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In the name of Allah, the Gracious, the Merciful. 

Alif, Lam, Meem. This is a perfect Book; there is no doubt in it. it is a guid-

ance for the righteous; Who believe in the unseen and observe Prayer, and 

spend out of what We (Allah) have provided for them; and who believe in 

that which has been revealed to thee [O Muhammad], and that which was 

revealed before you (all other prophets), and they have firm faith in the 

Hereafter. Those are upon [right] guidance from their Lord, and it is those 

who are the successful. (Holy Quran Chapter 2 (Surat Al-Baqara): verses 

1:5) 

Meanwhile in writing, there is always going to be something that can be improved or 

you will catch a mistake in the second, third, or even in the tenth run through, and as 

Abdul Raheem Albasanee Quote in the (12th Century): 

"I have not seen in this day and age, that a human writes a book in which he sees no 

deficiency.  He always thinks that if I added such and such or I removed such and such 

it will be better.  This is an indication to the limitation of the human brain to be perfect 

in articulation the first time.” 
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SYMBOLS 

Overall annotations: notations and equations are for the most part given in the time 

domain, except as otherwise specified. For simplicity and clarity, signals and frames in 

the time domain are shown in italics and lowercase, whilst, frequency domain notations 

are denoted in italic uppercase. Vector quantities are shown in bold lowercase whilst 

matrix quantities are indicated by bold uppercase font. Individual matrix and vector 

elements are shown in an italic typeface and their position indicated by subscripts i, j. 

Symbol definitions are tabulated below. Symbols used only in passing are not included.  

Nt 

 

The total length of the given audio signal 

in a number of samples. 

S(k) The audio spectrum calculated for the 

audio frame. 

L The length of the frame (the total number 

of samples in each frame) 

P(k) The squared magnitude audio spec-

trum estimated for the S(k) of the au-

dio frame. 

hop The hop size in samples (the size of win-

dow shifting measured in samples). 

k The bin index of the frequency. 

s(n) Audio signal NFT The size of the spectrum. 

n Represents the time index of the audio 

signal samples 

   Estimated value 

f(x) Audio Frame U Eigenvectors matrix 

n The time index of the audio frame sample. e Eigenvector 

i The index of the frame position (1≤ i ≤ L) µ The statistical Average 

fe Audio Feature φ The Signal phase 

arg max Maximum value in the vector Cx Covariance Matrix 

arg min Minimum value in the vector m Number of training samples 

NF The total number of frames in the audio 

signal s(n). 

Nof Number of calculated features 

Fs Sampling rate λ Eigenvalue 

  Denotes for all   Lambda 

R Real number K Number of embedding vectors 

  Lw Length of embedding vectors 



 

ABSTRACT 

Recent years have seen ever-increasing volumes of digital media archives and an 

enormous amount of user-contributed content. As demand for indexing and searching 

these resources has increased, and new technologies such as multimedia content man-

agement systems, enhanced digital broadcasting, and semantic web have emerged, au-

dio information mining and automated metadata generation have received much atten-

tion. Manual indexing and metadata tagging are time-consuming and subject to the bi-

ases of individual workers. An automated architecture able to extract information from 

audio signals, generate content-related text descriptors or metadata, and enable further 

information mining and searching would be a tangible and valuable solution.  

In the field of audio classification, audio signals may be broadly divided into speech or 

music. Most studies, however, neglect the fact that real audio soundtracks may have 

either speech or music, or a combination of the two, and this is considered the major 

hurdle to achieving high performance in automatic audio classification, since 

overlapping can contaminate relevant characteristics and features, causing incorrect 

classification or information loss.  

This research undertakes an extensive review of the state of the art by outlining the 

well-established audio features and machine learning techniques that have been applied 

in a broad range of audio segmentation and recognition areas. Audio classification sys-

tems and the suggested solutions for the mixed soundtracks problem are presented. The 

suggested solutions can be listed as follows: developing augmented and modified fea-

tures for recognising audio classes even in the presence of overlaps between them; ro-

bust segmentation of a given overlapped soundtrack stream depends on an innovative 

method of audio decomposition using Singular Spectrum Analysis (SSA) that has been 

studied extensively and has received increasing attention in the past two decades as a 

time series decomposition method with many applications; adoption and development 



 

of driven classification methods; and finally a technique for continuous time series 

tasks.  

In this study, SSA has been investigated and found to be an efficient way to discriminate 

speech/music in mixed soundtracks by two different methods, each of which has been 

developed and validated in this research. The first method serves to mitigate the 

overlapping ratio between speech and music in the mixed soundtracks by generating 

two new soundtracks with a lower level of overlapping. Next, feature space is calculated 

for the output audio streams, and these are classified using random forests into either 

speech or music. One of the distinct characteristics of this method is the separation of 

the speech/music key features that lead to improve the classification performance.  

Nevertheless, that did encounter a few obstructions, including excessively long pro-

cessing time, increased storage requirements (each frame symbolised by two outputs), 

and this all leads to greater computational load than previously. Meanwhile, the second 

method employs the SSA technique to decompose a given audio signal into a series of 

Principal Components (PCs), where each PC corresponds to a particular pattern of os-

cillation. Then, the transformed well-established feature is measured for each PC in 

order to classify it into either speech or music based on the baseline classification sys-

tem using a RF machine learning technique. The classification performance of real-

world soundtracks is effectively improved, which is demonstrated by comparing 

speech/music recognition using conventional classification methods and the proposed 

SSA method. The second proposed and developed method can detect pure speech, pure 

music, and mix with a much lower complexity level.
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1 INTRODUCTION 

1.1 Introduction 

Since the invention of the audio recorder in 1877, of the motion picture camera in 1880, 

and of the video recorder in 1951, a great many archives of recorded soundtracks have 

come into existence. Over and above this, recent years have seen the archiving of ever-

increasing volumes of digital media, along with an enormous amount of user-contrib-

uted content. Digitisation can preserve the content; however, the usability of the data is 

limited if there is no tangible way to search for interesting content from the mass of 

data. Such metadata is essential for semantic analysis, indexing, searching, and many 

other applications. Manual annotation methods for metadata, i.e. data about the content, 

are time-consuming, prone to errors and sometimes biased. Consequently, there is a 

pressing need for automated classification, recognition, and information mining of au-

dio content.  

There is a considerable body of research that promotes audio content analysis through 

recognition of particular audio classes (speech or music) in a mutually exclusive manner 

and under specific conditions (e.g. Khonglah and Prasanna, 2016, Eyben, 2016 and 

Khaldi et al., 2016). To extract keywords or semantic meaning from soundtracks, tech-

niques such as speech recognition, music information retrieval, and event sound detec-

tion can be employed. Therefore, audio classification is a key pre-processing stage for 

automated semantic audio content analysis and metadata generation.  

Automatic classification of real-world audio soundtracks into speech and/or music, 

when the two sometimes overlap, is a particularly challenging problem. Although it is 

well understood that the overlapping of the classes might mitigate the information re-
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trieval system’s performance, little research has been performed with the aim of ad-

dressing this problem (e.g. Lee and Ellis, 2008, Sell and Clark, 2014, Tomonori et al., 

2008). Zhang and Kuo (2001) presented an approach to annotation based on segmenta-

tion and annotation of audio data into three main categories, namely components com-

prising silence, those with music, and those without music. Segments falling into each 

of the last two categories are then further classified into more components. The Audio 

and Acoustics Signal Processing challenge (AASP) (Giannoulis et al., 2013), which is 

sponsored by the IEEE Signal Processing Society, is a worldwide competition of tech-

nical innovation to classify real-world scenario signals with and without overlapping 

issues. The scope is limited to speech and other indoor/outdoor events; no music has 

been included, and its main objective is to detect prominent events and to ignore the 

remaining content of the soundtracks. One  conclusion drawn from the AASP was that 

“the task of recognising individual potentially overlapping sounds becomes signifi-

cantly challenging and the performance of systems that are even prepared to deal with 

polyphonic content falls dramatically” (Giannoulis et al., 2013). Although the AASP is 

about speech and event sounds, the conclusion from this large-scale competition sug-

gests that the technically challenge in handling overlapped audio classes remains un-

solved.  

In fact, the literature on audio content analysis has concentrated principally on classical 

classification, i.e. categories are logically exclusive, such that an element is assumed to 

be a member of one class and of that class only, such as speech/music discrimination in 
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the non-overlap condition. This hinders some attempts to put these techniques to prac-

tical use in audio information mining since a segment of the soundtrack can have either 

speech, music, event sounds or any combination thereof, as shown in Figure 1-1.  

 

Figure 1-1 The contents of overlapped soundtracks 
 

There are several effective audio feature and machine learning techniques which have 

reported satisfactory performance in recognising a particular class in the controlled con-

dition. However, the overlapped nature of audio content represents the greatest chal-

lenge for information retrieval systems since it can contaminate the characteristics and 

features of the overlapped classes such that they cannot be classified correctly, with a 

classical classification method, without losing useful information. In Duncan et al. 

(2014) and Mohammed et al. (2015), a new technique has been proposed for non-exclu-

sive classification through using a timestamp with three classifiers, each of which func-

tions as a sensor to detect its respective class even when overlapping takes place. Con-

sequently, the start and end of each class can be determined even when overlapped. 

Speech/music cleaning or enhancement algorithms have been suggested as a possible 

solution, and several techniques have been proposed in the literature, even though there 

is no software available in the public domain - neither  commercial nor free - able to 
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accomplish speech/music separation with mono channel recording, giving adequate per-

formance without prior knowledge about a given signal. If  knowledge of the recorded 

voice signal is available, this can help in developing specific spectral masking/subtrac-

tion techniques allowing separation of the spectral content of the recorded voice in the 

time-frequency representation of the mixed signal. However, since real sounds are com-

posed of a comb-pattern of harmonics exponentially spaced in frequency, it remains 

almost impossible to resolve the harmonic overlap problem in the mixed signal, which 

means that a distortion will inevitably be introduced into the separated signals after 

processing. Consequently, mitigating the overlapping between components through 

separating them into a number of oscillations with a lower ratio of overlapping and then 

classifying them separately is key. 

The overall purpose of this study is to investigate the potential of singular spectrum 

analysis (SSA), which represents an analysis of time series utilising the singular spec-

trum as an efficient decomposition tool to improve the classification of arbitrary sound-

tracks. It is worth noting here that, with the overlapped nature of the audio content, in 

order to correctly determine the target class a new criterion is required.  On the other 

hand, it is not the purpose of this study to separate the audio sources nor enhance the 

components, but rather to determine the contents of each segment of the audio sound-

track. Due to there being a wide range of kinds of acoustic events, with unlimited char-

acteristics, in the world, the scope of the present thesis is limited to speech and music. 

The SSA algorithm is used for the classification of mixed soundtracks. The first method 

is to adapt existing methods by reducing the degree of overlap between different classes 

of audio content, in order to mitigate classification difficulties and improve the perfor-

mance of automatic classification. The second method is to develop an algorithm for 
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mixed soundtrack classification using transformed features extracted using SSA. Fur-

thermore, an augmented and modified feature set has been developed which has the 

ability to detect music even when overlapping takes place. This generates a significant 

feature set for mixed soundtrack classification. Comparison of classification accuracy, 

specificity, and sensitivity against those of another state of the art method is made. The 

performance shows promise. 

Classification accuracy was also compared with existing baseline classification meth-

ods; the developed algorithm has outperformed other methods based on results pub-

lished in the literature. 

1.2 The Aim and Objectives of the Study 

The aim of this study is to develop an automatic classification of overlapped sound-

tracks using an SSA algorithm. In other words, the aim is to investigate the capabilities 

of Singular Spectrum Analysis in overlapped soundtrack classification. “Can SSA be 

effectively used to mitigate the classification difficulties associated with overlapping 

between ingredients of mixed sounds and then improve the performance of automatic 

classification?” is the research question. 

1.3 The objectives 

The objectives of this study may be more specifically stated as 

 To carry out a detailed literature and background study. 

 To generate and prepare a suitable dataset to conduct an experimental study of the 

suggested methods in this thesis.  

 To evaluate, interpret, and justify the existing classification method. 

 To study and clarify the SSA technique as a widespread method for noise isola-

tion. 
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 To develop an SSA-based novel method for overlapped soundtrack classification; 

this is accomplished by two different methods and through a number of processes. 

 To evaluate the usability of the SSA method with regard to real worked mixed 

samples. 

 To identify the limitations of the method developed through this study and suggest 

future work. 

1.4 The outline of the Thesis 

This thesis is organised as follows: Chapter 1 gives a general introduction. Chapter 2 

presents a literature review of most of the relevant work, including the current state of 

the art in the audio information retrieval, in which content classification is typically 

used as a pre-processing stage. Chapter 3 investigates the anatomy of the feature space, 

the computation of the common features in the literature, and general comparisons be-

tween speech and music characteristics. Chapter 4 reviews machine-learning models for 

audio classification and highlights the Random Forests (RFs) and Decision Tree (DT) 

algorithms to be adopted in this thesis. Chapter 5 gives a general demonstration of the 

applied datasets and the generation of mixed soundtracks. Chapter 6 proposes a multi-

iterative algorithm using MARSYAS (Music Information Retrieval and SYnthesis Sys-

tem) with a method employing spectral subtraction algorithms for non-exclusive clas-

sification. Chapter 7 demonstrates set of newly developed features. Chapter 8 provides 

a brief description of the methodology of Singular Spectrum Analysis and its applica-

tion, and gives an example. Chapter 9 describes the proposed methods using the Singu-

lar Spectrum Analysis methodology for overlapped soundtrack classification. It also 

explains a bespoke method, parameters, decomposition, and classification for PCs cor-

responding to soundtracks through transformed features calculation. Chapter 10 reports 

the results of this research combined with a discussion thereof. Chapter 11 includes an 
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explanation of the usability of the proposed methods with SSA with real-worked sound-

tracks. Finally, Chapter 12 summarizes the present work, draws the conclusions and 

limitations of this study, and suggests future work. 

1.5 Publications Outcome from this Research 

1.5.1 Journals and Conferences Papers 

1. Duncan, P., Mohammed D., and Li F., 2014. "Audio Information Mining–Prag-

matic Review, Outlook, and A Universal Open Architecture" Audio Engineering 

Society Convention 136, Berlin, Germany, 24 April. Audio Engineering Society 

AES, p. 9075. 

2. MOHAMMED, D., DUNCAN, P., AL-MAATHIDI, M. M. & LI, F. F. 2015. “A 

System for Semantic Information Extraction from Mixed Soundtracks Deploying 

MARSYAS Framework”. 13th International Conference on Industrial Informatics 

INDIN Cambridge, UK: IEEE. 

3. Mohammed, D.Y., Duncan, P.J. and Li, F. F., “Audio information extraction from 

arbitrary sound recordings”, in: 22nd International Congress on Sound and Vi-

bration (ICSV22), 12th - 16th July, Florence, Italy. 

4. Mohammed, D.Y., Duncan, P.J. and Li, FF, “Audio Content Analysis in The Pres-

ence of Overlapped Classes- A Non-Exclusive Segmentation Approach to Miti-

gate Information Losses”, Global Summit and Expo on Multimedia & Applica-

tions August 10-11, 2015 Birmingham, West Midlands, UK. 

5. Mohammed, D. Y., Li, F. F., “Overlapped Soundtracks Segmentation: a Singular 

Spectrum Analysis and Random Forests Approach”, Accepted in IEEE ICKEA 

2017 Conference (under publishing stage). 
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6.  Mohammed, Duraid, Li, Francis; “Overlapped Soundtracks Classification Using 

Singular Spectrum Analysis and Random Forests”, submitted to IEEE Access 

journal 12th-Jun-2017. 

7. Mohammed et al.., 2016. “The Extraction of Semantic information from Arbitrary 

Audio Soundtracks Recording”, Proceedings of the CSE 2016 Annual PGR Sym-

posium (CSE-PGSym 16). 

1.5.2 Posters in Published Conferences Proceeding 

1. MOHAMMED, D. Y., DUNCAN, P. J.& LI, F. F. 18th June 2014, Poster-Dean 

Showcase, Salford University, Manchester, Uk, “Audio information Mining, Pro-

grammatic review” and won the prize for the best poster. 

2. MOHAMMED, D. Y., DUNCAN, P. J.& LI, F. F. 2015 , “Audio information 

Mining for arbitrary soundtracks recordings”, Poster-Dean Showcase, Salford 

University, Manchester, Uk, 28 June 2015. 

3. Furthermore, Build the suggested UOA (Universal Open Architecture) system 

toolbox and participate in the university fellowship. The toolbox won the second 

round of Innovation fellowship. 

4. MOHAMMED, D. Y., DUNCAN, P. J. & LI, F. F., 2016, “A System for Semantic 

Information Extraction from Mixed Soundtracks Deploying MARSYAS Frame-

work”, AES UK Graduate Student Poster Competition, Oxford on 26th February 

2016. 
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2 LITERATURE REVIEW AND BACKGROUND OF AUDIO CLAS-

SIFICATION SYSTEM 

2.1 Introduction 

In the present chapter, the current state of the art in the field of Audio Content Classi-

fication is highlighted. There are many papers related to this field. Exhaustive review 

of all the related papers is not the intention, only some major milestones and those upon 

which subsequent work in the thesis is built are listed. The chapter is organised as fol-

lows. In section 2.2 work related to this study is discussed. Section 2.3 presents a liter-

ature review from the point of view of audio classification architecture including pre-

processing steps (framing, frame size selection, and windowing), feature extraction and 

machine learning techniques. 

2.2 Audio Classification Systems 

Audio classification systems analyse the given audio signal and generate labels that 

describe the signal. These labels are used to characterise the target class’s segments in 

accordance with the classification system. Figure 2-1 exhibits the common architecture 

of the classification systems.  

Dataset
Features 

Extraction
Classifier

Features 
Pattern

decision

 

Figure 2-1 Classification system Architecture 

The categorization/classification can be done on the basis of three stages: at the pre-

processing stage the input signals are sectioned into small parts called frames; then, the 
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classification system processes each of these frames separately to classify i t into one of 

the classes as above. Furthermore, normalisation and windowing are significant pro-

cesses for bringing the input frame to the normative of the classification form; this will 

be explained in more detail later on in this study. Sets of time domain, frequency do-

main, and time-frequency domain features are extracted and used for data reduction and 

characterization of audio content. The most common and successful features, identified 

through the literature review, are selected in this study for real-world audio classifica-

tion. In addition, a modified feature is developed to complement the other features in 

the classification process. The final stage is the machine learning technique, which is 

used to tackle recognition or classification problems with audio samples (Bishop, 2006). 

The common aim of pattern recognition algorithms is learning and generalisation. In 

other words, the classifier acquires certain rules from training data which are generally 

suitable for solving all similar problems despite their having a different dataset.  

In general, audio content analysis refers to extraction and retrieval of information from 

audio content that depends on the extracted features. In this study, real-world audio 

signal classification, with some emphasis on the overlapping of the speech/music clas-

ses, has been carried out. 

The adoption and development of classification methods are typically application-

driven. During the past decades, many bespoke segmentation and classification systems 

have been implemented; Table (2-1) lists a number of bespoke systems for audio clas-

sification. 



 

Table 2-1 Summary of Past Applications 

Application Role Data Deployed Features Limitations 

Program classifier (Dhanalakshmi 

et al., 2009) 

Classify radio or TV 

channels 

Programmes are classified into six differ-

ent categories (music, news, cartoon, 

movie, sports and advertisements) 

- Linear prediction analysis 

- Mel-frequency cepstral co-

efficients 

Works with the broadcast 

channel.  

Classifies into categories, not 

classes. 

Audio clustering (Lu et al., 

2001a) 

Classify audio into 5 

clusters 

-   Silence  

-   Music background sound 

-   Pure speech  

-   Non-pure speech 

-   Speech over noise or music. 

-  ZCR 

-  Time Energy. 

-  Spectrum Flux. 

-  Linear Predictive Coeffi-

cient. 

-  Band Periodicity. 

-  Noise Frame Ratio 

Exclusive clustering. 

Authors' own data. 

Speech, music discrimination 

(Saunders, 1996) 

Discrimination be-

tween Speech and 

music. 

-   News channel -  Tonality. 

-  Bandwidth. 

-  pitch. 

-  Tonal duration. 

-  Energy 

Works on broadcast news chan-

nel only. 

Football game referee (Lefèvre 

and Vincent, 2011) 

Whistle sounder de-

tection 

Football games  Detects specific sound. 

Surveillance systems (Meinedo 

and Neto, 2003) 

Detect specific audio 

events 

Predetermined events, or sound level.  Unable to recognise sound types 

or classes. 

MARSYAS [software] (Tzane-

takis, 2014) 

Music Synthesis Music and Music genres 

Speech 

 Exclusive audio classification  

CHIL (Waibel1 et al., 2004) Events Detection Who and where ‘what’ and ’why and how.'  Predetermine events only (in of-

fice or lecture room) 

Dragon [software] Speech Recognition Speech signal  Signal with high SNR is required 
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2.2.1 Framing 

Traditionally, the audio file is partitioned using a time window into a series of consec-

utive analytical frames of limited length, with or without overlapping.  Many research 

studies have shown that, in general, frame sizes in the range 10-40 ms are appropriate, 

some examples of which are Huang and Hansen (2006), Wang et al. (2000), Kim et al. 

(2005). Others, such as Saunders (1996), Scheirer and Slaney (1997) have used a longer 

window with fixed size up to 2.4 s, and their research achieved a high accuracy rate 

when discriminating speech from music on a broadcast news channel. In fact, this makes 

it possible to look at state transition processes over consecutive frames. In particular, 

each 2.4 s window (or segment) contained 150 non-overlapped frames. The experi-

mental results gave a 98% success rate (Scheirer and Slaney, 1997), distinguishing mu-

sic from speech with an error rate of 5.8% when using frame by frame parsing and 1.4% 

when the window size of 2.4s was used.    

Lu et al. (2001b) provide a different scenario for audio classification, classifying audio 

through its contents into five classes (silence, music background sound, pure speech 

and non-pure speech (speech over noise or music)) by Support Vector Machine (SVM). 

The audio file was segmented into one-second segments, and each of these segments 

was subdivided into non-overlapping frames of 25 ms before classifying these segments 

into one of the above five classes. This work depended on the extraction of two sets of 

features. The first set consists of Mel Frequency Cepstrum Coefficients (MFCCs) and 

the second set comprises perceptual features including short time energy, Zero Crossing 

Rates (ZCR), sub-band power distribution, brightness, bandwidth and pitched ratio 

(ratio between the number of pitched frames and the total number of frames in a sub-

clip), spectrum flux, linear spectrum pair, and band periodicity. In addition to these two 

sets of feature spaces, the mean and standard deviation of the feature spaces across 40 
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frames within each 1-second segment were also computed and used. Energy information 

is employed at the beginning of the algorithm to discriminate between silence and non-

silence. At the next stage the non-silence is further divided into the last four classes, 

which are detected using 3 SVMs as follows: SVM1 divides non-silence into with 

speech and without speech; SVM2 splits the speech clip into non-pure speech and pure 

speech; and SVM3 divides without speech clips into background sounds and music.  

This seems to suggest that zooming in signal processing and analysis, and the combined 

use of both short-term analytical frames and slightly longer-term segments are particu-

larly beneficial. Typically, if the frame length is too short then it will not have enough 

samples to obtain reliable spectral information, and if it is much longer, then the signal 

will change significantly throughout the frame.  

Also, the window function is used to reduce the edge effect of the framing. There are a 

number of window types, one of the most popular being the Hanning window, which is 

used for general purpose applications because of its low spectral leakage (low distortion 

and the ability to recover the original signal from the converted one is high), with the 

trade-off being a slightly decreased resolution (widening of the main lobe) (Harris, 

1978). In this work, the Hanning window has been used as a filter window to reduce the 

edge discontinuities (Kim et al., 2005). 

2.2.2 Feature Extraction 

Feature extraction involves processing the segmented audio data to generate statistically 

significant observations and other salient information, and is essentially a form of data 

reduction. Commonly used features are frequency domain and time domain statistics. 

Time-frequency domain approaches are becoming increasingly popular (Kos et al., 

2013, Webb, 2011).  
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A survey of comprehensive research concerning feature extraction can be found in Shao 

et al., 2003 and MITROVIC et al., 2010, including taxonomy tables of more than 73 

parameters that can effectively represent audio features in a diverse variety of ways.  

Features are usually extracted from overlapped frames (each frame includes a number 

of samples). The section above lists a number of researchers who tested different frame 

sizes in their research; they show the effects of the frame’s size on the results. Gianna-

kopoulos (2009) extracted a set of raw and statistical features from 100 ms frames with-

out overlapping for harm detection (violent sound detection e.g. gun sound, screaming 

and so on) in audio content. The final decision is made on the basis of the statistical 

features (standard deviation, mean, median). 

For speech/music discrimination, Sell and Clark (2014) derived new features from the 

Chroma vector based on the musical tonality. Kos et al. (2013) proposed a new set of 

features (Energy Variance of Filter Bank) for speech/non-speech segmentation. Kos 

mentioned that the newly developed set of features could be deployed as a discriminator 

between speech and music with efficient results. Gaussian Mixture Model GMM has 

been used for evaluation of proposed features. For the same classification purpose, 

Khonglah and Prasanna (2016) investigate the behaviour of two different feature sets. 

The first set is related to the excitation source and contains the normalised autocorrela-

tion peak strength of zero frequency filtered signal and the peak-to-side lobe ratio of 

the Hilbert envelope of the linear prediction residual. The second set denotes the vocal 

tract system and syllabic rate of speech and includes the log mel energy feature, which 

represents the vocal tract information. The modulation spectrum represents the slowly 

varying temporal envelope. Khonglah states that the proposed sets of features provide 

additional improvements in speech/ music discrimination when combined with existing 

features. Both the Gaussian mixture models and the support vector machines were 
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deployed for evaluation purposes. 

Tzanetakis and Cook (1999a) implemented a real-time speech/music discrimination sys-

tem with some emphasis on music retrieval, called MARSYAS (Music Analysis, Re-

trieval and SYnthesis for Audio Signals). The MARSYAS system provides high accu-

racy through applying several features (Spectral centroid, Spectral flux, Pitch, MFCC, 

Zero crossings Rate (ZCR), Root Mean Square (RMS), Spectral roll-off) with some 

statistical computations. The comparison is made between two groups of features for 

classifying audio files into the following audio classes (speech, noise, crowd noise, and 

music genres (popular music, classical music (Jazz, Folk, Electronica, Rand, Rock, Reg-

gae, and Vocal)) (McKinney and Breebaart, 2003). The first of these contains low order 

signal characteristics (Root Mean Square RMS, Zero Crossing Rate (ZCR), bandwidth, 

spectral centroid and energy, and MFCC). The second group represents roughness, 

sharpness, loudness, and temporal envelope fluctuations. Gaussian-based quadratic dis-

crimination analysis is used for classifying, and results in the evaluation. The author 

indicated that results could be improved by enhancements of the feature space. 

Chapter Three will cover the most common audio features which have been used in the 

field of audio classification and deployed in the work described in the above literature.  

2.2.3 Machine Learning 

Machine Learning refers to an artificial process that optimises a feature extraction stage 

to partition the data into relevant classes. There are two main methods of classification, 

namely: unsupervised classification (clustering); and supervised classification (discrim-

ination). These two have been applied to a diverse range of work including physics, 

mathematics, statistics, engineering, artificial intelligence, computer science, and the 

social sciences;  see Webb (2011) for more information. 
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An important and growing body of literature has investigated various machine-learning 

techniques in the field of audio content analysis. Dhanalakshmi et al. (2009) categorized 

audio using Radial Basis Function Neural Networks (RBFNN), which are based on 

Radial Basis Function (distance function) as the activation function for hidden layer 

neurons and SVM reliant on event type to categorise audio into six different categories 

(music, news, cartoon, movie, sports, and advertisements), with accuracy of 92%. Lin-

ear predictive coefficients, linear predictive cepstrum coefficients, and Mel-frequency 

Cepstrum Coefficients (MFCC) were extracted from audio. SVM and neural networks 

were also applied with the same features to compare the result with RBFNN method. 

The accuracy rates were 92% and 93% respectively.  

Lu et al. (2002) classified audio specifically into four categories: speech, music, envi-

ronmental sounds, and silence. This was achieved using K-nearest-neighbour as the ma-

chine learning technique to discriminate the audio into classes. The speech segments 

were further divided into groups to denote different speakers through a developed un-

supervised segmentation/classification algorithm.  

Lefèvre and Vincent (2011) combined Hidden Markov Model with K-mean classifier in 

order to classify football games into three classes (whistle, crowd and speaker's voice). 

Each audio class was detected via several features. These features are computed either 

from a complete audio segment or from a frame (set of samples). The segment length 

was static at 1 second and the frame size represents 1024 samples with 512 overlapping. 

Lavner and Ruinskiy (2009) deployed the Decision Tree technique with time domain 

ZCR feature and frequency domain features such as spectral energy, MFCC, and others 

to discriminate between speech and music in real time audio files. The author reported 

that the DT algorithm outperformed SVM classifier results.  
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Thambi et al. (2014) used Random Forests (RFs), which is considered the modern gen-

eration of DT machine learning, to improve the discrimination between speech and non-

speech to decrease the required storage space through saving only speech segments. The 

authors illustrated that RFs results were better than other decision tree algorithms. Also, 

smoothing is used over five segments to improve the results. Random forest was 

compared against the bagging and bootstrapping decision tree algorithms by Zhang 

(2015) for classifying environmental audio into five different sets (bird, wind, rain, frog, 

and thunder) based on various sizes of training samples; the results show the stability 

of random forest against the other two algorithms. 

Díaz-Uriarte and Alvarez de Andrés (2006) deployed RFs for Gene selection and clas-

sification of microarray data. Due to the promising results and performance, the authors 

recommended that RFs become a "standard tool-box”. Later on, Statnikov et al.  provide 

a comprehensive study for the same purpose of classification between random forests 

and support vector machines (Statnikov et al., 2008). The author reported that RFs clas-

sifier outperformed SVM classification results.  

RFs also gave an excellent output even with the small size of the training samples, due 

to its geometric characteristics of being treated as a collection of hyperplanes, each one 

orthogonal to the respective feature axis (Breiman, 2001a). 

2.3 Related Work 

The idea of automated media information retrieval has been around for several decades, 

since the 1980s when early PCs and mainframes were the predominant computing plat-

forms. The past three decades have seen tremendous technological progress in compu-

ting power and prevalence. Alongside the computing power enabling more to be at-

tempted, algorithms, developments in the field of Automated Speech Recognition 
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(ASR), Music Information Retrieval (MIR), event sound recognition, and machine au-

dition of soundscapes have accumulated a large number of invaluable methods  and 

tools, and much know-how. A system integration approach to audio information mining 

can be hypothetically built upon the successes in these fields to extract and obtain in-

formation of interest from soundtracks. Moreover, machine learning tools such as sta-

tistical and intelligent signal processing, soft computing, pattern recognition techniques 

and data mining methods have all been developed to an even more mature and sophis-

ticated level. This section will present a review of the most of the relevant work and the 

present state of the art of these enabling and related technologies.  

2.3.1 Music Information Retrieval  

Studies in MIR have seen similar progress in the development of machine audition tech-

niques. Downie has defined MIR as “a multidisciplinary research endeavour that strives 

to develop innovative content-based searching schemes, novel interfaces, and evolving 

networked delivery mechanisms in an effort to make the world’s vast store of music 

accessible to all” (Downie, 2003). Downie has summarised the impediments against the 

MIR system in three simple points “No standard collection of music, no standard tasks 

of performance task and no standard metric”. 

The International MIR Systems Evaluation Laboratory (IMIRSEL) by Downie (2007) 

produced three projects to support the MIR area. These projects are Music Information 

Retrieval Evaluation Exchange (known as MIREX), which holds an annual event to 

evaluate the algorithms, techniques and music digital libraries in this field. Networked 

Environment for Music Analysis, which is abbreviated as NEMA, has planned to build 

an open web service framework to evaluate and investigate tools which are used in MIR 

as well as other applications. Structural Analysis of Large Amounts of Music Infor-

mation (also called SALAMI) provides resources for musicologists for music analysis, 
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which has generated a database containing 23,000 hours of analysed digital music.  

Figure 2-2 depicts a general MIR system. In general, all MIR systems share the follow-

ing objectives:  

 Automated music transcription. 

 Musical genre categorization. 

 Mood and theme analysis 

 
 

Figure 2-2 Music Information Retrieval MIR System 

Table 2-2 illustrates the most prominent software and tools that have used in the field 

of MIR with a brief explanation of each. 
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Table 2-2 List including most prominent MIR software and Tools 

Software Function Description 

BeatRoot  Analysis, Music Transcription 
JAVA-based beat annotation software (audio, 

MIDI) for beat tracking (Dixon, 2001). 

Essentia  Analysis, Music Transcription 
C++ library for audio analysis and audio-based 

music information retrieval (Bogdanov, 2013). 

Humdrum Toolkit Analysis Toolkit 
Tools intended to assist in music research at the 

symbolic level (Huron, 1995). 

jMIR Analysis 
Software/Java for automatic music classification 

and similarity analysis (McKay, 2010) 

MIRtoolbox Features Extraction 
MIRtoolbox is a Matlab toolbox used for the 

computation of audio features (Lartillot, 2010) 

Sonic Visualiser  

Audio Analysing and features 

extraction 

An application for viewing and analysing the con-

tents of music audio files (Cannam, 2010) 

MARSYAS  Analysis Synthesis MARSYAS (Tzanetakis , 2009) 

C++ Library for 

Audio and Music  

C++  Programming Library  

CLAM is a (C++ Library for Audio and Music) 

software framework for research and application 

development in the Audio and Music Domain 

(Bartkiewicz, 2013).  

ChucK  Programming Language Audio programming language (Peruse, 2015) 

CLM  Synthesis 

Common Lisp Music is a music synthesis and 

signal processing package in the Music V family 

(Schottstaedt, 1986). 

Nyquist  Synthesis 

Nyquist is a sound synthesis and composition lan-

guage. Nyquist is a system based on functional 

programming (Chris, 1986). 

SuperCollider  

Environment and programming 

language for Features Extraction 

and Synthesis, 

A real time audio synthesis programming language 

(McCartney ,1996) 

 

MARSYAS is a widespread audio processing system with specific emphasis on MIR; it 

has achieved the previously mentioned objectives with some limitations such as the 

inability to classify non-exclusive (overlapped) soundtracks. For example, there is no 

ability to detect speech when it is synchronised with the music. Therefore, there is no 

speech transcription capability, which leads to the loss of important information. 

MARSYAS has been deployed by IMIRSEL as an effective evaluation tool for digital 

http://smcnetwork.org/node/969
http://smcnetwork.org/node/1741
http://smcnetwork.org/node/1945
http://smcnetwork.org/node/1440
http://smcnetwork.org/node/972
http://smcnetwork.org/node/271
http://smcnetwork.org/node/234
http://smcnetwork.org/node/234
http://smcnetwork.org/node/1301
http://smcnetwork.org/node/276
http://smcnetwork.org/node/262
http://smcnetwork.org/node/962
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music libraries and MIR algorithms. IMIRSEL employs this software for its ability to 

provide a general, extensible and flexible architecture that allows easy experimentation 

with algorithms and provides fast performance that is useful in developing real-time 

audio analysis tools. 

2.3.2 Automated Speech Recognition 

In the formative years of ASR, speech recognition systems processed only one word at 

the time. These elementary ASR systems based on template matching were effective in 

recognising isolated words, but not running speech. Subsequently, recognising short 

sentences without the need for the speaker to pause during the utterance became possi-

ble following the development of connected word detection (Noyes and Starr, 1996). 

Later systems proposed in Arriola and Carrasco, (1990a), Arriola and Carrasco, (1990b) 

applied the multi-layer perceptron and Hidden Markov Model classifiers to effectively 

model and predict the probabilistic nature of running speech and support much more 

reliable final decisions. 

Khemiri et al. (2013) implemented a system of audio indexing to look for predetermined 

advertisements through broadcast radio. The unit called Automatic Language-Independ-

ent Speech Processing (ALISP) is used. ALISP is based on temporal decomposition and 

vector quantization. HMM is employed to model the system. 

Commercial speech recognition systems in the last decade have developed from 

speaker-dependent systems, where the systems are required to adapt to individual talk-

ers before use  (Lu et al., 2002) to speaker-independent systems, which will recognise 

more generally. There is currently a variety of software available for ASR. Examples 

include Dragon, CMUSphinx, Kaldi, iATROS, VoxForge, MacSpeech, Scribe, iListen, 

IBM ViaVoice and google out. The University of Cambridge-Microsoft HTK toolkit 
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offers a set of free baseline algorithms for further development into bespoke applica-

tions ( Microsoft and Cambridge, Sept. 28, 2000).  

The last three decades have seen a great deal of work taking place to address ASR 

problems and thereby achieve much improvement in ASR systems. Nonetheless, there 

are still major challenges ahead, especially the robustness issue of ASRs in diverse ap-

plication settings, such as language, pronunciation/intonation, signal-to-noise condi-

tions and other related factors. Figure 2-3 shows the conceptual processing of an ASR 

system. 

Figure 2-3 The General Architecture of Automated Speech Recognition system 

2.4.3 Acoustic Event Detection  

Event sounds and/or soundscapes could form a robust body of material, which might 

provide supplementary information for audio information mining. The information, 

comprising analysis of sound events, may yield a clear series consisting of a logically 

connected scene or events, which provides an extra dimension of information in the 

soundtracks. 

The European Commission's integrated project by the name of CHIL ("Computers in 

the Human Interaction Loop")  is a three-year project to analyse human face to face 

situations and extract knowledge in the office or lecture room  (Waibel1 et al., 2004). 

The project scenario is based on answering a number of questions through environment 
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events analysis. These questions are of the type (‘who and where’, ‘what’ and ’why and 

how’). 

Temko et al. (2006a) give an evaluation of three proposed systems for the analysis of 

acoustic event detection and classification of events in the meeting room. Two of the 

systems utilised HMM, and the other used SVM. In general, the systems classified 

events into speech, CHIL events, and other events. The system based on SVM gave the 

same results as the other two systems or better. Temko and Nadeu (2006b) also classi-

fied acoustic events in the smart meeting room “a room equipped with multiple cameras 

and microphones in order to investigate the video and audio perception of the computer 

systems” (Temko et al., 2007, pp.132),  using SVM and comparing this with GMM. The 

SVM gave improved results over the GMM. The CHIL system is officially appraised in 

many evaluation campaigns, and the system is ranked among the best.  One of Tekmo’s 

thesis comments was “The biggest problem in real environment acoustic event detection 

is overlapping – i.e. temporal intervals where the acoustic event of interest is overlapped 

with speech and/or another acoustic event. It was found that the overlapping segments 

account for more than 70% of errors produced by every submitted system” (Temko and 

Nadeu, 2007, p. 148).  

2.3.3 Mixed Audio Classification  

Classification is important in archive management, information mining from big data, 

and many other applications. No previous study has been general enough to propose a 

universal system that will maximise information retrieval for further information 

mining. Although the impact of overlapping classes might decrease the information re-

trieval system performance, there has been little research done on addressing this prob-

lem. Some examples of this are Thambi et al. (2014), Kos et al. (2013), Mohri et al. 

(2007), Seyerlehner et al. (2007), Temko1 et al. (2006), Chou and Gu (2001), El-Maleh 
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et al. (2000), Khonglah and Prasanna (2016), Khaldi et al. (2016). The detection of these 

classes with the presence of overlap conditions or real-world audio detection has seldom 

been studied. Zhang and Kuo (2001) presented an approach to segmentation and anno-

tation of audio-visual recordings into three main categories, namely, silence, and with 

and without music components. Each of the last two categories were then further sub-

classified. Four kinds of audio features were used, namely, the short-time energy func-

tion, the short-time average zero-crossing rate, the short-time fundamental frequency 

and the spectral peak tracks. The segmentation performance of the proposed method 

when dealing with music, speech with background music, and sound effects with back-

ground music was up to 94.5%, 86%, and 87.5% respectively.  

For the case of real-world audio classification, universal open architecture has been 

proposed as a possible solution to the problem of non-exclusive classification (Duncan 

et al., 2014). The proposed system has the ability to detect speech, music, and event 

classes even where they overlap simultaneously and to label the input signal via a 

timestamp. Some overlapped classes are complex in nature. Hence, they cannot be 

straightforwardly detected by common features. Shokouhi et al. (2015) proposed an 

overlapped speech detection algorithm with a presence of noise condition to estimate 

the likelihood of overlapping speech. The spectral subtraction algorithm for speech en-

hancements is used to detect SNR from non-speech regions. The aim of the suggested 

algorithm is to estimate the word-count of the input audio file. Finally, syllable rates 

are estimated by dividing the total number of syllables by the segment length. Carrying 

the idea forward, MARSYAS software has been combined with the spectral subtraction 

algorithm, the output being plotted to the timestamp. This work was also an extension 

of the previous work (Mohammed et al., 2015). 
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For detecting the presence of music in noisy backgrounds, Lee and Ellis (2008) sug-

gested a robust musical pitch detection algorithm, capable of dealing with highly vari-

able environmental recordings such as the soundtracks of consumer video recordings, 

detecting music in ambient audio. The best music/speech discrimination result, with 

vocals present, of the proposed features was when it was combined with Rhythm and 4 

Hz Modulation Energy (4HzE). Moreover, YouTube recording samples used to test the 

proposed feature achieved 91.4% accuracy when combined with a variance of spectral 

Flux and Rhythm. Tomonori et al. (2008) investigated four sets of features for back-

ground music detection. The first set is empirical features including 3-Hz modulation 

energy, the percentage of low-energy frames, the spectral centroid, the spectral roll-off 

point, the spectral flux, and the zero-crossing rate. The second set is Mel-frequency 

Cepstral Coefficients (MFCC). The third one is the linear frequency spectral powers 

feature, which is derived from the equally spaced band in the frequency domain. The 

short-time Fourier transform (STFT) is calculated for each band. Finally, the 80-

dimensional feature vector is computed by averaging values within each frequency 

band.  The last feature set is the spectral powers feature with the MFCC (SPMF). All 

features were extracted for every 50 ms-long frame. The experimental results show the 

first features set to provide the highest music detection accuracy with a high music-

speech mixing ratio, whereas the third set reflects the highest results with a low music-

speech ratio (-10 dB and -20dB).  Boakye et al. (2008) explored about 40 features for 

detection of the overlapped speech to improve the accuracy of speaker dimerization. 

The system introduced classifies the speech recorded in the context of a meeting into 

three classes: non-speech, speech, and overlapped speech (more than one speaker speak-

ing simultaneously). The author indicated that the best F1_Score performance was 47%. 
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2.3.4 Sound Source Separation 

Speech/music separation algorithms are suggested as a possible solution to automatic 

speech/music discrimination and audio content analysis, and several techniques have 

been proposed in the literature. Even though there is no software available in the public 

domain - neither  commercial nor free - able to accomplish speech/music separation 

with mono channel recording, giving adequate performance without prior knowledge 

about a given signal. By way of explanation, it is worth noting here that usually the best 

method to perform the separation with mono channel recording depends on the type of 

a priori knowledge which one has about the mixed audio signal, which of course is 

absent in the arbitrary sound recording (the case for this study). The domain is usually 

a time-frequency representation of the mixed signal. In the field of Blind Audio Source 

Separation methods, the assumption is that there is not any knowledge available about 

the input sources.  

Techniques such as Independent Component Analysis (known as ICA) (Comon, 1994), 

Non-Negative Matrix Factorization (Lee and Seung, 2001), or statistical approaches 

like Hidden Markov Model (known as HMM), which work on the basis of prediction 

using previous data values, are generally employed (Comon and Jutten, 2010). 

From a literature point of view, most primary BSS/ICA algorithms found in the litera-

ture are iterative. These range from the pioneering neural network approaches by Hé-

rault et.al. (1985), Comon (1994), Macchi and Moreau (1997). In addition, one of the 

essential theoretical assumptions is that signal components are statistically independent 

of each other (Comon, 1994). The ICA methodology takes into account the structure of 

the covariance matrix of the dataset matrix that is under test. This is generally completed 

by means of a Singular Value Decomposition (SVD). This orthogonality only lets one 

discover the mixing matrix up to an orthogonal element (Comon, 2010, p. 155). 



CHAPTER 2: LITERATURE REVIEW AND BACKGROUND OF AUDIO CLASSIFICATION SYSTEM 47 

 

Regarding Non-Negative Matrix Factorization, which is a cluster of algorithms con-

cerned with the decomposition of multivariate channels where the input matrix is 

factorised into more than one matrix, one should note that all the input and output ma-

trices have no negative elements. This non-negativity property makes the decomposed 

matrices easier to inspect (Lee and Seung, 2001). Dissimilar to the BSS methods based 

on ICA, Non-Negative Matrix Factorization does not consider that the sources of the 

given multi-channel signal are independent. Non-negative matrix factorization tech-

niques have also been applied to detect polyphonic sound events. An initial non-nega-

tive matrix factorization method for sound event detection was suggested by Heittola et 

al. (2011); the authors utilised NMF for the source separation stage and then applied 

HMM to improve the separated events through the prediction approach. An on-line 

NMF approach on the basis of the source separation has been covered in Joder et al. 

(2012). The authors developed a semi-supervised method for splitting the noise units in 

the observed frame using a sliding window. The prior knowledge about the speech bases 

is provided from a training dataset while the noise constituents are measured on-line in 

the recent past. Thus, the suggested work is performed based on the consideration that 

one source is known; the unknown sources are initialized randomly and updated with 

each new frame. Joder’s approach in the preceding has been followed by sufficient work 

for speech/noise separation by Weninger et al. (2011) and Wilson et al. (2008), when 

the separation of both sources - speech and noise modules - through prior learning. In 

Smaragdis et al. (2017), a different approach has been taken for noise separation, where 

the authors considered that the frequency margins of the mixed sources are known via 

prior learning. Nevertheless, this estimation requires off-line handling, where the given 

sound data or noise type is known. By contrast, to the preceding and most conventional 
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methods that are used for time series forecasting, the SSA method is a statistical tech-

nique (non-parametric) and has no prior hypotheses or presumptions about the time se-

ries under consideration. 

SSA is a tool for time series decomposition and has been deployed in a diverse range of 

analysis problems. It has been providing adequate results through its ability to decom-

pose the time series based on the oscillation. There are a great many publications dis-

cussing aspects of SSA methodology and its applications. The range of these 

applications extends through trend detection and prediction, digital signal processing, 

image processing, health, geology, and psychology, some examples of which are Lu and 

Sanie (2015), Eftaxias et al.( 2015), Zeng et al.( 2014) and Ghil et al. (2002).  It is used 

for tremor and climate prediction by Eftaxias et al. (2015) and Ghil et al. (2002) respec-

tively; they reported the ability of the SSA method to extract the target components. In 

the frequency separation, Mert and Milnikov (2011), Harris and Yuan (2010) used SSA 

for separation of low-frequency components from the high frequencies. Depending on 

the same concepts, Zeng et al. (2014) deployed SSA for the elimination of environmen-

tal sound from heart sound signals through using eigenvalues to select the effective 

Principal Components (PCs). In image processing, an SSA spectrum was used to ana-

lyse a patient's movement disability's effect on their grasp, which is necessary to deter-

mine the type of therapy (e.g. Lee et al., 2013).  

The most of the relevant work was in the classification and localising field. Mohammadi 

et al. deployed SSA for improving time–frequency domain sleep electroencephalog-

raphy (EEG) classification. It is used as a pre-processing step to improve the analysis 

of EEG signal through separating the components which related to brain waves, sleep 

spindles and K-complexes (Mohammadi et al., 2016).  Also, Enshaeifar (2016) applied 
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SSA for sleeping analysis. The authors introduce a new method for categorising sleep-

ing into five levels through decomposition of EEG data by SSA.  For improving the 

pulmonary auscultation, which is a widely used diagnostic method, and then separation 

and localising the heart sound, Sebastian and Rathnakara (2013), Ghaderi et al. (2011) 

deployed SSA on the respiratory data and introduce an adaptive method for selecting 

eigenvalues which correspond to heart sounds. Sanei et al., who is one of the SSA ‘gu-

rus’, detected a murmur from heart sounds through changes in the statistical properties 

of the data, decomposed using SSA (Sanei et al., 2011b). Jarchi and Yang (2013) pro-

posed a method for discriminating walking into three categories, namely walking down-

stairs, walking level, walking upstairs, and using ten healthy subjects. The sound was 

recorded using a triaxial sensor accelerometer positioned on the ear. SSA was used to 

decompose the time series and remove the noise trend from the signal. Moreover, SSA 

was used for eliminating the noise components at the feature extraction stage in hyper-

spectral imaging. The experiment shows that the distinction ability of the features has 

been much improved. 

In this study, the use of the singular spectrum analysis algorithm has been investigated 

for localisation of the speech and music subspaces in the single mixed channel, which 

represents real-world audio and improves the classification results.  

2.4 Conclusion 

During the past 30 years, many more multimedia archives have become available. They 

have been used as essential references in many applications and disciplines. The 

localisation of audio classes, which is beneficial to information retrieval from audio 

content, was the main objective of researchers working in the audio content analysis 

area as mentioned in the above literature. A careful study of the literature reveals that : 
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 Overlapped soundtrack classification has not been thoroughly investigated. Also 

the overlapping problem represents the major challenge to achieving high perfor-

mance in automatic audio classification. 

  It should be noted that many classification regimes and algorithms such as ANNs, 

HMMs, SVMs, KNNs, and GMM with a diverse set of features were efficiently 

used for information retrieval of specific class detection with specific conditions.  

Hitherto, there have been limited studies that have addressed real-world audio 

problems that might contain speech, music, or a combination thereof; this has mo-

tivated the present study.  

 In terms of feature space, literature reviews have indicated that were not many 

researchers who have used the automated audio features extraction methods such 

as the optimisation and the machine learning. In the area of audio classification or 

categorisation, the utilised audio Features (included low-level descriptors) were 

heuristically developed. All the related research is deeply influenced by psychoa-

coustic (sound perception and How are perceived by the human). 

  A clear understanding of overlapped features is essential for detection of both the 

speech and the music occurrences. In addition, the success rates depend on the 

appropriate feature spaces and window lengths. This seems to suggest that zoom-

ing in signal processing, analysis, and the combined use of both short-term ana-

lytical frames and slightly longer-term segments are particularly beneficial. 

 All the above techniques show promising results and have become popular. How-

ever, the random forest technique has outperformed other techniques in the audio 

classification area and shown the ability to learn effectively from large data sam-

ples with very few features, with promising classification results as shown in the 

https://en.wikipedia.org/wiki/Sound
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literature. Moreover, it provides stable outcomes and is robust against dataset 

noise.   

 Singular Spectrum Analysis is used efficiently and widely for both noise removal 

and sound decomposition in diverse applications with significant improvement. In 

summary, SSA has not been considered before to solve the overlapped sound-

tracks problem in spite of the fact that SSA could be a potential solution due to its 

many interesting results and the ability of components separation.  

Thus, the classification of overlapped audio soundtracks could be improved by applying 

a novel pre-processing step to the proposed classification system. The proposed algo-

rithm depends on singular spectrum analysis and the Random Forests technique.
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3 THE COMMON AUDIO FEATURES 

3.1 Introduction 

One of the most common facts in the field of audio classification, and yet also one of 

the outcomes from the preceding chapter, is the importance of the extracted feature and 

analysis stage. This is an essential process in pattern recognition and machine learning.  

Feature extraction implies the conversion of audio signals into a set of meaningful in-

formation called the feature space. In this study, the dataset is audio signals. They com-

prise an exceedingly large dataset, which is difficult to process directly. In such cases, 

it is necessary for the researcher to become familiar with audio features. Based on this 

knowledge, the feature sets can be heuristically selected.  

In this chapter, the well-established audio features that have been used by many re-

searchers, seen in a broad range of audio classification and recognition systems and 

used by Lartillot et al. (2008) in MIRtoolbox, are presented. MIRtoolbox is considered 

a popular toolbox, deployed and validated by many other researcher and cited in plen-

tiful publications in the music categorisation and in the speech/music discrimination 

areas (e.g. Jiang, 2012 and Lika, 2014). Some examples of this are McKay (2010), 

Michalevsky et al (2014), Knox et al. (2011), Collins et al. (2014) and Aubé et al (2014). 

Furthermore, this chapter demonstrates the method the extraction and analysis of the 

deployed feature in the presence of the overlapping between audio classes. The features 

analysis stage comprises three steps. Firstly, mixing of pure samples (speech and music) 

to generate mixed soundtracks. Then, all features are calculated for pure and new mixed 

samples. Finally, comparisons between the extracted features for both cases (before and 

after mixing) are conducted through plotting them in a sequential manner. The calcula-

tion method of the fully developed features will in addition be described. All the adopted 
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features are deployed in the classification of the deployed dataset samples into speech 

or music regardless of whether these samples were pure or overlapped. It is worthwhile 

to note once again that the main purpose of this study is not to cover all audio features 

that are used, as described in the literature, but rather, the goal is to provide an adequate 

method to reduce classification obstacles where overlapping takes place between the 

audio classes.  

3.2 Feature Extraction 

Features are usually extracted from overlapping frames (each comprising a number of 

samples) that denote periodically or quasi-stationary characteristics, instead of estimat-

ing them over the whole signal s(n) or the spectrum calculated from the whole signal 

which greatly changes over time. Section 2.2.1 includes a list of some researchers who 

tested different frame sizes in their research; they show the effects of the frame size on 

the results. In this study, the long audio sample is broken into shorter frames of 50 ms 

long and 25 ms overlapping using a moving window technique.  

The notations below will be utilised in the time domain: 

 s(n) is the sampled audio signal. 

 n represents the time index of the audio signal samples. 

 Nt denotes the total length of the given audio signal in number of samples. 

 Fs is the sampling rate of the given audio signal. 

The following notations will be used for the time frames: 

 f(n) is the sampled audio frame. 

 n is the time index of the audio frame sample. 

 NF is the total number of frames in the audio signal s(n)
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 L denotes the length of the frame (total number of samples in each frame). 

 i,(1≤ i ≤ NF) is the index of the frame position in the audio signal s(n)  

 hop number of time samples between two successive frames (the size of window 

shifting measured in samples). 

The s(n) is divided into a number of frames f equal to NF, where all frames have the 

same length L, 0< L ≤ Nt , L= [duration time in seconds x Fs]. Figure 3-1 depicts the 

procedure followed and the corresponding notations. 

0

…….

n=0

S(n)

n=Nt= signal 
Length in samples

n=L

n=hop size

L=frame length

1/Fs(sampling rate)
n=hop

1st frame

2nd frame
3rd frame

 

Figure 3-1 notations for audio signal framing 

The Equation 3-1 can be used to calculate the number of frames (NF)  

   / 1tNF N L hop       3-1 

The hop size hop reflects the overlapping between the adjacent frames (calculated in 

samples) as illustrated earlier. Processing such as this produces a two-dimensional ma-

trix L X NF, where each column corresponds to a separate frame sequence. The next 

step is the feature extraction: a set of time domain and frequency domain features is 

extracted from each frame (column), whereof the output is called the feature vectors or 



CHAPTER 3: THE COMMON AUDIO FEATURES 55 

 

feature space. The dimensionality of the generated feature vectors depends on the num-

ber of extracted features. In this study, 34 features are computed using MIRtoolbox, 

mentioned earlier, for each frame. These extracted features are presented in the follow-

ing two sections. As mentioned above, audio features that have been used by many 

researchers and seen in a broad range of audio classification and recognition systems 

are extracted and deployed in this study. 

3.3 Time Domain Features 

Time domain features represent how waveforms change over time. In general, these 

features are calculated directly from the samples of the given sound signal. Such a prop-

erty is considered the simplest method for sound analysis, and it is significant for the 

enhancement of results by combination with features that are more sophisticated. The 

following sections describe the features employed. 

3.3.1 Zero Crossing Rate (ZCR) 

Zero Crossing Rate represents the number of times that an audio waveform crosses the 

zero axis in a given time interval divided by the frame’s length to remove the depend-

ency on the duration. In other words, the ZCR refers to the number of signal sign 

changes per unit time. It is a robust feature used to discriminate between music and 

speech or between speech and non-speech samples (Chen, 1988). It is a straightforward 

computational method, employed in many studies related to such objectives as detection 

of speech and music, e.g. (Al-Maathidi and Li, 2012, Shete and Patil, 2014, Bachu et 

al., 2008, Chou and Gu, 2001), and automatic speaker recognition (Chen, 1988).   
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where i is the frame’s position in sequence of  the audio signal s(n). 
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The extracted feature will be presented as follows: at the beginning of the process, the 

features were extracted from three classes, namely Music (M), Speech(S), and Speech 

over Music (SM). Two figures are used to explain each feature and its distribution. The 

first figure comprises the following: 150 randomly selected feature samples from a 

dataset of calculated features were used for each of the aforementioned classes. The 

chosen samples were retained in a sequential fashion to allow further examination of 

their homogeneity. The first 50 samples are music, followed by 50 samples pure speech 

and then followed by the last 50 samples which are a mixture of speech and music. The 

Y-axis denotes the amplitude of the calculated feature, which is extracted from frames 

of 50 ms length, while the X-axis refers to the frame index. The following procedure is 

applied for a comparison between the presence of speech and music. An alternative 

statistic, which is the square of the standard deviation (σ2) normalised to the square of 

mean (µ) value (
𝜎2

μ2
) is computed for 1 second mid-term (for each 20 successive frames 

of the pre-calculated feature of speech and music) with a window which is moved by 

only one sample each time. This statistical feature was applied on a Root Mean Square 

(RMS) basis for the first time by Panagiotakis and Tziritas (2005) as a speech/music 

discriminator feature, where the authors refer to it as the “volume of invariant”. Later 

on, the same features and representation has been used by (Giannakopoulos, 2014) .The 

second figure will present a histogram of the above statistical feature and in a similar 

presentation method.  
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Figure 3-2 ZCR Feature. A- Calculated Feature in sequential for audio classes (M, S, 

SM) B- Histograms of the normalised standard deviation of the ZCR for music and 

speech classes. 

Speech frames mostly have higher ZCR values than music because there are silence 

gaps amidst the continuous utterance and this manifests itself in abrupt changes from 

the point of view of the analysis. This is shown in Figure 3-2 (A), where pure speech 

samples generally have higher ZCR than other classes and thus appear to show wide-

ranging changes between low and high power due to these silence gaps. For the same 

reason, the histogram Figure 3-2 (B), which presents the histogram of the statistical 

variables of ZCR of speech and music frames, indicates that ZCR values, which corre-

spond to speech samples, vary over a greater range of values along both axes. This 

finding is consistent with many other studies, some examples of which are Shete and 

Patil, (2014), Bachu et al. (2008) and Panagiotakis et al. (2005). This makes ZCR a 

useful feature to discriminate between pure speech and music. Nevertheless, it is not 
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adequate in the presence of overlapping between audio classes. This is a common ob-

servation, and it has a physical meaning since speech samples have fewer silence gaps 

when they overlap with other classes, i.e., the silence intervals between utterances will 

contain music rather than silence in the case of overlapping with music.  

3.3.2 Root Mean Square (RMS) 

The calculated RMS of the audio signal is usually expressed in decibels. It was defined 

for the first time by Kenny and Keeping (1962). It is a commonly used feature. Tzane-

takis et al. mention that frames with silence have lower RMS than those without silence 

(Tzanetakis and Cook, 2002). This feature is defined according to Equation 3-4 by 

Kenny (1962).  
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Figure 3-3 RMS Feature value, A- Feature Amplitude in sequence for audio classes 

(M, S, SM), B- histogram of RMS values for speech and music classes 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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From the data in Figure 3-3 (A), it can be seen that music and mixed classes generally 

have higher values than those which have speech context. The histogram in Figure 3-3 

(B) indicates that the statistical variable of speech is slightly higher than that of music 

and the latter has a wider distribution range and lower level of invariant.  

 

 

3.3.3 Entropy 

The entropy feature is a measure of information averaged over the frame, and reflects 

the randomness of the signal (entropy increasing with randomness, which reflects a 

higher amount of information and vice versa) (Shannon, 1948). The default mathemat-

ical definition is shown in Equation 3-5 (Shannon, 1948): 
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The value of Pr(xi) is the probability that f(n) = xi and xi represents the sample space 

of the given frame, see Section 7.1.1 for more information about the probability calcu-

lation method. 

Consistent with the conclusions of Misra, who illustrated that voiced sound would have 

lower entropy than noisy or non-speech, which corresponds to a flatter spectrum (Misra 

et al., 2004), Figure 3-4 (B) indicates that pure classes with silence intervals such as 

speech frames have a higher invariant level of entropy. However, the overlapped speech 

with music, or even the pure music, could reflect a lower invariant in the entropy.  
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Figure 3-4 Entropy Feature, A- Feature Amplitude for (M, S, SM), B- distribution his-

togram of with speech and with music segments for entropy values 

3.4 Frequency Domain Features 

Frequency domain features are also known as spectral domain features and represent 

the spectral distribution of the signal. Frequency domain features can be calculated by 

Discrete Fourier Transform, where the output is decomposed into two parts. The first, 

the magnitude, represents a measure of the intensity and corresponds to the participation 

of the frequency in the input signal. The other part represents the phase of the signal. 

Another transform method is the Discrete Cosine Transform, which expresses a finite 

duration signal as a weighted sum of cosines of real numbers. Fast Fourier Transform, 

which exploits computational redundancy in the equation that defines the DFT. It is an 

efficient algorithm for finding the results of the DFT, (Giannakopoulos, 2014, p.33-36).  

The notations below have been used in the demonstration of spectral domain features: 

B- Histogram of the Standard Deviation square normalized to the square of the  mean 
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 k represents the bin index of the frequency. 

 S(k) denotes the audio spectrum calculated for the audio frame using FFT. 

 P(k) reflects the squared magnitude audio spectrum estimated for the S(k) of the 

audio frame. 

 NFT is the size of the spectrum. 

The framing pre-processes explained in the time domain features section correlate to a 

multiplication of a given audio signal s(n) by a rectangular window function for the 

frame f(i). Meanwhile, the multiplication in the frequency domain corresponds to the 

convolution (*) operation. Hence, to avoid the distortion of the spectrum, the applied 

window function should be represented by a very narrow main maximum with side val-

ues close to zero maxima such as the Hanning window (see Section 2.3.1). Conse-

quently, the frame in the ith position is calculated according to Equation 3-6.  

  ( ) 0.5 1 cos(2 ) ( ) 0... 1
1

f i s j L
L


 

       

n
n n            3-6 

where the first part of the equation symbolises the Hanning window and j is the sample 

index of the frame in the ith. 

3.4.1 Pitch 

Pitch refers to the fundamental frequency (F0) which is considered the primary key to 

detecting harmonics. Therefore, it is necessary for the segmentation process - as well 

as analysis and synthesis of speech and music - Normally only voiced speech and har-

monic music have well-defined pitch.               
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3.4.2 Brightness 

The brightness describes the spectral distribution of the frequency over the sound seg-

ment, through measuring the proportion of frequencies above the cut-off frequency, 

which is equal to 3000 Hz (Juslin, 2000). Lartillot et al (2008) reported that the default 

value of cut-off frequency is 1500 Hz, whilst Laukka et al. (2005) have suggested an-

other value of the cut-off frequency which is 1000 Hz. In this study, 1500 Hz has been 

used as a cut-off frequency as a mid-value between the high and low frequencies that 

represent music and speech respectively. Consequently, the samples with music appear-

ing are represented by higher brightness and those that are without music represented 

by a lower brightness value. In other words, brightness detects whether the signal is 

represented by high or low frequencies (Mitrovic et al., 2010). Figure 3-5 demonstrates 

the calculation method of the brightness value. 

 

Figure 3-5 Brightness Calculation Procedure  

The default mathematical definition is shown in Equation 3-7 (Juslin, 2000):   
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Brightness has been applied in many audio content analysis studies through detection  

of the frequency distribution (Liu and Wan, 2001, Wyse and Smoliar, 1995, Scheirer 

and Slaney, 1997). The brightness of the classes depicted in Figure 3-6 indicates that 

the brightness level of music is higher and less extensive compared with that of speech, 

and for this reason the histogram of the speech group ranges far across the domain of 

values. To reduce the sophistication of the processing, this feature has been deployed 

with other combinations of features to categorically identify music.  

 

Figure 3-6 Brightness Feature, A- Brightness Amplitude (M, S, SM), B- distribution 

histogram of with speech and with music segments for Brightness values 

3.4.3 Roughness 

The roughness feature was introduced for the first time by Plomp and Levelt (1965) as 

an approximation of the sensory dissonance. It is calculated by computing the peaks of 

the frequency, and then calculating the mean of all the dissonances between all potential 

pairs of peaks (Sethares, 1998). 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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It is apparent from Figure 3-7 (A) that the roughness of pure speech samples is less 

pronounced than that of music and speech over music samples because it includes spec-

trally coherent fluctuations or higher abrupt changes ratios between silent and voiced 

gaps. For the same reason, the music samples reflect slightly more invariant range than 

other classes as apparent in Figure 3-7 (B). This finding is consistent with the findings 

of others (e.g. Fleischer, 1976).  

 

Figure 3-7 Roughness Feature, A- Roughness Amplitude (M, S, SM), B- distribution 

histogram for speech and music class segments 

3.4.4 Irregularity 

The irregularity spectral feature represents the degree of dissimilarity between consec-

utive peaks of the frame spectrum. It was proposed for the first time by Jensen (1999). 

The total irregularity is estimated as the quotient of the sums of the square of the vari-

ance between the consecutive spectrum bins and the square of the total spectrum as 

apparent in Equation 3-8 (Sethares, 1998): 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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Figure 3-8 Spectral Irregularity, A- Feature Amplitude Sequence (M, S, SM), B- His-

togram of std for speech and music segments. 

 

In Figure 3-8, the histograms of the normalised std value of the sequence of values of 

the irregularity feature for audio segments extracted from speech and music classes is 

demonstrated. The example specifies that the speech samples reflect a slightly wider 

spread than the music class. 

3.4.5 Spectral Roll-off Frequency 

Spectral Roll-off point Frequency denotes the frequency below which 85% of the spec-

trum magnitude can be found. Most of the signal power is concentrated within a certain 

range of frequencies. It increases with increasing bandwidth and is used for music in-

formation retrieval as well as to discriminate between music and speech (Tomonori et 

al., 2008). It was also used by Scheirer and Slaney (1997) to distinguish voiced from 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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unvoiced sound. Palo et al. (2015) developed a new feature for emotional speech recog-

nition based on spectral roll-off by finding the sub-band frequency. The spectral roll-

off feature can be computed as specified in Equation 3-9 (Kim et al., 2005): 

 

/2

0 0

( ) 0.85 ( )
FTNKroll

k k

S k S k
 

                               3-9 

where Kroll is the frequency bin corresponding to the estimated roll-off frequency. 

Along with the others, the data plotted in Figure 3-9 (A) shows music or mixed sound 

may show marginally greater values of this parameter because samples of this kind hold 

more information, representing more power. By contrast, the class with speech present 

demonstrates slightly higher and more extensive values of the variant in the frequency 

domain as demonstrated in Figure 3-9 (B).  

 

Figure 3-9 Spectral Roll-off, A- Feature Amplitude for Sequence (M, S, SM), B- dis-

tribution of with speech and with music segments for Roll-off values 

3.4.6 Spectral Centroid (SC) 

Spectral Centroid is defined as the centre of the gravity of the spectrum magnitude; it 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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corresponds to determining the spectrum point where the most energy is concentrated 

within the audio frame (Kim et al., 2005). Therefore, SC reflects the spectral shape of 

the frame. Mitrovic et al. (2012) refer to SC as a rough calculation of the brightness. 

The value of SC for the ith frame can be calculated as defined in Equation 3-10 (Kim et 

al., 2005): 
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Figure 3-10 Spectral Centroid Feature, A- Feature Amplitude Sequence (M, SM, S), 

B- Histogram of with speech and with music classes. 

In Figure 3-10-B, the histograms of the spectral centroid value for audio segments from 

two datasets -speech and music groups - are presented. It can be seen that the ‘with 

music’ class typically includes lower higher invariant and less extension range for the 

calculated statistic, while the values corresponding to the with speech group are wider.   

B- Histogram of the Standard Deviation square normalized to the square of the mean 



CHAPTER 3: THE COMMON AUDIO FEATURES 68 

 

3.4.7 Spectral Spread (SS) 

Spectral spread is defined by MPEG-7 as the second central moment of the spectrum, 

see Section 2.5.3 in Kim et al. (2005). The SS for a given frame is calculated by meas-

uring the deviation of the spectrum magnitude from the SC of the same frame according 

to Equation 3-11 (Kim et al., 2005): 
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Indeed, SS reflects the shape of frequency around the corresponding centroid. 

Giannakopoulos (2014) mentioned that a highly centred spectrum of a given frame 

around the SC value is represented by low values of the SS. An interesting observation 

from Figure 3-11 (A) is that the value of this feature is tighter and of lower frequency 

for music and mix segments than for pure speech. Consequently, in Figure 3-11 (B) the 

histograms of the standard deviation of SS over the mid-term frames of music and 

speech segments are presented; it shows that the std value of this feature is higher and 

wider for speech than for mixed and music segments. The reason for this is that the SS 

value for speech has lower invariant than music samples. 
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Figure 3-11 Spectral Spread SS Feature, A- Feature Amplitude Sequence (M, SM, S), B- Histo-

gram for with speech and with music classes. 

3.4.8 Spectral Skewness 

Spectral Skewness represents the third order central moment, and as a consequence is 

measured as shown in Equation 3-12, (Eyben, 2016): 
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In Figure 3-12 (B), the histograms of the spectral skewness value for audio segments 

from two datasets - speech and music groups - are presented. It can be seen that the 

‘with music’ group typically includes lower amplitude and less extension for the calcu-

lated statistic, while the values corresponding to the speech segments are higher as a 

consequence of calculated Spectral Skewness based on the spectral centroid feature. 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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Figure 3-12 Spectral Skewness Feature, A-Feature Amplitude Sequence (M, SM, S), 

B- Histogram of standard deviation for speech and music segments. 

3.4.9 Mel Frequency Cepstrum Coefficients (MFCC) 

MFCC is one of the most common audio features, used in many audio applications 

(speech recognition, speaker recognition, sound classification, and MIR). Davis and 

Mermelstein (1980) designed MFCC parameters  primarily for speech recognition, and 

these parameters have been shown successful in capturing significant acoustic infor-

mation. It is shown to be effective in a diverse range of  classification systems, for 

example Bae et al., (2008) and Weng et al., (2010). 

MFCC is computed using a number of steps (Kim et al., 2005, p. 52-55) (Bae et al., 

2008), which can be summarised as follows: 

 The Fast Fourier Transform (FFT) is calculated to transform the time-domain data 

to the frequency domain for each frame. 

 The absolute value is taken to obtain the magnitude spectrum. 

 Mel frequency scale, which is a unit of pitch used to convert a frequency f in hertz 

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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into its equivalent value in mel, is measured through Equation 3-13 (Kim et al., 

2005): 
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 The reduced spectrum is measured by handling the spectrum via a triangle Mel-

filter bank. 

 The spectrum log energy of the reduced spectrum within the pass band of each 

filter is calculated.  

 Finally, MFCC is obtained by calculating the discrete cosine transform (DCT) of 

the reduced log energy spectrum. 
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where Ej refers to the spectral energy calculated in the band of the jth Mel filter and Nf 

represents the total number of Mel triangular filters in the bank (frequently Nf equal to 

24) while, 1≤ co ≤Nc, Nc is the total number of applied cepstral coefficients Cco which 

are extracted from each window frame. The default value for Nc is 12, (Eyben, 2016, 

Kim et al., 2005). 

3.4.10 Spectral Entropy 

As described previously, Spectral Entropy was calculated for the first time by Misra et 

al. (2004), who calculated the entropy of audio spectra for the purpose of discriminating 

clean speech versus noisy speech;  it is proposed as a feature for robust ASR. Misra had 

shown that clean speech has a lower level of spectral entropy than noisy speech because 

the mean number of abrupt changes is higher in a noisy environment. This feature is 
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generally estimated through calculating the entropy of an audio spectrum. It is also ap-

plied to ASR (Misra et al., 2004). It can be calculated by means of the following steps 

(Misra et al., 2004): 

 Compute the power spectrum of the frame Pi(k). 

 In order to convert the spectrum into a probability mass function each frequency 

bin is normalised by the total spectrum power. Hence, the sum of area under the 

spectrum will be equal to 1 (Misra et al., 2004): 
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 Finally, the spectral entropy is computed according to Equation 3-16 
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The data trend in Figure 3-13 is consistent with the findings of past studies by Misra, 

who highlighted that speech samples have a lower value of spectral entropy. However, 

this hypothesis is rejected where speech samples overlap with music, as shown in the 

second and third groups in the Figure 3-13. The logical interpretation of this discrepancy 

is that the randomness of speech frequency as calculated stems from the music content 

rather than the speech content. 
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Figure 3-13 Spectral Entropy Feature, A-Feature Amplitude Sequence (M, SM, S), B- 

Histogram of standard deviation for speech and music segments. 

3.5 Summary 

In this chapter, the well-established audio features that in employed in this study are 

clarified. In addition, this chapter demonstrates the extraction and analysis method of 

these features in the presence of the overlapping between audio classes with reference 

to speech and music. All the explained features are used in the classification of the 

dataset samples into speech or music regardless of whether these samples were pure or 

overlapped. The next Chapter and Chapter 7 will illustrate how the explained features 

will organized and applied in the classification process.

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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4 RANDOM FORESTS 

4.1 Introduction 

The purpose of this chapter is to review the widespread and successful decision tree 

techniques of pattern recognition that are to be employed in this study. This chapter will 

be a supportive presentation of knowledge to provide a basic understanding of machine 

techniques that are used in the system proposed in the subsequent chapters. In the pre-

sent chapter, the primary concern is with illustrating the Decision Tree technique in 

general and more specifically the Random Forests technique which has been used to 

develop the non-exclusive classification that is highlighted in Chapter 6 as a solution 

for overlapped content detection. 

4.2 Decision Tree Overview 

During the course of the last three decades, the DT has become one of the most fre-

quently used machine learning techniques for supervised classification. Figure 4-1 de-

picts a simple DT with internal decision nodes and leaf nodes that represent speech/mu-

sic categorization, the conclusion. In this example, a theoretical audio frame classifica-

tion has been made; the DT at the beginning checks the RMS feature of the given frame. 

If the RMS power feature is less than a specific threshold then it will  be considered 

unvoiced, otherwise it will be classified as a voice sample. Furthermore, the right node 

checks the ZCR value. If the ZCR is less than the specific threshold then it will be 

classified as music, otherwise it will be classified as speech.  

This approach is known as top-down induction of DT. The first innovation of the DT 

algorithm was represented by Hunt’s concept learning system framework in 1966 
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(Quinlan, 1986), which built a DT to minimise the classifying cost through measure-

ment of two components: detecting the cost value of the object; and the cost of the 

misclassification. The concept learning system chooses an action to minimise cost in 

this limited space, then moves down a level in the DT (Quinlan, 1986). Many other 

algorithms have since been developed from the concept learning system. 

 

Figure 4-1 simple decision tree for audio file classification 

The DT algorithm, which will be represented in the following sections, will use the 

training vectors (a set of data) and build a DT similar to the one in the Figure 4-1. DTs 

have been used in expert systems; the results were adequate and, indeed, nearly similar 

to those from a researcher expert. Harrington has listed the advantages of the DT as  an 

inexpensive calculation in terms of computational power and not being too complicated 

for the user to understand the technical results. Giannakopoulos summarised the ad-

vantages of the DT in the following points (Giannakopoulos, 2014): 

 The structure of the DT can be written as a set of rules without any impediments. 

 Easy to handle and implements simple features. 
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 It is considered a non-parametric approach through handling the features without 

needing to make distribution assumptions.  

 However, at the same time some authors referred to the sensitivity of the DT ap-

proach to noise that could make it unstable, depending on the dataset (Maimon 

and Rokach, 2008, Giannakopoulos, 2014). 

In general, the DT can be described as follows (Maimon and Rokach, 2008, Gianna-

kopoulos, 2014): 

 The root has no input edge (output only) and generally, it holds the most important 

feature of the object (the features reflect the salient information of an object).  

 The branches (internal nodes, non-leaf), with only one incoming edge and two or 

more outputs are the input attributes that lead to these classes. 

 In a binary DT, each node has only two outputs.  

 Terminal node or leaf represents a class label and with only one input edge.  

 A new test sample is classified by passing it through the tree model that was built 

in the training phase, from the root to the leaf (final class); the outcome of the 

answer at the non-leaf nodes depends on navigation. 

 Each root or internal node is represented by a single feature with its corresponding 

value or array of values which that feature might take. 

 Each terminal node or leaf is denoted by a class label.  

Let us assume that training vectors and target vectors (labels) are represented by x and 

y respectively, { , } 1,i iv i m  x y  where m is the number of the training samples. Based 

on the structure of the decision tree, the ith test sample rests at its last destination space 



CHAPTER 4: RANDOM FORESTS                   77 

 

d(t) at the terminal node t as illustrated in Figure 4-2, where the subspace d(t) is linked 

with nodes t for the same decision tree which was depicted previously in Figure 4-1. 

 

Figure 4-2 the determination of hyperplanes 

4.3 Random Forests 

Random Forests is based on ensembles of slightly dissimilar trees resulting from train-

ing on random training subsets. Originally, an ensemble methodology served to consol-

idate a set of existing modules, each module working on the same classification prob-

lem, in order to achieve a better global goal, with a lower error rate, more reliable results 

and better noise insensitivity than could be gained from a solitary module (Maimon and 

Rokach, 2008, Breiman, 2001a). Hence, the building of an ensemble classification tree 

using a random vector of the variables and then voting for the most popular class has 

resulted in a significant improvement in reducing the estimated error Breiman (1996a). 

An early experiment in random vector selection was by Breiman (1996b). Later on a 

number of studies have applied RFs and reported significant estimation error. Dietterich 

(2000) compared three methods for constructing ensembles of decision trees (namely 

Bagging, Boosting, and Randomization), and observed that randomising vectors give 
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better results than bagging. Consequently, random forests machine learning outper-

formed other machine learning, and this is confirmed by other projects carried out at 

Salford University by Al-Maathidi et al. (2015). 

The tested vector passes through all the trees in the random forest, and each tree makes 

an independent decision. The final decision will be the class which has the most votes 

overall of the trees in the random forest, i.e., if the random forest consists of four trees 

used to classify an object into three classes, the prediction will be for the class which 

has the highest number of votes over all four trees. Figure 4-3 shows a simple RFs with 

B-trees. 

 

Figure 4-3 Simple Decision Tree Architecture with B-trees, ki represents the probability 

4.3.1 Random Forest Training 

The construction of DTs starts at the root node then continuously partitions the feature 

space. A classification tree is established consuming a labelled data, 

 , ,   1( . ) . .iv m i ix y where xi is the data samples and yi the respective class labels. The 

trees are growing based on the following strategy (Hastie et al., 2005):  

 The Number of trees (B) is determined by the user at the beginning. Each tree is 
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trained independently of the others with a randomly selected subset of the training 

set per tree. 

 The Out-of-bag (OOB) technique is employed for selection of the training sam-

ples, the training data set is divided into three parts, two of which are used for tree 

construction with the ability to swap, and the last one is left “out of bag” for test-

ing. It is possible that some of the samples might be replicated in more than one 

tree and other of the samples never picked, as shown in Figure 4-4. Each tree in 

the RFs randomly selects a set of features and training samples from the training 

vector. OOB is used to calculate both the estimated error of the forests and the 

variable importance. This property makes RFs more robust against noise and the 

dependency on dataset problem. 

 A binary split function { , } {0,1}jSp x   which is associated with each internal node, 

passes the patterns x at internal node j to either the left or right child node based 

on the decision (0 or 1).  

This procedure is repeated for all features to select the best one to split. Then parameters 

j  are optimised for all tree nodes during training, to select features with a higher in-

formation gain (impurity function). 

In general, splitting refers to determining which feature should be used and at which 

node by measuring impurity gain, and the optimal cut-point for that feature. The feature 

with the highest information gain value is selected to behave as a root node, which is 

used to split the dataset. In other words, features are organised based on the priority 

(importance) from the top down. 



CHAPTER 4: RANDOM FORESTS 80 

 

 

Figure 4-4 Subset samples selection (RF) 

4.3.2 Impurity Function 

The information gain achieved by a split represents the difference value between the 

impurity of the parent node and the summation of impurity for the two child nodes. 

Three different measure functions, the Gini, Entropy, and the misclassification rate, are 

widely used in the literature to measure the impurity in each node. In this study, the 

Shannon Entropy is used because it has been shown an ability to characterize the com-

plexity of the signal contents in many publications. To name some, it has been used for 

measure the complexity of birds chirping by Briefer (2010) and Wang (2013), which 

has similar characteristics to the mixed soundtracks; the results were promising. Quin-

lan (1986) described the feature importance (gain) calculation using entropy and 

through the following suggestions. 

 If there are two classes (W and T), then the probability that an object is (W) is 

(w/w+t) and the probability of its being (T) is (t/w+t), where w represents the 
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number of objects that belong to class (W) in that node and t is the number of 

objects belonging to class (T). 

 The information gain is calculated as impurity difference (reduction) between the 

impurity of parent node ith and the summation of the impurities of the emitted 

nodes (left and right). Therefore, the total gain for (A) is given by Equation 4-1 

Quinlan (1986):        

 ( ) ( , ) ( )gain A I w t E A    4-1 

The symbol I represents the entropy of the node ith and it is calculated by Equation 4-2. 
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whilst E(A) represents the summation of the entropy of all emanating nodes from the ith 

node, given by Equation 4-3.             
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where v is the number of potential child nodes using an attribute’s cases index.  

 

Figure 4-5 Impurity Estimation Functions 
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As shown in Figure 4-5, both impurity measure functions have in common that they 

touch their minimum for pure nodes with the single class being zero on Y-axis and their 

maximum for an equal mixture with the same relative frequencies for both classes. 

 

4.3.3 Stopping Criteria 

Many stopping rules have been proposed and developed in the literature. One of them 

is to carry on in the splitting process until all terminal nodes represent the pure class 

membership (0 impurity). This splitting method has a high probability of finishing up 

with a large tree that presents the data over-fitting problem and reflects a poor perfor-

mance on an unseen test set because it is not generalized. Even though Breiman (2001b) 

was stated that RFs do not over-fit and this study has been cited in plentiful publications. 

This seems to suggest that this conclusion is based on a small size of actual dataset (a 

few number of real samples). Hence, this investigated dataset by Breiman (2001b) 

works to improve the behaviour that RFs would not over-fit. Later on Segal (2004) 

heavily argued that RFs do not over-fit. In addition, Luellen et al. (2005) stated RFs 

could over-fit when a large number of trees are utilised to construct the ensemble clas-

sifiers. Strobl et al. (2009) reported, “Other tuning parameters may be responsible for 

overfitting in random forests”. Consequently, to avoid the overfitting problem, it has 

been suggested by some authors to stop when: a) a pre-set threshold for the maximum 

number of nodes is reached, b) a given threshold for the maximum depth of the node is 

reached or c) the impurity value reaches a minimum value (growing up is no longer 

significant). In this study, the applied stopping rule in order not to over-fit is to decide 

to stop if the probability is 95% sure about the class label in that node (the impurity 

reaches 0.05 or less, which means that the growing up of tree is no longer significant). 

Finally, all the predictions from all the trees are combined together to produce a single 
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prediction that denotes the RFs output, and this is defined by Equation 4-4: 
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    4-4 

To conclude, the features of the RF technique could be summarised by: 

 Random forests, which combine all patterns identified by a large set of single 

trees, can serve as a more flexible means for approximating different functional 

forms. 

 The smoothing of hard decision boundaries also makes random forest trees more 

flexible than single trees in approximating functional forms that are smooth. 

 Handling the missing value: observations that have missing values in the feature 

which is presently weighed, are neglected in the calculation of the impurity reduc-

tion for this feature. Conversely, the same observations, which have missing val-

ues, are involved in all other calculations, so that the RFs does not ignore the 

observations of attributes with missing values that can result in substantial loss in 

the statistics. 

The key motivates the application of RFs, since it represents an intrinsically incorporate 

the redundancy included in the audio features. To make it clearer, literature reviews 

have indicated that there were not many researchers who have used the automated audio 

features extraction such as the optimisation and the machine learning. Hence, in the area 

of audio classification or categorisation, the utilised audio features (included low-level 

descriptors) were heuristically developed. All the related research is deeply influenced 

by psychoacoustic (sound perception and How are perceived by the human). Conse-

quently, many features, which are sent to the machine learning, have the redundant in-

formation included in it. For example, there is defiantly some overlapping information 
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between MFCC and spectral centroid. In the RFs induction through the training phase, 

DT starts with the impurity assumption and try to end up with the pure probability. This 

is represented by the impurity function as a core internal function in RFs. Hence, DTs 

represent features with the redundancy and the impurity and works on minimising the 

impurity to get the overlapped thing separated. It is worthwhile to note once again that 

the audio feature extraction is based upon perception, which makes these features to 

have redundant information, and these DTs present this perfectly. Also, from empirical 

results of another researcher which are mentioned in Chapter 2,  it seems as though DTs 

family is working better for this kind of similar type of research task. Finally, apart 

from Al-Maathidi (2015), RFs technique has not been very well reported for the high-

level audio segmentation. 

4.4 Summary 

In the present chapter, a general illustrating of the Decision Tree technique in general 

and more specifically of the Random Forests technique which has been used to develop 

the non-exclusive classification that is highlighted in Chapter 6 as a solution for over-

lapped content detection is provided. Furthermore, justification of the main utilised pa-

rameters such as impurity function, stopping criterion and number of trees is explained.  

The provided information in this chapter will be a supportive presentation of knowledge 

to provide a basic understanding of machine techniques that are used in the system pro-

posed in the subsequent chapters.
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5 SINGULAR SPECTRUM ANALYSIS METHODOLOGY 

5.1 Introduction 

The architecture of a logical audio classification system and feature extraction process 

have been produced and applied as shown in the previous chapters. However, it remains 

difficult to resolve the harmonic overlap problem in mixed signals through logical clas-

sification and do straightforward filtering without the distortion that will be inevitably 

introduced in the separated signals after straightforward filtering processing.  Therefore, 

to improve the performance of overlapped soundtrack classification, decomposing the 

overlapped oscillations into a number of oscillations with a lower ratio of overlapping 

and then classifying them separately is the key to success in the foregoing target. This 

might be done by exploiting the singular value decomposition technique and wide fre-

quency range of mixed samples to generate clusters of oscillation.  

This motivates the application of singular spectrum analysis, since it represents a sta-

tistical method (non-parametric) that is usually applied with arbitrary statistical signals, 

regardless of their distribution or processes, e.g. Gaussian or non-Gaussian, stationary 

or non-stationary. Singular Spectrum Analysis (SSA) is a method for time series de-

composition and can be efficiently used to decompose signals to categorise the oscilla-

tion signatures (the patterns that appear in the lagged covariance matrix, see Section 

8.3.2) of the time series over time (Fukunaga, 1970). Another motivation key that is the 

employed method need to be insensitive to the dynamical variation through the time 

period under test, since the dynamics of time series has frequently changed or gone 

through structural adjustments. 

The expression singular spectrum derives from the spectral (eigenvalue) decomposition 
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of a two-dimensional matrix A into its combination of eigenvalues (spectrum). The iden-

tified eigenvalues (λ) for A are the non-negative numbers that make the matrix A I  

singular, I represents the identity matrix, see p. vii of Elsner and Tsonis (2013), for 

more details.  

Every time series can be decomposed, using SSA into a series of matrices after mapping 

it into trajectory matrix and then processing it with the Singular Value Decomposition 

(SVD) technique (Section 8.3.3); each of these matrices shows glimpses of a particular 

signature of oscillation patterns. Following the grouping criterion, these matrices could 

be grouped into a number of smaller groups through summation operation, which is 

mapped onto the time domain with further processing. Each group should catch har-

monic oscillation components. Sanie et al. (2015) give a clear example of the decom-

position of the time structure SNt into noisy signal ENt and filtered signal CNt, as shown 

in Equation 8-1 (Sanie et al., 2015).  

 
t t tN N NS C E                                          5-1 

Most commonly, SSA works by decomposing data into the oscillation components such 

as noise and trend (data of interest) by deploying the SVD. SSA has been successfully 

used to separate desired signals and noises, with some advantages of lower distortion 

being imposed on signals. The SSA approach is applied to EEG and ECG signal pro-

cessing for separating and localising a combination of signals produced from frequen-

cies/amplitudes that are generally different (Bonizzi, et al., 2015; Sanei and Hosseini-

Yazdi, 2011; Wang, Liu, and Dong, 2016). 

5.2 Basic Methodology of SSA 

The procedures of SSA comprise four main parts. First, embedding: a given signal vec-

tor is transformed into two a dimensional matrix which is called the Trajectory Matrix 
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(TM). Then, the lagged covariance matrix of the embedded matrix (TM) is calculated. 

Secondly, Singular Value Decomposition; this stage holds the most significant two steps 

in the SSA technique. It consists of calculating two matrices of SVD. The first matrix 

is a square matrix with diagonal non-negative values representing eigenvalues and the 

second matrix represents left eigenvectors, each vector denoted by one column. Then, 

these two matrices with the TM can be used to compute the Principal Components 

(PCs). 

The reconstruction stage includes three more steps, the grouping step which is almost 

complete based on a scree plot (demonstrates the eigenvalues in descending order versus 

the index of the eigenvalues on the X-axis) to determine the sufficient eigenvalues. 

Then, the corresponding Principal Components (PCs) to these sufficient eigenvalues are 

added together, and other, undesired PCs are omitted.  

 

Figure 5-1 Singular Spectrum Analysis Algorithm 
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Finally, the filtered target signal is mapped back onto the time domain represented by 

the vector through diagonal averaging. The general SSA algorithm is illustrated in Fig-

ure 5-1.  

5.2.1 Embedding 

To make a multivariate statistical analysis from a univariate time record possible, a TM 

transformation method needs to be deployed. The idea of TM is related to chaos theory 

(Ruelle, 1984). Ruelle states that “we shall admit that the parameters specifying the 

system at time t+1 are given functions of the parameters at time 1” (Ruelle, 1984). In 

summary, by using lagged time of a single time series, the coordinates of the dynamic 

system can be defined. The number of lags K is called the embedding dimension. The 

time Lw spanned by each embedding vector is often known as the “window length” of 

the embedding dimension. The number of embedding vectors K can be calculated by 

the following formula (Ruelle, 1984). 

 1t wK N L     5-2 

where Nt denotes the length of the time series that is being processed with SSA. The 

same principles (lagged time and embedding dimension) are applied for the purpose of 

singular spectrum analysis, where the delays represent the transformation of a vector of 

time records into a multivariate set of time observations (Elsner, 2013, p. 39). The pro-

cessing time of SSA very much depends on the window length of the embedding di-

mension Lw, and the length of the time series under test. These two factors lead to an 

increase in the dimensionality of the Trajectory Matrix (TM), thus increasing the overall 

computation processing time. 

In order to minimise the processing time of SSA in this study, the soundtrack samples 

are processed frame by frame instead of processing the whole audio file directly. Thus, 
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the TM becomes much smaller due to selecting a smaller statistical dimension (embed-

ding dimension) as well.  Then, the given frame,    1 . . Lf x x x with a time 

series of size Lt, is mapped using the lagged time principle onto a two-dimensional em-

bedded time series as shown in Equation 5-3 (Elsner, 2013, p. 39).  

1 3

2 3 1

1w w t

K

K

L L N

x x x

x x x
Y

x x x





 
 
 

  
 
 
 

                                5-3 

where the first column vector denoting the system at lag time (i-1) with length (Lw), 

and K represents the number of these row vectors; the latter depends on the embedding 

dimension size Lw. K can be calculated by Equation 8-2 as shown previously. Lw is (2≤  

Lw ≤ Nt -1). Each column vector  1  = , , 1,...,i i i Lw
x x i K  y , where xi reflects the time 

domain samples. The successive vector yi should be long enough to characterise the 

dynamic of the discrete time series (Golyandina et al., 2016; Sanei et al., 2015). The 

shifting increment is one sample at a time. Y at lag 0 represents the first Lw elements 

from time series vector,
2 2 11 { ,..., }

wLlag x x    as depicted in Figure 5-2. 

As before, SSA algorithm performance is highly dependent upon the selection of the 

sliding window length Lw. Rukhin mentioned that the size of Lw should be long enough 

to represent significantly separated components but not longer than Nt/2 (Rukhin, 2002), 

whereas Harris et al. (2010) reported that it needs to be greater than Nt/2, when K>Lw 

(Y “has many rows larger than columns”). 
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Figure 5-2 Trajectory Matrix Production  

The structured properties lead to a number of filtering interpretations. The same as-

sumption was made by Alexandrov et al. (2008) who used SSA for decomposition of 

specific protein type profiles into the sum of a signal and noise; they concluded that 

even where the size of Nt was small (for substantial noise or high-rank r) and separa-

bility was insufficient, small Lw can be used to extract the trend (data of interest). This 

technological concept in SSA describes how well different constituents can be split from 

each other. It is worth noting that the singular spectrum analysis decomposition stage 

delivers significant results if the resulting additive ingredients of the series are approx-

imately separable from each other (Golyandina et al. 2002). 

It is worthwhile also to note that the size of the window depends on several criteria such 

as the aim of the analysis/prediction and the forecasting horizon. Insignificant decom-

position and inferior prediction results are highly related to improper selection of the 

window size. Since the objective of this research is filtering some of the speech and 

music components not hitherto examined with SSA, to determine the optimum length 

of Lw more investigation has been carried out for selection of the optimal size following 
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the heuristic method, as illustrated in the next chapter. 

5.2.2 Lagged-Covariance Matrix 

The second stage in the decomposition phase represents computing the lagged covari-

ance matrix. This can be calculated through measuring the relation between the elements 

of the TM. Where the element in the (i, j) position of the covariance matrix represents 

the covariance between the (ith, jth) and (jth, ith) elements of the TM, Elsner et al. 

(2013) illustrated that the repeating patterns reflect the oscillation in the time series. 

The lagged autocorrelation matrix is considered one of the Fourier analysis methods, as 

highlighted by Blackman and Tukey (1959). Moreover, these oscillations can be calcu-

lated as the product of the TM and its transpose (for more information see Section 4.2 

of Elsner et al, 2013), which is represented by the covariance matrix Cx as shown in 

Equation 5-4.  

 
TCx YY                                              5-4 

where T  denotes the transpose of TM ( Y ). 

Later, Broomhead and King (1986) suggested normalising the calculation in Equation 

8-4 by the window length of the embedding dimension Lw, giving what can be consid-

ered to be an estimation of the lagged covariance matrix. In general, the elements of Cx 

represent the autocorrelation between all possible pairs in the pattern that appears in the 

K-windows. It is worth noting here that Cx (Lw X Lw) is a real and symmetric matrix. 

5.2.3 Singular Value Decomposition (SVD) 

Every matrix can be factored into three pieces as presented in Equation 8-5 (Elsner et 

al, 2013). 

 
TUDEY                                             5-5 
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where E accounts for the left eigenvectors (extracted from of YYT), and Y denotes TM 

in this example. Meanwhile, D is a diagonal matrix of singular values and U is an or-

thogonal matrix (Lw X Lw), which represents the right eigenvectors (the vectors that are 

extracted from YTY. 

Therefore, we have an orthogonal, diagonal, and inverse orthogonal or physically (ro-

tation, scaling, and then reverse rotation) components. Thus, Equation 5-4 of covariance 

matrix calculation can be written as Equation 5-6 as follows. 

    
T

T TTTUDE UDE EDU UDE Cx              5-6 

Since UT U=I=1, then Equation 8-7 can be written as: 

 
2 TE EDCx                                            5-7 

Consequently, 
2D   ,   being a diagonal matrix (lambda) whose entire non-negative 

element represents the eigenvalues of the covariance matrix Cx.  

Furthermore, if 1 2 3 1 2 0d d d Lw
                are the ordered values 

of the diagonal matrix  , hence 1 2 3, , , , Lw
    are the singular values of Y. The 

eigenvalues can be computed from Equation 5-8 

   0I Cx                                              5-8 

where I here is an identity matrix that can be defined as a square matrix with ones on 

the main diagonal and zeros elsewhere. Now, for each extracted eigenvalue a corre-

sponding eigenvector can be calculated through Equation 5-9 (Elsner et al, 2013) 

 ( ) 0E I  Cx                                          5-9 

The eigenvector matrix with the dimension of (Lw X Lw) of the matrix Cx reflects the 

https://en.wikipedia.org/wiki/Square_matrix
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temporal covariance of the time series, at different lags, as explained above. The ex-

tracted eigenvectors are considered the axes of the new coordinate system. Therefore, 

any scalar multiple of these vectors is also can be considered an eigenvector of the given 

matrix. Strictly speaking,   2 2 2 2
1 2 3, , , ,

Lw
diag       is the diagonal matrix of eigen-

values of Cx and  1 2, ,..., Lw
E  e e e  is the corresponding orthogonal matrix of eigen-

vectors of Cx, where each ei represents a single eigenvector with length Lw. 

After calculation of λ and E, the Principal Components (PCs) of the time series can then 

be constructed. The PCs are again time series, of the same length as the K value. The 

only difference with the TM is that each point is represented by a different coordinate 

(Claessen and Groth, 2002). Drawing on Pearson (1901) the PCs can be computed by 

Equation 5-10. 

 
.

, 1,...,
T

i
i w

i

i L


 
Y e

v                                    5-10 

v will be a (K X Lw) dimensional matrix and each column represents an individual PC 

vector. The variance of each consecutive PC is equal to the eigenvalue of the corre-

sponding eigenvector, i.e. the difference between the first and second PC (v1 and v2) is 

identical to the difference between the first and second eigenvalues (λ1 and λ2). The PC 

matrix is again in the time domain and each individual PC contains a part of the oscil-

lation information and can be isolated and investigated independently from other PCs 

due to their orthogonal characteristics (Claessen and Groth, 2002; Elsner and Tsonis, 

2013). The SVD of the TM can be written as shown in Equation 5-11 (Elsner et al, 

2013) 

 1 2 dM = M + M + ...+ M                              5-11 
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where Mi denotes elementary matrices or, as they are sometimes called, reconstructed 

components that can be computed as the sum of the rank-one bi-orthogonal decompo-

sition of the trajectory matrix TM into its orthogonal bases. Each elementary matrix can 

be expressed as in Equation 5-12 

 
T

i i i iM e v                                          5-12 

Based on the two preceding paragraphs, any time record can be filtered by eliminating 

any unwanted oscillation patterns through selecting their corresponding PCs. The de-

termination of unwanted PCs is done usually based on the eigenvalue distribution. 

The approach in this study is the applying of SSA as a well-known method for frequency 

decomposition, as a filter technique before the machine learning stage to refine the clas-

sification results. This is done through pruning the harmonic frequencies of a given 

signal to keep the components of only one class and eliminate all other components.  

5.2.4 Grouping 

As mentioned above, each one of the elementary matrices, generated by convolution* 

of one of the PCs with its corresponding eigenvector and weighted by eigenvalue, rep-

resents a particular oscillation of the signal. Often eigenvalue distribution is used for 

boundary detection of the subspace belonging to the signals of concern because the 

distribution of eigenvalues is calculated based on the variance. For example, in the noise 

case, the noise variance is represented by the higher space eigenvalues, since the noise 

is autocorrelated (having higher associated frequencies) Elsner and Tsonis (2013, p. 

99), project onto the higher subspace which represents lower variances in the frequen-

cies. In contrast, the higher variances in the frequencies are projected on the lower sub-

space of the eigenvalue distribution. The line of eigenvalue distribution descends with  
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increasing index (higher associated frequencies). Hence, in the case of noise cancella-

tion, the high order eigenvalues are almost isolated due to their representing low oscil-

lations, and the detection of the isolated boundaries is almost complete based on  the 

analysis of the scree plot of the eigenvalues. Usually, the low order eigenvalues, which 

are related to the desired components, are determined by the standard method. This is 

done by selecting the first ds matrices whose corresponding eigenvalues achieve the 

following condition.  

 1

1

ds

i

i
Lw

i

i

th















                                       5-13 

Many authors have defined th to be equal or higher than 0.85, for example Ghaderi et 

al. (2011), Mohammadi et al. (2016), Mamou and Feleppa (2007). This ratio is identi-

fied to reject the components most likely to correspond to the floor of the noise sub-

space. The desired elementary matrices in the first group 1

1

,

ds

i

i

I M  are aggregated 

together to implement each group as one matrix, of the same dimension as TM (Y), 

whilst leaving out undesired components in the second group that reflect the noise com-

ponents, 2

1

Lw

i

i ds 

 I M .  

The effectiveness of SSA depends significantly upon the successful analysis of the ei-

genvalues and selection of appropriate groups through convenient criterion to recon-

struct the desired components. Each matrix in the selected group is supposed to have 

similar harmonic characteristics (Hassani, 2010). Previous studies have reported differ-
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ent criteria for detection of the boundaries of the groups. Jarchi and Yang (2013) recon-

structed only the second and third elementary matrices to recognise walking patterns - 

walking downstairs, level walking, and walking upstairs - using SSA instead of tradi-

tional classification techniques (Jarchi and Yang, 2013). They mention that the second 

and third elementary matrices are related to the dominant oscillation of the acceleration 

signal if the signal has a periodic pattern. Also, their corresponding 𝜆2, 𝜆3 will be gen-

erally similar. Vautard and Ghil (1989) also have stated that each pair of eigenvalues 

has a similarly equal value, which means this pair corresponds to a significant oscilla-

tion pattern. Mohammadi et al (2016), as explained earlier, extracted brain waves, sleep 

spindles, and K-complexes from a sleeping EEG signal. They adopted new separation 

criterion based on their sleep signal analysis. The signal is factorised into eigenvalue 

pairs: only eigenvalues with nearly similar values, which thus seem to be pairs, are 

selected. The variances between successive eigenvalues are computed first. Then, the 

eigenvalues which have the smallest difference are selected. Finally, the following con-

dition (Equation 5-14) is applied by the author to recognize the components. Their ei-

genvalues are within the range (Mohammadi et al, 2016) 

 1 i

j

th



                                                   5-14 

where ,i j  represent the eigenvalues which have nearly similar values and the value 

of th is changed with regards to the pattern amplitude. Thus, the authors set a particular 

th value for each PC. The higher threshold value is selected for alpha, theta, and delta 

because they have higher amplitudes than spindles. Meanwhile, because the spindles 

are represented by lower amplitudes, a lower value for th is selected (Mohammadi et 

al.,2016). Ma et al. (2012) combined SSA with the BSS technique to separate the mixed 

signal into two components. Initially, SSA is used to decompose the signal into two 
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groups through calculating the contribution of each elementary matrix Mi. The contri-

bution of matrix Mi is calculated using the share of corresponding i by the formula 5-

15 (Ma et al., 2012). 

 w

i
i L

j

j








r

                                                 5-15 

Hence, each ri reflects the contribution of corresponding elementary matrices. Then, the 

corresponding PCs that have the greatest contributions are summed together to generate 

the first group, and the remaining PCs make the second group.  

5.2.5 Diagonal Averaging (Reconstruction of the one-dimensional se-

ries) 

Finally, after determining the boundaries of each group, the matrices in each cluster are 

summed together. The additive matrix I for each group is transformed back to one-

dimensional time domain vectors through diagonal averaging. Changeover back to the 

univariate time series can be accomplished by averaging over the diagonals of the ma-

trix I. Then, each of these output vectors will tend to characterise a particular signal 

component.  

It is worth noting that the group matrices are not Hankel matrices, which means that all 

the elements along the diagonal i+j = const are not equal. Therefore, there is a need to 

perform diagonal averaging over the diagonals i+j=const to reconstruct the signal. This 

corresponds to averaging the matrix elements using the rule shown in the Equation 5-

16: 

  ( ) ( , ) , 1, 0,1,...,arg min( , )wf k I i j i j k k K L              5-16 

where µ represents the statistical mean. Figure 5-3 illustrates the diagonal averaging 
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process.  

2 1 7 0 2 7 7 4 0 0
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4 6 8 5 9 4 5 8 0 9
 

Figure 5-3 Diagonal Averaging Method 

5.3 Example of SSA 

To make the methodology of singular spectrum analysis clearer, the following example 

of a corresponding periodic sinusoid signal with additive noise component is used. This 

was implemented in Matlab. The signal was denoted by the expression in 5-17. 

 sin( ) ( )r tx K F t A N                                5-17 

where K represents the cycle frequency over time t, time variable t is changed from 0 to 

.005 with step 0.001 whereas Fr denotes the frequency of each signal (1000), A is the 

amplitude of noise (0.2), and Nt is a random vector with a size similar to t vector length. 

The entire signal and its additive noise are depicted in Figure 5-4. Let us consider that 

the time series is represented by the vector  1 2( ) , , , Nts n x x x  , where Nt denotes the 

length of the time series. Now, setting the embedding dimension with length equal to 

Lw, Lw=Nt/2, the number of column vectors K can be calculated from Equation 5-3. 

Then, the time series is transformed into a 2-dimensional trajectory matrix Y (Lw X K) , 

using K and Lw parameters and TM as defined in Figure 5-2. The next step is the calcu-

lation of the covariance matrix Cx, where the diagonal vector of this matrix denotes the 
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variance of each column.  

 

Figure 5-4 Input sinusoidal signal with additive noise 

 

We continued employing Cx based on Equation 8-4 and normalised it to the embedding 

dimension length (see Section 5-3-2). Both the left eigenvectors (E) and eigenvalues (λ) 

of Cx are extracted using Equation 5-8 and Equation 5-9 respectively. The correspond-

ing singular spectrum is illustrated in Figure 5-5 (the first 50 greatest λ).  
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Figure 5-5 Singular Spectrum of time series under test 

It can clearly be seen that the first two λ are significantly higher than all others and take 

more than 95% of the power of the signal under test, while all other components are 

near to zero. This means that the first two PCs give glimpses of the periodic components 

whereas all others catch random components.  

Hence, the PCs using the eigenvalues, eigenvectors, and TM can be computed using 

Equation 5-10. Figure 5-6 depicts the first six principal components. It is apparent from 

the figure that the first two PCs contain practically all the variance of the time series; 

this is consistent with the first two λ values.  

As illustrated above, each elementary matrix can be reconstructed by projecting the pre-

calculated principal components back onto the eigenvector coordinates using Equation 

5-12. Hence, the anticipated subspace belonging to the sinusoidal component and the 

undesired subspace corresponding to the additive noise are separated. The grouping cri-

terion in this example depend on the λ distribution in the components of Figure 5-5.  
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Figure 5-6 First 6 Principal Components of time series under test 

In this step, the elementary matrices are divided into two groups, and then the matrices 

within each group are aggregated. The first group includes the first two elementary ma-

trices, and the second group includes all others. Finally, diagonal averaging is per-

formed to transform a matrix into a time series, as shown in Figure 5-7. 

Comparing these two reconstructed signals easily leads to the conclusion that the com-

ponents have been separated almost without distortion. In addition, by comparing Figure 

5-7 to Figure 5-4 it is evident that the singular spectrum analysis has separated the mixed 

components accurately and that the singular spectrum analysis has performed the separation 

without any prior knowledge of the components themselves or the mixing process.  
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Figure 5-7 SSA demonstration of recovered source signal 

This experiment provides a clear illustration of the usefulness of the technique in the 

face of the permutation uncertainties discussed above. The magnitudes of the sinusoidal 

signal in Figure 5-7 and noisy signal Figure 5-4 are small. This demonstrates that the 

separation achieved by singular spectrum analysis was efficient. 

5.4 Summary 

The rationale behind the singular spectrum analysis technique has deliberated. Also, the 

main steps and methodology for the geometrical concept of rotation based on higher 

variance are clearly illustrated. In addition, a summary of the literature regarding the 

use of SSA in different areas were briefly discussed. As a conclusion, the decomposition 

of pattern oscillation and Eigen-space analysis applied in the SSA method make it more 

robust than standard filters and the other BSS methods for pattern categorization and 

overlap mitigation. Chapter 9 will include a description of the designed method using 

SSA techniques to classify the overlapping soundtracks.
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6 SAMPLE COLLECTION AND DATASET 

6.1 Introduction 

The scope of this chapter is to present an outline of the basics of the dataset, and review 

the benchmark and widespread GTAZAN dataset samples that are to be used in this 

study. Furthermore, it covers how the samples from this dataset have mixed to generate 

mixed soundtracks in a different mixing ratio. This chapter will be a supportive presen-

tation of audio samples to provide a basic explanation of the mixed soundtracks that are 

used for evaluation of the suggested methods in the subsequent chapters.  

6.2 Dataset  

The speech and music samples which are used for the evaluation issue were from the 

GTZAN database (Tzanetakis, 2014). A benchmark database is essential for the study 

of speech and music classification. Such a “standard” dataset is specifically beneficial 

in this work. In addition, this will make comparisons with the results from others work 

more accurate. The GTZAN archive is normal choice due to the fact that it is considered 

the most popular database deployed and validated by many other researchers and cited 

in numerous publications in the speech/music discrimination and music categorizing 

areas. Some examples of which are, Barbedo and Tzanetakis (2010), Sturm (2012), 

Sattar et al. (2011), Tzanetakis (2005), Tzanetakis and Cook (1999a), Tzanetakis and 

Cook (2002), Huang et al.  (2014), Zhang et al.  (2015), Lu et al. (2016).  

The GTZAN music/speech collection has been created by Tzanetakis and his supervisor 

Cook (2002) through his PhD project. It consists of 120 tracks, half of which are music 

and the other half speech, each track being 30 seconds long (120*30 s= 1-hour). The 

GTZAN dataset also includes ten music genres (Jazz, Classical, Pop, Rock, Hip-hop,
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Country, Disco, Blues, Metal, and Reggae). Because the GTZAN is designed for 

MARSYAS software with emphasis on music information retrieval (MIR), some of the 

music samples contain singing content. Therefore, some effort has been made through 

listening to the entirely of the dataset many times, along with using automatic methods 

where possible to ensure that all music samples which are included in the training da-

taset are pure music without singing. In addition, all silent gaps included in the speech 

samples have been omitted. 

As for the generalisation issue, though, the GTZAN database is adequate since it in-

cludes many different styles of speech and music samples. For example, the speech 

samples involve utterances by children, male, female, a speaker of different languages, 

loud speech, speech with laughter, etc. Also, almost all music genres are included, as 

explained before. 

In some experiments (Chapter 7), the Audio and Acoustics Signal Processing challenge 

(AASP) dataset, which is published by IEEE and explained before in Section 2.4.3, was 

used. The AASP challenge provided two datasets: one for scene or soundscape 

classification and the other for event classification. The AASP data was gathered from 

10 different places in the London area: inside an office, park, quiet street, open market, 

restaurant, supermarket, tube train, tube station, bus and busy street. The event dataset 

collected from inside the office is further divided into two sets: monophonic denoted as 

Office Live and polyphonic denoted as Office Synthetic. Event types used were alert 

(beep sound), clearing throat, cough, door slam, drawer, keyboard clicks, keys (keys 

put on the table), knock (door knock), laughter, mouse click, page turn, pen drop, phone, 

printer, speech, and switch 
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6.3  Mixer Model 

An audio mixer that mixes pre-recorded samples according to their signal intensity has 

been developed using MATLAB code. Figure 6-1 shows the experiment flowchart, to 

mix speech and music signals with a predefined percentage. 

The Speech/Music mixing strategy used in this study is empirically verified and pub-

lished to reflect the best mixing for representing mixed soundtracks (Mohammed et al., 

2015). The procedure followed for the mixed speech/music samples in different speech-

music ratio can be reviewed as the following: 

 

Figure 6-1 Speech Music Mixer Model 

6.3.1 Normalisation Stage: 

The issue of normalisation needs to be addressed, so that the music and speech signals 

can be added in the correct proportion so as to avoid misinterpretation. The default 

method is normalisation of the mixed or compared signals to the same perceived level 

and it is a significant factor for reliability that the input signals have the same level 
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(McKinney, 2008). The mixed signals are processed to have the same (RMS). The given 

audio signal can be normalised according to Equation 6-1.  

  ˆ( )x i x i En                                           6-1 

 

arg max( , )

arg min( , )

Rs Rm
En

Rs Rm
                                         6-2 

En: the RMS normalisation factor, Rs: RMS of speech signal and Rm: RMS of music 

signal. 

6.3.2 Mixing stage 

In this experiment, 60 speech samples are mixed with 60 music samples at 9-difference 

speech-music ratios as shown in the Figure 6-2. The experiment mixes the speech and 

music samples in terms of the RMS speech to music ratios. The predetermined mixing 

ratios were chosen to examine how features are related with the signals’ content ratio 

changing in order to optimise the feature selection algorithm. As shown in Figure 6-2, 

speech-music ratio values ranging from -20 to 20 dB in steps of five are used to mix 

speech with music samples. The goals from mixing audio experiment are as follows:  

 Generate audio benchmark data. 

 Set the limitations and evaluation of the classification systems. 

 Evaluate and compare the suggested methods. 
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Figure 6-2 Mixing Architecture of Speech and Music Samples 

6.4 Summary 

In this chapter an outline of the basics of the dataset is demonstrated, and the benchmark 

and widespread GTAZAN dataset samples that are to be used in this study are reviewed. 

Furthermore, a mixer model that have mixed the samples from this dataset is suggested, 

developed and described. It covers how to generate mixed soundtracks in a different 

mixing ratio. The normalization method is addressed, so that the music and speech sig-

nals can be added in the correct proportion so as to avoid misinterpretation. The math-

ematical model that used in processing the mixed signals to have the same (RMS) is 

developed and presented.  The generated and explained samples in this Chapter will be 

used for evaluation and validation of the proposed methods in this study in the subse-

quent Chapters. 
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7 EVALUATION AND EXTENSION OF EXISTING SYSTEM – A 

CASE STUDY 

7.1 MARSYAS EVALUATION AND EXTENSION  

7.1.1 Principles Framework of MARSYAS 

MARSYAS is considered to be one of the well-known open source semantic audio anal-

ysis systems, evidenced by it is broad use and reuse in many renowned projects, includ-

ing those conducted in national broadcasting houses. Moreover, it uses an effective au-

dio classification pre-processor to categorise content, gating the music segments for 

information retrieval. It is an open source software framework, licensed by GNU Gen-

eral Public License, and developed using C-language and Python for audio processing 

with specific emphasis on Music Information Retrieval applications. MARSYAS started 

as the Ph.D. project of George Tzanetakis and his supervisor Perry Cook, and other 

participants from around the world (TZANETAKIS, 2002, Tzanetakis, 2009). It has 

employed established software as plug-ins for rapid prototyping of real-time classifica-

tion of audio. Examples include VAMP and sonic visualizer (for audio feature extrac-

tion), QT (design interfaces), CMake (used to control the software compilation process), 

LATEX and MIKTEX (document design), Ghostscript (an interpreter for portable doc-

ument format (PDF)), Doxygen (standard tools for generating documentation from an-

notated C++ sources) and a number of other pieces of software. Similar to many other 

audio analysis tools, MARSYAS used a machine-learning regime. At the beginning, a 

large labelled dataset is needed to train and validate the system. In the retrieval phase, 

the system is expected to perform as it was trained to do. Figure 7-1 MARSYAS system 

framework presents the general framework of the MARSYAS system. It contains five
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levels. The given signal is portioned into segments and dimensionality reduced by cal-

culating a number of common features. Then, in the memories level, both the variances 

and the means of features are calculated over a window of approximately 1-second win-

dow size. 

 

Figure 7-1 MARSYAS system framework 

At the beginning, signal power (RMS) is used to discriminate silence/non-silence seg-

ments without the need to calculate statistical features. Then, silence segments are ex-

cluded from music/speech discrimination to avoid misclassifying them as speech or mu-

sic. For speech/music discrimination, a more complicated set of nine features rather 

than energy were used, namely Spectral centroid, Spectral moments, Spectral flux, 

Pitch, Harmonicity (refers to how strong the sound spectrum; it is calculated by nor-

malizing the frame’s spectrum to the perfect line spectrum (Wold et al., 1996)). Mel-

Frequency Cestrum Coefficients (MFCC), Linear Prediction Coefficients, RMS, and 

ZCR. In the machine learning stage, two classifiers are used to categorise, Gaussian 

(map) and K-nearest neighbour. Each frame is classified with reference to the distance 

from the training dataset. In other words, the class is determined on the nearest neigh-

bour in the training data set.  
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One of the significant characteristics of the MARSYAS system is the ability to perform 

real-time analysis and data processing, and it has been employed in many areas of audio-

related work. Some examples are: songs analysis (Yahoo Research), automatic audio 

segmentation and classification tools (ORBIT Project (Object Re-configurable Broad-

cast Infrastructure Trial, BBC Research)), music mood, gender classification (male/fe-

male/silence), recognition of music emotion, automatically recognizing noise sources 

like aircraft noise, railway noise, road traffic noise, etc.), automatic subtitle timing an-

notator (start and end times).  

7.1.2 Limitations of MARSYAS 

One of the significant limitations of MARSYAS and many mainstream audio infor-

mation retrieval tools is the lack of ability to handle overlapped audio classes, due to 

the exclusive classification scheme used. This results in loss of information and inability 

to tackle mixed elements of the audio content. The decision-making upon a soundtrack 

with speech over music is either speech or music depending on the intensity of the two, 

which can result in the loss of potentially useful information. The MARSYAS 

categorises the audio based on segments of approximately 1second in length into either 

speech or music, but not overlapped music and speech. 

7.1.3 Proposed Algorithm Framework 

The proposed system deploys the MARSYAS Framework (Tzanetakis and Cook, 

1999b) and associated  algorithms, but extends its capability to allow for the kind of 

overlapped content found in real soundtracks from media archives. Audio content anal-

ysis and semantic information retrieval might be viewed as the combination of speech 

recognition, music information retrieval and event sound detection; each can be 

achieved using well-developed and dedicated systems or tools. Therefore, the key to 
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success is a pre-processor that can classify and segment soundtracks, clean the signals , 

and then feed them to the relevant recognizers. A prototype of this experiment has been 

implemented using the Matlab compiler and MARSYAS software, which has been writ-

ten using low-level C code. 

The test audio file is segmented into small segments (almost 1 second) to satisfy 

MARSYAS decision output; also, literature reviews have introduced better accuracy if 

the feature spaces are integrated over larger time windows.  

I Silence Detection 

Short time energy reflects the temporal envelope of the signal and is strongly related to 

the signal content and variation over time. It has been used as a threshold to detect silent 

frames and intensity changes. Any segment having energy less than statistical threshold 

value is deemed to be a silent. The threshold value is automatically determined using 

the histogram technique.  

2

1

1
( )

L

n

E f n
L 

                                    7-1 

where n and L, are time index, window length value respectively. f(n) refers to the signal 

frame. The energy for each segment is calculated and if the segments have energy below 

the determined threshold, they will be assigned as silent; otherwise, the segments will 

be furthered classified by MARSYAS into either the speech or the music class. 

II   Redeployment of MARSYAS 

Each non-silent frame is further processed by the MARSYAS framework. The problem 

with exclusive classification and with MARSYAS is that the classification depends on 

the intensity of the soundtrack contents. Thus, most of the speech over music sound-
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tracks may be recognised as music class and this leads to missing out speech infor-

mation. To handle this problem, MARSYAS is employed twice, before and after apply-

ing a speech enhancement algorithm to detect speech utterances and background music 

at each time. Further cleaning algorithms are applied to the music class segments (more 

details in the next Section); it is worth noting that combining MARSYAS with one of 

the speech recognition system through this framework will deliver usable metadata from 

audio files. 

III Overlapped Soundtrack Detection  

The system described in this chapter re-deploys the MARSYAS framework that has 

been tailored by means of adopting additional speech cleaning algorithms, thus avoiding 

the need to the fully re-implement the classification model. The use of speech enhance-

ment algorithms allows us to maximise the amount of extracted information using log-

ical classification. Also how the power of non-exclusive classification can solve the 

problem of real-world audio soundtracks with overlap condition has been indicated.  

The proposed method as illustrated in Figure 7-2 adopts this approach to non-exclusive 

problems. A music-cleaning algorithm has been derived in this chapter from an estab-

lished speech-cleaning algorithm by incorporating zero crossing rates as a discriminat-

ing criterion for iterative estimation of the residual (music) spectra, thus spectrum sub-

traction for speech cleaning has been modified to remove music from mixed segments, 

which contain speech and music. 
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Figure 7-2 MARSYAS with Speech Enhancements Algorithm for Non-exclusive Au-

dio Indexing 

 

Many researchers have focussed their work on speech enhancement or noise reduction. 

A number of algorithms are proposed to solve this problem and these algorithms have 

been classified by Kaur1 et al. (2013) into three mainstream techniques; filtering, spec-

tral restoration, and speech model-based parametric methods;  

The spectral subtractive approach was introduced for the first time by Weiss as a method 

for enhancement of the intelligibility of speech which has been corrupted by wideband 

noise through improvement in the signal-to-noise ratio (Weiss et al., 1975). There are 

different types of spectral subtraction algorithm has defined in the literature. Upadhyay 

et al. (2015) carried out a simulation study to compare all these types. The authors con-

cluded that the results of the classical spectral subtraction algorithm mostly results in 
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audible remnant noise. Many researchers have proposed enhancing the spectral subtrac-

tion method through improving the noise estimation. Liu et al. (2013), indicates that the 

main problem of the conventional spectral subtraction algorithm is that it depends on 

the stationary noise hypothesis. However, the common energy noise in the real-world 

soundtracks is non-stationary. Therefore, he proposed a modified spectral subtraction 

algorithm for estimation of the noise and speech for each frame in the soundtracks using 

a log spectral distortion. Upadhyay and Karmakar (2012), introduced the enhancement 

algorithm to reduce the remnant noise, therefore improving the quality of the speech. 

The proposed method used multi-iterative enhancement, where the output from the first 

iteration is used as the input to the next iteration. The same method has been introduced 

to remove musical noise from speech utterances by Miyazaki et al. (2012). 

In general, based on the principles of the spectral subtraction algorithm, it has been 

proposed that the noisy speech signal can be separated into clean speech and noise. 

Spectral subtractive algorithm is one of the conventional algorithms for speech cleaning 

from background noise and can be viewed as an adaptive filter that removes the noise 

according to its spectral content. As the “noise” in this study is music, a modified spec-

tral subtraction has been developed. 

The following strategy is proposed and published by Mohammed et al. (2015) for de-

tecting music spectra and then speech enhancement: 

 The audio file is segmented into one-second time segments as mentioned above to 

make deployment of MARSYAS more efficient. 

  Segment energy is calculated using Equation 6-1 to recognise silent segments de-

pending on a pre-set threshold for segments which have energy less than the statisti-
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cal threshold (this being verified based upon 1000 samples from the benchmark da-

tabase, which is deployed in this study). 

 Voiced segments are analysed with MARSYAS to generate a music timestamp and 

for further processing, whereas the speech decision is plotted directly to the speech 

timestamp without the need for further examination. 

 For music soundtracks following Loizou (2013), assuming that the musical signal 

contains clean speech and musical noise based on the spectral subtractive approach 

concept, see the following Equation 7-2 (Loizou, 2013).  

          ( ) ( ) ( )s n x n y n                                                  7-2 

where  s(n): Noisy Signal. 

x(n): Clean Speech. 

y(n): Noise. 

 Based on Equation 6-2, the clean speech can be calculated as given in Equation 7-3 

ˆ ˆ( ) ( ) ( )x n s n y n                                  7-3 

where ^ symbol represents estimated value. 

Then, calculate the discrete time FFT for both sides, which could be represented as 

shown Loizou (2013, p.94) in Equation 7-4  

ˆ ˆ( ) ( ) ( )X n S n Y n                                 7-4 

 The estimation of musical spectra and noise phase is required to calculate clean 

speech through the polar form, which is defined in Equation 7-5.  

 ˆ ( )
( ( ))ˆ ˆ( ) X n

j y i
X n e


                                    7-5 
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where ∅y(i) represents the noisy speech phase. 

The default method of initial musical estimating by the spectral subtractive approach is 

by assuming that the first five frames of the audio file signal are speech-absent (Loizou, 

2013, p. 93). Therefore, to get the music spectrum estimation to improve the speech 

classification in non-stationary musical noise, the following two steps are carried out. 

Firstly, MARSYAS is utilised to detect music mood and then select the magnitude spec-

trum related to that mood, which was trained and calculated previously. Secondly, it is 

necessary to update spectral estimation from time to time (in each frame) and to pre-

serve the estimation accuracy. Voice Activity Detection (VAD) derived based on ZCR 

and Signal to Noise Ratio (SNR) in combination are used as threshold values to find 

music soundtracks and detect music segments which do not contain any speech utter-

ance. Then the average spectrum magnitude is calculated again for these segments to 

update the estimated value. 

 The phase of the music spectra angle is unknown but can be replaced by the phase of 

the source angle as suggested by Loizou (2013, p. 97). In this experiment, the same 

assumption is followed to get the best result. 

 Subtract the estimated music spectrum magnitude from the magnitude spectrum of 

the musical speech frame, as defined in Equation 7-6 (Loizou, 2013) 

 
( ( ))ˆ ˆ ˆ( ) ( ) ( )

j y j
X n S n X n e

                                   7-6               

where ∅y(i) represents the noisy speech phase. 

Finally, the estimated clean time domain signal is calculated by applying the Inverse 

Fast Fourier Transform (IFFT) on the estimated X(n). Then the timestamp is registered 

of the speech and music segments. Figure 7-3 illustrates the overall structure of the 
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framework. 

IV Time Stamping 

One of the contributions of the proposed architecture is the adoption of the non-exclu-

sive indexing method and one of the primary aims is the timestamp indexing of the 

audio soundtracks, by recognising that real life soundtracks may have overlaps of 

speech, music, and event sounds. By preserving all these, and presenting a de-noised 

version of them to recognition algorithms, information losses are reduced. In Figure 7-

3 (a), MARSYAS is deployed without any speech enhancement, whereas Figure 7-3 (b) 

gives an example of the output of non-exclusive timestamping from the proposed algo-

rithms using Spectral Subtractive Algorithms, MARSYAS and silence segment detec-

tion through a MATLAB script. The figure shows the output screen from a 48-second 

audio file comprising: first, 3-second silence, then 15-second pure music, 15-second 

pure speech, and followed by a last 15-second mixture of speech and music. The output 

has detected some of the overlapped occurrences between speech and music classes in 

addition to speech, music, and silence. 
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Figure 7-3 The Audio Content Timestamp (top) before the enhancement and (bottom) 

after the enhancement. 

 

7.1.4 Experimental Setup 

I Mixing Stage 

In this experiment, 125 speech excerpts with 125 music excerpts, samples from the pre-

viously discussed dataset have been mixed in 8 ratios as shown in Table 7-1. Both the 

music and speech are normalised to the same peak and then loudness level respectively 

before mixing to ensure that both of them have the same level, so that they will satisfy 

the required mixing ratio.  

Table 7-1 BENCHMARK AUDIO MIXING DATABASE (% of Amplitude) 

 

 

 

Speech 30% 40% 

…… 

80% 90% 100% 

Music 70% 60% 20% 10% 0% 

Equivalent  

(Speech-Music Ratio) 

in dB 

-15 

dB 
10 dB  15 dB 20 dB Pure Speech 
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After the speech and music signals were normalised, each of them is multiplied by the 

predefined number which represents the mixing percentage ratio. Each audio dataset 

contains 125 speech samples which are mixed with 125 music samples to produce 1000 

mixed samples distributed in 8-mixing groups as listed in Table 7-1 according to the 

speech-music mixing ratio. The reason behind this empirical mixing process is to see 

how exclusive classification can be made to work with non-exclusive soundtracks and 

the limitations thereof. 

II Training and Validation Results 

As mentioned previously, MARSYAS is implemented in this core engine because it has 

the capability for real-time exclusive classifying and by IMIRSEL as an effective eval-

uation tool for digital music libraries and MIR algorithms. The MARSYAS software 

was used at the beginning of this study, before reemploying it in the proposed frame-

work. It was used as the evaluation platform for the proposed mixing strategy to create 

audio benchmarking data due to it having a high accuracy, to compare the speech and 

music detection accuracy after each of the normalisation stages. In this particular in-

stance, MARSYAS was unable to classify non-exclusive soundtrack data effectively 

since the classification decision was either speech or music for most instances, and  this 

leads to the loss of useful information. Through this framework, MARSYAS has been 

redeployed, combined with speech enhancement algorithms to translate an audio file 

into an audio content timestamp which indicates the start and end of each of audio class 

(silence, speech, music, and speech over music). This technique has the ability to 

recognise overlap between speech and music classes.  As mentioned previously, in this 

experiment 1000 mixed speech and music samples at 22050 sampling rate were trained 

to detect overlapped classes based on feature change intensity. Also, the number of 
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music mood samples from the MARSYAS website (Tzanetakis, 2015) trained to calcu-

late initial musical noise estimation after music mood is categorised by MARSYAS. 

Figure 7-4 shows the spectrogram of the audio file before and after applying speech 

enhancement; the same file is represented in the timestamp output Figure 7-3. This file 

was generated from a 47-second audio file comprising the following: - first 2 seconds 

silence, then 15 seconds pure music, 15 seconds pure speech, and the last 15 seconds 

are speech over music. The speech and music in the last part are mixed by the same 

strategy shown in the mixing stage section. It is clearly seen in Figure 7-4 that the 

cleaning algorithm removes some of the background music, which was very supportive 

to MARSYAS for categorising speech utterances better in the second iteration even in 

the presence of slight music background. Praat software was used to plot and analyse 

audio spectrograms (Paul Boersma, 2011) in the training stage. 

 

Figure 7-4 Audio file spectrogram before and after enhancement 

 

The Table 7-2 shows MARSYAS detection accuracy of speech before and after en-

hancement in addition to the music. The output of two iterations is combined together 
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through the timestamp technique as shown in the Figure 7-3. The accuracy ratio denotes 

the number of frames correctly classified compared to the total number of frames. 

The first three mixing groups were not included in this experiment due to the loudness 

of speech therein being very low compared with the music. As Table 7-2 shows, there 

is a significant improvement in the speech detection ratio, which is increased by almost 

58%. 

Table 7-2 Speech Detection Accuracy (SDA)  of the Proposed System ( before and 

after enhancement) 

 

7.1.5 Conclusion and Discussion 

This experiment has shown that MARSYAS does not work well with overlapped con-

tent. Furthermore, it misses out useful information when the overlapping takes place 

between the audio content. In addition, the experiment showed that the application of 

spectral subtractive algorithms for speech enhancement could improve MARSYAS 

classification of overlapping segments (speech over music) through audio content time 

stamping as shown in Figure 7-3. However, the algorithms need further development to 

detect and estimate ‘musical noise’ more effectively. This might include updating the 
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VAD algorithm to work on detecting speech over music using multidimensional feature 

space. In addition, there is a need for estimation of the music phase because the music 

does not have stationary characteristics like noise, so this could lead to greater accuracy 

than when it is replaced by musical speech (speech over music) in Equation 7-3.  

The conclusion from this experiment was that classical classification is logically exclu-

sive classification. Hence, instead of the logical classification which assumes that the 

segment is a member of only one class, since audio segments can be speech, music, 

event, or any combination of them, there is therefore a need to develop the implemen-

tation of non-exclusive audio classification methods to address this problem. In terms 

of machine learning, empirical experiments have indicated that machine learning for 

exclusive and non-exclusive classification can then be applied at the same time through 

tree decision. 

7.2 Speech and Music Classification of mixed sound-

tracks Using Random Forest Evaluation 

In this section, an explanation of a baseline classification system using RFs decision 

tree with short-time feature space will be provided as a 1st method (Meth.1) for over-

lapped soundtrack classification (baseline classification). Hence, the performance 

measurements of this experiment will be used in Chapter 10 as a baseline to compare 

with a suggested high-level framework for mixed soundtrack segmentation in the sub-

sequent chapters of this work.  

7.2.1 Audio Features 

At the beginning, a set of feature is calculated for each frame on a short timescale, i.e., 

each signal is framed into a series of consecutive analytical frames with 50 percent 

overlapping of the window, and for each of these frames a feature value is measured. 
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The feature extraction stage is represented by a matrix with size m X Nof, where Nof 

refers to the number of extracted features, each single column denoting a particular 

feature vector. The feature space is calculated for each class (speech, music and mixed). 

The calculated features and the corresponding adopted window (frame) length are 

demonstrated in Table 7-3. For more details regarding the calculated features, see Chap-

ter 3. 

Table 7-3 Extracted Features and adopted window for each calculated feature 

 

7.2.2 One Vs All-Classification 

Strides have been made toward discrimination between speech and music. The multi -

class classification using One Versus All (OVA) or One Versus Rest (OVR) classifica-

tion techniques has been employed. The objective of such a scheme is training Nc binary 

classifiers equal to the number of classes c, each of them responsible for discriminating 

between corresponding positive samples against all other negative samples  (Rifkin and 
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Klautau, 2004). In this experiment, the classification problem of overlapping speech 

and music decomposes into two sub-problems, one for classification of speech against 

all and the second for classification of music against all. The reason for employing such 

a technique is to mitigate the classification difficulties in the case of overlapping be-

tween speech and music, i.e. this method could be considered for non-exclusive classi-

fication through classifying the overlapped segments as speech with the speech classi-

fier and as music with the music classifier. For instance, for the speech training module, 

the goal is to build a module to identify samples with speech occurrences (pure speech 

and mixed) against all other classes, (in this example, it is only pure music). 

7.2.3 Random Forests Classifier  

In the present section, an explanation of the binary RFs classifier that constitutes OVR 

structures is presented. It is worth noting that CART (Classification and Regression 

Tree) algorithm by Breiman et al. (1984) is used in this study. Before the clarification of 

random forests classifiers, which has been applied to classify the respective feature 

space as speech or music, a concise description of the training phase will be provided, 

which is considered an essential phase in the classifier’s design. Hence, the testing stage 

can be readily conducted to present the final decision. 

Primarily, the constituents of random forest training should be generated and organised 

before the construction of the classifier module. These constituents are a set of feature 

vectors of the respective training samples combined with a single target vector that rep-

resents the known class labels. For training dataset generation, the features in Table 7-3 

have been deployed as a training set as shown in Equation 7-7. 

  1 34{ ... , }, 1...i iv i m x fe fe y                              7-7 

The mentioned features have been extracted from the dataset classes (speech, music and 
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mixed samples) separately. Moreover, in order to generate the respective target vector 

y with size m X 1 for a known training dataset, the samples that contain speech (pure or 

mixed with music) will be labelled as 1 and the remaining samples (without speech) 

labelled as 0 in the case of the speech classifier. It is worth noting that these numbers 

do not represent a restrictive choice, for example, the letters A and B or the numbers +1 

and -1 can be used instead of 0 and 1. 

To decrease the convergence time of machine learning and increase the learning 

performance, the following two steps before the training were applied: 

 Ensure every feature has been normalised to the mean to decrease the convergence 

time; this can be done by using Equation 7-8 (Aksoy, 2001) 

arg max( ) arg min( )

i i
i

i i






fe fe
fe

fe fe
                  7-8 

where fei represents a feature vector i and fe  is the statistical average of that feature 

vector. 

 Shuffling: the efficiency of the training performance is extremely dependent on 

the order of the training samples, in that the consecutive frames of the utterance 

are generally similar. Many researchers have suggested and proposed shuffling 

the training dataset before the training phase to improve the performance. There-

fore, after the combination the features of speech, music and mixed samples, they 

have been shuffled randomly to increase the performance of random forests model 

through increasing the randomization probability. A common architecture of the 

training phase is depicted in Figure 7-5. 
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On the whole, as the training vectors and respective single class label vectors are created 

and processed, the classifier can learn. This process is called the training phase and 

represents the essential concept in the machine learning module representation. At the 

end, two random forests are trained as mentioned earlier, RF1 and RF2, where RF1 

refers to the speech module and RF2 denotes the music classifier, are trained. Conse-

quently, the output of the training phase will be represented by a classifier module, 

which can be used later on in the testing phase to make the final decision.  

 

Figure 7-5 General architecture of the training RF phase. The variable xi refers to fea-

tures 
 

The random forest was trained with different numbers of trees. Thereby 1000 trees size 

was found to be the optimal size. The reason for this is that the datasets which are used 

in this study are large in size, and increasing the number of trees above 1000 becomes 

computationally costly without further significant improvement in performance.  

As the RFs classifier’s module is trained, it can be saved and downloaded when it is 

required for testing a new feature space that represents a new dataset. In contrast,  in the 

testing phase, the labels need to be predicted by the classifier’s model instead of fed as 

inputs. The shuffling process does not have any meaning in the testing phase. By con-

trast, the mean normalisation is an essential step in both the training and the testing 

phases to present the dataset at the same distribution and scale. For evaluation purposes, 

to achieve more reliability, any overlap between the training and testing datasets is 



CHAPTER 7: EVALUATION AND EXTENSION OF EXISTING SYSTEM – A CASE STUDY 127 

 

avoided, since otherwise the evaluation process will be presented with unfair results. 

The testing process is presented in Figure 7-6: the feature vectors are extracted from the 

testing samples, normalised in a similar fashion to the pre-training method, and fed to 

the pre-trained model. As a result, the output will be represented by a single column 

vector with the same size as the testing samples y=m X 1, each element epitomising the 

predicted label of the respective test sample index, i.e.  y10 corresponds to the testing 

sample with index 10.  

 

Figure 7-6 Architecture of the testing phase. Feature space is fed as input to classi-

fier’s model and the output will represent the predicted class label.  

The final decision will be represented by Equation 7-9 

  

1

1 2
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  where 1, 0 and -1 refers to speech, mix and music respectively. The common theme 

here is the detection of whether the occurrences of the corresponding class are in the 

given frame or not. 



 

7.3 Summary 

In this Chapter two different methods have proposed and developed to solve the problem 

of the overlapping audio contents classification. The first method represents a pilot in-

vestigation into the modification of a well-developed system namely MARSYAS with 

the aim to improve its capability of handling overlapped content. This has shown to 

improve classification accuracy in the case of overlapped audio with speech and music 

from virtual nil to over 60% for speech detection and over 76% for music.  However, 

for typical audio classification without overlap, a performance circa 90% accuracy is 

generally achievable; therefore, higher accuracy in the overlapped cases is sought after.  

The study then proceeded to the employment of two binary classifiers simultaneously 

using the random forests technique, one for speech and the other for music. The target 

of each classifier is to determine the occurrences of the corresponding class. The results 

of this investigation show that the accuracy is over 72% when the overlapping takes 

place between the audio content represented by all overlapped mixing levels while, the 

classification accuracy represented by the F1 score measurement was over 90% for both 

speech and music without overlapping. In the next Chapter, the second technique has 

used with new developed set of features by this study that called augmented features.  
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8 AUGMENTED AND MODIFIED FEATURES  

The post-classification smoothing can improve the classification performance through 

using a longer frame time-period. In reality, even the human cannot make decisions 

about audio content based on a very small audio frame. 

The suggested features are calculated as statistics for pre-calculated features in Chapter 

3 across a number of consecutive frames. Giannakopoulos illustrated six methods for 

audio segmentation (fixed-window segmentation, probability smoothing, silence re-

moval, signal change detection, speaker diarization, clustering, unsupervised learning, 

and semi-supervised learning) (Giannakopoulos, 2014, p. 153-180).  

A number of augmented features have been tailored to the needs of this study. These 

have been used to detect speech and music samples in both pure and overlapped cases 

via naturally recognising the common feature characteristics between pure and overlap. 

At the beginning, the raw features are extracted; the output will be a two-dimensional 

matrix. The output is further processed to extract second order statistical features. In 

this experiment, the frame size is 50 ms and the set of statistical features is calculated 

based on a band of 20 frames (equal to 1 second). The augmented features can be listed 

as follows: 

8.1 ENTROCY (ENTROpy frequenCY) 

Existing features for classification are predominantly established on artificially tailored, 

non-overlapping audio clips, as illustrated in Chapter 3. A real-world audio soundtrack 

might include one of the segment types explained earlier. An alternative feature has 

therefore been proposed for recognising music occurrences; it has shown promising im-

provements for cases where the music is pure or overlapping with other classes. The
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essential aim of applying the frequency calculation as a feature is to indicate the varia-

tion in or the distribution of the randomness with respect to a number of consecutive 

frames. This represents a combination of ENTROpy and frequenCY and therefore it has 

been christened as ENTROCY. 

Entropy and Frequency calculations have evolved separately. Entropy was proposed for 

the first time, as mentioned previously, by Shannon (1948) to measure the amount of 

information in a signal through calculation of the pdf of each sample in the frame; the 

randomness distribution of the data is also represented. Entropy is deployed in various 

classification problems and has hitherto provided adequate results through its ability to 

detect the complexity of a signal. The range of its application extends across  images, 

automatic speech recognition, health and ecology. In (Toh et al., 2005) the same feature 

was applied on the sub-band of short-time Fourier transform (STFT) and combined with 

some of the MFCC bands to improve the results of ASR in a noisy environment; this 

feature was called Spectral Entropy. MAXENT technique refers to the MAXimum EN-

Tropy model proposed for the first time by Berger et al. (1996) as a statistical model 

for natural language processing and since applied in many diverse applications. Entropy 

is also used by Misra et al. (2004) for calculating the entropy of audio spectra for dis-

criminating clean speech/noisy speech, and is proposed as a feature for robust ASR.  

8.1.1 EXPERIMENTAL METHOD 

The applied classification scheme began by resampling each audio file to a standard 

sample rate of 22.05 kHz (100 ms). Next, each file was framed, using a frame size of 

1102 samples with 50% overlap. This degree of overlap was selected as a trade off with 

increasing the frequency resolution (number of frequency bins). Then, the Entropy is 

calculated for each frame. For the entropy calculation, the following procedure was 

applied:  probability of each sample in the frame is calculated following Stewart (2009) 
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as given in Equation (8-1).  

( ) ( ) ( | ( ) ), 1,2,3,...,f n i ir x Pr s S f s xP i                               8-1 

where S represents the symbol space of the ith frame, then the sum over the probabilities 

of all outcomes in the sample space corresponding to the ith frame must be equal to 1.  

Let H be a vector of entropy features (1... NF) extracted from NF frames; this is calcu-

lated using Equation 8-2 (Shannon, 1948). 
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 Entropy H is normalised to the logarithm of the frame length L to eliminate the 

dependency on frame length. Therefore, the entropy value necessarily falls in the 

interval [0, 1], where the value 1 refers to maximum randomness. The scaling has 

a significant effect in that it causes the gradient to descend much more quickly 

and converge in fewer iterations. The experimental results show that most of the 

music genre frames have higher randomness (entropy) than those of speech.  

 The calculated entropy vector H is then segmented into segments of size 32 sam-

ples, for frequency calculation purposes. The assumption here is ‘the classification 

decision is based on the variation in behaviour across a number of consecutive 

frames at the same time (visualisation of sound)’. For example, an audio file com-

prising car engines, babble noise, cars moving, shutting and the opening of bus 

doors is more likely than not to be a bus station.  

 The segmentation is applied with a window moving by one sample at a time on 

the calculated entropy vector (H), if  1 2, , , nx x xH  . The first and second seg-

ments will be as shown in Figure 8-1 Entropy Segmentation:      



CHAPTER 8: AUGMENTED AND MODIFIED FEATURES                   132 

 

 

Figure 8-1 Entropy Segmentation 

 

 For spectral analysis purposes, each segment is multiplied first by the Hanning 

window. 

 Applying DCT for each segment, the DCT method is used to calculate the variance 

of each set of 32 adjacent entropy values.  

 Based on the feature importance measurement, which is calculated using RFs, the 

most important two DCT-coefficients are selected and the rest of the coefficients 

are omitted. 

 The centre of gravity (SC), which reflects the spectral shape of the ith 
entropy 

segment, is calculated with reference to Equation 3-14 of the first coefficients part 

(16-DCT coefficients). 

 The average of the segments here will not be equal to zero. Therefore, the first 

coefficient is ignored in order to eliminate the mean.  

 The final output is represented by only three coefficients (3rd and 5th coefficients 

of DCT plus the frequency’s centre of gravity represented by the calculated SC).  
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Figure 8-2 Entrocy calculation procedure, m refers to the number of segments 

 

The suggested method is simple and computationally efficient. The Entrocy calculation 

is done without any computationally expensive optimisations or sophisticated mathe-

matical operations performed in any of the calculation stages described above. The 

method is straightforward to understand and relates to audio content, complexity, and 

homogeneity. Moreover, the construction is general and can be applied to most audio 

information retrieval studies such as music/speech discrimination, segmentation, MIR, 

or classification.  

8.1.2 Entrocy Validation 

For the purposes of Entrocy validation, an experiment to build a module for detection 

of music against all other classes has been carried out; the samples that contain music 

score (music or mix) will be labelled as 1 and the remaining samples will be labelled as 

0. The machine learning method used is the Random Forests technique (see Chapter 4) 

trained with varying numbers of trees; it has been established empirically that 1000 

trees are an optimal size as said before. Figure 8-3 shows a simple random forest, ex-
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plained in the subsequent chapter, with 20 trees using the Entrocy feature. Class 1 rep-

resents music, class 2 represents other classes without music occurring; the features 

number represents the Entrocy coefficients, and the numerical value represents the 

threshold of hyperplanes with respect to that feature, which is determined by the Ran-

dom Forest technique. 

 

Figure 8-3 Random forest DT, the value represents the threshold of hyperplanes with 

respect to the feature axis 

The basic concept of random forest trees is that they work as a collection of hyperplanes 

(thresholds), where each threshold is orthogonal to the corresponding feature axis 

(Kargupta et al., 2006). Figure 8-4 shows the visualisation of the 2-Dimensional features 

(Entrocy coefficients 5 and 3) where the fifth coefficient is localised as the X-axis and 
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the third coefficient as the Y-axis with their corresponding hyperplane thresholds. 

 

Figure 8-4 2D Feature Spaces with their respective thresholds from Figure 8-3 

 

8.1.3 Entrocy Results and Discussion 

The results of Entrocy have been compared with the common speech/music discrimina-

tor features (namely ZCR, Spectral Centroid, Spectral Entropy, Roll-Off and Chroma). 

The most significant results for pure music / pure speech discrimination were where 

ZCR or Entrocy was used with all samples selected from the GTZAN dataset described 

in Section 5-1. Table 8-1 and Table 8-2 illustrate the results of the two classification 

scenarios. The error rate is defined as the number of misclassified samples as a fraction 

of the total number of samples. The music group included all samples with music back-

grounds, as pointed out previously (M, SM, SME and ME), and the group without music 

comprised all other samples (S, SE and Event). From Table 7-1, it can be seen that the 

results show that ZCR outperformed other features since speech samples have a higher 

rate of zero crossing than pure music. However, it failed when used to discriminate 

between the with and without music classes due to an under-fitting problem that led to 
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non-convergence. By contrast, Entrocy manifests a high level of performance in mu-

sic/non-music discrimination. 

Table 8-1: Speech/Music discrimination Error Rate, the ratio between number of misclassi-

fied frames and total number of frames n each group 

 

 

Table 8-2: Music detection Error Rate, the ratio between number of misclassified frames and 

total number of frames in each group 

 

Consequently, ZCR has been combined with Entrocy to distinguish samples with music 

from samples without music. It has achieved the best results when detecting the pres-

ence or absence of music with high accuracy. The classification performance of Music, 

SM, ME, SME, Speech, SE and Event came up to 91.19%,90.03%, 91.31%, 76.68%, 

86.82%, 84.34%, and 92.90% respectively. 
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Finally, pink noise was mixed with speech and music in two different signal-to-noise 

ratios (SNR) - 20 and 25 dB - in place of an event. Figure 8-5 shows the error rate 

corresponding to each mixing group. As noted, with this mixing dataset the results pre-

sented here may facilitate improvements in the detection of music using Entrocy due to 

feature learning with ad hoc characteristics or applications. (The results hold when 

training the system on a specific class of things, e.g. noise here is better than using a 

wide range of events) 

 

Figure 8-5: Entrocy Error Rate for music detection (S refers to Speech, M: Music and 

N represents Noise) 

A novel feature, ’Entrocy’, for classification of audio with overlapping of the three main 

classes (speech, music, and event) has been proposed in this study. This feature reflects 

the level of randomness of oscillation of the respective classes over time. It is logical 

to expect to be able to estimate the homogeneity changes through estimation of the 

frequency of the segments contents level. This is the key to information preservation, 

through detecting a particular class even when it overlaps with other classes. This will 

be a basis for non-exclusive segmentation, which is highlighted by some researchers.  

Music, speech, and event sounds can be consistently detected and segmented through 

building one module belonging to each class. Event sound recognition is challenging, 
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as there is no prior knowledge of how many different types of events there are likely to 

be and which are of interest in this application. Therefore, an ad hoc approach might be 

best for event processing based on the application due to the set of event sounds being 

an open set. When the Office Live dataset or pink noise is deployed, the Entrocy reflects 

significant improvements in terms of detection of music occurrences. 

It is sensible to conclude that Entrocy provides a cost and time gain for the process of 

classification due to achieving these results with features of only a few dimensions.  It 

has also been observed that for detection of speech, music, and events, conveniently a 

longer frame period might be beneficial; in this experiment 50 ms has been used, and 

the final discernment was with respect to almost 1 second. This is not surprising; even 

the human listener cannot differentiate sounds on the basis of very short isolated sam-

ples.  

The experimental results show that the frames that involve music, even when over-

lapped with other audio classes, have generally lower Entrocy than those with music 

absent.  

8.2 Mean Crossing Ratio (MCR) 

The predominant context has a significant effect on harmonic stability (Bharucha and 

Krumhansl, 1983). This means that a signal with abrupt changes (i.e. generally speech) 

has lower stability. To measure the fundamental frequency, the method of counting zero 

crossing is used in speech processing applications (cf. ZCR 3.3.1). In the present study, 

a method similar to ZCR is applied as a modified feature to estimate the harmonic sta-

bility level over a medium timeframe, through estimating pre-calculated short time fea-

ture value crossings of its mean per unit time. This means the calculation of the number 

of times that said features cross over their mean axis per unit time; hence, this is called 
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the Mean Crossing Ratio (MCR). Firstly, as in the previously mentioned procedure of 

feature extraction, each 1-second window is framed into 20 frames. Firstly, all the fore-

going short-term features are computed for each frame. Then MCR is calculated for 

successive intervals of 20 values of each extracted feature. To sum up, each MCR value 

will denote the crossings in a 1-second window time. The MCR for the segment ith is 

calculated according to Equation 8-3. 
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where S is the length of the segment and fe is the pre-calculated short-time feature. 
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The hypothesis here is (H0: µ(MCR) for speech, µ(MCR) for mix>µ (MCR) for music). 

To prove or reject this hypothesis, the MCR is calculated for all extracted short-term 

features, explained previously in Chapter 3, over twenty feature values. The speech and 

mixed group size (Number of samples =13171); the mean value of the speech and the 

mixed group is in general bigger than the music group for most of the features as shown 

in Appendix A Table I. The music samples numbered 13145, and to prove the proposed 

hypothesis an independent sample t-test was performed. As can be seen in Appendix A 

Table I and Table II, speech and mix were mostly associated with a statistically signif-

icant larger mean than music.  
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The hypothesis is rejected only for the MCRs that were computed on the basis of fea-

tures: MFCC7, MFCC11, MFCC13, Roughness, Regularity and Centroid. As Figure 8-6 

(A) illustrates, the MCR values that correspond to speech or mix are generally higher 

than those for without speech. Generally, the with speech group has lower harmonic 

stability and higher numerical values, as indicated in Figure 8-6 (B) by the statistical 

features curve. This observation is based on a set of 50 randomly selected MCR values 

for each class, and it can be conceptualised physically as follows: feature values with 

speech presence much more often change between higher and lower power than samples 

without speech, i.e. the features encompass changes such as the wave transitioning from 

low to high power states. 

 

Figure 8-6 MCR statistical features for the Brightness short-term feature, A- Feature 

Amplitude, B- distribution of with speech and with music segments for MCR values  

B- Histogram of the Standard Deviation square normalized to the square of the mean 
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8.3 Peak Variance Rate (PVR) 

One of the most obvious problems in feature learning is a large dynamic range of fea-

tures. This property leads to poor performance and the under-fitting problem. The fea-

tures that have such problems do so as a result of using different normalisation schemes. 

To mitigate the impact of such effects in this work, the peaks variance is calculated. 

The PVR is computed for each 20 successive intervals for each extracted feature with a 

window moving by one sample at a time, as shown in Figure 8-7.  

At the beginning, local maxima and minima are computed for each 20 successive inter-

vals for all short-term extracted feature with a window moving by one sample at a time. 

Next, the statistical average of the distance between all peaks (PVR) is calculated ac-

cording to the following Equation 8-5 
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where j here represents the number of detected local and global maxima for each pre-

calculated feature segment. Figure 8-7 presents the general calculation method of PVR 

statistical features. 

 

Figure 8-7 Calculation Method of PVR Feature 
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This proposed technique is deployed for speech presence recognition through detection 

of potential segments containing higher dynamic range such as in Figure 8-8. A large 

dynamic range is detected in segment i if the next and preceding segments are signifi-

cantly separate and distant. In the case of features corresponding to speech samples , 

they have higher PVR than segments without speech presence, because the distance of 

variance range is large in comparison with the mean value of music peaks variance. The 

reason why the distribution of with music in Figure 8-8 (B) appears wider than the with 

speech group is that the representation of pure music has low amplitude. This is clear 

in the first part of Figure 8-8 (A), which is related to pure music, while music over 

speech (SM) segments have higher values because they contain occurrences of speech.  

 
Figure 8-8 PVR Feature, A- PVR Feature Amplitude B- Distribution Histogram of speech and music 

segments for PVR values 

B- Histogram of the Standard Deviation square normalized to the square of the mean 



 CHAPTER 8: AUGMENTED AND MODIFIED FEATURES                   143 

 

8.4 Speech and Music Classification Using the Aug-

mented Features 

The classification system using RFs decision tree with feature space explained in this 

chapter has been trained and tested as a 2nd method (Meth.2). The trained system there-

fore has a similar design to that of method Meth.1 in Section 6.2, with regards to apply-

ing a different set of features. The performance measurements of this experiment will 

be represented and used for comparisons in Chapter 10. Figure 8-9 shows the procedure 

that is followed for mixed soundtrack classification with the augmented features 

 

Figure 8-9 Training RF using Augmented Features Space 

 

 

Train vector 
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8.5 Summary 

The research in this chapter investigated the use of augmented and medium term fea-

tures with random forests to tackle the overlapping problem. Three augmented features 

have been proposed namely Entrocy, Mean Crossing Ratio and Peak Variance Rate. The 

RFs therefore has trained using the augmented features as shown in Figure 8-6. From 

the results that will demonstrate in Figure 10-5, it is apparent that there is slight im-

provement in the detection of overlapped contents to over 75% using the augmented 

features. The next Chapter will illustrate the designed method using SSA and RFs to 

identify the contents of soundtracks even in the presence of overlapping for speech, 

music, or a combination. 
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9 SSA PROPOSED METHODS: TRAINING AND VALIDATION-

BASED SYSTEM 

9.1 Introduction 

The purpose of this chapter is to explain the methods being proposed, and give details 

regarding the suggested methods for the classification of overlapped soundtracks using 

SSA and RFs. Two different experiments were conducted to investigate the ability of 

SSA to decompose mixed soundtracks into different components with mostly non-over-

lapping content. A number of audio features were extracted. To this end, random forests 

decision trees were employed to classify the enhanced output signals from SSA into 

silence, speech, music, or a combination thereof. An alternative method was also sug-

gested and applied. Instead of reconstructing the filtered components into the time do-

main and then classifying them, the features that extracted from PCs were fed directly 

into RFs to classify them as speech or non-speech. Finally, the probability of PCs being 

classified as speech was used as a voting criterion to classify the corresponding frame 

into speech, music or a mix.  

9.2 Adapted SSA Method Description 

Vautard and Ghil (1989) and Elsner and Tsonis (2013, p. 62) have showed that the SSA 

technique for time series decomposition could be used for spectral decomposition, as a 

time series generally has varying frequencies but similar amplitude. Consequently, the 

suggestion here is that SSA can be used to decompose speech and music in mixed sound-

tracks into a number of almost non-overlapping components, since the mixed sound-

tracks have similar characteristics of varying frequency.
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The present method (Meth.3) applies SSA to the clustering of the speech and music 

oscillation patterns included within mixed soundtracks into a number of spaces denoted 

by the elementary matrices, which were clarified in the preceding chapter. The grouping 

criterion was applied to split these matrices into two clusters, speech and music.  

The matrices within each cluster are added together to generate one matrix that reflects 

significant oscillation, e.g. music with light speech in the background, or vice versa. 

Next, the final matrices, each corresponding to a different group, are recovered into the 

time domain. Thus, each of the mixed soundtracks will be represented by more than one 

time series. This comes before the extracted set of features from each output signal. 

Next, random forests decision tree classifiers are used to test the “enhanced” output 

signals to classify them into speech or music. To examine the technique of using SSA 

to determine significant oscillations, speech and music soundtracks have been mixed 

together in different speech-music ratios using the technique illustrated in Section 5-2, 

which has been published previously (Mohammed et al., 2015). One of the mixed sam-

ple with time length Nt = 25 seconds is depicted in Figure 9-1. 

 

Time Index 

A
m

p
li

tu
d

e
 

Figure 9-1 Mixed Soundtrack Signal 
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A flowchart illustrating the procedure for the enhancement of mixed soundtrack com-

ponents is shown in Figure 9-2.  

 

Figure 9-2 General flowchart of proposed method (Meth.3) for mixed soundtrack de-

composition. 

9.2.1 Window Length Optimization 

In order to map the soundtrack vector onto the trajectory matrix, the window length  

selection must be optimised. As mentioned in Chapter 8, the suitable window length is 

highly dependent on the aims of the analysis. Therefore, the assumptions surrounding 
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window length that have been reported by other researchers and considered in the de-

termination of optimal length in this study are presented here: 

 Many researchers have determined that the optimal length is Nt /2, since the lagged 

covariance matrix will acquire the characteristics of the symmetric matrix.  

 Elsner and Tsonis (2013, p.57) concluded that longer window length could lead 

the output to reflect the high-frequency components. By contrast, the level of com-

petition between high and low frequencies is lower with a smaller window length, 

leading to increased statistical confidence. 

 However, some researchers have argued that the results of SSA are not signifi-

cantly affected by window length, as long as it is shorter than the time series under 

test (Penland et al., 1991). The finding of this study contradicts this somewhat, as 

will be explained later in this chapter.  

 Vautard et al. tested different types of noise with 100 generated time series. They 

observed the impact of the window length in the determined dominant signal. The 

authors suggested the optimal window length is (Fr /5, 2δFr), where Fr is the 

frequency and 2δFr denotes the bandwidth. Furthermore, they indicated that a 

greater window length enhances the detection of the eigenvalue pairs (Vautard et 

al., 1992). Their recommendation, however, is based on trend forecasting of 

weather time series, where the frequency of the time series under test is very low 

compared to that of the audio data. Therefore, it is not possible to apply it to the 

audio dataset. 

 It also has been asserted by many authors that each pair of eigenvalues has nearly 

similar values with reference to dominant frequency and significant oscillations 

in the signal (Vautard and Ghil, 1989, Mohammadi et al., 2016, Enshaeifar et al., 

2016, Elsner and Tsonis, 2013).  
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Since there is no specific benchmark length, and the SSA was not previously used for 

speech/music enhancement, the heuristic method could be used to determine the optimal 

range, highlighting the smaller variance between the lower subspaces of the eigenvalue 

set.  Accordingly, the optimal window length is the one that enhances the detection of 

the eigenvalue pairs.  

In this study, therefore to find optimal window length, a comparison of the λs of the 

lagged covariance matrices was made for eight window lengths used to generate the 

trajectory matrix from the frame with length 480 samples. These window lengths were 

(8, 48, 80, 160, 240, 320, 400, 464 samples). Figure 9-3 depicts the average of the ei-

genvalues λ measured with the 54142 sets of mixed (speech with music background) 

time series for the eight aforementioned window lengths. All calculated averages have 

been normalised to the mean using Equation 9-1 to make the comparison clearer.  

 
ˆ

max( ) min( )

li l
li

l lArg Arg

 


 





  9-1 

where l=1..., 8 and i represents the length of λl; the eigenvalues will be between 0 and 

1 (1 in the case of maximum eigenvalue). 

The lower subspace eigenvalues (largest 25 λ) are presented in Figure 9-3. In general, 

concordant with the observations of others, the first two λ are appreciably greater than 

any other eigenvalues. However, this experiment determined that the optimal window 

length range that highlights pairs of eigenvalues that have nearly similar values to sat-

isfy the last assumption is 160-320. Moreover, these window lengths demonstrate that 

there are three pairs of nearly equal values, each corresponding to an important fre-

quency. In contrast, the other selected window lengths showed a deterioration in  the 

ability to determine the pairs of eigenvalues. In addition, this deterioration increases as 
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the length increases or decreases outside the aforementioned optimal window lengths.   

Consequently, this study recommends that window length (Lw) can be determined using 

Equation 9-2. 

3

4 4

t t
w

N N
L                                                       9-2 

where Nt reflects the length of the time domain under test. The physical significance of 

Figure 9-3 Singular eigenvalues of the mixed sample time series for various win-

dow lengths, 8-160 samples (top) and 240- 464 samples (bottom). 
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this size is that it maintains most of the variance of the time series by generating a 

symmetric or quasi-symmetric matrix. 

In the case that Lw is small, this might cause a number of adjacent eigenvalues (variance 

peaks) in the spectrum of a given time series to merge together and be represented by 

only one eigenvalue. By contrast, a large Lw value (high resolution) ought to split the 

variance peaks (eigenvalues) into several consecutive frequency components.  

The consensus is that the optimal size is Nt /2 because, as most other authors have noted, 

the trajectory matrix will be represented by a symmetrical matrix. Nevertheless, using 

a slightly smaller window length, as indicated in Equation 9-2, will achieve approxi-

mately the same results. In addition, a shorter length will economise the performance 

time of SSA; this is considered to be one of the challenges of applying SSA to a huge 

dataset such as ours, because it consists of an immense number of matrix multiplica-

tions, the number of which increases with dataset size. In this example, Lw=160 would 

be a reasonable size. 

9.2.2 Singular Value Decomposition 

The eigenvectors belonging to PC pairs of nearly equal singular value were then used 

to reconstruct the PCs of the time series using Equation 8-10 (each column vector of 

the PC matrix denotes a separate PC). It is obvious from Figure 9-4, which illustrates 

the first three PC pairs of mixed soundtrack depicted in Figure 9-1, that each pair rep-

resents a specific oscillation. The elementary matrices are then obtained by multiplying 

each of PC by the corresponding eigenvector and dividing by the square root of each 

eigenelements.  
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Figure 9-4 First three pairs of PC plotted as time series 

9.2.3 Grouping Speech/Music Components 

In order to select subsets of eigenelements and their respective Principal Components 

(PCs) that identify the music and speech components, this research first compared the 

statistical average of the (PCs) spectrum, which has been extracted from many thou-

sands of frames for the three different audio classes (speech, music, and mixed). The 

spectrum was measured by computing the DFT function of the statistical average of the 

principal components extracted from the aforementioned three classes.  At the end, the 

magnitude of the spectrum of all three classes was calculated and plotted. As illustrated 

in Figure 9-5, all three classes manifest greater amplitude at low frequencies (0-1000 

Hz) and lesser amplitude at higher frequencies. The amplitude of the frequencies per-

taining to pure speech is higher in the low-frequency range than for music and mixed. 

By contrast, the music and mixed classes reflect a much wider range of frequencies (0-
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4000 Hz) (higher variance) than speech (mostly 0-1000 Hz). This would seem to support 

the idea that SSA could be used to differentiate varying frequencies with similar ampli-

tude from mixed signals into enhanced speech and music.  

Furthermore, a particularly significant finding of the present investigation, as depicted 

by the results in Figure 9-5, is that speech has a slightly higher auto-correlation than 

music (i.e. it has higher associated frequencies than the music pattern). Accordingly, 

the speech variance will be represented by higher space eigenvalues than music, pro-

jected onto the higher subspace, which represents lower variances in the frequencies.  

 

Figure 9-5 The estimated spectrum for PCs of speech (top), the estimated spectrum for 

PCs of music (middle) and the estimated spectrum for PCs of mixed class (bottom)  
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In contrast, the music pattern contains higher variances in the frequencies that are pro-

jected on the lower subspace of the eigenvalue distribution (c.f.  8.3.4). In view of this 

finding, the given audio signal will be represented by a number of different oscillations, 

each reflecting a dominant pattern and other inferior components, as shown in Equation 

9-3. 

 input music speechI I I    9-3 

where , ,input music speechI I I  denote the elementary matrix group related to the input sig-

nal, the elementary matrices corresponding to music, and those corresponding to speech 

components, respectively; each of these groups is represented by a different number of 

elementary matrices. In order to categorise the oscillations using SSA, a proper group-

ing criterion is required. In this work, i and i+1 is selected as a pair if it satisfies the 

condition shown in Equation 9-4: 

11 i

i

th



                   9-4 

The threshold th is selected based on the normalised eigenvalue set, which is plotted in 

Figure 9-3, and can be changed with regard to the amplitude of the signal and the se-

lected window length. As a result, a particular threshold th is set for each PC cluster. 

Music is usually represented by a higher amplitude than speech. Bearing in mind what 

was explained earlier, therefore, and since it manifests itself in the lower subspace, a 

higher threshold th value is selected for music (0.1). On the other hand, for speech PCs, 

which are characterised by lower amplitude and higher subspace, a lower th is chosen 

to be (0.05) (These values are verified based on the dataset used). 

Another method for determine the grouping criterion is the weighted-correlation (w-

correlation) method. It is a well-known measure of deviation of two series from w-
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orthogonality. This method has been used for determine the noise boundary by Hassani 

(2010) and Golyandina (2001) and many other authors. Golyandina (2001) has stated 

“the Eigen-triples entering the same group can correspond to highly correlated compo-

nents of the series”.  The correlations measure is defined by absolute values from 0 to 

1, if the w-correlation value is close to 0, then the two series are nearly w-orthogonal 

(highly separable), but if the value is skew toward 1, then the series are far from being 

w-orthogonal and (badly separable). Hence, the elementary matrices arriving the same 

group should reflect highly correlated components of the series. W-correlations matrix 

for the junior 100 elementary matrices depicted in Figure 9-6. As illustrated the corre-

lations matrix is presented in 21-colour scale from white to black, these colours are 

related to the absolute values of correlations from 0 to 1. Depends on the figure data, 

the first and second pair of Eigen-triples can be used for the reconstruction of the filtered 

series and omit the rest matrices (noise components). The value of w-correlation be-

tween the first pair of reconstructed component and the residual is equal to 0.004.  Also, 

It is worth to noting that the first (1, 2) and second (2, 3) reconstructed series were 

hearable and this supportive by |ρ(w)| =0.32. To achieve the w-correlation investigation, 

the Caterpillar software (Golyandina et al., 2016) was used. 
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Figure 9-6 matrix of w-correlations, of mixed soundtrack 

To conclude, after grouping each pair of resultant elementary matrices together by sum-

mation and potentially generating two groups I1 ( musicI ) and I2 ( speechI ) , these could 

be restored to the time domain by diagonal averaging as described in the preceding 

chapter (see Section 8.3.4). Figure 9-7 illustrates the reconstructed signal of the first 

two dominant pairs, combined with the original signal for comparison. 
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Figure 9-7 Input signal of SSA (top), constructed time signal corresponding to the first 

pair (middle signal) constructed time signal corresponding to the second pair (bottom) 

A comparison between the DFT of the original signal and of the enhanced outputs is 

illustrated in Figure 9-8. It is clear that the original signal spectrum has greater variance 

in frequency than the first constructed time series, which in turn has greater variance 

than the second constructed time series. 
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Figure 9-8 Spectrum of the original signal of SSA (top), spectrum of the reconstructed 

time signal corresponding to the first pair (middle), reconstructed from the second pair 

(bottom) 

9.2.4 Reconstructed Signal Classification 

Finally, each of the enhanced pairs of signals from the SSA stage is processed in parallel 

by machine learning. At the beginning, 34 features are calculated for each reconstructed 

frame on a short timescale, i.e., each signal is framed into a series of consecutive 

analytical frames with 50 percent overlapping of the window, and for each of these 

frames a feature value is measured. The feature extraction stage is represented by a 

matrix with size m X 34, each single column denoting a particular feature vector. The 

calculated features and the corresponding adopted window (frame) length are demon-

strated in Table 6-3 (fe1- fe 34). For more details regarding the calculated features, see 

Chapter 3. 
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In particular, each frame will be decomposed into two-time series 𝑇𝑦 = {𝑇1, 𝑇2} using 

SSA. Thus, the feature space x is calculated for each Ty. At the end, two RF𝑧 =

{RF1, RF2} where RF1 refers to speech and RF2 to music classifier, are trained for the 

two decomposed time series. The final decision will be represented in matrix D, which 

can be determined according to Equation 9-5. 

1 2

1, (1) 1

0; (1)

1, (1) 2

if Sample x classied as by only RF

D if sample x classified as by RF and RF

if Sample x classied as by only RF

 
 
  

  
 
 
  

                     9-5 

where 1, 0 and -1 refers to speech, mix and music respectively, the common theme here 

is the detection of whether the occurrences of the corresponding class are in the given 

frame or not. Notably, the given frame is decomposed into two-time subseries, and each 

of these decomposition time subseries is classified separately. For more information 

about the training and testing phase, see Section 6.2. 

9.3 Principal Components Classification Method 

An alternative method is proposed as 4th method (Math.4) to classify a mixed soundtrack 

based on the decomposed PCs for each frame. The results of preceding method guided 

its development as follows: 

 We conclude along with others (for instance Vautard et al., 1992, Sanei and Has-

sani, 2016) that each PC pair vector corresponding to nearly equal eigenvalue has 

a unique oscillation pattern, as shown in Figure 9-9, which depicts the calculated 

frequency of the first 10  principal components.  
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Figure 9-9 Spectrum of the first ten PCs of the given signal illustrated in Figure 8-3; the 

X-axis indicates frequency and the Y-axis amplitude. 

 As mentioned above, each PC can be considered to be a time domain, but on a different 

coordinate system.  

 Mixed sounds (speech and music) are composed of a comb-pattern of harmonics ex-

ponentially spaced in frequency. The lowest level of overlapping in the pattern oscil-

lation (frequency) is presented in the PCs and corresponding elementary matrices. 

Hence, summing a number of elementary matrices together could increase the over-

lapping level of the contents. 

 Furthermore, grouping criterion may lead to error. For instance, grouping PCs corre-

sponding to speech and music with almost equal oscillation together will have an un-

desirable effect on classification performance. 
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 The goal is to recognise the contents of soundtracks even where they overlap, with no 

prior knowledge of the source and minimising the probability of error.  

 Drawing on the first two assumptions, and in order to reduce the classification diffi-

culties in the other set of conclusions, this study suggests that each PC of the mixed 

soundtracks might be classified separately.  

9.3.1 The Proposed Classification Method  

Drawing on the foregoing findings, it is posited here that the calculated PCs could be 

used instead of the reconstructed time domain to classify each frame into speech or 

music based on the extracted features from the corresponding PC vectors.  

In an attempt to achieve this proposition, the following steps were carried out: 

 Calculation of Principal Components (PCs) of the three classes (speech, music, 

and mixed) separately, as previously illustrated (see Chapter 8). 

 Exclusion of the PCs that correspond to the noise floor to avoid misclassify them 

(see Section 8-5 in the preceding chapter for more details). 

 Centring each of the non-noisy PC vector by subtracting the mean value before 

the feature extraction step. 

 Extraction of the whole set of short-time features mentioned earlier (see Chapter 

3) from the calculated PCs. 

 Feature scaling using mean normalisation of the features matrix (see Equation 6-

8), which is essential. For instance, if the Euclidean distance has increased, this 

will lead to some of the features being dominant on the distance measure due to 

their range (Eyben, 2016).  

 Training of the Random Forests module on the PCs that are corresponding to the 

pure classes only (speech and music). 
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Figure 9-10 General architecture of the RF training and testing phase for PC predic-

tion (Meth.4) 
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In the testing phase, it is essential to follow the same steps explained above. The 

flowchart illustrating the procedure for the classification (training and testing phase) of 

the PCs of mixed soundtracks is shown in Figure 9-10. 

9.3.2 Principal Components Calculation 

In this method, firstly, the audio samples are processed frame by frame, with a frame 

size of 100 ms. Next, each frame is mapped into TM with a window length of embedding 

dimension equal to 30 ms (these length have been optimized, see Section 9.3.7). Then 

the covariance matrix Cx is calculated according to the same method as explained in 

the preceding chapter, after which the eigenvectors and eigenvalues for the square Cx 

are calculated. The final step in PCs calculation is also the easiest: the desired compo-

nents are selected with the elimination of the noise floor (see Equation 8-13). To demon-

strate the noise removal the largest 25 (lower subspace) eigenvalues (triangular marker) 

and their corresponding statistical contributions (square marker) are presented in Figure 

9-11.  

 

Figure 9-11 Eigenvalues (red) and their contribution (blue) using window length 160 



CHAPTER 9: SSA PROPOSED METHODS: TRAINING AND VALIDATION-BASED SYSTEM                   164 

 

of the audio file presented in Figure 9-1 

 

As demonstrated in Figure 9-11 (contribution line) that PCs after the noise floor have 

no much information. Consequently, to separate the higher subspace, which contains 

the noise part of the spectrum, the criterion in Equation 8-13 is applied to omit the noise 

part with th value equal to 0.85 (all PCs corresponding to eigenvalue indexes higher 

than the ds value are removed). Multiply the transposition of the retained eigenvectors 

and the eigenvalue itself by the TM, one by one (multiply TM with one eigenvector at 

a time). (For more information, see Equation 8-10). This will give us the transformed 

trajectory matrix solely with regard to the selected eigenvectors: these are the PCs.  

Figure 9-12 and Figure 9-13 plot the first three PCs in three dimensions for speech and 

music classes respectively, where the y-axis represents PC2, the x-axis PC1, and the z-

axis PC3. As is evident in the graph, the PCs from music have a greater variance than 

those from speech. It is also possible to clarify datasets with regard to any two or three 

axes. The representation would be more efficient if the plotted PCs were illustrated in 

a perpendicular way; this also reflects how important it is to sort the eigenvalues and 

corresponding eigenvectors in descending order, depending on the variance value from 

high to low. 
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Figure 9-12 the first three Principal Components with the highest variance for speech 

samples 

 

Figure 9-13 the first three Principal Components with the highest variance for music 

samples 
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As mentioned previously and demonstrated in the preceding two figures, it is essential 

to centre each PC vector by subtracting the mean value before the feature extraction 

step. This is because it has a DC offset (the centre of the PC vector will not be at 0). In 

other words, the mean of each PC vector must equal zero. This could also be called 

removing the DC offset, which is considered an undesirable characteristic because it 

has an effect on the calculation of features including but not limited to ZCR (see Chapter 

3).  This is performed such that 

 ˆ ( ) ( ) , 1,..., , 1,...,j j j wi i j L i K   v v v   9-6 

where  is the statistical average of PC vector, denotes the normalised PC vector, 

Lw represents the number of principal component (PC) vectors, and K is the length of 

PC vectors. As depicted in Figure 9-14, the PC centre becomes zero after the DC offset 

is removed. 

 

Figure 9-14 PC DC offset removal 

9.3.3 Transformed Feature Space 

The frames have been transformed into a dataset of PCs expressed as pattern oscilla-

tions, which reflect the lines that most closely depict the relationships within the dataset. 

Consequently, the training dataset of PCs have now been categorised as a grouping or 

a combination of each particular pattern (lines).  

v ˆ jv
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To begin with, number of statistical features are calculated for each PC on a short time-

scale, and these features represent a transformed feature space, since they are calculated 

from a transformed dataset. The feature extraction stage is represented by a two 

dimension matrix { }x m Nof  , where m denotes the number of the retained PCs and 

Nof is the number of the calculated PCs. Notably, each frame will be decomposed and 

then classified based upon the number of the retained PCs. Thus, the feature space x is 

computed for each PC series. Figure 9-15 depicts the transformed ZCR feature, which 

is extracted from calculated PCs. As demonstrated in the figure, the statistical mean of 

ZCR (0.2080) for speech is higher than that extracted from music (0.0934), which sup-

ports the proposition suggested above.  

 

Figure 9-15 Transformed ZCR Feature: ZCR for speech frames (top) and music sam-

ples (bottom) 

9.3.4 Principal Components Classification 

Ultimately, the random forests module was trained as binary classifier for the task of 

distinguishing speech from music. As described above, during the training phase, the 

classifier module learns the training set, which is represented by the transformed feature 
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vectors and corresponding target labels. In this case, the binary classifier was developed 

with labels 1 for speech and 0 for non-speech (the classifier learns on pure transformed 

features extracted from the pure classes representing speech and music). Once the RFs 

module is trained using the training dataset, it can be used to predict the labels of the 

unseen dataset (unknown data). From the flowchart in Figure 9-16, which illustrates the 

testing phase, it is apparent that the suggested algorithm adopts voting as its aggregation 

scheme for the classification of a frame into either speech, music, or a combination of 

the two.  
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Figure 9-16 general architecture of the mixed soundtrack classification 

The probability can be identified with reference to Equation 9-7  

 
 

( / ) 0.75 1 ( )

0.75 / 0.25 0 ( )

( / ) 0.25 1 ( )

i i

i i

i i

Pr x c y speech

K Pr x c y mix

Pr x c y music

   
 

     
     

  9-7 

K here reflects the aggregation voting for the predicted class (final decision), ( / )iPr x c  

is the probability of PCi being classified as speech and can be defined using Equation 9-8: 
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where Tp represents the true positive (number of classes classified as speech (1)). It is 

worth noting that mixed soundtracks should be represented by two portions of the set 

of PCs, one belonging to speech and the other to music.  

9.3.5 Performance Measure 

In order to evaluate the efficiency of the PC classification in identifying the contents of 

soundtracks even in the presence of overlapping, RFs classifier for speech, music, or a 

combination are tested. The sensitivity of a test is identified for each class as the per-

centage of classified frames allocated to class c that indeed belong to class c. For in-

stance, the sensitivity of speech is the percentage of frames classified as speech as a 

fraction of the total number of speech samples in the test dataset. The second class -

specific performance measure is precision, or Positive Predictive Value (PPV), which 

denotes the proportion of frames correctly classified as class c as a fraction of all the 

samples classified as class c. For example, the PPV for the music class represents the 

number of samples correctly classified as music compared to the total number classified 

as music. Hence, a better classifier is characterised by a low error rate and higher posi-

tive predictive value and sensitivity. Finally, a common performance measure used to 

make comparisons between more than one classifier, called the F1 score, is calculated. 

Table 9-1 presents the confusion matrix for the normalised average of the 10-fold 

testing. For instance, cell (2, 2) is the percentage of speech frames that were indeed 

classified as speech following the algorithm described in Figure 9-10, while cells (2,3) 

and (2,4) show the percentage of speech frames that were classified as music and mix, 

respectively. 
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Table 9-1 Normalised Confusion Matrix for the Speech, Music and Mix classification 

task (k-fold cross validation method, k = 10).  (Numbers in %) 

         Predicted                                                                                                                                                 

Actual                               
Speech Music Mix 

Speech 95.57% 3.22% 1.21% 

Music 3.73% 93.20% 3.07% 

Mix 5.40% 5.09% 89.51% 

Performance Measurements (% per class) 

Recall 95.57% 93.20% 89.51% 

Precision 91.54% 91.81% 90.45% 

F1 Score 93.51% 92.50% 89.98% 
 

As can be seen, there is a significant recognition result. The results also show that fea-

tures can indeed be extracted from PCs, and reflects a promising improvement in the 

classification of overlapping classes. 

9.3.6 The Optimization of The Frame length and SSA Window length  

The relation between frame duration and SSA window length is interesting because the 

feature space should be extracted from a window that contains sufficient information. 

Since the frame is mapped into a two-dimensional matrix, and then the last matrix is 

used to calculate PC vectors prior to computing the feature space for these vectors, both 

the frame and the SSA length could affect classification accuracy. Consequently, in this 

study, empirical methods have been used to determine the optimal sizes of these two 

parameters and via the classification of pure speech vs. pure music datasets. Different 

frame sizes from 30ms to 100ms have been used, and with each of these frame sizes, 

different SSA window lengths are deployed in the calculation of PCs. The finding was 

that the accuracy was increased by increasing the duration of the frame, but was 

declined by increasing the SSA window longer than the half of the frame length. Using 

the method of calculating optimal embedding dimension length recommended in 

Section 9.2.2 and Equation 9-3, the classification accuracy is calculated with different 
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frame sizes (30 ms-100 ms) in steps of 10 ms, and for each frame size, a different SSA 

window length is applied. The results, plotted in Figure 9-17, suggest that the size of 

the frame should be longer than 90 ms, while the corresponding SSA window length 

should be between
_ _

4 2
w

Frame size Frame size
L   to achieve satisfactory results. 

 

Figure 9-17 Relation between frame size and SSA window length based on the classi-

fication accuracy of Meth.4. The y-axis represents frame length, the x-axis SSA win-

dow length, and the z-axis accuracy. 

9.4 Summary 

Two different methods were conducted to investigate the ability of SSA to decompose 

mixed soundtracks into different components with mostly non-overlapping content. In 

the first method, a number of audio features were extracted. To this end, random forests 

decision trees were employed to classify the enhanced output signals from SSA into 

silence, speech, music, or a combination thereof. An alternative method was also sug-
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gested and applied. Instead of reconstructing the filtered components into the time do-

main and then classifying them, the features that extracted from PCs were fed directly 

into RFs to classify them as speech or non-speech. Finally, the probability of PCs being 

classified as speech was used as a voting criterion to classify the corresponding frame 

into speech, music or a mix.  

The proper grouping criterion, SSA window length and frame size for both of the de-

veloped methods is optimized and validated as explained before in this Chapter.  The 

next Chapter will demonstrate the results of the suggested methods in this study, com-

parison between these sets of results and results discussions.
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10 RESULTS AND COMPARISONS 

10.1 Overall System Testing 

A number of experiments were conducted on the proposed benchmark database with 11 

levels of different mixing ratios in a methodical way as shown in Figure 6-2. All pure 

and mixed samples are manually labelled after the framing stage into speech, music or 

mix. To evaluate the proposed methods the 10-fold validation method has been applied. 

Hence, each mixing group was separated in a random way into 10-subsets and then the 

suggested experiments were conducted for 10 iterations. At each iteration, nine subsets 

were used for training and the remaining subset for testing.  

With each of the first two suggested methods (Meth.1, Meth.2, see Chapter 4 and Chap-

ter 7), two modules were trained, one for speech and the other for music. Each of those 

two modules trained on detection of its respective class through including all samples 

with the presence of that class against all others. For instance, in the case of the speech 

classifier the pure speech and mixed samples are trained against pure music. While the 

music classifier is trained on music and mixed samples against pure speech. As men-

tioned earlier, each method has trained with a different set of feature space. These two 

sets of feature space were illustrated in Chapter 3 and Chapter 7, which are a raw short-

term feature space and the augmented feature space from mid-time (almost one second). 

Consequently, four groups of results will be presented to evaluate the implemented 

methods (Meth.1, Meth.2, Meth.3 and Meth.4) besides the results in Chapter 6, which 

represent the evaluation of MARSYAS and a pilot case study. 

In contrast, in the last method (Meth.4) only one classifier has been trained for detection 

of pure speech, music, and mix due to decomposing each frame into a number of PCs 

as explained before. Hence, each PC will be classified as either speech or music; thereby 



CHAPTER 10: RESULTS AND COMPARISONS                   175 

 

each PC will represent an individual decision. Subsequently, the nature of the frame 

contents can be determined by voting for the class with the highest probability; other-

wise if the probability is between 25% and 75%, then the frame will be classified as a 

mix of speech and music, see Equation 9-7 and Figure 9-16 (for more details). 

To inspect the efficiency of SSA in the improvement of the classification intelligence 

of mixed soundtracks, RFs classifiers for speech, music, or a combination of thereof are 

tested. Random Forest classifier (Section 4.6.2) is the choice for all conducted experi-

ments with 1000 trees because it provides both adequate results (from the literature 

study) and the ability to manage a big dataset. As mentioned, the order of samples in 

the training subset (not in the test partition) was randomised using the shuffling method. 

Moreover, all extracted feature vectors were normalised to the mean. 

It is important to identify the measurement of the results that applied in this research, 

as follows: 

Tp: True positive, refers to the number of the correctly classified frames. Hence, the 

Tpr of a test is identified per-class as the percentage of frames classified to class c and 

that correctly had the class label c. For instance, the Tpr of speech is the percentage of 

frames that were classified as speech as a fraction of the total number of speech samples 

in the test dataset. It is also known as a sensitivity or recall and is as given in Equation 

10-1 

_ _ _
,

_ _

i
i i

i i

TpCorrectly Classified as Positive
Tpr Re

Total Postive Samples Tp Fn
 


               10-1 

 

Tn: denotes the correctly rejected frames.  

Fp: the incorrectly accepted frames. For instance, music frames which areincorrectly 

accepted as speech frames in the case of music classifier. 
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Fn: False negative, incorrectly rejected frames. 

PPV: Positive Predictive Value denotes the proportion of frames that are correctly clas-

sified as class c out of all frames classified as class c. It is also known as the Precision 

(Pr). Equation 10-2 gives it as 

 , i
i i

i i

Tp
Pr PPV

Tp Fp



                                           10-2 

The accuracy (overall, how often is the classifier correct) can be defined as given in 

Equation 10-3. 

 
Total population

Tp Tn
Accuracy





                                 10-3 

The performance estimation is Unweighted Average Recall (UAR) (Schuller, 2013) 

which could be considered as a preferable indicator of the accuracy over all classes (true 

performance) of the baseline and proposed modules for an appraisal where the appear-

ance of class labels is extremely unbalanced across the different classes. Standard ac-

curacy also refers to the UAR indicator, and it is calculated as illustrated in Equation 

10-4 (Schuller, 2013): 

 
1 c

i

i

UAR Re
c

                                         10-4 

where c represents the total number of classes (in this study 2c  , speech and music) 

and Rei denotes the recall portion for the ith class. In the same way, Unweighted Average 

Positive predictive (UAP) value has been calculated as given: 

 
1 c

i

i

UAP Pr
c

                                        10-5 

where Pri reflects the precision for the ith class, therefore the classifier performance is 
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given by F1 score, which can be calculated as given in Equation 10-6 

 1, 2 i i
i

i i

Re Pr
F

Re Pr



                                     10-6 

F1 score is a broadly known performance measure for comparison between more than 

one classifier which is called the F1 score is used and calculated.  

Finally, Unweighted average F1 (UF1) can be defined as given in Equation 10-7 

 1 1,

1

1 c

i

i

UF F
c 

    10-7 

  UF1 Score is calculated for the baseline classifier Meth.1 explained in Chapter 6 and 

for the other suggested methods (Meth.2, Meth.3, and Meth.4) as a comparison meas-

urement. Moreover, speech mixed with music in multiple speech-to-music ratios rang-

ing from -20 dB to 20 dB in steps of five are used to validate the proposed method. For 

comparison between the classifiers of the suggested methods, UF1 score as given in 

Equation 10-7 is used and calculated. 

10.2 Results Comparisons 

The measurements depicted in Table 10-1 below demonstrate the normalised average 

of the 10-fold cross validation technique, which is applied for training and testing of 

the modules. The overall performance of the classifier is evaluated by taking the average 

of the ten folds. As can be seen in Table 10-1, two classifiers have been developed with 

Meth.1 - one classifier for recognising speech against all and the second classifier for 

music against all. Additionally, the performance average of both classifiers is offered 

in the ‘Performance Average’ row. This performance is the UF1 of both classifiers. As 

can be seen, the baseline system Meth.1 works well with pure classes (non-overlapping 
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condition between speech and music), but the results were not adequate where the over-

lapping increased between speech and music. In most mixing ratios, greater than 25% 

of frames were misclassified, either Fp or as Fn. This observation has a physical mean-

ing since the overlapping contaminate the characteristics and features and causing poor 

classification performance. Another reason is that existing features for classification are 

predominantly established on artificially tailored, non-overlapping audio clips, which 

make these features, which extracted from short period, insufficient to determine the 

overlapped contents. 

Table 10-1 Classification Recall and PPV and Unbalanced F1 Score of Meth.1, M de-

notes pure music and Sp refers to pure speech, and the other values denote the mixing 

ratio in dB 

   Actual/ Mixing Ratio 

Exp.1  
Meas-

ure 
M -20 -15 -10 -5 0 5 10 15 20 Sp 

Speech 
Classifier 

Recall %   
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Figure 10-1 Performance Average (F1 Score %) for Meth. 1 

The same measurements were used with the other Meth. 2 shows the UF1 score results 

of using mid-time statistics feature space (1-second) and their measurements relative to 

the speech and music classifier. The row ‘Performance Average’ contains the results of 

the normalised average F1 score of both classifiers calculated using Equation 10-7. In 

particular, using mid-time feature space, the harmonics of the music frames behave to 

determine the occurrences of the music within both classifiers slightly more accurately 

than the results that can be achieved using the raw feature space that extracted from 50 

ms frames and demonstrated in Table 10-1. This seems to suggest that giving more 

information through applied the suggested augmented features with longer window over 

time period can slightly improve the classification performance, which is not surprising. 
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Table 10-2 Classification Recall and PPV and Unbalanced F1 Score of Meth.2, M de-

notes pure music and Speech refers to pure speech, and the other values denote the 

mixing ratio in dB 

   Actual/ Mixing Ratio 

Exp.2 
Meas-

ure 
M -20 -15 -10 -5 0 5 10 15 20 Sp 

Speech Clas-
sifier 

Recall 
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Figure 10-2 Performance Average (F1 Score %) for Meth.2 

 

Data from the foregoing two tables (Table 10-1 and 10-2) can be compared with the 
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data in Table 10-3, which shows significant improvement in the sensitivity, precision, 

and thereby the accuracy of the classification, for all mixing levels. In fact, the improve-

ment was up to 20% of the value of the F1 score, as shown in the two tables below 

(Table 10-3 and 10-4), which correspond to the SSA technique (Meth.3 and Meth.4), 

explained in Chapter 9. This significant improvement using Meth.3 can be conceptual-

ised as the SSA enhanced the classification performance through mitigating the over-

lapping between the components by separating them into a two time series with a lower 

ratio of overlapping and then classifying them separately.  

 

 

Table 10-3 Classification Recall and PPV and Unbalanced F1 Score of Meth.3, M de-

notes the pure music and Sp refers to pure speech, and the other values denote the 

mixing ratio in dB 

   Actual/ Mixing Ratio 

Exp.3 Measure M -20 -15 -10 -5 0 5 10 15 20 Sp 
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 C
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Figure 10-3 Performance Average (F1 Score %) for Meth.3 (different mixing ratios) 

Finally, Table 10-4 shows the results of the proposed method 4 (Meth.4) that used clas-

sification based on the transformed features extracted directly from the PCs. As demon-

strated, the proposed method provided a power classification performance and outper-

formed of both the Meth.1 and Meth.2, since each PC corresponding to particular oscil-

lation, which is represented a lower level of overlapping ratio between audio sources, 

and each oscillation represented by particular PC is classified separately.  However, the 

results were somewhat lower than the results of the previous method (Meth.3) but with 

much lower performance time. The result is in the lines of earlier discussion (Section 

9.3) that conclude that each PC of the mixed soundtracks can be classified separately in 

order to reduce the classification difficulties.   
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Table 10-4 classification Recall and PPV and Unbalanced F1 Score of Meth.4. 
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Figure 10-4 Performance Average % of Exp4 for different mixing ratio 

The comparisons between all the experiments conducted (Meth.1, Meth.2, Meth.3 and 

Meth.4) are highlighted in Figure 10-5. The most significant improvement were with 

Meth.3 and then Meth.4, see Table 10-3. However, the performance time of Meth.3 

(reconstruct to the time domain and then perform the classification process) was much 

longer than the processing time of Meth.4 (classify the frames based on the correspond-

ing PCs). Notably, the latter can determine the content of the audio frames through 

developing only one classifier. Additionally, the newly proposed and developed method 
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(Meth.4) can detect pure speech, pure music, and mix with a much lower complexity 

level. 

 

Figure 10-5 Comparison of baseline classification method with all suggested and ap-

plied methods. Y-axis is the F1 score percentage, and X-axis depicts the speech-to-

music mixing ratio in dBs 

 

In Figure 10-5 there is a clear trend of decreasing the value of the F1 score for both 

Meth.1 and Meth.2 when the mixing ratio lies in the mid-range (-15 to 15). By contrast, 

considerable improvement in the classifier performance is noticed in the recognising of 

mixed soundtracks using the suggested SSA decomposition technique (Meth.3 or 

Meth.4). The justification of the results of each experiment is highlighted as discussed 

above. It is also perceived that mixing ratio has significant effects on the classical clas-

sification that presented in (Meth.1) consequent to the undesirable effect on the seman-

tics of the features. 

Furthermore, the standard error for each method has been estimated using the following 

steps: 
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 Calculate the statistical mean value of UF1 for all mixing groups in “average 

performance” row according to the Equation 10-8 

 

1
1

UF
UF

n
 


  10-8 

where (n=11) denotes the number of the mixing data groups. 

 Estimate the standard deviation of UF1, which can be calculated according to 

Equation 10-9 

 
 

2

1 1

1
1

F

UF UF
S

n







  10-9 

 Estimate the standard error of UF1 as given by Equation 10-10 

 
1( 1 ) FS

ESE UF
n

    10-10 

 Finally, determine the error boundaries by subtracting the standard error from the 

mean and recording that number, then adding the standard error to the mean and 

recording that number. These two values represent the distance from 1 standard 

error below the mean to 1 standard error above the mean, as shown in Figure 10-6 
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Figure 10-6 Suggested method comparisons using normalised standard error for UF1 

score 

The central bold line for each experiment is the medium of the distribution over all 

mixing groups: it is apparent that method Meth. 3 is represented by the highest medium 

and Meth.1 has a lower medium. The smallest standard error values are represented by 

Meth.3 and Meth.4 respectively. The whiskers of each experiment refer to the minimum 

and maximum observations of the statistically averaged value of UF1 score for each 

proposed method. It is apparent that SSA methods outperformed the other two methods 

through providing smaller estimated standard errors and higher UF1 scores as shown in 

Figure 10-6.  

Finally, Table 10-5 depicts the accuracy in each of the 10 folds of the RFs module with 

the suggested method in Meth.4. It can be seen from the Table that the random forests 

technique is very stable and that promising accuracy results are achieved.  

Table 10-5 Classification results of Meth.4 accuracy (%) in Ten folds for all mixing 

ratios, where M denotes pure music and Sp refers to pure speech, and other values denote the mixing 

ratio in dB The abbreviation Ite. refers to iteration fold. 
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     Ite. 

Actual 
Ite. 

1 
Ite. 

2 
Ite. 
3 

Ite. 
4 

Ite. 
5 

Ite. 
6 

Ite. 
7 

Ite. 
8 

Ite. 
9 

Ite. 
10 

M 93.22 91.54 92.75 92.08 87.25 92.31 95.1 92.74 89.22 91.85 

-20 89.23 94.51 92.55 86.47 94.51 85 92.55 90.39 94.51 87.92 

-15 89.73 91.79 90.78 89.85 90.64 89.63 86.74 89.96 91.58 92.51 

0 86.67 88.85 88.63 92.55 86.92 92.55 90.59 89.23 92 90.59 

-5 87.47 89.62 94.71 94.9 93.46 87.31 93.46 87.06 87.45 89.41 

0 92.75 92.75 86.86 89.62 94.71 85.88 82.35 93.46 86.75 91.71 

5 85.38 92.55 93.46 90.93 94.94 91.54 88.24 86.71 91.54 87.86 

10 90.98 87.69 88.63 87.69 89.23 92.55 86.86 92.75 88.82 91.54 

15 92.38 90.9 91.71 85.38 90.78 86.24 90.38 88.82 90.78 87.38 

20 89.41 93.33 88.18 92.31 93.33 90.77 85.49 87.25 88.46 89.02 

Sp 90.59 92.55 94.9 93.08 94.62 94.62 90.77 91.6 92.75 90.77 

10.3 Evaluation of Usability with Real Worked Samples 

and Discussion 

10.3.1 Evaluation OF Usability with Real Worked Samples 

For the validation of method Meth.4 with worked samples, ten samples from each class 

of the GTZAN dataset (speech and music) with length of 30 seconds are mixed together 

by one of the audio production masters students at Salford University. The students 

have gained practical, theoretical, and creative experience in sound engineering, music 

production and audio technology. Consequently, they have aquired the skills needed to 

create and deliver professional audio. The mixed samples therefore have similar 

characteristics to those of real world audio samples with regards to their speech and 

music content. More details about the audio production lab can be found on the web site 

(Salford, 2016) and in Appendix B. To listen to the produced audio files, browse the 

attached CD with Appendix B.  

Furthermore, each audio file has framing into (599) frames with length of 100 ms. Then, 

each frame is decomposed into a number of PCs equal to 560. The pre-training modules 

on the pure classes were used to classify the mixed soundtracks illustrated in the 

preceding paragraph. The statistically averaged values of K-voting over all frames are 
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presented  in  

Table 10-6.  

Table 10-6 Accuracy of mixed soundtrack classification 

File ID 
Average of 10-

folds 

File 01 83.17% 

File 02 84.62% 

File 03 82.57% 

File 04 84.70% 

File 05 85.37% 

File 06 80.82% 

File 07 85.64% 

File 08 86.82% 

File 09 84.50% 

 File 10 83.94% 
 

Figure 11-1 shows the standard devaision boxplot of the calculated average of accuracy 

over all mixed soundtracks. The line inside the boxplot refers to the medium value over 

all files, while the whiskers refer to the minimum and maximum observations of the statis-

tically averaged value of accuracy. The boxplot indicates that the accuracy distribution is 

almost normal. (This data is positively skewed; that is, there are more observations towards 

the higher end of the boxplot). 

Figure 10-7 Standard Deviation of 10-average value over all tested mixed files 
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When the trained system is exposed to a different dataset produced professionally in pro-

duction studio, as shown in Appendix B, it shows a good performance even though small 

differences are documented because the professional production sound involves a different 

compression and equalization level. 

  

10.3.2 Discussion 

An extensive approach is required to provide an efficacious classification of mixed 

soundtracks. Initial results in these areas have been reported, and critical challenges 

remain. In this research, a novel method to identify overlapping sources in mixed sound-

tracks employing the SSA technique is proposed and conducted. With a view to 

assessing the suggested method, speech and music were collected from the GTZAN 

database and mixed in different speech-music ratios. Hence, the suggested method is 

compared with conventional classification methods using a state of the art machine 

learning technique.  

The choice of the GTZAN dataset for this work was as a result of its use in many 

publications and PhD projects mentioned in the literature for speech and music genre 

categorization. Furthermore, it supports the generalisation condition, e.g. it provides 

speech samples in different languages and for both genders and for most music genres. 

The classification of mixed soundtracks combined with SSA requires criterion of de-

composition of the mixed sources into different independent eigenelements of the input 

leads, which is proposed in this research. As explained, two different methods for en-

hancing the classification results of mixed soundtracks applying the SSA technique 

have been suggested and studied. Theoretically, the last method (Meth.4) should offer 

the most improvements in soundtrack classification since each PC corresponding to par-

ticular oscillation, which is represented a lower level of overlapping ratio between audio 
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sources, is classified separately. Therefore, more investigation is required to evaluate 

the proposed algorithm and to indicate the most appropriate feature space. Also, the RFs 

can be learned on the PCs directly without the need to calculate features for them. This  

suggestion is supportive by Figure 9-12 and Figure 9-13, which illustrate that each of 

speech and music has a particular pattern. 

Results demonstrated in the preceding chapter are obtained by processing the audio 

samples in frames of 50 ms, 100 ms, and 1 second. In this study, the researcher notes 

along with others that a 50 ms frame length could be a reasonable size for feature space 

extraction, but with the suggested method (Meth.4), the reasonable size would be longer 

than 90 ms due to decomposing the frame into smaller windows (PCs) and then 

extracting feature space from the decomposing PCs. 

The performance of Meth.3 (mitigating the overlapping between the mixed sources 

through SSA algorithm processing and then reconstructing the grouped oscillations into 

the time domain and extracting the feature space from the enhanced pair of outputs and 

then classifying them) was slightly better than Meth.4 (which extracted features from 

PCs and then classified them directly without reconstructing the entirety back to the 

time domain). Nevertheless, that did encounter a few obstructions, including 

excessively long processing time, increased storage requirements (each frame 

symbolised by two outputs), and this all leads to greater computational load than previ-

ously. In conclusion, this study indicates that the SSA techniques could be applied for 

improvements in the classification of mixed soundtracks. The study provides compari-

sons indicating that the suggested algorithms outperformed the conventional classifica-

tion methods in the presence of overlapping between speech and music. For the PCs 

classification method, the suggested method provides significant performance with sim-

ple and low computational load.
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11 CONCLUSION AND FUTURE WORK 

11.1 Conclusion 

The research has been focused on mitigating the classification difficulties associated 

with overlapping between speech and music classes and improving the classification of 

the mixed soundtrack. For evaluation purpose, a simulated dataset generated by the 

mixing of pure speech samples with pure music samples related to different levels of 

the speech-to-music ratio is established and examined. 

The study started from a pilot investigation into the modification of a well-developed 

system namely MARSYAS with the aim to improve its capability of handling over-

lapped content. This has shown to improve classification accuracy in the case of over-

lapped audio with speech and music from virtual nil to over 60% for speech detection 

and over 76% for music.  However, for typical audio classification without overlap, a 

performance circa 90% accuracy is generally achievable; therefore, higher accuracy in 

the overlapped cases is sought after. The study then proceeded to the employment of 

two binary classifiers simultaneously using the random forests technique, one for 

speech and the other for music. The target of each classifier is to determine the occur-

rences of the corresponding class. The results of this investigation show that the accu-

racy is over 72% when the overlapping takes place between the audio content repre-

sented by all overlapped mixing levels, as shown in Table 10-1, while, the classification 

accuracy represented by the F1 score measurement was over 90% for both speech and 

music without overlapping. Moreover, analysis of the computed features, consistent 

with other studies highlighted in the literature review chapter, shows the following: 1) 

A long window could maximise the extracted amount of information from the analytical 
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frame. 2) The target pattern can be detected by the behaviour corresponding to the num-

ber of analytical frames. The research then moved forward to investigate the use of 

augmented and medium term features with random forests to tackle the overlapping 

problem. From the results in Figure 10-5, it is apparent that there is slight improvement 

in the detection of overlapped contents to over 75% using the augmented features. This 

seems that the technical challenge in handling overlapped audio classes remains un-

solved. Finally, for mitigating the classification difficulties of this problem, two new 

methods using SSA are developed, one for eliminating overlapping in mixed sound-

tracks and the second for PC classification by applying transformed features calculated 

with SSA.  

The main two parameters of SSA method, the window length of embedding dimension 

and the grouping criterion, were examined in this study and the optimal dimension and 

the proper idea are suggested and then validated. Accuracy and classifier performance 

of both overlapped source detection after processing with SSA is over 89 %, even for 

signals with 0 dB (equal level of overlapping between speech and music). High classi-

fication accuracy and positive predictive values of decomposed signals are documented. 

Consequently, over 17% improvement in the sensitivity of decomposed signals for the 

speech-to-music ratio of 0 dB has been achieved. It is worth noting here that the com-

putational load of the proposed method is increased due to the extra mathematical com-

plexity of the SSA algorithm and the deployment of two classifiers as a part of the 

proposed non-exclusive classification method. This extra computational load is 

circumvented in the subsequently proposed method. 

Since TM component of the singular value decomposition is totally identified by the 

respective PCs, then the classifier could be used the PCs for speech/music categoriza-

tion instead of the conventional grouping of elementary matrices and then reconstruct 
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to the time domain. This is achieved by an alternative method (Meth.4) that performed 

by using transformed features extracted from PCs with SSA. The classification method 

is evaluated on the artificial, adopted database and validated on professionally worked 

samples. Only one classifier is trained and tested. Subsequently, the nature of the frame 

contents can be determined by voting to for the class with the highest probability; oth-

erwise, if the probability is between 25% and 75%, then the frame will be classified as 

a mix of speech and music. The study recommended that the size of the frame with this 

method should be longer than 90 ms, while the corresponding SSA window length 

should be between 
_ _

4 2
w

Frame size Frame size
L   to achieve satisfactory results. 

Computer simulations present that SSA-based transformed feature extraction method 

performs better than any other conventional classification methods. The RFs classifier 

with the final method shows good and authoritative prediction sensitivities of over 

89.5% with a reasonable number of features. Comparison of classification performance, 

specificity, and sensitivity with other baseline methods is undertaken, and its efficacy 

demonstrated. The performance demonstrates and verifies that the suggested approach 

is a promising method for overlapped recognition of mixed soundtracks. However, 

when the professionally mixed soundtracks were used for validation, the results were 

slightly lower, which is normal since the master mixing styles are used with a different 

dynamic range and equalisation. As mentioned in the preceding chapter, theoretically, 

the (Meth.4) should present the most improvements in soundtrack classification, since 

each PC corresponds to a particular oscillation and classified separately, which means 

the overlapping is almost removed. 

To conclude, for overlapped soundtrack with speech and music some cleaning algorithm 

with the existing classification method is shown to improve the ability to detect the 
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overlap as apparent in Chapter 7.  Augmented features over a slightly longer period can 

further improve the ability to handle the overlapped audio. Ultimately, an algorithm 

such as SSA has shown the best result evidenced by Figure 10-5 in handling overlapped 

between speech and music, since SSA internally separate these components.  

The major limitation is that the used audio mixture based upon the music and speech. 

Hence, no event sound or ambient noise were involved. Therefore, it is hard to conclude 

if these methods will still be efficient when the mixture involve an event sound. How-

ever, the internal feature separation mechanism is a single channel component decom-

position. The method itself does not limit the number of the included components, to be 

separated. Although the suitable grouping criterion and techniques need to be identified 

for the additional event components, there is no foreseeable reason why it should not 

work. 

Finally, all objectives documented were positively met. SSA can be considered an ef-

fective tool for complete separation of overlapped soundtracks with reference to speech 

and music for further information retrieval. This produces that the suggested two algo-

rithms are highly useful methods for overlapped audio classification.  

11.2 Future Work  

Despite the fact that the results demonstrated in this study have shown the efficiency of 

the SSA for decomposition of mixed soundtracks and transformed feature extraction, 

further validation work could supplement this and the research could go further in a 

number of ways:  

 Expanding the proposed method for the event sound class: Event sound recogni-

tion is challenging since there is often no prior knowledge as to how many different 

types of the event there are likely to be, and which ones are of interest. Hence, an ad-
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hoc approach might be best for event processing based on the application, due to event 

sounds being an open set. This is included the recording and collective of samples.  

 Investigation of the effect of ambient noise on classification performance.  

 Extending the method for real-time soundtracks classification:  The overlapping 

sliding windows from one of the essential requirements for real-time processing, as de-

ployed in this study. Another requirement is increased memory and computational load 

for the system. Furthermore, the ambient noise problem should be considered, as has 

been discussed the scope is limited to the microphone noise in this research. 

 Examining the feature space by sensitivity with reference to the change in mixing 

ratio of speech and music. This could be useful in developing a regression model for 

predicting a mixing proportion between the mixed classes.  

 Extending the method for speech and music separation. 

 Investigating other machine learning techniques with the proposed method such 

as NNT and Deep Learning Techniques. There is no classifier, which can be considered 

ideal; the best one’s performance is that which correctly classifies unseen cases with 

generality. Perfect performance of the proposed system is related to both module train-

ing design and testing. Infrequently, complicated classifiers present the over-fitting 

problem, fitting predictions to the training data and achieving poor performance when 

applied with unseen samples. Expanding to more than one classifier and deploying dif-

ferent techniques can provide improved classification accuracy and consistency.
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APPENDIX A: TABLES 

Table I MCR of Speech/Mix against Music  T-test Statistics for mfcc coeffi-

cients 

 Target N Mean Std. Std. 

Error 

 

Levene's Test for Equality of Variances 

F Sig. 

MFCC1 
Mix/Speech 13171 .3882 .15489 .00135 99.619 .000 

Music 13145 .3525 .16396 .00143 

MFCC2 
Mix/Speech 13171 .4005 .15447 .00135 56.290 .000 

Music 13145 .3629 .15814 .00138 

MFCC3 
Mix/Speech 13171 .3911 .15210 .00133 37.394 .000 

Music 13145 .3810 .15833 .00138 

MFCC4 
Mix/Speech 13171 .3958 .15101 .00132 58.858 .000 

Music 13145 .3891 .15965 .00139 

MFCC5 
Mix/Speech 13171 .4046 .15468 .00135 8.524 .004 

Music 13145 .3944 .15753 .00137 

MFCC6 
Mix/Speech 13171 .4091 .15303 .00133 12.671 .000 

Music 13145 .3960 .15967 .00139 

MFCC7 
Mix/Speech 13171 .4124 .15427 .00134 .082 .774 

Music 13145 .4002 .15752 .00137 

MFCC8 
Mix/Speech 13171 .4135 .15225 .00133 4.681 .030 

Music 13145 .3964 .15668 .00137 

MFCC9 
Mix/Speech 13171 .4122 .15012 .00131 21.425 .000 

Music 13145 .3976 .15819 .00138 

MFCC10 

Mix/Speech 13171 .4182 .15200 .00132 10.848 .001 

Music 13145 .3968 .15842 .00138 

Music 13145 .3969 .16008 .00140 

MFCC13 
Mix/Speech 13171 .4199 .15361 .00134 .026 .873 

Music 13145 .3971 .15695 .00137 

MFCC14 
Mix/Speech 13171 .4184 .15234 .00133 7.045 .008 

Music 13145 .3973 .15908 .00139 

MFCC15 
Mix/Speech 13171 .4193 .15249 .00133 6.422 .011 

Music 13145 .3949 .15876 .00138 

MFCC16 
Mix/Speech 13171 .4180 .15074 .00131 67.876 .000 

Music 13145 .3916 .16200 .00141 

MFCC17 
Mix/Speech 13171 .4170 .15218 .00133 66.079 .000 

Music 13145 .3857 .16247 .00142 

MFCC18 

 

Mix/Speech 13171 .4169 .15347 .00134 38.705 .000 

Music 13145 .3875 .16223 .00141 

MFCC19 
Mix/Speech 13171 .4187 .15363 .00134 21.090 .000 

Music 13145 .3898 .16041 .00140 

MFCC20 
Mix/Speech 13171 .4212 .15434 .00134 4.589 .032 

Music 13145 .3930 .15969 .00139 

MFCC21 
Mix/Speech 13171 .4203 .15251 .00133 24.452 .000 

Music 13145 .3929 .16171 .00141 

MFCC22 
Mix/Speech 13171 .4207 .15168 .00132 46.889 .000 

Music 13145 .3873 .16143 .00141 
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Table II MCR of Speech/Mix against Music T-test Statistics for re-

maining features 

 

Target N Mean Std. Std. 

Error 

Levene's Test for Equality of 

Variances 

F sig 

RMS Mix/Speech 13171 .3747 .15808 .00138   

 Music 13145 .3069 .14895 .00130 128.980 .000 

Roughness Mix/Speech 13171 .3723 .15657 .00136 2.678 .102 

 Music 13145 .3231 .15665 .00137 

ZCR 
Mix/Speech 

Music 

13171 

13145 

.3622 

.3346 

.14949 

.15604 

.00130 

.00136 
20.127 .000 

Regularity 
Mix/Speech 

Music 

13171 

13145 

.4276 

.3894 

.15662 

.16129 

.00136 

.00141 
1.975 .160 

SC Mix/Speech 

Music 

13171 

13145 

.3863 

.3499 

.15284 

.16644 

.00133 

.00145 
174.857 

.000 

Roll-off Mix/Speech 

Music 

13171 

13145 

.3859 

.3456 

.15728 

.17162 

.00137 

.00150 
177.784 

.000 

Brightness Mix/Speech 

Music 

13171 

13145 

.3865 

.3463 

.15706 

.16654 

.00137 

.00145 
92.927 

.000 

MIR_Centroid Mix/Speech 

Music 

13171 

13145 

.3632 

.3455 

.17421 

.17151 

.00152 

.00150 
.228 

.633 

Spread Mix/Speech 

Music 

13171 

13145 

.3950 

.3642 

.17030 

.17474 

.00148 

.00152 
53.159 

.000 

Entropy Mix/Speech 

Music 

13171 

13145 

.3722 

.3269 

.15841 

.15493 

.00138 

.00135 

13.335 .000 

Skewness Mix/Speech 

Music 

13171 

13145 

.3894 

.3464 

.16679 

.17074 

.00145 

.00149 

51.869 .000 

Hchange Detection Mix/Speech 

Music 

13171 

13145 

.4169 

.4233 

.14711 

.15011 

.00128 

.00131 

10.282 .001 

Entropy_FFT Mix/Speech 

Music 

13171 

13145 

.4067 

.3620 

.15854 

.16530 

.00138 

.00144 

61.191 .000 

Entrocy 
Mix/Speech 13171 .4218 .17650 .00154 

.916 .339 

 
Music 13145 .4183 .17826 .00155 
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APPENDIX B: AUDIO PRODUCTION LAB 

The below CD contains on the audio files that has used for the validation of the designed 

method. 

 

 

 

 

 

 

 

 

 

 

 

 

These audio files are produces in the one of the Salford University labe with the follow-

ing characteristics: 

Studio C - Mackie 8 Bus Desk. Pro-tools 

Dynamics 

DBX 166XL 

Preamp 

TLA Ebony A3 

Other 

Digi-design Command 8 

Emu Morpheus 

MOTU Midi Express 

HHB CDR-800 

Tascam DA20 

Waldorf Blofeld 

UAD 2 – Duo 

Monitoring 

2 x Tannoy Little Golds 

2 x Genelec 1029A 

1 x Genelec 7050B 

TLA Ivory 2 

Drawmer DS201 

Behringer XR2000 

FX 

Yamaha SPX 990 

TC Electronics M One 

TC Electronics D Two 
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APPENDIX D:  TOOLBOX VIEW 

 

 


