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Preface 

 

 

The studies developed in this PhD thesis form the basis for three journal papers, as detailed 

below: 

 

1. The material in Chapter 3 has been developed into a paper for the European Journal of 

Industrial Engineering. The original manuscript was submitted on 6th October 2016. The 

revised manuscript was submitted on 29th April 2017; this is currently under review. 

 

2. The study in Chapter 4 has been developed into Zahedi-Hosseini et al. (2017), which 

was published online on 12th March 2017, and appeared in the Journal of Reliability 

Engineering and System Safety 168: 306-316. 

 

3. Finally, the work in Chapter 5 is being prepared for a paper to be submitted to the 

Journal of Manufacturing Systems. 
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Abstract 

 

A simulation methodology is developed to model the joint optimisation of preventive maintenance 

and spare parts inventory in multi-line settings. The multi-line machines are subject to failure, based 

on the delay-time concept, and a selection of policies are used for the replenishment of the machines’ 

critical component. Production lines of varied configurations are modelled and described in three 

principal chapters. 

Firstly, the optimisation of preventive maintenance for a multi-line production system is 

developed in the context of a case study. The policy proposed indicates that consecutive inspection 

with priority for failure repair is cost-optimal, which suggests a substantial maintenance cost 

reduction of 61% compared to the run-to-failure policy. The contribution of this study is first and 

foremost in narrowing the gap between the theory and practice of managing multi-line systems, and 

in particular, that the scenarios and policies considered have important economic and engineering 

implications. 

In a second study, spare parts provisioning for a single-line system is considered, given that the 

demand for industrial plant spare parts should be driven, at least in part, by maintenance 

requirements. A paper-making plant provides a real context, for which simulation models are 

developed to jointly optimise the planned maintenance and the associated spare part inventory. This 

challenge is addressed in the context of the failure of parts in service and the replacement of 

defective parts at inspections of period 𝑇, using the delay-time concept, and a selection of 

replenishment policies. The results indicate that a periodic review policy with replenishment twice 

as frequent as inspection is cost-optimal. Further discussions and sensitivity analysis give insights 

into the characteristics and features of the policies considered. 

Finally, in the third study, the joint optimisation of preventive maintenance and the associated 

spare parts inventory for a multi-line system is developed using an idealised context. It is found that 

a review policy with inspection as frequent as replenishment using just-in-time (JIT) ordering is 

cost-optimal, and also the lowest risk policy; it is associated with the lowest simultaneous machine 

downtime and low stock-out cost-rates. This is a significant contribution to the literature. 

An implication of the proposed methodology is that, where mathematical modelling is 

intractable, or the use of certain assumptions make them less practical, simulation modelling is an 

appropriate solution tool. Throughout this thesis, the long-run average cost per unit time or cost-rate 

is used as the optimality criterion. In other contexts, one may wish to use availability or reliability 

instead. To do so would not change the methodology that is presented here. 
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Chapter 1 

 

 

Introduction 

 

 

1.1. Background and methodology 

 

Many research papers have been published during the past decades contributing to the ever-

growing interest in using maintenance analysis in the area of Production and Operations 

Management, and to guide the decision-making process (Wang, 2012a). In particular, the issue 

of equipment downtime and the need for the reduction of its associated costs including spare 

parts inventory, has been the subject of intense research. 

 

Imagine a plant with one or more failure modes, which has a maintenance policy of repairing 

failures as they arise and inspecting every 𝑇 time units. The objective of the inspection would 

be to identify and remove any defects before they cause machine failure. Clearly, in this context, 

the aim would be to minimise the plant operational downtime by reducing the effects of failures 

and inspection stoppages. Therefore, the main decision variable is the optimal inspection 

interval, 𝑇. If a short interval is used for 𝑇, the percentage of time that the plant would 

potentially be operational will be reduced since there would be frequent inspection activities. 

Alternatively, if a large 𝑇 is used, then one would not distinguish between this policy and 

running the plant under a breakdown maintenance regime. There are five factors that would 

influence the determination of the optimum inspection interval and thus minimizing the cost of 

downtime: (i) the timing and the rate of arrival of defects; (ii) the time it takes for defects to 

cause failures; (iii) the pace at which inspections are undertaken; (iv) the cost and downtime 

associated with inspections and defect removal (by replacing/repairing parts); and finally (v) 

the cost and downtime associated with replacing/repairing failures. Thus, using a modelling tool 

for determining the optimal period for 𝑇 would be beneficial in guiding the decision-making 

process. 
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Many methodologies have been proposed and several concepts have been developed to test and 

establish the optimum inspection interval, which would minimise the expected downtime and 

hence the overall cost of production. One of these inspection methodologies is the delay-time 

modelling (DTM) concept, which describes the failure of industrial equipment in two separate, 

but linked stages. The first stage defines the time lapse between the new (or as new) up to such 

a time that a defect arrives - the time-to-defect. The second stage describes the time during which 

the defect continuously deteriorates, up to the point where it finally fails - the delay-time. It is 

this second stage or delay-time which opens a window of opportunity for the inspection of plant, 

identification of defects, and replacement/repair of parts, before downtime occurs. 

 

A number of review papers are present in the literature addressing the issue of optimising the 

preventive maintenance interval to maximise the operations of industrial plant. These include 

Thomas (1986), Cho and Parlar (1991), Dekker (1996), Wang (2002), Nicolai and Dekker 

(2008), Van Horenbeek et al. (2013) and Ding and Kamaruddin (2015). It is noted from these 

reviews that most, if not all, analytical models are based on assumptions which simplify real 

life situations and make them less practical. In practical situations, simplifying assumptions is 

undesirable but permissible to some extent for converging, as far as possible, the application of 

theory into practice. To relax or eliminate some assumptions of these models, will make them 

less practical to be implemented. Scarf (1997) is an “appeal to maintenance modellers to work 

with maintenance engineers and managers on real problems”. The author acknowledges, “too 

much attention is paid to the invention of new models, with little thought, it seems, as to their 

applicability”. It is interesting to note that the same observation still seems valid since evidence 

suggests that little research is conducted on the optimisation of maintenance in industrial 

systems (Alrabghi et al., 2017). 

 

For certain industrial situations such as multi-line settings, developing analytical models might 

prove intractable or mathematically untraceable. The other avenue, which is followed in this 

PhD thesis, is to replace the analytical approach by simulation modelling. 
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In developing the simulation models in this thesis, ProModel (ProModel, 2016), a process-based 

discrete-event simulation language, (see for example, Harrell et al., 2011), one of many 

proprietary simulation packages available in the market, was used (see Appendix 1.1, for the 

procedure to develop a simple model using ProModel). The models, composed of 𝑛 

machines (𝑛 ≥ 1), were developed as continuous production lines. To ensure that the optimal 

cost is achieved, SimRunner (see ProModel, 2010), a simulation optimisation tool, is integrated 

with the simulation models, which performs sophisticated analysis to determine the optimal 

value of decision variable(s). The optimisation tool automatically runs multiple combinations 

of certain variables (if needed) to find the unique combination, which provides the optimal value 

of the objective function - the long-run average expected cost (or cost-rate). When optimising a 

particular system, one might use either exact solution methods (analytical) or heuristic methods 

to find near optimal values for the decision variables. Safety factors, environmental impact, 

various service levels, system downtime or costs, to mention only a few, are examples which 

could be used as a focus in an optimisation study. The minimisation of the costs is most common 

in the optimisation of maintenance-inventory problems (Van Horenbeek et al., 2010), which is 

also used for the models in this thesis. An optimisation study of a different context is the joint 

age-usage maintenance strategy by Shafiee et al. (2016) applied to railway tracks, for which the 

maintenance cost-rate is also minimised. 

 

 

1.2. Aims and objectives 

 

The main aim of this research is to develop simulation models in order to jointly optimise 

preventive maintenance and spare part provisioning for multi-line production systems. This is 

in order to eliminate, or at least to minimise, the occurrence of simultaneous downtime in 

systems where there are parallel production machines. Simultaneous machine downtime may 

halt production, which will have a significant adverse effect on profitability or other 

performance measures. The research uses contexts for which analytical models cannot be 

developed due to the underlying difficulty in mathematical analysis and intractability. The aim 

is therefore reflected in the following objectives: 
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 To undertake a comprehensive literature review of maintenance methodologies and 

policies for determining the optimum inspection interval for different production line 

configurations – measured by searching through published and review papers and key 

literature on maintenance optimisation using analytical and simulation models, and 

compiling a comprehensive literature; 

 

 To develop discrete-event simulation models for multi-line production systems, and for 

the interface between maintenance and production management activities – measured 

by developing working simulation models, the results of which are optimised by the use 

of an optimisation tool; 

 

 To make recommendations for practitioners to manage effectively the maintenance of 

their industrial plant – measured by producing a set of results and performance measures, 

to compare and contrast the key differences and characteristics of each policy; 

 

 To assess the viability of the proposed models in real-world situations – measured by 

applying the simulation models to: (i) real-life case studies, (ii) reported case-studies in 

the literature; and finally (iii) idealised contexts documented in journal papers; 

 

 To develop solution tools for gaps identified in the literature and make a significant 

contribution – measured by demonstrating and presenting findings at conferences and 

publishing papers in journals on the joint modelling and simultaneous optimisation of 

multi-line production systems. 
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1.3. Structure of this thesis 

 

This chapter described the background information for helping to understand matters which will 

be discussed in more detail in the subsequent chapters. It also described the simulation 

methodology used in this PhD thesis. Chapter 2 reviews the general literature on three important 

topics of maintenance systems (including delay-time modelling), inventory control systems, and 

discrete-event simulation, all of which are pertinent to the topic of this thesis. However, more 

specific literature review is presented in each of the three principal Chapters, 3 to 5. Chapter 3 

discusses in detail, the optimisation of preventive maintenance for a multi-line production 

system in the context of a case study by developing a number of simulation models (model 1 in 

Figure 1.1). In Chapter 4, a single-line production plant provides a real context for jointly 

optimising the planned maintenance of a paper making machine and the associated spare part 

inventory using the delay-time concept and a number of spare replenishment policies (model 2 

in Figure 1.1). The detailed discussion in this chapter gives insights into the characteristics of 

each policy considered. Chapter 5 describes the development of several simulation models 

which aim to jointly optimise the planned maintenance and spare part provisioning for an 

industrial plant comprising a two-machine parallel system (model 3 in Figure 1.1). Chapter 6 

summarises the findings and conclusions of the work carried out in this PhD. In addition, it 

describes the proposed extensions to the simulation models already developed. Detailed 

appendices related to various simulation models described in Chapters 3 to 5, and the list of 

references used in this thesis are given in the final two Sections, 7 and 8. 
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Figure 1.1. The schematic diagram of production configurations 

used in developing the three sets of simulation models in Chapters 3, 4 and 5: 

Model 1  Chapter 3  Data from Akbarov et al. (2008); 

Model 2  Chapter 4  Data from survey and Wang (2012b); 

Model 3  Chapter 5  Data from survey and Wang (2012b). 
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Chapter 2 

 

 

Literature review and Notation 

 

 

This chapter presents the general literature review on three important topics of maintenance, 

inventory control, and discrete-event simulation. However, more specific literature is reviewed 

in each of the three principal Chapters, 3 to 5. 

 

 

2.1. Maintenance systems 

 

Over the past half a century, many review papers have appeared in the maintenance literature 

including: McCall (1965); Thomas et al. (1991); Cho and Parlar (1991); Dekker (1996); Dekker 

and Scarf (1998); Wang (2002); Pierskalla and Voelker (2006); Nicolai and Dekker (2008); 

Pophaley and Vyas (2010); Das and Sarmah (2010); and Van Herenbeek (2013). For many 

years, mathematical models have been used for quantifying maintenance functions of industrial 

plant using various optimisation techniques (Pierskalla and Voelker, 2006). The primary 

purpose of maintenance optimisation is to find an effective implementation of maintenance 

policies to minimise maintenance costs or system downtime, or maximise system availability, 

to mention only a few examples for the focus in the objective function. Maintenance models, if 

developed appropriately and applied correctly under prescribed conditions, can prove to be very 

cost-effective in practice (Wang, 2012a). 

 

When a system is to be maintained or restored, the consequence of the maintenance actions 

undertaken can result in different outcomes. Pham and Wang (1996) give a comprehensive 

review of the degree of maintenance for repairable parts, as described below: 
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 Perfect maintenance - after the maintenance actions are carried out, the fixed system is as 

good as new. 

 

 Imperfect - the system is restored to a state between as good as new and as bad as old. 

 

 Minimal - the system is restored to an as bad as old state with the same failure rate as before. 

 

 Worse - the system’s condition is worse than just before the maintenance actions were 

undertaken. 

 

 Worst - the system breaks down completely after the maintenance actions are carried out. 

 

Some of the terminologies used here may also apply to the replacement of parts. Perfect 

replacement, as opposed to repair, may occur if the correct parts are installed and the system’s 

state is restored to as good as new. Conversely, replacements can be imperfect if the wrong 

installation of parts have taken place. The perfect and imperfect analogy may also be applied to 

inspection. If all faults or defects are identified at an inspection, the inspection is said to be 

perfect, and anything less is thus imperfect. Van Horenbeek et al. (2013) state that the vast 

majority of the papers in the literature assume perfect inspection for the restoration of their 

systems. The authors give a detailed account of the three main maintenance strategies, namely: 

(i) corrective; (ii) preventive; and (iii) predictive maintenance. Wang (2002) also reviews the 

most important preventive maintenance policies for both single and multi-unit systems. It 

should be noted that, a part or a component of a machine (or equipment) is called a unit, which 

may be repaired or replaced upon failure, or identified as defective and repaired/replaced at 

inspection. The three terms: unit; part; or component are used interchangeably by different 

authors. 

 

Under the corrective maintenance, or sometimes referred to as failure-based maintenance, 

whenever a unit fails, it is immediately repaired or replaced by a new one, provided spares are 

available. Consequently, if no spare is available, equipment downtime will normally occur and 

the system will have to await the delivery of new parts while the emergency parts are in transit. 
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In the manufacturing sector, for example, bearings used extensively in a production plant can 

fail unexpectedly and catastrophically (Folger et al., 2014a; 2014b) which will need to be 

repaired or replaced. In other situations, unexpected failure of components may cause disruption 

to services or accidents (Dinmohammadi et al., 2016). Corrective maintenance is the most 

reactive of all maintenance strategies. Figure 2.1 illustrates that as corrective maintenance is not 

planned, the demand requirements (the arrival of defects) is stochastic, yet its size is 

deterministic (normally single-units) (Wang and Syntetos, 2011). 

 

Figure 2.1. Demand behaviour of and spare part requirements 

under corrective and preventive maintenance strategies. 

 

Systems may also be maintained under a preventive strategy where equipment is inspected at 

regular intervals, with a view to identifying and replacing all defective (faulty) parts before they 

cause failures (for example, Wang, 2008). Evidently, there is a strong link between the 

preventive maintenance inspection interval and the spare part inventory. If the inspection 

interval is too short, then the ‘lumpy’ demand effect is created. This is the result of replacing 

multiple defective but still working parts to reduce the risk of failure at a later stage. Equally, if 

the inspection interval is too long, then the number of single-unit parts randomly failing is 

increased, adding to the overall downtime. As shown in Figure 2.1, the timing of preventive 

maintenance, by its nature, is deterministic as it is planned in advance. However, under this 

policy, although the demand for spare parts is deterministic, its size is stochastic. There are a 

number of major policies that fall under this category which may be implemented depending on 

whether the system under consideration is single or multi-unit. If the asset, machine or 
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equipment lends itself to being maintained based on the age of the unit, then the well-known 

age-based preventive maintenance, first suggested by Barlow and Hunter (1960), may be used. 

Under this policy, apart from the units that have failed in service, the rest are replaced whenever 

they reach their predefined age. Sequential maintenance may also be considered as age-based 

preventive maintenance since the frequency of maintenance will be increased as the machine 

and/or units become older. In comparison, under the periodic block-based strategy, failed units 

are replaced too, but all units are also ‘block-replaced’ at constant intervals regardless of their 

history, current condition, and age. Finally, under the failure limit policy, units are replaced 

when the failure reaches a predetermined rate. Units may or may not be independent or identical. 

In systems where multiple units exist, parts may be maintained using group or opportunistic 

strategies. The group maintenance policy combines the same features of the age-based and 

block-based strategies described for the single-unit systems but as a group replacements for 

multiple unit of parts. If dependencies exist between the units, one could ‘opportunistically’ 

replace other units when a failure occurs. It is important to note that under all policies, failed 

units are immediately replaced by new ones provided spares are available. 

 

Finally, under the predictive maintenance strategy, better known as condition-based 

maintenance (CBM), the state of the system is continuously observed and monitored, and where 

certain or a combination of ‘signals’ such as product quality, tolerances, excessive vibration, 

heat, odour, noise etc., reach a prescribed limit, maintenance action is undertaken and units may 

be replaced (for example, Shafiee et al., 2015). CBM was introduced in order to ensure that PM 

is only triggered when required, either through scheduled inspections or with smart assistance 

of sensors, providing data for specialised maintenance software (see, Olde Keizer et al., 2017 

for the latest review paper). 

 

Whichever maintenance strategy is used to restore the system under consideration, different 

costs will be incurred. These costs could include inspection, downtime, labour and spare 

replacements, for example. A distinction must also be made between failure replacement and 

preventive replacement, which will have a different cost element for the associated labour and 

downtime costs. 
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Alrabghi and Tiwari (2015) observe that the vast majority of journal papers in the maintenance 

literature, make use of only a limited number of maintenance strategies and policies rather than 

comparing different alternatives for particular contexts. They conclude that the research in the 

literature is also limited in terms of comparing and selecting the optimum maintenance policies 

in multi-component systems. 

 

 

2.1.1. Delay-time modelling 

 

Delay-time modelling (DTM) was first introduced by Christer (1976) in the context of building 

maintenance. It was eight years later when Christer and Waller (1984a) applied the same 

concept to an industrial maintenance problem. Since then, many research papers have appeared 

in the literature with regard to the concept of this methodology and many more have been 

published to describe several industrial applications. Since its conception in 1976, a few detailed 

review papers have been published on delay-time modelling, by Baker and Christer (1994), 

Christer (1999) and Wang (2012a). Also, a textbook chapter by Wang (2008) comprehensively 

discusses different aspects of the methodology. 

 

Delay-time modelling, describes the evolution of defects in industrial equipment in two separate 

but linked stages, as illustrated in Figure 2.2. The first stage is the time lapse from new (or as 

new) until a defect (or fault) arrives. This is the time-to-defect arrival, 𝑢. Equivalently, it is the 

sojourn in the good state. The second stage is the time lapse from defect arrival to the point at 

which this defect causes the equipment to fail. This is the delay-time, ℎ. Equivalently, it is the 

sojourn in the defective state. The second stage opens a window of opportunity for inspection, 

identification of defects, and remedial maintenance intervention (component repair or 

replacement) before a defect causes failure. By the definition of the delay-time, the plant state 

before failure is binary: good or defective (Wang, 2012a). Thus, the ‘change point’ from the 

good state to the defective state occurs at a random time, failure occurs some random time later, 

and the time of transition from the good to defective state is only observable by inspection. By 

using failure times and counting instances of defects found at inspection, the distributions of the 
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time-to-defect and delay-time may be estimated, and the relationship between the number of 

failures and the inspection interval can be established, as discussed by Baker and Wang (1992). 

 

 

Figure 2.2. The delay-time concept. 

 

In modelling a system, if 𝜆 denotes the rate of arrival of defects from all components within an 

industrial plant, and 𝐹(ℎ) denotes the delay-time distribution of all failures, then the expected 

number of failures, 𝐸𝑁𝑓(𝑇), within an inspection interval 𝑡 (over 0, 𝑇), is given by (Christer 

and Waller, 1984a): 

 


T

f dhhFTEN
0

)()( 
 ---------------------------------------------------------------------------------- (1) 

 

The above formula is derived under a perfect inspection assumption, and it is the fundamental 

expression used in all delay-time-based models. This formula explicitly establishes the desired 

relationship between the expected number of failures and the inspection interval. The 

probability, 𝑏(𝑇), that a fault arising causes a failure is: 

 

𝑏(𝑇) =
𝐸[𝑁𝑓(𝑇)]

𝜆𝑇
 ---------------------------------------------------------------------------------- (2) 

 

(Christer, 1999), which increases from 0 to 1 as 𝑇 increases from 0 to ∞. Accepting the 

following basic delay-time-modelling assumptions: (i) the plant is running under steady-state 

conditions; (ii) defects only arise whilst plant is operating and according to a homogeneous 
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Poisson process (HPP); (iii) all defects are identified at inspection, every 𝑇 time units, and 𝑑𝑠<< 

𝑇; and finally (iv) failures are repaired/replaced immediately; then the expected number of 

failures over an inspection period is 𝜆𝑇. 𝑏(𝑇), and the expected downtime per unit time 𝐷(𝑇) 

becomes: 

 

𝐷(𝑇) =
𝑑𝑓.𝐸[ 𝑁𝑓((𝑖−1)𝑇,𝑇)]+𝑑𝑠 

𝑇+ 𝑑𝑠
=

𝑑𝑓.λT.b(T)+𝑑𝑠 

𝑇+ 𝑑𝑠
  ---------------------------------------------- (3) 

 

(Christer and Wang, 1995). These expressions clearly exhibit the expected characteristics of 

having large values for small 𝑇, and where 𝑑𝑓 is the mean downtime per failure and 𝑑𝑠 is the 

mean downtime per inspection. Equation (3) can be minimised in terms of, 𝑡 if the expected 

number of failures can be computed and 𝑑𝑓 and 𝑑𝑠 are known. Equation (3) is established 

assuming that the defects identified at an inspection will always be removed without costing 

any extra downtime or cost. This assumption can be relaxed as shown in equation (4) below 

(Wang, 2008): 

 

𝐷(𝑇) =
𝑑𝑓.𝐸[ 𝑁𝑓((𝑖−1)𝑇,𝑇)]+𝑑𝑠+𝑑𝑟.𝐸[ 𝑁𝑟(𝑖𝑇)]

𝑇+ 𝑑𝑠+ 𝑑𝑟.𝐸[ 𝑁𝑟(𝑖𝑇)]
 ------------------------------------------------------- (4) 

 

Clearly, the form of distributions regarding the failure time and the associated parameters must 

be selected and estimated. Christer and Waller (1984a) state that, when a defect is identified at 

an inspection, the following questions may be asked: how long ago (HLA) could an inspection 

or operator have first noticed the fault? And, if the defect is not removed, how much longer 

(HML) could it be delayed before it causes downtime? The delay time for each fault is then 

estimated by ℎ = 𝐻𝐿𝐴 + 𝐻𝑀𝐿. In this way, by observing sufficient defects, a prior distribution 

for 𝐹(ℎ) may be obtained. And, if the inspection identifying a defect is made at time 𝑡, then 

𝑢 = 𝑡 − 𝐻𝐿𝐴. 

 

Wang (2011b) extended the delay-time concept from a two-stage (Figures 2.3 (a) and 2.3(b)) 

into a three-stage (Figure 2.3(c)) failure process, where the delay-time stage is divided into two 

stages, corresponding to a minor and a severe defective stage. This means that, at any one time, 

the plant item can be in one of the four states of: good; minor defective; severe defective; and 
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failed. The three-stage delay-time concept seems to better reflect the true states of a plant item 

in reality, however, the extended model is more complicated to develop and will require more 

information to enable the parameter estimation procedure in practice (for example, Baker and 

Wang, 1992). 

 

 

Figure 2.3. A depiction of development of the three-stage delay-time model. 

 

Delay-time modelling captures the relationship between failures of items in service, inspection 

at constant PM epochs, and PM replacement of defective items under the assumption that all 

defective items are always identified and replaced (provided spares are available) at inspections. 

The fundamental difference between DTM and other inspection strategies is that under the 

former, only defective items (if any) are replaced at inspection intervals. In comparison, under 

the age-based policy, items are only replaced according to their age, or irrespective of their age 

and condition under the block-based replacement policy. Apart from inspection, and 

repair/replacement at PM interventions and failure events, there may be other activities, such 

as, removing metal burrs, lubricating components, and changing engine oil, for example. 

Depending on circumstances and if necessary, these events may be modelled using a variable 

rate for entity arrivals. 
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DTM is a modelling methodology that can be used to determine an inspection-based or block-

based PM policy, where all items are inspected at constant inspection intervals (a decision 

variable to be determined) and defective items are ‘block’ replaced. Under an inspection or 

block-based PM policy, inspection identifies all defective items that will be replaced, whereas 

in a normal block-based replacement policy all items are replaced regardless of their age and 

conditions. Generally, failures of the items in service generate intermittent single-unit demand. 

In addition, the inspection process generates multiple (lumpy) demand as a result of identifying 

and replacing all defective items at PM intervals. Furthermore, the timing of demand for spare 

parts is stochastic at failures, but deterministic at the times of preventive replacements. 

 

There are two distinct types of DTM systems: (i) single-component or component tracking; and 

(ii) multi-component or complex system. In a single-component system, as shown in Figure 2.4, 

there may be a single dominant failure mode, and the system may be renewed upon failure 

(Wang, 2008). Under the inspection-based policy and the instance shown in Figure 2.4, 

inspection at the first and third epochs will identify and remove the defects and the system is 

thus renewed. However, before the 2nd and 4th inspection epochs, component failures occur and 

the system is renewed again upon replacements. Examples of single-component systems are 

reported in: Baker and Wang (1992, 1993); Wang and Christer (1997); and Yang et al. (2016). 

Figure 2.4. Defect arrivals and failure occurrences in a single-component system. 

 

In contrast, a complex system is one in which many failure modes could arise, and the correction 

of one failure or the replacement of one defect will have nominal impact upon the overall plant 
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failure characteristics or the steady state of the system. Figure 2.5(i) depicts an example of a 

complex system where six defects (1, 2, etc.) arrive over time. With the assumption of perfect 

inspection, if regular inspection takes place, for example at points A, B and C, then some defects 

will be identified and removed before failures occur, as shown in Figure 2.5(ii). Considering 

Figure 2.5(ii) further, at inspection point A, two defects have already arrived and are currently 

in their delay-times. Thus, both defects 1 and 2 will be identified and removed at inspection 

point A, either by replacing or repairing before failures occur. Defect 3 arrives in the middle of 

the period between scheduled inspections A and B and will be identified and removed at 

inspection point B. Before inspection C, one failure occurs as a result of defect 5. However the 

inspection at point C, identifies and removes both defects 4 & 6 before they cause downtime. 

Therefore, in this instance, with a suitable length for the inspection interval, 5 out of 6 defects 

(83%) will be identified and removed. The system may thus be renewed at inspection points A, 

B and C if the rate of arrival of defects is constant and the inspections are perfect. Most delay-

time-based models reported in the literature are models of complex systems, and examples 

include: Christer and Waller (1984a, 1984b); Christer et al. (1995); Akbarov et al. (2008); Jones 

et al. (2010); Lu and Wang (2011); and Pietruczuk and Werbinska-Wojciechowska (2017). 

 

There are many delay-time-based case study applications reported in the literature. Some 

examples include: Christer and Waller (1984a); Christer (1987); Baker and Wang (1992, 1993); 

Christer et al. (1995); Pillay et al. (2001a, 2001b), Arthur (2005); Akaborov et al. (2008); Jones 

et al. (2009, 2010); Liu et al. (2015); and Emovon et al. (2016). 

 



CHAPTER 2  LITERATURE REVIEW 

 35 

 

Figure 2.5. Defect arrivals and failure occurrences 

in a complex system of multiple components. 

 

 

2.2. Inventory control systems 

 

Maintenance costs are clearly dependent on the availability of spare parts. However, many 

models assume there is an infinite inventory of spare parts at all times, which makes their use 

unrealistic in practice. The inventory for spare parts is normally controlled by a particular 

replenishment policy. The overall objective is always to find the optimal policy. Keeping too 

many spares will increase the holding cost, which will have financial implications on the 

company’s cash flow and/or borrowing, or will increase the risk of spare parts’ obsolescence. 

Conversely, keeping too few parts might result in the plant’s unavailability at critical times. The 

cost associated with the unavailability of spare parts is twofold: (i) the cost of equipment 

downtime while awaiting spare delivery; and (ii) the cost of expediting the delivery of parts in 

emergencies. 

 

For spare parts classification, the usual approach is to categorise according to a part’s service 

criticality. “Alternatively, an ABC classification is used, which lists all stock-keeping units 
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(SKU) in descending order, by total volume, or total value of sales, with the A items being 

assumed to be the most critical and requiring the highest service levels” (Boylan and Syntetos, 

2010). However, the process may be guided by criticality and cost considerations, as well as the 

ABC classification. Molenaers et al. (2012), classified spares based on attributes like demand 

pattern, unit price and inventory costs. Later, Hu et al. (2017) classified spare parts based on 

multiple criteria of criticality, price, demand, lead time, and obsolescence, since they noted that 

“single objective of price is generally misleading”. The authors state that their approach does 

not offer optimisation, but they intend to add this extension as an enhancement in the future.  

 

There are two distinct approaches for the replenishment and management of spare parts (see, 

for example, Muller, 2011). Stock may be reviewed: (i) periodically; or (ii) continuously (See, 

Kennedy et al., 2002, and Santos and Bispo, 2016, for example). Under the periodic review 

policy, there are at least three methods by which parts may be replenished: (i) periodically (𝑅), 

at the beginning of each cycle, raising the inventory position to a pre-defined level 𝑆, based on 

the forecasted demand for the next period for example - the (𝑅, 𝑆) policy; (ii) periodically 

raising the inventory position to level 𝑆 if the stock level has reached or dropped below a certain 

level 𝑠 - the (𝑅, 𝑠, 𝑆) policy; and (iii) periodically raising the inventory position by ordering a 

fixed quantity 𝑄 of stock if the inventory position has reached or dropped below 𝑠 – the 

(𝑅, 𝑠, 𝑄) policy (see, for example, Silver et al., 2016). 

 

In comparison, under the continuous review policy, every time the stock level is depleted, the 

inventory levels are checked. Then, either a sufficient quantity, up-to-level 𝑆 is ordered if the 

inventory position reaches or drops below 𝑠 – the (𝑠, 𝑆) policy, or a fixed quantity of parts is 

ordered when the inventory position reaches or drops below 𝑠 – the (𝑠, 𝑄) policy. When there 

is a per unit demand, both the (𝑠, 𝑆) and (𝑠, 𝑄) policies give the same result when 𝑄 = 𝑆 − 𝑠. 

A special case of the (𝑠, 𝑄) replenishment policy is famously called a two-bin policy where a 

replenishment order, sufficient to fill up the bin, is immediately placed when the first bin is 

empty. The second bin is then used during the replenishment lead-time. This policy is mainly 

used for low cost and high demand spare parts. 
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There are three major costs associated with all stock ordering policies, namely: (i) ordering; (ii) 

holding; and (iii) shortage costs. Firstly, the fixed ordering cost is either for the unit purchase 

cost under normal circumstances or for the replenishment of parts in emergencies. Secondly, 

holding inventory is expensive since it will have capital and space cost implications. And 

finally, shortage costs will be incurred if the number of spares in stores is insufficient to meet 

the demand. Different policies aim to balance these costs in order to produce an overall optimum 

cost. Stock replenishment quantities depend on whether the system under consideration is single 

or multi-unit. However, when failure frequencies are high or spare replenishment lead-time is 

long, it might prove wise to keep more than one part in stock, even for a single-unit system. On 

the other hand, keeping multiple units of spare parts increases the cost of inventory and the risk 

of obsolescence, which is a major issue and has cost implications too. 

 

 

2.3. Discrete-event simulation 

 

Simulation has been used for many years to understand and experiment with systems under 

study, especially in the production and manufacturing industry where the use of discrete-event 

simulation (DES) has been very effective. The use of simulation has grown dramatically since 

modern manufacturing systems have become more complex as a result of dependencies and 

interactions between system components. Gupta and Lawsirirat (2006) highlight the fact that 

the term component has a different meaning in different contexts. Since it is not possible to 

model every part in a complex system, it is practical to consider only the components that have 

significant impact on the performance of the system. Compared to the traditional and 

mainstream discrete-event simulation, agent-based modelling and simulation (ABMS) is a 

relatively new technique for simulation (Macal, 2016), for which the number and breadth of 

applications has had a huge expansion during the past 10 years (Cheng et al., 2016). A very 

important step forward in the world of simulation is the obvious and essential procedures for 

verification and validation, which can only lead to credibility of simulation models and the 

results achieved from them (Rabe and Dross, 2015). The gap between research in optimization 

via simulation and the development of algorithms that can be applied to real-life problems has 

narrowed substantially in the last ten years. One factor influencing this issue is the ever-growing 
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use of parallel simulation, which is becoming easy to do, and any simulation study that requires 

multiple replications or multiple scenarios will benefit from this advancement (Nelson, 2016). 

 

During the past three decades, simulation software packages or tools have gradually replaced 

simulation languages. Dias et al. (2016) ranked the top worldwide most popular and used 

simulation software, based on intensity of usage or level of presence in different sources - 

“popularity”. The survey findings clearly identify Arena software package as the most ‘popular’ 

and widely used discrete-event simulation tool, followed by ProModel, which is the tool used 

for the development of simulation models in this thesis. The next three most used tools, namely 

FlexSim, Simul8, and WITNESS, making up the first cluster, have more or less similar rankings 

in the comparison table. It is important to note that the contexts of these simulation tools are 

constantly changing, whether in industry or academia, and the ranking may indeed change in 

the next survey published in the literature. 

 

Simulation delivers an advantage over analytical approaches since many maintenance policies 

are not analytically traceable (Nicolai & Dekker, 2008). Analytical and mathematical 

approaches are limited in solving such complex maintenance problems. 

 

To optimise their maintenance problem, Allaoui and Artiba (2004) preferred the use of 

simulation over the analytical approach and stated that the immediate availability of 

maintenance resources is a major assumption in many studies. Similar conclusions were reached 

by Rezg et al. (2005) who used both analytical and simulation approaches (using ProModel) to 

develop a model of a system with storage buffers, which helped in reducing the effect of lower 

production rate while maintenance interventions were taking place. Gharbi and Kenné (2005) 

developed a discrete-event simulation (DES) model in which the degradation of the machine 

was modelled as a continuous process to reflect the reality that as time goes by machines are 

automatically aged (see also, Roy et al., 2016). 

 

Many authors use discrete-event simulation packages for their maintenance studies. However, 

others including Cavory et al. (2001) used a general-purpose programming language to develop 

their models. The authors found that the development of the analytical model for the given 
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context was difficult and thus used simulation for the resolution of their problem. Ilgin and 

Tunali (2007) developed a simulation optimization model, which they believed, gives the ability 

to describe multivariate non-linear relations that is difficult to express in an analytical form. 

They concluded that a 53% reduction in total annual maintenance cost and 6% improvement in 

average monthly production were achieved. 

 

Alrabghi and Tiwari (2015) surveyed the literature and reported on the state-of-the-art 

simulation-based maintenance optimisation, which resulted in 59 journal papers since the year 

2000. Discrete-event simulation is the most reported technique for modelling maintenance 

systems. In comparison with general-purpose languages, specialised simulation software 

provide several advantages such as, rapid modelling, animation, automatically collected 

performance measures, and statistical analysis tools (Banks, 2010). 

 

Minimising cost is reported as an objective in the majority of simulation studies in the literature. 

Kuntz et al. (2001) used an inspection-based model and included machine downtime in the cost 

function. Instead of minimising maintenance cost, Roux et al. (2013) argue that maximising 

machines’ availability should be the objective function since production costs tend to be higher. 

However, other authors believe that the significance of maintenance costs cannot be 

underestimated. The use of PM and CBM were investigated in a study by Xiang et al. (2012). 

They observe that as sensors get less expensive, the use of CBM strategy will become more 

popular, which has potential cost-savings. 

 

The main assumptions common in the majority of simulation-based studies in the literature 

include: (i) perfect maintenance in maintaining identical and independent units; (ii) failures are 

detected immediately; (iii) costs of maintenance actions are constant, but the cost of CM is 

always higher than PM; (iv) duration of maintenance activities are constant or take zero time; 

and finally, maintenance resources are always immediately available when required. 

Considering the points listed above highlight the limitations of studies in the literature. 

 

Since it is difficult to obtain accurate cost data for conducting maintenance and inspection 

activities in simulation studies, sensitivity analysis is used in several publications in the 
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literature, which test the robustness of a suggested model by varying inputs and investigating if 

the results are in line with the expected outcome (Boulet et al., 2009). Surprisingly, many 

researchers do not disclose the simulation technique or the specific software used in their 

research, which will limit the replicability of the experiments by independent researchers. 

 

Over the years, discrete-event process simulation has steadily grown in power due to the 

advancement of hardware, ease of application due to software sophistications, availability of 

expertise due to the growth of simulation as a business-improvement tool, and breadth of 

applications to business challenges, especially in manufacturing. There are different reasons and 

motivations for the use of simulation to initiate a manufacturing-context simulation project. 

Khalili and Zahedi (2013) used simulation to prepare a mattress production line for anticipated 

demand increases over a five-year planning horizon (Williams, 2014). Natarajan (2016) reports 

on a simulation-based case study of a production line at an automotive ancillary manufacturing 

plant. In the first phase, the existing system is simulated to identify the critical operations in the 

system. Then, the existing system is modified based on the suggestions of the finding of the 

initial phase of this study. Finally, the revised model is simulated, which produces 

improvements in the production volume for the engine thrust bearing line. Rozen and Byrne 

(2016) examine preventative maintenance segregation with the aim of determining the optimum 

PM frequency that results in reduced cycle time. The resulting solutions from many years of 

maintenance modelling have proven to be very effective. However, to improve on those simple 

solutions, complex and time-consuming simulation modelling is required, and reliable input 

data is even more important, which is driven by Big Data and the Internet of Things technologies 

(Volovoi, 2016b). In order to be successful in this path, the inner workings of DES, so far hidden 

from decision makers, have to be highlighted to the users (Volovoi, 2016a) (also see, Alrabghi 

and Tiwari, 2016). 

 

In many studies, simulation is used as a solution tool. Sarker and Haque (2000) used simulation 

since the development of mathematical models was “extremely difficult”. In their model, they 

considered maintenance resources, such as spare parts, and concluded that the results of their 

jointly optimized policy was superior over the combination of separately or sequentially 
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optimized policies. Tateyama et al. (2010) is one of few research articles that considers 

maintenance resources, such as technicians, as decision variables. 

 

Maintenance plays a key role to sustain the operations of manufacturing systems under high 

production throughput, reliability and safety requirements. Opportunistic maintenance gives 

staff the chance to replace or repair those items that are found to be defective or need 

replacement during the maintenance of another machine or component. However, components 

are usually assumed to be independent. Lung et al. (2016) develop an opportunistic maintenance 

policy, considering both economic and structural dependence between different components. In 

Babishin and Taghipour (2016), a system consisting of components subject to soft and hard 

failures is modelled using simulation together with an optimisation tool. Hard failures are self-

announcing and are fixed immediately (similar to failures under DTM) and provide an 

opportunity for inspection (opportunistic inspection). Soft failures (which may be thought of as 

defects under DTM) are only identified and revealed at periodic inspections, which are then 

corrected (repaired or replaced). 

 

A specific application of simulation optimisation is in the area of opportunistic maintenance of 

wind farms. Corrective and time-based preventive policies are widely employed for the 

maintenance optimisation of wind turbines. In Zhang et al. (2017), an opportunistic maintenance 

approach is proposed, considering imperfect maintenance based on reliability. The simulation 

results highlight the economic advantage of using an opportunistic maintenance strategy. The 

cost of energy generated from offshore wind is dependent on maintenance cost to a great extent, 

which in turn depends on the strategy for performing maintenance. In Sarker and Faiz (2016) 

model, opportunistic maintenance is performed on other components in the system while a 

failed component is replaced. The model in Irawan et al. (2017) aims to optimise the 

maintenance schedule, the routes for the crew transfer vessels to service the turbines, and the 

number of technicians required for each vessel. The proposed approach was tested using data 

from a case study reported in the literature as well as for a context generated randomly. The use 

of opportunistic maintenance strategy is becoming very popular in the literature for reducing 

the cost of wind power generation. Policies are developed and decisions are made based on 

static reliability or age thresholds. In Erguido et al. 2017, the dynamic reliability thresholds are 
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allowed to vary according to the weather conditions. The authors claim that the results improve 

the ones proposed by the static reliability thresholds, both in terms of wind farm production and 

life cycle cost. Abdollahzadeh et al. (2016) argue that almost all optimisation models for the 

opportunistic maintenance of wind turbines focus on a single objective in the optimisation 

process. In their paper, a discrete-event simulation model is developed to simultaneously 

maximise the expected rate of energy and minimise the total expected maintenance costs. 

Particle swarm algorithm is used to search for cost effective solutions in the multi-objective 

optimisation process. 

 

Boschian et al. (2009) considered a two-machine parallel system and discuss the complexity of 

analytical modelling. Their study uses simulation but does not consider joint optimisation. 

Lynch et al. (2013) considered the joint optimisation of spares inventory and preventive 

maintenance and concluded that developing such aspects separately will lead to sub-optimal 

performance due to trade-offs between different cost components. Nguyen et al. (2016) deals 

with the problem of maintenance optimization of a two-component system, in series, which are 

dependent in such a way that the lifetime parameters of component subject to shocks (causing 

sudden failures) depend on the degradation level of the gradually deteriorating component. They 

show that both stochastic and economic dependence have a significant influence on the 

performance of various policies, and that joint optimisation reduces the cost of components up 

to 16% when compared to individual sequential optimization. The model in Zhang et al. (2016) 

aims to optimise a maintenance policy considering minimal repairs and imperfect maintenance 

for a two component load-sharing system, in which the failure of one component may increase 

the failure rate of the other. The authors claim that the maintenance policy can be generalised 

to include multi-component systems. 

 

Gopalakrishnan et al. (2016) proposes an approach to determine the machine priorities for 

dynamic scheduling of maintenance work orders by identifying buffer utilization, which 

improves throughput of the system in comparison to a first-come-first-served approach for 

executing maintenance work orders. Machine breakdowns and improper maintenance 

management cause production systems to function inefficiently. The approach is applied in an 

industrial case study, which suggest that systems view for maintenance prioritization can be a 
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powerful decision support tool for maintenance planning. Alrabghi et al. (2017) suggest that not 

enough research is conducted on the optimisation of maintenance of industrial systems. The 

authors present two case studies: a tyre re-treading factory and a petro-chemical plant. They 

investigate optimising various maintenance strategies simultaneously including Corrective 

Maintenance, Preventive Maintenance, Opportunistic Maintenance and Condition-Based 

Maintenance. The study states that over-looking the optimisation of maintenance on the 

strategic level may lead to sub-optimal solutions. One of the general findings suggest that the 

high cost and time of computation associated with simulation-based maintenance optimisation 

of complex systems is still an issue to be resolved. A possible area of future research would be 

to investigate approaches for reducing computational expenses. Linneusson and Aslam (2016) 

argue that the inherent complexity of maintenance and its dependency on production is a 

complex equation. Simulation facilitates the testing of different strategies and scenarios, which 

in this case has proved the value of condition-based maintenance over reactive unplanned 

maintenance. 

 

Unlike Roux et al. (2008), who considered three different maintenance policies, many 

researchers evaluate only one policy, which seems to be a limitation of the research in the 

literature (Alrabghi and Tiwari, 2015). Zahedi-Hosseini et al. (2017) analysed the characteristics 

of ten policies in their joint optimisation study of preventive maintenance and spare part 

inventory for a production plant. The authors concluded that in the context of a paper making 

plant, a periodic policy with ordering that is twice as frequent as inspection is cost optimal. This 

study (Chapter 4 in this thesis) directly addresses the limitation of some of the papers in the 

literature for the lack of comparison of different policies. 

 

As observed by Van Horenbeek et al. (2013), the research on optimising a system composed of 

several machines is limited and most do not consider the production configuration. The authors 

concluded that single-machine systems are therefore oversimplified that do not reflect the 

interactions in real manufacturing systems. Chapters 3 and 5 in this thesis address directly this 

limitation, which has been identified in the literature. 
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2.4. Gaps in literature 

 

As a result of reviewing the relevant material on maintenance systems, delay-time modelling, 

inventory control systems, and joint optimisation of maintenance and inventory, the following 

gaps have been identified in the literature: 

 

 The research on optimising a system composed of several machines is limited; 

 

 Analytical models are only applicable for the maintenance activities of single-line 

production systems, which may prove to be oversimplified. These models do not reflect 

the dependencies and interactions inherent in complex manufacturing systems under 

different configurations for practical industrial situations. Simulation may constitute an 

alternative solution tool in situations such as multi-line production systems where  

mathematical models are limited due to the difficulty of mathematical analysis; 

 

 The vast majority of journal papers in the literature evaluate only a single maintenance 

policy rather than comparing different alternatives for particular contexts. This is also a  

limitation in terms of comparing and selecting the optimum maintenance policy in multi-

component systems; 

 

 The joint modelling and simultaneous optimisation of preventive maintenance and spare 

parts inventory for multi-line production systems. 

 

 

2.5. Notation 

 

2.5.1. Notation associated with Chapter 3 

 

𝐶𝑑 Cost-rate of production downtime 

𝐶𝑠 Cost-rate of inspection maintenance (including repair) 

𝐶(𝑇)  The long-run cost per unit time (cost-rate) 
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𝐶𝑐𝑜𝑛(𝑇) The cost-rate for consecutive inspection of parallel lines 

𝐶𝑚𝑜𝑑(𝑇) The cost-rate for a modified system of inspection of parallel lines 

𝐶𝑠𝑖𝑚(𝑇) The cost-rate for simultaneous inspection of parallel lines 

𝐷(𝑇)  The long-run downtime per unit time (downtime-rate) 

𝑑𝑓 Failure stoppage duration 

𝑑𝑠 Inspection duration (where 𝑑𝑠<< 𝑇) 

𝑑𝑣 
The downtime for a concurrent occurrence of two failure stoppages on separate parallel 

lines 

𝑑𝑣′ 
The downtime for a concurrent occurrence of a failure stoppage and an inspection on 

separate parallel lines 

𝐸𝑁𝑓(𝑇) The expected number of failures over the interval (0, T) 

F Failure repair process 

I Inspection process 

𝜆 Defect arrival intensity, per unit time 

𝑇 Inspection interval 

U 
Initial time from new (or as new) until a defect that could be identified by inspection 

arises (the time-to-defect), a random variable 

𝐹𝑈(𝑢) Cumulative distribution function (cdf) of U 

u Particular realisation of 𝑈 

𝐻 
Time between a defect arising and the subsequent failure if left unattended (the delay-

time), a random variable 

𝐹𝐻(ℎ) Cumulative distribution function (cdf) of H  independent of U 

ℎ Particular realisation of 𝐻 

 

 

2.5.2. Notation associated with Chapter 4 

 

𝐶𝑑 Cost-rate of machine downtime 

𝐶ℎ Cost-rate of inventory holding 

𝐶𝑖 Cost of inspection 

𝐶𝑚 Cost-rate of one maintenance technician 
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𝐶𝑜 Order cost including normal delivery 

𝐶𝑓 Cost of failure replacement (per item) 

𝐶𝑟 Cost of preventive replacement (per item) 

𝐶𝑠ℎ Order cost for stock-out including emergency delivery 

𝐶𝑢 Cost of one item 

𝐶(𝑇) Long-run expected cost per unit time, or cost-rate 

𝑑𝑓 Downtime due to failure (per item) 

𝑑𝑟 Downtime due to preventive replacement (per item) 

𝐷(𝑇) Expected downtime per unit time 

𝐿 Normal delivery lead-time 

𝐿𝑠ℎ Emergency delivery lead-time 

𝑄 Order quantity; a decision variable - dependent on the replenishment policy 

𝑅 Order review period; a decision variable - dependent on the replenishment policy 

𝑠 Re-order level; a decision variable - dependent on the replenishment policy 

𝑆 Order-up-to-level; a decision variable - dependent on the replenishment policy 

𝑇 Inspection interval; a decision variable; 𝑇 = 𝑘 𝑅, for any 𝑘 > 0. 

𝑈 Time-to-defect arrival; initial time from new (or as new) until a defect that could be 

identified by inspection arises; a random variable 

𝐹𝑈(𝑢) Cumulative distribution function (cdf) of 𝑈 

𝑢 Particular realisation of 𝑈 

𝐻 Delay-time; time between a defect arising and the subsequent failure if left unattended; 

a random variable 

𝐹𝐻(ℎ) Cumulative distribution function (cdf) of 𝐻, independent of 𝑈 

ℎ Particular realisation of 𝐻 

𝜆 Defect arrival rate (intensity) 

 

 

2.5.3. Notation associated with Chapter 5 

 

𝐶𝑑(𝑖𝑛𝑑) Cost-rate of individual machine downtime 
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𝐶𝑑(𝑠𝑖𝑚) Cost-rate of simultaneous machine downtime 

𝐶𝑓 Cost of failure replacement (per item) 

𝐶𝑟 Cost of preventive replacement (per item) 

𝐶ℎ Cost-rate of inventory holding 

𝐶𝑖 Cost of inspection 

𝐶𝑚 Cost-rate of one maintenance technician 

𝐶𝑜 Order cost including normal delivery 

𝐶𝑠ℎ Order cost for stock-out including emergency delivery 

𝐶𝑢 Cost of one item 

𝐶(𝑇) Long-run expected cost per unit time, or cost-rate 

𝑑𝑓 Downtime due to failure (per item) 

𝑑𝑟 Downtime due to preventive replacement (per item) 

𝐷(𝑇) Expected downtime per unit time 

𝐿𝑜 Normal delivery lead-time 

𝐿𝑠ℎ Emergency delivery lead-time 

𝑅 Order review period; a decision variable 

𝑆 Order-up-to-level; a decision variable 

𝑇 Inspection interval; a decision variable; 𝑇 = 𝑘𝑅, for 𝑘 > 0. 

𝑈 Time-to-defect arrival; initial time from new (or as new) until a defect that could be 

identified by inspection arises; a random variable 

𝐹𝑈(𝑢) Cumulative distribution function (cdf) of 𝑈 

𝑢 Particular realisation of 𝑈 

𝐻 Delay-time; time between a defect arising and the subsequent failure if left 

unattended; a random variable 

𝐹𝐻(ℎ) Cumulative distribution function (cdf) of 𝐻, independent of 𝑈 

ℎ Particular realisation of 𝐻 

𝜆 Defect arrival rate (intensity) 
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Chapter 3 

 

 

Optimisation of preventive maintenance for multi-line production systems 

 

 

3.1. Summary 

 

This chapter develops simulation models to determine the cost-optimum inspection policy for 

a number of multi-line production systems. Analytical models are complex and intractable for 

determining the optimal inspection interval in such a setting. An approach is developed using a 

well-known discrete-event simulation environment. The machines in the multi-line system are 

subject to a two stage failure process based on the delay-time concept. The policy which is 

studied indicates that consecutive inspection of lines with priority for failure repair is cost-

optimal and suggests a substantial cost reduction of 61% compared to a ‘run-to-failure’ policy. 

The implication of this pragmatic policy is that maintainers need to be responsive to operational 

requirements. These ideas are developed in the context of a case study of a plant with three 

lines, one of which is on cold-standby. 

 

 

3.2. Introduction 

 

Many studies highlight the importance of maintenance within the production context. In an early 

paper, Geraerds (1978) concluded that The Netherlands spent 14% of GDP on maintenance 

activities, 34% of which was associated with expenditure for the industrial plant. Komonen 

(2002) reported that in Finland maintenance cost is typically 5.5% of the turnover of a company, 

but could be as much as 25%. Generally, organisations have become increasingly aware that 

proper maintenance of their production facilities is a vital part of their everyday business 

(Cholasuke et al., 2004). Analysing the results from a case study, Alsyouf (2006) showed that 

companies have the potential to improve their return on investment (ROI) by 9% through the 
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planned and timely use of maintenance. Alsyouf (2009) observes that the maintenance function 

contributes a potential improvement of 14% in ROI, and in a later work, Alsyouf et al. (2016) 

show that good maintenance planning can reduce maintenance costs significantly. There is, 

therefore, a great deal of financial interest to optimise maintenance operations and thus reduce 

the effect of plant downtime by identifying and removing defects (faults) before they cause 

plant to fail. 

 

However, studies show that little research is directed towards the realistic scenario of optimising 

maintenance for a system composed of several machines and the focus is instead on optimising 

a single machine without considering the production configuration (van Horenbeek et al., 2013). 

This view is supported by considering the many review papers that address the optimisation of 

preventive maintenance (e.g. Cho and Parlar, 1991; Dekker, 1996; Wang, 2002; Nicolai and 

Dekker, 2008; Das and Sarmah, 2010; and Ding and Kamaruddin, 2015). Here all analytical 

models relate to single-line production facilities. Furthermore, most, if not all these models, are 

based on assumptions which simplify real life situations and make them less practical. In 

practical situations, simplifying assumptions are undesirable but necessary to some extent for 

the convergence, as far as possible, of theory and practice. To relax or eliminate some 

assumptions from these models, one would require more complex and detailed modelling, 

which may not be amenable to analytical solution. An alternative avenue, using simulation to 

replace intractable, analytical models, is followed in this study for the optimisation of preventive 

maintenance of multi-line parallel production facilities in particular.  

 

Simulation has the potential to address the increasingly complex and dynamic nature of 

maintenance optimisation problems. Alrabghi and Tiwari (2015) surveyed the literature and 

reported the state-of-the-art in simulation-based optimisation of preventive maintenance 

research, with 59 research articles since the year 2000. Discrete event simulation seems to have 

been the most reported technique for modelling maintenance systems. Specialised simulation 

software provides several advantages over general-purpose programs such as rapid modelling, 

animation, automatically collected performance measures and statistical analysis (Banks et al., 

2013). Boschian et al. (2009) discuss the complexity of analytical modelling in optimising the 

maintenance strategies for a ‘small size’ production system (two machines working in parallel) 



CHAPTER 3                                                                              OPTIMISATION FOR MULTI-LINE PRODUCTION SYSTEMS 

 50 

that is prone to random failures and undergoes preventive and/or corrective maintenance. ‘To 

get round this complexity’ they also chose an approach based on simulation.  

 

For single-line systems, a number of models that aim to optimise an inspection interval have 

been proposed and tested. Early models include those due to, for example, Barlow and Proschan 

(1965), Luss (1983), Kaio and Osaki (1989), Jardine and Hassounah (1990) and Abdel-Hameed 

(1995). Other authors have integrated production quality into the inspection problem (e.g. Lu et 

al., 2016) and considered preventive maintenance planning in job shop scheduling (e.g. 

Thörnblad et al., 2015). In this study, the delay-time concept is used, which was first introduced 

by Christer (1976), applied to the maintenance of industrial equipment by Christer and Waller 

(1984a), and later developed further by many (e.g. Baker and Christer, 1994; Okumura et al., 

1996; Jones et al., 2009; Van Oosterom et al., 2014; Flage, 2014; and Chellappachetty and Raju, 

2015). Related case studies include those due to Jones et al. (2010) and Emovon et al. (2016). 

The delay-time concept has the advantage that it explicitly models the relationship between 

plant failures and the inspection interval. The latest review of the advances in delay-time-based 

maintenance modelling including applications is Wang (2012a). 

 

Based on the literature review undertaken, two contributions are made in this chapter: (i) the 

delay-time concept is used for the first time to describe the inspection of multi-line production 

facilities; and (ii) an attempt is made to bring this theory closer to practice by minimising the 

production downtime for a multi-line parallel facility as a whole, using simulation to do so. The 

importance of this work lies in its implications for the design of preventive maintenance for 

multi-line production systems and the contribution that good maintenance can make to 

economic performance.  

 

This chapter is structured as follows. Section 3.3 describes the delay-time concept, the 

modelling methodology, discusses practical circumstances in which such models are 

intractable, and introduces models of multi-line production systems with focus upon how 

downtime affects production. In Section 3.4, a case study is described and the focus is solely on 

the development of the simulation models and analysing the results of several alternative policy 

scenarios, beginning with a single-line packing facility, and developing to several model 
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extensions for multi-line production systems. In the final section, detailed conclusions are 

drawn, their implications are discussed, and the direction of future research is suggested. 

 

 

3.3. Modelling methodology 

 

3.3.1. Notation 

 

See Section 2.5.1., for a list of Notation associated with this chapter. 

 

 

3.3.2. The delay-time model development 

 

As illustrated in Figure 3.1, delay-time modelling describes the evolution of defects in industrial 

equipment in two separate, but linked stages. The first stage is the time lapse from new (or as 

new) until a defect (fault) arrives. This is the time-to-defect arrival, U. Equivalently, it is the 

sojourn in the good state. The second stage is the time lapse from defect arrival to the point at 

which this defect causes the equipment to fail. This is the delay-time, H. Equivalently, it is the 

sojourn in the defective state. This second stage is the window of opportunity for inspection, 

identification of defects, and remedial maintenance intervention (repair or component 

replacement) before a defect causes failure of operational function. Thus, the ‘change point’ 

from the good state to the defective state occurs at a random time, failure occurs some random 

time later, and the time of transition from the good to defective state is unobservable. 

Nonetheless, using failure times and counting instances of defects found at inspection, the 

distributions of time of defect arrival and delay-time may be estimated (Baker and Wang, 1992). 

 

Consider now the complex or multi-component plant maintenance modelling scenario in this 

study, shown in Figure 3.2, with the associated notations and assumptions shown in Section 

3.3.1. Here, multiple concurrent defects are possible. The ‘first to fail’ determines the failure 

time, and thus a series system is assumed. Failures are repaired immediately but not 

instantaneously, so that a downtime of 𝑑𝑓 time units is incurred at a cost of 𝐶𝑠 per unit time. 
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Inspections are carried out every 𝑇 time units, requiring 𝑑𝑠 time units and costing 𝐶𝑠 per unit 

time, where 𝑑𝑠<< 𝑇. All defects identified at inspection are repaired during the inspection 

process, I. During the failure stoppage process, the system is returned to the operational state, 

but any defects present are not removed. During inspection and failure stoppage (repair) 

processes, plant components are assumed to be in a state of suspension, so that the system is 

then not ageing, and thus defects and failures can only arise whilst plant is operating, and defects 

are not ‘growing’. It is assumed that the plant has operated sufficiently long to be considered 

working under a steady state condition. 

 

 

Figure 3.1. The delay-time concept, depicting the arrival of a defect and its evolution into: 

(a) failure; or (b) not, as inspection intervenes. 

 

 

 

 

 

 

 

 

Figure 3.2. Defect arrivals, failures, failure repair F, and inspection I 

in this complex system of multiple components. 
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These assumptions represent a relatively simple inspection problem in the class reported by 

Christer (1999), whom under these assumptions, gives the expected number of failure 

breakdowns over the interval (0, 𝑇), 𝐸𝑁𝑓(𝑇), and the expected downtime per unit time, 𝐷(𝑇). 

Provided that 𝐹𝑈(𝑢) and 𝐹𝐻(ℎ) can be estimated, either through the consideration of data or 

subjective, expert opinion or both, 𝐷(𝑇) and 𝐶(𝑇) equivalently can be calculated and then 

the 𝑇 that minimises 𝐷(𝑇) or 𝐶(𝑇) can be determined. It is this optimisation step that links the 

inspection frequency to the defect arrival and failure rates, and the cost and downtime 

parameters. However, these models are only applicable to the maintenance activities for single-

line plant. Hence, there are many practical industrial situations, like this one with multiple lines, 

where their use is limited. For example, for a production system consisting of a two-out-of-three 

set up with an inventory buffer (storage) facility, the mathematical analysis is very difficult and 

may be intractable. Thus a different approach is considered in this study. 

 

 

3.3.3. Modelling multi-line production systems 

 

The main objective of this research is to determine the downtime per unit time and thus the 

optimum inspection policy for a multi-line production system. In this case, downtime is defined 

as the duration of a stoppage to the downstream and/or the upstream processes. Consider the 

three-line scenario with no standby line in Figure 3.3. Under our definition, downtime occurs 

only when the individual stoppages coincide (period of length z in that figure). In other 

situations, upstream and downstream downtime may have different consequences and upstream 

and/or downstream inventory buffers may exist. For example, in a production system with a 

two-out-of-three line set up (see e.g. Smith and Dekker, 1997, or De Smidt-Destombes et al., 

2007, for a general discussion of k-of-out-n systems) and one line used as standby (Figure 3.4), 

the definition of downtime should depend on the way the management operates the facility. 
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Figure 3.3. Plant downtime in a simple multi-line production system, 

indicating downtime for M1 of duration x, downtime of M2 that is concurrent with M1 of 

duration y, and complete system downtime of duration z. 

 

 

 
Figure 3.4. A multi-line production system 

with a two-out-of-three line set up and inventory buffer. 

 

There are two principal ways in which inspection can be performed for the system in Figure 

3.4, namely, simultaneous (concurrent) inspection of all parallel lines, or consecutive 

inspection, inspecting each in sequence. If inspection is performed simultaneously, assuming 

that the required resources (spares, personnel) are available, then the inspection time itself is 

downtime (similar to a single-line scenario), and the long-run cost per unit time (cost-rate) for 

the realisation shown in Figure 3.5(a) is: 

𝐶𝑠𝑖𝑚(𝑇) = (3( 𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + (𝑑𝑠 + 𝑑𝑣)𝐶𝑑)/𝑇.      (1) 

 

With consecutive inspection, the cost-rate for the realisation shown in Figure 3.5(b) is: 

𝐶𝑐𝑜𝑛(𝑇) = (3( 𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + (𝑑𝑣′ + 𝑑𝑣)𝐶𝑑)/𝑇 < 𝐶𝑠𝑖𝑚(𝑇) .    (2) 
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since 𝑑𝑣′ < 𝑑𝑠 and 𝑑𝑣 < 𝑑𝑓. In practice, it may be possible to reduce the cost of downtime 

further by modifying the policy so that if a failure occurs while another line is being inspected, 

the inspection is suspended until the failed line becomes operational. Then for the realisation 

shown in Figure 3.5(c), for example, the cost-rate is: 

𝐶𝑚𝑜𝑑(𝑇) = (3( 𝑑𝑠 +  𝑑𝑓 )𝐶𝑠 + 𝑑𝑣 𝐶𝑑)/𝑇 < 𝐶𝑐𝑜𝑛(𝑇).     (3) 

 

(a)  

(b)  

(c)  

Figure 3.5. Policy schematic for two-out-of-three line system 

(inspection I; failure repair F; concurrent occurrence of two failure stoppages 𝑑𝑣; 

concurrent occurrence of a failure stoppage and an inspection 𝑑𝑣′): 

(a) simultaneous inspection; (b) consecutive inspection; and 

(c) consecutive inspection prioritising failure repair. 
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3.4. Case study 

 

3.4.1. Problem description 

 

Akbarov et al. (2008) studied a chocolate cake manufacturing plant with production downtime 

issues on its packing lines. They determined the optimum inspection interval for a single-line 

packing system using analytical modelling. In practice, the ‘existence’ of a defect may be 

identifiable by some operational “signal”, such as, excess heat or vibration, and in this particular 

case study, a defect was observable as the presence of significant chocolate contamination on 

the production line. This was the direct cause of several major failure modes on the packing 

lines, so that preventive cleaning procedures (regular inspection and removal of chocolate 

contamination if required) were considered to be of value. Figure 3.4 is a schematic 

representation of the real production process at this plant, in which the upstream process bakes 

cakes and the two-out-of-three system packs them. A stoppage of the upstream baking process 

is considered as downtime (as it leads to lost revenue) whilst a stoppage of one of the packing 

lines is seen as lost time (as the packing process can still continue). Under normal production 

conditions, baked cakes are packed on lines 1 and 3, the inventory buffer is empty, and line 2 is 

on cold-standby. If there is a stoppage to either line 1 or 3, line 2 (the standby) is started and the 

cakes are routed through the inventory buffer to this line. The inventory buffer storage area is 

designed to provide sufficient capacity to start line 2 without having to stop upstream 

production. When normal production is resumed after a stoppage, there is sufficient capacity in 

lines 1 and 3 to empty the inventory buffer storage. Production downtime accrues from the 

instant the inventory buffer is full and two lines are down (see Crespo et al., 2003 for a detailed 

study on maintenance policies for a production system including inventory buffer capacity). 

 

Although the real system has three parallel lines, to use the delay-time model analytically, 

Akbarov et al. (2008) consider this system as a single-line packing facility. It is interesting to 

know what are the implications (both for maintenance management of the plant and for 

modelling of the system) of this limiting assumption. To model the three-line system would 

invite a more complicated analysis which simulation would be able to offer. In fact, in the 

literature, the modelling and maintenance optimisation for parallel line systems is very rare. In 
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this study, the process was begun by simulating the single-line model proposed by Akbarov et 

al. (2008) (Section 3.4.4) as a complex system of multiple components. In doing so, it was 

ensured that the base model was validated against known results, as did Boschian et al. (2009) 

for their case study, and not simply based on an arbitrary situation. With this impetus, the real 

practical situation for which analytical modelling is intractable (Section 3.4.5) was simulated. 

This scenario, which is precisely the system operated by the company’s management, is called 

a modified two-out-of-three parallel line system here. Thirdly, a further simulation model was 

developed for a standard two-out-of-three packing parallel system, in which any two lines are 

operational at any one time. Although the company did not operate the packing facility in this 

way, the development of such a model was useful for comparison purposes (Section 3.4.6). 

Finally, the scenario in which all three parallel packing lines are operated concurrently was also 

simulated (Section 3.4.7). 

 

The data for the base model were taken from Akbarov et al. (2008). Defect arrivals were 

described by the exponential distribution 𝐹𝑈(u) = 1 − exp(− 𝜆𝑢) with rate 𝜆 = 3 per day; 

delay-times were described by the Weibull distribution 𝐹𝐻(h) = 1 − exp(−( ℎ/𝛼)𝛽) with 𝛽 =

6.27 and 𝛼 = 0.193 days, implying a mean delay-time of 4.3 hours and a standard deviation of 

0.8 hours. Many previous studies have proposed, in detail, ways to select and estimate these 

parameters in practice (see, for example, Wang, 2008). The duration of a stoppage of a line due 

to failure was 𝑑𝑓 = 10  minutes; and due to inspection was 𝑑𝑠 = 2 minutes. Both inspection 

and repair in practice corresponded to removal of chocolate contamination, the former being 

carried out preventively, the latter correctively. The cost-rates of “inspection” and “repair” were 

thus assumed equal, and assigned as 𝐶𝑠 = £30 per hour. The production downtime cost-rate 

was 𝐶𝑑 = £1,000 per hour, based on the value of product output per unit time. The cost of a 

single failure event is then 𝑑𝑓𝐶𝑠 plus the cost of the production downtime (if any) resulting from 

the failure. 

 

 

3.4.2. Numerical example 

 

The cost per unit time for simultaneous inspection for the realisation shown in Figure 3.5(a) is: 
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The cost per unit time = Cost of inspection for each of the three separate lines + Cost of 

downtime due to all three lines being inspected simultaneously + Cost of stoppages due to three 

failures + Cost of downtime due to two concurrent failures. Therefore: 

𝐶𝑠𝑖𝑚(𝑇) = (3 𝑑𝑠 𝐶𝑠 +  𝑑𝑠 𝐶𝑑 +  3 𝑑𝑓 𝐶𝑠 +  𝑑𝑣 𝐶𝑑)/𝑇. 

 

With all the costs and durations given in Section 3.4.1, and with an arbitrary value of 3 minutes 

for 𝑑𝑣, since 𝑑𝑣 < 𝑑𝑓, the cost is as follows (assuming that T=1 hour): 

𝐶𝑠𝑖𝑚(𝑇) = (3 (2 + 10)/60 (30) + (2+3)/60 (1000)) = £101.33 

 

For consecutive inspection, the cost per unit time for the realisation shown in Figure 3.5(b) for 

example is: 

The cost per unit time = Cost of inspection for each of the three separate lines + Cost of 

downtime due to a concurrent failure and inspection process + Cost of stoppages due to three 

failures + Cost of downtime due to two concurrent failures: 

𝐶𝑐𝑜𝑛(𝑇) = (3 𝑑𝑠 𝐶𝑠 + 𝑑𝑣′ 𝐶𝑑 +   3 𝑑𝑓 𝐶𝑠 +  𝑑𝑣 𝐶𝑑)/𝑇. 

With an arbitrary value of 0.5 minute for 𝑑𝑣′ (since 𝑑𝑣′ < 𝑑𝑠), the cost is as follows: 

𝐶𝑐𝑜𝑛(𝑇) = (3 (2 + 10)/60 (30) + (0.5+3)/60 (1000)) = £76.33, which is < 𝐶𝑠𝑖𝑚(𝑇). 

 

For consecutive inspection prioritising failure repair, the cost per unit time for the realisation 

shown in Figure 3.5(c) for example is: 

The cost per unit time = Cost of inspection for each of the three separate lines + Cost of 

stoppages due to three failures + Cost of downtime due to two concurrent failures: 

𝐶𝑚𝑜𝑑(𝑇) = (3 𝑑𝑠 𝐶𝑠 +  3 𝑑𝑓 𝐶𝑠 +  𝑑𝑣 𝐶𝑑)/𝑇. 

With the same arbitrary values for 𝑑𝑣′ and 𝑑𝑣 as above, the cost is as follows: 

𝐶𝑚𝑜𝑑(𝑇) = (3 (2 + 10)/60 (30) + (3)/60 (1000)) = £68.00, which is < 𝐶𝑐𝑜𝑛(𝑇). 

 

 

3.4.3. Simulation modelling 

 

ProModel (ProModel, 2016), a process-based discrete-event simulation language (see for 

example, Harrell et al., 2011), was used for developing the base model and the various model 
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extensions. The models, composed of 𝑛 machines (packing lines in this case study), denoted by 

M𝑛 (for 𝑛 ≥ 1), as shown in the general schematic diagram (Figure 3.3) were developed as 

continuous production lines. The model was developed in three stages. 

 

Stage 1: Construction of the overall model framework comprising the minimum system 

requirements  

 

The development of any model using this programming environment requires, at least, the use 

of the paradigm ‘LEAP’; Locations, Entities, Arrivals, and Processing. ‘Locations’, which may 

be single or multiple capacity, are generally fixed positions in the system, where entities wait 

to be processed, such as, machines, queues, or storage areas (buffers). ‘Entities’ are the objects 

that enter into, flow through and depart from the system as complete objects, such as parts, or 

even defect arrivals and failure occurrences. ‘Arrivals’ describe the precise pattern: timing; 

quantity; frequency; and location of Entities (defects, failures) entering into the system. And 

finally, ‘Processing’ defines the exact route that an Entity follows, from entering into, to leaving 

the system. This includes any activity that happens at a Location such as the required operations 

that need to be performed, the amount of time an Entity spends at a Location, and the Resources 

it needs to complete Processing. Although, the most simple model in this environment needs to 

have ‘LEAP’ described, any further sophistication needed almost certainly will require the use 

of other ‘modules’ and/or development of special programming routines. 

 

Stage 2: Detailed programming of the maintenance strategy 

 

The arrival time of defects (faults) and their evolution into failures over the delay-time period 

are generated and scheduled based on their respective distribution functions. The maintenance 

strategies are programmed by scheduling inspection intervals or failures occurrences, whichever 

occurs first, at which time the production of machine M𝑛 is interrupted by the downtime process 

and is terminated after 𝑑𝑠 or 𝑑𝑓 periods respectively. All the relevant costs, system variables 

and attributes are constantly updated to determine the expected cost per unit time or cost-rate. 

 

Stage 3: Development of the model scenarios, input data, output analysis, and optimisation 
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The developed simulation models are non-terminating and the unit of time is days. Macros were 

set up to be able to instantly change input data, such as 𝐶𝑑, 𝐶𝑠, 𝑑𝑓, 𝑑𝑠, 𝐹𝐻(ℎ), 𝐹𝑈(𝑢), 𝜆, 𝑇, 

warm-up period, number of replications, and simulation run length. The continuous onscreen 

data for each model replication includes updating inspection duration, failure duration, 

downtime duration, total expected cost per unit time, number of defects present, number of 

defects removed, number of failure occurrences, and number of inspections taken place. The 

simulation output report includes various data and graphs, including the average cost per unit 

time and the average downtime per unit time. The models were warmed-up for the system to 

reach steady state before experiments could begin, with a suitable warm-up period determined 

using Welch’s graphical procedure (e.g. see Banks et al., 2013). To achieve steady state in the 

output results, each of the simulation experiments were continued with a run length of 1,000 

days and results from the first 10 days (warm-up period) were excluded to eliminate the transient 

components of the results, thus achieving steady state. Simulation experiments were conducted 

for 10 replications to achieve sufficient narrow 95% confidence intervals in the output data. The 

models were run through various simulation scenarios with different values of the inspection 

interval 𝑇. Finally, the optimum value of 𝑇 was determined.  

 

Figure 3.6 shows the flow chart of the base model, developed for the first simulation, 

representing a single-line packing facility. The graphical representation refers to eight different 

processing routines (modelling routines) which were developed for different aspects of the 

model conceptualisation. Table 3.1 displays a sample ProModel code written for the Failure 

Occurrence routine (see the flowchart), the time between a defect arising and the subsequent 

failure. Appendix 3.1 illustrates a summary of some of the main modelling routines, specifically 

for the modified two-out-of-three parallel system with consecutive inspection prioritising 

failure repair. Appendix 3.2 depicts the general layout for one of the simulation models. 

Appendix 3.3 illustrates the percentage time packing lines are either working or idle, under the 

modified 2-out-of-3 parallel system. Appendix 3.4 displays the average number of defects 

arriving at packing line 1, which confirms that the system indeed stabilises and reaches steady 

state by running 10 replications. Finally, Appendices 3.5 and 3.6 display detailed sample source 
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data for the single-line packing system and the modified two-out-of-three parallel system, 

respectively. 

 

Figure 3.6. The base model for the single-line packing facility, 

 showing eight programming algorithms. 

 

Table 3.1. Sample ProModel Code for the Failure Occurrence routine. 

ORDER 1 PreDefect_E TO Leg1DefectArrival_L 

REAL FailureRandom, FailureTimelapse 

INC Leg1FailureGenerated_V 

FailureRandom=RAND(1) 

FailureTimelapse=277.43*(-LN(1-FailureRandom))**(1/6.27) 

StartTime_A=CLOCK(MIN) 

WAIT FailureTimelapse 

ProlongingLeg1_Sub 

IF Leg1DowntimeOnFailure_V=1 THEN 

 WAIT Leg1DowntimeDur_V 

IF Leg1InspectionOnFailure_V=1 THEN 

 WAIT 

(Leg1InspectionDur_V)+(CONTENTS(Leg1FailureOccurence_L)*Leg1RepairDur_V) 

INC Leg1FailureArrived_V 

DOWN Leg1ToGoDown,999 
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3.4.4. Base model (validation) 

 

Figure 3.7(a) compares the results obtained from this simulation model with that of the 

analytical model from the Akbarov et al. (2008) study. It shows downtime per day, in minutes, 

against inspection interval, in hours. The results are clearly very close. Akbarov et al. (2008) 

recommended the same optimal inspection interval of 4 hours for removing the chocolate build-

up from the packing machinery, with an expected production downtime of 12.3 minutes per day 

against a simulated downtime of 13.2 minutes per day. 

 

(a)  

(b)  

Figure 3.7. Comparison of results for the single-line packing system:- 

(a) expected downtime per day against preventive inspection interval: 

▬▬ simulation; ▬  ▬ Akbarov et al. (2008); 

and (b) expected number of events against preventive inspection interval: 

▬▬ inspection; ▬  ▬ defects removed; ●●●● failures. 
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Two factors may have contributed towards the difference of 6.7% between the results of the 

two approaches: (i) the suspension of aging of plant components during inspection and failure; 

(ii) the possible overlap time of inspection and failure processes, both of which were included 

in the development of this simulation model and ignored in the previous study. With the defect 

arrival rate of 3 per day and the duration of a stoppage of a line due to failure of 10 minutes, 

there will be an expected downtime of 30 minutes/day when no preventive maintenance is 

carried out. The results suggest that regular inspection can reduce production downtime by 56%, 

with the number of failures per day reduced from 3 to almost zero (Figure 3.7(b)). The fact that 

the optimal inspection interval of 4 hours corresponds closely with the mean delay-time of 4.3 

hours is not surprising given the relatively small delay-time standard deviation of 0.8 hours 

(since 𝛽 = 6.27). Appendix 3.5 displays detailed simulation source data for this model. 

 

 

3.4.5. ‘Modified’ two-out-of-three parallel system 

 

If a policy of simultaneous inspection were to be followed for maintaining the modified two-

out-of-three parallel line facility, then the simulation results shown in Figure 3.8(a) suggest that 

there is no optimal inspection interval; run-to-failure is then optimal. Here essentially the cost 

of lost production due to the stoppage of the upstream process during simultaneous inspection 

outweighs the cost of stoppages due to failure. In contrast, under a consecutive inspection 

policy, there is no planned downtime. There are, however, occasions when downtime may 

occur: (i) at least one failure and one inspection process occurring concurrently; (ii) two or more 

simultaneous failures. Furthermore, under a consecutive inspection policy prioritising failure 

repair, if a failure occurs while the inspection of another line is taking place, the inspection 

operation is stopped and then re-started once the failed line becomes operational. 

 

The simulation results for these consecutive policies are also shown in Figure 3.8(a), but are 

shown again in Figure 3.8(b) to resolve the cost-rates for the policies of interest. Figure 3.8(b) 

suggests the optimal inspection interval is every 4 hours for consecutive inspection and 5 hours 

if failure repair is prioritised. The advantage of following the latter policy is less frequent 

inspections and a cost-rate reduction of 8.3%. In Figure 3.8(a), it can be seen that as 𝑇 increases, 
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the cost-rates converge fairly quickly (as expected since the delay-time variance is small). 

Finally, the cost-rate reduction for the best policy relative to a run-to-failure policy is of the 

order of 60%. Appendix 3.6 displays detailed simulation source data for this model. 

 

(a)  

(b)  

Figure 3.8. Cost-rate as a function of inspection interval: 

(a) all policies with inspection interval up to 10 days; and (b) consecutive policies only. 

●●●● simultaneous inspection; ▬▬ consecutive inspection; 

▬  ▬ consecutive inspection prioritising failure repair; ▬▬ ● ▬▬ run-to-failure. 

 

 

3.4.6. ‘Standard’ two-out-of-three parallel system 

 

A standard two-out-of-three parallel line configuration was also investigated in order to 

compare results with the modified two-out-of-three parallel line system discussed above. For 

such a system, any two parallel lines would be operational at any one time, so that all packing 

lines would be equally utilised in the long run. A failed line would be repaired and ready to use 
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at the next line failure. For the consecutive inspection policy, the cost-rate appears to be either 

equal or higher than that for the modified parallel system (Figure 3.9(a)). Similarly, for the 

consecutive inspection prioritising failure repair policy, the cost-rate appears to be equal or 

slightly higher than that for the modified parallel system. This is due to all three lines having 

been utilised more uniformly and hence causing more simultaneous failures. For this system, 

the optimal interval remains the same, at 4 and 5 hours, for the consecutive inspection policy 

and the consecutive inspection prioritising failure repair policy, respectively. However, there 

will be 1.6% and 0.6% increases in the cost-rate for these policies when compared to the 

modified two-out-of-three mode of operation. 

 

 

3.4.7. Three-parallel lines system 

 

The final modelling scenario considered the system with three parallel lines. Although there 

cannot be any direct comparison between this and the previous two systems, looking at the 

related results alongside the two-out-of-three parallel systems is useful in case production needs 

to be increased. For the three-line system, downtime will necessarily be greater than under both 

two-out-of-three systems (Figure 3.9(b)) because there is more chance of at least two failures 

occurring simultaneously. However, production output will also be higher. As discussed before, 

the most sensible policy applicable in practice will be consecutive inspection prioritising failure 

repair. Figure 3.9(c) compares the costs for this policy under all three systems. The cost of 

downtime (downtime-rate) is higher if all three lines are operated at the same time. 
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(a)  

(b)  

(c)  

Figure 3.9. Cost-rate as a function of inspection interval:- 

(a) standard two-out-of-three parallel system: 

▬▬ consecutive; ▬  ▬ consecutive prioritising failure repair; 

(b) three-line system: 

▬▬ consecutive; ▬  ▬ consecutive prioritising failure repair; 

and (c) consecutive inspection prioritising failure repair for each system: 

▬▬ modified two-out-of-three; ▬  ▬ standard two-out-of-three; ●●●● three-line. 
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3.4.8. Sensitivity analysis 

 

The sensitivity of the consecutive inspection prioritising failure repair policy was investigated 

for the principal mode of operation of interest (modified two-out-of-three system) to parameter 

values. Figure 3.10(a) shows the sensitivity to inspection duration, 𝑑𝑠. The behaviour is as 

expected here, with the cost-rate of the optimum policy for 0.5𝑑𝑠 and 2𝑑𝑠 at respectively 54% 

and 173% of the baseline. 

 

Sensitivity to variation in the failure stoppage duration (Figure 3.10(b)) shows a somewhat 

different pattern (optimum cost-rate is 84% and 110% of the original cost for 0.5𝑑𝑓 and 2𝑑𝑓, 

respectively). Varying 𝑑𝑓 has the greatest effect when inspection is infrequent; varying 𝑑𝑠 has 

the greatest effect when inspection is frequent, again as it would be expected, since failure 

stoppage duration dominates when inspection is infrequent, and downtime due to inspection 

duration dominates when inspection is frequent. Sensitivity to the rate of arrival of defects 

(formation of chocolate contaminations), Figure 3.10(c), shows anticipated effects although the 

doubling of the failure rate is not sufficient to increase the optimum inspection frequency. 
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(a)  

(b)  

(c)  

Figure 3.10. Sensitivity analysis of parameters:- 

(a) inspection duration, 𝑑𝑠: ●●●● 0.5𝑑𝑠;  ▬▬ 𝑑𝑠; ▬  ▬ 2𝑑𝑠; 

(b) failure stoppage duration, 𝑑𝑓 : ●●●● 0.5𝑑𝑓; ▬▬ 𝑑𝑓; ▬  ▬ 2𝑑𝑓; 

and (c) defect arrival intensity, λ: ●●●● 0.5λ;  ▬▬ λ; ▬  ▬ 2λ. 

 

 

3.5. Conclusions and further work 

 

Almost all previous delay-time inspection models in the literature are concerned with single-

line single-component systems or series systems with multiple components, with restrictions. 

This study uses simulation to determine optimal inspection policy for a number of multi-line 
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facility is simulated to validate earlier analytic results. In the second, a modified two-out-of-

three parallel system is analysed to help address the issue of plant downtime under the actual 

operating conditions in the case study. Two further model extensions are developed and 

analysed to consider whether modifications to either the operation of the system or the design 

of the system in the case study would be worthwhile. The latter three models extend the study 

by Akbarov et al. (2008), in which the multi-line production facility is modelled as if it is a 

single line. In fact, in their survey, Alrabghi and Tiwari, (2015) found that studies that dominate 

the literature, such as cases of single machines producing single products, are oversimplified 

and do not reflect the complexity and interactions of real systems in practice. 

 

It is found that: 1) the simulation of the single-line system validates (reproduces) earlier results; 

2) consecutive inspection with prioritised failure repair lowers the cost-rate (by 8.3%) and 

reduces the frequency of inspections (by 20%) compared to consecutive inspection; 3) the 

standard two-out-of-three design configuration increases the cost-rate by 1.6% and 0.6% for the 

consecutive inspection and consecutive inspection prioritising failure repair policies 

respectively compared to the modified two-out-of-three configuration operated by the 

management; and 4) the three parallel-line design configuration increases the frequency of 

inspections (by 25%) and increases the cost-rate (by 5.2%) for the consecutive inspection 

prioritising failure repair. This is clearly due to the third line being used permanently and not as 

a standby, which would naturally increase the number of inspections and the possibility of 

further failure occurrences. However, it should be noted that the production throughput would 

increase as well, increasing the revenue. 

 

The solution proposed in this chapter may seem rather obvious as it recommends the 

consecutive inspection policy with priority given to failure repair for the maintenance 

management of multi-line production systems. However, the implications for this case study 

are substantial as the policy proposition suggests a cost reduction of 61.3% compared to the 

‘run-to-failure’ policy. Furthermore, analytical models are complex and intractable for 

determining the optimal inspection interval in a parallel multi-line setting. In this respect, it can 

be argued that the contribution of this study is first and foremost in narrowing the gap between 

the theory and practice of managing multi-line systems. The advantage of using a case study is 
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that it illuminates the practical problems that operations managers face in everyday real-world 

situations and the complexities that may exist in developing pragmatic solutions. This work 

demonstrates, in particular, that the scenarios and policies considered have economic and 

engineering implications for the management of production lines and that maintenance planning 

and execution first and foremost needs to be responsive to operational requirements. Finally, 

real-time decision making using simulation would be very useful in dynamic situations where 

the condition of the system state is monitored. 

 

Regarding the scalability of the model, it should be noted that the simulation model for this 

study has been specifically developed to address the optimisation of the inspection interval for 

a very specific two-out-of-three parallel production system. However, the model is easily 

scalable. It takes 55 seconds to run the model through one replication for the current scenarios. 

It takes approximately 10 minutes to simulate 10 independent replications of 1000 working days 

on a standard desktop computer. 

 

Extensions to the work presented in this chapter may be developed in several directions. The 

assumption of perfect inspection may be relaxed. Indeed, Wang (2008) noted that in all the case 

studies conducted using the delay-time concept, none of them supported the perfect inspection 

assumption. Other models might consider imperfect repair, multi-level inspections, delayed 

replacement or repair (of defective components identified at inspection), manpower planning 

and spare parts planning, although not all extensions are relevant to the particular case study 

described here. Simulation is the ideal tool for extending delay-time modelling research in these 

areas. The natural future extension to this work will be the joint optimisation of planned 

maintenance and various spare parts inventory control policies for multi-line parallel systems. 



CHAPTER 4  JOINT OPTIMISATION: A COMPARATIVE STUDY 

 71 

 

Chapter 4 

 

 

Joint optimisation of inspection maintenance and spare parts provisioning: 

a comparative study of inventory policies 

 

 

4.1. Summary 

 

The demand for industrial plant spare parts is driven, at least in part, by maintenance 

requirements. It is therefore important to jointly optimise planned maintenance and the 

associated spare parts inventory using the most appropriate maintenance and replenishment 

policies. In this simulation-based study, this challenge is addressed in the context of the random 

failure of parts in service and the replacement of defective parts at inspections of period T. 

Inspections are modelled using the delay-time concept. A number of simultaneous periodic 

review and continuous review ordering policies are compared. A paper making plant provides 

a real context for the presentation of these ideas. Practitioners working with such plant are 

surveyed in order to collect real data that informs the values of parameters in the models. The 

simulation results indicate that the periodic review (𝑅, 𝑆) policy with 𝑇 = 2𝑅 is cost optimal. 

The discussion also gives insights into the characteristics of the policies considered, including 

that at the optimal inspection interval, the (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅)  policy has lower ordering cost per 

unit time than the (𝑅, 𝑠, 𝑆, 𝑇 = 𝑅) policy, but higher holding cost per unit time than the 

(𝑅, 𝑆, 𝑇 = 𝑅) policy. 

 

 

4.2. Introduction 

 

The demand for spare parts for industrial plant is predicated on the operation and maintenance 

of the plant. Therefore, the planning of spare parts inventory should be driven by operational 

and maintenance requirements rather than the observation of demand. This is because operation 
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and maintenance schedules provide partial information about the demand for spare parts in 

advance, and the forecasting of spare parts demand based on historical usage is sub-optimal 

(Ghobbar and Friend, 2003; Boylan and Syntetos, 2010). Furthermore, maintenance planning 

that assumes 100% availability of spare parts is also sub-optimal (Sharma and Yadava, 2011). 

Consequently, it is important to coordinate the planning of operation, maintenance and spare 

parts inventory (Wang and Syntetos, 2011). Many researchers have tackled this coordination of 

maintenance and inventory separately or sequentially (De Almeida, 2001; Marseguerra et al., 

2005; Cheng and Tsao; 2010, De Almeida et al., 2015). However, it has been demonstrated that 

joint optimisation is superior (in a cost sense) to separately or sequentially optimised policies 

(Sarker and Haque, 2000). 

 

Therefore, it is important not only to coordinate operation and maintenance planning and spare 

parts inventory control but also to carry out optimisation jointly. This is precisely what is done 

in this chapter, whilst setting aside the question of coordination with operation by supposing 

that a plant is continuously or regularly operated. Focus is put on the joint cost-optimisation of 

planned, periodic inspection maintenance and each of several periodic and continuous review 

replenishment policies. The delay-time concept is used to model inspection maintenance. A 

simulation model is developed in the context of a paper machinery plant. Further, data is 

collected that inform the values of parameters in the simulation using a survey of practitioners 

working with such plant. Several replenishment policies are considered so as not to select one 

arbitrarily, as is the case in almost all previous joint optimisation studies (Van Horenbeek et al., 

2013). Thus, two contributions are made in this chapter: (i) this is the first study to consider a 

range of inventory replenishment policies in joint optimisation with maintenance planning; and 

(ii) it develops insights into the characteristics of each policy, not previously addressed in the 

joint optimisation studies. The use of simulation allows the models to make less simplifying 

assumptions than is usual with more analytical papers including: (i) the selection and use of 

many statistical distributions, other than the exponential distribution, such as Weibull; (ii) the 

prolonging of defects’ delay-times during system downtime; (iii) the overlap between inspection 

and failure activities; and finally (iv) the stochastic behaviour of spare replenishment lead-time, 

emergency lead-time, and the availability of various maintenance resources. 
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This chapter is organised as follows. Section 4.3 critically reviews the joint optimisation 

literature. Here, the aim is to justify the use of the delay-time concept and the selection of 

replenishment policies. In Section 4.4, an industrial problem and the modelling of a complex 

system of multiple components (bearings) is described. In Section 4.5, the simulation models 

are discussed, including their assumptions and cost factors. The results are analysed and 

discussed in Section 4.6, including sensitivity analysis. In the final section, conclusions are 

drawn and proposals are developed for future research. 

 

 

4.3. Literature review 

 

There are numerous industrial situations where either the replacement of multiple plant items is 

too costly, prohibiting the block replacement policy, or too critical to bear the risk of 

replacements at a pre-specified item age (items/units/components are parts of machines or 

equipment, which may be repaired or replaced). In these circumstances, the reasonable and 

rational maintenance strategy is to inspect periodically and replace only the defective (faulty) 

parts while retaining the good ones. Such an inspection strategy can be modelled with the delay-

time concept (Wang, 2012a) used here and utilised in numerous case studies (e.g. Christer and 

Wang, 1995; Pillay et al., 2001a; Akbarov et al., 2008; Jones et al., 2010; and Emovon et al., 

2016). The delay-time concept has the advantage that it explicitly models the relationship 

between plant failures and the inspection interval (see Section 4.4.3). 

 

Classic maintenance policies (e.g. Barlow and Proschan, 1965) assume 100% availability of 

spares, implying that spare parts are either highly standardized for easy procurement from 

suppliers, or so inexpensive that large quantities may be stored to protect against possible stock-

outs. Nevertheless, parts are in fact highly customized (and potentially very expensive), and 

their procurement lead-time cannot be neglected (Brezavscek and Hudoklin, 2003). 
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A specific question that motivates the publication of this study is the extent to which particular 

maintenance policies and particular inventory policies have been jointly optimised. In a way to 

answer this question, the papers reviewed by Van Horenbeek et al. (2013) and others that have 

appeared since 2013 have been classified in Table 4.1. 

 

Table 4.1. Characteristics of the joint maintenance and inventory control models in journal 

papers. 

 

Author 

(Year) 

 

 

 

Maintenance policy Replenishment policy Model development Components in 

system 

Age- 

based 

Block- 

based 

Periodic 

Review 

Continuous 

Review 

Analytical Simulation Single Multiple 

Sarker and 

Haque (2000) 

  ♦ Periodic  ♦ (s,S)  ♦  ♦ 

Chelbi and 

Ait-Kadi (2001) 

  ♦ Periodic ♦ (R,S)  ♦   ♦ 

Yoo et al. 

(2001) 

  ♦ Periodic ♦ (R,S)  ♦   ♦ 

Brezavscek and 

Hudoklin (2003) 

  ♦ Periodic ♦  ♦   ♦ 

Vaughan 

(2005) 

*  ♦ Inspection  ♦ (s,S) ♦   ♦ 

Ilgin and Tunali 

(2007) 

  ♦ Periodic  ♦ (s,S)  ♦  ♦ 

Huang et al. 

(2008) 

*  ♦ Periodic ♦  ♦   ♦ 

De Smidt- 

Destombes 

et al. (2009) 

  ♦ Periodic ♦  ♦  ♦  

Wang 

(2011a) 

#  ♦ Inspection 

(DTM) 

♦ (R,s,Q)  ♦   ♦ 

Wang 

(2012b) 

#  ♦ Inspection 

(DTM) 

♦ (R,s,Q)  ♦   ♦ 

Chen et al. 

(2013) 

# ♦   ♦ (s,Q) ♦   ♦ 

Panagiotidou 

(2014) 

#  ♦ Inspection ♦ (R,S) ♦ (s,S) ♦   ♦ 

Gan et al. 

(2015) 

# ♦  ♦  ♦  ♦  

Jiang et al. 

(2015) 

#  ♦ Periodic ♦ (R,S)  ♦   ♦ 

Samal and 

Pratihar (2015) 

#  ♦ Periodic ♦  ♦   ♦ 

Alrabghi and 

Tiwari (2016) 

#  ♦ Periodic  ♦ (s,Q)  ♦  ♦ 

Zahedi-Hosseini et 

al. (2017) 

#  ♦ Inspection 

(DTM) 

♦ (R,S); 

(R,s,S); 

(R,s,Q) 

♦ (s,S); 

(s,Q) 

 ♦  ♦ 

* Not listed in the Van Horenbeek et al. (2013) review as one of the joint optimisation of maintenance and inventory control papers. 

# Not included in the latest review paper by Van Horenbeek et al. (2013) since they were published after its submission date (2010). 
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It can be seen that only Panagiotidou (2014) uses more than one inventory replenishment policy 

for comparison. This then reinforces the view that it is timely to consider more than one potential 

candidate replenishment policy with a particular maintenance policy. While the author also 

considers inspection maintenance, the model employed (that considers two types of failure: 

minor and major) is different to this current study. Apart from Panagiotidou (2014), the closest 

in scope to this study are Wang (2011a, 2012b), which use the delay-time concept but only 

consider the (𝑅, 𝑠, 𝑄) inventory policy. The quantities 𝑅, 𝑠, and 𝑄, and  𝑆  in Table 4.1 are the 

standard inventory control policy parameters, defined in the notation list in Section 4.4.1. 

 

Furthermore, the literature review carried out for this study indicates that in joint optimisation 

studies: (i) few researchers have considered age-replacement, most have considered block 

replacement and the literature on inspection-based maintenance is growing; (ii) many 

researchers continue to use analytical models with restrictive assumptions rather than 

simulation; (iii) interest in models for multi-unit systems is growing considerably; and finally 

(iv) both periodic and continuous review replenishment policies, almost equally, are used in 

these  studies. 

 

 

4.4. Modelling methodology 

 

4.4.1. Notation 

 

See Section 2.5.2., for a list of Notation associated with this chapter. 

 

 

4.4.2. Problem description 

 

A specific industrial plant situation (a paper mill) is considered, and in particular, several 

simulation models are developed for jointly optimising the inspection maintenance and the 

inventory policy for bearings, which are critical components in the plant. Bearings are used 

extensively in many types of plant and can result in very high costs due to unexpected and 
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catastrophic failures. Folger et al. (2014a, 2014b) describe four conditions under which a 

bearing might not reach its maximum life: (i) improper handling and installation; (ii) inadequate 

lubrication; (iii) contamination; and (iv) force, speed, and temperature overload. The 

consequences of damage to a bearing system in industrial machinery can be very significant, 

including general risks to safety, cost to repair or expensive replacements, and unplanned 

machine downtime. 

 

The situation which is described is not a case study. Rather, it is an idealised context that is 

closely informed by a survey. In this survey, maintenance experts and paper manufacturers were 

asked about their experience of paper making machinery in general and the critical components 

of these machines. A questionnaire, with fifteen questions, was used to obtain information 

about: inspections; replacements; failure replacements; costs and lead-times; possible defect 

arrival patterns, delay-times, and their distributions; current maintenance policy(s) used; and 

finally, the policy(s) used for the replenishment of spares for critical components. Nine 

questionnaires of the 15 distributed were returned. The respondents were three experienced 

maintenance and inventory control researchers and six paper machine manufacturers. Where 

available, the range of values of the parameters that were provided have been indicated. The 

information obtained from the survey ensured that the models and simulation experiments were 

realistic, and were the basis for the costs and parameter values used in the models. See Appendix 

4.1 for a copy of the survey questionnaire that is described below. 

 

In the models (the idealised context) that are informed by this survey, it is supposed that: 

 

 The monitoring of bearing condition is carried out by a third party (external specialists). 

 

 Bearing condition is only reported periodically by the third party following processing of 

the raw condition data. This is typical of condition monitoring arrangements in modern 

plant (Wang and Wang, 2015). In this way, condition monitoring and the reporting of 

bearing condition in particular incurs cost but no plant downtime. 
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 Bearings that are reported as defective are replaced; this intervention has a non-zero 

downtime. 

 

 Failed bearings are replaced immediately since it is supposed that such events cause an 

immediate unscheduled stop to the plant and production downtime. 

 

 At failure, only failed bearings are attended to, in order to return the plant to operation as 

quickly as possible. Thus there is no inspection of bearings at failure events. 

 

These assumptions describe the system in broad terms. Next, the inspection model is described 

in detail, followed by the inventory model and then the model parameters. 

 

Note, in this chapter, the terms bearings, components, items, and spare parts are used 

interchangeably. 

 

 

4.4.3. The inspection maintenance model and its assumptions 

 

It is supposed that the system has n identical bearings that are subject to deterioration. In this 

(complex) system model, multiple concurrent defects are possible and the failure process of a 

bearing has two-stages, according to the delay-time concept. In the first stage, a bearing is good 

and working normally. Then in the second stage a bearing is working but defective. The second 

stage terminates with a failure. The length of the first stage is the time-to-defect arrival, and the 

length of the second stage is the delay-time. If inspection is carried out during this second stage, 

it is assumed that defective items are identified and replaced, as depicted in Figure 4.1. Only 

defective items identified at inspections are replaced, rather than replacing all items regardless 

of their age or conditions. 
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Figure 4.1. Defect arrivals and failure occurrences 

in this complex system of multiple components. 

 

The maintenance policy that is considered inspects all items in parallel every 𝑇 time units, and 

defective bearings are replaced preventively. On failure, only failed bearings are replaced. It is 

assumed that the system is in a state of suspension while replacement is carried out. Therefore, 

defects do not grow and the bearings do not age during replacement downtime, and defects and 

failures can only arise whilst the plant is operating. The system is assumed to be operating under 

steady state conditions. Any operational loss due to the presence of defects other than 

inspection, replacement and failure are ignored. These are standard assumptions in inspection 

models (Wang, 2011a).  

 

Times between defect arrivals are assumed to be independent, exponentially distributed, 

consistent with the delay-time model of a complex system (see for example, Wang, 2012b), 

with a defect arrival rate (intensity) of 0.05 per week. This value and the others that follow are 

based on the survey. Note, it is only necessary to specify defect arrival rate for the collection of 

identical bearings as a whole, as it is done here. Nonetheless, this quantity can be determined 

as the product of the number of bearings and the “per-bearing” defect arrival rate. The number 

of identical bearings in a paper rolling machine is typically large (>100) (Wang, 2011a). The 

delay-time follows the Weibull distribution with scale and shape parameters, 𝛼 = 10, 𝛽 = 3 

respectively (implying a mean delay-time of 8.93 weeks). The downtimes due to each 

replacement and failure are 𝑑𝑟 = 4 hours = 0.024 weeks (survey range 1-6 hours) and 𝑑𝑓 = 9 

hours = 0.054 weeks (survey range 1-36 hours). 

 

 

4.4.4. The inventory control model and its assumptions 

 

T

Defect arrival

Failure

T T T
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Paper machinery typically have many identical bearings. In the model, it is supposed that 

inventory planning is concerned only with these bearings. That is, inventory policy for a single 

stock keeping unit will be considered. The following assumptions are made. The demand for 

bearings is generated through two routes. Failures of parts in service occur between inspections, 

which generate intermittent single-unit demands. And, every T time units, at scheduled 

inspections, all defective bearings are identified and preventively replaced (provided there are 

enough spares), generating ‘lumpy’ demand. Demand arising from failure replacements and due 

to preventive maintenance at inspections are satisfied from the existing inventory or by 

expediting an emergency order. 

 

Using the simulation models developed, several periodic and continuous review inventory 

policies will be compared (see, for example, Muller, 2011 and Silver et al., 2016). As depicted 

in Figure 4.2, these policies include: (i) the periodic (𝑅, 𝑆) policy, where every 𝑅 time units (the 

review period) an order is placed to raise the inventory position to level 𝑆; (ii) the periodic 

(𝑅, 𝑠, 𝑆) policy, where every 𝑅 time units, an order is placed to raise the inventory position to 

level 𝑆 provided the inventory position has reached or fallen below the re-order level 𝑠; (iii) the 

periodic (𝑅, 𝑠, 𝑄) policy, where every 𝑅 time units an order of Q units is placed provided the 

inventory position is less than or equal to 𝑠; (iv) the continuous (𝑠, 𝑆)  policy, where an order is 

placed to raise the inventory position to level 𝑆 when the inventory position falls to or below 

level 𝑠; and finally (v) the continuous (𝑠, 𝑄) policy, where 𝑄 units are ordered when the 

inventory position falls to or below level 𝑠. 

 

In the five policies illustrated in Figure 4.2, orders are placed at points A, C, E and G, for 

example, and arrive at points B, D, F and H respectively, after a lead-time, 𝐿. It is important to 

note that although the same arbitrary demand profile has been used for all five replenishment 

policies in Figure 4.2, the ordering outcome is different in each case. Also, in this illustration 

𝐿 < 𝑅 for simplicity, but this restriction is not imposed in the model. 

 

Here, values of the decision variables that minimise the long-run expected cost per unit time or 

cost-rate, 𝐶(𝑇) are sought. The set of decision variables depends on the exact inventory policy 

considered. In all cases, the joint policy contains the decision variable 𝑇, the inspection interval. 
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Throughout the analysis, the unit of time is one week. This is an arbitrary unit that is convenient 

for the reporting of the results. 

 

Based on the survey, the lead-time 𝐿 is set at 3 weeks (survey range 2-6 weeks) and the shortage 

emergency delivery lead-time, 𝐿𝑠ℎ, fixed at 1 day (survey range 1-10 days). Further it is 

assumed that orders are placed at the end of each order placing day. Orders arrive at the 

beginning of each order receipt day but before reviewing the current inventory if it coincides 

with an order placing day. The last two assumptions are for modelling purposes. The order 

interval is flexible since there might be times that based on the current inventory level the 

optimal cost will be achieved by ordering no spares. The preventive maintenance interval 𝑇 =

𝑘𝑅  for any positive value of 𝑘. In these models, based on the survey data, 𝐶𝑜 = £100 and fixed, 

including the cost of delivery. 𝐶ℎ is costed at 1% of item cost per week. 𝐶𝑢 = £2,000 per item 

(survey range £1000-4000), and finally, 𝐶𝑠ℎ = £1,000 per emergency shipment (survey range 

£500-1200). 

 

 

Figure 4.2. Characteristics of the 

periodic and continuous review inventory replenishment policies. 
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4.4.5. Costs and downtime specifications 

 

The parameters 𝐶𝑟 and 𝐶𝑓 are costed on the basis of 3 maintenance technicians at 𝐶𝑚 = £60 per 

maintenance technician per hour. Further, 𝐶𝑑 = £1,000 per hour. 𝐶𝑖 = £1,000 and is fixed. 

 

One maintenance technician assists the external consultants during an 8 hour shift, performing 

data analysis and reporting. Therefore: 𝐶𝑖 = 1,000 + 8 𝐶𝑚 = £1,480. 

 

There are two preventive maintenance (PM) inspection renewal costs depending on whether 

spare parts are immediately available. PM replacement cost (𝐶𝑟) includes 3 maintenance 

technicians for 4 hours. If spare parts are available, then the cost includes downtime and 

manpower, hence: 𝐶𝑟 = 4 𝐶𝑑 + 12 𝐶𝑚 = £4,720. If spare parts are not immediately available, 

there are two extra costs, namely, the shortage shipment cost and the downtime cost while the 

emergency shipment is in transit, hence: 𝐶𝑟 = 4 𝐶𝑑 + 12 𝐶𝑚 + 𝐶𝑠ℎ +  𝐶𝑑  𝐿𝑠ℎ = £29,720. 

 

There are also two failure renewal costs depending on whether spare parts are immediately 

available. Failure replacement cost (𝐶𝑓) includes 3 maintenance technicians for 9 hours. If spare 

parts are available, then the cost includes the costs of downtime and manpower, hence: 𝐶𝑓 =

9 𝐶𝑑 + 27 𝐶𝑚 = £10,620. If spare parts are not immediately available, then there are two extra 

costs, namely, the shortage shipment cost and the downtime cost while the emergency shipment 

is in transit, hence: 𝐶𝑓 = 9 𝐶𝑑 + 27 𝐶𝑚 + 𝐶𝑠ℎ +  𝐶𝑑 𝐿𝑠ℎ = £35,620. 

 

 

4.5. Simulation modelling 

 

Using a modular approach, simulation models were developed for the joint optimisation of the 

inspection maintenance and the periodic and continuous review inventory control policies of 

interest. ProModel, a process-based discrete-event simulation language (see, for example, 

Harrell et al., 2011) was used to model a system with a single machine (but extendible to 
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multiple machines or lines) as a continuous production system with the consideration of all 

major assumptions and cost figures given in Sections 4.4.1 to 4.4.5.  

The construction of the overall simulation model framework, the modelling methodology, and 

finally the input parameters, output analysis, model scenarios and the optimisation technique 

are discussed in Sections 4.5.1 to 4.5.3. 

 

 

4.5.1. Construction of the model framework and the minimum system requirements 

 

The development of any model using the ProModel programming environment requires, at 

least, the use of LEAP: Locations, Entities, Arrivals, and Processing. Locations, which may be 

single or multiple capacity, are fixed positions in the system where entities may wait to be 

processed, such as, machines, queues, or buffer storage areas. Entities are objects that enter into, 

flow through and depart from the system, such as parts, defects and failed items. Arrivals 

describe the precise pattern: timing; quantity; frequency; and location of entities entering into 

the system. And finally, processing defines the exact route that an entity follows, from entry, to 

leaving the system, including all programming logic. The processing also includes operations, 

their durations, and the resources needed. Although, the simplest model needs to have at least 

LEAP described, any further model sophistication almost certainly requires the use of other 

modules and/or development of special programming routines. In these models variables, 

attributes, resources and path networks were used extensively. Subroutines were developed for 

generating delay-times for the failure and replacement processes, and for calculating various 

costs in the model, for example. Various macros were also set up to enable the easy alteration 

of decision variables. The following section describes in detail the approach taken in developing 

the various simulation models. 

 

 

4.5.2. Simulation modelling methodology 

 

Appendix 4.2 illustrates the flow chart of the general simulation procedure, depicting the nine 

modelling routines developed for different aspects of the model. Referring specifically to the 
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numbers stated in each box in Appendix 4.2, a simple description of the flowchart is given 

below: 

 

1. Defects are scheduled to arrive with the appropriate arrival intensity based on the given 

statistical distribution; 

 

2. Defects arrive and wait in their delay-time; 

 

3. Machine downtime is scheduled, either due to defects transforming into failures 

(unplanned process), or defects identified at preventive maintenance instances (planned 

process), triggering the replacement of bearings (if needed); 

 

4. Machine downtime occurs; 

 

5. Defects are delayed or prolonged during the time-to-defect and delay-time, if necessary, 

since defects and failures can only arise whilst the plant is operating, and defects do not 

grow and the bearings do not age during replacement downtime; 

 

6. Planned maintenance is scheduled; 

 

7. Defects (if any) are identified so that bearings may be replaced; 

 

8. Defects (if any) are removed by the replacement of bearings (provided enough spare 

parts are in stock); 

 

9. Planned orders for spare parts is scheduled based on the inventory control policy. 
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4.5.3. Input parameters, output analysis, model scenarios and optimisation 

 

The simulation models are non-terminating. Parameter values are inputted, including of course 

the model parameters warm-up period, number of replications and simulation run time. Macros 

are set up to enable the instant changing of decision variables. The output report includes various 

data and graphs, most importantly the average expected cost and downtime, per unit time. 

 

Before analysis can begin, the warm-up period, the number of replications, and the simulation 

run length had to be determined to ensure the validity of the simulation results and that the 

quality of the output achieves the normal 95% confidence. The Time Series method (see 

Appendix 4.3(a)) based on the weekly cost mean value and Welch’s method (see Appendix 

4.3(b)) based on the weekly cost moving average with a window length of 5 (see, for example, 

Robinson, 2004; and Banks, 2010) were used to determine the warm-up period. A conservative 

300 weeks warm-up was used to provide a very high degree of confidence that the system indeed 

stabilised and reached the steady state beyond the transient period as shown in Appendix 4.3, 

plots (a) & (b). Further analysis showed that running the simulation with seven replications 

provides a consistent confidence interval of 95% as shown in Appendix 4.3(c). Appendix 4.4 

(plots (a) and (b)), display a sample analysis for the determination of the number of replications 

required, specifically for the (𝑅, 𝑆, 𝑇 = 𝑅) policy. The plots confirm the decision reached by 

analysing Appendix 4.3(c). 

 

Finally, to ensure that the simulation is run long enough for convergence, various run lengths 

were explored, and a 5,000-week length was deemed appropriate to ensure a high degree of 

confidence in the simulation results. The computation time to run through all seven replications 

takes approximately 17 minutes. To find the optimal policy, the simulation models were 

integrated with SimRunner (see ProModel, 2010). This tool uses sophisticated search algorithms 

(Kim et al., 2012), running multiple combinations (where applicable) of the decision variables 

to find the unique one that is optimal. 
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4.6. Results analysis and discussion 

 

4.6.1. Joint optimisation 

 

Five principal joint inventory-maintenance policies were considered: three models with periodic 

review (𝑅, 𝑆, 𝑇 = 𝑅) , (𝑅, 𝑠, 𝑆, 𝑇 = 𝑅) and (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) and two with continuous review 

(𝑠, 𝑆, 𝑇) and (𝑠, 𝑄, 𝑇). In addition, three variant policies were modelled, namely: (𝑅, 𝑆, 𝑇 =

2𝑅); (𝑅, 𝑠, 𝑆, 𝑇 = 2𝑅) , and (𝑅, 𝑠, 𝑄, 𝑇 = 2𝑅) . While the presentation in this chapter is 

restricted to the cases 𝑇 = 𝑘𝑅 with 𝑘 = 1,2, many other values for k were investigated but found 

to be cost-sub-optimal for the range of parameter values used here. Figure 4.3 and Table 4.2 

illustrate that among all joint policies modelled, the (𝑅, 𝑆, 𝑇 = 2𝑅)  policy has the lowest total 

cost per unit time (cost-rate), maintaining and inspecting the bearings in the plant every 10 

weeks and ordering spares every 5 weeks (see Appendix 4.5 for a depiction of the simulation 

layout for one of the models). Note that the (𝑅, 𝑠, 𝑆, 𝑇 = 2𝑅)  policy is equivalent to the cost-

minimal policy, because 𝑆∗ − 𝑠∗ = 1. (Here, 𝑆∗ and 𝑠∗ are the optimum values of 𝑆 and 𝑠 

respectively.) Globally, the second and third best policies (lowest cost-rate) are also the 

(𝑅, 𝑆, 𝑇 = 2𝑅) policy, inspecting every 11 weeks and ordering every 5.5 weeks, and the (𝑠, 𝑆, 𝑇) 

policy inspecting the machinery every 11 weeks. Clearly, under the cost-optimal policy, more 

frequent inspections are performed (every 10 compared to every 11 weeks), which will 

potentially identify more defects (if any) in the system and trigger their replacements, thus 

reducing failures and ultimately reducing cost. This trade-off between the marginal decreased 

cost of additional failures and the marginal increased cost of additional inspection lies at the 

heart of the maintenance decision problem. 
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Figure 4.3. The effect of different inventory replenishment policies 

on the joint optimisation cost. 

 

 

Table 4.2. Comparison of the joint optimisation cost, 

based on parameter values for different policies. 

Shaded results are cost-optimal for each policy. 

Bold, shaded is overall the policy with lowest cost. 

 (R,S,T=R) (R,s,S,T=R) (R,s,Q,T=R) (s,Q,T) (s,S,T) (R,S,T=2R) (R,s,S,T=2R) (R,s,Q,T=2R) 

T cost-rate S cost-rate s S cost-rate s Q cost-rate s Q cost-rate s S cost-rate S cost-rate s S cost-rate s Q 

5 698.07 3 698.07 2 3 704.70 2 2 693.30 1 1 689.47 1 2 704.72 3 704.72 2 3 709.52 2 2 

6 660.35 3 660.35 2 3 664.08 2 2 654.05 1 2 652.92 1 2 651.64 2 653.44 2 3 654.22 1 2 

7 640.27 3 640.27 2 3 644.57 2 2 636.19 1 2 632.76 1 3 629.64 3 629.64 2 3 636.09 1 2 

8 624.79 3 624.79 2 3 624.12 2 2 618.60 1 2 613.26 1 3 612.04 3 612.04 2 3 618.88 1 2 

9 611.81 3 611.81 2 3 612.00 2 2 604.92 1 2 603.27 1 3 600.53 3 600.53 2 3 601.08 1 2 

10 612.64 4 612.64 2 3 612.48 2 2 605.86 2 2 599.65 2 3 595.69 3 595.69 2 3 601.45 2 2 

11 614.21 4 614.21 2 3 616.04 2 2 606.83 2 2 599.41 2 3 596.38 3 596.38 2 3 603.15 2 2 

12 616.87 4 616.87 2 3 620.06 2 2 613.68 2 2 606.60 2 3 603.55 3 603.55 2 3 611.00 2 2 

13 622.11 4 622.11 2 3 627.82 2 2 616.96 2 2 609.64 2 3 606.88 3 606.88 2 3 613.53 2 2 

14 627.84 4 627.84 2 3 635.90 2 2 618.43 2 2 612.12 2 3 610.97 3 610.97 2 3 615.81 2 2 

15 633.85 4 633.85 2 3 638.71 2 2 620.66 1 2 619.71 2 3 618.62 3 618.62 2 3 622.85 2 2 

 

Similarly in the inventory decision problem, the cost of stock-outs is traded-off with the cost of 

inventory (as is shown in Figures 4.4(c) and 4.4(e), which will be discussed in more detail in 

Section 4.6.2). Thus, more orders might be placed or more stock might be held to reduce the 
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possibility of stock-outs, depending on the relative sizes of the order cost and the holding cost. 

In the joint optimisation problem, where the inspection period is an integer multiple of the order 

period, more frequent ordering can by implication potentially reduce the frequency of bearing 

failures, and this appears to be the case here. 

 

 

4.6.2. Insights into the characteristics of different replenishment policies 

 

To obtain insights into the replenishment characteristics, the simulation results for each policy 

shown in Table 4.2 were analysed and a selection of these policy types are illustrated in Figure 

4.4, for which the data was collected over a simulation of 5,000 weeks. The optimal inspection 

interval for the different policies ranges from 9 to 11 weeks. Considering the ordering cost per 

unit time, Figure 4.4(a) demonstrates that in general the (𝑠, 𝑆, 𝑇) policy has the highest ordering 

cost-rate since it can potentially place more orders at both inspections and at failures. This is 

also partly due to 𝑠 = 2 and 𝑆 = 3, thus always triggering an order when the stock level drops 

by one unit. This is the (𝑆 − 1, 𝑆) policy often used in a maintenance context, which becomes 

a special case of the (𝑠, 𝑆) policies. This conclusion is supported by Figure 4.4(f) since the mean 

number of spares ordered per order is lowest for the (𝑠, 𝑆, 𝑇) policy. Note, while the (𝑠, 𝑄)  and 

(𝑠, 𝑆) inventory policies are equivalent for unit sized transactions (whence 𝑄 = 𝑆 − 𝑠), it can 

be seen in Table 4.2, for example, that the cost-rate for (𝑠 = 1, 𝑆 = 2, 𝑇) is less than the cost-

rate for (𝑠 = 1, 𝑄 = 1, 𝑇) for the same 𝑇. This is because in this model, while failure demands 

are always unit sized (the probability of two or more failures occurring together is zero), demand 

at an inspection may be greater than unit-sized (when more than one bearing is found to be 

defective). 

 

Moving to a discussion of mean spares per order, furthermore, at the optimal interval, the 

(𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) policy orders two spares per order every time (since 𝑄 = 2), compared to the 

(𝑅, 𝑠, 𝑆, 𝑇 = 𝑅) (𝑅, 𝑆, 𝑇 = 𝑅) policy which orders on average a little over one spare per order. 

So the former policy must have a lower order cost per unit time due to its placing fewer orders. 

It is also expected that the (𝑅, 𝑆, 𝑇 = 2𝑅) policy to have a higher order cost per unit time than 

the (𝑅, 𝑆, 𝑇 = 𝑅) policy (Figure 4.4(a)) since the former can potentially place orders twice as 
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frequently as the latter. Due to the nature of the continuous review policies, one would expect 

that they would generate at least as many opportunities as periodic review policies for placing 

orders. This is demonstrated in Figure 4.4(b), except for one policy. The number of 

opportunities for placing orders for the (𝑠, 𝑆, 𝑇) policy is lower than the (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) and 

(𝑅, 𝑆, 𝑇 = 𝑅) policies only because its optimal inspection interval is longer - 11 weeks 

compared to 9 weeks for the latter two policies. Figure 4.4(d) illustrates that the number of 

spares replaced at PM intervals was lowest for the (𝑠, 𝑆, 𝑇) policy and highest for both the 

(𝑠, 𝑄, 𝑇) and the (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) policies. There is understandably a direct association between 

the number of spares replaced and the number of PM instances carried out. 

 

Similar observations to those made about order cost-rates can be made in relation to holding 

cost-rates and stock-out cost-rates (Figures 4.4(c) and 4.4(e) respectively). A more interesting 

observation is that inventory costs seem to be traded off. Thus considering Figures 4.4(a), (c) 

and (e), it can be seen that where the holding cost-rate is high, the stock-out cost-rate is low, 

and vice versa, except for policy (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅), where they are both high but compensated by 

the low order cost-rate for this policy. Where policy (𝑅, 𝑆, 𝑇 = 2𝑅) does appear to outperform 

the other policies is in the additional opportunities it offers for replenishment, even if it does 

not necessarily use them (Figure 4.4(b)). 

 

Figure 4.4(d) confirms that the usage rate of spare parts is similar for all policies, as expected, 

since in the long run (at steady state) the consumption of parts is most influenced by the rate of 

arrival of defects. This implies the rather obvious but important observation: if one wants to 

reduce inventory costs, then first and foremost, one should use more reliable (better quality) 

parts. Thus, quality of spare parts is another factor than impinges on both maintenance and 

inventory, a point made in Scarf and Cavalcante (2012). 

 

Figure 4.4(d) also shows variation between the policies in the number of spares used at 

inspections. Thus, those policies with more positive inspections per unit time (an inspection is 

deemed to be positive if at least one defect is found) use more spares at inspections (and the 

mean number of spares used per inspection is approximately 1.2). This variation is balanced by 

the variation in failure: while (𝑠, 𝑆, 𝑇) and (𝑅, 𝑆, 𝑇 = 2𝑅) have the lowest positive inspection 
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rates, their failure rates are the highest. A higher cost of failure might then lead to a different 

policy ranking. Also, if one were remanufacturing spare parts, one might prefer a policy with 

fewer failures per unit time. 

 

This then brings the discussion to failures and stock-outs and policy risks. The (𝑠, 𝑆, 𝑇) policy 

might be perceived as a low risk policy since it has the lowest stock-out cost. However, it has 

the largest failure rate. The optimal (lowest cost-rate) policy, (𝑅, 𝑆, 𝑇 = 2𝑅), has a very low 

stock-out rate and a moderate failure rate, although its stock-out rate is much lower than inferior 

policies (70% lower) and its failure rate is marginally higher (23% higher). The variation in 

failure rates is due almost entirely to the variation in the inspection interval; a longer inspection 

interval will result in more failures. The (𝑠, 𝑆, 𝑇), the (𝑅, 𝑆, 𝑇 = 2𝑅), and the other three policies 

in Figure 4.4(g) with optimal inspection intervals of 11, 10, and 9 weeks have failure rates of 

1.14, 0.9 and 0.73 per 100 weeks respectively. The other much smaller contribution will come 

from stock-out rate variation, where a policy with more stock-outs will ceteris paribus have 

fewer failures because of the plant stoppages due to stock-outs.  

 

Now two final points are made. The first is that the variation in stock-out cost-rates across the 

policies is relatively large (Figure 4.4(e)). The (𝑅, 𝑆, 𝑇 = 𝑅) policy has a stock-out cost that is 

four times that of the optimal policy, (𝑅, 𝑆, 𝑇 = 2𝑅). This would be expected since the latter 

has the potential to place twice as many orders. The second point is that generally the stock-out 

cost-rates are much lower than the failure cost-rates (Figure 4.4(e) vs Figure 4.4(h)). 

 

Thus, in summary, first and foremost it is the failure rate (and equivalently defect arrival rate) 

that has the greatest influence on the choice of policy, followed by the emergency order (stock-

out) cost. Furthermore, although the cost-rates for the jointly optimised policies are quite similar 

across the range of policies, the optimal values of decision variables for each policy can be quite 

different, so that the components of the cost-rate can be different. Thus, the different policies, 

at their optimal settings, place different demands on inventory. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Figure 4.4. For the optimum policy in each class of inventory policies: 

(a) order cost-rate; (b) order point statistics; (c) holding cost-rate; (d) PM statistics; 

(e) stock-out cost-rate; (f) order size statistics; (g) failure rate; and (h) maintenance cost-rates. 
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4.6.3. Sensitivity analysis 

 

Sensitivity analysis of various parameters for the optimal policy (𝑅, 𝑆, 𝑇 = 2𝑅) are shown in 

Figure 4.5. The behaviour of the cost-rate with respect to the defect arrival intensity is as 

expected here since the cost-rate of the optimal policy for 0.5λ and 2λ are at 63% and 166% of 

the baseline respectively (Figure 4.5(a)). The optimal times between inspections behave as 

expected, that is, as the intensity of defect arrivals increases, more frequent inspection is 

expected to yield the optimal interval and vice versa. However, a reduction of 50% in the defect 

arrivals has a more sustained impact on the optimal interval. Similarly, as the scale parameter 

of the Weibull delay-time distribution α is reduced (Figure 4.5(b)), the cost-rate rises as expected 

since the mean delay-time decreases and defects develop into failures more quickly. The cost-

rate of the optimal inspection interval for 0.5𝛼 and 2𝛼 are 116% and 89% of the baseline, 

respectively. However, in extending the delay-time, minimal effect is displayed when inspection 

is very frequent. Figure 4.5(c) displays the cost-rate of the optimal inspection interval for 0.5C𝑑 

and 2C𝑑 at 78% and 141% of the baseline, respectively. The optimal times between inspections 

also behave as expected, but with the greatest impact for the 100% increase in the cost of failure 

and when inspection is infrequent. Overall, the greatest impact is evident when inspection is 

less frequent. And finally, the cost-rate of the optimal inspection interval for 0.5C𝑖 and 2C𝑖 are 

at 91% and 115% of the baseline respectively (Figure 4.5(d)). Varying 𝐶𝑖 has the greatest effect 

when inspection is frequent and the optimal intervals move in the expected direction. 

 

The cost-rates for different unit costs, 0.5C𝑢 and 2C𝑢 are 87% and 124% of the baseline, 

respectively. The reduction in the unit cost does not seem to have any effect on the frequency 

of inspection (Figure 4.5(e)). Figures 4.5(f) and 4.5(g) suggest that halving or doubling the costs 

of ordering or shortage shipment have minimal effect on the overall cost-rates. In fact, for 

0.5C𝑠ℎ and 2C𝑠ℎ this is true for every inspection interval. Further, the sensitivity to the order 

lead-time (Figure 4.5(h)) suggests that a change in the order lead-time has the smallest effect 

when the lead-time is halved compared to the baseline, but has the greatest effect when it is 

doubled. However, in the latter case, the effect becomes negligible when inspection is 
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infrequent. This is because when the inspection interval is very large, it matters little if the lead-

time is large. 

 

Finally, the sensitivity of the order-up-to-level 𝑆 was investigated for the decision variables 𝑇 =

10 and 𝑅 = 5 . The original cost for this scenario was £595.69 per week. When 𝑆 was reduced 

from 3 (the cost optimal quantity) to 2, the weekly cost was increased, as expected, but only by 

3.0%. Similarly, when 𝑆 was increased from 3 to 4, the weekly cost was increased, again as 

expected, but only by 2.6%. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

Figure 4.5. The sensitivity on the joint optimisation cost for the optimal (𝑅, 𝑆, 𝑇 = 2𝑅) policy 

for various parameters (x=minimum; *=baseline): 

(a) defect arrival rate; (b) failure delay-time; (c) cost-rate of machine downtime;(d) inspection 

cost; (e) unit cost; (f) ordering cost; (g) shortage shipment cost; and (h) order lead-time. 
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4.7. Conclusions and further work 

 

Several simulation models were developed for a complex system with multiple identical 

bearings, in the context of a paper machinery plant. The planned maintenance inspection 

interval T, based on the delay-time concept, and the spare parts inventory policy, considering 

various policies, have been jointly optimised. This is the first study that compares a number of 

periodic and continuous review replenishment policies, and analyses their efficacy when joined 

to the inspection policy. The objective was not only to find the cost-minimal policy across the 

range of policies, but also to illustrate the characteristics of each policy, so that engineers might 

be guided about the suitability of these policies across a range of criteria that may be appropriate 

for particular industrial contexts. The particular context that motivated this study is the 

maintenance of bearings in a paper mill. 

 

Joint models require complex mathematical formulations and it may not be possible to solve 

these analytically except for limited situations and/or with simplifying assumptions. Simulation 

has been used, which compared to mathematical modelling, has the advantage to describe 

multivariate non-linear relations. However, since simulation is not an optimization technique, 

so as to find the global optimal policy, simulation was integrated with an optimization tool.  

 

For the policies considered here, the following conclusions are made: 

 

 (𝑅, 𝑆, 𝑇 = 2𝑅) and (𝑅, 𝑠, 𝑆, 𝑇 = 2𝑅) are the minimum cost policies. 

 

 The additional cost of more frequent ordering, and hence inspection, under the (𝑅, 𝑆, 𝑇 =

2𝑅) policy is compensated by the reduction of bearing failures. 

 

 At the optimal interval, the (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) policy results in ordering more spares every 

time, compared to the (𝑅, 𝑆, 𝑇 = 𝑅) policy, resulting in a lower ordering cost-rate but a 

higher holding cost-rate. 
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 The (𝑅, 𝑆, 𝑇 = 2𝑅)  optimal policy is a relatively low risk one as it is associated with one 

of the lowest stock-out cost-rate. 

 

 The (𝑅, 𝑆, 𝑇 = 𝑅) policy is associated with the highest stock-out cost-rate at its optimal 

settings. 

 

 The (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) policy has similar overall cost-rate to the (𝑅, 𝑆, 𝑇 = 𝑅) policy, 

suggesting that the holding cost is not necessarily a decisive variable. 

 

 The sensitivity analysis to different parameters for the optimum policy, (𝑅, 𝑆, 𝑇 = 2𝑅), 

gives results that are expected. Varying C𝑑 and C𝑖 has the greatest impact when inspection 

is infrequent and frequent, respectively. The optimal policy at its optimum settings is not 

sensitive to the order-up-to-level S. 

 

 The defect arrival rate of the unit (part) in service is the principal determinant of policy, 

followed by the emergency order (stock-out) cost.  

 

 Finally, while the cost-rates are similar across the range of policies, the components of the 

cost-rates are quite different because the policies’ decision variables are different, and so 

the different policies, at their optimal settings, place different demands on inventory. 

 

The models that have been developed can be extended in several ways to model more realistic 

industrial situations, including: imperfect inspection whereby false positive and false negative 

inspections are present (Berrade et al., 2012); postponed replacement of defective components; 

variable replenishment lead-times; modelling of dependent and/or non-identical multi-unit 

systems; the formulation of a cost-effective spare parts ordering policy based on historic data 

and dynamic forecasting to predict spare parts demand; and multi-line parallel non-identical 

systems. 
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Chapter 5 

 

 

Joint modelling and simultaneous optimisation of preventive maintenance 

and spare parts inventory for multi-line production systems 

 

 

5.1. Summary 

 

In parallel production settings where interactions and dependencies exist between system 

components, maintenance policies are, for the most part, analytically intractable. In this study, 

a simulation language and a numerical optimisation tool are used to determine the cost-optimal 

joint inspection and replenishment policy for maintaining machines in a specific multi-line 

production system. This optimisation is performed in order to eliminate, or at least minimise, 

the occurrence of simultaneous machine downtime in a system with parallel machines. The 

occurrence of simultaneous downtime may halt production, which will have a significant 

adverse effect on profitability or other performance measures. An industrial setting provides the 

idealised context for modelling the plant maintenance. The demand and replenishment of spare 

parts is considered with several variants of a periodic review policy. A number of simulation 

models are developed for the joint optimisation of maintenance-inventory. The results indicate 

that among several joint policies considered, the policy that uses the same frequency of 

maintenance and replenishment is cost-optimal when just-in-time (JIT) ordering is such that the 

delivery of parts coincides with maintenance interventions. A sensitivity analysis offers insights 

to practitioners for the management of their multi-line systems. 

 

 

5.2. Introduction 

 

In the research and practitioners’ literature, maintenance is being increasingly highlighted as an 

integral part of production (see, for example, Alsyouf, 2009; and Wall, 2013). Generally, 
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organisations have become increasingly aware that the maintenance function is an integrated 

part of their business (Ding and Kamaruddin, 2015). There is therefore a great deal of financial 

interest in optimising maintenance operations and thus reducing the effect of plant downtime. 

Although there is significant cost associated with planned maintenance, Alsyouf et al. (2016) 

show that good maintenance planning can reduce overall maintenance costs. 

 

Extensive research is evident in the literature addressing the problems of maintenance and 

inventory control separately or sequentially (for example, De Almeida, 2001; Marseguerra et 

al., 2005; and Cheng and Tsao, 2010). Typically, in the maintenance literature, the optimisation 

issue has been tackled by determining the optimal inspection interval which yields the minimum 

cost, assuming infinite availability of spare parts (for example, Sharma and Yadava, 2011). For 

single-line systems, early models include those due to, for example, Barlow and Proschan 

(1965). Others have integrated production quality into the inspection problem (e.g. Lu et al., 

2016) and considered preventive maintenance planning in job shop scheduling (e.g. Thörnblad 

et al., 2015). These studies assume that spare parts are readily available, which implies that parts 

are either highly standardized that can be readily bought from a supplier, or are so inexpensive 

that large quantities can be stored. However, parts are usually highly customized and their 

procurement lead-time cannot be neglected (Panagiotidou, 2014). Therefore, maintenance 

analysis without spare parts consideration will result in misleading decisions. To carry out 

maintenance effectively, spare parts need to be available immediately, in order to replace both 

failing items in service and faulty parts at inspections. The operational effectiveness of the 

inspection process is also dependent upon the availability of spare parts. Clearly, maintaining a 

sufficient amount of spare part inventory is indeed the challenge faced by plant managers in 

order to minimise the holding cost and the risk and cost of stock-outs. Note that the term 

component, item, or part may be used interchangeably to refer to the critical component that 

needs to be replenished as the spare part. 

 

Many review papers address the optimisation of preventive maintenance, for example, Ding and 

Kamaruddin (2015). Maintenance models are broadly developed for block-replacement of plant 

items or replacements based entirely upon some pre-specified item age, most of which are 

concerned with one-unit systems. In many industrial situations, the replacement of multiple 
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plant components is either too expensive, which would make the block replacement policy very 

costly, or the parts are too critical for taking the risk of replacements using an age-based policy. 

Alternatively, parts may be inspected at optimal intervals and replaced only if found to be 

defective (faulty), which seems to be a reasonable and rational maintenance strategy. One of 

these inspection methodologies is delay-time modelling (DTM), which was first introduced by 

Christer (1976), and developed further by many including Flage (2014). DTM, which is also 

used in this study, has been extensively utilised in numerous case studies, for example, Emovon 

et al. (2016). The concept has the advantage that it explicitly models the relationship between 

plant failures and the inspection interval. Wang (2012a) gives the latest review of the delay-

time advances including industrial applications. 

 

Studies show that almost all maintenance models relate to single-line production facilities and 

little research is directed towards the realistic scenario of optimising maintenance for a system 

composed of several production lines (Van Horenbeek et al., 2013). Furthermore, most if not 

all of these models are analytical, which are generally complex and, for multi-line production 

systems, they are intractable for determining the optimal maintenance inspection interval. 

Simulation is well suited and has the flexibility to address the increasingly complex and 

dynamic nature of maintenance optimisation problem. In the latest literature survey by Alrabghi 

and Tiwari (2015), reviewing 59 journal papers since the year 2000, the authors report on the 

state-of-the-art simulation-based maintenance optimisation. They observe that discrete-event 

simulation (DES) is the most reported technique for modelling maintenance systems. This study 

uses discrete-event simulation as an alternative approach to model the operations of a plant 

comprising two parallel machines. This is in order to eliminate, or at least to minimise, the 

occurrence of simultaneous machine downtime, which may halt production and thus cause a 

significant adverse effect on profitability or other performance measures. Apart from this 

chapter and Chapter 3, the only other study that considers a parallel system of multiple machines 

is Boschian et al. (2009), which discusses the complexity of analytical modelling and also uses 

simulation. However, unlike this current study, Boschian et al. (2009) do not consider joint 

optimisation. 
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Van Horenbeek et al. (2013) carried out a comprehensive review of literature on joint 

maintenance and inventory optimization for non-repairable units. Among the literature, Sarker 

and Haque (2000) used simulation since they considered the development of analytical models 

to be “extremely difficult”. They showed that the jointly optimized policy was superior to the 

combination of separately or sequentially optimized policies. In comparison, Chelbi and Ait-

Kadi (2001) simultaneously optimised the block replacement interval, the optimal inventory 

level, and the replenishment cycle. Yoo et al. (2001) developed an analytical model for a system 

of 𝑁 identical units. Brezavscek and Hudoklin (2003) formulated a stochastic mathematical 

model and found that it was relatively insensitive to moderate changes of the parameter values, 

but they also showed a 97.4% increase in the value of the objective function (the expected total 

cost of system maintenance per unit time) when the order-up-to-level S was decreased by 10%. 

Using a different approach, Vaughan (2005) treated the time between inspection operations as 

fixed (not optimised) and used a stochastic dynamic programming model to develop a policy 

for ordering parts due to both sources of demand, rather than addressing them separately. The 

maintenance model in Vaughan (2005) best resembles delay-time modelling since the 𝑛 units 

in service are inspected at scheduled maintenance intervals 𝑇, during which some or all are 

replaced, if needed. Later, Ilgin and Tunali (2007) developed a simulation optimization model, 

which they believed gives the ability to describe multivariate non-linear relations that are 

difficult to express in an analytical form. They concluded that a reduction in total annual 

maintenance cost and an improvement in average monthly production were achieved. Huang et 

al. (2008) developed a mathematical model and generalised the study by Brezavscek and 

Hudoklin (2003) in their joint optimisation with random lead-time. 

 

In a different approach, De Smidt-Destombes et al. (2009) developed heuristics for the joint 

optimisation of preventive maintenance frequency, spare parts inventory levels and spare parts 

repair capacity for a single k-out-of-N system under block replacement. Apart from this current 

study, Wang (2011a, 2012b) is the only other author who has used delay-time modelling (DTM) 

in joint optimisation studies, but only for a single-line production system. The author assumes 

order lead-time negligible “for model simplicity” which is “used extensively in inventory 

literature”. Chen et al. (2013) developed an analytical model in which the procurement lead-

time is assumed to be constant but state that it is necessary to explore the policy with random 
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lead-time as an extension. A year later, Panagiotidou (2014) studied the joint maintenance and 

spare parts ordering problem for both (𝑅, 𝑆) and (𝑠, 𝑆) replenishment policies. The inspection 

model of this author has some similarities with delay-time modelling in that minor failures 

(which could be considered as defective components) are only detectable through inspection. 

However, it differs from DTM in that random failures are not self-announcing and may only be 

identified at inspections. Jiang et al. (2015) developed an analytical model based on the same 

assumptions as Brezavscek and Hudoklin (2003) but taking into account the cost of spare part 

deterioration. Finally, Samal and Pratihar (2015) used particle swarm algorithms in their study 

of electric overhead travelling cranes, which they claim gives a ‘better global solution’ 

compared to other optimisation methods. The authors extended the maintenance interval from 

1 to 1.5 years. However, they assumed that spare parts are replenished instantaneously, which 

may prove unrealistic in practice. 

 

Zahedi-Hosseini et al. (2017) have classified the characteristics of joint maintenance and spare 

parts inventory control models in the literature using several categories of: (i) maintenance 

policy (age-based or block-based); (ii) replenishment policy (periodic or continuous review); 

(iii) model development (analytical or simulation); and (iv) components in system (single or 

multiple) - (see Section 4.3 including Table 4.1 in this thesis). Compared to Van Horenbeek et 

al. (2013) review, a number of new insights have thus emerged. First, few authors consider an 

age-replacement policy; most consider a periodic block replacement policy instead; and the use 

of inspection-based preventive maintenance is growing. Second, despite the complexity of joint 

optimisation models, many researchers continue to use analytical models with restrictive 

assumptions rather than making use of simulation. Finally, model development for multi-unit 

series systems has grown considerably. Maintenance models for multi-line parallel systems are 

very rare in the literature, except for studies that mainly integrate maintenance with production 

scheduling (for example, Wang and Liu, 2015). However, there are no studies addressing the 

integration of maintenance and spare parts inventory for such systems. 

 

Thus, based on the detailed literature review undertaken here, this current study makes two 

significant contributions: (i) it is the first study to consider the joint optimisation of preventive 

maintenance and spare parts provisioning for multi-line production systems; and (ii) it provides 
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insights into the characteristics of the best joint policies for multi-line production studies. 

Clearly, the two critical issues of maintenance and spare parts need to be jointly addressed if 

models are to be realistically implemented in practice. 

 

In this study, simulation models are therefore developed for the joint modelling and 

simultaneous optimisation of an inspection interval 𝑇 in a delay-time model, and spare parts 

provision using a (𝑅, 𝑆) periodic review replenishment policy. Thus, the decision 

variables 𝑇, 𝑅, 𝑆 are optimised simultaneously. 

 

The chapter is organised as follows. Section 5.3 discusses the methodology, assumptions, and 

cost factors for modelling a complex system with multiple identical components (bearings) in 

the context of a paper making plant comprising parallel machines. In Section 5.4, the details of 

the simulation models are described. The results are analysed and discussed in Section 5.5, 

including a sensitivity analysis of the parameters affecting the cost-optimal policy. In the final 

section, conclusions are drawn and proposals are developed for the future direction of this 

research. 

 

 

5.3. Modelling methodology 

 

5.3.1. Notation 

 

See Section 2.5.3., for a list of Notation associated with this chapter. 

 

 

5.3.2. Problem description 

 

The specific industrial plant situation and the idealised context considered here is a paper mill 

consisting of two machines working in parallel. Beside the relatively low-cost cutting blades, 

expensive bearings are the critical components in this plant. 
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Bearings are used extensively in paper making machines and, apart from general risks to safety, 

their failure can incur costs due to repair or replacement, and unplanned machine downtime. 

Folger et al. (2014a, 2014b) describe several conditions under which bearings can fail 

unexpectedly and catastrophically including: improper handling and installation; 

contamination; inadequate lubrication; and various types of overload. Bearing life, often 

referred to as the L10 life, is a method of specifying a bearing’s useful life before it shows the 

first signs of fatigue, before failure. The term L10 is used to denote the life that 90 percent of 

seemingly identical bearings, operating under identical conditions, can operate before fatigue 

occurs, or ‘defects arrive’. Therefore, there is a 90 percent reliability that the bearing will 

achieve the specified life. The calculation of L10 life for ball bearings as the load-

carrying elements, is given by: 

𝐿 = [
𝐶

𝐹
]

n

 

(Collins, 2017), where, L = basic rating life 106 (revolutions); C = bearing dynamic load capacity 

(N); F = applied dynamic load (N); and n = 3 for ball bearings & n = 10/3 for roller bearings 

(also see, for example, Jacobs et al., 2016). 

 

In this study, several simulation models are developed for the joint optimisation of preventive 

maintenance and inventory replenishment for the replacement of bearings in the plant. The 

models are informed by a survey conducted by the author (described in Section 4.4.2, second 

paragraph onwards), collecting information from maintenance/inventory control experts and 

paper manufacturers about their experience of paper making machinery and their critical 

components. A questionnaire was used to obtain information about: possible defect arrival 

patterns, delay-times, and their distributions; inspections; preventive maintenance 

replacements; failure replacements; current maintenance and replenishment policies for 

replacing critical components; lead-times; and finally costs (see Appendix 4.1(a) for a copy of 

the survey questionnaire and details of the questions, and Appendix 4.1(b) for a summary of the 

responses). Sixty per cent (nine out of 15) of the questionnaires were returned: three from 

experienced maintenance and inventory control researchers; and six from paper machine 

manufacturers. The information obtained from the survey were the basis for the costs and 

parameter values used in the models, which ensured that the models and simulation experiments 
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were realistic and were not based on some arbitrary data. The parameters’ value ranges are 

indicated in the relevant Sections. 

 

In the analysis process, the data from the six paper machine manufacturers were generally 

consistent since they were all referring to the same type of plant. However, the data from the 

maintenance and inventory control experts varied, depending on the projects they had 

previously undertaken, and not necessarily anything to do with paper rolling plant. There were 

two areas, in which the data seemed to vary considerably. The first is the inspection duration. 

However, as will be discussed in more detail in Section 5.3.3, the assumption in this study is 

that the inspection activity (or the data analysis conducted by specialists - original equipment 

manufacturer (OEM)) to identify defects at inspection intervals has zero downtime because it 

takes place off-line (Maintenance & Engineering, 2017). Therefore, the variability of the 

inspection duration in the survey data was not an issue. The second area where the data showed 

high variability was the failure distribution and its parameter values. In this case, it was decided 

to use the same data used in Wang (2012b), which also considered the maintenance optimisation 

for a paper making plant. 

 

 

5.3.3. The preventive maintenance model and its assumptions 

 

In the idealised context considered here, each machine has 𝑛 identical bearings that are subject 

to deterioration. The two-machine parallel system is assumed to be operating under steady-state 

conditions. In this (complex) system model, multiple concurrent defects are possible and the 

failure process of a bearing is based on the two-stage delay-time concept. During the first stage 

(the time-to-defect arrival, 𝑢), a bearing is good and working normally until it becomes 

defective. Then in the second stage (the delay-time, ℎ), a defective bearing deteriorates 

progressively and fails eventually after ℎ time units. If inspection is carried out during this 

second stage, it is assumed that all defective items are identified and replaced, as depicted in 

Figure 5.1. This is very similar to the original Barlow and Proschan (1965) block-based 

replacement policy at fixed intervals. However, the major difference is that under the delay-
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time modelling, only defective items identified are replaced, rather than replacing all items 

regardless of their age or conditions. 

 

 

Figure 5.1. Defect arrivals, failures, failure stoppage duration F, and replacement stoppage 

duration R in this complex system of multiple components 

for a two-machine (MC1 & MC2) parallel system. 

 

For the identification of defective bearings, a third party (external specialists) are employed to 

monitor bearing condition and compile reports periodically, following processing of the raw 

condition data. Therefore, in this way, inspection is replaced by condition monitoring and the 

reporting of bearing condition, which incurs cost but no plant downtime since this arrangement 

does not interfere with the operation of the plant. Wang and Wang (2015) state that this is typical 

of condition monitoring arrangements in modern plant. 

 

The maintenance policy that is considered inspects all items across both machines in parallel 

every 𝑇 time units, and defective bearings identified are replaced preventively. This intervention 

has 𝑑𝑟 downtime per item. Concurrent preventive replacement of items on both machines does 

not take place in order to minimise simultaneous downtime. In addition, preventive replacement 

is not carried out if the other machine is already down due to failure, until the failed machine 

becomes operational again. 
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On failure, failed bearings are replaced immediately in order to return the plant to operation as 

quickly as possible, since such events cause downtime and an immediate unscheduled stop to 

the plant production. But only failed bearings are replaced and the downtime takes 𝑑𝑓 time units 

per item. Thus, there is no inspection of bearings at failure events. 

 

It is assumed that the system is in a state of suspension while both preventive or failure 

replacement is carried out. Therefore, defects grow, bearings age, and defects and failures can 

arise only whilst the plant is operating. Any operational loss due to the presence of defects other 

than inspection, replacement and failure are ignored. These are standard assumptions in 

inspection models (Wang, 2011a). 

 

The majority of parameter values are based on the survey and the rest from Wang (2012b). 

Times between defect arrivals are assumed to be independent, exponentially distributed, 

consistent with the delay-time model of a complex system (see for example, Wang, 2012b), 

with a defect arrival rate (intensity) of 0.125 per week. The number of identical bearings in a 

typical paper rolling machine is greater than 100 (Wang, 2011a). The delay-time follows the 

Weibull distribution with scale and shape parameters, 𝛼 = 10, 𝛽 = 3 respectively (implying a 

mean delay-time of 8.93 weeks). The downtimes due to each replacement and failure are 𝑑𝑟 =

4 hours = 0.024 weeks (survey range 1-6 hours) and 𝑑𝑓 = 24 hours = 0.143 weeks (survey 

range 1-36 hours). 

 

 

5.3.4. The inventory control model and its assumptions 

 

There are typically over 100 identical bearings in a paper making plant. In the model, only the 

inventory planning for a single stock keeping unit (bearings) for this particular plant is 

considered. The demand for the bearings is generated through failure of parts in service 

occurring between inspections, and the identification and preventively replacing all defective 

bearings at inspections. Any demand is satisfied from the existing inventory or by expediting 

an emergency order. 
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Using the simulation models developed, several variants of the (𝑅, 𝑆) periodic review 

replenishment policy (see, for example, Muller, 2011 and Silver et al., 2016) are compared. The 

(𝑅, 𝑆, 𝑇 = 𝑅) policy using standard ordering (only one of the policy variants considered in this 

study), is depicted in Figure 5.2, where every 𝑅 time units (the review period) an order is placed 

to raise the inventory position to the order-up-to-level 𝑆. In Figure 5.2 illustration, orders are 

placed at points A, C, and E, for example, and arrive at points B, D, and F respectively, after a 

lead-time, 𝐿𝑜. It is important to note that in this illustration: (i) an arbitrary demand profile has 

been used; (ii) 𝐿𝑜 < 𝑅 for simplicity, which is not a restriction in the model; and (iii) the 

preventive maintenance and ordering events coincide, which is not the case for all policy 

variants considered here. However, if the maintenance intervention and ordering events 

coincide, then the order quantity will take into account the replacement of defective bearings at 

those events. This will be further discussed in Section 5.5. 

 

For all policy variants, the joint optimisation policy contains the inspection interval 𝑇, the 

review period 𝑅, and the order-up-to-level 𝑆. The preventive maintenance interval 𝑇 = 𝑘𝑅 

for 𝑘 > 0. Here, values of the decision variables that minimise the long-run expected cost per 

unit time or cost-rate, 𝐶(𝑇), are sought. 

 

In these models, based on the survey data, 𝐶𝑜 = £100 and fixed, including the cost of delivery. 

𝐶ℎ is costed at 1% of item cost per week. 𝐶𝑢 = £1,000 per item (survey range £1000-4000), 

and 𝐶𝑠ℎ = £1,000 per emergency shipment (survey range £500-1200). The lead-time, 𝐿𝑜 is set 

at 4 weeks (survey range 2-6 weeks) and finally the shortage emergency delivery lead-time, 

𝐿𝑠ℎ, is fixed at 7 𝑑𝑎𝑦𝑠 = 1 week (survey range 1-10 days). Further, it is assumed that orders 

are placed at the end of each order-placing day and arrive at the beginning of each order-receipt 

day but before reviewing the current inventory if it coincides with an order-placing day. These 

assumptions are for modelling purposes. The order interval is flexible since there might be times 

that based on the current inventory position the optimal cost will be achieved by ordering no 

spares. 
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Figure 5.2. Characteristics of the (𝑅, 𝑆) inventory control policy using standard ordering. 

 

 

5.3.5. The order of events in the joint policies 

 

All bearings are simultaneously inspected across both machines every 𝑇 time units. In order to 

minimise simultaneous downtime, replacement of items on both machines does not take place 

concurrently. Preventive replacements are carried out in sequence, first machine 1 and then 

machine 2. In addition, replacement is not carried out if the other machine is already down due 

to a failure, until the failed machine becomes operational again. Orders are placed to raise the 

inventory position to the order-up-to-level 𝑆. If the maintenance intervention and ordering 

events coincide, then the order quantity will take into account the replacement of defective 

bearings at those events. Orders arrive at the beginning of each order-receipt day but before 

reviewing the current inventory if it coincides with an order-placing day. 
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5.3.6. Costs and downtime specifications 

 

 Preventive maintenance replacement cost (𝐶𝑟) and failure replacement cost (𝐶𝑓) are 

based on 3 maintenance technicians at 𝐶𝑚 = £60 per maintenance technician per hour. 

 

 The individual machine downtime cost-rate, 𝐶𝑑(𝑖𝑛𝑑) = £1,000 per hour. 

 

 There are two PM inspection renewal costs depending on whether spare parts are 

immediately available: 

o If spares are available, then the cost includes downtime and manpower, hence: 

𝐶𝑟 = 4 𝐶𝑑(𝑖𝑛𝑑) + 12 𝐶𝑚 = £4,720 since it takes 4 hours to replace each item. 

o If spare parts are not immediately available, there are two extra costs, namely, 

the shortage shipment cost and the downtime cost while the emergency shipment 

is in transit, hence: 𝐶𝑟 = 4 𝐶𝑑(𝑖𝑛𝑑) + 12 𝐶𝑚 + 𝐶𝑠ℎ +  𝐶𝑑(𝑖𝑛𝑑) 𝐿𝑠ℎ = £173,720. 

 

 There are also two failure renewal costs depending on whether spare parts are 

immediately available: 

o If spare parts are available, then the cost includes the costs of downtime and 

manpower, hence: 𝐶𝑓 = 24 𝐶𝑑(𝑖𝑛𝑑) + 72 𝐶𝑚 = £28,320 since it takes 24 hours 

to replace each failed item. 

o If spare parts are not immediately available, then there are two extra costs, 

namely, the shortage shipment cost and the downtime cost while the emergency 

shipment is in transit, hence: 𝐶𝑓 = 24 𝐶𝑑(𝑖𝑛𝑑) + 72 𝐶𝑚 + 𝐶𝑠ℎ +  𝐶𝑑(𝑖𝑛𝑑) 𝐿𝑠ℎ =

£197,320. 

 

 The inspection cost 𝐶𝑖 is fixed at £1,000 with one maintenance technician assisting the 

external consultants during an 8 hour shift, performing data analysis and reporting. 

Therefore: 𝐶𝑖 = 1,000 + 8 𝐶𝑚 = £1,480. 

 

 Finally, the simultaneous machine downtime cost-rate, 𝐶𝑑(𝑠𝑖𝑚), is £10,000 per hour. 
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5.4. Simulation modelling 

 

Using a modular approach, simulation models were developed for the joint optimisation of the 

inspection maintenance and spare parts provisioning for a multi-line production facility. 

ProModel, a process-based discrete-event simulation language (see, for example, Harrell et al., 

2011) was used to model a two-machine parallel system (but extendible to several machines or 

lines) as a continuous production system with the consideration of all cost figures and major 

assumptions given in Sections 5.3.1 to 5.3.6. 

 

The construction of the overall simulation model framework, the modelling methodology, and 

finally the input parameters, output analysis, model scenarios and the optimisation technique 

are discussed in Sections 5.4.1 to 5.4.3. 

 

 

5.4.1. Construction of the model framework and the minimum system requirements 

 

The basic model framework using the ProModel programming environment requires, at least, 

the use of four modules: Locations; Entities; Arrivals; and Processing (LEAP). Variables, 

attributes, subroutines, resources and path networks are used extensively for further model 

sophistication. Macros are also set up to enable the easy alteration of decision variables. 

 

 

5.4.2. Simulation modelling methodology 

 

This section describes the approach taken in developing the simulation models and presents a 

few of the main flowcharts. However, a complete set of flowcharts will be found in the 

Appendices. Figure 5.3 (also shown in Appendix 5.1 for the completeness of information in the 

Appendices) illustrates the flow chart of the general simulation procedure, depicting the nine 

modelling routines developed for different aspects of the model. The model description and the 
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algorithms defined in this section (and its sub-section 5.4.2.1) are specific to the cost-optimal 

(𝑅, 𝑆, 𝑇 = 𝑅) policy, using just-in-time ordering (such that the delivery of parts coincides with 

maintenance interventions). Referring specifically to the numbers stated in the right hand side 

of each routing box in Figure 5.3, a brief description is given below for each, which applies to 

each machine, except for box 9 that applies to both machines: 

 

1. Defects are scheduled to arrive with the appropriate arrival intensity based on the given 

statistical distribution; 

 

2. Defects actually arrive and wait in their delay-time; 

 

3. Machine downtime is scheduled, either due to defects transforming into failures 

(unplanned process), or defects identified at preventive maintenance instances (planned 

process), triggering the replacement of bearings (when needed); 

 

4. Machine downtime occurs; 

 

5. Defects may be delayed or prolonged during the time-to-defect and delay-time, if 

necessary, since defects and failures can only arise whilst the plant is operating, and 

defects do not grow and the bearings do not age during replacement downtime; 

 

6. Planned maintenance is scheduled; 

 

7. Defects (if any) are identified so that bearings may be replaced; 

 

8. Defects (if any) are removed by the replacement of bearings (provided enough spares 

are in stock); 

 

9. Planned orders for spare parts are scheduled for both machines at regular intervals. 
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Figure 5.3. Flowchart of the general simulation procedure, 

showing the flow of entities from one modelling routine to another. 
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5.4.2.1. ProModel ‘build’ modules 

 

The following modules and programming logic were specifically developed for the model: 

 

(a) Locations : machines, queues, buffer storage areas, etc. Appendix 5.2(a) shows the 

details of the locations created for this model. For the ‘machine process’ and ‘failure 

occurrence’ locations, clock and/or called downtimes are specified, as described below: 

o Clock (planned/scheduled) downtime. This routine is repeated at the beginning 

of every PM interval, causing machine downtime due to inspection (if any) 

and/or replacement of bearings (if any). Figures 5.4 to 5.6 (also shown in 

Appendices 5.3 to 5.5 for the completeness of information in the Appendices) 

display the main algorithms and sub-processes for the clock downtime; 

o Called (unplanned/unscheduled) downtime. This routine is ‘called’ whenever 

there is machine downtime due to bearing failures. Appendices 5.6 and 5.7 show 

the main algorithms and sub-processes for the called downtime. 
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EndOfDowntime = StartOfDowntime + Inspection duration 

+ (No. of defects waiting * dr) + (PotentialShortage * Lsh)

Downtime duration = EndOfDowntime - StarOfDowntime

Inspection sub-process 3

No. of defects waiting > 0? 

Increment the no. of positive inspections

PotentialSpareShortage = No. of defects waiting – SparesOnHand
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Reset the inspection variables

Invoke the CalculateTimeCost subroutine
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Figure 5.4. 

Flowchart of the Clock (planned/scheduled) downtime routine for each machine. 

  



CHAPTER 5                                                                   JOINT OPTIMISATION FOR MULTI-LINE PRODUCTION SYSTEMS 

 114 

 

Other M/C down due to inspection?

Set local variable to record the current TIME

Increment variable for simultaneous inspection occurrence

WHILE other M/C is down due to inspection, REPEAT

Wait

Update simultaneous inspection1/inspection2 downtime duration

Yes

No

Other or same M/C down due to failure?

Set local variable to record the current TIME

Increment variable for simultaneous inspection/failure occurrence

WHILE other or same M/C is down due to failure, REPEAT

Wait

Update simultaneous inspection/failure downtime duration

Yes

Yes

No

Yes

No

Testing for ongoing inspection/failure process
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Figure 5.5. Flowchart of the Clock (planned/scheduled) downtime 

sub-processes 1, 2 & 6 routines for each machine. 
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Figure 5.6. Flowchart of the Clock (planned/scheduled) downtime 

sub-processes 3, 4 & 5 routines for each machine. 
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(b) Entities: jobs, products, defects, failures, etc. Appendix 5.2(b) displays the details of the 

entities created for this model. 

 

(c) Path Networks: physical routes between locations. 

 

(d) Resources: resources used for the operation of machines, such as, operators, 

maintenance technicians, etc. Appendix 5.8(a) shows the details of the resources. 

 

(e) Processing: detailed programming logic for entities moving from one location to 

another, including processing times and move logic. Appendix 5.8(b) displays the 

details of the processing created for this model with further information given in 

Appendices 5.9 to 5.12. 

 

(f) Arrivals: creation of entities such as, defects and failures etc., and their pattern of arrival 

into the system. Appendix 5.8(c) shows the details of the arrivals. 

 

(g) Attributes: information that is stored in each entity and moves with that same entity. 

Appendix 5.13(a) displays the details of the attributes created for this model. 

 

(h) Macros: for easy alteration of model and decision variable values. Appendix 5.13(b) 

shows the details of the macros created for this model. 

 

(i) Subroutines. Appendix 5.13(c) displays the details of the subroutines created for this 

model with further detailed information given in Appendices 5.14 and 5.15. Figure 5.7 

(also shown in Appendix 5.16 for the completeness of information in the Appendices) 

shows the flowchart of “CalculateTimeCostMCS” subroutine (multi-line), for 

calculating 𝐷(𝑇) and 𝐶(𝑇). 

 

(j) Variables: global variables used in the model. 
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Start

CalculateTimeCostMCS

subroutine

*D(T) = Qr dr + Qf df + Nsh Lsh

Cu(Total) = Qu Cu

End

Co(Total) = No Co

Ch(Total) = Qhand Ch

Csh(Total) = Qsh Csh + Nsh Lsh Cd(ind)

Ci(Total) = Ni (Ci + Cm)

Cr(Total) = Qr dr Cd(ind) + Qr dr Qm.pm Cm

Cf(Total) = Qf df Cd(ind) + Qf df Qm.f Cm

Grand Total Cost =

Cu(Total) + Co(Total) + Ch(Total) + Csh(Total) + Ci(Total) + Cr(Total) + Cf(Total) + Cd(sim)(Total)

Extra notations for this flow chart:

* Note: Inspection has zero plant downtime

Qr Number of bearings replaced at PMs

Qf Number of failed bearings replaced

Qsh Number of stock-outs

Nsh Number of stock-out instances

Qu Number of bearings ordered

No Number of orders

Qhand Number of spares ‘on hand’

Ni Number of inspections

Qm.pm Number of technicians needed at PMs

Qm.f Number of technicians needed at failures

d(sim) Mcs simultaneous downtime duration

Cd(sim)(Total) = Cd(sim) d(sim)

All

Machines

 

Figure 5.7. Flowchart of the CalculateTimeCostMCS subroutine (multi-line). 
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5.4.3. Input parameters, output analysis, model scenarios and optimisation 

 

Before analysis can begin, the warm-up period, the number of replications and the length of run 

had to be determined to ensure the quality of the output data and the validity of the simulation 

results. The Time Series method based on the weekly cost mean value and Welch’s method 

based on the weekly cost moving average with a window length of 5 (see, for example, Banks, 

2010; and Law, 2015) were used to determine the warm-up period for the model. Although 

detailed analysis showed that a warm-up period of 600 weeks was sufficient, a conservative 

1,000 weeks of warm-up was used to provide a very high degree of confidence that the system 

indeed stabilised and reached the steady-state beyond the transient period. Robinson (2004) 

states that a single long run may be performed instead of using multiple replications since “if 

the replications were run for an infinite period, they would produce exactly the same results”. 

Common practice is to use a warm-up period and a long run-length for non-terminating 

simulations (Robinson, 2004). Banks (2010) recommends that the run-length should be at least 

10 times the length of the warm-up period. Since rare simultaneous machine downtime 

occurrences are to be observed, it was decided that the model should be run for 500,000 weeks 

to ensure that the simulation is run long enough for convergence. The simulation programming 

is very efficient and the computation time takes only 5 minutes. Figure 5.8 (also shown in 

Appendix 5.17 for the completeness of information in the Appendices) depicts four situations 

(a, b, c, and d) of machine downtime for machines 1 and 2, two of which illustrate simultaneous 

downtime of both machines. The flowcharts in Figure 5.8 capture the process of recording and 

accumulating the time duration for simultaneous machine downtime. 

 

To run the models, parameter values are inputted, including the model parameters: warm-up 

period and simulation run-length. Macros enable the instant changing of model and decision 

variables. The simulation models are non-terminating. Appendix 5.18 shows a depiction of the 

simulation model layout. The detailed output report includes various data and graphs, most 

importantly the average expected cost and downtime per unit time. 

 

To find the cost-optimal policy for each policy variant, the simulation models were integrated 

with SimRunner (see ProModel, 2010). This tool uses sophisticated search algorithm (Kim et 
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al., 2012), running multiple (where applicable) combinations of the decision variables, to find 

the unique one that is optimal. Appendix 5.19 shows a series of illustrations of using the 

SimRunner optimisation tool. In Appendix 5.19, illustration (a) shows the SimRunner initial 

screen. The grand total cost per week variable (response category) is selected as the 

optimisation variable or the objective function, and the response statistic is the order-up-to- 

level 𝑆, as shown in illustrations (b) and (c) respectively. Illustrations (c) and (d) depict the 

range of values for the response statistic and the model parameter values already determined 

through separate detailed analysis, respectively. The results of the experiments run by the 

SimRunner for different values of 𝑆 and the confirmation that SimRunner has indeed found the 

optimum 𝑆 for the specific (𝑅, 𝑆, 𝑇 = 𝑅) policy, using just-in-time ordering (𝑇 = 5 𝑤𝑒𝑒𝑘𝑠), are 

finally depicted in illustrations (e) and (f), respectively. 
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Figure 5.8. Flowchart, 

depicting the process of capturing and recording simultaneous machine downtime. 
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5.5. Results analysis and discussion 

 

5.5.1. Joint optimisation 

 

Figure 5.9 displays the schematic diagram of ten joint inventory-maintenance policy variants, 

for which simulation models were developed. These policies are: (𝑅, 𝑆, 𝑇 = 𝑅); (𝑅, 𝑆, 𝑇 = 2𝑅); 

(𝑅, 𝑆, 𝑇 = 3𝑅); (𝑅, 𝑆, 𝑇 = 4𝑅); and (𝑅, 𝑆, 𝑇 = 0.5𝑅) using standard ordering (Figure 5.9(a)), 

and the remaining same five models using just-in-time ordering (such that the delivery of parts 

coincides with maintenance interventions) (Figure 5.9(b)). For all variants considered, the joint 

optimisation policy contains the decision variables: inspection interval 𝑇; the review period 𝑅; 

and the order-up-to-level 𝑆. Here, values of the decision variables that minimise the cost-rate,

𝐶(𝑇), are sought. For all models, the preventive maintenance interval 𝑇 = 𝑘𝑅 for 𝑘 > 0. Other 

values of 𝑘 were investigated for 𝑇 = 𝑘𝑅 but found to be cost-sub-optimal for the range of 

parameter values used here. For all policies under standard ordering, the preventive 

maintenance coincides with one of the ordering events, and under just-in-time ordering, orders 

are placed so that the arrival of one of them coincides just-in-time with the preventive 

maintenance event. 
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Figure 5.9. Joint maintenance-inventory policy variants considered under: 

a) standard; and b) just-in-time ordering. 
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Figure 5.10(a) and Table 5.1 illustrate the results for the best (lowest cost) four-out-of-ten policy 

variants that were depicted in Figure 5.9. The results demonstrate that the (𝑅, 𝑆, 𝑇 = 𝑅) policy 

using just-in-time ordering, has the lowest total cost per unit time (cost-rate), thus maintaining 

bearings and ordering spares every 5 weeks in the plant. Figure 5.10(b) confirms that the 

SimRunner optimisation tool has indeed found the optimum 𝑆 for the cost-optimal policy at 𝑇 =

5 𝑤𝑒𝑒𝑘𝑠. Considering the results in Table 5.1 further indicates that the second lowest cost-rate 

policy, (𝑅, 𝑆, 𝑇 = 0.5𝑅), also uses just-in-time ordering, but maintaining bearings every 5 

weeks and ordering spares every 10 weeks. The third best policy, (𝑅, 𝑆, 𝑇 = 𝑅), uses the same 

frequency of maintenance and ordering spares as the cost-optimal policy but using standard 

ordering. Throughout the analysis, an arbitrary but convenient unit of time (one week) is used 

for the reporting of the results. The results generally suggest that it is not cost optimal to place 

multiple orders between preventive maintenance intervals. 

 

The last three columns on the right side of Table 5.1 illustrate the percentage difference in cost 

of those particular policies compared to the cost-optimal policy. It is interesting to observe that, 

moving the preventive maintenance interval 𝑇 by 1 week to either side of the optimum has 

bigger cost effect (+2.9% and +0.95% for 𝑇 = 4 and 𝑇 = 6, respectively) than changing the 

type of policy to the second (+0.19%), or third (+0.79%) best policies. This phenomenon is at 

the heart of the maintenance decision problem. 

 

Under the cost-optimal policy, potentially more frequent orders are placed (every 5 weeks) 

compared to the second best policy, which will order spare parts every 10 weeks, thus 

minimising stock-outs and ultimately reducing cost. Thus, more orders might be placed, 

for (𝑅, 𝑆, 𝑇 = 𝑅), or more stock might be held, for (𝑅, 𝑆, 𝑇 = 0.5𝑅), to reduce the possibility of 

stock-outs, depending on the relative sizes of the order cost and the holding cost. Clearly, the 

cost of inventory is traded-off with the cost of stock-outs, which lies at the heart of the inventory 

decision problem. However, there might be times that based on the current inventory position, 

the optimal cost will be achieved by ordering no spares, determined by the optimal order-up-to- 

level 𝑆. In the joint optimisation problem, where the inspection period is a multiple of the order 

period, more frequent ordering can, by implication, potentially reduce the frequency of stock-

outs, and this certainly appears to be the case for 𝑘 = 1 and 𝑘 = 0.5 in this study. 
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 (a)  (b)  

Figure 5.10. The effect on the joint optimisation cost: 

(a) the best four-out-of-ten policy variants (optimal policy*; optimum intervalX); and 

(b) order-up-to-level S for T=5 (weeks), for the cost-optimal policy. 

 

 

Table 5.1. Comparison of the joint optimisation cost for the 

best four-out-of-ten policy variants, based on parameter values. 

Optimal cost for each policy variant. Overall lowest-cost policy. 

  Cost-rate (best four-out-of-ten policy variants (types)) % difference, compared to the baseline* 

  (R,S,T=R) (R,S,T=0.5R) (R,S,T=R) (R,S,T=0.5R) (R,S,T=0.5R) (R,S,T=R) (R,S,T=0.5R) 

Ordering> JIT* JIT Standard Standard JIT Standard Standard 

T  (weeks) Cost/week Cost/week Cost/week Cost/week % % % 

2 3,009.43 3,003.66 3,011.79 3,003.66 -0.19 0.08 -0.19 

3 2,548.74 2,533.45 2,548.74 2,545.47 -0.60 0.00 -0.13 

4 2,329.09 2,349.60 2,344.53 2,348.62 0.88 0.66 0.84 

5 2,263.35 2,267.60 2,281.30 2,288.67 0.19 0.79 1.12 

6 2,284.74 2,292.45 2,304.46 2,310.44 0.34 0.86 1.12 

7 2,391.10 2,422.07 2,422.41 2,425.88 1.30 1.31 1.45 

8 2,541.58 2,569.04 2,554.03 2,556.38 1.08 0.49 0.58 

9 2,701.57 2,721.71 2,713.57 2,746.03 0.75 0.44 1.65 

10 2,896.55 2,930.98 2,948.58 2,975.61 1.19 1.80 2.73 
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5.5.2. Insights into simulation results and characteristics of different policies 

 

The results for the best four-out-of-ten policy variants (policy types) in Table 5.1 were further 

analysed in detail and are illustrated in Figures 5.11 to 5.15. The optimal inspection interval for 

all those policies is the same ~ 5 weeks. 

 

Considering the mean number of defects removed at maintenance events, Figure 5.11(a) 

demonstrates that as inspection becomes infrequent, the number of defects identified and thus 

removed declines. With an arrival intensity of 0.125 defects per week, for both machines we 

would expect to find 25 defects in total every 100 weeks. Figure 5.11(a) illustrates that, on 

average, 24.26 of these defects are identified and removed if inspection is carried out at the 

optimal interval. Figure 5.11(b) supports this observation since, as inspection becomes 

infrequent, the failure rate rises (because defect identification/removal rate falls as illustrated in 

Figure 5.11(a)). Obviously, for each policy, the total number of defects identified/removed and 

the number of failures should accumulate to the number of defects arriving into the system (i.e. 

25) as shown in Figure 5.11(c). The information in Figure 5.11(c) further illustrates that if 

inspection is carried out at the optimum interval, one failure at most, will be expected every 100 

weeks. While failure demand is always unit-sized, demand at an inspection may be greater than 

unit-sized when more than one bearing is found to be defective. 
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(a)  (b)  

(c)  

Figure 5.11. For the best four-out-of-ten joint policy variants (optimum policy*): 

(a) defect removal rate; 

(b) failure rate; and 

(c) defect/failure statistics at optimum interval. 
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Comparing Figures 5.12(a) and 5.12(b) highlights that as inspection becomes infrequent, the 

percentage of positive inspections (i. e. defects found ≥ 1) rise (31%; 39%; 45%; 51%; 55% and 

59% for inspection intervals 3 to 8, respectively). Figure 5.12(c) (2nd and 3rd bars) demonstrate 

that there is understandably a direct association between the number of positive inspections and 

the number of spares replaced (at the optimal interval, every 100 weeks, there are on average 

18 positive inspections and 24 spares are ordered). 

 

(a)  (b)  

(c)  

Figure 5.12. For the best four-out-of-ten joint policy variants (optimum policy*): 

(a) inspection rate; (b) positive inspection rate; and 

(c) inspection/spares statistics at optimum interval. 
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In Figure 5.13(a), variations in three different cost-rates are illustrated. Although the variations 

between policy variants are not significant, their impact influence the policy ranking. The PM 

replacement cost-rates are slightly higher for the policies using just-in-time ordering (0.05%) 

(superior policies), but the failure replacement cost-rates are on average 1.62% higher for the 

policies using standard ordering (inferior policies) since more failures are likely to occur due 

to the arrival of spare parts being out-of-sequence with maintenance. The inspection cost-rates 

are identical as expected. 

 

Considering the ordering cost-rate, Figure 5.13(b) demonstrates that the cost for the (𝑇 = 𝑅) 

policies are higher since they can potentially place more orders. This is supported by Figure 

5.14(a) since the cost-rates for the (𝑇 = 𝑅) policies are 55% higher at the optimum interval. 

 

(a)  (b)  

Figure 5.13. For the best four-out-of-ten joint policy variants (optimum policy*): 

(a) maintenance cost-rates at optimum interval; and 

(b) ordering cost-rate. 

 

An interesting observation is that inventory costs seem to be traded-off. Thus considering 

Figures 5.14(a) and 5.14(b), it can be seen that for each policy type (just-in-time and standard 

ordering) where the ordering cost-rate is high, the holding cost-rate is low, and vice versa. The 

holding cost-rate is mainly influenced by the frequency of ordering and order-up-to-level 𝑆 and 

seems to have a significant effect on the policy ranking. Whereas the difference between the 

joint optimisation cost-rates of the best and the second best policies is only £4.25 (Table 5.1), 

the difference between the holding cost-rates for the same policies is £3.90 (Figure 5.14(b)), 

which accounts for 92% of the cost difference and proves to be very significant. 
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Although the simultaneous machine downtime cost does not seem to be significant in term of 

the overall cost, Figure 5.14(c) shows this to be in line with the policy ranking; the lowest cost 

for the best policy and the highest cost for the most expensive policy. It is interesting to note 

that both spare holding cost-rates (Figure 5.14(b)) and simultaneous machine downtime cost-

rates (Figure 5.14(c)) display similar trends. The implication is that the two policies which order 

spares less frequently ((𝑇 = 0.5𝑅) policies) and the policy that has its spares delivered out-of-

sequence with maintenance ((𝑇 = 𝑅) policy using standard ordering) are likely to have higher 

simultaneous machine downtime cost-rates, due to more likelihood of stock-outs. This 

observation certainly appears to be evident in Figure 5.14(c). 

 

A number of points should be noted about the stock-out cost-rates shown in Figure 5.14(d). 

First, as expected, for (𝑇 = 0.5𝑅) policies, the cost-rates are much higher since the frequency 

of ordering spares is half as many as inspection and stock-outs are therefore more likely to 

occur. Second, the variation across the policies is relatively large, considering the overall cost-

rate differences between policies. The third point is that generally the stock-out cost-rates are 

much lower than the failure cost-rates shown in Figure 5.13(a). Fourth, the (𝑅, 𝑆, 𝑇 = 𝑅) policy 

using standard ordering, which may be perceived as a low risk policy since it has the lowest 

stock-out cost-rate, has a very large ordering cost-rate (Figure 5.14(a)). The fifth point is that 

the optimal policy has the second lowest stock-out cost-rate, which is much lower than the 

inferior policy (59% lower), making it a relatively low-risk policy. Finally, in general, stock-

out cost-rates (Figure 5.14(d)) and ordering cost-rates (Figure 5.14(a)) display opposite trends 

- policies which have low ordering cost-rates tend to have high stock-out cost-rates, and vice 

versa. 
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(a)  (b)  

(c)  (d)  

Figure 5.14. For the best four-out-of-ten joint policy variants at optimum interval 

(optimum policy*): 

(a) ordering cost-rate; 

(b) holding cost-rate; 

(c) simultaneous machine downtime cost-rate; 

and (d) stock-out cost-rate. 

 

Where (𝑇 = 𝑅) policies do appear to outperform (𝑇 = 0.5𝑅) policies is in the additional 

opportunities they offer for replenishments, even if they do not necessarily use them at every 

interval (Figure 5.15(a) vs 5.15(b)). Continuing the same discussion, as expected, the mean 

spares ordered per order for the (𝑇 = 𝑅) policies are lower than the (𝑇 = 0.5𝑅) policies (Figure 

5.15(c)) since the mean number of orders for the former policies are greater (potentially twice 

as many; Figure 5.15(b)), so there would be more opportunities (Figure 5.15(a)) for placing 

orders of lower spare quantities (Figure 5.15(c)). The final point is that the maximum spares 

ordered per order (Figure 5.15(d)) are generally lower for the (𝑇 = 𝑅) policies since they will 

have twice as many opportunities to place orders compared to the (𝑇 = 0.5𝑅) policies. 

Therefore, there does not seem to be the need for placing orders of higher quantities to cover a 

longer period between review periods. 
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In summary, first and foremost, it is the just-in-time ordering (placing orders to arrive just-in-

time to coincide with the preventive maintenance events) that has the greatest influence on the 

choice of policy. In addition, cost-rates are traded-off which also have an influence on the policy 

ranking including the spare holding cost-rate, the simultaneous machine downtime cost-rate, 

and the stock-out cost-rate. Thus, the different policies, at their optimal settings, place different 

demands on inventory. 

 

(a)  (b)  

(c)  (d)  

Figure 5.15. For the best four-out-of-ten joint policy variants (optimum policy*): 

(a) order opportunity rate; 

(b) order placing rate; 

(c) mean order size; and 

(d) maximum order size. 
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5.5.3. Sensitivity analysis of the optimal policy 

 

The original values of eleven parameters were halved and doubled to study their effects on the 

joint optimisation cost of the cost-optimal policy, (𝑅, 𝑆, 𝑇 = 𝑅) using just-in-time ordering. 

Table 5.2 classifies all parameters, in descending order of effects, showing the defect arrival 

rate and the cost of emergency shipment as the parameters with the most and least effects on 

the cost-optimal policy, respectively. The detailed discussion below should be considered in 

conjunction with the data in this table. 

 

Table 5.2. Comparison of the effect of various parameters, 

in descending order, on the cost-optimal policy (𝑅, 𝑆, 𝑇 = 𝑅 (𝐽𝐼𝑇)). 

  
The effect of parameters and their values on the cost-optimal policy, in descending order 

  
λ Cd(ind) α Ci Cu Ch Cd(sim) Lo Co Lsh Csh 

  
% of the baseline of the cost-optimal policy (optimum T = 5 weeks) 

P
ar

am
et

er
 v

al
u

e Halved 62.5 73.8 124.0 91.2 93.4 99.2 99.8 99.8 99.7 99.9 100.0 

Doubled 170.2 150.9 86.2 115.7 113.3 103.0 103.1 101.3 100.6 100.3 100.0 

Halved 6 6 3 5 5 5 5 5 5 5 5 

Doubled 4 4 9 6 5 5 5 5 5 5 5 

  
Optimum T as a result of halving or doubling parameter values (original T = 5 weeks) 
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For the defect arrival intensity (Figure 5.16(a)), the behaviour of the cost-rate is as expected 

since the cost-rate for 0.5λ and 2λ are at approximately 63% and 170% of the baseline, 

respectively. For the case of 2λ, inspection that is more frequent is expected to yield the optimal 

interval, and the behaviour is exactly as expected since the optimum interval is shortened by 

one week, and vice versa for 0.5λ. 

 

Similarly, when the scale parameter, α of the Weibull delay-time distribution is doubled (Figure 

5.16(b)), the mean delay-time increases and defects will take longer to develop into failures, 

and thus the cost-rate falls due to less failures as expected (86% of the baseline, and an optimum 

inspection interval of  9 weeks ~ almost double the original). However, when α is halved, defects 

develop into failures quicker, which increases the cost-rate, especially when inspection is 

infrequent. The cost-rate of the optimal inspection interval for 0.5𝛼 is 124% of the baseline with 

an optimum inspection interval of 3 weeks. In both cases, minimal effect is displayed when 

inspection is very frequent. 

 

(a)  (b)  

Figure 5.16. The effect of various parameters on the cost-optimal policy (*baseline): 

(a) defect arrival rate; and (b) failure delay-time. 

 

Figure 5.17(a) displays the cost-rate of the optimal inspection interval for 0.5C𝑑(𝑖𝑛𝑑) and 

2C𝑑(𝑖𝑛𝑑) at approximately 74% and 151% of the baseline, respectively. The optimal times 

between inspections also behave as expected (moving one interval to either side of the original, 

respectively), but with the greatest impact for the 100% increase in the cost of downtime and 

when inspection is infrequent. Overall, the greatest impact is evident when inspection is less 

frequent, as expected. 

1300

1900

2500

3100

3700

4300

4900

5500

2 3 4 5 6 7 8 9 10

T
to

ta
l 

co
st

-r
at

e 
(£

/w
ee

k
)

T (weeks)

λ=0.125* 0.5λ 2λ

1300

1900

2500

3100

3700

4300

4900

5500

2 3 4 5 6 7 8 9 10

T
o
ta

l 
co

st
-r

at
e 

(£
/w

ee
k

)

T (weeks)

α=10* 0.5α 2α



CHAPTER 5                                                                   JOINT OPTIMISATION FOR MULTI-LINE PRODUCTION SYSTEMS 

 134 

 

Moving the discussion to the cost of inspection, the cost-rate of the optimal inspection interval 

for 0.5C𝑖 and 2C𝑖 are at approximately 91% and 116% of the baseline respectively, as depicted 

in Figure 5.17(b). Overall, varying 𝐶𝑖 has the greatest impact when inspection is frequent as 

expected, and particularly when the parameter value is doubled. 

  

Finally, the cost-rate of the optimal inspection interval for 0.5C𝑢 and 2C𝑢 are approximately 

93% and 113% of the baseline, respectively as depicted in Figure 5.17(c). The change in the 

unit cost does not seem to have a significant impact on the frequency of inspection. 

 

(a)  (b)  

(c)  

Figure 5.17. The effect of various parameters on the cost-optimal policy (*baseline): 

(a) individual machine downtime cost-rate; (b) inspection cost; and (c) unit cost. 

 

Changing the values for the other parameters seem to have little effect on the cost-optimal 

policy, as seen in Table 5.2. Altering the holding cost has minimal effect when its value is 

halved but shows a moderate effect when the value is doubled. For the simultaneous machine 

downtime, the cost-rates for 0.5C𝑑(𝑠𝑖𝑚) and 2C𝑑(𝑠𝑖𝑚) are at 99.8% and 103.1% of the baseline. 

Compared to the high impact of the individual machine downtime cost-rate, it is not unusual to 
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see a minimal effect for this parameter since simultaneous machine downtime is a rare event in 

this context. However, the 2C𝑑(𝑠𝑖𝑚) shows the greatest effect when inspection is infrequent and 

simultaneous machine downtime is more likely. The sensitivity of the 0.5C𝑜 and 2C𝑜 suggests 

that halving and doubling the order cost has minimal effect with 99.7% and 100.6% of the 

baseline. A change in the normal and emergency delivery lead-times will have very low effect 

on the overall cost-rate due to two reasons. First, since the optimal policy is one that uses just-

in-time ordering, the effect of 𝐿𝑜 is expected to be low anyway (99.8% and 101.3% of the 

baseline with the same optimal interval) since it matters little if the lead-time is large or small. 

Second, the trade-offs used in optimising the total cost-rate have already ensured that stock-outs 

are kept to a minimum, and thus the effect of 𝐿𝑠ℎ is also expected to be very low (99.9% and 

100.3% of the baseline with the same optimum interval). Therefore, the effect on the stock-out 

emergency delivery cost, 𝐶𝑠ℎ is expected to be almost zero for every inspection interval. 

 

 

5.6. Conclusions and further work 

 

Several simulation models were developed for a multi-line production facility. The aim was to 

determine the joint optimisation of the planned maintenance inspection interval 𝑇, based on the 

delay-time concept, and the spare parts provisioning, considering various variants of the (𝑅, 𝑆) 

inventory replenishment policy. The models were specifically developed for a complex system 

with multiple identical components in parallel machines. A paper machinery plant with two 

parallel machines provided the industrial context. However, the models are easily scalable for 

other multi-line industrial situations. 

 

It is important to note that this is the first joint-optimisation study that addresses the maintenance 

of a multi-line system and considers a number of periodic review policy variants for the 

replenishment of spare parts. This optimisation is performed in order to eliminate, or at least 

minimise, the occurrence of simultaneous machine downtime in a system with parallel 

machines. The occurrence of simultaneous machine downtime in multi-line production settings  

may halt production, which will have a significant adverse effect on profitability or other 

performance measures. The main aim is twofold: (i) to find the joint cost-optimal policy among 
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several policy variants; and (ii) to have insights into the characteristics of various policies in 

order to guide maintenance and inventory control practitioners about the suitability of policies 

for their particular contexts. 

 

According to the studies in the literature, single-line studies are oversimplified and do not reflect 

the complexity and interactions of real systems in practice. Simulation is used in this study as a 

solution tool, which compared to mathematical modelling, has the advantage of being able to 

describe multivariate non-linear relations, and is the ideal tool for parallel-line production 

settings. However, since simulation is not an optimization technique, SimRunner (an 

optimization tool) was integrated with ProModel to find the global optimal policy. 

 

For the ten joint maintenance-inventory policies considered in this study, it is found that: 

 

 The (𝑅, 𝑆, 𝑇 = 𝑅) policy, using just-in-time ordering is (i) the global cost-optimal policy; 

(ii) the lowest risk policy as it is associated with the lowest simultaneous machine downtime 

cost-rate, and a relatively low stock-out cost-rate; (iii) compensated by the reduction of 

potential machine downtime due to timely availability of spares; and finally (iv) associated 

with the lowest mean spares per order and the lowest maximum spares per order, thus 

reducing the holding cost. 

 

 At the optimal interval, the two (𝑅, 𝑆, 𝑇 = 𝑅) policies (using just-in-time and standard 

ordering) result in potentially placing more orders with fewer quantities every time, 

compared to the two (𝑅, 𝑆, 𝑇 = 0.5𝑅) policies, resulting in a higher ordering cost-rate but 

a lower holding cost-rate for the cost-optimal policy. 

 

 It is not cost-effective to place multiple orders between preventive maintenance intervals. 

 

 As inspection intervals get longer, the percentage of positive inspections increase from 31 

to 59% for inspection intervals 3 to 8 (weeks), and is at 45% for the optimal interval. In 

addition, the ratio of the PM replacement cost-rate to the failure cost-rate is reduced since 
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the ratio of the number of defects removed to the number of failures is also reduced. The 

results are similar for all policies. 

 

 While the cost-rates are very similar across the four policies, the components of the cost-

rates are quite diverse at different intervals because the trade-offs are different, and so the 

different policies place different demands on inventory. 

 

 The effect of different values of parameters on the cost-optimal policy, (𝑅, 𝑆, 𝑇 = 𝑅) using 

just-in-time ordering, give results that are broadly expected. Varying C𝑖 and C𝑑(𝑖𝑛𝑑) have 

the greatest impact when inspection is frequent and infrequent, respectively. For the scale 

parameter of the delay-time distribution, minimum and maximum effects are displayed 

when inspection is very frequent and infrequent, respectively. The defect arrival rate and 

the cost of emergency shipment parameters have the most and least impact on the cost-

optimal policy, respectively. When sensitivity analysis is broadly in line with expectations, 

it partly validates the simulation results, but at the same time increases the confidence for 

relying on results which are less obvious. 

 

Extensions to the work presented in this study may be developed in several directions to model 

more realistic industrial situations. The future extensions might include: imperfect inspection; 

postponed replacement or repair of defective components; variable replenishment lead-times; 

manpower planning; modelling of dependent and/or non-identical multi-unit systems; and 

finally, joint-optimisation for non-identical multi-line parallel systems. 
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Chapter 6 

 

 

Conclusions and future research  

 

 

6.1. Conclusions 

 

Almost all inspection models in the literature are concerned with single-line single-component 

systems or series systems with multiple components, with restrictions. Single-line studies that 

dominate the literature are oversimplified and do not reflect the complexity and interactions of 

real systems in practice (Alrabghi and Tiwari, 2015). To determine the optimal inspection 

interval for multi-line production systems, it may not be possible to use analytical models that 

require difficult mathematical formulations and analysis, except for limited situations and/or 

with simplifying assumptions. Thus in this PhD project, simulation is used as a solution tool, 

which compared to mathematical modelling, has the advantage to describe multivariate non-

linear relations and is therefore the ideal tool for parallel-line production settings. Real-time 

decision making using simulation is very useful in dynamic situations where the condition of 

the system state is monitored. The use of simulation allows the models to make less simplifying 

assumptions than is usual with analytical models. 

 

The work carried out in this thesis is presented in three principal Chapters, 3, 4 and 5. In Chapter 

3, simulation is used to model and determine for the first time the optimal inspection policy for 

a number of multi-line production facility scenarios using the delay-time concept. In Chapter 4, 

a number of discrete-event simulation models are developed for the joint optimisation of 

maintenance inspection interval 𝑇, based on the delay-time concept, and the spare part inventory 

using simultaneously a selection of periodic and continuous review replenishment policies for 

the first time. The main aim is to find the most suitable and cost optimal policy for the industrial 

example of inspecting and replenishing bearings (critical spare part) for a paper-rolling plant. 

Whereas, the optimal inspection of a multi-line system was addressed in Chapter 3, and the joint 
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optimisation of inspection maintenance and spare parts inventory for a single-line production 

setting was studied in Chapter 4, the third and final principal chapter, Chapter 5, combines the 

two important elements, thus simulating the joint modelling and simultaneous optimisation of 

preventive maintenance and the associated spare parts inventory for a multi-line production 

system. 

 

This thesis makes three important contributions. The first contribution is the modelling and 

simulation of a number of parallel or multi-line production systems, using delay-time modelling. 

The second contribution is that the thesis considers a range of inventory replenishment policies 

in joint optimisation with maintenance planning and develops insights into the characteristics 

of each policy, which were not previously addressed in joint optimisation studies. The third and 

final contribution of this PhD project is the joint optimisation of preventive maintenance and 

spare parts inventory, specifically for a multi-line production system, which is not considered 

by the existing studies in the literature. In this respect, it can be argued that the overall 

contribution of this PhD thesis is in narrowing the gap between the theory and practice of 

managing multi-line systems. 

 

In the first study (Chapter 3), initially a single-line facility is simulated in order to reproduce 

earlier analytical results. Then, a modified two-out-of-three parallel system is modelled and 

analysed to help address the issue of plant downtime under the actual operating conditions in 

the case study. Finally, two further model extensions are developed and analysed in order to 

consider whether modifications to either the operation of the system or the design of the system 

in the case study would be worthwhile. The latter three (out of four) models extend the study 

by Akbarov et al. (2008), in which the multi-line production facility is modelled as if it is a 

single line. The initial research findings of this PhD, documented in the first study, can therefore 

be summarised as: 

 

 The simulation of the single-line system reproduces earlier analytical results. 

 

 Consecutive inspection with prioritised failure repair lowers the cost (by 8.3%) and reduces 

the frequency of inspections (by 20%) compared to consecutive inspections. 
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 The standard two-out-of-three design configuration increases the cost (by 1.6% and 0.6%) 

compared to the modified two-out-of-three configuration operated by the management. 

 

 The three parallel-line design configuration increases the frequency of inspections (by 

25%) and increases the cost of maintenance (by 5.2%) for the consecutive inspection 

prioritising failure repair. 

 

 The implications for this case study are substantial as the policy proposition suggests a cost 

reduction of 61.3% compared to the ‘run-to-failure’ policy. 

 

 The scenarios and policies considered have economic and engineering implications for the 

management of the production line and that maintenance planning and execution first and 

foremost needs to be responsive to operational requirements. The study illuminates the 

practical problems that operations managers face in everyday real-world situations and the 

complexities that may exist in developing pragmatic solutions. 

 

In the second study (Chapter 4), several simulation models were developed for a complex 

system with multiple identical bearings, in the context of a paper machinery plant. The planned 

maintenance inspection interval T, based on the delay-time concept, and the spare parts 

inventory policy, were jointly optimised. SimRunner (an optimisation tool), was integrated with 

the simulation models to find the global optimal policy. This is the first study in the literature 

that compares a number of periodic and continuous review replenishment policies, and analyses 

their efficacy when joined to the inspection policy. The following lists a summary of the 

conclusions drawn from the second study in this PhD: 

 

 The (𝑅, 𝑆, 𝑇 = 2𝑅), is the cost-optimal policy, which is relatively low risk and is associated 

with the lowest stock-out cost-rate. 

 

 The additional cost of more frequent ordering, and hence inspection, under the (𝑅, 𝑆, 𝑇 =

2𝑅) policy is compensated by the reduction of bearing failures. 
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 At the optimal interval, the (𝑅, 𝑠, 𝑄, 𝑇 = 𝑅) policy results in ordering more spares every 

time, compared to the (𝑅, 𝑆, 𝑇 = 𝑅) policy, resulting in a lower ordering cost-rate but a 

higher holding cost-rate. 

 

 The sensitivity analysis of different parameters on the optimum policy (𝑅, 𝑆, 𝑇 = 2𝑅) gives 

results that are broadly expected. Varying C𝑑 and C𝑠 has the greatest impact when 

inspection is infrequent and frequent, respectively. The optimal policy at its optimum 

settings is not sensitive to the order-up-to-level S. 

 

 Whilst the cost-rates are similar across the range of policies, the components of the cost-

rates are quite different because the policies’ decision variables are different, and so the 

different policies, at their optimal settings, place different demands on inventory. 

 

 Finally, the findings illustrate the characteristics of each policy so that engineers and 

practitioners may be guided about the suitability for their particular industrial contexts. 

 

The third and final study (Chapter 5) to complete the work of this PhD developed several 

simulation models for a multi-line production facility to determine the joint optimisation of the 

planned maintenance inspection interval 𝑇, based on the delay-time concept, and the spare parts 

provisioning, considering several variants of the (𝑅, 𝑆) inventory replenishment policy. The 

simulation models were specifically developed for a complex system with multiple identical 

components, in the context of a paper machinery plant with two parallel machines. However, 

the models are easily scalable for other industrial applications. It is important to note that this 

is the first optimisation study addressing the joint maintenance-inventory problem in a multi-

line production system. For the joint policies considered in this final study, it is found that: 

 

 The (𝑅, 𝑆, 𝑇 = 𝑅) policy, using just-in-time ordering is the cost-optimal policy among 

several policy variants, which has the lowest simultaneous machine downtime cost-rate and 

a relatively low stock-out cost-rate. The policy is compensated by the reduction of potential 
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machine downtime due to timely availability of spares, which in turn is due to just-in-time 

ordering, and also reduction in the holding cost. 

 

 It is not cost-effective to place multiple orders between preventive maintenance intervals. 

 

 At the optimal interval, the two (𝑅, 𝑆, 𝑇 = 𝑅) policies (using just-in-time and standard 

ordering) result in potentially placing more orders with fewer quantities every time, 

compared to the two (𝑅, 𝑆, 𝑇 = 0.5𝑅) policies, resulting in a higher ordering cost-rate but 

a lower holding cost-rate for the cost-optimal policy. 

 

 

 As inspection intervals get longer, the ratio of the PM replacement cost-rate to the failure 

cost-rate is reduced since the ratio of the number of defects removed to the number of 

failures is also reduced. 

 

 While the cost-rates are very similar across the four policies, the components of the cost-

rates are quite diverse at different intervals because the trade-offs are different, and so the 

different policies place different demands on inventory. 

 

 The effect of different values of parameters indicate that the defect arrival rate and the cost 

of emergency shipment have the most and least impact on the cost-optimal policy, 

respectively. 

 

 

6.2. Limitations 

 

The simulation models developed in this thesis are based on the assumption of “perfect 

inspection”, which requires the identification and removal of all defective components present 

in the system at the time of inspection. To model a more realistic industrial scenario will need 

access to reliable data in order to make the experimentation meaningful. Models are also based 

on the assumption of immediate replacement of all defective components, identified through 
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inspection, provided spares are available. In real industrial situations, the replacement of some 

or all of the components may be delayed until the next replacement cycle, which may be more 

cost-effective, especially if spare parts are not immediately available. Constant replenishment 

lead-time and infinite manpower availability are also limitations which might not be fully 

justified in real-life situations. In the joint-optimisation models only standard inventory control 

policies are used for the replenishments of spare parts. The joint maintenance-inventory 

optimisation models for the multi-line parallel setting consider identical and independent 

components, which might not be the case in all industrial situations. The simulation models in 

this thesis are developed for specific industrial situations and production configurations. Unlike 

analytical models, simulation-based models require computation time for experimentation, 

which will inevitably take some time to produce results. Moreover, discrete-event simulation 

(by its nature), together with an optimisation tool, will not necessarily produce an exact 

optimum solution because the search space is not continuous. 

 

 

6.3. Future research 

 

Extensions to the work presented in this PhD thesis may be developed in several directions to 

address the limitations discussed in Section 6.2. The simulation models may be developed 

further by relaxing the assumption of “perfect inspection”, which is rare in industrial situations. 

However, this will need good quality and reliable data to make the study and analysis realistic. 

Simulation is the ideal tool for extending delay-time modelling research. The development of 

the three-stage delay-time model is a step closer to reality since inspection might reveal more 

than just one defective state. With real-time condition monitoring, one will be able to identify 

the degree of defectiveness of each component and thus decide, for example, to delay or 

postpone the replacement until the next inspection interval, which may be more cost-effective 

provided the delay-time is long enough. This will certainly be beneficial for spare part 

management, if enough spares are not immediately available. If the item is in a minor defective 

state and the spare part is not available, one can wait and postpone replacement rather than 

rushing into an emergency replenishment. However, the extended model is more complicated 

than the basic delay-time model, and requires more information to enable the parameter 
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estimation procedure. With the flexibility of simulation, there is no reason why a delay-time 

model of more than three-stages cannot be developed. 

 

Models using variable replenishment lead-time may be developed, since in practice it is unlikely 

to know the exact duration of lead-time in advance. Manpower planning will also be essential 

if models are to be implemented in practice, provided the data is based on real industrial 

situations. The joint optimisation for dependent and/or non-identical units in multi-line parallel 

systems should be considered. The formulation of a spare ordering policy based on historic data, 

and dynamic forecasting to predict the demand would be very challenging. 

 

The three principal chapters (Chapters 3, 4 and 5) in this PhD thesis are the start of more research 

studies, which will hopefully be completed and published in the future. 
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7. Appendices 

 

 

Each appendix in this thesis is associated with a particular chapter. Appendix 1.1 is associated 

with Chapter 1. Chapter 2 does not have an appendix. Appendices 3.1 to 3.6 are associated with 

Chapter 3. Appendices 4.1 to 4.5 are associated with Chapter 4. Finally, Appendices 5.1 to 5.19 

are associated with Chapter 5. 
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Appendix 1.1. Developing a simple model using the ProModel simulation tool. 

The development of the simplest model using the ProModel programming environment 

requires, at least, the use of Locations, Entities, Arrivals, and Processing, using the LEAP 

paradigm. 

 

Locations, which may be single or multiple capacity, are generally fixed places in the system 

where entities are routed for processing, queuing, or making some decision about further 

routing. Examples include workstations, check-in-points, queues, storage areas (buffers), etc. 

Locations may have certain times that are available; may also have special input and output, 

such as, input based on highest priority, or output based on First-In-First-Out (FIFO). An 

example of three lathe machines used as locations from ProModel graphic library is shown in 

depiction (a) below. 

 

 

(a). ProModel Locations graphic library. 
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Entities are the objects processed in the model, that represent the inputs and outputs of the 

system; they enter into, flow through and depart from the system as complete objects, such as, 

parts, products, people, or even defect arrivals and failure occurrences. Entities may have 

special characteristics, such as, speed, size, etc.; may arrive from outside; or may also be created 

from within the system. An example of a ‘gear’ used as an entity from ProModel library of 

graphics is shown in depiction (b) below. 

 

 

(b). ProModel entities graphic library. 
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Arrivals describe the precise pattern: timing; quantity; frequency; and location of entities 

entering into the system. Examples include: parts arriving to a manufacturing shop; customers 

arriving at a post office; passengers arriving at an airport; and defects arriving at a plant. An 

example of ‘gears’ arriving at the lathe machine, one at a time, from the start of simulation, 

every one minute, indefinitely, is shown in the top table in screen capture (c) below. 

 

 

(c). ProModel arrivals. 
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Finally, Processing defines the exact route that an entity follows, from entering into, to leaving 

the system. This includes any activity that happens at a location, such as, the required 

operation(s) that needs to be performed; the amount of time an entity spends at a location; the 

resources it needs to complete processing; and the selection of the entity’s next destination. An 

example of ‘gears’ being routed through different lathe machines is shown in the top two tables 

in screen capture (d) below. 

 

 

(d). ProModel processing. 

 

Although, the most simple model in this environment needs to have LEAP described, any further 

sophistication needed almost certainly will require the use of other modules, such as, Path 

Networks, Resources, Variables, Attributes, Arrays, Subroutines, Shifts, and the development 

of special programming routines. 

 



APPENDICES 

 150 

To develop a simple model, imagine a gear production scenario as depicted in the screen capture 

(e) below. Round blank metals arrive into the store, one at a time, every five minutes, 

indefinitely. When production starts, blank metals are taken to the lathe machine to be machined 

for eight minutes. Once machined, turned parts go to the milling machine where they are milled 

for seven minutes. Gears from the milling machine are then taken to inspection, to be tested and 

measured which will take 6 minutes. Gears are finally dispatched as ready products. The 

travelling time from one machine to another, from the store all the way to exit takes 0.5 minute 

each. The objective of the simulation is to determine the production rate of gears in every eight-

hour shift. 

 

 

(e). Gear production scenario. 

 

Following the procedure described above (shown in captions (a) to (d)) for developing LEAP, 

a simulation model for the gear production scenario is developed. The screen capture (f) below 

shows the layout of the simulation model for the gear production. Screen captures (g), (h), (i), 

and (j) depict the Locations, Entities, Arrivals and Processing respectively, which are developed 

for the gear production model. The completed model is then run for an eight-hour shift, for 

which the output results, depicted in screen capture (k), shows that 54 gears are produced. 
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(f). ProModel layout for the gear production. 

 

 

(g). Locations for the gear production model. 
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(h). Entities for the gear production model. 

 

 

(i). Arrivals for the gear production model. 
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(j). Processing for the gear production model. 

 

 

(k). Output results for the gear production model. 
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Appendix 3.1. A summary of the modelling framework specifically for the modified two-

out-of-three parallel system with consecutive inspection prioritising failure repair: 

(a) Planned maintenance algorithms. 

A summary of the simulation algorithms for planned maintenance (i.e. machines going ‘down’ 

due to scheduled inspections) called ‘Clock downtimes for Locations’ is detailed below: 

Start of algorithms 

Repeat every PM interval time unit, starting from a simulation clock equal to PM 

interval time unit 

Step 1: If status of 𝑀𝑖 is ‘down’, wait until status is ‘operational’ 

Step 2: Increment number of inspections, 𝐼 

Step 3: Initiate the routine for removing any defects waiting in their delay-time 

Step 4: Set status to ‘on’ for removing defects 

Step 5: Set Downtime switch 

Step 6: Set Arrays to hold defect and failing entities in ‘time suspension’ during 

inspection 

Step 7: Delay by 𝑑𝑠 

Step 8: Update total inspection duration by 𝑑𝑠 

Step 9: Compute and update total cost, 𝐶𝑚𝑜𝑑 

Step 10: Set status to ‘off’ 

Step 11: Increment total number of inspections 𝐼, for 𝑀𝑖  

Step 12: Execute subroutine for calculating Downtime 

Step 13: Decrement current total number of lines Down 

End of algorithms 
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(b) Unplanned maintenance algorithms. 

A summary of the simulation algorithms for unplanned maintenance (i.e. machines going 

‘down’ due to component failure(s) named ‘Called downtimes for Locations’ is detailed below: 

Start of algorithms 

Step 1: Increment number of failures, 𝐹 

Step 2: Set status to ‘on’ for removing defect 

Step 3: Set Downtime switch 

Step 4: Set Arrays to hold defect and failing entities in ‘time suspension’ during this 

process 

Step 5: Delay by 𝑑𝑓 

Step 6: Accumulate total failure duration by 𝑑𝑓 

Step 7: Compute and update total cost, 𝐶𝑚𝑜𝑑 

Step 8: Set status to ‘off’ 

Step 9: Increment total number of failures 𝐹, for 𝑀𝑖  

Step 10: Execute subroutine for calculating Downtime 

Step 11: Decrement current total number of lines Down 

End of algorithms 
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(c) Defect arrival algorithms. 

Start of algorithms 

Step 1: Set local variables 

Step 2: Increment number of defects generated for 𝑀𝑖  

Step 3: Generate a Random value 

Step 4: Compute defect time lapse duration based on the time-to-defect distribution 

Step 5: Record the time computed in the above step into an Array 

Step 6: Delay defect by the time lapse duration 

Step 7: In case there are concurrent inspections or failure stoppage processes in 

operation, execute the ‘Prolonging’ subroutine in order to ‘suspend’ the arrival 

of other defects and keep in ‘suspension’ the existing defects waiting in their 

‘delay-time’ evolving into failures. This is for implementing the ‘suspension of 

component aging’ concept 

Step 8: If there is an ongoing machine downtime process, then 

Step 8.1: Delay by 𝑑𝑓 

Step 9: If there is a concurrent inspection process, then 

Step 9.1: Compute the time lapse depending upon the time needed for each defect 

to be removed at inspection 

Step 9.2: Delay by the computed time generated above 

Step 10: Increment number of defect arrivals for 𝑀𝑖  

End of algorithms 
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(d) Failure occurrence algorithms. 

Start of algorithms 

Step 1: Set local variables 

Step 2: Increment number of failures evolved for 𝑀𝑖  

Step 3: Generate a Random value 

Step 4: Compute delay-time based on its distribution 

Step 5: Record the time computed in the above step into an Array 

Step 6: Delay failure by the delay-time duration 

Step 7: In case there are concurrent inspections or failure stoppage processes in 

operation, execute the ‘Prolonging’ subroutine in order to ‘suspend’ the arrival 

of other defects and keep in ‘suspension’ the existing defects waiting in their 

‘delay-time’ evolving into failures. This is for implementing the ‘suspension of 

component aging’ concept 

Step 8: If there is an ongoing machine downtime process, then 

Step 8.1: Delay by 𝑑𝑓 

Step 9: If there is a concurrent inspection process, then 

Step 9.1: Compute the time lapse depending upon the time needed for each 

defect to be removed at inspection 

Step 9.2: Delay by the computed time generated above 

Step 10: Increment number of failures for 𝑀𝑖  

Step 11: Initiate machine Downtime  

End of algorithms 
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Appendix 3.2. On-screen layout of simulation model. 
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Appendix 3.3. Percentage time packing lines are either working or idle, under the 

modified 2-out-of-3 parallel system: 

▬▬▬ line 1 working; ▬ ▬ ▬ line 2 idle; ●●● line 3 working. 

 

 

Appendix 3.4. Average number of defects arriving at packing line 1. 
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Appendix 3.5. Detailed source data for the single-line packing system. 

 

 

Appendix 3.6. Detailed source data for the modified two-out-of-three parallel system. 

 

  

Inspection No. of No. of No. of No. of Downtime Downtime No. of No. of No. of 

Interval Defect failures inspections defects Per Day failures inspections defects 

(Hour) Arrived removed (Minutes)  (Mins) removed

1 2,965 0 23,809 2,965 47,618 47.6 0.0 23.8 3.0

2 2,984 2 12,048 2,982 24,112 24.1 0.0 12.0 3.0

3 2,992 25 8,000 2,966 16,204 16.2 0.0 8.0 3.0

4 2,995 146 5,988 2,849 13,230 13.2 0.1 6.0 2.8

5 2,992 448 4,808 2,544 13,671 13.7 0.4 4.8 2.5

6 2,990 821 4,000 2,169 15,765 15.8 0.8 4.0 2.2

7 2,983 1,138 3,425 1,845 17,837 17.8 1.1 3.4 1.8

8 2,977 1,333 3,003 1,643 18,982 19.0 1.3 3.0 1.6

9 2,977 1,542 2,666 1,435 20,404 20.4 1.5 2.7 1.4

10 2,974 1,676 2,398 1,297 21,292 21.3 1.7 2.4 1.3

11 2,971 1,793 2,184 1,178 22,043 22.0 1.8 2.2 1.2

12 2,970 1,893 2,000 1,077 22,689 22.7 1.9 2.0 1.1

13 2,970 1,971 1,845 998 23,175 23.2 2.0 1.8 1.0

14 2,965 2,039 1,715 926 23,624 23.6 2.0 1.7 0.9

15 2,963 2,093 1,600 870 23,911 23.9 2.1 1.6 0.9

16 2,962 2,158 1,499 804 24,387 24.4 2.2 1.5 0.8

17 2,962 2,194 1,412 768 24,572 24.6 2.2 1.4 0.8

18 2,961 2,237 1,333 724 24,875 24.9 2.2 1.3 0.7

19 2,960 2,285 1,263 675 25,238 25.2 2.3 1.3 0.7

20 2,960 2,323 1,200 637 25,472 25.5 2.3 1.2 0.6

21 2,959 2,354 1,142 605 25,681 25.7 2.4 1.1 0.6

22 2,959 2,352 1,090 606 25,574 25.6 2.4 1.1 0.6

Per Day1,000 Simulation DAYS each

Inspection No. of No. of No. Of No. of No. of No. of No. Of No. of No. of No. of No. Of No. of Downtime Cost Cost Cost per day  (£)

Interval Defect Failures Inspections Defects Defect Failures Inspections Defects Defect Failures Inspections Defects per day per day (£) per day  (£) Consecutive inspection,

(Hour) Arrived Removed Arrived Removed Arrived Removed  (mins) Simultaneous Consecutive prioritising

 failure repair

1 2,986 0 23,809 2,986 917 0 23,809 917 2,960 0 23,809 2,960 47.62 865.06 71.43 71.43

2 2,966 2 12,048 2,965 938 0 12,048 938 2,998 1 12,048 2,997 24.10 437.76 36.21 36.16

3 3,004 30 8,000 2,973 930 0 8,000 930 2,981 26 8,000 2,955 16.00 290.95 24.62 24.25

4 2,985 149 5,988 2,836 934 0 5,988 934 3,007 146 5,988 2,861 11.98 219.09 21.03 19.51

5 2,994 448 4,807 2,545 942 0 4,807 942 2,994 443 4,807 2,551 9.64 179.61 22.06 19.29

6 2,984 825 4,000 2,159 940 1 4,000 939 3,006 826 4,000 2,179 8.08 154.97 25.27 21.74

7 2,979 1,124 3,424 1,855 962 2 3,424 960 2,987 1,131 3,424 1,856 6.98 137.93 26.61 23.73

8 3,002 1,352 3,003 1,651 966 3 3,003 963 2,959 1,343 3,003 1,616 6.17 125.27 27.80 25.73

9 2,984 1,554 2,667 1,431 965 9 2,667 957 2,978 1,526 2,667 1,452 5.55 116.01 29.04 27.12

10 2,974 1,680 2,399 1,295 984 16 2,399 968 2,969 1,691 2,399 1,278 5.05 108.23 30.10 27.52

INSPECTION

SIMULTANEOUS

INSPECTION

LEG1 LEG2 LEG3 CONSECUTIVE
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Appendix 4.1. Survey questionnaire: 

(a) Collecting data from maintenance experts and paper machine manufacturers. 

Information Explanation Value 

Unit cost 

of the critical 

spare part 

What is the unit cost of the critical spare part (£)? 

Although the model can be expanded in the future, our current model assumes that there is 

one critical part that when it fails will result in the immediate downtime of the 

machinery/equipment.  

 

 

 

 

Inspection 

How long does it take to carry out a Planned Maintenance inspection for the 

machinery/equipment, from start to finish, to identify if one or more units (instances) of the 

critical part need to be replaced (excluding the time it takes for replacing each critical part) 

(Sec/ Min/ Hour/ Day)? 

 

How many operators/technicians (resources) are needed for carrying out the inspection 

activity, in order to determine if one or more critical spare part(s) need to be replaced? 

 

What is the cost of using each operator/technician (£ per Hour/ Day)?  

 

 

 

Replacement 

How long does it take to actually replace a single critical spare part after identifying, at 

inspection, that the part needs to be replaced (Sec/ Min/ Hour/ Day)? 

 

How many operators/technicians are needed for the replacement of a unit (an instance) of the 

critical spare part? 

 

If different from the data supplied in the ‘inspection’ section above, what is the cost of using 

each operator/technician (£ per Hour/ Day)? 

 

 

 

Failure 

replacement 

How long does it take to replace a single unit (instance) of the critical spare part as a result of 

Corrective Maintenance, i.e. when the critical part fails (Sec/ Min/ Hour/ Day)? 

 

How many operators/technicians are needed for the replacement of a single unit of the critical 

part? 

 

If different from the data supplied in the ‘inspection’ section above, what is the cost of using 

each operator/technician (£ per Hour/ Day)? 

 

 

 

Downtime 

cost 

How much does it cost the company (£ per Hour/Day) for the loss of production (or sales) 

while the machinery/equipment is down due to one of the following reasons? 

 the inspection process 

 the replacement of a critical part during Preventive maintenance 

 the replacement of a critical part during Corrective maintenance 

 waiting for shortages to arrive 

 

Ordering 

cost 

How much does it cost to order the critical spare part during normal production times (not 

ordering shortages), excluding the unit cost of the part (£)? 

 

Holding  

cost 

How much does it cost to hold a single unit of inventory of the critical spare part in stock (£ 

per unit per Day/Week/Month/Year)? 

 

 

Order 

Delivery 

lead time 

How long does it take for an order of the critical spare part to arrive, from the time that an 

order is placed until it arrives (Day/Week)? 

 

How variable is this lead time? Can this be estimated, or does it conform to a known statistical 

distribution. For example, conforming to a Normal distribution, with a mean lead time of 7 

days and a standard deviation of 1 day! 

 

Shortage 

Shipment cost 

How much extra (excluding the unit cost) does it cost to replenish a critical spare part in 

emergency (£)? 

 

Shortage 

Delivery 

Lead-time 

How long does it take for a shortage (or emergency) order of the critical spare part to arrive, 

from the time that the order is placed until the time it arrives (Day/Week)? 

 

Faults (defects) 

distribution & 

parameters 

Do you know how often faults related to the critical spare part occur? Does the pattern of 

occurrences follow a known statistical distribution?  Alternatively, can you provide a time-

series history of fault arrivals? 

 

Failure 

Distribution 

& parameters 

Do you know if the time between failures of the critical part follow a known statistical 

distribution? 

 

Currently, how often is the machinery/equipment inspected in connection with this critical spare part? 

What is the current policy for replenishing the inventory of this critical spare part? Periodic or Continuous Review? 
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(b) Survey response values. 

Category Questions Response values 

Unit cost 

of the critical 

spare part 

What is the unit cost of the critical spare part (£)? 

Although the model can be expanded in the future, our current model assumes that 

there is one critical part that when it fails will result in the immediate downtime of 

the machinery/equipment.  

 

£1,000-4,000. 

 

 

 

Inspection 

How long does it take to carry out a Planned Maintenance inspection for the 

machinery/equipment, from start to finish, to identify if one or more units 

(instances) of the critical part need to be replaced (excluding the time it takes for 

replacing each critical part) (Sec/ Min/ Hour/ Day)? 

Depends 

and 

varies. 

How many operators/technicians (resources) are needed for carrying out the 

inspection activity, in order to determine if one or more critical spare part(s) need 

to be replaced? 

 

What is the cost of using each operator/technician (£ per Hour/ Day)? £60 per hour. 

 

 

 

Replacement 

How long does it take to actually replace a single critical spare part after identifying, 

at inspection, that the part needs to be replaced (Sec/ Min/ Hour/ Day)? 

1-6 hours. 

How many operators/technicians are needed for the replacement of a unit (an 

instance) of the critical spare part? 

3 technicians. 

If different from the data supplied in the ‘inspection’ section above, what is the cost 

of using each operator/technician (£ per Hour/ Day)? 

£60 per hour. 

 

 

Failure 

replacement 

How long does it take to replace a single unit (instance) of the critical spare part as 

a result of Corrective Maintenance, i.e. when the critical part fails (Sec/ Min/ Hour/ 

Day)? 

1-36 hours. 

How many operators/technicians are needed for the replacement of a single unit of 

the critical part? 

3 technicians. 

If different from the data supplied in the ‘inspection’ section above, what is the cost 

of using each operator/technician (£ per Hour/ Day)? 

£60 per hour. 

 

 

Downtime 

cost 

How much does it cost the company (£ per Hour/Day) for the loss of production (or 

sales) while the machinery/equipment is down due to one of the following reasons? 

 the inspection process 

 the replacement of a critical part during Preventive maintenance 

 the replacement of a critical part during Corrective maintenance 

 waiting for shortages to arrive 

£1,000 per hour. 

Ordering 

cost 

How much does it cost to order the critical spare part during normal production 

times (not ordering shortages), excluding the unit cost of the part (£)? 

£100. 

Holding  

cost 

How much does it cost to hold a single unit of inventory of the critical spare part in 

stock (£ per unit per Day/Week/Month/Year)? 

1% of item cost 

per week. 

 

Order 

Delivery 

lead time 

How long does it take for an order of the critical spare part to arrive, from the time 

that an order is placed until it arrives (Day/Week)? 

2-6 weeks. 

How variable is this lead time? Can this be estimated, or does it conform to a known 

statistical distribution. For example, conforming to a Normal distribution, with a 

mean lead time of 7 days and a standard deviation of 1 day! 

 

Shortage 

Shipment cost 

How much extra (excluding the unit cost) does it cost to replenish a critical spare 

part in emergency (£)? 

£500-1,200. 

Shortage 

Delivery 

Lead-time 

How long does it take for a shortage (or emergency) order of the critical spare part 

to arrive, from the time that the order is placed until the time it arrives (Day/Week)? 

1-10 days. 

Faults (defects) 

distribution & 

parameters 

Do you know how often faults related to the critical spare part occur? Does the 

pattern of occurrences follow a known statistical distribution?  Alternatively, can 

you provide a time-series history of fault arrivals? 

Depends on 

quality. 

Failure 

Distribution 

& parameters 

Do you know if the time between failures of the critical part follow a known 

statistical distribution? 

Varies. 
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Appendix 4.2. Flowchart of the general simulation procedure, showing the flow of 

entities from one modelling routine to another. 
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Appendix 4.3. Determination of the simulation warm-up period using: 

(a) the Time Series method; (b) Welch’s method; and 

(c) sample analysis showing the number of replications needed to achieve a 95% 

confidence interval in the results. 

(a)  

(b)  

(c) 

    

Significance 

level 5.0%  

  Cum.  Confidence interval  

   mean Standard Lower Upper  
Replication Result average deviation limit limit  

1 711.39 711.39 n/a n/a n/a  
2 711.06 711.23 0.233 709.14 713.32  
3 710.74 711.06 0.328 710.25 711.88  
4 711.50 711.17 0.344 710.63 711.72  
5 711.17 711.17 0.298 710.80 711.54  
6 710.84 711.12 0.299 710.80 711.43  
7 710.51 711.03 0.356 710.70 711.36  
8 710.19 710.92 0.445 710.55 711.30  
9 710.60 710.89 0.429 710.56 711.22  
10 710.28 710.83 0.448 710.51 711.15  
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Appendix 4.4. A sample analysis for the determination of number of replications. 
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Appendix 4.5. On-screen layout of simulation model. 
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Appendix 5.1. Flowchart of the general simulation procedure, showing the flow of 

entities from one modelling routine to another. 
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Appendix 5.2. Details of the model: (a) locations; and (b) entities. 

(a) 

Location Capacity Units Downtimes 

MC1_MachineProcess 

 

1 

 

1 

 

Clock – see Appendices 5.3 to 5.5. 

Called – See Figure ?? Done. MC1_DownstreamProcess 1 1 None 

MC1_DefectArrival Infinite 1 None 

MC1_FailureOccurrence Infinite 1 Called – see Appendices 5.6 & 5.7. 

MC1_DefectDump Infinite 1 None 

MC1_Reset Infinite 1 None 

MC1_HoldingCost Infinite 1 None 

MC1_PlaceOrders Infinite 1 None 

MC2_MachineProcess 

 

1 

 

1 

 

Clock – see Appendices 5.3 to 5.5. 

Called – See Figure ?? Done. MC2_DownstreamProcess 1 1 None 

MC2_DefectArrival Infinite 1 None 

MC2_FailureOccurrence Infinite 1 Called – see Appendices 5.6 & 5.7. 

MC2_DefectDump Infinite 1 None 

MC2_Reset Infinite 1 None 

MC2_HoldingCost Infinite 1 None 

MC2_PlaceOrders Infinite 1 None 

 

(b) 

Entity 

Product2B DefectIdentified 

Product Reset 

ProductMade HoldingCost 

PreDefect PlaceOrders 

Defect Calculate 

Failure  
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Appendix 5.3. Flowchart of the Clock (planned/scheduled) downtime routine for each 

machine. 

Start

Clock (planned/scheduled) downtime

Invoke the release of defects, waiting in their delay-time

Current Clock = SimulationLength variable?

No. of defects waiting > Max no. of defects identified? 

Set the inspection variables

Max no. of defects identified = No. of defects waiting

SpareOnHand < No. of defects waiting? 

PotentialShortage = 1

StartOfDowntime = Current Clock time

EndOfDowntime = StartOfDowntime + Inspection duration 

+ (No. of defects waiting * dr) + (PotentialShortage * Lsh)

Downtime duration = EndOfDowntime - StarOfDowntime

Inspection sub-process 3

No. of defects waiting > 0? 

Increment the no. of positive inspections

PotentialSpareShortage = No. of defects waiting – SparesOnHand

Potential Spare Stock-out sub-process 4

Bearing Replacement sub-process 5

Increment the no. of inspections

Reset the inspection variables

Invoke the CalculateTimeCost subroutine

End

Yes

No

Yes

No

Yes

No

Yes

No

Increment

the no. of defects 

identified

Wait until the

Inspection variables

are reset

Increment the 

total no. of 

defects removed

Invoke the

CalculateTimeCost

subroutine

End

Testing ongoing processes sub-process 1

Recording simultaneous downtime data 2 sub-process 6

Recording simultaneous downtime data 1 sub-process 2
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Appendix 5.4. Flowchart of the Clock (planned/scheduled) downtime sub-processes 1, 2 & 

6 routines for each machine. 

Other M/C down due to inspection?

Set local variable to record the current TIME

Increment variable for simultaneous inspection occurrence

WHILE other M/C is down due to inspection, REPEAT

Wait

Update simultaneous inspection1/inspection2 downtime duration

Yes

No

Other or same M/C down due to failure?

Set local variable to record the current TIME

Increment variable for simultaneous inspection/failure occurrence

WHILE other or same M/C is down due to failure, REPEAT

Wait

Update simultaneous inspection/failure downtime duration

Yes

Yes

No

Yes

No

Testing for ongoing inspection/failure process

sub-process 1

End

No

Increment no. of Multi-line

machines down

No. of multi-line

machines down >1?

Record the current TIME as the start

of simultaneous downtime

Yes

No

Recording the start of 

simultaneous processes

sub-process 2

End Current time -

simultaneous downtime start

> 0?

Increment no. of simultaneous

downtime occurrences

Yes

Decrement no. of multi-line

machines down

No. of multi-line machines down > 0?

Update simultaneous machine

downtime duration

Yes

No

Recording the no. of occurrences and 

duration of simultaneous processes

sub-process 6

End

No
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Appendix 5.5. Flowchart of the Clock (planned/scheduled) downtime sub-processes 3, 4 & 

5 routines for each machine. 

Start

Inspection sub-process 3

Capture the required no. of

resources for inspection

Delay by inspection time

Release the resources

DefectsWaiting > 0? 

Capture the required no. of

resources for bearing replacement

Decrement SparesOnHand

Increment SparesUsed

Delay by dr

Release the resources

Increment

‘No. of PM replacements’

Decrement DefectsWaiting

End

No

Yes

End

Start

Bearing Replacement sub-process 5

initiated by inspection

PotentialSpareShortage > 0? 

Increment SpareShortages

Increment SparesOnOrder

SpareMaxQtyOrdered = SpareOnOrder

Increment SparesTotalQtyOrdered

Increment SparesOnHand

Decrement SparesOnOrder

Decrement PotentialSpareShortage

End

No

Yes

Start

Potential Spare Stock-out sub-process 4

initiated by inspection

Current Clock time > 1

AND SparesOnOrder >

SparesMaxQtyOrdered? 

PotentialSpareShortage = 1? 

Delay by Lsh

PotentialSpareShortage > 1? 

Increment SpareShortageCountReverse

Yes

No

Yes

NO

Yes

NO

PotentialSpareShortage =

No. of defects waiting - SparesOnHand

No
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Appendix 5.6. Flowchart of the Called (unplanned/unscheduled) downtime routine for 

each machine. 

Start

Called (unplanned/unscheduled) downtime

Current Clock = SimulationLength variable?

Set the downtime variables

SpareOnHand = 0? 

PotentialShortage = 1

StartOfDowntime = Current Clock time

EndOfDowntime = StartOfDowntime +

df + (PotentialShortage * Lsh)

Downtime duration = EndOfDowntime - StarOfDowntime

Potential Spare Stock-out sub-process 1

Bearing Replacement sub-process 2

Increment the no. of failures

Reset the downtime variables

Invoke the CalculateTimeCost subroutine

End

Yes

No

No
Yes

Current time - simultaneous downtime start > 0?

Increment no. of simultaneous downtime occurrences

Yes

Decrement no. of multi-line machines down

No. of multi-line machines down > 0?

Update simultaneous machine downtime duration

Yes

No

No

Increment no. of multi-line machines down

No. of multi-line machines down >1?

Record the current TIME as the start of simultaneous downtime

Yes

No
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Appendix 5.7. Flowchart of the Called (unplanned/unscheduled) downtime sub-processes 

routine for each machine. 

Capture the required no. of

resources for bearing replacement

Decrement SparesOnHand

Increment SparesUsed

Delay by df

Release the resources

End

Start

Bearing Replacement sub-process 2

initiated by a bearing failure

PotentialSpareShortage > 0? 

Increment SpareShortages

Increment SparesOnOrder

SpareMaxQtyOrdered = SpareOnOrder

Increment SparesTotalQtyOrdered

Increment SparesOnHand

Decrement SparesOnOrder

Decrement PotentialSpareShortage

End

No

Yes

Start

Potential Spare Stockout sub-process 1

initiated by a bearing failure

Current Clock time > 1

AND SparesOnOrder >

SparesMaxQtyOrdered? 

PotentialSpareShortage = 1? 

Delay by Lsh

PotentialSpareShortage > 1? 

Increment SpareShortageCountReverse

Yes

No

Yes

NO

Yes

NO

PotentialSpareShortage = 1 - SparesOnHand

No
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Appendix 5.8. Details of the model: (a) resources; (b) processing; and (c) arrivals.  

(a) 

Resource Number of units 

Machine 2 

Technician 6 

 

(b) 

Processing     

Entity Location Operation Output Destination 

Product MC1 

MachinePrss 

Appendix 

5.9 

ProductMade MC1 

DownstreamPrss 

All MC1 

DownstreamPrss 

Appendix 

5.9 

ProductMade Exit 

PreDefect MC1 

DefectArrival 

Appendix 

5.10 

Defect MC1 

FailureOccurrence 

Defect MC1 

FailureOccurrence 

Appendix 

5.11 

Failure Exit 

Defect MC1 

FailureOccurrence 

Appendix 

5.12 

DefectIdentified MC1 

DefectDump 

DefectIdentified MC1 

DefectDump 

Appendix 

5.12 

DefectIdentified Exit 

Reset MC1 

Reset 

Reset 

variables 

after warm-

up 

Reset Exit 

PlaceOrders MC1 

PlaceOrders 

Invoke 

OrderSpares 

subroutine 

PlaceOrders Exit 

HoldingCost MC1 

HoldingCost 

Calculate 

HoldingCost 

HoldingCost Exit 

Product MC2 

MachinePrss 

Appendix 

5.9 

ProductMade MC2 

DownstreamPrss 

All MC2 

DownstreamPrss 

Appendix 

5.9 

ProductMade Exit 

PreDefect MC2 

DefectArrival 

Appendix 

5.10 

Defect MC2 

FailureOccurrence 
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Defect MC2 

FailureOccurrence 

Appendix 

5.11 

Failure Exit 

Defect MC2 

FailureOccurrence 

Appendix 

5.12 

DefectIdentified MC2 

DefectDump 

DefectIdentified MC2 

DefectDump 

Appendix 

5.12 

DefectIdentified Exit 

Reset MC2 

Reset 

Reset 

variables 

after warm-

up 

Reset Exit 

PlaceOrders MC2 

PlaceOrders 

Invoke 

OrderSpares 

subroutine 

PlaceOrders Exit 

HoldingCost MC2 

HoldingCost 

Calculate 

HoldingCost 

HoldingCost Exit 

Calculate MCS 

Calculate 

Calculate 

Grand Total 

Cost per 

week 

Calculate Exit 

 

(c) 

Arrival      

Entity 

 

Location Qty First Time Occurrence Frequency 

Product MC1 

Machine Prss 

1 0 1 None 

PreDefect MC1 

DefectArrival 

1 0 1 None 

Reset MC1 Reset 1 WarmUpPeriod 1 None 

HoldingCost MC1 

HoldingCost 

1 1 Infinite 1 

PlaceOrders MC1 

PlaceOrders 

1 MC1OrderInterval-

SpLeadTime 

Infinite MC1 

OrderInterval 

Product MC2 

Machine Prss 

1 0 1 None 

PreDefect MC2 

DefectArrival 

1 0 1 None 

Reset MC2 Reset 1 WarmUpPeriod 1 None 

Calculate MCSCalculate 1 0 Infinite 7 
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Appendix 5.9. Flowchart of the Processing Operations routine for the Machine Process to 

Downstream Process and Exit. 

Start

MachineProcess to Downstream

processing

Increment number of products processed

End at the

Downstream

Location 

Capture the resource needed

Increment number of 

machines working

Delay

Deccrement number 

of machines working

Release the resource

Increment number of products packed

Exit the 

System
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Appendix 5.10. Flowchart of the Processing Operations routine for the Defect Arrival to 

Failure Occurrence. 

Start

Defect Arrival to Failure Occurrence

processing

Generate a real number 

between 0 and 1

Generate time-to-defect, u

Record the arrival time of the defect in an attribute

Wait for u time units

Failure downtime

in-progress?

Wait for

Df + Lsh time units

Increment no. of defects initiated

Failure

Occurence

Increment defect initiated

Prolonging Routine

Suspending the arrival

of defects during

downtimes

Pre-defect

Defect

No

Define local variables

Spare on-hand = 0?
Stock-out

failure switch = 1

Yes

No

Replacement

in-progress?

Wait for

No. of Defects * Dr + Lsh 

time units

No

Spare on-hand = 0

AND

defects waiting > 0?

‘Stock-out

replacement’ switch = 1

Yes

No

Yes

Yes
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Appendix 5.11. Flowchart of the Processing Operations routine for the Failure 

Occurrence to Exit. 

Start

Failure Occurrence to Exit

processing

Generate a real number 

between 0 and 1

Generate delay-time, h

Record the arrival time of the failure in an attribute

Wait for h time units

Failure downtime

in-progress?

Wait for

Df + Lsh time units

Increment no. of failures initiated

Exit

Increment failure initiated

Prolonging Routine

Suspending the arrival

of failures during

downtimes

Defect

Failure

No

Define local variables

Spare on-hand = 0?
Stock-out

failure switch = 1

Yes

No

Replacement

in-progress?

Wait for

No. of Defects * Dr + Lsh 

time units

No

Spare on-hand = 0

AND

defects waiting > 0?

‘Stock-out

replacement’ switch = 1

Yes

No

Yes

Yes

Initiate the next pre-defect 

entity

Machine going DOWN
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Appendix 5.12. Flowchart of the Processing Operations routine for the Failure 

Occurrence to Defect Dump & Exit. 

Start

Failure Occurrence to Defect Dump & Exit

processing

WAIT UNITIL

downtime due to

inspection/replacement

is ended

Defect

Dump

Increment no. of

defects identified

Defect

Defect identified

WAIT UNITIL

downtime due to

failure

is ended

Increment no. of

defects removed

Calculate

TimeCost

subroutine

Exit
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Appendix 5.13. Details of the model: (a) attributes; (b) macros; and (c) subroutines. 

(a) 

Attribute Type Classification 

MC1StartTime Real Entity 

MC2StartTime Real Entity 

 

(b) 

Macro 

OrderIntervalInWeeks 

MSL 

Mc1DefectArrivalIntensityPerWeek 

Mc2DefectArrivalIntensityPerWeek 

SpareNormalLeadTimeInWeeks 

SpareShortageLeadTimeInWeeks 

K 

WarmUpInWeeks 

NumberOfReplications 

SimulationLengthInWeeks 

 

(c) 

Subroutine Type Parameters Logic 

MC1CalculateTimeCost None None See Appendix 5.14 

MC2CalculateTimeCost None None See Appendix 5.14 

MCSOrderSpares None None See Appendix 5.15 

MCSCalculateTimeCost None None See Appendix 5.16 
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Appendix 5.14. Flowchart of the CalculateTimeCost subroutine (individual machines). 

Start

CalculateTimeCost

subroutine

*D(T) = Qr dr + Qf df + Nsh Lsh

Cu(Total) = Qu Cu

End

Co(Total) = No Co

Ch(Total) = Qhand Ch

Csh(Total) = Qsh Csh + Nsh Lsh Cd

Ci(Total) = Ni (Ci + Cm)

Cr(Total) = Qr dr Cd + Qr dr Qm.pm Cm

Cf(Total) = Qf df Cd + Qf df Qm.f Cm

Grand Total Cost = Cu(Total) + Co(Total) + Ch(Total) + Csh(Total) + Ci(Total) + Cr(Total) + Cf(Total)

Extra notations for this flow chart:

* Note: Inspection has zero plant downtime

Qr Number of bearings replaced at PMs

Qf Number of failed bearings replaced

Qsh Number of stock-outs

Nsh Number of stock-out instances

Qu Number of bearings ordered

No Number of orders

Qhand Number of spares ‘on hand’

Ni Number of inspections

Qm.pm Number of technicians needed at PMs

Qm.f Number of technicians needed at failures
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Appendix 5.15. Flowchart of the OrderSparesMCS subroutine. 

Start

OrderSparesMCS

subroutine

Current Clock = SimulationLength variable OR

Current Clock = (SimulationLength variable) - 7 AND SparesOnHand >= 1?

End

Yes

Increment NoOfOpportunitiesForPlacingOrders

SparesOnHand +

SparesOnOrder <

SpareMaxStockLevel? 

CurrentSparesOnOrder =

SpareMaxStockLevel -

SparesOnHand -

SparesOnOrder

CurrentSparesOnOrder = 0

Increment SparesOnOrder by CurrentSparesOnOrder

NO

Yes

Current Clock >=1 AND

CurrentSparesOnOrder >

SparesMaxQtyOrdered?

SparesMaxQtyOrdered = CurrentSparesOnOrder

Yes

SparesOnOrder > 0? 

No

Increment NoOfOrdersPlaced

SparesTotalQtyOrdered =  SparesTotalQtyOrdered + CurrentSparesOnOrder

SparesAverageQtyOrdered =  SparesTotalQtyOrdered / NoOfOrdersPlaced

Delay by Lo

Increment SparesOnHand by CurrentSparesOnOrder

Decrement SparesOnOrder by CurrentSparesOnOrder

Invoke the CalculateTimeCost subroutine

Yes

No

No

Yes

No
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Appendix 5.16. Flowchart of the CalculateTimeCostMCS subroutine (multi-line). 

Start

CalculateTimeCostMCS

subroutine

*D(T) = Qr dr + Qf df + Nsh Lsh

Cu(Total) = Qu Cu

End

Co(Total) = No Co

Ch(Total) = Qhand Ch

Csh(Total) = Qsh Csh + Nsh Lsh Cd(ind)

Ci(Total) = Ni (Ci + Cm)

Cr(Total) = Qr dr Cd(ind) + Qr dr Qm.pm Cm

Cf(Total) = Qf df Cd(ind) + Qf df Qm.f Cm

Grand Total Cost =

Cu(Total) + Co(Total) + Ch(Total) + Csh(Total) + Ci(Total) + Cr(Total) + Cf(Total) + Cd(sim)(Total)

Extra notations for this flow chart:

* Note: Inspection has zero plant downtime

Qr Number of bearings replaced at PMs

Qf Number of failed bearings replaced

Qsh Number of stock-outs

Nsh Number of stock-out instances

Qu Number of bearings ordered

No Number of orders

Qhand Number of spares ‘on hand’

Ni Number of inspections

Qm.pm Number of technicians needed at PMs

Qm.f Number of technicians needed at failures

d(sim) Mcs simultaneous downtime duration

Cd(sim)(Total) = Cd(sim) d(sim)

All

Machines
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Appendix 5.17. Flowchart, depicting the process of capturing and recording 

simultaneous machine downtime. 

Increment no. of Multi-line

machines down

No. of multi-line

machines down >1?

Record the current TIME as the start

of simultaneous downtime

Yes

No

Recording the start of 

simultaneous processes

End

Current time -

simultaneous downtime start

> 0?

Increment no. of simultaneous

downtime occurrences

Yes

Decrement no. of multi-line

machines down

No. of multi-line machines down > 0?

Update simultaneous machine

downtime duration

Yes

No

Recording the no. of occurrences and 

duration of simultaneous processes

End

No

Machine 1

Down

Machine 2

Down

Machine 1

Down

Machine 2

Down

Machine 1

Down

Machine 2

Down

Machine 1

Down

Machine 2

Down

(a)

(b)

(c)

(d)
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Appendix 5.18. On-screen layout of simulation model. 
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Appendix 5.19. SimRunner screen-captures:- inputting model parameter values for 

determining the cost-optimal policy for a given inspection interval: 

(a) The SimRunner optimisation tool - initial screen. 

 

 

(b) The selection of the response category and the specific response statistic. 
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(c) Setting the range for the response statistic. 

 

 

(d) Specifying the model parameters: warm-up; no. of replications; and run time. 
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(e) SimRunner experiments, confirming the cost-optimal policy is achieved with 𝑺 = 𝟔. 

 

 

(f) The plot illustrating that the SimRunner has indeed found the optimum 𝑺 for the 

specific (𝑹, 𝑺, 𝑻 = 𝑹) policy using just-in-time ordering for 𝑻 = 𝟓. 

 

2,250

2,300

2,350

2,400

4 5 6 7 8 9 10

G
ra

n
d

 t
o

ta
l 

co
st

-r
at

e 
(£

/w
ee

k
) 

(J
IT

 o
rd

er
in

g
)

Order-up-to-level, S

R,S,T=R (JIT)*



REFERENCES 

 189 

 

8. References 

 

 

Abdel-Hameed, M. (1995). “Inspection, maintenance and replacement models.” Computers 

and Operations Research 22: 435-441. 

Abdollahzadeh, H., Atashgar, K., and Abbasi, M. (2016). “Multi-objective opportunistic 

maintenance optimization of a wind farm considering limited number of maintenance 

groups.” Renewable Energy 88: 247-261. 

Akbarov, A., Wang, W., and Christer, A. H. (2008). “Problem identification in maintenance 

modelling: a case study.” International Journal of Production Research 46: 1031-

1046. 

Allaoui, H., and Artiba, A. (2004). “Integrating simulation and optimization to schedule a 

hybrid flow shop with maintenance constraints.” Computers and Industrial 

Engineering 47: 431-450. 

Alrabghi, A., and Tiwari, A. (2015). “State of the art in simulation-based optimisation for 

maintenance systems.” Computers & Industrial Engineering 82: 167–182. 

Alrabghi, A., and Tiwari, A. (2016). “A novel approach for modelling complex maintenance 

systems using discrete event simulation.” Reliability Engineering and System Safety 

154: 160-170. 

Alrabghi, A., Tiwari, A., and Savill, M. (2017). “Simulation-based optimisation of 

maintenance systems: Industrial case studies.” Journal of Manufacturing Systems 44: 

191-206. 

Alsyouf, I. (2006). “Measuring maintenance performance using a balanced scorecard 

approach.” Journal of Quality in Maintenance Engineering 12: 133–149. 

Alsyouf, I. (2009). “Maintenance practices in Swedish industries: Survey results.” 

International Journal of Production Economics 121: 212–223. 

Alsyouf, I., Shamsuzzaman, M., Abdelrahman, G. and Al-Taha, M. (2016). “Improving 

reliability of repairable systems using preventive maintenance and time-between-

failures monitoring.” European Journal of Industrial Engineering 10: 596-617. 



REFERENCES 

 190 

Arthur, N. (2005). “Optimization of vibration analysis inspection intervals for an offshore oil 

and gas water injection pumping system.” Proceedings of the Institution of 

Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 219: 

251-259. 

Babishin, V., and Taghipour, S. (2016). “Optimal maintenance policy for multicomponent 

systems with periodic and opportunistic inspections and preventive replacements.” 

Applied Mathematical Modelling 40: 10480-10505. 

Baker, R. D., and Christer, A. H. (1994). “Review of delay-time OR modelling of engineering 

aspects of maintenance.” European Journal of Operational Research 73: 407-422. 

Baker, R. D., and Wang, W. (1992). “Estimating the delay-time distribution of faults in 

repairable machinery from failure data.” IMA Journal of Mathematics Applied in 

Business & Industry 3: 259-281. 

Baker, R. D, Wang, W. (1993). “Developing and testing the delay time model.” Journal of 

Operational Research Society 44: 361-374. 

Banks, J. (2010). Discrete-event System Simulation. Upper Saddle River: Pearson. 

Banks, J., Carson, J.S., Nelson, B.L., and Nicol, D.M. (2013). Discrete-event System 

Simulation. Pearson: Harlow, UK. 

Barlow, R., Hunter, L. (1960). “Optimum preventive maintenance policies.” Operations 

Research 8: 90-100. 

Barlow, R. E. and Proschan, F. (1965). Mathematical Theory of Reliability. Wiley, New York. 

Berrade, M. D., Cavalcante, C. A. V., and Scarf, P. A. (2012). “Maintenance scheduling of a 

protection system subject to imperfect inspection and replacement.” European 

Journal of Operational Research 218: 716-725. 

Boschian, V., Rezg, N., and Chelbi, A. (2009). “Contribution of simulation to the optimization 

of maintenance strategies for a randomly failing production system.” European 

Journal of Operational Research 197: 1142–1149. 

Boulet, J. F., Gharbi, A., and Kenn, J. P. (2009). “Multiobjective optimization in an unreliable 

failure-prone manufacturing system.” Journal of Quality in Maintenance Engineering 

15: 397-411. 

Boylan, J. E., and Syntetos, A. A., (2010). “Spare parts management: a review of forecasting 

research and extensions.” IMA Journal of Management Mathematics 21: 227-237. 



REFERENCES 

 191 

Brezavscek, A., and Hudoklin, A. (2003). “Joint optimization of block replacement and 

periodic-review spare-provisioning policy.” IEEE Transactions on Reliability 52: 

112-117. 

Chelbi, A., and Ait-Kadi, D. (2001). “Spare provisioning strategy for preventively replaced 

systems subjected to random failure.” International Journal of Production 

Economics 74: 183-189. 

Cavory, G., Dupas, R., and Goncalves, G. (2001). “A genetic approach to the scheduling of 

preventive maintenance tasks on a single product manufacturing production line.” 

International Journal of Production Economics 74: 135-146. 

Chellappachetty, B., and Raju, R. (2015). “Analysing the effect of grouping subsystems for 

periodic maintenance inspection of equipment using delay time methodology to 

minimise the downtime per unit time.” Indian Journal of Science and Technology 8: 

849-858. 

Chen, L., Ye, Z. S., and Xie, M. (2013). “Joint maintenance and spare parts provisioning 

policy for k-out-of-n systems.” Asia-Pacific Journal of Operational Research 30: 1-

21. 

Cheng, R., Macal, C., Nelson, B., Rabe, M., Currie, C., Fowler, J., and Lee, L. H. (2016). 

“Simulation: The past 10 years and the next 10 years.” Proceedings of the Winter 

Simulation Conference. Roeder, T. M. K., Szechtman, R., Zhou, E., Huschka, T., and 

Chick S. E. (Editors). 

Cheng, Y. H. and Tsao, H. L. (2010). “Rolling stock maintenance strategy selection, spares 

parts’ estimation, and replacements’ interval calculation.” International Journal of 

Production Economics 128: 404-412. 

Cho, D. I., and Parlar, M. (1991). “A survey of maintenance models for multi-unit systems.” 

European Journal of Operational Research 51: 1-23. 

Cholasuke, C., Bhardwa, R., and Antony, J. (2004). “The status of maintenance management 

in UK manufacturing organisations: results from a pilot survey.” Journal of Quality 

in Maintenance Engineering 10: 5-15. 

Christer, A. H. (1976). “Innovative Decision Making.” In Proceedings of the NATO 

conference on the role and effectiveness of theories of decision in practice. Bowen, 

K. C. and White, D. J. (Editors), Hodder and Stoughton, 368-377. 



REFERENCES 

 192 

Christer, A. H. (1987). “Delay-time model of reliability of equipment subject to inspection 

monitoring.” Journal of the Operational Research Society 38: 329-334. 

Christer, A. H. (1999). “Developments in delay time analysis for modelling plant 

maintenance.” Journal of the Operational Research Society 50: 1120-1137. 

Christer, A. H., and Waller, W. M. (1984a). “Delay time Models of Industrial Inspection 

Maintenance Problems.” Journal of the Operational Research Society 35: 401-406. 

Christer, A. H, Waller, W. M. (1984b). “Reducing production downtime using delay-time 

analysis.” Journal of the Operational Research Society 35: 499-512. 

Christer, A. H., and Wang, W. (1995). “A delay time based maintenance model of a multi-

component system.” IMA Journal of Management Mathematics 6: 205-222. 

Christer, A. H., Wang, W., Baker, R. D., and Sharp, J. M. (1995). “Modelling maintenance 

practice of production plant using the delay-time concept.” IMA Journal of 

Management Mathematics 6: 67-83. 

Collins, D. (2017). “What is L10 life and why does it matter?” 23 February 2017. Accessed 12 

October 2017. http://www.linearmotiontips.com/what-is-l10-life-and-why-does-it-

matter/ 

Crespo, A. M., Gupta, J. N. D., and Heguedas, A. S. (2003). “Maintenance policies for a 

production system with constrained production rate and buffer capacity.” 

International Journal of Production Research 41: 1909-1926. 

Das, A. N., and Sarmah S. P. (2010). “Preventive replacement models: an overview and their 

application in process industries.” European Journal of Industrial Engineering 4: 

280–307. 

De Almeida, A. T. (2001). “Multicriteria decision making on maintenance, spares and 

contracts planning.” European Journal of Operational Research 129: 235-241. 

De Almeida, A. T., Ferreira, R. J. P., and Cavalcante, C.A.V. (2015). “A review of the use of 

multicriteria and multi-objective models in maintenance and reliability.” IMA 

Journal of Management Mathematics 26: 249-271. 

De Smidt-Destombes, K. S., Van Der Heigden, M. C. and Van Harten, A. (2007). 

“Availability of k-out-of-N systems under block replacement sharing limited spares 

and repair capacity.” International Journal of Production Economics 107: 404-421. 

http://www.linearmotiontips.com/what-is-l10-life-and-why-does-it-matter/
http://www.linearmotiontips.com/what-is-l10-life-and-why-does-it-matter/


REFERENCES 

 193 

De Smidt-Destombes, K. S., Van Der Heijden, and M. C., Van Harten, A. (2009). “Joint 

optimisation of spare part inventory, maintenance frequency and repair capacity for 

k-out-of-N systems.” International Journal of Production Economics 118: 260-268. 

Dekker, R. (1996). “Applications of maintenance optimization models: a review and 

analysis.” Reliability Engineering and System Safety 51: 229-240. 

Dekker, R., and Scarf, P. A. (1998). “On the impact of optimisation models in maintenance 

decision making: the state of the art.” Reliability Engineering and System Safety 60: 

111-119. 

Dias, L. M. S., Vieira, A. A. C., Pereira, G. A. B., and Oliveira, J. A. (2016). “Discrete 

simulation software ranking – a top list of the worldwide most popular and used 

tools.” Proceedings of the Winter Simulation Conference. Roeder, T. M. K., 

Szechtman, R., Zhou, E., Huschka, T., and Chick S. E. (Editors). 

Ding, S. H., Kamaruddin, S. (2015). “Maintenance policy optimization - literature review and 

directions.” International Journal of Advanced Manufacturing Technology 76: 1263–

1283. 

Dinmohammadi, F., Alkali, B., Shafiee, M., Bérenguer, C., and Labib, A. (2016). “Risk 

evaluation of railway rolling stock failures using FMECA technique: A case study of 

passenger door system.” Urban Rail Transit 2: 128-145. 

Emovon, I., Norman, R. A., Murphy, A. J. (2016). “An integration of multi-criteria decision 

making techniques with a delay time model for determination of inspection intervals 

for marine machinery systems.” Applied Ocean Research 59: 65-82. 

Erguido, A., Marquez, A. C., Castellano, E., and Fernandez, J. F. G. (2017). “A dynamic 

opportunistic maintenance model to maximize energy-based availability while 

reducing the life cycle cost of wind farms.” Renewable Energy 114: 843-856. 

Flage, R. (2014). “A delay time model with imperfect and failure-inducing inspections.” 

Reliability Engineering and System Safety 124: 1–12. 

Folger, R., Rodes, J., and Novak, D. (2014a). “Bearing Killer: preventing common causes of 

bearing system damage – part 1.” Maintenance & Engineering 14: 12-15. 

Folger, R., Rodes, J., and Novak, D. (2014b). “Bearing Killer: preventing common causes of 

bearing system damage – part 2.” Maintenance & Engineering 14: 8-10. 



REFERENCES 

 194 

Gan, S., Zhang, Z., Zhou, Y., and Shi, J. (2015). “Joint optimization of maintenance, buffer, 

and spare parts for a production system.” Applied Mathematical Modelling 39: 6032-

6042. 

Geraerds, W. M. J. (1978). “Estimation of Cost of Maintenance Expenditure within the 

Netherlands.” Internal Report, Faculty of Technology Management, Eindhoven 

University of Technology, Netherlands. 

Gharbi, A., and Kenné, J. P. (2005). “Maintenance scheduling and production control of 

multiple-machine manufacturing systems.” Computers and Industrial Engineering 

48: 693-707. 

Ghobbar, A. A., and Friend, C. H. (2003). “Evaluation of forecasting methods for intermittent 

parts demand in the field of aviation: A predictive model.” Computers and 

Operations Research 30: 2097-2114. 

Gopalakrishnan, M., Laroque, C., and Skoogh, A. (2016). “Buffer utilisation based scheduling 

of maintenance activities by a shifting priority approach – a simulation study.” 

Proceedings of the Winter Simulation Conference. Roeder, T. M. K., Szechtman, R., 

Zhou, E., Huschka, T., and Chick S. E. (Editors). 

Gupta, A., and Lawsirirat, C. (2006). “Strategically optimum maintenance of monitoring-

enabled multi-component systems using continuous-time jump deterioration models.” 

Journal of Quality in Maintenance Engineering, 12: 306–329. 

Harrell, C., Ghosh, B. K., and Bowden, R. O. (2011). Simulation using ProModel. Third 

Edition. McGraw Hill. 

Hu, Q., Chakhar, S., Siraj, S., and Labib, A. (2017). “Spare parts classification in industrial 

manufacturing using the dominance-based rough set approach.” European Journal of 

Operational Research 262: 1136-1163. 

Huang, R., Meng, L., Xi, L., and Liu, C. (2008). “Modeling and analyzing a joint optimization 

policy of block-replacement and spare inventory with random-leadtime.” IEEE 

Transactions Reliability 57: 113-124. 

Ilgin, M. A., and Tunali, S. (2007). “Joint optimization of spare parts inventory and 

maintenance policies using genetic algorithms.” International Journal of Advanced 

Manufacturing Technology 34: 594-604. 



REFERENCES 

 195 

Irawan, C. A., Ouelhadj, D., Jones, D., Stålhane, M., and Sperstad, I. B. (2017). “Optimisation 

of maintenance routing and scheduling for offshore wind farms.” European Journal 

of Operational Research 256: 76-89. 

Jacobs, W., Van Hooreweder, B., Boonen, R., Sas, P, Moens, D. (2016). “The influence of 

external dynamic loads on the lifetime of rolling element bearings: Experimental 

analysis of the lubricant film and surface wear.” Mechanical Systems and Signal 

Processing 74: 144-164. 

Jardine, A. K. S., and Hassounah, M. I. (1990). “An optimal vehicle-fleet inspection 

schedule.” Journal of the Operational Research Society 33: 723-732. 

Jiang, Y., Chen, M., and Zhou, D. (2015). “Joint optimization of preventive maintenance and 

inventory policies for multi-unit systems subject to deteriorating spare part 

inventory.” Journal of Manufacturing Systems 35: 191-205. 

Jones, B., Jenkinson, I., and Wang, J. (2009). “Methodology of using delay-time analysis for a 

manufacturing industry.” Reliability Engineering and System Safety 94: 111-124. 

Jones, B., Jenkinson, I., Yang, Z., and Wang, J. (2010). “The use of Bayesian network 

modelling for maintenance planning in a manufacturing industry.” Reliability 

Engineering and System Safety 95: 267-277. 

Kaio, N., and Osaki, S. (1989). “Comparison of Inspection Policies.” Journal of the 

Operational Research Society 40: 499-503. 

Kennedy, W. J., Patterson, J. W., and Fredendall, L. D. (2002). “An overview of recent 

literature on spare parts inventories.” International Journal of Production Economics 

76: 201-215. 

Khalili, M. H., and Zahedi-Hosseini, F. (2013). “Modelling and simulation of a mattress 

production line using ProModel.” In Proceedings of the Winter Simulation 

Conference (WSC). Pasupathy R., Kim, S. H., Tolk, A., Hill, R., and Kuhl, M. E. 

(Editors). 8-11 December 2013, Washington, DC. 

Kim, W. K., Yoon, K. P., Kim, Y., and Bronson, G. J. (2012). “Improving system 

performance for stochastic activity network: A simulation approach.” Computers & 

Industrial Engineering 62: 1-12. 

Komonen, K. (2002). “A cost model of industrial maintenance for profitability analysis and 

benchmarking.” International Journal of Production Economics 79: 15-31. 



REFERENCES 

 196 

Kuntz, P. A., Christie, R. D., and Venkata, S. S. (2001). “A reliability centred optimal visual 

inspection model for distribution feeders.” IEEE Transactions on Power Delivery 16: 

718-723. 

Law, A. M. (2015). Simulation Modelling and Analysis. Fifth edition. McGraw-Hill: New 

York. 

Linneusson, G., Ng, A., and Aslam, T. (2016). “Investigating maintenance performance: A 

simulation study.” 7th Production Symposium, Sweden. 

Liu, X., Wang, W., Peng, R. (2015). “An integrated production and delay-time based 

preventive maintenance planning model for a multi-product production system.” 

Journal of Maintenance and Reliability 17: 215-221. 

Lu, W. Y., Wang, W. (2011). “Modelling Preventive maintenance based on the delay time 

concept in the context of a case study.” Journal of Maintenance and Reliability 3: 4-

10. 

Lu, B. Zhou,X. and Li, Y. (2016). “Joint modelling of preventive maintenance and quality 

improvement for deteriorating single-machine manufacturing systems.” Computers & 

Industrial Engineering 91: 188-196. 

Lung, B., Do, P., Levrat, E., and Voisin, A. (2016). “Opportunistic maintenance based on 

multi-dependent components of manufacturing system.” CIRP Annals – 

Manufacturing Technology 65: 401-404. 

Luss, H. (1983). “An Inspection Policy Model for Production Facilities.” Management 

Science 29: 1102-1109. 

Lynch, P., Adendorff, K., Yadavalli, V. S. S., and Adetunji, O. (2013). “Optimal spares and 

preventive maintenance frequencies for constrained industrial systems.” Computers 

and Industrial Engineering 65: 378–387. 

Macal, C. M. (2016). “Everything you need to know about agent-based modelling and 

simulation.” Journal of Simulation 10: 144-156. 

Maintenance & Engineering. (2017). “Improving reliability with an outsourced maintenance 

strategy.” Maintenance & Engineering: 16. 

Marseguerra, M., Zio, E., and Podofillini, L. (2005). “Multiobjective spare part allocation by 

means of genetic algorithms and Monte Carlo simulation.” Reliability Engineering 

and System Safety 87: 325-335. 



REFERENCES 

 197 

McCall, J. (1965). “Maintenance policies for stochastically failing equipment: a survey.” 

Management Science 11: 493-524. 

Molenaers, A., Baets, H., Pintelon, L., and Waeyenbergh, G. (2012). “Criticality classification 

of spare parts: A case study.” International Journal of Production Economics 140: 

570-578. 

Muller, M. (2011). Essentials of Inventory Management. Second Edition. AMACOM. 

Natarajan, A. R. (2016). “The design of a novel bearing manufacturing line based on 

simulation.” American Journal of Operations Research 6: 425-435. 

Nelson, B. L. (2016). “Some tactical problems in digital simulation for the next 10 years.” 

Journal of Simulation 10: 2-11. 

Nicolai, R. P., and Dekker, R. (2008). “Optimal maintenance of multi-component systems: a 

review.” In Complex System Maintenance Handbook. Kobbacy, K. A. H., Murthy, D. 

N. P. (Editors). Springer, London, 263-286. 

Nguyen, T., Deloux, E., and Dieulle, L. (2016). “Maintenance policies for a heterogeneous 

two-component system with stochastic and economic dependencies.” IFAC-

PapersOnLine 49-12: 787-792. 

Okumura, S., Jardine, A. K. S., and Yamashina, H. (1996). “An inspection policy for a 

deteriorating single-unit system characterized by a delay-time model.” International 

Journal of Production Research 34: 2441-2460. 

Olde Keizer, M. C. A., Flapper, S. D. P., Teunter, R. H. (2017). “Condition-based 

maintenance policies for systems with multiple dependent components: A review.” 

European Journal of Operational Research 261: 405-420. 

Panagiotidou, S. (2014). “Joint optimization of spare parts ordering and maintenance policies 

for multiple identical items subject to silent failures.” European Journal of 

Operational Research 235: 300-314. 

Pham, H., and Wang, H. (1996). “Imperfect maintenance.” European Journal of Operational 

Research 94: 428-438. 

Pierskalla, W. P., and Voelker, J. A. (2006). “A survey of maintenance models: The control 

and surveillance of deteriorating systems.” Naval Research Logistics Quarterly 23: 

353-388. 



REFERENCES 

 198 

Pietruczuk, A. J., and Werbińska-Wojciechowska, S. (2017). “Block inspection policy model 

with imperfect maintenance for single-unit systems.” Procedia Engineering 187: 

570-581. 

Pillay, A., Wang, J., Wall, A. D., and Ruxton T. (2001a). “A maintenance study of fishing 

vessel equipment using delay-time analysis.” Journal of Quality in Maintenance 

Engineering 7: 118-128. 

Pillay, A., Wang, J., and Wall, A. D. (2001b). “Optimal inspection period for fishing vessel 

equipment: a cost and downtime model using delay time analysis.” Marine 

Technology 38: 122-129. 

Pophaley, M., and Vyas, R. K. (2010). “Plant maintenance management practices in auto- 

mobile industries: a retrospective and literature review.” Journal of Industrial 

Engineering and Management 3: 512-541. 

ProModel. (2010). SimRunner User Guide. ProModel Corporation. 

ProModel. (2016). ProModel User Guide. ProModel Corporation. 

Rabe, M. and Dross, F. (2015). “A reinforcement learning approach for a decision support 

system for logistics networks”. Proceedings of the Winter Simulation Conference, 

Yilmaz, L., Chan, W.K.V., Moon, I., Roeder, T.M.K., Macal, C., and Rossetti, M. 

(Editors): 2020-2032, Piscataway: IEEE. 

Rezg, N., Chelbi, A., and Xie, X. (2005). “Modelling and optimizing a joint inventory control 

and preventive maintenance strategy for a randomly failing production unit: 

analytical and simulation approaches.” International Journal of Computer Integrated 

Manufacturing 8: 225-235. 

Robinson, S. (2004). Simulation: The practice of model development and use. Wiley. 

Roux, O., Duvivier, D., Quesnel, G., Ramat, E. (2013). “Optimization of preventive 

maintenance through a combined maintenance-production simulation model.” 

International Journal of Production Economics 143: 3-12. 

Roux, O., Jamali, M. A., Kadi, D. A., and Châtelet, E. (2008). “Development of simulation 

and optimization platform to analyse maintenance policies performances for 

manufacturing systems.” International Journal of Computer Integrated 

Manufacturing 21: 407-414. 



REFERENCES 

 199 

Roy, R., Stark, R., Tracht, K., Takata, S., and Mori, M. (2016). “Continuous maintenance and 

the future – Foundations and technological challenges.” CIRP Annals – 

Manufacturing Technology 65: 667-688. 

Rozen, K., and Byrne, N. M. (2016). “Using simulation to improve semiconductor factory 

cycle time by segregation of preventive maintenance activities.” Proceedings of the 

Winter Simulation Conference. Roeder, T. M. K., Szechtman, R., Zhou, E., Huschka, 

T., and Chick S. E. (Editors). 

Samal, N. K., and Pratihar, D. K. (2015). “Joint optimization of preventive maintenance and 

spare parts inventory using genetic algorithms and particle swarm optimization 

algorithm.” International Journal of System Assurance Engineering and Management 

6: 248-258. 

Santos, A. F., and Bispo, C. F. (2016). “Simulation based optimisation package for periodic 

review inventory control.” Proceedings of the Winter Simulation Conference, 

Roeder, T. M. K., Szechtman, R., Zhou, E., Huschka, T., and Chick S. E. (Editors). 

Sarker, B. R., and Faiz, T. I. (2016). “Minimizing maintenance cost for offshore wind turbines 

following multi-level opportunistic preventive strategy.” Renewable Energy 85: 104-

113. 

Sarker, R., and Haque, A. (2000). “Optimization of maintenance and spare provisioning 

policy using simulation.” Applied Mathematical Modelling 24: 751-760. 

Scarf, P. A., and Cavalcante, C.A.V. (2012). “Modelling quality in replacement and inspection 

maintenance.” International Journal of Production Economics 135: 372-381. 

Scarf, P. A. (1997). “On the application of mathematical models in maintenance.” European 

Journal of Operational Research 99: 493-506. 

Shafiee, M., Finkelstein, M., and Bérenguer, C. (2015). “An opportunistic condition-based 

maintenance policy for offshore wind turbine blades subjected to degradation and 

environmental shocks.” Reliability Engineering and System Safety 142: 463-471. 

Shafiee, M., Patriksson, M., Chukova, S. (2016). “An optimal age–usage maintenance strategy 

containing a failure penalty for application to railway tracks.” Proceeding of 

Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit 230: 

407-417. 



REFERENCES 

 200 

Sharma, A., and Yadava, G. S. (2011). “A literature review and future perspectives on 

maintenance optimization.” Journal of Quality in Maintenance Engineering 17: 5-25. 

Silver, E. A., Pyke, D. F., and Thomas, D. J. (2016). Inventory Management and Production 

Planning and Scheduling. Third Edition. Wiley. 

Smith, M. A. J. and Dekker, R. (1997). “Preventive maintenance in a 1 out of n system: The 

uptime, downtime and costs.” European Journal of operational research 99: 565-

583. 

Tateyama, T., Tateno, T., and Shimizu, K. (2010). “Dynamic work planning by using 

simulation-based optimization in consideration of workers’ skill and training.” 

Journal of Advanced Mechanical Design, Systems and Manufacturing 4: 597–604. 

Thomas, L.C. (1986). “A survey of maintenance and replacement models for maintainability 

and reliability of multi-item systems.” Reliability Engineering and System Safety 16: 

297–309. 

Thomas, L. C., Gaver, D. P., and Jacobs, P. A. (1991). “Inspection models and their 

application.” IMA Journal of Management Mathematics 3: 283-303. 

Thörnblad, K., Strömberg, A-B., Patriksson, M. and Almgren, T. (2015). “Scheduling 

optimisation of a real flexible job shop including fixture availability and preventive 

maintenance.” European Journal of Industrial Engineering 9: 126-145. 

Van Horenbeek, A., Pintelon, L., and Muchiri, P. (2010). “Maintenance optimization models 

and criteria.” International Journal of Systems Assurance Engineering and 

Management 1: 189–200. 

Van Horenbeek, A., Buré, J., Cattrysse, D., Pintelon, L., and Van Steenwegen, P. (2013). 

“Joint maintenance and inventory optimization systems: A review.” International 

Journal of Production Economics 143: 499-508. 

Van Oosterom, C. D., Elwany, A. H., Çelebi, D., and Van Houtum, G. J. (2014). “Optimal 

policies for a delay time model with postponed replacement.” European Journal of 

Operational Research 232: 186–197. 

Vaughan, T. S. (2005). “Failure replacement and preventive maintenance spare parts ordering 

policy.” European Journal of Operations Research 161: 183-190. 



REFERENCES 

 201 

Volovoi, V. (2016a). “Simulation of maintenance processes in the big data era.” Proceedings 

of the Winter Simulation Conference. Roeder, T. M. K., Szechtman, R., Zhou, E., 

Huschka, T., and Chick S. E. (Editors). 

Volovoi, V. (2016b). “Big data for reliability engineering: Threat and opportunity”. IEEE 

Reliability Magazine. 

Wall, D. (2013). “Trunnion bearing replacement on a BOS Plant.” Maintenance & 

Engineering: MaintenanceOnLine.Co.UK (28/03/2013): 22. 

Wang, H. Z. (2002). “A survey of maintenance policies of deteriorating systems.” European 

Journal of Operational Research 139: 469-489. 

Wang, S., and Liu, M. (2015). “Multi-objective optimization of parallel machine scheduling 

integrated with multi-resources preventive maintenance planning.” Journal of 

Manufacturing Systems 37: 182-192. 

Wang, W. (2008). “Delay Time Modelling.” In Complex System Maintenance Handbook. 

Kobbacy, K. A. H., Murthy, D. N. P. (Editors). Springer, London, 345-370. 

Wang, W. (2011a). “A joint spare part and maintenance inspection optimisation model using 

the delay-time concept.” Reliability Engineering and System Safety 96: 1535-1541. 

Wang, W. (2011b). “An inspection model based on a three-stage failure process.” Reliability 

Engineering and System Safety 96: 838-848. 

Wang, W. (2012a). “An overview of the recent advances in delay-time-based maintenance 

modelling.” Reliability Engineering and System Safety 106: 165-178. 

Wang, W. (2012b). “A stochastic model for joint spare parts inventory and planned 

maintenance optimisation.” European Journal of Operational Research 216: 127-

139. 

Wang, W., Christer, A. H. (1997). “A modelling procedure to optimise component safety 

inspection over a finite time horizon.” Quality and Reliability Engineering 

International 13: 217-224. 

Wang, W., and Syntetos, A. A. (2011). “Spare parts demand: Linking forecasting to 

equipment maintenance.” Transportation Research Part E 47: 1194-1209. 

Wang W., and Wang, H. (2015). “Preventive replacement for systems with condition 

monitoring and additional manual inspections.” European Journal of Operational 

Research 247: 459-471. 



REFERENCES 

 202 

Williams, J. W. (2014). “Simulation attacks manufacturing challenges.” Proceedings of the 

Winter Simulation Conference. Tolk, A., Diallo, S. Y., Ryzhov, I. O., Yilmaz, L., 

Buckley, S., Miller, J. A. (Editors). 

Xiang, Y., Cassady, C. R., and Pohl, E. A. (2012). “Optimal maintenance policies for systems 

subject to a Markovian operating environment.” Computers and Industrial 

Engineering 62: 190-197. 

Yang, L., Ma, X., Zhai, Q., Zhao, Y. (2016). “A delay time model for a mission-based system 

subject to periodic and random inspection and postponed replacement.” Reliability 

Engineering and System Safety 150: 96-104. 

Yoo, Y. K., Kim, K. J., and Seo, J. (2001). “Optimal joint spare stocking and block 

replacement policy (cost modelling of spare stocking and block replacement).” 

International Journal of Advanced Manufacturing Technology 18: 906-909. 

Zahedi-Hosseini, F., Scarf, P. A., and Syntetos, A. A. (2017). “Joint optimisation of inspection 

maintenance and spare parts provisioning: a comparative study of inventory policies 

using simulation and survey data.” Reliability Engineering and System Safety 168: 

306-316. http://dx.doi.org/10.1016/j.ress.2017.03.007. 

Zhang, N., Fouladirad, M., and Barros, A. (2016). “Maintenance of a two dependent 

component system: a case study.” IFAC-PapersOnLine 49-12: 793-798. 

Zhang, C., Gao, W., Guo, S., Li, Y., and Yang, T. (2017). “Opportunistic maintenance for 

wind turbines considering imperfect, reliability-based maintenance.” Renewable 

Energy 103: 606-612. 

 

http://dx.doi.org/10.1016/j.ress.2017.03.007

