.44 0.35 

mbde 0.43 0.47 0.45 0.42 0.42 0.41 

aic 0.54 1.00 0.70 0.57 0.57 0.23 

bic 0.54 1.00 0.70 0.57 0.57 0.23 

K2 0.54 1.00 0.70 0.57 0.57 0.23 

6 
FilteredSubsetE

val 
GreedyStep

wise 
1012 36 15 14 

SAHBN NA 0.80 0.48 0.60 0.68 0.68 0.62 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.50 0.83 0.62 0.50 0.50 0.27 

mbde 0.52 1.00 0.69 0.54 0.53 0.13 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.91 0.27 0.42 0.62 0.62 0.42 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.52 1.00 0.68 0.54 0.53 0.12 

mbde 0.51 0.88 0.64 0.51 0.51 0.23 
aic 0.54 1.00 0.70 0.57 0.56 0.23 
bic 0.47 0.60 0.53 0.46 0.46 0.41 
K2 0.67 0.35 0.46 0.58 0.59 0.49 

7 
InfoGainAttribut

eEval 
Ranker 1012 36 24 22 

SAHBN NA 0.75 0.49 0.59 0.66 0.66 0.62 

Hill-
Climbing 

loglik 0.54 0.79 0.64 0.56 0.56 0.46 
bde 0.76 0.37 0.50 0.62 0.63 0.52 
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(hc) mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.84 0.13 0.22 0.55 0.55 0.22 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.65 0.39 0.49 0.59 0.59 0.52 

 
Tabu 

Search 
(tabu) 

loglik 0.54 0.94 0.69 0.57 0.57 0.32 
bde 0.54 1.00 0.70 0.57 0.57 0.23 

mbde 0.54 1.00 0.70 0.57 0.57 0.23 
aic 0.46 0.25 0.32 0.47 0.47 0.37 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.72 0.31 0.44 0.59 0.60 0.46 

8 
GainRatioAttrib

uteEval 
Ranker 1012 36 24 23 

SAHBN NA 1.00 0.15 0.26 0.57 0.58 0.26 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.71 0.60 0.59 0.32 
bde 0.65 1.00 0.72 0.60 0.60 0.34 

mbde 0.56 1.00 0.72 0.60 0.60 0.34 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.55 0.88 0.68 0.58 0.58 0.42 

Tabu 
Search 
(tabu) 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.56 1.00 0.2 0.60 0.60 0.33 

mbde 0.56 1.00 0.72 0.60 0.60 0.34 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.53 0.69 0.60 0.54 0.54 0.49 

9 
CorrelationAttri

buteEval 
Ranker 1012 36 24 23 

SAHBN NA 0.74 0.49 0.59 0.65 0.66 0.61 

Hill-
Climbing 

(hc) 

loglik 0.53 0.73 0.62 0.54 0.54 0.46 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.84 0.13 0.22 0.55 0.55 0.22 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
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K2 0.54 0.81 0.65 0.56 0.56 0.44 

Tabu 
Search 
(tabu) 

loglik 0.54 0.77 0.63 0.55 0.55 0.47 
bde 0.42 0.46 0.44 0.41 0.41 0.41 

mbde 0.43 0.55 0.49 0.41 0.41 0.36 
aic 0.42 0.35 0.38 0.43 0.43 0.41 
bic 0.54 1.00 0.70 0.57 0.57 0.23 
K2 0.52 0.64 0.58 0.52 0.52 0.49 

10 
ReliefFAttAttrib

uteEval 
Ranker 1012 36 24 22 

SAHBN NA 0.77 0.48 0.59 0.67 0.67 0.61 

Hill-
Climbing 

(hc) 

loglik 0.55 1.00 0.71 0.59 0.59 0.31 
bde 0.78 0.42 0.55 0.65 0.65 0.57 

mbde 0.79 0.42 0.55 0.65 0.65 0.57 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.56 0.23 
K2 0.64 0.37 0.47 0.58 0.58 0.51 

Tabu 
Search 
(tabu) 

loglik 0.56 1.00 0.71 0.60 0.59 0.31 
bde 0.78 0.42 0.55 0.65 0.65 0.57 

mbde 0.78 0.42 0.55 0.65 0.65 0.57 
aic 0.54 1.00 0.70 0.57 0.57 0.23 
bic 0.54 1.00 0.70 0.57 0.57 023 
K2 0.53 0.53 0.53 0.53 0.53 0.51 

11 
OneRAttributeE

val 
Ranker 1012 36 24 23 

SAHBN NA 0.74 0.48 0.59 0.65 0.66 0.61 

Hill-
Climbing 

(hc) 

loglik 0.54 0.51 0.53 0.53 0.53 0.53 
bde 0.76 0.37 0.50 0.62 0.63 0.52 

mbde 0.76 0.37 0.50 0.62 0.63 0.52 
aic 0.75 0.46 0.57 0.65 0.65 0.59 
bic 0.83 0.99 0.18 0.54 0.54 0.18 
K2 0.52 0.59 0.55 0.52 0.52 0.50 

Tabu 
Search 

loglik 0.54 0.48 0.51 0.53 0.53 0.52 
bde 0.49 0.66 0.56 0.48 0.48 0.41 
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(tabu) mbde 0.46 0.60 0.52 0.45 0.45 0.39 
aic 0.75 0.46 0.57 0.65 0.65 .59 
bic 0.63 0.13 0.21 0.52 0.53 0.22 
K2 0.55 0.94 0.70 0.59 0.58 0.36 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.   
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6.6 D.melanogaster-Gene2GO (CV=2.706) dataset experimental results 

Table 6-6 D.melanogaster-Gene2GO (CV=2.706) dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  
Reduction 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 860 44 27 26 

SAHBN NA 0.81 0.52 0.63 0.70 0.70 0.65 

Hill-
Climbing 

(hc) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 1.00 0.40 0.57 0.70 0.70 0.57 

mbde 1.00 0.40 0.57 0.70 0.70 0.57 
aic 0.38 0.21 0.27 0.43 0.43 0.31 
bic 0.46 0.19 0.27 0.48 0.48 0.30 
K2 0.97 0.53 0.69 0.76 0.76 0.69 

Tabu 
Search 
(tabu) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 1.00 0.40 0.57 0.70 0.70 0.57 

mbde 1.00 0.40 0.57 0.70 0.70 0.57 
aic 1.00 0.10 0.19 0.55 0.55 0.19 
bic 0.52 1.00 0.69 0.54 0.54 0.13 
K2 0.97 0.52 0.67 0.75 0.75 0.68 

2 CfsSubSetEval 
GreedyStep

wise 
860 44 26 25 

SAHBN NA 0.79 0.47 0.59 0.67 0.67 0.61 

Hill-
Climbing 

(hc) 

loglik 1.00 0.34 0.51 0.67 0.67 0.51 

bde 0.83 0.43 0.57 0.67 0.67 0.59 

mbde 0.86 0.41 0.56 0.67 0.67 0.57 

aic 1.00 0.10 0.19 0.55 0.55 0.19 

bic 1.00 0.10 0.19 0.55 0.55 0.19 

K2 0.97 0.52 0.67 0.75 0.75 0.68 

Tabu 
Search 
(tabu 

loglik 1.00 0.33 0.49 0.66 0.66 0.49 

bde 0.86 0.43 0.57 0.67 0.68 0.59 

mbde 0.86 0.43 0.57 0.68 0.68 0.59 
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aic 1.00 0.10 0.19 0.55 0.55 0.19 

bic 0.52 1.00 0.69 0.54 0.54 0.13 

K2 0.97 0.50 0.66 0.74 0.74 0.66 

3 
ConsistencySub

setEval 
BestFirst 860 44 14 14 

SAHBN NA 0.92 0.57 0.70 0.76 0.76 0.71 

Hill-
Climbing 

(hc) 

loglik 0.96 0.41 0.58 0.70 0.70 0.58 
bde 0.85 0.50 0.63 0.70 0.71 0.65 

mbde 0.85 0.50 0.63 0.70 0.71 0.65 
aic 0.40 0.17 0.24 0.45 0.45 0.28 
bic 0.41 0.12 0.19 0.47 0.47 0.21 
K2 0.97 0.50 0.66 0.74 0.74 0.66 

Tabu 
Search 
(tabu 

loglik 0.96 0.43 0.60 0.70 0.71 0.60 
bde 0.85 0.50 0.63 0.70 0.71 0.65 

mbde 0.85 0.50 0.63 0.70 0.71 0.65 
aic 0.56 0.17 0.26 0.51 0.52 0.29 
bic 0.47 0.14 0.21 0.49 0.49 0.24 
K2 0.97 0.52 0.67 0.75 0.75 0.68 

4 
ConsistencySub

setEval 
GreedyStep

wise 
860 44 16 16 

SAHBN NA 0.96 0.47 0.63 0.72 0.72 0.63 

Hill-
Climbing 

(hc) 

loglik 0.93 0.43 0.59 0.70 0.70 0.60 
bde 0.96 0.45 0.61 0.71 0.72 0.62 

mbde 1.00 0.41 0.59 0.70 0.71 0.59 
aic 0.75 0.16 0.26 0.55 0.55 0.27 
bic 0.56 0.17 0.26 0.51 0.52 0.29 
K2 0.97 0.52 0.67 0.75 0.75 0.68 

Tabu 
Search 
(tabu 

loglik 0.93 0.45 0.60 0.70 0.71 0.61 
bde 1.00 0.41 0.59 0.70 0.71 0.59 

mbde 1.00 0.43 0.60 0.71 0.72 0.60 
aic 0.50 0.16 0.24 0.50 0.50 0.26 
bic 0.45 0.17 0.25 0.48 0.48 0.28 
K2 0.93 0.48 0.64 0.72 0.72 0.64 
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5 
FilteredSubsetE

val 
BestFirst 860 44 27 26 

SAHBN NA 0.83 0.50 0.62 0.70 0.70 0.64 

Hill-
Climbing 

(hc) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 1.00 0.40 0.57 0.70 0.70 0.57 

mbde 1.00 0.41 0.59 0.70 0.71 0.59 
aic 1.00 0.14 0.24 0.57 0.57 0.24 

bic 1.00 0.10 0.29 0.55 0.55 0.19 

K2 0.97 0.48 0.64 0.73 0.73 0.65 

Tabu 
Search 
(tabu 

loglik 1.00 0.29 0.45 0.64 0.65 0.45 

bde 1.00 0.41 0.59 0.70 0.71 0.59 

mbde 1.00 0.40 0.57 0.70 0.70 0.57 

aic 1.00 0.10 0.19 0.55 0.55 0.19 

bic 0.52 1.00 0.69 0.54 0.54 0.13 

K2 0.97 0.50 0.66 0.74 0.74 0.66 

6 
FilteredSubsetE

val 
GreedyStep

wise 
860 44 26 25 

SAHBN NA 0.79 0.47 0.59 0.67 0.67 0.61 

Hill-
Climbing 

(hc) 

loglik 1.00 0.33 0.49 0.66 0.66 0.49 
bde 0.89 0.43 0.58 0.69 0.69 0.59 

mbde 0.87 0.45 0.59 0.69 0.69 0.60 
aic 0.38 0.19 0.25 0.43 0.44 0.30 
bic 0.86 0.10 0.18 0.54 0.54 0.19 
K2 0.97 0.52 0.67 0.75 0.75 0.68 

Tabu 
Search 
(tabu 

loglik 1.00 0.36 0.53 0.68 0.68 0.53 
bde 0.87 0.45 0.59 0.69 0.69 0.60 

mbde 0.86 0.43 0.57 0.68 0.68 0.59 
aic 0.43 0.16 0.23 0.47 0.47 0.26 
bic 0.49 0.79 0.61 0.48 0.48 0.26 
K2 0.97 0.48 0.64 0.73 0.73 0.65 

7 
InfoGainAttribut

eEval 
Ranker 860 44 27 26 

SAHBN NA 0.83 0.50 0.62 0.70 0.70 0.64 

Hill-
Climbing 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 0.60 1.00 0.75 0.67 0.67 0.50 
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(hc) mbde 0.60 1.00 0.75 0.67 0.67 0.50 
aic 0.26 0.17 0.21 0.34 0.34 0.26 
bic 0.44 0.14 0.21 0.48 0.48 0.24 
K2 0.96 0.45 0.61 0.71 0.72 0.62 

 
Tabu 

Search 
(tabu) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 0.60 1.00 0.75 0.67 0.67 0.50 

mbde 0.60 1.00 0.75 0.67 0.67 0.50 
aic 0.43 0.17 0.25 0.47 0.47 0.28 
bic 0.42 0.14 0.21 0.47 0.47 0.24 
K2 0.96 0.43 0.60 0.70 0.71 0.60 

8 
GainRatioAttrib

uteEval 
Ranker 860 44 27 27 

SAHBN NA 0.69 0.34 0.46 0.59 0.59 0.59 

Hill-
Climbing 

(hc) 

loglik 1.00 0.38 0.55 0.69 0.69 0.55 
bde 0.54 1.00 0.70 0.57 0.56 0.22 

mbde 0.54 1.00 0.70 0.57 0.56 0.22 
aic 0.40 0.14 0.21 0.46 0.46 0.23 
bic 0.47 0.14 0.21 0.49 0.49 0.24 
K2 0.69 0.43 0.53 0.62 0.62 0.56 

Tabu 
Search 
(tabu) 

loglik 1.00 0.40 0.57 0.70 0.70 0.57 
bde 0.54 1.00 0.70 0.57 0.56 0.22 

mbde 0.54 1.00 0.70 0.57 0.56 0.22 
aic 0.50 0.16 0.24 0.50 0.50 0.26 
bic 1.00 0.10 0.19 0.55 0.55 0.19 
K2 0.66 0.43 0.52 0.60 0.60 0.55 

9 
CorrelationAttri

buteEval 
Ranker 860 44 27 26 

SAHBN NA 0.87 0.57 0.69 0.74 0.74 0.70 

Hill-
Climbing 

(hc) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 0.95 0.36 0.53 0.67 0.67 0.53 

mbde 0.95 0.36 0.53 0.67 0.67 0.53 
aic 0.50 0.16 0.24 0.50 0.50 0.26 
bic 0.64 0.12 0.20 0.52 0.53 0.21 
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K2 0.96 0.47 0.63 0.72 0.72 0.63 

Tabu 
Search 
(tabu) 

loglik 1.00 0.31 0.47 0.65 0.66 0.47 
bde 0.95 0.36 0.53 0.67 0.67 0.53 

mbde 0.95 0.36 0.53 0.67 0.67 0.53 
aic 0.44 0.12 0.19 0.48 0.48 0.21 
bic 0.59 0.17 0.27 0.52 0.52 0.29 
K2 0.97 0.48 0.64 0.73 0.73 0.65 

10 
ReliefFAttAttrib

uteEval 
Ranker 860 44 27 26 

SAHBN NA 0.91 0.52 0.66 0.73 0.73 0.67 

Hill-
Climbing 

(hc) 

loglik 0.91 0.36 0.52 0.66 0.66 0.53 
bde 1.00 0.34 0.51 0.67 0.67 0.51 

mbde 1.00 0.34 0.51 0.67 0.67 0.51 
aic 0.52 1.00 0.69 0.54 0.54 0.13 
bic 0.69 0.16 0.25 0.54 0.54 0.27 
K2 0.97 0.48 0.64 0.73 0.73 0.65 

Tabu 
Search 
(tabu) 

loglik 0.95 0.36 0.53 0.67 0.67 0.53 
bde 1.00 0.34 0.51 0.67 0.67 0.51 

mbde 1.00 0.34 0.51 0.67 0.67 0.51 
aic 0.52 0.95 0.67 0.53 0.53 0.19 
bic 0.39 0.22 0.29 0.43 0.44 0.33 
K2 0.97 0.48 0.64 0.73 0.73 0.65 

11 
OneRAttributeE

val 
Ranker 860 44 27 25 

SAHBN NA 0.83 0.59 0.69 0.73 0.73 0.70 

Hill-
Climbing 

(hc) 

loglik 0.94 0.28 0.43 0.63 0.63 0.43 
bde 0.95 0.33 0.49 0.65 0.66 0.49 

mbde 0.95 0.33 0.49 0.65 0.66 0.49 
aic 1.00 0.17 0.29 0.58 0.59 0.29 
bic 0.69 0.16 0.25 0.54 0.54 0.27 
K2 0.88 0.40 0.55 0.67 0.67 0.56 

Tabu 
Search 

loglik 1.00 0.33 0.49 0.66 0.66 0.49 
bde 0.95 0.33 0.49 0.65 0.66 0.49 
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(tabu) mbde 0.95 0.33 0.49 0.65 0.66 0.49 
aic 1.00 0.17 0.29 0.58 0.59 0.59 
bic 0.48 0.79 0.60 0.46 0.46 0.21 
K2 0.75 0.41 0.53 0.63 0.64 0.56 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  
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6.7 D.melanogaster-Gene2GO (CV=3.841) dataset experimental results 

Table 6-7 D.melanogaster-Gene2GO (CV=3.841) dataset Experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Chi-Squared 
Test 

Reduction 

Attr. 
Selection  

Reduction. 

Sub-Super 
Class Test 
Reduction 

Algorithm Score P R F1 A 
AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 860 15 8 8 

SAHBN NA 0.57 0.93 0.71 0.62 0.61 0.45 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.55 0.86 0.67 0.57 0.57 0.42 

mbde 0.58 1.00 0.73 0.63 0.63 0.42 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 1.00 0.26 0.41 0.63 0.63 0.41 

Tabu 
Search 
(tabu) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.56 1.00 0.72 0.61 0.61 0.35 

mbde 0.56 1.00 0.72 0.60 0.60 0.32 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.75 0.25 
K2 0.54 0.66 0.59 0.54 0.54 0.51 

2 CfsSubSetEval 
GreedyStep

wise 
860 15 8 8 

SAHBN NA 0.57 0.93 0.71 0.62 0.61 0.45 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.58 1.00 0.73 0.63 0.63 0.42 

mbde 0.54 0.86 0.67 0.57 0.56 0.40 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 1.00 0.26 0.41 0.63 0.63 0.41 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.56 1.00 0.72 0.61 0.61 0.35 

mbde 0.56 1.00 0.72 0.60 0.60 0.32 



Page | 151  

 

aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.50 0.57 0.53 0.50 0.50 0.48 

3 
ConsistencySub

setEval 
BestFirst 860 15 5 5 

SAHBN NA 0.59 1.00 0.74 0.65 0.65 0.46 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.59 1.00 0.74 0.64 0.64 0.44 

mbde 0.58 1.00 0.73 0.63 0.63 0.42 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.59 1.00 0.74 0.64 0.64 0.44 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.56 1.00 0.72 0.60 0.60 0.32 

mbde 0.56 1.00 0.72 0.61 0.61 0.35 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.59 1.00 0.74 0.64 0.64 0.44 

4 
ConsistencySub

setEval 
GreedyStep

wise 
860 15 5 5 

SAHBN NA 0.59 1.00 0.74 0.65 0.65 0.46 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.59 1.00 0.74 0.64 0.64 0.44 

mbde 0.58 1.00 0.73 0.63 0.63 0.42 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.58 1.00 0.73 0.63 0.63 0.42 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.72 0.60 0.60 0.32 
bde 0.56 1.00 0.72 0.60 0.60 0.32 

mbde 0.56 1.00 0.72 0.61 0.61 0.35 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.59 1.00 0.74 0.64 0.64 0.44 
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5 
FilteredSubsetE

val 
BestFirst 860 15 8 8 

SAHBN NA 0.57 0.93 0.71 0.62 0.61 0.45 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.56 0.93 0.70 0.60 0.60 0.41 

mbde 0.59 1.00 0.74 0.64 0.64 0.44 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.65 0.29 0.40 0.57 0.57 0.43 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.72 0.60 0.60 0.32 
bde 0.56 1.00 0.72 0.61 0.61 0.35 

mbde 0.57 1.00 0.73 0.62 0.61 0.37 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.49 0.83 0.62 0.49 0.48 0.24 
K2 0.58 0.86 0.69 0.62 0.62 0.52 

6 
FilteredSubsetE

val 
GreedyStep

wise 
860 15 8 8 

SAHBN NA 0.57 0.93 0.71 0.62 0.61 0.45 

Hill-
Climbing 

(hc) 

loglik 0.56 1.00 0.72 0.60 0.60 0.32 
bde 0.55 0.84 0.67 0.57 0.57 0.44 

mbde 0.59 1.00 0.74 0.64 0.64 0.44 
aic 0.52 0.88 0.65 0.52 0.52 0.27 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 1.00 0.26 0.41 0.63 0.63 0.41 

Tabu 
Search 
(tabu 

loglik 0.56 1.00 0.72 0.61 0.61 0.35 
bde 0.56 1.00 0.72 0.61 0.61 0.35 

mbde 0.57 1.00 0.73 0.62 0.61 0.37 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.52 0.66 0.58 0.52 0.52 0.49 

7 
InfoGainAttribut

eEval 
Ranker 860 15 5 5 

SAHBN NA 1.00 0.19 0.32 0.59 0.59 0.32 
Hill-

Climbing 
loglik 0.54 1.00 0.70 0.57 0.57 0.25 
bde 0.52 0.79 0.63 0.52 0.52 0.38 
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(hc) mbde 0.49 0.74 0.59 0.49 0.48 0.35 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.45 0.38 0.41 0.45 0.45 0.44 

 
Tabu 

Search 
(tabu) 

loglik 0.54 1.00 0.70 0.57 0.57 0.25 
bde 0.37 0.17 0.24 0.43 0.44 0.28 

mbde 0.58 0.12 0.20 0.51 0.52 0.21 
aic 0.75 0.16 0.26 0.55 0.55 0.27 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.54 0.24 0.33 0.51 0.52 0.37 

8 
GainRatioAttrib

uteEval 
Ranker 860 15 5 5 

SAHBN NA 0.58 0.26 0.36 0.53 0.53 0.39 

Hill-
Climbing 

(hc) 

loglik 0.54 1.00 0.70 0.57 0.57 0.25 
bde 0.53 0.88 0.66 0.54 0.54 0.32 

mbde 0.53 0.79 0.63 0.54 0.54 0.41 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.52 0.76 0.62 0.52 0.52 0.41 

Tabu 
Search 
(tabu) 

loglik 0.54 1.00 0.70 0.57 0.57 0.25 
bde 0.62 0.14 0.23 0.52 0.53 0.24 

mbde 0.36 0.17 0.23 0.43 0.43 0.28 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.34 0.21 0.26 0.40 0.40 0.31 
K2 0.52 0.83 0.64 0.53 0.53 0.37 

9 
CorrelationAttri

buteEval 
Ranker 860 15 5 5 

SAHBN NA 0.55 0.98 0.71 0.59 0.59 0.32 

Hill-
Climbing 

(hc) 

loglik 0.55 0.98 0.71 0.59 0.59 0.32 
bde 0.62 0.22 0.33 0.54 0.54 0.36 

mbde 0.47 0.31 0.38 0.48 0.48 0.42 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
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K2 0.49 0.38 0.43 0.49 0.49 0.46 

Tabu 
Search 
(tabu) 

loglik 0.55 0.98 0.70 0.58 0.58 0.30 
bde 0.50 0.34 0.41 0.50 0.50 0.45 

mbde 0.47 0.28 0.35 0.48 0.48 0.39 
aic 0.31 0.19 0.23 0.37 0.38 0.28 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.50 0.29 0.37 0.50 0.50 0.41 

10 
ReliefFAttAttrib

uteEval 
Ranker 860 15 5 5 

SAHBN NA 0.55 0.98 0.71 0.59 0.59 0.32 

Hill-
Climbing 

(hc) 

loglik 0.55 0.98 0.70 0.58 0.58 0.30 
bde 0.43 0.38 0.40 0.43 0.44 0.43 

mbde 0.63 0.33 0.43 0.57 0.57 0.47 
aic 0.52 0.91 0.67 0.54 0.54 0.27 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.60 0.26 0.36 0.54 0.54 0.39 

Tabu 
Search 
(tabu) 

loglik 0.55 0.98 0.71 0.59 0.59 0.32 
bde 0.50 0.26 0.34 0.50 0.50 0.38 

mbde 0.49 0.36 0.42 0.49 0.49 0.46 
aic 1.00 0.10 0.19 0.55 0.55 0.19 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.54 0.34 0.42 0.52 0.52 0.46 

11 
OneRAttributeE

val 
Ranker 860 15 5 5 

SAHBN NA 0.55 0.98 0.71 0.59 0.59 0.32 

Hill-
Climbing 

(hc) 

loglik 0.55 0.98 0.70 0.58 0.58 0.30 
bde 0.52 0.84 0.64 0.52 0.52 0.31 

mbde 0.55 1.00 0.71 0.59 0.59 0.30 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.51 0.79 0.62 0.50 0.50 0.33 

Tabu 
Search 

loglik 0.56 1.00 0.72 0.60 0.60 0.32 
bde 0.53 0.86 0.65 0.54 0.54 0.34 
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(tabu) mbde 0.54 0.91 0.68 0.56 0.55 0.32 
aic 0.54 1.00 0.70 0.57 0.57 0.25 
bic 0.54 1.00 0.70 0.57 0.57 0.25 
K2 0.51 0.84 0.64 0.51 0.51 0.29 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  
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6.8 Homo-sapiens protein hub dataset experimental results 

Table 6-8 Homo-sapiens protein hub dataset experimental results 

No. 
Attributes Selection Initial 

Attr. 
No. 

Attr. 
Selection  

Reduction. 

Sub-Super 
Class Test 
Reduction 

Algorithm Score 
Constrai

nt 
P R F1 A 

AV
A 

HA Evaluation 
Method 

Search 
Method 

1 CfsSubSetEval BestFirst 6455 157 141 

SAHBN NA 0.76 0.71 0.74 0.74 0.74 0.74 
Hill-

Climbing 
(hc) 

aic 

NA 

0.78 0.50 0.61 0.68 0.68 0.63 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.91 0.60 0.72 0.77 0.77 0.73 

Tabu Search 
(tabu) 

aic 0.78 0.50 0.61 0.68 0.68 0.63 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.92 0.62 0.74 0.78 0.78 0.75 

Grow-Shring 
(gs) 

NA 

mi 0.44 0.48 0.46 0.43 0.43 0.42 
mi-adf 0.44 0.53 0.48 0.43 0.43 0.41 
mi-sh 0.44 0.40 0.42 0.45 0.45 0.44 

X2 0.42 0.34 0.37 0.44 0.44 0.41 
X2-adf 0.47 0.52 0.49 0.46 0.46 0.46 

Incremental 
Association 

(iamb) 
NA 

mi 0.94 0.19 0.31 0.59 0.59 0.32 
mi-adf 0.45 0.37 0.41 0.46 0.46 0.44 
mi-sh 0.94 0.19 0.31 0.59 0.59 0.32 

X2 0.94 0.19 0.31 0.59 0.59 0.32 
X2-adf 0.42 0.25 0.31 0.45 0.45 0.36 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.46 0.64 0.53 0.44 0.44 0.35 
mi-adf 0.44 0.42 0.43 0.45 0.45 0.45 
mi-sh 0.48 0.58 0.53 0.47 0.47 0.45 

X2 0.43 0.48 0.45 0.43 0.43 0.42 
X2-adf 0.77 0.28 0.41 0.60 0.60 0.42 

Interleaved NA mi 0.94 0.19 0.31 0.59 0.59 0.32 
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Incremental 
Association 
(inter.iamb) 

mi-adf 0.47 0.56 0.51 0.46 0.46 0.44 
mi-sh 0.94 0.19 0.31 0.59 0.59 0.32 

X2 0.94 0.19 0.31 0.59 0.59 0.32 
X2-adf 0.46 0.50 0.48 0.45 0.45 0.45 

2 CfsSubSetEval 
GreedyStep

wise 
6455 502 408 

SAHBN NA 0.80 0.67 0.73 0.75 0.75 0.74 

Hill-
Climbing 

(hc) 

aic 

NA 

0.85 0.58 0.69 0.74 0.74 0.71 
bic 0.94 0.26 0.41 0.63 0.63 0.41 
K2 0.85 0.78 0.81 0.82 0.82 0.82 

Tabu Search 
(tabu) 

aic 0.84 0.58 0.69 0.74 0.74 0.70 
bic 0.97 0.26 0.41 0.63 0.63 0.41 
K2 0.84 0.78 0.81 0.82 0.82 0.81 

Grow-Shring 
(gs) 

NA 

mi 0.45 0.54 0.49 0.44 0.44 0.41 
mi-adf 0.89 0.10 0.17 0.54 0.54 0.18 
mi-sh 0.48 0.40 0.44 0.49 0.49 0.47 

X2 0.46 0.47 0.46 0.45 0.45 0.45 
X2-adf 0.46 0.55 0.50 0.45 0.45 0.43 

Incremental 
Association 

(iamb) 
NA 

mi 0.81 0.52 0.64 0.70 0.70 0.66 
mi-adf 0.44 0.44 0.44 0.44 0.44 0.44 
mi-sh 0.81 0.52 0.64 0.70 0.70 0.66 

X2 0.44 0.35 0.39 0.45 0.45 0.43 
X2-adf 0.45 0.44 0.44 0.45 0.45 0.45 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.81 0.52 0.64 0.70 0.70 0.66 
mi-adf 0.48 0.57 0.52 0.48 0.48 0.46 
mi-sh 0.81 0.52 0.64 0.70 0.70 0.66 

X2 0.43 0.34 0.38 0.44 0.44 0.42 
X2-adf 0.44 0.41 0.43 0.45 0.45 0.44 

Interleaved 
Incremental 
Association 

NA 

mi 0.81 0.52 0.64 0.70 0.70 0.66 
mi-adf 0.48 0.65 0.55 0.47 0.47 0.41 
mi-sh 0.81 0.52 0.64 0.70 0.70 0.66 
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(inter.iamb) X2 0.81 0.52 0.64 0.70 0.70 0.66 
X2-adf 0.45 0.54 0.49 0.44 0.44 0.42 

3 
ConsistencySub

setEval 
BestFirst 6455 44 36 

SAHBN NA 0.78 0.72 0.75 0.76 0.76 0.76 

Hill-
Climbing 

(hc) 

aic 

NA 

0.94 0.19 0.31 0.59 0.59 0.32 
bic 0.94 0.19 0.31 0.59 0.59 0.32 
K2 0.78 0.71 0.75 0.76 0.76 0.76 

Tabu Search 
(tabu) 

aic 0.96 0.11 0.19 0.55 0.55 0.19 
bic 0.94 0.19 0.31 0.59 0.59 0.32 
K2 0.79 0.70 0.74 0.76 0.76 0.75 

Grow-Shring 
(gs) 

NA 

mi 0.45 0.50 0.47 0.44 0.44 0.44 
mi-adf 0.43 0.39 0.41 0.43 0.43 0.43 
mi-sh 0.46 0.55 0.50 0.45 0.45 0.43 

X2 0.41 0.45 0.43 0.40 0.40 0.40 
X2-adf 0.41 0.32 0.36 0.42 0.42 0.40 

Incremental 
Association 

(iamb) 
NA 

mi 0.85 0.19 0.31 0.58 0.58 0.31 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.85 0.19 0.31 0.58 0.58 0.31 

X2 0.41 0.29 0.34 0.44 0.44 0.39 
X2-adf 0.41 0.29 0.34 0.44 0.44 0.39 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.48 0.45 0.46 0.48 0.48 0.48 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.80 0.47 0.59 0.68 0.68 0.61 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.85 0.19 0.31 0.58 0.58 0.31 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.85 0.19 0.31 0.58 0.58 0.31 

X2 0.46 0.37 0.41 0.47 0.47 0.45 
X2-adf 0.46 0.37 0.41 0.47 0.47 0.45 
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4 
ConsistencySub

setEval 
GreedyStep

wise 
6455 51 44 

SAHBN NA 0.74 0.70 0.72 0.73 0.73 0.73 

Hill-
Climbing 

(hc) 

aic 

NA 

0.77 0.56 0.65 0.70 0.70 0.67 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.75 0.65 0.70 0.72 0.72 0.71 

Tabu Search 
(tabu) 

aic 0.77 0.56 0.65 0.70 0.70 0.67 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.77 0.64 0.70 0.72 0.72 0.71 

Grow-Shring 
(gs) 

NA 

mi 0.84 0.13 0.22 0.55 0.55 0.23 
mi-adf 0.46 0.55 0.50 0.45 0.45 0.43 
mi-sh 0.84 0.13 0.22 0.55 0.55 0.23 

X2 0.47 0.51 0.49 0.47 0.47 0.46 
X2-adf 0.46 0.56 0.51 0.46 0.46 0.43 

Incremental 
Association 

(iamb) 
NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.62 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.80 0.47 0.59 0.68 0.68 0.61 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.78 0.60 0.68 0.71 0.71 0.70 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.41 0.32 0.36 0.43 0.43 0.40 
X2-adf 0.46 0.55 0.50 0.45 0.45 0.43 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.80 0.47 0.59 0.68 0.68 0.61 

5 
FilteredSubsetE

val 
BestFirst 6455 49 39 

SAHBN NA 0.82 0.79 0.80 0.81 0.81 0.81 
Hill- aic NA 0.78 0.50 0.60 0.68 0.68 0.63 
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Climbing 
(hc) 

bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.92 0.60 0.72 0.77 0.77 0.73 

Tabu Search 
(tabu) 

aic 0.78 0.50 0.60 0.68 0.68 0.63 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.92 0.59 0.72 0.77 0.77 0.73 

Grow-Shring 
(gs) 

NA 

mi 0.42 0.48 0.45 0.41 0.41 0.40 
mi-adf 0.44 0.35 0.39 0.45 0.45 0.43 
mi-sh 0.40 0.40 0.40 0.40 0.40 0.40 

X2 0.44 0.35 0.39 0.45 0.45 0.43 
X2-adf 0.44 0.35 0.39 0.45 0.45 0.43 

Incremental 
Association 

(iamb) 
NA 

mi 0.94 0.19 0.31 0.59 0.59 0.32 
mi-adf 0.47 0.56 0.51 0.46 0.46 0.44 
mi-sh 0.94 0.19 0.31 0.59 0.59 0.32 

X2 0.94 0.19 0.31 0.59 0.59 0.32 
X2-adf 0.46 0.55 0.50 0.45 0.45 0.43 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.46 0.50 0.48 0.46 0.46 0.45 
mi-adf 0.44 0.40 0.42 0.45 0.45 0.44 
mi-sh 0.46 0.55 0.50 0.45 0.43 0.43 

X2 0.44 0.35 0.39 0.45 0.45 0.43 
X2-adf 0.44 0.30 0.36 0.46 0.46 0.40 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.94 0.19 0.31 0.59 0.59 0.32 
mi-adf 0.46 0.55 0.50 0.45 0.45 0.43 
mi-sh 0.94 0.19 0.31 0.59 0.59 0.32 

X2 0.94 0.19 0.31 0.59 0.59 0.32 
X2-adf 0.43 0.34 0.38 0.44 0.44 0.42 

6 
FilteredSubsetE

val 
GreedyStep

wise 
6455 53 41 

SAHBN NA 0.82 0.80 0.81 0.81 0.81 0.81 

Hill-
Climbing 

(hc) 

aic 
NA 

0.76 0.43 0.55 0.65 0.65 0.57 
bic 0.76 0.43 0.55 0.65 0.65 0.57 
K2 0.84 0.63 0.72 0.76 0.76 0.74 
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Tabu Search 
(tabu) 

aic 0.44 0.48 0.46 0.43 0.43 0.43 
bic 0.46 0.55 0.50 0.45 0.45 0.43 
K2 0.84 0.64 0.73 0.76 0.76 0.74 

Grow-Shring 
(gs) 

NA 

mi 0.45 0.36 0.40 0.46 0.46 0.44 
mi-adf 0.45 0.50 0.47 0.45 0.45 0.44 
mi-sh 0.44 0.30 0.36 0.46 0.46 0.41 

X2 0.49 0.54 0.51 0.49 0.49 0.48 
X2-adf 0.44 0.48 0.46 0.43 0.43 0.42 

Incremental 
Association 

(iamb) 
NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.48 0.50 0.49 0.48 0.48 0.48 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.45 0.50 0.47 0.45 0.45 0.44 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.47 0.56 0.51 0.46 0.46 0.44 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.86 0.20 0.32 0.58 0.58 0.33 
X2-adf 0.41 0.32 0.36 0.43 0.43 0.40 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.46 0.41 0.43 0.46 0.46 0.46 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.43 0.38 0.41 0.44 0.44 0.43 

7 
InfoGainAttribut

eEval 
Ranker 6455 502 349 

SAHBN NA 0.84 0.80 0.82 0.82 0.82 0.82 

Hill-
Climbing 

(hc) 

aic 

NA 

0.96 0.29 0.44 0.64 0.64 0.45 
bic 0.89 0.34 0.49 0.65 0.65 0.50 

             

Tabu Search 
(tabu) 

aic 0.96 0.29 0.44 0.64 0.64 0.45 
bic 0.89 0.34 0.49 0.65 0.65 0.50 
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Grow-Shring 
(gs) 

NA 

mi 0.48 0.54 0.51 0.48 0.48 0.47 
mi-adf 0.43 0.37 0.39 0.44 0.44 0.43 
mi-sh 0.47 0.50 0.48 0.47 0.47 0.47 

X2 0.46 0.50 0.48 0.45 0.45 0.45 
X2-adf 0.45 0.54 0.49 0.45 0.45 0.43 

Incremental 
Association 

(iamb) 
NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.46 0.50 0.48 0.45 0.45 0.45 
X2-adf 0.43 0.48 0.46 0.43 0.43 0.42 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.96 0.27 0.42 0.63 0.63 0.42 
mi-adf 0.77 0.52 0.62 0.68 0.68 0.64 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.77 0.50 0.61 0.67 0.67 0.63 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.80 0.47 0.59 0.68 0.68 0.61 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.80 0.47 0.59 0.68 0.68 0.61 

X2 0.44 0.39 0.41 0.44 0.44 0.44 
X2-adf 0.44 0.53 0.48 0.43 0.43 0.40 

8 
GainRatioAttrib

uteEval 
Ranker 6544 502 382 

SAHBN NA 0.89 0.79 0.84 0.85 0.85 0.84 

Hill-
Climbing 

(hc) 

aic 

NA 

0.95 0.33 0.49 0.66 0.66 0.50 
bic 0.95 0.28 0.43 0.63 0.63 0.43 

             

Tabu Search 
(tabu) 

aic 0.95 0.33 0.49 0.66 0.66 0.50 
bic 0.94 0.19 0.31 0.59 0.59 0.32 

             
Grow-Shring NA mi 0.43 0.52 0.47 0.42 0.42 0.39 
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(gs) mi-adf 0.48 0.57 0.52 0.48 0.48 0.47 
mi-sh 0.94 0.19 0.31 0.59 0.59 0.32 

X2 0.46 0.51 0.48 0.46 0.46 0.45 
X2-adf 0.42 0.30 0.35 0.44 0.44 0.39 

Incremental 
Association 

(iamb) 
NA 

mi 0.41 0.33 0.37 0.43 0.43 0.41 
mi-adf 0.41 0.29 0.34 0.43 0.43 0.39 
mi-sh 0.47 0.56 0.51 0.47 0.47 0.45 

X2 0.44 0.40 0.42 0.45 0.45 0.44 
X2-adf 0.47 0.51 0.49 0.47 0.47 0.46 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.49 0.53 0.51 0.48 0.48 0.48 
mi-adf 0.96 0.11 0.19 0.55 0.55 0.19 
mi-sh 0.96 0.27 0.42 0.63 0.63 0.42 

X2 0.43 0.38 0.40 0.44 0.44 0.43 
X2-adf 0.42 0.38 0.40 0.43 0.43 0.42 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.46 0.50 0.48 0.46 0.46 0.45 
mi-adf 0.44 0.32 0.37 0.46 0.46 0.42 
mi-sh 0.45 0.46 0.46 0.45 0.45 0.45 

X2 0.42 0.38 0.40 0.43 0.43 0.42 
X2-adf 0.46 0.41 0.43 0.46 0.46 0.45 

9 
CorrelationAttri

buteEval 
Ranker 6544 502 336 

SAHBN NA 0.89 0.76 0.82 0.84 0.84 0.83 

Hill-
Climbing 

(hc) 

aic 

NA 

0.96 0.29 0.44 0.64 0.64 0.45 
bic 0.89 0.34 0.49 0.65 0.65 0.50 

             

Tabu Search 
(tabu) 

aic 0.92 0.10 0.17 0.54 0.54 0.18 
bic 0.89 0.34 0.49 0.65 0.65 0.50 

             

Grow-Shring 
(gs) 

NA 
mi 0.47 0.60 0.53 0.47 0.47 0.43 

mi-adf 0.44 0.45 0.44 0.43 0.43 0.43 
mi-sh 0.46 0.55 0.50 0.45 0.45 0.42 
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X2 0.44 0.48 0.46 0.43 0.43 0.43 
X2-adf 0.44 0.53 0.48 0.43 0.43 0.41 

Incremental 
Association 

(iamb) 
NA 

mi 0.78 0.35 0.48 0.63 0.63 0.51 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.78 0.35 0.48 0.63 0.63 0.51 

X2 0.47 0.53 0.50 0.46 0.46 0.46 
X2-adf 0.45 0.34 0.39 0.46 0.46 0.43 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.96 0.27 0.42 0.63 0.63 0.42 
mi-adf 0.77 0.52 0.62 0.68 0.68 0.64 
mi-sh 0.43 0.34 0.38 0.44 0.44 0.42 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.77 0.50 0.61 0.67 0.67 0.63 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.78 0.35 0.48 0.63 0.63 0.51 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.78 0.35 0.48 0.63 0.63 0.51 

X2 0.43 0.51 0.47 0.41 0.41 0.39 
X2-adf 0.47 0.66 0.55 0.46 0.46 0.37 

10 
ReliefFAttAttrib

uteEval 
Ranker 6544 502 371 

SAHBN NA 0.73 0.68 0.71 0.72 0.72 0.71 

Hill-
Climbing 

(hc) 

aic 

NA 

0.96 0.29 0.44 0.64 0.64 0.45 
bic 0.96 0.29 0.42 0.63 0.63 0.42 

             

Tabu Search 
(tabu) 

aic 0.96 0.29 0.44 0.64 0.64 0.45 
bic 0.96 0.27 0.42 0.63 0.63 0.42 

             

Grow-Shring 
(gs) 

NA 

mi 0.47 0.52 0.50 0.47 0.47 0.47 
mi-adf 0.46 0.55 0.50 0.45 0.45 0.43 
mi-sh 0.46 0.41 0.43 0.46 0.46 0.45 

X2 0.44 0.35 0.39 0.45 0.45 0.43 
X2-adf 0.43 0.39 0.41 0.44 0.44 0.43 
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Incremental 
Association 

(iamb) 
NA 

mi 0.96 0.27 0.42 0.63 0.63 0.42 
mi-adf 0.94 0.19 0.31 0.59 0.59 0.32 
mi-sh 0.86 0.20 0.32 0.58 0.58 0.33 

X2 0.46 0.53 0.49 0.45 0.45 0.44 
X2-adf 0.47 0.51 0.49 0.47 0.47 0.46 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.83 0.19 0.31 0.58 0.58 0.32 
mi-adf 0.46 0.58 0.51 0.44 0.44 0.40 
mi-sh 0.46 0.59 0.52 0.45 0.45 0.41 

X2 0.86 0.20 0.32 0.58 0.58 0.33 
X2-adf 0.42 0.51 0.46 0.41 0.41 0.38 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.96 0.27 0.42 0.63 0.63 0.42 
mi-adf 0.94 0.19 0.31 0.59 0.59 0.32 
mi-sh 0.86 0.20 0.32 0.58 0.58 0.33 

X2 0.94 0.19 0.31 0.59 0.59 0.32 
X2-adf 0.44 0.48 0.46 0.43 0.43 0.42 

11 
OneRAttributeE

val 
Ranker 6544 502 336 

SAHBN NA 0.83 0.80 0.81 0.82 0.82 0.82 

Hill-
Climbing 

(hc) 

aic 

NA 

0.94 0.31 0.46 0.64 0.64 0.47 
bic 0.89 0.34 0.49 0.65 0.65 0.50 

             

Tabu Search 
(tabu) 

aic 0.94 0.30 0.46 0.64 0.64 0.46 
bic 0.89 0.34 0.49 0.65 0.65 0.50 

             

Grow-Shring 
(gs) 

NA 

mi 0.43 0.34 0.38 0.44 0.44 0.42 
mi-adf 0.45 0.34 0.39 0.46 0.46 0.43 
mi-sh 0.46 0.41 0.43 0.46 0.46 0.46 

X2 0.45 0.54 0.49 0.44 0.44 0.41 
X2-adf 0.45 0.32 0.37 0.46 0.46 0.42 

Incremental 
Association 

NA 
mi 0.78 0.35 0.48 0.63 0.63 0.51 

mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
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(iamb) mi-sh 0.78 0.35 0.48 0.63 0.63 0.51 
X2 0.45 0.59 0.51 0.44 0.44 0.38 

X2-adf 0.44 0.49 0.47 0.44 0.44 0.43 

Fast 
Incremental 
Association 
(fast.iamb) 

NA 

mi 0.96 0.27 0.42 0.63 0.63 0.42 
mi-adf 0.77 0.52 0.62 0.68 0.68 0.64 
mi-sh 0.47 0.52 0.49 0.47 0.47 0.46 

X2 0.80 0.47 0.59 0.68 0.68 0.61 
X2-adf 0.77 0.50 0.61 0.68 0.68 0.63 

Interleaved 
Incremental 
Association 
(inter.iamb) 

NA 

mi 0.78 0.35 0.48 0.63 0.63 0.51 
mi-adf 0.80 0.47 0.59 0.68 0.68 0.61 
mi-sh 0.78 0.35 0.48 0.63 0.63 0.51 

X2 0.44 0.36 0.40 0.45 0.45 0.43 
X2-adf 0.47 0.59 0.52 0.46 0.46 0.43 

P: Precision, R: Recall, F1: F1 measure, A: Accuracy, AVA: Average Accuracy, HA: Harmonic Accuracy.  
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