BATS AND THEIR ENDOPARASITES:

CHARACTERISING PIPISTRELLE INFECTIONS AND

 TOLL-LIKE RECEPTOR (TLR2 AND TLR4) GENEVARIATIONS

Hattan Gattan

Supervised by:
Dr. Darren Brooks

PhD thesis submitted to the Universities of Salford

Molecular Parasitology, 2017
University of
Salford

Table of Contents:

Statement of Authorship:
Acknowledgment: xi
Abstract: xii
1.1 General overview: 1
1.2 Pipistrelle bats: 2
1.2.1: Summary of work done on the South Lancashire bat set: 5
1.3 Threats to Bats 5
1.3.1 Anthropogenic: 5
1.3.2 Natural: 7
1.3.2.1 Viral infection: 7
1.3.2.2 Bacterial infection: 8
1.3.2.3 Parasite infection: 8
1.4 Bats as reservoir of zoonotic disease: 9
1.5 Bat Parasites 12
1.5.1 Helminths: 12
1.5.1.1 Trematodes: 12
1.5.1.2 Tapeworms: 13
1.5.1.3 Nematodes: 13
1.5.1.4 UK Helminths: 21
1.5.2 Protozoa: 21
1.5.2.1 Coccidia: 22
1.5.2.2 Kinetoplastids: 23
1.5.2.2.1: Trypanosoma: 23
1.5.2.2.1.1 Schizotrypanum: 24
1.5.2.2.1.2 Megatrypanum: 25
1.5.2.3 UK Bat Protozoa: 26
1.6 The Mammalian Immune System: an overview 28
1.6.1 General innate immune system features: 28
1.6.1.1 Toll-like receptors (TLRs): 30
1.6.2 The bat immune system: 33
1.6.2.1 Bat TLRs: 38
1.7 Study Aims/Hypothesis: 39
Materials and Methods 40
2.1 Bioinformatics and Primer design 40
2.1.1 Microparasites: 40
2.1.2: TLRs: 42
2.2 DNA Extraction: 43
2.3 Polymerase Chain Reaction (PCR) 44
2.3.1 Schizotrypanum, Eimeria, and Cryptosporidium PCRs: 44
2.3.2: Bartonella and Borrelia PCRs 44
2.3.3 TLR4 and TLR2 PCRs: 44
2.3.8 PCR optimisation: 44
2.4 Agarose gel electrophoresis: 45
2.5 DNA concentration/purity: 46
2.6 pGEM-T Easy vector cloning of PCR products: 46
2.7 Plasmid mini prep: 47
2.8 Restriction enzyme digestion: 48
2.9 DNA sequencing: 48
2.10 Host/Parasite data: 49
2.11 Statistics: 49
2.12 ethical reviews: 49
3. Results: Infection Data 50
3.1: B- tubulin PCR for DNA validity: 52
3.2 Bat trypanosomes 54
3.2.1 The Schizotrypanum: 54
3.2.3 PCR optimisations using the T. vespertilionis 18 S rRNA plasmid construct: 58
3.2.3.1 Temperature gradient: 58
3.2.3.2 MgCl_{2} optimization: 59
3.2.4 Screening Bat Samples with the T. vespertilionis Primers 62
3.2.5 Trypanosoma dionisii PCR primer re-design: 65
3.3 Bat Eimeria: 76
3.4 Bat Cryptosporidium: 79
3.5 Bat bacterial infections 82
3.5.1 Bartonella: 82
3.5.2 Borrelia: 84
3.6 Further analyses of the pipistrelle protozoan and bacterial infections 87
3.6.1 Infections and the environment 92
3.6.2. Infections and host factors: 93
3.6.2.1 Infections and host genotype: 94
3.7 Discussion 98
3.7.1 Trypanosome (Schizotrypanum): 98
3.7.2 Eimeria 101
3.7.3 Cryptosporidium: 102
3.7.4 Bacterial infections: 103
3.7.5 Co-infections: 105
4. Pipistrelle Toll-like receptors (TLRs): TLR2 and TLR4: 106
4.1 The P. pipistrelle TLR 4 gene: 107
4.1.1 Bioinformatics: 107
4.1.2 TLR4 PCR: 112
4.2 The pipistrelle TLR2: 122
Discussion 134
5. TLR gene variations and parasite infection profiles. 136
5.1 TLR2 and TLR4: roles in helminth infections: 136
5.2 TLR4: 139
5.2.1 Sequence analysis: 139
5.2.2 TLR4 clusters and parasite infections: 149
5.2.3 Evolutionary conservation of TLR4: 156
5.3 TLR2 161
5.3.1 Sequence analysis: 161
5.3.2 TLR2 variations and parasite infections: 172
5.4 TLR4/2 chimeric proteins 173
5.4.1 Sequence analysis: 173
5.4.2 TLR4/2 variations and parasite infections: 175
6. Discussion: 176
6.1 Thesis conclusions: 181
6.2 Future Directions: 182
References: 184
Appendix: 195
Table of Figures:
Figure 1.1: The soprano (left) and common (right) pipistrelles 4
Figure 1.2: Toll-like receptors associated with different innate immune response cells 30
Figure 1.3: TLRs 1-7 and TLR-9 and their potential targets 33
Figure3.1: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 50bp Hyperladder; 2, negative control $\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3$, 52
Figure3.2: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 1kb Hyperladder, 2,4,6, negative controls ($\mathrm{H}_{2} \mathrm{O}$); 3,5,7, 52
Figure3.3: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 1kb Hyperladder; 2, negative controls ($\mathrm{H}_{2} \mathrm{O}$); 3-6, 53
Figure3.4: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 50bp Hyperladder; 2, negative control $\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3$, 53
Figure 3.5: Clustal W alignment for different regions of the Schizotrypanum 18S rRNA gene sequences extracted from NCBI GenBank 55
Figure 3.6: Agarose gel (1\%) showing the T. dionisii and T. vespertilionis 18S rRNA PCR products 56
Figure 3.7: Clustal W alignment of the sequence of the 18S rRNA PCR product derived from T. vespertilionis genomic DNA with the T. vespertilionis 18S rRNA sequence deposited in GenBank 57
Figure 3.8: Agarose gel (1\%) showing temperature gradient optimisation of the T. vespertilionis primers between $60^{\circ} \mathrm{C}$ and $68{ }^{\circ} \mathrm{C}$ 59
Figure 3.9: Agarose gel (1\%) showing MgCl 2 optimisation of the T . vespertilionis PCR 60
Figure 3.10: Agarose gel (1\%) confirming the specificity of the T. vespertilionis 18 SrRNA PCR at the optimised cycling conditions (660 C primer annealing \& 1.5 mM$\mathrm{Mg} 2+$) using genomic DNA targets.61
Figure 3.11(A): A representative agarose (1\%) gel image showing analysis of T. vespertilionis 18S rRNA PCR products derived from bat heart DNA samples 62
Figure 3.11(B): A representative agarose (1\%) gel image showing analysis of T. vespertilionis 18 S rRNA PCR products derived from bat spleen DNA samples 63
Figure 3.12: Clustal W alignment of a representative T. vespertilionis 18S rRNA PCR product derived from bat specimen SA606 with T. dionisii (AJ009151.1) and T. vespertilionis (AJ009166.1) 18S rRNA sequences extracted from NCBI GenBank. 65
Figure 3.13: Clustal W alignment for a region of the Schizotrypanum 18S rRNA genes extracted from NCBI GenBank 66
Figure3.14: Clustal W alignment for a region of the Schizotrypanum 18S rRNA genes extracted from NCBI GenBank: T. dionisii (AJ009151.1/ FN599058.1/ AJ009152.1) and T. vespertilionis (AJ009166.1) 68
Figure 3.15 (A): A representative agarose (1\%) gel image showing analysis of T. dionisii 18S rRNA PCR products derived from bat heart DNAs 69
Figure 3.15 (B): A representative agarose (1\%) gel image showing analysis of T. dionisii 18 S rRNA PCR products derived from bat spleen DNAs 70
Figure 3.16: Clustal W alignment of a representative T. dionisii 18 S rRNA PCR product derived from bat specimen P605 with the T. dionisii (AJ009151.1) and T. vespertilionis (AJ009166.1) 18S rRNA sequences deposited in NCBI GenBank 71
Figure 3.17: Clustal W sequence alignment of a region of the T. dionisii GAPDH gene extracted from NCBI GenBank 72
Figure 3.18(A): A representative agarose (1\%) gel image showing analysis of T. dionisii GAPDH PCR products derived from bat spleen DNAs 73
Figure 3.18(B): A representative agarose (1\%) gel image showing analysis of T. dionisii GAPDH PCR products derived from bat heart samples 74
Figure 3.19: Clustal W alignment of a representative T. dionisii GAPDH PCR product derived from bat specimen JL654 with a fragment of the GAPDH gene from T. dionisii strain Z3126 (GenBank accession number FN599054.1) 75
Figure 3.20: Analysis of bat eimerian 18S rRNA PCR products by agarose (1.0\%) gel electrophoresis 77
Figure 3.21: Clustal W sequence alignment of a representative bat eimerian 18 S rRNA PCR product derived from bat specimen JL719 with fragments of the 18 S rRNA gene from E. rioarribaensis (AF307877.1) and E. cahirinensis isolate NFS (JQ993645.1) extracted from NCBI GenBank 78
Figure 3.22: Analysis of bat Cryptosporidium spp. 18S rRNA PCR products by agarose (1.0\%) gel electrophoresis 80
Figure 3.23: Clustal W sequence alignment of a representative bat Cryptosporidium 18 S rRNA PCR product derived from an intestinal DNA preparation from bat specimen F546 with the 18 S rRNA sequence from Cryptosporidium sp. bat genotype IV isolate 13973CZ (KR819168.1) 81
Figure 3.24: Analysis of the bat Bartonella citrate synthase (gltA) PCR products by agarose (1\%) gel electrophoresis. 82
Figure 3.25: Clustal W sequence alignment of the bat Bartonella citrate synthase PCR product derived from bat specimen J 726 with partial citrate synthase gene sequences from an uncultured Bartonella sp. (isolate M207) (AJ871614.1) and an uncultured Bartonella sp. clone NB-1.2 (KF003137.1). 83
Figure 3.26: Analysis of bat Borrelia 16S rRNA PCR products by agarose gel (2.0\%) electrophoresis 85
Figure 3.27: Clustal W sequence alignment of the bat Borrelia 16S rRNA PCR product derived from bat specimen JL709 with partial 16S rRNA sequences extracted from GenBank as follows: Borrelia sp. F3 (KF395229.1), Borrelia sp. F17 (KF395228.1), Borrelia sp. CPB1 (FJ868583.1), B. afzelii strain Mng 3602 (DQ469888.1) and B. garinii strain Ip-6322 (KU672548.1).86
Figure 3.28: The population structure of the pipistrelles (Dodd et al, 2014) highlighting the non-infected (protozoan and helminth) individuals 95
Figure 3.29: The population structure of the pipistrelles (Dodd et al, 2014) highlighting the E. rioarribaensis infections 97
Figure4.1: Clustal W sequence alignment of bat TLR4 sequences 111
Figure 4.2: A representative agarose gel (1%) showing PCR products derived from P. pipistrellus using the TLR4 F/R primer combination 112
Figure 4.3: A representative agarose gel (1\%) showing PCR products derived from P. pipistrellus using the TLR4-2F/R primer combination 113
Figure 4.4: Clustal W sequence alignment of TLR4 PCR products derived from oneP. pipistrellus bat (code: S818), one P. pygmaeus bat (code: J649) with TLR4 genesequences from Eptesicus fuscus (XM_008152116.1) and Myotis brandtii(XM_005880935.2)117
Figure 4.5: Clustal W sequence alignment of TLR4 amino acid sequences from one P. pipistrellus bat (code: S818), one P. pygmaeus bat (code: J649) and Eptesicus fuscus: XP_008150338.1 119
Figure 4.6: Domain structures of the TLR4 protein from E. fuscus (above) and P. pipistrellus (code: S818) (below) 121
Figure 4.7: PCR primer combinations and binding sites used to amplify the pipistrelle TLR2 gene. 122
Figure 4.8: Representative agarose (1\%) gel image showing PCR amplification of the P. pipistrellus TLR2 gene fragment (500bp) derived from primers TLR2Fn/ TLR2Rn 123
Figure 4.9: Representative agarose (1%) gel image showing PCR amplification of P.pipistrellus TLR2 gene fragment (1200bp) derived from primers TLR2.2F/TLR2.2R124
Figure 4.10: Representative agarose (1\%) gel image showing PCR amplification of P. pipistrellus TLR2 gene fragments (400 bp) derived from primers TLR2gapF/TLR2gapR125
Figure 4.11: Clustal W alignment of the TLR2 gene sequences derived from P. pipistrellus (code: S818) and P. pygmaeus (code: J649) with the TLR2 mRNA sequences from E. fuscus (XM_008144148.1) and M. brandtii (XM_014543903.1).
Figure 4.12: Clustal W alignment of the $T L R 2$ amino acid sequences from P. pipistrellus (code: S818) and P. pygmaeus (code: J649) with the TLR2 protein from E. fuscus: XP_008142370.1. Footnote: Predicted N-glycosylation sites are highlighted in emboldened red font.132
Figure 4.13: Domain structures of the TLR2 protein from E. fuscus (above) and P. pipistrellus (code: S818) (below) 133
Figure 5.1: Clustal W DNA sequence alignment for the pipistrelle TLR4 gene derived from 7 bats 144
Figure 5.2: Clustal W amino acid sequence alignment of TLR4 derived from 7 pipistrelle bats. 146
Figure 5.3: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4 protein sequences 147
Figure 5.4: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4 protein sequences with different TLR4 outgroups sequences. 148
Figure 5.5: Model of the Rattus norvegicus TLR4 ligand binding region highlightingamino acid positions under variable evolutionary selection157
Figure 5.6: Clustal W alignment of representative pipistrelle TLR4 sequences (one from each cluster) with the TLR4 sequence from Rattus norvegicus (KC811688.1) and the greater bandicoot rat, Bandicota indica (KC811609.1) 159
Figure 5.7: Clustal W DNA sequence alignment of representative pipistrelle TLR2 gene sequences 166
Figure 5.8: Clustal W amino acid sequence alignment of TLR2 derived from 5 pipistrelle bats. 167
Figure 5.9: Neighbor-Joining phylogenetic tree of the pipistrelle TLR2 protein sequences 170
Figure 5.10: Neighbor-Joining phylogenetic tree of the pipistrelle TLR2 protein sequences with different TLR2 outgroups sequences. 171
Figure 5.11: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4/2 chimeric protein sequences. 174

Table of Tables:

Table 1.1: UK bat species (Bat Conservation Trust, 2013) 2
Table1.2: Examples of viral zoonotic pathogens in bats 11
Table1.3: Examples of bacterial zoonotic pathogens in bats 12
Table 1.4: Summary of helminth infections of pipistrelle bats 14
Table1.5: Summary of the key differences between innate and adaptive immunity 28
Table 2.1: Parasite and bacterial oligonucleotide primers 41
Table2.2: Primer sequences for PCR amplification of pipistrelle TLR4 and TLR2 genes 42
Table 2.3: PCR cycling parameters utilised for microparasite and TLR gene amplifications 45
Table 3.1: BlastN summary data for the T. vespertilionis 18 S rRNA PCR product. 58
Table 3.2: BlastN summary data for the T. vespertilionis 18 S rRNA PCR product. 65
Table 3.3: BlastN summary data for the T. dionisii 18 S rRNA PCR product derived from pipistrelle P605 71
Table 3.4: BlastN summary data for the T. dionisii GAPDH PCR product derived from pipistrelle JL654 75
Table 3.5: BlastN summary data for the pipistrelle eimerian 18 S rRNA PCR products 79
Table 3.6: BlastN summary data for the Cryptosporidium 18S rRNA PCR products derived from pipistrelle bat F546 81
Table 3.7: BlastN summary data for the Bartonella gltA PCR products 84
Table 3.8: BlastN summary data for the Borrelia 16S rRNA PCR product 86
Table 3.9: Summary of the 70 protozoan and bacterial infections of the Lancashire pipistrelle bats 87
Table 3.10: Infection profiles within the single interbreeding population of pipistrelles 91
Table 3.11: Infection profiles within the mixed genotype pipistrelles 92
Table 3.12: Seasonal protozoan infection profiles in the bats 93
Table 3.13: Gender profiles of the pipistrelle infections. Footnote: Baby pipistrelles were excluded from this age analysis. 93
Table 3.14: Age profiles of the pipistrelle infections 94
Table 4.1: BlastN summary data for the TLR4 gene product derived from P. pipistrellus 117
Table 4.2: BlastN summary data for the TLR4 gene product derived from P. pygmaeus 117
Table 4.3: BlastP summary data for the TLR4 gene product derived from P. pipistrellus 120
Table 4.4: BlastP summary data for the TLR4 gene product derived from P. pygmaeus 120
Table 4.5: BlastN summary data for the TLR2 gene derived from P. pipistrellus (code: S818). Footnote: the BlastN data for the P. pygmaeus (code: J649) TLR2 gene was identical to that shown below 130
Table 4.6: BlastP summary data for the TLR2 amino acid sequence derived from P. pipistrellus (code: S818) 132
Table 5.1: TLR4 cluster frequencies in the pipistrelles 149
Table 5.2: worm burden in the seven TLR4 clusters 150
Table 5.3: Summary of all the non-synonymous amino acids changes observed in the pipistrelle TLR4 gene sequences 152
Table 5.4: Number of amino acid changes observed in the pipistrelle TLR4 sequences relative to bat S 818 155
Table 5.5: TLR4 amino acid variability in the pipistrelles at the positions identified by Fornuskova et al., (2013) as being under positive selection in rodents 160
Table 5.6: Summary of the pipistrelle TLR2 heterozygosity observed in the bat population. 168
Table 5.7: TLR2 cluster frequencies 172
Table 5.8: Summary of the amino acid changes observed in the TLR2 gene of 54 pipistrelle bats. 172
Table 5.9: TLR4/2 cluster frequencies in the pipistrelles 175

Statement of Authorship:

I hereby certify that I am the sole owner of this thesis. The work contained in this thesis has not been previously submitted for a degree or diploma at any other University or Institution. To the best of my knowledge, this thesis contains no material previously published or written by another author except where due reference has been made in accordance with standard referencing practices.

Acknowledgment:

First, I would like to thanks Allah for lighting my way and for blessing me with his care. Then, I would like to thank my supervisor Dr. Darren Brooks for his unlimited support and trust.

Also, I would like to thank my parents and my wife for their help and support.
Finally, I would like to thank all staff in the Molecular Biology Laboratory, and all my friends for providing me with the best working environment.

Abstract

: Bats are unique mammals since they are able to fly and due to their crucial ecosystem roles, they are designated as keystone species. However, in many parts of the world, it is difficult to study bats due to the existence of protective legislation caused by their threatened status. Consequently, bat endoparasite studies are limited and even less is known about the bat immune system. To address this paucity of knowledge, this study was conducted using 99 pipistrelle bats (Pipistrellus pipistrellus, $\mathrm{n}=93$ and P. pygmaeus, $\mathrm{n}=6$ bats) that were obtained opportunistically from the Greater Manchester and Lancashire region between September 2005 and September 2008. These bats were infected with several species of helminths and protozoan parasites as previously described (Lord, 2010; Dodd et al., 2014).

The data within this thesis describes further characterisation of the protozoan infections in this pipistrelle population through development of PCR-based molecular typing tools. This approach has allowed the molecular differentiation between Trypanosoma dionisii and T. vespertilionis infections, confirmed that all eimerian infections were caused by Eimeria rioarribaensis and also confirmed that Bartonella sp. infection is most likely to be nonzoonotic. In addition, Cryptosporidium sp. and Borrelia sp. infection data is presented; the former being the first report in a UK bat. Analysis of the infection profiles with respect to bat genotyping data (Dodd et al., 2014) shows that the parasites are randomly distributed with the exception of the E. rioarribaensis infections which appear to cluster in a sub-population of pipistrelles that are genetically more homogeneous.

Since Toll-like receptors (TLRs) are an important element of the mammalian innate immune system, a PCR strategy was developed to isolate TLR4 and TLR2 genes from the pipistrelle bats ($\mathrm{n}=59$). The TLR4 sequences were highly variable at the amino acid level (haplotypes, $\mathrm{n}=42$), and a phylogenetic analysis of the protein sequences showed that they clustered into 7 major groups. Analysis of infection profiles in these bats showed that two

TLR4 clusters appeared to correlate with susceptibility to trypanosomes (cluster 6) and Toxoplasma gondii (cluster 3). In addition, bats in TLR4 cluster 6 had a significantly reduced helminth burden. The TLR2 sequences were more conserved at the amino acid level (haplotypes, $\mathrm{n}=5$); however, 7 bats were heterozygous at the TLR2 locus and interestingly, these correlated with a significantly reduced helminth burden.

Overall, this thesis highlights the difficulty of studying bat endoparasites and this is often confounded by the lack, or absence, of parasitic material to assist developing molecular-based tools. Despite this difficulty, interesting data have been generated with respect to the pipistrelle genetics, including Toll-like receptor variations, and eimerian, trypanosome, T. gondii and helminth infection profiles, and this is worthy of further detailed investigations.

1.1 General overview:

Bats (Chiroptera) most likely evolved from a shrew-like animal that climbed trees (Richardson, 2002) and they are part of the superorder Laurasiatheria, forming a sister group to the Fereuungulata (Tsagkogeorga, Parker, Stupka, Cotton, \& Rossiter, 2013). Bats have become the most diverse, abundant and geographically dispersed order amongst the class Mammalia. Indeed of the estimated 4600 species of mammals, 925 species are bats (20%) and in the UK, there are 18 species of bat, of which 17 are known to breed locally (Calisher, Childs, Field, Holmes, \& Schountz, 2006; Bat Conservation Trust, 2013). There are two suborders: the Yinpterochiroptera (megabats and rhinolophoid microbats) and the Yangochiroptera (all remaining microbats) and these separated approximately 64 million years ago (Teeling et al., 2005). Bats are unique mammals since they are the only ones that can truly fly and this has facilitated them forming colonies almost everywhere in the world except for Antartica and some isolated Oceanic islands. Not surprisingly, the tropics have the greatest variety of bat species; for example, 175 species are present in Indonesia, and Central and South America are home to approximately one-third of all bat species.

As bats have important roles in many environments they are designated as keystone species (Kunz, Braun de Torrez, Bauer, Lobova, \& Fleming, 2011; Mehr et al., 2011; Scott, McLaren, Jones, \& Harris, 2010). Indeed, some plants depend in part, or wholly, on bats to pollinate their flowers or spread their seeds and insectivorous bats help to control insect populations by eating them. For example, a common pipistrelle can eat up to 3000 tiny insects in a single night (Kunz et al., 2011; Mehr et al., 2011; Scott et al., 2010). Due to such ecosystem roles, in the UK and other countries, bats act as an 'indicator' species since any significant changes in bat populations can indicate changes to other aspects of biodiversity (Mehr et al., 2011; Scott et al., 2010).

Given this importance, bats are protected by legislation in many areas of the world. This provides bats some protection against threats such as habitat loss and pesticides (Bat Conservation Trust, 2013). However, it also means that the study of bats and the infectious agents that they are host to, including parasites, is difficult.

1.2 Pipistrelle bats:

In the UK, all bats (Table 1.1) are insectivorous and the most numerous species is Pipistrellus pipistrellus, the common pipistrelle, which has become well-adapted to urbanized environments where it is often found roosting in crevices around the outside of houses and buildings. Although worldwide there are many species of pipistrelle bat (Richardson, 2002), in the UK there is just three species; the common pipistrelle, the soprano pipistrelle (P. pygmaeus) and the Nathusius' pipistrelle (P. nathusii). Morphological differentiation of these pipistrelle species is not trivial and indeed, the former two were only recognized as separate species following studies on their biology in the mid-1990s (Barratt, Deaville, Burland, \& Bruford, 1997; Jones \& Van Parijs, 1993; Park, Altringham, \& Jones, 1996). The common and soprano pipistrelles (Figure 1.1) are most readily distinguished with the use of a bat detector since P. pipistrellus echolocates at 45 kHz while P. pygmaeus echolocates at 55 kHz (Bat Conservation Trust, 2013).

Table 1.1: UK bat species (Bat Conservation Trust, 2013)

UK bat species	General comments	Numbers in UK
Alcathoe bats (Myotis alcathoe)	Confirmed as resident in 2002; looks similar to whiskered and Brandt's bat species	No data
Barbastelle bats (Barbastella barbastellus)	A rare and distinctive species with a pug- like face and a large, wide ears	5000 (Harris, Morris, Wray, \& Yalden, 1995)
Bechstein's bats (Myotis bechsteinii)	One of the rare species, found in England and South east Wales	No data

Brown long- eared bats (Plecotus auritus)	Has sensitive hearing due to a very large ears	$\begin{aligned} & \hline 245,000 \\ & \text { (Harris et al., } \\ & 1995 \text {) } \end{aligned}$
Brandt's bats (Myotis brandtii)	Similar to whiskered bat species, being separated as distinct species in 1970	$\begin{aligned} & \hline 30,000 \\ & \text { (Harris et al., } \\ & 1995 \text {) } \end{aligned}$
Common pipistrelle (Pipistrellus pipistrellus)	The most common species in the UK, weigh around 5 g	$2,430,000$ (Battersby, 2005)
Daubenton's bat (Myotis daubentonii)	Known as ' water bats' , can pray on insects from the water surface by using their large feet or tail	560,000 (Harris et al., 1995)
Greater horseshoe bat (Rhinolophus ferrumequinum)	Has a unique horseshoe- shaped noseleaf	>6600 (Battersby, 2005)
Grey long-eared bat (Plecotus austriacus)	Slightly larger than the brown long-eared bats, has a dark face	$50,000$ (Battersby, 2005)
Leisler's bat (Nyctalus leisleri)	Known as 'hairyarmed bats'	No data
Lesser horseshoe bat (Rhinolophus hipposideros)	Can cover the body completely with its wings while resting	No data
Nathusius' pipistrelle (Pipistrellus nathusii)	Classed as a resident in 1997	$\begin{aligned} & 16,000 \\ & \text { (Battersby, 2005) } \end{aligned}$
Natterer's bat (Myotis nattereri)	Can fly slowly since it has broad wings	148,000 (Harris et al., 1995)
Noctule bat (Nyctalus noctula)	The biggest bats in the UK, can fly in straight line, high and fast since it has long narrow wings	$\begin{aligned} & 50,000 \\ & \text { (Harris et al., } \\ & \text { 1995) } \end{aligned}$
Serotine bats (Eptesicus serotinus)	Has broad wings and leisurely flapping flight	15,000 (Harris et al., 1995)
Soprano pipistrelle bat (Pipistrellus pygmaeus)	Similar to the common pipistrelle but differentiated by its high frequency echolocation calls	$1,300,000$ (Battersby, 2005)

Whiskered bat (Myotis mystacinus)	Smaller than the Brandt's bat but shares the same shaggy fur	64,000 (Harris et al., 1995)
Greater mouse- eared bat (Myotis myotis)	Declared extinct in 1990 but a solitary individual has been hibernating in southern England since 2002	No data

Figure 1.1: The soprano (left) and common (right) pipistrelles (Bat Conservation Trust, 2013)

Pipistrelle bats have adapted to live in proximity to humans and this had proven to be successful in terms of their survival. Indeed, in the UK, modern houses have become common places for pipistrelles to roost in during the summer and to hibernate in throughout the winter.

A study by Racey et al. (2005) found that there was a significant pattern of genetic isolation by distance in European bats, including P. pipistrellus and P. pygmaeus, suggesting that mating might occur before the autumn migration. In addition, there were differences in the genetic population structure between different colonies of the pipistrelles (Racey et al., 2007). A sub-population ($\mathrm{n}=71$) of the P. pipistrellus bats studied in this thesis were genotyped using eleven polymorphic loci and the data indicated that the majority of the specimens
$(\mathrm{n}=59)$ were most likely derived from a large interbreeding group and the remainder $(\mathrm{n}=12)$ were of a mixed genotype origin (Dodd et al., 2014).

The average life span of a pipistrelle in Europe is 12 years (Schober \& Grimmberger, 1989). Although pipistrelles are widely distributed across the UK and Europe, their population has declined in the $20^{\text {th }}$ century, mainly due to agricultural intensification. Nonetheless, a study by Wickramasinghe et al. (2003), reported that the main bat species on both conventional and organic farms are the common and soprano pipistrelles.

1.2.1: Summary of work done on the South Lancashire bat set:

* Bat samples were screened for the presence of helminths using classical and molecular approaches (Lord et al, 2012).
* Bat samples were screened for the presence of protozoan parasites: Trypanosome sp., Eimeria sp., Babesia vesperuginis (lord, 2010), and Toxoplasma gondii (Dodd et al, 2012) using molecular approach.
* Bat samples were screened for the presence of Bartonella infections using molecular approach (Lord, 2010).
* Host genotypes were done using eleven polymorphic loci (Dodd et al, 2012).

1.3 Threats to Bats

1.3.1 Anthropogenic:

Bat populations have decreased due to habitat loss and the use of pesticides and preservatives in timber and homes where many roost (Bat Conservation Trust, 2013). Different bat species, including the pipistrelles, roost in buildings and they are in danger due to human activities such as building works (Bat Conservation Trust, 2013). Agricultural intensification is also a major cause of the decline of many bat populations because of the high level use of
agrochemicals on many farms (Wickramasinghe, Harris, Jones, \& Vaughan, 2003). In addition, bats are being killed in increasing numbers due to the increasing installation of wind turbines (Cryan, 2011).

Climate change is likely to be a major cause of bat stress and hence population reduction. For example, in the previous 15 years, about 30,000 flying foxes in Australia, the biggest bats in the world, were affected by heat stress during the summer months, when the daytime temperature increased to more than $100^{\circ} \mathrm{F}$ (Welbergen, Klose, Markus, \& Eby, 2008). For bats that rely on nectar fruits, the extreme weather caused changes in plant flowering and this put them the bats under additional stress by creating problems with their food sources (Welbergen et al., 2008).

A number of studies have also focused on the effect of bat exposure to heavy metals such as mercury, lead and cadmium as these elements are readily transferred through insectivore food chains (Walker, Simpson, Rockett, Wienburg, \& Shore, 2007). Indeed, toxic metals are bioaccumulated by insectivorous mammals and since accumulation risk correlates with age, bat populations are at risk of toxicity; however, there have been few studies carried out in bats (Walker et al., 2007). In the UK, quantifiable levels of renal mercury, lead and cadmium were reported in 272 bats from South-West England. In pipistrelle bats, levels of toxic metals $(\mathrm{Cd}, \mathrm{Pb})$ and trace metals $(\mathrm{Cu}, \mathrm{Zn})$ have recently been determined in multiple tissues of 193 pipistrelle bats using ICP-MS (Hernout et al., 2016). The data showed that 21% of the bat population contained residues of at least one metal in sufficiently high concentration to elicit a toxic effect and hence metal contamination should be considered an environmental stressor that has major impact on bat populations (Hernout et al., 2016).

1.3.2 Natural:

A major reason for the recent decline of large numbers of bats is the emergence of White Nose Syndrome (WNS). This fungal disease has caused the death of at least 1 million bats in North America since 2006 (Foley, Clifford, Castle, Cryan, \& Ostfeld, 2011). The fungus grows on the faces and wings of infected bats and causes physiological perturbations, including the water-electrolyte balance and altered torpor during hibernation (Reeder et al., 2012; Warnecke et al., 2012). Indeed, in some hibernation sites in the US, bat numbers have declined between $81-97 \%$ since 2006 when the disease was initially identified (Blehert et al., 2009). The fungus associated with White Nose Syndrome, Pseudogymnoascus destructans (formerly Geomyces destructans), has also been found in some European bats. The presence of the disease has been confirmed in six European countries: France, Hungary, Switzerland and Slovakia (1-2 location(s) per country), Germany (8 sites) and in the Czech Republic (23 sites) (Puechmaille et al., 2012). In the UK, there is a need to raise awareness of WNS among wildlife workers and cavers in order to identify and respond to any positive cases quickly. As such, a pilot project is currently in progress in the UK to check bats for possible White Nose Syndrome infections (Bat Conservation Trust, 2013). The first case of this disease was confirmed in the UK in July 2013, which was in a hibernation site in South East England (Bat Conservation Trust, 2013).

Another major natural threat to bats is predation by cats. Bats can be captured and eaten by cats, or escape with injury which may subsequently lead to death. Indeed, in a recent study on the causes of death in European bats, 15% of all bat mortality in Germany was documented as a direct consequence of cat predation (Kristin Mühldorfer et al., 2011).

1.3.2.1 Viral infection:

In European bats, adenovirus (Ad-2) and the European bat lyssavirus (EBLV-1) were documented as the cause of mortality for 1.2% of bat deaths studied in Germany (Kristin

Mühldorfer et al., 2011). Moreover, the fact that bats are carriers of lyssaviruses is a cause of concern for the general public. Indeed, in the UK, two bat workers have died of rabies infection following Daubenton's bat bites that caused transmission of European bat lyssavirus type 2 (Fooks et al., 2003).

1.3.2.2 Bacterial infection:

Bacterial infections were documented as the cause of mortality in 12.5% of European bats surveyed post-mortem in Germany (Kristin Mühldorfer et al., 2011). Moreover, there was a strong correlation between the predominant bacterium, Pasteurella spp., and cat predation. Other bacteria noted in the bats included Salmonella enterica, Staphylococcus aureus and Escherichia coli. As most of the bacterial species were classified as opportunistic pathogens, it is likely that the bats that succumbed to these infections were most likely also suffering due to injury and/or a compromised immune system (Kristin Mühldorfer et al., 2011).

Although arthropod transmitted bacteria such as Bartonella spp. and Borrelia spp. commonly infect bats, it appears that most infections are relatively well tolerated (Concannon, WynnOwen, Simpson, \& Birtles, 2005; Evans, Bown, Timofte, Simpson, \& Birtles, 2009; K Mühldorfer, 2013). Nonetheless, these reports highlight the potential that bats may play in acting as a disease reservoir for other wildlife, domestic animals and potentially, humans (D'Auria et al., 2010).

1.3.2.3 Parasite infection:

Bats are host to many different helminth and protozoan infections, some of which can cause harm; for example, the piroplasm, Babesia vesperuginis, is reported to cause splenomegaly, a reduction in haemoglobin level, and elevated reticulocyte levels (R. Gardner \& Molyneux, 1987). Also, severe intestinal trematode infection, disseminated nematode infection and renal coccidiosis can cause death to bats; albeit, the numbers reported in the German bat postmortem study are relatively low (0.5% of total deaths) (Kristin Mühldorfer et al., 2011). As
such, most parasites appear to be well tolerated by bats which indicates a long established association between the host and the parasites (Kristin Mühldorfer et al., 2011).

1.4 Bats as reservoir of zoonotic disease:

Unlike other mammals, bats appear to harbour many viruses without appearing to suffer detrimental health effects. For example, Hendra and Nipah viruses which have high mortality rates in other mammals, including humans, are tolerated by bats (Middleton et al., 2007; Williamson, Hooper, Selleck, Westbury, \& Slocombe, 2000). The reasons for this toleration are unclear; however, O'Shea et al., (2014), suggested that the ability of bats to fly, which is not exhibited by any other mammals, might play an important role in the co-existence of bats and viruses. The "flight-as-fever" hypothesis proposes that the increased metabolism and high temperature experienced during flight might act as an adjuvant of the bat immune system, providing bats a selective force against virulence and hence allowing them to control viral infections (O'Shea et al., 2014). An alternative reason for the ability of bats to tolerate different infections without being ill is the co- evolution which means that the ancient origin of bats deduced for certain infection such as henipavirus and lyssaviruses suggested a long history of cospeciations (Calisher et al, 2006). This long history of infection might play an important role in the co-existence of bats and viruses. Another alternative is the immune system of bats that seems to have better ability in infections recognition which help bat to be tolerant of many infection agents. Despite little known about the immune system in bats, the study by Zhou et al., (2016), showed that IFN- α genes were able to induce a subset of IFNstimulated genes linked to antiviral activity and so they may be crucial to bats ability to tolerate viral infections (Zhou et al., 2016). The interferon regulatory factor 7 (IRF7), a key regulator of IFN responses, was also found to be constitutively expressed in a range of immune and non-immune cells of P. alecto and activated by double-stranded RNA (Zhou et al., 2011).

Indeed, there are many different viruses that can infect bats including SARS, Ebola, Nipah, Hendra, Rabies and related lyssaviruses, that can be highly pathogenic when transmitted from bats to other mammals, including humans (Calisher et al., 2006)(Table 1.2). European Bat Lyssavirus (EBLV) is responsible for rabies and the most common type present in European bats is type 1 (Calisher et al., 2006). Unlike classical rabies, the bat virus rarely infects animals other than bats (Brookes et al., 2005; Calisher et al., 2006) and across Europe, 700 bats have been confirmed to be infected with lyssavirus (Amengual, Bourhy, LópezRoig, \& Serra-Cobo, 2007; Calisher et al., 2006).

In the UK, European Bat Lyssavirus has been rarely detected; after a comprehensive screening programme ($n=11,500$), only 14 bats, all of which were Daubenton's, were confirmed positive (Johnson et al., 2016). Furthermore, The Veterinary Laboratories Agency has screened more than 6000 bats over the past 20 years and reported only 6 bats infected with EBLV (Johnson et al., 2016; Bats Conservation Trust, 2013). These infected bats were again Daubenton's and they were infected with EBLV-type 2. The VLA has never identified any rabies virus infection in pipistrelle bats, which are the most common species in the UK (Johnson et al., 2016; Bats Conservation Trust, 2013). Given the apparent low prevalence of EBLV in UK bats, it is perhaps surprising that any UK rabies cases due to bat-human transmission have occurred. However, as documented above (1.3.2.1), two bat volunteer workers have died following Daubenton's bites (Fooks et al., 2003) and hence members of the public must take precautions if they are involved in occupations that involve working with this species of bat.

With respect to bacterial infections, Bartonella spp. and Borrelia spp. are of potential zoonotic concern since they can infect bats and possibly transmit to humans via biting arthropod vectors. Recently, a study of bats in France and Spain showed that Bartonella infections were present in approximately 9% of examined specimens, including the species P.
nathusii, N. noctula, M. daubentonii, and M. mystacinus (Stuckey et al., 2017). The Bartonella sp. detected in these bats clustered together with the zoonotic species B. mayotimonensis (Stuckey et al., 2017). Borrelia infections in bats are poorly described; however, the autopsy of a pipistrelle bat from the UK showed that the specimen was likely to have died from borreliosis and that the bacterium was closely related to known humanpathogenic Borrelia species responsible for causing relapsing fever in humans (Evans et al., 2009).

With respect to parasites, there is increasing evidence emerging that bats act as reservoirs for transmission of both Trypanosoma cruzi (Hodo et al., 2016) and Leishmania spp. (de Oliveira et al., 2015; Kassahun et al., 2015) infections to humans.

Table1.2: Examples of viral zoonotic pathogens in bats

Zoonotic pathogen	Bat species	Country	Reference
Rabies	Brazilian bat	Sao Paulo- Brazil	(Castilho et al., 2016)
Rabies	Daubenton's bat	UK	(R. F. Johnson et al., 2016)
Nipah	Pteropus bat (Flying fox)	Australia	(Calisher et al., 2006)
Nipah	Pteropus vampyrus \& P. hypomelanus	Malaysia	(Calisher et al., 2006)
Ebola (Zaire Ebola)	Hypsignathus monstrosus, Epomops franqueti, Myonycteris torquata (Fruit bats)	Central African Republic, West Africa	(Calisher et al., 2006; Hassanin et al.,
2016)			

Table1.3: Examples of bacterial zoonotic pathogens in bats

Zoonotic pathogen	Bat species	Country	Reference
Bartonella	P. nathusii, N. noctula, M. daubentonii, and M. mystacinus	France and Spain	(Stuckey et al., 2017)
Borrelia	pipistrelle bat	UK	(Evans et al,2009)

1.5 Bat Parasites

1.5.1 Helminths:

The majority of the studies have shown that bats are infected with a plethora of helminths including trematodes, cestodes, and nematodes (Esteban, Oltra Ferrero, \& Mas-coma, 1990; Marshall \& Miller, 1979; Nahhas, Yang, \& Uch, 2005). The limited reports of acanthocephalsn infections in bats (Smales, 2007) is suggestive that for many hosts, these are likely to be accidental, or paratenic infections (Gibson \& McCarthy, 1987).

Although gastrointestinal helminths are generally not considered pathogenic, they are known to have an important role in influencing the host immune status and might affect the overall health status of an individual animal (Maizels \& Yazdanbakhsh, 2003).

1.5.1.1 Trematodes:

Most studies have shown that trematodes are the most common class of helminth in the bat gastrointestinal tract (Table 1.4) (Ricci, 1995a, Shimalov, Demyanchik, \& Demyanchik, 2002). Trematode eggs exit the mammalian host in the faeces and when they hatch, the resulting miracidium infect a snail host. After a period of development in the snail, cercariae are shed into the water and these develop into encysted metacercariae (infective stage) in a second intermediate host; for bat infections, this is most likely to be insect larvae. As such, the bat will subsequently become infected once the insect larvae mature into adults that then become part of the bat diet.

Many different trematode species have been reported in bats. For example, the study by Shimalov, Demyanchik, \& Demyanchik, (2002) reported Allasogonoporu amphoraeformisin in Myotis nattereri, Lecithodendrium linstowi in M. daubentonii, and Plagiorchis spp. and P. vespertilionis in E. serotinus and M. daubentonii. Trematodes isolated from the gastrointestinal tracts of different pipistrelle bats are highlighted in Table 1.4.

1.5.1.2 Tapeworms:

Cestode eggs exit the host in the faeces and then can infect another host via direct ingestion, or, the eggs may develop in the environment into coracidium larval stages. The latter can be eaten by intermediate hosts whereupon the parasite develops into a procercoid larva. Following ingestion by a further intermediate host, the parasite develops into the infective (plerocercoid) stage which then infects the definitive host via the ingestion route. For bats, the precise route of tapeworm infection is not described though it is most likely to involve ingestion of infected insects.

Several studies have reported tapeworm infections in different bat species. For example, the study by Shimalov et al., (2002) described isolation of Vampirolepis skrjabinariana from five infected Eptesicus serotinus bats. A more recent study reported Vampirolepis balsaci in a Myotis myotis bat from Germany (Frank et al., 2015). The Vampirolepis tapeworm has also been reported in a number of pipistrelle bats (Table 1.4).

1.5.1.3 Nematodes:

Nematode life-cycles can be either direct, involving ingestion of eggs, or skin penetration by infective larvae, or indirect and require transmission of infective larvae by biting insects. Precise life-cycle details of bat nematodes are unknown. An example of a direct life-cycle bat infective nematode is the strongylid, Molinostrongylus alatus, recorded at high intensity
in Myotis bats (Frank et al., 2015). The bat onchocercid filarial nematode Litomosa chiropterorum, isolated from miniopterid bats, is an example of an indirect life-cycle bat infective nematode (Junker et al., 2009). Pipistrelle bats can be infected with nematodes transmitted by both direct and indirect routes (Table 1.4).

Table 1.4: Summary of helminth infections of pipistrelle bats. The Table was generated by searching the Host-Parasite Database at The Natural History Museum, London (Gibson, Bray, \& Harris, 2005).

Parasite group	Genus	Species	Host	Locality	Reference
Acanthocephalans	Macracanthorhynchus	hirudinaceus	Pipistrellus kuhli	Europe	(Lanza, 1999)
Cestodes	Hymenolepis	acuta	Pipistrellus	Freshwater \& Terrestrial - no area specified	(Nama, 1990)
	Hymenolepis	pipistrelli	Pipistrellus pipistrellus, P. kuhli	Spain + Andalusia, Iraq	(Botella, Esteban, 1993; J Guillermo Esteban, Cobo, 2001; Nama, 1990)
	Hymenolepis	sandgroundi	Pipistrellus nanus	Ethiopian Region, Zimbabwe	(Nama, 1990)
	Staphylocystis	syrdariensis	P. pipistrellus, P. pipistrellus bactrianus	USSR (CIS), Uzbekistan	(Lanza, 1999)
	Vampirolepis	acuta	Pipistrellus nathusii, P. pipistrellus	Europe	(Lanza, 1999)
	Vampirolepis	magnirost- ellata	P. pipistrellus	Armenia	(Lanza, 1999)
	Vampirolepis	molani	P. kuhli	Iraq	$\begin{aligned} & \text { (Sawada, } \\ & \text { 1990) } \end{aligned}$
	Vampirolepis	skrjabinar-iana	P. pipistrellus, P. kuhli, P. nathusii	European USSR (CIS)	(Lanza, 1999)

	Vampirolepis	urawaensiss	Pipistrellus abramus	Japan, Taiwan	$\begin{aligned} & \text { (Sawada, } \\ & 1990 \text {) } \end{aligned}$
	Raillietina	$s p$.	P. kuhli, Pipistrellus kuhli ikhwanius	Iraq	(Lanza, 1999)
Nematodes	Litomosa	beshkovi	P. nathusii	Bulgaria	(Lanza, 1999)
	Litomosa	filaria	P. kuhli	Europe	(Lanza, 1999)
	Litomosa	ottavianii	$P .$ pipistrellus	Spain + Andalusia	(Botella et al., 1993; Lanza, 1999)
	Thelandros	alatus	P. kuhli	Iraq	(Lanza, 1999)
	Physaloptera	brevivaginata	P. kuhli	Algeria, Iraq	(Lanza, 1999)
	Physaloptera	myotis	P. nathusii	Europe	(Lanza, 1999)
	Physaloptera	$s p$.	P. pipistrellus	Hungary	(Lanza, 1999)
	Pseudophysalopte-ra	$s p$.	P. kuhli	Iraq	(HASSAN, SALIH, \& ABDULLAH, 1993; Lanza, 1999)
	Longibucca	eptesica	Pipistrellus subflavus	Virginia	(Measures, 1994)
	Seuratum	Mucronatum	P. pipistrellus	Europe	(Lanza, 1999)
	Agamospirura	$s p$.	P pipistrellus	Europe, Ukraine, incl. Moldavia	(Lanza, 1999)
	Ascarops	strongylina	P. pipistrellus	Europe	(Lanza, 1999)
	Physocephalus	sexalatus	P. kuhli, P. nathusii, P. pipistrellus	Europe	(Lanza, 1999)
	Spirocerca	lupi	P. kuhli	Europe	(Lanza, 1999)
	Capillaria	italica	P. pipistrellus	Europe	(Lanza, 1999)
	Capillaria	neopulchra	P. nathusii	Europe	(Lanza, 1999)
	Capillaria	palmata	P. subflavus	Louisiana	(Lotz \& Font, 1991)
	Capillaria	pipistrelli	Pipistrellus javanicus abramus	Japan	(Lanza, 1999)
	Capillaria	romana	P. pipistrellus	Europe	(Lanza, 1999)
	Molinostrongylus	alatus	P. pipistrellus	Europe	(Lanza, 1999)
	Molinostrongylus	rhinolophi	P. pipistrellus	Palearctic Region	(Lanza, 1999)
	Molinostrongylus	skrjabini	$P .$ pipistrellus	Palearctic Region, European USSR (CIS)	(Lanza, 1999)

	Molinostrongylus	vespertilionis	P. nathusii, P. pipistrellus	Europe, European USSR (CIS), Hungary, Ukraine, incl. Moldavia, Bulgaria	(GENOV, Stoykova- MÉSZÊROS, 1992; Lanza, 1999; Matskási, Mészáros, Gubányi, 1996; V. Sharpilo, 1988)
Trematodes	Anchitrema	Sanguineum	P. kuhli	Freshwater \& Terrestrial - no area specified	(Lanza, 1999)
	Brachylaima	aristotelis	P. pipistrellus	Europe	(Lanza, 1999)
	Heterophyes	Heterophyes	P. kuhli	Southern Yemen	(Lanza, 1999)
	Acanthatrium	eptesici	P. subflavus	Indiana	$\begin{aligned} & \text { (Pistole, } \\ & \text { 1988) } \\ & \hline \end{aligned}$
	Acanthatrium	pipistrelli	P. subflavus	Indiana, Louisiana, Minnesota	(Lotz \& Font, 1991; Pistole, 1988)
	Allassogonoporus	amphoraeformis	P. kuhli	Ukraine, incl. Moldavia	(V. Tkach, 2000; V. V. Tkach, Littlewood, Olson, Kinsella, \& Swiderski, 2003)
	Allassogonoporus	marginalis	P. subflavus	Indiana	$\begin{aligned} & \text { (Pistole, } \\ & \text { 1988) } \end{aligned}$
	Lecithodendrium	duboisi	P. abramus	China	$\begin{aligned} & \text { (Qu \& Gong, } \\ & \text { 1992) } \end{aligned}$
	Lecithodendrium	granulosum	P. kuhli, P. nathusii, P. pipistrellus, Pipistrellus savii	Italy, Europe, European USSR (CIS), Ukraine, Hungary	(Ricci, 1995a)
	Lecithodendrium	linstowi	P. kuhli, P. nathusii, P. pipistrellus, P. abramus	China, Ukraine, incl. Moldavia, Italy, European USSR (CIS)Europe, Spain + Andalusia, Hungary	 Gong, 1992; Ricci, 1995a)

	Lecithodendrium	longitudinalle	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	macrostomum	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	microrchle	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	multiglandum	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	mystacini	P. pipistrellus	Spain + Andalusia	(Botella et al., 1993)
	Lecithodendrium	petalinum	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	rohdei	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	rysavy	P. kuhli, P. nathusii, P. pipistrellus	USSR (CIS), Ukraine, incl. Moldavia,	(Lanza, 1999)
	Lecithodendrium	semen	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	shanghaiense	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	sinense	P. abramus	China	(Qu \& Gong, 1992)
	Lecithodendrium	skrjabini	P. nathusii	European USSR (CIS), Georgia	(Lanza, 1999)
	Lecithodendrium	spathulatum	P. abramus	China	(Qu \& Gong, 1992)
	Lecithoporus	macralaimus	P. kuhli, P. nathusii	European USSR (CIS)	(Lanza, 1999)
	Limatulum	oklahomense Macy	P. subflavus	Louisiana	(Lotz \& Font, 1991)
	Mesodendrium	macrostomum	P. abramus	Japan	$\begin{aligned} & \text { (Shimazu, } \\ & \text { 1923, 1995) } \end{aligned}$
	Mesodendrium	spathulatumm	P. abramus	Japan	$\begin{array}{\|l\|} \hline \text { (Shimazu, } \\ \hline 1923,1995) \\ \hline \end{array}$
	Ochoterenatrema	breckenridgei	P. subflavus	Indiana	(Pistole, 1988)
	Ochoterenatrema	diminutum	P. subflavus	Indiana, Louisiana	(Lotz \& Font, 1991; Pistole, 1988)
	Ochoterenatrema	labda	P. subflavus	Louisiana	(Guzmán- Cornejo, García-Prieto, Pérez-Ponce de León, \& MoralesMalacara, 2003; Lotz \& Font, 1991)
	Ophiosacculus	mehelyi	P. pipistrellus	Europe	(Lanza, 1999)

	Parabascus	duboisi	P. pipistrellus	Ukraine, incl. Moldavia, Europe	(Lanza, 1999)
	Parabascus	lepidotus	P. kuhli, P. nathusii, P. pipistrellus	European USSR (CIS), Ukraine, incl. Moldavia, Europe	$\begin{aligned} & \text { (Lanza, 1999; } \\ & \text { V. Tkach, } \\ & \text { 2000) } \end{aligned}$
	Parabascus	semisquamosus	P. kuhli, P. nathusii, P. pipistrellus	Ukraine, incl. Moldavia, Europe, Spain + Andalusia	(Botella et al., 1993; V. Tkach, 2000; V. V. Tkach et al., 2003)
	Paralecithodendrium	singularium	P. subflavus	Indiana	(Pistole, 1988)
	Prosthodendrium	ascidia	P. kuhli, P. nathusii, P. pipistrellus	European USSR (CIS), Europe, Spain + Andalusia, Hungary	(Botella et al., 1993)
	Prosthodendrium	chilostomum	P. kuhli, P. nathusii, P. pipistrellus	Europe, European USSR (CIS), Ukraine, incl. Moldavia, Hungary	$\begin{aligned} & \text { (V. Tkach, } \\ & \text { 2000) } \end{aligned}$
	Prosthodendrium	ilei	P. nathusii, P. pipistrellus	Ukraine, incl. Moldavia, Europe	(V. Tkach \& Sharpilo, 1988)
	Prosthodendrium	longiforme	P. kuhli, P. abramus	Ukraine, incl. Moldavia, China	(Qu \& Gong, 1992; V. Tkach, 2000)
	Prosthodendrium	megacotyle	Pipistrellus javanicus, P. pipistrell-us	Japan, Europe	(Lanza, 1999)
	Prosthodendrium	mehrai	P. abramus	China	(Qu \& Gong, 1992)
	Prosthodendrium	ovimagnosum	P. abramus	China	(Qu \& Gong, 1992)
	Prosthodendrium	travassosi	P. kuhli, P. nathusii	European USSR (CIS)	(Lanza, 1999)
	Prosthodendrium	glandulosum	P. kuhli	Freshwater \& Terrestrial - no area specified	(Lanza, 1999)
	Prosthodendrium	nyctali	$P .$ pipistrellus	Kazakstan, USSR (CIS)	(Lanza, 1999)

	Pycnoporus	heteroporus	$P .$ pipistrellus P. kuhli	Spain + Andalusia, Hungary, Ukraine, incl. Moldavia, Palearctic Region	(Botella et al., 1993; Sharpilo \& Iskova, 1989)
	Mesotretes	peregrinus	P. pipistrellus	Spain + Andalusia, Europe	(Botella et al., 1993)
	Plagiorchis	koreanus Ogata	P pipistrellus P. kuhli	Ukraine, incl. Moldavia, Europe	$\begin{aligned} & \text { (V. Tkach, } \\ & 2000 \text {) } \end{aligned}$
	Plagiorchis	micracanthos	Pipistrellus hesperus, Pipistrellus subflavus subflavus	Nevada, Nebraska	(Alberta. Alberta Agriculture, Development, KENNEDY, 1988)
	Plagiorchis	muelleri	P. pipistrellus	Ukraine, incl. Moldavia	$\begin{aligned} & \text { (V. Tkach, } \\ & 2000 \text {) } \end{aligned}$
	Plagiorchis	vespertilionis	P. pipistrellus P. kuhli, P. subflavus, P. nathusii	Ukraine, incl. Moldavia, European USSR (CIS), Italy, Indiana, Freshwater \& Terrestrial - no area specified	(Pistole, 1988; Ricci, 1995a)
	Plagiorchis	pipistrelli-cola	Pipistrellus mimus	Freshwater \& Terrestrial - no area specified	(Ricci, 1995a)
	Urotrema	scabridum braun	P. subflavus	Louisiana, Freshwater \& Terrestrial - no area specified	(GuzmánCornejo et al., 2003; Lotz \& Font, 1991)

1.5.1.4 UK Helminths:

The study conducted at The University of Salford on the population of Lancashire pipistrelles analysed further in this thesis showed 68 out of 90 bats (76% prevalence) were infected with at least 1 species of helminth (Lord, Parker, Parker, \& Brooks, 2012). All the helminths were digenean trematodes and 5 species were found in the 68 infected specimens: Lecithodendrium linstowi (80.4\%), L. spathulatum (19.6\%), Prosthodendrium sp. (35.3\%), Plagiorchis koreamus (29.4) and Pycnoporus heteoporus (9.8\%). Statistical modelling of the data from the study showed there was no difference in overall prevalence between the sexes but interestingly, the male bat infections appeared to be more aggregated than that of females, and also less abundant. The statistical modelling also showed that there was a significant increase in prevalence and abundance throughout the period from September 2005 to September 2009, indicating that environmental factors can be important in regulating infections (Lord, 2010).

1.5.2 Protozoa:

Protozoa are microscopic one-celled organisms that can be free-living or parasitic in nature. They can infect humans and animals and the infection levels vary from asymptomatic to life threatening; virulence is dependent upon the species and also, the strain (Fenchel, 2013). There are several types of protozoan parasite that can infect bats such as the haematozoa Polychromophilus, Trypanosoma and Babesia, and also, gastrointestinal parasites such as Eimeria.

1.5.2.1 Coccidia:

Coccidiosis is a parasitic infection of the intestinal tract caused by coccidian protozoans from the genera Eimeria, Isospora, Toxoplasma, Cryptosporidium, and Sarcosystis (Duszynski, Scott, Aragon, Leach, \& Perry, 1999). The disease is transmitted between animals either by ingestion of infected faeces, or infected tissue. Most of the cases are asymptomatic; however, young or immunocompromised animals might have severe symptoms, including diarrhea which can escalate to death (Duszynski et al., 1999). Coccidia can infect different animals, including humans, birds, and livestock and infections are species specific. Coccidiosis is an economically important disease of cattle, sheep, goat, pigs, poultry, and rabbits in which the intestine, the liver and the kidneys (renal coccidiosis) can be affected.

Bats appear to be a host for multiple species of eimerian parasites. The study by Duszynski (1999), found that 29 out of 404 individual bats, representing 20 different species, were infected with eimerians, including 6 new species (Duszynski et al., 1999). A number of other bat parasite studies, from the Middle East and also North America, have also reported bat eimerian infections (Alyousif, Al-Dakhil, \& Al-Shawa, 1999; McAllister, Burt, Seville, \& Robison, 2011; McAllister, Seville, \& Roehrs, 2012). More recently, Cryptosporidium parasites have been isolated from Eptesicus fuscus in the USA and a pipistrelle bat from Czech Republic (Kváč et al., 2015).

Toxoplasma gondii is another coccidian parasite that has recently been detected in bats. Two bat species, the insectivorous Molossus molossus, and the haematophagous common vampire bat Desmodus rotundus, were shown to be infected by T. gondii in Brazil and the parasites were isolated and genotyped with a set of PCR-RFLP markers (Cabral et al., 2013). A study in China of 626 bats, representing 10 different species, showed that T. gondii was detected in bats at a prevalence of 6.1% (Jiang et al., 2014).

1.5.2.2 Kinetoplastids:

Kinetoplastids are a group of flagellate parasites which are responsible for different diseases in humans, other animals and even plants. The kinetoplastids include trypanosomes and Leishmania which are human pathogens causing devastating health impacts that include human African trypanosomiasis, Chagas disease and leishmaniasis (Stuart et al., 2008).

A number of different trypanosomatids and Leishmania species have been detected in bats, including parasites highly related to the causative agent of Chagas disease, Trypanosoma cruzi, designated genotype TcBat (Marcili et al., 2009; Pinto, Kalko, Cottontail, Wellinghausen, \& Cottontail, 2012). Moreover, study of a human T. cruzi infection has confirmed that it was comprised of a mixed infection with T. cruzi discrete typing unit I and the T. cruzi of bat origin, TcBat (Ramírez et al., 2014). Recent studies have also confirmed that Leishmania infantum, L. amazonensis (de Oliveira et al., 2015), and L. mexicana (Berzunza-Cruz et al., 2015) are present in a range of bat species. Such studies clearly highlight that bats may act as important reservoirs of zoonotic infection by kinetoplastids.

1.5.2.2.1: Trypanosoma:

There are three types of stercorarian trypanosomes that can infect bats; the Herpetosoma, Schizotrypanum, and Megatrypanum (Gardner, 1986; Molyneux, 1991). The majority of bat infections are caused by Schizotrypanum and Megatrypanum and Cimex is the only known vector of these parasites (Molyneux, 1991). The Schizotrypanum are considered to be the most interesting because of morphological similarity to Trypanosoma cruzi which infects humans. However, in vitro study of the Schizotrypanum is restricted due their lack of infectivity to common laboratory animals (Molyneux, 1991).

Recently, Hamilton et al. (2012) proposed the bat seeding hypothesis which argued that the common ancestor of the T. cruzi clade was a bat trypanosome and that these bat
trypanosomes diversified and became geographically widespread due to host migration. Various trypanosomes within this group independently switched from bats to terrestrial mammals to initiate seeding of the terrestrial lineage of the ancestral T. cruzi clade (Hamilton, Teixeira, \& Stevens, 2012).

1.5.2.2.1.1 Schizotrypanum:

The data from Hoare (1972), showed that bat Schizotrypanum (subgenus of Trypanosoma) can be differentiated from T. cruzi if large numbers of parasites are examined but if small numbers are examined, it cannot provide the basis for distinguishing between these parasites. Schizotrypanum trypomastigotes are C or S- shaped in blood smears and usually have a large terminal, or sub-terminal kinetoplast that can prevent the pointed end from being detected in stained preparations. The parasites have a free flagellum and the undulating membrane is usually not conspicuous. Also, the nucleus is usually found midway along the body of the organism. The length of bat trypanosomes is 14-24 um (Hoare, 1972). The description of two bat trypanosomes, T. hedricki and T. myoti, were explained by Bower and Woo in 1981. This description can apply to bloodstream forms of chronic infection with bat trypanosomes. Bower and Woo (1981), found that there are long slender trypomastigotes, which are present in the blood of the infected bats (Bower \& Woo, 1981). They found trypomastigotes of T. hedricki and T. myoti approximately 15 days post infection by inoculation of culture forms. The slender forms have an elongated nucleus, a free flagellum and a kinetoplast, which is distant from the posterior end. The same forms were found in individuals with acute infection of T. cruzi (Brener, 1969; Howells \& Chiari, 1975).

Amastigotes of T. dionisii, T. hedricki, and T. myoti in culture are similar to amastigotes of T. cruzi which are spherical and about $3 \mu \mathrm{~m}$ in diameter. Epimastigotes of these three parasite species vary in shape and size when observed in blood agar, or insect tissue culture medium. Bower and Woo (1981) stated that distinguishing between T. dionisii, T. myoti, T.
hedricki, and T. vespertilionis can be done by measuring the size of epimastigotes; T. vespertilionis is large in blood agar culture. Also, the distance between the nucleus and kinetoplast is greater in T. vespertilionis than the other three species. Another feature is the yellow-green pigments, which can be found in T. myoti, T. hedricki and T. dionisii when these are grown in blood agar media, whereas this is not found with T. vespertilionis. However, these pigments can be seen when the parasites are grown in medium 199 containing foetal calf serum (J. Baker, Miles, Godfrey, \& Barrett, 1978).

Metacyclic stages of bat Schizotrypanum are also important in species identification. Trypanosoma dionisii usually develops dimorphic metacyclic forms; these may be short broad, or long thin forms, when the parasite is maintained in blood agar cultures. In contrast, T. vespertilionis develops only short broad metacyclic trypomastigotes and these forms are usually with a terminal, or sub terminal kinetoplast. T. hedricki and T. myoti have the same metacyclic forms which are long and thin (J. Baker \& Thompson, 1971; R. Gardner \& Molyneux, 1988a).

1.5.2.2.1.2 Megatrypanum:

There are two types of bat Megatrypanum that were defined by Hoare (1972): T. megadermae and T. heybergi. The T. megadermae kinetoplast is usually near the posterior end and it is narrow and the nucleus fills the central part of the body. In contrast, parasites of T. heybergi are broader and the kinetoplast and nucleus are positioned close together. There are different Megatrypanum that have been described such as T. megadermae which measures $41.2 \mu \mathrm{~m}$ in length, . incertum measures $25.8 \mu \mathrm{~m}$, T. magnusi measures $27.5 \mu \mathrm{~m}$, and T. lizae measures 20-45 $\mu \mathrm{m}$ in length (Bandyopadhyay, Ray, \& Dasgupta, 1982; Deane, Sarjeant, \& Fernandez, 1978; Marinkelle, 1979). However, there have been few studies on the biology of Megatrypanum species of bats. Indeed, no dividing stages of T. incertum were found when a bat was euthanised three days after infection with T. incertum (Deane et al.,

1978; R. Gardner \& Molyneux, 1988b; Marinkelle, 1979). Another study failed to reveal any dividing trypanosomes of T. pessoai which is a T. heybergi- like trypanosome (R. Gardner \& Molyneux, 1988b; Molyneux, 1991).

1.5.2.3 UK Bat Protozoa:

A small number of classical parasitological studies have confirmed that UK bats are infected with haematozoa, including trypanosomes, B. vesperuginis and the haemosporidian Polychromophilus murinus (see references within Lord and Brooks, 2014). The most extensive bat parasite study conducted in the UK was carried out at The University of Salford in the 1980s (491 bats, representing 12 species) and many haematozoan parasites were recorded (R. A. Gardner, 1986). The most prevalent haematozoan, the Schizotrypanum, was detected in approximately 35% of pipistrelles examined and also, in several other bat species (R. Gardner \& Molyneux, 1988b). The Megatrypanum, T. incertum, was also detected in pipistrelles; most of which were captured from Aberdeenshire (R. Gardner \& Molyneux, 1988b). Gametocytes of the haemosporidian Polychromophilus murinus were found in onethird of Myotis daubentonii bats and the parasite was recorded in the wingless blood sucking Nycteribiid fly which likely explains the restricted host range (R. Gardner, Molyneux, \& Stebbings, 1987). The piroplasm Babesia vesperuginis was noted in the blood of pipistrelles and M. mystacinus and these bats exhibited high reticulocyte counts, lowered haemoglobin levels and splenomegaly (R. Gardner et al., 1987; R. A. Gardner, 1986). A veterinary pathology study of 245 UK bats has also confirmed that severe babesiosis can, in rare cases, result in bat mortality (Simpson, 2000). The vector of B. vesperuginis is reported as the soft tick, Argas vespertilionis (R. Gardner \& Molyneux, 1988b).

One of the few molecular studies carried out on UK bat haemoparasites used a PCR based strategy to confirm the presence of B. vesperuginis, T. dionisii and the haemobacterium Bartonella spp. in a number of bat species, including pipistrelles, from South West England
(Concannon et al., 2005). More recently, a molecular study of bat trypanosomes in southern England confirmed that T. dionisii was most prevalent; indeed, only a single T. vespertilionis infection was reported and this was in a N. noctula bat exhibiting a T. dionisii/T.vespertilionis mixed infection (Hamilton, Cruickshank, Stevens, Teixeira, \& Mathews, 2012). Further genetic examination of these T. dionisii parasites confirmed that they included new genotypes: T. dionisii group A was present in pipistrelle bats and was identical to previously described trypanosomes; however, T. dionisii group B (New 1) was reported in Serotine and Whiskered bats and T. dionisii group B (New 2) was isolated from Noctule bats (Hamilton, Cruickshank, et al., 2012). Since the T. dionisii group B genotypes were genetically closer to South American strains of T. dionisii than they were to T. dionisii group A, Hamilton et al. (2012) proposed that ancient bat movements are most likely to be responsible for the observed dispersal of these trypanosomes. Indeed, such ancient bat movements are most likely a major contributor to the bat seeding hypothesis proposed to explain the evolutionary history of T. cruzi (Hamilton, Teixeira, et al., 2012).

An extensive study of bats from Lancashire, recently carried out at Salford University, has confirmed the presence of trypanosomes, B. vesperuginis, Bartonella sp., Eimeria sp. (Lord, 2010) and T. gondii (Dodd et al., 2014) in pipistrelles. Since this bat population was the subject of this thesis work, further details of these infections will be presented in Chapter 3.

1.6 The Mammalian Immune System: an overview

The mammalian immune system is a remarkable complex of different biochemical processes to ensure an efficient recognition and destruction of pathogen threats to host viability (Dunkelberger \& Song, 2010). Mammals have evolved humoral (antibody-mediated) and cellular defense networks (Flajnik \& Kasahara, 2010) that together provide an adaptive immune response to assist the innate immune system in protecting against invasive pathogens (Medzhitov, 2007). The key features of the adaptive and innate immune systems are highlighted in Table 1.4.

Table1.5: Summary of the key differences between innate and adaptive immunity

Innate immunity	Adaptive immunity
Physical and chemical barriers, phagocytic	
leukocytes, dendritic cells, natural killer cells,	
and plasma proteins (complement).	B cells, which mature into antibody secreting
plasma cells.	
T cells, which mature into T-helper and cytotoxic	
	T cells.
Always present.	Normally silent until activated.
Recognises any foreign pathogens: bacteria, viruses, fungi, and parasites.	Recognises highly specific antigens.
Fast response time.	Slow response time: can take 1-2 weeks.
No memory cells.	Memory cells facilitate a more rapid response upon re-exposure.

1.6.1 General innate immune system features:

The innate immune response is an evolutionary ancient system that gives multicellular organisms a quick and immediate defense against different pathogens without requiring prior exposure to these pathogens (Male, Brostoff, Routh, \& Roitt, 2013; Vasselon \& Detmers, 2002). The importance of the innate immune system is to recognize different structures that are present in large group of microorganisms, to activate a suitable mechanism to rapidly kill these microorganisms, and then, to activate and orientate the adaptive immune response through lymphocyte expansion (Male et al., 2013; Medzhitov \& Janeway, 2000). The innate immune system is activated after a pathogen penetrates the host's physical barriers and it provides a non-specific response to a wide range of pathogens (Male et al., 2013; Medzhitov \& Janeway, 2000). The innate immune response is complex and consists of biochemical and
cellular pathways which have the ability to recognize a pathogen, actively remove it and then to activate the adaptive immune response. One of the important elements of the innate immune response is transmembrane molecules that interact with microbial organisms and signal to the intracellular compartment that a cellular response is required (Male et al., 2013; Medzhitov \& Janeway, 2000). Furthermore, the innate immune system recognizes the pathogen by detecting markers on them, which triggers the secretion of signaling molecules that attract other immune cells to try to fight the infection.

Phagocytes are a type of innate immune cell that ingests and degrades pathogens by expressing receptors that are able to detect pathogen associated molecular patterns (PAMPs). PAMPs are molecules that are absent from vertebrates but they are found in microorganisms (Male et al., 2013; Medzhitov \& Janeway, 2000). Toll-like receptors (TLRs), which are a family of pattern recognition receptors that interact with PAMPs, are really important since they play a vital role in pathogen sensing and act as the first line of defense against infections. TLRs are located at the surface of the innate immune cells, or within the endosomes inside cells, and they recognize different PAMPs. Upon recognition, TLRs dimerise and this initiates a biochemical cascade to alert other cells to the presence of a pathogen (Male et al., 2013; Medzhitov \& Janeway, 2000). Indeed, TLR interaction with PAMPs results in signaling events that activate genes that produce cytokines, such as tumor necrosis factor (TNF- α) interleukins (IL)1-6 and interferons (INF) for secretion from dendritic cells, macrophages, mast cells, and neutrophils (Male et al., 2013; Medzhitov \& Janeway, 2000). Cytokines are short-lived but they can act on multiple cellular targets to assist defense against the infection. For example, macrophages secrete TNF- α which acts on vascular walls to facilitate entry of complement and antibodies into tissues to attack an infection; IL- 1β assists immune cells exiting the blood and entering tissues and also, it activates lymphocyte cells and IL-6 activates lymphocytes and promotes antibody production (Male et al., 2013;

Medzhitov \& Janeway, 2000). In addition, interferons are particularly important in limiting the spread of certain viral infections. IFN- α and IFN- β are secreted by infected cells and IFNγ is released by activated T-helper cells $\left(\mathrm{TH}_{1}\right)$ (Male et al., 2013).

1.6.1.1 Toll-like receptors (TLRs):

Toll-like receptors (TLRs) are a group of receptor proteins that have a major role in the innate immune response (Netea, Brown, Kullberg, \& Gow, 2008). In a process called pattern recognition, they have the ability to detect pathogen molecules by binding to pathogenassociated molecular patterns (PAMPs) (Vasselon \& Detmers, 2002). TLRs are found in a variety of different cells including dendritic cells, monocytes, neutrophils and macrophages (Figure 1.2) (Netea et al., 2008).

Figure1.2: Toll-like receptors associated with different innate immune response cells (Netea et al., 2008).

There are at least 10 different TLR genes in mammalian species; for example, humans have 10 (TLRs 1-10) and mice have 12 (TLRs 1-9 and TLRs 11, 12 and 13) (Hopkins \& Sriskandan, 2005). The majority of TLRs exist as homodimers; however, TLR2 may form heterodimers with TLR 1 or 6 (McClure \& Massari, 2014). Each TLR has a specific ligand, location and outcome and it has evolved to be able to detect a specific type of infection (Figure 1.3). In addition, the TLR may require accessory molecules to function; for example, TLR4 requires ligand binding protein (LBP), myeloid differentiation protein-2 (MD-2) and CD-14 to assist it binding to bacterial lipopolysaccharide (McClure \& Massari, 2014).

TLRs $1,2,6$, and 10 , reside on plasma membranes and have the ability to detect components of microbial cell walls and membranes such as lipoproteins and peptidoglycans. TLR4 and TLR5 are also localised to the plasma membrane and recognise bacterial lipopolysaccharide (LPS) and flagellin respectively. In contrast, TLR9 is localised within the cell and detects bacterial DNA. TLRs 3, 7, 8 and 11 are also intracellular, being expressed within endosomal and lysosomal compartments (Hopkins \& Sriskandan, 2005). With the exception of TLR3, all TLRs require Myeloid Differentiation Factor (MyD88) for signalling. For TLRs 4 and 2, not only is MyD88 needed but also, the cooperation of Mal (MyD88-adaptor-like)/ TIRAP (TIR domain-containing Adaptor Protein) is required for signalling (McClure \& Massari, 2014). This ultimately leads to activation of $\mathrm{NF}-\mathrm{kB}$ and mitogen activated protein kinases (MAPKs) and then production of inflammatory cytokines and chemokines, mucins, defensins and type-II IFNs (McClure \& Massari, 2014). The endosomal associated TLRs 7, 8 and 9 are also able to promote type-I IFN production via the TNF receptor associated factor protein TRAF3 (McClure \& Massari, 2014). A MyD88-independent pathway is triggered by TLRs 3 and 4 and also, potentially by TLR2 (McClure \& Massari, 2014). For TLRs 3 and 4, this involves signalling via the TIR domain-containing adaptor protein inducing interferon- β (TRIF), with the TLR4 pathway also requiring activation of TRAM (TRIF-related adaptor
molecule) (McClure \& Massari, 2014). The MyD88-independent pathway leads to not only production of inflammatory mediators, mucins, defensins and type-II IFNs, but also, type-1 IFNs and IL-10 (McClure \& Massari, 2014). With regard to parasitic infections, different TLRs are involved in recognitions of parasitic infections and activating the immune system. For example, study of Leishmania major infection in TLR4 knockout mice has shown that TLR4 activates iNOS (inducible nitric oxide synthase) which leads to NO synthesis and parasite death (Kropf et al., 2004). T. cruzi glycosylphosphatidylinositol (GPI) anchors have been shown to be potent and effective initiators of TLR2 expression in Chinese hamster ovary cells transfected with TLR2 (Campos et al., 2001). Another study showed the importance of TLR9 in visceral leishmaniasis through NK cells activation. TLR9 is required for NK activation and this really important in the production of IL-12 by DCs which leads to good prognosis (Schleicher et al., 2007). In T. gondii infections, TLR2 and TLR4 might play an important role of the acute T. gondii infection (Peng et al, 2016). Other studies showed that TLR9 play an important role in the parasite recognition and also might play an important role in congenital toxoplasma infection (Wucicka, Wilczynski, \& Nowakowska, 2013). Application of live Schistosoma mansoni larvae, or soluble preparations derived from these larvae, to macrophages has shown that cytokine production is dependent upon activation of TLR4 (Jenkins, Hewitson, Ferret-Bernard, \& Mountford, 2005). Schistosomal lysophosphatidylserine has also been shown to activate dendritic cells via TLR2 signaling and this may contribute to polarisation of the immune response, via expansion of Tregulatory cells, to elicit the fibrotic, tissue destructive liver pathology associated with this parasite (Layland, Rad, Wagner, \& Da Costa, 2007; van der Kleij et al., 2002).

Toll-like receptor family and known active ingredients

Figure 1.3: TLRs 1-7 and TLR-9 and their potential targets (Japan Science and Technology Agency, 2009).

Many different studies have shown the importance of TLRs. For example, a polymorphism of TLR2 (G2258A), can down-regulate the inflammatory response to bacterial components and this correlates with an increase in the susceptibility to TB, especially in Asian and European individuals (Y. Zhang et al., 2013). In contrast, a TLR6 polymorphism (C745T) has been shown to correlate with a reduced risk of TB infection (Zhang et al., 2013).

1.6.2 The bat immune system:

Bats have the basic cellular components of the mammalian immune system: B cells, T cells, macrophages, lymphocytes, neutrophils, eosinophils, basophils and dendritic cells (Baker, Schountz, \& Wang, 2013; Sarkar \& Chakravarty, 1991; Turmelle, Jackson, Green, McCracken, \& Rupprecht, 2010). However, detailed studies of the bat immune system are relatively few compared to those of humans and other mammals such as rodents and hence much is still to be understood about how bats interact with infectious agents. With the notable exception of White Nose Syndrome, bats appear to tolerate many infections and this has led to the "flight-as-fever" hypothesis being proposed that argues that the increased
metabolism and high temperature experienced during flight may act as an adjuvant of the bat immune system to help control infections (O'Shea et al., 2014). Indeed, genome analysis of the Australian black flying fox Pteropus alecto and the vespertilionid Myotis davidii has provided evidence for positive selection on genes involved in DNA damage and repair (eg. p53, LIG4 and BRCA2) and innate immunity (eg. IL18, IFN- γ, IFNAR1 and IRAK4) lending support to the proposal that evolution of flight has shaped the bat genome to allow tolerance to viral infections (Zhang et al., 2013). The genome study also revealed that relative to humans, bats have lost (i) the PYHIN locus that is important for sensing microbial DNA and forming inflammasomes, (ii) killer cell lectin-like receptors and killer cell immunoglobulinlike receptors, both associated with NK cells and (iii) genes of the leukocyte receptor complex in P. alecto have failed to expand, as observed for humans and also M. davidii (Zhang et al., 2013). This data clearly indicates that intriguing differences have occurred following separation of the Yinpterochiroptera from the Yangochiroptera and also between bats and other mammals that could have profound implications for immunity.

Studies on a number of bat species show that the immunoglobulins $\operatorname{IgM}, \operatorname{IgE}, \operatorname{IgA}$ and multiple diversified IgG subclasses are expressed and that IgD expression may be restricted to insectivorous bats (Butler et al., 2011). Further analysis of immunoglobulin genes has revealed that in the pteropid bat, P. alecto, the antigen binding site of the variable region of the heavy chain is unusually rich in arginine and alanine residues whilst also having a lower proportion of tyrosines relative to other mammals; such differences may alter the antibodyantigen binding characteristics (Baker et al., 2013). It is likely that maternal IgG is transferred to bat offspring trans-placentally (Philbey et al., 2008) and also via the transmammary route (Butler \& Kehrli, 2004). The study of maternal antibodies to Hendra virus in a population of P. alecto showed that they had a half-life of 52 days and provided immunity to the pups for approximately 8.5 months (Epstein et al., 2013).

The ability to culture immortalized cell lines from P. alecto (Crameri et al., 2009), has established this bat species as a model system to investigate immunological responses in bats. Since interferons are pivotal to a rapid innate immune response in mammals, these have been investigated in some detail in the P. alecto system. Type-3 IFNs have been shown to be differentially expressed in P. alecto and upregulated upon viral challenges (Zhou et al., 2011). In contrast, type-1 IFNs were not upregulated following viral challenges (Zhou et al., 2011). The type-1 IFN family in P. alecto is contracted relative to other mammals; however, three of the type-1 IFN- α genes appeared to be constitutively active in bat tissues and cells and not affected by viral infection (Zhou et al., 2016). Interestingly, these IFN- α genes were able to induce a subset of IFN-stimulated genes linked to antiviral activity and so they may be crucial to bats ability to tolerate viral infections (Zhou et al., 2016). The interferon regulatory factor 7 (IRF7), a key regulator of IFN responses, was also found to be constitutively expressed in a range of immune and non-immune cells of P. alecto and activated by doublestranded RNA (Zhou et al., 2011). Use of siRNA technology to knockdown IRF7 in P. alecto kidney cells resulted in enhanced viral replication, confirming the importance of IRF7 in the innate antiviral response in bats. Bone marrow-derive dendritic cells and macrophages have recently been successfully isolated and cultured from P. alecto (Zhou et al., 2016) and this should now facilitate more detailed investigations of how the bat adaptive immune system responds to challenges. These approaches will complement genome-scale analyses being carried out on several bat species. For example, the major histocompatibility complex (MHC) I locus of P. alecto and Eptesicus fuscus has been studied and the data reveals that bat MHC-1 genes have an unusual insertion within their peptide binding grooves which may impact the efficiency and diversity of antigen presentation to T cells and hence contribute to control of viral replication (Ng et al., 2016). The transcriptome of P. alecto is also being investigated and this has revealed insight into the expression of approximately 500 immune
genes representative of both the innate and adaptive systems (Papenfuss et al., 2012). The advances made with establishing cell lines in P. alecto have facilitated the establishment of cell lines from a number of other species (Biesold et al., 2011; Eckerle et al., 2014; He et al., 2014; Mourya et al., 2013) including Myotis myotis (He et al., 2014). The M. myotis brain derived cell line has allowed a detailed analysis of lyssavirus infection in a natural reservoir host and revealed that the pattern recognition receptors RIG-1 and MDA-5 are highly upregulated following rabies infection, which is indicative of an IFN response (He et al., 2014).

With regard to immunology studies in other bat species, Stockmaier et al. (2015) tried to understand the acute phase immune reaction to a standard lipopolysaccharide challenge in Pallas's mastiff bats (Molossus molossus) and found that challenged bats, in stark contrast to other mammals, showed no leucocytosis or fever responses. The reasons for this unusual finding remain speculative but might be related to a potential trade-off between bat gene families that reduce metabolic stresses associated with flight and genes involved in immune responses (Stockmaier, Dechmann, Page, \& O'Mara, 2015). For example, M. molossus TLR4 haplotypes may exist that have lowered affinity for LPS and hence may either reduce, or eliminate a fever response (Stockmaier et al., 2015).

Bats have a complement system that can be readily assessed by assaying plasma proteins for microbicidal activity (Baker et al., 2013). Assessment of the complement system of hibernating little brown bats, M. lucifugus, at sites affected by White Nose Syndrome highlighted how the bat immune response can be impacted by both hibernation and also, by exposure to Pseudogymnoascus destructans, the causative agent of WNS (Moore et al., 2011). The bats complement activity was shown to be greatest against a gram-negative bacteria (Escherichia coli) than a gram-positive bacteria (Staphylococcus aureus) and to be least effective against a fungus (Candida albicans) (Moore et al., 2011). Furthermore, bats
hibernating at WNS-affected sites showed significantly elevated complement activities against Escherichia coli and Staphylococcus aureus and significantly lowered complement activity against the fungus Candida albicans when compared to bats hibernating at sites not affected by WNS (Moore et al., 2011). Interestingly, the microbicidal responses varied significantly across the hibernation period; however, the observed pattern for E. coli differed to that for S. aureus (Moore et al., 2011). The body condition of the bats, as measured by body mass index (BMI) was significantly reduced across the hibernation period in bats at WNS-affected sites compared to the unaffected sites (Moore et al., 2011). Moreover, at the WNS-affected sites, BMI was significantly higher during early hibernation compared to later stages and there was a significant and positive association between microbicidal activity of the plasma against E. coli and C. albicans and the BMI during the late hibernation period (Moore et al., 2011).
M. lucifugus bats from WNS-affected sites also showed significantly elevated leukocyte levels and significantly lowered IL-4 and antioxidant levels (Moore at al., 2013). Upon transcript analysis of lung tissue in P. destructans-infected M. lucifugus it was subsequently shown that transcripts for the antimicrobial peptide cathelicidin, was significantly elevated, indicating a specific immune response to the fungus (Rapin et al., 2014). Moreover, the cytokines TNF- α, IL-10 and IL-23 were also significantly elevated in the fungal-infected bats, suggesting that a defense response involving NFk-B and Th2 may be initiated (Rapin et al., 2014).

1.6.2.1 Bat TLRs:

A TLR gene study was carried out in P. alecto and the data confirmed that this bat has the same set of TLR (TLR1-10) genes as humans (Cowled et al., 2011). Comparison of the data to the draft genome data of the related pteropid, P. vampyrus, confirmed that the latter also contained the same complement of TLR genes and that the majority were located within a single exon (Cowled et al., 2011). Analysing the non-synonymous to synonymous nucleotide substitutions of the P. alecto TLRs to those in the human, cow and mouse genomes showed that there was weak negative selection upon the genes and hence likely evolutionary selection to conserve binding specificities (Cowled et al., 2011). Expression of viral sensing TLRs 3, 7,8 , and 9 was analysed in ten tissues from wild P. alecto bats and the data showed TLR3 was strongly expressed in liver, TLRs 7, 8 and 9 were strongly expressed in peripheral blood mononuclear cells and TLRs 8 and 9 were strongly expressed in the spleen (Cowled et al., 2011). The brain, kidneys and heart expressed low levels of the four TLRs (Cowled et al., 2011). The transcriptome study by Papenfuss et al. (2012) confirmed that all 10 TLRs of P. alecto were indeed expressed in the tissues/cells analysed: the spleen, lymph nodes and peripheral blood leukocytes.

TLRs 3, 7 and 9 have also been analysed in the fruit bat Rousettus leschenaultia and the data revealed that TLR3 was expressed highly in the liver whilst TLR 7 and 9 was most highly expressed in the spleen (Iha et al., 2010).

1.7 Study Aims/Hypothesis:

Bats appear able to tolerate high levels of many infectious agents, including parasites. However, given the difficulties associated with studying bats, there are not surprisingly few endoparasite studies in these hosts. Bat immunology is also relatively poorly understood compared to other mammals and most studies have focused upon interactions between hosts and viruses. To this end, work in this thesis is aimed at providing a comprehensive description of protozoan and bacterial infections in a population of pipistrelle bats from Lancashire that have already been well-studied; particularly at the level of helminth infections (Lord et al., 2012). The resulting infection data will then be analysed with respect to the host genetics; firstly by profiling the infections with respect to host genotype data generated in an earlier study (Dodd et al., 2014) and secondly, by investigating the innate immune system of these bats. With respect to this, isolation and sequencing of pipistrelle TLR genes (TLR2 and TLR4) will be carried out with a view to correlating parasite infection profiles to any TLR haplotypes. The study hypothesis is that host genetics, including innate immunity genes, are likely to influence infection outcomes and hence TLR gene variations will be observed in the bat population. Given the opportunistic sampling of hosts from the wild and hence multiple associated confounding factors, it is difficult to predict whether, or not, there might be a link between TLR haplotype and parasite infection profile.

Nonetheless, the study will address the hypothesis that a correlation might exist between the observed bat parasite infection profiles and particular TLR variants.

Materials and Methods

2.1 Bioinformatics and Primer design

2.1.1 Microparasites:

GenBank data (http://www.ncbi.nlm.nih.gov/) was analysed for bat Schizotrypanum DNA sequences and Eimeria spp. in order to design suitable primers for PCR based diagnosis of bat infections. The oligonucleotide sequences are shown in Table 2.1. A set of primers were designed for distinguishing between T. dionisii and T. vespertilionis using a nested PCR approach. These primer sequences were based upon the 18S rRNA trypanosome primers used by Lord (2010). In addition, two new sets of primers were designed based upon the 18 S rRNA gene sequences of trypanosomes to differentiate between T. dionisii and T. vespertilionis using a nested PCR approach. PCR primers were also designed to amplify T. dionisii GAPDH gene in order to sub- type this parasite using semi- nested PCR approach. Another set of oligonucleotide primers were designed based upon the 18S rRNA gene of Eimeria spp. in order to screen the bats for this coccidian infection. A further set of oligonucleotide primers were used to screen the bats for Cryptosporidium spp. by targeting the 18srRNA gene of this coccidian parasite. Two oligonucleotide primer sets were used to screen the bats for Bartonella spp. and Borrelia spp. infections based upon the citrate synthase (gltA) and 16 S rRNA genes respectively of these bacteria using a single round PCR strategy.

For primer design, all the sequences were aligned using Clustal W (http://www.ebi.ac.uk/Tools/msa/clustalo/) and regions of high conservation were scrutinized closely for primer design with the exception of the trypanosomes, were sequence differences were utilised for primer design. All oligonucleotide sequences were checked using Primer3 (http://primer3.ut.ee/) in order to ensure minimal design parameters which include annealing temperature and GC levels, were met.

Table 2.1: Parasite and bacterial oligonucleotide primers.

Organism	Target gene	Forward primer sequence and name	Reverse primer sequence and name	Product size	Ref
T. vespertilionis	$\begin{aligned} & 18 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	TVF: 5'CGTCACACTTCCACGTGTGTCA3'	$\begin{aligned} & \text { TVR: } \\ & \text { 5'TTAAAGGCCTCCGCTGGAA3' } \end{aligned}$	312 bp	$\begin{aligned} & \text { (Lord, } \\ & 2010) \end{aligned}$
T. dionisii	$\begin{aligned} & \hline 18 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	TryF: 5'CTAAGGCGCAATGGTTTAGTCCC3'	TryR: 5'GCGACGCGTGAAGATGGG3'	402 bp	
T. dionisii	GAPDH	GAPF: 5'ATATGAACACGGACGCGGAGT3'	$\begin{aligned} & \hline \text { GAPR: } \\ & \text { 5'CGCGCCAGTCCTTCAACG3' } \\ & \text { GAPRn: } \\ & \text { 5'CTGGGGTTGTACTCATGGTGG3' } \end{aligned}$	$\begin{aligned} & 525 \mathrm{bp} \\ & 355 \mathrm{bp} \end{aligned}$	
Eimeria spp.	$\begin{aligned} & 18 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	EimF: 5'CATAGTAACCGAACGGATCGC 3' EimFn: 5'AACGGGGAATTAGGGTTCGA 3'		1500 bp 753 bp	$\begin{aligned} & \hline \text { (Lord, } \\ & 2010) \end{aligned}$
Cryptosporidium spp.	$\begin{aligned} & \text { 18S } \\ & \text { rRNA } \end{aligned}$	F2: 5'-GACATA TCA TTC AAG TTT CTG ACC-3' F1: 5'-CCTATC AGC TTT AGA CGG TAG G-3'	```R2: 5'-CTG AAG GAGTAA GGA ACA ACC-3' R1: 5'-TCT AAG AAT TTCACC TCT GAC TG- 3'```	600 bp	(Ryan et al., 2003)
Bartonella spp.	citrate synthase gene (gltA)	781F: 5'GGGGACCAGCTCATGGTGG3' 443F: 5'GCTATGTCTGCATTCTATCA3'	1137R: 5'AATGCAAAAAGAACAGTAAACA3'	400 bp	(Birtles \& Raoult, 1996; Norman, Regnery, Jameson, Greene, \& Krause, 1995)
Borrelia spp.	$\begin{aligned} & 16 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	BorF: 5'-AGCCTTTAAAGCTTCGCTTGTAG- 3^{\prime}	BorR: 5'-GCCTCCCGTAGGAGTCTGG-3'	120 bp	(Sokhna et al., 2013)

2.1.2: TLRs:

A similar approach was adopted for designing of PCR primers to amplify P. pipistrellus TLR4 and TLR2 genes. GenBank data within NCBI (http://www.ncbi.nlm.nih.gov/) and Ensembl (http://www.ensembl.org/index.html) was analysed for any chiropteran TLR4 and TLR2 gene sequences and these extracted and TLR4 and TLR2 gene alignments were carried out using Clustal W (http://www.ebi.ac.uk/Tools/msa/clustalo/). Regions of high conservation were scrutinized closely for PCR primer design and then primer sequences (Table 2.2) were validated using Primer3 (http://primer3.ut.ee/) to ensure minimal criteria which include annealing temperature and GC levels, were met.

Table2.2: Primer sequences for PCR amplification of pipistrelle TLR4 and TLR2 genes.

Target gene	Forward primer sequence and name	Reverse primer sequence and name	Estimated product size
TLR4	TLR4F: 5'CTTGAGTTTCTAGATCTCAGTA3'	TLR4R: 5'AAAGTCTCTGTAGTGAAGGC3'	1000 bp
TLR4	TLR4-2F: 5'GGAAACCCTATCCAGAGTTTAGC3'	TLR4-2 R: 5'AATTGCCAGCCATTTTCAAGAC3'	1114 bp
TLR2	TLR2F: 5'ATGCCACATGCTTTGTGGA3'*	TLR2R: 5'TCCAGGTAGGTCTTGGTGTT3' *	1100 bp
TLR2	TLR2Fn: 5'CTGAGAGATACTCATTTGGA3'*	TLR2Rn: 5'CTTCTCCAGTTTCTTCTAAC3' *	500 bp
TLR2	TLR2gapF: 5'GAGACATTAACAATACGGAGG3'	TLR2gapR: 5'GTTCAAATACTTCATCCTTTCTG3'	400 bp

* Designed by Arianne Lovey (MSc student, University of Salford)

The Smart programme was used to make gene models from the pipistrelle TLR4 and TLR2 sequences (http://smart.embl-heidelberg.de/). Predicted glycosylation sites were determined using the_GlycoEP predictor (http://www.imtech.res.in/raghava/glycoep/submit.html). Mega 6 (http://www.megasoftware.net/) was used for creating phylogenetic trees. Different
methods were used to construct different trees, Neighbour- Joining tree, Minimum- Evolution tree, and UPGMA tree. Bootstrap method for was selected for all the trees with 500 replications (commonly used in many studies). Also, p- distance model was used to build the tree. This was used to measure the distance between the sequences (commonly used in many studies). Two outcome of each tree type was produced, one without outgroup and the other one with outgroup.

2.2 DNA Extraction:

DNA extraction was carried out using a spin column protocol (Isolate II Genomic DNA Kit, Bioline). Briefly, 25 mg of bat tissue, or organ (e.g. heart, spleen or intestine according to the parasite being investigated), was cut into small pieces with a sterile scalpel blade and placed into a 1.5 ml microcentrifuge tube. $180 \mu \mathrm{l}$ of lysis buffer GL and $20 \mu \mathrm{l}$ of Proteinase K was added to the sample and lysis at was allowed to proceed at $56^{\circ} \mathrm{C}$ for $1-3$ hours. The sample was vortexed for 15 seconds then $200 \mu 1$ of G3 buffer was added, and the sample was vortexed thoroughly and incubated for 10 minutes at $70^{\circ} \mathrm{C} .210 \mu \mathrm{l}$ of absolute ethanol was then added and the sample was vortexed and transferred into an isolate II spin column placed in a 2 ml collection tube and centrifuged for 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). The collection tube was discarded and the isolate II column was placed into a new collection tube. $500 \mu 1$ of GW1 buffer was added to the column and then it was centrifuged for 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). The collection tube was discarded and the isolate II column was placed into another collection tube and $600 \mu 1$ of GW2 buffer was added and centrifuged for a further 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). Again, the collection tube was discarded and the isolate II column was placed into a clean 1.5 microcentrifuge tube. $100 \mu \mathrm{l}$ of AE buffer was pipetted onto the membrane directly, and after incubation for 1 minute at room temperature, it was
centrifuged for 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17) to elute the purified DNA. The eluted DNA was stored at $-20^{\circ} \mathrm{C}$ until required for further analysis.

2.3 Polymerase Chain Reaction (PCR):

2.3.1 Schizotrypanum, Eimeria, and Cryptosporidium PCRs:

The PCR parameters used to detect T. dionisii, T. vespertilionis, Cryptosporidium spp. and Eimeria spp. DNA from the bat tissues are summarised in Table 2.3.

2.3.2: Bartonella and Borrelia PCRs:

The PCR parameters used to detect Bartonella spp. and Borrelia spp. DNA are summarised in Table 2.3. The only exception compared to the protozoan PCRs is the use of 2x MyTaq Red mix (Bioline) for the bacterial PCRs.

2.3.3 TLR4 and TLR2 PCRs:

The PCR parameters used to detect pipistrelle TLR4 and TLR2 genes are summarised in Table 2.3.

2.3.8 PCR optimisation:

All the PCRs were optimised with respect to temperature and Mg^{2+} concentration in order to improve target quantity and specificity. Essentially a temperature gradient was set up a cross the thermocycler plate in order to determine the optimal primer annealing temperature and then a dilution series of Mg^{2+} was employed in order to further enhance the recovery of PCR product.

Table 2.3: PCR cycling parameters utilised for microparasite and TLR gene amplifications.

Primer combinations	Target gene	$\begin{aligned} & \hline \mathrm{Mg}^{2+} \\ & (50 \\ & \mathrm{mM}) \end{aligned}$	Prime rs (10 pmol/ $\mu \mathrm{I})$	Taq polymer ase (5 units/ $\mu \mathrm{l}$) (Bioline)	Initial denaturati on (Time/Te mp)	Denaturat ion (Time/Te mp)	Annealin g (Time/Te mp)	Extension(Time/ Temp)	No. of cycl es	Final extension (Time/Te mp)
TvF/TvR	$\begin{aligned} & \hline 18 \mathrm{SrR} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 66^{\circ} \mathrm{C} \end{aligned}$	$30 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & \hline 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
TryF/TryR	$\begin{aligned} & \hline 18 \mathrm{SrR} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 30 \mathrm{sec} / \\ & 61^{\circ} \mathrm{C} \end{aligned}$	$30 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & \hline 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
EimF/EimR EimFn/EimRn	$\begin{aligned} & 18 \mathrm{SrR} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$1.25 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 64^{\circ} \mathrm{C} \end{aligned}$	$50 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \hline \text { F2/R2 } \\ & \text { F1/R1 } \end{aligned}$	$\begin{aligned} & \hline 18 \mathrm{SrR} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.0 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 30 \mathrm{sec} / \\ & 56^{\circ} \mathrm{C} \end{aligned}$	$30 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	45	$\begin{aligned} & 7 \mathrm{~min} / 72 \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \hline 443 \mathrm{~F} / 1137 \mathrm{R} \\ & 781 \mathrm{~F} / 1137 \mathrm{R} \end{aligned}$	citrate synthas e gene (gltA)	$\begin{aligned} & \text { My } \\ & \text { red } \\ & \text { taq } \\ & \text { mix } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \mu 1 \end{aligned}$	My red taq mix	$\begin{aligned} & 5 \min / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 10 \mathrm{sec} / \\ & 95^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 20 \mathrm{sec} / \\ & 50^{\circ} \mathrm{C} \end{aligned}$	$50 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & \hline 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
BorF/BorR	$\begin{aligned} & \hline 16 \mathrm{SrR} \\ & \mathrm{NA} \end{aligned}$	$\begin{aligned} & \hline \text { My } \\ & \text { re } \\ & \text { taq } \\ & \text { mix } \end{aligned}$	$\begin{aligned} & 1.0 \\ & \mu 1 \end{aligned}$	My red taq mix	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 30 \mathrm{sec} / \\ & 51^{\circ} \mathrm{C} \end{aligned}$	$30 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
TLR4F/TLR4R	TLR4	$\begin{aligned} & 1.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 30 \mathrm{sec} / \\ & 54^{\circ} \mathrm{C} \end{aligned}$	$60 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & \hline 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
TLR4-2F/TLR42R	TLR4	$\begin{aligned} & 1.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 58^{\circ} \mathrm{C} \end{aligned}$	$80 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & 10 \mathrm{~min} / \\ & 72{ }^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { TLR2-2F/TLR2- } \\ & \text { 2R } \end{aligned}$	TLR2	$\begin{aligned} & 1.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline 30 \mathrm{sec} / \\ & 53^{\circ} \mathrm{C} \end{aligned}$	$60 \mathrm{sec} / 72{ }^{\circ} \mathrm{C}$	35	$\begin{aligned} & 10 \mathrm{~min} / \\ & 72^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { TLR2Fn/TLR2R } \\ & \mathrm{n} \\ & \text { TLR2gapF/TLR } \\ & \text { 2gaPR } \end{aligned}$	TLR2	$\begin{aligned} & 1.5 \\ & \mu 1 \end{aligned}$	$\begin{aligned} & 2.5 \\ & \mu 1 \end{aligned}$	$0.5 \mu \mathrm{l}$	$\begin{aligned} & 5 \mathrm{~min} / 94 \\ & { }^{\circ} \mathbf{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 30 \mathrm{sec} / \\ & 53^{\circ} \mathbf{C} \end{aligned}$	$30 \mathrm{sec} / 72{ }^{\circ} \mathbf{C}$	35	10min/ $72{ }^{\circ} \mathrm{C}$

* All PCRs were carried out using the MultiGene OptiMax (Labnet International Inc.)

2.4 Agarose gel electrophoresis:

$1 \%(\mathrm{w} / \mathrm{v})$, or $2 \%(\mathrm{w} / \mathrm{v})$, agarose gels (Bioline) were prepared to check the specificity of the PCR end product. To prepare a 1% gel, 0.3 g of agarose was placed in a 250 ml conical flask and 30 ml of 1 x TBE buffer (Bioline) was added and then the mixture was heated in a microwave oven for 30 s at maximum power. The mixture was then swirled and heated for a
further 30 s to ensure that all the agarose powder had dissolved. The melted agarose was then placed onto a shaker and allowed to cool to approximately $50^{\circ} \mathrm{C}$. Then, $30 \mu 1$ of Gel Red (Biotium) was added, the mixture was gently swirled and the gel then poured into the gel casting tray using casting dams and a comb. After solidification the gel was then placed into the electrophoresis tank, covered with 1x TBE buffer (Bioline) and the casting dams and comb were removed. Samples were prepared ($10 \mu 1$ of sample $+5 \mu 1$ of loading dye (Bioline) and carefully aliquoted into the wells of the gel. Electrophoresis was allowed to proceed at 70 volts and after an appropriate period of time, the DNA was visualised using the UV transilluminator (SynGene). All gel images were saved as tiff files.

2.5 DNA concentration/purity:

Recovery of all DNA (bat and purified PCR products) was assessed with the NanoDrop spectrophotometer (ThermoFisher Scientific). The Nanodrop was blanked using distilled water. $1 \mu 1$ of the DNA was then added and absorbance readings at 260 nm and 280 nm were recorded. Also, an estimate of the purity of the DNA was determined using the ratio of the A260/A280 readings.

2.6 pGEM-T Easy vector cloning of PCR products:

$5 \mu 1$ of $2 x$ Rapid Ligation Buffer, $1 \mu 1$ of pGEM-T Easy vector (Promega), $1 \mu 1$ of T4 DNA Ligase and $2 \mu \mathrm{l}$ of PCR product were mixed and incubated for 1 hour at room temperature. After 1 hour, $100 \mu \mathrm{l}$ of E. coli competent cells (α-select, silver efficiency) (Bioline) was added to the pGEM-T easy reaction mix and the tube was incubated on ice for 30 minutes. The tube was then placed into a water bath at $42^{\circ} \mathrm{C}$ for 45 s and then placed again on ice for 2 minutes. $900 \mu \mathrm{l}$ of LB broth (Sigma-Aldrich) was added and the cells were shaken at 200 rpm for 1 hour at $37^{\circ} \mathrm{C}$. The cells were subsequently spread, using a sterilised spreader, onto LB agar plates containing $100 \mu \mathrm{~g} / \mathrm{ml}$ of ampicillin (Sigma-Aldrich). In addition, $10 \mu \mathrm{l}$ of 100 mM IPTG (filter sterilised) (Bioline) and $40 \mu \mathrm{l}$ of $200 \mathrm{mg} / \mathrm{ml} \mathrm{X}$-gal (in DMSO) (Promega) were also
spread onto the surface of the LB agar plate. Plates were inverted and incubated at $37^{\circ} \mathrm{C}$ overnight. White colonies were subsequently picked and grown to stationary phase in order to be further analysed by plasmid mini prep and restriction enzyme digestion.

2.7 Plasmid mini prep:

Plasmid mini preps were carried out to evaluate the white colonies (2.6) using the spin column protocol (Isolate II Plasmid Mini Kit) (Bioline). Briefly, 1-5 ml of stationary phase E. coli culture was pelleted for 30 s at $6,000 \mathrm{xg}$ (Fisher Scientific/AccuSpin Micro17). 250 $\mu \mathrm{l}$ of resuspension buffer P1 was added and the cell pellet was re-suspended by gentle pipetting. $250 \mu \mathrm{l}$ of lysis buffer P 2 was added to the sample and mixed by gently inverting the tube 6-8 times. The sample was then incubated at room temperature for 5 minutes, or until the lysate appeared clear. $300 \mu 1$ of neutralizing buffer P3 was then added and mixed thoroughly by inverting the tube 6-8 times. After centrifugation for 5 minutes at 11.6 xg (Fisher Scientific/ AccuSpin Micro17) the clear supernatant was transferred into an isolate II plasmid mini prep spin column which was then placed in a 2 ml collection tube and centrifuged for 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). The collection tube was discarded and the column was placed into a new collection tube. $500 \mu 1$ of PW1 buffer was added to the column and then it was centrifuged for 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). The collection tube was again discarded and the column placed into another collection tube. $600 \mu \mathrm{l}$ of PW2 buffer was added and the column was then centrifuged for a further 1 minute at 11.6 xg (Fisher Scientific/AccuSpin Micro17). The column was placed into a collection tube and centrifuged for 2 minutes at 11.6 xg (Fisher Scientific/AccuSpin Micro17) to remove residual ethanol. The column was then placed into a sterile 1.5 ml microcentrifuge tube and $50 \mu 1$ of elution buffer was pipetted directly onto the membrane. After incubation for 1 minute at room temperature, the sample was centrifuged for 1 minute at 11.6 xg (Fisher

Scientific/AccuSpin Micro17) to elute the purified DNA. The plasmid DNA was stored at $20^{\circ} \mathrm{C}$ until required for further analysis.

2.8 Restriction enzyme digestion:

To check for successful cloning of PCR products in the pGEM-T easy plasmid the purified plasmids were subjected to restriction enzyme digestion (New England Biolabs). The $20 \mu \mathrm{l}$ reaction mixture consisted of $2.0 \mu \mathrm{l} 10 \mathrm{x}$ Buffer 3.1, $0.5 \mu \mathrm{NcoI}(10$ units $/ \mu \mathrm{l}$), $1.0 \mu \mathrm{l}$ plasmid DNA and $16.5 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The reaction mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hour and then prepared for analysis by agarose gel electrophoresis.

2.9 DNA sequencing:

PCR products were purified using spin column technology, according to the manufacturer's instructions (Isolate II PCR and gel kit, Bioline). The concentration of DNA was measured using the NanoDrop spectrophotometer (2.5) and if necessary, it was adjusted using PCR grade water to the recommended concentration for DNA sequence analysis (Source BioScience). When possible, both forward and reverse primer sequencing was carried out and if required, any conflict was resolved by repeating the sequencing reaction. All the sequences were done directly from the purified PCR products of the pipistrelle bats samples except the first T. vespertilionis sequence which was done from cloned products due to the lack of the genomic DNA provided from Prof. Patrick Hamilton (University of Exeter).

All DNA sequencing was carried out by Source BioScience and the data were analysed by Finch TV (http://officialsite.pp.ua/?p=2958497), aligned by Clustal W (http://www.ebi.ac.uk/Tools/msa/clustalo/), and further analysed using Blast tools (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch) to check for other highly similar sequences.

2.10 Host/Parasite data:

Host and known parasite data for the pipistrelles were extracted from Lord (2010). Moreover, the final known locations of the bat specimens (Lord, 2010) were uploaded to Google maps (https://www.google.co.uk/maps/@53.5009883,-2.2676135,14z). Additionally, the pipistrelle genotyping data was extracted from Dodd et al. (2014).

2.11 Statistics:

Statistical analyses of the data were carried out using Minitab 16 (licensed to The University of Salford). Different tests were used to evaluate the significant of the data such as Fisher exact test, Chi- square test, and t-test. P-value was used to check the significant of the data for these test (p-value< 0.05 considers significant).

2.12 ethical reviews:

All the ethical reviews were done before this project when the samples first acquired by Jennifer Lord.

3. Results: Infection Data

A recent study of 100 pipistrelle bats (P. pipistrellus and P. pygmaeus), opportunistically sampled, where the bats, where found either dead or severely injured and then euthanised by the South Lancashire Bat Conservation Group, from sites across North West England (South Lancashire/Greater Manchester), showed that they were infected with a plethora of digenean trematodes (see Chapter 1, section 1.5.1.4) (Lord, 2010; Lord et al., 2012) and protozoans (Lord, 2010).

In the molecular based analysis carried out by Lord (2010), 37 of the pipistrelle bats (37\%) were confirmed infected with trypanosomes and the majority of these ($\mathrm{n}=29$) were designated as T. dionisii (Jennifer S Lord, 2010). However, absence of a T. dionisii positive control in the Lord (2010) study means that this species designation remains questionable. Additional analysis confirmed that 23% of the pipistrelle bats were positive by PCR for Babesia vesperuginis, 19\% were infected with Eimeria sp., and two bats were infected with the haemobacterium Bartonella sp. (Lord, 2010). The spleen sizes of the B. vesperuginis infected adult bats were significantly greater than the spleens of the uninfected bats (Jennifer S Lord, 2010), as noted elsewhere (Gardner et al., 1987). Further statistical analyses confirmed that there were no significant differences in the prevalences of Trypanosoma spp., B. vesperuginis or Eimeria sp. with respect to host sex, age and year of collection (Lord, 2010).

The Lancashire bat collection was also screened for the presence of T. gondii using highly sensitive and specific SAG1-PCR detection and the prevalence was reported as 10%; this was the first, and to date only report, of T. gondii in British bats (Dodd et al., 2014). Furthermore, a sub-population of the pipistrelles were genotyped using eleven polymorphic microsatellite
loci and the data showed that 83% of the bats were derived from one interbreeding population whilst the remaining 17% had mixed origins (Dodd et al., 2014). There appeared to be no correlation between the bat genotype and the T. gondii infection status (Dodd et al., 2014).

Based on the previous data (Dodd et al., 2014; Jennifer S Lord, 2010; Lord et al., 2012), the aims of this component of the thesis are to address the following unresolved areas: (i) to determine Schizotrypanum species identity in the pipistrelles by developing a reliable PCR strategy that is able to discriminate between T. dionisii and T. vespertilionis, (ii) to confirm the species identity of all 19 eimerian infections in the pipistrelle population, (iii) to develop a PCR screening approach based upon the Bartonella citrate synthase gene to determine the species of this bacterium in the pipistrelles, (iv) to develop PCR screening approach for detecting Cryptosporidium spp., and (v) Borrelia infections in the bat population and (vi) to analyse the parasite infection profiles with respect to host genotype data. Aims (i-v) will provide a more detailed picture of the protozoan and bacterial infections within the pipistrelle bats. Aim (vi) will allow the significance of the host genotype in conferring resistance/susceptibility to infection to be addressed.

3.1: B- tubulin PCR for DNA validity:

Figure3.1: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 50bp Hyperladder; 2, negative control $\left(\mathrm{H}_{2} \mathrm{O}\right)$; 3, bat DNA samples extracted from heart (bat codes: SA606)

Figure3.2: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 1kb Hyperladder; 2,4,6, negative controls ($\mathrm{H}_{2} \mathrm{O}$); 3,5,7, bat DNA samples extracted from heart (bat codes: JL650, P605, SP677)

Figure3.3: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 1kb Hyperladder; 2, negative control $\left(\mathrm{H}_{2} \mathrm{O}\right)$; 3-6, bat DNA samples extracted from heart (bat codes: SP852, SP682, JL719)

Figure3.4: Agarose gel (1\%) showing pipistrelle bat B- tubulin PCR. 1, 50bp Hyperladder; 2, negative control $\left(\mathrm{H}_{2} \mathrm{O}\right) ; 3$, bat DNA samples extracted from heart (bat codes: F 745)

After the DNA extraction, random samples were selected to check the integrity of the DNA using the B- tubulin primers. As the gel shows (Figure3.1-3.4), all the samples from pipistrelle bats were successfully produced a PCR product at the expected size (1000 bp) with the B- tubulin primers which means the DNA is good to use for further analysis.

3.2 Bat trypanosomes

3.2.1 The Schizotrypanum:

Primers were designed for distinguishing between T. dionisii and T. vespertilionis using a nested PCR approach that targeted the 18S rRNA gene of these trypanosomes (Lord, 2010).

Panel A:

T.vesp	1	GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA
T.dion	1	GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA

Panel B:

T.vesp 956	CAGTGTGACAAGCGGCCGGGTGCT-CT-T-TC-C-C-CCTT--C-G-G-G--GGGACGCA	1002
T.dion 958	CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA	1017
T.vesp 1003	CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTG	1062
T.dion 1018	CTCGTCGCCTTTGGGGGAAATCCG----TG--GC-GC--TGT-CGACGGACTT---C--G	1062
T.vesp 1063	TGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG	1122
T.dion 1063	-GTCCCATCTTCAC-GCGT-CGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGG	1119
Panel C:		
T.vesp 1361	ATCAATTTACGTGCATATTCTTTACGGTCCCCGCT-TTCCAGCGGAGGCCTTTAACGGGA	1419
T.dion 1360	AATAATTTACGTGCATATTCTTTTTGGTCCTCGTTCTTAC-GCGTGGGCCTTTAACGGGA	1418

```
Panel D:
T.vesp 2140 AAAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC 2179
    ||||||||||||||||||||||||||||||||||||
T.dion 2139 AAAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC 2178
```

Figure 3.5: Clustal W alignment for different regions of the Schizotrypanum 18S rRNA gene sequences extracted from NCBI GenBank: T. dionisii (gi|4468750|), T. vespertilionis (gi: $|4468775|)$: Panels A \& D: Green highlights generic primer binding sites (TgF and TgR), Panels $\mathrm{B} \& \mathrm{C}$: red shows the T. dionisii primer binding sites (TdF and TdR) and purple represents the T. vespertilionis primer binding sites. Additional primers were designed for T. dionisii and their annealing sites are shown in Panel $\mathrm{B} \& \mathrm{C}$ using brown and blue colouration. The full sequence alignment can be obtained from Appendix 1.

3.2.2 Schizotrypanum PCRs:

The specificity of the Schizotrypanum primers was assessed using purified genomic DNA extracted from T. dionisii and T. vespertilionis (kindly provided by Dr. Patrick Hamilton, University of Exeter). The PCR was carried out as described (2.3.1) and the products subjected to agarose gel electrophoresis (Figure 3.6).

Figure 3.6: Agarose gel (1\%) showing the T. dionisii and T. vespertilionis 18 S rRNA PCR products. 1, 100bp hyperladder; 2 and 3, T. dionisii genomic DNA target; 4 and 5, T. vespertilionis genomic DNA target. $\mathrm{d}^{\mathrm{PRI}}$ indicates primers designed to be specific for T. dionisii; $\mathrm{v}^{\mathrm{PRI}}$ indicates primers designed to be specific for T. vespertilionis. Footnote: primer annealing was $52^{\circ} \mathrm{C}$.

Based on the published 18S rRNA sequences and the expected primer binding sites, the anticipated sizes of PCR products for T. dionisii and T. vespertilionis were 332 bp and 312 bp respectively. The agarose gel (Figure 3.6) showed that the T. vespertilionis PCR might be specific because there was a product of the expected size (lane 4) and there was absence of product of this size when amplification was attempted using the T. vespertilionis primers with T. dionisii target DNA (lane 3). Although there was strong multi- band (non- specific) when the PCR was attempted using the T. vespertilionis primers with the T. dionisii target DNA (lane 3), none of the bands were at the expected product size and this then resolved by optimaisiting the temperature and the MgCl_{2} as shown below (section 3.2.3). The T.
vespertilionis PCR product was cloned into the pGEM-T easy plasmid and subsequent DNA sequence analysis confirmed that it was 100% identical to the T. vespertilionis 18 S rRNA gene sequence deposit in GenBank (AJ009166.1) (Figure 3.7 \& Table 3.1). Due to lack of T. vespertilionis genomic DNA, this plasmid was subsequently used as the T. vespertilionis positive control for PCRs attempting to discriminate between Schizotrypanum infections in the bats.

Although the T. dionisii primer set produced a PCR product of the expected size (Figure 3.6, lane 2), this product was also observed when the primers were used with T. vespertilionis DNA (lane 5). As such, these T. dionisii primers were considered not to be specific and hence they were not used to screen bat samples.

T.vesp	GACGCACTCGTCGCCTTTGTCGGA	24
AJ009166.1	TGACAAGCGGCCGGGTGCTCTTTCCCCCTTCGGGGGGACGCACTCGTCGCCTTTGTCGGA	1020
T.vesp	AATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTGTGTCACACGCGCCCTGCC	84
AJ009166.1	AATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTGTGTCACACGCGCCCTGCC 	1080
T.vesp	TGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGGTAGTTCGGGGGAGAACGT	144
AJ009166.1	TGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGGTAGTTCGGGGGAGAACGT 	1140
T.vesp	ACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACGAACTACAGCGAAGGCATT	204
AJ009166.1	ACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACGAACTACAGCGAAGGCATT 	1200
T.vesp	CTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGATCGAAGATGATTAGAGAC	264
AJ009166.1	CTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGATCGAAGATGATTAGAGAC 	1260
T.vesp	CATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGGGAGTTTTTGGTCGTTAGG	324
AJ009166.1	CATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGGGAGTTTTTGGTCGTTAGG 	1320
T.vesp	CGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAATATCAATTTACGTGCATATTC	384
AJ009166.1	CGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAATATCAATTTACGTGCATATTC ***)	1380
T.vesp	TTTACGGTCCCCGCTTTCCAGCGGAGGCCTTTAACGGGAATATCCTCAGCACGTTATCTG	444
AJ009166.1	TTTACGGTCCCCGCTTTCCAGCGGAGGCCTTTAACGGGAATATCCTCAGCACGTTATCTG 	1440
T.vesp		475
AJ009166.1	ACTTCTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTG	1500

Figure 3.7: Clustal W alignment of the sequence of the 18S rRNA PCR product derived from T. vespertilionis genomic DNA with the T. vespertilionis 18 S rRNA sequence deposited in GenBank (AJ009166.1).

Table 3.1: BlastN summary data for the T. vespertilionis 18 S rRNA PCR product.

Highly similar sequence	Max score	Total score	Query cover	E value	Iden	GenBank Accession number
Trypanosoma vespertilionis 18S rRNA gene, isolateP14	857	857	100%	0.0	100%	AJ009166.1
Trypanosoma conorhini 18 S ribosomal RNA gene, partial sequence	693	693	94%	$4 \mathrm{e}-163$	91%	KP899113.1

3.2.3 PCR optimisations using the T. vespertilionis 18S rRNA plasmid construct:

Prior to screening bat samples, the T. vespertilionis primer set was optimised to improve the recovery of specific PCR product. The optimisation was carried out using the pGEM-T Easy plasmid construct containing the 18 S rRNA fragment due to lack of T. vespertilionis genomic DNA.

3.2.3.1 Temperature gradient:

The effect of temperature on the performance of the T. vespertilionis PCR was assessed between $60-68^{\circ} \mathrm{C}$. The Mg^{2+} concentration was set at 1.5 mM throughout this temperature optimisation as recommended by the manufacturer.

Figure 3.8: Agarose gel (1\%) showing temperature gradient optimisation of the T. vespertilionis primers between $60^{\circ} \mathrm{C}$ and $68{ }^{\circ} \mathrm{C} .1,1 \mathrm{~kb}$ hyperladder; $2-6$, T. vespertilionis 18S rRNA plasmid DNA target with T. vespertilionis primers used at the incremental annealing temperatures shown; $7-11$, T. dionisii genomic DNA target with T. vespertilionis primers used at the incremental annealing temperatures shown.

From the above (Figure 3.8), it appeared that $66^{\circ} \mathrm{C}$ (lane 5) was the optimal temperature for PCR amplification of a T. vespertilionis 18 S rRNA PCR product. Although there was a PCR product with the T. dionisii genomic DNA controls (lanes 7-11), this consistently appeared as a doublet and hence was distinguishable from the T. vespertilionis specific product.

3.2.3.2 MgCl_{2} optimization:

To further optimize the T. vespertilionis reaction, PCRs were carried out in the presence of a MgCl_{2} concentration gradient that ranged from $0.5-1.5 \mathrm{mM}$.

Figure 3.9: Agarose gel (1\%) showing MgCl 2 optimisation of the T. vespertilionis PCR. 1, 1 kb hyperladder; $2-6, T$. vespertilionis 18 S rRNA plasmid DNA target with T. vespertilionis primers at incremental $(0.25 \mathrm{mM}) \mathrm{MgCl}_{2}$ concentrations between 0.5 and 1.5 mM$) ; 7-11, T$. dionisii genomic DNA target with T. vespertilionis primers at incremental (0.25 mM) MgCl_{2} concentrations between 0.5 and 1.5 mM ; lane 12, 1 kb hyperladder. Footnote: the primer annealing temperature was kept at a constant $66^{\circ} \mathrm{C}$ for all reactions.

As shown above (Figure 3.9), the optimal Mg^{2+} concentration for PCR amplification of the T. vespertilionis 18 S rRNA gene was 1.5 mM (lane 6). Importantly, the combination of $66^{\circ} \mathrm{C}$ primer annealing with $1.5 \mathrm{mM} \mathrm{Mg}^{2+}$ also enhanced the specificity of the primers since no product was produced with the T. dionisii genomic DNA using these conditions (lane11).

Figure 3.10: Agarose gel (1\%) confirming the specificity of the T. vespertilionis 18S rRNA PCR at the optimised cycling conditions (660 C primer annealing \& $1.5 \mathrm{mM} \mathrm{Mg} 2+$) using genomic DNA targets. 1, 1 kb hyperladder; 2 and 3, T. dionisii DNA target; 4 and 5, T. vespertilionis DNA target. $\mathrm{d}^{\mathrm{PRI}}$ indicates primers designed to be specific for T. dionisii; $\mathrm{v}^{\mathrm{PRI}}$ indicates primers designed to be specific for T. vespertilionis.

To further confirm the specificity of the optimised T. vespertilionis reaction, the PCRs were repeated using the optimal cycling conditions with T. vespertilionis and T. dionisii genomic DNAs (Figure 3.10). The expected 312bp T. vespertilionis product was produced specifically with T. vespertilionis genomic DNA (lane 4). As observed previously (Figure 3.6), no PCR product was generated using the T. vespertilionis primers with T. dionisii genomic DNA (lane 3). The T. vespertilionis PCR product was sequenced to confirm reaction specificity and the results were as previously documented (Figure 3.7 \& Table 3.1). Repeated attempts to optimise the specificity of the T. dionisii primer set proved unsuccessful and hence primer redesign was undertaken (see section 3.2.5).

3.2.4 Screening Bat Samples with the T. vespertilionis Primers

Figure 3.11(A): A representative agarose (1%) gel image showing analysis of T. vespertilionis 18 S rRNA PCR products derived from bat heart DNA samples. 1, 100bp hyperladder; 2-10, bat DNA samples extracted from heart; 11, +ve control (T. vespertilionis 18 S rRNA PCR product cloned into the pGEM-T Easy plasmid). Positive reactions have occurred in lanes 2, 4, 6, and 9 (bat codes: SA606, JL658, S679, JL709).

Figure 3.11(B): A representative agarose (1\%) gel image showing analysis of T. vespertilionis 18 S rRNA PCR products derived from bat spleen DNA samples. 1, 1kb hyperladder; 2-15, bat DNA samples extracted from spleen; 16, +ve control (T. vespertilionis PCR product cloned into the pGEM T-Easy plasmid). Positive reactions have occurred in lanes 8 and 10 (bat codes: SA606, JL709).

Bat heart and spleen DNA samples were screened using the optimised T. vespertilionis PCR conditions and 4 samples were positive for T. vespertilionis infection as shown (Figure 3.11 (A), lanes 2, 4, 6, 9 \& Figure 3.11 (B), lanes 8, 10). Two of the samples were positive for both bat heart and spleen DNA targets (codes: SA606, JL709). The other two bats (codes: JL658, S679) were only diagnosed as positive by screening bat heart DNA. The PCR products were purified and DNA sequencing was performed (Figure 3.12).

AJ009151.1		1059
SA606	--GCGTCACACTTCCACGTG	18
AJ009166.1	CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTG	1062
	*	
AJ009151.1	TCGGTCCCATCTTCACGCGTCGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGG	1119
SA606	TGTCACACGCGTCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG	78
AJ009166.1	TGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG	1122

AJ009151.1	TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG
SA606	TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACTGCACCAAGACG
AJ009166.1	TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG
	$* *$

AJ009151.1	AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA
SA606	AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA

AJ009151.1	TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG
SA606	TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG
AJ009166.1	TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG
	$t *$

AJ009151.1	GAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTCACCCCGCTCCTCGTCTCGCCAATGAATG	1359
SA606	GAGTTTTTGGTCGTTAT-GCGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAAT-	
AJ009166.1	GAGTTTTTGGTCGTTAG-GCGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAAT-	

AJ009151.1	AATAATTTACGTGCATATTCTTTTTGGTCCTCGTTCTTACGCGTGGGCCTTTAACGGGAA	1419
SA606	ATCAATTTACGTGCATATTCTTTACGGTCCCCGCTTTCCAGCGGAGGCCTTTAAC------	371
AJ009166.1	ATCAATTTACGTGCATATTCTTTACGGTCCCCGCTTTCCAGCGGAGGCCTTTAACGGGAA	1420

Figure 3.12: Clustal W alignment of a representative T. vespertilionis 18 S rRNA PCR product derived from bat specimen SA606 with T. dionisii (AJ009151.1) and T. vespertilionis (AJ009166.1) 18S rRNA sequences extracted from NCBI GenBank.

Table 3.2: BlastN summary data for the T. vespertilionis 18 S rRNA PCR product.

Highly similar sequence	Max score	Total score	Query cover	E value	Iden	GenBank Accession number
Trypanosoma vespertilionis 18S rRNA gene, isolate P14	669	669	100%	0.0	99%	AJ009166.1
Trypanosoma conorhini 18S ribosomal RNA gene, partial sequence	586	586	94%	$1 \mathrm{e}-163$	97%	KP899113.1
Trypanosoma dionisii 18 S rRNA gene, isolate P3	507	507	89%	$2 \mathrm{e}-147$	90%	AJ009151.1

The sequence of all four PCR products (derived from bats: SA606, JL658, SP679, and JL709) were identical to each other and most similar to the 18 S rRNA of T. vespertilionis isolate P14 (Stevens, Noyes, Dover, \& Gibson, 1999). However, the pipistrelle derived 18S rRNA sequences were not 100% identical to the GenBank deposit (Table 3.2); two nucleotide changes were noted at positions 1074 and 1171 of the P14 isolate (Figure 3.12).

3.2.5 Trypanosoma dionisii PCR primer re-design:

The lack of T. dionisii and T. vespertilionis DNA sequences deposited in GenBank precluded the targeting of other genes for Schizotrypanum species identification and hence additional T. dionisii 18 S rRNA primers were designed in an attempt to improve the specificity of the analysis using the nested PCR approach.

AJ009166.1	TTCGTAGTTGAATTGTGGGCCTTCGAGGCGCAATGGTTTAGTCCCGTCCACTTCGGATTG	716
AJ009151.1	TTCGTAGTTGAATTGTGGGCCTCTAAGGCGCAATGGTTTAGTCCCATCCACTTCGGATTG	718
AJ009166.1	GTGACCCATGCCCTTGAGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCT	776
AJ009151.1	GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC **************** **)	778
AJ009166.1	TT-CTGATTTCCGCATGTCATGCATGCCAGGGGGCGCCCGTGATTTTTTACTGTGACTAA	835
AJ009151.1	TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACTAA	837
AJ009166.1	AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC	895
AJ009151.1	AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC ***)	897
AJ009166.1	AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG	955
AJ009151.1	AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG 	957
AJ009166.1	CAGTGTGACAAGCGGCCGGGTGCTCTTTCCCCCTTCGGGGGGACGCA--------------1-1	1002
AJ009151.1	CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA	1017
AJ009166.1	CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTG	1062
AJ009151.1		1059
AJ009166.1	TGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG	1122
AJ009151.1	TCGGTCCCATCTTCACGCGTCGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGG	1119

Figure 3.13: Clustal W alignment for a region of the Schizotrypanum 18S rRNA genes extracted from NCBI GenBank: T. dionisii (AJ009151.1) and T. vespertilionis (AJ009166.1).

Red text shows the T. dionisii primer binding sites (TrypF and TrypR). The full sequence alignment can be obtained from Appendix 1.

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1
--------ACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA 53 GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA 417 GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA 418 GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA 418

GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA 113 GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA 477 GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA 478 GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA 478

AAAAAACACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTTTTGCATTGTCGTTT 173 AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTT-TGCATTGTCGTTT 536 AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTTTTGCATTGTCGTTT 538 AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTTTTGCATTGTCGTTT 538

TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG 233 TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG 596 TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG 598 TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG 598

CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG 293 CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG 656 CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG 658 CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG 658

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058. AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ0 09151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

TTCGTAGTTGAATTGTGGGCCTCTATAAGGCGCAATGGTTTAGTCCCATCCACTTCGGAT 353 TTCGTAGTTGAATTGTGGGCCTT--CGAGGCGCAATGGTTTAGTCCCGTCCACTTCGGAT 714 TTCGTAGTTGAATTGTGGGCCTC--TAAGGCGCAATGGTTTAGTCCCATCCACTTCGGAT 716 TTCGTAGTTGAATTGTGGGCCTC--TAAGGCGCAATGGTTTAGTCCCATCCACTTCGGAT 716

TGGTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAGAAACACGGGAGTGGTAC 413 TGGTGACCCATGCCCTTGAGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTAC 774 TGGTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTAC 776 TGGTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTAC 776

CCTTTCTGATTTTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACT 472 CTTT-CTGATTTCCGCATGTCATGCATGCCAGGGGGCGCCCGTGATTTTTTACTGTGACT 833 CCTTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACT 835 CCTTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACT 835

```
* ** ****** *********************************************
```

AAAAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGA 532 AAAAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGA 893 AAAAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGA 895 AAAAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGA 895 $\star \star * ~$

GCAGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGG 592 GCAGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGG 953 GCAGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGG 955 GCAGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGG 955

GGCAGTGTGACAAGCGGCTGGGTGATGATATCCCACACAACACACCTTCACTGCGTGTTT 652 GGCAGTGTGACAAGCGGCCGGGTGCTCTTTCCCCCTTCGGGGGGACGCA------------1002 GGCAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTG---------1007 GGCAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTG-------- 1007 ****************** ***** * * *** **

TTGTGTGGCACACTCGTCGCCTTTGGGGGAAATTCGTGGCGCTG-------------------- 696 -------------CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCA 1050 --TTGTGGCACACTCGTCGCCTTTGGGGGAAATCCGTGGCGCTGTCGA------------1053 --TTGTGGCACACTCGTCGCCTTTGGGGGAAATCCGTGGCGCTGTCGA--------------1053 ************* ****** ** * **

TTGACACGGACTTCGGTCCCATCTTCACGCGTCGCCTTCCTTCAACTCACGGCATCCAGG 756 CACTTCCACGTGTGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGG 1110 -------CGGACTTCGGTCCCATCTTCACGCGTCGCCTTCCCTCAACTCACGGCATCCAGG 1107 ------CGGACTTCGGTCCCATCTTCACGCGTCGCCTTCCCTCAACTCACGGCATCCAGG 1107 AATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGAC 816 AATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGAC 1170 AATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGAC 1167 AATGAAGGAGGGTAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGAC 1167

CGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACC 876 CGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACC 1230 CGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACC 1227 CGCACCAAGACGAACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACC 1227

AAAGTGTGGGGATCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACAC 936 AAAGTGTGGGGATCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACAC 1290 AAAGTGTGGGGATCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACAC 1287 AAAGTGTGGGGATCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACAC 1287 **)

CCATGAATTGGGGAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTTACCCCGCTCCATCGTC 996 CCATGAATTGGGGAGTTTTTGGTCGTTA-GGCGAGGTCGGGTTCATCTCGCT-CCTCGTC 1348 CCATGAATTGGGGAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTCACCCCGCT-CCTCGTC 1346 CCATGAATTGGGGAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTCACCCCGCT-CCTCGTC 1346

TCGCCAATGAATGAATAATTTACGTGCATATTCTTTTTGGTCCTCGTTTATTTTTTTTAT 1056 TCGCCAATGAAT-ATCAATTTACGTGCATATTCTTTACGGTCCCCG-------CTTTCCA 1400 TCGCCAATGAATGAATAATTTACGTGCATATTCTTTTTGGTCCTCG-------TTCTTAC 1399 TCGCCAATGAATGAATAATTTACGTGCATATTCTTTTTGGTCCTCG-------TTCTTAC 1399

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN5 99058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN5 99058.1 AJ009166.1 AJ009151.1 AJ009152.1

FN599058.1 AJ009166.1 AJ009151.1 AJ009152.1

GCGTGGGCCTTTAACGGGAATATCCTCAGCACGTTATCTGACTTCTTTACGCGAAAGCTT 1116 GCGGAGGCCTTTAACGGGAATATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTT 1460 GCGTGGGCCTTTAACGGGAATATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTT 1459 GCGTGGGCCTTTAACGGGAATATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTT 1459

TGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGG 1176 TGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGG 1520 TGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGG 1519 TGAGGTTACAGTCTCAGGGGGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGG 1519

AATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACC 1236 AATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACC 1580 AATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACC 1579 AATGGCACCACAAGACGTGGAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACC 1579 $\star * ~$

AGATCCGGACAGGGTGAGGATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTG 1296 AGATCCGGACAGGGTGAGGATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTG 1640 AGATCCGGACAGGGTGAGGATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTG 1639 AGATCCGGACAGGGTGAGGATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTG 1639 $\star * ~$

GTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAG 1356 GTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAG 1700 GTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAG 1699 GTGCATGGCCGCTTTTGGTCGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAG 1699

ATCCAAGCTGCCCAGTAGGATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTT 1416 ATCCAAGCTGCCCAGTAGGATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTT 1760 ATCCAAGCTGCCCAGTAGGATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTT 1759 ATCCAAGCTGCCCAGTAGGATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTT 1759

TTACCCAAGGGGGGGCGGTATTCGTTTGT---1445 TTACCCAAGGGGGGGCGGTATTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTCGCGC 1820 TTACCCAAGGGGGGGCGGTATTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTTGCGC 1819 TTACCCAAGGGGGGGCGGTATTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTTGCGC 1819 *****************************

Figure3.14: Clustal W alignment for a region of the Schizotrypanum 18S rRNA genes extracted from NCBI GenBank: T. dionisii (AJ009151.1/ FN599058.1/ AJ009152.1) and T. vespertilionis (AJ009166.1). Red text shows the T. dionisii primer binding sites (TrypF and TrypR).

After aligning the other two sequences for the T. dionisii the primer sites were checked, it appeared no differences between the sequences of T. dionisii and the primers were the sites were the best sites to design primers from since it has the most variability to distinguish between the two Schizotrypanum species.

Due to the lack of T. dionisii genomic DNA, it was not possible to establish an optimised set of PCR cycling parameters for the new T. dionisii primers. Consequently, bat heart and
spleen DNA samples were screened by PCR using the predicted Primer3 optimal annealing temperature $\left(61^{\circ} \mathrm{C}\right)$. The expected T. dionisii 18 S rRNA PCR product size was 402 bp .

Figure 3.15 (A): A representative agarose (1\%) gel image showing analysis of T. dionisii 18S rRNA PCR products derived from bat heart DNAs. 1, 100bp hyperladder; 2-8, bat DNA samples extracted from heart (bat codes: SP670, SP677, PB601, JL650, FP751, JL714, P605); 9, negative control DNA (bat code: SA606; confirmed positive for T. vespertilionis)

Figure 3.15 (B): A representative agarose (1\%) gel image showing analysis of T. dionisii 18S rRNA PCR products derived from bat spleen DNAs. 1, 1 kb hyperladder; 2, negative control (bat code: SA606; confirmed positive for T. vespertilionis); 3-13, bat DNA samples extracted from spleen (bat codes: PB601, JL650, FP751, JL714, SP670, JL708, SP677, JL627, P605, JL648, JL652); 14, 1kb hyperladder.

When comparing the heart and spleen PCRs, 90% of the bat samples $(\mathrm{n}=9)$ were positive for both heart and spleen infection. The remaining T. dionisii infection ($\mathrm{n}=1$) was determined on the basis of a positive PCR amplification from just bat heart DNA (Figure 3.15(A, B)). The PCR products were purified and following DNA sequencing, all were identical to each other and to the 18 S rRNA of T. dionisii isolate P3 (Stevens et al., 1999) (Figure 3.16 \&

Table 3.3).

```
CLUSTAL O(1.2.1) multiple sequence alignment
AJ009166.1 TTCGTAGTTGAATTGTGGGCCTTCGAGGCGCAATGGTTTAGTCCCGTCCACTTCGGATTG }71
M, TCTAAGGCGCAATGGTTTAGTCCCATCCACTMCGGATMG
AJ009151.1 TTCGTAGTTGAATTGTGGGCCTCTAAGGCGCAATGGTTTAGTCCCATCCACTTCGGATTG 718
AJ009166.1 GTGACCCATGCCCTTGAGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCT }77
P605 GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC
99
AJ009151.1

> GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC99
AJ009151.1 GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC 778
```

AJ009166.1	TT-CTGATTTCCGCATGTCATGCATGCCAGGGGGCGCCCGTGATTTTTTACTGTGACTAA
P605	TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACTAA
AJ009151.1	TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACTAA

```
AJ009151.1
``` TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACTAA
\(\star *\)
\begin{tabular}{|c|c|c|}
\hline AJ009166.1 & AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC & 895 \\
\hline P605 & AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC & 218 \\
\hline AJ009151.1 & \begin{tabular}{l}
AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC \\

\end{tabular} & 897 \\
\hline AJ009166.1 & AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG & 955 \\
\hline P605 & AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG & 278 \\
\hline AJ009151.1 & \begin{tabular}{l}
AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG \\

\end{tabular} & 957 \\
\hline AJ009166.1 & CAGTGTGACAAGCGGCCGGGTGCTCTTTCCCCCTTCGGGGGGACGCACTCGTCGCCTTTG & 1015 \\
\hline P605 & CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA & 338 \\
\hline AJ009151.1 & \begin{tabular}{l}
CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA \\
**************** ***** * * *** * **
\end{tabular} & 1017 \\
\hline AJ009166.1 & TCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTGTGTCACACGCGCC & 1075 \\
\hline P605 & CTCGTCGCCTTTGGGGGAAATCCGTGGCGCTGTCGACGGACTTCGGTCCCATCTTCACGC & 398 \\
\hline AJ009151.1 & & 1077 \\
\hline AJ009166.1 & CTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGGTAGTTCGGGGGAG & 1135 \\
\hline P605 & & 403 \\
\hline AJ009151.1 & \begin{tabular}{l}
GTCGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGGTAGTTCGGGGGAGAACGT \\
* *
\end{tabular} & 1137 \\
\hline
\end{tabular}

Figure 3.16: Clustal W alignment of a representative T. dionisii 18S rRNA PCR product derived from bat specimen P605 with the T. dionisii (AJ009151.1) and T. vespertilionis (AJ009166.1) 18S rRNA sequences deposited in NCBI GenBank.

Table 3.3: BlastN summary data for the T. dionisii 18 S rRNA PCR product derived from pipistrelle P605.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
Accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Trypanosoma dionisii 18S rRNA \\
gene, isolate P3
\end{tabular} & 745 & 745 & \(100 \%\) & 0.0 & \(100 \%\) & AJ009151.1 \\
\hline \begin{tabular}{l}
Trypanosoma dionisisi culture- \\
collection TCCUSSP495 18S \\
ribosomal RNA gene, complete \\
sequence
\end{tabular} & 723 & 723 & \(100 \%\) & 0.0 & \(99 \%\) & FJ001667.2 \\
\hline \begin{tabular}{l}
Trypanosoma vespertilionis 18S \\
rRNA gene, isolate P14
\end{tabular} & 508 & 508 & \(85 \%\) & \(5 \mathrm{e}-148\) & \(91 \%\) & AJ009166.1 \\
\hline
\end{tabular}

\section*{Another set of PCR primers were designed for T. dionisii sub-typing using a semi-nested}

\section*{PCR approach that targeted the GAPDH gene of this bat trypanosome.}
gi|313209097|emb|FN599054.1|
gi| \(313209103 \mid\) emb|FN599056.1| gi|313209100|emb|FN599055.1|
gi| 313209097 |emb|FN599054.1| gi| \(313209103 \mid\) emb|FN5 99056.1 | gi|313209100|emb|FN599055.1|
gi| 313209097 |emb|FN599054.1| gi|313209103|emb|FN599056.1| gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103 |emb|FN599056.1| gi | 313209100 | emb|FN599055.1|
gi| 313209097 |emb|FN599054.1| gi| 313209103 |emb|FN599056.1| gi| 313209100 |emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103 |emb|FN5 99056.1 | gi| 313209100 |emb|FN599055.1|
gi| 313209097 |emb| FN5 99054.1 | gi|313209103|emb|FN599056.1| gi| 313209100 |emb|FN5 99055.1 |
gi|313209097|emb|FN599054.1| gi|313209103|emb|FN599056.1| gi| 313209100 | emb| FN599055.1
gi| 313209097 |emb|FN599054.1| gi|313209103|emb|FN599056.1| gi|313209100|emb|FN599055.1|
gi| 313209097 |emb|FN5 \(99054.1 \mid\) gi| 313209103 |emb|FN599056.1| gi| 313209100 |emb|FN5 99055.1 |
----------------------GGTCGATATGAACACGGACGCGGAGTATTTTGCATACCA ---------ACGTCGTGGCGGTGGTCGATATGAACACGGACGCGGAGTACTTTGCGTACCA GGAGATTGACGTCGTGGCGGTGGTCGATATGAACACGGACGCGGAGTACTTTGCGTACCA

GCTGCGCTACGACACCGTGCACGGCAAGTTCAAGTACACGGTGACGACGGCGAAGAGCAA GATGCGTTACGACACCGTGCATGGTAAGTTCAAGTACACGGTGACGACGACGAAGAGCAA GATGCGTTACGACACCGTGCATGGTAAGTTCAAGTACACGGTGACGACGACGAAGAGCAA

CCCCTCCGTGACTAAGGACGACACACTCGTGGTGAATGGCCACCGCATTCTGTGCGTGAA CCTCTCCGTGGCGAAGGATGACACACTTGTGGTGAATGGCCATCGCATTCTGTGCGTGAA CCTCTCCGTGGCGAAGGATGACACACTTGTGGTGAATGGCCATCGCATTCTGTGCGTGAA

GGCGCAGCGCAACCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA GGCGCAGCGCAATCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA GGCGCAGCGCAATCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA
\(\qquad\)

GTCAACGGGTCTGTTCACTGCCAAGGTGGCGGCGGAGGGCCACCTGCGTGGCGGTGCACG GTCAACAGGCCTGTTCACTGCCAAGACGGCGGCGGAGGGCCACCTGCGCGGCGGTGCACG GTCAA
\(\qquad\)

GAAGGTCATCATCAGCGCGCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA GAAGGTCATCATCAGCGCCCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA GAAGGTCATCATCAGCGCCCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA

CCACCATGAGTACAACCCCAGTGAGCACCACGTGGTCTCGAACGCGTCATGCACGACCAA CCACCATGAGTACAACCCCAGTGAGCACCATGTGGTGTCGAACGCGTCGTGCACGACCAA CCACCATGAGTACAACCCCAGTGAGCACCATGTGGTGTCGAACGCGTCGTGCACGACCAA

TTGTCTTGCGCCCATTGTGCATGTCCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT 459 TTGTCTTGCGCCCATTGTGCATGTTCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT TTGTCTTGCGCCCATTGTGCATGTCCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT

CATGACGACGATCCACTCGTACACGGCAACACAAAAGACGGTGGACGGCGTGTCGTTGAA CATGACGACGATCCACTCGTACACGGCAACACAGAAGACGGTGGATGGTGTGTCGTTGAA CATGACGACGATCCACTCGTACACGGCAACACAGAAGACGGTGGATGGTGTGTCGTTGAA

GGACTGGCGCGGCGGTCGTGCGGCTGCGGTGAACATCATTCCAAGCACGACTGGTGCGGC GGACTGGCGCGGCGGTCGTGCGGCTGCGGTGAACATCATTCCGAGCACGACTGGTGCGGC GGACTGGCGCGGCGGTCGTGCGGCTGCGGCGAACATCATTCCGAGCACGACTGGTGCGGC

219 339 7 472 592

2

Figure 3.17: Clustal W sequence alignment of a region of the \(T\). dionisii GAPDH gene extracted from NCBI GenBank: T. dionisii A (FN599054.1), T. dionisii B (FN599056.1), T. dionisii B (FN599055.1). Red text shows the T. dionisii primer binding sites (GAPF, GAPR and GAPRn). The full sequence alignment can be obtained from Appendix 1.

Again, due to the lack of T. dionisii genomic DNA, it was not possible to establish an optimised set of PCR cycling parameters for the T. dionisii GAPDH primers. Consequently, bat heart and spleen DNA samples were screened by PCR using the predicted Primer3 optimal annealing temperature \(\left(60^{\circ} \mathrm{C}\right)\).

Figure 3.18(A): A representative agarose (1\%) gel image showing analysis of T. dionisii GAPDH PCR products derived from bat spleen DNAs. 1, 1 kb hyperladder; 2 , negative control (bat code: SA606; confirmed positive for T. vespertilionis); 3-11, bat DNA samples extracted from spleen (bat codes: PB601, JL650, FP751, JL714, SP670, SP677, P605, JL648, JL654); 12, 1kb hyperladder.

Figure 3.18(B): A representative agarose (1\%) gel image showing analysis of T. dionisii GAPDH PCR products derived from bat heart samples. 1, 100bp hyperladder; 2-15, bat DNA samples extracted from heart (bat codes: JH802, PB601, JL650, FP751, JL714, SP670, SP677, P605, JL648, JL654, SP649, JL648, F711, JL613); 16, negative control (bat code: SA606; confirmed positive for \(T\). vespertilionis).

The expected PCR product of 355 bp was produced in a total of 33 samples; this included the 10 that were positive with the 18 S rRNA primers (Figure 3.18(A, B)). As observed for the 18 S rRNA PCR approach, approximately \(90 \%\) of the \(T\). dionisii infections (\(\mathrm{n}=30\)) were determined on the basis of PCR product amplification from both heart and spleen DNA targets and the remainder \((\mathrm{n}=3)\) were derived from just bat heart DNA samples.

All the PCR products were purified and DNA sequencing was carried out. The resulting data confirmed that 26 GAPDH PCR products were identical to each other and to the GAPDH gene of T. dionisii strain Z3126 (T. dionisii A) (Hamilton, Cruickshank, et al., 2012) (Figure 3.19 \& Table 3.4). Unfortunately, it was not possible to recover good quality GAPDH

JL640, GH606) and hence the T. dionisii strain type for these infections remains unknown.
\begin{tabular}{|c|c|c|}
\hline JL654 & ----TATATGAACACGGACGCGGAGTATTTTGCATACCAGCTGCGCTACGACACCGTGCA & 56 \\
\hline FN599054.1 & \begin{tabular}{l}
GGTCGATATGAACACGGACGCGGAGTATTTTGCATACCAGCTGCGCTACGACACCGTGCA \\

\end{tabular} & 60 \\
\hline JL654 & CGGCAAGTTCAAGTACACGGTGACGACGGCGAAGAGCAACCCCTCCGTGACTAAGGACGA & 116 \\
\hline FN599054.1 & \begin{tabular}{l}
CGGCAAGTTCAAGTACACGGTGACGACGGCGAAGAGCAACCCCTCCGTGACTAAGGACGA \\

\end{tabular} & 120 \\
\hline JL654 & CACACTCGTGGTGAATGGCCACCGCATTCTGTGCGTGAAGGCGCAGCGCAACCCGGCGGA & 176 \\
\hline FN599054.1 & \begin{tabular}{l}
CACACTCGTGGTGAATGGCCACCGCATTCTGTGCGTGAAGGCGCAGCGCAACCCGGCGGA \\

\end{tabular} & 180 \\
\hline JL654 & TCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGAGTCAACGGGTCTGTTCACTGC & 236 \\
\hline FN599054.1 & \begin{tabular}{l}
TCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGAGTCAACGGGTCTGTTCACTGC \\
***)
\end{tabular} & 240 \\
\hline JL654 & CAAGGTGGCGGCGGAGGGCCACCTGCGTGGCGGTGCACGGAAGGTCATCATCAGCGCGCC & 296 \\
\hline FN599054.1 & \begin{tabular}{l}
CAAGGTGGCGGCGGAGGGCCACCTGCGTGGCGGTGCACGGAAGGTCATCATCAGCGCGCC \\

\end{tabular} & 300 \\
\hline JL654 & CGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAACCACCATGAGTACAACCCCAG & 356 \\
\hline FN599054.1 & CGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAACCACCATGAGTACAACCCCAG & 360 \\
\hline
\end{tabular}

Figure 3.19: Clustal W alignment of a representative T. dionisii GAPDH PCR product derived from bat specimen JL654 with a fragment of the GAPDH gene from T. dionisii strain Z3126 (GenBank accession number FN599054.1).

Table 3.4: BlastN summary data for the T. dionisii GAPDH PCR product derived from pipistrelle JL654.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
Accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Trypanosoma dionisii partial gapdh \\
gene for glyceraldehyde phosphate \\
dehydrogenase, strain Z3126
\end{tabular} & 656 & 656 & \(100 \%\) & 0.0 & \(100 \%\) & FN599054.1 \\
\hline \begin{tabular}{l}
Trypanosoma dionisii glycosomal \\
glyceraldehyde-3-phosphate \\
dehydrogenase (gGAPDH) gene, \\
partial cds
\end{tabular} & 656 & 656 & \(100 \%\) & 0.0 & \(100 \%\) & FJ649494.1 \\
\hline \begin{tabular}{l}
Trypanosoma dionisii partial gapdh \\
gene for glyceraldehyde phosphate \\
dehydrogenase, isolate gnash
\end{tabular} & 545 & 545 & \(99 \%\) & \(2 \mathrm{e}-151\) & \(94 \%\) & FN599056.1 \\
\hline \begin{tabular}{l}
Trypanosoma dionisii partial gapdh \\
gene for glyceraldehyde phosphate \\
dehydrogenase, isolate x842
\end{tabular} & 540 & 540 & \(99 \%\) & \(2 \mathrm{e}-151\) & \(94 \%\) & FN599055.1 \\
\hline
\end{tabular}

\subsection*{3.3 Bat Eimeria:}

The Lord (2010) study showed that 19 pipistrelle bats were infected with eimerian parasites and DNA sequence data for one 18 S rRNA derived PCR product was reported to be \(99.8 \%\) identical to E. rioarribaensis. The other 18 eimerian parasite PCR products were not purified and sequenced. Therefore, to gain further insight into the pipistrelle eimerian infection, 18 S rRNA PCR amplifications were repeated on purified bat intestinal DNA samples. The expected PCR product of 800 bp was amplified in the 19 pipistrelles documented by Lord (2010) as being infected with Eimeria sp. (Figure 3.20). Moreover, samples reported as eimerian-free by Lord (2010), were also screened by PCR to confirm that they were indeed negative (lanes 2, 3). All the eimerian 18S rRNA PCR products were purified, DNA sequencing was performed and the resulting data was aligned with other eimerian 18 S rRNA sequences extracted from GenBank (Figure \(3.21 \&\) Table 3.5).

Figure 3.20: Analysis of bat eimerian 18S rRNA PCR products by agarose (1.0\%) gel electrophoresis. 1, 1 kb hyperladder; 2-3, negative control bats shown previously (Jennifer S Lord, 2010) to not be infected with Eimeria sp. (codes: JL645, JL705); 4-6, representative bat samples (SP852, SP682, JL719) with primers designed to be specific for eimerian 18S rRNA PCR amplification; 7, 1kb hyperladder.

CLUSTAL 2.1 multiple sequence alignment

JL719
AF307877.1

JQ993645.1 JL719
AF307877.1

JQ993645.1
JL719
AF307877.1

JQ993645.1
JL719
AF307877.1

JQ993645.1
JL719
AF307877.1

Q993645.1 CGGGGAATTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCTAAGGA 338 -------TTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCTAAGGA 53 CGGGGAATTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCTAAGGA 360 \(t \star *\)

AGGCAGCAGGCGCGCAAATTACCCAATGAAAACAGTTTCGAGGTAGTGACGAGAAATAAC 398 AGGCAGCAGGCGCGCAAATTACCCAATGAAAACAGTTTCGAGGTAGTGACGAGAAATAAC 113 AGGCAGCAGGCGCGCAAATTACCCAATGAAAACAGTTTCGAGGTAGTGACGAGAAATAAC 420

AATACAGGGCATTTTATGCTCTGTAATTGGAATGATGGGAATGTAAAACCCTCTCAGAGT 458 AATACAGGGCATTTTATGCTCTGTAATTGGAATGATGGGAATGTAAAACCCTCTCAGAGT 173 AATACAGGGCATTTTATGCTCTGTAATTGGAATGATGGGAATGTAAAACCCTCTCAGAGT 480

AACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGTGTAT 518 AACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGTGTAT 233 AACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGTGTAT 540

ATTAGAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGTCGTGGTCATCCGGTACC 578 ATTAGAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGTCGTGGTCATCCGGTACC 293 ATTAGAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGTCGTGGTCATCCGGTACC 600 \(t \star *\)
\begin{tabular}{ll}
JQ993645.1 & GCCCGTATGGGTGTGCACCTGGTTTGACCTCGGCTTTCTTCCGGTAGCCTTCCGCGCTTC 638 \\
JL719 & GCCCGTATGGGTGTGCACCTGGTTTGACCTCGGCTTTCTTCCGGTAGCCTTCCGCGCTTC 353 \\
AF307877.1 & GCCCGTATGGGTGTGCACCTGGTTTGACCTCGGCTTTCTTCCGGTAGCCTTCCGCGCTTC 660 \\
& \\
& \\
JQ 993645.1 & ACTGCGTGGTTGGTGTTCCGGAACTTTTACTTTGAGAAAAATAGAGTGTTTCAAGCAGGC 698 \\
JL719 & \\
AF307877.1 & ATTGCGTGGTTGGTGTTCCGGAACTTTTACTTTGAGAAAAATAGAGTGTTTCAAGCAGGC 413 \\
& \\
& \\
& \\
& \\
JTTGCGTGGTTGGTGTTCCGGAACTTTTACTTTGAGAAAAATAGAGTGTTTCAAGCAGGC 720
\end{tabular}

Figure 3.21: Clustal W sequence alignment of a representative bat eimerian 18 S rRNA PCR product derived from bat specimen JL719 with fragments of the 18 S rRNA gene from \(E\). rioarribaensis (AF307877.1) and E. cahirinensis isolate NFS (JQ993645.1) extracted from NCBI GenBank.

Table 3.5: BlastN summary data for the pipistrelle eimerian 18S rRNA PCR products
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
Accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Eimeria rioarribaensis 18S \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 1375 & 1375 & \(100 \%\) & 0.0 & \(100 \%\) & AF307877.1 \\
\hline \begin{tabular}{l}
Eimeria cahirinensis \\
isolate NFS 18S ribosomal \\
RNA gene, partial \\
sequence
\end{tabular} & 1363 & 1363 & \(100 \%\) & 0.0 & \(99 \%\) & JQ993645.1 \\
\hline
\end{tabular}

The resulting sequence data confirmed that all 19 PCR products were identical to each other and also, were \(100 \%\) identical to the 18 S rRNA of E. rioarribaensis.

\subsection*{3.4 Bat Cryptosporidium:}

At initiation of this study, no bat cryptosporidium infection had been reported in any of the pipistrelle bats sample panel. Given that bats are host to the coccidian Eimeria spp., it seemed reasonable to propose that they may also harbour cryptosporidium parasites. As such, the Lancashire pipistrelle collection was screened for Cryptosporidium spp., using a PCR approach that targeted the parasite 18 S rRNA gene. To develop this diagnostic approach, Cryptosporidium ubiquitum genomic DNA was used as a positive control (kindly provided by Eljelani Salim, PhD student, University of Salford). The expected PCR product of 600 bp was amplified from 14 out of 92 (15\%) pipistrelle bats (Figure 3.22). The PCR products were purified, DNA sequencing performed, and the resulting data was aligned with other Cryptosporidium spp. 18S rRNA sequences available in GenBank (Figure 3.23 \& Table 3.6).

Figure 3.22: Analysis of bat Cryptosporidium spp. 18S rRNA PCR products by agarose (1.0\%) gel electrophoresis. 1, 1 kb hyperladder; 2-9, representative bat samples (codes: S682, F745, F802, JL714, F721, C802, F546, S680 respectively) with primers designed to be specific for the Cryptosporidium spp. 18 S rRNA gene; 10, positive control (C. ubiquitum); 11, negative control \(\left(\mathrm{H}_{2} \mathrm{O}\right) ; 12,1 \mathrm{~kb}\) hyperladder.
\begin{tabular}{|c|c|c|}
\hline F546 & --TCCTATCA & 8 \\
\hline KR819168.1 & TCATAATAACTTTACGGATCACATTTTTTGTGACATATCATTCAAGTTTCTGACCTATCA & 60 \\
\hline F546 & GCTTTAGACGGTAGGGTATTGGCCTACCGTGGCAATGACGGGTAACGGGGAATTAGGGTT & 68 \\
\hline KR819168.1 & \begin{tabular}{l}
GCTTTAGACGGTAGGGTATTGGCCTACCGTGGCAATGACGGGTAACGGGGAATTAGGGTT \\

\end{tabular} & 120 \\
\hline F546 & CGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCTAAGGAAGGCAGCAGGCGCGC & 128 \\
\hline KR819168.1 & \begin{tabular}{l}
CGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCTAAGGAAGGCAGCAGGCGCGC \\
**)
\end{tabular} & 180 \\
\hline F546 & AAATTACCCAATCCTAATACAGGGAGGTAGTGACAAGAAATAACAATACAGGACTTTAAA & 188 \\
\hline KR819168.1 & \begin{tabular}{l}
AAATTACCCAATCCTAATACAGGGAGGTAGTGACAAGAAATAACAATACAGGACTTTA-A \\

\end{tabular} & 239 \\
\hline F546 & CAGTTTTGTAATTGGAATGAGTTAAGTATAAACCCCTTTACAAGTATCAATTGGAGGGCA & 248 \\
\hline KR819168.1 & CAGTTTTGTAATTGGAATGAGTTAAGTATAAACCCCTTTACAAGTATCAATTGGAGGGCA
\(* *)\) & 299 \\
\hline F546 & AGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCA & 308 \\
\hline KR819168.1 & \begin{tabular}{l}
AGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCA \\
**)
\end{tabular} & 359 \\
\hline F546 & GTTAAAAAGCTCGTAGTTGGATTTCTGTTAATAGTTTATATATAATGTCTCGTACATTTA & 368 \\
\hline KR819168.1 & GTTAAAAAGCTCGTAGTTGGATTTCTGTTAATAGTTTATATATAATGTCTCGTACATTTA & 419 \\
\hline
\end{tabular}
```

F546 TATAATATTAACATAATTCATATTACTATTTTTTATAGTATATGAAACTTTACTTTGAGA
TATAATATTAACATAATTCATATTACTATT---TTTAGTATATGAAACTTTACTTTGAGA
4 2 8
F546 GATTTTTATCTTTCTTATTGGTTCTAAGATAGAAATAATGATTAATAGGGACAGTTGGGG 548
GATTTTTATCTTTCTTATTGGTTCTAAGATAGAAATAATGATTAATAGGGACAGTTGGGG
548

```
KR819168.1
```

KR819168.1
F546
F546
KR819168.1
KR819168.1
KR819168.1
KR819168.1
F546
F546
KR819168.1

```
KR819168.1
```

```
AAATTAGAGTGCTTAAAGCAGGCTATAGCCTTGAATACTTCAGCATGGAATAATATTAAA
AAATTAGAGTGCTTAAAGCAGGCTATTGCCTTGAATACTTCAGCATGGAATAATATTAAA 5
```



```
GCATTTGTATTTAACAGTCAGAGGTGAAATTCTTAAAA--------------------------
GCATTTGTATTTAACAGTTAGAGGTGAAATTCTTAGATTTGTTAAAGACAAACTAGTGCG

Figure 3.23: Clustal W sequence alignment of a representative bat Cryptosporidium 18S rRNA PCR product derived from an intestinal DNA preparation from bat specimen F546 with the 18S rRNA sequence from Cryptosporidium sp. bat genotype IV isolate 13973CZ (KR819168.1).

Table 3.6: BlastN summary data for the Cryptosporidium 18S rRNA PCR products derived from pipistrelle bat F546
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
Accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Cryptosporidium sp. bat \\
genotype IV isolate \\
13973CZ small subunit \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 1038 & 1038 & \(100 \%\) & 0.0 & \(99 \%\) & KR819168.1 \\
\hline \begin{tabular}{l}
Cryptosporidium canis \\
isolate CHF8 18S \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 990 & 990 & \(99 \%\) & 0.0 & \(97 \%\) & KU608308.1 \\
\hline
\end{tabular}

All 14 pipistrelle 18S rRNA PCR products were identical to each other and most similar to the 18 S rRNA of Cryptosporidium sp. bat genotype IV isolate 13973CZ (Kváč et al., 2015).

\subsection*{3.5 Bat bacterial infections}

\subsection*{3.5.1 Bartonella:}

To further characterize the two Bartonella infections in the South Lancashire bat collection described by Lord (2010) using a 16S rRNA gene targeting approach, a PCR was developed using primers specific for the Bartonella citrate synthase gene (Norman et al., 1995). After successful amplification of the expected 400 bp PCR product from the 2 Bartonella infected bats (codes: JL726 and SP817), the PCR products (Figure 3.24) were purified and DNA sequencing performed. The resulting data (Figure 3.25) was aligned with other Bartonella citrate synthase gene sequences deposited in GenBank. A random selection of bat samples reported by Lord (2010) as not infected with Bartonella were also screened by PCR and the data confirmed the negative infection status of these samples.

Figure 3.24: Analysis of the bat Bartonella citrate synthase (gltA) PCR products by agarose (1\%) gel electrophoresis. 1-2, bat samples (J726, SP817); 3-4, negative controls (purified DNA from bats JL613 and JL706 shown by Lord (2010) to be uninfected with Bartonella); 5, 1 kb hyperladder.
```

J726
AJ871614.1
KF003137.1
J726 CGTTAAGAGAATTCCTGAATTCATTGCACGTGCAAAAGATAAAAATGATCCTTTCCGCCT 120
AJ871614.1
KF003137.1
J726 CATGGGCTTTGGTCATCGAGTCTATAAAAATTATGACCCACGTGCAAAAATCATGCAACA 180
AJ871614.1 CATGGGCTTTGGTCATCGAGTCTATAAAAATTATGACCCACGTGCAAAAATCATGCAACA 162
KF003137.1
J726 AACCTGCCATGATGTTTTAAAAGAACTAAATATTCAAGATGATTTGCTTCTTGACATCGC 240
AJ871614.1 AACCTGCCATGATGTTTTAAAAGAACTAAATATTCAAGATGATTTGCTTCTTGACATCGC 222
KF003137.1
J726
AJ871614.1
KF003137.1
J726 GAATGTTGATTTCTATTCTGGCATTACATTAAAAGCTCTAGGCTTTCCAACTGAAATGTT 360
AJ871614.1 GAATGTTGATTTCTATTCTGGCATTACATTAAAAGCTCTAGGCTTTCCAACTGAAA---- 338
KF003137.1
J726 TACTGTTCTTTTTGCATAA 379
AJ871614.1 -------------------- 338
KF003137.1 --------------------

```

Figure 3.25: Clustal W sequence alignment of the bat Bartonella citrate synthase PCR product derived from bat specimen J726 with partial citrate synthase gene sequences from an uncultured Bartonella sp. (isolate M207) (AJ871614.1) and an uncultured Bartonella sp. clone NB-1.2 (KF003137.1).

Table 3.7: BlastN summary data for the Bartonella gltA PCR products
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
Accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Uncultured Bartonella sp. \\
partial gltA gene for citrate \\
synthase, isolate M207
\end{tabular} & 625 & 625 & \(89 \%\) & 0.0 & \(100 \%\) & AJ871614.1 \\
\hline \begin{tabular}{l}
Uncultured Bartonella sp. \\
clone NB-1.2 citrate \\
synthase (gltA) gene, \\
partial cds
\end{tabular} & 580 & 580 & \(89 \%\) & 0.0 & \(98 \%\) & KF003137.1 \\
\hline
\end{tabular}

Both of the pipistrelle-derived Bartonella citrate synthase DNA sequences were identical to each other and also, to Bartonella sp. isolate M207, an uncultured isolate derived from a British bat (Concannon et al., 2005).

\subsection*{3.5.2 Borrelia:}

To screen for Borrelia infections in the South Lancashire bat collection, PCR was performed on the 16S rRNA gene using Borrelia specific primers. A positive control (Borrelia borgdorferi sensu stricto culture) was kindly provided by Jessica Hall (PhD student, University of Salford). One out of 100 bat spleen samples (bat code: JL709) amplified the expected 120 bp PCR product that was indicative of a Borrelia infection (Figure 3.26). The PCR product was sequenced and the resulting data was analysed with respect to other Borrelia spp. 16S rRNA sequences deposited in GenBank (Figure 3.27).

Figure 3.26: Analysis of bat Borrelia 16S rRNA PCR products by agarose gel (2.0\%)
electrophoresis. 1, 25bp hyperladder; 2-16, bat spleen DNA samples; 17, positive control (\(B\). borgdorferi sensu stricto culture); 18, negative control (\(\mathrm{H}_{2} \mathrm{O}\)); 19, 25bp hyperladder.
```

CLUSTAL 2.1 multiple sequence alignment
JL709 TAAGTAGCCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 97
KF395229.1 TAAGTAGCCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 241
KF395228.1 TAAGTAGCCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 234
FJ868583.1 TAAGTAGCCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 265
DQ469888.1 TAAGTAGCCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 272
CP005851.2 TAAGTAACCGGCCTGAGAGGGTGAACGGTCACACTGGAACTGAGATACGGTCCAGACTCC 330

```
\begin{tabular}{lll}
JL709 & TACGGGAGGCA & 108 \\
KF395229.1 & TACGGGAGGCA & 252 \\
KF395228.1 & TACGGGAGGCA & 245 \\
FJ868583.1 & TACGGGAGGCA & 276 \\
DQ469888.1 & TACGGGAGGCA & 283 \\
KU672548.1 & \begin{tabular}{l}
TACGGGAGGCA \\

\end{tabular} & 341
\end{tabular}

Figure 3.27: Clustal W sequence alignment of the bat Borrelia 16S rRNA PCR product derived from bat specimen JL709 with partial 16S rRNA sequences extracted from GenBank as follows: Borrelia sp. F3 (KF395229.1), Borrelia sp. F17 (KF395228.1), Borrelia sp. CPB1 (FJ868583.1), B. afzelii strain Mng 3602 (DQ469888.1) and B. garinii strain Ip-6322 (KU672548.1).

Table 3.8: BlastN summary data for the Borrelia 16S rRNA PCR product.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
Borrelia sp. F3 16S \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & KF395229.1 \\
\hline \begin{tabular}{l}
Borrelia sp. F17 16S \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & KF395228.1 \\
\hline \begin{tabular}{l}
Borrelia sp. CPB1 16S \\
ribosomal RNA gene, \\
partial sequence
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & FJ868583.1 \\
\hline \begin{tabular}{l}
Borrelia afzelii strain Mng \\
3602 16S ribosomal RNA \\
gene, partial sequence
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & DQ469888.1 \\
\hline \begin{tabular}{l}
Borrelia garinii strain \\
Tom 2903 16S ribosomal \\
RNA gene, partial \\
sequence
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & DQ469880.1 \\
\hline \begin{tabular}{l}
Borrelia afzelii gene for \\
16S rRNA, partial \\
sequence, strain:U001
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & AB035406.1 \\
\hline \begin{tabular}{l}
Borrelia garinii gene for \\
16S rRNA, partial \\
sequence, strain:F641
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & AB035392.1 \\
\hline \begin{tabular}{l}
Borrelia garinii gene for \\
16S rRNA, partial \\
sequence, strain:F548
\end{tabular} & 132 & 132 & \(91 \%\) & \(9 \mathrm{e}-28\) & \(100 \%\) & AB035391.1 \\
\hline
\end{tabular}

The sequence analysis showed that the pipistrelle derived Borrelia infection was \(100 \%\) identical to eight 16S rRNA Borrelia sequences deposited in GenBank; one of these was derived from an isolate (CPB1) responsible for causing fatal borreliosis in a British bat (Evans et al., 2009).

\subsection*{3.6 Further analyses of the pipistrelle protozoan and bacterial infections}

The protozoan and bacterial infections presented above (sections 3.1-3.4), and also, data for the piroplasm Babesia vesperuginis (Jennifer S Lord, 2010) and Toxoplasma gondii (Dodd et al., 2014), are summarised at the individual bat level in the table below (Table 3.9).

Table 3.9: Summary of the 70 protozoan and bacterial infections of the Lancashire pipistrelle bats. Footnote: single infection (red), double infections (black), triple infections (purple), quadruple infections (orange), quintuple infections (blue) and "mixed" genotype bats (Dodd et al, 2014) (brown).
\(\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Bat code } & \text { T.v } & \text { T.d } & \begin{array}{l}\text { Eimeria } \\ \text { rioarrib } \\ \text {-aensis }\end{array} & \text { Bartonella sp. } & \text { Cryptosporidium sp. } & \text { Borrelia sp. } & \begin{array}{l}\text { B. vesperuginis } \\ \text { (Jennifer S Lord, }\end{array} & \begin{array}{l}\text { Toxoplasma } \\ \text { gondii }\end{array} \\ \text { (Dodd et al, } \\ \text { 2010) }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bat code & T.v & T.d & Eimeria rioarrib -aensis & Bartonella sp. & Cryptosporidium sp. & Borrelia sp. & B. vesperuginis (Lord, 2010) & \begin{tabular}{l}
Toxoplasma \\
gondii \\
(Dodd et al, \\
2014)
\end{tabular} \\
\hline JL710 & - & + & - & - & - & - & - & - \\
\hline JL708 & - & + & - & - & - & - & - & - \\
\hline FP751 & - & + & - & - & - & - & - & - \\
\hline JL714 & - & + & - & - & - & - & - & - \\
\hline FP761 & - & + & - & - & - & - & - & - \\
\hline JH802 & - & + & - & - & - & - & - & - \\
\hline SP842 & - & + & - & - & - & - & - & - \\
\hline JL658 & + & - & - & - & - & - & - & - \\
\hline SP679 & + & - & - & - & - & - & - & - \\
\hline JL624 & - & - & + & - & - & - & - & - \\
\hline JL628 & - & - & + & - & - & - & - & - \\
\hline JL656 & - & - & + & - & - & - & - & - \\
\hline SP682 & - & - & + & - & - & - & - & - \\
\hline FP745 & - & - & + & - & - & - & - & - \\
\hline SP819 & - & - & + & - & - & - & - & - \\
\hline JL723 & - & - & + & - & - & - & - & - \\
\hline FP546 & - & - & - & - & + & - & - & - \\
\hline JL707 & - & - & - & - & + & - & - & - \\
\hline JL706 & - & - & - & - & + & - & - & - \\
\hline JL718 & - & - & - & - & + & - & - & - \\
\hline GH708 & - & - & - & - & + & - & - & - \\
\hline CS804 & - & - & - & - & + & - & - & - \\
\hline JL612 & - & - & - & - & - & - & + & - \\
\hline SP666 & - & - & - & - & - & - & \(+\) & - \\
\hline JL704 & - & - & - & - & - & - & + & - \\
\hline FP712 & - & - & - & - & - & - & + & - \\
\hline FP801 & - & - & - & - & \[
-
\] & - & + & - \\
\hline JL722 & - & - & - & - & - & - & + & - \\
\hline GH704 & - & - & - & - & - & - & + & - \\
\hline CS801 & - & - & - & - & - & - & + & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bat code & T.v & T.d & Eimeria rioarrib -aensis & Bartonella sp. & Cryptosporidium sp. & Borrelia sp. & B. vesperuginis (Lord, 2010) & \begin{tabular}{l}
Toxoplasma \\
gondii \\
(Dodd et al, \\
2014)
\end{tabular} \\
\hline MD802 & - & - & - & - & - & - & + & - \\
\hline PH604 & - & - & - & - & - & - & - & + \\
\hline PB602 & - & - & - & - & - & - & - & + \\
\hline SA07? & - & - & - & - & - & - & - & + \\
\hline JL613 & - & - & - & - & - & - & - & + \\
\hline JL651 & - & + & - & - & - & - & + & - \\
\hline JL652 & - & + & - & - & - & - & + & - \\
\hline JL654 & - & \(+\) & - & - & - & - & + & - \\
\hline JL648 & - & + & - & - & - & - & + & - \\
\hline JL627 & - & \(+\) & - & - & - & - & + & - \\
\hline FP711 & - & + & - & - & - & - & \(+\) & - \\
\hline SP668 & - & - & + & - & - & - & + & - \\
\hline JL719 & - & - & + & - & - & - & + & - \\
\hline SP852 & - & - & \(+\) & - & - & - & + & - \\
\hline SP655 & - & - & + & - & - & - & + & - \\
\hline CS610 & - & + & + & - & - & - & - & - \\
\hline SA606 & + & - & + & - & - & - & - & - \\
\hline JL709 & + & - & - & - & - & + & - & - \\
\hline FP744 & - & + & - & - & + & - & - & - \\
\hline SP684 & - & \(+\) & - & - & + & - & - & - \\
\hline SP681 & - & - & + & - & + & - & - & - \\
\hline JL726 & - & + & - & + & - & - & - & - \\
\hline FP802 & - & - & - & - & - & - & + & + \\
\hline CS802 & - & + & + & - & + & - & - & - \\
\hline SP680 & - & + & + & - & + & - & - & - \\
\hline SP817 & - & + & + & + & - & - & - & - \\
\hline JL647 & - & - & + & - & + & - & + & - \\
\hline SA605 & - & + & - & - & + & - & + & + \\
\hline P605 & - & + & \(+\) & - & + & - & \(+\) & + \\
\hline Total & 4 & 33 & 19 & 2 & 14 & 1 & 23 & 7 \\
\hline
\end{tabular}

In total, the molecular diagnostic approach undertaken confirmed that 70 of the 99 pipistrelles (prevalence \(=70.7 \%\)) were infected with a microparasite (Table 3.9). These infections were significantly more likely to be due to a protozoan parasite (total protozoans detected \(=100\)) than with the Bacteria Bartonella and Borrelia (total detected = 3). Furthermore, the bats appeared to be more commonly infected with blood protozoans (total detected trypanosomes and piroplasms \(=60\)) than with coccidian parasites (total detected \(=40\)). The most prevalent protozoan in the bats was \(T\). dionisii and this was observed approximately 8-times more frequently than the related \(T\). vespertilionis.

Previous genotyping work on the pipistrelles had shown that the majority of the bats were from one interbreeding population and the remainder were of mixed origin (Dodd et al., 2014). When analysing the infection data at the level of these two populations, 59 infected bats were representative of the single interbreeding population (Table 3.10) and 12 infected individuals were of mixed genetic origin (Table 3.11). Not surprisingly given the respective numbers of bats in the two populations, a greater variety of infections, including multiple coinfections, were observed in the single interbreeding group (Table 3.10). The two most commonly encountered parasites responsible for single infections in the single interbreeding group of bats, T. dionisii and B. vesperuginis, were also found to be the most common combination representative of a double infection (Table 3.10). Interestingly, the coccidian parasites Eimeria and Cryptosporidium, were more often found as a component of a coinfection than as single infections within the single interbreeding group of bats; this appeared to not be the case with the other protozoans (Table 3.10). Also of possible note was the observed infection profile within the mixed genotype group of bats; no Eimeria parasites were observed within this population and also, equal numbers of T. dionisii, B. vesperuginis and Cryptosporidium single infections were observed (Table 3.11). Given the relative
numbers of bats in the two populations (\(\mathrm{n}=59\) and \(\mathrm{n}=12\)), it appears that the mixed genotype group has an over-representation of single piroplasm and Cryptosporidium infections compared to the single interbreeding population of bats.

Table 3.10: Infection profiles within the single interbreeding population of pipistrelles.
\begin{tabular}{|c|c|c|}
\hline Infection load & Number of samples & Infection profile \\
\hline Single infection & 37 bats (52\%) & \begin{tabular}{l}
T. dionisii: 16 bats \\
T. vespertilionis: 2 bats Eimeria: 6 bats Cryptosporidium: 4 bats B. vesperuginis: 7 bats Toxoplasma: 2 bats
\end{tabular} \\
\hline Double infections & 16 bats (22\%) & \begin{tabular}{l}
T. dionisii \(+B\). \\
vesperuginis: 5 bats \\
Eimeria + B. vesperuginis: \\
4 bats \\
T. dionisii + Eimeria: 1 bat \\
T. vespertilionis + Eimeria: \\
1 bat \\
T. dionisii+ \\
Cryptosporidium: 2 bats \\
Eimeria+ \\
Cryptosporidium: 1 bat \\
T. dionisii+ Bartonella: 1 \\
bat \\
Toxoplasma \(+B\). \\
vesperuginis: 1 bat
\end{tabular} \\
\hline Triple infections & 4 bats (5\%) & \begin{tabular}{l}
Cryptosporidium+ \\
Eimeria + T. dionisii: 2 \\
bats \\
T. dionisii + Bartonella + \\
Eimeria: 1 bat \\
Cryptosporidium+ \\
Eimeria+ B. vesperuginis: \\
1 bat
\end{tabular} \\
\hline Quadruple infections & 1 bat (1\%) & \begin{tabular}{l}
Cryptosporidium+ \\
Toxoplasma + T. dionisii + \\
B. vesperuginis
\end{tabular} \\
\hline Quintuple infections & 1 bat (1\%) & Cryptosporidium+ Eimeria+ T. dionisii + B. vesperuginis + Toxoplasma \\
\hline
\end{tabular}

Table 3.11: Infection profiles within the mixed genotype pipistrelles.
\begin{tabular}{|l|l|l|}
\hline Infection load & Number of samples & Infection profile \\
\hline Single infection & 8 bats & \begin{tabular}{l}
T. dionisii: 2 bats \\
Cryptosporidium: 2 bats \\
B. vesperuginis: 2 bats \\
Toxoplasma: 2 bat
\end{tabular} \\
\hline Double infections & 2 bats & \begin{tabular}{l}
T. dionisii + Vesperuginis: 1 \\
bat \\
T. vespertilionis + Borrelia: \\
1 bat
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.6.1 Infections and the environment:}

The locations where the bats were found/recovered were extracted from the Lord (2010) study and plotted (Appendix 2). This analysis showed that the bat infections appeared to be scattered across South Lancashire and Greater Manchester and hence geographic location had limited, if any, impact upon the observed infection profiles. Furthermore, bats lacking a microparasite infection were also dispersed across the study area, again, indicative of the environment having limited, if any, impact upon infection status.

The trypanosome and coccidian infection data was also analysed with respect to the season of host acquisition. This analysis showed there was no statistical significance to the seasonal infection data for the T. dionisii, T. vespertilionis, E. rioarribaensis, and Cryptosporidium infections (Table 3.12).

Table 3.12: Seasonal protozoan infection profiles in the bats. Footnote: Winter: Dec-Feb; Spring: Mar- May; Summer: June- Aug; Autumn: Sept- Nov.
\begin{tabular}{|l|l|l|l|l|l|}
\hline & Spring & Summer & Autumn & Winter & \(\chi^{2} p\)-value \\
\hline T. vespertilionis & 0 & \(1.6 \%(1 / 66)\) & \(13 \%(3 / 23)\) & 0 & \(>0.05\) \\
\hline T. dionisii & \(27 \%(3 / 11)\) & \(30.3 \%(20 / 66)\) & \(43.5 \%(10 / 23)\) & 0 & \(>0.05\) \\
\hline Cryptosporidium & \(27 \%(3 / 11)\) & \(6 \%(4 / 66)\) & \(26 \%(6 / 23)\) & 0 & \(>0.05\) \\
\hline E. rioarribaensis & \(9 \%(1 / 11)\) & \(13.6 \%(9 / 66)\) & \(39 \%(9 / 23)\) & 0 & \(>0.05\) \\
\hline \begin{tabular}{l}
Total (infected +non- \\
infected)
\end{tabular} & 11 & 66 & 23 & 0 & \\
\hline
\end{tabular}

\subsection*{3.6.2. Infections and host factors:}

The trypanosome and coccidian infection data was analysed with respect to host gender and age. Regarding gender, the majority of the infected bats were male \((\mathrm{n}=46)\); however, there was no statistical significance between prevalence of infection between the sexes (Table 3.13). when the total male and female were checked, the majority of the pipistrelles were male (\(\mathrm{n}=62\)) whereas the remaining was females \((\mathrm{n}=37)\) which reflect to the ratio of the infected pipistrelle showed the majority of the infected pipistrelles were males. With respect to host age, the majority of the infected bats were adults and there was no statistical significance between the prevalence of infection between these adults and the juvenile pipistrelles (Table 3.14).

Table 3.13: Gender profiles of the pipistrelle infections. Footnote: Baby pipistrelles were excluded from this age analysis.
\begin{tabular}{|l|l|l|l|}
\hline Gender & Male & Female & \(\chi^{2} p\)-value \\
\hline Total & 46 & 21 & \(>0.05\) \\
\hline T. vespertilionis & \(6.5 \%\) & \(4.7 \%\) & \(>0.05\) \\
\hline T. dionisii & \(47.8 \%\) & \(21.7 \%\) & \(>0.05\) \\
\hline Cryptosporidium & \(15 \%\) & \(28.5 \%\) & \(>0.05\) \\
\hline E. rioarribaensis & \(30 \%\) & \(19 \%\) & \(>0.05\) \\
\hline
\end{tabular}

Table 3.14: Age profiles of the pipistrelle infections.
\begin{tabular}{|l|l|l|l|l|}
\hline Age group & Adult & Juvenile & Baby & \begin{tabular}{l}
\(\chi^{2} p\)-value \\
(adult/juvenile)
\end{tabular} \\
\hline T. vespertilionis & \(7.4 \%\) & 0 & 0 & \(>0.05\) \\
\hline T. dionisii & \(46.2 \%\) & \(53.8 \%\) & \(33.3 \%\) & \(>0.05\) \\
\hline Cryptosporidium & \(18.5 \%\) & \(23 \%\) & \(33.3 \%\) & \(>0.05\) \\
\hline E. rioarribaensis & \(27.7 \%\) & \(23 \%\) & \(33.3 \%\) & \(>0.05\) \\
\hline Total & 54 & 13 & 3 & \(>0.05\) \\
\hline
\end{tabular}

\subsection*{3.6.2.1 Infections and host genotype:}

The potential influence of host genetic background upon infection outcome was noted earlier
(Tables 3.10 and 3.11) and hence the bat genotype data, determined from microsatellite analysis of 11 polymorphic loci (Dodd et al. 2014), was analysed with respect to parasite infections.

Interestingly, when the bats that showed no protozoan and helminth infections were analysed with respect to genotype, all these non-infected bats were from the single interbreeding population. However, when analysed statistically, there was no significant correlation between the host genotype and the parasite-free status of the bats (\(p\)-value \(=0.055\)).

Figure 3.28: The population structure of the pipistrelles (Dodd et al, 2014) highlighting the non-infected (protozoan and helminth) individuals (red text below):
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19.

Footnote: the single interbreeding group is represented by bats designated between the arrows and the mixed population is represented by bats outside the arrows.

When analysing the eimerian infections with respect to the bat genotype data (Figure 3.29), it was noted that all the infected bats were from the single interbreeding population and this correlation was statistically significant (\(p\)-value \(=0.02\)).

The T. dionisii, Cryptosporidium and B. vesperuginis infection profiles did not correlate with the bat genotype data (\(p\)-values > 0.05) (Appendix 4). Furthermore, when all double protozoan infections (18 bats) and multi-protozoan infections (6 bats) were also analysed with respect to host genotype, again, no statistically significant correlations were observed (\(p\) values > 0.05). Finally, with respect to the helminth infection data reported by Lord (2010), all five species of trematodes were also analysed with respect to the bat genotype data and again, no significant correlations were noted (\(p\)-values > 0.05).

Figure 3.29: The population structure of the pipistrelles (Dodd et al, 2014) highlighting the \(E\). rioarribaensis infections (red text below):
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19.

Footnote: the single interbreeding group is represented by bats designated between the arrows and the mixed population is represented by bats outside the arrows.

\subsection*{3.7 Discussion}

The molecular diagnostic data presented in this Chapter provides an extension to earlier studies on protozoans and helminths in the pipistrelle population from North West England (Dodd et al., 2014; Lord, 2010; Lord et al., 2012). As a consequence, the data offers the opportunity to begin to address the parasite community composition and potential roles that the environment and host genetics might have in shaping the observed infection profiles.

\subsection*{3.7.1 Trypanosome (Schizotrypanum):}

Upon initiation of this study, data in the Lord (2010) thesis showed that 37 bats were infected with trypanosomes. At least 30 of these infections were proposed to be due to \(T\). dionisii; however, lack of positive control DNAs for T. dionisii and T. vespertilionis did not allow absolute confirmation of the Schizotrypanum infections in the bats (Lord, 2010). Unfortunately, no archived cultures of \(T\). dionisii and \(T\). vespertilionis exist and given the protected status of British bats, it was beyond the scope of this thesis to acquire bat blood and attempt to establish cultures. However, acquisition of a small amount of genomic DNAs from Dr Patrick Hamilton (University of Exeter) allowed attempts at optimisation of an 18S rRNA PCR approach that was discriminatory between T. dionisii and T. vespertilionis. It was apparent from the recovery of PCR products that the detection rate was greater for both species of trypanosome when bat heart DNA preparations were screened compared to bat spleen DNA preparations. This most likely reflects that the bat heart has a greater capacity to hold residual blood than the capillary network of the spleen. As such, a lack of PCR product derived from spleen DNA, when a product has been generated from a heart DNA preparation, is likely to indicate that the limits of PCR detection using the spleen have been breached. Sequencing the 18 S rRNA PCR products confirmed that 4 trypanosome infections were due to \(T\). vespertilionis; albeit, two nucleotide variations were consistently observed relative to
the 18 S rRNA sequence of the \(T\). vespertilionis P14 isolate derived from a pipistrelle bat in England (Baker, 1974; Stevens et al., 1999). Given that there are no further T. vespertilionis sequences deposited in GenBank, it is not possible to comment further on these nucleotide variations. Sequencing the T. dionisii 18S rRNA PCR products confirmed that they were identical to the T. dionisii P3 isolate derived from a pipistrelle bat from England (Baker \& Thompson, 1971; Stevens et al., 1999). However, the number of bats confirmed to be infected with T. dionisii was less than anticipated based upon the Lord (2010) study and hence an alternative strategy, using a semi-nested approach to target PCR amplification of the T. dionisii glyceraldehyde phosphate dehydrogenase (GAPDH) gene was undertaken. This approach not only confirmed the 10 T. dionisii infections based upon the 18S rRNA PCR strategy but it extended the detection of \(T\). dionisii to a total of 33 bats. Moreover, the majority of the PCR products (\(=79 \%\)) produced good quality sequence data that confirmed that these T. dionisii infections were identical to the P3 isolate (J. Baker \& Thompson, 1971; Hamilton, Cruickshank, et al., 2012) and also, the Z3126 isolate derived from a soprano pipistrelle from Wytham, Oxfordshire (Hamilton, Cruickshank, et al., 2012). Interestingly, none of the GAPDH sequence data provided evidence for the presence of \(T\). dionisii strain B in the pipistrelles. T. dionisii strain B, a representative South American strain, was recently discovered in Noctule, Serotine and Whiskered bats in the UK but was not reported present in 26 pipistrelle specimens (Hamilton, Cruickshank, et al., 2012). Since T. dionisii strain A, the representative European strain that includes isolates P3 and Z3126, was the only sequence type confirmed in the South Lancashire pipistrelles, then this data, in conjunction with the Hamilton et al., (2012) report, may indicate some host specificity associated with the \(T\). dionisii strains and pipistrelle bats.

Overall, the trypanosome infected bats reported in this thesis using the combination of 18 S rRNA and GAPDH PCR approaches was identical to the Trypanosoma spp. infections reported by Lord (2010) using only the 18 S rRNA strategy. At \(37 \%\) prevalence, the trypanosome infections in the South Lancashire pipistrelles (including 3 soprano pipistrelles) is approximately the same as that reported (35\%) by Gardner (1986) following blood smear inspections of 206 P. pipistrellus specimens sampled from across the UK. However, this prevalence data differs remarkably to the single \(T\). dionisii infection in 36 Cornish pipistrelles examined by Concannon et al. (2005) using a PCR diagnostic assay that targeted the 18 S rRNA gene. This difference may be partly explained by contrasting PCR performances. However, it more likely reflects a difference in transmission dynamics between these two areas of the UK. Such differences could be explored by further studies of the bats and the known intermediate host responsible for trypanosome transmission, Cimex pipistrelli (Gardner \& Molyneux, 1988a).

Since T. dionisii infections in the South Lancashire pipistrelles were observed approximately 8-times more frequently than \(T\). vespertilionis, it is likely that transmission of the former species is favoured. However, data in the literature to support this is sparse; the extensive study by Gardner (1986) documented Schizotrypanum infections and did not distinguish between T. dionisii and T. vespertilionis. Much earlier reports provide data on \(T\). vespertilionis infections occurring more frequently than T. dionisii (see Lord \& Brooks, 2014); however, relatively few hosts are examined. The most recent analysis though documented 16 trypanosome infections in 4 species of UK bats, including pipistrelles, and 15 of these were reported as T. dionisii and only 1 as T. vespertilionis (Hamilton, Cruickshank, et al., 2012). Interestingly, the \(T\). vespertilionis infection was described in a Noctule bat that was also infected with T. dionisii (Hamilton, Cruickshank, et al., 2012). Given that very few
bats have been confirmed with \(T\). vespertilionis infections, it is not surprising that coinfections with both trypanosome species are rare and this is indeed corroborated by the infection data within this thesis.

When the trypanosome infections were analysed with respect to the season of host acquisition, it showed no statistical significance to the seasonal infection data for the \(T\). dionisii and \(T\). vespertilionis infections. Moreover, there was no significant correlation between the bat genotype and whether, or not, the specimen was infected with trypanosomes.

\subsection*{3.7.2 Eimeria:}

The eimerian infection in 19 South Lancashire bats reported by Lord (2010) was based upon PCR amplification of the 18 S rRNA gene. Subsequent DNA sequencing was only performed on one PCR product and it was shown to be \(99.8 \%\) identical to the 18 S rRNA gene of \(E\). rioarribaensis, an eimerian parasite previously reported to infect myotid bats from North America (Duszynski et al., 1999; Zhao, Duszynski, \& Loker, 2001). PCR screening carried out in this thesis confirmed the eimerian infection status of the South Lancashire bats described by Lord (2010). Moreover, all eimerian 18S rRNA PCR products were subjected to DNA sequencing and the data confirmed that all the sequences were identical to \(E\). rioarribaensis. As such, the one nucleotide difference between the South Lancashire bat derived eimerian 18 S rRNA product and that of E. rioarribaensis reported by Lord (2010) must have been a PCR or sequencing artefact. To our knowledge, the data constitutes the first record of an eimerian parasite in British bats and indeed, the first record of an eimerian in a common, or soprano pipistrelle.

With regard to seasonal effect, the data showed high prevalence in autumn and summer which reflect to the condition that is needed for the oocyst to develop such as high humidity.

The infected bats are expected to be infected for several days which might preclude the identification of seasonal effect.

On analyzing the eimerian infection data with respect to host genotype it was apparent that all the infected hosts were from the single interbreeding population. Moreover, this infection profile was statistically significant and hence indicative of bats from the mixed genotype population having a degree of resistance to eimerian infection. This is further supported by the lack of evidence of an environmental affect since the bats lacking eimerian infection were geographically dispersed across the study region and therefore presumably as exposed to the risk of acquiring an infection as the rest of the population.

Not surprisingly, there is no published study on the host genetics of bat-Eimeria spp. interactions. Given the problems encountered in the poultry industry with coccidiosis and the knowledge that different breeds of chicken display differences in resistance/susceptibility to eimerian parasites (Bumstead, Bumstead, Rothwell, \& Tomley, 1995; Bumstead \& Millard, 1987; Emara et al., 2002; Johnson \& Edgar, 1986), then some insight can be gained from avian immunogenomic studies. Of particular interest is the quantitative trait loci (QTL) analysis of an F2 cross carried out in chickens with E. tenella resistant and susceptible lines (Pinard-van der Laan et al., 2009). The resulting QTL data highlighted a number of candidate genes that may provide resistance to E. tenella infection in chickens, including innate immunity (TLR7) and inflammatory response genes (Pinard-van der Laan et al., 2009).

\subsection*{3.7.3 Cryptosporidium:}

There have been few studies on Cryptosporidium spp. in bats (Dubey, Hamir, Sonn, \& Topper, 1998; Kváč et al., 2015; Morgan et al., 1999; Wang et al., 2013; Ziegler, Wade, Schaaf, Chang, \& Mohammed, 2007) and hence the role of bats in parasite transmission is largely unknown. However, the detection of the human infective C. parvum and C. muris in
myotid bats (Kváč et al., 2015; Zahedi, Paparini, Jian, Robertson, \& Ryan, 2016) and common pipistrelles (Kváč et al., 2015) raises the possibility that bats may act as important reservoirs of Cryptosporidium spp. and hence this is worthy of further study.

The molecular data presented in this chapter presents the first evidence that UK bats are infected with Cryptosporidium sp. Based upon the 18 S rRNA sequence data, the parasite was most closely related to a Cryptosporidium sp. bat genotype IV isolate derived from common pipistrelles studies in the Czech Republic (Kváč et al., 2015).

There appeared to be no significant association of Cryptosporidium sp. infection in the South Lancashire pipistrelles with environmental or host parameters. The infection data does however show that bats infected with Cryptosporidium sp. are often also infected with \(E\). rioarribaensis \((6 / 15,40 \%)\) which may indicate a common route of infection for these two coccidians.

\subsection*{3.7.4 Bacterial infections:}

The Bartonella sp. infection reported by Lord (2010) in 2 bats was based upon PCR amplification of the 16S-23S rRNA internal transcribed spacer (ITS) region; one amplicon was sequenced and it appeared to cluster closely with rodent-associated Bartonella spp. However, the absence of a bat-associated Bartonella spp. ITS sequence in the phylogram precluded a more detailed analysis. As such, to further describe these two Bartonella sp. infections the bacterial citrate synthase gene was PCR amplified and the resulting products were sequenced. The data showed that the bat Bartonella citrate synthase sequences were identical to the citrate synthase sequence from an uncultured Bartonella sp. that had been isolated from a Cornish pipistrelle (Concannon et al., 2005). As proposed by Concannon et al., (2005), based upon a phylogeny of Bartonella spp. citrate synthase sequences, including those derived from the Cornish bats, the data in this chapter supports the proposal that bat-
associated Bartonella sp. are all closely associated with the bat host and may form strains of the same species.

The low prevalence of Bartonella sp. in the South Lancashire pipistrelles contrasts with the \(18 \%\) prevalence (18/491) of bartonellae reported in the extensive study of UK bats carried out in the 1980s (Gardner et al., 1987; Gardner, 1986). However, it is similar to the \(8 \%\) Bartonella sp. infection rate reported in the Cornish bats (Concannon et al., 2005).

The molecular data in this chapter also confirm that Borrelia sp. is present in UK bats, as noted in an earlier report describing fatal borreliosis in a female pipistrelle from Cornwall (Evans et al., 2009). Indeed, the 16 S rRNA gene fragment data from the South Lancashire pipistrelle was identical to the 16 S rRNA sequence deposited from the Borrelia sp. isolate derived from the Cornish pipistrelle (Evans et al., 2009). As noted (Evans et al., 2009), the Cornish bat derived Borrelia sp. was closely related to other Borrelia spp. known to cause relapsing fever in Africa and Asia and hence bats may act as a reservoir of spirochetes that are potentially of public health concern. Unfortunately, the sequence data generated from the South Lancashire bat was of insufficient length to provide greater insight since the fragment was also identical to other Borrelia sp. isolates from questing Gulf Coast ticks (Lee et al., 2014) and also, to B. garinii and B. afzelii isolates; these species are known to cause human Lyme borreliosis (Nadelman \& Wormser, 1998; Picken et al., 1998; Richter, Schlee, Allgöwer, \& Matuschka, 2004). As such, it would be worthwhile carrying out a more detailed analysis of the Borrelia sp. infection described in the adult male pipistrelle acquired from Tottington, Greater Manchester. Although this specimen died in captivity, there was no evidence to suggest that the death was due to borreliosis (personal communication, Jennifer S. Lord).

\subsection*{3.7.5 Co-infections:}

Based on the genotyping data carried out on a subset the bat population (\(\mathrm{n}=71\)) (Dodd et al., 2014), the majority of the bats were from one interbreeding group (\(\mathrm{n}=59\)) and the remainder were designated as being of mixed origin (\(\mathrm{n}=12\)). Given the numbers representative of the two populations, it is not surprising that a greater variety of infections were found in the single interbreeding group. As such, it is not possible to state that the mixed genotype bat group has a greater level of resistance to parasite infections than the single interbreeding group. There does not appear to be any strong evidence for negative interactions between any of the parasites. The coccidians E. rioarribaensis and Cryptosporidium sp. were often components of a co-infection and this may reflect that they are commonly found to co-exist in the environment; quite possibly the roost environment.

\section*{4. Pipistrelle Toll-like receptors (TLRs): TLR2 and TLR4:}

Toll-like receptors (TLRs) play an important role in the outcome of parasite infections in vertebrate hosts. For example, study of Leishmania major infection in TLR4 knockout mice has shown that TLR4 activates iNOS (inducible nitric oxide synthase) which leads to NO synthesis and parasite death (Kropf et al., 2004). T. cruzi glycosylphosphatidylinositol (GPI) anchors have been shown to be potent and effective initiators of TLR2 expression in Chinese hamster ovary cells transfected with TLR2 (Campos et al., 2001). Moreover, macrophages from TLR2 knockout mice were unable to respond to \(T\). cruzi GPI anchors via the network of cytokine expression observed with control macrophages (Campos et al., 2001). TLR2 knockout mice study has also highlighted the importance of TLR2 in defence against \(T\). gondii infection since the TLR2-deficient animals died 8 days post-infection with an avirulent strain of the parasite (Mun et al., 2003). The levels of expression of TLR2 and TLR4 have also been assessed in the brains of mice infected with Acanthamoeba spp. and the resulting data confirmed that these TLRs are highly expressed in neurons, glial cells, and endothelial cells within the neocortex 2 days post-infection (Wojtkowiak-Giera et al., 2016). Perhaps most interestingly with respect to human infections with a parasite, a study of monocyte expression in children from Malawi reported that TLR2 and TLR4 expression levels were significantly lower in severe malaria cases compared to control groups (Mandala et al., 2016).

As illustrated above, it is becoming increasingly clear that TLR2 and TLR4 have important roles in protection of mammals against parasite infection. However, the role of these TLRs in bats is less well understood; indeed, there is no sequence data currently available for TLR2 or TLR4 from a pipistrelle bat. As such, the main aim of this chapter of the thesis is to use a PCR-based strategy to isolate pipistrelle TLR2 and TLR4 gene sequences. This gene
isolation strategy will that act as a platform for further analyses, in Chapter 5, of TLR2 and
TLR4 gene variation in the population of South Lancashire bats.

\subsection*{4.1 The P. pipistrelle TLR 4 gene:}

\subsection*{4.1.1 Bioinformatics:}

Given the absence of a published, or unpublished, TLR4 gene sequence from pipistrelle bats, the TLR4 genes from other bat species were obtained from GenBank and aligned in order to facilitate PCR primer design to conserved regions (Figure 4.1). The full length TLR4 gene in bats was approximately 2.5 kb ; however, due to high levels of species variation at the 5 ' and 3' ends of the gene, it was not possible to design PCR primers to amplify the full-length pipistrelle TLR4 gene. Instead, a set of PCR primers were designed to allow amplification of two overlapping PCR products (TLR4 F - TLR4 R and TLR4 2F - TLR4 2R) which were anticipated to yield approximately 2 kb of novel \(P\). pipistrellus TLR4 gene sequence (Figure 4.1).

\author{
TLR4-2F
}
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gil554578862|ref|XM 005880935. gi| \(584056807 \mid\) ref \(\mid X M M_{-}^{-0066772885 . ~}\) gi|641721271|ref|XM 008152116. gi|588480441|ref|NM 001290172.
gi|558135472|ref|XM 006091085. gil554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gil554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gil588480441|ref|NM_001290172.

CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG 448 CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG 448 CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG 448 CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG 260 CATATCTTCTCCAACTTCTCAGAATTGCAGGTGCTGGATTTATCTAGGTG 376 ** * ******************* ******************* *****

TGAAATTCAGAAGATTGAAGATGATGCATATCAAGGCCTAAAGCATCTCT 498 TGAAATTCAGAAGGTTGAAGATGATGCATATCAAGGCCTAAAGCATCTCT 498 TGAAATTCAGAAGATTGAAGACGATGCATATCAAGGCCTAAAGCATCTCT 498 TGAAATTCAGAAGATTGAAGATGATGCATATCAAGGCCTAAAACATCTCT 310 TGAAATTGAGATGATTGAAGATGATGCATATGAGGGTCTAAACCATCTCT 426

CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCGGGAGCC 548 CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCGGGAGCC 548 CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCTGGAGCC 548 CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCAGGAGCC 360 CCACCTTGGTATTGACAGGAAACCCTATCCAGAGTTTAGCCATGGGAGCC 476 *** **** ***)

TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT 598 TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT 598 TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT 598 TTTTCTGGACTACCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT 410 TTTTCTGGACTATCAAGTTTACAGACACTGGTGGCTGTGGAGATAAACCT 526 *********** ******************************* ******

AGCATCACTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC 648 AGCATCGCTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC 648 AGCATCGCTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC 648 AGCCTCTCTAGAGGACTTCCCCATCACACATCTGAAATCCTTGAAGGAGC 460 AGTGTCTCTAGAGGACTTCCCCATTGGACACCTGAAAACCTTGAAGGAGC 576

gi|558135472|ref|XM 006091085. gil|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gil|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi| 588480441 |reflNM_001290172.
gi|558135472|ref|XM 006091085. gi| \(554578862 \mid\) ref| \(\mathrm{XM}_{-}^{-005880935 . ~}\) gil584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi| 554578862 |ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi| 554578862 |ref|XM_005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gil|554578862|ref|XM-005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi| 588480441 |ref|NM_001290172.
gi| \(558135472|r e f| X M _006091085\). gil554578862|ref|XM_005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi| 588480441 |ref |NM_001290172.
gi| \(558135472 \mid\) ref|XM_006091085. gil554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi| \(641721271 \mid\) ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M _006091085\). gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gil|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gil|558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.

TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT 698 TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT 698 TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT 698 TTAATGTGGCTCACAATCTAATCGATTCCTTCAAGTTACCGAACTATTTT 510 TTAATGTGGCTCACAATCTTATTGATTCCTTCAAGTTACCTGAATATTTT 626 \(* *\)

TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG 748 TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG 748 TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG 748 TCTAACCTGCCTAACCTGGAGCACTTGGACCTTTCCAATAATAAGATTCG 560 TCTAACCTGTCCGACCTGGAGCACTTAGACCTTTCCAATAACAAGATCCA 676

CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA 798 CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCTTCATTCA 798 CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA 798 AAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA 610 AACTATTTGTCATAAAGACCTACAGGTTCTACATCAAATGCCCCCATCCA 726

AСTСТССTTAGACCTGTCCCTCAACCCTTTAGACTTTATTCAACCAGGT 848 AACTCTCCTTAGACCTGTCCCTCAACCCTTTAGACTTTATTCAACCAGGT 848 AАСТСТССТTAGACCTGTCССТСAACCCTTTAGACTTTATTCAACCAGGT 848 AАСТСТСТTTAGACCTGTCCCTCAACCCTTTAGACTTTATCCAACCAGGT 660 AACTCTCTTTAGACTTGTCCCTGAACCCTTTAGACTTCATCCAACGAGGT 776

GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA 898 GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA 898 GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA 898 GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA 710 GCCTTTAAAGAAATTAAGCTCCATGAACTAACTTTGAGAAGTAATTTTTAA 826

TAGTGCAGAGGTCATGAAAACGTGTATTCAAGGTCTGGCTGGTTTAAAGA 948 TAGTCCAGAGGTCATGAAAATGTGTATTCAAGGTCTGGCTGGTTTAAAGA 948 TAGTCCAGAGGTCATGAAAATGTGTATTCAAGGTCTGGCTGGTTTAAAGA 948 TAGTGCAGAGGTCATGAAAACGTTTATTCAAGGTCTGGCAGGTTTAAAGA 760 CAGTACAGATGTAATGAAAACTTGTGTTCAAGGCCTCGCTGGCTTAAAAA 876

TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAACCATAGTAAAC 998 TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAAACTTAGTAAAC 998 TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAACCTTAGTAAAC 998 TCAAACGGCTGATTCTGGGAGAATTTAAAAATGAAAGGATCTTAGTAAAC 810 TCAATCGTTTGGTTCTAGGAGAATTTAAAAATGAAAGAGCCATAAAACAT 926

TTCAACAAATCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT 1048 TTCAACAAATCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT 1048 TTCAACAATTCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT 1048 TTGGACAAATCTGCCCTGGAGGAACTGTGTAATTTGACCATTGAAGAATT 860 TTTGACAAATCTGCCATGGAGGGACTGTGCAATTTGACCATTGACGAATT 976

CCGGATAGCACACTTCGATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA 1098 CCGGATAGCACACTTCGATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA 1098 CCGGATAGCACGCTTCAATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA 1098 CCGGATAGCACACTTCCAAGACTTTCCAGAGGATTACCTTGGCTTTTTAA 910 CCGGATGACATACTTCGATGACTTCTCAGAGGATGTTATTAACTTTTTTA 1026 ***** ** **** * ** ** *** **** ** ****** *

ATTGTTTGCCAGAGGCTTCTACAATATCTCTTATGGGTCTGTATTTAGAC 1148 ATTGTTTGGCAGATGCTTCTACAATATCTCTTGTGAGTCTATATTTAGAT 1148 ATTGTTTGGCAGATGCTTCTACAATATCTCTTGTGAGTCTATATTTAGAC 1148 ATTGTTTGGCAGATGCTTCTGCAATATCTCTGGTGAGTCTGAATATAGAC 960 ATTGTTTGGCAAATGTTTCTACAATTTCTCTGGTGGGTCTGTATTTAAAC 1076 ******* ** * * **** **** ***** ** **** ** ** *

GAGCTAAAAATCTTTCCAAAAGGTTTCAAATGGCAATACTTAAATTTGTC 1198 GAGCTAAAAATCTTTCCAAAAGGTTTCAAATGGCAATACTTAAATTTGTC 1198 AAGCTAAAAATCTTTCTAGAAGATTTCAAATGGCAATACTTAAAATTGTC 1198 AGGCTAGAAAGCCTTCCAAAAGGTTTCAAATGGCAATACTTAAACTTGAC 1010 AGGCTAGAAGTCCTTTCTAAAGATTTCAAATGGCAACACTTAAAACTGAC 1126
gi|558135472|ref|XM 006091085. gil|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gil588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi| \(554578862 \mid\) ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M _006091085\). gi|554578862|ref|XM-005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gil|558135472|ref|XM_006091085. gil554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi| \(641721271 \mid\) ref \(\mid \mathrm{XM}_{-}^{-008152116 . ~}\) gi|588480441|ref|NM_001290172.
gi| 558135472 |ref|XM_006091085. gi|554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gil588480441|ref|NM_001290172.
gi| 558135472 |ref|XM_006091085. gil|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi| \(641721271 \mid\) ref| \(\mathrm{XM}_{-}^{-} 008152116\). gi|588480441|ref|NM_001290172.
gil|558135472|ref|XM_006091085. gil554578862|ref|XM 005880935. gil|584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M\) _006091085. gil|554578862|ref|XM 005880935. gil|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi| \(554578862 \mid\) ref|XM_005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM 008152116. gil 588480441 |reflNM_001290172.
gil|558135472|ref|XM_006091085. gil|554578862|ref|XM_005880935. gil584056807|ref|XM 006772885. gi| \(641721271 \mid\) ref|XM_008152116. gi|588480441|ref|NM_001290172.

TAAATGTATATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC 1248 TAAATGTATATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC 1248 TAAATGTAAATTTGAACATTTTCCTACATTGGACCTTACCTTTCTCAAGC 1248 TAATTGTAAATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC 1060 TAATTCTAAATTTGATCATTTTCCCAGGTTGGAACTTGACTCTCTCAAAA 1176 *** ** ****** ******** * ***** *** ** ******

AGTTTGTTTTCACTGCCAACAAAGGTATTACCACTTTTACTAAAGTTAAT 1298 AGTTTGTTTTCACTGCCAACAAAGGTATTACCACTTTTACTGAAGTTAAT 1298 AGTTCATTTTCACTGCCAACAAAGGTATTACCACTTTTACTGAAGTTAAT 1298 AGTTTGTTTTCACTGACAACAAAGGTATTACCACTTTTACTGAAGTTAAT 1110 AGTTGGTTTTCACTGCCAACAGGGGTATGAGCACTTTTACTGAAGTTAAA 1226

\section*{TLR4F}

CTACCAAACCTTGAGTTTCTAGATCTCAGTAAAAATGGCTTGAGTTACAA 1348 CTACCAAACCTTGAGTTTCTAGATCTCAGTAGAAATGGCTTGAGTTTCAA 1348 CTACCAAACCTTGAGTTTCTAGATCTCAGTAGAAATGGCTTGAGTTTCAA 1348 CTAAGAAACCTTGAGTTTCTAGATCTCAGTAGTAATGGCTTGAGTTTCAA 1160 CTACCAAAACTTGAGTTTCTAGATCTCAGTAGAAATAGTTTGAGTTTCAA 1276

GTCTTGCTGCTCTCACCGTGATTTTGGGACAACCCAACTGAAACACTTAA 1398 GTCCTGCTGCTCTCACCGTGATTTTGGGACAACCCGACTGAAACACTTAG 1398 GTCCTGCTGCTCTCACCGTGATTTTGGGACAACCCGACTGAAACACTTAG 1398 GTCTTGCTGCTCTCACCGTGATTTTGGGACAACCCAACTGAAACACTTAA 1210 GAGTTGCTGTTCTCGCACTTTTTGGGGGACAACTAGACTGAAACACTTAG 1326 * ***** **** * ********** *************

ATCTGAGCTTCAATAATATTATTATCATGACTTCAAACTTCTTGGGCTTA 1448 ATCTGAGCTTCAATAATATTATTATCATGACTTCAAACTTCTTGGGCTTA 1448 ATCTGAGTTTCAATAATATTATTATCATGACTTCGAACTTCTTGGACTTA 1448 ATCTGAGCTTCAATAGTATTATTACCATGACTTCAAACTTCGTGGGCTTA 1260 ATCTGAGCTTTAATGATGTTATTACCATGAGCTCAAACTCCTTGGGCTTA 1376 ******* ** *** * ****** ***** ** **** * *** ****

GAGCAACTAGAACGTCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG 1498 GAGCAACTAGAACATCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG 1498 GAGCAACTAGAACATCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG 1498 GAGCAACTAGAACGACTGGATTTCCAGCATTCCACTTTGAAACAGGCCAG 1310 GAGCAACTAAAATATCTGGATTTCCAGCATTCCAATTTGAAACAGGCCAG 1426

TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT 1548 TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT 1548 TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT 1548 TАСТTTTTСААТАТТССТСТСАСТСАААААССТССТTТАССТТGATATCT 1360 TGATTTTTCGGTATTCCTATCACTCAAAAACCTACTTTACCTTGATATTT 1476 * ****** ******* *********** ** ************** *

CTTACACTAACACCAAGATTGTCTTCCTGCGCATCTTTGATGGCTTGATC 1598 CTTACACTAACACCAAGATTGTCTTCCTGGGCATCTTTGATGGCTTGATC 1598 СTTACACTAACACCAAGATTGTCTTCCTGGGCATCTTTGATGGCTTGATC 1598 CTTACACTAACATCCAGATTGTCTTCAAGGGCATCTTTGATGGCTTGATC 1410 CTTATACTCGCATCCGAATCATCTTCCATGGCATCTTTGACGGCTTGTTC 1526

\section*{TLR4-2R}

AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC- 1647 AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC- 1647 AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC- 1647 AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCCTTTCAGGATGCATTCC- 1459 AGCCTCGAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGACA-ACTCCG 1575 ****** ************************* ******** * ***

TTCCAAATATCTTCAGAGATCTGACTCAGTTGACTGAACTGGACCTCTCT 1697 TCCCAAATATCTTCAGAGATCTGACTCAGTTGACTGACCTGGACCTCTCT 1697 TCCCAAATATCTTCAGAGACCTGACTCAGTTGACTGTCCTGGACCTCTCT 1697 TTCCAAATGTCTTCAGAGATCTGACTCAGTTGACTATCCTGGACCTCTCT 1509 TTCCAAATATCTTCAAAGCGCTGACTAACTTAACCTTCCTGGACCTCTCT 1625 * ****** ****** ** ****** * ** ** ************
gi|558135472|ref|XM 006091085. gil|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M _006091085\). gil554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi| \(641721271 \mid\) ref|XM_008152116. gi|588480441|ref|NM_001290172.
gil|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gil584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gil \(558135472 \mid\) ref|XM_006091085. gil554578862|ref|XM 005880935. gil584056807|ref|XM 006772885. gi| \(641721271 \mid\) ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gil|554578862|ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M\) _006091085. gil|554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gil|584056807|ref|XM-006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gil554578862|ref|XM 005880935. gil|584056807|ref|XM_006772885. gi| \(641721271 \mid\) ref \(\mid \mathrm{XM}_{-}^{-} 008152116\). gi|588480441|ref|NM_001290172.
gi| \(558135472|r e f| X M-006091085\). gil554578862|ref|XM 005880935. gil|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gil588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gil554578862|ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gil554578862|ref|XM 005880935. gil|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

CAGTGTCAACTGGAACGGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG 1747 CAGTGTCAACTGGAACAGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG 1747 CAGTGTCAACTAGAACGGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG 1747 CAGTGTCAATTGGAACAGGTGTCTCCGGAGGCATTCAGCTCACTCCTTAG 1559 AATTGCCAGCTAGAACGAGTGTCCCAGGCGGCATTTGGCTCACTCGTTAA 1675 \(\star *\)

ACTCCAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC 1797 ACTCCAGGTGCTAAATATGAGTCACAATCACCTCTTGTCCTTGGATATGC 1797 ACTCCAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC 1797 ACTCGAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC 1609 ACTTAAGTCACTAAATATGAGTCACAACCACCTTTTATCCTTGGATCTAT 1725 ** ***************** ***** ** ********* *

TTCCTTTTAAAAATCTC---TCTCTCCGGGTTCTAGACTGTAGTTTTAAC 1844 TTCCTTATAAAAATCTC---TCTCTCCGGGTTCTAGATTGCAGTTTTAAC 1844 TTCCTTATAAAAATCTC---TCTCTCCGGGTTCTAGACTGCAGTTTTAAC 1844 TTССТTAСАААААТСТС---ССТСТСТСGGTTCTAGACTGCAGTTTTAAC 1656 TTCCTTATAAACTTCCCCACTCTCTCCAGGATCTGGACTGCAGTTTTAAT 1775 ****** *** ** * ***** ** *** ** ** ********

CGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATTTTCCAAGCAATGT 1894 CGTATAGTGGCCGCCAATGGGCAGGAACTACAACATTTTCCAAGCAATGT 1894 CGTATAGTGGCCGCCAATGGGCAGGAACTACAACATTTTCCAAGCAATGT 1894 CGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATTTTCCAAGCAATGT 1706 CGCATAGTGGCCTCCAATAGGCAAGAACTACAGCATTTTCCAAGTAATCT 1825 ********* ***** **** ******** *********** ****

AACTTCCTTAAACCTGAACCAGAATAACTTTGCTTGTGTTTGTGAACACA 1944 AACTTCCTTAAATCTGACCCAGAATAACTTTGCTTGTGTTTGTGAACACA 1944 AACTTCCTTAAATCTGACCCAGAATAACTTTGCTTGTGTTTGTGAACACA 1944 AACTTCCTTACATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACA 1756 AACTTCCTTAAATCTCACTGGGAATGACTTTGCTTGCATTTGTGAACACC 1875

TGCGCTTCCTGCAGTGGGTCCAGGATCACAGGCACATCTTGGTGGGAGCT 1994 TGCGCTTCCTGCAGTGGGTCCAGGATCACAGGCGCATCTTGGTGGGAGCT 1994 TGCGTTTCCTGCAGTGGGTCCAAGATCACAGGCGCATCTTGGTGGGCGCT 1994 TGCGTTTCCTGCAGTGGGTCCAGGACCACAGGAGCATCTTGGTGGGAGCT 1806 AGAGTTTTCTGCAGTGGGTCAAGGACCACAGGCACCTCTTGGTGGGAGTT 1925

GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGTGTGCCTGTGCT 2044 GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGTGTGCCTGTGCT 2044 GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGCGTGCCTGTGCT 2044 GAACACATGATGTGTAAGACACCTTTAGCTATGCAGGGTGTGCCTGTGCT 1856 ACACAAATGGTGTGTGTGAAACCTTTAGATATGCAGGGTGTGCCTGTACT 1975
*** *** ***** ** ******** ********* ******** **
CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGTGT 2094 CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGTGT 2094 CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGCGT 2094 CAGTTTTAGAAACACCACCTGCCAGATGAACAAAACTGTCATTAGTGTGT 1906 CAGTTTTAGAAATGCCACCTGTCCGATGAGCAAGACTGTCATTAGTGTGT 2025 ************ ******* * ***** *** *** ********* **

CAGTTCTCTCAGTACTCGTGGTATCTGTAGCCGCAGTTCTGGTCTACAAG 2144 CAGTTCTCTCAGTACTCGTGGTATCTGTAGCCGCAGTTCTGGTCTACAAG 2144 CAGTTCTCTCAGTACTCGTGGTCTCTGTAGCCGTAGTTCTGGTCTACAAG 2144 CCGTTCTCTCAGTACTCGTGGTATCTGTGGCTGCAGTTCTGGTCTACAAG 1956 CGGTTCTCACTGTGCTTGTGGTATCTGTGGTAGCAGTTCTGGTTTATAAG 2075 * ****** * ** ** ***** ***** * * ********* ** ***

TTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAGTATGGCAAAGG 2194 TTCTACTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAGTATGGCAAAGG 2194 TTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAATATGGCAAAGG 2194 TTСТАтTTCCACCTGATGCTTCTGGCTGGCTGCAAAAGGTACAGCAAAGG 2006 TTCTATTTCCACCTGATGCTTCTTGCTGGCTGCAAAAAGTATGGCAGAGG 2125

GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT 2244 GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT 2244 GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT 2244 GGACAGCACTTATGATGCCTTTGTCATCTACTCCAGCCACGATGAGGACT 2056 TGAAAGCACCTATGATGCCTTTGTTATTTACTCAAGCCAGGATGAGGACT 2175
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116.

GGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGAGTCCCCCCCTTT 2294 GGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTCCCCCCCTTT 2294 GGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTACCCCCTTTT 2294 GGGTGAGGAATGAGTTGGTAAAGAACTTGGAGGAGGGGGTACCCCCCTTT 2106 GGGTGAGGAATGAGTTGGTAAAGAACTTGGAGGAGGGGGTGCCCCCCTTT 2225 \(\star *\)

CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGTGTGGCCATTGCTGC 2344 CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC 2344 CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC 2344 CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC 2156 CAGCTCTGCCTTCACTACAGAGACTTTATTCCTGGTGTGGCCATTGCTGC 2275

TLR4R

Figure4.1: Clustal W sequence alignment of bat TLR4 sequences: gi|558135472| TLR4 of Myotis lucifugus mRNA, gi|554578862| TLR4 of Myotis brandtii mRNA, gi|584056807| TLR4 of Myotis davidii mRNA, gi|588480441| TLR4 of Pteropus alecto mRNA, gi|641721271| TLR4 of Eptesicus fuscus mRNA. Note: The full sequence alignment can be obtained from the Appendix 1. Highly conserved regions utilised for primer design are highlighted with arrows. The introns are expected to be in the \(5^{\prime}\) and \(3^{\prime}\) ends based on \(M\). brandtii annotated TLR4 sequence.

\subsection*{4.1.2 TLR4 PCR:}

The ability of the TLR4 PCR primers to amplify a PCR product of the expected size was assessed using pipistrelle spleen DNA samples as shown below (Figures 4.2 and 4.3).
\begin{tabular}{lllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{tabular}

Figure 4.2: A representative agarose gel (\(1 \%\)) showing PCR products derived from \(P\). pipistrellus using the TLR4 F/R primer combination. 1, 1 kb hyperladder; 2, negative control \(\left(\mathrm{H}_{2} \mathrm{O}\right)\); 3-12, bat DNA samples (codes: S682, JH701, G704, J706, J711, F745, C801, F801, SP817, S846); 13, 1kb hyperladder. Footnote: primer annealing temperature was \(54^{\circ} \mathrm{C}\) and \(2.5 \mu 1 \mathrm{Mg}^{2+}\) was used in the PCR.

The TLR4 F/R primer combination generated a PCR product of the expected size (1014bp) for 59 of the bat specimens (Figure 4.2). In addition, the TLR4-2F/R primer combination also produced a PCR product of the expected size (1226bp) for 59 of the bat specimens (Figure 4.3).

Figure 4.3: A representative agarose gel (\(1 \%\)) showing PCR products derived from \(P\). pipistrellus using the TLR4-2F/R primer combination. 1, 1kb hyperladder; 2-9, bat DNA samples (codes: S682, JH701, F745, G704, C801, SP817, S846, F801); 10, negative control \(\left(\mathrm{H}_{2} \mathrm{O}\right) ; 11,1 \mathrm{~kb}\) hyperladder. Footnote: primer annealing temperature was \(58^{\circ} \mathrm{C}\) and \(2.5 \mu \mathrm{l}\) \(\mathrm{Mg}^{2+}\) was used in the PCR.

In total, 59 of the bat specimens produced TLR4 PCR amplification products for each primer set and these were purified, sequenced and the resulting data was manually assembled into one contiguous TLR4 sequence for further analysis. If there is any PCR problem that was encountered with any of the products, the PCR will be repeated for a second time to solve the problem and to make sure a right product was amplified. One of the sequences, derived from the \(P\). pipistrellus (individual S 818) and a further sequence from \(P\). pygmaeus (J649), were aligned and compared with TLR4 sequences from other bat species (Figure 4.4). The resulting data confirmed the PCR strategy for isolation of the pipistrelle TLR4 gene was successful and the \(P\). pipistrellus and \(P\). pygmaeus sequences were highly similar, being \(98 \%\) identical to each other. With respect to TLR4 sequences from other bats, the BlastN analysis showed that the \(P\). pipistrellus TLR4 sequence was more highly conserved than that of \(P\).
\begin{tabular}{|c|c|c|}
\hline S818 & -TCTGACTATNAGTTTA & 37 \\
\hline J649 & & 0 \\
\hline XM_008152116.1 & TTGACAGGAAACCCTATCCAGAGTTTAGCCCCAGGAGCCTTTTCTGGACTACCAAGTTTA & 381 \\
\hline XM_005880935.2 & TTGACAGGAAACCCTATCCAGAGTTTAGCCCCGGGAGCCTTTTCTGGACTGCCAAGTTTA & 600 \\
\hline S818 & CAGNCCTGGGTGGC-TGGGGAGCCAACCTAGCATCTCTAGAGGACTTCCCCATGGCNGAC & 96 \\
\hline J649 & ----G-TGTAAGANAAAATTANTGTCTCTTAGGGACTTCCCCATGGCAGAT & 46 \\
\hline XM_008152116.1 & CAGACACTGGTGGCTGTGGAGACAAACCTAGCCTCTCTAGAGGACTT--CCCCATCACAC & 439 \\
\hline XM_005880935.2 & CAGACACTGGTGGCTGTGGAGACAAACCTAGCATCGCTAGAGGACTT-- CCCCATCAGAC & 658 \\
\hline S818 & ATCTGTAATCCTTGAAGGAGCTTAATGTGGCTCACAATCTAATCGATTCCTTCAAGTTAC & 156 \\
\hline J649 & ANNTTAATCCCTTGATAGAGCTTAATGTGGCTCACAATCTAATCGATTCCTTCAAGTTAC & 106 \\
\hline XM_008152116.1 & ATCTGAAATCCTTGAAGGAGCTTAATGTGGCTCACAATCTAATCGATTCCTTCAAGTTAC & 499 \\
\hline XM_005880935.2 & \begin{tabular}{l}
ATCTGAAAACCTTGAAGGAGCTTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTAC \\

\end{tabular} & 718 \\
\hline S818 & CGGACTATTTTTCTAACCTGCCTAACCTGGAACACTTGGACCTTTCTAATAATAAGATTC & 216 \\
\hline J649 & CGGACTATTTTTCTAACCTGCCTAACCTGGAACACTTGGACCTTTCTAATAATAAGATTC & 166 \\
\hline XM_008152116.1 & CGAACTATTTTTCTAACCTGCCTAACCTGGAGCACTTGGACCTTTCCAATAATAAGATTC & 559 \\
\hline XM_005880935.2 & \begin{tabular}{l}
CGGACTATTTTTCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCC \\
** **************************** ******** ***** ***** ***** *
\end{tabular} & 778 \\
\hline S818 & GAAAAATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTT & 276 \\
\hline J649 & GAAAAATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTT & 226 \\
\hline XM_008152116.1 & GAAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTT & 619 \\
\hline XM_005880935.2 & \begin{tabular}{l}
GCAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCTTCATTCAAACTCTCCT \\

\end{tabular} & 838 \\
\hline S818 & TAGACCTGTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGC & 336 \\
\hline J649 & TAGACCTGTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGC & 286 \\
\hline XM_008152116.1 & TAGACCTGTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGC & 679 \\
\hline XM_005880935.2 & \begin{tabular}{l}
TAGACCTGTCCCTCAACCCTTTAGACTTTATTCAACCAGGTGCCTTTGAAAAAATTAAGC \\

\end{tabular} & 898 \\
\hline S818 & TCCATGAACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTC & 396 \\
\hline J649 & TCCATGAACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTC & 346 \\
\hline XM_008152116.1 & TCCATGAACTGACTTTGAGAAGTAATTTTGATAGTGCAGAGGTCATGAAAACGTTTATTC & 739 \\
\hline XM_005880935.2 & \begin{tabular}{l}
TCCATGAACTGACTTTGAGAAGTAATTTTGATAGTCCAGAGGTCATGAAAATGTGTATTC \\

\end{tabular} & 958 \\
\hline S818 & AAGGTCTGGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGA & 456 \\
\hline J649 & AAGGTCTGGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGA & 406 \\
\hline XM_008152116.1 & AAGGTCTGGCAGGTTTAAAGATCAAACGGCTGATTCTGGGAGAATTTAAAAATGAAAGGA & 799 \\
\hline XM_005880935.2 & AAGGTCTGGCTGGTTTAAAGATCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAA & 1018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S818 & ACTTAGTAGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAAT & 516 \\
\hline J649 & ACTTAGTAGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAAT & 466 \\
\hline XM 008152116.1 & TCTTAGTAAACTTGGACAAATCTGCCCTGGAGGAACTGTGTAATTTGACCATTGAAGAAT & 859 \\
\hline XM-005880935.2 & ACTTAGTAAACTTCAACAAATCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAAT & 1078 \\
\hline S818 & TCCGGATAGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTITTTAAATTGTCTGG & 576 \\
\hline J649 & TCCGGATAGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTTTTTAAATTGTCTGG & 526 \\
\hline XM_008152116.1 & TCCGGATAGCACACTTCCAAGACTTTCCAGAGGATTACCTTGGCTITTTAAATTGTTTGG & 919 \\
\hline XM_005880935.2 & TCCGGATAGCACACTTCGATGAGTTTCCAGGGGATGATCTTGGCTTTTTAAATTGTTTGG & 1138 \\
\hline & & \\
\hline S818 & CAGATGCTTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAA & 636 \\
\hline J649 & CAGATGCTTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAA & 586 \\
\hline XM_008152116.1 & CAGATGCTTCTGCAATATCTCTGGTGAGTCTGAATATAGACAGGCTAGAAAGCCTTCCAA & 979 \\
\hline XM_005880935.2 & CAGATGCTTCTACAATATCTCTTGTGAGTCTATATTTAGATGAGCTAAAAATCTTTCCAA & 1198 \\
\hline & & \\
\hline S818 & CAGGTTTCAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACAT & 696 \\
\hline J649 & CAGGTTTCAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACAT & 646 \\
\hline XM_008152116.1 & AAGGTTTCAAATGGCAATACTTAAACTTGACTAATTGTAAATTTGAACATTTTCCTACAT & 1039 \\
\hline XM_005880935.2 & AAGGTTTCAAATGGCAATACTTAAATTTGTCTAAATGTATATTTGAACATTTTCCTACAT & 1258 \\
\hline S818 & TGGAGCTTACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTT & 756 \\
\hline J649 & TGGAGCTTACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTT & 706 \\
\hline XM_008152116.1 & TGGAGCTTACCTTTCTCAAGCAGTTTGTTTTCACTGACAACAAAGGTATTACCACT--TT & 1097 \\
\hline XM_005880935.2 & TGGAGCTTACCTTTCTCAAGCAGTTTGTTTTCACTGCCAACAAAGGTATTACCACT--TT & 1316 \\
\hline & & \\
\hline S818 & AACTAAACTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTT & 816 \\
\hline J649 & AACTAAACTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTT & 766 \\
\hline XM_008152116.1 & TACTGAAGTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGT-AATGGCTTGAGTT & 1156 \\
\hline XM_005880935.2 & TACTGAAGTTAATCTACCAAACCTTGAGTTTCTAGATCTCAGTAGA-AATGGCTTGAGTT & 1375 \\
\hline & & \\
\hline S818 & TCAAGTCTTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGA & 876 \\
\hline J649 & TCAAGTCTTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGA & 826 \\
\hline XM_008152116.1 & TCAAGTCTTGCTGCTCTCACCGTGATTTTGGGACAACCCAACTGAAACACTTAAATCTGA & 1216 \\
\hline XM_005880935.2 & TCAAGTCCTGCTGCTCTCACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGA & 1435 \\
\hline & ******* ********* ********************* ************ ****** & \\
\hline S818 & GCTTCAATAGTATTATTACCAATGACTTCAAACTTTCGTGGGCTTAGAGCAAAATAGAAC & 936 \\
\hline J649 & GCTTCAATAGTATTAATACCAATGACTTCAAACTTTCATGGGCTTAAGAGCAAATAGAAC & 886 \\
\hline XM_008152116.1 & GCTTCAATAGTATTATTACCATGACTTCAAACTT---CGTGGGCTTAGAGCAACTAGAAC & 1273 \\
\hline XM_005880935.2 & GCTTCAATAATATTATTATCATGACTTCAAACTT---CTTGGGCTTAGAGCAACTAGAAC & 1492 \\
\hline & & \\
\hline S818 & ATCTGGATTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCAC & 996 \\
\hline J649 & ATCTGGATTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCAC & 946 \\
\hline XM_008152116.1 & GACTGGATTTCCAGCATTCCACTTTGAAACAGGCCAGTACTTTTTCAATATTCCTCTCAC & 1333 \\
\hline XM_005880935.2 & ATCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAGTGATTTTTCAGTATTCCTCTCAC & 1552 \\
\hline S818 & TCAAAAACCTCCTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCA & 1056 \\
\hline J649 & TCGAAAACCTCCTTTACCTTGATATCTCTTACACTGACATCAAATTTGTCTTCCAGGGCA & 1006 \\
\hline XM_008152116.1 & TCAAAAACCTCCTTTACCTTGATATCTCTTACACTAACATCCAGATTGTCTTCAAGGGCA & 1393 \\
\hline XM_005880935.2 & TCAAAAATCTCCTTTACCTTGATATCTCTTACACTAACACCAAGATTGTCTTCCTGGGCA & 1612 \\
\hline & & \\
\hline S818 & TCTTTGATGGCTTGATCAGCCTCCAAGTCTTAAAAATTGGCTGGCAATTCCTTTCCAGGA & 1116 \\
\hline J649 & TCTTTGATGGCTTGATCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGAT & 1066 \\
\hline XM_008152116.1 & TCTTTGATGGCTTGATCAGCCTCCAAGTCTTGAAAATGGCTGGCA-ATTCCTTTCAGGAT & 1452 \\
\hline XM_005880935.2 & TCTTTGATGGCTTGATCAGCCTCCAAGTCTTGAAAATGGCTGGCA-ATTCTTTTCAGGAT & 1671 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline S818 & TGCATTCCTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAG & 1176 \\
\hline J649 & GCATTCCTTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAG & 1126 \\
\hline XM 008152116.1 & GCATTCCTTCCAAATGTCTTCAGAGATCTGACTCAGTTGACTATCCTGGACCTCTCTCAG & 512 \\
\hline XM-005880935.2 & GCACTCCTCCCAAATATCTTCAGAGATCTGACTCAGTTGACTGACCTGGACCTCTCTCAG & 1731 \\
\hline S818 & TGTCAACTGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTA & 1236 \\
\hline J649 & TGTCAACTGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTA & 1186 \\
\hline XM_008152116.1 & TGTCAATTGGAACAGGTGTCTCCGGAGGCATTCAGCTCACTCCTTAGACTCGAGGTGCTA & 1572 \\
\hline XM_005880935.2 & TGTCAACTGGAACAGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAGACTCCAGGTGCTA & 1791 \\
\hline & & \\
\hline S818 & AATATGAGTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTC & 1296 \\
\hline J649 & AATATGAGTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTC & 1246 \\
\hline XM_008152116.1 & AATATGAGTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTACAAAAATCTCССТСТС & 1632 \\
\hline XM-005880935.2 & AATATGAGTCACAATCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTC & 1851 \\
\hline & & \\
\hline S818 & TGGCTTCTAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCAT & 1356 \\
\hline J649 & TGGCTTCTAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCAT & 1306 \\
\hline XM_008152116.1 & TCGGTTCTAGACTGCAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCAT & 1692 \\
\hline XM_005880935.2 & CGGGTTCTAGATTGCAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAACAT & 1911 \\
\hline & **** & \\
\hline S818 & AtTCCAAGCAATGTAACTTCGTTAAATCTGACCCAGAATGACTtTGCTTGTGTTTGTGAA & 1416 \\
\hline J649 & ATTCCAAGCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAA & 1366 \\
\hline XM 008152116.1 & TTTCCAAGCAATGTAACTTCCTTACATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAA & 1752 \\
\hline XM_005880935.2 & TTTCCAAGCAATGTAACTTCCTTAAATCTGACCCAGAATAACTTTGCTTGTGTTTGTGAA & 1971 \\
\hline S818 & CACATGTGTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACAC & 1476 \\
\hline J649 & CACATGCGTTTCTTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACAC & 1426 \\
\hline XM_008152116.1 & CACATGCGTTTCCTGCAGTGGGTCCAGGACCACAGGAGCATCTTGGTGGGAGCTGAACAC & 1812 \\
\hline XM_005880935.2 & CACATGCGCTTCCTGCAGTGGGTCCAGGATCACAGGCGCATCTTGGTGGGAGCTGAACAC & 2031 \\
\hline S818 & ATGATGTGTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACAC & 1536 \\
\hline J649 & ATGATGTGTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACAC & 1486 \\
\hline XM_008152116.1 & ATGATGTGTAAGACACCTTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAA-ACAC & 1871 \\
\hline XM_005880935.2 & ATGATGTGTGAGAAACCTTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAA-ATGC & 2090 \\
\hline & & \\
\hline S818 & CACCTGCCAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAGTATC & 1596 \\
\hline J649 & CACCTGCCAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAGTATC & 1546 \\
\hline XM_008152116.1 & CACCTGCCAGATGAACAAAACTGTCATTAGTGTGTCCGTTCTCTCAGTACTCGTGGTATC & 1931 \\
\hline XM_005880935.2 & CACCTGCCAGATGAGCAAAACTATCATTAGTGTGTCAGTTCTCTCAGTACTCGTGGTATC & 2150 \\
\hline & & \\
\hline S818 & TGTGGCTGCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAG & 1656 \\
\hline J649 & TGTGGCTGCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAG & 1606 \\
\hline XM_008152116.1 & TGTGGCTGCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAA & 1991 \\
\hline XM_005880935.2 & TGTAGCCGCAGTTCTGGTCTACAAGTTCTACTTCCACCTGATGCTTCTGGCTGGCTGCAA & 2210 \\
\hline S818 & AAAGGTACGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGAT & 1716 \\
\hline J649 & AAAGGTACGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAGCCCATGAT & 1666 \\
\hline XM_008152116.1 & AAGGT-ACAGCAAAGGGGACAGCACTTATGATGCCTTTGTCATCTACTCCAGCCACGATG & 2050 \\
\hline XM_005880935.2 & AAAGT-ATGGCAAAGGGGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATG & 2269 \\
\hline & ** * * ********** **** ** ********************** & \\
\hline S818 & GAGGACTGGGTTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTNCCCCCCTTTTN & 1776 \\
\hline J649 & GAGGACTGGGGTGAGGAATGAGTTNGTGAANANNTTGGAGGAGGGGGTACCCCCCTTTCA & 1726 \\
\hline XM_008152116.1 & --AGGACTGGGTGAGGAATGAGTTGGTAAAGAACTTGGAGGAGGGGGTACCCCCCTTTCA & 2108 \\
\hline XM_005880935.2 & --AGGACTGGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTCCCCCCCTTTCA & 2327 \\
\hline
\end{tabular}

Figure 4.4: Clustal W sequence alignment of TLR4 PCR products derived from one \(P\). pipistrellus bat (code: S818), one P. pygmaeus bat (code: J649) with TLR4 gene sequences from Eptesicus fuscus (XM_008152116.1) and Myotis brandtii (XM_005880935.2).

Table 4.1: BlastN summary data for the TLR4 gene product derived from P. pipistrellus.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Highly similar \\
sequence
\end{tabular} & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
accession number
\end{tabular} \\
\hline \begin{tabular}{l}
Eptesicus fuscus toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2680 & 2680 & \(100 \%\) & 0.0 & \(94 \%\) & XM_008152116.1 \\
\hline \begin{tabular}{l}
Myotis brandtii toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2453 & 2453 & \(100 \%\) & 0.0 & \(91 \%\) & XM_005880935.2 \\
\hline \begin{tabular}{l}
Myotis lucifugus toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2414 & 2414 & \(100 \%\) & 0.0 & \(91 \%\) & XM_006091085.2 \\
\hline \begin{tabular}{l}
Myotis davidii toll like \\
receptor 4 (TLR4), \\
mRNA
\end{tabular} & 2399 & 2399 & \(100 \%\) & 0.0 & \(91 \%\) & XM_015569901.1 \\
\hline \begin{tabular}{l}
Pteropus alecto toll \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 1504 & 1504 & \(100 \%\) & 0.0 & \(82 \%\) & NM_001290172.1 \\
\hline
\end{tabular}

Table 4.2: BlastN summary data for the TLR4 gene product derived from P. pygmaeus.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
Highly similar \\
sequence
\end{tabular} & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
accession number
\end{tabular} \\
\hline \begin{tabular}{l}
Eptesicus fuscus toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2569 & 2569 & \(100 \%\) & 0.0 & \(91 \%\) & XM_008152116.1 \\
\hline \begin{tabular}{l}
Myotis brandtii toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2350 & 2350 & \(100 \%\) & 0.0 & \(88 \%\) & XM_005880935.2 \\
\hline \begin{tabular}{l}
Myotis lucifugus toll- \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 2316 & 2316 & \(100 \%\) & 0.0 & \(88 \%\) & XM_006091085.2 \\
\hline \begin{tabular}{l}
Myotis davidii toll like \\
receptor 4 (TLR4), \\
mRNA
\end{tabular} & 2294 & 2294 & \(100 \%\) & 0.0 & \(88 \%\) & XM_015569901.1 \\
\hline \begin{tabular}{l}
Pteropus alecto toll \\
like receptor 4 \\
(TLR4), mRNA
\end{tabular} & 1476 & 1479 & \(100 \%\) & 0.0 & \(80 \%\) & NM_001290172.1 \\
\hline
\end{tabular}

The translated nucleotide sequences of the pipistrelle TLR4 genes were aligned with TLR4 protein sequence from Eptesicus fuscus to reveal high levels of conservation (Figure 4.5).

Indeed, the common and soprano pipistrelle TLR4 protein sequences were \(95 \%\) identical to each other and the predicted N -glycosylation sites were conserved between the vespertilionids. As predicted based upon nucleotide conservation, the common pipistrelle TLR4 protein sequence was slightly more conserved relative to the TLR4 sequences of other bats than that of the soprano pipistrelle (Tables 4.3 and 4.4).
\begin{tabular}{|c|c|c|}
\hline J649 & & 0 \\
\hline S818 & & 0 \\
\hline XP_008150338.1 & MRLTRLAGTLLPAMAFLSCLRPESWDPCVQVVPNVTYQCMELNLYTIPDNIPTTTKNLDL & 60 \\
\hline J649 & & 0 \\
\hline S818 & --EFXPXX & 6 \\
\hline XP_008150338.1 & SFNPLRHLGSHSFSNFSELQVLDLSRCEIQKIEDDAYQGLKHLSILILTGNPIQSLAPGA & 120 \\
\hline J649 & ------------VRXNXCLLGTSPWQIXKSLIELNVAHNLIDSFKLPDYFSNLPNLEHLD & 48 \\
\hline S818 & FSDY-XFTXLGGWGANLASLEDFPIXHLKSLKELNVAHNLIDSFKLPDYFSNLPNLEHLD & 65 \\
\hline XP_008150338.1 & FSGLPSLQTLVAVETNLASLEDFPITHLKSLKELNVAHNLIDSFKLPNYFSNLPNLEHLD
\(* . *)\) & 180 \\
\hline J649 & LSNNKIRKIYHEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKK & 108 \\
\hline S818 & LSNNKIRKIYHEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKK & 125 \\
\hline XP_008150338.1 & \begin{tabular}{l}
LSNNKIRNIYHEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSAE \\
*******:**:
\end{tabular} & 240 \\
\hline J649 & VMKTCIQGLAGLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCR & 168 \\
\hline S818 & VMKTCIQGLAGLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCR & 185 \\
\hline XP_008150338.1 & VMKTFIQGLAGLKIKRLILGEFKNERILVNLDKSALEELCNLTIEEFRIAHFQDFPEDYL & 300 \\
\hline J649 & GFLNCLADASAVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTAN & 228 \\
\hline S818 & GFLNCLADASAVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTAN & 245 \\
\hline XP_008150338.1 & GFLNCLADASAISLVSLNIDRLESLPKGFKWQYLNLTNCKFEHFPTLELTFLKQFVFTDN & 360 \\
\hline J649 & KVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFIVLHDMFKLSWAL & 288 \\
\hline S818 & KVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFNSIITMTSNFVGL & 305 \\
\hline XP_008150338.1 & KGITTFTEVNLRNLEFLDLSSNGLSFKSCCSHRDFGTTQLKHLNLSFNSIITMTSNFVGL
* *****: : *********** **********.******:****:*** : . . . & 420 \\
\hline J649 & ESKENIWISSIPLEDRPVLFQSSHSLKTSFTLISLTLTSRFVFQGIFDGLISLQVLKMAG & 348 \\
\hline S818 & EQIEHLDFQHSTLERQASTFSVFLSLKNLLYLDISYTDIKIVFQGIFDGLISLQVLKMAG & 365 \\
\hline XP_008150338.1 & & 479 \\
\hline
\end{tabular}
```

J649 NSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPY 408
S818 NSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPY
XP_008150338.1 NSFQDAFLPNVFRDLTQLTILDLSQCQLEQVSPEAFSSLLRLEVLNMSHNHLLSLDMLPY
**********:********:****************.*****:********************
J649 KNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMRFLQWVQDHRRIL
S818 KNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRIL
XP 008150338.1 KNLPLSVLDCSFNRIVAANGQELQHFPSNVTSLHLTQNDFACVCEHMRFLQWVQDHRSII
J649 VGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIVSVAAVLVYKFYFHLML
S818 VGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIVSVAAVLVYKFYFHLML
XP 008150338.1 VGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLVVSVAAVLVYKFYFHLML
J649 LAGCRKKVRQRGQHVRCLCHLLQPHGMNEDWGEEEVVENXGGGGTPLSAXAFTTXK---- 584
S818 LAGCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNLEEGXPPFXXLPSL-------
XP_008150338.1 LAGCKR--YSKGDSTYDAFVIYSS--HDEDWVRNELVKNLEEGVPPFQLCLHYRDFIPGV
****:: :*: : . :*** .:*:*:* * * :
J649 -------------------------------------------------------------------------
S818 ------------------------------------------------------------------
XP_008150338.1 AIAANIIQEGFHKSRKVIVVVSQHFIQSRWCIFEYEIAQTWQFLSSHAGIIFIVLQKVEK
J649 --------------------------------------------------------------------
S818 ----------------------------------------------------------------------
XP_008150338.1 SLLRQQVELYRLLSRNTYLEWEDSALGRHIFWRRLRKALLDGKPWSPEGTVDAEVSQDETAGCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNLEEGXPPFXXLPSL--------598

```
XP_008150338.1 AIAANIIQEGFHKSRKVIVVVSQHFIQSRWCIFEYEIAQTWQFLSSHAGIIFIVLQKVEK 775
```

J649	----	584
S818	----	598
XP_008150338.1	MTSF	839

```

Figure 4.5: Clustal W sequence alignment of TLR4 amino acid sequences from one \(P\). pipistrellus bat (code: S818), one P. pygmaeus bat (code: J649) and Eptesicus fuscus:

XP_008150338.1. Predicted N -glycosylation sites are shown in red font.

Table 4.3: BlastP summary data for the TLR4 gene product derived from P. pipistrellus.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
toll-like receptor 4 \\
[Eptesicus fuscus]
\end{tabular} & 994 & 994 & \(100 \%\) & 0.0 & \(89 \%\) & XP_008150338.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
brandtii]
\end{tabular} & 962 & 962 & \(100 \%\) & 0.0 & \(87 \%\) & XP_005880997.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
davidii]
\end{tabular} & 952 & 952 & \(100 \%\) & 0.0 & \(86 \%\) & XP_015425387.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
lucifugus]
\end{tabular} & 941 & 941 & \(100 \%\) & 0.0 & \(85 \%\) & XP_006091147.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 \\
precursor [Pteropus alecto]
\end{tabular} & 809 & 809 & \(100 \%\) & 0.0 & \(74 \%\) & NP_001277101.1 \\
\hline
\end{tabular}

Table 4.4: BlastP summary data for the TLR4 gene product derived from P. pygmaeus.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & \begin{tabular}{l}
Total \\
score
\end{tabular} & \begin{tabular}{l}
Query \\
cover
\end{tabular} & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & \begin{tabular}{l}
GenBank \\
accession \\
number
\end{tabular} \\
\hline \begin{tabular}{l}
toll-like receptor 4 \\
[Eptesicus fuscus]
\end{tabular} & 816 & 816 & \(100 \%\) & 0.0 & \(86 \%\) & XP_008150338.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
brandtii]
\end{tabular} & 793 & 793 & \(100 \%\) & 0.0 & \(84 \%\) & XP_005880997.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
davidii]
\end{tabular} & 784 & 784 & \(100 \%\) & 0.0 & \(83 \%\) & XP_015425387.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 [Myotis \\
lucifugus]
\end{tabular} & 774 & 774 & \(100 \%\) & 0.0 & \(82 \%\) & XP_006091147.1 \\
\hline \begin{tabular}{l}
toll-like receptor 4 \\
precursor [Pteropus alecto]
\end{tabular} & 650 & 650 & \(100 \%\) & 0.0 & \(70 \%\) & NP_001277101.1 \\
\hline
\end{tabular}

Figure 4.6: Domain structures of the TLR4 protein from E. fuscus (above) and P. pipistrellus (code: S818) (below). The blue block represents the transmembrane domain and TIR is the cytoplasmic Tol1/IL-IR domain. Footnote: P. pygmaeus (code: J649) has the same TLR4 domain structure as shown for \(P\). pipistrellus.

Comparing the domain models for the pipistrelle and E. fuscus TLR4 proteins revealed, as expected, based upon positioning of the PCR primers, that the pipistrelle protein lacked the cytoplasmic Toll/IL-IR domain and also, a number of the leucine rich repeats associated with the extracellular domain (Figure 4.6).

\subsection*{4.2 The pipistrelle TLR2:}

An attempt was made to PCR amplify the gene encoding TLR2 in the pipistrelle bats. Oligonucleotide primers were designed using a similar strategy to that presented for the amplification of the pipistrelle TLR4 gene and this allowed some preliminary sequence data to be generated at the 5' end of the pipistrelle TLR2 gene by Arianne Lovey (MSc student, University of Salford). This preliminary sequence data was then used to design further overlapping oligonucleotide primers (TLR2Fn/TLR2Rn, TLR2.2F/TLR2.2R and TLR2gapF/TLR2gapR) (Figure 4.7) to allow the majority of the pipistrelle TLR2 gene to be PCR amplified (Figures 4.8-4.10).

Figure 4.7: PCR primer combinations and binding sites used to amplify the pipistrelle TLR2 gene. Footnote: primer combinations used to amplify products were as follows: 1 (TLR2F/ TLR2R), 2 (TLR2.2F/TLR2.2R), 3 (TLR2Fn/TLR2Rn) and 4 (TLR2gapF/TLR2gapR); 1-3 were designed by Arianne Lovey (MSc student, University of Salford). \(1=\) blue; \(2=\) red; \(3=\) green and \(4=\) black.

1

Figure 4.8: Representative agarose (\(1 \%\)) gel image showing PCR amplification of the \(P\). pipistrellus TLR2 gene fragment (500bp) derived from primers TLR2Fn/ TLR2Rn (combination 3 in Figure 4.7). 1-6, bat samples (bat codes: JL628, JL647, FP737, S607, J707, SA7?); 7, negative control (\(\mathrm{H}_{2} \mathrm{O}\)); 8, 1 kb hyperladder.

Figure 4.9: Representative agarose (\(1 \%\)) gel image showing PCR amplification of \(P\). pipistrellus TLR2 gene fragment (1200bp) derived from primers TLR2.2F/TLR2.2R (combination 2 in Figure 4.7). 1, 1kb hyperladder; 2-15, bat samples; 16, negative control \(\left(\mathrm{H}_{2} \mathrm{O}\right) ; 17,1 \mathrm{~kb}\) hyperladder. Positive samples are shown in lanes 7, 8 and 9 (corresponding to bats JL628, JL647, FP737 respectively). Footnote: 24 PCR TLR2.2F/TLR2.2R products were generated in this thesis work and 35 were produced by Arianne Lovey (MSc student, University of Salford).

Figure 4.10: Representative agarose (1\%) gel image showing PCR amplification of \(P\). pipistrellus TLR2 gene fragments (400bp) derived from primers TLR2gapF/TLR2gapR (combination 4 in Figure 4.7). 1, 1kb hyperladder; 2-6, bat samples (codes: J1628, JL647, FP737, SA607, J707); 7, negative control (\(\mathrm{H}_{2} \mathrm{O}\)); 8, 1kb hyperladder.

In total, PCR products were successfully amplified from 59 bats for each primer combination. All PCR products were purified, DNA sequencing was performed and the resulting data was manually assembled into one contiguous TLR2 sequence, based upon the overlapping regions, for further analysis. The TLR2 gene sequence from one P. pipistrellus (code: S818) and one \(P\). pygmaeus (code: J649) were aligned with other vespertilionid bat TLR2 gene sequences and the resulting data confirmed that the pipistrelle TLR2 gene isolation strategy had been successful. Indeed, the common and soprano TLR2 gene sequences were almost identical to each other; 2 nucleotides differences were apparent at positions 1620 and 1653 of
the pipistrelle sequences, and they were highly conserved to the TLR2 gene sequences from
other bats (Figure 4.11 and Table 4.5).

CLUSTAL O(1.2.4) multiple sequence alignment
\begin{tabular}{|c|c|c|}
\hline S818 & & 0 \\
\hline J649 & & 0 \\
\hline XM_008144148.1 & & 0 \\
\hline XM_014543903.1 & AACATTCAGTAATGAAATAAAGGTATAAGGATTAGTAAAGGGAAATAAAACCATCACCTA & 60 \\
\hline S818 & & 0 \\
\hline J649 & & 0 \\
\hline XM_008144148.1 & & 0 \\
\hline XM_014543903.1 & GCTGCTGATATGATTGTATACATAGGAAAATGTTTTTTTTTAAACCTACAAACTATGGAA & 120 \\
\hline S818 & & 0 \\
\hline J649 & & 0 \\
\hline XM_008144148.1 & & 0 \\
\hline XM_014543903.1 & TTACTAAGTTAGTTCAGCAAGGTTGCTCAATGCATGGTAAATGTATACAATATGCTCTCA & 180 \\
\hline S818 & & 0 \\
\hline J649 & & 0 \\
\hline XM_008144148.1 & -TCACGGGACGATGCCACA & 18 \\
\hline XM_014543903.1 & ACCACAATCACTCACTTGAGCCTCTTTTATTTGTAGGTTGAATCACGGGACCATGCCACA & 240 \\
\hline S818 & --TGGGGACCGTAATCAGCCTGTTCAAGGAAGGGGCCCN & 37 \\
\hline J649 & ---TGGGGACCGTAATCAGCCTGTTCAAGGAAGGGGCCCN & 37 \\
\hline XM_008144148.1 & TGCTTTGTGGACAGCGTGGGTCTTGGGGAGCGTAATCAGCCTGTTCGAGGAAGGGGCCCC & 78 \\
\hline XM_014543903.1 & TGCTTTGTGGACACTGTGGGTCTTGGGGACCGTCATCAGCCTGTTCAAGGAAGGGGCCCC & 300 \\
\hline S818 & TGATCAGGCTT--TTC-CTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAG & 94 \\
\hline J649 & TGATCAGGCTT--TTC-CTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAG & 94 \\
\hline XM_008144148.1 & TGATCAGGCT---TCTCCTCTGACTTGTGACCCCACTGGGGTCTGCGATGGCCACGCCAG & 135 \\
\hline XM_014543903.1 & TGATCAGGCT---TCTTCTCTGACTTGTGACCCCACTGGGATCTGCGATGGCCACTCCAG & 357 \\
\hline & & \\
\hline S818 & ATCTTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAA & 154 \\
\hline J649 & ATCTTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAA & 154 \\
\hline XM_008144148.1 & ATCTTTAATCTCCATCCCCTCCGGGCTCATGGCAACTGTGAAGAGCCTCGACCTGTCCAA & 195 \\
\hline XM_014543903.1 & \begin{tabular}{l}
ATCTTTAATCTCCATCCCCTCAGGGCTCATGGCAACTGTAAAGAGCCTCGACCTGTCCAA \\

\end{tabular} & 417 \\
\hline S818 & CAACAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCT & 214 \\
\hline J649 & CAACAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCT & 214 \\
\hline XM_008144148.1 & CAACAAGATCGCCTACGTCAGCAACAGTGACCTGCGGATGTGTGTGAACCTCAAGGCTCT & 255 \\
\hline XM_014543903.1 & \begin{tabular}{l}
CAACAAGATCACCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAAGGCTCT \\

\end{tabular} & 477 \\
\hline S818 & GAGGCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAG & 274 \\
\hline J649 & GAGGCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAG & 274 \\
\hline XM_008144148.1 & GAGGCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAG & 315 \\
\hline XM_014543903.1 & \begin{tabular}{l}
GAGGCTGGGATCCAATAACATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAG \\

\end{tabular} & 537 \\
\hline S818 & TCTTGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAG & 334 \\
\hline J649 & TCTTGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAG & 334 \\
\hline XM_008144148.1 & TCTTGAACATTTGGACTTATCCTATAATCACTTATCTATTTTATCAGCCTCCTGGTTCAG & 375 \\
\hline XM_014543903.1 & TCTGGAACATTTGGACTTATCCTATAATCTCTTACCTAATTTATCAGCCTCCTGGTTCAG & 597 \\
\hline S818 & GCCTCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAA & 394 \\
\hline J649 & GCCTCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAA & 394 \\
\hline XM_008144148.1 & GCCCCTTACTTCCTTGAACTTCTTAAACTTACTGGGAAACCCTTACAAAACACTTGGGAA & 435 \\
\hline XM_014543903.1 & GCCCCTGACTTCCTTGAACTTCTTAAACTTACTGGGAAACCCTTACAAAACACTCGGGAA & 657 \\
\hline
\end{tabular}
\begin{tabular}{lll}
S818 & AACACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCT & 454 \\
J649 & AACACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCT & 454 \\
XM_008144148.1 & AACATCTCTTTTTTCTCATCTCACCAAGCTGCGAATCCTAAAAGTAGGACATAGTTACCA & 495 \\
XM_014543903.1 & AACATCTCTTTTTTCTCATCTCACCAACTTGCGAATCCTAAAAGTAGGACATAGTTACCA & 717 \\
& *** & \\
& & \\
& & \\
& & CTTCACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGAT
\end{tabular}

信 AGAATATTTGGACCTCAGTGGCAACTTGATAGTTGAAAACTTATTGAAAAACGCAGCCTG解
\begin{tabular}{|c|c|c|}
\hline S818 & TGAGTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTT & 1174 \\
\hline J649 & TGAGTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTT & 1174 \\
\hline XM_008144148.1 & TGAGTATGCCTGGCCCTCCCTGCAAACCTTAATCTTAAGGCAGAATCATTTGAGGTCGTT & 1215 \\
\hline XM_014543903.1 & TGAGTATGCCTGGCCCTCCCTGCAAACCTTAATTTTAAGGCAGAATCATTTGAGATCGTT & 1434 \\
\hline S818 & AGAAGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAA & 1234 \\
\hline J649 & AGAAGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAA & 1234 \\
\hline XM_008144148.1 & AGAAAAAACTGGAGAAATTTTGCTTACTCTGAAAAGTCTGACTAACCTTGATATCAGCAA & 1275 \\
\hline XM_014543903.1 & AGAACAAACCGGAGAAACTTTGCTTACTCTGAAAAGTCTGACTAACCTTGATATCAGTAA & 1494 \\
\hline S818 & GAATAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAA & 1294 \\
\hline J649 & GAATAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAA & 1294 \\
\hline XM_008144148.1 & GAATAATTTCCACCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAATGTTTGAA & 1335 \\
\hline XM_014543903.1 & \begin{tabular}{l}
GAATAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAAGATGACATGTTTGAA \\

\end{tabular} & 1554 \\
\hline S818 & CTTATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTT & 1354 \\
\hline J649 & CTTATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTT & 1354 \\
\hline XM_008144148.1 & CTTATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACACTGGAAGTTTT & 1395 \\
\hline XM_014543903.1 & CTTATCCAGTACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGAAACTGGAAATTTT & 1614 \\
\hline S818 & AGATGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACT & 1414 \\
\hline J649 & AGATGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACT & 1414 \\
\hline XM_008144148.1 & GGATGTTAGCAATAACAGCCTCAGTTCCTTTTCGTTGACTCTGCCACAACTCAGAGAACT & 1455 \\
\hline XM_014543903.1 & \begin{tabular}{l}
AGATGTTAGCAACAACAGCCTCAGTTCGTTTTCGTTGACGATGCCACAACTCAGAGAACT \\

\end{tabular} & 1674 \\
\hline S818 & TTATATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACT & 1474 \\
\hline J649 & TTATATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACT & 1474 \\
\hline XM_008144148.1 & TTATATTTCCGGAAATAAGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACT & 1515 \\
\hline XM_014543903.1 & TTATATTTCCGGAAATAAGTTGAAGACTCTACCAGATGCTTCCTCCTTACCCATGTTACT & 1734 \\
\hline S818 & CGTCATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTT & 1534 \\
\hline J649 & CGTCATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTT & 1534 \\
\hline XM_008144148.1 & AATCATGAGAATCAGCAGAAATACAATAAATACTTTCTCCAAGGAGCAACTTGATTCTTT & 1575 \\
\hline XM_014543903.1 & \begin{tabular}{l}
AGTCATGAGAATCAGCAGAAATACAATAAATACTTTCTCTAAGGAGCAACTTGATTCTTT \\

\end{tabular} & 1794 \\
\hline S818 & TAAAAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCT & 1594 \\
\hline J649 & TAAAAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCT & 1594 \\
\hline XM_008144148.1 & TAAAACATTGAAGACTTTGGAAGCTGGCAGCAACAATTTCATCTGTTCCTGTGAATTCCT & 1635 \\
\hline XM_014543903.1 & \begin{tabular}{l}
TCAAAAACTGAAGACTTTGGAAGCTGGCAGCAACAATTTCATCTGTTCCTGTGAATTCCT \\
* *** * *************************** *************** ********
\end{tabular} & 1854 \\
\hline S818 & GTCCTTTACTCAGGGGCAGCAAGCACTGGCCCAAGTCCTGGTCGACTGGCCAGAAAACTA & 1654 \\
\hline J649 & GTCCTTTACTCAGGGGCAGCAAGCAATGGCCCAAGTCCTGGTCGACTGGCCAGAAAACAA & 1654 \\
\hline XM_008144148.1 & GTCCTTTACTCAGGGGCACCAAGCCCTGGCCCAAGTCCTGACCGACTGGCCAGAACACTA & 1695 \\
\hline XM_014543903.1 & GTCCTTCACTCAGGGGCAGCCAGCACTGGCCCAAGTCCTGATCGACTGGCCAGAAAACTA & 1914 \\
\hline S818 & CCTGTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGT & 1714 \\
\hline J649 & CCTGTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGT & 1714 \\
\hline XM_008144148.1 & CCTGTGTGATTCTCCATCCCATGTGCGGGGCCAGCGGGTGCGGGACACTCATCTCTCGGC & 1755 \\
\hline XM-014543903.1 & \begin{tabular}{l}
CCTGTGTGATTCTCCATCCCATGTGCGGGGCCAGCGGGTGCAGGACACTCATCTCTCGGC \\
****** ***** **************************** ***************
\end{tabular} & 1974 \\
\hline S818 & TTCTGAGTGCCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGAT & 1774 \\
\hline J649 & TTCTGAGTGCCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGAT & 1774 \\
\hline XM_008144148.1 & TTCTGAGTGCCACAGGGTGGCTGTGGTGTCTGCCGTATGCTGTGCCCTTTTCCTGCTGAT & 1815 \\
\hline XM_014543903.1 & \begin{tabular}{l}
TTCTGAGTGCCACAGGGTGGCTCTGGTGTCTGCCGTATGCTGTGCCCTTTTCCTGCTGAT \\

\end{tabular} & 2034 \\
\hline S818 & CCTGCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTG & 1834 \\
\hline J649 & CCTGCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTG & 1834 \\
\hline XM_008144148.1 & CCTGCTCGCTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAAATGATGTG & 1875 \\
\hline XM_014543903.1 & \begin{tabular}{l}
CCTGCTCGCTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAAATGATGTG \\

\end{tabular} & 2094 \\
\hline S818 & GGCCTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCAGTTACGA & 1894 \\
\hline J649 & GGCCTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCAGTTACGA & 1894 \\
\hline XM_008144148.1 & GGCCTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCAGAGGGACCTCTGTTATGA & 1935 \\
\hline XM_014543903.1 & GGCCTGGCTTCAGGCCAAAAGGAAGCCCAAGCGAGCCCCCCAGAGGGACCTCTGTTATGA & 2154 \\
\hline
\end{tabular}

Figure 4.11: Clustal W alignment of the \(T L R 2\) gene sequences derived from \(P\). pipistrellus (code: S818) and P. pygmaeus (code: J649) with the TLR2 mRNA sequences from E. fuscus (XM_008144148.1) and M. brandtii (XM_014543903.1). Footnote: Arianne Lovey (MSc student, University of Salford) was responsible for all the pipistrelle sequence data between \(1-700 \mathrm{bp}\) and also, 35 bat sequences between 1200-2096bp.

Table 4.5: BlastN summary data for the TLR2 gene derived from P. pipistrellus (code: S818). Footnote: the BlastN data for the P. pygmaeus (code: J649) TLR2 gene was identical to that shown below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Highly similar sequence & Max score & Total score & Query cover & \begin{tabular}{l}
E \\
value
\end{tabular} & Iden & Gen bank \# \\
\hline \begin{tabular}{l}
Eptesicus fuscus toll- \\
like receptor 2 (TLR2), \\
mRNA
\end{tabular} & 3264 & 3264 & 100\% & 0.0 & 95\% & XM_008144148.1 \\
\hline Myotis brandtii toll-like receptor 2 (TLR2), mRNA & 3107 & 3107 & 100\% & 0.0 & 93\% & XM_014543903.1 \\
\hline Myotis lucifugus tolllike receptor 2 (TLR2), mRNA & 3079 & 3079 & 100\% & 0.0 & 93\% & XM_014456089.1 \\
\hline Myotis davidii toll like receptor 2 (TLR2), mRNA & 3007 & 3007 & 100\% & 0.0 & 93\% & XM_006770106.2 \\
\hline Pteropus alecto toll like receptor 2 (TLR2), mRNA & 2239 & 2239 & 100\% & 0.0 & 86\% & XM_006906255.2 \\
\hline
\end{tabular}

Not surprisingly given the above, the translated nucleotide sequences of the pipistrelle TLR2 genes were almost identical; the two nucleotide change resulted in an amino acid change at position 541 and 553 of the protein sequences (Figure 4.12). The pipistrelle TLR2 amino acid sequences were highly similar to the TLR2 proteins of \(E\). fuscus and M. brandtii (Table 4.6). The predicted N -glycosylation sites in the \(E\). fuscus TLR2 protein were conserved in

\section*{the pipistrelles; in addition, a further two N -glycosylation sites were predicted in the} pipistrelle proteins (Figure 4.12).

CLUSTAL \(O(1.2 .4)\) multiple sequence alignment
\begin{tabular}{|c|c|c|}
\hline S818 & -XGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDL & 50 \\
\hline J649 & -XGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDL & 50 \\
\hline XP_008142370.1 & MPHALWTAWVLGSVISLFEEGAPDQASPLTCDPTGVCDGHARSLISIPSGLMATVKSLDL
\[
\star: \star \star * * *: * * * * * * * * * * * * * * * * * * *: * * * * * * * * * * * * * . * * * *
\] & 60 \\
\hline S818 & SNNKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASW & 110 \\
\hline J649 & SNNKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASW & 110 \\
\hline XP_008142370.1 & SNNKIAYVSNSDLRMCVNLKALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLSILSASW \(\star * * * * * * * * * * * * * * * * * *: *: ~ * * * * * ~\) & 120 \\
\hline S818 & FRPLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKEL & 170 \\
\hline J649 & FRPLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKEL & 170 \\
\hline XP_008142370.1 & \begin{tabular}{l}
FRPLTSLNFLNLLGNPYKTLGKTSLFSHLTKLRILKVGHSYHFTEIQEKDFVGLTFLKEL \\

\end{tabular} & 180 \\
\hline S818 & EIDASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHF & 230 \\
\hline J649 & EIDASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHF & 230 \\
\hline XP_008142370.1 & EIDASNLQKYAPRSLKLIQNISHLILRVKQPTFLLEISVDLLSSLGHLELRDTHLDTFHF
****************: *********: : ******: : ** *****************************) & 240 \\
\hline S818 & SKVSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVM & 290 \\
\hline J649 & SKVSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVM & 290 \\
\hline XP_008142370.1 & \begin{tabular}{l}
SIVSTNETKTIKKFTFRNVKITDEGFNEMVKLLNYVSEIVDVEFDSCTLNGIGDFDTTAM \\

\end{tabular} & 300 \\
\hline S818 & DTNKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLK & 350 \\
\hline J649 & DTNKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLK & 350 \\
\hline XP_008142370.1 & \begin{tabular}{l}
DTNKDISKIQTLTIRRLYIPYFYLFSDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLK \\

\end{tabular} & 360 \\
\hline S818 & SLEYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDI & 410 \\
\hline J649 & SLEYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDI & 410 \\
\hline XP_008142370.1 & SLEYLDLSGNLIVENLLKNAACEYAWPSLQTLILRQNHLRSLEKTGEILLTLKSLTNLDI
\[
\star * * * * * * * * * * * * * * * . *: * * *: * * * * * . * * * * * *
\] & 420 \\
\hline S818 & SKNNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLR & 470 \\
\hline J649 & SKNNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLR & 470 \\
\hline XP_008142370.1 & SKNNFHPISKTCQWPERMKCLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTLPQLR \(\star \star *: ~ * * * *\) & 480 \\
\hline S818 & ELYISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCE & 530 \\
\hline J649 & ELYISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCE & 530 \\
\hline XP_008142370.1 & ELYISGNKLKTLPDASSLPMLLIMRISRNTINTFSKEQLDSFKTLKTLEAGSNNFICSCE
\[
\star * * * * * *: * * * * * * * * * * * * * *: * . * * * * * * * * * . * * * * * *
\] & 540 \\
\hline S818 & FLSFTQGQQALAQVLVDWPENYLCDSPSHVRGQRVQDTHLSVSECHRVAVVSAVCCALFL & 590 \\
\hline J649 & FLSFTQGQQAMAQVLVDWPENYQCDSPSHVRGQRVQDTHLSVSECHRVAVVSAVCCALFL & 590 \\
\hline XP_008142370.1 & \begin{tabular}{l}
FLSFTQGHQALAQVLTDWPEHYLCDSPSHVRGQRVRDTHLSASECHRVAVVSAVCCALFL \\

\end{tabular} & 600 \\
\hline S818 & LILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLSYDAFVSYSEQDSHWVENLMV & 650 \\
\hline J649 & LILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLSYDAFVSYSEQDSHWVENLMV & 650 \\
\hline XP_008142370.1 & \begin{tabular}{l}
LILLAGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPQRDLCYDAFVSYSEQDSHWVENLMV \\

\end{tabular} & 660 \\
\hline S818 & QELEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENS-R----------- & 698 \\
\hline J649 & & 698 \\
\hline XP_008142370.1 & \begin{tabular}{l}
QELEHFNPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENFVKSEWCKYELDFS \\

\end{tabular} & 720 \\
\hline
\end{tabular}
\begin{tabular}{lll}
S818 & ---- & 698 \\
J649 & ---- & 698 \\
XP_008142370.1 & AIKS & 784
\end{tabular}

Figure 4.12: Clustal W alignment of the TLR2 amino acid sequences from \(P\). pipistrellus (code: S818) and P. pygmaeus (code: J649) with the TLR2 protein from E. fuscus: XP_008142370.1. Footnote: Predicted N-glycosylation sites are highlighted in emboldened red font.

Table 4.6: BlastP summary data for the \(T L R 2\) amino acid sequence derived from \(P\). pipistrellus (code: S818). Footnote: the BlastP data for the P. pygmaeus (code: J649) TLR2 sequence was identical to that shown below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Highly similar sequence & \begin{tabular}{l}
Max \\
score
\end{tabular} & Total score & Query cover & E value & Iden & Gen bank \# \\
\hline \begin{tabular}{l}
toll-like receptor 2 \\
[Eptesicus fuscus]
\end{tabular} & 1301 & 1301 & 100\% & 0.0 & 93\% & XP_008142370.1 \\
\hline \begin{tabular}{l}
toll-like receptor 2 \\
[Myotis brandtii]
\end{tabular} & 1257 & 1257 & 100\% & 0.0 & 90\% & XP_014399389.1 \\
\hline \begin{tabular}{l}
toll-like receptor 2 \\
[Myotis lucifugus]
\end{tabular} & 1236 & 1236 & 100\% & 0.0 & 90\% & XP_006081868.1 \\
\hline \begin{tabular}{l}
toll-like receptor 2 \\
[Myotis davidii]
\end{tabular} & 1233 & 1233 & 100\% & 0.0 & 89\% & XP_006770169.2 \\
\hline toll-like receptor 2 precursor [Pteropus alecto] & 1134 & 1134 & 100\% & 0.0 & 81\% & XP_006906317.1 \\
\hline
\end{tabular}

Unfortunately, due to lack of conservation at the \(5^{\prime}\) and \(3^{\prime}\) ends of the TLR2 gene between the different bat species, it was not possible to isolate the full TLR2 gene sequence for the common and soprano pipistrelles. Nonetheless, based upon a functional domain analysis, the pipistrelle proteins showed high conservation with the E. fuscus TLR2 protein, lacking only the cytoplasmic Toll/IL-IR domain and also, one leucine rich repeat associated with the extracellular domain (Figure 4.13).

Figure 4.13: Domain structures of the TLR2 protein from E. fuscus (above) and P. pipistrellus (code: S818) (below). The blue block represents the transmembrane domain and TIR is the cytoplasmic Tol1/IL-IR domain. Footnote: P. pygmaeus (code: J649) has the same TLR2 domain structure as shown for \(P\). pipistrellus.

\section*{Discussion}

The aim of this chapter was to characterise pipistrelle genes encoding TLR2 and TLR4 by using a PCR-based approach. Given the absence of a pipistrelle genome sequence, or publications on pipistrelle TLRs, the approach was dependent upon aligning TLR sequences from a small number of vespertilionid bats and the fruit bat \(P\). alecto in order to design PCR primers to evolutionary conserved regions. As a result, it was not possible to provide full gene sequence data for pipistrelle TLR2 and TLR4 since the 5 ' and 3' regions of these genes were less well conserved between the bat species.

Nonetheless, the gene isolation approach proved successful and allowed isolation of both TLR4 and TLR2 gene sequences from the common and the soprano pipistrelles. Fortuitously, both pipistrelle TLRs appeared to lack intron sequences since the introns are expected to be at the 5 ' and 3 ' ends of the gene and it was not possible to design primers in these two regions due to lack of conservation between the bat species in these two regions. The predicted introns were based on searching the \(M\). brandtii annotated genome for TLR4 and TLR2 mRNA sequences which indicates that this myotid bat introns are located at the 5' ans3' regions of the TLR genes. As noted in the literature, bats have smaller genomes than other mammals (Seim et al., 2013; J. D. Smith \& Gregory, 2009) and this may reflect evolutionary events associated with metabolism and flight (Hughes \& Hughes, 1995).

The common and soprano pipistrelle TLR2 and TLR4 sequences were most similar to each other and they were also highly similar to the other vespertilionid TLR4 and TLR2 sequences. Inspection of the TLR4 sequence showed that one internal PCR primer binding site (TLR4-F) was \(100 \%\) conserved with the pipistrelle sequences whilst the other (TLR4-2R) showed 7/23 (30\%) mismatches. It is not possible to comment on the conservation of the external PCR primer binding sites. However, it is quite likely that even though sequences of
high conservation between the bat species were used to design PCR primers, the pipistrelle sequences at the primer binding regions may not have been a \(100 \%\) match. Indeed, variability of the pipistrelle TLR4 sequences between individual bats (Chapter 5) and specifically, at the PCR primer binding sites, probably explains the failure to amplify TLR4 PCR products from 36 of the 95 (38\%) bats. Although the pipistrelle TLR2 is more conserved than TLR4 to other bat sequences, a similar explanation of TLR2 gene variability at the PCR primer binding sites is the likely explanation for a failure to amplify TLR2 PCR products from these bats.

Assuming that the pipistrelle TLR sequences are most similar to those of \(E\). fuscus, as indicated by Blast analysis, then the gene isolation approach has revealed approximately \(71 \%\) of the pipistrelle TLR4 gene and \(89 \%\) of the pipistrelle TLR2 gene. Importantly, for both pipistrelle TLRs, the sequences encompass the majority of the external domains, including the leucine-rich regions, involved in interactions with pathogen associated molecular patterns (Ng \& Xavier, 2011). Predicted N-glycosylation sites, also potentially involved in recognition of pathogen associated molecular patterns, were also conserved between TLR4 of the pipistrelles and E. fuscus TLR4. In addition, the pipistrelle TLR2 proteins appeared to have two additional N -glycosylation sites relative to the big brown bat TLR2.

In conclusion, a PCR-based gene isolation strategy has allowed isolation and sequence characterisation of large fragments of the \(P\). pipistrellus and \(P\). pygmaeus TLR2 and TLR4 genes. This strategy forms the basis for sequencing the pipistrelle TLR2 and TLR4 genes in the majority of the South Lancashire bat population under study. The data describing TLR2 and TLR4 gene variations in the bat population, that then allows an attempt to correlate parasite infection profiles to TLR haplotypes, is presented in Chapter 5.

\section*{5. TLR gene variations and parasite infection profiles}

\subsection*{5.1 TLR2 and TLR4: roles in helminth infections:}

Analysis of cytokine responses in ex vivo monocytes derived from African children exposed to gastrointestinal nematode infection has highlighted the role that these parasites may have in modulating innate immune responses to pathogens (Jackson et al., 2006). Other work has even highlighted the role of parasite endosymbionts; for example, the major Wolbachia surface protein (WSP) of filarial nematode endosymbionts is able to initiate activation of TLR2 and TLR4 expression using a reporter gene assay with transfected human embryonic kidney 293 (HEK293) cells (Brattig et al., 2004). Moreover, WSP stimulates an inflammatory immune response in murine macrophages and dendritic cells (DCs), again through TLR4 and TLR2, as confirmed by using mouse mutants (Brattig et al., 2004).

Major excretory-secretory (ES) products of helminths are known to influence immunomodulatory outcomes to infection and ES-62 of the rodent filarial nematode Acanthocheilonema viteae has been shown, using mouse mutants, to activate a MyD88dependent TLR4 signalling pathway that leads to suppression of macrophage and dendritic cell responses (Goodridge et al., 2005). Interestingly, it appears that TLR4 may act via a novel mechanism that might involve another TLR and possibly, suppression of MyD88 to other TLRs (Goodridge et al., 2005).

Application of live Schistosoma mansoni larvae, or soluble preparations derived from these larvae, to macrophages has shown that cytokine production is dependent upon activation of TLR4 (Jenkins, Hewitson, Ferret-Bernard, \& Mountford, 2005). Schistosomal lysophosphatidylserine has also been shown to activate dendritic cells via TLR2 signalling
and this may contribute to polarisation of the immune response, via expansion of Tregulatory cells, to elicit the fibrotic, tissue destructive liver pathology associated with this parasite (Layland, Rad, Wagner, \& Da Costa, 2007; van der Kleij et al., 2002). Indeed, bone marrow-derived macrophages from mice with \(S\). mansoni egg-induced pulmonary granulomas have a greater response to TLR2 and TLR3 activation than control mice (Joshi, Raymond, Coelho, Kunkel, \& Hogaboam, 2008).

A study of the rat tapeworm Hymenolepis diminuta has revealed high expression of TLR4 and TLR2 in the rodent colon and jejunum 6-8 days post-infection (Kosik-Bogacka et al., 2012). This up regulation of TLR2 and TLR4 expression may be important in the pathomechanism of hymenolepidosis and hence is worthy of further study (Kosik-Bogacka et al., 2012).

Mouse mutants have been used to examine the role of TLRs in Heligmosomoides polygyrus infection. Interestingly, MyD88 mutants showed increased immunity to H. polygyrus infection whereas, TLR2, TLR4, TLR5, and TLR9 mutants were unable to exhibit enhanced expulsion of H. polygyrus (Reynolds et al., 2014). The systemic response to the related nematode, H. bakeri, was also assessed in cultured splenocytes derived from infected mouse strains and the data showed an upregulation of TLR2, TLR4 and TLR9-mediated cytokine responses in a manner that was strain and parasite exposure dependent (Friberg et al., 2013). Further study of innate immune responses in the wood mouse, Apodemus sylvaticus, showed through statistical modelling, that a significant amount of TLR2 variation in the natural population over time could be explained by exposure to and hence the transmission dynamics of H. polygyrus and also, the pinworm Syphacia stroma and the digenean fluke Brachylaima recurva (Friberg et al., 2013). Importantly, the latter study was carried out on a natural
population and there is an increased need, as argued elsewhere (Friberg et al., 2010; Pederson \& Babayan, 2011), to investigate immunological responses in natural populations to complement laboratory-based investigations (Friberg, Bradley, \& Jackson, 2010; Pedersen \& Babayan, 2011).

Based on the growing recognition that TLR2 and TLR4 have important roles in helminth (above) and protozoan (see section 4.1) infections the aims of this chapter are: (i) to characterise the TLR2 and TLR4 sequence variation across the pipistrelle population and (ii) to analyse the TLR4 and TLR2 amino acid changes with respect to the known parasite infection profiles in the pipistrelle bats.

\subsection*{5.2.1 Sequence analysis:}

After using the PCR-based strategy to isolate 59 individual pipistrelle TLR4 sequences
(Chapter 4), the DNA (Figure 5.1) and translated amino acid (Figure 5.2) sequences were aligned using Clustal W. The DNA sequences showed that there were 42 TLR4 haplotypes at the gene level and this translated into 42 different protein sequences. These haplotypes were identified from the phylogenetic tree; each different branch was counted as one haplotype, which showed 42 haplotypes are present within the TLR4 sequences.
```

multiple sequence alignment:
S818 ---------------GAGTTTANCCCCNGGANNTTTTCTGACTATNAGTTTACAGNCCTG 45
S819 --------------------------------------------------------------------------
J628 -----------------------------------------------------------------}
S817 -----------------TCAGAGTTTAGCCCCNGNNNTTTTCTGACTNTNANNTNCAGAC 43
S815 -----------------TCAGAGTTTAGCCCCNGNNNTTTTCTGACTNTNANNTNCAGAC 43
J649 ------------------------------------------------------------------------
J656 ------------------------------------TGGACTANTCAANGTTTACAGACNN 25
S818 GGTGGCTGGGGAGCC--AACCTAGCATCTCTAGAGGACTTCCCCATGGCNGACATCTGTA 103
S819 NGNGGNTGNGAGACA--AACCTAGCATCCNTAGAGGACTTCCCCATGGCAGACATATGAA 63
J628 ------------------------------TAGGGACTTGANCCATGGCAGGNTGTAAAA 30
S817 TGGGGTGGGTGGGGGACAACCTAGCATCTCTAGAGGACTTCCCCATGGCAGACATCTGAA 103
S815 TGGGGTGGGTGGGGGACAACCTAGCATCTCTAGAGGACTTCCCCATGGCAGACATCTGAA 103
J649 -------GTGTAAGANAAAATTANTGTCTCTTAGGGACTTCCCCATGGCAGATANNTTAA 53
J656 NGGTGGCNGGGGAAGAAGAACTGGTGGCTCTTAGGGACTTCGCCATGGCAGTAAAGTAAA }8

```

S818 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 283
S819 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 243
J628 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 210 S817 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 283 S815 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 283 J649 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 233 J656 TTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCAAACTCTCTTTAGACCT 265

S818 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 343
S819 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 303
J628 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 270
S817 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 343
S815 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 343
J649 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 293
J656 GTCCCTCAACCCTTTAGACTTTATCCAACCAGGTGCCTTTGAAAAAATTAAGCTCCATGA 325

S818 ACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTCAAGGTCT 403
S819 ACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTCAAGGTCT 363
J628 ACTGACTTTGAGAAGTAATTTTGATAGTACAGAGGTCATGAAAACATGTATTCAAGGTCT 330
S817 ACTGACTTTGAGAAGTAATTTTGATAGTACAGAGGTCATGAAAACATGTATTCAAGGTCT 403
S815 ACTGACTTTGAGAAGTAATTTTGATAGTACAGAGGTCATGAAAACATGTATTCAAGGTCT 403
J649 ACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTCAAGGTCT 353
J656 ACTGACTTTGAGAAGTAATTTTGATAGTAAAAAGGTCATGAAAACATGTATTCAAGGTCT 385

S818 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 463
S819 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 423
J628 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 390
S817 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 463
S815 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 463
J649 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 413
J656 GGCAGGTTTAAAGATCAATCGGCTGATTCTAGGAGAATTTAAAAATGAAAGGAACTTAGT 445

S818 AGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 523
S819 AGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 483
J628 AGACTTGGCCAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 450
S817 AGACTTGGCCAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 523
S815 AGACTTGGCCAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 523
J649 AGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT 473
J656 AGACTTGGACAAATCTGCCCTGGAGGAACTGTGCAACTTGACCATTGATGAATTCCGGAT
505

S818 AGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTTTTTAAATTGTCTGGCAGATGC 583
S819 AGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTTTTTAAATTGTCTGGCAGATGC 543
J628 AGCACACTTCCAAAACTTTTCAAAGGATTACCGTGGCTTTTTAAATTGTCTGGCAGATGC 510
S817 AGCACACTTCCAAAACTTTTCAAAGGATTACCGTGGCTTTTTAAATTGTCTGGCAGATGC 583
S815 AGCACACTTCCAAAACTTTTCAAAGGATTACCGTGGCTTTTTAAATTGTCTGGCAGATGC 583
J649 AGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTTTTTAAATTGTCTGGCAGATGC 533
J656 AGCACACTTCCAAGACTTTCCAGAGGATTGCCGTGGCTTTTTAAATTGTCTGGCAGATGC 565

S818 TTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAACAGGTTT 643
S819 TTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAACAGGTTT 603
J628 TTCTGCAGTATCTCTGATGAGTCTGCATATAGACAGGCTAGAAAGCCTTCCAACAGGTTT 570
S817 TTCTGCAGTATCTCTGATGAGTCTGCATATAGACAGGCTAGAAAGCCTTCCAACAGGTTT 643
S815 TTCTGCAGTATCTCTGATGAGTCTGCATATAGACAGGCTAGAAAGCCTTCCAACAGGTTT 643
J649 TTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAACAGGTTT 593
J656 TTCTGCAGTATCTCTGATGAGTCTGAAAATAGGCAGGCTAGAAAGCCTTCCAACAGGTTT 625

S818 CAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACATTGGAGCT 703
S819 CAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACATTGGAGCT 663 CAAATGGCAATACTTAAAATTGTCTAATTGTAAATTTAAAGATTTCCCTACATTGGAGCT 630 S817 CAAATGGCAATACTTAAAATTGTCTAATTGTAAATTTAAAGATTTCCCTACATTGGAGCT 703 S815 CAAATGGCAATACTTAAAATTGTCTAATTGTAAATTTAAAGATTTCCCTACATTGGAGCT 703 J649 CAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACATTGGAGCT 653 J656 CAAATGGCAGTACTTAAAATTGTCTAATTGTAAATTTCAAGATTTCCCTACATTGGAGCT 685

S818 TACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTTAACTAAA 763 S819 TACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTTAACTAAA 723 J628 TACCTTTCTCAAGCAGTTTGTTTTCACTGCCAACAAAGGTATTACCCACTTTTAACTGAA 690 S817 TACCTTTCTCAAGCAGTTTGTTTTCACTGCCAACAAAGGTATTACCCACTTTTAACTGAA 763 S815 TACCTTTCTCAAGCAGTTTGTTTTCACTGCCAACAAAGGTATTACCCACTTTTAACTGAA 763 J649 TACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTTAACTAAA 713 J656 TACCTTTCTCAAGCAATTTATTTTCACTGCCAACAAAGTTATTAACCACTTTTAACTAAA 745

S818 CTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTTTCAAGTC 823 S819 CTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTTTCAAGTC 783 J628 GTTAATCTAAGAAACCTTGAGTTTCTAGATCTTAGTAGAAAATGGCTTGAGTTTCAAGTC 750 S817 GTTAATCTAAGAAACCTTGAGTTTCTAGATCTTAGTAGAAAATGGCTTGAGTTTCAAGTC 823 S815 GTTAATCTAAGAAACCTTGAGTTTCTAGATCTTAGTAGAAAATGGCTTGAGTTTCAAGTC 823 J649 CTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTTTCAAGTC 773
J656 CTTAATCTAAGAAACCTTGAGTTTCTAGATCTCAGTAGAAAATGGCTTGAGTTTCAAGTC 805

S818 TTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGAGCTTCAA 883 S819 TTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGAGCTTCAA 843 J628 TTGCTGCTCTCGCCGTGATTTTGGGACAACCCAACTGAAACACTTAGATCTGAGCTTCAA 810 S817 TTGCTGCTCTCGCCGTGATTTTGGGACAACCCAACTGAAACACTTAGATCTGAGCTTCAA 883 S815 TTGCTGCTCTCGCCGTGATTTTGGGACAACCCAACTGAAACACTTAGATCTGAGCTTCAA 883 J649 TTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGAGCTTCAA 833 J656 TTGCTGCTCTGACCGTGATTTTGGGACAACCCGACTGAAACACTTAGATCTGAGCTTCAA 865

S818 TAGTATTATTACCAATGACTTCAAACTTTCGTGGGCTTAGAGCAAAATAGAACATCTGGA 943
S819 TAGTATTATTTCTANGAGTTTTAAACTTTCGTGGGCTTAGAGCAAAATAGAACATCTGGA 903
J628 TAGTATTATTACCATGACTTTCAAACTTCGTGGGGTTAAGAGCAAAATAGAACATCTGGA 87
S817 TAGTATTATTACCATGACTTTCAAACTTCGTGGGGTTAAGAGCAAAATAGAACATCTGGA 94
S815 TAGTATTATTACCATGACTTTCAAACTTCGTGGGGTTAAGAGCAAAATAGAACATCTGGA 943
J649 TAGTATTAATACCAATGACTTCAAACTTTCATGGGCTTAAGAGCAAATAGAACATCTGGA
893
J656 TAGTATTATTACCAATGACTTCAAACTTTCGTGGGCTTAGAGCAAAATAGAACATCTGGA
925

S818 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCAAAAA 1003 S819 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCGAAAA 963 J628 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCAAAAA 930 S817 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCAAAAA 1003 S815 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCAAAAA 1003 J649 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCGAAAA 953
J656 TTTCCAGCATTCCACTTTGAGACAGGCCAGTACTTTTTCAGTATTCCTCTCACTCGAAAA 985

S818 CCTCCTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 1063

S818 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA 1243 S819 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA 1203 \(\begin{array}{ll}\text { S819 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } 1203 \\ J 628 & \text { TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } 1170\end{array}\) \(\begin{array}{lll}\text { S817 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } & 1243 \\ \text { S815 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } & 1243\end{array}\) \(\begin{array}{ll}\text { S817 } & \text { TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } 1243 \\ \text { S815 } & \text { TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA } 1243\end{array}\) J649 TGGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGA 1193 J656 GGAACAGGTGTCCCCAGAGGCATTCGGCTCACTCCTTAGACTCCAGGTGCTAAATATGAG 1225 * * ***

S818 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1303 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1263 J628 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1230 S817 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1303 S815 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1303 J649 GTCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTC 1253 J656 TCACAACCACCTCTTGTCCTTGGATATGCTTCCTTATAAAAATCTCTCTCTCTGGCTTCT 1285

\section*{****}

S818 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1363 S819 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1323 J628 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1290 S817 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1363 S815 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1363 J649 TAGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAA 1313 J656 AGACTACAGTTTTAACCGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATATTCCAAG 1345

S818 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGT 1423 S819 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGT 1383 J628 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGC 1350 S817 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGT 1423 S815 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGT 1423 СTCCTTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 1023 CCTCCTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 990 CCTCCTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 1063 CCTCCTTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 1063 CCTCCTTTACCTTGATATCTCTTACACTGACATCAAATTTGTCTTCCAGGGCATCTTTGA 1013 ССТССТTTACCTTGATATCTCTTACACTGACATCAAGATTGTCTTCCAGGGCATCTTTGA 1045

TGGCTTGATCAGCCTCCAAGTCTTAAAAATTGGCTGGCAATTCCTTTCCAGGATGCATTC 1123 TGGCTTGGTCAGCCTCCAAGTCTTAAAAAATGGCTGGCAATTCCTTTCAGGATGCATTCC 10838 TGGCTTGATCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGATGCATTCC 1050 TGGCTTGATCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGATTCATTCC 1123 TGGCTTGATCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGATTCATTCC 1123 TGGCTTGATCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGATGCATTCC 1073 TGGCTTGGTCAGCCTCCAAGTCTTAAAAATGGCTGGCAATTCCTTTTCAGGATGCATTCC 1105

CTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1183 TTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1143 TTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1110 TTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1183 TTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1183 TTCCAAATATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAAC 1133 TTCCAAAATTTTCAGAGATCTGACTCAGTTGACTGTCCTGGACCTCTCTCAGTGTCAACT 1165 ************ GICACAACCACH 1303 GCAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGC 1373 CAATGTAACTTCGTTAAATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACATGTG 1405

S818 GTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1483

S819
J628
S817
S815
J64 9
J656

S818
S819
J62 8
S817
S815
J649
J656

S818
S819
J628
S817
S815 GTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1443 GTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1410 GTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1483 GTTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1483 GTTTCTTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGT 1433 TTTCCTGCAGTGGGTCCAGGACCACAGGCGCATCTTGGTGGGAGCTGAACACATGATGTG 1465 ** * ** * * * * ** *

GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACACCACCTGC 1543 GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTTAGAAAACACCACCTG 1503 GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACACCACCTGC 1470 GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACACCACCTGT 1543 GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACACCACCTGT 1543 GTAAGACACCGTTAGCTATGCAGGGTGTGCCTGTGCTCAGTTTTAGAAAACACCACCTGC 1493 TAAGACACCGTTAGCTATGCAGGGTGTGCCCTGTGCTCAGTTTTAGAAAACACCACCTGT 1525

CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAGTATCTGTGGCT 1603 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCNNTACTCATAGTATCTGTGGCT 1563 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAGTATCTGTGGCT 1530 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAATATCTGTGGCT 1603 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAATATCTGTGGCT 1603 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAGTATCTGTGGCT 1553 CAGATGAACAAAACTGTCATTAGTGTGTCAGTTCTCTCAGTACTCATAATATCTGTGGCT 1585 ** *****************************)

GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAGAAAGGTA 1663 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAGAAANGTA1 623 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGACTGCAGAAAGGTA 1590 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAGAAAGGTA 1663 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAGAAGGTAC 1663 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAGAAAGGTA 1613 GCAGTTCTGGTCTACAAGTTCTATTTCCACCTGATGCTTCTGGCTGACTGCAGAAAGGTA 1645

CGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGATGAGGACT 1723 CGGCAAAAGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGATGAGGACT 168 CGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGATGAGGACT 1650 CGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGATGAGGACT 1723 GGCAAAAGGGACAGCATGTAAGATGCCTTTTCATCTACTCCAGCCATGAAGAGGACTGGG 1723 CGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAGCCCATGATGAGGACT 1673 CGGCAAAGGGGACAGCATGTACGATGCCTTTGTCATCTACTCCAAGCCATGATGAGGACT 1705

S818 GGGTTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTNCCCCCCTTTTNNNCTCTG 1783 S819 GGGTTGAGGAATGAGTTGGTGAAGAACTTGGAGGANGGGGNACCCCCCTTTCNNNTNTGC1743 J628 GGGTTGAGGAATGAGTTGGTGAAGAACTTNNNGAGGGGTGCCCCCCTTTCAGCTCTGCCT 1710 S817 GGGTTGAGGAATGAGTTGGTGAAGAACTTGGNNGAGGGGGTNCCCCCCTTTCAGCTCTGC 1783 S815 TGAGGAATGAGTTGTGAAGAACTTGGANGANGGGGTACCCCCCTTTCAGCTCTGCCTTCA 1783 J649 GGGGTGAGGAATGAGTTNGTGAANANNTTGGAGGAGGGGGTACCCCCCTTTCAGCTCNTG 1733 J656 GGGTGAGGAATGAATTTGGTGAAGAACTTGGAGGANGGGGTNNCCCCCTTTCAGCTCTGC 1765
\begin{tabular}{lll}
S818 & CCTTCACTACA---------- & 1794 \\
S819 & CTT-------------------------------- & 1746 \\
J628 & TCACTAC------- & 1717 \\
S817 & CTTCACTACNAGNANAC-- & 1800 \\
S815 & CTACA-------- & 1788 \\
J649 & CCTTCACTACAANAAAACT- & 1752 \\
J656 & CTTCACTACNAGAGACTT & 1783
\end{tabular}

Figure 5.1: Clustal W DNA sequence alignment for the pipistrelle TLR4 gene derived from 7
bats. Footnote: Bat J649, a soprano pipistrelle, was free of protozoan and helminth
infections. Only 7 sequences shown as these are representative of the diversity (see Figure 5.3)

> multiple sequence alignment:

S818 ~~~~~~~~~~~~~~~EFXPXXFSDYXFTXLGGWGANLASLEDFPIXHLKSLKELNVAHNL 45
S819 XXXXXDKPSIXRGLPHQTYKSLMELNVAHNL 31
\(\qquad\)45
\(\qquad\)20

S818 FQDFPTLELTFLKQFIFTANKVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRL 285 S819 FQDFPTLELTFLKQFIFTANKVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRL 271 J656 FQDFPTLELTFLKQFIFTANKVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRL 278 FKDFPTLELTFLKQFVFTANKGITTFTEVNLRNLEFLDLSRKWLEFQVLLLSPDFWDNPT 260 FKDFPTLELTFLKQFVFTANKGITTFTEVNLRNLEFLDLSRNGLSFKSCCSRRDFGTTQL 285 FKDFPTLELTFLKQFVFTANKGITTFTEVNLRNLEFLDLSRNGLSFKSCCSRRDFGTTQL 285 J649 FQDFPTLELTFLKQFIFTANKVITTFTKLNLRNLEFLDLSRNGLSFKSCCSDRDFGTTRL 268

S818 KHLDLSFNSIITMTSNFVGLEQIEHLDFQHSTLERQASTFSVFLSLKNLLYLDISYTDIK 345 S819 KHLDLSFNSIISMVLNFVGLEQIEHLDFQHSTLERQASTFSVFLSLENLLLPDYLFTTSR 331 J656 KHLDLSFNSIITMTSNFVGLEQIEHLDFQHSTLERQASTFSVFLSLENLLYLDISYTDIK 338 J628 ETLRSELQSYYTMTSNFVGLEQIEHLDFQHSTLERQASTFSVFLSLKNLLYLDISYTDIK 320 S817 KHLDLSFNSIITMTSNFVGLEQIEHLDFQHSTLERQASTFSVFLSLKNLLYLDISYTDIK 345 S815 KHLDLSFNSIIPMLQTSWALESKENIWISSIPLEDRPVLFQYSSHSKTSFTLISLTLTSR 345 J649 KHLDLSFIVLHDMFKLSWALESKENIWISSIPLEDRPVLFQSSHSLKTSFTLISLTLTSR 328

S818 IVFQGIFDGLISLQVLKMAGNSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 405 S819 LSSRASLMAWSASKSLKMAGNSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 391 J656 IVFQGIFDGLVSLQVLKMAGNSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 398 J628 IVFQGIFDGLISLQVLKMAGNSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 380 S817 IVFQGIFDGLISLQVLKMAGNSFQDSFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 405 S815 LSSRASLMALSASKVLKMAGNSFQDSFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 405 J649 FVFQGIFDGLISLQVLKMAGNSFQDAFLPNIFRDLTQLTVLDLSQCQLEQVSPEAFGSLL 388

S818 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 465
S819 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 451
J656 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 458
J628 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 440
S817 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 465
S815 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 465
J649 RLQVLNMSHNHLLSLDMLPYKNLSLWLLDYSFNRIVAANGQELQHIPSNVTSLNLTQNDF 448

S818 ACVCEHMCFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 525
S819 ACVCEHMCFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTPPARNKTKLLVCQFS 511
J656 ACVCEHMCFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 5
J628 ACVCEHMRFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 500
S817 ACVCEHMCFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 525
S815 ACVCEHMCFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 525
J649 ACVCEHMRFLQWVQDHRRILVGAEHMMCKTPLAMQGVPVLSFRNTTCQMNKTVISVSVLS 508

S818 VLIVSVAAVLVYKFYFHLMLLAGCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNL 585
S819 VYSYLVAAVLVYKFYFHLMLSGWLQRKVRQKGQHVRCLCHLLQPHGHDEGLGEEEVGEEL 571
J656 VLIISVAAVLVYKFYFHLMLLADCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNL 578
J628 VLIVSVAAVLVYKFYFHLMLLADCRRKVYGKGGQHVRCLCHLLQPGHDEGLGEEEVGEEL 560
S817 VLIISVAAVLVYKFYFHLMLLAGCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNL 585
S815 VLIISVAAVLVYKFYFHLMLLAGCRRKVYGKGDSMYDAFVIYSSHGHDEDWVRNELVKNL 585
J649 VLIVSVAAVLVYKFYFHLMLLAGCRKKVRQRGQHVRCLCHLLQPHGMNEDWGEEEVVENX 568
* \(\quad * * * * * * * * * * * * * * * ~\)
```

S818 EEGXPPFXXLPSL~~~ 598

```
S819 GGXXTPLXXXP~~~~~ 582
J656 EXGXXPFQLCLHYXRL 594
J628 XEG~CPPFSSAFT~~~ 572
S817 XEG~XPPFQLCLHYXX 600
S815 XXGVPPFQL~CLHY~~ 596
J649 GGGGTPLSAXAFTTXK 584

Figure 5.2: Clustal W amino acid sequence alignment of TLR4 derived from 7 pipistrelle bats. Glycosylation sites are highlighted in bold. Footnote: Bat J649, a soprano pipistrelle, was free of protozoan and helminth infections. Only 7 sequences shown as these are representative of the diversity (see Figure 5.3)

A phylogenetic tree was assembled using 54 of the TLR4 protein sequences (data from baby bats was excluded since the baby immune system is not fully developed and babies are excluded from infection analysis) in order to more closely examine the relationships between the different sequences (Figure 5.3). The resulting Neighbor-Joining phylogram showed that the TLR4 sequences positioned into 7 clusters; albeit, the bootstrap support for some of the clusters was relatively weak (Figure 5.3 and Table 5.1). Assembly of the data using UPGMA and minimum-evolution approaches also produced phylograms that positioned the TLR4 protein sequences into the 7 clusters (data not shown). Overall, the TLR4 amino acid sequence identities between the different pipistrelles ranged from \(85-100 \%\). Moreover, outgroup sequences were added to the phylogenetic tree in order to have better view of the different clusters and check whether there might be any change in these clusters and the relationships between the TLR4 sequences and the phylogenetic tree with the outgroups showed the same outcome (Figure5.4).

Figure 5.3: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4 protein sequences.
Bootstrap support values (\%) are shown on the nodes. Clusters as follows: Blue \(=1\), Black \(=\) 2, Red \(=3\), Green \(=4\), Purple \(=5\), Orange \(=6\) and Light Blue \(=7\). Footnote: Babies are excluded from the analysis and the soprano pipistrelles are within cluster 6 (codes: J649, JL650 and JL653).

Figure 5.4: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4 protein sequences with different TLR4 outgroups sequences. Bootstrap support values (\%) are shown on the nodes. Clusters as follows: Blue \(=1\), Black \(=2\), Red \(=3\), Green \(=4\), Purple \(=5\), Orange \(=6\) and Light Blue \(=7\). Footnote: Babies are excluded from the analysis and the soprano pipistrelles are within cluster 6 (codes: J649, JL650 and JL653).

Table 5.1: TLR4 cluster frequencies in the pipistrelles
\begin{tabular}{|c|c|l|}
\hline TLR4 clusters & Frequency & \multicolumn{1}{|c|}{ Bat codes } \\
\hline 1 & \(15 \%\) & \begin{tabular}{l}
S818, J722, C804, S852, S680, \\
F744, C802, J723
\end{tabular} \\
\hline 2 & \(7 \%\) & J656, G708, F761, J714 \\
\hline 3 & \(16 \%\) & \begin{tabular}{l}
J647, P605, F802, S819, S607, \\
\\
\end{tabular} \\
\hline 4 & \(7 \%\) & FB602, F760, FP742, CS604
\end{tabular}, \begin{tabular}{l}
S8816, S817, J709, V808 J658, J628, JH802, S683, \\
\hline
\end{tabular}

With respect to the bat genotyping data (Dodd et al, 2014), the TLR4 gene was sequenced in 6 of the 12 bats reported to be of mixed genotype origin and these bats TLR4 sequences were dispersed across 5 of the 7 TLR4 clusters: cluster 1 (code: S818), cluster 4 (code: J709), cluster 5 (code: J707), cluster 6 (code: J704) and cluster 7 (codes: PB601 and F712). This is not surprising given that the genotyping was based upon microsatellite analysis of 11 polymorphic loci and hence it is more representative of genetic homo-/heterogeneity than the single locus TLR4 gene.

\subsection*{5.2.2 TLR4 clusters and parasite infections:}

As the genetically mixed bats were not infected with eimerians and this seemed a significant observation (Chapter 3), it would appear, given the divergence of TLR4 sequences derived from these bats, to exclude a role for TLR4 in conferring resistance to \(E\). rioarribaensis.

The parasite infection profiles were analysed with respect to the pipistrelle TLR4 clusters to explore further any potential correlations. Interestingly, 3 bats within TLR4 cluster 3 (F802, P605, PB602) were recorded as being infected with T. gondii (Dodd et al., 2014) and there
were no further bats within the TLR4-sequenced subset positive for \(T\). gondii infection. This profile of \(T\). gondii infection was significant (Fisher's exact test: \(p=0.003\)). Also, TLR4 cluster 6 contained six bats with trypanosome infections (T.dionisii and T. vespertilionis) whereas 13 additional trypanosome infections were dispersed across the six other clusters (TLR4 clusters 1 and 7: 3 infected bats; TLR4 clusters 2, 4 and 5: 2 infected bats; TLR4 cluster 3: 1 infected bat). This profile of trypanosome infections was significant (Fisher's exact test: \(p=0.043\)). The infection profiles of the other protozoan parasites were not significant when assessed against TLR4 cluster.

With respect to helminth burden (Lord et al., 2012), the mean intensity of helminth infection across the 54 pipistrelles for which a TLR4 sequence was derived was \(56 \pm 65\). Within each TLR4 cluster the mean helminth burden ranged from 21 (cluster 6) to 99 (cluster 7) (Table 5.2) and interestingly, there appeared to be a significantly lower mean worm intensity for bats within TLR4 cluster 6 (\(t\)-test, \(p=0.04\)). The t -test was done by comparing worm burden for cluster 6 against worm burden for all the other clusters because of the sample size, some clusters has low number of samples. So, \(t\)-test was the appropriate test to use.

Table 5.2: worm burden in the seven TLR4 clusters
\begin{tabular}{|c|c|}
\hline cluster \# & worm burden \\
\hline 1 & \(55 /+/-48\) \\
\hline 2 & \(55 /+/-51\) \\
\hline 3 & \(42 /+/-75\) \\
\hline 4 & \(56 /+/-45\) \\
\hline 5 & \(50 /+/-68\) \\
\hline 6 & \(21 /+/-47\) \\
\hline 7 & \(99 /+/-75\) \\
\hline
\end{tabular}

Upon inspecting the primary amino acids sequences within TLR4 clusters 3 and 6 and comparing these to the TLR4 protein sequences from the other clusters, it was not possible to state with any confidence if specific amino acids might be responsible for conferring host susceptibility to T. gondii, or trypanosomes, or resistance to high helminth burdens. Indeed, there were many TLR4 amino acid changes noted and some of these changes were very common, for example; K332E, I356V and C473R occurred in 17, 16 and 26 of the pipistrelles respectively (Table 5.3). Moreover, these changes were apparent within the different Leucine Rich Repeat (LRR) regions of the pipistrelle TLR4 protein (Table 5.3). In contrast, and perhaps importantly, the seven predicted N -glycosylation sites (positions: 166, \(411,427,454,459,509,515)\) were completely conserved in all the pipistrelle TLR4 proteins sequences.

Table 5.3: Summary of all the non-synonymous amino acids changes observed in the pipistrelle TLR4 gene sequences (babies excluded from the analysis). Footnotes: All the amino acid positions are based on the S 818 sequence in Figure 5.2. P. pygmaeus bats (included in cluster 6) are highlighted in red font, Cluster 3 in Blue, and Cluster 6 in Green.
\begin{tabular}{|c|c|c|c|c|c|}
\hline LRRs & Positi on & Amino acids change & \begin{tabular}{l}
Number \\
of samples
\end{tabular} & Frequency of change & Bat code \\
\hline & 253 & \(\mathrm{K} \rightarrow \mathrm{E}\) & 12 & 20\% & \[
\begin{aligned}
& \text { V808, C8A, S815, J709, S817, F713, JH802, } \\
& \text { S683, J707, J706, J628, F712 }
\end{aligned}
\] \\
\hline \multirow[t]{17}{*}{LRR3} & \multirow[t]{2}{*}{254} & \(\mathrm{L} \rightarrow \mathrm{V}\) & 12 & 20\% & \[
\begin{aligned}
& \text { V808, C8A, S815, J709, S817, F713, JH802, } \\
& \text { S683, J707, J706, F712 }
\end{aligned}
\] \\
\hline & & \(\mathrm{L} \rightarrow \mathrm{T}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 256 & \(\mathrm{L} \rightarrow \mathrm{S}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 257 & \(\mathrm{R} \rightarrow \mathrm{K}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 258 & \(\mathrm{N} \rightarrow \mathrm{K}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 259 & \(\mathrm{L} \rightarrow \mathrm{P}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 261 & \(\mathrm{F} \rightarrow \mathrm{V}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 262 & \(\mathrm{L} \rightarrow \mathrm{S}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 263 & \(\mathrm{D} \rightarrow \mathrm{R}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 265 & \(\mathrm{S} \rightarrow \mathrm{Q}\) & 5 & 8\% & MD82, S668, S816, C801, MH82 \\
\hline & 267 & \(\mathrm{N} \rightarrow \mathrm{K}\) & 9 & 15\% & ```
MD82, S668, S816, C801, MH82, J628, JH802,
S683, J707
``` \\
\hline & 268 & \(\mathrm{G} \rightarrow \mathrm{W}\) & 9 & 15\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707 }
\end{aligned}
\] \\
\hline & 270 & \(\mathrm{E} \rightarrow \mathrm{S}\) & 9 & 15\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707 }
\end{aligned}
\] \\
\hline & 272 & \(\mathrm{K} \rightarrow \mathrm{Q}\) & 9 & 15\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707 }
\end{aligned}
\] \\
\hline & 273 & \(S \rightarrow V\) & 10 & 17\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707, J658 }
\end{aligned}
\] \\
\hline & 274 & \(\mathrm{L} \rightarrow \mathrm{C}\) & 10 & 17\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707, J658 }
\end{aligned}
\] \\
\hline & 275 & \(\mathrm{L} \rightarrow \mathrm{C}\) & 11 & 18\% & \[
\begin{aligned}
& \text { MD82, S668, S816, C801, MH82, J628, JH802, } \\
& \text { S683, J707, J658, F712 }
\end{aligned}
\] \\
\hline \multirow[t]{8}{*}{LRR4} & 281 & \(\mathrm{G} \rightarrow \mathrm{W}\) & 11 & 18\% & J628, J658, MD82, JH802, S683, J707, S668, S816, C801, MH82, F712 \\
\hline & 282 & \(\mathrm{T} \rightarrow \mathrm{D}\) & 11 & 18\% & \[
\begin{aligned}
& \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline & 283 & \(\mathrm{T} \rightarrow \mathrm{N}\) & 11 & 18\% & \[
\begin{aligned}
& \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{284} & \(\mathrm{R} \rightarrow \mathrm{Q}\) & 7 & 12\% & V808, C8A, S815, J709, S817, F713, J706 \\
\hline & & \(\mathrm{R} \rightarrow \mathrm{P}\) & 11 & 18\% & \[
\begin{aligned}
& \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline & 285 & \(\mathrm{L} \rightarrow \mathrm{T}\) & 11 & 18\% & \[
\begin{aligned}
& \hline \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline & 286 & \(\mathrm{K} \rightarrow \mathrm{E}\) & 11 & 18\% & \[
\begin{aligned}
& \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline & 287 & \(\mathrm{H} \rightarrow \mathrm{T}\) & 11 & 18\% & \[
\begin{aligned}
& \text { J628, J658, MD82, JH802, S683, J707, S668, } \\
& \text { S816, C801, MH82, F712 }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|l|}
\hline & 289 & \(\mathrm{D} \rightarrow \mathrm{R}\) & 11 & \(18 \%\) & \begin{tabular}{l} 
J628, J658, MD82, JH802, S683, J707, S668, \\
S81, C801, MH82, F712
\end{tabular} \\
\hline & 290 & \(\mathrm{~L} \rightarrow \mathrm{~S}\) & 11 & \(18 \%\) & \begin{tabular}{l} 
J628, J658, MD82, JH802, S683, J707, S668, \\
S816, C801, MH82, F712
\end{tabular} \\
\hline & 291 & \(\mathrm{~S} \rightarrow \mathrm{E}\) & 11 & \(18 \%\) & \begin{tabular}{l} 
J628, J658, MD82, JH802, S683, J707, S668, \\
S816, C801, MH82, F712
\end{tabular} \\
\hline & & 292 & \(\mathrm{~F} \rightarrow \mathrm{~L}\) & 11 & \(18 \%\) \\
\hline
\end{tabular}

\begin{tabular}{|l|c|l|c|c|l|}
\hline & & & & & F801, MD82, F761, J628, SA606 \\
\hline & 510 & \(\mathrm{~T} \rightarrow \mathrm{H}\) & 5 & \(9 \%\) & J718, S607, FP742, CS604, S819 \\
\hline & 514 & \(\mathrm{M} \rightarrow \mathrm{D}\) & 6 & \(10 \%\) & J 718, S607, FP742, F760, PB602, CS604, \\
\hline & 516 & \(\mathrm{~K} \rightarrow \mathrm{Q}\) & 5 & \(9 \%\) & J718, FP742, F760, PB602, CS604 \\
\hline & 517 & \(\mathrm{~T} \rightarrow \mathrm{~N}\) & 5 & \(9 \%\) & J718, FP742, F760, PB602, CS604 \\
\hline & 518 & \(\mathrm{~V} \rightarrow \mathrm{C}\) & 6 & \(10 \%\) & J 718, FP742, F760, PB602, CS604, C8A \\
\hline
\end{tabular}

When the number of TLR4 amino acid changes was compared between the bats, it was apparent that the \(T\). gondii susceptible bats in cluster 3 had limited sequence changes (mean \(=\) \(5.8 \pm 3.2\) ). In contrast, the trypanosome susceptible/helminth "resistant" bats in cluster 6 had a much greater number of TLR4 amino acid changes (mean \(=22.8 \pm 3.8\) ). Overall, the mean number of TLR4 amino acid changes (relative to the sequence for bat S818) was \(16.2 \pm 13.1\). Only bats in TLR4 cluster 1 (mean number of amino acid changes \(=0.13 \pm 0.35\) ), and so most similar to bat S 818 , showed a significantly different \((p<0.05)\) number of residue changes relative to the other TLR4 clusters. Although 2 bats within TLR4 cluster 1 lacked protozoans (codes: S818 and C804), the remainder had trypanosome, B. vesperuginis and/or eimerian infections and hence there was nothing unusual about the parasite profile within these bats relative to the rest of the population under study.

Table 5.4: Number of amino acid changes observed in the pipistrelle TLR4 sequences relative to bat S818. Footnote: P. pygmaeus bats are highlighted in red.
\begin{tabular}{|c|c|c|}
\hline Sample code & \# of Multiple changes & Cluster \# \\
\hline S852 & 1 & 1 \\
\hline J647, J656, F802, G708 & 2 & \(3,2,3,2\) \\
\hline P605, J714, F761, S817 & 3 & \(3,2,2,4\) \\
\hline F713, S607 & 4 & 4,3 \\
\hline V808, J709 & 5 & 4,4 \\
\hline F760, C802, PB602 & 7 & \(3,1,3\) \\
\hline FP742, CS604 & 8 & 3,3 \\
\hline S819 & 11 & 3 \\
\hline J708, J658 & 17 & 7,5 \\
\hline F751, SP670, SP677, PB601 & 18 & \(6,6,6,7\) \\
\hline C8A & 19 & 7 \\
\hline F745 & 23 & 7 \\
\hline SA606, S683, J628, SP679 & 24 & \(6,5,5,6\) \\
\hline J649, JL650, JL653 & 25 & \(6,6,6\) \\
\hline J707, J704 & 28 & 5,6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline MH82 & 30 & 5 \\
\hline F711, F801 & 31 & 7,7 \\
\hline JH802 & 32 & 5 \\
\hline MD82, J706 & 33 & 5,7 \\
\hline S816, J718 & 34 & 5,7 \\
\hline F712, C801 & 37 & 5,7 \\
\hline S815 & 38 & 7 \\
\hline S668 & 41 & 5 \\
\hline
\end{tabular}

\subsection*{5.2.3 Evolutionary conservation of TLR4:}

A recent study of TLR4 sequence variation in 23 species of wild rodent highlighted that specific amino acids residues are under positive selection and hence are evolutionarily conserved, most probably due to a role in interacting with pathogen associated molecular patterns (Fornuskova et al., 2013). Consequently, this model of the rodent TLR4 (Figure 5.5) was used to scrutinized the pipistrelle TLR4 sequences by sequence alignment (Figure 5.6). The resulting data showed that of the 11 rodent TLR4 amino acid residues under positive selection, three sites were completely conserved in all the pipistrelle TLR4 sequences \(\left(\mathrm{E}^{319}, \mathrm{~F}^{369}\right.\) and \(\left.\mathrm{I}^{440}\right)\) (Table 5.5). Moreover, the rodent sequences also included F and I at the positions equivalent to \(\mathrm{F}^{369}\) and \(\mathrm{I}^{440}\) in the bat TLR4. Although the rodent species do not have a glutamate residue equivalent to \(\mathrm{E}^{319}\) of the pipistrelle TLR4, this site is variable across the rodents and a similar residue, \(\mathrm{D}^{347}\), is present. In total, only 2 of the 11 sites noted as being under positive selection in the rodent TLR4 did not have a conserved amino acid residue in the pipistrelles: \(I / V^{335}\) and \(A / K / Q / R / G / L / E^{361}\). This may be indicative of a difference between the interactions of rodent TLR4s and pipistrelle TLR4s with their respective ligands.

Of the 7 predicted bat N -glycosylation sites, N 427 , N 454 and N 515 (numbering based on bat S818) are not conserved in the rodent sequences, being replaced with \(\mathrm{Q}, \mathrm{S}\) and R residues respectively. This may further reflect differences between the bat and rodent TLR4s.

\section*{(a)}

\begin{tabular}{ll}
\hline Codon & Residue Variety \\
\hline 263 & R, K \\
\(273^{*}\) & H, R, P \\
300 & D, N, Y, V \\
317 & S, H, D, P, Y \\
318 & I, L, V \\
319 & Q, R, K, E \\
320 & H, Q, Y \\
322 & A, K, G, E \\
326 & S, N, K, R \\
\(335^{*}\) & I, V \\
\(345^{*}\) & A, T, P, K \\
\(347^{*}\) & H, S, T, D, N, R, K \\
\(361^{*}\) & A, Q, K, R, G, L, E \\
362 & S, H, T, D, P \\
\(363^{*}\) & T, M, I, L \\
\(366^{*}\) & D, R, K, G \\
367 & A, Q, T, D, R, K \\
\(368^{*}\) & M, L, V \\
386 & S, T, I, R \\
\(394^{*}\) & F, M, L, V \\
\(398^{*}\) & S, D, N, I, G \\
\(469^{*}\) & A, T, I, G, V \\
\hline
\end{tabular}

Figure 5.5: Model of the Rattus norvegicus TLR4 ligand binding region highlighting amino acid positions under variable evolutionary selection: turquoise \(=\) most variable; violet \(=\) most conserved; white = average conservation; yellow = insufficient data. Codons with the asterisk have been identified as being under positive selection(Fornůsková et al., 2013).
multiple sequence alignment:
\begin{tabular}{|c|c|}
\hline S818 & EFXPXXFSDYXFTXLGGWGANLASLEDFPIXH 32 \\
\hline J649 & -VRXNXCLLGTSPWQIX 16 \\
\hline J628 & -RDLXMXVN 8 \\
\hline S815 & -SEFSPXXFLTXXXRLGWVGDNLASLEDFPIRHL 33 \\
\hline S817 & SEFSPXXFLTXXXRLGWVGDNLASLEDFPIRHL 33 \\
\hline J656 & -GLXXVYRXXWXGKKNWWLLGTSPWQ 25 \\
\hline S819 & -XXXXXDKPSIXRGLPHQTY 19 \\
\hline KC811688.1 & CEIETIEDKAWHGLNQLSTLVLTGNPIKSFSPGSFSGLTNLENLVAVETKMTSLEGFHIG 60 \\
\hline KC811609.1 & CEIETIEDKAWHGLHQLSTLVLTGNPIKSFSPGSFSGLTNLENLVAVETKLTSLEGFHIG 60 \\
\hline S818 & -LKSLKELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 75 \\
\hline J649 & ---KSLIELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 58 \\
\hline J628 & ---KSXLELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 50 \\
\hline S815 & --KSLKELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 75 \\
\hline S817 & --KSLKELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 75 \\
\hline J656 & -SKSLIELNVAHNLIDSFKLPDYFSNLPNLEHLDLSNNKIRKIY 68 \\
\hline S819 & --KSLMELNVAHNLIDSFKLPDYFSHLPNRELLDLSNNKIRKIY 61 \\
\hline KC811688.1 & -QLISLKKLNVAHNLIHSFKLPEYFSNLTNLEHVDLSYNYIQTIS 104 \\
\hline KC811609.1 & -QLITLKKLNVAHNLIHSFKLPEYFSNLTNLEYVDLSYNYIQTIS 104 \\
\hline
\end{tabular}

HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKKVMKTCIQGLA 135 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKKVMKTCIQGLA 118 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSTEVMKTCIQGLA 110 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSTEVMKTCIQGLA 135 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSTEVMKTCIQGLA 135 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKKVMKTCIQGLA 128 HEDLQVLHQMPSFKLSLDLSLNPLDFIQPGAFEKIKLHELTLRSNFDSKKVMKTCIQGLA 121 VKDLQFLRENPQVNLSLDLSLNPIDSIQAQAFQGIRLHELTLRSNFNSSNVLKMCLQNMT 164 VKDLQFLRENPQVNLSLDLSLNPIDSIQAQAFQGIRLHELTLRSNFNSSNVLKMCLQNMT 164

GLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCRGFLNCLADAS 195 GLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCRGFLNCLADAS 178 GLKINRLILGEFKNERNLVDLAKSALEELCNLTIDEFRIAHFQNFSKDYRGFLNCLADAS 170 GLKINRLILGEFKNERNLVDLAKSALEELCNLTIDEFRIAHFQNFSKDYRGFLNCLADAS 195 GLKINRLILGEFKNERNLVDLAKSALEELCNLTIDEFRIAHFQNFSKDYRGFLNCLADAS 195 GLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCRGFLNCLADAS 188 GLKINRLILGEFKNERNLDDLDKSALEELCNLTIDEFRIAHFQDFPEDCRGFLNCLADAS 181 GLHVHRLILGEFKNERNLESFDRSVMEGLCNVSIDEFRLTYINHFSDDIYN-LNCLANIS 223 GLHVHRLILGEFKNERNLESFDRSVMEGLCNVTIDEFRLTYINHFSDDIYN-LNCLANVS 223

AVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTANKVITTFTKLN 255 AVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTANKVITTFTKLN 238 AVSLMSLHIDRLESLPTGFKWQYLKLSNCKFKDFPTLELTFLKQFVFTANKGITTFTEVN 230 AVSLMSLHIDRLESLPTGFKWQYLKLSNCKFKDFPTLELTFLKQFVFTANKGITTFTEVN 255 AVSLMSLHIDRLESLPTGFKWQYLKLSNCKFKDFPTLELTFLKQFVFTANKGITTFTEVN 255 AVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTANKVITTFTKLN 248 AVSLMSLKIGRLESLPTGFKWQYLKLSNCKFQDFPTLELTFLKQFIFTANKVITTFTKLN 241 AMSFTGVHIKHIADVPRHFKWQSLSIIRCHLKPFPKLSLPFLKSWTLTTNREDISFGQLA 283 XMSFTGVYLKHIADVPRHFKWQSLSIIRCHLKPFPKLSLPFLKSWTLTTNREDISFGQLA 283

LRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFNSIITMTSNFVGLEQIEHLDFQH 315 LRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFIVLHDMFKLSWALESKENIWISS 298 LRNLEFLDLSRKWLEFQVLLLSPDFWDNPTETLRSELQSYYTMTSNFVGLEQIEHLDFQH 290 LRNLEFLDLSRNGLSFKSCCSRRDFGTTQLKHLDLSFNSIIPMLQTSWALESKENIWISS 315 LRNLEFLDLSRNGLSFKSCCSRRDFGTTQLKHLDLSFNSIITMTSNFVGLEQIEHLDFQH 315 LRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFNSIITMTSNFVGLEQIEHLDFQH 308 LRNLEFLDLSRNGLSFKSCCSDRDFGTTRLKHLDLSFNSIISMVLNFVGLEQIEHLDFQH 301 LPSLRYLDLSRNAMSFRGCCSYSDFGTNNLKYLDLSFNGVILMSANFMGLEELEYLDFQH 343 LPSLRYLDLSRNAMSFRGCCSYSDVGTNGLKYLDLSFNGVILMSANFMGLEELEYLDFQH 343

STLERQASTFSVFLSLKNLLYLDISYTDIKIVFQGIFDGLISLQVLKMAGNSFQDAFLPN 375 IPLEDRPVLFQSSHSLKTSFTLISLTLTSRFVFQGIFDGLISLQVLKMAGNSFQDAFLPN 358 STLERQASTFSVFLSLKNLLYLDISYTDIKIVFQGIFDGLISLQVLKMAGNSFQDAFLPN 350 IPLEDRPVLFQYSSHSKTSFTLISLTLTSRLSSRASLMALSASKVLKMAGNSFQDSFLPN 375 STLERQASTFSVFLSLKNLLYLDISYTDIKIVFQGIFDGLISLQVLKMAGNSFQDSFLPN 375 STLERQASTFSVFLSLENLLYLDISYTDIKIVFQGIFDGLVSLQVLKMAGNSFQDAFLPN 368 STLERQASTFSVFLSLENLLLPDYLFTTSRLSSRASLMAWSASKSLKMAGNSFQDAFLPN 361 STLK-KVTEFSVFLSLEKLLYLDISYTNTKIDFDGIFLGLISLNTLKMAGNSFKDNTLSN 401 STLK-KVTEFSVFLSLEKLLYLDISYTNTRIDFDGIFLGLISLNTLKMAGNSFKDNTLSN 401

IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 434 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 417 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 409 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 434 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 434 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 427 IFRDLTQLTVLDLSQCQLEQVSPEAFGSLLRLQVLNMSHNHLLSLDMLPYKNLS-LWLLD 420 VFTNTTNLTFLDLSKCQLEQISRGVFDTLYRLQLLNMSHNNLLFLDPSHYKQLYSLRTLD 463 VFTNTTNLTFLDLSKCQLEQISWGVFDTLYRLQLLNMSHNNLLFLDPSHYKQLYSLRTLD 463

YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRILVGAEHMMCK 494 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMRFLQWVQDHRRILVGAEHMMCK 477 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMRFLQWVQDHRRILVGAEHMMCK 469 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRILVGAEHMMCK 494 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRILVGAEHMMCK 494 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRILVGAEHMMCK 487 YSFNRIVAANGQELQHIPSNVTSLNLTQNDFACVCEHMCFLQWVQDHRRILVGAEHMMCK 480 CSFNRIETSKG-ILQHFPKSLAVFNLTNNSVACICEYQNFLQWVKDQKMFLVNVEQMKCA 521 CSFNRIETSKG-ILQHFPKSLAVFNLTNNSVACICEYQNFLQWVKDQKMFLVNVEQMKCA 521
\begin{tabular}{|c|c|}
\hline S818 & VY 554 \\
\hline J649 & TPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIVSVAAVLVYKFYFHLMLLAGCRKKVR 537 \\
\hline J628 & TPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIVSVAAVLVYKFYFHLMLLADCRRKVY 529 \\
\hline S815 & TPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIISVAAVLVYKFYFHLMLLAGCRRKVY 554 \\
\hline S817 & TPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIISVAAVLVYKFYFHLMLLAGCRRKVY 554 \\
\hline J656 & TPLAMQGVPVLSFRNTTCQMNKTVISVSVLSVLIISVAAVLVYKFYFHLMLLADCRRKVY 547 \\
\hline S819 & TPLAMQGVPVLSFRNTPPARNKTKLLVCQFSVYSYLVAAVLVYKFYFHLMLSGWLQRKVR 540 \\
\hline KC811688.1 & SPIDMKASLVLDFTNSTCYIYKTIISVSVVSVLVVATVAFLIYHFYFHLILIAGCKK--Y 579 \\
\hline KC811609.1 &  \\
\hline S818 & GKG-DSMYDAFVIYSSHGHDEDWVRNELVKNLEEG-XPPFXX---LPSL----------- 598 \\
\hline J649 & QRG-QHVRCLCHLLQPHGMNEDWGEEEVVENXGGG-GTPLSAXAFTTXK-----------584 \\
\hline J628 & GKGGQHVRCLCHLLQP-GHDEGLGEEEVGEELXEG-CPPFSSAFT----------------572 \\
\hline S815 & GKG-DSMYDAFVIYSSHGHDEDWVRNELVKNLXXG-VPPFQL-CLHY-------------598 \\
\hline S817 & GKG-DSMYDAFVIYSSHGHDEDWVRNELVKNLXEG-XPPFQL-CLHYXX----------- 600 \\
\hline J656 & GKG-DSMYDAFVIYSSHGHDEDWVRNELVKNLEXG-XXPFQLCLHYXRL-----------594 \\
\hline S819 & QKG-QHVRCLCHLLQPHGHDEGLGEEEVGEELGGX-XTPLXX----XP------------582 \\
\hline KC811688.1 & SRG-ESIYDAFVIYSS--QNEDWVRNELVKNLEEG-VPRFQLCLHYRDFIPGVAIAANII 635 \\
\hline KC811609.1 & NRG-ESIYDAFVIYSS--QNEDWVRNELVKNLEEG-VPRFQLCLHYRDFIPGVAIAANII 635 \\
\hline S818 & 598 \\
\hline J649 & 584 \\
\hline J628 & 572 \\
\hline S815 & 598 \\
\hline S817 & 600 \\
\hline J656 & 594 \\
\hline S819 & 582 \\
\hline KC811688.1 & QEGFHKSRKVIVVVSRHFIQSRWCIFEYEIAQTWQFLSSRSGIIFIVLEKVEKSLLRQQV 695 \\
\hline KC811609.1 & QEGFHKSRKVIVVVSKHFIQSRWCIFEYEIAQTWQFLSSRSGIIFIVLEKVEKSLLRQQV 695 \\
\hline S818 & 598 \\
\hline J649 & - 584 \\
\hline J628 & 572 \\
\hline S815 & 598 \\
\hline S817 & 600 \\
\hline J656 & 594 \\
\hline S819 & 582 \\
\hline KC811688.1 & ELYRLLSRNTYLEWEDNALGRHIFWRRLKKALLDGKALNPDETSEEEQEATTLT 749 \\
\hline KC811609.1 & ELYRLLSRNTYLEWEDNALGRHIFWRRLKKALLDGKALNPDGTSEEEQETTTFT 749 \\
\hline
\end{tabular}

Figure 5.6: Clustal W alignment of representative pipistrelle TLR4 sequences (one from each cluster) with the TLR4 sequence from Rattus norvegicus (KC811688.1) and the greater bandicoot rat, Bandicota indica (KC811609.1) (Fornuskova et al, 2013). Footnote: J649 and S819 are representative of TLR4 clusters 6 and 3 respectively.

Table 5.5: TLR4 amino acid variability in the pipistrelles at the positions identified by Fornuskova et al., (2013) as being under positive selection in rodents. Footnote: all the numbered positions in pipistrelle bats are based upon the TLR 4 sequence in bat specimen S818.
\begin{tabular}{|c|c|c|}
\hline Amino acid variability/positions & Amino acid in pipistrelles/positions & Bat codes \\
\hline H, R, P/ 273* & P, N/245 & MD82, all the other pipistrelles \\
\hline I, V/335* & E, R, S/289=LRR4 & \[
\begin{aligned}
& \hline \text { J718, F711, F712, F745, PB601, } \\
& \text { J708, J706, S668, S816, F751, } \\
& \text { V808, all the other pipistrelles }
\end{aligned}
\] \\
\hline A,T,P,K/345* & T, P, H/317 & S818, J647, S680, MD82, F761,
J656, F802, F711, PB602, J722,
J628, J658, S683, S819, F760,
J714, P605, C802, S607, F713,
J723, F744, S852, C804, JH802,
J707, C801, MH82, J709, V808,
G708, FP742, CS604, S817, J704,
J649, JL650, JL653, SA606,
SP679, F751, C8A, SP670, SP677,
S815, J718, J706, F711, F712,
F745, F801 \\
\hline H, S, T, D, N, R, K /347* & E/319 & All the 54 pipistrelles \\
\hline A, K, Q, R, G, L, E/361* & N, T, P/334=LRR5 & S818, J647, S680, MD82, F761,
J656, F802, PB602, J722, J628,
J658, S683, S819, F760, P605,
C802, S607, F713, SA606, SP679,
J723, F751, F744, S852, C804,
JH802, J707, C801, MH82, J709,
V808, C8A, G708, FP742, CS604,
S817, SP670, SP677, J718, J704,
F801, J649, JL650, JL653, S815,
J706, F711, F712, F745, PB601 \\
\hline T,M,I,L/363* & F, L/336=LRR5 & J718, J704, F801, S815, J649, JL650, JL653, all the other pipistrelles \\
\hline D, R, K, G/366* & I, Y, D/339=LRR5 & \[
\begin{aligned}
& \text { J718, F801, S815, J649, JL650, } \\
& \text { JL653, PB601, J706, F711, F712, } \\
& \text { all the other pipistrelles }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline M, L, V/368* & L, F, S/441=LRR5 & \begin{tabular}{c} 
J718, S819, F745, J718, F801, \\
S815, J649, JL650, JL653, PB601, \\
J706, F711, F712, all the other \\
pipistrelles
\end{tabular} \\
\hline F, M, L, V/394* & F/369=LRR6 & All the 54 pipistrelles \\
\hline S, D,N,I,G/398* & S, H, A/371=LRR6 & \begin{tabular}{c} 
C802, S815, S852, S817, J706, \\
F711, F712, all the other \\
pipistrelles
\end{tabular} \\
\hline A,T,I,G,V/469* & I/440 & All the 54 pipistrelles \\
\hline
\end{tabular}

\subsection*{5.3 TLR2}

\subsection*{5.3.1 Sequence analysis:}

Following the PCR-based isolation strategy (Chapter 4) 59 pipistrelle TLR2 gene fragments were subjected to DNA sequencing and the resulting data, including the translated amino acid sequences were aligned using Clustal W . The TLR2 DNA sequences were highly conserved amongst the pipistrelles; there were 5 haplotypes that generated 5 different protein sequences and the representative sequences are shown below (Figures 5.7 and 5.8).
\begin{tabular}{|c|c|c|}
\hline S818 & GGAAGGGGCCCN & 37 \\
\hline JL613 & & 0 \\
\hline JL647 & ATGCTTGTGGACAGTGTGGGTCTTGGGGACCGTAATCAGCCTGTTCAAGGAAGGGGCCCN & 60 \\
\hline J707 & ATGCTTGTGGACAGTGTGGGTCTTGGGGACCGTAATCAGCCTGTTCAAGGAAGGGGCCCN & 60 \\
\hline J649 & TGGGGACCGTAATCAGCCTGTTCAAGGAAGGGGCCCN & 37 \\
\hline S818 & TGATCAGGCTTTTCCTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAGATC & 97 \\
\hline JL613 & ~~~~~~ATC & 3 \\
\hline JL647 & NGATCAGGCTTTTCCTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAGATC & 120 \\
\hline J707 & NGATCAGGCTTTTCCTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAGATC & 120 \\
\hline J649 & TGATCAGGCTTTTCCTCTGACTTGTGACCCCACGGGGGTCTGCGATGGCCACTCCAGATC & 97 \\
\hline S818 & TTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAACAA & 157 \\
\hline JL613 & TTTGATCTCCATCCCCTCCGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAACAA & 63 \\
\hline JL647 & TTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAACAA & 180 \\
\hline J707 & TTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAACAA & 180 \\
\hline J649 & \begin{tabular}{l}
TTTAATCTCCATCCCCTCAGGGCTCACGGCAACTGTGACGAGCCTCGACCTGTCCAACAA \\

\end{tabular} & 157 \\
\hline S818 & CAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCTGAG & 217 \\
\hline JL613 & CAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCTGAG & 123 \\
\hline JL647 & CAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCTGAG & 240 \\
\hline J707 & CAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCTGAG & 240 \\
\hline J649 & CAAGATCGCCTATGTCAGCAACAGCGACCTGCGGATGTGTGTGAACCTCAGGGCTCTGAG & 217 \\
\hline & *********************************************************** & \\
\hline
\end{tabular}
S818 GCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAGTCT ..... 277
JL613 GCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAGTCT ..... 183
JL647 GCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAGTCT ..... 300
J707 GCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAGTCT ..... 300
J649 GCTGGGATCCAATAGCATTGACACGATAGAGGAAGATTCCTTTTTCTCCCTGGGGAGTCT ..... 277\(\star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
S818 TGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAGGCC ..... 337
JL613 TGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAGGCC ..... 243
JL647 TGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAGGCC ..... 360
J707 TGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAGGCC ..... 360
J649 TGAACATTTGGACTTATCCTATAATCACTTAGCTAATTTATCAGCCTCCTGGTTCAGGCC ..... 337
\(\star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
S818 TCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAAAAC ..... 397
JL613 TCTTACTTCCTTGAACGTCTTAAACTTACTGGGAAACCCTTACAAAACACTTGGGAAAAC ..... 303
JL647 TCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAAAAC ..... 420
J707 TCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAAAAC ..... 420
J649 TCTTACTTCCTTGAACGTCTTAAACTTATTGGGAAACCCTTACAAAACACTTGGGAAAAC ..... 397\(\star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
S818 ACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCTCTT ..... 457
JL613 ACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCTCTT ..... 363
JL647 ACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCTCTT ..... 480
J707 ACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCTCTT ..... 480
J649 ACCTCTTTTTTCTCATCTCACCAAATTGCGAATCCTAAAAGTAGGACATAGTTACCTCTT ..... 457
S818 CACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGATCGA ..... 517
JL613 CACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGATCGA ..... 423
JL647 CACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGATCGA ..... 540
J707 CACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGATCGA ..... 540
J649 CACTGAAATTCAGGAAAAGGATTTTGTTGGGCTAACTTTTCTCAAAGAGCTTGAGATCGA ..... 517
S818 TGCTTCCAATCTCCAGAAGTATGCGCCTAGGAGTTTGAAGGTGATTCAGAACATCAGCCA ..... 577
JL613 TGCTTCCAATCTCCAGAAGTATGCGCCTAGGAGTTTGAAGGTGATTCAGAACATCAGCCA ..... 483
JL647 TGCTTCCAATCTCCAGAAGTATGCGCCTAGGAGTTTGAAGGTGATTCAGAACATCAGCCA ..... 600
J707 TGCTTCCAATCTCCAGAAGTATGCGCCTAGGAGTTTGAAGGTGATTCAGAACATCAGCCA ..... 600
J649 TGCTTCCAATCTCCAGAAGTATGCGCCTAGGAGTTTGAAGGTGATTCAGAACATCAGCCA ..... 577
S818 CCTGATCCTTCACATGAAGCAGCCCACTTTCTTGATGAAGATTTCTGAGGATCTTTTAAG ..... 637
JL613 CCTGATCCTTCACATGAAGCAGCCCACTTTCTTGATGAAGATTTCTGAGGATCTTTTAAG ..... 543
JL647 CCTGATCCTTCACATGAAGCAGCCCACTTTCTTGATGAAGATTTCTGAGGATCTTTTAAG ..... 660
J707 CCTGATCCTTCACATGAAGCAGCCCACTTTCTTGATGAAGATTTCTGAGGATCTTTTAAG ..... 660
J649 CCTGATCCTTCACATGAAGCAGCCCACTTTCTTGATGAAGATTTCTGAGGATCTTTTAAG ..... 637
S818 TTCCTTGGGACATTTGGAACTGAGAGATACTCATTTGGACAATTTCCATTTTTCAAAAGT ..... 697
JL613 TTCCTTGGGACATTTGGAACTGAGAGATACTCATTTGGACAATTTCCATTTTTCAAAAGT ..... 603
FP737 TTCCTTGGGACATTTGGAACTGAGAGATACTCATTTGGACAATTTCCATTTTTCAAAAGT ..... 720
J707 TTCCTTGGGACATTTGGAACTGAGAGATACTCATTTGGACAATTTCCATTTTTCAAAAGT ..... 720
J649 TTCCTTGGGACATTTGGAACTGAGAGATACTCATTTGGACAATTTCCATTTTTCAAAAGT ..... 697

S818 ATCCACCAATGAAACCAAGACCATTAAAAAGTTCACCTTTAGAAATGTGAAGATCACAGA 757
JL613 ATCCACCAATGAAACCAAGACCATTAAAAAGTTCACCTTTAGAAATGTGAAGATCACAGA 663
JL647 ATCCACCAATGAAACCAAGACCATTAAAAAGTTCACCTTTAGAAATGTGAAGATCACAGA 780
J707 ATCCACCAATGAAACCAAGACCATTAAAAAGTTCACCTTTAGAAATGTGAAGATCACAGA 780
J649 ATCCACCAATGAAACCAAGACCATTAAAAAGTTCACCTTTAGAAATGTGAAGATCACAGA 757

S818 TGAAGGTTTTAATGAAATGGTGAAACTGTTGAATCATGTTTCTGAAATATTAGATGTGGA 817
JL613 TGAAGGTTTTAATGAAATGGTGAAACTGTTGAATCATGTTTCTGAAATATTAGATGTGGA 723
JL647 TGAAGGTTTTAATGAAATGGTGAAACTGTTGAATCATGTTTCTGAAATATTAGATGTGGA 840
J707 TGAAGGTTTTAATGAAATGGTGAAACTGTTGAATCATGTTTCTGAAATATTAGATGTGGA 840
J649 TGAAGGTTTTAATGAAATGGTGAAACTGTTGAATCATGTTTCTGAAATATTAGATGTGGA 817

S818 ATTTGATAGCTGCACCCTCAATGGAATTGGTGATTTTGACATAACTGTTATGGACACAAA 877
JL613 ATTTGATAGCTGCACCCTCAATGGAATTGGTGATTTTGACATAACTGTTATGGACACAAA 783
JL647 ATTTGATAGCTGCACCCTCAATGGAATTGGTGATTTTGACATAACTGTTATGGACACAAA 900
J707 ATTTGATAGCTGCACCCTCAATGGAATTGGTGATTTTGACATAACTGTTATGGACACAAA 900
J649 ATTTGATAGCTGCACCCTCAATGGAATTGGTGATTTTGACATAACTGTTATGGACACAAA 877

S818 TAAAGATATAAGTAAAATAGAGACATTAACAATACGGAGGTTGTATATTCCAAATTTTTA 937
JL613 TAAAGATATAAGTAAAATAGAGACATTAACAATACGGAGGTTGTATATTCCAAATTTTTA 843
JL647 TAAAGATATAAGTAAAATAGAGACATTAACAATACGGAGGTTGTATATTCCAAATTTTTA 960
J707 TAAAGATATAAGTAAAATAGAGACATTAACAATACGGAGGTTGTATATTCCAAATTTTTA 960
J649 TAAAGATATAAGTAAAATAGAGACATTAACAATACGGAGGTTGTATATTCCAAATTTTTA 937

S818 CTCATTTTATGATCTGAGCAGTTTATATTCACTTACTGGAACAGTTAAGAGAATCACGAT 997
JL613 CTCATTTTATGATCTGAGCAGTTTATATTCACTTACTGGAACAGTTAAGAGAATCACGAT 903
JL647 CTCATTTTATGATCTGAGCAGTTTATATTCACTTACTGGAACAGTTAAGAGAATCACGAT 1020
J707 CTCATTTTATGATCTGAGCAGTTTATATTCACTTACTGGAACAGTTAAGAGAATCACGAT 1020
J649 CTCATTTTATGATCTGAGCAGTTTATATTCACTTACTGGAACAGTTAAGAGAATCACGAT 997

S818 AGAAAGCAGTAAGGTTTTCCTAGTTCCTTGTTCACTTTCGCAACACTTAAAATCATTAGA 1057 JL613 AGAAAGCAGTAAGGTTTTCCTAGTTCCTTGTTCACTTTCGCAACACTTAAAATCATTAGA 963
JL647 AGAAAGCAGTAAGGTTTTCCTAGTTCCTTGTTCACTTTCGCAACACTTAAAATCATTAGA 1080
J707 AGAAAGCAGTAAGGTTTTCCTAGTTCCTTGTTCACTTTCGCAACACTTAAAATCATTAGA 1080
J649 AGAAAGCAGTAAGGTTTTCCTAGTTCCTTGTTCACTTTCGCAACACTTAAAATCATTAGA 1057

S818 ATATTTGGACCTCAATGGCAACTTAATAGTTGAAAACTCATTGACAAACGCAGCCTGTGA 1117
JL613 ATATTTGGACCTCAATGGCAACTTAATAGTTGAAAACTCATTGACAAACGCAGCCTGTGA 1023
JL647 ATATTTGGACCTCAATGGCAACTTAATAGTTGAAAACTCATTGACAAACGCAGCCTGTGA 1140
J707 ATATTTGGACCTCAATGGCAACTTAATAGTTGAAAACTCATTGACAAACGCAGCCTGTGA 1140
J649 ATATTTGGACCTCAATGGCAACTTAATAGTTGAAAACTCATTGACAAACGCAGCCTGTGA 1117

S818 GTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTTAGA 1177 JL613 GTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTTAGA 1083 JL647 GTATGCCTGGGCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTTAGA 1200 J707 GTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTTAGA 1200 J649 GTATGCCTGGCCCTCCCTGCAAACCTTAATCTTGAGGCAGAATCATCTGAGGTCGTTAGA 1177 \(\star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)

S818 AGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAAGAA 1237 JL613 AGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAAGAA 1143 JL647 AGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAAGAA 1260 J707 AGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCANCAAGAA 1260
J649 AGAAACTGGAGAAGTTTTGCTTACTCTGAAAAACCTGACTAACCTTGATATCAGCAAGAA 1237
    \(\star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 TAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAACTT 1297
JL613 TAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAACTT 1203
JL647 TAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAACTT 1320
J707 TAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAACTT 1320
J649 TAATTTCCATCCTATATCTAAAACTTGTCAGTGGCCAGAAAGGATGAAGTATTTGAACTT 1297
\(\star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 ATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTTAGA 1357
JL613 ATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTTAGA 1263
JL647 ATCCAATACAAGAATACACAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTTAGA 1380
J707 ATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTTAGA 1380
J649 ATCCAATACAAGAATACAGAGTTTAACCAAATGCATTCCTCAGACGCTGGAAGTTTTAGA 1357
\(\star \star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 TGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACTTTA 1417
JL613 TGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACTTTA 1323
JL647 TGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACTTTA 1440
J707 TGTTAGCAATAACAGCCTCAGTTCGTTTTCGTTGACTATGCAACAACTCAGAGAACTTGA 1440
J649 TGTTAGCAATAATAGCCTCAGTTCGTTTTCGTTGACTATGCCACAACTCAGAGAACTTTA 1417
\(\star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 TATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACTCGT 1477
JL613 TATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACTCGT 1383
JL647 TATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACTCGT 1500
J707 TATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACTCGT 1500
J649 TATTTCCGGAAATAGGTTGAAGACTCTACCAGATGCCTCCTCCTTACCCATGTTACTCGT 1477
\(\star \star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 CATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTTTAA 1537
JL613 CATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTTTAA 1443
JL647 CATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTTTAA 1560
J707 CATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTTTAA 1560
J649 CATGAGAATCAGCAGAAATACAATAAATACGTTCTCTAAGGAGCAACTTGATTCGTTTAA 1537

S818 AAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCTGTC 1597
JL613 AAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCTGTC 1503
JL647 AAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCTGTC 1620
J707 AAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCTGTC 1620
J649 AAAACTGAAGACTTTGGAAGCTGGCAGCAACAGTTTCATCTGTTCCTGCGAATTCCTGTC 1597
\(\star \star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 CTTTACTCAGGGGCAGCAAGCACTGGCCCAAGTCCTGGTCGACTGGCCAGAAAACTACCT 1657
JL613 CTTTACTCAGGGGCAGCAAGCACTGGCCCAAGTCCTGGTCGACTGGCCAGAAAACTACCT 1563
JL647 CTTTACTCAGGGGCAGCAAGCACTGGCCCAAGTCCTGGTCGACTGGCCAGAAAACTACCT 1680
J707 CTTTACTCAGGGGCAGCAAGCACTGGCCCAAGTCCTGGTCGACTGGCCAGAAAACTACCT 1680
J649 CTTTACTCAGGGGCAGCAAGCAATGGCCCAAGTCCTGGTCGACTGGCCAGAAAACAACCT 1657


S818 GTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGTTTC 1717 JL613 GTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGTTTC 1623 JL647 GTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGTTTC 1740 J707 GTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGTTTC 1740 J649 GTGCGATTCCCCATCCCATGTGCGGGGCCAGCGGGTGCAAGACACTCACCTCTCGGTTTC 1717 \(\star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 TGAGTGCCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGATCCT 1777
JL613 TGAGTGCCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGATCCT 1683
JL647 TGAGTGCCACAGGGTGGCTGTGGTGTTTGCTGTGTGCTGTGCCCTTTTCCTGCTGATCCT 1800
J707 TGAGTGNCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGATCCT 1800
J649 TGAGTGCCACAGGGTGGCTGTGGTGTCTGCTGTGTGCTGTGCCCTTTTCCTGCTGATCCT 1777
\(\star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 GCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTGGGC 1837
JL613 GCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTGGGC 1743
JL647 GCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTGGGC 1860
J707 GCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTGGGC 1860
J649 GCTCACTGGGGTTCTGTGCCACCGTTTCCATGGCCTGTGGTACATGAAGATGATGTGGGC 1837

S818 CTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCAGTTACGACGC 1897
JL613 CTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCAGTTACGACGC 1803
JL647 CTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCTGTTACGACGC 1920
J707 CTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCTGNTACGACGC 1920
J649 CTGGCTCCAGGCCAAAAGGAAGCCCAGGAGAGCCCCCCCGAGGGACCTCAGTTACGACGC 1897
\(\star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)

S818 CTTTGTGTCTTACAGCGAGCAGGATTCCCACTGGGTGGAGAACCTGATGGTCCAGGAGCT 1957
JL613 CTTTGTGTCTTACAGCGAGCAGGATTCCCACTGGGTGGAGAACCTGATGGTCCAGGAGCT 1863
JL647 CTTTGTGTCTTACAGCGAGCAGGATTCCCACTGGGTGGAGAACCTGATGGTCCAGGAGCT 1980
J707 CTTTGTGTCTTACAGCGAGCAGGATTCCCACTGGGTGGAGAACCTGATGGTCCAGGAGCT 1980
J649 CTTTGTGTCTTACAGCGAGCAGGATTCCCACTGGGTGGAGAACCTGATGGTCCAGGAGCT 1957
\(\star \star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

S818 GGAGCACTTCGACCCTCCCTTCAAGCTGTGTCTTCATAAGCGGGACTTTGTTCCCGGCAA 2017
JL613 GGAGCACTTCGACCCTCCCTTCAAGCTGTGTCTTCATAAGCGGGACTTTGTTCCCGGCAA 1923
JL647 GGAGCACTTCGACCCTCCCTTCAAGCTGTGTCTTCATAAGCGGGACTTTGTTCCCGGCAA 2040
J707 GGAGCACTTCGACCCTCCCTTCAAGCTGTGTCTTCATAAGCGGGACTTTGTTCCCGGCAA 2040
J649 GGAGCACTTCGACCCTCCCTTCAAGCTGTGTCTTCATAAGCGGGACTTTGTTCCCGGCAA 2017

S818 GTGGATTATTGACAATATCATCGACTCCATCGAAAAGAGCCACAAAACCATCTTCGTGCT 2077
JL613 GTGGATTATTGACAATATCATCGACTCCATCGAAAAGAGCCACAAAACCATCTTCGTGCT 1983
JL647 GTGGATTATTGACAATATCATCGACTCCATCGAAAAGAGCCACAAAACCATCTTCGTGCT 2100
J707 GTGGATTATTGACAATATCATCGACTCCATCGAAAAGAGCCACAAAACCATCTTCGTGCT 2100
J649 GTGGATTATTGACAATATCATCGACTCCATCGAAAAGAGCCACAAAACCATCTTCGTGCT 2077
\(\star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
S818 TTCCGAGAACTCGTGAAGA ..... 2096
JL613 TTCCGAGAACTCGTGAAGA ..... 2002
JL647 TTCCGAGAACTTGTGAAG ..... 2118
J707 TTCCGAGAACTTGTGAAGAGCGCGTGGTGCAAGTACGAGCTGGACTTCTCCCATTTCGCN ..... 2160
J649 TTCCGAGAACTCGTGAAGA ..... 2096\(\star \star \star \star \star \star \star \star \star \star * * * * * * *\)

Figure 5.7: Clustal W DNA sequence alignment of representative pipistrelle TLR2 gene sequences. Other bat TLR2 sequences not shown since they were identical to one of the above. Footnotes: Bat J649 was a soprano pipistrelle and it was not infected with helminths or protozoans. Some of the above data were derived from Arianne Lovey (MSc student, University of Salford) as indicated in Chapter 4.
S818 XGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDLSN ..... 52
JL613 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IFVSIPSGLTATVTSLDLS ..... 20
JL647 XCLWTVWVLGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDLSN ..... 60
J707 XCLWTVWVLGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDLSN ..... 60
J649 ~~~~~~~XGTVISLFKEGAXDQAFPLTCDPTGVCDGHSRSLISIPSGLTATVTSLDLSN ..... 52
\(\star * * * * * * * * * * * * * * * *\)
S818 NKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASWFR 112JL613 NKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASWFR 80JL647 NKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASWFR 120J707 NKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASWFR 120J649 NKIAYVSNSDLRMCVNLRALRLGSNSIDTIEEDSFFSLGSLEHLDLSYNHLANLSASWFR 112\(\star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
S818 PLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKELEI ..... 172
JL613 PLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKELEI ..... 140
JL647 PLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKELEI ..... 180
J707 PLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIQEKDFVGLTFLKELEI ..... 180
J649 PLTSLNVLNLLGNPYKTLGKTPLFSHLTKLRILKVGHSYLFTEIOEKDFVGLTFLKELEI ..... 172
S818 DASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHFSK ..... 232
JL613 DASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHFSK ..... 200
JL647 DASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHFSK ..... 240
J707 DASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHFSK ..... 240
J649 DASNLQKYAPRSLKVIQNISHLILHMKQPTFLMKISEDLLSSLGHLELRDTHLDNFHFSK ..... 232
S818 VSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVMDT ..... 292
JL613 VSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVMDT ..... 260
JL647 VSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVMDT ..... 300
J707 VSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVMDT ..... 300
J649 VSTNETKTIKKFTFRNVKITDEGFNEMVKLLNHVSEILDVEFDSCTLNGIGDFDITVMDT ..... 292
S818 NKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLKSI ..... 352
JL613 NKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLKSI ..... 320
JL647 NKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLKSI ..... 360
J707 NKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLKSI ..... 360
J649 NKDISKIETLTIRRLYIPNFYSFYDLSSLYSLTGTVKRITIESSKVFLVPCSLSQHLKSI ..... 352
S818 EYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDISK ..... 412
JL613 EYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDISK ..... 380
JL647 EYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDISK ..... 420
J707 EYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDISK ..... 420
J649 EYLDLSGNLIVENSLTNAACEYAWPSLQTLILRQNHLRSLEETGEVLLTLKNLTNLDISK ..... 412
S818 NNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLREI ..... 472
JL613 NNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLREL ..... 440
JL647 NNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLREL ..... 480
J707 NNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSAGSFRLQQPQFRFL ..... 480
NNFHPISKTCQWPERMKYLNLSNTRIQSLTKCIPQTLEVLDVSNNSLSSFSLTMPQLREL ..... 472\(\star \star \star \star \star \star \star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
S818 YISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCEFL ..... 532
JL613 YISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCEFL ..... 500
JL647 YISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCEFL ..... 540
J707 YISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCEFL ..... 540
J649 YISGNRLKTLPDASSLPMLLVMRISRNTINTFSKEQLDSFKKLKTLEAGSNSFICSCEFL ..... 532
S818 SFTQGQQALAQVLVDWPENYLCDSPSHVRGQRVQDTHLSVSECHRVAVVSAVCCALFLLI ..... 592
JL613 SFTQGQQALAQVLVDWPENYLCDSPSHVRGQRVQDTHLSVSECHRVAVVSAVCCALFLLI ..... 560
JL647 SFTQGQQALAQVLVDWPENYLCDSPSHVRGQRVQDTHLFVSECHRVAVVFAVCCALFLLI ..... 600
J707 SFTQGQQALAQVLVDWPENYLCDSPSHVRGQRVQDTHLSVSECHRVAVVFAVCCALFLLI ..... 600
J649 SFTQGQQAMAQVLVDWPENYQCDSPSHVRGQRVQDTHLSVSECHRVAVVSAVCCALFLLI ..... 592
S818 LLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLSYDAFVSYSEQDSHWVENLMVQE ..... 652
JL613 LLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLSYDAFVSYSEQDSHWVENLMVQE ..... 620
JL647 LLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLCYDAFVSYSEQDSHWVENLMVQE ..... 660
J707 LLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLXYDAFVSYSEQDSHWVENLMVQE ..... 660
J649 LLTGVLCHRFHGLWYMKMMWAWLQAKRKPRRAPPRDLSYDAFVSYSEQDSHWVENLMVQE ..... 652
S818 LEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENS~R~ ..... 698
JL613 LEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENS~R~ ..... 667
JL647 LEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENFVK~ ..... 706
J707 LEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENFVKSAWCKYELDFSHE ..... 720
J649 LEHFDPPFKLCLHKRDFVPGKWIIDNIIDSIEKSHKTIFVLSENS~R~ ..... 698

Figure 5.8: Clustal W amino acid sequence alignment of TLR2 derived from 5 pipistrelle bats. Glycosylation sites are highlighted in bold. Footnotes: Bat J649, a soprano pipistrelle, was free of protozoan and helminth infections. Only 5 sequences shown as these are representative of the diversity (see Figure 5.9).

The translated amino acid sequences showed that the pipistrelle TLR2 sequences were between \(99 \%\) and \(100 \%\) identical. Not surprisingly therefore, the 6 predicted N glycosylation sites were fully conserved in all the 59 pipistrelle TLR2 sequences. However, interestingly, 7 of the pipistrelles showed heterozygosity in the TLR2 gene sequences and these all resulted in a non-synonymous amino acid change (Table 5.6). Moreover, one of these bats, F744, showed heterozygosity at two positions within the TLR2 gene. Closer inspection of the changes in relation to the gene model (Figure 4.13) highlighted that only two variable positions; \(\mathrm{F} / \mathrm{S}^{582}\) (bat JL628) and H/Q \({ }^{566}\) (bat F744), were within Leucine rich repeat regions (LRRs).

Table 5.6: Summary of the pipistrelle TLR2 heterozygosity observed in the bat population. Footnotes: all the numbered positions are based on bat S818 (see Figures 5.6 and 5.7). Data derived from Arianne Lovey (MSc student, University of Salford).
\begin{tabular}{|c|c|c|c|}
\hline Nucleotide position & Nucleotide variations & Amino acids & Bat code \\
\hline 156 & \(\mathrm{~A} / \mathrm{G}\) & \(\mathrm{K} / \mathrm{E}^{52}\) & \(\mathrm{SP649}\) \\
\hline 468 & \(\mathrm{~T} / \mathrm{C}\) & \(\mathrm{I} \mathrm{S}^{156}\) & \(\mathrm{SA} 07 ?\) \\
\hline 741 & \(\mathrm{C} / \mathrm{T}\) & \(\mathrm{R} / \mathrm{S}^{247}\) & S 607 \\
\hline 1746 & \(\mathrm{~T} / \mathrm{C}\) & \(\mathrm{F} / \mathrm{S}^{582}\) & \(\mathrm{JL628}\) \\
\hline \(1698 / 2025\) & \(\mathrm{~T} / \mathrm{A}-\mathrm{T} / \mathrm{A}\) & \(\mathrm{H} / \mathrm{Q}^{566}\) & F 744 \\
& & \(\mathrm{I} / \mathrm{M}^{675}\) & \\
\hline 1794 & \(\mathrm{~A} / \mathrm{C}\) & \(\mathrm{L} / \mathrm{M}^{598}\) & J 722 \\
\hline 1884 & \(\mathrm{~T} / \mathrm{A}\) & \(\mathrm{D} / \mathrm{E}^{628}\) & JH 802 \\
\hline
\end{tabular}

All the TLR2 heterozygotes were determined by Arianne Lovey (MSc student, University of Salford). This was determined from both the forward and reverse sequence where double peaks were found when analysing the sequences which indicate that heterozygote is present in these TLR2 sequences. When comparing the heterozygosity found in the pipistrelle TLR2 gene with the TLR4 gene where no heterozygotes were found in any of the pipistrelle sequences, the data showed it is statistically significant (Fisher's exact test: \(p=0.012\) ).

On analysing the phylogeny of the TLR2 sequences, without taking account of the heterozygotic changes, it was apparent that they could be organised into 5 clusters. Most of the clusters had high bootstrap support, although cluster 1, with 45 bats, had relatively low bootstrap support (Figure 5.9). The frequency of each TLR2 cluster is shown in Table 5.7 and all the soprano bats were positioned with cluster 4. Most of the mixed genotype bats (Dodd et al., 2014) were not surprisingly positioned within TLR2 cluster 1. Analysis of the TLR2 sequences using UPGMA and minimum-evolution approaches also positioned the sequences into 5 clusters (data not shown). Moreover, phylogenetic tree was done with including different outgroup sequences and the outcome of the phylogeny showed the same number of clusters like without outgroups (Figure 5.10).


Figure 5.9: Neighbor-Joining phylogenetic tree of the pipistrelle TLR2 protein sequences. Bootstrap support values (\%) are shown on the nodes. Footnotes: Babies are excluded from this analysis. Arrows show the pipistrelles heterozygotic for TLR2.


Figure 5.10: Neighbor-Joining phylogenetic tree of the pipistrelle TLR2 protein sequences with different TLR2 outgroups sequences. Bootstrap support values (\%) are shown on the nodes. Footnotes: Babies are excluded from this analysis.

Table 5.7: TLR2 cluster frequencies
\begin{tabular}{|c|c|l|}
\hline TLR2 clusters & Frequency & Bat codes \\
\hline 1 & \(\% 86\) & All the other 45 pipistrelles \\
\hline 2 & \(3 \%\) & SA07, JL613 \\
\hline 3 & \(3 \%\) & JL628, JL647 \\
\hline 4 & \(5 \%\) & J649, JL650, JL653 \\
\hline 5 & \(3 \%\) & J707, C804 \\
\hline
\end{tabular}

\subsection*{5.3.2 TLR2 variations and parasite infections:}

Given the dominance of TLR2 cluster 1, it was not possible to do any statistically meaningful analysis of the parasite infection profiles based upon cluster origin.

Furthermore, very few amino acid changes were observed between TLR2 sequences of individual bats and hence a meaningful analysis of potential roles of any of these changes was not possible (Table 5.8).

Table 5.8: Summary of the amino acid changes observed in the TLR2 gene of 54 pipistrelle bats. Footnote: all the positions are based on the TLR2 sequence of bat S 818 (see Figure 5.7).
\begin{tabular}{|c|c|c|c|c|}
\hline Position & \begin{tabular}{c} 
Amino acid \\
change
\end{tabular} & \begin{tabular}{c} 
Number of \\
samples
\end{tabular} & \begin{tabular}{c} 
Frequency of \\
changes
\end{tabular} & Bat code \\
\hline 33 & \(\mathrm{~S} \rightarrow \mathrm{I}\) & 2 & \(3 \%\) & SA7?, JL613 \\
\hline 34 & \(\mathrm{~L} \rightarrow \mathrm{~F}\) & 2 & \(3 \%\) & SA7?, JL613 \\
\hline 473 & \(\mathrm{~T} \rightarrow \mathrm{Q}\) & 2 & \(3 \%\) & \(\mathrm{~J} 707, \mathrm{C} 804\) \\
\hline 474 & \(\mathrm{M} \rightarrow \mathrm{Q}\) & 2 & \(3 \%\) & \(\mathrm{~J} 707, \mathrm{C} 804\) \\
\hline 477 & \(\mathrm{~L} \rightarrow \mathrm{~F}\) & 2 & \(3 \%\) & \(\mathrm{~J} 707, \mathrm{C} 804\) \\
\hline 579 & \(\mathrm{~S} \rightarrow \mathrm{~F}\) & 2 & \(3 \%\) & JL628, JL647 \\
\hline
\end{tabular}

A subset of bats were heterozygous at the TLR2 locus (Table 5.6) and inspection of their parasite infections revealed that the mean helminth intensity of these bats \((27.1 \pm 25)\) was significantly less than the mean helminth intensity of the TLR2 homozygotes ( \(59.5 \pm 66\) ) \((t\)-test, \(p\)-value \(=0.027)\). As the locations of acquisition for the TLR2 heterozygotes were scattered across the South Lancashire/Greater Manchester region then it is likely that this
helminth infection data cannot be explained by environmental differences. The low numbers of TLR2 heterozygous bats precluded a statistically meaningful analysis of whether, or not, these bats had any interesting protozoan infection differences compared to the homozygous bats.

\subsection*{5.4 TLR4/2 chimeric proteins}

\subsection*{5.4.1 Sequence analysis:}

In order to account for potential simultaneous expression and action of both TLR4 and TLR2 genes in defence against parasite infection, respective TLR amino acid sequences were truncated and then fused to generate chimeric TLR \(4 / 2\) sequences for a subset of 45 bats. Phylogenetic analysis of the TLR4/2 chimeric sequences showed that 6 clusters were formed; albeit, bootstrap support for cluster 1 is less convincing (Figure 5.11). Six clusters were also formed when the sequences were analysed using UPGMA and minimum-evolution approaches (data not shown).

One less cluster is formed using the TLR4/2 sequences than is formed by TLR4 alone (Figure 5.3); this is most probably a consequence of the latter analysis including 9 additional sequences and also, that TLR2 sequences are so well conserved that they have little overall impact on the phylogeny. The soprano pipistrelles are positioned within cluster 4 , the most frequent TLR4/2 cluster (Table 5.9). Five of the TLR2 heterozygotes are represented in the phylogeny and these bats (S607, F744/J722 and JL628/JH802) are localized to TLR4/2 clusters 1,3 and 6 respectively.


Figure 5.11: Neighbor-Joining phylogenetic tree of the pipistrelle TLR4/2 chimeric protein sequences. Bootstrap support values \((\%)\) are shown on the nodes. Blue \(=1, \operatorname{Red}=2\), Black \(=\) 3, Purple \(=4\), Green \(=5\), Orange \(=6\). Footnotes: TLR2 heterozygotic sequences were analysed as for Figure 5.8. Babies are excluded from this analysis.

Table 5.9: TLR4/2 cluster frequencies in the pipistrelles
\begin{tabular}{|c|c|c|}
\hline TLR4/2 clusters & Frequency & Bat codes \\
\hline 1 & 22.2\% & \[
\begin{aligned}
& \text { J647, P605, F802, S819, S607, } \\
& \text { PB602, F760, FP742, J709, } \\
& \text { V808 }
\end{aligned}
\] \\
\hline 2 & 8.8\% & J656, G708, F761, J714 \\
\hline 3 & 8.8\% & S818, J722, S852, F744 \\
\hline 4 & 33.3\% & \[
\begin{aligned}
& \hline \text { J649, JL650, JL653, J704, } \\
& \text { SA606, C802, S815, J718, } \\
& \text { F745, F801, PB601, J708, } \\
& \text { F711, J706, F712 }
\end{aligned}
\] \\
\hline 5 & 4.4\% & F713, S817 \\
\hline 6 & 22.2\% & \[
\begin{aligned}
& \text { MH82, MD82, S668, S816, } \\
& \text { J658, J628, JH802, S683, } \\
& \text { J707, C804 }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{5.4.2 TLR4/2 variations and parasite infections:}

As reported earlier for the TLR4 analysis (5.2.2), the T. gondii infected bats (F802, P605, PB602) was limited to a single cluster (TLR4/2 cluster 1) and this infection profile was statistically significant (Fisher's exact test, \(p\)-value \(=0.008\) ). However, the earlier significance associated with TLR4 cluster 6 and both trypanosome infection and helminth intensity (5.2.2) were not observed when the analysis was repeated with the TLR \(4 / 2\) clusters. The most likely explanation for this discrepancy is the reduced numbers of bats in the TLR4/2 phylogram.

\section*{6. Discussion:}

Following on from the PCR gene isolation strategy presented in Chapter 4, the data within this chapter presents sequences for the genes encoding TLR4 and TLR2 from a considerable proportion of the pipistrelle population from South Lancashire/Greater Manchester. Although not based upon entire gene sequences, the data nonetheless highlights the variability of these TLR genes in the bat population. In particular, the pipistrelle TLR4 gene has high levels of sequence variability as 42 haplotypes are described from 59 individual bats which are extremely high level of variability can be found compared to other mammals. Moreover, the homozygosity of the TLR4 genotypes is unexpected given the random mating patterens and should be the subject of further investigation. A phylogenetic analysis of these TLR4 sequences positioned them into 7 clusters; however, bootstrap support was relatively weak for a number of the clusters. Although TLR2 variability in the bats was not as great (haplotypes \(=5\) ), there was also a small number \((\mathrm{n}=7)\) of TLR2 heterozygotes. A study of TLR4 and TLR2 polymorphisms in over 4,000 individuals from a region of Ghana endemic for malaria infection identified 34 TLR4 single nucleotide polymorphisms (SNPs) and 12 TLR2 SNPs (May et al., 2010). A more limited study of TLR polymorphisms in African penguins also highlighted that TLR2 had limited diversity relative to some other TLRs (Dalton, Vermaak, Roelofse, \& Kotze, 2016). As such, the reduced level of pipistrelle TLR2 diversity compare to that of TLR4 is consistent with reports in other widely diverse species and this may reflect that TLR2 is functional as a heterodimer whereas TLR4 is active as a homodimer (McClure \& Massari, 2014).

As described in a number of studies (Brattig et al., 2004; Goodridge et al., 2005; Jenkins et al., 2005), TLR4 and TLR2 are important mediators of the innate immune response against parasite infections. However, other than a small number of studies that describe TLR gene sequences and gene expression in fruit bats (Cowled et al., 2011; Iha et al., 2010), there is an
absence of knowledge of how bat TLRs may contribute to the bat innate immune system. This is of much interest given the undoubted status that bats have acquired for being reservoirs of infection and particularly, viruses of zoonotic potential (O'Shea et al., 2014). The parasite infection profiles described in the South Lancashire/Greater Manchester pipistrelles (Chapter 3; Lord, 2010; Lord et al., 2012; Dodd et al., 2014) presented an ideal opportunity to analyse TLR sequence variation and address the question of whether, or not, particular parasite infections might correlate with a TLR haplotype, or group of haplotypes. Of course, any infection profile is subject to influence from the environment as well as the host genetics; however, for the purposes of this study the bats were opportunistically obtained throughout the South Lancashire/Greater Manchester and there appeared to be no "hotspot" for infections (Chapter 3).

With respect to TLR4, it was observed that in a small group of bats ( \(\mathrm{n}=9\), TLR4 cluster 6 ) there was statistical support for susceptibility to trypanosome infection. One interpretation of the trypanosome infection data is that the other TLR4 clusters identified in the study (1-5 and 7) may be involved in mediating protection against trypanosomes. However, there were examples of bats within TLR4 clusters 1-5 and 7 with trypanosome infections; this ranged from \(50 \%\) infection prevalence in clusters 3 and 4 to \(11 \%\) in cluster 3. Another interpretation of the data is that as bats are capable of harbouring a multitude of infectious agents (O'Shea et al., 2014) the pipistrelle TLR4 does not provide full protection against trypanosome infection and hence TLR4 cluster 6 haplotypes are simply hyporesponsive to trypanosomes relative to the other TLR4 clusters. This might allow trypanosome parasitaemias to elevate to higher levels in these bats compared to the others and hence PCR-based detection is perhaps more robust whereas in other bats, low trypanosome parasitaemia may fail to yield a detectable PCR product. Of course, other possible explanations for the trypanosome
infections also exist; not least that the data is serendipitous and the result of an analysis based upon a phylogeny with weak bootstrap support.

Interestingly, the data also highlighted that pipistrelles within TLR4 cluster 6 had a significantly reduced helminth burden relative to the remainder of the bats. Accepting the cautionary note about the phylogram, this may indicate that TLR4 has a role in protection against helminths. Given that the bats were solely infected with digenean trematodes and the vast majority were Lecithodendrium linstowi (Lord et al., 2012), then it is possible that TLR4 haplotypes within cluster 6 interact with this parasite, or molecules released from it. As noted earlier (5.1), one of the most well studied trematodes, S. mansoni, is reported to activate mouse macrophage TLR4 (Jenkins et al., 2005).

In addition, it appeared that another small group of bats \((\mathrm{n}=9\), TLR4 cluster 3 ) appeared to be susceptible to \(T\). gondii infection. However, the latter should be treated with an additional degree of caution since the majority of the T. gondii infected bats (Dodd et al., 2014) were not represented in the subgroup for which TLR4 sequence data was obtained.

For any interactions to occur between the pipistrelle TLR4s and pathogen associated molecular patterns (PAMPs) derived from the parasites then N -glycosylation sites as well as Leucine Rich Repeat (LRR) regions are likely to be of importance. To this end, complete conservation of all predicted pipistrelle N -glycosylation sites is likely to be of relevance. Furthermore, comparison of the pipistrelle TLRs to those of rodents (Fornuskova et al., 2013) highlight how most of the residues under positive selection in rodents were also conserved, or semi-conserved, in the bats. Indeed, only 2 out of 11 of these sites in the rodent had a dissimilar amino acid residue in the pipistrelles. This may be due to distinct evolutionary pressures and infectious agents associated with these different orders of mammal. In terms of the amino acid changes noted between the different pipistrelle TLR4 sequences, many of
these occurred in LRRs 3-6 and so they may well modify any interaction with parasitederived PAMPs. However, given the large number of amino acid changes, it is not possible to conclude that a specific one, or group of them, are more likely to be of importance.

With respect to TLR2 variability in the bats, the most striking observation was that a small number of pipistrelles displayed heterozygosity and interestingly, there was statistical support for this group of bats \((\mathrm{n}=7)\) having a reduced helminth burden. It seems reasonable to hypothesize that a heterozygote might have an advantage and therefore the reduced helminth burden associated with the TLR2 heterozygotes might be the expected outcome. However, there is conflicting data in the literature. For example, a 22 bp heterozygous deletion in the untranslated exon of human TLR2 is associated with protection against cerebral malaria through a mechanism likely to involve reduced TLR2 expression and hence an attenuation of the inflammatory response which would favour protection against cerebral malaria (Greene et al., 2012). Also, a human TLR2 heterozygous mutation within the intracellular Toll/IL-1 receptor domain is associated with increased likelihood of staphylococcal infection (Lorenz, Mira, Cornish, Arbour, \& Schwartz, 2000) and severity of atopic dermatitis (Ahmad-Nejad et al., 2004). Only 2 of the 7 TLR2 heterozygotic changes occur within LRRs and so it is difficult to speculate as to how the pipistrelle TLR2 heterozygotes may confer some protection against enhanced helminth burdens. Nonetheless, this interesting result would be worthy of further investigation.

Finally, Lord et al. (2012) showed through statistical modelling that helminths were less abundant in the male pipistrelles and also, that helminths were more aggregated in the males. An inspection of the polymorphisms in the TLRs of the male and female bats showed that a number of TLR4 variants (N293I, I295L, V303R, I308N, I308K, E309R, H310T, L311S, D312G, Q314P, H315A, and F328P) occurred in some of the infected males but female bats with these changes were helminth-free. This interesting observation is most likely
serendipitous since it seems highly unlikely that TLR4 haplotypes may be involved in sexlinked infection outcomes.

The study hypothesis is that host genetics, including innate immunity genes, are likely to influence infection outcomes and hence TLR gene variations will be observed in the bat population. Because of the opportunistic sampling method of hosts from the wild and hence multiple associated confounding factors, it is difficult to predict whether, or not, there might be a link between TLR haplotype and parasite infection profile. Nonetheless, the study will address the hypothesis that a correlation might exist between the observed bat parasite infection profiles and particular TLR variants. After analyzing the pipistrelles TLR4 and TLR2 genes, there was high level of variability in TLR4 gene (Haplotype \(=42\) ) compared to TLR2 gene (haplotype= 5). Due to high variability found in TLR4, it was difficult to assess all of these changes as single change and as a result different clusters were assembled using phylogenetic tree. There were 7 main clusters in TLR4 gene and some of the cluster associated with the susceptibility and resistant to parasite like cluster 6 which had low worm burden but high trypanosome infections compared to the other clusters. Also, cluster 3 was the only cluster infected with \(T\). gondii whereas none of the other cluster got this parasite. From this data, it is difficult to say that a specific change might have an effect of the susceptibility or resistant to a specific parasite; however, the data might suggest that some of the pipistrelles might have a degree of susceptibility or resistant to some parasitic infections when the data was analysed as clusters. With regard to TLR2 gene, it was highly conserved among pipistrelle bats and the low number of changes precluded any meaningful statistical analysis; however, heterozygotes were found in some of the pipistrelle TLR2 gene ( \(n=7\) ). When analysis the parasitic profile of these heterozygotes pipistrelle, they had low worm burden compared to the non- heterozygotes pipistrelles which might suggest that the heterozygotes of these samples associated with low worm infections.

\subsection*{6.1 Thesis conclusions:}

Overall, work presented in this thesis has provided insight into microparasite infections within a pipistrelle population sampled opportunistically at sites across South Lancashire and Greater Manchester. In carrying out the work, it was clear that the lack of archived bat parasite material and also, the lack of prior molecular-based studies of bat parasites, resulted in certain difficulties; not least, with the design of trypanosome-specific PCR primers. Nonetheless, the descriptions of \(T\). dionisii and \(T\). vespertilionis infections in the pipistrelles are now presented with confidence and hence extend the analysis done by Lord (2010). In addition, the data produced shows that the bats are infected with the coccidians \(E\). rioarribaensis and Cryptosporidium sp. bat genotype IV; these are new parasite descriptions for UK bats. Two bats were also confirmed infected with Bartonella sp. and a single bat infection with Borrelia sp. was noted. Taken together with the prior knowledge of \(B\). vesperuginis (Lord, 2010), T. gondii (Dodd et al., 2014) and helminth (Lord et al., 2012) infections in these bats, it is reasonable to propose that the South Lancashire/Greater Manchester pipistrelles have provided much insight into bat parasite infections.

Indeed, the subsequent genotyping of these pipistrelles has now revealed that a major influence of the eimerian infection profile may be the genetics of the host. Indeed, this is the first report to highlight the role of bat genetics in susceptibility/resistance to parasite infection. Specifically, E. rioarribaensis was detected exclusively in bats likely to form a single inter-breeding group whereas the bats of mixed genetic origin in the study appeared to be genetically resistant to eimerian infection.

To explore genetic influences upon infection further, this thesis work then addressed the role of the bat innate immune system upon infection outcomes by study of TLRs. Specifically, large fragments of the pipistrelle TLR4 and TLR2 genes were PCR amplified and sequenced from a subset of the bats. As highlighted earlier in this chapter, the TLR4 genes showed
considerable diversity and a number of the bats were also heterozygous at the TLR2 locus. A correlational analysis of these gene variations with the parasite infections generated some intriguing results with respect to trypanosome and helminths that would be worthy of future investigation.

\subsection*{6.2 Future Directions:}

This study might usefully be extended in a number of ways.
(i) Use of multivariate statistical modelling of the infection and TLR polymorphism data would provide a more robust analysis.
(ii) It would be highly useful to obtain knowledge of the expression patterns of the TLR4 and TLR2 genes in pipistrelles. This would necessitate tissue sampling and mRNA extraction from live bats (and hence would require a license).

Nonetheless, at present, there is no knowledge of which pipistrelle cells/tissues express these TLRs and the conclusions in this thesis would benefit from such data.
(iii) Any TLR polymorphisms confirmed important through the multivariate statistical modelling might be further analysed via genetic study in a model organism. For example, a TLR4 or TLR2 mouse mutant could be genetically engineered to express a bat TLR gene. A subsequent infection assay might then be possible in order to support a role for the TLR variant being involved in the innate immune response to a parasite.
(iv) Establishment of a pipistrelle cell culture might also permit cell-based assays to be carried out with specific parasite molecules suspected to be important in TLR binding.

Wider approaches may also be warranted and could include the following.
(v) Bat sampling was carried out opportunistically via acquisition of dead, or injured bats that were subsequently euthanized due to extent of injury. This precluded a detailed autopsy in most instances and hence unfortunately no data is available on the potential pathologies associated with any of the infections (Lord, 2010). Also, importantly, the resulting group of pipistrelles may well not be representative of the general bat population and hence not all conclusions may be valid at the general population level. However, it would be very difficult to repeat the extensive studies carried out on the South Lancashire/Greater Manchester pipistrelles; not least because a bat license would be necessary and the justification (ie. random sampling) may be insufficient.
(vi) A small number of live bats are sampled under license for studies that usually involve virus monitoring. It would be useful to obtain blood from such sampling efforts in order to attempt culture of any of the blood parasites that might be present. This would provide a useful resource for any future downstream studies given the distinct lack of archived bat parasite resources currently available.
(vii) Efforts in this study have focused upon TLR4 and TLR2; however, it is quite likely that other bat TLRs may also be involved in innate immune responses to parasite infection. To this end, it would be worthwhile attempting to isolate and sequence further pipistrelle TLR genes.

\section*{References:}

Ahmad-Nejad, P., Mrabet-Dahbi, S., Breuer, K., Klotz, M., Werfel, T., Herz, U., . . . Renz, H. (2004). The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. Journal of Allergy and Clinical Immunology, 113(3), 565567.

Alberta. Alberta Agriculture, F., Development, R., \& KENNEDY, M. J. (1988). Synopsis of the Digenea of mammals of North America: QUEEN'S PRINTER.
Alyousif, M. S., Al-Dakhil, M., \& Al-Shawa, Y. (1999). Eimeria pipistrellus n. sp. from Pipistrellus kuhlii (Chiroptera: Vespertilionidae) in Saudi Arabia. The Korean journal of parasitology, 37(1), 1.
Amengual, B., Bourhy, H., López-Roig, M., \& Serra-Cobo, J. (2007). Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One, 2(6), e566.
Baker, J. (1974). Protozoan parasites of the blood of British wild birds and mammals. Journal of Zoology, 172(2), 169-190.
Baker, J., Miles, M., Godfrey, D., \& Barrett, T. (1978). Biochemical characterization of some species of Trypansoma (Schizotrypanum) from bats (Microchiroptera). The American journal of tropical medicine and hygiene, 27(3), 483-491.
Baker, J., \& Thompson, G. B. (1971). Two species of Trypanosoma from British bats. Transactions of the Royal Society of Tropical Medicine and Hygiene, 65(4), 427.
Baker, M., Schountz, T., \& Wang, L. F. (2013). Antiviral immune responses of bats: a review. Zoonoses and Public Health, 60(1), 104-116.
BANDYOPADHYAY, S., RAY, R., \& DASGUPTA, B. (1982). A NEW SPECIES OF TRYPANOSOMA FROM AN INDIAN INSECTIVOROUS BAT, RHINOPOMA-HARDWICKEI GRAY. Acta Protozoologica, 21(2), 189-195.
Barratt, E., Deaville, R., Burland, T., \& Bruford, M. W. (1997). DNA answers the call of pipistrelle bat species. Nature, 387(6629), 138.
Battersby, J. (2005). UK mammals: species status and population trends. JNCC/Tracking Mammals Partnership.(3 November 2006.
Berzunza-Cruz, M., Rodríguez-Moreno, Á., Gutiérrez-Granados, G., González-Salazar, C., Stephens, C. R., Hidalgo-Mihart, M., . . . Balcells, C. D. (2015). Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs. PLoS neglected tropical diseases, 9(1), e0003438e0003438.
Biesold, S. E., Ritz, D., Gloza-Rausch, F., Wollny, R., Drexler, J. F., Corman, V. M., . . . Müller, M. A. (2011). Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum. PLoS One, 6(11), e28131.
Birtles, R. J., \& Raoult, D. (1996). Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. International journal of systematic bacteriology, 46(4), 891-897.
Blehert, D. S., Hicks, A. C., Behr, M., Meteyer, C. U., Berlowski-Zier, B. M., Buckles, E. L., . . . Niver, R. (2009). Bat white-nose syndrome: an emerging fungal pathogen? Science, 323(5911), 227-
227.

Botella, P., Sanchez, L., \& Esteban, J. (1993). Helminth fauna of bats in Spain. III. Parasites of Pipistrellus pipistrellus (Schreber, 1774)(Chiroptera: Vespertilionidae). Research and Reviews in Parasitology, 53(1-2), 63-70.
Bower, S. M., \& Woo, P. T. (1981). Development of Trypanosoma (Schizotrypanum) hedricki in Cimex brevis (Hemiptera: Cimicidae). Canadian Journal of Zoology, 59(3), 546-554.
Brattig, N. W., Bazzocchi, C., Kirschning, C. J., Reiling, N., Büttner, D. W., Ceciliani, F., . . . Wagner, H. (2004). The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. The Journal of Immunology, 173(1), 437-445.
Brener, Z. (1969). The behavior of slender and stout forms of Trypanosoma cruzi in the blood-stream of normal and immune mice. Annals of tropical medicine and parasitology, 63(2), 215-220.

Brookes, S. M., Aegerter, J. N., Smith, G. C., Healy, D. M., Jolliffe, T. A., Swift, S. M., . . . Moore, N. P. (2005). European bat lyssavirus in Scottish bats. Emerging infectious diseases, 11(4), 572.

Bumstead, J., Bumstead, N., Rothwell, L., \& Tomley, F. (1995). Comparison of immune responses in inbred lines of chickens to Eimeria maxima and Eimeria tenella. Parasitology, 111(02), 143151.

Bumstead, N., \& Millard, B. (1987). Genetics of resistance to coccidiosis: response of inbred chicken lines to infection by Eimeria tenella and Eimeria maxima. British poultry science, 28(4), 705715.

Butler, J., \& Kehrli Jr, M. (2004). Immunoglobulins and immunocytes in the mammary gland and its secretions. Mucosal immunology.
Butler, J. E., Wertz, N., Zhao, Y., Zhang, S., Bao, Y., Bratsch, S., . . . Schountz, T. (2011). The two suborders of chiropterans have the canonical heavy-chain immunoglobulin (Ig) gene repertoire of eutherian mammals. Developmental \& Comparative Immunology, 35(3), 273284.

Cabral, A., Gama, A., Sodré, M., Savani, E., Galvão-Dias, M., Jordão, L., . . . Pena, H. (2013). First isolation and genotyping of Toxoplasma gondii from bats (Mammalia: Chiroptera).
Veterinary parasitology, 193(1), 100-104.
Calisher, H., Childs, J. E., Field, H. E., Holmes, K. V., \& Schountz, T. (2006). Bats: important reservoir hosts of emerging viruses. Clinical microbiology reviews, 19(3), 531-545.
Campos, M. A., Almeida, I. C., Takeuchi, O., Akira, S., Valente, E. P., Procópio, D. O., . . . Gazzinelli, R. T. (2001). Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. The Journal of Immunology, 167(1), 416-423.
Castilho, J., Souza, D., Oliveira, R., Carnieli, P., Batista, H., Achkar, S., \& Macedo, C. (2016). The
Epidemiological Importance of Bats in the Transmission of Rabies to Dogs and Cats in the State of São Paulo, Brazil, Between 2005 and 2014. Zoonoses and Public Health.
Concannon, R., Wynn-Owen, K., Simpson, V., \& Birtles, R. (2005). Molecular characterization of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK. Parasitology, 131(04), 489496.

Cowled, C., Baker, M., Tachedjian, M., Zhou, P., Bulach, D., \& Wang, L.-F. (2011). Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Developmental \& Comparative Immunology, 35(1), 7-18.
Crameri, G., Todd, S., Grimley, S., McEachern, J. A., Marsh, G. A., Smith, C., . . . Yu, M. (2009). Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One, 4(12), e8266.
Cryan, P. M. (2011). Wind turbines as landscape impediments to the migratory connectivity of bats. Envtl. L., 41, 355.
D'Auria, S. R. N., Camargo, M. C. G., Pacheco, R. C., Savani, E. S. M. M., Dias, M. A. G., da Rosa, A. R., . . . Labruna, M. B. (2010). Serologic survey for rickettsiosis in bats from Sao Paulo city, Brazil.
Vector-Borne and Zoonotic Diseases, 10(5), 459-463.
Dalton, D. L., Vermaak, E., Roelofse, M., \& Kotze, A. (2016). Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus). PLoS One, 11(10), e0163331.
de Oliveira, F. M., Costa, L. H. C., de Barros, T. L., Ito, P. K. R. K., Colombo, F. A., de Carvalho, C., . . . Nunes, C. M. (2015). First detection of Leishmania spp. DNA in Brazilian bats captured strictly in urban areas. Acta tropica.
Deane, L., Sarjeant, S., \& Fernandez, E. (1978). Hallarzgo de Trypanosoma (Megatrypanum) pessoai Deane \& Sugay, 1963 en murcielagos de Venezuela. Malariol. Saneam. Ambient, 18, 231237.

Dodd, N. S., Lord, J. S., Jehle, R., Parker, S., Parker, F., Brooks, D. R., \& Hide, G. (2014). Toxoplasma gondii: prevalence in species and genotypes of British bats (Pipistrellus pipistrellus and \(P\). pygmaeus). Experimental parasitology, 139, 6-11.

Dubey, J., Hamir, A., Sonn, R., \& Topper, M. (1998). Cryptosporidiosis in a bat (Eptesicus fuscus). Journal of Parasitology, 84(3), 622-622.
Dunkelberger, J. R., \& Song, W.-C. (2010). Complement and its role in innate and adaptive immune responses. Cell research, 20(1), 34-50.
Duszynski, D. W., Scott, D. T., Aragon, J., Leach, A., \& Perry, T. (1999). Six new Eimeria species from vespertilionid bats of North America. The Journal of Parasitology, 496-503.
Eckerle, I., Ehlen, L., Kallies, R., Wollny, R., Corman, V. M., Cottontail, V. M., . . . Müller, M. A. (2014). Bat airway epithelial cells: a novel tool for the study of zoonotic viruses. PLoS One, 9(1), e84679.
Emara, M., Lapierre, R., Greene, G., Knieriem, M., Rosenberger, J., Pollock, D., . . . Lillehoj, H. (2002). Phenotypic variation among three broiler pure lines for Marek's disease, coccidiosis, and antibody response to sheep red blood cells. Poultry science, 81(5), 642-648.
Epstein, J. H., Baker, M. L., Zambrana-Torrelio, C., Middleton, D., Barr, J. A., DuBovi, E., . . . Crameri, G. (2013). Duration of maternal antibodies against canine distemper virus and Hendra virus in pteropid bats. PLoS One, 8(6), e67584.
Esteban, J. G., Amengual, B., \& Cobo, J. S. (2001). Composition and structure of helminth communities in two populations of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) from Spain. Folia parasitologica, 48(2), 143-148.
Esteban, J. G., Oltra Ferrero, J. L., \& Mas-coma, S. (1990). Helmintofauna de los murcielagos de Espana. II. Parasitos de Miniopterus schreibersi (Kuhl, 1819) (Chiroptera: Vespertilionidae). Revista Iberica Parasitologia, 50, 199-209.
Evans, N. J., Bown, K., Timofte, D., Simpson, V. R., \& Birtles, R. J. (2009). Fatal borreliosis in bat caused by relapsing fever spirochete, United Kingdom. Emerging infectious diseases, 15(8), 1331.

Fenchel, T. (2013). Ecology of Protozoa: The biology of free-living phagotropic protists: SpringerVerlag.
Flajnik, M. F., \& Kasahara, M. (2010). Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature reviews. Genetics, 11(1), 47.
Foley, J., Clifford, D., Castle, K., Cryan, P., \& Ostfeld, R. S. (2011). Investigating and Managing the Rapid Emergence of White-Nose Syndrome, a Novel, Fatal, Infectious Disease of Hibernating Bats. Conservation Biology, 25(2), 223-231.
Fooks, A. R., McElhinney, L. M., Pounder, D. J., Finnegan, C. J., Mansfield, K., Johnson, N., . . . McIntyre, P. G. (2003). Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. Journal of medical virology, 71(2), 281-289.
Fornůsková, A., Vinkler, M., Pagès, M., Galan, M., Jousselin, E., Cerqueira, F., . . . Cosson, J.-F. (2013).
Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and TIr7) in wild rodents
(MURINAE). BMC evolutionary biology, 13(1), 194.
Frank, R., Kuhn, T., Werblow, A., Liston, A., Kochmann, J., \& Klimpel, S. (2015). Parasite diversity of European Myotis species with special emphasis on Myotis myotis (Microchiroptera,
Vespertilionidae) from a typical nursery roost. Parasites \& vectors, 8(1), 101.
Friberg, I., Little, S., Ralli, C., Lowe, A., Hall, A., Jackson, J., \& Bradley, J. (2013). Macroparasites at peripheral sites of infection are major and dynamic modifiers of systemic antimicrobial pattern recognition responses. Molecular ecology, 22(10), 2810-2826.
Friberg, I. M., Bradley, J. E., \& Jackson, J. A. (2010). Macroparasites, innate immunity and immunoregulation: developing natural models. Trends in parasitology, 26(11), 540-549.
GANDHI, S. (1989). On two trematodes from bats in India. Research Bulletin of the Panjab University, Science, 40(1-2), 5-8.
Gardner, R., \& Molyneux, D. (1987). Babesia vesperuginis: natural and experimental infections in British bats (Microchiroptera). Parasitology, 95(03), 461-469.
Gardner, R., \& Molyneux, D. (1988a). Schizotrypanum in British bats. Parasitology, 97(01), 43-50.

Gardner, R., \& Molyneux, D. (1988b). Trypanosoma (Megatrypanum) incertum from Pipistrellus pipistrellus: development and transmission by cimicid bugs. Parasitology, 96(03), 433-447.
Gardner, R., Molyneux, D., \& Stebbings, R. (1987). Studies on the prevalence of haematozoa of British bats. Mammal Review, 17(2-3), 75-80.
Gardner, R. A. (1986). Studies on the haematozoa of British bats. University of Salford. GENOV, T., Stoykova-Hajinikolova, R., \& MÉSZÊROS, F. (1992). Molinostrongylus spp.(Nematoda: Molineidae) from bats in Bulgaria, with a review of European species. Parasitol. Hungar, 25, 53œ68.
Gibson, D., Bray, R., \& Harris, E. (2005). Host-Parasite Database of the Natural History Museum, London. URL. World Wide Web electronic publication. www. nhm. ac. uk.
Gibson, D., \& McCarthy, T. (1987). Bats as hosts of acanthocephalan parasites. Murciélagos como hospederos de parásitos acantocéfalos. Paper presented at the Helminthological Abstracts.
Goodridge, H. S., Marshall, F. A., Else, K. J., Houston, K. M., Egan, C., Al-Riyami, L., . . . Harnett, M. M.
(2005). Immunomodulation via novel use of TLR4 by the filarial nematode
phosphorylcholine-containing secreted product, ES-62. The Journal of Immunology, 174(1), 284-293.
Greene, J. A., Sam-Agudu, N., John, C. C., Opoka, R. O., Zimmerman, P. A., \& Kazura, J. W. (2012). Toll-like receptor polymorphisms and cerebral malaria: TLR2 \(\Delta 22\) polymorphism is associated with protection from cerebral malaria in a case control study. Malaria journal, 11(1), 47. Guzmán-Cornejo, C., García-Prieto, L., Pérez-Ponce de León, G., \& Morales-Malacara, J. B. (2003). Parasites of Tadarida brasiliensis mexicana (Chiroptera: Molossidae) from arid regions of Mexico. Comparative parasitology, 70(1), 11-25.
Hamilton, P. B., Cruickshank, C., Stevens, J. R., Teixeira, M. M., \& Mathews, F. (2012). Parasites reveal movement of bats between the New and Old Worlds. Molecular phylogenetics and evolution, 63(2), 521-526.
Hamilton, P. B., Teixeira, M. M., \& Stevens, J. R. (2012). The evolution of Trypanosoma cruzi: the 'bat seeding'hypothesis. Trends in parasitology, 28(4), 136-141.
Harris, S., Morris, P., Wray, S., \& Yalden, D. (1995). A review of British mammals: population estimates and conservation status of British. Mammals other than cetaceans.
HASSAN, I., SALIH, N., \& ABDULLAH, I. (1993). First record in Iraq of Vampirolepis pipistrelli and Pseudophysaloptera sp. from the bat Pipistrellus kuhli. Rivista di Parassitologia, 54(1), 141146.

Hassanin, A., Nesi, N., Marin, J., Kadjo, B., Pourrut, X., Leroy, É., . . . Nakouné, E. (2016). Comparative phylogeography of African fruit bats (Chiroptera, Pteropodidae) provide new insights into the outbreak of Ebola virus disease in West Africa, 2014-2016. Comptes Rendus Biologies, 339(11), 517-528.
He, X., Korytář, T., Zhu, Y., Pikula, J., Bandouchova, H., Zukal, J., \& Köllner, B. (2014). Establishment of Myotis myotis cell lines-model for investigation of host-pathogen interaction in a natural host for emerging viruses. PLoS One, 9(10), e109795.
Hernout, B. V., Arnold, K. E., McClean, C. J., Walls, M., Baxter, M., \& Boxall, A. B. (2016). A national level assessment of metal contamination in bats. Environmental Pollution, 214, 847-858.
Hoare, C. A. (1972). The trypanosomes of mammals. A zoological monograph. The trypanosomes of mammals. A zoological monograph.
Hodo, C. L., Goodwin, C. C., Mayes, B. C., Mariscal, J. A., Waldrup, K. A., \& Hamer, S. A. (2016). Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA. Acta tropica, 164, 259-266.
Hopkins, P., \& Sriskandan, S. (2005). Mammalian Toll-like receptors: to immunity and beyond.
Clinical \& Experimental Immunology, 140(3), 395-407.
Howells, R., \& Chiari, C. (1975). Observations on two strains of Trypanosoma cruzi in laboratory mice. Annals of Tropical Medicine \& Parasitology, 69(4), 435-448.
Hughes, A. L., \& Hughes, M. K. (1995). Small genomes for better flyers. Nature, 377(6548), 391.

Iha, K., Omatsu, T., Watanabe, S., Ueda, N., Taniguchi, S., Fujii, H., . . Yoshikawa, Y. (2010). Molecular cloning and expression analysis of bat toll-like receptors 3, 7 and 9. Journal of Veterinary Medical Science, 72(2), 217-220.
Jackson, J. A., Turner, J. D., Kamal, M., Wright, V., Bickle, Q., Else, K. J., . . . Bradley, J. E. (2006).
Gastrointestinal nematode infection is associated with variation in innate immune responsiveness. Microbes and infection, 8(2), 487-492.
Jenkins, S. J., Hewitson, J. P., Ferret-Bernard, S., \& Mountford, A. P. (2005). Schistosome larvae stimulate macrophage cytokine production through TLR4-dependent and-independent pathways. International immunology, 17(11), 1409-1418.
Jiang, H., Qin, S., Wang, W., He, B., Hu, T., Wu, J., . . . Zhu, X. (2014). Prevalence and genetic characterization of Toxoplasma gondii infection in bats in southern China. Veterinary parasitology, 203(3), 318-321.
Johnson, L., \& Edgar, S. (1986). Ea-B and Ea-C cellular antigen genes in Leghorn lines resistant and susceptible to acute cecal coccidiosis. Poultry science, 65(2), 241-252.
Johnson, R. F., Kurup, D., Hagen, K. R., Fisher, C., Keshwara, R., Papaneri, A., . . . Wang, J. T. (2016). An Inactivated Rabies Virus-Based Ebola Vaccine, FILORAB1, Adjuvanted With Glucopyranosyl Lipid A in Stable Emulsion Confers Complete Protection in Nonhuman Primate Challenge Models. Journal of Infectious Diseases, 214(suppl 3), S342-S354. Jones, G., \& Van Parijs, S. M. (1993). Bimodal echolocation in pipistrelle bats: are cryptic species present? Proceedings of the Royal Society of London B: Biological Sciences, 251(1331), 119125.

Joshi, A. D., Raymond, T., Coelho, A. L., Kunkel, S. L., \& Hogaboam, C. M. (2008). A systemic granulomatous response to Schistosoma mansoni eggs alters responsiveness of bone marrow-derived macrophages to Toll-like receptor agonists. Journal of leukocyte biology, 83(2), 314-324.
Junker, K., Barbuto, M., Casiraghi, M., Martin, C., Uni, S., Boomker, J., \& Bain, O. (2009). Litomosa chiropterorum Ortlepp, 1932 (Nematoda: Filarioidea) from a South African Miniopterid: redescription, Wolbachia screening and phylogenetic relationships with Litomosoides. Parasite, 16(1), 43-50.
Kassahun, A., Sadlova, J., Benda, P., Kostalova, T., Warburg, A., Hailu, A., . . . Votypka, J. (2015). Natural infection of bats with Leishmania in Ethiopia. Acta tropica, 150, 166-170.
Kim, H., Yoon, S. W., Kim, D. J., Koo, B. S., Noh, J., Kim, J., . . . Song, D. (2016). Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats. Transboundary and emerging diseases, 63(4), 365-372.
Kosik-Bogacka, D., Wojtkowiak-Giera, A., Kolasa, A., Salamatin, R., Jagodzinski, P., \& WandurskaNowak, E. (2012). Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Experimental parasitology, 130(3), 261-266.
Kropf, P., Freudenberg, M. A., Modolell, M., Price, H. P., Herath, S., Antoniazi, S., . . . Müller, I. (2004).
Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infection and immunity, 72(4), 1920-1928.
Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., \& Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1-38.
Kváč, M., Hořická, A., Sak, B., Prediger, J., Salát, J., Širmarová, J., . . . Gillam, E. (2015). Novel Cryptosporidium bat genotypes III and IV in bats from the USA and Czech Republic.
Parasitology research, 114(10), 3917-3921.
Lanza, B. (1999). I parassiti dei pipistrelli (Mammalia, Chiroptera) della fauna italiana (Vol. 30):
Museo regionale di scienze naturali.

Layland, L. E., Rad, R., Wagner, H., \& Da Costa, C. U. P. (2007). Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. European journal of immunology, 37(8), 2174-2184.
Lee, J. K., Smith, W. C., McIntosh, C., Ferrari, F. G., Moore-Henderson, B., \& Varela-Stokes, A. (2014). Detection of a Borrelia species in questing Gulf Coast ticks, Amblyomma maculatum. Ticks and tick-borne diseases, 5(4), 449-452.
Lord, J. S. (2010). Micro and Macroparasites of Bats (Chiroptera). (PhD thesis), University of Salford.

Lord, J. S., Parker, S., Parker, F., \& Brooks, D. R. (2012). Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/Pipistrellus pygmaeus)(Chiroptera: Vespertilionidae) of England. Parasitology, 139(03), 366-374.
Lorenz, E., Mira, J. P., Cornish, K. L., Arbour, N. C., \& Schwartz, D. A. (2000). A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection.
Infection and immunity, 68(11), 6398-6401.
Lotz, J., \& Font, W. (1991). The role of positive and negative interspecific associations in the organization of communities of intestinal helminths of bats. Parasitology, 103(01), 127-138.
Maizels, R. M., \& Yazdanbakhsh, M. (2003). Immune regulation by helminth pararsites: Cellular and molecular mechanisms. Nature Reviews Immunology, 3, 733-744.
Male, D., Brostoff, J., Routh, D. B., \& Roitt, I. M. (2013). Immunology (Eighth edition ed.): Elsevier Saunders.
Mandala, W. L., Msefula, C. L., Gondwe, E., Drayson, M., Molyneux, M., \& MacLennan, C. (2016). Monocyte activation and cytokine production in Malawian children presenting with P. falciparum malaria. Parasite immunology, 38(5), 317-325.
Marcili, A., Lima, L., Cavazzana, M., Junqueira, A., Veludo, H., Da Silva, F. M., . . . Teixeira, M. (2009). A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology, 136(06), 641-655.
Marinkelle, C. (1979). Trypanosoma (Megatrypanum) megachiropterorum sp. n. from the Flying Fox, Pteropus tonganus Quoy \& Gaimard. The Journal of Protozoology, 26(3), 352-353.
Marshall, M. E., \& Miller, G. C. (1979). Some digenetic trematodes from Ecuadorian bats including five new species and one new genus. The Journal of Parasitology, 909-917.
Matskási, I., Mészáros, F., Murai, É., \& Gubányi, A. (1996). Helminthological investigations of vertebrates in the Bükk National Park (Monogenea, Digenea, Cestoda, Acanthocephala, Nematoda). Fauna Bükk Natl Park, 1996, 11-32.
May, L., Van Bodegom, D., Frölich, M., Van Lieshout, L., Slagboom, P. E., Westendorp, R. G., \& Kuningas, M. (2010). Polymorphisms in TLR4 and TLR2 genes, cytokine production and survival in rural Ghana. European Journal of Human Genetics, 18(4), 490-495.
McAllister, C. T., Burt, S., Seville, R. S., \& Robison, H. W. (2011). A new species of Eimeria (Apicomplexa: Eimeriidae) from the eastern pipistrelle, Perimyotis subflavus (Chiroptera: Vespertilionidae), in Arkansas. Journal of Parasitology, 97(5), 896-898.
McAllister, C. T., Seville, R. S., \& Roehrs, Z. P. (2012). A new species of Eimeria (Apicomplexa: Eimeriidae) from the northern myotis, Myotis septentrionalis (Chiroptera: Vespertilionidae), in Oklahoma. Journal of Parasitology, 98(5), 1003-1005.
McClure, R., \& Massari, P. (2014). TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Frontiers in immunology, 5, 386.
McMichael, L., Edson, D., Mayer, D., Broos, A., Kopp, S., Meers, J., \& Field, H. (2017). PHYSIOLOGIC BIOMARKERS AND HENDRA VIRUS INFECTION IN AUSTRALIAN BLACK FLYING FOXES (PTEROPUS ALECTO). Journal of Wildlife Diseases, 53(1), 111-120.
Measures, L. N. (1994). Synonymy of Longibucca eptesica with Longibucca lasiura (Nematoda: Rhabditoidea) and New Host and Geographic Records. The Journal of Parasitology, 486-489.

Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449(7164), 819-826.
Medzhitov, R., \& Janeway Jr, C. (2000). Innate immunity. New England Journal of Medicine, 343(5), 338-344.
Mehr, M., Brandl, R., Hothorn, T., Dziock, F., Förster, B., \& Müller, J. (2011). Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology-Zeitschrift für Säugetierkunde, 76(4), 451-460.
Middleton, D., Morrissy, C., Van Der Heide, B., Russell, G., Braun, M., Westbury, H., . . . Daniels, P. (2007). Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). Journal of comparative pathology, 136(4), 266-272.
Molyneux, D. (1991). Trypanosomes of bats. Parasitic protozoa, 1, 195-223.
Moore, M. S., Reichard, J. D., Murtha, T. D., Zahedi, B., Fallier, R. M., \& Kunz, T. H. (2011). Specific
alterations in complement protein activity of little brown myotis (Myotis lucifugus)
hibernating in white-nose syndrome affected sites. PLoS One, 6(11), e27430.
Morgan, U. M., Sturdee, A. P., Singleton, G., Gomez, M. S., Gracenea, M., Torres, J., . . . Thompson, R. A. (1999). The Cryptosporidium "mouse" genotype is conserved across geographic areas. Journal of Clinical Microbiology, 37(5), 1302-1305.
Mourya, D. T., Lakra, R. J., Yadav, P. D., Tyagi, P., Raut, C. G., Shete, A. M., \& Singh, D. K. (2013). Establishment of cell line from embryonic tissue of Pipistrellus ceylonicus bat species from India \& its susceptibility to different viruses. Indian Journal of Medical Research, 138(2), 224. Mühldorfer, K. (2013). Bats and bacterial pathogens: a review. Zoonoses and Public Health, 60(1), 93103.

Mühldorfer, K., Speck, S., Kurth, A., Lesnik, R., Freuling, C., Müller, T., . . . Wibbelt, G. (2011). Diseases and causes of death in European bats: dynamics in disease susceptibility and infection rates. PLoS One, 6(12), e29773.
Mun, H. S., Aosai, F., Norose, K., Chen, M., Piao, L. X., Takeuchi, O., . . . Yano, A. (2003). TLR2 as an essential molecule for protective immunity against Toxoplasma gondii infection.
International immunology, 15(9), 1081-1087.
Nadelman, R. B., \& Wormser, G. P. (1998). Lyme borreliosis. The lancet, 352(9127), 557-565.
Nahhas, F. M., Yang, P., \& Uch, S. (2005). Digenetic Trematodes of Tadarida brasiliensis mexicana (Chiroptera: Molossidae) and Myotis californicus (Chiroptera: Vespertilionidae) from Northern California, USA. Comparative parasitology, 72(2), 196-199.
Nama, H. (1990). An overview of the tapeworm genus Hymenolepis Weinland, 1958 sensu lato from arid and non-arid regions. Scientific Reviews on Arid Zone Research, 7, 1-80.
Netea, M. G., Brown, G. D., Kullberg, B. J., \& Gow, N. A. (2008). An integrated model of the recognition of Candida albicans by the innate immune system. Nature Reviews Microbiology, 6(1), 67-78.
Ng, A., \& Xavier, R. J. (2011). Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy, 7(9), 1082-1084.
Ng, J. H., Tachedjian, M., Deakin, J., Wynne, J. W., Cui, J., Haring, V., . . . Wang, L.-F. (2016). Evolution and comparative analysis of the bat MHC-I region. Scientific reports, 6.
Norman, A., Regnery, R., Jameson, P., Greene, C., \& Krause, D. (1995). Differentiation of Bartonellalike isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. Journal of Clinical Microbiology, 33(7), 1797-1803.
O’Shea, T. J., Cryan, P. M., Cunningham, A. A., Fooks, A. R., Hayman, D., Luis, A. D., . . . Wood, J. L. (2014). Bat flight and zoonotic viruses. Emerg Infect Dis, 20(5), 741-745.

Papenfuss, A. T., Baker, M. L., Feng, Z.-P., Tachedjian, M., Crameri, G., Cowled, C., . . . Wang, L.-F. (2012). The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC genomics, 13(1), 261.

Park, K. J., Altringham, J. D., \& Jones, G. (1996). Assortative roosting in the two phonic types of Pipistrellus pipistrellus during the mating season. Proceedings of the Royal Society of London B: Biological Sciences, 263(1376), 1495-1499.
Pedersen, A. B., \& Babayan, S. A. (2011). Wild immunology. Molecular ecology, 20(5), 872-880.
Philbey, A., Kirkland, P., Ross, A., Field, H., Srivastava, M., Davis, R., \& Love, R. (2008). Infection with Menangle virus in flying foxes (Pteropus spp.) in Australia. Australian veterinary journal, 86(11), 449-454.
Picken, R. N., Strle, F., Picken, M. M., Ruzic-Sabljic, E., Maraspin, V., Lotric-Furlan, S., \& Cimperman, J. (1998). Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. Journal of investigative dermatology, 110(3), 211-214.
Pinard-van der Laan, M.-H., Bed'Hom, B., Coville, J.-L., Pitel, F., Feve, K., Leroux, S., . . . Repérant, J.-
M. (2009). Microsatellite mapping of QTLs affecting resistance to coccidiosis (Eimeria
tenella) in a Fayoumix White Leghorn cross. BMC genomics, 10(1), 31.
Pinto, C. M., Kalko, E. K., Cottontail, I., Wellinghausen, N., \& Cottontail, V. M. (2012). TcBat a batexclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18 S rRNA gene for lineage identification. Infection, Genetics and Evolution, 12(6), 1328-1332.
Pistole, D. H. (1988). A survey of helminth parasites of chiropterans from Indiana. Proceedings of the Helminthological Society of Washington, 55(2), 270-274.
Puechmaille, S. J., Wibbelt, G., Korn, V., Fuller, H., Forget, F., Mühldorfer, K., . . . Bosch, T. (2012). Pan-European distribution of white-nose syndrome fungus (Geomyces destructans) not associated with mass mortality: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). Qu, F., \& Gong, J. (1992). Studies on the genus Lecithodendrium [Trematoda, Lecithodendriidae] from China, with descriptions of six new species. Acta Parasitologica, 37(4).
Racey, P. A., Barratt, E. M., Burland, T. M., Deaville, R., Gotelli, D., Jones, G., \& Piertney, S. B. (2007). Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species. Biological Journal of the Linnean Society, 90(3), 539-550.
Ramírez, J. D., Tapia-Calle, G., Muñoz-Cruz, G., Poveda, C., Rendón, L. M., Hincapié, E., \& Guhl, F. (2014). Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications. Infection, Genetics and Evolution, 22, 250-256.
Rapin, N., Johns, K., Martin, L., Warnecke, L., Turner, J. M., Bollinger, T. K., . . . Misra, V. (2014).
Activation of innate immune-response genes in little brown bats (Myotis Lucifugus) infected with the fungus Pseudogymnoascus destructans. PLoS One, 9(11), e112285.
Reeder, D. M., Frank, C. L., Turner, G. G., Meteyer, C. U., Kurta, A., Britzke, E. R., . . . Hicks, A. C. (2012). Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One, 7(6), e38920.
Reynolds, L. A., Harcus, Y., Smith, K. A., Webb, L. M., Hewitson, J. P., Ross, E. A., . . Gray, D. (2014). MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus. The Journal of Immunology, 193(6), 2984-2993.

Ricci, M. (1995a). [Trematode parasites of Italian bats]. Parassitologia, 37(2-3), 199-214. Richardson, P. (2002). Bats. London: Natural History Museum.
Richter, D., Schlee, D. B., Allgöwer, R., \& Matuschka, F.-R. (2004). Relationships of a novel Lyme disease spirochete, Borrelia spielmani sp. nov., with its hosts in Central Europe. Applied and environmental microbiology, 70(11), 6414-6419.
Ryan, U., Xiao, L., Read, C., Zhou, L., Lal, A. A., \& Pavlasek, I. (2003). Identification of novel Cryptosporidium genotypes from the Czech Republic. Applied and environmental microbiology, 69(7), 4302-4307.

Sarkar, S. K., \& Chakravarty, A. K. (1991). Analysis of immunocompetent cells in the bat, pteropus giganteus: Isolation and scanning electron microscopic characterization. Developmental \& Comparative Immunology, 15(4), 423-430.
Sawada, I. (1990). Vampirolepis ezoensis sp. nov.(Cestoda: Hymenolepididae) from the Japanese northern bat, Eptesicus nilssoni parvus Kishida, with a list of known species of the genus Vampirolepis Spassky from bats. Japanese Journal of Parasitology, 39(2), 176-185.
Schober, W., \& Grimmberger, E. (1989). A guide to the bats of Britain and Europe. Hamlyn, London
Scott, S., McLaren, G., Jones, G., \& Harris, S. (2010). The impact of riparian habitat quality on the foraging and activity of pipistrelle bats (Pipistrellus spp.). Journal of Zoology, 280(4), 371378.

Seim, I., Fang, X., Xiong, Z., Lobanov, A. V., Huang, Z., Ma, S., . . . Lenz, T. L. (2013). Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature communications, 4.
Sharpilo, V., \& Iskova, N. (1989). The Fauna of the Ukraine: Trematoda: Plagiorchiata. Fauna Ukrainy, 34, 1-278.
Shimalov, V., Demyanchik, M., \& Demyanchik, V. (2002). A study on the helminth fauna of the bats (Mammalia, Chiroptera: Vespertilionidae) in Belarus. Parasitology research, 88(11), 10111011.

Shimazu, T. (1923). A revised checklist and bibliography of the platyhelminth parasites reported by Dr. Yoshimasa Ozaki, 1966, 33-50.
Shimazu, T. (1995). A revised checklist and bibliography of the platyhelminth parasites reported by Dr. Yoshimasa Ozaki, 1923-1966, and their specimens deposited in the Meguro
Parasitological Museum, Tokyo. Journal of Nagano Prefectural College,(50), 33-50.
Simpson, V. (2000). Veterinary advances in the investigation of wildlife diseases in Britain. Research in veterinary science, 69(1), 11-16.
Smales, L. R. (2007). Oligacanthorhynchidae (Acanthocephala) from mammals from Paraguay with the description of a new species of Neoncicola. Comparative parasitology, 74(2), 237-243.
Smith, C., de Jong, C., Meers, J., Henning, J., Wang, L.-F., \& Field, H. (2016). Coronavirus infection and diversity in bats in the Australasian region. EcoHealth, 13(1), 72-82.
Smith, J. D., \& Gregory, T. R. (2009). The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biology letters, 5(3), 347-351.
Sokhna, C., Mediannikov, O., Fenollar, F., Bassene, H., Diatta, G., Tall, A., . . . Raoult, D. (2013). Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl Trop Dis, 7(1), e1999.
Stevens, J., Noyes, H., Dover, G., \& Gibson, W. (1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology, 118(01), 107-116.
Stockmaier, S., Dechmann, D. K., Page, R. A., \& O'Mara, M. T. (2015). No fever and leucocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biology letters, 11(9), 20150576.

Stuart, K., Brun, R., Croft, S., Fairlamb, A., Gürtler, R. E., McKerrow, J., . . . Tarleton, R. (2008). Kinetoplastids: related protozoan pathogens, different diseases. The Journal of clinical investigation, 118(4), 1301-1310.
Stuckey, M. J., Boulouis, H.-J., Cliquet, F., Picard-Meyer, E., Servat, A., Aréchiga-Ceballos, N., . . . Chomel, B. B. (2017). Potentially Zoonotic Bartonella in Bats from France and Spain. Emerging infectious diseases, 23(3), 539.
Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'brien, S. J., \& Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307(5709), 580-584.
Tkach, V. (2000). First Finding of Bat Parasite Pycnoporus macrolaimus (Digenea, Lecithodendriidae) in the Ukraine. Вестник зоологии.

Tkach, V., \& Sharpilo, L. (1988). Nematodes of the genus Molinostrongylus (Nematoda, Molineidae) in Chiroptera in the Ukraine. Vestnik Zoologii(4), 3-8.
Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M., \& Swiderski, Z. (2003). Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56(1), 1-15.
Tsagkogeorga, G., Parker, J., Stupka, E., Cotton, J. A., \& Rossiter, S. J. (2013). Phylogenomic analyses elucidate the evolutionary relationships of bats. Current Biology, 23(22), 2262-2267. Turmelle, A., Jackson, F., Green, D., McCracken, G., \& Rupprecht, C. (2010). Host immunity to repeated rabies virus infection in big brown bats. Journal of general virology, 91(9), 23602366.
van der Kleij, D., Latz, E., Brouwers, J. F., Kruize, Y. C., Schmitz, M., Kurt-Jones, E. A., . . . Golenbock, D. T. (2002). A novel host-parasite lipid cross-talk Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. Journal of Biological Chemistry, 277(50), 48122-48129.
Vasselon, T., \& Detmers, P. A. (2002). Toll receptors: a central element in innate immune responses. Infection and immunity, 70(3), 1033-1041.
Walker, L., Simpson, V., Rockett, L., Wienburg, C., \& Shore, R. (2007). Heavy metal contamination in bats in Britain. Environmental Pollution, 148(2), 483-490.
Wang, W., Cao, L., He, B., Li, J., Hu, T., Zhang, F., . . . Liu, Q. (2013). Molecular characterization of Cryptosporidium in bats from Yunnan province, southwestern China. The Journal of Parasitology, 99(6), 1148-1150.
Warnecke, L., Turner, J. M., Bollinger, T. K., Lorch, J. M., Misra, V., Cryan, P. M., . . . Willis, C. K. (2012). Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National Academy of Sciences, 109(18), 6999-7003.
Welbergen, J. A., Klose, S. M., Markus, N., \& Eby, P. (2008). Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society of London B: Biological Sciences, 275(1633), 419-425.
Wickramasinghe, L. P., Harris, S., Jones, G., \& Vaughan, N. (2003). Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. Journal of Applied Ecology, 40(6), 984-993.
Williamson, M., Hooper, P., Selleck, P., Westbury, H., \& Slocombe, R. (2000). Experimental hendra virus infectionin pregnant guinea-pigs and fruit Bats (Pteropus poliocephalus). Journal of comparative pathology, 122(2), 201-207.
Wojtkowiak-Giera, A., Derda, M., Kolasa-Wołosiuk, A., Hadaś, E., Kosik-Bogacka, D., Solarczyk, P., . . . Wandurska-Nowak, E. (2016). Toll-like receptors in the brain of mice following infection with Acanthamoeba spp. Parasitology research, 115(11), 4335-4344.
Zahedi, A., Paparini, A., Jian, F., Robertson, I., \& Ryan, U. (2016). Public health significance of zoonotic Cryptosporidium species in wildlife: critical insights into better drinking water management. International Journal for Parasitology: Parasites and Wildlife, 5(1), 88-109. Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., . . . Zhao, W. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science, 339(6118), 456-460.
Zhang, Y., Jiang, T., Yang, X., Xue, Y., Wang, C., Liu, J., . . . Li, J.-C. (2013). Toll-like receptor-1,-2, and-6 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and metaanalysis.
Zhao, X., Duszynski, D. W., \& Loker, E. S. (2001). Phylogenetic position of Eimeria antrozoi, a bat coccidium (Apicomplexa: Eimeriidae) and its relationship to morphologically similar Eimeria spp. from bats and rodents based on nuclear 18S and plastid 23S rDNA sequences. Journal of Parasitology, 87(5), 1120-1123.

Zhou, P., Cowled, C., Marsh, G. A., Shi, Z., Wang, L.-F., \& Baker, M. L. (2011). Type III IFN receptor expression and functional characterisation in the pteropid bat, Pteropus alecto. PLoS One, 6(9), e25385.
Zhou, P., Tachedjian, M., Wynne, J. W., Boyd, V., Cui, J., Smith, I., . . . Michalski, W. P. (2016). Contraction of the type I IFN locus and unusual constitutive expression of IFN- \(\alpha\) in bats. Proceedings of the National Academy of Sciences, 201518240.
Ziegler, P. E., Wade, S. E., Schaaf, S. L., Chang, Y.-F., \& Mohammed, H. O. (2007). Cryptosporidium spp. from small mammals in the New York City watershed. Journal of Wildlife Diseases, 43(4), 586-596.

Bat Conservation Trust 2013. Common pipistrelle [Online]. Available:
http://www.bats.org.uk/pages/-common pipistrelle-821.html
Japan Science and Technology AGENCY 2009. Overturning our understanding of immunology: discovering the role of innate immunity! [Online]. Available:
http://www.jst.go.jp/EN/research/bt08 en.html

\section*{Appendix:}

\section*{Appendix 1:}

\section*{Schizotrypanum alignment:}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{1} & GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA & 60 \\
\hline & &  & \\
\hline Sbjct & 1 & GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA & 60 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{61} & TCTGCGCATGGCTCATTACATCAGACGTAATCTGCCGCAAAAATCTTGCGGTCTCCGCAA & 120 \\
\hline & &  & \\
\hline Sbjct & 61 & TCTGCGCATGGCTCATTACATCAGACGTAATCTGCCGCAAAAATCTTGCGGTCTCCGCAA & 120 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{121} & CATTGGATAACTTGGCGAAACGCCAAGCTAATACATGAACCAACCGGACGTTCTCTGTTC & 180 \\
\hline & &  & \\
\hline Sbjct & 121 & CATTGGATAACTTGGCGAAACGCCAAGCTAATACATGAACCAACCGGATGTTCTCTGTTC & 180 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{181} & CGGCGGCGGGGTCACACCCGCCGCCATGGGACGTCCAGCGAATGAATGAAAGTAAAACCA & 240 \\
\hline & &  & \\
\hline Sbjct & 181 & CGGCGGTAGGG-CA-ACCTGCTGCCATGGGACGTCCAGCGAATGAATGAAAGTAAAACCA & 238 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{241} & ATGCC-C-TCACCGGCAGTAACACTCAGAAGTGTTGATTCAATTCATTCCGTGCGAAAGC & 298 \\
\hline & &  & \\
\hline Sbjct & 239 & ATGCCGCATCAACGGCAGTAACACCCAGAAGTGTTGATTCAATTCATTCCGTGCGAAAGC & 298 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{299} & TGGG-TTTCACACCCGGCGTCTTTTGACGAACAACTGCCCTATCAGCCAGTGATGGCCGT & 357 \\
\hline & &  & \\
\hline Sbjet & 299 & TGGGTTTTCTTACCTGGCGTCTTTTGACGAACAACTGCCCTATCAGCCAGCGATGGCCGT & 358 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{358} & GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA & 417 \\
\hline & &  & \\
\hline Sbjct & 359 & GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA & 418 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{418} & GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCa & 477 \\
\hline & &  & \\
\hline Sbjct & 419 & GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA & 478 \\
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{478} & aaaaaaa.CGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGC-TTTGCATTGTCGTTT & 536 \\
\hline & &  & \\
\hline Sbjct & 479 & AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTTTTGCATTGTCGTTT & 538 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{537} & TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG & 596 \\
\hline & &  & \\
\hline Sbjet & 539 & TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG & 598 \\
\hline \multirow[t]{2}{*}{Query} & 597 & CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG & 656 \\
\hline & &  & \\
\hline Sbjet & 599 & CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG & 658 \\
\hline \multirow[t]{2}{*}{Query} & 657 & TTCGTAGTTGAATTGTGGGCCTTCGAGGCGCAATGGTTTAGTCCCGTCCACTTCGGATTG & 716 \\
\hline & &  & \\
\hline Sbjct & 659 & TTCGTAGTTGAATTGTGGGCCTCTAAGGCGCAATGGTTTAGTCCCATCCACTTCGGATTG & 718 \\
\hline \multirow[t]{2}{*}{Query} & 717 & GTGACCCATGCCCTTGAGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACC- & 775 \\
\hline & &  & \\
\hline Sbjet & 719 & GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC & 778 \\
\hline \multirow[t]{2}{*}{Query} & 776 & TTTCTGATTTCCGCATGTCATGCATGCCAGGGGGCGCCCGTGATTTTTTACTGTGACTAA & 835 \\
\hline & &  & \\
\hline Sbjct & 779 & TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGTGA-TTTTTACTGTGACTAA & 837 \\
\hline \multirow[t]{2}{*}{Query} & 836 & AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC & 895 \\
\hline & &  & \\
\hline Sbjct & 838 & AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC & 897 \\
\hline \multirow[t]{2}{*}{Query} & 896 & AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG & 955 \\
\hline & &  & \\
\hline Sbjet & 898 & AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG & 957 \\
\hline \multirow[t]{2}{*}{Query} & 956 & CAGTGTGACAAGCGGCCGGGTGCT-CT-T-TC-C-C-CCTT--C-G-G-G--GGGACGCA & 1002 \\
\hline & &  & \\
\hline Sbjct & 958 & CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA & 1017 \\
\hline \multirow[t]{2}{*}{Query} & 1003 & CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTG & 1062 \\
\hline & &  & \\
\hline Sbjet & 1018 & CTCGTCGCCTTTGGGGGAAATCCG----TG--GC-GC--TGT-CGACGGACTT---C--G & 1062 \\
\hline \multirow[t]{2}{*}{Query} & 1063 & TGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG & 1122 \\
\hline & &  & \\
\hline Sbjet & 1063 & -GTCCCATCTTCAC-GCGT-CGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGG & 1119 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{1123} & TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG & \multirow[t]{2}{*}{1182} \\
\hline & &  & \\
\hline Sbjct & 1120 & TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG & 1179 \\
\hline \multirow[t]{2}{*}{Query} & 1183 & AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA & 1242 \\
\hline & &  & \\
\hline Sbjct & 1180 & AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA & 1239 \\
\hline \multirow[t]{2}{*}{Query} & 1243 & TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG & 1302 \\
\hline & &  & \\
\hline Sbjct & 1240 & TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG & 1299 \\
\hline \multirow[t]{2}{*}{Query} & 1303 & GAGTTTTTGGTCG-TTAGGCGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAAT- & 1360 \\
\hline & & ||।|||||||||||||||||||| | ||||||||||| ||||||| |||||||||||| & \\
\hline Sbjet & 1300 & GAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTCACCCCGCTCCTCGTCTCGCCAATGAATG & 1359 \\
\hline \multirow[t]{2}{*}{Query} & 1361 & ATCAATTTACGTGCATATTCTTTACGGTCCCCGCT-TTCCAGCGGAGGCCTTTAACGGGA & 1419 \\
\hline & &  & \\
\hline Sbjct & 1360 & AATAATTTACGTGCATATTCTTTTTGGTCCTCGTTCTTAC-GCGTGGGCCTTTAACGGGA & 1418 \\
\hline \multirow[t]{2}{*}{Query} & 1420 & ATATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGG & 1479 \\
\hline & &  & \\
\hline Sbjct & 1419 & ATATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGG & 1478 \\
\hline \multirow[t]{2}{*}{Query} & 1480 & GGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTG & 1539 \\
\hline & &  & \\
\hline Sbjet & 1479 & GGGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTG & 1538 \\
\hline \multirow[t]{2}{*}{Query} & 1540 & GAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAGGGTGAGG & 1599 \\
\hline & &  & \\
\hline Sbjct & 1539 & GAGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAGGGTGAGG & 1598 \\
\hline \multirow[t]{2}{*}{Query} & 1600 & ATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTGGTGCATGGCCGCTTTTGGT & 1659 \\
\hline & &  & \\
\hline Sbjct & 1599 & ATTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTGGTGCATGGCCGCTTTTGGT & 1658 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Query} & \multirow[t]{2}{*}{1660} & CGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAGATCCAAGCTGCCCAGTAGG & \multirow[t]{2}{*}{1719} \\
\hline & &  & \\
\hline Sbjet & 1659 & CGGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAGATCCAAGCTGCCCAGTAGG & 1718 \\
\hline \multirow[t]{2}{*}{Query} & 1720 & ATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTTTTACCCAAgggggggCGGT & 1779 \\
\hline & &  & \\
\hline Sbjet & 1719 & ATTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTTTTACCCAAGGGGGGGCGGT & 1778 \\
\hline \multirow[t]{2}{*}{Query} & 1780 & ATTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTCGCGCAAGGTGAGATTTTGGGCAA & 1839 \\
\hline & &  & \\
\hline Sbjct & 1779 & ATTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTTGCGCAAGGTGAGATTTTGGGCAA & 1838 \\
\hline \multirow[t]{2}{*}{Query} & 1840 & CAGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAG & 1899 \\
\hline & &  & \\
\hline Sbjct & 1839 & CAGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAG & 1898 \\
\hline \multirow[t]{2}{*}{Query} & 1900 & AACAAGAAAAACGACTCTTGTCGGACCTACTTGATCAAAAGAGTGGGAAAACCCCGGAAT & 1959 \\
\hline & &  & \\
\hline Sbjct & 1899 & AACAAGAAAAACGACTCTTGTCGGACCTACTTGATCAAAAGAGTGGGAAAACCCCGGAAT & 1958 \\
\hline \multirow[t]{2}{*}{Query} & 1960 & CACGTAGACCCACTTGGGACCGAGTATTGCAATTATTGGTCGCGCAACGAGGAATGTCTC & 2019 \\
\hline & &  & \\
\hline Sbjct & 1959 & CACGTAGACCCACTTGGGACCGAGTATTGCAATTATTGGTCGCGCAACGAGGAATGTCTC & 2018 \\
\hline \multirow[t]{2}{*}{Query} & 2020 & GTAGGCGCAGCTCATCAAACTGTGCCGATTACGTCCCTGCCATTTGTACACACCGCCCGT & 2079 \\
\hline & &  & \\
\hline Sbjct & 2019 & GTAGGCGCAGCTCATCAAACTGTGCCGATTACGTCCCTGCCATTTGTACACACCGCCCGT & 2078 \\
\hline \multirow[t]{2}{*}{Query} & 2080 & CGTTGTTTCCGATGATGGTGCAATACAGGTGATCGGACAGTCGAGTGTCTCACTTGACCG & 2139 \\
\hline & &  & \\
\hline Sbjct & 2079 & CGTTGTTTCCGATGATGGTGCAATACAGGTGATCGGACAGTCGAGTGTTTCACTTGACCG & 2138 \\
\hline \multirow[t]{2}{*}{Query} & 2140 & AAAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC 2179 & \\
\hline & &  & \\
\hline Sbjct & 2139 & AAAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC 2178 & \\
\hline
\end{tabular}

Clustal W alignment for different regions of the Schizotrypanum 18S rRNA gene sequence extracted from NCBI GenBank: T. dionisii (gi|4468750|), T. vespertilionis (gi: |4468775|): Panels A \& D: Green highlights generic primer binding sites ( TgF and TgR ), Panels B \& C: red shows the \(T\). dionisii primer binding sites ( TdF and TdR ) and purple represents the \(T\). vespertilionis primer binding sites. Additional primers were designed for \(T\). dionisii and their annealing sites are shown in Panel B \& C using brown and blue colouration.

CLUSTAL O(1.2.1) multiple sequence alignment
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| \(4468750|\mathrm{emb}|\) AJ00 9151.1 |
gi| 4468775 | emb |AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi| 4468775 |emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi| 4468775 | emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi| 4468775 |emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi| 4468775 |emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 | emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|

GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA GTCATATGCTTGTTTCAAGGACTTAGCCATGCATGCCTCAGAATCACTGCATTGCAGGAA ****************************************************************)

TCTGCGCATGGCTCATTACATCAGACGTAATCTGCCGCAAAAATCTTGCGGTCTCCGCAA TCTGCGCATGGCTCATTACATCAGACGTAATCTGCCGCAAAAATCTTGCGGTCTCCGCAA

CATTGGATAACTTGGCGAAACGCCAAGCTAATACATGAACCAACCGGATGTTCTCTGTTC CATTGGATAACTTGGCGAAACGCCAAGCTAATACATGAACCAACCGGACGTTCTCTGTTC


CGGCGGTAGGGCAA--CCTGCTGCCATGGGACGTCCAGCGAATGAATGAAAGTAAAACCA CGGCGGCGGGGTCACACCCGCCGCCATGGGACGTCCAGCGAATGAATGAAAGTAAAACCA

ATGCCGCATCAACGGCAGTAACACCCAGAAGTGTTGATTCAATTCATTCCGTGCGAAAGC ATGCC--CTCACCGGCAGTAACACTCAGAAGTGTTGATTCAATTCATTCCGTGCGAAAGC

TGGGTTTTCTTACCTGGCGTCTTTTGACGAACAACTGCCCTATCAGCCAGCGATGGCCGT TGGGTT-TCACACCCGGCGTCTTTTGACGAACAACTGCCCTATCAGCCAGTGATGGCCGT


GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA GTAGTGGACTGCCATGGCGTTGACGGGAGCGGGGGATTAGGGTTCGATTCCGGAGAGGGA

GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA GCCTGAGAAATAGCTACCACTTCTACGGAGGGCAGCAGGCGCGCAAATTGCCCAATGTCA


AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTTTTGCATTGTCGTTT AAAAAAAACGATGAGGCAGCGAAAAGAAATAGAGCCGACAGTGCTT-TGCATTGTCGTTT

TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG TCAATGGGGGATATTTAAACCCATCCAAAATCGAGTAACAATTGGAGGACAAGTCTGGTG


CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG CCAGCACCCGCGGTAATTCCAGCTCCAAAAGCGTATATTAATGCTGTTGCTGTTAAAGGG

TTCGTAGTTGAATTGTGGGCCTCTAAGGCGCAATGGTTTAGTCCCATCCACTTCGGATTG TTCGTAGTTGAATTGTGGGCCTTCGAGGCGCAATGGTTTAGTCCCGTCCACTTCGGATTG


GTGACCCATGCCCTTGTGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCC GTGACCCATGCCCTTGAGGTCCGTGAACACTCAGAAACAAAAAACACGGGAGTGGTACCT

TTTCTGATTCTCGCATGTCATGCATGCCAGGGGGCGCCCGT-GATTTTTACTGTGACTAA TT-CTGATTTCCGCATGTCATGCATGCCAGGGGGCGCCCGTGATTTTTTACTGTGACTAA


AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC AAAAGTGTGACCAAAGCAGTCATTCGACTTGAATTAGAAAGCATGGGATAACAAAGGAGC

AgCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG AGCCTATGGGCCACCGTTTCGGCTTTTGTTGGTTTTAAAAGTCCATTGGAGATTATGGGG

CAGTGTGACAAGCGGCTGGGTGATGATATCCCACACACCTTCACTGCGTGTTGTGGCACA CAGTGTGACAAGCGGCCGGGTGCTCTTTCCCCCTTCGGGGGGACGCA-

 CTCGTCGCCTTTGTCGGAAATCCGCGCCGGCTGCGGCTGTGTGCGTCACACTTCCACGTG ************* ********* ****

TCGGTCCCATCTTCACGCGTCGCCTTCCCTCAACTCACGGCATCCAGGAATGAAGGAGGG TGTCACACGCGCCCTGCCTGCGCCTTCCGGCAACTCACGGCATCCAGGAATGAAGGAGGG

TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG TAGTTCGGGGGAGAACGTACTGGTGCGTCAGAGGTGAAATTCTTAGACCGCACCAAGACG

gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| \(4468750|\mathrm{emb}|\) AJ00 9151.1
gi| 4468775 |emb|AJ009166.1
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi| 4468775 | emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| \(4468750|\mathrm{emb}| A J 009151.1 \mid\) gi|4468775|emb|AJ009166.1|
gi| \(4468750|\mathrm{emb}|\) AJ00 \(9151.1 \mid\)
gi| 4468775 | emb|AJ009166.1|
gi| 4468750 | emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi| 4468750 |emb|AJ009151.1| gi| 4468775 |emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|
gi|4468750|emb|AJ009151.1| gi|4468775|emb|AJ009166.1|

AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA AACTACAGCGAAGGCATTCTTCAAGGATACCTTCCTCAATCAAGAACCAAAGTGTGGGGA

TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG TCGAAGATGATTAGAGACCATTGTAGTCCACACTGCAAACGATGACACCCATGAATTGGG

GAGTTTTTGGTCGTTTAGGCGTGGTCGGGTTCACCCCGCTCCTCGTCTCGCCAATGAATG GAGTTTTTGGTCGTTA-GGCGAGGTCGGGTTCATCTCGCTCCTCGTCTCGCCAATGAAT-


AATAATTTACGTGCATATTCTTTTTGGTCCTCGTTCTTACGCGTGGGCCTTTAACGGGAA ATCAATTTACGTGCATATTCTTTACGGTCCCCGCTTTCCAGCGGAGGCCTTTAACGGGAA

TATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGG TATCCTCAGCACGTTATCTGACTTCTTCACGCGAAAGCTTTGAGGTTACAGTCTCAGGGG

GGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTGG GGAGTACGTTCGCAAGAGTGAAACTTAAAGAAATTGACGGAATGGCACCACAAGACGTGG


AGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAGGGTGAGGA AGCGTGCGGTTTAATTTGACTCAACACGGGGAACTTTACCAGATCCGGACAGGGTGAGGA

TTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTGGTGCATGGCCGCTTTTGGTC TTGACAGATTGAGTGTTCTTTCTCGATCCCCTGAATGGTGGTGCATGGCCGCTTTTGGTC \(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *) ~\)

GGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAGATCCAAGCTGCCCAGTAGGA GGTGGAGTGATTTGTTTGGTTGATTCCGTCAACGGACGAGATCCAAGCTGCCCAGTAGGA

TTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTTTTACCCAAGGGGGGGCGGTA TTCAGAATTGCCCATAGGATAGCAATCCCTTCCGCGGGTTTTACCCAAGGGGGGGCGGTA


TTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTTGCGCAAGGTGAGATTTTGGGCAAC TTCGTTTGTATCCTTCTCTGCGGGATTCCTTGTTTCGCGCAAGGTGAGATTTTGGGCAAC

AGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAGA AGCAGGTCTGTGATGCTCCTCAATGTTCTGGGCGACACGCGCACTACAATGTCAGTGAGA

ACAAGAAAAACGACTCTTGTCGGACCTACTTGATCAAAAGAGTGGGAAAACCCCGGAATC ACAAGAAAAACGACTCTTGTCGGACCTACTTGATCAAAAGAGTGGGAAAACCCCGGAATC

ACGTAGACCCACTTGGGACCGAGTATTGCAATTATTGGTCGCGCAACGAGGAATGTCTCG ACGTAGACCCACTTGGGACCGAGTATTGCAATTATTGGTCGCGCAACGAGGAATGTCTCG

TAGGCGCAGCTCATCAAACTGTGCCGATTACGTCCCTGCCATTTGTACACACCGCCCGTC TAGGCGCAGCTCATCAAACTGTGCCGATTACGTCCCTGCCATTTGTACACACCGCCCGTC ******************************************************************)

GTTGTTTCCGATGATGGTGCAATACAGGTGATCGGACAGTCGAGTGTTTCACTTGACCGA GTTGTTTCCGATGATGGTGCAATACAGGTGATCGGACAGTCGAGTGTCTCACTTGACCGA

AAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC AAGTTCACCGATATTTCTTCAATAGAGGAAGCAAAAGTC

Clustal W alignment for a region of the Schizotrypanum 18S rRNA gene sequence extracted from NCBI GenBank: T. dionisii (gi|4468750|), T. vespertilionis (gi: |4468775|): red shows the T. dionisii primer binding sites (TrypF and TrypR
gi| 313209097 |emb|FN599054.1|
gi| \(313209103 \mid\) emb|FN599056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103 |emb|FN5 99056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103 |emb|FN5 99056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103 |emb| FN599056.1 gi| \(313209100 \mid\) emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi|313209103|emb|FN599056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103|emb|FN599056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103|emb|FN599056.1 gi|313209100|emb|FN599055.1|
gi|313209097|emb|FN599054.1| gi| 313209103|emb|FN599056.1 gi|313209100|emb|FN599055.1|
---------------------GGTCGATATGAACACGGACGCGGAGTATTTTGCATACCA -----ACGTCGTGGCGGTGGTCGATATGAACACGGACGCGGAGTACTTTGCGTACCA GGAGATTGACGTCGTGGCGGTGGTCGATATGAACACGGACGCGGAGTACTTTGCGTACCA

GCTGCGCTACGACACCGTGCACGGCAAGTTCAAGTACACGGTGACGACGGCGAAGAGCAA GATGCGTTACGACACCGTGCATGGTAAGTTCAAGTACACGGTGACGACGACGAAGAGCAA GATGCGTTACGACACCGTGCATGGTAAGTTCAAGTACACGGTGACGACGACGAAGAGCAA


CCCCTCCGTGACTAAGGACGACACACTCGTGGTGAATGGCCACCGCATTCTGTGCGTGAA CCTCTCCGTGGCGAAGGATGACACACTTGTGGTGAATGGCCATCGCATTCTGTGCGTGAA CCTCTCCGTGGCGAAGGATGACACACTTGTGGTGAATGGCCATCGCATTCTGTGCGTGAA


GGCGCAGCGCAACCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA GGCGCAGCGCAATCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA GGCGCAGCGCAATCCGGCGGATCTCCCGTGGGGCAAGCTTGGTGTGGAGTATGTAATTGA


GTCAACGGGTCTGTTCACTGCCAAGGTGGCGGCGGAGGGCCACCTGCGTGGCGGTGCACG GTCAACAGGCCTGTTCACTGCCAAGACGGCGGCGGAGGGCCACCTGCGCGGCGGTGCACG GTCAACAGGCCTGTTCACTGCCAAGACGGCGGCGGAGGGCCACTTGCGCGGCGGTGCACG ****** ** *************** ****************************************)

GAAGGTCATCATCAGCGCGCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA GAAGGTCATCATCAGCGCCCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA GAAGGTCATCATCAGCGCCCCCGCCTCTGGTGGCGCCAAGACACTCGTGATGGGCGTGAA


CCACCATGAGTACAACCCCAGTGAGCACCACGTGGTCTCGAACGCGTCATGCACGACCAA CCACCATGAGTACAACCCCAGTGAGCACCATGTGGTGTCGAACGCGTCGTGCACGACCAA CCACCATGAGTACAACCCCAGTGAGCACCATGTGGTGTCGAACGCGTCGTGCACGACCAA

TTGTCTTGCGCCCATTGTGCATGTCCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT TTGTCTTGCGCCCATTGTGCATGTTCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT TTGTCTTGCGCCCATTGTGCATGTCCTGGTGAAGGAGGGCTTTGGCGTGCAGACCGGCCT

CATGACGACGATCCACTCGTACACGGCAACACAAAAGACGGTGGACGGCGTGTCGTTGAA CATGACGACGATCCACTCGTACACGGCAACACAGAAGACGGTGGATGGTGTGTCGTTGAA CATGACGACGATCCACTCGTACACGGCAACACAGAAGACGGTGGATGGTGTGTCGTTGAA

GGACTGGCGCGGCGGTCGTGCGGCTGCGGTGAACATCATTCCAAGCACGACTGGTGCGGC GGACTGGCGCGGCGGTCGTGCGGCTGCGGTGAACATCATTCCGAGCACGACTGGTGCGGC GGACTGGCGCGGCGGTCGTGCGGCTGCGGCGAACATCATTCCGAGCACGACTGGTGCGGC

GAAGGCAGTGGGCATGGTTATCCCAAGCACGCAGGGCAAGCTGACGGGCATGTCGTTTCG GAAGGCGGTGGGCATGGTGATCCCAAGCACGCAGGGCAAGCTGACGGGCATGTCGTTTCG GAAGGCGGTGGGCATGGTGATCCCAAGCACGCAGGGCAAGCTGACGGGCATGTCGTTTCG ****** *********** *************************************************)

TGTCCCCACCCCGGACGTGTCCGTGGTGGACCTCACCTTCACGGCGACGCGCGATACCAG TGTCCCCACCCCGGACGTGTCCGTGGTGGACCTCACCTTCACGGCGACGCGCGACACCAG TGTCCCCACCCCGGACGTGTCCGTGGTGGACCTCACCTTCACGGCGACGCGCGACACCAG


CATACAGGAGATTGACGCCGCGCTGAAGCGCGCGTCCAAGACGTACATGAAGGGCATTCT CATACAGGAGATCGACGCTGCACTGAAGCGCGCGTCCAAGACGTACATGAAGGGCATTCT CATACAGGAGATCGACGCTGCACTGAAGCGCGCGTCCAAGACGTACATGAAGGGCATTCT


TGGCTACACGGACGAAGAGCTTGTGAGTACGGACTTCATTAATGACAACCGCAGCTCCAT TGGCTACACGGACGAAGAGCTTGTGAGCACAGACTTCATTAATGATAACCGCAGCTCCAT TGGTTACACGGACGAAGAGCTTGTGAGCACAGACTTCATTAATGATAACCGCAGCTCCAT

CTACGA
TACGACTCCAAGGCGACCT
CTACGACTCCAAGGCGAC---
gi| 313209097 |emb| FN5 99054.1 gi| 313209103 |emb|FN599056.1 gi| 313209100 |emb| FN5 99055.1
gi|313209097|emb|FN599054.1| gi| 313209103 |emb|FN599056.1 gi| 313209100 |emb| FN5 99055.1
gi| 313209097 |emb|FN599054.1| gi| 313209103 |emb|FN599056.1 gi|313209100|emb|FN599055.1|
gi| 313209097 |emb|FN599054.1 gi| 313209103|emb|FN599056.1 gi| 313209100 |emb|FN599055.1|
gi| 313209097 |emb|FN599054.1 gi| 313209103 |emb|FN5 99056.1 gi| 313209100 |emb| FN5 99055.1
gi| 313209097 |emb|FN599054.1 gi| 313209103 |emb|FN5 99056.1 gi| 313209100 |emb|FN599055.1|
gi| 313209097 |emb|FN5 99054.1 gi| 313209103 |emb|FN599056.1 gi| 313209100 |emb|FN599055.1

Clustal W alignment for a region of the T. dionisii GAPDH gene sequence extracted from NCBI GenBank: T. dionisii (gi|313209097|), T. dionisii (gi|313209103|), T. dionisii (gi|313209100|): red shows the T. dionisii primer binding sites (GAPF, GAPR and GAPRn

CLUSTAL 2.1 multiple sequence alignment
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

TCCAGAATGCTACGGTTGCCACTCTCACTTCCTCTTGCCCCTCACCCAGC TCCAGAATGCTACGGTTGCCACTCTCACTTССТСTTGССССТСАСССАGС TCCAGAATGCTACGGTTGCCACTCTCACTTССТСTTGСССАТСАСССАGC

GCTGCTTTGAATGCAGCATTTGTCGTGGGGCAC-GTACAAGGGAGAGAAG GCTGCTTTGAATACAGCAATTTTCGTGGGGCAC-ACACAAGGGAGAGAAG ACTGCTTTGAATACAGCAATTGTCTTGGGGCAC-GCACAAGGGAGAGAAG

gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi| 558135472 |ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885 gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM 008152116 gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi| 554578862 |ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi| \(584056807 \mid\) ref| \(X^{-} 006772885\). gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gil558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gil554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi| 641721271 |ref|XM_008152116. gi|588480441|ref|NM_001290172.

ACAGCAGTGCCTGGGAGGCTGCT-GGGCAGGCGGTTACTGCGCGTCATGC ACAGCAGTGCCTGGGAGGCTGCT-GGGCAGGCGGTTACTGCGCGTCATGC ACAGCAGTGCCTGGGAGGCTTCT-GGGCAGGCGGTTACTGCGTGTCATGC

ACAG---TGCCTTGGAGGCTGCCCAGGCAGGTGGTTACGGTTACACATGC

TGTGGCAGGGCCATTTCTGGTGGCAGACAATGCCGGGATAATGTGGCCCA TGTGGCAGGGCCATTTCTGGTGGCAGACAATGCTGGGATAATGTGGCCCA TGTGGCAGGGCCATTTCTGGTGGCAGACAATGCCGGGATAATGTGGCCCA -------------------------------------------ATGCGGCTCA TTTCACAGGGTCATTTTTGGCCACAGAAAATGCCAGGATGATGCCTCCCA *** * **

CCCGCCTGGCTGGGATGCTGCTCCCAGCCATGGCCTTCCTCTCCTGCCTG CCCGCCTGGCTGGGACGCTGCTCCCAGCCATGGCCTTCCTCTCCTGCCTG CCCGCCTGGCTGGGGCTCTCCTCCCAGCCATGGCCTTCCTCTCCTGCCTG CCCGCCTGGCTGGGACGCTGCTCCCAGCCATGGCCTTCCTCTCCTGCCTG CCCGCCTGGCTGGGATTCTGATCCCAGCCATGGCCTTTCTTTCCTGCCTG

AGACCCGAGAGCTGGGACCCTTGCGTGCAGGTGGTTCCTAATGTTACTTA AGACCCGAGAGCTGGGACCCTTGCGTGCAGGTGGTTCCTAACGTTACTTA AGACCCGAGAGCTGGGAACCTTGCGTGCAGGTGGTTCCTAATGATACTTA AGACCCGAGAGCTGGGACCCTTGTGTGCAGGTGGTTCCTAATGTTACTTA AGACCTGAGAGCTGGGACCCTTGCGTGCGGGTGGTTCCTCACATTACCTA


CCAGTGCATGGAGCTGAATCTCTACAAAATCCCTGATAACCTCCCTACAT CCAGTGCATGGAGCTGAATCTCTACAAAATCCCTGATAACATCCCTACAT CCAGTGCATGGAGCTGAATCTCTACAAAATCCCTGATAACATCCCTACAT TCAGTGCATGGAGCTGAATCTCTACACAATCCCTGATAACATCCCTACAA CCAGTGCATGGAGCTGAATCTCTACAAAATCCCCAACAACATCCCCACAT

CAATCAAGAACCTGGACTTGAGCTTTAACCCCCTGAGGCATTTAGGCAGC CAATCAAGAACCTGGACTTGAGCTTTAACCCCCTGGGGCATTTAGGCAGC CAATCAAGAACCTGGACTTGAGCTTTAACCCCCTGAGGCATTTAGGCAGC CAACCAAGAACCTGGACCTGAGCTTTAACCCCCTGAGGCATTTAGGCAGC CAGTCAAGAAACTGGATCTGAGCTTTAACCCCCTGAGACGTCTAAGCAGC

CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG CACAGCTTCTCCAACTTCTCAGAACTGCAGGTGCTGGATTTATCCAGGTG CATATCTTCTCCAACTTCTCAGAATTGCAGGTGCTGGATTTATCTAGGTG
\(\qquad\)

TGAAATTCAGAAGATTGAAGATGATGCATATCAAGGCCTAAAGCATCTCT TGAAATTCAGAAGGTTGAAGATGATGCATATCAAGGCCTAAAGCATCTCT TGAAATTCAGAAGATTGAAGACGATGCATATCAAGGCCTAAAGCATCTCT TGAAATTCAGAAGATTGAAGATGATGCATATCAAGGCCTAAAACATCTCT TGAAATTGAGATGATTGAAGATGATGCATATGAGGGTCTAAACCATCTCT ******* *** * ******* ********* * ** ***** *******
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172
gi|558135472|ref|XM 006091085 gi| 554578862 |ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gi|554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gi| 584056807 |ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.

CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCGGGAGCC CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCGGGAGCC CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCTGGAGCC CCATCTTGATATTGACAGGAAACCCTATCCAGAGTTTAGCCCCAGGAGCC CCACCTTGGTATTGACAGGAAACCCTATCCAGAGTTTAGCCATGGGAGCC


TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT TTTTCTGGACTGCCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT TTTTCTGGACTACCAAGTTTACAGACACTGGTGGCTGTGGAGACAAACCT TTTTCTGGACTATCAAGTTTACAGACACTGGTGGCTGTGGAGATAAACCT


AGCATCACTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC AGCATCGCTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC AGCATCGCTAGAGGACTTCCCCATCAGACATCTGAAAACCTTGAAGGAGC AGCCTCTCTAGAGGACTTCCCCATCACACATCTGAAATCCTTGAAGGAGC AGTGTCTCTAGAGGACTTCCCCATTGGACACCTGAAAACCTTGAAGGAGC

TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT TTAATGTGGCTCACAATCTAATTGATTCCTTCAAGTTACCGGACTATTTT TTAATGTGGCTCACAATCTAATCGATTCCTTCAAGTTACCGAACTATTTT TTAATGTGGCTCACAATCTTATTGATTCCTTCAAGTTACCTGAATATTTT

TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG TCTAACCTGCCTAACCTGGAGCACTTGGATCTTTCCAATAACAAGATCCG TCTAACCTGCCTAACCTGGAGCACTTGGACCTTTCCAATAATAAGATTCG TCTAACCTGTCCGACCTGGAGCACTTAGACCTTTCCAATAACAAGATCCA

CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCTTCATTCA CAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA AAATATTTACCATGAAGACTTGCAGGTTTTACATCAAATGCCCTCATTCA AACTATTTGTCATAAAGACCTACAGGTTCTACATCAAATGCCCCCATCCA
* ***** *** ******************************

ААСТСТССТTAGACCTGTCССТСAACCCTTTAGACTTTATTCAACCAGGT AACTCTCCTTAGACCTGTCCCTCAACCCTTTAGACTTTATTCAACCAGGT AACTCTCCTTAGACCTGTCCCTCAACCCTTTAGACTTTATTCAACCAGGT AACTCTCTTTAGACCTGTCCCTCAACCCTTTAGACTTTATCCAACCAGGT AACTCTCTTTAGACTTGTCCCTGAACCCTTTAGACTTCATCCAACGAGGT

GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA GCCTTTGAAAAAATTAAGCTCCATGAACTGACTTTGAGAAGTAATTTTGA GCCTTTAAAGAAATTAAGCTCCATGAACTAACTTTGAGAAGTAATTTTAA

TAGTGCAGAGGTCATGAAAACGTGTATTCAAGGTCTGGCTGGTTTAAAGA TAGTCCAGAGGTCATGAAAATGTGTATTCAAGGTCTGGCTGGTTTAAAGA TAGTCCAGAGGTCATGAAAATGTGTATTCAAGGTCTGGCTGGTTTAAAGA TAGTGCAGAGGTCATGAAAACGTTTATTCAAGGTCTGGCAGGTTTAAAGA CAGTACAGATGTAATGAAAACTTGTGTTCAAGGCCTCGCTGGCTTAAAAA

TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAACCATAGTAAAC TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAAACTTAGTAAAC TCAATCGGTTGATTCTGGGAGAATTTAAAAATGAAAGAACCTTAGTAAAC TCAAACGGCTGATTCTGGGAGAATTTAAAAATGAAAGGATCTTAGTAAAC TCAATCGTTTGGTTCTAGGAGAATTTAAAAATGAAAGAGCCATAAAACAT

TTCAACAAATCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT TTCAACAAATCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT TTCAACAATTCTGCCCTGGAGGGTCTGTGCAATTTGACCATTGAAGAATT TTGGACAAATCTGCCCTGGAGGAACTGTGTAATTTGACCATTGAAGAATT TTTGACAAATCTGCCATGGAGGGACTGTGCAATTTGACCATTGACGAATT
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM_006772885 gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM 001290172.
gi|558135472|ref|XM 006091085 gil554578862|ref|XM_005880935. gil584056807|ref|XM-006772885 gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

CCGGATAGCACACTTCGATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA CCGGATAGCACACTTCGATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA CCGGATAGCACGCTTCAATGAGTTTCCAGGGGATGATCTTGGCTTTTTAA CCGGATAGCACACTTCCAAGACTTTCCAGAGGATTACCTTGGCTTTTTAA CCGGATGACATACTTCGATGACTTCTCAGAGGATGTTATTAACTTTTTTA
\(\qquad\)

ATTGTTTGCCAGAGGCTTCTACAATATCTCTTATGGGTCTGTATTTAGAC ATTGTTTGGCAGATGCTTCTACAATATCTCTTGTGAGTCTATATTTAGAT ATTGTTTGGCAGATGCTTCTACAATATCTCTTGTGAGTCTATATTTAGAC ATTGTTTGGCAGATGCTTCTGCAATATCTCTGGTGAGTCTGAATATAGAC ATTGTTTGGCAAATGTTTCTACAATTTCTCTGGTGGGTCTGTATTTAAAC


GAGCTAAAAATCTTTCCAAAAGGTTTCAAATGGCAATACTTAAATTTGTC GAGCTAAAAATCTTTCCAAAAGGTTTCAAATGGCAATACTTAAATTTGTC AAGCTAAAAATCTTTCTAGAAGATTTCAAATGGCAATACTTAAAATTGTC AGGCTAGAAAGCCTTCCAAAAGGTTTCAAATGGCAATACTTAAACTTGAC AGGCTAGAAGTCCTTTCTAAAGATTTCAAATGGCAACACTTAAAACTGAC
    **** ** * ** *** ************* ******* ** *

TAAATGTATATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC TAAATGTATATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC TAAATGTAAATTTGAACATTTTCCTACATTGGACCTTACCTTTCTCAAGC TAATTGTAAATTTGAACATTTTCCTACATTGGAGCTTACCTTTCTCAAGC TAATTCTAAATTTGATCATTTTCCCAGGTTGGAACTTGACTCTCTCAAAA
\(\qquad\)

AGTTTGTTTTCACTGCCAACAAAGGTATTACCACTTTTACTAAAGTTAAT AGTTTGTTTTCACTGCCAACAAAGGTATTACCACTTTTACTGAAGTTAAT AGTTCATTTTCACTGCCAACAAAGGTATTACCACTTTTACTGAAGTTAAT AGTTTGTTTTCACTGACAACAAAGGTATTACCACTTTTACTGAAGTTAAT AGTTGGTTTTCACTGCCAACAGGGGTATGAGCACTTTTACTGAAGTTAAA


CTACCAAACCTTGAGTTTCTAGATCTCAGTAAAAATGGCTTGAGTTACAA CTACCAAACCTTGAGTTTCTAGATCTCAGTAGAAATGGCTTGAGTTTCAA CTACCAAACCTTGAGTTTCTAGATCTCAGTAGAAATGGCTTGAGTTTCAA CTAAGAAACCTTGAGTTTCTAGATCTCAGTAGTAATGGCTTGAGTTTCAA CTACCAAAACTTGAGTTTCTAGATCTCAGTAGAAATAGTTTGAGTTTCAA

GTCTTGCTGCTCTCACCGTGATTTTGGGACAACCCAACTGAAACACTTAA GTCCTGCTGCTCTCACCGTGATTTTGGGACAACCCGACTGAAACACTTAG GTCCTGCTGCTCTCACCGTGATTTTGGGACAACCCGACTGAAACACTTAG GTCTTGCTGCTCTCACCGTGATTTTGGGACAACCCAACTGAAACACTTAA GAGTTGCTGTTCTCGCACTTTTTGGGGGACAACTAGACTGAAACACTTAG

ATCTGAGCTTCAATAATATTATTATCATGACTTCAAACTTCTTGGGCTTA ATCTGAGCTTCAATAATATTATTATCATGACTTCAAACTTCTTGGGCTTA ATCTGAGTTTCAATAATATTATTATCATGACTTCGAACTTCTTGGACTTA ATCTGAGCTTCAATAGTATTATTACCATGACTTCAAACTTCGTGGGCTTA ATCTGAGCTTTAATGATGTTATTACCATGAGCTCAAACTCCTTGGGCTTA

GAGCAACTAGAACGTCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG GAGCAACTAGAACATCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG GAGCAACTAGAACATCTGGATTTCCAGCATTCCACTCTGAAACAGGCCAG GAGCAACTAGAACGACTGGATTTCCAGCATTCCACTTTGAAACAGGCCAG GAGCAACTAAAATATCTGGATTTCCAGCATTCCAATTTGAAACAGGCCAG ********* **

TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT TGATTTTTCAGTATTCCTCTCACTCAAAAATCTCCTTTACCTTGATATCT TACTTTTTCAATATTCСТСТСАСТСАААААССТССТТТАССТТGATATCT TGATTTTTCGGTATTCCTATCACTCAAAAACCTACTTTACCTTGATATTT

CTTACACTAACACCAAGATTGTCTTCCTGCGCATCTTTGATGGCTTGATC CTTACACTAACACCAAGATTGTCTTCCTGGGCATCTTTGATGGCTTGATC CTTACACTAACACCAAGATTGTCTTCCTGGGCATCTTTGATGGCTTGATC CTTACACTAACATCCAGATTGTCTTCAAGGGCATCTTTGATGGCTTGATC CTTATACTCGCATCCGAATCATCTTCCATGGCATCTTTGACGGCTTGTTC *****
gi|558135472|ref|XM 006091085. gil554578862|ref|XM_005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi| \(641721271|r e f| \mathrm{XM}_{-}^{-} 008152116\). gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi| \(584056807|r e f| \mathrm{XM}^{-} 006772885\). gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi| 558135472 |ref|XM_006091085. gi|554578862|ref|XM 005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM-008152116. gi|588480441|ref|NM_001290172.

AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC-AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC-AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGATGCACTCC-AGCCTCCAAGTCTTGAAAATGGCTGGCAATTCCTTTCAGGATGCATTCC-AGCCTCGAAGTCTTGAAAATGGCTGGCAATTCTTTTCAGGACA-ACTCCG

TTCCAAATATCTTCAGAGATCTGACTCAGTTGACTGAACTGGACCTCTCT TCCCAAATATCTTCAGAGATCTGACTCAGTTGACTGACCTGGACCTCTCT TCCCAAATATCTTCAGAGACCTGACTCAGTTGACTGTCCTGGACCTCTCT TTCCAAATGTCTTCAGAGATCTGACTCAGTTGACTATCCTGGACCTCTCT TTCCAAATATCTTCAAAGCGCTGACTAACTTAACCTTCCTGGACCTCTCT

CAGTGTCAACTGGAACGGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG CAGTGTCAACTGGAACAGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG CAGTGTCAACTAGAACGGGTGTCCCAGGAGGCATTTGGCTCACTCCTTAG CAGTGTCAATTGGAACAGGTGTCTCCGGAGGCATTCAGCTCACTCCTTAG AATTGCCAGCTAGAACGAGTGTCCCAGGCGGCATTTGGCTCACTCGTTAA
```

**** * ********* * ** *************** ***

```

ACTCCAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC ACTCCAGGTGCTAAATATGAGTCACAATCACCTCTTGTCCTTGGATATGC ACTCCAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC ACTCGAGGTGCTAAATATGAGTCACAACCACCTCTTGTCCTTGGATATGC ACTTAAGTCACTAAATATGAGTCACAACCACCTTTTATCCTTGGATCTAT

TTCCTTTTAAAAATCTC---TCTCTCCGGGTTCTAGACTGTAGTTTTAAC TTCCTTATAAAAATCTC---TCTCTCCGGGTTCTAGATTGCAGTTTTAAC TTCCTTATAAAAATCTC---TCTCTCCGGGTTCTAGACTGCAGTTTTAAC TTCСTTACAAAAATCTC---ССТСTCTCGGTTCTAGACTGCAGTTTTAAC TTCCTTATAAACTTCCCCACTCTCTCCAGGATCTGGACTGCAGTTTTAAT ****** *** *************************

CGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATTTTCCAAGCAATGT CGTATAGTGGCCGCCAATGGGCAGGAACTACAACATTTTCCAAGCAATGT CGTATAGTGGCCGCCAATGGGCAGGAACTACAACATTTTCCAAGCAATGT CGTATAGTGGCCGCCAATGGGCAGGAACTACAGCATTTTCCAAGCAATGT CGCATAGTGGCCTCCAATAGGCAAGAACTACAGCATTTTCCAAGTAATCT

AACTTCCTTAAACCTGAACCAGAATAACTTTGCTTGTGTTTGTGAACACA AACTTCCTTAAATCTGACCCAGAATAACTTTGCTTGTGTTTGTGAACACA AACTTCCTTAAATCTGACCCAGAATAACTTTGCTTGTGTTTGTGAACACA AACTTCCTTACATCTGACCCAGAATGACTTTGCTTGTGTTTGTGAACACA AACTTCCTTAAATCTCACTGGGAATGACTTTGCTTGCATTTGTGAACACC ********** * ** * **** ********** ***********

TGCGCTTCCTGCAGTGGGTCCAGGATCACAGGCACATCTTGGTGGGAGCT TGCGCTTCCTGCAGTGGGTCCAGGATCACAGGCGCATCTTGGTGGGAGCT TGCGTTTCCTGCAGTGGGTCCAAGATCACAGGCGCATCTTGGTGGGCGCT TGCGTTTCCTGCAGTGGGTCCAGGACCACAGGAGCATCTTGGTGGGAGCT AGAGTTTTCTGCAGTGGGTCAAGGACCACAGGCACCTCTTGGTGGGAGTT

GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGTGTGCCTGTGCT GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGTGTGCCTGTGCT GAACACATGATGTGTGAGAAACCTTTAGCTATGCAGGGCGTGCCTGTGCT GAACACATGATGTGTAAGACACCTTTAGCTATGCAGGGTGTGCCTGTGCT ACACAAATGGTGTGTGTGAAACCTTTAGATATGCAGGGTGTGCCTGTACT
*** *** ***** ** ******** ********* ******** **

CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGTGT CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGTGT CAGTTTTAGAAATGCCACCTGCCAGATGAGCAAAACTATCATTAGTGCGT CAGTTTTAGAAACACCACCTGCCAGATGAACAAAACTGTCATTAGTGTGT CAGTTTTAGAAATGCCACCTGTCCGATGAGCAAGACTGTCATTAGTGTGT

CAGTTCTCTCAGTACTCGTGGTATCTGTAGCCGCAGTTCTGGTCTACAAG CAGTTCTCTCAGTACTCGTGGTATCTGTAGCCGCAGTTCTGGTCTACAAG CAGTTCTCTCAGTACTCGTGGTCTCTGTAGCCGTAGTTCTGGTCTACAAG CCGTTCTCTCAGTACTCGTGGTATCTGTGGCTGCAGTTCTGGTCTACAAG CGGTTCTCACTGTGCTTGTGGTATCTGTGGTAGCAGTTCTGGTTTATAAG

gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM 001290172.
gi|558135472|ref|XM 006091085 gil554578862|ref|XM_005880935. gi|584056807|ref|XM-006772885. gi| \(641721271|r e f| X_{M}^{-}-008152116\). gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gil584056807|ref|XM-006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gi|554578862|ref|XM_005880935. gil584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085 gi|554578862|ref|XM-005880935. gi|584056807|ref|XM-006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi| \(554578862|r e f| X M \_005880935\). gi| \(584056807 \mid\) ref|XM \({ }^{-} 006772885\). gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi| 554578862 |ref|XM_005880935. gi|584056807|ref|XM_006772885. gi| \(641721271|r e f| X M_{-}^{-} 008152116\). gi|588480441|ref|NM_001290172.

TTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAGTATGGCAAAGG TTCTACTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAGTATGGCAAAGG TTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAAAAAATATGGCAAAGG TTCTATTTCCACCTGATGCTTCTGGCTGGCTGCAAAAGGTACAGCAAAGG TTCTATTTCCACCTGATGCTTCTTGCTGGCTGCAAAAAGTATGGCAGAGG


GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT GGAAAGCACCTACGATGCCTTTGTCATCTACTCCAGCCATGATGAGGACT GGACAGCACTTATGATGCCTTTGTCATCTACTCCAGCCACGATGAGGACT TGAAAGCACCTATGATGCCTTTGTTATTTACTCAAGCCAGGATGAGGACT

GGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGAGTCCCCCCCTTT GGGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTCCCCCCCTTT GgGTGAGGAATGAGTTGGTGAAGAACTTGGAGGAGGGGGTACCCCCTTTT GGGTGAGGAATGAGTTGGTAAAGAACTTGGAGGAGGGGGTACCCCCCTTT GGGTGAGGAATGAGTTGGTAAAGAACTTGGAGGAGGGGGTGCCCCCCTTT

CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGTGTGGCCATTGCTGC CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC CAGCTCTGCCTTCACTACAGAGACTTTATCCCTGGCGTGGCCATTGCTGC CAGCTCTGCCTTCACTACAGAGACTTTATTCCTGGTGTGGCCATTGCTGC

CAACATCATCCAGGAAGGTTTCCACAAGAGCCGGAAGGTCATTGTGGTGG CAACATCATCCAGGAAGGTTTCCACAAGAGCCGGAAGGTCATTGTGGTGG CAACATCATCCAGGAAGGTTTCCACAAGAGCCGGAAGGTCATTGTGGTGG CAACATCATCCAGGAAGGTTTCCACAAGAGCAGGAAGGTCATTGTGGTGG CAACATCATCCAAGAAGGTTTCCACAAGAGCCGAAAGGTTATCGTCGTGG

TGTCCCGGCACTTCATCCAGAGCCGATGGTGCCTCTTTGAGTACGAGATC TGTCCCAGCACTTCATACAGAGCCGATGGTGCCTCTTTGAGTATGAGATC TGTCCCAGCACTTCATCCAGAGCCGATGGTGCCTCTTTGAGTACGAGATC TGTCCCAGCACTTCATCCAGAGCCGATGGTGCATCTTTGAATATGAGATT TGTCCCAGCACTTCATCCAGAGCCGATGGTGTATTTTTGAGTATGGGATT ****** ********* ************** * ***** ** * ***

GCCCAGACCTGGCAGTTCCTGAGCAGTCACGCAGGCATCATCTTCATCGT GCCCAGACCTGGCAGTTCCTGAGCAGTCACGCAGGCATCATCTTCATCGT GCCCAGACCTGGCAGTTCCTGAGCAGTCACGCGGGCATCATCTTCATCAT GCCCAGACCTGGCAGTTCCTGAGCAGTCACGCGGGCATCATCTTCATCGT GCCCAGACCTGGCAGTTTCTGAGCAGTCGTGCGGGCATCATCTTCATTGT

CCTGCAGAAGGTGGAGAGGTCCCTGCTCAGGCAGCAGGTGGAACTGTATC CCTGCAGAAGGTGGAGAAGTCCCTGCTCAGGCAGCAGGTGGAACTGTATC CCTGCAGAAGGTGGAGAAGTCCCTGCTCAGGCAGCAGGTGGAACTGTATC CCTGCAGAAGGTGGAGAAATCCCTGCTCCGGCAGCAGGTGGAGCTGTATC CCTACAGAAGGTGGAGAAGTCCCTGCTCCGGCAGCAGGTGGAGCTGTATC

GCCTTCTCAGCAGGAACACTTACCTAGAGTGGGAGGACAGTGTCCTGGGC GCCTTCTCAGCAGGAACACTTACCTAGAGTGGGAGGACAGTGTCCTGGGC GCCTTCTCAGCAGGANCACTTACCTAGAGTGGGAGGACAGTGTCCTGGGC GCCTTCTCAGCAGGAACACTTACCTAGAGTGGGAGGACAGTGCCCTGGGC GCCTTCTCAGCAGGAACACTTACCTGGAGTGGGAGGACAGTGTCCTCGGG

CGGCACATCTTCTGGCGACGACTGAGAAAAGCCTTGCTGGATGGTAAGCC CGGCACATCTTCTGGCGACGACTGAGAAAAGCCTTGCTGGATGGTAAGCC CGGCACATCTTCTGGCGACGACTGAGAAAAGCCTTGCTGGACGGTAAGCC CGGCACATCTTCTGGCGACGACTGAGAAAAGCCTTGCTGGATGGTAAGCC CGGCACATCTTCTGGAGACGACTCAGAAAAGCCTTGCTAGATGGCAAACT

ATGGAGTCCAGAAGGAACAGAGGATGCAGAAAGCAGCCAGGATGAAGCAA ATGGAGTCCAGAAGGAACAGAGGATGCAGAAAGCAGCCAGGATGAAGCAA GTGGAGTCCAGAAGGAACAGAGGGTGCAGAAAGCAGCCAGGATGAAGCAA ATGGAGTCCAGAAGGAACAGTGGATGCAGAAGTCAGTCAGGATGAAACAA GTGGAGTCCAGAAGGAGCAGCAGATGCAGAAAGCAGCCAGCATGAAGCAA
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM 006772885. gi|641721271|ref|XM_008152116 gi|588480441|ref|NM-001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM 005880935 gi|584056807|ref|XM_006772885. gi|641721271|ref|XM 008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM_006091085. gi|554578862|ref|XM-005880935. gi|584056807|ref|XM 006772885 gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gil584056807|ref|XM 006772885 gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

CGACCTCCACCTAACGTACAGACACTCCTTGGGTGCCTCTTGCCCAGGTG CGACCTCCACCTGACGTACAGACACTCCTCGGGTGCCTCTTGCCCAGGTG CGACCTCCACCTGACGTACAGACACTCCTCGGGTGCCTCTTGGCCAGGTG TGACCTCCTTCTGA----------------------------------------CAATCACTATCTGAGGAGAAAAAACTCCTGAGGTGCTTCTTGTGCAGCTG * * * ** *

CATCCAATATTTGTTCCGTTGACAATTATTAAATGCTGCAGCA------CATCCAATATTTGTTCAGTTGACAAGTATTAAATGCTGCAGTATAGCCGG CATCCAATATTTGTTCAGTTGACAATTATTAAATGCTGCAGCATAGCAGG

GATTCATTACTTGTTCAGTTAACAAGTATTAAATGTTGCAACACTGCAAA

CATTGCACCAAGGGAAGGTGCTTCAGTGGTACCCGGGACACACAGGACTG CATTGCACCAAGGGAAGGTGCTTCAGTGGTACCCAGGACACACAGGAC--

AAAAAAAAAAAAAAAAAA

CTAATCTCACAGAGTTTACAGTGTGGAGGGAATAAATACTGCGCTAAAAT -TAATCTCACAGAGTTTACAGTGTGGAGGGAATAAATACTGTGATAAAAT


ATAGAACCTGCAGGTGGATGTTTCAACCAACTCAGCCTAGGCATTCAGGA ATAGAACCTGCAGGTGGATGTTTCAACCAACTCAGCCTAGGCATTCAGGA


CAAAGAAACTCAACTCAACTCTTACCCTATATACTTGAATTATAACTAAG CAAAGAAACTCAACTCAATTCTTACCCTATATACTTGAATTATAACTAGG


AGACCTGCCCTGGTAACATCAGAAAAGGACATAATTCTTCTCCTGAGCCT AGATCTGCCCTGGTAACATCAGACAAGGGCATAATTCTTCTCCTGAGCCT
----------------------------------------------------------------
--------------------------------------------------------TTTGAATGGAAAGCACCTCATATTTTATGTGTTGGCTGCCTTGAAGCAAA TTTGAATGGAAAGCACCTCATATTTTATGTGTTGGCTGCCTTGAAACAAA


GCGGTTTTGTCGTTTCTACTACACTGGGCCTTTGCTCACTTTTCCCATTT GTGGTTTTGTCGTTTCTACTACACTGGGCCTTTCCTCACTTTTCCCATTT


CTATTGAATACAATTTAAATTCTACGTGATGACTCAGAAGGCTTCTAATT CTACTGAATACAATTTAAGTTCTACGTGATGCCTCAGAAGGCTTCTAATT

gil 558135472 |ref|XM_006091085. gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

CAGATCCTCCCTCCACTTCAAGTCAATTTCCTCACAAAGGTCAAAAACCT CAGATCCTCCCTCCACTTCAAGTCAATTCCCTCGCAAAGGTTAAAAACCT

gi|558135472|ref|XM_006091085 gil554578862|ref|XM 005880935 gi|584056807|ref|XM_006772885. gi|641721271|ref|XM_008152116 gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085 gi|554578862|ref|XM_005880935. gi|584056807|ref|XM_006772885 gi|641721271|ref|XM_008152116 gi|588480441|ref|NM_001290172.
gi|558135472|ref|XM 006091085. gi|554578862|ref|XM 005880935. gi|584056807|ref|XM_006772885 gi|641721271|ref|XM_008152116. gi|588480441|ref|NM_001290172.

GCACCCATTTCCTAAGGACACCTGATGAATGCATCTTCACAAACATCCCG GCACCCATTTCCTAAGGACACCTGATGAATGCATCTTCACAAACATCCCG
\(\qquad\)

GTCATTATTAACTAATAGTCCCTGATGTAGTTTTGTTTTTATAAATTCAG GTCATTATTAACTAATAGTCCCGGATGTATTTTTGTTTTTGTAAATTCAG


TTTTCATTTTACACGTCTTCTCTATAAACCTCAATTTTTCAATACGGTTG TTTTCATTTTACACGTCTTCTCTATAAACCTCAATTTTTCAATATGGTTG


TAAGAGACATGCTGGAAATATCCATGTTTAACCAATATCTTTCGAGCAAA TAAGAGACATGCTGGAAATATCCATGTTTAACCAATATCTTTCAAGCAAA


TATGTCAAATACACTCTGTCACTTTGTCACTTGATGTCATTCTAAATTGA TATGTCAAATACACTCTGTCACTTTGTCACTTGATGTCATTCTAAATTGA
\(\qquad\)

TTGCCGATTAAGTTATGACTGTCATAAAGGAAGCATTAAAATAATTTGGT TTGCCGATTAAATTATGACTGTCATAAAGGAAGCATTAAAATAATTTGGT
\(\qquad\)

GGAAAGTGGTGCTTATTGTAACGGGGGAGAGAAGTCTGACATCTTGGTCT GGAAAGTGGTGCTTATTGTAACAGAGGAGAGAAGTCTGACATCTTGGTCT


CATAATGAGTAATTTGGGCTTGAGGAGGGGCAAAAGGTGGGATGGCGGCA CATAATGAGTAATTTGGGCTTGAGGAGGGGCAAAAGGTGGGATGGCGGCA
------------------------------------------------------------

GGAGGGCAGCTCTTCTGGATGATCCTAGAAACAGGTGGGCTGACAC-GGAGGGCAGCAATTCTGGATGATTCTAGAAACAGGTGGGCTGACAGAG


Clustal W sequence alignment of bat TLR4 sequences: gi|558135472| TLR4 of Myotis lucifugus, gi|554578862| TLR4 of Myotis brandtii, gi|584056807| TLR4 of Myotis davidii, gi|588480441| TLR4 of Pteropus alecto, gi|641721271| TLR4 of Eptesicus fuscus

\section*{Appendix 2:}


A map showing the location of pipistrelle bats infected with protozoa.
T.vespertilionis infected bats
T. dionisii infected bats

Cryptosporidium infected bats

Mane Eimeria infected bats

location of T. vespertilionis infected bats

location of \(T\). dionisii infected bats

location of Cryptosporidium infected bats

location of Eimeria infected bats.

location of non- infected bats.

locations for single and mixed genotypes pipistrelle bats.
single interbreeding group
mixed genotype


A map showing the location of pipistrelle bats from TLR4 cluster 6


A map showing the location of pipistrelle bats from TLR2 heterozygotes bats

\section*{Appendix 3 :}

TLR4 amino acid changes vs infection profile
\begin{tabular}{|c|c|c|c|}
\hline Amino acid position and change & Infection profile & Infections & Chi-Square test \\
\hline \multirow[t]{2}{*}{K 253 E} & 7 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{T. dionisii, Cryptosporidium, Eimeria, Bartonella, T. vespertilionis, Borrelia, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.6\) \\
\hline \multirow[t]{2}{*}{L 254 V} & 7 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{T. dionisii, Cryptosporidium, Eimeria, Bartonella, T. vespertilionis, Borrelia, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.6\) \\
\hline \multirow[t]{2}{*}{L 254 T} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{L 256 S} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{R 257 K} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p -value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{N 258 K} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p -value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{L 259 P} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{F 261 V} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{L 262 S} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, L. linstowi, P. Koreanus, Prosthodendrium sp.} & p-value \(=0.7\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{L 275 C} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{G 281 W} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, \(T\). vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{T 282 D} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{T 283 N} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{R 284 Q} & 6 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, Borrelia, \\
Bartonella, Eimeria, \\
Cryptosporidium, T. dionisii, \\
Prosthodendrium sp \\
L. linstowi, P. Koreanus
\end{tabular}} & p -value \(=0.7\) \\
\hline & 2 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{R 284 P} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline L 285 T & 5 samples \(\rightarrow\) Helminths
7 samples \(\rightarrow\) Protozoa & Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, \(T\). vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{K 286 E} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{H 287 T} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{D 289 R} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{L 290 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{S 291 E} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{F 292 L} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline N 293 Q & 5 samples \(\rightarrow\) Helminths
7 samples \(\rightarrow\) Protozoa & Eimeria, T. vespertilionis, B. vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus & p-value \(=1.00\)
p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{N 293 I} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Cryptosporidium, T. dionisii, Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, P. heteroporus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 6 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{I 295 Y} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, T. vespertilionis, Prosthodendrium sp, \\
L. linstowi, P. Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{I 295 L} & 1 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{T. vespertilionis, B. vesperuginis, Eimeria, Prosthodendrium sp L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{I 296 Y} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Eimeria, T. vespertilionis, \(B\). vesperuginis, T.dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{T 297 P} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Cryptosporidium, Eimeria, T. dionisii, Prosthodendrium sp, \\
L. linstowi, P. Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 9 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{T 299 L} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{T. vespertilionis, B. vesperuginis, Cryptosporidium, Eimeria, T. dionisii, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 9 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{S 301 Q} & 5 samples \(\rightarrow\) Helminths
9 samples \(\rightarrow\) Protozoa & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Cryptosporidium, Eimeria, T. dionisii, Prosthodendrium sp, \\
L. linstowi, P. Koreanus
\end{tabular}} & \multirow[t]{2}{*}{\[
\text { p-value }=1.00
\]
\[
\text { p-value }=0.7
\]} \\
\hline & & & \\
\hline \multirow[t]{2}{*}{N 301 T} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Cryptosporidium, Eimeria, T. dionisii, Prosthodendrium sp, \\
L. linstowi, P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 9 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{F 302 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Cryptosporidium, Eimeria, T. dionisii, Prosthodendrium sp, \\
L. linstowi, P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 9 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{F 302 L} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 4 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{V 303 W} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p -value \(=1.00\) \\
\hline & 10 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{V 303 R} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 4 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{G 304 A} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. dionisii, T. vespertilionis, Cryptosporidium, Prosthodendrium sp, L. linstowi, P. Koreanus} & p-value \(=1.00\) \\
\hline & 10 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline D 312 G & 3 samples \(\rightarrow\) Helminths

7 samples \(\rightarrow\) Protozoa & \begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus
\end{tabular} & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{D 312 W} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{Q 314 P} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, P. heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{Q 314 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 8 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline \multirow[t]{2}{*}{H 315 A} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, P. heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{H 315 S} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{S 316 F} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. dionisii, Prosthodendrium sp L. linstowi, P. Koreanus, L. spathulatum, P. heteroporus} & p -value \(=1.00\) \\
\hline & 6 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline S 316 I & \begin{tabular}{l}
4 samples \(\rightarrow\) Helminths \\
\hline 7 samples \(\rightarrow\) Protozoa
\end{tabular} & \begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi,
\end{tabular} & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{T 317 H} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, \\
Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, P. heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{T 317 P} & 4 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{L 318 F} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, \\
Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p -value \(=1.00\) \\
\hline \multirow[t]{2}{*}{R 320 T} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, T. dionisii, Cryptosporidium, \\
Prosthodendrium sp \\
L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{R 320 D} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, Eimeria, T. dionisii, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 8 samples \(\rightarrow\) Protozoa & & p-value \(=0.7\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{A 322 P} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\text { p-value }=1.00
\] \\
p-value \(=0.7\)
\end{tabular}} \\
\hline & 9 samples \(\rightarrow\) Protozoa & & \\
\hline \multirow[t]{2}{*}{A 322 Q} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. dionisii, Prosthodendrium sp L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus} & p-value \(=1.00\) \\
\hline & 6 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{F328 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
T. vespertilionis, B. vesperuginis, \\
Eimeria, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, \\
P. Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 9 samples \(\rightarrow\) Protozoa & & p -value \(=0.7\) \\
\hline \multirow[t]{2}{*}{F328 P} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. dionisii, Prosthodendrium sp L. linstowi, P. Koreanus, L. spathulatum, \(P\). heteroporus} & p-value \(=1.00\) \\
\hline & 6 samples \(\rightarrow\) Protozoa & & p -value \(=1.00\) \\
\hline \multirow[t]{3}{*}{K 332 E} & 10 samples \(\rightarrow\) Helminths & \multirow[t]{3}{*}{\begin{tabular}{l}
B. vesperuginis, Eimeria, Cryptosporidium, T. vespertilionis, T. dionisii, Toxoplasma, Borrelia, Prosthodendrium sp, \\
L. linstowi, P. heteroporus, P. \\
Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & & & \\
\hline & 11 samples \(\rightarrow\) Protozoa & & p -value \(=0.8\) \\
\hline \multirow[t]{2}{*}{L 334 S} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 4 samples \(\rightarrow\) Protozoa & & p -value \(=1.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{L 335 F} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline p \text {-value }=1.00 \\
\hline \text { p-value }=1.00 \\
\hline
\end{array}
\]} \\
\hline & 4 samples \(\rightarrow\) Protozoa & & \\
\hline \multirow[t]{2}{*}{Y 336 T} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 4 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{D 338 I} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{Y 341T} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus, L. spathulatum
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{T 342 L} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus, L. spathulatum
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{D 343 T} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus, L. spathulatum
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{I 344 S} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus, L. spathulatum
\end{tabular}} & p-value \(=1.00\) \\
\hline & 7 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{K 345 R} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 3 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{I 356 V} & 9 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, Eimeria, T. vespertilionis, T. dionisii, Cryptosporidium, Toxoplasma, Borrelia, Prosthodendrium sp, P. heteroporus, L. linstowi, P. Koreanus} & p-value \(=1.00\) \\
\hline & 12 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{S 357 A} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p -value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{L 358 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{Q 359 K} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{V 360 S} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{M 363 W} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{A 364 L} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{G 365 A} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{N 366 I} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{S 367 P} & 5 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{\begin{tabular}{l}
B. vesperuginis, T. dionisii, \\
Cryptosporidium, \\
Prosthodendrium sp, L. linstowi, P. \\
Koreanus
\end{tabular}} & p-value \(=1.00\) \\
\hline & 5 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{C 473 R} & 11 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{B. vesperuginis, T. vespertilionis, T. dionisii, Cryptosporidium, Eimeria, Toxoplasma, L. linstowi, L. spathulatum, Prosthodendrium sp, \(P\). koreanus, \(P\). heteropus} & p-value \(=1.00\) \\
\hline & 18 samples \(\rightarrow\) Protozoa & & p-value \(=0.8\) \\
\hline \multirow[t]{2}{*}{T 510 H} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Cryptosporidium, Eimeria, L. linstowi, P. koreanus, P. heteropus} & p-value \(=1.00\) \\
\hline & 2 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{M 514 D} & 3 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Cryptosporidium, Toxoplasma, L. linstowi, L. spathulatum, \(P\). koreanus, P. heteropus} & p-value \(=1.00\) \\
\hline & 2 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline \multirow[t]{2}{*}{K 516 Q} & 2 samples \(\rightarrow\) Helminths & \multirow[t]{2}{*}{Cryptosporidium, Toxoplasma, L. linstowi, L. spathulatum} & p-value \(=1.00\) \\
\hline & 2 samples \(\rightarrow\) Protozoa & & p-value \(=1.00\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline T 517 N & 2 samples \(\rightarrow\) Helminths & \begin{tabular}{l} 
Cryptosporidium, Toxoplasma, \(L\). \\
linstowi, L. spathulatum
\end{tabular} & p -value \(=1.00\) \\
& 2 samples \(\rightarrow\) Protozoa & & p -value \(=1.00\) \\
\hline \multirow{3}{*}{V 518 C} & 3 samples \(\rightarrow\) Helminths & \begin{tabular}{l} 
Cryptosporidium, Toxoplasma, \(L\). \\
linstowi, \(L . ~ s p a t h u l a t u m ~\)
\end{tabular} & p -value \(=1.00\) \\
\cline { 2 - 2 } & 2 pamples \(\rightarrow\) Protozoa & p-value \(=1.00\) \\
\hline
\end{tabular}

\section*{Appendix 4:}

bat multilocus genotypes (Dodd et al, 2014) vs T. dionisii infections:
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows positive samples.

bat multilocus genotypes (Dodd et al, 2014) vs Cryptosporidium infections:
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12\), \(43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows positive samples.

bat multilocus genotypes (Dodd et al, 2014) vs Babesia infections:
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows positive samples.

bat multilocus genotypes (Dodd et al, 2014) highlighting the TLR2 heterozygotes.
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12\), \(43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows Heterozygotes samples.


Mapping the pipistrelle TLR1 cluster to the bat multilocus genotyping data (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster1 samples.


Mapping the pipistrelle TLR2 cluster to the bat multilocus genotyping data (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28\), \(29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12\), \(43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster2 samples.


Mapping the pipistrelle TLR3 cluster to the bat multilocus genotyping data (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28\), \(29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster3 samples.


Mapping the pipistrelle TLR4 cluster to the bat multilocus genotyping (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster4 samples.


Mapping the pipistrelle TLR5 cluster to the bat multilocus genotyping data (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster5 samples.


Mapping the pipistrelle TLR6 cluster to the bat multilocus genotyping data (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster6 samples.


Mapping the pipistrelle TLR7 cluster to the bat multilocus genotyping (Dodd et al, 2014).
\(1=\mathrm{CS} / 06 / 10,2=\mathrm{CS} / 08 / 01,3=\mathrm{CS} / 08 / 02,4=\mathrm{CS} / 08 / \mathrm{A}, 5=\mathrm{FP} / 05 / 46,6=\mathrm{FP} / 07 / 11,7=\mathrm{FP} / 07 / 12,8=\) \(\mathrm{FP} / 07 / 13,9=\mathrm{FP} / 07 / 21,10=\mathrm{FP} / 07 / 37,11=\mathrm{FP} / 07 / 42,12=\mathrm{FP} / 07 / 44,13=\mathrm{FP} / 07 / 45,14=\mathrm{FP} / 07 / 47,15=\) \(\mathrm{FP} / 07 / 51,16=\mathrm{FP} / 08 / 02,17=\mathrm{GH} / 06 / 06,18=\mathrm{GH} / 07 / 09,19=\mathrm{GH} / 07 / 10,20=\mathrm{JH} / 07 / 01,21=\mathrm{JH} / 08 / 02,22=\) \(\mathrm{JL} / 06 / 12,23=\mathrm{JL} / 06 / 13,24=\mathrm{JL} / 06 / 15,25=\mathrm{JL} / 06 / 24,26=\mathrm{JL} / 06 / 26,27=\mathrm{JL} / 06 / 27,28=\mathrm{JL} / 06 / 28,29=\) \(\mathrm{JL} / 06 / 40,30=\mathrm{JL} / 06 / 42,31=\mathrm{JL} / 06 / 45,32=\mathrm{JL} / 06 / 47,33=\mathrm{JL} / 06 / 54,34=\mathrm{JL} / 06 / 56,35=\mathrm{JL} / 06 / 59,36=\) \(\mathrm{JL} / 07 / 04,37=\mathrm{JL} / 07 / 07,38=\mathrm{JL} / 07 / 08,39=\mathrm{JL} / 07 / 09,40=\mathrm{JL} / 07 / 10,41=\mathrm{JL} / 07 / 11,42=\mathrm{JL} / 07 / 12,43=\) \(\mathrm{JL} / 07 / 14,44=\mathrm{JL} / 07 / 18,45=\mathrm{JL} / 07 / 23,46=\mathrm{JL} / 07 / 25,47=\mathrm{MD} / 08 / 02,48=\mathrm{MH} / 08 / 02,49=\mathrm{PB} / 06 / 01,50=\) \(\mathrm{PB} / 06 / 02,51=\mathrm{PH} / 06 / 04,52=\mathrm{PH} / 06 / 05,53=\mathrm{SA} / 06 / 05,54=\mathrm{SA} / 06 / 07,55=\mathrm{SA} / 07 / \mathrm{U}, 56=\mathrm{SP} / 06 / 49,57=\) \(\mathrm{SP} / 06 / 55,58=\mathrm{SP} / 06 / 68,59=\mathrm{SP} / 06 / 70,60=\mathrm{SP} / 06 / 72,61=\mathrm{SP} / 06 / 77,62=\mathrm{SP} / 06 / 79,63=\mathrm{SP} / 06 / 80,64=\) \(\mathrm{SP} / 06 / 81,65=\mathrm{SP} / 06 / 82,66=\mathrm{SP} / 06 / 83,67=\mathrm{SP} / 06 / 84,68=\mathrm{SP} / 08 / 16,69=\mathrm{SP} / 08 / 17,70=\mathrm{SP} / 08 / 18,71=\) SP/08/19. Red shows cluster7 samples.```

