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NHS National Health Service 
NIH                         National Institutes of Health 
NK                         Natural killer cell 
NL1                      Nuclear localisation 1 
NL2                        Nuclear localisation 2 
NLS                       Nuclear localization signal 
NO                       Nitric oxide 
NR3C1 Nuclear receptor subfamily 3, group C, member 1 
NTD                      N terminal domain  
OCN                 Osteoblast late marker osteocalcin   
OH                      Hydroxylase 
P27                      Protein 27   
p38                      MAPK p38 mitogen-activated protein kinases 
PBS                      Phosphate buffer saline 
PCA                      Principal components analysis 
PCAF                    P300/CBP associated factor 
PCD  Programmed cell death 
Pcd4                       Programmed Cell Death 4 
PCNA                  Proliferating cell nuclear antigen 
PE                      Phosphatidylethanolamine 
PH                      Pleckstrin homology 
PI                       Propidium iodide 
PI                         Protease inhibitor 
PI3K                    Phosphatidyl inositol 3-kinase 
PIP2                      Phosphatidylinositol 4, 5-biphosphate 
PIP3                     Phosphatidylinositol 3,4,5-triphosphate 
PIR                        Pirarubicin 
PKB                      Protein Kinase B 
PP5                    Protein phosphatase 5   
PPID Peptidylprolyl isomerase D 
PPP5C Protein phosphatase 5 protein 
PD-1                       Programmed cell death 1  
PS                        Phosphotidylserine 
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PTBE                    Peritumoral brain edema  
PTEN                   Phosphatase and tensin homolog 
PTMs Post translational modifications 
qRT-PCR             Quantitative real time polymerase chain reaction 
Rad3                    Related Bad Bcl-2 antagonist of cell death 
RIP1                    Receptor interacting serine/threonine kinase 1 
RIP3                     Receptor interacting serine/threonine kinase 1 
RN Ribonucleic acid 
RNA pol II            RNA polymerase-II 
ROS                      Reactive oxygen species 
Rpl19                     Ribosomal protein L19 
Rpm                    Round per minute 
RT                       Room temperature 
RUNX3               Runt-related transcription factor 3 
S phase DNA synthesis 
S203  Serine 203 
SCF                        Stem cell factor 
SCT    Stem cells transplantation 
SDF-1                   Stromal cell-derived factor 1 
SDS                     Sodium dodecyl sulphate 
SDS-PAGE           Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
SEGRA                Selective glucocorticoid receptor agonist/activator 
SGK1                  Serum/glucocorticoid regulated kinase 1  
SMAC                 Second mitochondria derived activator of caspase 
SMRT Silencing mediator of retinoid and thyroid hormone receptor 
SNS                      Sympathetic nervous system 
SRC1 Steroid receptor coactivator-1 
SRF  Serum response factor   
STAT5  Signal transducer and activator of transcription 5 
STIP1 Stress-induced-phosphoprotein 1 
SUMO  Small ubiquitin-related modifier1 
SUMO1              Small Ubiquitin Related Modifier-1 
T-ALL                 T-Acute Lymphoblastic Leukemia 
T-bet                 TBX21 (TBET) T-box 21 
TAD                   Transcription activation domain 
TAFS  TBP-associated factor   
TAT3                   Tyrosine aminotransferase 3 
tBID                   BH3 interacting domain death agonist 
TBP  Tata box-binding protein 
TBS                     Tris buffered saline 
TCR                      T cell antigen receptor  
TEMED               Tetra methyl ethylene diamine 
TFIIA                    Transcription factor two A 
TFIIB                    Transcription Factor two B  
TFIIE                      Transcription factor two IE 
TFIIF                      Transcription factor two F 
TFIIH                 Transcription factor two Human 
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Th-1                      T-helper cell 1 
TIF2                       Transcriptional mediators/intermediary factor 2  
TNF                       Tumor necrosis factor 
TNF- α                  Tumor necrosis factor- alpha  
TNF-R                   Tumor necrosis factor receptor 
TRADD                  TNF receptor-associated death domain 
TRADD                  TNFRSF1A associated via death domain 
TRAP  Thyroid hormone receptor associated protein 
TXNIP                   Thioredoxin-interacting protein   
Ubc9    Ubiquitin-conjugating enzyme E2I 
UBCs                    E2 ubiquitin-conjugating enzymes 
UV                        Ultraviolet 
VDAC                   Voltage-dependent anion channel 
VLA-4                   Very late antigen-4 
WBC                    White blood cells  
WCR World Cancer Research Fund International 
WHO                   World Health Organization 
β-GP                    β-Glycerol phosphate  
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Abstract 

 

Glucocorticoids (GCs) play important functions in human physiology, and are commonly 

prescribed anti-inflammatory and immunosuppressive drugs. GCs are used in treatment 

of childhood acute lymphocytic leukemia (ALL), however resistance to therapy and side 

effects highlight the need for further research. 

Glucocorticoids exert their function through binding to intracellular protein 

glucocorticoid receptor (GR). It is believed that the desired apoptotic effect on cancer 

cells and anti-inflammatory properties of GCs are due to the GR’s mediated trans-

repression function, and that genes positively regulated by GR may mediate unwanted 

GCs effects. Thus, this study aimed to investigate compounds that would potentially 

dissociate transcriptional activation from repression,  minimize the side effects and GC 

resistance, towards improving childhood leukemia therapy.    

The recently developed selective GR modulator (SGRM) Compound A (CPDA) and 

synthetic GC dexamethasone (DEX) were used together with two “single ring” organic 

compounds; Tyramine (T) and Tyramine hydrochloride (THCl), as well as Compound B 

and Compound C, to assess their cytotoxic and anti-inflammatory effects.  Molecular 

modelling has indicated that these compounds contact several residues similar to 

classical GCs. DEX, CPDA, T and THCL all show cytotoxic effect on GC sensitive and GC 

resistant ALL CEM-C7-14 and CEM-C1-15 cell lines respectively, as well as chicken 

derived leukemia cells DT40. Compound B and C showed growth stimulatory effects and 

were not studied further. Leukaemia cells proliferation was mostly inhibited by high 
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doses and long incubation time, whereas combination of compound treatment with 

either high or low temperature interfered with this effect.  All compounds had marginal 

growth inhibitory effect on proliferation of normal lung bronchial cells Beas-2b and 

MCF-C7, whereas T and THCL showed some stimulatory effect on HACAT cells 

proliferation. Compounds exerted selective and differential effects on cell cycle 

progression, apoptosis and caspase-8 enzyme activation. Normal peripheral blood 

mononuclear cells (PBMCs) were used to examine the cytotoxic effect on normal 

leukocytes. PBMCs were not significantly affected suggesting that tested compounds 

don’t have the growth suppressive effect on normal peripheral white blood cells. Cell 

type specific, anti-inflammatory action of studied compounds was measured by ROS, 

nitrite and cytokine production analysis. Evaluation of secretory cytokines IL-6 and IL-2 

by ELISA has shown a cell specific regulation of these biomarkers of inflammation. 

Protein and gene expression of GR target genes and resistance markers was regulated in 

a drug and cell dependent manner.  

These data provided evidence of CPDA, T and THCL capability to inhibit leukemia cells 

proliferation and alter selected GR target genes expression. Thereby, these compounds 

show promising characteristics for drug development aiming to potential use in 

treatment of leukemia and inflammatory conditions. 
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1 Introduction and aims  

1.1 Introduction 

 

1.1.1 Cancer  
 

1.1.1.1  Cancer definition, prevalence and causes 
 

 
Cancer is over growth of cells and deregulation of the normal mechanisms of cell cycle 

control leading to formation of solid tumours or leukaemia. Cancer is also characterised 

by occurrence of metastasis in which the malignant cancer spreads to another area of 

the body. Tumour formation and metastasis are often associated with the disruption  of 

function of the neighbouring organs and tissues as well as inflammation (Dikaios et al., 

2017, Houssami et al., 2017, Palumbo and Russo, 2017, Quidde et al., 2017, Veglia and 

Gabrilovich, 2017). 

The number of people diagnosed with cancer has increased in last 6 years while cancer 

mortality rates have decreased according to Siegel et al. (2017). Moreover, the five years 

survival rates have increased in adolescent (15-19) years old cancer sufferers in United 

States of America’s most likely due to developed diagnostic and cancer therapies as seen 

in the data published by American cancer society (Fig. 1). 
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Figure 1  Five years relative survival rates in adolescent cancer suferers in the USA 

ONS=other nervous system, adapted and modified  from  American Cancer Society (2017)   

 

 National Institute of Health NIH (2017)a  , data revealed there were 356,860 cancer 

cases and 163,444 cancer related deaths. Cancer occurred in 15,780 people below age 

of 19, resulting in 1,960 deaths. In the United Kingdom (England and Wales)  the cancer 

survival rates  in adults patients (15-99) years old  as stated by  Cancer Research UK, 

(2017)a  reveal that ten  years survival rate  was  50%,five years survival rate was 54% 

and one year  survival rate was 70% for all cancer types. The  highest survival rates were 

observed in testis cancers, malignant melanoma, breast cancer, prostate cancer  

Hodgkin lymphoma and uterus cancer while the low survival rates are recorded in 

oesophagus, stomach, brain, lung and the lowest survival was reported for pancreas 

cancer as indicated in bar chart shown in fig (2) 
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Figure 2 Cancer survival index for adults patients during (2010-2011) in the United Kingdom. Adapted 

from Cancer Research UK (2017)b. 

 

Pediatric cancers have specific incidence and cure rates. Paediatric leukemia has the 

highest incidence when compared with other cancers that have been diagnosed in 

children (0-14) years old, in the United Kingdom, followed by tumours of central nervous 

system while hepatic tumours incidence is very rare according to the data published by 

charity Children with Cancer UK, 2017 as shown in fig (3) for the indicated time from  

2001 to 2010. 
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Figure 3 Incidence of childhood cancer in the UK, adapted and modified from Children with cancer UK 

b(2017).  

 

On the other hand, the five years survival rate of childhood cancer in the United States 

of America generally refer to a promising survival rates in particular for Hodgkin 

lymphoma, Wilms tumours and acute lymphoblastic leukemia, however the average 

survival rates are higher than 50% as shown in Fig.4. 
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Figure 4  Childhood cancer survival rates in the United States of America adapted from National Cancer 

Institute at the National Institutes of Health (2017)b. 

 

It has been found that cancer is substantial cause of mortality and causes similar 

numbers  of death as heart disease in US.  8.8 million patients globally died from cancer 

in 2015, furthermore, cancer is found to be the cause of one per six mortalities across 

the world. Generally, poor population are at higher risk of cancer due to poor health and 

environmental conditions, weak immunity, dietary imbalance, pollution and lack of 

awareness. However the above mentioned numbers are mostly estimates as they are 

published sporadically for each region (Morris et al., 2016), however, they provide 

information on the progress of the disease. Leading factors of cancer are either 

endogenous (inherited) or exposure to exogenous carcinogens (external). External 

factors can cause gene mutations/epigenetic changes and may include; alcohol, tobacco, 

radiation (such as direct sun light), chemical carcinogens (heavy metals) and nutrients 

(aflatoxin contamination), infections (viral or fungal), chronic inflammation and another 



30 
 

factors.  Some cancers are caused by external factors however several genetic factors 

that cause increased susceptibility to cancer have been identified. 

In addition to these causes, cancer therapy and even diagnostic approaches can 

sometime cause cancer. It is believed that paediatric computed tomography (CT) scan 

exposures  can predispose  the children  to subsequent risk of central nervous system 

(CNS) tumours and leukaemia (Journy et al., 2016). Chemical therapies predispose  some 

cancer patients to the risk of cardiovascular toxicity as suggested for systemic 5-

fluorouracil or capecitabine (Polk et al., 2013).   

 
The suspected causes of cancer can be either genetic or external. Genetic factors are 

due to inherited genetic make-up, for example mutations in specific genes (BRCA1 or 

BRCA2) that correlate with a susceptibility to breast cancer.  External factors can be due 

to exposure to radiation, chemical and biological carcinogens. Radiation can be non-

ionizing ultraviolet or ionizing radiation, whereas chemical agents include a wide range 

of toxic chemical substances such as asbestos, tobacco, aflatoxin and arsenic (Pontes, 

2017, Palumbo and Russo, 2017, Ozer and Sezerman, 2017, Houssami et al., 2017, Aydin 

et al., 2017, Yang et al., 2016, Wang et al., 2016b, Schache et al., 2016, Cheng et al., 

2016) . Finally biological factors are infection with oncogenic viruses such Human T-cell 

leukaemia virus type 1 (HTLV-1) and Human T-cell leukaemia virus type 2 (HTLV-2) 

(Lairmore and Montgomery, 2005),  also bacteria and parasites can have carcinogenic 

effect. Nutrition and exercise play an important role in prevention of cancer 

development in children; cancer is the number one cause of death by disease. In fact, it 

is responsible for more deaths than all other diseases in all ages according to World 
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Cancer Research Foundation WCRF (2017). In addition, the incidence rate of pediatric 

cancers which exceed 100 occurrences per million in Europe is shown in (fig 5). 

. 

 

Figure 5 Cancer incidence in the Europe area, Adapted and modified from Cancer Research UK  (2017)c. 

 
 
in Canada, the incidence of childhood cancers are higher among males children rather 

than females children and  the incidence rate increased in less than five years old as 

explained in (fig. 6). 
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Figure 6 Childhood cancers incidence in Canada, adapted and modified from Ellison & Janz (2015). 

 

The incidence of childhood cancer in the UK has expanded as 1756 cases were recorded 

within two years  from 2012-2014,while this number represents a very low percentage 

less than 1% Percentage of total cases of cancer, and commonly occur in little ages less 

than 4 yrs old (Cancer Research UK, 2017 )d. 
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1.1.1.2  Hallmarks of cancer 
 

 Cancer cells have different functional characteristics from normal body cells; those 

features are mostly shared between majorities of known tumours and mainly serve 

tumour growth, survival and aggressiveness. Those characteristics are named hallmarks 

of cancer and are: self-sufficiency in growth signals, insensitivity to growth-inhibitory 

signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and 

tissue invasion and metastasis (Hanahan and Weinberg, 2000). Cancer cells multiply out 

of control independently of external signalling pathway rather they often develop their 

own signalling system. Also cancer cells can overwhelm the growth control or 

checkpoints and growth suppressors’ genes effect. Furthermore, they are not 

undergoing apoptosis and can divide and proliferate uncontrollably. To do so they 

require blood supply so they adapted their own angiogenesis by enhancing blood supply 

to the area. Cancer cells have the ability to invade surrounding tissues and metastasise 

to other parts of the body and start a new tumour which makes the condition 

complicated and increases the poor outcomes of cancer. Chronic inflammation can also 

contribute to development of many types of cancer by facilitation of angiogenesis and 

immune reactions as shown in table 1.  

More hallmarks are reported in addition to the main six   hallmarks of cancer that make 

the cancer capable of surviving and spreading throughout the body, these consists of 

effective metabolism to maintain the growth of tumour cells and the capability to 

survive the cellular immune defence mechanism  as believed  by Hanahan and Weinberg 

(2011), as it is weaken the performance of  the immune system to eliminate cancer is 

weaken via suppression of immunity  by CD4+CD25+ FoxP3+regulatory T cells (Tregs), or 
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other types of suppressive cells, also production of several immune suppressive 

cytokines IL-1, IL-6, colony stimulating factor (CSF)-1, IL-8, IL-10, and type I IFNs which 

enhance cancer (Vinay et al., 2015).  

Table 1 The hallmarks of cancer and their representative example cancer  

Hallmark  of cancer  Example  Reference 

self- sufficiency in 
growth signals 

glioblastomas and sarcomas  
 

(Stensjoen et al., 2015) 

evading apoptosis human colorectal 
adenocarcinoma 

(Kadaja-Saarepuu et al., 
2008) 

sustained angiogenesis brain cancer (Jain et al., 2007) 

limitless replicative 
potential  

ovarian cancer (Lengyel, 2010) 

tissue invasion and 
metastasis 

osteosarcoma (Lengyel, 2010) 

insensitivity to 
antigrowth signals  

pancreas cancer  (Keleg et al., 2003) 

 

Cancer cells possess  genetic abnormalities and have lost control over the cell cycle 

progression. The severity of cancer is related with metastasis formation which leads to 

the spread of cancer to the surrounding regions of the body;  these locations are 

specified in table 2 (Carr, 2008).  

Table 2 End sites of metastasis. Available in Carr (2008)  

Cancer Site of metastasis 

lung cancer lymph nodes, brain, bone, liver, pancreas 

colorectal cancer adjacent lymph nodes, liver 

breast cancer bone, brain, lung, liver 

leukaemia visceral organs, brain 

prostate cancer bone, adjacent lymph nodes, lung 
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The metabolic alterations that are seen in cancer cells are often recognized by high 

cellular intake of glucose and glutamine and excretion of lactate (Zielinski et al., 2017, 

Schwartz et al., 2017).  Specifically, cancer cells metabolism is different from that of 

normal cells by maintained energy production through high glycolysis and yielding of 

lactate via fermentation of lactic acid in the cytoplasm of cancer cells independently of 

oxygen whereas in normal cells metabolism there is moderate levels of glycolysis 

followed by pyruvate oxidation in mitochondria . This phenomenon is called the 

Warburg effect (Saunier et al., 2017). 

High proliferation rate of cancer cells is modulated by complex pathways  such as G 

protein-coupled receptor kinases (GRKs, GPCRKs) (Nogues et al., 2017) . Interestingly,  

micro ribonucleic acids (microRNAs) take part in promoting cancer and controlling the 

signalling network through downregulation of affected genes thereby enhancing tumours 

progression  (Manasa and Kannan, 2017). Chemokines are other regulators which play a 

pivotal role by negative or positive regulation of carcinogenesis by modulating white 

blood cells response (Lacalle et al., 2017).Those malignant traits can be affected by drugs 

applied using a nanoparticles technology to improve the therapy (VanDyke et al., 2016).  

So called multifunctional nanoparticles, nano platform or nanosomes  are being 

developed to overcome the non-specific distribution of chemotherapy and eliminate the 

subsequent side effects by aiming to deliver drugs to the target tumour cell 

(Kouchakzadeh et al., 2017). 

Molecular investigation utilizing assays to measure the protein or nucleic acid from 

cancer cells or cellular assays using fluorescent activated cell sorter are successful tools 
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to detect the alterations in the candidate gene/ receptor linked to each hallmark of 

cancer (Menyhart et al., 2016). 

1.1.1.3  Cancer therapy  
 
 
There are four common strategies for treatment of cancer, which are routinely followed 

and they include surgical removal of the tumour, radiation therapy to stop cancer 

progression, systemic therapy (chemotherapeutic agents which inhibit cancer growth) 

and targeted therapy (by administration of compounds that bind with a specific receptor 

in tumour cells and inhibit cancer) and immunotherapy. Other  therapeutic approaches 

involve stem cell transplant, hyperthermia, photodynamic therapy, blood transfusion 

and lasers to reduce tumour mass (Baba and Catoi, 2007). Some of recent therapies are 

shown in table 3. 

 Table 3 Examples of cancers and therapeutic approaches. 

Cancer type Therapy approach Targeted 
pathways 

Intended 
outcomes- 

Reference 

breast cancer photosensitizer (PS) 
via photodynamic 
therapy (PDT) 

mannose 
receptor-
mediated 
endocytosis 

efficient and 
selective killing of 
cancer cells 

(Yin et al., 
2017) 

liver cancer Cryoablation 
therapy 
 

freezing and 
thawing lead to 
damage of the 
cell  

safe and effective 
freezing treatment, 

(Yan et al., 
2017) 

- HeLa, HepG2, A549 
and MCF-7 c 
- H22 tumor-bearing 
mice 

mitochondria-
targeted self-
assembled 
nanoparticles 
amphiphilic 
triphenylphosphine–
quercetin (TPP–Que) 
conjugates 

mitochondrial 
(intrinsic pathway 
 of PCD) 

activation of the 
mitochondria-
mediated 
apoptosis 
pathway. 

(Xing et 
al., 2017) 

cancer stem cells 
(CSCs) cancer stem 
cells (CSCs) 

resveratrol the P450 enzyme 
CYP1B1 

apoptosis of cancer 
cells 

(Ware, 
2017) 

metastatic prostate 
cancer 

core shell lipid-
polymer hybrid 
nanoparticles 
(CSLPHNPs) with 
combined 

inhibitor of 
sphingosine 
kinase 1 (SK1) 
FTY720 
(fingolimod) 

reduce FTY720-
induced 
lymphopenia 

(Wang et 
al., 2017b) 
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docetaxel and 
molecular targeted 
therapy 

Colorectal cancer 
(CRC) 

target therapy  for 
Transforming 
growth factor-beta 
TGF-beta  

the inhibition of 
TGF-β signalling 

impair 
experimental CRC 
metastasis to the 
liver 

(Villalba 
et al., 
2017) 

triple-negative breast 
cancer 
TNBC 

modified gold-
based siRNA 
nanotherapeutics 

target eukaryotic 
elongation factor 
2 kinase (eEF-2K) 

Inhibition of TNBC (Shahbazi 
et al., 
2017) 

non-small-cell lung 
cancer 

erlotinib-based 
doublet targeted 
therapy  

 targeting 
somatic 

sensitizing 
mutation in the 

EGFR-TK 

inhibiting  TK 
receptor 
autophosphorylati
on (5, 15) and 
downstream 
proliferation 

(Jett and 
Carr, 
2013) 

breast cancer photosensitizer (PS) 
via photodynamic 
therapy (PDT) 

mannose 
receptor-
mediated 
endocytosis 

efficient and 
selective killing of 
cancer cells 

(Yin et al., 
2017) 

liver cancer Cryoablation 
therapy 
 

freezing and 
thawing lead to 
damage of the 
cell  

safe and effective 
freezing treatment, 

(Yan et al., 
2017) 

- HeLa, HepG2, A549 
and MCF-7 c 
- H22 tumor-bearing 
mice 

mitochondria-
targeted self-
assembled 
nanoparticles 
amphiphilic 
triphenylphosphine–
quercetin (TPP–Que) 
conjugates 

Mitochondrial 
(intrinsic pathway 
 of PCD) 

Activation of the 
mitochondria-
mediated 
apoptosis 
pathway. 

(Xing et 
al., 2017) 

cancer stem cells 
(CSCs) cancer stem 
cells (CSCs) 

Resveratrol the P450 enzyme 
CYP1B1 

Apoptosis of 
cancer cells 

(Ware, 
2017) 

metastatic prostate 
cancer 

Core shell lipid-
polymer hybrid 
nanoparticles 
(CSLPHNPs) with 
combined 
docetaxel and 
molecular targeted 
therapy 

inhibitor of 
sphingosine 
kinase 1 (SK1) 
FTY720 
(fingolimod) 

reduce FTY720-
induced 
lymphopenia 

(Wang et 
al., 2017b) 

Colorectal cancer 
(CRC) 

target therapy  for 
Transforming 
growth factor-beta 
TGF-beta  

the inhibition of 
TGF-β signalling 

impair 
experimental CRC 
metastasis to the 
liver 

(Villalba 
et al., 
2017) 

triple-negative breast 
cancer 
TNBC 

Modified gold-
based siRNA 
nanotherapeutics 

target eukaryotic 
elongation factor 
2 kinase (eEF-2K) 

Inhibition of TNBC (Shahbazi 
et al., 
2017) 

non-small-cell lung 
cancer 

erlotinib-based 
doublet targeted 
therapy  

 Targeting 
somatic 

sensitizing 
mutation in the 

EGFR-TK 

inhibiting  
TKreceptor 
autophosphorylati
on (5, 15) and 
downstream 
proliferation 

(Jett and 
Carr, 
2013) 
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1.1.1.4  Blood Cancer  
 

Blood cancers are the cancer of cellular components of the blood. Hematological 

malignancies are initiated from bone marrow of long bones by dysregulation of normal 

development, altered transition of stem cells into the functioning blood cells and 

blocking of their indispensable functions.  There are three types of hematological 

cancers, leukemia, lymphoma and myeloma (American society of Hematology, 2017).  In 

USA  lymphoma  represents the highest number of blood cancers followed by leukemia 

and myeloma (47%, 36% and 18 % respectively as seen in fig (7). 

 

Figure 7 New blood cancer cases in the United States of America, adaptated from leukemia and 

lymphoma society, (2017) 

  

Similar profiles were observed in Canada with 40%, 27% and 17 %, of lymphoma, 

leukemia and myeloma cases respectively as shown in fig (8). 
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Figure 8 An estimation of blood cancers in Canada, adapted from the Leukemia & Lymphoma Society of 

Canada, 2017 

In the UK, childhood cancers (leukemia, nervous system tumours, lymphomas and soft 

tissue sarcoma are of high incidence between male children as appear in (fig. 9). 
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Figure 9 Children's cancers incidence in the UK   in boys and girls. Adapted from Cancer Research UK 

(2017)c. 

 

Blood plays a major role in all vital body functions and is composed of cells and liquid. 

Blood cells include red blood corpuscles (RBCs), called erythrocytes that aid oxygenation 

(Frey, 2002) and white blood cells (WBC), named leukocytes that control the immune 

response including humoral and cellular immunity. WBCs consist of granulocytes 

(basophils, eosinophils and neutrophils) and agranulocytes (monocytes and 

lymphocytes). Lymphocytes are the most important immune cells, which exist in two 

forms (T-lymphocytes or B-lymphocytes), and are low in number in contrast to RBCs. 

WBC are present in blood, lymph, lymph nodes and immune related organs such as 

thymus and spleen  (Kanekura et al., 2017), therefore in case of acute lymphoblastic 

leukemia, leukemia cells  accumulate in spleen and lead to splenomegaly (Manoharan et 
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al., 1980). Platelets, which are also called thrombocytes (the name originated from their 

role in  thrombin formation), form the third element of blood cellular components, 

which mediate coagulation to initiate clot formation together with clot factors in case of 

injuries(Davis et al., 2016).  

Nutrient materials that are dissolved in blood feed all body tissues and organs. Blood 

contains immunoglobulins, hormones, clot factors and all other secreted materials that 

are dissolved and carried by plasma, the fluid part of the blood.  

Creation of the blood is called haematopoiesis. Haematopoiesis is a process that 

generates cellular components of the blood; it takes place in the bone morrow, the 

process begins from hematopoietic stem cells (HSCs)(Ng and Alexander, 2017), which 

are available in two types; long term (LHSCs) and short term (SHSCs), LHSCs are 

continuously  self-renewed and produce SHSCs, while the last produce multipotent stem 

cells (MPSC) (Myatt and Lam, 2007) which undergo a series of development  processes 

into to the mature blood cells  (Wang and Wagers, 2011). 

As stated before, blood cells originate from MPSC which are divided into two types; 

lymphoid progenitor (LP) or myeloid progenitor (MP). LP develop to lymphocytes, while 

MP divide into: megakaryocytes (which develop into platelets and red blood cells), 

myeloblasts (develop into granulocytes and macrophages) and mast cells (fig. 10). 



42 
 

 

 

Figure 10 Haematopoiesis process.  

Schematic illustration of blood cells’  formation. 

 

Blood cells are found in certain numbers and morphology so that any deviation from the 

natural process is linked to blood disorders such as alterations in the number of the 

cellular components (more or less cells) or malformation of the shape.  For instance in 

blood cancer such as leukaemia the number of WBC increases substantially (LF, 2017).   
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1.1.2 Leukaemia 
 

Leukemia is the cancer of white blood cells (leukocytes), characterized by abnormal 

proliferation of cells, it is the commonest neoplasm in humans, which often starts in 

bone marrow from the main blood cells progenitor previously mentioned in 

hematopoiesis. Generally, leukemia originates from either T or B lymphocytes (Horibe et 

al., 2017, Hung et al., 2017, Iwasa et al., 2017, Kaymak Cihan et al., 2017, Lyu et al., 

2017, Richter-Pechanska et al., 2017, Savino and Izraeli, 2017, Thota and Advani, 2017, 

Villanueva-Lozano et al., 2017, Witkowski et al., 2017, Zhao et al., 2017) . 

Estimated number of new cases of leukaemia diagnosed in 2017 in Australia is 3,875 

from that   2,358 were predicted to be males  and 1,517 were predicted to be females 

(Cancer Australia ,2017). 

 

It is found in several forms depending on the progress or severity of the disease (acute 

and chronic leukemia) and type of   affected cells (myeloid and lymphoid leukemia).Thus 

four main types are diagnosed; acute myeloid leukemia (AML), acute lymphoblastic 

leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL) 

(National Cancer Institute, 2014).  
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1.1.2.1  Acute lymphoblastic leukaemia (ALL), symptoms, causes 

and treatment 
 

Acute lymphocytic leukemia is a malignancy of blood, that arises from dysregulation of 

normal stem cells (Campos-Sanchez et al., 2011). It is most frequently diagnosed   in 

young people less than 14 years old and characterized by relatively high number of 

lymphocytes. Childhood ALL has been classified into three major types; B-ALL, T-ALL and 

NK-ALL. The first type has 10 subtypes, the second has six subtypes and third type does 

not have any (Tatar et al., 2016). Childhood leukemia represents 80% of leukemia and 

accounts for 25% of cancers in children (Merck, 2014). ALL represents 25% of cancers 

that affect children less than 15 years old according to Cancer Information Summaries 

(National cancer institute, 2017). Symptoms of ALL develop gradually including general 

weakness, immune suppression, fatigue, swollen lymph nodes, pain in joints and 

abdomen, night sweats and fever, difficult breathing, bruising and purple skin (Service, 

2017). The diagnosis is made upon the clinical signs and laboratory examinations for the 

whole blood and bone marrow (Children with cancer, 2017). 

Although exact causes of ALL are not known some risk factors have been identified. 

Alterations or mutations of genes that control haematopoiesis and development of stem 

cells to normal blood cells have been detected in ALL. These include BCR-ABL (Enciso et 

al., 2015),  FLT3 (Fms-like tyrosine kinase 3)  (Gilliland and Griffin, 2002),  c-Myc  

(Delgado and Leon, 2010) and  HOX (Alharbi et al., 2013). In addition, environmental 

factors such as radiation (X-rays, gamma rays) as well as chemicals, dietary factors, 

infections and inflammation have been suggested to play a role in ALL development 

(Belson et al., 2007). 

 



45 
 

ALL can be treated by chemotherapy including DNA damaging drugs and DEX to induce 

complete remission (CR) (Tatar et al., 2016). Radiotherapy is another way to control ALL, 

however it   displays side effects; main side effects  of radiotherapy in ALL and brain 

cancer patients are neurocognitive disorders (Sleurs et al., 2016). Immunotherapy is also 

applied as patients with ALL are under the risk of recurrent infection, thus agents that 

target immune system are developed (Moschovi et al., 2016). The poor outcomes in 

some ALL patients require a novel potential therapy (Ronson et al., 2016), therefore 

nanomedicine is another choice of treatment. The minimal residual disease (MRD) term 

is used to describe the response to treatment and refers to the leukemic cells detected 

after the treatment, MRD usually is measured by FACS and immunophenotyping (Rocha 

et al., 2016).  

 

Overall survival rate of childhood ALL is 90% and the 5 year survival rate  in USA as 

reported by (Hashkes et al., 2011) was 95.5%; likewise survival rates are 90% in UK 

(Cancer Research UK, 2016). However, the cure rate from ALL is not globally equal as it 

depends on the economic factors which play a significant role in the availability of 

treatments (Lehmann et al., 2016). 11–57% of ALL patients are obese having BMI ≥95%, 

as a common side effect of lack of exercise and / steroid therapy, those patients are less 

likely to survive(Tam and Ravussin, 2012). Also, survival rate for older patients (15-69 

years) is lower 43.6% in Germany and 37.7 in US % (Pulte et al., 2014).  In addition, long 

term survival is lower and toxicity can lead to secondary cancer development (Cooper 

and Brown, 2015). ALL treatment protocol (table 4), include three main phases these 

are; remission induction therapy which is the initial phase which aims to eliminate the 

vast majority of cancer cells in bone marrow and regenerate the  circulating normal 
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blood cells; consolidation/ intensification therapy which aims to eliminate the further 

leukemia cells in central nervous system which are not been destroyed from the first 

phase and the maintenance therapy that aims to avoid reproducing leukemia cells 

(Mayo Foundation for Medical Education and Research (MFMER), 2017)  

Leukemia therapies for each phase are decried in table (American Cancer Society, 2017) 
 
Table 4 Therpeutic agents used in each phase of ALL therapy. 

Phase of therapy Drugs used 

remission induction  vincristine 

 dexamethasone or prednisone 

 doxorubicin (adriamycin), daunorubicin, or a similar 
anthracycline drug 

 sometimes cyclophosphamide (cytoxan), l-
asparaginase, etoposide (vp-16), and/or high doses of 
methotrexate or cytarabine (ara-c) 

 philadelphia chromosome’s all ,  imatinib (gleevec) 
used 

 intrathecal chemotherapy(methotrexate, but 
sometimes cytarabine or a steroid such as 
prednisone) 

 methotrexate or cytarabine given intravenously 

 radiation 
 

consolidation 
therapy(intensification) 
 

 same remission therapy 

 stem cell transplant (sct) 

maintenance therapy  methotrexate and 6-mercaptopurine (6-mp) 

 imatinib still given to  positive philadelphia 
chromosome’s  all 

 
Generally speaking, more than 40 drugs are applied across the various stages of ALL 
therapy, these are 

1. Abitrexate (Methotrexate) 
2. Arranon (Nelarabine) 
3. Asparaginase Erwinia chrysanthemi 
4. Blinatumomab 
5. Blincyto (Blinatumomab) 
6. Cerubidine (Daunorubicin Hydrochloride) 
7. Clafen (Cyclophosphamide) 
8. Clofarabine 
9. Clofarex (Clofarabine) 
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10. Clolar (Clofarabine) 
11. Cyclophosphamide 
12. Cytarabine 
13. Cytosar-U (Cytarabine) 
14. Cytoxan (Cyclophosphamide) 
15. Dasatinib 
16. Daunorubicin Hydrochloride 
17. Doxorubicin Hydrochloride 
18. Erwinaze (Asparaginase Erwinia Chrysanthemi) 
19. Folex (Methotrexate) 
20. Folex PFS (Methotrexate) 
21. Gleevec (Imatinib Mesylate) 
22. Iclusig (Ponatinib Hydrochloride) 
23. Imatinib Mesylate 
24. Marqibo (Vincristine Sulfate Liposome) 
25. Mercaptopurine 
26. Methotrexate 
27. Methotrexate LPF (Methorexate) 
28. Mexate (Methotrexate) 
29. Mexate-AQ (Methotrexate) 
30. Nelarabine 
31. Neosar (Cyclophosphamide) 
32. Oncaspar (Pegaspargase) 
33. Pegaspargase 
34. Ponatinib Hydrochloride 
35. Prednisone 
36. Purinethol (Mercaptopurine) 
37. Purixan (Mercaptopurine) 
38. Rubidomycin (Daunorubicin Hydrochloride) 
39. Sprycel (Dasatinib) 
40. Tarabine PFS (Cytarabine) 
41. Vincasar PFS (Vincristine Sulfate) 
42. Vincristine Sulfate 
43. Vincristine Sulfate Liposome 
44. Phases of treatment 
45. Treatment for acute lymphoblastic leukaemia (ALL) is divided into 3 different 

phases, find out more about what treatment to expect.(National Cancer 
Institute, 2017). 
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1.1.2.2  Avian lymphoid leukosis 
 

 

Lymphoid leukosis is a neoplastic disease that is commonly observed in poultry such as 

chicken. The disease occurs in an adult chicken upon infection with the avian leukosis 

virus (ALV). The causative retroviruses belong to subgroup A and are from leukosis 

/sarcoma group (The poultry site, 2014).  Leukosis in general indicates transmissible 

malignant or benign neoplasm commonly found in chickens.  Lymphoid leukosis is 

considered as one of the most common forms of leukosis in poultry.  ALV can be divided 

according to envelope antigen to six subgroups with distinct pathogenesis. The common 

subtypes are (ALV-A and J). Lymphoid leukosis (LL) is caused by  (ALV-A) which is also the 

causative agent of erythroblastosis (EB), while ALV-J is the etiology of myeloid leukosis 

(ML), LL and ML can be induced experimentally through C-MYC and C-erbB oncogene 

stimulation respectively via chimeric viruses (Chesters et al., 2002). 

It has been demonstrated that protein 27 (P27) is linked with resistance in chicken 

breeds by identifying relatively low p27 serum concentrations in resistant breeds when 

compared to susceptible breeds (Barbour et al., 1999). 

The disease in chicken is characterized by the presence of sporadic tumors mainly seen 

in the primary immune organ in chicken, bursa of fabricious. It is believed that the viral   

pathogenicity is determined by C-MYC and C-BIC (Hihara et al., 1998). As disease causes 

significant economic losses novel treatments will be beneficial. In addition, comparison 

of GR function in chicken and human cells will provide information about evolutionary 

conservation of its action. Numerous drugs are used for leukemia therapy and of main 

interest are steroids glucocorticoid hormones (GCs use in medicine is described in 

(Murayi and Chittiboina, 2016) 
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1.1.3 Glucocorticoid hormones  
 

Glucocorticoids (GCs) are steroid hormones, lipophilic and hydrophobic in nature as they 

are derived from cholesterol (see fig. 11).However, GCs synthesis and secretion are 

orchestrated by circadian system (Dickmeis, 2009).  

 

 

Figure 11 Schematic illustration of glucocorticoid (steroid) synthesis in adrenal gland  

 The process starts with cholesterol conversion into pregnenolone, the new product that undergoes 
several hydroxylation reactions ending with cortisol. Adapted and modified  from Erhuma (2012). HSD: 
Hydroxysteroid Dehydrogenase, OH: Hydroxylase 

 

Glucocorticoids are stress hormones produced by the adrenal gland upon stress or 

stimulation (Zotter et al., 2017) and display immunosuppressive and anti-inflammatory 
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effects. Stressors, which affect GC production, lead to stimulation of GC receptor (GR) 

function (Beck et al., 2013a). Stress is usually accompanied by undesired side effects or 

severe illnesses for instance gastric-ulcer (Wang et al., 2016a) or delay in  healing of  

injury (Jozic et al., 2016), (Chandramohan et al., 2007),  or sometimes GCs resistance   

development (Pazdrak et al., 2016, Barnes, 2010, Goldstein and Ozols, 1994). Stress 

could be considered as  a promoting factor for cancer development (Wang et al., 2016b). 

Additionally, extensive continuous stress leads to glucocorticoid receptor resistance due 

to loss of sensitivity of the target tissue to GC hormones, thereby altering the 

inflammatory regulation function of GR leading to up regulation of pro-inflammatory 

proteins (Hamdi et al., 2007). 

 

1.1.3.1  Hypothalamic-pituitary-adrenal axis 
 
 
GCs are secreted from the zona fasciculata of the adrenal cortex in response to stress 

and this is controlled by hypothalamus-pituitary adrenal axis (HPA) (Fig. 12) that also 

contains negative feedback loops. The process begins from the hypothalamus which 

regulates body temperature, metabolic reactions, fatigue, sleep and circadian rhythms 

(Oster et al., 2006). Exogenous or endogenous stress stimulates the hypothalamus, 

specifically parvocellular neurosecretory cells of the paraventricular nucleus, to secrete 

corticotrophin-releasing hormone or factor (CRH / CRF), which activates the anterior 

lobe of the pituitary gland to synthesize and release adrenocorticotropic hormone 

(ACTH). This then stimulates the adrenal cortex to release glucocorticoids into blood 

stream. Glucocorticoids levels are returned to normal through negative feedback loops 

affecting the hypothalamus and pituitary gland (Deng et al., 2015). The appropriate 
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response to stress depends on hypothalamus-pituitary-adrenal axis (Fig. 12) and 

circulated cortisol levels. Adrenal malfunction such as high production of cortisol 

(hypercortisolism) leads to Cushing’s syndrome (Findling and Raff, 2017, Casanovas 

Taltavull and Pena-Cala, 2017). The low cortisol production leads to Addison’s disease 

(2017, Mozolevska et al., 2016). These GC hormones are affected by corticosteroid-

binding globulin (CBG) and 11β-HSD  (Clark, 2003).  CBG carries and circulates the 

cortisol throughout the body (Gardill et al., 2012), while  11β-HSD  oxidizes and converts 

cortisol to inactive cortisone (Chapman et al., 2013). 

In addition to the indicated role of GCs hormones in stress conditions as stress 

hormones, normal levels of GCs are of major importance as they regulate a variety of 

vital process in the body from normal metabolism (Ayyar et al., 2015), muscle tone 

(Braun and Marks, 2015), performance (Shaashua et al., 2014) , normal bones 

mineralization (Tack et al., 2016b), homeostasis (Lou et al., 2016), nervous systems in 

relation to cognition and memory development (Libro et al., 2017), and maintenance of 

normal liver function (van der Geest et al., 2016), normal growth- development and 

immunity (Solano et al., 2016); endogenous GCs are shown to have protection effect  

from LPS-induced sepsis (Li et al., 2015). However over exposure to GCs  contributes to 

impairment of normal physiological functions and endangeres the normal physiology of 

the affected organs leading to serious pathological changes (Nikolic et al., 2013). 

  

In general, Glucocorticoids exert their action via binding to their steroid receptors in 

order to achieve their downstream effects (Jaffuel et al., 1999). 
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Figure 12 Hypothalamic-pituitary -adrenal axis (HPA).  

The hypothalamus secretes the neuro-hormone corticotrophin-releasing hormone (CRH/CRF) and this in 
turn stimulates secretion of a pituitary hormone adrenocorticotropic hormone (ACTH), which stimulates 
adrenal gland to release glucocorticoids (GC) from the adrenal cortex. Finally these hormones inhibit the 
further secretion of hypothalamus hormones via negative feedback loop. 

 

1.1.3.2  GCs uses in medicine  

 
 
Synthetic glucocorticoid hormones have been prescribed clinically for over six decades, 

for different inflammatory conditions and allergic related disorders such as; allergic 

rhinitis, asthma, chronic bronchitis, cystic fibrosis, emphysema, inflammatory bowel 

disease, multiple sclerosis, (Nuwayhid, 1983, Jobe, 2000, Sauerwald and Rath, 2000, 

Robson and Hughes, 2003, Baid and Nieman, 2006, Xia et al., 2007, Zhang et al., 2008, 

Goichot, 2009, Wang et al., 2010, Serra et al., 2012, Dong, 2013) and rheumatic arthritis 
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(Matsuno, 2016).GCs have been used in cancer therapy either alone or along with 

chemotherapy for certain types of cancer, because they induce apoptotic of white blood 

cells and have been part of standard therapy for ALL patients for a number of years 

(Zhao et al., 2013, Sanchez-Lara et al., 2013, Salvador et al., 2012, Virik et al., 2001, 

Salmon et al., 1994, Tandan et al., 1990, Gel'berg et al., 1986, Fiegel, 1961, Spiess, 1960). 

The main GC used in  ALL treatment regimens  are; hydrocortisone (HC), prednisolone 

(PRE), methylprednisolone (MPR),   dexamethasone (DEX) and betamethasone (BET) 

(Styczynski et al., 2002) , However, above described effects on apoptosis  are restricted 

to a few cell types and mostly are observed in white blood cells whereas in other cell 

types GCs can have no effect or even protect cells from apoptosis. Nevertheless, long 

term use of glucocorticoids like dexamethasone can negatively affect the body and 

produce side effects such as: hypertension, glaucoma, osteoporosis, retardation of 

growth, immune-repression, obesity and accumulation of abdominal fluid (Frenkel et al., 

2015); bone abnormalities also follow chronic use of GCs (Tack et al., 2016a). Further 

side effects include kidney problems with related complications (Singh et al., 2016). 

Finally, Mons and Beracochea (2016) demonstrated that GCs leads to mental 

disturbances in case of people who are addicted to alcohol due to persistence 

stimulation of HPA. Part of   metabolic effects of GCs belong to glucose mediated 

modulation of thioredoxin-interacting protein (TXNIP) which in turn regulates 

thioredoxin (TRX) by interfering with Ros activity (Apostolopoulos and Morand, 2016, 

Paredes and Alves, 2016, Wells et al., 2016, Williams et al., 2016, Caplan et al., 2017b, 

Caplan et al., 2017a, Goto et al., 2017, Kaymak Cihan et al., 2017, Szabo and Kiss, 2017, 

Tacey et al., 2017) . 
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More than one drug acts together to treat hematological malignancies (Pei et al., 2016). 

To increase the chance of complete remission in ALL patients, DEX has been applied in 

high doses in combination with chemotherapy (Parovichnikova et al., 2003). However 

this can lead to adverse effects (table 3) as described previously. Regarding effects on 

nervous system, in spite of the depression like state arising from chronic administration 

of GCs, (Skupio et al., 2015), the clinical trial of  Kadan-Lottick et al. (2009) revealed that 

no   significant neurocognitive malfunction in  ALL children treated with DEX  was 

detected. 

In addition to uses in leukemia therapy, GCs are used in many other conditions.  In 

patients infected with neuromyelitis optica (NMO) (autoimmune disease) GCs treatment 

causes downregulation of abnormal monocytes (Zeng et al., 2016). GCs protect the body 

from septic shock lethal effects (Yende and Thompson, 2016). In another study DEX was 

employed as a part of treatment regime against Parkinson’s disease (PD) due to it anti-

inflammatory properties (Tentillier et al., 2016). GC has been used in treatment regime 

of peritumoral brain oedema (PTBE) (Murayi and Chittiboina, 2016).  

GCs act as a physiological trigger of stress but are also used in medicine to treat chronic 

inflammations and range of other diseases as mentioned above  (Madliger and Love, 

2016). (Lems et al., 2016).  

Dexamethasone (DEX) is the common synthetic GC, which is mainly prescribed as an 

anti-inflammatory drug although has many other uses. It produces this effect through 

glucocorticoid receptor (Zotter et al., 2017). This drug differs from natural GC by 

resistance to 11-beta hydroxysteroid dehydrogenase 2 (11b-HSD2) suppression and is 
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not regulated by corticosteroid- binding globulin CBG, making DEX (Fig. 13) more stable 

(Kadmiel and Cidlowski, 2013).  

 

 

 

 

 

 

Figure 13 Chemical structures of tested compounds. 

DEX can affect invading and metastatic ability of fibro sarcoma cells (Foty et al., 1998), it 

also demonstrated inhibitory effect on  the growth of cells in certain cancers and 

leukemia (Wu et al., 2006). This is in addition to its ability to treat different 

autoimmunity disorders (Hu et al., 2012). It can be either given alone or in combination 
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with other medicines to improve the therapeutic effect (Adem et al., 2016). GR activity is 

controlled at several levels such as alternative splicing, GR expression, nuclear 

translocation, transactivation and posttranslational modifications. Deregulation at these 

levels can lead to GC resistance (Vandevyver et al., 2014). Therefore it is important to 

develop new compounds that may overcome GC unresponsiveness, sensitize resistant 

cells and display fewer side effects.  GCs common side effects are emphasised in table 5. 

 

Table 5 Common side effects of GCs tratment. 

  

 Adverse  effect  Mechanism /physiology  Reference  

1 diabetes apoptosis of islet cells  (Zhang et al., 

2016) 

2 adrenal 

suppression 

suppression of (HPA) 

function by 

glucocorticoid 

(Goldbloom et 

al., 2017) 

3 skin thinning/ 

damage  

Dermal atrophy and 

vasodilation  

(Abraham and 

Roga, 2014) 

4 osteoporosis 

 

glucocorticoids reduce 

bone formation and 

increase bone resorption 

(Lane and 

Lukert, 1998) 

5 glomerular disease bisphosphonates or 

active vitamin d 

metabolites 

(Kikuchi et al., 

2007) 

6 myopathy catabolism of skeletal 

muscle by active gr 

(Vecht, 1998) 

7 avascular necrosis bone cells apoptosis  (Weinstein et 

al., 2000) 

8 hyperlipidaemia 

 

not known (Berg and 

Nilsson-Ehle, 

1996) 

9 hyperglycaemia  Increase hepatic glucose 

production  

(Tamez-Perez 

et al., 2015) 

10 Hypertension a sodium retention, 

resulting in dose-related 

fluid retention 

(Lee and 

Elwing, 2017) 

11 depression  HPA negative feedback 

dysregulation 

(Gobinath et 

al., 2014) 

12 gastritis and peptic 

ulcers 

Suppression of  gastric 

cytoprotective 

(Narum et al., 

2014) 
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prostaglandins 

1 diabetes apapoptosis of islet cells  (Zhang et al., 

2016) 

2 adrenal 

suppression 

suppression of (HPA) 

function by 

glucocorticoid 

(Goldbloom et 

al., 2017) 

3 skin thinning/ 

damage  

Dermal atrophy and 

vasodiltion  

(Abraham and 

Roga, 2014) 

4 osteoporosis 

 

glucocorticoids reduce 

bone formation and 

increase bone resorption 

(Lane and 

Lukert, 1998) 

5 glomerular disease bisphosphonates or 

active vitamin d 

metabolites 

(Kikuchi et al., 

2007) 

6 myopathy catabolism of skeletal 

muscle by active gr 

(Vecht, 1998) 

7 avascular necrosis bone cells apoptosis  (Weinstein et 

al., 2000) 

8 hyperlipidaemia 

 

 (Berg and 

Nilsson-Ehle, 

1996) 

9 hyperglycaemia  Increase hepatic glucose 

production  

(Tamez-Perez 

et al., 2015) 

10 Hypertension and 

oedma  

sodium retention, 

resulting in dose-related 

fluid retention 

(Lee and 

Elwing, 2017) 

11 depression  HPA negative feedback 

dysregulation 

(Gobinath et 

al., 2014) 

12 gastritis and peptic 

ulcers 

Suppression of  gastric 

cytoprotective 

prostaglandins 

(Narum et al., 

2014) 

 

1.1.3.3 Glucocorticoid receptor (GR)  
 
 
GCs exert their effects on cells by binding to their specific GC receptor, which is called 

glucocorticoid receptor (GR) encoded by NR3C1 gene located in the chromosome area 

5q31.3. GR is nuclear receptor, its transcriptional activity is controlled by binding with its 

ligand via C-terminal region which is best described as  “a pocket “ due to the distinct 

structure that surrounds the ligand (Bledsoe et al., 2002).  GR also has two domains, N 

terminal (NTD) domain and Deoxyribonucleic acid binding region named DBD which 
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contacts glucocorticoid responsive elements (GREs) in target genes (Gruver-Yates and 

Cidlowski, 2013).  

In the absence of ligand, GR exists in the cytoplasm complexed with other proteins 

called chaperones heat shock proteins (HSP) that have different molecular weights 

including HSP23, HSP70 and HSP90. Also immunophilins like FKBP51, FKBP52, Cyp44 and 

PP5 are part of this complex.  

Upon binding with ligand, the activated GR may either influence other genes or proteins 

in cytoplasm and affect or modulate the pro-inflammation response via interference 

with the T-cell receptor signalling pathway (De Bosscher et al., 2010). However, main 

mode of action of the activated GR homodimer is by translocation into the nucleus and 

binding to a specific consensus sequence in the DNA of GCs target genes. This consensus 

sequence is called GRE (from glucocorticoid responsive element) and they are located in 

the promoter region of target genes. Subsequently GR  orchestrates the transcription  of 

these   genes by activation or repression of genes involved in metabolism, inflammation, 

apoptosis and numerous other processes (Adcock and Barnes, 1996).  

1.1.3.3.1 GR domain organisation 
 

GR is a transcription factor located in cytoplasm in the absence of the hormone, that 

translocate to the nucleus after hormone activation.  GR is member of nuclear hormone 

receptors super family, named NR3C1 and belongs to a subfamily of steroid receptors. 

The human GR protein consists of 777 amino acids, and it has several major regions 

(Weikum et al., 2017b) illustrated in (Fig. 14) These are N (amino) - terminal (variable) 

domain (involved in transcriptional regulation), a DNA-binding (GRE-binding) domain 

which contains two zinc fingers and a hinge region that includes one of the nuclear 
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localization signals and a C (carboxyl) -terminal which is  site of  ligand–binding domain 

and is composed of 9 exons (Kumar and Thompson, 2012). 

NR3C1 gene has two main different molecular isoforms, GRα that has 777 amino acids 

and GRβ that has 742 amino acids. GRα is the active isoform, while alternative splicing 

forms GRβ.  There are other RNA splice variants called GRγ, and GRd which differ in their 

LBD and DBD potency, each one may produce four new forms named A-D by alternative 

translation (McMaster and Ray, 2008) .         

 

 

Figure 14 Genomic structure of GR alpha and GR amino acid sequence 

GR isoform α-protein segmentation is shown, Glucocorticoid receptor isoform alpha [Homo sapiens] NCBI 
Reference Sequence: NP_001018087.1 
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1.1.3.3.2 Transcriptional regulation by GR   
 

GR is a sequence specific transcription factor that is expressed in all tissues /organs 

/systems of the body. Despite ubiquitous expression, GR regulates transcription in a 

gene and tissue specific manner. In the absence of hormone GR exists in the cytoplasm 

complexed   with chaperones (HSp 23, HSp70 KDa and HSp90 KDa), via LBD C-terminal 

domain (Fig.15). Also, there are other proteins in a complex including immunophilins like 

FKBP5, FKBP52, PPID, Cyp44, STIP1, immunophilin homolog PPP5C. GC hormones pass 

through the cellular membrane because of their lipophilic structure, and bind GR leading 

to GR activation and dissociation of specific heat shock proteins and exchanging of 

FKBP5 by FKBP4. GC-GR  complex dimerizes  and binds to dynein to translocate to the 

nucleus  as a homodimer consisting of two molecules of GR attached to two molecules 

of  GC (Abraham et al., 2017, Feng et al., 2013, Gross et al., 2011, Yang et al., 2008, Agler 

et al., 2007, Salmon et al., 1994). 
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Figure 15  Mode of GR  

GCs enter the cell and bind to GR, then GR   dissociates from the complexed heat shock proteins. GC-GR 
complex enters the nucleus and binds to glucocorticoids responsive element in the promoter region of the 
responsive gene, adapted from Trevor and Deshane (2014). 
 

Glucocorticoid receptor‘s biological functions are result of GR role in mediation of 

transcription. GR either positively or negatively regulates its target genes expression, 

however, this mechanism involves a network of regulators or elements including 

chromatin and cofactors activation (Meijsing, 2015).  

 

1.1.3.3.3 Levels of control of the GR function 
 
 
Upon binding with ligand the activated GR regulates expression of target genes and also 

may have non-genomic effects suggested to take place in the membrane through 

protein-protein interaction without  the need for the nuclear translocation or DNA 
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binding, though this mechanism and outcomes are not fully understood (Beck et al., 

2009b, Beck et al., 2009a, Gossye et al., 2008, De Bosscher et al., 2006, Vanden Berghe 

et al., 2002).  The activated GR homodimer that mentioned in (1.1.3.3.2), translocates 

into the nucleus and binds to a GRE in the DNA of GC target genes, located in the 

promoter region of these genes. Subsequently GR orchestrates the transcription of large 

number of genes (fig.8) by activation or repression of transcription (Ratman et al., 2013, 

De Bosscher et al., 2000b, De Bosscher et al., 2000a, De Bosscher et al., 1997).  

  

These genes are involved in control of apoptosis, metabolism inflammation and immune 

response (Hou et al., 2014, Sluyser, 2005). A dimerized GR binds to DNA in the nucleus 

at its central region through its two zinc fingers; it can either mediate trans-activation or 

trans-repression depending on the type of the GRE, cofactors involved and type of the 

cell.  

Activated dimer GC-GR regulates more than 100 genes by up regulation of anti-

inflammatory proteins such as interleukin IL-10, Annexin1 and inhibitor of NF-κB or 

down regulation of pro-inflammatory mediators such as IL-6, nuclear factor-κB (NF-κB) 

or activator protein 1 (AP1) activities, enzymes including mitogen-activated protein 

kinases (MAPKs) or up regulation of histone acetyltransferases (HAT) and histone 

deacetylases (HDAC) which modify chromatin (Prusator and Greenwood-Van Meerveld, 

2017, Morgan et al., 2016, Hunter et al., 2016, Sevilla et al., 2015, Zou et al., 2013, Sasse 

et al., 2013, Hu et al., 2013, Zhang et al., 2012, Speksnijder et al., 2012, Nader et al., 

2012). In addition GR regulates inflammation via trans repression of pro-inflammatory 

mediators cytokines (interleukin 1, 2, 3, 4, 5, 6, 11, 13), tumour necrosis factor- alpha 
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TNF- α, granulocyte-macrophage colony stimulating factor (GM-CSF), chemokines 

cyclooxygenase and other numerous genes (Grigor'ian et al., 2014)  

GR mediated transcriptional activation for instance expression of genes involved in 

metabolism may bring side effects to patients on long term of high dose GC therapy 

(Schacke et al., 2004).  

GR interacts with its target genes and inflammatory mediators either by GRE or other 

ways shown in (Fig. 16). Simple mode of action is binding with simple GREs in the GR 

target genes leading to either activation of transcription if binding is to positive GRE or 

suppression of transcription if binding to negative GRE in target genes (Newton and 

Holden, 2007).  In composite mode, GR binds to the transcription factors in the 

composite regions in the DNA of responsive genes then either enhances or inhibits the 

transcription of the target genes. In the tethering mode of regulation, GR binds the 

transcription factors that bind positive GRE or negative GRE to either enhance or 

suppress the transcription. GR mediated transcriptional activation usually involves 

coactivators (such as CBP or p160) recruitment whereas GR mediated transcriptional 

repression is often through recruitment of corepressors (such as HDACs) leading to 

control of general transcriptional machinery  (such as TBP and RNA polymerase II) 

(Latchman, 2001) and (Barnes, 2006). 
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Figure 16  GR Signalling 

Main GR interactions in regulation of gene expression adapted and modified  from Newton and Holden 
(2007) 
  

 

There are many isoforms of the glucocorticoid receptor resulting from alternative RNA 

splicing and translation initiation of the GR mRNA, which contribute to the diverse 

effects of glucocorticoid hormones. It has been suggested that the anti-inflammatory 

action of glucocorticoids occurs via trans-repression of targeted gene by GR while the 

negative side effects are from the transactivation of targeted genes by GR (De Bosscher, 

2010). Therefore separating these two modes of action would lead to enhancement of 
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therapeutic features, minimize side effects and drug resistance encountered in diseases 

such as asthma that require prolonged glucocorticoid therapy (Baudy et al., 2012).  

  GR transrepression actions are carried out mostly by protein–protein binding. GR can 

down regulate gene expression by interactions between monomeric GR and the other 

proteins involved in transcription mechanism for example nuclear factor-kappa B (NF-

kB) and activator protein1 AP1 (c-jun and c-fos) that regulate the inflammation process 

(Bladh et al., 2005). As part of anti-inflammatory process GR suppresses the activity of 

mitogen-activated protein kinases MAPK through negative effect on their 

phosphorylation (Sotelo-Rivera et al., 2017, Beck et al., 2013a, Beck et al., 2009b, 

Yoshino et al., 2001, Holler et al., 2000, Vanden Berghe et al., 1998, Bandyopadhyay and 

Faller, 1997). More examples are in table 6. 

Table 6 Examples of GR affected genes 

Affected gene  Type of effect  

GLIZ upregulation (Ng et al., 2017) 

osteogenic genes repression (Pico et al., 2016) 

beta-catenin and c-myc  
upregulation 

(Jozic et al., 2017) 

metallothionein 2A (MT2A) gene  upregulation (Sato et al., 2013) 

interleukin 11 repression (Rauch et al., 2010) 

skeletal muscle atrophy-associated 
MuRF1 gene 

upregulation (Waddell et al., 2008) 

COX-2- suppression (Brewer et al., 2003) 

in basal cellular and extracellular 
PLA2 activity 

suppression (Kol et al., 1998) 

interleukin 2 upregulation (Lamas et al., 1993) 
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1.1.3.3.4 GR cofactors 
 
 
Cofactors regulate GR transcription and function and include several categories of 

regulators: p300, CREB-binding protein (CBP), p300/CBP associated factor (PCAF) that 

control the acetylation of histones (acetylation facilitates the transcription process), 

activator of thyroid hormone and retinoid receptors (ACTR), steroid receptor 

coactivator-1 (SRC1), or other cofactors that can modulate the chromatin in an ATP 

dependent manner. 

Szapary et al. (1999) demonstrated that number of cofactors including transcriptional 

intermediary factor 2 (TIF2), steroid receptor coactivator 1 (SRC-1), and amplified in 

breast cancer 1 (AIB1) act as coactivators of GR transcription. Other cellular factors act 

as corepressors such as silencing mediator for retinoid and thyroid-hormone receptors 

(SMRT), which is known to facilitate GR’s repressive effect. Ronacher et al. (2009) 

reported that ligand selectivity of GR mediated transactivation and transrepresson can 

be determined by cofactor recruitment. 

 

 Many cofactors cooperate and participate in gene transcription and those are: thyroid 

hormone receptor associated protein (TRAP), glucocorticoid receptor interacting protein 

1 (GRIP 1), activated recruited cofactor (ARC), TATA box-binding protein (TBP), TBP 

associated factors (TAFS), the general transcription factors (TFIIA, TFIIB, TFIIE, TFIIF, 

TFIIH), the enzyme RNA polymerase-II (RNA pol II. On the other hand the corepressors 

complex with GR and suppress the gene expression (through recruiting the enzymes 

which deacetylate the histones histone deacetylases (HDACs). Examples of corepressors 
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are nuclear receptor corepressor (N-CoR) silencing mediator of retinoid and thyroid 

hormone receptor (SMRT).  

GR is a positive modulator of signal transducer and activator of transcription 5 (STAT5) 

genes (Martinez et al., 2015). It also remodels chromatin and modulates the 

adipogenesis by control of the lipolytic and antilipogenic genes transcription. It can 

interact with wide range of transcription factors and co-factors, for instance suppression 

of activation of heat shock transcription factor -1 (Thompson et al., 2005). 

 

1.1.3.3.5 GR post-translational modifications  
 

Proteins are exposed to a covalent process of post-translational modifications (table 7), 

which includes methylation, sulfation, phosphorylation, lipid addition, glycosylation and 

other modifications which may modify protein activity (Kim et al., 2006). N-terminal 

glycosylation is common form of PTM that occurs through addition of oligosaccharides 

to the expressed protein. PTMs of the glucocorticoid receptor can be considered as one 

mechanism involved in regulation of GR mediated target gene specificity. Glucocorticoid 

receptor has been described to  undergo methylation (Guo et al., 2017), ubiquitination, 

acetylation(Murphy et al., 2005, Kovacs et al., 2005, Matthews et al., 2004, Ito et al., 

2000) and SUMOylation (Druker et al., 2013). These are important PTMS of GR which 

affect its function and the best studied is GR phosphorylation   (Jovicic et al., 2015), as 

kinases target GR and lead to enhanced or repressed  GR transcriptional regulation (Krstic 

et al., 1997), and alter the transcriptional activity of GR (Oakley and Cidlowski, 2013). And 

the  phosphorylation sites at GR are sensitive to  ligand activation (Kadmiel and 

Cidlowski, 2013) 
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PTMs events also involve addition of ubiquitin molecule to certain residues in the 

affected protein, by aid of ubiquitin enzymes (E-1, E-2 and E-3 enzymes), which achieve 

activation, conjugation and ligation.  This process is followed by   degradation by 26S 

proteasome. GR is ubiquitinated at lysine 419 (K419) and targeted by proteasome-

ubiquitination pathway leading to inhibition of its function due to proteasome 

degradation action.Davies et al. (2011), reported that p300 / tetratricopeptide repeat 

domain 5 (TTC5) cofactors have the capacity to protect GR against ubiquitin 

degradation. This can affect GR transcriptional activity. 

SUMOylation term is derived from SUMO-1 which stands for Small Ubiquitin-Related 

Modifier-1 protein, that is covalently linked to the amino acid lysine in GR. SUMOylation 

in GR occur at K277, K293, K313, K297 and K703, and K721 (K refer to the amino acid 

lysine) sites which were catalyzed by sumo-conjugating enzyme ubc9.  This modification 

can effect GR transcription, expression, and the mechanism of action, which may be 

either up or down regulated depending on the SUMOylation site.  It has been suggested 

that SUMOylation may switch off GR activity and GR mediated gene expression 

(Paakinaho et al., 2014, Druker et al., 2013).  

Tian et al. (2002) have identified Ubc-9 targeting GR-NTD; Lysine 277 and Lysine 293, 

changes had been demonstrated to influence proteins interplay.  In addition, the Lysine 

703 is an Ubc-9 binding site located in LBD.  

 

Acetylation is the process where the functional acetyl group is added to the amino acid 

lysine on proteins. This process is controlled by histone acetyltransferase and histone 

deacetylase (HDACs) enzymes. GR is acetylated at K494 and K495 and that alters its 
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transcriptional activity. GR modulates inflammation through negative regulation of 

histone acetylation of inflammatory biomarkers (Ito et al., 2000). Chronic DEX derived 

bone defects are attributed to crosstalk between GR, and both Histone Deacetylase 6 

HDAC6 and osteoblast late marker osteocalcin (OCN)(Rimando et al., 2016). Also HDAC1 

and HDAC2 are regulating expression of several genes such as STAT3 (Icardi et al., 2012). 

The fork head transcription factor FoxA1 regulates glucocorticoid receptor (GR) activity 

by promoting acetylation at H4K16 (Belikov et al., 2012).  

Nitrosylation means the interaction between the sulfur-containing amino acid (such as 

cysteine Cys in GR) and nitric oxide (NO) or reactive nitrogen species (RNS) generating S-

nitrosothiols (such as Cys656), this process interferes with and can change protein 

function (Martinez-Ruiz and Lamas, 2004). S-nitrosylation impairs GR ligand binding 

thereby interrupting GR anti-inflammatory therapeutic effect and the response to GCs 

therapy (Duma et al., 2004, Galigniana et al., 1999). 

1.1.3.3.6 GR phosphorylation 
 

Phosphorylation is addition of a new phosphate molecule to the GR on site of serine 

(Ser) and/or Threonine (Thr). The N-terminal domain residues in the GR have been 

shown to undergo phosphorylation.  GR phosphorylation is linked to GC response or 

resistance in leukemia cells (Lynch et al., 2010). GR activity can be modulated by its 

phosphorylation, in particular GR is targeted by glucocorticoid-inducible kinase 1 (SGK1) 

at Ser422 and Thr256 and there is crosstalk between protein phosphatase 5 (PP5) and 

GR (Sotelo-Rivera et al., 2017, Zhang et al., 2016, Pazdrak et al., 2016, Li et al., 2016, 

Carruthers et al., 2015, Hinds et al., 2014, Adzic et al., 2013). 

GR activity depends on the level of phosphorylation at numerous sites, which have been 
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identified at Ser203, Ser211, and Ser226, Tyr8, Ser45, Ser234, and Ser267 sites (fig.17). 

Phosphorylation of Ser211 is mediated by p38 and CDKs. On the other hand 

phosphorylation by MAPK, JNK, ERK and GSK-3 has also been described to target GR 

(Pocuca et al., 1998, Adzic et al., 2009, Lynch et al., 2010, Popovic et al., 2010, Adzic et 

al., 2013). 

 

Figure 17 Illustration of the main posttranslational modifications of Glucocorticoid receptor alpha and 
their corresponding domain location (adapted and modified   from  Kino (2010) 

 

The cyclin-dependent kinases CDKs [cyclin E/cyclin-dependent kinase 2 (Cdk2) 

phosphorylate GR at S203 site and cyclin A/Cdk2 phosphorylates S203 and S211 upon 

ligand activation. Phosphorylation by cyclin A/Cdk2 up regulates GR transcriptional 

activity. The p38 MAPKs and the c-Jun N-terminal kinases (JNKs) phosphorylation 

phosphorylate GR at S226   leading to inhibition of its function. The glycogen synthase 

kinase 3 (GSK-3), ERK and casein kinase II are other kinases involved in GR 



71 
 

phosphorylation. Furthermore GR is phosphorylated at higher level at S211 in hormone 

treated cells. The phosphorylation mechanism can be reversed through another process 

called de-phosphorylation; through the action of phosphatase enzymes such as PP1, 

PP2a, and PP5, which are capable of dephosphorylating GR (Blind and Garabedian, 

2008). It has been found that GR phosphorylation at S211 and S226 are regulated by 

neuroendocrine stress (Simic et al., 2013).  Additional possible phosphorylation sites of 

GR are found to be at S203, S211, S226, S404, S45, S134, S234, S267 and T8 as in  

(Galliher‐Beckley and Cidlowski, 2009) 

Table 7 Examples of GR post-translational modifications 

PTM Effect  Reference  

GR ubiquitination down-regulation of 

glucocorticoid receptor 

(Wang and DeFranco, 2005) 

reduced histone H3 

acetylation of GR 

promoter I7 

reduced GR expression (Park et al., 2017) 

increased DNA 

methylation at the 

NGFI-A (nerve growth 

factor-induced 

protein A) binding 

site of the NR3C1 

lower NR3C1 expression (Vukojevic et al., 2014) 
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promoter in male  

DNA methylation in 

the 1-F promoter 

region of the GR gene 

glucocorticoid insufficiency or 

down regulation of cell surface 

GR expression that, in turn, 

results in GR resistance (GCR) 

(Kantake et al., 2014) 

SUMOylation at 

lysine 297 (K297) and 

K313  and K721 

regulates GR the activity  on 

target genes. 

 

(Druker et al., 2013) 

 

 

Phosphorylation at 

GR serine 220 

(pSer220GR) 

promoted GR  activity (Brossaud et al., 2017) 

GR phosphorylation 

at serine 211 (pGR-

211) and at serine 

226 (pGR-226) 

Correlated with negative 

activity  

(Jovicic et al., 2015) 

GR phosphorylation 

on serine 226 and  

serine 211 

Effect on  NOXA and Mcl-1 

gene expression and then 

apoptosis  

(Lynch et al., 2010) 
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1.1.4 Cell death  
 

There are several different types of cell death (fig.18) represented by necrosis, 

apoptosis, autophagy and necroptosis, which have been classified according to 

underlying signalling pathway. Cell death types mostly share similar triggers, factors and 

mediators or under certain circumstances one form can overlap with another  such as 

necroptosis which is a programmed necrosis of cells (Bibel and Barde, 2000). Specific 

profiles are characteristics of each death type, which enables the pathologist to 

distinguish between them. Such morphological changes correlated with inflammatory 

reaction and disease condition as appear in necrotic organs and sometimes 

accompanied by pathogens (virus, bacteria, fungi, parasites)(Wyllie et al., 1980).  

Necrosis is cell damage in response to a physical injury, external trauma or is related to 

disease or abnormal conditions which cause the plasma membrane to rupture and cells 

to die (Leist and Jaattela, 2001). Autophagy is the cellular ingestion of itself  (auto 

cannibalization) in which engulfment of the cell cytoplasm and intracellular organelles 

occurs within organelles called auto phagosomes (Levine and Kroemer, 

2008).Necroptosis can be defined as a regulated form of necrosis, which is controlled by 

RIP1, RIP3 and MLKL and is also affected by PTM of these mediators and their crosstalk 

with caspase-8. Necroptosis is  often associated with several inflammatory disorders 
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(Christofferson and Yuan, 2010).  

 

Figure 18  Cell death scheme and main routes 

The three types apoptosis, necrosis and autophagy can be microscopically distinguished by the unique cell 
morphology accompanied each type as updated fromNunes et al. (2014). 
 
 

The most important type of cell death is Apoptosis, which refers to the programmed cell 

death (PCD).The term PCD has been first given to this type of cell death by Richard and 

William in 1964 who explained the disappearance of muscular structures of the silk 

moth during different life stages in (Lockshin and Williams, 1964). 

PCD is essential to maintain the normal development and is controlled by Cysteine 

Aspartyl Proteases (Caspases). Apoptosis involves a series of biological, chemical, and 

physical changes leading mostly to beneficial outcomes, for example the apoptosis of 

cancer cells caused by therapy. The harmful apoptosis is usually a result of 

malfunctioning and impairments of proper physiological mechanisms in the body. 
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Apoptosis  (shown in fig.19).  is controlled by complex pathways named extrinsic and 

intrinsic according to the type of trigger and signalling pathway although they 

sometimes happen together upon anticancer agents treatment (Tsai et al., 2016) . 

Generally, the extrinsic pathway is starting by binding of death ligand with the death 

receptor (Saralamma et al., 2015), the former transmits the signal inside the affected 

cell. Death receptor belongs to the TNF family which is characterized by the presence of 

a death domain; this domain is responsible of translating the outer signal into the 

programmed death pathway. Examples of cell death ligands are the FasL (CD95L), TNF-α, 

Apo3L, Apo2L, TRAIL, while examples of death receptors are FasR (APO-1), TNFR1, DR3, 

DR4 and DR5. The death ligand – death receptor form a complex with CAP 

proteins/adapters (CAP1, CAP2 (FADD), CAP3, CAP4, TRADD), this complex then interacts 

with Pro-Casp8 to form death-inducing signaling complex DISC. This complex later 

activates Caspase-8, once Casp8 becomes active, execution phase will begin by 

activating three caspases 7,6,and 3 which initiate the beginning of death process (Chen 

et al., 2016). This process starts by shrinking of the cells, and then disintegration of the 

DNA and organelles and membrane blebbing, then the apoptosis bodies are separated 

from the mother cell following by engulfing by phagocytes, to be completely removed 

from the body. Apoptotic cells exhibit phosphatidyl serine at the external surface of cell 

membrane. In some occasions DISC directly affects BID cleavage, leading to formation of 

tBID, which adheres to the mitochondria and follows intrinsic pathway, thus providing a 

link between the extrinsic and intrinsic processes.  

The intrinsic mechanism of apoptosis includes a series of actions that utilize the 

mitochondria. This pathway is triggered by various biological or non-biological stimuli or 

so called ‘ cell stressors’ for instance cell ischemia (Wu et al., 2016), DNA damage, ER 
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stress, stress hormones such as glucocorticoids, chemotherapy, oxidative stress caused 

by  ROS, NO or GSH  and pathogens (Mycobacterium) (Tsai et al., 2016, Lin et al., 2015, 

Yaoxian et al., 2013, Kristen et al., 2013, Seitz et al., 2010). These signals lead to loss of 

mitochondria membrane potential (surface integrity), and activation of pro-apoptotic 

BCL-2 members, which regulate the apoptosis by activating the apoptosis initiators Bax 

and Bak. They make pores in the membrane of the mitochondria to release Cytochrome-

C, which forms complex with Apaf-1 and procaspase-9 leading to multiprotein complex 

“apoptosome“. This apoptosome activates caspase-9, which eventually activates the 

apoptosis effector caspases resulting in cell death (Tsai et al., 2016).  At this stage the 

apoptotic cell can be distinguished from necrotic and autophagic cells by protruding 

blebs from the surface and distribution of cytoplasmic and nuclear material in these 

structures. Subsequently, blebs separate from the cells and then are lysed by 

macrophages, while the necrotic cells are swollen with damaged cytoplasmic membrane 

leading to rupture of the cell and diffusion of the cytoplasmic granules to the area 

leading to diseased conditions. Autophagy cells are identified by  cytosolic phagocytic 

molecule autophagosome which is controlled by autophagy-related genes (ATG) (Wang 

et al., 2017a). 
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Figure 19 Main pathways of apoptosis 

Schematic illustration of intrinsic and extrinsic pathways of apoptosis leading to caspases activation and 
triggering of cell death (drew using ChemDraw Professional, 2016). 
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Programmed cell death can be either caspase dependent or caspase independent, the 

caspase dependent apoptosis is described above. On the other hand, the caspase 

independent pathway may contribute to cell death by unusual mechanism of apoptosis 

(Nikoletopoulou et al., 2013).  This pathway of cell death is of therapeutic importance in 

glioma cells which involve the PARP-1/AIF signalling pathway following external 

radiotherapy due to oxidative damage of  DNA’s (Zhang et al., 2017). Caspase -

independent pathway is illustrated in fig 20 

 

 
Figure 20 Caspase independent cell death. 
 
The figure illustrates the main mechanisms which lead to caspase independent cell death. Ischemia, for 
instance, lead to penetration of calcium via NMDA, ASIC, or TRPM7 channels, then nitric oxide will be 
synthesised leading to the damage of DNA of the cells and cell death. Adapted from (Siegel and 
McCullough, 2011). nNos = Neuronal nitric oxide synthase, ONOO−= peroxynitrite, NO= nitric 
oxide,O2−=superoxide. 
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1.1.4.1   GR role in control of apoptosis 
 
 
GCs  are used in treatments of certain types of cancers due to GR ability to induce 

apoptosis (Schlossmacher et al., 2011). GCs are used to treat blood cancer such as 

multiple myeloma (MM) and ALL (Kervoelen et al., 2015). GR is capable of inducing 

apoptosis in a cell specific manner, as not all cells are sensitive to this cytotoxic effect. 

For example fibroblasts are not affected by DEX  while osteocytes  are much more 

sensitive to low concentrations of DEX (Mostafa et al., 2011).  Researchers found that 

DEX can also induce apoptosis in monocytes in a dose dependent manner (Schmidt et 

al., 1999). 

Furthermore, GCs give rise to cell cycle arrest and apoptosis in lymphoid cells (Vayssiere 

et al., 1997). It is documented that GC stimulate apoptosis in leukemia cells through its 

steroid receptor. It has also been suggested that both transactivation and trans 

repression of genes could lead to apoptosis (Saenz et al., 2015, Jing et al., 2015, Liu et 

al., 2014, Tao et al., 2013, Liu et al., 2013, Guo et al., 2013, Wasim et al., 2012, Heidari et 

al., 2012, Heidari et al., 2010, Carlet et al., 2010). DEX induces apoptosis in T-

lymphocytic leukemia via GR activation of Programmed cell death 1 (PD-1) expression 

(Xing et al., 2015). It can induce apoptosis by caspase dependent pathway and through 

changing mitochondrial membrane permeability leading to cellular death. In addition, 

GC dependent apoptosis leads to activation of pro-apoptotic Bcl-2 protein family 

members. This family of proteins possesses Bcl-2 Homology (BH) domains (BH1, BH2, 

BH3, and BH4), and its members can have pro or anti-apoptotic effects (Taylor et al., 
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2008). Bcl-2 family (table 8) is important for GC action and modulates GC resistance in 

ALL (Ploner et al., 2005, Geley et al., 1996, Tsujimoto, 1998).  

In particular, B-cell CLL/lymphoma 2 (BCL2) can inhibit GR- initiated- apoptosis and 

influence cell survival by either modulation of apoptosis or effects on the cell cycle. Also 

BCL-xL is anti- apoptotic protein and stimulates proliferation of cells by affecting the G0 

(resting phase) of the cell cycle, whereas BCL2-associated X protein (BAX) has pro-

apoptotic properties through its effect on S-phase. Moreover, apoptosis and cell cycle 

are regulated by multi-domain BCL2 family members (MCL-1) the anti-apoptotic 

biomarker. BCL2-associated agonist of cell death (BAD) is pro-apoptotic marker which is 

the BH3-only group of Bcl-2 family. BH3 Interacting Domain Death Agonist (BID) is pro-

apoptotic member of this family, which binds other members to mediate the damage of 

mitochondria and provide link between intrinsic and extrinsic pathway. 

One of the main mediators of cell death induced by GR is proapoptotic and Bcl2-

interacting mediator of cell death (Bim). Bim enhances programmed cell death by its 

BH3 domain and has the ability to antagonize the effects of some anti-apoptotic 

markers. Alternative splicing produces BIMEL (extra-large), BIML (large) and BIMS (small) 

isoforms (O'Connor et al., 1998), which consist of 198 aa, 138 aa, and 112 aa 

respectively, all have BH3 region in their structure (Genes, 2017a). 

It is believed that GR mediated apoptosis is linked with Bim expression. Heidari et al. 

(2012) have studied the relationship between GC-apoptosis and BIM in leukemia cells 

and their study revealed that apoptosis induction in leukemia cells is accompanied by 

up-regulation of BIM, C-JUN and Runx2 in GC sensitive cells whereas this interaction are 

missing in GC resistant cells. This mechanism can be blocked by inhibition of MAPK, thus 

investigating Bim (which is regulated transcriptionally) and Bim affected targets is 



81 
 

important in order to explain how cell death occurs in different cancers. Another report 

by Jing et al. (2015) suggested that BIM mediated GC induced apoptosis by specific 

mechanism involves GR-Bim binding at the internal promoter region of BIM. However 

other reports indicated that main mode of GR mediated induction of Bim is through 

indirect mechanisms (Adams and Cory, 2007). 

It has been found that Programmed Cell Death 4 (Pcd4) gene was up-regulated upon GC 

therapy inducing apoptosis. In addition PTMs like phosphorylation which takes place at 

Ser211 accelerate GR apoptotic efficiency (Lankat-Buttgereit and Goke, 2003). 

Table 8 GR effect on BH3-family members 

 
Target protein  Type of response  Type of  apoptotic 

cells 
Reference 

BAX 
Bim, 
 Bcl-xL  
Bak 

upregulation   
upregulation 
upregulation 
upregulation 

thymocyte apoptosis. (Prenek et al., 2017) 

Bax/Bcl-2 ratio increased  germ cell apoptosis (Mukherjee et al., 
2015) 

Bim  upregulation   multiple myeloma (Kervoelen et al., 2015) 

Bim 
BCL2 

upregulation 
downregulation  

pediatric acute 
lymphoblastic 
leukemia cells 

(Jing et al., 2015) 

BCL2 downregulation spinal cord injury (SCI) (Maldonado Bouchard 
and Hook, 2014) 

BCL2 upregulation  Small cell lung cancer  
 

(Schlossmacher et al., 
2013) 

Bim 
BCL-XL 
MCL-1 

upregulation human plasmacytoid 
dendritic cells 

(Hong et al., 2013) 

Bim upregulation   ALL cells (Beach et al., 2011) 

Bim upregulation WEHI7.2 and S49.A2 
murine lymphoma 
cell, 
CEM-C7 cells and in 
primary murine 
thymocytes 

(Wang et al., 2003) 

Bim upregulation ALL (Wang et al., 2010) 
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However apoptosis does not always have a favourable effect as the early administration 

of GCs in pregnancy can affect foetus and cause unwanted permanent central nervous 

system damage due to early apoptosis of nervous cells (Lanshakov et al., 2016). In 

addition to the crosstalk between glucocorticoid receptor (GR) and T cell antigen 

receptor (TCR) have been suggested (Jamieson and Yamamoto, 2000) 

GR causes downregulation of  transcription proinflammatory genes /mediators via 

suppression of their transcription factors such as AP-1 and NF- κB (Hermoso and 

Cidlowski, 2003). NF-κB has also attributed to Warburg effect and alteration of 

metabolism in tumours (Johnson and Perkins, 2012). The NF-κB  also modulates the 

inflammation and immunity  (Hoesel and Schmid, 2013). NF-κB contributed to cancer as 

it is  family member of v-Rel oncogen, and NF-κB affected genes are  seen to be 

modulated during many cancers. The stimulation of NF-κB signaling pathway is preceded 

by inflammatory events or by inflammation  accompanied by  a developing cancer 

(Karin, 2009) 

 

1.1.5 Selective glucocorticoid receptor modulators or agonists:  
 

1.1.5.1  Overview of SGRM/SGRA 
 

Glucocorticoids anti-inflammation properties are believed to be due to GR mediated 

inhibition of transcription of its pro-inflammatory target genes, while GC-induced side 

effects may be due to GR mediated activation of transcription of its target. However, 

some negative effects may commence from both transcriptional activation and 

transcriptional repression. The compounds that can bind GR and activate it to generate 

selective anti-inflammatory or anti-cancer effects separately from the adverse effects 

are given the term of selective glucocorticoid receptor modulators (Schacke et al., 2004). 
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Some of these compounds are non-steroids that are selected to  mimic some or all of 

the steroid beneficial  effect (Buijsman et al., 2005). 

Recent efforts in GC application in medicine have focused on GR studies and invention 

of novel compounds that promote the trans-repression actions of GR with dissociation 

of its positive from negative action on gene expression. The selectivity in steroid 

receptors targeted therapy has been studied for number of years and first selective 

modulators of sex hormones were established in seventies (Giannini et al., 2015, 

Sherman et al., 1970). For example SGRM is Org 214007-0 ,which showed effective anti-

inflammatory characteristics and GR binding efficiency in murine model of acute and 

chronic inflammation without the glucose related side effects (van Lierop et al., 2012). 

 

1.1.5.1.1 Examples of SGRM 
 

Many compounds have been tested for their GR targeting and dissociative 

characteristics. Another known SGRM is ZK 216348, which has been developed for its 

potential in cutaneous anti-inflammatory effect in mouse skin cell line. This compound 

revealed side effects similar to GC in terms of diabetes and inhibition of ACTH, though, 

less skin lesions accompanied  the treatment  (Schacke et al., 2004).  

Furthermore, ZK 245186 is promising anti-inflammatory agent applied for various skin 

inflammatory conditions, with minor adverse effects (Schacke et al., 2009). ZK 245186 

which is also called  BOL-303242-X can not only be used for cutaneous lesions but also 

for ophthalmic allergic disorders (Zhang et al., 2009a) and eye inflammation, (Baiula et 

al., 2011) as this SGRM exerts anti-inflammatory effect without increase in intraocular 

pressure of the treated eye, which was verified in cat eye inflammation model (Kato et 
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al., 2011). Shafiee et al. (2011) have investigated the anti-inflammatory efficiency of this 

compound against rabbit dry eye syndrome. This compound which is called Mapracorat  

was suggested to treat dry eye disease (Cavet et al., 2010) and was tested for 

transactivation of myocilin which was suggested to cause side effects upon 

administration of classical steroids in eye. No expression of this biomarker was observed 

upon administration of Mapracorat (Pfeffer et al., 2010), Proksch et al. (2011).  Several 

other researchers have studied the anti-allergic and anti- inflammatory properties of this 

compound. Stamer et al. (2013) tested the drug in primary cultures of human trabecular 

meshwork (TM), (Baiula et al., 2014) in  conjunctivitis model of guinea pigs and 

demonstrated activity against allergic conjunctivitis. 

Berger et al. (2017) have found that  tetrahydronaphthalenes  act as a strong SGRM, 

while others (Okamoto et al., 1998) reported that EPC-K1 (L-ascorbic acid 2-[3,4-dihydro-

2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl hydrogen 

phosphate] potassium salt)  regulates GR by maintaining GR activity under oxidative 

conditions. Compound K (C-K), 20-O-D-glucopyranosyl-20(S)-protopanaxadiol), 

protopanaxadiol ginsenoside metabolite, is another GR ligand which was designed to 

control lethal bacterial sepsis and regulate the inflammation, via a GR-transrepresson 

pathway (Yang et al., 2008). In addition, it has a protective role against the acute 

inflammation experimentally induced by zymosan (Cuong et al., 2009). The up to date 

SGRM are listed in table 9.  
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Table 9 The known SGRM 

SGRM Action  Condition System Published 

Fosdagrocorat 
(PF-04171327 

anti-inflammatory  rheumatoid 
arthritis 

patient (Shoji et al., 
2017) 

Sutherlandia 
frutescens 

anti-stress and anti-
inflammatory 
anti-hypertensive 

forskolin 
stimulated 
conditions 

COS-1 cells, 
adrenal H295R 
cell model 

(Sergeant et 
al., 2017) 

CORT 118335 stress response 
regulation 

forced swim 
stress (FST) 

male rats (Nguyen et 
al., 2017) 

AZD5423 autoimmune 
suppressor  

Allergen- 
induced 
asthma 

Healthy and 
asthmatic 
people  

(Melin et al., 
2017) 

JTP-117968 anti-inflammatory 
effects 

TAT protein 
and mRNA 
Transactivatio
n  

rat hepatoma 
cells 
primary human 
hepatocytes 

(Kurimoto et 
al., 2017) 

AZD5423 no effect  detected   chronic 
obstructive 
pulmonary 
disease COPD 
 

patients  (Kuna et al., 
2017) 

mapracorat anti-inflammatory skin 
inflammation 
model  

Canine (dog) (Baumer et 
al., 2017) 

SA22465  drug penetration into 
meibomian gland 
tested  

eye Rabbit (Asano et 
al., 2017) 

C108297 anti obesity and anti-
inflammatory  

diet induced 
obesty and 
LPS induced 
Inflammation  

C57Bl/6 J mice 
and  
RAW 264.7 
cells 

(van den 
Heuvel et 
al., 2016) 

CORT118335 anti-obesity  diet-induced 
obesity.  

 C57BL/6J mice (Mammi et 
al., 2016) 

Compound -A nosubstantial 
otoprotective 
capacities 

noise trauma 
model 

guinea pigs (Landegger 
et al., 2016) 

Compound -A no induction of leptin 
or ob-r in human oa 
synovial fibroblasts 

osteoarthritis human 
osteoarthritis 
synovial 
fibroblasts 

(Malaise et 
al., 2015) 

Compound -A growth inhibition 
effect on of colon 
cancer-derived 
myofibroblasts 

colon cancer colon cancer-
derived 
myofibroblasts 
CT5.3hTERT 
cells 

(Drebert et 
al., 2015) 

mapracorat 
(BOL-303242-X), 

anti-inflammatory ocular 
inflammation 

human ocular 
cells -
Keratocytes 

(Spinelli et 
al., 2014) 

compound A inhibition of immune-
inflammatory diabetes 

type 1 
diabetes 

mice (Saksida et 
al., 2014) 
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compound 14, a 
t-butyl 
containing 
derivative-non 
steroid 

anti-inflammatory collagen-
induced 
arthritis  

mouse (Razavi et 
al., 2014) 

rigid steroid 21-
hydroxy-6,19-
epoxyprogester
one (21OH-
6,19OP) 

coadjuvants in the 
treatment of solid 
tumors 

transrepressio
n assays 

In vitro -
epithelial lung 
cancer cells- 
A549 cells 
 

(Orqueda et 
al., 2014) 

CORT108297 normalization of 
hippocampus 
parameters-promising 
therapy for human 
ALS 

human 
amyotrophic 
lateral 
sclerosis (ALS) 

Mutant 
Wobbler mice 

(Meyer et 
al., 2014) 

MK-5932 anti-inflammatory 
with  no increase in 
glucose level 

rat contact 
dermatitis,coll
agen-induced 
arthritis and 
adjuvant-
induced 
arthritis 
models 

In vivo-rat and 
dog 
In vitro- human 
whole blood 

(Brandish et 
al., 2014) 

Mapracorat 
ZK245186 or 
BOL-303242-X) 

powerful anti-
inflammatory   
  

inflammatory 
skin and 
ocular 
disorders 
 

Phase II Clinical 
trials 

(Baiula and 
Spampinato, 
2014) 

C108297 selectively abrogation 
of pathogenic GR-
dependent processes 
in the brain 

depression  In vivo-rat 
brain 

(Zalachoras 
et al., 2013) 

GW870086X no side effect on 
homeostasis  

(GC)-induced 
glaucoma 

trabecular 
meshwork 

(Stamer et 
al., 2013) 

Mapracorat 
 

anti-allergic effects allergic  
conjunctivitis  

human 
conjunctival 
epithelial cells 
(HConEpiC) and 
human 
conjunctival 
fibroblasts 
(HConF), 

(Rauner et 
al., 2013) 

 Org 214007-0 anti-inflammatory insulin 
resistance 

In vitro -THP1 
cells ,primary 
human whole 
blood cells t 
In vivo-mice    

(Cavet et al., 
2013) 

ZK209614 ophthalmic anti-
inflammatory and anti 
-allergic effects, 

external eye 
diseases 

In vitro 
transrepression 
andtransactivat
ion assays 

(Kato et al., 
2011) 
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In vivo-rat and 
cat  

Compound A 
(CpdA 

anti-inflammatory experimental 
autoimmune 
encephalomy
elitis (EAE), 
multiple 
sclerosis 

In vivo-mice (van Loo et 
al., 2009) 

L5 (Roohk et al., 
2010-
tetrahydro-4H-
benzo[f]indazol-
5-yl]-[4-(tr 
ifluoromethyl)p
henyl]methanol)
. 

L5 dissociates the 
pleiotropic effects of 
the GC 

disease-
relevant 
target 
pathways 

n vivo in mice (Roohk et 
al., 2010) 
 

AL-438  
few side effect on 
chondrocytes 

growth plate 
chondrocytes 

In vitro-murine 
chondrogenic 
ATDC5 cell line 
In vivo-Fetal 
mouse 

(Owen et al., 
2007) 

 

1.1.5.1.2  Compound A  
 
 
Compound A (CPDA) is a dissociated non-steroidal glucocorticoid receptor modifier 

which was created as a stable analogue, derived from the African shrub plant known as 

the Salsola tuberculatiformis Botschantzev (Zhang et al., 2009b). Compound A as a novel 

SGRM, has been suggested to act by separating transcriptional repression from 

transcriptional activation by GR , thereby regulating the inflammation without the side 

effects of the conventional GC (Rauner et al., 2011). In most cases, CpdA interacts with 

various plasma steroid-binding globulins, proteins or enzymes. The chemical structure is 

2-((4-acetophenyl)-2-chloro-N-methyl) ethyl ammonium chloride. This particular shrub-

derived compound can effectively induce the glucocorticoid receptor’s trans-repression 

action by inhibiting AP-1, CRE/ATF, Elk01, Ets-1, NFATc, and SRF, however it doesn’t 

induce the GR-mediated transactivation (Beck et al., 2013b).  It is capable of inducing 
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the anti- inflammatory or immune-regulatory effects of the glucocorticoid receptor 

(Liberman et al., 2012).  It has been demonstrated that CPDA reduced the growth of 

colon cancer cells (Drebert et al., 2015)  induced suppression of NFkB, the 

proinflammatory mediator   and its downstream signaling pathway to produce the 

significant effect, thus providing advantage over the conventional GC therapy which 

modulates a wide range of inflammatory mediators via the genomic effect to produce 

both beneficial and harmful effects (Lesovaya et al., 2015). 

Current research studies indicate that 2-((4-acetoxyphenyl)-2-chloro-N-methyl) ethyl 

ammonium chloride has the ability to modulate the immune response of bone marrow-

derived  dendritic cells (BMDC) by   down regulating the pro-inflammatory mediators 

and  NF-kB (Barcala Tabarrozzi et al., 2016). Another report, indicated that the 

compound induced down regulation of nuclear factor NF-kB and AP-1, this function 

enhanced apoptosis of bladder cancer cells and GR trans repression effect (Zheng et al., 

2015). This compound can be administered as a replacement for prednisolone therapy 

in in vitro model of human arthritis without the known steroid side effects (Malaise et 

al., 2015). In vivo and in vitro application of CPDA on mouse skin model of inflammation 

revealed potential therapeutic effects  without the side effects obtained with GC i.e. 

keratinocytes atrophy (Klopot et al., 2015). It has been demonstrated experimentally 

that CPDA can be used systematically for inner ear problems in Guinea pigs (Honeder et 

al., 2015), it was also used to treat mouse experimental rheumatoid arthritis with less 

side effects than when GCs are used (Rauner et al., 2013). In cancer studies, CPDA 

suppressed the proliferation rate of primary T-ALL cells by a GR- dependent mechanism 

and enhanced GR-trans repression of NF-Kb and AP-1 (Lesovaya et al., 2013). 
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Sundahl et al. (2015), claimed that CPDA does not show the undesired hyperglycaemic 

and  hyperinsulinemia metabolic disorders, it is also free of HPA negative feedback 

control while estimation of negative regulation revealed inhibition of several 

inflammatory mediators mainly IL-6, IL-8 and TNFα. 

In vivo and in vitro research on CPDA revealed the anti-inflammatory effect similar to 

DEX-mediated regulation of pro-inflammatory genes (Beck et al., 2013b),(Liberman et 

al., 2012).Interestingly, CPDA does not cause GR dimerization thus it dissociated GR 

transactivation effect. This was explained in a study where CPDA suppressed levels of 

the rat corticosteroid-binding globulin (CBG), adrenocorticotropic hormone (ACTH), and 

luteinizing hormone and did not cause any expression in tyrosine amino transferase in 

liver cell lines HepG2 (Robertson et al., 2010). CPDA has been used in vivo (rat model) to 

treat experimental autoimmune neuritis (EAN) successfully with potent anti-

inflammatory effects and less pro-inflammatory reaction (Zhang et al., 2009b). The 

classical GC activation and proposed selective glucocorticoid receptor modulators are 

presented in fig.21. 

Robertson et al. (2010), demonstrated that CPDA had led to reduction in Corticosteroid 

Binding Globulin and ACTH measurements in laboratory animals (Rat). The transcription 

of these molecules is inhibited upon glucocorticoids therapy, however the researchers 

found that CPDA was not capable of inducing overexpression of TAT3 and the coupled 

CPDA-GR translocate to a nucleus as a single- monomeric pair to produce GR nuclear 

effect, while still displaying the transrepresson effect represented by downregulation of 

CBG and ACTH. 
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Figure 21 Proposed SEGRM mode of action. The figure adapted  from Cheng et al. (2014)  

 
 

As mentioned above chronic use of synthetic glucocorticoids brings destructive 

osteoskeletal deformities, hence CPDA was investigated for potential effects on bone 

forming cells, the osteoblasts which are obtained from bone marrow, in an attempt to 

detect CPDA role in formation and deformation of bones. The results revealed that 
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CPDA had efficiently regulated the inflammatory response in these cells via inhibition of 

cytokines IL1, IL6 and TNF-α  similar to DEX, while not promoting or inhibiting bone 

formation (Rauner et al., 2011). 

Macrophage stimulation of cellular immunity and phagocyte recruitment is managed by 

type 1 T helper (Th1) cells which secrete interferon-gamma, interleukin  

IL-2, and tumour necrosis factor (TNF)-beta. Those cells are activated upon bacterial or 

viral infection. Type 2 Th (Th2) cells create IL-4, IL-5, IL-6, IL-9.IL-10 and IL-13, and are 

responsible for humoral immunity, eosinophil activation, and inhibition of several 

macrophage functions. Th2 cells are activated upon parasitic infestation (Romagnani, 

1999)and(Romagnani, 2000). The Th1/Th2 cell ratios of human peripheral blood and 

endometrial T cells are distinguished via fluorescent activated cell sorter by detection of 

the surface marker CD3. Also the specific intracellular cytokines are expressed by each 

type , interferon gamma for Th1 and  interleukin 4   for Th2 (Saito et al., 1999). Immunity 

related problems were previously correlated with Th1 cells, so that classical medication 

are supposed to enhance Th2 rather than Th1, in this context, Liberman et al. (2012), 

have confirmed that CPDA was not found to encourage the upregulation of GR target 

genes via GRE (the action normally seen upon GC binding with GR). Reportedly, CPDA 

beneficial effects are through negative regulation of Th1 and positive regulation of Th2 

controller genes (T-bet and GATA3). Importantly, the transactivation function did not 

occurred via GRE but through p38-MAPK derived phosphorylation of GATA-3. 

 Beck et al. (2013b), demonstrated that CPDA inhibited the expression of NF-ĸB target 

genes through effect on the translocation of NF-ĸB to the nucleus of tested cells (A549). 

To estimate the anti-cancer effect of CPDA, Lesovaya et al. (2013), tested it in different 

blood cancer cell lines (T lymphoma, B Lymphoma and Multiple Myeloma) and primary  
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acute lymphocytic leukemia cultures. They determined the crosstalk between 

proteasome and CPDA as cells previously treated with suppressors of proteasome 

revealed overexpression of GR and downregulation of NF-ĸB and AP-1 (trans repression 

function). Rauner et al. (2013), studied mice to compare the side effects on skeleton for 

both DEX and CPDA. The latter has no effect on Procollagen type I N-terminal 

propeptide (PINP) in comparison to the significant downregulation of this marker of 

fibrogenesis upon DEX, nevertheless, a significant anti-inflammatory effect of CPDA has 

been shown in addition to WBC  migration Inhibition and downregulated TNF-α 

(Suttitheptumrong et al., 2013). This SGRM prevented the development of inflammatory 

diabetes in mice via regulation of Th1 and Th2 immune cells response (Saksida et al., 

2014). Honeder et al. (2015), have added other uses of CPDA in treatment of trauma 

related ear problems in guinea pigs. CPDA effect on GR signalling have been assessed in 

mice ear inflammation model and in vitro murine keratinocytes cell line and the results 

demonstrated relevant anti-inflammatory modulation role linked to CPDA (Klopot et al., 

2015). Lesovaya et al. (2015), referred to the efficiency of CPDA in the relief of 

inflammatory and immune disorders, whereas Malaise et al. (2015), studied the effect of 

CPDA on leptin which is part of GC-GR trans activated genes and usually upregulated 

after treatment of arthritis with GC and is the main reason of osteoporosis. Their results 

have confirmed that CPDA produced the anti-arthritic effect while not inducing leptin 

receptor transcription or overexpression of leptin in fibroblasts taken from inflamed 

human joints. However most relevant effects of CPDA are shown in table 10. 
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Table 10 Reported effects of compound A. 

 Protein/gene Effect  on expression  

1 IL2P70 activation  
(Barcala Tabarrozzi et 
al., 2016) 
 

2 MCP1 activation 
3 TNF-α activation 

4 (NF)-κB transcriptional activity inhibition  
 
 
 
 
 
 
 
 
(Zheng et al., 2015) 

5 activator protein 1 transcriptional 
activity matrix 
 

inhibition 

6 metalloproteinase-2 inhibition 

7 matrix metalloproteinase-9, inhibition 

8 interleukin-6, inhibition 

9 vascular endothelial growth factor, inhibition 

10 IL-6 inhibition  
(Malaise et al., 2015) 
 

11 IL-8 inhibition 

12 MMP-1 
MMP-3 protein  

inhibition 

13 hepatocyte growth factor inhibition (Drebert et al., 2015) 
14 IL-1β 

 TNF  
 IL-6 

inhibition 
inhibition 
 inhibition 

 
 
saksida, 2014 #412} 

15 IL-10 activation 
16 IFN-γ (mRNA)  inhibition 
17 IL-17 (mRNA) inhibition  
18 NF-κB inhibition   (Rauner et al., 2013) 

19 IFN-γ inhibition 

20 TNF inhibition 

21  
Hsp70 genes 

 
upregulation  

(Beck et al., 2013b) 

22 IFN-γ   decreases  (Liberman et al., 
2012) 

23 IL-5 production increase 

24 TNF-α protein inhibit (Rauner et al., 2011) 

25 IL4 mRNA 
 

upregulation  (Zhang et al., 2009b) 

26 FOX-P3 mRNA  upregulation  
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CPDA effect may extend to other steroid receptors. This was suggested by Zheng et al. 

(2015), who provided evidence that CPDA inhibited the growth of bladder cancer cells 

and xenografts through GR trans repression pathway (by  inhibition of NF-ĸB and AP-1 

transcriptional activities) and suppression of androgen receptor (AR) expression (this 

steroid receptor is responsible for survival of bladder tumor). Finally,  Barcala Tabarrozzi 

et al. (2016) confirmed that CPDA is efficient in dendritic cells immunity regulation via 

inhibition of NF-ĸB transcriptional activity. 

 

1.1.5.1.3 Overview of non-steroidal compounds used in the study 
 
 
In this study four other compounds have been tested (fig. 22). Compounds were chosen 

by Dr John Hadfield based on similarity in their chemical structure to Compound A in 

terms of one carbon ring forming the compound. Tyramine or 4-(2-aminoethyl)phenol or 

Tyramine  monochloride  is monoxide derived from tyrosine. Tyramine hydrochloride 

or  4-(2-aminoethyl)phenol hydrochloride, N-methyltyramine or 4-[2 

(methylamino)ethyl]phenol and hordenine or 4-(2-(dimethylamino)ethyl)phenol were 

investigated for their antiproliferative activity and other parameters believed to be 

important for potential use of these compounds as anti-cancer therapeutic reagents. 

Tyramine acts on nervous system alpha-1 (α1) adrenergic receptor and is affected by 

anti-depressant medications (Ghose, 1980). n-methyltyramine (NMT/ CPDB) functions as 

an antagonist of alpha-2 (α2) adrenergic receptor (Koda et al., 1999) and is considered 

as a potent appetite-enhancer (Stohs and Hartman, 2015).  

 



95 
 

 

Figure 22 Chemical structure of tested compounds. 

NMT was found to promote amylase, lipase, and peptidase production from the 

pancreas via the Vagovagal reflex (Tsutsumi et al., 2010). Hordenine is available in barley 

(Ma et al., 2015). It has cutaneous and melanogenesis effects through downregulation 

of Human cathelicidin antimicrobial peptide (CAMP), and prevents further pigmentation 

(Kim et al., 2013).Sommer et al. (2017) Virtual screening detected the relationship 

between hordenin and dopamine D2 receptor as either antagonist or agonist for this 

receptor. This effect extended to the parasympathetic system and it promoted the 

secretion of norepinephrine (Hapke and Strathmann, 1995), however no literature has 

been  published yet about the potential role of these compounds in treatment  regime 

of acute childhood leukemia.   
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1.2 Aims of project 

 
This study was designed to investigate GR as a therapeutic target and explore if either 

steroids such as dexamethasone or non-steroid synthetic Compound A or similar 

compounds could be potentially better therapeutic solutions. Furthermore, the project 

aimed to investigate the effect of tested compounds in human and chicken cells towards 

developing better compounds for medicine and veterinarian approaches. The specific 

objectives are:  

 

 To determine cytotoxic effects of GCs and potential GC dissociated compounds 

(Compound A, Tyramine and Tyramine hydrochloride, Compound B and 

Compound C) on examined cells ( human derived leukemia cells, chicken derived 

leukemia cells, normal white blood cells, cancerous epithelial cells and normal 

epithelial cells)  

 Experimental system utilised was acute lymphoblastic childhood leukaemia cell 

line CEM and its two variants CEM-C7-14 and CEM-C1-15 that are sensitive and 

resistant to glucocorticoids respectively as well as DT40 chicken lymphoblast cell 

line derived from chicken immune organ (bursa of fabricious) infected with avian 

lymphoid leukosis. This will allow differential analysis of sensitivity/resistance to 

GCs as well as comparison of GC actions in two species; Normal peripheral blood 

polymorph nuclear cells (PBMCs) as well as epithelial normal and cancer cells 

were used to determine their potential wider effects.  
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 To determine GR binding potential of studied compounds by using computer 

modelling techniques as a tool to characterize  compounds properties through 

ligand Protein (GR) simulation using Vina dock tool, Stability studies via NMR 

aimed to determine the compounds stability. 

 

 To evaluate anti-inflammatory properties of tested compounds by analysis of 

effects on inflammatory biomarkers such as cytokine interleukins IL-6, IL-10 and 

IL-2  mRNA levels and secretory interleukins 2 and 6  in response to GC or the 

investigated compounds treatment and /or stress. 

  

 Molecular evaluation of drug effects on targets mRNA and protein levels using 

qRT-PCR and SDS PAGE followed by western blot. These experiments will 

determine effects of the tested compounds on GR as potential markers of GC 

response; GILZ  as a determinants of glucocorticoid response in acute 

lymphoblastic leukaemia; known markers of apoptosis such as Bcl2-interacting 

mediator of cell death (Apoptosis Facilitator) (Bim) will be used as control for 

apoptosis and GR   phosphorylation at S211 will be investigated as a important  

post translational modification of GR . 

 

 To investigate  cell death pathways utilized by these compounds and elicit 

cytotoxic effect by determining effects on cell cycle, apoptosis (Annexin 5), and 

by following caspase-8, reactive oxygen species and reactive nitrogen species 

levels.   
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2 Materials and Methods 

2.1 Materials  

2.1.1 Tissue culture reagents 

 
Table 11 Tissue culture reagents 

 

Materials 

 

Supplier Product code 

CellTiter 96® AQueous MTS Reagent Powder 

250mg 

Promega, UK G1112 

CellTiter 96® Non-Radioactive Cell Proliferation Assay 

(MTT) 

Promega G4000 

Chicken serum Sigma, UK C5405-500ML 

Dextran Coated Charcoal (DCC) Hyclone, UK SH30068.03 

DMSO (500 mL) Fisher, UK 10213810 

FBS (500 mL) Labtech, UK FB-1090/500 

L-Glutamine (100 mL) Labtech, UK XC-T1715/100 

PBS (10X) Fisher, UK 10214733 

Pen-Strep (100 mL) Labtech, UK LM-A4118/100 

Propidium Iodide Sigma, UK P4864-10ML 

Ribonuclease A From Bovine Pancreas Sigma, UK R5500-10MG 

RPMI 1640 (560 mL) SLS, UK LZ12-167F24 

Trypsin (500 mL) Labtech, UK LM-T1705/500 
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2.1.2 Tested compounds, antibodies and kits used in the experiments  

 
Table 12 Tested compounds, antibodies and kits used in the experiments 

Antibodies /compounds/ kit Supplier Product code 

4-(2-(Dimethylamino) ethyl) phenol (CPDC) Fluorochem, UK 239138 

4-(2-(Methylamino) ethyl) phenol (CPDB) Fluorochem, UK 222578 

Annexin V-FITC Apoptosis Detection Kit,  eBioscience, UK BMS500FI     

Anti-beta Actin antibody  Abcam, UK (Ab8227) 

Bim Antibody (H-191)  Santa Cruz, UK Sc-11425     

Caspase-Glo® 8 Assay Promega, UK G8200 

Compound A  Enzo Life Sciences, UK  ALX-550-516-

M005 

Dexamethasone   Enzo Life Sciences, UK  BML-EI126-0001  

GR Antibody (H-300)  Santa Cruz, UK Sc-8992 

Griess reagent system Santa Cruz, UK  

IL-2 Human ELISA Kit  Thermo fisher scientific, UK  EH2IL2 

IL-6 Human ELISA Kit Thermo fisher scientific, UK EH2IL6 

Lipopolysaccharides from Escherichia coli 

O111:B4  

Sigma, UK L2630-10MG 

Phytohemagglutinin PHA-P  Sigma, UK L9132  

  RNeasy® Plus Mini  Qiagene, UK 74134 

 Tyramine  Sigma-Aldrich, UK  T90344-5G 

Tyramine Hydrochloride Sigma-Aldrich, UK  T2879-1G 

β-Actin Antibody (N-21) Santa Cruz, UK sc-130656   
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2.2 Methods 

2.2.1 Cancer cell lines 

 

GCs-sensitive model of acute lymphoblastic leukemia (ALL), CEM-C7-14 and GC-resistant 

model of acute lymphoblastic leukemia (ALL), CEM-C1-15 cell lines were obtained from 

Brad E Thompson (The University of Texas, USA). These cell lines were derived from the 

parental line CCRF-CEM, grown in Dexamethasone to select for resistant and sensitive 

clones. Both cell lines were derived from 4 years Caucasian female suffering from acute 

lymphoblastic leukemia. CEM-C1-15 cells display a typical multiple drug resistance 

(MDR). CEM-C1-15 cell line is GCs -resistant clone obtained by growing CEM-C7-14 cells 

in dexamethasone (Medh et al., 1998). C7 cells are ALL cell line that undergoapoptosis 

when incubated with GCs while C1 are not sensitive to apoptosis initiated by GCs (Medh 

et al., 2003). 

 DT40 cells were kind gift from Professor Julian Sale (MRC Laboratory of Molecular 

Biology, Cambridge Biomedical Campus). These DT40 cells are chicken lymphoblast cell 

line derived from chicken primary immune organ (bursa of fabricious) infected with 

Precision OneStepPLUSTM qRT-PCR Master 

mix  

Primerdesign, UK  

Page Ruler Prestained protein ladder Fermentas, UK               SM0672 

X -  Ray film Fuji Films, UK Super Rx 
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avian lymphoid leukosis. Employing  chicken DT40 B cell line is of importance  due high 

replication efficiency and for easy monitoring of cell death, growth curve and gene 

expression (Winding and Berchtold, 2001), which serve as a prototype for experimental 

biology and molecular biology for the efficiency of homologous gene of interest (Molnar 

et al., 2014) 

 
 Epithelial cell lines; HACAT (Human immortalized keratinocytes primary adherent cell 

line), MCF-7(Human breast cancer adherent cell line) and BEAS2B (Human normal lung, 

bronchus epithelial cell line) were obtained from ATCC. Peripheral Blood Mononuclear 

Cells (PBMC), were kind gift from Dr Lucy Smyth, Lecturer in Human Physiology-

University of Salford. A limited number of the  PBMCs  was available due to experiments 

and the types of performed  assays and ethics application details. Especially the choice 

of CEM-C7-14 and CEM-C1-15  cell line are good system for GR sensitivity/resistance. 

Disadvantage of using this system is that  extrapolating from cell lines to patients is 

difficult. However, given thatno good mouse models of ALL are available and time 

consuming/cost prohibitive, this system is important tool to uncovering potential new 

and better therapeutic approaches.  

 

2.2.1.1  Maintenance of the cells 
 

Roswell park memorial institute (RPMI)-1640 growth medium (Sigma) supplemented 

with 10% heat-inactivated foetal calf serum (FCS) and 1% penicillin/streptomycin 

(Labtech), 2 mmol/L L-glutamine (Labtech) was used to maintain CEM-C7-14 and CEM-

C1-15 cells.  
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DT40 cells growth medium consisted of Dulbecco's Modified Eagle's Medium (DMEM) 

(ATCC® 30-2002™) supplemented with 7% heat-inactivated foetal calf serum (FCS) and 

1% penicillin/streptomycin (Labtech), 2 mmol/L L-glutamine and chicken serum 3% 

(Sigma –Aldrich) supplemented with 50 µM of 2- mercaptoethanol from Sigma. 

Epithelial cells HACAT and MCF-C7 were maintained in Dulbecco's Modified Eagle's 

Medium (DMEM) (ATCC® 30-2002™) supplemented with 10% FCS and 1% 

penicillin/streptomycin (Labtech). BEBM medium was used to grow BEAS-2B cells. Cells 

were transferred to media containing Dextran Coated Charcoal (DCC) treated FBS (from 

Cyclone) before treatment with compounds. PBMCs were defrosted from -80 freezers, 

fresh RPMI medium added, spun down using the centrifuge, then the medium replaced 

by RPMI medium with DCC then treatment added. 

Cells were incubated at 37 oC in the incubator (Galaxy S -Wolf laboratories) in humidified 

atmosphere of 5% CO2. 

 

2.2.1.2   Passaging of the cells 
 
 

Passaging of the cells was carried out 3 times a week for CEM-C7-14, CEM-C1-15 and 

epithelial cells were spitted twice a week, while DT40 cells were sub cultured every 24-

48 h due to high proliferation rate. Cells were diluted in fresh medium to a density of 

about (0.3 – 1.0) × 106 cells/ml in either T 25 or T 75 flasks. Cells were inspected daily 

and counting was carried out using microscope Motif AE31 to ensure proper density. 
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2.2.1.3  Counting of the cells 
 

Cells were counted to determine the optimal density. 10 µL was taken directly from cell 

suspension or diluted with trypan blue (to count the viable cells) and placed on 

disposable haemocytometer chamber (C-chips of dimensions 25 mm (W) x75 mm (L) x 

Thickness 1.6 mm from LabTech). Cells were examined under light microscope Motif AE 

31 using 10X lens. The average of total number of cells was counted in the four large 

corner squares and cell concentration calculated according to this formula: 

Total cells/ml=(Total cells counted/No. of squares) x dilution factor x 104 cells/ml 

 The viable cells number was measured by Trypan blue exclusion staining based on the 

fact that dead cells only can take the dye and viable cells exclude it. 1:1 volume of cell 

suspension and 0.4% trypan blue dye (dilution factor is 2) were mixed in Eppendorf tube 

and vortexed then incubated for less than 3 min at room temperature, then the 

indicated volume was taken and cells were counted following above mentioned 

protocol.   

 

2.2.1.4  Freezing of the cells 
 

To provide low passage numbers for the experiments, cells were cryopreserved by 

centrifugation at 1500 RPM for 5 mins, supernatant was removed, and then 2 ml sterile 

media consisting of 90% FCS and 10% DMSO, was added to the pelleted cells and mixed 

by pipetting.  Afterwards the cells suspension was transferred into 2 sterile cryovials, 

1ml each. Vials were immediately placed in a freezer box at -80 °C and for longer storage  
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 transferred into the Dewar containing liquid nitrogen. 

2.2.1.5  Thawing of cells 
 

Cells were defrosted by placing them in a warm water bath at 37 OC for less than one 

minute; the content was transferred to T25 sterile flask containing 4ml fresh media, 

mixed carefully and kept in incubator for 24 h. Next day, the cells were centrifuged and 

the media replaced to remove DMSO.  

2.2.2  Compounds used in the study 
 

  
Table 13 List of the compounds used in the experiments, their molecular weight and 

the solvents used for in vitro assays 

 
 

 

CPD Name Molecular weight 
g/mol 

Solubility Pubchem ID 

Dexamethasone 392.467 100% ethanol  5743 

Compound A 264.146 100% ethanol  9838147 

Tyramine 137.182 DMSO  5610 

Tyramine 
Hydrochloride 

173.64 H2O 66449 

N-Methyltyramine 
(CPDB) 

151.209 H2O  9727 

Hordenine (CPDC) 165.236 H2O 68313 

https://pubchem.ncbi.nlm.nih.gov/compound/5743
https://pubchem.ncbi.nlm.nih.gov/compound/9838147
http://pubchem.ncbi.nlm.nih.gov/compound/5610
https://pubchem.ncbi.nlm.nih.gov/compound/%2066449
http://pubchem.ncbi.nlm.nih.gov/compound/9727


105 
 

2.2.3  Proliferation assay (MTS or MTT) to measure cytotoxic effect 

of the drugs 
 
 
Proposed project design includes measuring cell proliferation upon treatment with 

above indicated compounds. Treatment with dexamethasone included doses between 0 

µM and 100 µM for MTS assay, according to Petersen et al (2008). Concentrations of 1 

µM are applied for Compound A, Tyramine, THCL, CPDB and CPDC throughout 

experiments. 

 Heat shock and cold shock were induced by incubating cells with the selected drug for 

the particular time then exposing them to high temperature 43 oC for 2 h if heat shock is 

induced, according to   Debi et al., (2010) and Jaattelal et al., (1992).  Cold shock was 

induced by exposing examined cells to 4o C for the same duration.  

Proliferation rate of the cells grown in suspension was determined by using (Promega 

Cell Titer Aqueous One Solution) the tetrazolium compound 3-(4, 5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2Htetrazolium (MTS). This assay is 

chromogenic assay designed to measure cell viability under certain conditions. The 

principle of this assay is that MTS is converted by the mitochondria of living cells to 

soluble formazan and the absorbance can be measured to detect the changes in cell 

viability in response to various therapies, so that the assay measures metabolic activity. 

Cells were cultured and counted as described above, than 5000 cells in 100 µl were 

seeded per well in U-shape 96 well plate. Next day, cells were dosed with serial dilutions 

of the appropriate compound in 100 µl DCC media per well. Plates are incubated in 37 

OC and 5% CO2, humidified incubator for 72 hours. 20 µl of MTS reagent which is 

composed of MTS and the electron coupling agent phenazinemethosulfate (PMSF) 



106 
 

(PROMEGA), were added to the wells in dark atmosphere and the samples incubated for 

3-4 hours inside tissue culture incubator. The absorbance of the plate is read using 

spectrophotometer at 490-540 nm.  

Proliferation rate of adherent cell lines was determined using tetrazolium dye MTT 3-(4, 

5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide as described by (Seidl and 

Zinkernagel, 2013). The same protocol described for MTS assay was followed except that 

the formation of   insoluble formazan needed addition of DMSO to be dissolved and to 

produce the purple distinct colour. The plate was read using (Multiscan Ascent / Thermo 

lab Systems) spectrophotometer with ascent software at 520-690 nm absorbances. 

 

2.2.4 Flow cytometry 

 

2.2.4.1   Cell cycle progression analysis -Propidium Iodide staining    
 

Fluorescence Activated Cell Sorter (FACS)   was used to assess the effect of studied 

compounds on cell cycle progression. The Fluorochrome dye Propidium Iodide (PI) that 

is capable of binding and labelling the DNA was used in this test (Ramirez de Molina et 

al., 2008) CEM-C7-14, CEM-C1-15, DT40 and PBMCs cells were seeded in 6 well plates at 

density of 0.5-1x106  cells per ml, then tested compound were added to the wells at final 

concentration of 1 µM, and then incubated for further 48 h. Cells were harvested  and 

counted, then  1 x 106 cells are transferred to sterile tube, then washed  2 times with 2 

mL of PBS  and centrifuged at 1500 rpm  for 5 min. Supernatant was discarded  and cells 

were re-suspended in 1 ml 70%  ice cold ethanol in PBS, mixed and stored  at -20 °C for 

at less 30 min. Cells were centrifuged, the ethanol  was decanted and washed twice with 
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2 ml PBS. DNA staining was carried out by mixing the pellet with 50 µl of a 100 µg/ml 

(Ribonuclease A Sigma) then incubated at room temperature for 30 min, followed by 

addition of 300 µl of a 50 µg/ml PI (Propidium Iodide Sigma). Samples were kept in the 

dark for 15 min, vortexes and examined by BD FACS verseTM. Data was analysed through 

PE-A laser channel after adjusting both forward and side scatter of control sample using 

BD FACS Suite software and the reading was set as seen in fig .23.  

 

Figure 23 Example of the cell cycle profile 

As a result of Propidium Iodide staining of cellular DNA gates were selected and refer to Sub-G1, G0/G1, S 
and G2/M phase respectively.  

 

2.2.4.2   Apoptosis assay - Annexin V-FitC labelling  
 

 

 Annexin V-FITC labelling kit was purchased from  eBioscience (BMS500FI/100)  (Cai et 

al., 2008) and was employed to detect phosphatidylserine on the outer surface of the 

cell membrane of cells undergoing apoptosis. AnnexinV was found to bind strongly with 
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phosphatidylserine (PS) located in internal cell membrane in intact cells. In the apoptotic 

cells’ PS is exposed on the external layer of cell membrane (Fig. 24). AnnexinV can bind 

to the PS-exposing apoptotic cells and can inhibit the pro-coagulant and pro-

inflammatory activities (exhibits anti-phospholipase activity) of the dying cell. 

Fluorescein isothiocyanate (FITC) labelling allows simple detection by FACS analysis. 

Counterstaining by propidium iodide allows the discrimination of apoptotic cells from 

dead cells. CEM-C7-14, CEM-C1-15, DT40 and PBMCs cells were seeded in 6 well plates 

at density of  0.5-1x106 cells per well, each well was loaded with 3 ml of cells suspension, 

then tested compounds were added to the wells at final concentration of 1 µM, 

followed by incubation for 48 h. Then cells were washed in PBS by pipetting up and 

down and spun down at 1200 rpm for 4 min. Cell pellet was dissolved in 200 µl of 

binding buffer provided with the kit. 2-5x105/ml of cells was used for analysis. 5 µl of 

Annexin V-FITC was added to 195 µl of cell suspension, mixed and incubated for 10 min 

at room temperature. Cells were washed in 200 µl binding buffer and 190 µl of binding 

buffer with 10 µl propidium iodide (20µg/ml) was added followed by FACS analysis.  
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Figure 24 Diagram of AnnexinV assay workflow 

Analysis was carried out using BD FACS verseTM, by aid of BD FACS Suite software. Both 

PE channel and FITC channel of flow cytometry are used to determine apoptosis in cells, 

the selection was based on the distribution of the cells in the four quarters shown in (fig. 

25) and the number was expressed as a percentage of population. 

 

 

Figure 25 Flow cytometry setting for discrimination of apoptotic cells from dead and alive cells  

 

2.2.4.3  ROS measurement- DCFDA staining to measure intracellular 

ROS 

  

Reactive Oxygen Species (ROS) were detected using ROS Assay Kit from (Affymetrix 

eBioscience-Cat. No.88-5930-74), according to (Freemerman et al., 2014). ROS kit was 

composed of the cell permeant reagent 2’, 7’ –dichlorofluorescin diacetate (DCFDA).  

DCFDA is a fluorogenic dye that measures hydroxyl, peroxyl and other reactive oxygen 

species (ROS) activity within the cell. After diffusion into the cell, DCFDA is deacetylated 

by cellular esterases to a non-fluorescent compound, which is later oxidized by ROS into 
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2’, 7’ –dichlorofluorescein (DCF). DCF is a highly fluorescent compound, which can be 

detected by fluorescence spectroscopy with maximum excitation and emission spectra 

of 495 nm and 529 nm respectively. 

CEM-C7-14, CEM-C1-15, DT40 cells and PBMCs were seeded in 6 well plates at density 

1x106 cells per well carrying 2 ml, then tested compound were added to the cells at final 

concentration of 1 µM, and then incubated for further 24 h. 100 μL of 1X ROS assay stain 

was added to each well and incubated for another 60 min in a 37 °C incubator with 5% 

CO2.  Then samples were transferred to Corning Falcon Round-bottom polystyrene 

Tubes and analysed with flow cytometry using FITC channel. 

2.2.5  Immunoblotting assay  
 

Immunoblotting procedures were as described previously (Andreou et al., 2012, 

Demonacos et al., 2001, Shikama et al., 2000) to detect the expression of   protein of 

interest and investigate the intracellular pathways targeted by different compounds. 

Incubating suspended cells in flask with 1 µM of the selected compound overnight 

initiated the expected expression. Then cellular proteins extract was prepared, proteins 

separated using SDS PAGE and expression detected using western blot technique as 

described below. 

 

2.2.5.1   Cellular extract preparation and determination of protein 

concentration 
 

High salt lysis buffer (HSLB) was used to make whole cell extract (Table 14). Cell lysates 

were prepared  from cells which grown in flask  by spinning in centrifuge 1500 RPM  for 
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5 min, the supernatant was removed and cell pellets washed twice with cold  1XPBS 

(prepared from dilution of 10XPBS stock which was composed of (80 g NaCl, 2 g KCL, 

7.62 g Na2HPO4, 0.77 g KH2PO4 and H2O Up to 1 L). Supernatant was removed and 120µl 

of ice cold HSLB was added to the pellet. In the next step the samples were transferred 

to sterile Eppendorf tubes and rotated for 20 min on the rotator at 4 oC, then 

centrifuged in micro centrifuge for 15 min at 13000 RPM at 4°C. Supernatant was then 

transferred to new Eppendorf tubes kept on ice for further analysis. 

Protein concentration was measured by adding Bio-Rad Bradford dye (Bio-Rad Protein 

Assay Dye Reagent Concentrate from BIO-RAD) diluted with distilled water 1:5 (200 µL 

Bradford reagent was added to 800 µL distilled water). 2µl from protein extract was 

analysed together with blank sample at 595 nm absorbance. The absorbance was read 

using Jenway 6305 spectrophotometer. In order to analyse equal amount of protein by 

electrophoresis, the amount of taken protein was calculated by adjusting the sample of 

the low reading that equals to 40 µL and the sample with the high reading equals to (low 

reading x40/sample reading). 3X SDS Laemmle sample buffer (table 16)(composed of 

1.87 ml Tris, ph 6.95 (1 M), 3 ml glycerol, 1.5 ml beta mercaptoethanol, 0.6 g SDS, H2O 

up to 10 ml 0.01% of bromophenol aliquot) was used as loading buffer and half of 

volume was added to the sample to reach final volume of 1X SDS sample buffer. 

Samples were mixed and then incubated for 3 min at 95 °C to denature the proteins for 

SDS PAGE, or the samples were kept in -20 °C before being analysed by SDS PAGE.  
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2.2.5.2  Sodium Dodecyl Sulphate Polyacrylamide Gel 

Electrophoresis (SDS PAGE) and Western blotting  
 
 
This procedure is often used to investigate a protein of interest   (Roth et al, 2009). Here 

the procedure was used to semi-quantitatively determine protein levels of studied 

proteins. Gel casting apparatus (Mini-PROTEAN 3 System from Bio-Rad laboratories) was 

used to make gels. Resolving gel (Table 17) was poured between spacer plates and 0.1% 

SDS was used to overlay the solution that was left for 30 min to polymerize. Then 0.1% 

SDS was removed and stacking gel (Table 15) was added and a comb was inserted to 

form wells. The gel was placed in Bio-Rad electrophoresis mini buffer tank then 1XSDS-

PAGE running buffer (Table 6) was added. The comb was removed and samples loaded 

using Hamilton syringe. The protein ladder was used as a molecular weight marker (Page 

ruler plus pre-stained protein ladder from Fermentas). Electrophoresis was started using 

electricity supplied by Power Pac Basic at 80 V until the proteins entered the resolving  

gel, then 110V current was applied until  the bromophenol blue  stained front reached 

the end of the gel. The gel was placed on Immobilon-P membrane (MILLIPORETM), that 

was previously soaked in methanol and then in the transfer buffer, and fitted between 

two filter papers and two sponges in the transfer cassette. The cassettes were placed in 

the transfer tank filled with the western transfer buffer (Table 16) in presence of ice 

holder. The tank was placed on the stirrer and connected with the power supply (Power 

Pack HCTTM) and run at 0.4 A for an hour. Then ice was replaced after one hour, the 

transfer continued for another hour. The membrane was blocked by incubation on a 

rocking platform for 1 h in 5% milk /PBS to prevent nonspecific binding to antibodies. In 

the next stage of incubation the membrane was incubated overnight  4 oC  with the 

primary antibody against the protein of interest  by placing the membrane inside 50 ml 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
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sterile universal tubes containing 4 µL Ab in 10 ml of 2.5% milk made in 0.1% 

Tween/PBS. Then was incubated on a roller at 4 oC overnight, next day the membrane 

was washed three times for 10 min each with 0.1% Tween/PBS on a rocking platform.  

After that, the membrane was incubated with secondary Ab diluted ( 1: 1000) in 2.5% 

milk made in 0.1% Tween/PBS dilution for 1 h at room temperature on a rocking 

platform and washed three times with 0.1% Tween/PBS. 

 The membrane was developed by soaking in chemiluminescent HRP substrate from 

Chembio Ltd for 30 seconds and exposing to either G-box to detect blot images or using 

X-ray film. The bands were quantified using image J software and data normalised to 

Beta-actin control. 

2.2.5.3 Western blot solutions and buffers 

 
Table 14 High salt lysis buffer 

Chemicals Final 
Concentration  

HEPES pH 7.5 100 mM 

NaCl 500 mM 

EDTA 5 mM 

Glycerol 1% 

NP-40 0.5% 

DTT 1 mM 

phenylmethylsulphonyl fluoride PMSF 1 mM 

Protease inhibitors (PI) 
a-Aprotinin 
b-Leupeptin 
c-Pepstatine 

1 µg/ml 

Sodium Orthovanadate (NaOV) 2 mM 

β-Glycerol phosphate 20 mM 

Sodium Pyrophosphate (NaPPi) 5 mM 
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Table 15 Gel for SDS -Page 

Composition of 7.5%  and  12 % gel for SDS-PAGE 

 7.5% gel 12% gel 

Solutions Separating Stacking Separating Stacking 

Water 13.3 ml 6.73 ml 9.1 ml 6.73 ml 

Acrylamide 7.0 ml 1.67 ml 11.2 ml 1.67 ml 

Tris pH 8.95 (1.5 M) 7.0 ml  7.0 ml  

Tris pH 6.95 (1 M)  1.25 ml  1.25 ml 

EDTA (0.2 M) 280 µl 100 µl 280 µl 100 µl 

SDS (10%) 280 µl 100 µl 280 µl 100 µl 

APS (10%) 157 µl 157 µl 157 µl 157 µl 

TEMED 17 µl 17 µl 17 µl 17µl 

 

 

Table 16 Running and Transfer buffers 

Running buffer  

Composition of X10 SDS Running 

Buffer (Stock) (1 L)  

 

Composition of X1 SDS Running Buffer  

(1 L) 

Reagent Amount Reagent Amount 

Glycine 144 g X10 Running Buffer 100 mL 

Tris base 30.2 g ddH2O 900 mL 

ddH2O 1 L   
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Transfer buffer 

Composition of X10 Western Transfer 

Buffer WTB stock (1L)  

Composition of X1Western Transfer 

Buffer WTB (1L) 

Reagent Reagent Amount Amount 

Glycine X10WTB stock 100 mL 112.5 g 

Tris base Methanol 200 ml 33 g 

ddH2O ddH2O Up to 1 L 1 L 

 
 
 
 
 
 
 
 
Table 17 3xSDS Sample buffer 

Reagent Amount 

Tris base PH 6.95(1M) 1.87ml 

Glycerol 3 ml (10%) 

5% Beta Mercaptoethanol 

 

1.5 ml 

SDS 0.6 g 

 

ddH2O 10 ml 

 

Bromophenol Blue 10 µL 
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2.2.6  Quantification of relative gene expression 
 
 

mRNA expression was determined using quantitative real time polymerase reaction qRT-

PCR according to (Akimkin et al., 2011). Total RNA was purified by Qiagene RNeasy plus 

Mini kit. Precision One Step PLUSTM qRT-PCR Mastermix was used according to 

amplification protocols for DNA Engine Opticon 2 System (Bio Rad).  Data were analyzed 

using Opticon Monitor™ Software version 3.1 and relative mRNA expression calculated 

according to comparative quantification method (2-∆∆ct). Primers used in this study are 

listed in Tables 18 and 19. 

   

Table 18 Human primers 

 

Human primers 

Gene 

symbol 

Accession 

Number 

Sense primer Anti-sense primer 

IL2* NM_000586 CCTATCACTCTCTTTAATCACTACTC GTTTGTGACAAGTGCAAGACT 

IL10 NM_000572 GCTGGAGGACTTTAAGGGTTAC TGATGTCTGGGTCTTGGTTCT 

NFKB1 NM_003998 GTAACTGCTGGACCCAAGGA CCTCTGTCATTCGTGCTTCC 

RPL19 NM_000981 GTTAGACCCCAATGAGACCAATG GTCACAGGCTTGCGGATGA 

BCL2L11 NM_138621 AGAAGATCCTCCCTGCTGTCT CTTGGGGTTTGTGTTGATTTGTC 

NR3C1* NM_000176 TACGTGGGGGAAAAGAAAGTC GCCAGATAACACATACATAGGAAAT 

JUN* NM_002228 ACCTAACATTCGATCTCATTCAGTA TACAGAAGCAATCTACAGTCTCTATT 
 

Il6 NM_000600 GCAGAAAACAACCTGAACCTT ACCTCAAACTCCAAAAGACCA 



117 
 

* The primer found in mRNA but not in coding area 
 
Table 19 Chicken primers 

 

 

2.2.6.1    Purification of Total RNA from the cells 
 
 
 
RNeasy

 
plus Mini kit (Qiagene- cat 74134) was used to extract RNA from leukemia cells. 

The kit consists of specific tubes and buffers listed in table 20 

 

 

 

Chicken primers 

Gene 

symbol 

Accession Number  Sense primer  Anti-sense primer  

IL2 NM_204153 TCCCGTGGCTAACTAATCTG TTTACCGACAAAGTGAGAATCAA 

IL10 NM_00100441 GCTGTCACCGCTTCTTCAC ATCCCGTTCTCATCCATCTTCT 

NFKB1 NM_205134 GCGGACAGCACTACATACG ATCTTTCACATCTTCTTCTTCTACATCAA 

NR3C1 NM_001037826 ATCAGGGGACGAGGCTTTAG TGAGGTTGTGGATGGAGAAGA 

JUN NM_001031289 TATAATAACGCCAAGGTGCTGAA GTCGGGGGAGGTGAGGAT 

RPL19 NM_001030929 GAGGCTCGCAGGTCCAA CCGTTCACTTCTTGGTCTCTT 

IL6 NM_204628 ATGGTGATAAATCCCGATGAAGT TCTCCATAAACGAAGTAAAGTCTC 

BCL2L11 XM_015283427.1 CTTCTTCTTCGTGCGGAGGT AGAAGCCATTGAGTCCCAGC 
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Table 20 Contents of RNeasy plus Mini kit 

 

CEM-C7-14, CEM-C1-15, and DT40 cells were seeded in 6 well plates at density 1-

2x106cells per ml well, and then tested compounds were added to the cells at final 

concentration of 1 µM, and then incubated for further 24 h. Later each well content was 

transferred to a 15 ml universal tube, centrifuged for 5 min at 1500 RPM, then the 

supernatant was removed and the cells washed twice with sterile phosphate buffer 

saline. Later on, the cells were disrupted by adding 350 μL of Buffer RLT Plus and 

vortexed thoroughly, and then the lysate was pipetted directly into a QIAshredder spin 

column placed in a 2 ml collection tube, and centrifuged for 2 min at maximum speed. 

Content of RNeasy
 
plus Mini kit 

gDNA Eliminator Mini Spin Columns (uncolored) (each in a 2 ml Collection Tube) 

Collection Tubes (1.5 ml) 

Collection Tubes (2 ml) 

Buffer RLT Plus* 

Buffer RW1* 

Buffer RPE† (concentrate) 

RNase-Free Water 

Mini Spin Columns (pink) 50 250 (each in a 2 ml Collection Tube) 
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Then the homogenized lysates were transferred into gDNA eliminator spin column 

placed in a 2 ml collection tube and centrifuged for 30 s at 10,000 rpm (Figure 26).  

The columns were discarded, and the flow- through was saved. In the next step 350 μl   

of 70% ethanol was added to the flow- through, and mixed well by pipetting up and 

down. Next, 700 μL of the sample was transferred   to RNeasy spin column placed in a 2 

ml collection tube and centrifuged for 15 s at 10, 000 rpm. The flow-through was 

discarded and 700 μl  of RW1 Buffer was added to the RNeasy spin column and 

centrifuged for 15 s at speed (≥10,000 rpm).Then the  flow-through was discarded, and 

500 μl of RPE Buffer was added  to the RNeasy spin column and centrifuged for 15 s at 

≥8000 x g (≥10,000 rpm), the flow-through discarded and 500 μl of  RPE Buffer were 

added to the RNeasy spin column and centrifuged for 2 min at speed (≥10,000 rpm).  

After centrifugation, the RNeasy spin column was removed from the collection tube. 

Then the RNeasy spin column was placed in a new sterile 2 ml collection tube, then 

centrifuged at full speed for 1 min then the RNeasy spin column was placed in a new 1.5 

ml collection tube and 30–50 μL of RNase-free water were added to the spin column 

membrane and centrifuged for 1 min at ≥8000 x g (≥10, 000 rpm) to elute the RNA. After 

that, purified RNA was stored at -80 oC.  The concentration of RNA was determined by 

measuring the absorbance at 260 nm (A260) in a spectrophotometer (Nano drop) by 

placing 1 μL of purified RNA   on the Nano drop pore after calibration with same amount 

of RNase- free water.  
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Figure 26 Diagram represents process of RNA extraction procedure. 

2.2.6.2  qRT-PCR   
 
 
Precision OneStepPLUSTM qRT-PCR Mastermix system (from Primerdesign) was used for 

one step real-time PCR experiment. The Mastermix also contains buffer and MgCl2 

necessary for the amplification.  

RNA samples, primers mixed with probe, master mix and RNAse free water are mixed in 

appropriate amounts listed below (tables 21 and 22) according to the manufacturer 

instructions to the final volume of 20 μL. Reaction was carried out in a specific 96 well 

plate in duplicate. The plate was centrifuged at 300 RPM for 30 sec then placed 

immediately in qPCR machine, which had been set according to the instruction provided 

by supplier (Primerdesign). Data was visualized by opticon monitor software  
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Table 21 Components of RT-PCR reaction / well setting for RT-PCR 

Components 1 reaction 

Precision OneStepPLUS
TM 

qRT-PCR Mastermix  10 μL 

Primer/probe mix 1 μL 

Template RNA (25ng) x μL 

RNAse/DNAse free water x μL 

Final volume 20 μL 

 

Table 22 Amplication protocol. Adapted from primer design 

 Step  Time  Temperature  

Reverse transcription 10 min 55 oC 

Enzyme activation 2 min 95 oC 

Cycling x40 Denaturation 10 s 95 oC 

DATA COLLECTION 60 s 60 oC 

 Melt curve   
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2.2.7 Detection of nitric oxide   by Griess reagent 
 
 

In order to measure nitric oxide in examined cells upon treatment, Griess reagent 

system was used (Promega Cat.no. G2930),  according to  Chae et al. (2004). 

Method has been used extensively to detect nitrite (NO2
–) in media of treated cells, 

which is one of two primary, stable and non-volatile breakdown products of nitric oxide. 

This was carried out on CEM-C7-14, CEM-C1-15, and DT40 cells. Cells were seeded in 6 

well plates at density 1x106cells per well carrying 2 ml of media, then tested compounds 

were added to the cells at final concentration of 1 µM, and then incubated for further 

24h or cells were stimulated first by incubating for 24 h with  1 µg/ml Lipopolysaccharide 

LPS and 10 µg/ml phytohemagglutinin. Later, the well content was transferred to 15 ml 

universal tube, centrifuged for 5 min at 1500 RPM, then the supernatant transferred to 

new tube. 50 μl of each experimental sample was added to wells in 96 well plates, after 

that 50μl of the sulfanilamide solution was dispensed to all wells (materials in table 23). 

Then samples were incubated for 10 min in the dark at room temperature. Finally, 50 μl 

of the NED Solution was added to the wells and incubated for another 10 min. 

Appearance of purple colour of azo compound ( as explained in fig. 27) was measured by 

monitoring absorbance within 30 min in a plate reader at wavelength between (520- 

550) nm.   
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Figure 27 The principle of Griess assay 

 
 
 
 
Table 23 Components of Griess Reagent 

Material  Volume 

Sulfanilamide   (2 × 25 ml) 

N-1-napthylethylenediamine 

dihydrochloride (NED)   

(2 × 25 ml)  

 

Nitrite Standard (0.1 M Sodium Nitrite) 
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2.2.8 IL-6 and IL-2 detection by ELISA assay 
 
 
 
Secretory Interleukins were detected by capture ELISA method, using The Thermo 

Scientific Human IL6 and IL-2 kits (Affymetrix -eBioscience) for this experiment for which 

components were listed in Table 24.  Capture assay -sandwich method was followed for 

this purpose, illustrated in (Fig. 28 and 29).   

 

 

Figure 28 Principle of ELISA assay  

The assay was performed in 96 well plate provided with the kit that has been coated 

with the capture antibody of the interleukin of interest. In this case two cytokines are 

followed; IL-6 and IL-2.     
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Table 24 ELISA kit components 

96-well Strip Plates pre-coated with a human IL-6/IL-2 capture antibody 

Detection antibody 

Conjugate 

Buffers 

Diluent 

TMB 

Stop buffers 

Lyophilized human IL-6/IL-2 standard 

  

CEM-C7-14, CEM-C1-15, DT40 and PBMCs cells were seeded in 6 well plates at density 

0.5-1x106 cells per ml, each well had 3 ml of media. Then tested compound were added 

to the wells at final concentration of 1 µM, and then incubated for further 24h or cells 

were incubated first for 24 h with PHA dose 1 µg/ml then treated with indicated 

compounds. Later each well content was transferred to 15 ml universal tube, 

centrifuged for 5 min at 1500 RPM, then the supernatant transferred to new properly 

labelled tubes. The media of treated cells was either frozen at -80 oC for future 

experiments or processed immediately through ELISA protocol. Pierce Protein Methods 

was followed as illustrated   in flowchart below: plates were loaded with 50 µL of the 

samples  in duplicate, then 50 µL of biotynylated antibody reagent was added. Plate 

were covered and incubated immediately for 2h at 20-25 oC, washed three times and 
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100 µL of Streptavidin HRP solution (conjugate) was added to all wells. Plates were 

covered and incbated for 30 min at 20-25 oC, then the plates were washed three times  

with Tween PBS (ELISA wash). Next, wells were loaded with 100 µL of  TMB substrate 

and incubated for 30 min at 20-25 oC in dark. The reaction was stopped by 100 µL of 

stop buffer, and absorbance read at 450-550 nm at plate reader. 

 

Figure 29 Cartoon illustration of ELISA assay followed. Procedure carried out to quantify levels of 

secreted interleukins in media of cells treated with the explored drugs.  
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2.2.9  Caspase assay 
 
 Caspase-8 activity  was measured by  Caspase-Glo 8 Assay from Promega  catalogue 

no.G8200. This luminescent assay measures cysteine aspartic acid-specific c protease 

caspase-8 which is activator of  extrinsic pathway of apoptosis. The kit includes reagents 

for cell lysis, and caspase-8 substrate in luciferase system that produce light signal from 

reaction. The glow is detected by illuminometer and the density of light is correlated 

with caspase -8 enzyme activity.The assay is performed in 96 well plate were (15,000) 

cells per well were seeded in DCC contain media and treated with 1µM of indicated 

compounds for 48 h. After that reagents are prepared as indicated by manufacturer 

company and 100μl of Caspase-Glo 8 Reagent (10 units/ml) was added to each well, 

plates were covered with a plate sealer. The contents of the wells were mixed at 300–

500rpm using a plate shaker, then incubated at room temperature for 30 min. After that 

luminescence measurement was performed by placing the plate in a plate-reading  

Omega illuminometer according to the setting of illuminometer manufacturer. The 

substrate cleavage leads to generation of glow and the amount of caspase 8 are 

represented by RLU which is the signal proportional to the amount of caspase-8 activity 

present, in which one unit of caspase 8 is the amount of enzyme required to cleave 1 

Pmol of the substrate LETD per minute at 30 oC. The data were obtained through MARS 

software. 
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 2.2.10 Ligand-protein binding in-silico simulation- Chimera docking  
 
 
  

Molecular graphics and analyses were performed with the UCSF Chimera 1.10.1 

package. Chimera is generated by the resource for Biocomputing, visualization, and 

informatics at the University of California, San Francisco (supported by NIGMS P41-

GM103311). This is an extensive program for interactive visualization and analysis of 

molecular structures and related data, including density maps, supramolecular 

assemblies, sequence alignments, docking results, trajectories, and conformational 

ensembles (UCSF Chimera, 2015). Docking was performed via auto dock vina tool. In this 

study the desired target protein (GR) was docked with 5 different compounds for which 

variable binding affinity with GR was obtained. 

 

2.2.10 Drug stability determination 
 
 
 
Drug stability was tested via Nuclear Magnetic Resonance Spectroscopy (NMR) by 

Salford Analytical Services SAS, using Bruker Advance 400 MHz spectrometer. This 

device contains multinuclear probe (31P to 109Ag) that can be used for a wide range of 

experiments including chemical characterization, counterfeit drug analysis, active 

pharmaceutical ingredient (API) determination and purity. 

Hydrogen atoms are monitored by NMR, 0 h (control) and reading compared with that 

recorded   after being left 24 h in room temperature, where signals peak represents the 
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protons of the investigated compound. Less than 5 mg of each compound were 

dissolved in 1 ml of the suitable solvent then 600 µl transferred to NMR tube and placed 

in NMR. Data were analysed using Bruker software Topspin 3.5p16. Solvents used for 

NMR experiments are listed in table 25. 

 

Table 25 Solutions used for NMR experiments 

Compound NMR solvent 

Dexamethasone Acetone 

Compound A Methanol-4 (MeOD) 

Tyramine Deuterium oxide (D2O) 

Tyramine 

Hydrochloride 

Deuterium oxide (D2O) 

N-Methyltyramine 

(CPDB) 

Chloroform d1 (CDCL3) 

Hordenine (CPDC) Deuterium oxide (D2O) 
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3 Results   

3.1  Identification and preliminary characterization of novel 

compounds  

 
In order to gain insight of mechanisms of action of SEGRAS and develop new 

compounds, we have tested compounds that have displayed similar chemical properties 

to compound A (Fig.30). This part of the study was carried out in collaboration with Dr. 

John Hadfield (University of Salford), who provided chemical expertise to identify 

potential novel SEGRA. Dexamethasone was used as control and Compound A as a 

reference point for testing four new compounds including Tyramine, Tyramine HCl, N-

Methyl tyramine (CPDB) and Hordenine (CPDC) (Fig. 30).   

 

Figure 30 Structures of tested compounds.  
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The purpose of this part of the study was to determine the stability of tested 

compounds in indicated solution at certain time point and thermal levels (Table17). 

Stability of the compounds powder was taken from the manufacturer. Solutions of 

tested compounds were prepared as described in materials and methods. The first 

experiment was carried out immediately upon dissolving the stock in suitable solvent 

and solvent alone was considered the control. Second reading was performed using 

Nuclear Magnetic Resonance (NMR) 24h later after compounds in indicated solution 

were kept at room temperature and the third reading was obtained 24 h after storing 

the solutions at 4 oC. 

The results of Proton NMR Spectroscopy demonstrated that exposing the DEX dissolved 

in solution at R.T/24 h and 4 oC did not lead to a visible changes in molecules structure 

as shown in NMR data as no alterations in profile of NMR resonance signals was 

observed (see supplementary material 4.5.1). CPDA solution resonance frequencies 

(peaks) have been unchanged upon 24 h at R.T/24 h and 4 oC storage conditions. 

Furthermore (Tyramine, Tyramine hydrochloride, CPDB and CPDC) solutions were all 

stable at experimental conditions used when compared to control. 

To summarize, results revealed that all compounds solutions are stable for short time 

stored at temperature higher (4 oC and RT) than optimal (-80 oC for CPDA and -20 oC for 

others) (table 26). Drug stability was tested via NMR and showed that studied 

compounds were all stable for 24 h in solution making them optimal for experimental 

analysis.   
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Table 26 Stability of tested compounds upon various conditions. For details see supplementary data 

(4.5.1) 

 
Compound    PubChem 

ID 

Chemical 

 formula  

NMR  

Solvent 

0h 24h/RT  24h/4C 

Dexamethasone (DEX) 5743 C22H29FO5 Acetone Stable Stable Stable  

Compound A  

(CPDA) 

9838147 C11H15Cl2NO2 Methanol-d4 

(MeOD) 

Stable Stable Stable 

Tyramine  

(T) 

5610  C8H11NO Deuterium 

Oxide D2O 

Stable Stable  Stable 

Tyramine Hydrochloride 

(THCL) 

66449  C8H12ClNO Deuterium 

Oxide D2O 

Stable Stable  Stable 

N-Methyl tyramine (CPDB) 9727  C9H13NO Chloroform-

d1 (CDCl3 

Stable Stable  Stable 

Hordenine (CPDC) 68313  C10H15NO Deuterium 

Oxide (D2O) 

Stable Stable Stable 

  

3.2 Ligand-protein binding- in silico assay 

 
In the next set of experiments in silico simulation of ligand-GR binding was carried out in 

order to determine potential of these compounds to bind the receptor with high affinity 

and within the ligand-binding pocket (Fig. 31). In study to reveal the binding sites of GR 

with the antagonist ligand HO-PCBs  4 main residues were detected to form hydrogen 

interactions at (Glu540) and hydrophobic bonds at (Ile539, Val543 and Trp577) in GR 

which is an indicator of GR specific function (Liu et al., 2016a).Molecular docking helped 

to distinguish GR nuclear translocation as indicated by (Liu et al., 2016b)  and to design 

novel GR ligand (Xu et al., 2009).Molecular modelling can assist in designing of new 

drugs through prediction of the main binding sites with known ligand, where binding 
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affinities expressed as a numbers and indicate the powerful of contact between the two 

molecules (Vilar et al., 2017). 

 

 Predicted binding affinities and distances indicated this order: 

Dex>CpdA>T=THCL>CPDB=CPDC (Table 27). The studied compounds interact with some 

of the residues that also interact with Dex. The molecular docking analysis and related 

data using Auto Dock Vina tool indicated that ARG611 is conserved in all of contacts 

identified (Table 28 and Fig.32 - coloured residues) which has been known to enhance 

GR-ligand binding along with other residues (LEU563, ASN564, GLN570, PHE623, LEU608 

(DiSorbo et al., 1980).  

 

The results demonstrated variable predicted binding affinities for tested compounds 

with GR Furthermore DEX shares similar binding residues in GR with the investigated 

compounds.This part of research was performed in collaboration with Priyanka Panwar- 

PhD candidate and Dr. Niroshini Nirmalan (University of Salford). 
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Figure 31 Auto dock simulation of studied compounds.  

Vina Docking results Reveal the tested Compounds (Blue) superimposed with original DEX (purple) from 

crystal GR-DEX (4UDC). (A) DEX, (B) CPDA, (C)T (D)THCL (E) CPDB,( F)CPDC  
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Figure 32 Ligand - GR interactions. 

 Illustration of  the binding sites with GR. (A)DEX, (B)CPDA,( C)T (D)THCL (E) CPDB,( F)CPDC. In silico 

simulation was carried out using chimera 1.10.2 package for interactive visualization and analysis of 

molecular structures (Auto Dock Vina tool) whereas Discovery studio 4.5 was used to visualize the amino 

acids involved in ligand docking. 

Table 27 Highest Binding affinities of compounds docked with GR-LBD 

Compound kcal/mol 

DEX - 12.8 

CPDA -6.2 

T -5.6 

THCL -5.6 

CPDB -5.9 

CPDC -5.9 
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Table 28 Summary of interactions between tested compounds and GR-LBD 

  

Colors indicate five types of interactions as displayed in fig.32. The table represents residues in 

GR that bind with the tested compounds distributed according to the binding potency, Van der 

Waals strength (0.4-4.0 KJ/mol) Hydrogen bonds potency (12-30 KJ/mol). Ionic interactions (20 

KJ/mol) and hydrophobic interactions (<40 KJ/mol). 
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3.3 Cytotoxicity of DEX and tested compounds 

 
The synthetic steroid compound Dexamethasone (DEX) and other organic compounds   

were tested to determine the concentration and incubation time needed to induce cell 

death. For this purpose MTS or MTT assays were used to assess in vitro cytotoxicity of 

DEX, CPDA, T, and THCL. Leukemia cells were treated with different concentrations of 

DEX ranging from 0 to 100 µM at three different incubation times of 24 h, 48 h and 72 h 

to assess cell type dependent effects and drug specific effect for each compound. 

 

3.3.1 Cytotoxicity of tested compounds upon 72h incubation with 

10µM to 100µM concentrations  
 
 
The overall effect of long incubation time with the starting dose of 100 µM 

concentration of studied compounds on CEM-C7-14 cells was analysed using MTS 

cytotoxicity assay (Fig. 33). Cell proliferation was inhibited by increasing doses of DEX, 

CPDA and T (Fig. 33 A, D and G).  Curiously, THCL inhibited cell growth at low 

concentration but promoted growth rate at the high dose of 100 μM (Fig. 33 J). 

In C7 cells, DEX inhibited the growth to approximately less than 40% proliferating cells at 

all doses (Fig. 33 A, compare lanes 1 to lanes 2-6), IC50 <10 µM., Similarly, the addition of 

CPDA inhibited the growth significantly at all concentrations  to approximately 60% of 

proliferating cells (Fig. 33 D, compare lanes 1 to lanes 2-6), IC50 > or =100 µM. T 

displayed cytotoxic effects by inhibiting the growth in a dose dependent manner and 

reaching the rate of less than 20% living cells at high doses (Fig. 33 G, compare lane 1 to 

lane 6), IC50 > or = 10 µM. Surprisingly, THCL seems to affect cells in a different way as 
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the high dose of 100μM promoted the growth while all other smaller doses suppressed 

the cell growth (Fig. 33 J, compare lane 1 to lanes 2-5 and to lane 6). 

 

CEM-C1-15 growth rate was also affected by high concentrations of the compounds and 

longer durations in a similar manner to C7 cells (Fig. 33 B, E, H and K). Despite the fact 

that those cells are known to be GC resistant, significantly reduced growth was observed 

potentially due to use of compounds at doses higher than 10 μM for the indicated 

incubation period.  Compounds displayed following IC50 values: DEX (IC50 <10 µM), CpdA 

(IC50 > or =100 µM) and T (IC50 > or = 10 µM). DEX, CpdA and T caused diminished C1 cell 

viability at all doses tested (Fig. 33 B, E and H, compare line 1 to all other lanes) whereas 

THCL inhibited the growth rate at doses lower than 100 μM (Fig. 33 K, compare lane 1 to 

lanes 2-5 and 6).  

Similarly, the cytotoxic effect on DT40 cells was observed upon incubation with the high 

doses of DEX (IC50 =12.5 µM), CPDA and T (IC50 =12.5 µM), and THCL at doses less than 

100 μM (Fig. 33 C, F, I and L).  

 

To conclude, all compounds inhibited growth of CEM-C7-14, CEM-C1-15 and DT40 cells 

at most doses studied and at long duration of treatment at 72 hrs.  

 However, given potential toxicity of these doses to other tissues and long durations of 

treatment, a series of further tests was undertaken to determine optimal/minimal dose 

and duration.  
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Figure 33 Effect of high drug doses and 72 h treatment duration on viability of examined cells.  

CEM-C7-14, CEM-C1-15 and DT40 cells were treated with tested compounds. (A, B, C) DEX; (D, E, F) CPDA; 
(G, H, I) T; (J, K, L) THCL Compounds were incubated with starting high dose of 100 µM with indicated cell 
lines. MTS assay was carried out 72h later to detect the effect of the compound on the proliferation of 
leukemia cells. Data shown are representative of three experiments in triplicates. Error bars represent 
standard error of means. *P<0.05. 
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3.3.2 Cytotoxicity of tested compounds upon 48h incubation with 

10µM to 100µM concentrations 
 
 
In this set of experiments duration of treatment was lowered from 72 h 

 to 48 h. In GC sensitive C7 cells all compounds inhibited the growth to a certain extent 

(Fig. 34 A, D, G, and J). T had the strongest effect (around 60% of cell death, Fig. 34 G, 

compare lane 1 to 6) whereas inhibitory effect for other compounds varied between 40-

50% mostly in dose dependent manner (Fig. 34 A, D and J compare lanes 1 to lanes 2-6).  

 

In GC resistant CEM-C1-15 cells, most compounds when used for 48 hours inhibited C1 

growth moderately (Fig. 34 B, E, H and K). In general, Dex, CpdA and T mediated growth 

inhibition was weaker in C1 cells than in C7 cells (compare middle panels with the left 

panel, except in the case of THCL which had the strongest inhibitory effect of all 

compounds in C1 cells and marginally better inhibition of growth in C1 versus C7 cells.  

In DT40 cells upon 48 h treatment  DEX and T had weak inhibitory effect on growth rate, 

whereas CPDA and THCL showed stronger cytotoxic effect with THCl showing  the most 

potent dose dependent effect similarly to effect in C1 cells (Fig. 34, compare right panels 

to middle panels). 
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Figure 34 Effect of high compound doses for 48 h on viability of examined cells.  

CEM-C7-14, CEM-C1-15 and DT40 cells were treated with tested compounds. (A, B, C) DEX; 
(D, E, F) CPDA; (G, H, I) T; (J, K, L) THCL compounds were incubated with starting high dose of 100 
µM with indicated cell lines. MTS assay were carried out 48 h later to detect the effect of the 
compound on the proliferation of leukemia cells. Data shown are representative of three 
experiments in triplicates. Error bars represent standard error of means. *P<0.05. 
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3.3.3 Cytotoxicity of tested compounds upon variable duration of 

treatment and 0 to 2.5 µM concentrations 
 

3.3.3.1  Cytotoxicity profiles of CEM-C7-14 cells 
 
 
 In order to investigate the growth inhibitory effect of lower doses of the studied 

compounds, and determine the cytotoxic doses and duration of the drugs, MTS assays 

were employed. In the first series of experiments CEM-C7-14 cells  were treated with 0-

2.5 µM concentrations of compounds using various durations including 24 h, 48 h and 72 

h to reveal the effect of time, dose and cancer type as seen in  Fig. 35. The tested 

substances exhibited concentration-dependent inhibitory effects on the proliferation of 

the examined CEM-C7-14 cell line. In GCs sensitive CEM-7-14 cells (Fig. 35) treated with 

DEX, CPDA and T growth inhibitory effect can be observed  at 48 h that becomes  

stronger at 72 h of treatment duration (Fig. 35, compare panels A,B and C, black  light 

grey and dark grey bars). THCL effect is significant mostly at high doses and long 

duration of treatment (Fig. 35, panel C).  

24 h duration of DEX treatment did not produce any IC50 apart from a minor growth 

inhibition which can be seen upon certain doses of all compounds (Fig. 35, black 

columns). Therefore longer incubation is needed to allow the drugs to exert their 

effects.   

 

48h incubation time with DEX has a moderate inhibitory effect on C7 cells at all doses 

tested but the survival rate was higher than 50% and IC50 couldn’t be calculated (Fig. 35 

A, light grey columns); CPDA and T induced inhibition of cell growth similar to that of 
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DEX (Fig. 35 B and C, light grey columns). THCL cytotoxicity was associated with the high 

concentrations of the drug (Fig. 35 D, light grey columns). 

Increase in the incubation time to 72 h resulted in clear growth inhibitory effect on cells 

treated with both DEX  and CPDA (Fig. 35 A and B,- dark grey columns) as all 

concentrations inhibited the growth significantly; IC50 therefore was estimated to be  

IC50<0.039 µM for DEX and CpdA. Regarding T (Fig. 35 C, dark grey columns)-all doses 

inhibited the growth significantly and IC50 was around 0.039 µM. THCL (Fig. 35 D, dark 

grey columns) inhibited the growth significantly at doses 2.5, 1.25, 0.63 µM but lower 

doses had no effect;  IC50 was estimated at 0.625 µM.  

 Dose dependent effect for CPDA has been observed. At high doses and long incubation 
times CPDA shows GR independent effects that are likely due to the metabolites of the 
compound (Wust et al., 2009) 
.  

 

 

Figure 35 The effect of duration and different doses of drug treatment on CEM-C7-14 viability. 
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CEM-C7-14 cells were treated with (A) DEX, (B) CPDA, (C) T, and (D) THCL. Indicated cell lines were 
incubated with starting high dose 2.5 µM of studied compounds. MTS assay were carried out at different 
time points 24, 48 or 72 h later to detect the effect of the compound on the proliferation of leukemia 
cells. Data shown are representative of three independent experiments in triplicates. Error bars represent 
standard error of mean,*P<0.05. 
 

3.3.3.2 Cytotoxicity profiles of CEM-C1-15 cells 
 

Analysis of GC resistant acute childhood leukemia cell line CEM-C1-15 under the same 

conditions as above indicated that overall these cells are more likely to survive 24 and 

48 h, or treatment than CEM-C7-14 GC sensitive cells. Overall, results indicated that long 

incubation and high concentrations of drugs had slight cytotoxic effect (Fig. 36). 

 

  Figure 36 The effect of duration and different doses of drug treatment on CEM- C1-15 viability.   

CEM-C1-15 cells treated with (A) DEX, (B) CPDA, (C) T, and (D) THCL. Compounds were 

incubated with starting high dose 2.5 µM with indicated cell line. MTS assay were carried out at 
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different time points 24, 48 or 72 h later to detect the effect of the compound on the 
proliferation of leukemia cells. Data shown are representative of three independent 
experiments in triplicates. Error bars represent standard error of mean,*P<0.05. 

 

3.3.3.3  Cytotoxicity profiles of DT40 cells 
 
 
 Analysis of compound effect on chicken derived lymphoma DT40 cells suggested that 

the anti-proliferative activity of all the four compounds DEX, CPDA, T, THCL  mostly 

increased with longer incubation time, however cytotoxic effect was small (in the range 

of 20-30%) or non-existent (Fig. 37). All compounds showed similar effects with the 

strongest cytotoxicity displayed by Dex at IC50 0.626 µM 72 h, CpdA at 1.25 µM at 72 h, T 

at 0.313 µM at 48 h and THCl at 0.078 µM at 72 h of treatment (Fig. 37). 

 

Figure 37 The effect of duration and different doses of drug treatment on DT40 cells viability.  

DT40 cells treated with (A) DEX, (B) CPDA, (C) T, and (D) THCL. Compounds were incubated with starting 
high dose 2.5 µM and serial dilutions with indicated cell line. MTS assay were carried out at different time 
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points 24, 48 or 72h later to detect the effect of the compound on the proliferation of leukemia cells. Data 
shown are representative of three independent experiments in triplicates. Error bars represent standard 
error of mean,*P<0.05. 

 

 

3.3.3.4    Cytotoxicity of CPDB and C  
 
In the next set of experiments, analysis of the activity of new compounds with similar 

chemical structure to CPDA, named CPDB and CPDC was carried out (chemical structure 

displayed in (Fig. 38).  Both compounds were shown to promote cell growth at certain 

durations/concentrations in C7 and C1 cells (Fig. 38 panels A-D). CPD B and C suppressed 

DT40 cell growth at certain concentrations with the strongest effect observed at 48 h 

treatment above 0.156 µM concentration. However, there was growth stimulatory 

effect of CPD C at lower concentrations at 48 h treatment (Fig. 38 F, light grey bars).  
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  Figure 38 Cytotoxicity analysis of CPDB and CPDC in CEM-C7-14, CEM-C1-15 and DT40 Cells. 

(A and B) C7, (C &D) C1, (E&F) DT40 cells treated with CPDB or CPDC. Compounds were incubated with 
starting high dose 2.5 µM with indicated cell line MTS assay were carried out at different time points 24, 
48 or 72 h later to detect the effect of the compound on the proliferation of leukemia cells. Data shown 
are representative of three independent experiments in triplicates. Error bars represent standard error of 
mean. *P<0.05. 

 

 

Altogether, cells sensitivity to 72h exposure and 100 µM doses of compounds was high, 

and all cell lines proliferation was inhibited by high doses of steroid and non-steroid 

treatment for long duration. CEM-C7-14 cells were sensitive to shorter duration (48 h) 

and high doses of compounds (starting from 100 µM), whereas C1 and DT40 were less 

sensitive to short incubation, however THCL showed strongest inhibitory effect. Upon 

treatments with starting doses of 2.5 µM and different incubation times a dose and time 

dependent growth inhibition effect on CEM-C7-14 and C1-15 cells was observed, and the 

effect was reduced by decreasing these two factors. C1 cell line displayed less sensitivity 
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than C7 to cytotoxic actions of compounds. This growth inhibition was mostly time 

dependent in DT40 cells. Thus, the compounds effect was cell, dose and time 

dependent.  CPDB and CPDC produced both inhibitory and stimulatory effect on 

examined cells at different doses. 

3.3.3.5    Cytotoxicity of tested compounds on peripheral blood 

mononuclear cells 
 
 
In order to test the potential cytotoxic effect of tested compounds on normal white 

blood cells, the viability of peripheral blood mononuclear cells (PBMCs) was analyzed 

(Fig. 39 A). No effect was observed of either hormone or non-steroid treatment of 

PBMCs for 48h using 1 µM drug concentration (Fig. 39). Effects of DEX on PBMCs are 

commonly studied upon cells exposure to pro-inflammatory signals (Skendros et al., 

2008). Therefore Phytohemagglutinin (PHA) was used for this purpose. PHA stimulation 

caused some elevation in survival rate of treated groups on its own (Fig. 39 compare 

lanes 1 and 2). DEX and CPDB treatment led to a loss of significant PHA caused increase 

in viability (Fig. 39 B, compare lanes 1 and 2 to lanes 3 and 7), whereas CPDA, T and 

THCL didn’t change substantially the effect of PHA, whereas CPDC showed further 

substantial stimulatory effect (Fig. 39 B, compare lanes 1 and 2 to lanes 4, 5, 6 and 8).  
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Figure 39 Cytotoxicity of tested compounds on PBMCs. 

The effect of DEX, CPDA, T, THCL, CPDB, CPDC on PBMCs viability (A) No stimulation (B) PHA stimulation 
1µg/ml. Compounds were incubated at dose 1 µM with indicated cells. MTS assay were carried out   48h 
later to detect the effect of the compound on the viability of normal. Data shown are representative of 

three independent experiments in triplicates. Error bars represent standard error of mean,*P<0.05. 
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3.3.4 Effect of temperature stress on drug response in ALL and 

PBMCs  
 
 
 
The purpose of this experiment was to determine the therapeutic effect of combination 

of low temperature or high temperature with the studied drugs. Temperature variation 

was chosen as it is known environmental stressor in both Human and animals beings are 

exposed to  rise and fall in surrounding temperature that may  affect various processes 

including enzymatic reactions, heat responsive genes, response to drugs (Kapila et al., 

2016), immunity (Franci et al., 1996) and impact intracellular proteins’ profile (Somal et 

al., 2015). In study of hyperthermia effect in rats (Matic et al., 1989) found a significant 

reduction in glucocorticoid binding and a slight increase in binding affinity in hyper-

thermic rats  (41 oC) as compared to the controls. Heat stress could lead to thermal 

injury and activate multiple signalling pathways that involve  heat shock proteins , 

inflammatory chemokines, and other pro-inflammatory  mediators  such as NF-kB, 

STAT3, and HIf-1a which regulate the cellular growth (Maghsudlu and Farashahi Yazd, 

2017).  It has been found that  heat stress at 42oC applied to  Riverine Buffalo’s 

mammary epithelial cells inhibited  the growth  and survival of these cells  as it induced  

both apoptosis and necrosis; and the effect were  extended to gene transcription , as 

153 genes were  shown to be upregulated and 8 genes were down regulated upon heat 

shock (Kapila et al., 2016) 

Therefore high and low temperatures were applied in combination with drug treatment 

to elucidate the effects on PBMCs. The results indicated that high temperature itself 

caused significant decrease in viability of the tested cells (Fig. 40, compare lanes 1 and 

2). When combined with heat stress, DEX produced growth suppression effect similar to 
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heat (Fig. 40, compare lanes 1 and 2 to lane 3 in A, B, C, D). All other compounds reduce 

the growth in varying degrees except Tyramine, which did not show growth inhibition 

effect in presence of high temperature conditions.  

 
 

 

Figure 40  Cytotoxicity profile of combined high temperature and drug treatment on examined cells. 

 (A) CEM-C7-14. (B) CEM-C1-15 (C) DT40 cells. (D) PBMCs  
The cells were exposed to 42 0C/2 h, then treated with 1µM DEX, CPDA, T, THCL and incubated 
at 37 OC .MTS assay were carried out 72h later to detect the effect of the compound and heat on 
the proliferation of leukemia cells and PBMCs. Data shown are representative of three 
experiments in triplicates. Error bars represent standard error of means *P<0.05. 
 

Low temperature is considered a type of treatment that create a hypothermia 

conditions such as ice cold intravenous fluid that is given to patients with cardiac   

arrest. This therapy helps to improve the physiological parameters such as acid-base 
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balance. When it is applied at 4 0C   for more than half of an hour it was found to be 

optimum to lower the internal body temperature to less than 37 0C (Fisher et al., 2017) . 

Therefore cells were incubated at 4 0C and treated with studied drugs. Viable number of 

cells exposed to a cold shock dropped to lower than 50% of control in all cell types 

studied (which was 37 OC) (Fig. 41, compare lanes 1 and 2).  Combination of cold and 

DEX didn’t have any different effect than cold alone (Fig. 41, compare lanes 1 and 2 to 

lane 3). CPDA, CPD B and CPDC treatment caused partial recovery from the effect of cold 

in all cell types studied except in PBMCs treated with CPDB and C1 cells treated with 

CPDA where it led to some, but not significant difference when compared to control. T 

and THCL caused complete recovery from the effect of cold.  (Fig. 41, compare lanes 1 

and 2 to lanes 5 and 6 across cell lines).   
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Figure 41 Cytotoxicity profile of combined low temperature and drug treatments on examined cells. 

(E) CEM-C7-14. (F) CEM-C1-15 (G) DT40 cells. (H) PBMCs  
The cells were exposed to 4 0C/2 h, then treated with 1 µM DEX, CPDA, T, THCL and incubated at 
37 OC .MTS assay were carried out 72h later to detect the effect of the compound and heat on 
the proliferation of leukemia cells and PBMCs. Data shown are representative of three 
experiments in triplicates. Error bars represent standard error of means *P<0.05.  
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3.3.5 Compound cytotoxicity in cancer and non-cancer epithelial 

cells  
 

This part of study was designed to investigate potential cytotoxic effects of studied 

compounds on other types of cells. For this purpose skin cancer cells HACAT, breast 

cancer cells MCF-7 and bronchial cell line from normal lung (BEAS-2B), were used. 

Results of 1 μM treatment for 48 h revealed that DEX and CPDA have no significant 

inhibitory effect on HACAT and HACAT cells viability while BEAS-2B proliferation rate 

was inhibited upon DEX and CPDA therapy. T and THCL increased viability of MCF-7 and 

HACAT cells (Fig. 42 A). 

 

Analysis of the effect of 1 μM treatment for 72 h demonstrated that all studied drugs     

have significantly inhibited viability of MCF-7 while viability of HACAT cells was 

suppressed by DEX and CPDA but enhanced by T and THCL. All the compounds suppress 

BEAS-2B proliferation rate to the half or less of control with 72 h duration of treatment 

(Fig. 42 B). 
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Figure 42 Cytotoxicity of tested compounds in skin and breast malignant cells and non-malignant 
bronchial cell line. 

(A) The effect of 1 μM treatment on epithelial cells viability for 48h. (B) The effect of 1 μM 
treatment on epithelial cells viability for 72 h.  
 HACAT (dark grey), MCF-7 (white) and BEAS-2B (light grey) adherent were treated with 1 µM 
DEX, CPDA, T and THCL. MTS assay were carried out 72 h later to detect the effect of the 
compound on the proliferation of epithelial cells. Data shown are representative of three 
experiments in triplicates. Error bars represent standard error of means *P<0.05. 
  

 

 

 

 

 



156 
 

3.4 Flow cytometric analysis of cellular effects of studied 

compounds 

 
Flow cytometry technique was chosen to study cell cycle progression and cell fate in 

detail and investigate what pathways to death were utilized by cells when treated with 

individual compounds. Cells were stained with propidium iodide (PI) to determine 

effects on cell cycle progression and total cell death. Annexin V analysis was used to 

determine effects on apoptosis.  ROS was followed to investigate the possibility that the 

tested compound might act by altering ROS pathways.  

 

3.4.1  Effects of tested compounds on cell cycle progression  
 

3.4.1.1  Effect of tested compounds on CEM-C7-14 cell cycle 

distribution  
 
 
CEM-C7-14 cells were treated with indicated compounds for 48 h, and then DNA content 

of the cells was stained with PI to elucidate potential effects on cell cycle progression 

(Fig. 43). A significant up-regulation of sub-G1 phase was observed in cells treated with 

DEX and CPDA compounds (Fig. 43, A black and grey bars lanes 2 and 3), except in the 

case of T (Fig. 43, A lane 4), while THCL (Fig. 43, A lane 5) caused non-significant 

expansion of the sub- G1 stage of cell cycle progression, which is indicatory of cytotoxic 

effect of the drugs. 

 Changes in other cell cycle phases were investigated and particularly in G1 phase (Fig. 

43 B)  a  statistically significant decrease in G1 phase upon all treatments was  observed 

(Fig. 43,B compare lane 1 to lanes 2-5). There was no increase in S phase, (Fig. 43, C 
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compare lane 1 to lanes 2-5).   G2/M phase (D) has shown a non-significant decrease 

upon DEX and CPDA (lanes 1 and 2). Taken together, DEX and tested compounds 

increased cell death and decreased G1 cell population in CEM-C7 cell line. 

 

Figure 43 Cell cycle analysis of CEM-C7-14. 

Fluorescence activated cell sorter (FACS) analysis of CEM - C7-14 cells. (A) Sub-G1, (B) G1, (C ) S 
phase and (D) G2/M. cells were treated with 1 µM of DEX, CPDA, T or THCL for 48 h, and then 
stained with propidium iodide. The analysis was performed using BD FACS verse TM, by aid of 
BD FACS Suite software, through PE-A channel. Data shown are representative of minimum of 
three experiments. Error bars represent standard error of means *P<0.0
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3.4.1.2  Effect of tested compounds on CEM-C1-15 cell cycle 

distribution  
 
 
CEM-C1-15 cells were treated as indicated in materials and methods and in the previous 

section, and then DNA content of the cells was stained with fluorescent dye PI to elucidate 

cell cycle progress of the cells (Fig. 44). Small insignificant increase in the sub-G1 population 

of C1 was observed upon all treatments except when T was used (A, compare 4 with lanes 

1-5). G1 phase generally decreased or was unchanged (B lanes 1-5). S phase cell population 

revealed insignificant decrease upon DEX and T and unchanged upon DEX and THCL, also 

insignificant decreased have been observed upon DEX, CPDA and THCL in G2 cell population 

(C, lanes 2, 3 and 5).  Relative ratios of different cell cycle phases was altered in DEX versus 

CPD A treated cells.  
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 Figure 44 Cell cycle distributions of CEM-C1-15 cells. 

Fluorescence activated cell sorter (FACS) analysis of CEM -C1-15 cells. (A) Sub-G1, (B) G1, (C) S phase 
and (D) G2/M; cells were treated with 1 µM of DEX, CPDA, T or THCL for 48 h, and then stained with 
propidium iodide. The analysis was performed using BD FACS verse TM by aid of BD FACS Suite 
software. Data shown are representative of minimum three experiments. Error bars represent 
standard error of means *P<0.05. 
 
 
 
 
 

3.4.1.3  Effect of tested compounds on DT40 cell cycle distribution  
 
 
 
DT40 cells were treated as indicated in materials and methods and previous section, and 

then DNA content of the cells was stained with fluorescent dye to determine effect of 

compounds on cell cycle progression (Fig. 45). Sub-G1 phase was up regulated 
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insignificantly upon DEX, CPDA and THCL (A ,lanes 2,3 and 5); insignificant down-regulation 

of G1 has been seen upon DEX,T and THCL (B lanes 2,4 and 5); There were  no significant 

changes in S phase comparing to not treated cells (C, compare lane 1 and 2,3,5) except 

insignificant down-regulation upon T (C, lane 5); in addition no significant decrease has 

been recorded  upon DEX and T treatments comparing to control  in G2/M phase, except in 

cells treated with CPDA where significant downregulation was observed (D compare lane 1 

to lanes 2-5). 

 

 

Figure 45  Cell cycle distributions of DT40 cells. 

Fluorescence activated cell sorter (FACS) analysis of DT40 cells. (A) sub-G1, (B) G1, (C ) S phase and 
(D) G2/M; cells were treated with 1 µM of DEX, CpdA, T or THCL for 48 h, and then stained with 
propidium iodide. The analysis was performed using BD FACS verse TM by aid of BD FACS Suite 
software. Data shown are representative of minimum three experiments. Error bars represent 
standard error of means *P<0.05. 
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3.4.1.4  Effect of tested compounds on cell cycle distribution of PBMCs 
 
 
PBMCs were treated as indicated in materials and methods, and then DNA content of the 

cells was stained with PI to analyze cell cycle progression of the cells upon different 

treatments (Fig. 46 A and B).  

Sub-G1 phase was lower than control in PBMCs treated with all tested compounds (Fig. 46 

A compare lane 1 to lanes 2-5), and G1 increased in comparison to not treated cells (Fig. 46, 

B compare lane 1 to lanes 2-5). However no statistically significant changes were detected 

and this experiment was preliminary as it was performed twice due to lack of available 

samples. As expected, S and G phases were not observed in those cells, as they are not 

proliferating. 

 

To conclude, the cell cycle of GC-sensitive, GC-resistant and DT40 analyzed cell populations 

displayed substantial alterations upon tested compounds. In particular sub-G1 phase 

increased substantially in C7 upon treatments with Dex, CpdA, T and THCl and to a lesser 

extent in C1 cells treated with Dex, CpdA and THCl, although it was reduced in PBMCs. DT40 

cells showed increase in Sub-G1 and G1 cell cycle phases when treated with THCl.  

The current results demonstrate that the hormone treatment and tested compounds 

induced cell death in C7 and C1 cells and that different compounds exerted selective and 

differential effect of cell cycle progression. 
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Figure 46 Cell cycle distribution of PBMCs. 

Fluorescence activated cell sorter (FACS) analysis of PBMCs. (A) sub-G1, (B) G1 phase; cells were 
treated with 1 µM of DEX, CpdA, T or THCL for 48 h, and then stained with propidium iodide. The 
analysis was performed using BD FACS verse TM by aid of BD FACS Suite software. Data shown are 
representative of two experiments. Error bars represent standard error of means. 
 
  

3.4.2 Induction of apoptosis of the leukaemia cells treated with 

studied compounds 
 
 
The purpose of this part of the study was to determine molecular basis of cancer cell death  

caused by steroid treatment and tested compounds. For this reason the GC resistant CEM-

C1-15 and the GC sensitive CEM-C7-14, DT40 and normal PBMCs were exposed to the 

synthetic glucocorticoid and tested compounds. Given that MTS assays and FACS/PI 

staining indicated cytotoxic potential of certain compounds, it was important to investigate 

what pathway to cell death these compounds induce. Phosphatidyl serine (PS) expression 

investigated by Fluorochrome-labeled AnnexinV (A5) in presence of PI was employed as 

described in materials and methods to determine whether one of these pathways was 

apoptosis.  
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Total apoptosis was assessed and quantified (see supplementary material 4.5.2) in 

examined leukemic and normal cells. In C7 cells (Fig. 47 A, B, C , D)  DEX and CPDA  

treatments were found to induce apoptosis. There was insignificant increase in apoptosis in 

C1 ( fig. 48)  and DT40 cells treated with all compounds.  Also PBMCs cells (based on two 

experiments) showed a non-significant increase in apoptotic cells upon other compounds 

treatment rather than DEX which showed tendency to reduce apoptotic cell death in 

PBMCs. Thus, all tested compounds have different levels of apoptosis induction depending 

on the compound and cell type. However, given the variation in the data these preliminary 

results need to be strengthened with additional repetitions of the experiments. 

 

Figure 47  Representative Apoptotic profiles of CEM-C7-14   cell as measured by flow cytometry with 
AnnexinV-FITC labelled assay 

The profile of ALL cells used to detect the apoptosis in leukemia cells upon different treatments at 
dose 1 µM/48 h. Each square has 4 quarters, upper left quarter indicates dead cells; upper right 
quarter indicates late apoptotic cells; lower right quarter represents early apoptotic cells; lower left 
quarter represents viable cells. C7 cells analysis was shown. 
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Figure 48 Representative Apoptotic profiles of CEM-C1-15 cell as measured by flow cytometry with 
AnnexinV-FITC labelled assay.   

The profile of ALL cells used to detect the apoptosis in leukemia cells upon different treatments at 
dose 1 µM/48 h. Each square has 4 quarters, upper left quarter indicates dead cells; upper right 
quarter indicates late apoptotic cells; lower right quarter represents early apoptotic cells; lower left 
quarter represents viable cells. C1 cells analysis was shown. 
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3.4.3 Effect of studied compounds on reactive oxygen species (ROS) 

levels 
 

Tumour cells normally maintain high levels of ROS due to higher metabolic activity than 

normal cells (Liou and Storz, 2010). Most chemotherapeutic agents induce cancer cell death 

and can modulate ROS levels. The purpose of this assay was to investigate if tested 

compounds modulate ROS through ROS-sensing signalling pathways. Reactive oxygen 

species (Fig. 49 ) are believed to be involved in damaging healthy cells, chronic 

inflammation and cellular biogenic molecules destruction  high RO and   reactive oxygen 

species RNS and can lead to development of cancer (Kruk and Aboul-Enein, 2017). 

 

 

Figure 49  Correlation of ROS and RNS in cancer and the impact of their high levels on cell fate, cell growth 

and genes. Adapted from(Benedetti et al., 2015). 
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High ROS levels have been linked to cellular damage or cancer development due to the 

effect of free radicals on the cell or its vital biogenic components and the effects are 

proportional to the concentrations of ROS  (as shown in fig. 50). Herein low levels are useful 

to maintain normal cell growth, whereas increasing amounts of ROS leads to dysregulation 

of normal growth while cancer cells are adapted to normalise ROS  levels by antioxidants  as 

a tool to prevent  ROS induced cell death (Woo et al., 2017, Teppo et al., 2017, Liou and 

Storz, 2010). 

 

 

Figure 50 Cross talk between ROS level and its adverse effects.  Adapted from (Cairns et al., 2011). 

*Cytostasis means growth inhibition. 
   

ROS levels were significantly lower upon DEX and CPDA treatment in CEM-C7-14 cells (Fig. 

51 A, lanes 2 and 3). However the opposite was observed in CEM-C1-15 cell line where ROS 

levels did not change with any treatments (Fig. 51 B lanes 1-5). CPDA and THCL showed 

tendency to inhibit ROS production in DT40 cells (Fig. 51 C lanes 3 and 5). In PBMCs ROS 

levels were not substantially affected. The results indicated that ROS levels were regulated 

in a cell dependent manner upon treatment with tested compounds and linked to the 

compound ability to induce the death in cell specific manner given that different effect 

were observed in three cell line. Representative examples of ROS profiles in cells upon 

different treatments are shown in Fig. (52), where the changes in cellular ROS (shown as 

positive ROS) was calculated according to the control setting. 
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Figure 51   Flow cytometric analysis of DCFDA fluorescence intensity. 

Quantification ROS levels as detected by DCFDA (2, 7dichlorodihydrofluoresceindiacetate) 
fluorescence intensity (measure of ROS). CEM-C7-14 cells (GR- sensitive), CEM-C1-15 
 (GR- resistant), DT40 cells and PBMCs cells were treated with 1 µM   DEX, CPDA, T, and THCL for 24 
h. Cells were analysed using BD FACS verse TM by aid of BD FACS Suite software. PI was used to 
exclude apoptotic and necrotic cells from analysis Data shown of A, B and C  are representative of 
three experiments, and in D two experiments. Error bars represent standard error of means 
*P<0.05.  
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Figure 52  Flow cytometry setting of DCFDA staining. 

A. CEM-C7-14, B. CEM-C1-15, C. DT40 CELLS, D. PBMCs 
ROS are tested at FITC-A Channe First calibration was done by setting the forward and side scatter according 
to the control sample;next samples were measured at same  wavelengths, the gating  for ROS samples 
positive began from 10

3
 and same setting were applied to all  tested samples. 
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3.5 Caspase-8- enzyme modulation by tested compounds 

Cysteine aspartate protease 8 (Caspase-8- is) a marker of apoptosis, and has been found to 

be activated upon apoptosis induced by the death receptor pathway; hence caspase-8 

assay was carried out to gain insight into cell death pathways potentially induced by tested 

ligands by measuring Caspase-8 enzyme activity. Caspase 8 activity increased significantly in 

GC-sensitive C7 cells upon DEX, T, and THCL whereas CPDA lead to decrease in caspase-8 

(Fig. 53, compare black bars).  

In C1 cells DEX and T showed tendency to insignificantly decrease the activity of Caspase-8, 

while, CPDA  demonstrated substantial  significant inhibition of caspase-8 level, whereas 

THCL had no effect (Fig. 53, dark grey bars). 

 In DT40 cells DEX, CPDA and T had no major effects on caspase-8 activity; however there 

was tendency of Caspase-8 increase upon THCL treatment (Fig. 53, compare white bars).  In 

PBMCs Caspase-8 was only significantly downregulated upon treatment with DEX while 

other tested compounds have no significant effect   (Fig. 53, compare light grey bars). 
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Figure 53 Caspase-8 assay.  

Caspase-8 activity was measured in CEM-C7-14, CEM-C1-15, DT40 cells and PBMCs after 48 h of treatment 
with 1µM of tested compounds. Relative luminescence units were measured using illuminometer and 
standardized according to control (NT) group.  Data shown are representative of three experiments in 
triplicates. Error bars represent standard error of means *P<0.05. 
 
 
 
 

3.6 Human and chicken proteins similarity  

The purpose of this part of investigation was to provide background about the molecular 

assays which have been used in this studyand to analyseand compare the effect of tested 

compounds on range of selected proteins/biomarkers. According to (Boratyn et al., 2012), 

Basic Local Alignment Search Tool in NCBI BLAST was used to detect the similarity between 

(chicken)   [Gallus gallus] and human  proteins [Homo sapiens]  (table 28). 
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Table 29 Human and chicken proteins similarity determined using NCBI Blast tool. 

Blast results for each protein are in supplementary material 
 
 

Protein  Gallus gallus  Homo sapiens %  of similarity  

 ID Length ID Length 

GR NP001032915.1 772aa ADP91252.1 777aa 74 

BIM XP015138913.1 314aa NP619532.1 135aa 55 

C-JUN P18870.2 314aa NP002219.1 331aa 82 

Actin CAA25004.1 375aa P60709.1 375aa 99 

IL-6 ADL14564.1 241aa AAD13886.1 212aa 95 

IL-2 CAE17662.1 143aa CAA25742.1 153aa 33 

 

 

3.7 Gene and protein expression analysis 

 
In order to obtain further insight in molecular basis of observed cytotoxic effects of studied 

drugs, we analysed protein and gene expression levels of the GR and its target genes. For 

this purpose we employed western blot and qRT-PCR analysis to monitor GR and auto 

regulation of its own levels (Veneris et al., 2017), BIM as it is a known pro-apoptotic GR 

target (Prenek et al., 2017), C-JUN  (Weikum et al., 2017a) and NF-kB (Bekhbat et al., 2017) 

that are involved in negative crosstalk with GR in the GC-sensitive (CEM-C7-14), GC-

resistant (CEM-C1-15) and DT40 cells.  To closely analyse the effect of GR on its targets, we 

determined protein and mRNA expression profiles upon treatment of these cells with DEX, 

CPDA, T, and THCL for 24 h. The time points  were selected based on studies performed by 

previous members of our and other laboratories, which determined this duration as 
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optimal Chen (2012) and Qattan (2014). Actin was used as an internal control for the 

measurements of protein levels, and RPL-19 as an internal control for gene expression 

analysis.  

 

3.7.1 Analysis of gene expression and protein levels in CEM-C7-14 

cells 
 
 
Known glucocorticoid receptor targets were analysed as indicators of leukemia cell 

response to DEX and the tested compounds CPDA, T, THCL respectively. To assess the role 

of the tested compounds in apoptosis, BIM the Bcl-2 family pro-apoptotic member that is 

involved in the regulation of glucocorticoid-induced apoptosis, mRNA levels were 

measured. In addition GR, c-Jun and NF-κB mRNA levels were tested in all cell lines treated 

with studied compounds. To investigate whether these GR targets were regulated by GR at 

the transcriptional level in cells treated with investigated compounds qRT-PCR was 

performed to quantify the mRNA levels (Fig. 54). The mRNA levels of GR and BIM showed 

trend of upregulation following DEX, CPDA, T and THCL treatments, however only Dex 

treatment led to significant change (Fig. 54 A and C). C-Jun levels increased in cells treated 

with all studied compounds except with DEX which caused downregulation (Fig. 54, B). 

 NF-kB mRNA expression has displayed a reduction in DEX and THCL treated cells, whereas 

it showed trend to increase upon CPDA and T treatment (Fig. 54, D).  

 



174 
 

 

 Figure 54 Relative mRNA levels of glucocorticoid receptor target genes in CEM-C7-14 cells. 

 CEM- C7-14 cells were treated with 1μM DEX, CPDA, T, and THCL for 24 h and the mRNA levels of (A) GR, 

(B) C-JUN, (C)BIM and ( D)NF-kB (normalized to RPL-19) were determined by quantitative real-time PCR. 

Data shown are representative of three experiments in triplicates. Error bars represent standard error of 

means *P<0.05. GR 

 

In order to analyse and compare if protein levels follow of mRNA levels of these genes, 

western blot analysis was carried out in CEM-C7-14 cells treated with 1 μM DEX, CPDA, T 

and THCL. In addition to protein levels of GR, BIM and c-JUN phosphorylated GR at serine 

211 (S211) was also followed. GR phosphorylation at serine 211 was followed as an 

additional control mechanism implicated in the regulation of glucocorticoid GR induced 

apoptosis. Experiments were repeated three times (see supplementary figure 4.5.3.1) and 
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values of densitometrically quantified bands were normalized to those obtained for actin, 

which was used as a loading control. Results were plotted as fold change over the value 

acquired for the untreated sample (NT) (Fig. 55). Due to the poor quality of some blots 

limited conclusions were obtained. Nevertheless, the results showed an increase in protein 

levels of the total GR in C7 cells upon all investigated agents and significantly upon DEX (Fig. 

55 A   lane 2). On the other hand GR phosphorylated at Ser211 protein levels increased in 

cells treated with all compounds, however due to large variations results were not 

significant (Fig. 55 C). Protein levels of JUN showed tendency to be up-regulated upon DEX, 

CPDA and THCL and somewhat in T treated cells (Fig. 55 B). BIM (Fig. 55 D) protein levels 

were found to be upregulated upon treatment with all compounds, however change was 

not significant.   
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Figure 55 Proteins expression levels in CEM-C7-14 cells. 

A Western blot analysis of the GR, C-JUN, GR (pS211) and BIM was carried out, with actin as a control in CEM-
C7-14 cells cultured with 1 μM DEX 24 h. (A) GR, (B) JUN, (C) GR (pS211) and BIM. Protein levels obtained from 
three experiments were quantified by Image J, normalized to actin and presented as a histogram. Error bars 
represent standard error of means *P<0.05. 
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3.7.2 Analysis of gene expression and protein levels in CEM-C1-15 

cells 
 
 
 
An increase in BIM mRNA gene expression was observed in the resistant CEM-C1-15 upon 

CPDA, T and THCl treatment (Fig. 56 C, lanes 3,4,5); in contrast BIM  mRNA  level were 

reduced significantly in DEX treated cells. In resistant CEM-C1-15 cells levels of GR (A) and 

C-JUN (B) mRNA were reduced in DEX treated cells whereas NF-ĸb levels (D) increased in 

most treatments except in the presence of THCl where some inhibition was observed; 

however significance was not achieved.  
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Figure 56 Relative mRNA levels of studied genes in CEM-C1-15 cells. 

CEM- C7-14 cells were treated with 1 μM DEX, CPDA, T, and THCL for 24 h and the mRNA levels of (A) GR, (B) 
C-JUN, (C) BIM and (D) NF-kB (normalized to RPL-19) were determined by quantitative real-time PCR. Data 

shown are representative of three experiments in triplicates. Error bars represent standard error of means 
*P<0.05. 
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The endogenous GR, JUN and GR (pS211) protein levels were analyzed in CEM-C1-15 cells 

treated with 1μM DEX, CPDA, T or THCL for 24h (Fig. 57). GR protein levels were mostly 

unchanged in cells treated with all tested compounds (Fig. 57, A lanes 2-5).  S211GR protein 

level showed downward trend in cells exposed to all treatments (C). C-JUN (B) upregulation 

trend was detected in CEM-C1-15 cells treated with DEX, T and THCL in spite of 

insignificancy. 

 

Figure 57 Expression levels of studied proteins in CEM-C1-15 cells. 

A Western blot analysis of the GR, C-JUN, and GR (pS211) was carried out, with actin as a control in CEM-C1-
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15 cells cultured with 1μM DEX 24h. (A) GR,  (B) JUN and (C) GR (pS211). Protein levels obtained from three 
experiments were quantified by Image J, normalized to actin and presented as a histogram. Error bars 
represent standard error of means *P<0.05. 

 

 

3.7.3 Analysis of gene expression and protein levels in DT40 cells 
 

 In chicken DT40 cells mRNA expression profiles were followed in cells treated with tested 

compounds. GR and c-Jun mRNA levels were mostly downregulated in cells treated with 

DEX, CpdA and T (A and B).There was downregulation observed in NF-ĸB gene expression in 

T treated cells (Fig. 58, D), whereas BIM mRNA was downregulated in CPDA and T treated 

cells (Fig. 58, C lanes 3 and 4).THCl caused large variation in expression of most genes 

studied leading to inconclusive results.  
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  Figure 58 Relative mRNA levels of studied genes in DT40 cells. 

DT40 cells were treated with 1 μM DEX, CPDA, T, and THCL for 24 h and the mRNA levels of of (A) GR, (B) C-
JUN, (C) BIM and (D) NF-kB (normalized to RPL-19) were determined by quantitative real-time PCR. Data 

shown are representative of three experiments in triplicates. Error bars represent standard error of means 
*P<0.05.  
 

Whole protein lysates of DT40 cells were used to analyse protein levels by western blot 

analysis. DT40 cells treated with DEX, CPDA, T, THCL showed that GR protein levels were 

generally upregulated with CPDA, T THCL (Fig. 59, A 3-5). C-JUN levels increased upon all 
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the treatments (Fig. 59, B 2-5). GR (pS211) showed tendency towards upregulation upon 

CPDA, T and significantly increased upon THCL (Fig. 59, C lane 5).  Although chicken GR and 

human GR have 77% similarly  at the level of amino acids , crucial expression may be missed 

due to using human specific antibodies against chicken GR, C-JUN and  S211. 

 

 

Figure 59   Expression levels of studied proteins in in DT40 cells. 

A Western blot analysis of the GR, C-JUN, and GR (pS211) was carried out, with actin as a control in DT40 cells 

cultured with 1 μM DEX 24 h.(A) GR, (B) JUN and (C) GR (pS211) . Protein levels obtained from three 

experiments were quantified by Image J, normalized to actin and presented as a histogram. Error bars 

represent standard error of means *P<0.05. 
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3.8 Regulation of inflammatory mediators by steroid hormone 

andthe tested compounds  

    

Cancers are often preceded by inflammation or infection (Robinson et al., 2017, Shimizu et 

al., 2017, Trehanpati and Vyas, 2017), and some anticancer drugs yield antiinflammatory 

effect . GR is known to play major role in regulation of pro and anti-inflammatory pathways 

upon DEX intake. Thus, this part of study was designed to investigate potential anti-

inflammatory properties of tested compounds in the examined cells  by measuring activity 

of secretory interleukines to address the alterations in GR function towards pro and anti-

inflammatory mediators.    

 

3.8.1 Griess Nitric oxide test 
 
 
Nitric oxide NO which includes Nitrite and Nitrate has been linked with the severity of 

inflammatory diseases (Nandeesha et al., 2015). The construction of this reactive oxygen 

species is controlled by nitric oxide synthase (NOS) gene.  Three types of NOS are present in 

the bodies: inducible, neuronal and endothelial  (iNOS,  nNOS and  eNOS respectively) 

(Alderton et al., 2001).In cancer studies it has been shown to play role in tumor growth and 

tumor suppression (Choudari et al., 2013. As explained in (fig . 60) NO canmodulate cancer 

development by interfering and impairing apoptosis  in addition to its role in enhancing the 

angiogenesis, therefore designing therapeutic agents that supress NO will be of great value 

for cancer patients (Ito et al., 2015). 
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Figure 60 Nitric oxide (NO) actions in cancer cell death. 

The aim of this part of the study was to investigate nitric oxide regulation upon steroid 

hormone and other compounds treatment under different conditions, which may provide 

additional evidence to explain the effect of the studied compounds on inflammatory 

processes and cancers. The cells were treated as described in materials and methods and 

subjected to Griess assay. In general, in the absence of inflammatory stimulus,  NO2
–  levels 

were not significantly altered by tested compounds in C7, C1 and DT40 cells (Fig. 61, 

compare lane 1 to lanes 2-5, panels A, B and C ) respectively.  

In separate experiments cells were previously treated with PHA-LPS to induce inflammatory 

stimulation condition. Surprisingly, NO2
–  levels show significant downregulation by PHA-LPS 

stimulation, while, CPDA slightly decreased nitrite levels, however  NO2
–  not highly affected 

by DEX,T,THCL  in GC-responsive C7 cells (Fig. 61 B lanes 3, 4, 5,6 ), whereas NO2
–  levels 

where not significantly changed upon normal conditions in GC-resistant C1 cells (Fig. 61 C 

and D).looking at DT40 cells, NO2
–  upregulated upon DEX  in normal conditions (Fig. 61 E), 
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similarly the levels increased upon DEX and CPDA in DT40 cells treated with inflammatory 

stimulus (Fig. 61 F). We conclude that NO is regulated in C7 and DT40 cells in response to 

drugs.   

 

Figure 61 Nitric oxide levels upon tested compounds treatment in leukaemia cells. 

Cells were evaluated by Griess reagent system as described in materials and method.  Total NO2
–  

 level in 

media of leukemia cells was measured upon treatment with tested compounds. C7, C1 and DT40 cells were 
treated with 1 µM compounds for 24 h (A, C, E) without PHA-LPS stimulation and (B, D, F) with PHA- LPS 
pretreatment.  Data shown are representative of three experiments in triplicates. Error bars represent 
standard error of means *P<0.05. 
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3.8.2 Secreted  Interleukine 6 modulation   
 
 
 
Interleukins 6 (IL-6) is an important inflammatory cytokine and mediates specific cells 

maturation and differentiation (for example B-cells and hepatocytes); it is correlated with 

both acute and chronic inflammatory conditions  (Genecards, 2017). IL-6 receptor subunits 

are encoded by IL-6R gene(Genes, 2017b). IL-6 levels are known to be regulated by GCs and 

GR (Dittrich et al., 2012). Therefore the purpose of this part of the study is to investigate 

the effect of tested compounds on IL-6 regulation by GR. 

 

ALL, DT40 and PBMCs cells were treated with steroids or non-steroid compounds,  cell 

culture media was collected and either stored at -80 oC or immediately processesed and  

subjected to enzyme linked immunosorbent assay (ELISA). IL-6 levels were evaluated using 

ELISA kit I. IL-6 levels showed trend of modest downregulation in CEM-7-14  treated with all 

tested compounds, however  they are showing statisticaly insignificant effects (Fig. 62 A). 

IL-6 was marginally downregulated in C1 cells and to a greater extent in PBMCs (Fig. 62 B 

and D). There were no changes in IL-6 levels in DT40 cells treated with the studied agents.  

These experiments were repeated in cells stimulated with Phytohemagglutinin (PHA) to 

induce inflammatory response.In the C7 cells  and PBMCs, PHA treatment led to increase in 

IL-6, whereas in C1 cells there was marginal but significant decrease; there was trend to 

decrease IL-6 levels  in DT40 (Fig. 62 E to H). In stimulated C7 cells Dex increased IL-6 levels; 

in stimulated PBMCs most compounds showed no major effect, except that T inhibited IL-6 

levels (Fig. 62 E and H). In C1 cells all compounds restored normal levels of IL-6 whereas in 

DT40 there were no major effects (Fig. 62 B and C). 
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Figure 62 IL-6 levels in CEM-C7-14, CEM-C1-15, DT40 and PBMC cells. 

Cells were treated with 1 µM  DEX, CPDA,T,THCL for 24 h.  E-H  are stimulated cells by PHA 1 µg/ml   overnight 
before indicated treatments. Media was collected and IL-6 production was determined by ELISA assay as 
described in Materials and Methods. IL-6 values were normalized to the control. Data shown of A, B, C, D, E, F 
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are representative of three experiments performed  in duplicate, G represents two experiments performed in 
duplicate and H represents one experiment performed in duplicate. Error bars represent standard error of 
means *P<0.05.  

 

3.8.3 Secreted  Interleukine 2 modulation 
 
 

Interleukine 2 is an inflammatory cytokine and has been chosen to test anti inflammatory 

activity of tested compounds in several reports (Becker et al., 2014). Also,  serum 

interleukine-2 receptor  has been linked with steroid resistance in patients and used as a 

prediction tool  (Youssef et al., 2011). 

 Overall secretory IL-2 levels  without stimulation showed tendency to decrease upon  T 

treatment in C7, C1,DT40, PBMCs cells (Figure 63, A to D, compare lanes 1 and 4) . DEX 

showed trend of downregulating IL-2 in C7, DT40 and PBMCs with (Fig. 63, A, C and D, 

compare lanes 1 and 2).  CPDA caused suppression of  IL-2 in C1, DT40 and PBMCs (Fig. 63, 

B, C and D compare lanes 1 and 3), whereas  THCl caused suppression of  IL-2 levels in  C7, 

C1 and PBMCs (Fig. 63, A, B and D compare lanes 1 and 5), however no significance was 

reached. PHA stimulation led to a small increase in all cells except DT40, with significant 

changes observed only in PBMCs. In PBMCs, all tested compounds reversed PHA effect . 
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Figure 63  IL-2 levels in CEM-C7-14, CEM-C1-15, DT40 and PBMC cells. 

Cells were treated with 1 µM DEX, CPDA,T,THCL for 24h.  .  E-H  are stimulated cells by PHA 1 µg/ml   
overnight before indicated treatments. Media was collected immediately and IL-6 production was determined 
by ELISA assay as described in Materials and Methods. IL-2 values normalized to the control. Data shown are 
representative of three experiments in duplicate. Error bars represent standard error of means *P<0.05.  
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3.8.4 Regulation of interleukin genes by activated GR upon tested 

compounds 
 

To investigate the role of the tested compounds on the regulation of interleukins 

production, quantitative measuring of mRNA levels was carried out for DEX, CPDA, T, THCL 

treated or untreated cells.  The qPCR results for interleukins in leukemia cells are shown in 

Fig. 64.  

IL-10  mRNA levels increased in C7 cells treated with DEX, CPDA and THCl (A, lanes 2,3 and 

5) and decreased upon T treatment (A, lane 4); in the same cell line, IL-6  mRNA levels 

increased significantly upon CPDA and THCl treatment (Fig. 64 B, lanes 3 and 4). CEM-C1-15 

qPCR results to measure mRNA for interleukins indicated that IL-10 gene mRNA levels were 

up-regulated upon DEX, CPDA, T, and THCL treatments (Fig. 64 C), however none were 

significant changes. IL-6 gene expression was significantly downregulated upon THCL in GC 

resistant C1 cell line (Fig. 64 D, lane 5).  

 qPCR results for interleukins mRNA levels in DT40 cells are shown in (Fig. 64, E and F). IL10 

mRNA levels were significantly downregulated upon treatment with tyramine (Fig. 64, E 

lane 3), whereas IL6 gene expression was downregulated upon treatment with DEX and 

THCl (Fig. 64, F lane2). 

In CEM-C7-14, IL-2 mRNA levels increased significantly upon DEX treatment and changes 

were not significant in the presence of other compounds (Fig. 64 G lanes 2-3), In CEM-C1-

15, IL-2 mRNA levels were significantly upregulated upon CPDA treatment (H), and in DT40 

cells IL2 were not significantly changed upon DEX, CPDA and T, although the large increase 

was detected upon THCL due to substantial data variation. 
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Figure 64 Quantitative analysis of GR target interleukins gene expression. 

CEM-C7-14, CEM-C1-15 and DT40 cells were treated with 1 μM DEX, CPDA, T, or THCL for 24 h and the mRNA 
levels of  IL-6 , IL-10, and IL-2 (normalized to RPL-19) were determined by quantitative real-time PCR. Data are 
presented as means± S.E.M. of three experiments.  *P<0.05. 
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4 Discussion, conclusions and future work  

 

4.1.1 Cytotoxic effects of studied compounds 
 

The molecular basis of the glucocorticoids induced side effects and glucocorticoids 

resistance are not well understood. In addition, drug induced pathways to cell death 

mechanism such as necroptosis; autophagy or apoptosis are not well defined. In this study 

synthetic glucocorticoid DEX was used as a classical GC, and Compound A as dissociated GC 

to develop novel potential non-steroidal compounds that were tested for cytotoxic and 

anti-inflammatory properties and to learn more about glucocorticoid function.   

We modeled in silico how four compounds that had similar structure to CpdA fit in the 

ligand binding pocket of the GR and observed that these compounds contact similar 

residues to dex and CpdA. This suggests that some of the effects of these compounds may 

be through GR binding. Computer modelling predicted that Dex, CpdA, and THCL all bind 

Arg 611 through hydrogen bond whereas T interaction with this residue is through van der 

waals interactions. This amino acid is crucial for ligand binding through A ring in DEX . Asn 

564 is predicted to be contacted by Dex, T and THCl through conventional hydrogen bond, 

whereas its contact with CpdA is through van der Waals interactions. GCs form hydrogen 

bonds with C11 OH group to contact asparagine (Asn/N) 564. Asn 564 mutation affects both 

steroid binding, transcriptional activation and transcriptional repression but is more 

important for activation (Blind et al., 2012). Compounds can affect gene expression through 

affecting GR conformation that can affect other domains function and cofactor binding as 

observed for this family of ligand dependent transcription factors (Wong et al., 2001, 
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Kraichely et al., 2000). However, they may also act through affecting other regions of GR or 

through non-GR mediated mechanisms (Yemelyanov et al., 2008). 

Computer- aided drug design based on ligand-protein interaction analysis is a predictive 

tool used previously in generation of novel compounds. There are numerous examples of 

this approach used in biomedical research and medicine that after an in-vitro and in-vivo 

validation had impact in clinical field (Sliwoski et al., 2014). For example Alzheimer’s 

therapy tacrine and its derived compounds which act as inhibitors of acetylcholinesterase 

(Zhou et al., 2015) have been optimized by aid of computer modeling for potential binding 

sites. Other examples include 5-fluorouracil (5-FU)(Dobritzsch et al., 2001) and the 

discovery of  carbonic anhydrase inhibitor dorzolamide (Ali et al., 2015). 

A computer docking between GR and the tested compounds was carried out to obtain 

prediction about the degrees of their interactions with GR as similar binding points with 

DEX (tables 27 and  28 and fig. 31, 32).The natural occurring mutations in ligand binding 

domain of glucocorticoid receptor are the source of many illnesses, from them Cushing’s 

syndrome, immunity disorders and tumors. Numerous residues have been identified to be 

mutated in the ligand binding region including G507C, M601L, M604P, M646T, Y735S, 

C736S, and L753F results in blocking van deer Waal’s bonds and the binding activity of GR 

with the ligand. The other mutations affect bonds within the receptor itself which are called 

the hydrophobic bonds and lead to unstable protein, these are  P541A, I559D, C638Y, 

V729I, Y764N, and F774A (Bledsoe et al., 2002). Hydrophobic bonds are defined as  

interactions between the  non-polar molecules  such as  backbone amide hydrogens of the 

protein (Alderson et al., 2017). Backbone amide hydrogens N-H refers to the hydrogens 

atoms that contact the nitrogen atoms in the proteins and can be exchanged with water 

making the protein flexible (Persson and Halle, 2015) 

.It has been found that Y 735 makes hydrophobic interaction with the carbon ring of DEX 
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and  any change  of this residue can weaken the transactivation function of GR (Stevens et 

al., 2003) 

The mutation A610V in ligand binding domain of glucocorticoid receptor activates GR and 

promotes  ligand interaction and improves  GR  function (Reyer et al., 2016).  In addition 

S637, P639, A641, G642, and L647 in LBD are important residues to bind with the ligand and 

for transactivation activity (Robin-Jagerschmidt et al., 2000).  

Compounds stability analysis demonstrated that tested compounds were stable if stocks 

were kept at manufacturer’s preferred temperature this temperature is 4 oC for DEX, T, 

THCL, CPDB, CPDC stock powder.  Solutions of DEX, T, THCL, CPDB, CPDC need to be stored 

at -20 oC, and the stock powder of CPDA have to be kept at -800C, also CPDA solution needs 

to be stored at -80 oC (Table 26).  

It has been reported that most substances undergo changes in their chemical and physical 

properties due to the effect of temperature on chemical reaction (Elfarra and Hwang, 1996, 

Totomi et al., 1995). However our results indicated that DEX in solution  was stable at 4 oC 

and 20 oC, in agreement with  Watson et al. (2005), where they measured the stability of 

DEX in liquid at 4 °C, 23 °C, and 37 °C for  0, 2, 4, 8, 24, 48, 96, and 192 h  by High 

Performance Liquid Chromatograph HPLC and confirmed it stability under these conditions.  

Furthermore another published data suggested that DEX can resist even temperatures 

higher than 40 °C using HPLC with no significant changes in the peak as an indicator of its 

stability  according to Selerity Technologies Inc Inc (2004) finding , CPDA stock solutions in 

ethanol are stable for up to 1 month if kept at -80°C (ENZO, 2017). However no records 

were found for Tyramine, Tyramine hydrochloride, CPDB and CPDC stability from their 

supplier website and literature search.  
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Cellular cytotoxicity analysis has suggested that novel compounds can potentially serve as 

new inhibitors of leukemic cell proliferation and induced death at varying extents 

depending on concentration and duration of exposure. Tested compounds inhibited growth 

of CEM-C7-14, CEM-C1-15 and DT40 cells at high doses and 72h (Fig. 33), while at 48 h the 

compounds inhibited the growth of C7 to a limited extent however DT40 and C1 cells were 

less sensitive (Fig. 33). Upon lower doses starting from 2.5 µM maximal concentration and 

time course of 24 h, 48 h and 72 h, a time dependent growth inhibition was observed in C7, 

C1 and DT40 cells (Figs. 35, 36, 37). Application of high doses of studied compounds to 

leukemia reduced their growth rate whereas cellular viability was reduced at lower 

concentrations too.  Obtained results suggest that CEM-C7-14 are significantly more 

sensitive to steroid treatment and C1 cells are more resistant to low doses of steroid 

hormone in agreement with Thompson et al. (2005). Thus, high concentrations of synthetic 

GCs may be needed to overcome GC-resistance, however this approach may cause toxic 

side effects. 

However, a subcellular changes needs to be investigated to recognize  if cells died from 

apoptosis or other type of cell death. Likely, CPDA produced same effect; as all doses 

inhibited the growth significantly. CPDA may act via GR to exert the growth interaction 

function, and may interfere with the growth factors and disrupt cancer cells’ proliferation. T 

produced a similar profile and THCL at certain doses (0.039, 0.156, 0.312 and 0.625)  

µM at 24 h incubation (Fig .36). No significant effect of hormone or non-steroid compounds 

was detected on normal peripheral blood cells viability PBMCs (Fig. 39) suggesting they may 

not affect normal blood cells. 

Compound A has been shown to promote GR inhibition of transcription function but not 
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activation by GR homodimers (Lesovaya et al., 2015). In addition, CPDA was shown to 

regulate the inflammatory response through Th1/Th2 (Th1) immunity and promote 

humoral (Th2) immunity) route and initiate GATA-3 expression by enhancing the 

phosphorylation of indicated protein by p38-MAPK (Liberman et al., 2012) CPD A was also 

reported to induce growth inhibition and apoptosis of CEM and K562 leukemia cells, to  

downregulate AP-1 and NF-Kb function but  not to activate  FKBP51 gene  transcription. 

(Lesovaya et al., 2011).  Lesovaya et al. (2013), found that CEM and NCEB lymphoma cell 

lines previously treated with proteasome-inhibitor (Bortezomib) promoted and enhanced 

CPDA function leading to further down regulation of gene transcription. 

Anti-proliferative role of GC in leukemia cells has been well documented (Hu et al., 2013, 

Pace and Miller, 2009); therefore the possibility that tested compounds can inhibit 

leukemia cells in a similar way to a Dexamethasone was explored. 

High temperature stress applied to the cells could inhibit their growth while its combination 

with tested compounds did not increase the growth inhibition effect (Fig. 40).  Combination 

of DEX or CPDA with increased temperature inhibited cell viability suggesting that this could 

be another means of inducing apoptosis in resistant cells  

 Cold shock demonstrated similar effect as the heat shock (Fig. 41). These results suggest 

that temperature variations may affect drug response and could find application in 

veterinary and medical treatments to allow for efficient drug use.  The thermal stress has 

already been studied in animals; for example toads that are maintained in relatively high 

temperature  expressed  elevation in corticosterone hormone as a response to stress 

(Narayan and Hero, 2014). Acute or chronic thermal stress has impact on HPA axis as it 

seem to increase GCs secretion and negatively affect HPA axis and the correlated 
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physiological activities. This is evident in milk production decline upon high temperature 

conditions  observed in cattle  (Aggarwal, 2012). In goat it has led to alterations in HPA  axis 

and downstream biological  immune regulators; ACP, ALP, T3, T4 and calcium levels which 

is essential for their life (Sejian and Srivastava, 2010). 

Leukemia chemotherapy affects numerous cells and tissues in patients. In order to assess 

effects of studied compounds on epithelial cells, compounds ability to induce epithelial cells 

death was investigated. Our findings regarding DEX effects are in agreement with Petersen 

et al. (2008) who found that DEX inhibits Human lens epithelial cells (HLECs) growth. In 

addition, dexamethasone is effective inhibitor of glioma cells (Ismail et al., 2016, Koibuchi 

et al., 2014, Ni Chonghaile et al., 2006, Yague et al., 2009, Yu et al., 2010) . In our study at 

48 h incubation time we observed that DEX could inhibit breast cancer cells MCF-7, while, 

DEX and CPDA have no significant inhibitory effect on HACAT and MCF-7 cells viability, but 

it affected BEAS-2B   survival. T and THCL showed growth promotion effect on MCF-7 and 

HACAT (Fig. 42 A), at 72 h duration of treatment all tested compounds inhibited MCF-7 

viability, however,  HACAT cells proliferation was suppressed by DEX and CPDA and 

enhanced by T and THCL; BEAS-2B proliferation rate was  inhibited by all tested agents (Fig. 

42 B). These findings suggest that the studied compounds may have broader applications as 

growth inhibitory agents for blood cancers and other cancers. It also points to needs to 

modify compounds further to eliminate potential pro-proliferative effects on some cell 

types. 

Our results suggested that investigated compounds are cytotoxic in cancer cells model of 

study. However, pathways to cell death were not possible to be investigated with MTS and 

MTT methods. Therefore we employed additional techniques to analyse what type of cell 

death pathway is activated and what cell cycle effects each individual compound has in 
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sensitive and resistant to GC leukemia.  Therefore cell cycle progress is monitored first 

using FACS analysis combined with PI staining.   

Analysis revealed that tested compounds can induce SUB-G1 arrest in  GC-sensitive C7 cells 

and inhibit G1 phase in same cell line significantly with alteration in G2/M phase. This 

revealed an important effect of compounds onthe cell cycle progression of GC sensitive 

leukemia cells (Fig. 43). Further our results demonstrated that tested compounds were able 

to interfere to certain extent with the cell cycle progress of the GC resistant cell line C1, as 

no significant increase in S phase or G2/M were demonstrated with any of tested 

compound as an indicator of impairment of the multiplication of the resistant leukemia 

cells (fig.44).These results are in agreement with (Bindreither et al., 2014) who found that 1 

µM of Dex was able to induce apoptosis in T-chALL CCRF-CEM-C7H2 cells incubated for 24 

and 48 h . In DT40 cells, the tested compounds have reshaped the cell cycle by diminishing 

the cells that are going into G2/M which is a sign of effect on a growth inhibition system 

(Fig. 35). Interestingly, those compounds did not demonstrate an adverse effect on normal 

human PBMCs as they did not stimulate their growth or induce their death as an initial 

indicator for their safety application in normal white blood cells (Fig. 46).  Taken together, 

these results demonstrated that steroid and non-steroid compounds regulated cell cycle in 

a drug and cell type dependent way, suggesting that their cytotoxic effects may be through 

different mechanisms. It is mostly possible that SUB-G1 maximized by intervention of GR 

and the growth inhibitory effect depend on the amount of expressed GR, i.e.(auto-

induction), as upregulated GR accompanied  by programmed death of sensitive cells  T-ALL 

(Ramdas et al., 1999). 

In order to learn more about the type of the cell death induced by the studied compounds, 

AnnexinV assay was used to detect the apoptosis in the cells. The tested compounds were 
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able to induce apoptosis in GCs- sensitive leukemia cells and in chicken leukemia cells  while  

CPDA and THCL displayed apoptosis in GCs resistant cells (Fig. 47, 48 and supplementary 

material) although different levels of apoptosis were detected with different compounds. 

Apoptosis was shown to occur in lymphocytes that possess active  GR,  except in some GC 

resistant clones such as C1 which could be sensitized by activating protein kinase A 

pathways to boost GR action (Medh et al., 1998) 

 Our finding of apoptosis induction with DEX treatment  is in agreement with  (Zong and 

Thompson, 2006) who demonstrated that  GCs were able to induce apoptosis of  both 

sensitive and resistant  ALL clones to varying degrees. GCs application induced programmed 

cell death of C7 cell line after more than 24 h of incubation as DEX demonstrated to arrest 

cell cycle in G1/G0 (Thompson et al., 1999)  

 

 Belvisi et al. (2001), attributed the contrast in apoptotic profile between C1 and C7 to the 

alteration of anti-apoptotic genes in these clones of cells. Expression of different sets of 

genes was identified between C1 and C7 cells that maybe linked with GC resistance.  

Bcl-2 Interacting Mediator of Cell Death BIM as we mentioned before is the apoptosis 

biomarker of leukemia cells upon GC therapy, in contrary BCL2 supports survival. The in 

vivo study demonstrated that KLF13 and MYB genes were upregulated in patient-derived 

xenograft (PDX) taken from GC responsive patients and that GR were bound to BIM gene 

only in sensitive but not in resistant group. GR was also bound to GRE in KLF13 to activate 

this gene transcription. Activated KLF13 itself downregulate the transcription of MYB by 

binding to the promoter region of this gene (Jing et al., 2015).  

Glucocorticoids induction of apoptosis in white blood cells is intensively studied and crucial 

pathways such as Bcl2 family members (BIM), BCL2 Family Apoptosis Regulator(MCl-1) and 
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NADPH Oxidase Activator 1 ( NOXA1)  have been implicated in this pathway  (Yamashita et 

al., 2017, Guzauskas et al., 2017, Yeo et al., 2016, Warris et al., 2016, Vundamati and 

Bostrom, 2016, Polak et al., 2016, Quadri et al., 1997, Miyoshi et al., 1997). However, only a 

few reports have investigated the role of GCs in other cell death or pro-survival pathways 

such as necroptosis and autophagy. Caspase -8 is at the crossroads between apoptotic and 

necroptosis pathways and its activity was examined in set of experiments.  Caspase-8 is 

related to apoptotic activity of therapeutic substances. We found that Cas-8 reading 

increased with steroid treatment in C7 cells (Fig. 53) as DEX induces apoptosis via Cas-8 

activation, in line with Marchetti et al. (2003). Contrarily, its levels significantly dropped in 

PBMCs upon DEX as an indicator of absence of apoptosis induction in normal white blood 

cells. Caspase-8 increased in C7 and DT40 cells upon THCL treatment (Fig. 38) oppositely, it 

decreased upon CPDA in ALL cells. This indicates potential involvement of CPDA in 

additional pathway that may decide cell fate such as necroptosis. Joanny et al. (2012), 

demonstrated that steroid and non-steroid ligands of GR   positively regulate dual 

specificity phosphatase 1 (DUSP1) gene hereby regulate the inflammation in mice. Given 

that necroptosis is linked both to inflammation through Nf-KB pathway and cell death 

through Caspase -8 pathway it would be important to further investigate this observation. 

 

In order to learn more about effects of studied compounds on cellular processes linked to 

cell death or inflammation, we measured cellular ROS levels.  Although certain pathways 

are well described, ROS role in these processes is dependent on the context. Our results 

suggest that ROS levels are down-regulated in drug and cell dependent manner. DEX 

treatment led to inhibition of ROS in C7 cells (Fig. 51 A) which suggests crosstalk between 

GCs and ROS. The results agreed with Sanner et al. (2002), who found that synthetic 

steroids down-regulated levels of  reactive oxygen species of inflamed  platelets obtained 
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from humans whereby confirming their role in control the inflammation. Interestingly, most 

treatments did not affect GC-resistant C1 cells (Fig. 51 B). No significant ROS changes in 

DT40 cells and PBMCs were observed (Fig. 51 C and D). Dandona et al. (1999), correlated 

ROS inhibition by DEX with the anti-inflammatory traits and immune-regulatory action. The 

current outcomes indicated that steroid DEX inhibited ROS and that this action goes 

through GR which is consistent with Marumo et al. (1998) who demonstrated that  DEX 

treatment for 24h decreased ROS levels in  human aortic smooth muscle cells. 

  

 

4.1.2 Effects of studied compounds on inflammatory process 
 
 
Tested compounds activity against inflammation was followed by analysis of biomarkers of 

inflammation. Classical GCs are currently used as potent anti-inflammatory drugs and they 

act through GR. Previous experiments provided evidence that non-steroidal compounds 

such as Compound A may act via GR, thereby anti-inflammatory capacity of studied 

compounds was analyzed. 

Classical glucocorticoids such as DEX control inflammation by inhibiting pro-inflammatory 

biomarkers and activating anti-inflammatory mediators (Coutinho and Chapman, 2011).  

We measured secretory cytokines from media of treated cells. IL-6 levels although showing 

downward trend in media from C7 unstimulated cells were not changed significantly (Fig. 

62 A). In PHA stimulated cells significant increase in IL-6 was observed in Dex treated C7 

cells and decrease in C1 PHA stimulated cells (Fig. 62 E and F).  (Vicennati et al., 2002)  

determined that steroid hormones administration repressed IL-6, which is in agreement 

with observation in C7 unstimulated cells. However, PHA stimulation did not increase IL-6 
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levels in C1 and DT40 cells but led to its decrease. As IL-6 is proinflammatory cytokine PHA 

should lead to its increase and Dex treatment to its decrease. This perhaps indicates 

deregulation of inflammatory response in leukemia since first, Dex didn’t suppress IL-6 

levels in stimulated C7 and C1 cells and second, PHA treatment didn’t lead to its significant 

increase in any of the cell lines. 

Although not significant, secretory IL-2 level showed downward trend in T treated C7, C1, 

DT40, and PBMCs cells (Fig. 63). Similarly, DEX negatively regulated IL-2 in C7, DT40 and 

PBMCs  (Fig. 63 A, C, D) in line with Boumpas et al. (1991) who found that DEX treatment of 

human T lymphocytes suppressed IL-2 proteins level. However, given that only significant 

observation was caused by loss of IL-2 increase caused by compounds treatment in PHA 

stimulated PBMCs (Fig.63 H), this again indicates potential deregulation of normal 

inflammatory response in leukemia cells.  

In order to determine if analysed compounds affected the cytokines transcriptional levels, 

mRNA expression levels of IL-10, IL6 and IL-2 genes were quantified upon cells treatment 

with tested compounds. The results revealed that in DEX treated C7 cells, IL-10 mRNA levels 

were increased (fig. 64 A) which is consistent with findings of  Mozo et al. (2004). IL-10 

modulation is controlled by GR which is found to promote up-regulation of this secretory 

cytokine in dendritic cells (Sondergaard et al., 2015) as GCs are known to regulate immune 

response and caused increase in IL-10 level  in human dendritic cell (Franchimont, 2004). 

However, IL-10 mRNA levels revealed no significant elevation upon CPDA and THC1 in C7 

cells (Fig. 64, A). In a same manner it showed a significant downregulation upon T 

treatment in this cell as an indicator of dissociation of GR transactivation function, although 

the upregulation of IL-6 mRNA levels upon CPDA and THCl treatment  (Fig. 64 B),  and in GC 

resistant cells IL-6 mRNA levels were shown to be downregulated upon THCL only (Fig. 64 

D) and in DT40 cells IL-10 was down-regulated with CPDA,T and THCL (fig. 64 E), while IL-6 
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expression was reduced upon DEX and THCL (Fig. 64, F). 

Glucocorticoid receptor and inflammatory cytokines are described to crosstalk  as IL-6 and 

IL-10 control Stat3 transcription and Stat3 acts as a cofactor for GR through protein-protein 

interaction (Zhang et al., 1997).  Hardin et al. (1994), demonstrated that dexamethasone 

inhibited IL-6 gene expression in three human multiple myeloma cell lines, thus the effect 

on IL-6 can be correlated with the cell line. 

  

The results are in agreement with Visser et al. (1998), who found that DEX enhanced 

regulation of IL-10 gene and protein in whole blood cells cultures and Hua et al. (2012) who 

indicated that dexamethasone treatment led to positive expression of intracellular IL-10 in 

CD5+ B cells and IL-10 concentration in supernatants of CD5+ B cells isolated from  patients 

with Primary Immune Thrombocytopenia. 

 
IL-2 gene mRNA was significantly upregulated in CEM-C7-14 upon DEX (Fig. 64 G), and upon 

CPDA in CEM-C1-15 (Fig. 48 G) and not significantly changed upon DEX, CPDA and T, 

although the large variation was detected upon THCL treatment (upregulation in C7 and 

DT40 cells and downregulation in C1 cells). Although, Northrop et al. (1992) demonstrated 

that GC treatment suppress IL-2 gene in mice. Given that leukemia cells were not exposed 

to inflammatory stimulus these experiments will have to be expanded in future to analyse 

how cytokine expression changes in inflammation and in animal models. 

 Nitric oxide may be the cause or the consequence of cancer it can either enhance or 

suppress the tumour progress or can be an indicator to successful therapy (Xu et al., 2002). 

NO levels were measured in presence and absence of stimulus. We found that without 

stimulation NO2
– level was not changed upon treatment with tested chemicals (Fig. 61). 
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NO2
–  significantly decreased in C7 cells stimulated with combination of PHA and LPS 

treatments; DEX is known to be  inhibitor of  nitric oxide production in both smooth 

muscles and macrophages (Korhonen et al., 2002, Marumo et al., 1993) which is not found 

in our results, potentially highlighting the difference between  cell type, normal versus 

leukemia cells or in vitro versus in vivo studies. Dex effect is limited to stimulated cells as 

suggested by Korhonen et al. (2002) as they indicated that in mice macrophages treated 

with lipopolysaccharide additional dexamethasone treatment caused downregulation  in 

NO levels due to reduction of inducible nitric-oxide synthase iNOS mRNA levels. Ito et al. 

(2015), have attributed the anti-cancer activity of a Toll-like receptor (TLR7) activator agent 

called imiquimod to the inhibition of iNOS. 

 

4.1.3 Molecular analysis of investigated agents interactions  
 
 
In order to analyse molecular changes in examined cells upon tested compounds, a subset 

of selected genes expression was tested. Tested  compounds affect GR in specific way 

reportedly not affecting GR mediated repression whereas GR mediated transcriptional 

activation is not stimulated. Given that GR repressive effects on cytokines were analysed in 

the previous section, in the next set of experiments selected genes that are stimulated by 

GR such as C-JUN and marker for apoptosis BIM, also NF-kB genes were followed. In CEM-

C7-14 cells (Fig. 54) the relative mRNA expression of GR was increased significantly whereas 

C-JUN was shown to be downregulated upon DEX treatment. NF-kB gene expression was 

significantly downregulated upon THCL incubation.  In C1 cells (Fig. 56) GR gene expression 

was significantly downregulated upon DEX while C-JUN was significantly downregulated 

upon T. BIM gene expression was significantly reduced upon DEX and increased upon CPDA. 
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DT40 cells has a different profile of genes expression as GR gene expression was 

significantly downregulated upon CPDA while significant downregulation of BIM was 

observed with CPDA and T in these cells.  

GR is a target of interest for lymphoid cancers’ medications due to its apoptotic initiating 

characteristic which was not shared with other steroid receptors (Pufall, 2015). Opposite to 

acute leukemia, multiple myeloma does not respond to DEX induced apoptosis, where 

Bharti et al. (2004)  demonstrated that DEX treatment ere not interact with NF-κB in MM 

function. GR and NF-ĸB crosstalk occurs at several levels. GCs inhibit pro-inflammatory 

activation function of the stress transcription factor NF-ĸB by activation of the inhibitor of 

this transcription factor IĸB in murine cells (Auphan et al., 1995). Inhibitor of NF-ĸB 

destabilizes it and blocks its translocation to the nucleus. STAT6 positively regulates IĸB 

while GR was not reported to regulate NF-ĸB through IĸB in Hela cells line (Nelson et al., 

2003). GR inhibits the pro-inflammatory response by inhibiting NF-ĸB-mediated 

transcriptional control of the pro-inflammatory genes such as intercellular adhesion 

molecule-1 (ICAM-1). This occurs by direct interaction of GR with the DNA or destabilizing 

NF-ĸB from translocation rather than by changing the configuration of the  pro-

inflammatory proteins complexed with NF-κB in histiocytic lymphoma U-937 cells (Liden et 

al., 2000). 

In order to determine how GR target genes are controlled at protein level, SDS PAGE 

followed by western blot was used to determine the levels of subset of relevant targets. In 

C7 cells GR, GR (pS211), C-JUN, and BIM were followed. GR protein levels increased upon 

treatment with DEX, this correlated with the growth inhibition seen upon DEX. All 

compounds showed trend to upregulate GR total levels, GR (pS211), BIM and c-Jun levels 

(fig. 55). The results demonstrated that tested compounds are likely to activate GR which is 

compatible with computer modelling results.  
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Total GR protein levels were unchanged in C1 cells (Fig. 45) treated with the tested 

compounds which confirm their resistance to glucocorticoid therapy.   No compounds 

showed significant change in C-Jun or GR (Ps211) levels. 

In addition, our findings describe novel effects in chicken cell line ‘DT40’ as model of avian 

lymphocytic leukemia which give rise to the ability of treating this poultry disease by 

current compounds. Further in vivo experiments are required to fulfil this purpose. 
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4.2 Conclusions  

 

This project investigated possibility to improve the conventional glucocorticoid therapy to 

treat leukemia and inflammatory conditions. Several compounds were used and different 

assays employed to test their cellular effects. Examined chemicals are stable in solution at 

40C and 250C and molecular modelling suggests they contact some of the residues already 

demonstrated to be contacted by synthetic glucocorticoid dexamethasone.  

 Leukemia cell proliferation is regulated by studied compounds that show differential 

cytotoxic effects depending on the cell type, doses, incubation time and temperature. CPDA 

and DEX downregulate proliferation of Beas-2b whereas T and THCL increased proliferation 

of MCF-C7 and HACAT.  

C7 cell cycle progression is regulated by tested compounds with significant increase 

observed in sub-G1 phase of DEX and CpdA treated cells and decrease in G1 phase of cells 

treated by all compounds; no significant changes were observed in C1 and PBMCs. In DT40 

cells significant downregulation was observed in S phase of T treated cells and in G2/M of 

CPD A treated cells. 

 ROS levels were regulated in cell dependent manner upon treatment with tested 

compounds. In particular total ROS levels were downregulated upon DEX and CPDA 

treatment in GCs sensitive cells and not changed in CEM-C1-15 cell line which reveals the 

difference between those two clones in a molecular response. 

The tested agents have differential effects on Caspase-8 enzyme. Dex upregulated Caspase-

8 in all cell lines which refer to the involvement of DEX in caspase-dependent type of cell 

death through intrinsic pathway of apoptosis (mitochondrial) and recruiting of Bim, 
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whereas CpdA seems to be act through caspase independent pathway of programming cell 

death may be via ER stress and ROS suppression in GC sensitive cells. 

Relative gene expression of GR, C-JUN, BIM, NF-ĸB,  and GR, C-JUN,BIM  proteins expression  

were altered  in studied cells and the results correlate the response in C7 cells to 

treatments as it effect  through GR and the affected network  in genes and protein level. 

NO2
–   levels show downregulation in C7 but not in C1 cells stimulated by pro inflammatory 

signal and this downregulation is abolished in C7 cells treated with studied compounds. DEX 

and CPDA upregulated NO2
–  in DT40 cells treated with inflammatory stimulus. We 

conclude that NO is regulated in C7 cells exposed to pro inflammatory stimulus in response 

to drugs.     

In stimulated C7 cells Dex increased secreted IL-6 levels, but PHA stimulation didn’t change 

IL-6 levels. In C1 cells all compounds restored normal levels of secreted IL-6 whereas in 

DT40 there was no major effect. In unstimulated C7 cell line, IL-6 mRNA levels increased 

upon all compounds treatment and significantly upon CPDA and THCl treatment. IL-6 gene 

expression was significantly downregulated upon THCL treatment in unstimulated C1 and in 

DT40 cells incubated with Dex. 

Secretory IL-2 levels in PBMCs increased with PHA treatment and all tested compounds 

reversed PHA effect. However in leukemia cells inflammatory response was deregulated as 

no significant changes were observed in PHA treated cells. In unstimulated C7 cells Dex 

induced IL-2 mRNA whereas CpdA induced it in C1 cells.  
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IL-10 mRNA levels increased in non-stimulated C7 cells treated with DEX and decreased 

upon T treatment. In unstimulated DT40 cells IL10 mRNA levels were significantly 

downregulated upon treatment with tyramine.  

In summary, tested compounds produced cytotoxic effects similar to DEX particularly in GC-

sensitive C7 cells. These compounds are likely to act through GR, according to the computer 

modelling results.  And according to other results, they may be suitable for use as an anti-

inflammatory and anticancer compounds as demonstrated through MTS/FACS and ELISA 

results. Additionally, preliminary results indicate that compounds likely don’t affect 

significantly normal PBMCs cells. Thus further experiments need to be carried out on these 

compounds as next step towards introducing them to the medicinal use. 
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4.3 Future work  

 
Future experiments will need to confirm preliminary results obtained for some 

experiments, mostly experiments employing PBMCs in need to  provide more replicates of 

the data. This would be done by repeating cellular assays to  compare the  cytotoxic  effect 

of the compounds on normal white blood cells, on the other PBMCs obtained from patients 

suffering from chronic and acute inflammatory conditions. This will be a suitable tool to 

investigate the anti-inflammatory effect of the studied compounds in human conditions. 

Furthermore  PBMCs derived from GC treated patients and GCs resistant patients would be 

desirable model to  investigate the GR dissociation effect of these compounds. Normal 

PBMCs from animals would also be useful to understand the compounds effects on animal 

white blood cells and for comparison purpose for their effect between two species (human 

and chicken). 

 Anti-cancer or anti-leukemic effect could be in depth investigated by carrying out the 

experiments which have been performed across the thesis on primary leukemia cells. On 

cells derived from ALL sufferers who respond or not to GC therapy and serve a GC sensitive/ 

resistant model of study.  

It is important to perform animal research in order to gain that knowledge of the wider drug 

effects and side effects. For this reason, the local topical therapeutic or toxic effect can be 

carried out in animal experimental model of inflammatory skin disease or skin lesion; also 

In vivo drug test using chick embryo or chorioallantoic membrane infected with chicken 

lymphoid leucosis could be used to investigate the compounds effect on the avian species. 

In addition the compounds need to be tested in mouse models of leukemia such as 

xenografts or patient derived xenografts  for cytotoxic effects as well as mouse model of 

acute and chronic inflammation. Althoughome of these in vivo experiments of compounds’ 
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anti-inflammatory effect are under way in collaborators laboratory in Novosibirsk institute 

in Russia.  

 Furthermore, the antibacterial, anti-fungal and anti-parasitic effect would be easily 

investigated in petri dishes /microbiology lab. Few experiments may be repeated in 

different optimum conditions to get accurate description of cell death mechanism, for 

instance Apoptosis assay (Annexin5 and Caspase-8).  

 In addition, ligand-receptor binding studies would be necessary to confirm that compounds 

act through the GR. In addition,the identified binding sites could be mutated and their 

effects studied using  luciferase assays or qRT- PCR in cells overexpressing these mutant GR 

derivatives would be useful to test  array of genes that are activated or suppressed by GR. 

However, Chip assay can help more to identify the interaction of GR with GRE in selected 

genes under the effect of tested compound. Similarly, further exploration of a large array of 

genes is required in leukemia cells sensitive and resistant to glucocorticoid treatment. This 

could be achieved using either microarray analysis or RNA sequencing or PCR array to 

quantify the expression of large number of genes and discover the signalling pathway 

induced by each compound. 

 

 

Drugs effects on interleukins should be extended to stimulated cells or inflamed cells as 

mentioned before to analyse a specific stimulator for the examined cancer cells that should 

induce inflammatory response  and using multiple new sets of specific primers and 

multiplex Human Cytokine ELISA Plate Array (Chemiluminescencelarge) kit that consists of 

one pre-coated plate and can measure 32 cytokines for 3 human samples. 

 In parallel, Western blot experiments needs to be repeated with a different set of 

antibodies and following a several proteins which are thought to be affected by 
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glucocorticoid treatment. In addition, the post translational modifications of these proteins 

could be followed to unveil the alterations in their signalling pathway upon treatments. 

Chicken specific antibodies could be generated and used for DT40 cells experiments to 

assure the better quality of blots.   

Ultimately, from above mentioned protocols the exact effect can be determined and 

validated then could be transferred into clinical trials if no side effects and adverse effects 

were demonstrated.  
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4.5 Supplementary material 

4.5.1 NMR Spectra 

4.5.1.1  Dexamethasone 

 

 1. NMR analysis of Dex PROTON 64/ hydrogen profile of control ( A)   0h ( B)  24h/RT and   (C) 
24h/4OC. 
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4.5.1.2  Compound A  

 
 

2. NMR analysis of CPDA PROTON 64/ hydrogen profile of control ( A)   0h ( B)  24h/RT and   (C) 
24h/4OC. 
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4.5.1.3  Tyramine 

 

 
 
 
3. NMR analysis of Tyrmine  PROTON 64/ hydrogen profile of control ( A)   0h ( B)  24h/RT and   (C)  
24h/4OC. 
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4.5.1.4  Tyramine Hydrochloride 

 
 
 

 
4. NMR analysis of Tyramine hydrochloride  PROTON 64/ hydrogen profile of control ( A)   0h ( B)  
24h/RT and   (C) 24h/4OC. 
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4.5.1.5   N-Methyl Tyramine (CPDB) 

 

 
5. NMR analysis of CPDB  PROTON 64/ hydrogen profile of control ( A)   0h ( B)  24h/RT and   (C) 
24h/4OC. 
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4.5.1.6  Hordenine (CPDC) 

 
 
 

 
6. NMR analysis of CPDC  PROTON 64/ hydrogen profile of control ( A)   0h ( B)  24h/RT and   (C) 
24h/4OC. 
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4.5.2   Quantitative analysis of of apoptosis 

 

  

  Quantitative analysis of of apoptosis using flow cytometric results and Annexin V staining. 

CEM - C7-14, CEM-C1-15, DT40 cells and PBMCs Cells were treated with 1 µM concentration for 48 

hrs with DEX, CPDA, T, THCL, and then AnnexinnV-FITC-PI kit was used to detect apoptotic cells. 

Analysis was performed using BD FACS verse TM by aid of BD FACS Suite software.  Data shown are 

representative of three or more experiments. Error bars represent standard error of means 

*P<0.05. 
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4.5.3 Western blot images  

4.5.3.1  CEM-C7-14  
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4.5.3.2 CEM-C1-15 
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4.5.3.3  DT40 Cells 

 
 

 
 
 



257 
 

4.5.4 Plots of one selected image of each cell line  

A-C7 

 
B-C1 
 

 
D-DT40  
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4.5.5 Quantifications of individual western blots for each cell line  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12

C7 1-GR

NT 1 1 1 1 1 1 1 1 1 1

DEX 1.987616113 4.006828011 1.277665987 1.26876869 2.272137299 3.140983351 1.315566366 2.834338473 1.186100832 1.1925521

CPDA 1.291451317 2.027300107 1.028943039 1.810446839 2.845084826 3.043309577 0.19264222 3.376634741 1.777393118 0.816634789

T 1.123513865 2.705875864 1.005063515 1.250191433 0.905627928 2.915997495 1.522364843 3.252591248 0.903453337 0.996553079

THCL 1.319535676 0.984952289 1.231692924 1.524291488 0.878644891 2.29407247 1.70981711 3.612399411 1.197839393 0.794785843

2- c-JUN

NT 1 1 1 1 1 1 1

DEX 2.442915341 0.558424096 1.757221055 4.303829268 3.236625877 0.666502246 0.351098024

CPDA 2.811009869 0.792537114 2.023690712 15.91906257 2.063279226 1.00919946 0.133815915

T 1.400041617 0.782143039 1.360683496 10.98365601 1.872520344 0.733991521 0.188192796

THCL 1.335625361 0.567611721 1.239294155 4.087492441 1.561274838 1.083572402 0.07089006

3-S211 4-BIM

NT 1 1 1 NT 1 1 1

DEX 8.859384617 1.498340895 4.894009747 DEX 1.58486875 0.835065202 1.196668166

CPDA 8.307440029 0.81375424 1.218919062 CPDA 2.618923918 0.822419727 1.290434638

T 8.122241021 1.590537293 3.342351192 T 2.811125472 0.504205823 1.001331209

THCL 6.490762479 0.663022462 1.312298732 THCL 1.847347463 0.933753705 0.745938425

C1 1-GR

NT 1 1 1 1 1 1 1 1 1 1 1

DEX 0.692257426 1.288700818 1.050460844 1.140964448 1.217523912 1.120697356 4.65537567 1.089828228 1.060871673 0.600756023 1.551617619

CPDA 1.7012735 1.189427125 0.464955437 1.12254599 1.181651627 0.533009692 0.769232218 0.928549086 4.561996023 0.431849771 2.033783389

T 2.097257212 0.984512458 0.130664566 1.028561943 1.39756828 1.148260997 0.934302756 0.892762716 3.722203234 0.979741851 1.233779028

THCL 3.161249571 1.308462031 0.025944142 1.807832269 1.404259541 1.16916597 1.227946744 1.356044852 13.22769557 0.871617791 2.962830295

C-JUN S211 S211-

NT 1 1 1 1 1 1 NT 1 1

DEX 1.002369999 0.860170457 1.676097534 2.839586117 1.285572531 0.100818884 DEX 0.83394312 0.584984511

CPDA 0.711611464 0.670607107 1.692538682 1.438763281 1.276289348 0.120045426 CPDA 0.653417413 0.5172371

T 0.944611167 1.158310062 1.354293836 2.089002793 1.272972281 0.05718961 T 0.783184692 0.23122435

THCL 0.696220482 1.303794652 5.024834618 2.153597232 2.048658939 0.044401821 THCL 0.845239931 0.186986574

DT40 1-GR

replicate no 1 2 3 4 5 6 7 8 9 10

NT 1 1 1 1 1 1 1 1 1 1

DEX 0.660207918 1.989244209 1.064417027 0.721028277 0.697276461 1.658806557 0.981291382 1.274039231 1.003437541 2.415297707

CPDA 47.45326041 3.130956259 2.584086211 0.61035139 1.193259099 2.97266345 1.21735073 0.224351605 1.062779135 1.580259564

T 2.294122733 2.748500788 1.024104041 0.598614005 1.18980693 2.837354517 1.284325827 0.200373478 2.673220879 5.027031641

THCL 1.299882591 3.031558593 1.106418152 0.199713398 1.386966002 2.838844407 1.244854375 0.221875138 2.435007086 4.352993358

2-c-JUN 3-S211

NT 1 1 1 NT 1 1 1 1

DEX 13.61399115 1.09670767 15.24963099 DEX 0.695798343 1.163909264 2.103864973 1.227897282

CPDA 17.05954959 6.33617713 15.9966991 CPDA 1.061241366 1.243953573 2.021149914 1.279280744

T 7.836997367 0.488283494 10.5927409 T 0.851237755 1.211919529 2.034459126 1.89990873

THCL 15.43358968 0.467682038 23.15808968 THCL 1.363808567 1.549387197 1.376838069 1.453737684
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 Cell cycle profiles. The figure represents the setting and selection of SUB-G1, G1, S,G2 in CEM-C7-
14   
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4.5.6 Blast results  

4.5.6.1 GR 
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4.5.6.2  Actin 
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4.5.6.3  C-JUN 
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4.5.6.4   IL-6 
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4.5.6.5   IL-2 

 

 

 
 
 
 
 


