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ABSTRACT 

The aim of this thesis is to investigate speaker recognition in the presence of environmental 

noise, and to develop a robust speaker recognition method. Recently, Speaker Recognition has 

been the object of considerable research due to its wide use in various areas. Despite major 

developments in this field, there are still many limitations and challenges. Environmental noises 

and their variations are high up in the list of challenges since it impossible to provide a noise 

free environment. 

A novel approach is proposed to address the issue of performance degradation in environmental 

noise. This approach is based on the estimation of signal-to-noise ratio (SNR) and detection of 

ambient noise from the recognition signal to re-train the reference model for the claimed speaker 

and to generate a new adapted noisy model to decrease the noise mismatch with recognition 

utterances. This approach is termed “Training on the fly” for robustness of speaker recognition 

under noisy environments.  

To detect the noise in the recognition signal two different techniques are proposed: the first 

technique including generating an emulated noise depending on estimated power spectrum of 

the original noise using 1/3 octave band filter bank and white noise signal. This emulated noise 

become close enough to original one that includes in the input signal (recognition signal). The 

second technique deals with extracting the noise from the input signal using one of speech 

enhancement algorithm with spectral subtraction to find the noise in the signal. 

Training on the fly approach (using both techniques) has been examined using two feature 

approaches and two different kinds of artificial clean and noisy speech databases collected in 

different environments. Furthermore, the speech samples were text independent. The training 

on the fly approach is a significant improvement in performance when compared with the 

performance of conventional speaker recognition (based on clean reference models). Moreover, 

the training on the fly based on noise extraction showed the best results for all types of noisy 

data.
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INTRODUCTION 

1.1 Speaker Recognition and other Biometrics  

Speech signals include much information related to the speaker. This information has been used 

throughout recent decades by researchers in many fields, such as speech recognition, speech 

synthesis, and speech production. However, one of the most important usages of the speech 

signal, which is related to the security and forensic fields, is the biometric authentication called 

speaker recognition. 

Speaker Recognition (or voice Biometric) is part of Biometric authentication, which means the 

automatic identity recognition of a person using specific intrinsic characteristics of the person 

concerned, such as fingerprint, hand, Iris, or DNA. To select a specific biometric, many factors 

should be taken into account: robustness, accessibility, acceptability, and flexibility. 

Speaker Recognition is defined as the process of recognising a human depending on the unique 

characteristics that are included in his/her speech signal. This can be represented as a hybrid 

biometric because the speaker's voice is identified based on the structure of the vocal tract 

(physiological component) in addition to the way that the speaker talks (behaviour 

component)(Pillay, 2010). 

The main advantages of Speaker Recognition are that it is easy to capture the samples from 

individuals compared with other kinds of biometric patterns, which usually require the presence 

of the person (Nengheng, 2005). For instance, in the application of telephone banking, the user 

needs to be remotely identified before verification to their bank account. Furthermore, systems 

based on speaker recognition are probably the most natural and economical among other 

biometric systems, since they do not need any special hardware to capture the human voice. For 

example, in telephone-based applications to recognise users only a telephone handset of a 

mobile phone or landline are required. These reasons make speaker recognition one of the most 

desirable types of biometric authentication (Pillay, 2010). 
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Speaker recognition is also widely used in various areas, such as access control for computer 

data, forensic voice sample, mobile communication, speaker classification and others. Table 1-

1 illustrates a comparison of different types of biometrics. 

Table 1-1: Comparison among different types of Biometric Authentications 

Biometric 
Flexible to use 
(Acceptability) 

Accuracy
Robustness (long 

term stability 
Error incidence 

Required 
Security 

level 

Fingerprints Medium High High 
Dryness, 
Dirt, age 

High 

Face  High High Medium 
Age, Glasses, 
lighting, hair 

Medium 

Iris Medium High High Low lighting High 

Signature  High High Medium 
Changing 
Signatures 

Medium 
 

Hand 
Geometry  

Medium High Medium 
Hand injury, 

age 
Medium 

Voice  High High Medium Cold, Noise Medium 

 

 

There is a significant difference between speaker recognition and speech recognition, although 

they are related since both utilise speech signals. Speaker recognition tries to find who was 

speaking (identify or verify of the speaker) whereas the primary aim of speech recognition is to 

determine what was spoken. 

1.2 Speaker Recognition Branches 

Speaker recognition systems (SR) have various types which are either directly or indirectly 

related  (Beigi, 2011). But in general, speaker recognition can be classified into two main 

branches: 

Speaker Verification SV (or Speaker Authentication) and Speaker Identification SI. Speaker 

verification (SV) is defined as the process of determining whether this speaker’s voice belongs 

to the claimed person or not based on a given input utterance (e.g. username, or an identification 

number). Therefore, there are only two possible types of output for a verification system: either 
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this voice sound is the sound of the claimed person (user verified) or it belongs to an imposter 

(user rejected) (Beigi, 2011, Rao and Sarkar, 2014). 

The process of speaker verification includes taking the speech signal from a speaker to create a 

recognition model (test model) by extracting parametric speech features from this signal; these 

features represent the more stable, robust and compact coefficients of the test speech signal 

which are suitable for the next phases. This recognition model is then compared with another 

model that has already been stored in a database called the enrolled speaker model (training 

reference model) which is extracted in the same way in the recognition phase to obtain the match 

score between the two models. This score specifies the degree of similarity between the test 

speaker model and training speaker model (Figure 1.1). 

Figure 1.1: Speaker Verification System 
 

Speaker identification, on the other hand, is known as the process of using a speech signal to 

determine the identity of the speaker from a population of registered speakers (Figure 1.2). In 

other words, the input speech signal of the unknown speaker is compared with a database of M 

reference speaker’s models as a 1: M process to find the closest matching speaker. 

Speaker Identification can be divided into two types: Closed Set and Open set. In the closed set 

system, the speech of a target user is matched with all available registered speakers’ models and 

the identity of the closest model (or sometimes models) is returned. Therefore, there is no 

rejection case in this type. Consequently, the number of alternative decisions is similar to 

population Size M (Figure 1.2.a). Thus, in closed set speaker identification, when the number 

Hi I am Sara  

Hi I am Sara 

Access Verified 

Access Denied 

Sara 

Kate 

Speaker Verification 
System 
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of individual models in the system increases, the performance of the identification system 

decreases (Pillay, 2010, Beigi, 2011, Rao and Sarkar, 2014).  

The open set model represents a combination of speaker verification and closed set speaker 

identification. In this kind of system, if the speech signal of the speaker is matched with one of 

the registered speaker models, the identity of that speaker will be returned. However, if the 

speech signal is not matched with any model in the system, the speaker may be rejected and 

registered as an unknown speaker (imposter). Therefore, the number of alternative decisions, in 

this case, is M+1, with the addition of the possibility that the speech belongs to an anonymous 

user (Figure 1.2.b). 

Figure 1.2: Closed-Open Set Speaker Identification Systems 

In Addition to the previous classification, Speaker recognition can further be classified 

according to the speech modalities into text-dependent, text prompt, and text independent 

(Beigi, 2011). In the first type, which is usually used in speaker verification, the utterance used 

for accessing the system is limited to a specific phrase or phrases. So, the recognition phrases 

are constant and known in advance (Rao and Sarkar, 2014). One of the major problems of this 

type of recognition is what is called the liveness challenge (Beigi, 2011) which means that the 

imposter can easily record the voice of a target speaker and use it to access the recognizer 

system. So, the usage of this kind of recognition is limited to particular applications. 

Hi I am John Access accepted 
welcome John 

Welcome John 
Hi I am John 

John John 

Hi I am Sara 
Welcome Sara Access accepted 

welcome Sara 

Hi I am Sara 

Sara 
Sara 

Hi I am Mike Hi I am Mike Access Denied 
Unknown person 

Unrecognised  

(a) 

Mike 

Close set Speaker 

Identification  

(b) 

Mike

Open set Speaker 

Identification  
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The text prompted system represents a remedy to the text dependent system. In this case, the 

system prompts the user to utter particular phrases at the time of recognition. If the user cannot 

supply the prompted phrase (the phrase is provided from the recognition system at the 

verification time), he/she cannot access the system. This kind of recognition is also commonly 

used with speaker verification.  

In the latter type (i.e Text independent), the speaker has the flexibility to say anything he/she 

wishes, so there is no specification of the phrase or words that the users are allowed to speak, 

since this type depends mainly on the characteristics of speech voice of the user (source /vocal 

tract characteristics) instead of focusing on the content of speech. Thus, the enrolment model 

and recognition utterance may not have the same content, and the recognition system needs to 

take the phonetic differences into account. This type is more flexible and applicable. It is also 

used in all branches of speaker recognition (Verification or Identification), but it suffers from 

difficulty in achieving high performance (Rao and Sarkar, 2014). Figure 1.3 illustrates the 

classification of speaker recognition systems. 

 

Figure 1.3: Classification of Speech signal recognition systems(Rao and Sarkar, 2014)

Speech signal  
Recognition 

Speaker 
Recognition 

Speech 
Recognition 

Speaker 
Verification

Speaker 
Identification
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1.3 Review of State of the Art 

Research studies in the fields of speaker recognition have been conducted for more than five 

decades, and this field is still an active area of speech signal processing (Furui, 2005, Nengheng, 

2005). The primary motivation of such research was to study the way that humans can recognise 

talkers and the reliability of the listener in recognising the Talker (Stevens et al., 1968, 

Nengheng, 2005). The development in this field is mainly related with the evolution of speech 

and signal processing and computer technology (especially machine learning). One of the most 

significant studies in speaker recognition has used a spectrogram to identify the voice print of 

the speech (Nengheng, 2005). The next three decades have witnessed enormous technological 

progress in the speaker recognition fields, particularly when new features such as Linear 

Predictive Cepstral Coefficients (LPCC) (which represent a good implementation for 

differences of biological structure of human vocal system) and Mel-Frequency Cepstral 

Coefficients (MFCC) (which are commonly used to represent a human auditory system) have 

been used as features parameters in that field. Moreover, the development of statistical and 

artificial machine learning (such as Gaussian Mixture Model GMM, Hidden Markov Model  

HMM, and Support vector machine SVM) and various score normalisation techniques have 

been applied for speaker recognition systems. Recently, most of the systems in speaker 

recognition have evolved to adapt Gaussian mixture model-Universal Background model 

(GMM-UBM) solutions, Super vector methods (Campbell et al., 2006b), and factor analysis 

based engine voice (i-vector) framework (Sadjadi et al., 2013, Khoury et al., 2014). 

1.4 Speaker Recognition Challenges 

In spite of the developments in the field of speaker recognition, there are still more limitations 

and challenges in that field. The most accurate applications in speaker recognition systems in 

the real world still have limitations in becoming robust and reliable if we compare them with 

the recognition accuracy of the human ear. One of the primary challenges of speaker recognition 

is related to developing robustness of systems under mismatch conditions (Beigi, 2012). Many 

research studies deal with these cases, depending on finding new kinds of features, or propose 

using a new modelling instead of those classic models that were being used. In general, we can 

classify these challenges into two main categories: - 
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1. Intra-speaker variation (Time lapse effect), which occurs as a result of changes in phonation 

of the speaker due to change in the environment. The variations in intrinsic personal factors 

of the vocal system of the speaker have adverse effects on the performance of speaker 

recognition (e.g. Illness, whispering, speech under stress, ageing, surgery, and cold). This 

type can also be classified into short term (stress, illness, whispering, and cold) and long 

term (ageing). In addition, short utterances can also represent one of the intra-speaker 

variation challenges since relatively little information can be extracted from these types of 

signals. 

2. Speaker-independent (Channel Mismatch): this refers to the variation between the 

reference models of the speech signals (enrolment models) and a given recognition speech 

signal for the same individual due to physical factors (e.g. change in the handset) or 

environmental factors (additive background noise, reverberation, and echo). Channel 

mismatch occurs as a result of the changes in characteristics of the recognized speech 

signal. In the past, it was thought that the mismatch was related to change of handset; 

however, in addition to handset mismatch, changes in environmental noise, acoustic 

properties of ambiance (e.g. echo and reverberation), microphone distance and angle (Far-

field), and many other factors cause this kind of mismatch (Beigi, 2009). So far, different 

research efforts have been concerned with improving techniques for dealing with this kind 

of challenges. This has led to approaches that have the capabilities of explicitly modelling 

the channel variability of the input speech utterances. These techniques permit the effect of 

channel mismatching to be compensated for during the enrolment and recognition phases, 

causing significant improvement in accuracy when operating under adverse conditions 

(Pillay, 2010).      

One of these fundamental challenges related to speaker recognition is any undesirable change 

in speech features due to environmental background noise. This kind of variation could cause a 

mismatch between the corresponding test (recognition) and the enrolment material of the same 

speaker, which would adversely affect the performance of the speaker recognition in terms of 

accuracy. Environmental noise represents one of greatest challenges for speaker recognition 

(especially for speaker verification) in matched and mismatched conditions, particularly for the 

latter case, which represents the greatest difficulty since it limits access to the authorised 

user(i.e. increase False rejection cases)  (Ming et al., 2007) . Moreover, this problem has been 
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aggravated by nature of speaker verification applications, due to the increasing probability that 

the input speech signal may be contaminated by different changeable and/or time-varying 

background noises, for instance, when a user attempts to log in to a device (PC , Handheld 

phone ) using his/her voice print. In this case, background noises (speech babble, fan noise) 

which are usually not taken into account during the enrolment phase can adversely affect 

recognition of utterances produced from target speakers. 

1.5 Research Motivation  

As previously mentioned, the implementation of speaker recognition systems still has many 

limitations and challenges, since most of the recent applications of speaker recognition 

technologies are commonly used for application in public spaces (stations, hospitals, airports, 

etc.) and the internet. Moreover, providing a quiet environment at the time of recognition is 

sometimes difficult, if not impossible. This makes the environmental noises one of the main 

problems in this area, especially when the noise sources are non-stationary and time-varying. 

This research is motivated to investigate and develop a speaker recognition system under 

different background noisy environments, even when there is no information available about 

the identity of the noise. 

1.6 The Aim and Objective of the Research  

The aim of this research is to investigate existing approaches to speaker recognition in noisy 

conditions, and to develop an efficient technique to improve speaker recognition performance 

for real-world applications.  

For this purpose, text-independent speaker recognition has been used, since this type is more 

flexible and can be easily generalised to other types of speaker recognition (i.e. text-dependent 

and text-prompted). Various techniques and experiments are involved to achieve this target, 

based on specific key objectives:  

 Investigate the effectiveness of speech samples contaminated with different types of 

noise with different signal to noise ratios (SNRs) on performance of Speaker 

Recognition in context of biometric security. In this step, the effect of various noises 

with different SNRs on the performance of Speaker verification was investigated.  
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  Investigate the techniques used to clean or at least reduce the noise components and the 

side-effects these techniques impose on speaker recognition. The main purpose of this 

objective is to discover, to what extent, speech enhancement algorithms can improve the 

performance of speaker recognition in noisy environments.   

 Specify the relevant feature extraction approaches that are used in the SR, especially 

under noisy environments. This can be done by investigating the features spaces that are 

less sensitive and more robust to noisy environments by using different speech 

verification sets from different data sets recorded in English and various other 

languages, followed by comparing these features with baseline features. For this 

purpose, Conventional Mel-frequency Cepstral coefficients (MFCC) - including the 

Dynamic Mel cepstral - were adopted, together with Gamatone Cepstral Coefficients 

(GFCC). The former features represent the most commonly used features in SR fields, 

while the latter represent noise robust features in the field of speaker recognition. 

 Attempt to improve system robustness by adding different kinds of noise with different 

SNRs in the enrolment phase (the phase where the reference models are created) on the 

baseline speaker recognition system. Validation tests have been carried out with 

emulated noisy conditions with controlled SNR.  

 Propose a new approach to address the issue of performance degradation in noisy 

environments. Based on the estimation of the signal-to-noise ratio (SNR) and profile of 

the ambient noise from input signals, the proposed method re-trains the enrolment 

models to generate new noisy models that adapt to the noise profile. This technique is 

termed “Training on the fly”.  

  Investigate the different techniques used to detect the additive noise in input recognition 

signal to improve the performance of training of the fly approach that adopted for 

speaker recognition application. For this purpose, two proposed techniques are adopted: 

the first is based on estimated power spectrum of the original noise using 1/3 octave 

band filter bank and white noise signal, while the second technique deals with extracting 

the noise from the input signal using a speech enhancement algorithm with spectral 

subtraction to find the noise in the signal.    

 Critically evaluate the recognition systems, based on different kinds of evaluation 

techniques. Error Equal Rate (EER) and Detection Error Tradeof (DET) has been 



Chapter 1: Introduction 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      10 
 

adopted to evaluate the speaker recognition system. The main reason to adopt these 

metrics is that EER is generally used in the literature to evaluate the performance of 

Speaker recognition systems, while the DET graph represents the best graphical 

demonstration of both False Positive Rate and False Negative rate in recognition 

systems.   

The main question that should be asked in this research is to what extent the proposed “Training 

on the fly” approach can improve text independent speaker recognition systems for real world 

applications under various environmental noises. 

1.7 Research Methodology 

The methods of this research, developed and adopted during the research programme include: 

1. Investigating the research concerned with speaker recognition in general, and more 

specifically with speaker recognition in the presence of stationary and non-stationary 

noise background.  

At this stage, a review was undertaken of previous work concerned with the study of the 

degradation that occurs in the quality performance of speaker recognition due to the lack 

of relevant information from the speech signal as a result of noise existence (as seen in 

the next chapter). This has helped the researcher to acquire sufficient background 

knowledge about the best techniques used in clearing speech signals from noise to 

increase the performance of the speaker recognition system. 

2. Investigating the effect of adding different types of noise to the speech signal with 

different signal to noise ratios (SNRs) on the performance of the speaker recognition 

(Chapter 4).  

At this stage, the effect of the existence of different types and levels of environmental 

noise in the speech signal on the performance of state-of-the-art speaker recognition 

approaches were studied, in addition to studying the degradation that occurs in 

recognition systems. The results of this investigation show the effect of different types 

of noise on the accuracy (in a biometric security context) of speaker recognition. In 

addition, they show that the signal-to-noise ratio (SNR) plays a major role in the 

robustness of speaker recognition, especially in determining the threshold at which the 

speaker recognition performance is affected by added noise.    
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3. Investigating the possibility of improving the robustness of speaker recognition by using 

noisy speech samples with different signal to noise ratios in the training of reference 

models (Chapter 5). 

At this stage, the robustness of speaker recognition when using controlled noisy 

reference models contaminated with different types of noise and a different signal to 

noise ratios were investigated, to find out to what extent the performance of speaker 

recognition could be improved when compared with SR based on reference models built 

by a noise clean signal. The results from this investigation suggests that if acoustic 

conditions can be estimated and suitably pre-trained models chosen, the robustness of 

the system can be improved.      

4. Investigating different types of feature extraction algorithms (Chapter 6).  

Two different types of features extraction algorithms were used as a baseline for speaker 

recognition. 

 At this stage, two different types of features were examined(MFCC,and GFCC) , and 

suitable features were identified by investigating their sensitivity to environmental noise 

as well as to different languages, and their effectiveness for the speaker recognition 

system. The results from this chapter show that GFCC has better recogntion perfomance 

than conventional MFCC. However, the language mismatch of the recogntion set shows 

adrop in recognition performance of GFCC both in clean and noisy speech.  

5. The impact of using speech cleaning algorithms was studied and they were compared 

for their robustness as a pre-processing stage for speaker recognition (Chapter7). For 

this purpose, seven types of speech enhancement approaches were employed. The 

results show that this kind of approach is unreliable for robustness of speaker recognition 

in different noisy environments.    

6. A speaker recognition framework has been developed based on extracting relevant 

information from the noisy speech recognition signal, to create an adaptive reference 

model close enough to the input signal. This approach is called “Training on the Fly” 

for robust speaker recognition (Chapter 8).  

7. The newly developed approach was evaluated by checking its performance and 

robustness to a noisy environment (Chapter 8 and Chapter 9). The proposed approach 
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based on the two detection noise techniques shows significant improvement in performance 

of the MFCC-GMM baseline when compared with the performance of conventional speaker 

recognition. 

8. Making appropriate modifications to the developing approach in order to improve its 

performance, based on evaluating the results in step 7 and using the features in step 6. 

The evaluation results show that training on the fly using the MFCC-GMM baseline is 

more efficient than the GMM-GFCC baseline. However, the improvement of the GFCC-

GMM baseline is limited to low SNR.  

9. The final stage will be making final conclusions and recommendation and disseminating 

results.  The main steps of the methodology are shown in Figure 1.4. 

Figure 1.4: Block Diagram of Research Methodology 

Review the previous literature in  
Speaker Recognition 

Evaluate the effect of noises on performance 
of speaker recognition 

Clean speech 
approaches investigation 

Noisy speech 
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Features extraction 
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Evaluate developed 
Approaches
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(SNR) Estimation

Noise Detection in 
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Noise emulated 
Technique 

Noise Extraction 
Technique  
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1.8 Contribution of the Study 

This study makes the following contribution to finding the best approaches that have been used 

in improving the performance of speaker recognition system in noisy environments and 

decreasing the mismatch between the enrolment reference models and input recognition speech 

signal. 

1. It has implemented a text-language independent speaker verification tool box based on 

the state of the art Gaussian Mixture Model GMM and Gaussian Mixture Model 

Universal Background Model GMM-UBM and investigated the effect of artificial noisy 

speech signal contaminated with different types of noise (five types of noise were 

chosen) with various SNRs on the speaker verification. 

2. It has investigated the effect of using noisy speech signals contaminated with various 

kinds of noise and with various SNRs to create reference models on the accuracy of the 

speaker verification toolbox. 

3. In this research, all investigations and experiments were applied on two different types 

of speech databases. The first database is named TIMIT, one of the most commonly 

used databases in speech and speaker recognition fields since it is one of the standard 

databases used to evaluate speaker recognition in real-world environments. The second 

database includes the speech samples recorded by research in the anechoic chamber in 

the University of Salford (named SALU-AC). What makes this database unique is that 

the environment is used to record its speech samples, which represents the cleanest 

environment from adverse conditions since the chamber used has a measured 

background noise of -12.4 dBA. This makes the artificial noisy speech samples 

generated from this database free from other adverse conditions, making it easy to deal 

with the noise issue separately from other adverse conditions. In addition to the 

environment that it was collected in, the SALU-AC database includes speech samples 

from different languages.         

4. Using speech samples from various languages, the robustness of the feature spaces used 

in speaker recognition in noisy environments has been investigated, and the result 

compared with the one obtained from the English samples set. 
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5. A new approach has been developed to deal with the degradation issue that occurs in 

speaker recognition under environmental noise. In contrast to other approaches, which 

focus on dealing with the input recognition signal, this approach is concerned with 

creating an instant adapted reference model based on SNR level and identity of noise 

that is compared with the input signal to decrease the mismatch between the reference 

model and input signal. 

6. To detect the noise in the recognition signal, two techniques are proposed, the first one 

based on using 1/3 octave filter bank to estimate the profile of the noise and then 

creating an emulated noise close to the original that is contaminated with the recognition 

signal. The second is based on using a speech cleaning algorithm and spectral 

subtraction to extract the noise from a noisy recognition signal. 

1.9 Thesis Outline 

The thesis is organised into ten chapters. A summary description of each chapter is given below:  

Chapter 2: Background and Literature Review        

This chapter starts with a description of the process of human speech production. It then presents 

a review of the literature in the area of automatic speaker recognition. This includes a review of 

feature extraction algorithms, speaker modelling approaches and the state of the art of these 

approaches, and the evaluation metrics of speaker recognition. Furthermore, it describes the 

approaches that have been used to improve the performance of recognition systems under 

mismatch noise conditions.  

Chapter 3: Speech and Noise databases  

This chapter describes the speech databases used for the purpose of the investigations in this 

research and then focuses on presenting the new speech database SALU-AC, and the types of 

noise used in the experiments of this study. Finally, the process of obtaining noisy speech is 

then explained.  
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Chapter 4: GMM-UBM based Speaker Recognition 

This chapter is concerned with speaker recognition based on GMM-UBM which is adopted in 

this research and how this system works, followed by an experiment to investigate the effect of 

various kinds of noise with different SNRs on the performance of MSR speaker recognition.   

Chapter 5: Improving the Robustness of Speaker Recognition in Noisy Conditions via 

Training 

In this chapter, an attempt is described to improve robustness by using noisy speech to create 

training reference models. First, the state-of-the art techniques for modelling and classification 

models are explained, including GMM and GMM-UBM, followed by an experiment that 

explains the difference between using GMM baseline and GMM-UBM baseline with limited 

data. Finally, details of an experiment using noisy reference models with various types of noise 

and SNRs are presented, and results of these experiments are then discussed. 

Chapter 6: Comparison of Feature Spaces for Robust Speaker Recognition and 

Mismatched Languages  

In this chapter, we focus on making a comparison between the robustness of two types of 

features extraction algorithms on the performance of speaker verification. Traditional Mel-

frequency Cepstral coefficients (MFCC), including the dynamic features, together with 

Gammatone Cepstral coefficients (GFCC) have been adopted in this study. Furthermore, this 

comparison is extended to include investigations into language independency features in 

recognition phases. An explanation of a process for extraction of each feature is also presented. 

Chapter 7: The Impact of Using Speech Enhancement techniques on Performance of 
Speaker Recognition. 

Different types of speech enhancement algorithms have been investigated and compared for 

their robustness as a pre-processing stage for speaker verification system. Moreover, review 

descriptions of these approaches and their types have been presented. 

Chapter 8: Training on the Fly for robust speaker recognition  

 This chapter includes a description in detail of the approach proposed in this thesis to improve 

the performance of speaker recognition in environmental noise, followed by the techniques used 
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for signal to noise ratio estimation, and noise profile detection using 1/3 octave filter. Finally, 

results of an experiment to evaluate the proposed approaches are discussed.    

Chapter 9: Training on the Fly using noise extraction technique. 

Training of the fly based on different techniques to detect the noise in the recognition signal are 

presented in this chapter, followed by experiments to evaluate training on the fly using this 

technique and comparing results with those obtained from Chapter 8.     

Chapter 10: Discussion, Conclusions and Recommendation for Future Works 

The last chapter presents the overall conclusions in this research. Furthermore, some 

suggestions for future research are provided in this chapter.   
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BACKGROUND AND LITERATURE REVIEW 

Chapter Overview 

Over the last fifty years, research in the fields of speaker recognition has yielded many 

developments, especially in feature extraction and modelling approaches. These range from 

high level features (such as phonemes, dialects) and template classification (such as vector 

quantization, and time warping) to cepstral features (such as MFCC and GFCC) and state of 

the art modelling (such as GMM-UBM and i-Vector). This chapter presents a background 

review of the general structure of speaker recognition systems as well as some literature on the 

various techniques that have been used to implement the front end and back end of speaker 

recognition, in addition to the most common approaches used to improve the performance of 

speaker recognition in noisy environments. The chapter begins by explaining the process of 

human speech production. Details on the structure of speaker recognition are given in section 

2.2, and the most conventional algorithms for feature extraction in section 2.3. The discussion 

in Section 2.4 is concerned with the main speaker modelling and classification approaches and 

what state of the art techniques are used. Section 2.5 then describes speaker recognition 

evaluation techniques. Finally, there is a detailed review in section 2.6 of the commonest 

methods in speaker recognition to improve performance in noisy environments. 
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2.1 Human Speech Production  

To clarify the mechanism of human speech production (which is considered to be important in 

identifying the discriminative characteristics between different speakers), one should first 

understand the anatomy of the speech production system (Vocal system organs). In general, the 

vocal system consists of three main parts (Loizou, 2013, Beigi, 2011): 

1. Lungs: The lungs represent the power supply or pressure system which is responsible 

for pushing the airflow through the trachea to the larynx. The role of the lungs in this 

process is no more than to provide the appropriate pressure, which plays a major role in 

speech production. Figure 2.1.a.   

2. Larynx: also called the voice box since it represents the main section for generating the 

voice based on the laryngeal parts located on top of it called vocal cords (vocal folds). 

Vocal cords are two folds of tissue joined to the thyroid. The triangular opening located 

between the two folds is called the glottis, which represents a transition area between 

the larynx and pharynx Figure 2.1 (b). When airflow passes through the glottis, it will 

cause vibration of the vocal cords and modulate the air to generate the human voice in a   

process called phonation (Beigi, 2011).   

3. Vocal Tract: this refers to the tube that starts from the top of the larynx and ends in the 

nasal and oral cavity. This section is responsible for shaping the modulated air coming 

from the larynx by changing the shape of different organs (pharynx, tongue, jaw, and 

lips) and it works as a filter for modulated air. 

 

Figure 2.1: (a) The sagittal section of Speech production system (b) Vocal Cord 
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The process of generation of human speech involves pushing the inhaled air from lungs through 

the trachea to the larynx. The pressure of the air can depend on the mood of the speaker (where 

the pressure increases if the speaker is angry or tense). This process of pushing air from the 

lungs is called respiration (Nengheng, 2005). The pushing air is then passed through the glottal 

region to the larynx causing vibrating of the vocal cords at a rate based on their length, thickness 

and tension. This vibration depends mainly on the status of the vocal cords, such that when the 

vocal cords are tensed the airflow is transformed into a semi-periodic waveform known as 

voiced sound and this process of modulating the air flow is called phonation (Quatieri, 2002). 

Figure 2.2 presents the semi-periodic glottal waveform, which can be represented as a function 

of time. When the cords are in closed position, the speech signal starts from zero and increases 

to reach the peak which represents the loudness of the voice. It then swiftly decreases to zero 

when the vocal cords suddenly close. The time interval when the vocal cords are closed and no 

air flow is passing through the glottis is called the closed phase, and the time period from when 

the signal increases from zero until reaching the top of the pulse is referred to as the open phase, 

and finally the period from the maximum signal to when the vocal cords close again is referred 

to as the return phase. The shape of this signal can be varied depending on the speaker, the 

speaking style, and the specific speech sound. Sometimes the vocal cords do not completely 

close; in this case, the closed phase does not exist (Quatieri, 2002).   

 

Figure 2.2: Periodic Glottal Waveform (Quatieri, 2002) 

 On the other hand, when the vocal cords are relaxed the airflow comes through causing 

turbulence in the vocal cords instead of vibration, which results in a non-periodic speech 
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waveform known as unvoiced sound; and this turbulence at the vocal cords is called aspiration 

(Quatieri, 2002).The voiced sound is then filtered by the vocal tract system which acts as a 

variable acoustic filter. This filter plays a role in varying the amount of acoustic energy by 

changing the shape of the vocal tract organs (Jaw, tongue, lips and other internal parts) so that 

the natural resonances happen at different frequencies. This process is called articulation 

(Nengheng, 2005) and these resonant frequencies called the formants. Finally, the volume air 

flow that passes through the vocal tract is radiated as a pressure signal at oral or nasal cavity 

with a process called lips radiation  (Jeevakumar, 1993, Holmes, 2001).  

There are various factors, depending on physical and behavioural characteristics of the speaker, 

which make the speech waveform for each speaker unique. Thus, different levels of information 

can be extracted from this speech signal to recognise the differences between speakers. This 

extracted information is known as feature parameters which represent speaker identity (Pillay, 

2010, Nengheng, 2005).In Section 2.3 we focus more on these features and the most common 

features used in speaker recognition. 

2.2 The Process of Speaker Recognition  

The process of speaker recognition in both types (Verification and Identification) can be divided 

mainly into two phases, firstly the Enrolment phase (Training phase) which is responsible for 

creating a reference speaker model (or models) from previous speech samples with some 

features extraction and modelling approaches. In the Recognition phase (Testing phase), on 

the other hand, the features of the speech signal are extracted in the same approach as that used 

in the enrolment phase. These features are then matched with the reference model to measure 

the similarity between them, based on one of the matching techniques. In general, the stages of 

automatic speaker recognition can be outlined as follows(Rao and Sarkar, 2014, Chauhan et al., 

2013): 

1. Pre-processing 

The essential objective of this stage is to digitise the analogue speech signal by sampling 

it at a standard sampling frequency. By using a high pass filter, this digital signal is 

usually pre-emphasized by emphasising higher frequency components and 

compensating for the human speech production mechanism which tends to attenuate 
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them (Rao and Sarkar, 2014). Voice activity detection (VAD) has been used in this stage 

to split the speech segment from a given audio signal.  

 

2. Features Extraction  

Also known as front-end stage, this stage is responsible for transforming the speech 

signal into a set of parameters, known as feature vectors, that contain the discriminative 

characteristics of the speaker. In the enrolment phase, the features are extracted from the 

speech signal and used to generate a reference model for the target speaker. In the 

recognition phase, these features are derived from unknown speaker utterances and 

compared with a reference model for the claimed speaker to give similarity scores 

(Kinnunen and Li, 2010, Rao and Sarkar, 2014). 

 

3. Speaker Modelling  

The primary goal of this stage, which also known as back-end stage, is to create 

templates or models for each enrolled speaker based on statistical modelling techniques. 

These techniques are employed to capture the distribution of features extracted from the 

registered speaker. More details on these techniques are given in section 2.4.  

 

4. Pattern matching and classification  

In this stage, the recognition (test) utterance is matched based on its statistical 

similarities with a reference model (or models) for the claimed speaker. This pattern 

match depends completely on the techniques used to create the speaker models. A 

decision is made based on the scores obtained from this match such that the recognition 

utterance is classified as reference model generating a maximum score (Rao and Sarkar, 

2014). Figure 2.3 and Figure 2.4 illustrate the structure of both speaker identification 

and speaker verification.  
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Figure 2.3: General approach to Speaker Identification 
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Figure 2.4: General approach to speaker verification 

2.3 Review of Audio Features  

As mentioned earlier, the primary objective of features extraction is to extract the unique 

characteristics of the speech signal which represents the speaker identity. These features 

represent the differences that exist in the vocal system (source /vocal tract) as well as the style 

of human speaking (Nengheng, 2005). There are different ways to classify the features. In 

general, the features can be classified into three hierarchical main types based on their physical 

interpretation (Kinnunen and Li, 2010, Nemati and Basiri, 2011) (Figure 2.5): 

 Low-level spectra features: these kinds of features are related to the structure of the 
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envelope which is an acoustic correlation of timbre (colour of voice), in addition to the 

resonance characteristics of the supralaryngeal vocal tract (Kinnunen and Li, 2010).   

 Prosodic and Spectro-temporal features: These refer to features that include intonation 

rhythm, and pitch. These types of features are mainly based on phoneme of the speaker.  

 High-level features: These kinds of features are related to the way that the person speaks, 

including phonemes, accent, and pronunciation. These features usually try to capture 

properties included in the conversation level of speakers, such as the characteristics 

included in words (Doddington, 2001). High-level features are commonly used in 

speech recognition compared to speaker recognition. 

Figure 2.5: Hierarchy of Speech features 

Much research has used a high-level and Prosodic features in speaker recognition systems, since 

they are more efficient and stronger in speaker recognition and more efficient against channel 

mismatch and noise. However, high-level features need more complex front end (i.e. more 

complex features extraction approaches), and require massive training data for modelling, and 

decision making delay. Furthermore, these kinds of features are less disseminated and easier to 

impersonate. Due to these limitations, high-level features are not commonly used with speaker 

recognition, compared with their usage in speech recognition (Pati and Prasanna SR, 2010, 

Kinnunen and Li, 2010). 
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pitch in the speech signal for identifying a feature in text-dependent speaker recognition. These 

pitch data were obtained from 10 speakers with six utterances of the same sentences for each 

speaker. He used a 20-dimensional vector to represent the pitch feature and form the reference 

model for each speaker by averaging the transformed pitch of that speaker, while the recognition 

procedure was based on computing the Euclidian distance between the enrolment and 

recognition vectors. Based on these experiments the author recommended the possibility of 

using pitch contours for ASR. However, he also mentioned that pitch contours and short-time 

spectrum were not enough for automatic speaker recognition ASR. 

 

Shriberg et al. (2005)  presented a method to compute the various duration, pitch, and energy 

features for each estimation of a syllable in the output of speaker recognition. They referred to 

these features as SNERF-grams (N-grams of Syllablebased Nonuniform Extraction Region 

Features) and they used support vector machines (SVMs) to model a speaker’s references. This 

research found that adding SNERF-grams improved the system from Error Equal Rate (EER) 

(which represents one biometrics metric as described later) 6.418 to 5.783 when compared with 

a system without this type of features. The authors, using SNERF, provide an analysis that can 

lead to better understanding of how speakers differ prosodically in a mostly voluntary way. 

 

Mary and Yegnanarayana (2008) presented an approach for extracting prosodic features from 

the speech signal in both speaker and language verification systems. In this work, syllable units 

are selected as the main units for representing the prosodic characteristics. The continuous 

speech was segmented into syllable-like units by finding vowel onset points (VOP) 

automatically. The information from these VOPs plays a role in extracting prosodic features 

from the speech signal. The combination of prosodic features with spectral features shows a 

significant improvement in the performance of speaker recognition, with an EER of 9.3%. 

 

Jin et al. (2007) explored using high-level linguistic features for robust speaker recognition in a 

far-field microphone situation. They applied n-gram models trained on multilingual phone 

strings to capture speaker idiosyncrasies. n-gram models are created by decoding speech by 

various phone recognisers and employing the relative frequencies of phone n-gram as features 

for training the models. This approach shows the high robustness of high-level features for 



Chapter 2: Background and Literature Review 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      26 
 

mismatch conditions. However, one main drawback of this phonetic speaker recognition is the 

need for a huge amount of training data to reliably estimate phonetic n-gram models. Moreover, 

this system is sensitive to language variety, which adversely affects the recognition result. 

Wang et al. (2017) proposed novel acoustic features that are based on spectral-temporal 

receptive fields (STRFs). The STRF is derived from physiological models of the auditory 

system in the spectral-temporal domain, in which the temporal response and temporal response 

in the signal had been specified by the rate (in Hz) and scale (in cycle/octave) respectively. To 

evaluate the proposed features, the experiments were conducted on 36 speakers using a support 

vector machine (SVM) to classify the speaker. The proposed feature set increased the speaker 

recognition accuracy by 3.85% and 18.49% on clean and noisy environments respectively, when 

compared with MFCC Baseline system.   

Low-level features (especially the Cepstrum features), on the other hand, are easy to compute, 

show good performance and are more commonly used in speaker recognition than higher-level 

features. Besides, the usage of low-level features means including all information is retained 

and nothing is discarded. In the next sections, we focus mainly on the most commonly used 

features in speaker recognition and some of the modern features used in this field, reviewing 

some of the literature for each one. 

2.3.A Mel Frequency Cepstral Coefficients (MFCC)  

This kind of feature represents the most commonly used feature in speaker recognition. Most 

researchers use it as a baseline feature for constructing speaker recognition (Hasan et al., 2004, 

Muda et al., 2010). Moreover, these kinds of the feature are commonly used in conjunction with 

other types of features to make the speaker recognition more robust, since it is used to estimate 

a human auditory system (Beigi, 2011). In this extracting method, a filter bank is applied such 

that each filter applies to a different frequency band of the speech spectrum. The arrangement 

of these filters depends on the human perception of speech. This includes the spacing of band-

pass filters based on the Mel scale (Pillay, 2010) Figure 2.6. The logarithm of energy from each 

filter is then computed and accumulated, before applying Discrete Cosine Transform (DCT) to 

obtain Cepstral coefficients. MFCC represents an ideal candidate for both speaker and speech 

recognition, since they contain significant information about the structure of the speech signal 

(Beigi, 2011). Mel Cepstral Dynamics, on the other hand, are the extracted dynamics of MFCC 



Chapter 2: Background and Literature Review 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      27 
 

features. This type of Cepstral coefficient is driven by using first and second order differences 

which are somewhat independent of the actual MFCC. Hasan et al. (2004) applied MFCC as a 

feature for speaker identification with vector quantization VQ to minimise the data of the 

extracted feature. They found that the combination of Mel-frequency with a Hamming window 

gave the best performance. They also mentioned that the Mel scale is less vulnerable to the 

change of speaker vocal cords in the course of time. Sinith et al. (2010)  adopted MFCC as a 

speaker speech parameter for a text-independent speaker identification system based on a 

Gaussian mixture model (GMM) to trained four speaker model with 4, 8, and 16 Gaussian 

mixture components. This experiment was performed on using different speech time durations 

and several languages. Depending on the maximum likelihood ratio algorithm for the process 

of making a decision, the recognition rate shows the result (98.8%) when speech utterance is of 

60 seconds duration and a number of the Gaussian mixture is 16 components. This experiment 

depends on only four speakers. 

 

Figure 2.6: Mel-Scale representation 

The model was proposed by Ezzaidi and Rouat (2004) to use fundamental frequency F0 together 

with MFCC to represent information of vocal source/vocal tract in a speaker identification 

system based on Gaussian Mixture Model GMM modelled by 32 and 4 Gaussian mixture 

respectively. This experiment was carried out on speakers from a speech telephony database 

(SPIDRE) recorded from the various handset telephones. The system based proposed features 
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were compared with a baseline system functioning on all voiced and unvoiced speech segments 

and with another system based on voiced segments only. The results illustrate limited 

improvement in performance. 

The conventional MFCC can characterise the voiceprint only, but it does not take into account 

the dynamic characteristics of speech (Weng et al., 2010). Furthermore, MFCC parameters are 

very susceptible to interfering noise (Wang et al., 2009). To deal with this limitation Wang et 

al. (2008 and 2009) proposed an algorithm to extract the dynamic of the Mel Cepstral 

coefficients (also known as the Delta and Delta-Delta Cepstral coefficients) which combines 

the information obtained by MFCC with pitch. This dynamic can be obtained by dynamically 

constructing a set of Mel-filters according to pitch detection. After that, the Mel-filters are 

applied to extract these feature coefficients which represent the speaker identity characteristics. 

The experimental results from the dynamic MFCC show greater robustness in a noisy 

environment. However, the drawback of this algorithm is that it increases the parameter 

dimensions and computational complexity of SR systems. An optimisation algorithm was 

proposed by Weng et al. (2010) to extract a new series of coefficients called weighted dynamic 

MFCC. This approach was based on combining MFCC and dynamic MFCC as a new series of 

coefficients and then using these coefficients as a parameter of the Gaussian Mixture Model. 

This work depended on speech samples obtained from the TIMIT and VOA databases. The 

results show this weighted dynamic MFCC could achieve a higher recognition rate over 

conventional MFCC and a combination of MFCC and dynamic MFCC. Since MFCC represents 

the most common feature spaces in the speaker recognition field and represents baseline features 

for most speaker recognition research, then the MFCC is adopted in this work. More Detail on 

the MFCC features extraction is given in chapter 6.  

2.3.B Linear Predictive Cepstral Coefficients (LPCC)  

LPCC are one of the important features used in speaker recognition since they represent the 

differences of biological structure of the human vocal tract (Yujin et al., 2010). LPCC is the 

result of recursive computing from Linear Predictive coding coefficients (LPC) to Linear 

Predictive Cepstral coefficients according to an all pole filter (Beigi, 2011, Yujin et al., 2010). 

In LPC analysis this all pole filter represents a model for the vocal tract depending on the 

assumption that for voiced sounds, the excitation (vocal cord vibration) can be modelled by an 
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impulse train generator which represents the series of nearly periodic glottal pulses produced 

by the vocal cords. For unvoiced, a random noise generator is applied to represent turbulent air 

flowing through a shrinkage of a long vocal tract. After that, the speech sample approximates 

as a linear combination of previous samples. The output of the LPC analysis is then obtained 

by a vector of predictor coefficients, which represent the parameters of the vocal tract structure 

for each speech frame. These are obtained by minimising the predictor error. Cepstral analysis 

depends on the principle of homographic signal processing, offering an intuitive approach of 

changing the convolutive connection between the fast and slow varying aspects of the speech 

spectrum into summation(since the speech signal represents a convoluted combination of 

excitation of the vocal cords and impulse response of the vocal tract). This enables these 

components to be separated easily (Pillay, 2010). 

LPCCs, just like MFCC, are commonly used for speaker recognition. One of the earliest studies 

done by Furui (1981) used LPCC features by means of LPC analysis of fixed sentence long 

utterances to form a reference model for a speaker verification system. Furui used a time 

warping method to build the training reference models of speakers, and the verification decision 

was made based on the overall distance. Three sets of utterances based on telephone speech 

were used to evaluate this system. The evaluation indicated mean error rates (which represent 

the average of False acceptance rate and False rejection rate)  of 0.19%, 0.36, and 0.77% 

respectively for each utterance set. Yujin et al. (2010) made comparisons to measure the 

strengths and weaknesses of using LPCC, MFCC and the differential cepstrum of both features 

(named *LPCC,*MFCC) as extracted features for a text independent speaker recognition 

system. In addition, they studied the effect of combining both kinds of features on the 

performance of the recognition system. Vector quantization and Dynamic time warping were 

used in the system to recognise the speaker identity. This experiment was applied to a speech 

recording library that included 40 speakers, and the results of this experiment showed that the 

combination of these features improves recognition rates in the system over LPCC-*LPCC and 

MFCC-*MFCC baseline systems. 

2.3.C Perceptual linear prediction (PLP) 

PLP was proposed by Hermansky (1990). These kinds of features are extracted in a three step 

process: Firstly, the short-term spectrum is processed according to human perception of tones. 
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In this case, the centre frequencies of filters are spaced equally on a Bark scale (Pillay, 2010). 

Then, PLP analysis compensates for variations between the actual and perceived loudness of 

tones, which happen at different frequencies; finally using all pole modelling on the resulting 

spectrum to produce PLP parameter (Figure 2.7). The resulting parameters can then be 

transformed into their Cepstral coefficients (in the same way as in LPC) by the recursive 

relationship between the prediction coefficients and the Cepstral coefficients. These coefficients 

are known as Perceptual Linear Prediction Coefficients (PLPC) (Pillay, 2010). Unlike LPCC 

and MFCC, which are popularly used in speaker recognition (Pillay, 2010, Nengheng, 2005), 

PLPC is widely used with MFCC in speech recognition (Davis and Mermelstein, 1980, Picone, 

1993). 

Figure 2.7: Block diagram of PLP speech analysis based on  (Hermansky, 1990) 

Revathi and Venkataramani (2009) investigated the effectiveness of combining each of PLP 

and MF-PLP (Mel-frequency perceptual linear predictive cepstrum which uses the same process 

of extracting PLP but with a Mel-filter bank instead of a Bark filter bank) with a pitch for a 

robust text independent speaker identification system. In this system, training models are 

developed by a Vector Quantization (VQ) codebook of size M=L/10 , which is designed to 

represent L vectors of training data and the system evaluated by measuring minimum distance 

between test features and clusters. The database used in these experiments contains 8 speakers 

selected randomly from 8 different dialect regions and 8 speakers from the same dialect region 

in the TIMIT speech database. The results of these experiments show that both perceptual 

features (PLP, MFPLP) combined with pitch based systems have a higher accuracy than using 

perceptual features only without combination for both datasets. 
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2.3.D Cochlear Filter Cepstral Coefficients (CFCC)  

An auditory-based feature extracted algorithm is presented by Li and Huang (2010), and Li and 

Yan (2011) based on an auditory transform in addition to a set of modules to emulate the signal 

processing functions inside the cochlea (Li, 2009). The auditory transform in this algorithm is 

a wavelet transform which comprises a pair of forward and inverse transforms. By using a bank 

of cochlea filters, the speech signal can be decomposed into a number of frequency bands in a 

forward transform. The frequency distribution of these cochlear filters is identical to the cochlea 

of the human ear and the impulse response of the filters is identical to that travelling wave (Li 

and Huang, 2010). In the inverse transform, the speech signal can be reconstructed from 

decomposed band-pass signal. Figure 2.8 illustrates the block diagram of CFCC extraction. The 

speech signal passes through the cochlear filter bank, then hair cell functions with variable 

windowing are applied, after that cubic-root nonlinearity, and finally a discrete cosine transform 

(DCT) has been used to obtain CFCC features. 

 

Figure 2.8: Block Diagram of CFCC Feature Extraction 

The CFCC shows significant performance in speaker recognition under noisy conditions 

particularly in low signal to noise ratio (SNR). Li and Huang (2010) and Qi and Yan (2011) 

made a comparison between CFCC based speaker identification system with different types of 

features (MFCC, PLP, and RASTA-PLP) in clean and different noisy environments. Three 

types of noisy speech were used in these experiments: white noise, car, and babble. The results 

show that CFCC and MFCC features have the same accuracy with 96% in clean environments, 

while CFCC appears more robust in noisy environments with 88.3% against 41.2% accuracy 

for MFCC. On the other hand, the results show that CFCC features outperform PLP for all types 

of noise and outperform RASTA-PLP under white noise, while both CFCC and RASTA-PLP 

showed the same performance under car and babble noise. 
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2.3.E Gammatone Frequency Cepstral Coefficients 

Further auditory features were proposed, firstly by Shao et al. (2007), and Shao and Wang 

(2008), to improve the robustness of speaker recognition for noisy speech. This kind of feature 

simulates the auditory process of the human ear, since the filters used to extract these features 

are based on the psychophysical observation of the total auditory system known as the 

Gammatone filterbank (Shao and Wang, 2008, Beigi, 2012). This filter bank consists of 128 

filters (or sometimes 64-filters) centred the frequencies that are quasi-logarithmically spaced 

from 50 Hz to 8 KHz and equally distributed on an equivalent rectangular bandwidth  (ERB) 

(Patterson et al., 1992)which models the human cochlea (Shao et al., 2007) (Figure 2.9). The 

gammatone filter bank is responsible for decomposing the input signal into the time-frequency 

(T-F) domains. This T-F demonstration is a variant of cochleagram (Wang and Brown, 2006). 

The Cochleagram has the ability to retain the higher frequency resolution at the low-frequency 

range for the same number of frequency components. This ability makes the Cochleagram 

different from the spectrogram which has linear frequency resolution. The time frame of the 

cochleagram is known as the Gammatone feature (GF). Finally, discrete cosine transform 

(DCT) is applied to GF to reduce dimensionality and de-correlate the components and the results 

of this reduction are known as Gammatone frequency Cepstral coefficients (GFCC). Despite 

being known as cepstral coefficients, GFCCs are not classified as one of them, since cepstral 

analysis requires a log operation between first and second frequency analysis for deconvolution 

purposes. However, it is considered as one of them because the procedure used to derive them 

is similar to the one used with MFCC. 
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Figure 2.9: Equivalent rectangular bandwidth (ERB) scale 

The GFCCs play a major role in speaker recognition under mismatch, since they are more robust 

than other features in noisy environments. A variety of research studies deal with using GFCC 

as features in speaker recognition. Shao et al. (2007) and Shao and Wang (2008) proposed this 

kind of feature for speaker identification (SI) under additive noise conditions. The evaluation 

of speaker identification based on GFCC is compared with the performance with both MFCC 

baseline and ESTI Advanced front-end feature extraction (ETSI-AFE features) based 

system(ETSI, 2007) under clean and a wide range of signal to noise (SNR) conditions. The 

systematic evaluations illustrate speaker identification based on GFCC features outperform 

systems based on both MFCC and MFCC ETSI-AFE features over a wide range of SNR and 

different types of noise. 

 A recent in-depth study (Zhao and Wang, 2013) confirmed the intrinsic noise robustness of 

GFCC relative to MFCC. In addition, this study includes further details about strong points that 

make GFCC more robust to additive noise compared with MFCC by carefully examining all 

differences between the two features using the speaker identification system. The authors also 

indicated that use of a cubic root rectification in the GFCCs instead of a logarithmic process in 

the MFCCs might contribute to their robustness because this cubic root operation makes features 

scale variant (energy level independent), which helps to maintain this information, while the 
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log operations in MFCC features do not encode this information. This study also suggests some 

modification on MFCC extraction to improve their robustness to noisy environments. A similar 

study was documented in Moinuddin and Kanthi (2014) to compare a GFCC-GMM speaker 

identification based model with a baseline model using TIMIT and NTIMIT databases. This 

comparison also included using logarithmic and cubic root operations in extraction for both 

kinds of features (MFCC, GFCC) and the impact of this on the robustness of speaker 

identification in clean and noisy environments. However, this work shows that replacing the 

logarithm with the cubic root in both types of features extraction decreases the accuracy of 

identification in both clean and noisy speech. Das and Bhattacharjee (2014) investigate using 

GFCC with Joint Factor Analysis (JFA) based modelling to handle environmental noise in a 

text independent speaker verification (SV) system. This system is compared with a MFCC-JFA 

system and their performance is evaluated depending on error equal rate (EER). The results of 

these investigations show GFCC-JFA based systems outperform a MFCC-JFA based system 

especially in lower SNR (0dB and 5dB), while a MFCC-JLA system works better in higher 

SNR.  

Based on aforementioned literature. GFCC feature spaces will be adopted in this research since 

they represent one of noise robust features in the field of speaker recognition. More details on 

GFCC will be presented in Chapter 6. 

2.3.F Some of the Alternative Features  

As has been seen in the last section, most of the features used in speaker recognition are based 

on MFCC and LPCC. In this section, some of the other features that have been used in this field 

have been described. Some of these features are generated by wavelet filter banks, instantaneous 

frequencies, and the others are variations of Cepstral coefficients with different frequency 

scaling (Beigi, 2012, Beigi, 2011). 

Wavelet Octave Coefficients of Residues (WOCOR), are also known as vocal source features. 

These features are extracted by making a pitch-synchronous wavelet transform of the linear 

predictive (LP) residual signal (Chan et al., 2007). These kinds of features are used as 

complementary features for MFCC to produce a better result in speaker recognition (Nengheng, 

2005, Wang et al., 2011) since the former are derived in trying to model vocal source 

characteristics, and the latter is related to the shape of the vocal tract (Beigi, 2011). Linear 
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frequency cepstral coefficients (LFCC) and exponential frequency Cepstral coefficients (EFCC) 

were used by Xing and Hansen (2011) who used an unvoiced consonant detector to split the 

frames which contain such phones and used LFCC and  EFCC for these frames. These features 

were then used to train up a GMM-based speaker identification system. Mel-frequency Discrete 

Wavelet Coefficients (MFDWCs) were used by Tufekci and Gurbuz (2005) in a speaker 

verification system, and they reported some improvement in the verification system relative to 

an MFCC baseline system in aggressively noisy environments. MFDWCs are computed by the 

same procedure as used for MFCC but using Discrete Wavelet Transform (DWT) instead of 

discrete cosine transform (DCT). Another noise robust feature set for speaker verification 

systems was proposed by Meriem et al. (2017). The proposed feature set, which is called 

Multitaper Gammatone Cepstral Coefficients (MGCC), is based on combining the advantage of 

the low variance multitaper short term spectral estimators with the noise robustness of the 

auditory Gammatone filterbanks. The experimental result using MGCC features in speaker 

verification outperformed both MFCC and GFCC under different noisy environments.              

2.4 Speaker Modelling and Classification Approaches 

As mentioned before, after a sequence of feature vectors are extracted from the speech signal 

of an anonymous speaker, the function of a speaker recognition system is to check whether that 

feature vector belongs to one of the registered speakers. To achieve that, speaker modelling is 

responsible for generating reference model(s) for each registered speaker during the enrolment 

phase depending on the features extracted from the speech signal. During the classification 

phase (recognition phase) the test utterance (recognition utterance) from an unknown speaker 

is compared with a reference model of the claimed speaker (or with all speaker models in case 

of speaker identification) to get the matching score, which indicates the degree of matching. 

In general, these approaches can be classified into generative and discriminative models. 

Generative models try to capture the whole underlying distribution, i.e., the class mean 

(centroid) and variation around that mean, of training data. In addition, this model is trained to 

best represent the entire distribution space of the training data generated from a particular class. 

The trained class model considers only matching data, discarding the distribution of the other 

classes (Nengheng, 2005). The generative models can also be classified into the template 
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models (e.g. vector quantization (VQ) codebooks) and stochastic models, (e.g. Gaussian 

Mixture Model (GMM) and Hidden Markov Model (HMM)). 

Discriminative models, otherwise, do not need to model the entire distribution, but only the 

most discriminative areas of distributions. The aim of training a discriminative model is to 

minimise the classification errors for a set of training samples. Consequently, not only samples 

from the matching class but also those from all the rival classes are taken into account when 

training the discriminative model for each class. These models include Support Vector Machine 

(SVM) and Artificial Neural Network (ANN).  

The models generated in a discriminative model require the training sample from both the target 

speaker and all the imposter speakers, and modelling only the boundary may cause discarding 

of some information from the client which may contain the boundary information between the 

target speaker and other imposters. As a result, the discriminative model may work poorly for 

these imposters. However, in Generative models, all the target information is retained, which 

makes the generative models more robust against these imposters. Furthermore, in 

discriminative models, if the reference models in the speaker recognition system are updated 

with some new speaker, all the reference models have to be retrained (re-enrolled). The 

generative models, on the other hand, do not require re-training because each target model is 

trained independently (Nengheng, 2005). This makes the generative model more appropriate 

for speaker recognition compared with discriminative models; Table 2-1 illustrates the 

comparison between the two types. In the next section, we present a general review of the most 

commonly used modelling techniques in speaker recognition. Cerva et al. (2009) made a 

comparison among three different speaker recognition approaches deployed in broadcast using 

a novel modelling system. In this work, the authors focus mainly on the effect of generative and 

discriminative approaches on speaker recognition frameworks. For a generative approach, they 

used a Gaussian Mixture Model-Universal Background Model (GMM-UBM) SR based system; 

while discriminative approaches were represented by Gaussian Mixture Model-Support Vector 

Machine (GMM-SVM) and Maximum Likelihood Linear Regression- Support Vector Machine 

based system (MLLR-SVM). The experiments were performed on a very limited amount of 

data in both enrolment and recognition phases. The results illustrate that the system based on 

GMM-UBM outperforms both discriminative based systems but a higher computational cost is 

required. A comparative study to evaluate the performance of text-independent speaker 
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verification based on different classifier approaches in noisy environments had been made by 

Sukhwal and Kumar (2015). These classifier approaches included Euclidian distance, Back 

Propagation Neural Network (BPNN), and Self Organization Map (SOM). Furthermore, this 

study involved the usage modified MFCC, which included Blackman windowing instead of 

hamming window. When the performance of these classifiers is compared, the results show 

SOM Speaker verification system based on Blackman window has given the best results in 

testing phase.     

Table 2-1: Comparison of Generative and Discriminative modelling approaches

Generative Models Discriminative Models 
Attempt to include the whole underlying distribution Attempt to include only the most discriminative areas of 

distributions by modelling the boundary between 
classes. 

Generate a full model of enrolled speaker speech 
independent of the availability of imposter utterances. 
Therefore, the generating models become more robust 
to imposter attack.  

Modelling the boundary may ignore some information 
from the target which may contain the necessary 
information between the target speaker and other 
imposters. Thus, the created model is vulnerable to 
imposters not present during the training phase.     

Since the building model is based on clustering feature 
vectors, the variation in length of training data did not 
affect the process. 

Cannot handle the variation length of data in both 
enrolment and recognition phase   

Since the generative models deal with the whole 
underlying distribution, a full model requires high 
storage capacity.  

Since discriminative models deal with the boundary of 
class only, they do not need high storage capacity. 

Updating the speaker recognition with new speakers 
requires only new models to be trained independently 
from reference speaker models. 

Updating the speaker recognition with new speakers 
requires all reference models to be re-trained. 

 

 

2.4.A Vector Quantization (VQ) 

Vector quantization represents one of the simplest and earliest template classification models 

for speaker recognition (Soong et al., 1985, Lin and Shuxun, 2006). This technique, which is 

also known as a centroid model, includes separating the features vectors into a set of non-

overlapping clusters which individually represent different acoustic classes. Each of these 

clusters is represented by a code vector which is the centroid of that cluster (mean vector). 

Therefore, in this approach, a collection of centroid vectors represents a speaker reference 

model which is referred to as a codebook (Pillay, 2010). These codebooks are generated based 

on one of the standard clustering algorithms such as the Lindw-Buzo-Gray (LBG) algorithm 

(Soong et al., 1985) or the k-means algorithm (MacQueen, 1967). VQ approaches offer an 

efficient way of decreasing data storage requirements while preserving the fundamental aspect 
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of the original distribution (Soong et al., 1985). During the classification phase, the distance of 

each of the extracted features vectors of the recognition utterance to its closest codebook vector 

is accumulated to produce an utterance score (Pillay, 2010). 

∈
, (2.1) 

 

 where M is length of input vector, C= { |i=1, 2,..,K} the VQ codebook for each enrolled 

speaker. The main drawback of VQ classification is ignoring the probability that a specific 

enrolment vector may also belong to another cluster (Jayanna and Prasanna SR, 2009). 

In earlier research Soong et al. (1985) applied an algorithm named LBG for generating speaker-

based vector quantization (VQ) codebooks for speaker recognition. They demonstrated that a 

larger codebook and larger recognition data can give improved recognition performance. 

Moreover, their study suggests that Codebook of Vector Quantization can be updated from 

various recording conditions and intra-speaker variations. (Chatzis et al., 1999, Lin and Shuxun, 

2006) proposed using fuzzy vector quantization as an alternative to VQ as a classifier in speaker 

recognition. FVQ gives better performance than VQ, since each feature vector in FVQ has an 

association with all clusters instead of being related to only one, as in VQ. Chatzis et al. (1999) 

and Lin and Shuxun (2006)  proposed using fuzzy vector quantization as an alternative to VQ 

as a classifier in speaker recognition.  

2.4.B Support Vector Machine (SVM)  

One of the discriminative binary classifiers adopted in speaker verification is the Support 

Vector Machine (SVM), which includes modelling the linear boundary between two classes 

as a separating hyperplane (Burges, 1998, Beigi, 2011). In speaker verification, the first class 

consists of target speaker enrollment vectors (labelled +1) and the second class consists of 

training vectors from a huge number of background features. (labelled -1) (Kinnunen and Li, 

2010). In addition, SVM can be used to learn non-linear boundary regions between samples 

by mapping the input samples into higher dimensional space. This can be done by using a 

kernel function (Pillay, 2010). Depending on these labelled training vectors, SVM is 

responsible for finding a splitting hyperplane that maximises the margin of separation between 
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two classes. In the recognition phase, a classification score is then obtained by evaluating the 

distance of the recognition sample in relation to the hyperplane.  

Campbell et al. (2006a) proposed using SVM for speaker and language recognition. The key 

part of their technique is the use of a novel derived sequence kernel (named the Generalised 

Linear Discrepant Sequence GLDS) that compares sequences of feature vectors and generates 

the measure of similarity.  The GLDS kernel was shown to be very efficient and easy to use 

with SVM. This study shows that the result produced by using SVM is similar to those 

obtained from the GMM baseline system in error equal rate (EER) and give slightly reduced 

performance in detection error trade-off (DET). Furthermore, the authors suggest that the 

combination of SVM and GMM will achieve good performance since the SVM was provided 

complementary scoring information. Other researchers also investigated the effects of the 

combination of SVM and GMM to improve the performance of speaker recognition, and they 

reported that this combination yielded better recognition performance than individual systems 

(Campbell et al., 2006b, You et al., 2009). 

2.4.C Artificial Neural Network 

An Artificial Neural Network (ANN) is a discriminative model that is widely used in speaker 

recognition (Wahab et al., 2005, zohra Chelali et al., 2011). One of the main advantages of ANN 

is that the feature extraction and speaker modelling can be applied to a single network, enabling 

joint optimisation of the (speaker-dependent) feature extractor and the speaker model 

(Kinnunen and Li, 2010, Heck et al., 2000). This approach uses enormous parallel networks of 

many densely interconnected computational units known as neurones which are analogous to 

the neurones that exist in the human central nervous system (Beigi, 2011). Each neurone is 

responsible for sums a number of weighted inputs and passes the output through a non-linear 

activation function. Although there are many different kinds of ANN, the Multi-layer 

Perceptron (MLP) has been a commonly used architecture for speaker recognition. An MLP is 

made up of a network (multi-layers) of simple neurones which are known as perceptrons 

(Figure 2.10). The main idea of the MLP is based on a two stage process: first, compute a linear 

weighted sum of its input connections. And second, a non-linear activation function is applied 

in order to calculate the output of the neurone. An MLP with a non-linear activation function 

can estimate any non-linear mapping between input and output if given a sufficiently large 

number of neurones in the hidden layer. In speaker verification, an MLP has only one output 
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neurone, since the goal, in this case, is to obtain a score over all the frames of the given 

recognition utterance (Pillay, 2010). Wahab et al. (2005) used an MLP neural network and 

Generic Self-organizing Fuzzy Neural Network (GenSoFNN) with extracted hidden features as 

an input for this network for a speaker verification system. The experiment was conducted on 

10 speakers consisting of 6 males and 4 females recorded in a quiet room in a Digital system 

lab by using a digital tape recorder. Their experimental results showed the ability of both 

systems to verify speakers with high accuracy. Furthermore, the authors mentioned that the 

MLP can achieve high accuracy of verification with shorter training and testing time if it is 

applied to online speaker verification purposes.  

 

Figure 2.10: Multilayer perceptron (MLP) structure(de Araújo et al., 2013) 

 

2.4.D Hidden Markov model (HMM) 

    Hidden Markov Model (HMM) is also commonly used in speaker recognition, especially for 

text dependent and text-prompted speaker verification, where a whole phrase is matched. HMM 

has the capability to model the temporal variations between the various acoustic classes (Pillay, 

2010). HMM models are first-order discrete time series with some unobserved (hidden) 

information known as states. (Beigi, 2011). In the field of speaker recognition, each state may 

be referred to phones or larger units of speech. Through discrete time, the state of the HMM 

system is changed according to a set of probabilities related to it. The output from each current 
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state is emitted after each transition. Although these outputs can be observed, the connected 

states are hidden and can only be deduced from outputs. This information between acoustic 

classes is encoded by moving from state to state along the allowed transition (Pillay, 2010). The 

amount of time consumed in the state represents the variability in speaking which depends on 

the training data. Matsui and Furui (1994) made a comparison between a vector quantization 

based texts–independent speaker identification system and a discrete/continuous ergodic 

HMMs based one. The experiments show that the continuous ergodic HMMs based system has 

the same robustness as the system that used VQ for variation of utterances. The authors also 

mentioned that the robustness of continuous ergodic HMMs based systems are restricted with 

the availability of sufficient data while VQ based systems show greater robustness when the 

amount of data is limited. On the other hand, discrete ergodic based systems show less 

robustness than the two other systems for variant utterances.   

Hidden Markov Models are also used for storing the voiceprint of the speaker uniquely with a 

method called Hidden Markov model toolkit (MTK). This method helps to keep voice prints 

from being stolen by any other person since the raw voice is not stored. That means the imposter 

cannot access the system by providing a recorded copy of the speaker’s voice (Jayamaha et al., 

2008).  

2.4.E State of the Art Speaker Recognition Modelling    

  In the previous section, we mentioned some classical modelling approaches that are used in 

speaker recognition. In addition, some benefits and drawbacks of these approaches according 

to their classification (Generative and Discriminative models) were illustrated. This section will 

focus on the most common modern modelling that is used in speaker recognition systems. Some 

of these models represent a hybrid between different models such as the GMM-SVM 

combination(Campbell et al., 2006b) and some of them represent developments of other 

modelling techniques, such as GMM-UBM (Reynolds et al., 2000) and i-vector 

modelling(Senoussaoui et al., 2010).   

A. Gaussian Mixture Model (GMM) and Universal Background Model (GMM-UBM) 

The Gaussian Mixture model represents an extension of VQ techniques and has recently become 

the most frequent reference model approach in speaker recognition (Kinnunen and Li, 2010). 

Unlike VQ, the clusters in GMM are permitted to overlap with each other. GMM is a stochastic 
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approach that expresses the probability density function of a random variable in terms of a 

weighted calculation of the sum of Gaussian components (mixture). These components are the 

mean, covariance statics of mixture, and weight associated with each of them which together 

represent each model of speaker in GMM (Beigi, 2011, Sinith et al., 2010). These models’ 

parameters are generally computed by applying the iterative Expectation Maximisation 

algorithm EM (Dempster et al., 1977). Reynolds (1995) and Reynolds and Rose (1995)  

proposed using this model in speaker recognition,  and they demonstrated the strength of using 

this model in text-independent speaker identification compared with other models like VQ, uni-

modal Gaussian, and radial basis function. One disadvantage of GMM is the requirement for 

sufficient data to make a reference model for the speaker. To tackle this problem a developed 

model has been proposed by Reynolds et al. (2000), namely the Universal Background Model 

(UBM). The primary aim of using the UBM is to collect utterances from a large population of 

speakers, which are pooled to train the UBM using EM algorithms as speaker-independent 

models. After that, speaker dependent model is adapted from UBM by using Maximum a 

Posteriori (MAP) (Kinnunen and Li, 2010, Beigi, 2011). In the recognition phase (or 

classification phase), the recognition data are matched with the claimed speaker model or 

register speaker models using maximum likelihood rule. Over the last decades, GMM-UBM 

has become the most popular modelling approach in text-independent speaker recognition 

(Nengheng, 2005, Pillay, 2010, Pinheiro et al., 2013). 

 The significance of GMM-UBM in the speaker recognition field comes from the relationship 

between the reference speaker models and the UBM, since this provides a very efficient method 

for measuring log-likelihood ratio (LLR) to obtain a recognition score. Moreover, GMM-UBM 

represents one of the better modelling approaches when the speech data used in enrolled and 

recognition phases was limited (Bao and Juan, 2012). GMM/GMM-UBM have two important 

features: First, GMM have shown an efficient work with limited or small dataset than other 

modelling approaches Second, the speech signal is based on stochastic process, and to create an 

efficient model for the speakers the modelling are used should contain statistical analysis. That 

means the Gaussian built in by GMM become more efficient for the speech signal. For these 

reasons, GMM are adopted in this work. Additional details about GMM and GMM-UBM 

modelling are available in Chapter 4 and Chapter 5. 
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B. Supervector approaches   

Recent approaches, first proposed by Campbell et al. (2006b), use a GMM-SVM combination 

technique to tackle utterances that have different durations and different numbers of feature 

vectors  (Pillay, 2010, Kinnunen and Li, 2010). The term supervector refers to merging smaller 

dimensional vectors in a large fixed dimensional vector and then using this vector in SVM 

training, since SVM is proposed for speaker recognition to deal with each utterance using fixed 

dimension vector (Wan and Renals, 2005). In GMM-UBM modelling, the idea of a supervector 

is based on using a combination of the means from adapted enrolled speakers GMM and a large 

set of imposter GMMs to train the SVM speaker model. These means of GMM are obtained 

from an adaptation of UBM while the weight and covariance can be shared between speakers. 

Thus, it can also represent this adapted speaker model in GMM-UBM as a supervector. During 

the recognition phase, a supervector of means is extracted from the recognition model and then 

matched with the target’s SVM model to obtain a classification score. Different kinds of kernel 

are used in the literature based on GMM and SVM supervectors; Campbell et al. (2006a) 

proposed one of the simplest SVM supervectors: a Generalized Linear Discriminant Sequence 

(GLDS) kernel, which generates supervector explicit mapping into kernel feature space by 

means of polynomial expansion (Campbell et al., 2002). McLaren et al. (2007) proposed 

Background Scaling Linear (BSL) as a GMM supervector approach where input supervectors 

are normalised, such that, they have unit variance in each dimension depending on the huge 

number of static background supervectors. A Gaussian supervector SVM (GSV) kernel, on the 

other hand (Campbell et al., 2006b, Campbell et al., 2006c), is extracted from a Gaussian 

supervector by bounding the kullback-leiber (KL) measure between two GMMs.  

C. The i-vector model (total variability space)  

The derived supervectors for specific speakers from different training utterances may not be the 

same since these training utterances may be collected from different handsets (different 

channels). In this case, Channel compensation becomes very important, to make sure that 

recognition data obtained from different handsets (than those used for training data) can be 

correctly scored against the speaker models (Kinnunen and Li, 2010). Therefore for channel 

compensation Kenny (2005)   proposed that channel variability can be modelled explicitly using 

an approach called Joint Factor Analysis (JFA). This approach assumes that the generated JFA 

model represents the variability of a Gaussian supervector as a linear combination of speaker 
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and channel components. Then for a given enrollment sample, the supervector is decomposed 

into two statistically independent components, one for a speaker-dependent supervector and 

second for a channel-dependent supervector. Dehak (2009) discovered that the channel 

components of JFA may also contain embedded information about the speaker. So Dehak et al. 

(2010, 2011) suggest that is not necessary to make a distinction between the channel component 

and speaker component in GMM supervector space. They also proposed a new technique in 

which the new space can contain the speaker and channel components simultaneously. This new 

space is defined by an Eigenvoice matrix and they called it total variability space (it was known 

later as i-vectors model, shortened to Identity model). In i-vectors the dimensionality is 

normally decreased from a GMM supervector before modelling by using a generative factor 

analysis technique called linear discriminant analysis (LDA) or recently Probabilistic LDA 

(PLDA) in order to suppress the direction of channel factor, thus increasing the discrimination 

between speaker subspaces. These vectors are then mean normalised using Within-class 

covariance normalisation (WCCN) (Sadjadi et al., 2013, Beigi, 2012). These i-vectors are also 

known as intermediate vectors since they are much smaller than GMM supervectors but at the 

same time, they are larger than the underlying feature vectors. Furthermore, unlike GMM-UBM, 

both enrolment and recognition models should be represented as i- vectors when this type of 

approach is applied. Many recent research studies that have used i-vector approach for speaker 

recognition (Glembek et al., 2011)  propose simplifications to the i-vector formulation to 

increase the speed of extracting vectors and minimise their memory usage. The authors also 

investigate using principal components analysis (PCA) and Hetero Linear Discriminant 

Analysis (HLDA) to achieve of the components of the Gaussian mixture orthogonally. 

D. Deep Neural Network (DNNs)  

Deep neural networks represent one the newest approaches in speaker recognition fields (Hinton 

et al., 2012), particularly after the impressive results obtained from using DNNs for automatic 

speech recognition. DNNs is essentially a multi-layer perceptron (MLP) with more than two 

hidden layers that typically uses random initialization and stochastic gradient decent to initialize 

and optimize the weights (Hinton et al., 2012). In speaker recognition (and other speech 

applications), the input to DNN is a stacked set of cepstral features (e.g, MFCC, LPCC) 

extracted from frames of speech, while the output is a prediction of the posterior probability of 

the target class for the current input frame (Richardson et al., 2015). Two different methods are 
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used to apply DNNs in Speaker Recognition. The first one is called the “Direct” method, in 

which a DNN is employed as classifier for the intended recognition task to discriminate directly 

between the speakers for SR. The second one is called the “Indirect” method, which employs a 

DNN, possibly trained for different purposes, to extract data that is then used to train another 

classifier algorithm for the intended recognition task (Richardson et al., 2015). Lei et al. (2014) 

proposed a new framework for speaker recognition in which extraction of sufficient statistics 

for i-vector model is derived by DNN instead of standard GMM-UBM. The proposed 

framework shows that the DNN approach significantly improved the i-vector speaker 

recognition system when compared with GMM-UBM. 

2.5 Score Classification and System Performance Evaluation     

For closed set Speaker Identification, to measure the similarity between recognition speech and 

reference model, the reference model (and sometimes models) that have the best match to the 

input feature vector of the unknown speaker are returned. However, in open-set speaker 

identification, the input feature vector is classified as an imposter speaker if the highest 

matching score is lower than a preset threshold (Nengheng, 2005).  

In speaker verification, on the other hand, the decision is whether the input features vector 

belongs to the claimed speaker or it belongs to an imposter based on matching score. This 

matching score results from matching this input vector with a reference model for the claimed 

speaker. So, the speaker verification system should make a decision between two hypotheses: 

the input signal comes from the claimed speaker, H1, or from an imposter H0. Based on the 

stochastic model (GMM, HMM), the choice can be made depending on the expected log-

likelihood ratio (Beigi, 2011). 

|
|

| | ? (2.2) 

  

where P(xi|H1) is the probability of observation xi being produced by the target speaker, and 

P(xi|H0) is the probability of the observation being produced by an imposter speaker. β is the 

threshold that can be determined by the difference between false accept rate (FAR)(also known 
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as False Negative Rate FNR or Miss)  and false rejection rate (FRR)(also known as False 

Positive Rate or False Alarm) (Nengheng, 2005, Beigi, 2011). 

Theoretically, the performance of the perfect speaker verification system is capable of verifying 

all speech signals that belong to registered speakers and declining those that are generated from 

imposters. However, in real life, this does not always happen, since there are many 

environmental and speaker factors that adversely affect the performance of the system (as seen 

in the previous chapter). As a result, there are four possible decisions that are usually made, as 

shown in Figure 2.11: 

 Accept input signal that comes from registered speaker (Correct). 

 Accept input signal that comes from imposter speaker (Error). 

 Reject input signal that comes from imposter speaker (Correct).  

 Reject input signal that comes from registered speaker (Error). 

 

 

Figure 2.11: Speaker Verification Decisions 

 

So, according to Figure 2.11 and depending on statistical hypothesis testing, there are two types 

of errors (Beigi, 2011, Rao and Sarkar, 2014): 

Speaker Verification 

Ground Truth  
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1. False Acceptance Rate (FAR) also known as false negative or miss probability , is 

defined as the number of verified identities for which the recognition speaker was 

different from the registered speaker normalised against total number of acceptances, 

such that: 

 (2.3) 
 

 

2. False Rejection Rate (FRR), also known  as false positive or false alarm ,is defined as 

the number of identities which were not verified for which the recognition speaker was 

the same as the registered speaker normalised against the total number of rejections, 

such that: 

 (2.4) 
 

 In order to evaluate the system performance into a single metric, the National Institute of 

Standard and Technology, NIST (1998) proposed Error Equal Rate (EER) to measure the 

accuracy of a speaker recognition system. ERR represents one of the most commonly used 

methods to measure the performance not only in speaker recognition fields but also in most 

biometric systems, and refers to the point where the chances of a false rejection rate (FRR) 

and false acceptance rate (FAR) are equal (Beigi, 2011, Rao and Sarkar, 2014). 

Consequently, the EER offers the means for producing a convenient percentage error. 

2.5.A Detection Cost Function (DCF)   

The Detection Cost Function (DCF), which has been proposed by Martin and Przybocki (2000) 

is measured as the weighted sum of FRR and FAR as follows: 

≜ 	 |
	 	 |

  
(2.5) 

 

 where CMiss is a cost of Miss (FAR) =10,  

CfalseAlarm is a cost of False Alarm (FRR)=0.1, 

P (target) is a probability of Target =0.01 
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P(NonTarget) is a probability if non –target =1-P(Target)=0.99 

The minimum values of DCF with EER are used as metrics for accuracy evaluation of speaker 

recognition (Rao and Sarkar, 2014, Przybocki and Martin, 2004). 

2.5.B  Receiver Operating Characteristics (ROC) Curve 

A Receiver operating characteristics (ROC) curve is a way of graphically representing the trade-

off between FAR and FRR (Martin et al., 1997). ROC curves (as mentioned in Figure 2.12) 

normally plot the FAR as X-axis and FRR as Y-axis. The space under the curve is a measure of 

the accuracy of a speaker recognition system. ROC curves can usually be plotted in a linear 

scale; but sometimes to avoid the resolution problems, they may be plotted in log scales.   

  

 

Figure 2.12: Illustration of Receiver Operating Characteristics (ROC) 

   

2.5.C Detection Error Trade-Off (DET) Curve 

Another graphical method was proposed by Martin et al. (1996) to evaluate the performance of 

speaker verification. In contrast to ROC, DET plots the Miss Probability (FAR) as Y-axis and 

False Alarm (FRR) as X-axis, and both are represented in percentage form. Moreover, DET 

curves are based mainly on log scales, which makes these curves more linear compared with 

Best Performance 



Chapter 2: Background and Literature Review 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      49 
 

ROC (which is more concave) (Przybocki and Martin, 2004, Martin et al., 1997).The linear 

property makes the DET curve more flexible to visualise relative differences between various 

classifiers. Figure 2.13 shows the DET example for different verifications. Since NIST proposed 

it in 1996, DET has become most widely used to evaluate speaker recognition systems. Martin 

et al. (1997) made a deep comparison between ROC and DET curves. The authors mentioned 

many advantages that make DET better than ROC curves. Since 1996, another study has been 

made by NIST on the evaluation metrics of speaker recognition systems (Martin and Greenberg, 

2010). In this study, EER with a DET graph is adopted to evaluate the speaker recognition 

system. The main reasons for adopting these two evaluation metrics are that ERR are broadly 

used in the literature to evaluate the performance of Speaker recognition system. While the DET 

graph represents the best graphical demonstration  of both FPR and FNR in recognition system. 

Furthermore, the DET graph represents the graphical representation for Detection Cost Function 

(DCF).  

 

Figure 2.13: Illustration of Detection Error Trade-off (DET) 

EER 
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2.5.D   Performance Evaluation of Open-Set Speaker Identification  

As mentioned before, Open-set identification involves two stages: close-set identification and 

verification. To evaluate the performance of this system, the verification stage is evaluated by 

using the same EER discussed before for speaker verification. In this case, the verification 

performance is expressed in term of Open-Set Identification Error Equal Rate (OSI-EER), while 

the identification stage is measured in terms of Identification Error Rate (IER), which is 

evaluated as follows (Pillay, 2010): 

 

.
.

%	

     

(2.6) 
 

 

2.6 Noise Robustness approaches in Speaker Recognition 

The main of aim of this research study is to handle the channel mismatch that occurs as a result 

of environmental noises. In this section, we focus mainly on the approaches that deal with the 

impact of noise on the performance of speaker recognition and some of the main studies that 

deal with this problem. First, we talk about environmental noise and the effect of noise on the 

speech signal. Then we move to the main techniques and studies that tackle this challenge. 

 

2.6.A Knowing the Environmental Noise enemy 

In order to understand the nature of the impact of the various noises on the accuracy of speaker 

recognition, we should first understand the characteristics of background noises. Figure 2.14 

illustrates the long-term average spectrum of the five types of noises (Cafeteria speech Babble, 

inside the car, inside the train, street noise, and white noise) that have been used in this study. 
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Figure 2.14: Power Spectral Density of Different types of noise 

 

The first observation refers to the absence of uniformity in the spectrum, which gives a 

different identity for each kind of noise. In addition, noises can be generally categorised into 

stationary or Wide Sense Stationary (WSS). The noise signal   is known as wide sense 

stationary if the following three conditions are provided (Gruber, 1997) : 

1. The mean of the signal is constant,  . 

2. The autocorrelation ,  depends only the difference, , where  and  are 

random variables,  is separating the two-random variable in time (also known as lag).   

3. The variance of the process if finite, 0 ∞ .     

 On the other hand, non-stationary in which the spectral characteristics are continuously 

changing, such as in cafeteria babble noise in Figure 2.14. This makes suppression of this kind 

of noise more difficult than suppressing stationary noise. Furthermore, the spectral distribution 

of these kinds of noise gives them a different impact on the accuracy of speaker recognition. 

For instance, Cafeteria Babble noise may represent one of the hardest types of noise to handle 

within speaker recognition, since it occupies a wider frequency range. Furthermore, it has very 
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similar spectral characteristics to a speech from the target speaker (Loizou, 2013, Mandasari 

et al., 2012, Beritelli, 2008).   

The power level of difference between the signal and additive noise is known as Signal to noise 

ratio (SNR). SNR is usually measured in Decibels (dB) such that if the ratio of the speech 

signal is equal to the ratio of additive noise then SNR=0dB. So to measure SNR for any noisy 

speech signal using logarithmic Decibel scale:   

  (2.7)
 

where Psignal , Pnoise   represent the average power of speech signal and average power of additive 

noise respectively. 

2.6.B Noise suppression techniques for Speaker Recognition 

Different kinds of techniques have been proposed in the literature to deal with the effect of 

Background noise on speaker recognition. These techniques can be categorised depending on 

the stage at which they are applied. In this section, we will focus on some these techniques 

based on each stage and some of the literature in each stage: 

1.Pre-processing stage techniques 

These types of techniques include those methods that are applied at speech signal or acoustical 

level. The main function of these techniques is to clean the speech signal from additive noise 

by improving the SNR of these signal. These techniques usually produce an estimation of the 

enhanced short-time speech spectra by cleaning speech from the noise components (Pillay, 

2010). These techniques can also be divided into three main types: spectral subtraction 

(Drygajlo and El-Maliki, 1998, Gustafsson et al., 2001), statistically based model (Cohen et al., 

2006), and Subspace techniques (Jabloun and Champagne, 2003, Hu and Loizou, 2003).These 

kinds of techniques are more effective with stationary noise. Furthermore, these techniques can 

enhance speech quality but not speech intelligibility. More details on these techniques are given 

in Chapter 7. 

One of the earlier research studies was done by Vizinho et al. (1999) using techniques to 

estimate the noise and signal to noise ratio SNR, which enabled them to remove the noise 

portion from the spectrogram in order to obtain the reliable portion of the spectrogram of speech 
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to perform speech recognition. The performance of this technique achieved up to 10 dB SNR 

on factory noise and 0 dB of car noise. This method is suitable when the noise is stationary or 

slowly varying. Drygajlo and El-Maliki (1998) investigated the effect of a combination of 

missing features theory and spectral subtraction on improving the performance of text-

independence speaker verification in environmental noise. The spectral subtraction algorithm is 

used in this study as a simple missing features detector instead of an enhancement system. This 

combination significantly improved EER, compared with using traditional spectral subtraction 

as pre-processing speech enhancement. This study was only based on using speech data 

contaminated with white noise with limited SNR (between 9dB-15dB). 

Different enhancement techniques had been applied to speaker identification systems by 

Ortega-Garcia and Gonzalez-Rodriguez (1996) to improve robustness identification accuracy 

against two kinds of stationary noises (white and Fan noises) with different SNRs. They made 

a broad analysis on speech enhancement techniques of a single channel (based on classical 

spectral subtraction), dual channel (based on adaptive noise cancelling), and multi-channel 

(using microphone arrays). The results of these experiments showed good recognition results 

especially for multi-channel speech enhancement in SNR greater than 5 dB. These experiments 

were applied only on stationary noises. 

Ming et al. (2006) made a comparison between different speech enhancement techniques on the 

robustness of speaker verification depending on noisy samples and using the same features and 

model framework for characterising the speaker. These techniques included Wiener filtering, 

noise compensation, missing-feature technique, and universal compensation. Furthermore, they 

investigated the effect of combining these techniques to improve noise robustness. Limited 

enrollment data were used in the handheld-device database (26 male, 22 female) with involved 

realistic noise and transducer mismatch between enrollment and testing. The results of these 

experiments indicate that traditional noise filters and noise compensation provide very limited 

robustness to noise corruption. However, the combination method that was used in this 

experiment showed a good improvement in noise robustness. 

2.Features Stage techniques 

This type of techniques applies additional noise suppression algorithms to the signal feature 

domains (feature extraction stage approaches). These are mainly based on the assumption that 
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in practice, the features representing the speech signal can be separated into two different parts. 

The first part is represented as the noisy speech part, which refers to the unreliable or missing 

features part, while the second part represents the reliable or present features. These techniques 

include missing feature theory (MFT) (Beigi, 2012, Lim et al., 2011, May et al., 2012), Relative 

Spectral method (RASTA) (Hermansky and Morgan, 1994), and Cepstral Mean Subtraction 

(CMS) (González-Rodríguez et al., 1996). The objectives of these kinds of the technique are to 

estimate or discover those missing unreliable features in order to reconstruct or ignore them 

during the recognition process (Rao and Sarkar, 2014). Different techniques have been proposed 

for this aim. Some of these techniques are based on prior estimation for noise regions in order 

to compensate them (Drygajlo and El-Maliki, 1998). Other types of these methods have 

proposed to completely discard the severely corrupted speech data segment when there is 

insufficient information about the noise, or it cannot be easily estimated. The recognition 

process then depends only on the portion of the speech signal that is not contaminated or at least 

contains a low ratio of noise (Seltzer et al., 2004, Besacier and Bonastre, 1998). Other features 

stage techniques deal with retaining only speech features vectors, which produce reliable scores 

for measuring the overall likelihood score to increase speaker recognition robustness under 

noisy environments. However, these kinds of techniques are suitable only when the speech 

signal is partially contaminated with noise. Furthermore, these methods should lead to removing 

some important speaker discriminative information. In addition, identifying new features that 

are more robust to noise (for example GFCC, and CFCC) are also classified as feature type 

techniques.     

Seltzer et al. (2004) presented a new estimation mask using a Bayesian classifier to extract 

information from a noisy signal to determine the reliability of this information, instead of trying 

to estimate the noise portion. This estimation mask based Bayesian classifier shows a real 

improvement in recognition performance over a conventional noise estimation based mask, 

especially when the environment is unknown to the mask estimator. However, this kind of 

estimation masks compared with other traditional mask is more complicated and requires many 

more parameters to optimise. Pullella et al. (2008) proposed a combination of spectrogram mask 

estimation and dynamic feature selection to increase the accuracy of speaker identification in 

the presence of noise. The technique depends on the uneven distribution of speaker-specific 

information in the frequency domain, allowing the erasure of non-discriminative frequency sub-
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bands and the formation of a reduced feature set. Furthermore, multi-condition enrolments were 

used in the study to dynamically select the most discriminative features for a group of speakers 

given an estimate of the global (SNR) of the evaluation environments. Experimental results of 

that combination show a good performance in the system under stationary white noise. For non-

stationary factory noise, spectral subtraction is unable to provide accurate mask estimation. 

Shin-Cheol et al. (2011) proposed a modification in Advanced Missing features theory mask 

(AMFT) to reduce the number of reliable spectral components of the noise signal. This modified 

mask was based on an estimated weighted function by computing the number of reliable spectral 

components. In the proposed mask, namely Hard mask MFT-8 (HMFT-8), they chose only eight 

elements out of ten spectral components in the features vector. The results of the new mask 

show a decreasing identification error rate compared with a conventional full band system and 

AMFT respectively. In addition, the proposed mask shows a reduction in computational 

complexity from 307 arithmetic and conditional operations in AMFT to just 41 in this mask. 

May et al. (2012)  investigated the combination of the missing features recognition with the 

adaptation of a speaker model depending on a Universal Background Model (UBM). For 

missing features recognition, the missing data mask based on local signal to noise ratio (SNR) 

has been applied to identify whether the feature component is reliable or unreliable. Comparing 

this system to a GMM-Based recognizer, the addition of UBM was shown to be very useful in 

representing the spectral feature with the presence of highly non-stationary background noise. 

A robust speaker identification using a computational auditory scene (CASA) time-frequency 

mask was proposed by Zhao et al. (2012) to isolate speech from noise in the signal. The 

corrupted components that are obtained from the CASA mask are then either reconstructed or 

marginalised. Furthermore, they combined the two methods (reconstructed or marginalisation) 

in one system depending on the complementary advantage. They also propose using Gamma 

Tone Frequency Cepstral Coefficients (GFCC) for this system (Zhao and Wang, 2013) which 

achieve better performance in Speaker identification compared with a MFCC-based system. 

The proposed system achieved significant performance over conventional systems under a wide 

range of Signal to Noise Ratio (SNR). In another recent study,  Zhao et al. (2014)  investigated 

the combined effects of background noise and reverberation on the accuracy of Speaker 

identification system. They first suppressed the background noise through a CASA mask using 

a neural network. Then they dealt with reverberation depending on training models in a noise-
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free reverberant environment while they assumed a little information about the amount of 

reverberation in recognition data. The CASA mask was utilised for automatic speaker 

identification in two strategies: bounded marginalisation and direct masking. The outputs of the 

two strategies were then combined to make a Speaker Identification Final Decision. GFCC 

features were also used in this system. 

3.Model stage techniques 

These techniques are usually applied at the model stage to deal with the impact of noise by 

decreasing mismatch between the reference model for registered speaker and recognition 

materials such that they have the same noise characteristics (Pillay, 2010). These kinds of 

approach are either based on the estimation of the noise characteristics through the enrolled 

and/or recognition phases in order to decrease the mismatch or depend on generating multiple 

reference statistical models for the same registered speaker. These multiple models represent 

different noisy conditions for speech signals belonging to each registered speaker. Then, during 

the recognition phase, the reference model that gives the closest matches to the characteristics 

of the input speech signal (based on higher likelihood score) is selected for recognition. These 

techniques include parallel model combination (PMC) (Wong and Russell, 2001, Tufekci and 

Gurbuz, 2005) and multi-SNR method (Pullella et al., 2008, Yoshida et al., 2004, Matsui et al., 

1996). Matsui et al. (1996) and Lit Ping and Russell (2001) investigated the utility of parallel 

model combination (PMC) for a noise robust HMM-based speaker recognition model. In these 

experiments, they combined a speaker HMM and noise source HMM into a noisy speaker HMM 

with a particular SNR. The approach used in this study generates several noise-added speakers 

HMM with different SNRs for each speaker, and the HMM that has the highest likelihood score 

for input speech signal is chosen. The results of these studies show significant improvement in 

both identification and verification accuracy. In a similar study, Tufekci and Gurbuz (2005) 

investigated using the PMC along with Mel-Frequency Discrete Wavelet Coefficients 

(MFDWCs) to exploit the advantages of both for improving the robustness of speaker 

verification in noisy environments. They evaluated the performance of this system over a MFCC 

based system also using PMC. The proposed system gives significant performance 

improvement over an MFCCs based system for -6dB and 0dB SNR values respectively.  Ji et 

al. (2007) used the combination techniques in speaker recognition with the presence of noisy 

conditions. They used a method that combines multi-condition training models with missing 
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features theory (MFT) to model the noise speech. Multi-conditional training was applied using 

simulated noisy data of simple noise characteristics and missing feature theory was used to 

refine the combination by discarding noise variation outside the given enrollment conditions. 

This technique was tested by using two kinds of database: a Noisy TIMIT database, collected 

by recording the data of different control noise conditions, and a handheld device database 

obtained in realistic noise. The experiments on both databases showed a significant 

improvement in the recognition system when compared with a baseline system using the same 

amount of information. Kim and Kim (2010) studied the effect of combining speech 

enhancement and multi-condition training in a speaker recognition system in a noisy 

environment where different groups of features are extracted in the speech enhancement domain 

and then the model of each speaker is trained depending on the mixture of speech enhancement-

domain. They measured the mismatch between the training and testing data depending on a 

modified version of Kullback-Leiber distance (KLD), namely intra-KLD. In different 

background noise environments, the proposed system produced 20.29% error-rate compared 

with a speaker recognition system based on speech enhancement 43.51% and speaker 

recognition based on multi-conditional training 25.0%. Kheder et al. (2014) proposed an i-

vector “de-noising” approach, called i-MAP, to deal with additive noise. i-MAP includes a full 

covariance Gaussian modelling of the clean i-vector and noise distribution in the i-vectors space, 

then introduces a technique to estimate a clean i-vector given the noisy version and the noise 

density function using a MAP approach. In an early study, Kheder et al. (2017) proposed an 

extension of the previous approach. This extension is based on building a noise distribution 

database in i-vector space in an off-line step to decrease the computational time imposed by the 

i-MAP de-noising technique. The results from the proposed extension approach show it is 

possible to achieve comparable results with sufficiently large noise distribution.  

One of the major limitations with this type of system is that they rely on prior information of 

the noise sources.  Therefore,  it is difficult for this type of system to handle arbitrary 

environmental noise. In this thesis, therefore, we propose a new approach to SR systems used 

in real-world noisy environments. This technique re-trains the enrollment models of the 

speakers based on estimated the signal to noise ratio (SNR)  and noise profile estimated from 

signals submitted to the system for recognition. This technique is called “Noisy training on the 

fly for speaker recognition”. 
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4. Score stage techniques 

The main aim of applying this kind of method is to alleviate the impact of differences in 

characteristics of the speech signal as a result of background noise by decreasing the overlap in 

the score distribution for the target speaker and an imposter (Pillay, 2010), since decisions 

depend mainly on these recognition scores and this score is channel dependent. Different 

normalisation techniques have been adopted for this purpose (Beigi, 2011). Some of these 

techniques are based on using the Bayesian equation for likelihood estimation. The matching 

score gained from a registered speaker model is normalised with the score obtained from a UBM 

(Ariyaeeinia and Sivakumaran, 1997) or a cohort of background speaker models (Zajic et al., 

2007). Another group of techniques, which is mainly used with speaker verification, focuses on 

normalisation of the scores obtained from a recognition engine. These types of technique are 

known as score normalisation techniques. The most popular approaches in this type are Zero-

normalization (Z-Norm)  (Auckenthaler et al., 2000) and Test-normalization (T-

Norm)(Reynolds, 1997). 

2.7 Chapter Summary 

This chapter has focused mainly on giving the background to speaker recognition systems and 

the major approaches that are employed in this field. This chapter has also concentrated on the 

majority of the literature that deals with the robustness of speaker recognition in noisy 

environments. First, we reviewed Human speech production. Then we covered the type of 

features and the most commonly used low-level features extraction algorithms in these fields, 

and different techniques used for generating reference speakers’ models and classifying the 

recognition utterances. After that, this chapter focused on various approaches used to evaluate 

the robustness of speaker recognition systems. Finally, we covered some of the literature that 

deals with the degradation that occurs in the accuracy of speaker recognition systems due to 

additive environmental noise. 

From this chapter, the following point can be summarised as follows:  

 The Features of the speech signal can be classified for different type but low-level features 

and specifically the Cepstrum features are the most efficient in the field of speaker 

recognition, since this type of features is easy to extract, compared with other types of 
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features. Furthermore, the major of study shows this give the best result for speaker 

recognition from other types of features.  

 Although there are many types of Cepstrum features are proposed in the literature, the 

MFCC is still the most common features space in the field of speaker recognition and still 

used as baseline features in this filed. The main reason that the most experiments of this 

features in the literature still show an efficient performance for speaker recognition when 

evaluating in normal conditions.  

 For the noisy environment, the auditory features (such as GFCC, CFCC) shows a 

significant improvement in accuracy of Speaker Recognition.  

 Various types of modelling approaches are used in speaker recognition. However, the 

generative models (such as GMM and its extension GMM-UBM and i-vector) represent 

the modelling approach for speaker recognition. On the other hand, some research suggests 

usage of the combination between generative and discriminative modelling approaches 

(such as supervector) which outperform the performance of Speaker recognition.  

 To evaluate the performance of speaker recognition, NIST proposed different types of 

metric based on two types of error false positive and false negative. The majority of 

literature uses Error Equal Rate (EER) as well as Detection Error Trade-off (DET) to 

evaluate speaker recognition application, since the first are used broadly in biometric fields, 

while the second demonstrates good graphical representation for speaker recognition 

performance.  

 Various approaches are suggested to deal with noise effect on speaker recognition. These 

approaches can be classified according to the stage of speaker recognition are applied for, 

pre-processing stage, Feature stage, modelling stage, and score stage. 
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SPEECH AND NOISE DATABASES  

Chapter Overview 

The previous chapter presented the background on speaker recognition and the most common 

approaches used in it. This chapter is intended to cover some details on the speech and noise 

databases that have been used in this research and will focus on the new database provided for 

speaker recognition, namely SALU-AC, followed by the methods used to generate the noisy 

speech data sets with various signal to noise ratios (SNRs) and the type of noises chosen for 

this research. Section 3.1 describes in detail the two speech databases that are adopted in this 

thesis and the types of noise that are used in this research in section 3.2. Finally, an explanation 

for mixing procedure to provide noisy speech with different Signal to Noise Ratios (SNRs) is 

given in 3.3.      
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3.1  Speech Databases  

In this study, two types of speech data set have been adopted. These are TIMIT database 

(Garofolo et al., 1993) and SALU-AC which has been recorded by the researcher in at the 

University of Salford. In the next section an overview of TIMIT is given and then the details 

about SALU-AC database are described. The main aim of using two different databases in this 

research is to validate the results using a different type of speech sample recording in different 

environments. TMIT represent one of the most common database that is used broadly to 

evaluate speaker recognition. SALU-AC represents good examples to dealing with 

environmental noise separately from other adverse conditions (e.g. echo and reverberation) 

when mixing with different types of noise.         

3.1.A TIMIT database  

The TIMIT database represents one of the most commonly used speaker recognition corpora 

(Garofolo et al., 1993). It was developed for DARPA and distributed by the Linguistic Data 

Consortium (LDC) (Beigi, 2011).This speech database was collected at Texas Instruments (TI), 

transcribed at the Massachusetts Institute of Technology (MIT) and confirmed and prepared by 

The National Institute of Standards and Technology (NIST) (Pillay, 2010). The main purpose 

of designing this database was to evaluate and develop speech recognition systems and it 

became widely used to evaluate speaker recognition systems. The TIMIT database can be 

summarised as follows:   

1. Speech samples in this database were obtained from 630 speakers (438 Male and 192 female 

speakers) of 8 various dialects of American English. In addition, all participant speakers are 

native speakers of American English.   

2. Each speaker provided ten speech utterances for 10 specific sentences. Some of these 

sentences are fixed for all participants (e.g. “She had your dark suit in greasy wash water all 

year” and “Don't ask me to carry an oily rag like that”) while the other sentences vary from 

one participant to another (e.g. “Bagpipes and bongos are musical instruments” and “It's hard 

to tell an original from a forgery”). In total, TIMIT contains 6300 utterances. 

3. The speech samples were recorded in a noise-free environment at a sample rate of 16 kHz 

with the time duration between 1 to 3 seconds based on the length of sentence and the rate 

of speech. So the corpus comprises 5 hours of speech.  
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4. The database contains several files associated with each speech sample, including speech 

waveform files (.wav) and text files (.txt), which contain each sentence pronounced by each 

participant. 

Table 3-1 illustrates the dialect distribution of speaker participants for TIMIT  

Table 3-1: Dialect Distribution of speakers(Garofolo et al., 1993) 

Dialect Region Male Speaker Female Speaker Total Speaker 

1.New England 31 (63%) 18 (27%) 49 (8%) 

2.Northern 71 (70%) 31 (27%) 102 (16%) 

3. North Midland 79 (67%) 23 (23%) 102 (16%) 

4. South Midland 69 (69%) 31 (31%) 100 (16%) 

5. Southern 62 (63%) 36 (37%) 98 (16%) 

6. New York City 30 (65%) 16 (35%) 46 (7%) 

7. Western 74 (74%) 26 (26%) 100 (16%) 

8.Army brat 22 (67%) 11(33%) 33 (5 %) 

Total Speaker 438(70%) 192 (30%) 630 (100%) 

 

3.1.B University of Salford Anechoic Chamber Database (SALU-AC) 

In this section, a new database called SALU-AC dedicated to speaker recognition is presented. 

The main characteristics of this database are that it contains English spoken by native and non-

native speakers, provides speech samples in different languages (in addition to English speech 

samples), and the environment where they were recorded. The main objective of creating this 

database for speaker recognition is to provide very clean speech in English and other languages, 

since data were collected in the Anechoic Chamber at the University of Salford that make it 

more efficient when want to deal with one adverse condition (for example noise) separately 

from other adverse conditions. Furthermore, this database can also be used in other speech 

processing fields like speech and language recognition. This database has been evaluated using 

MSR toolbox (Sadjadi et al., 2013), and was shown to provide a good speaker recognition rate. 

The description of SALU-AC is as follows:  
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1. Recording Environment   

In this database, the audio speech samples were recorded in an Anechoic chamber in the 

University of Salford. An anechoic chamber is an acoustic room designed to be isolated from 

any sound reflection from wall, floor, and ceiling. It represents an ideal environment for any 

acoustic experiments since the chamber doesn’t affect the measurements. The dimensions of 

this chamber are 5.4 4.1 3.3m ; the wall, floor, and ceiling are made of heavy Accrington 

bricks and concrete to prevent sound getting into the room with two heavy acoustic doors with 

rubber seals used to minimise airborne sound. In addition, every surface is covered with 

absorbent materials to absorb any sound, and the floor is covered with a wire trampoline 

stretched between the walls with an acoustically transparent catch net below. The design of this 

chamber made it one of the quietest rooms in the whole world with background noise level 

approximately -12.4 dBA and cut off frequency 100 Hz (Figure 3.1). Accordingly, the speech 

samples recorded in this room are a very clean sample from any environmental noise and any 

other adverse conditions. 

2. Recording Equipment  

The speech samples were recorded using a Zoom H6 Handheld recorder manufactured by Zoom 

Electronics. On-board X/Y stereo condenser microphones were arranged with the right and left 

microphones on the same axis. This design ensured that the microphones were always an equal 

distance from the sound source for perfect localisation without phase shifting. Throughout 

recording, only one side of the microphone was used (one channel), the distance between 

speaker and microphones was approximately 15-30cm, and samples were recorded with a 

sampling rate of 16 kHz with a bit rate of 16. The recording file can be recorded in different 

formats (such as .wav, and mp3). In the database, the speech samples were recorded into the 

most commonly used file type:- .wav. 
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Figure 3.1: Anechoic Chamber at University of Salford 

 

3. Recording procedure and speaker set details  

 In the SALU-AC database, the audio speech samples were recorded from 110 volunteer 

speakers (55 male, and 55 female). Each volunteer was instructed to speak 5 speech samples 

with different duration times (approximately 60-70 seconds for the first sample and 30-40 

seconds for the other samples) by using general texts from different readable resources 

(newspapers, books, leaflets, articles, etc.) without any constraint for the volunteers on what 

text to read (i.e. the volunteers were completely free to select any text they wanted to read or 

speak). The main aim of using these readable resources was to help the speaker to speak fluently 

without any long pause, in order to get very clean audio speech samples in addition to providing 

text-independent samples. Furthermore, each volunteer speaker was also instructed to provide 

two types of samples. The first type of samples was recorded using English. The second type 

was recorded based on the native language of the volunteer in order to provide language and 

phoneme independent samples (if the speakers only spoke English, they were requested to 

provide all the audio samples in this language).The main goal of providing non-English speech 

samples was to investigate the effect of language mismatch between enrolment and recognition 

phases. Furthermore, these samples could be used for language recognition. The audio speech 

samples for each speaker were divided into short 5 seconds sample utterances in order to obtain 

between 25 to 30 utterances for each speaker divided into two groups: one for English utterances 
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and one for native language speaker utterances (where the speaker was not an English native 

speaker) Table 3-3 demonstrates the language distribution of speaker participants for SALU-

AC. The database thus contained between 2500 and 3000 speech utterances. Nine utterances 

from each speaker were used to generate reference models in the enrolment phase (45 seconds 

training) and the remaining utterances were used as recognition samples. 

The main advantages of the SALU-AC databases over TIMIT were that it was not limited to 

one language or particular sentences, which enabled the evaluation of speaker recognition based 

on this database to be more accurate and more generalised than TIMIT. Table 3-2 illustrates a 

comparison between the two data sets. 

 

Table 3-2 Comparison between SALU-AC and TIMIT 

SALU-AC TIMIT 
 Speech samples are recorded in an anechoic 

chamber which makes them very clean.  
 Recorded in noise-free environments 

 English speech samples were obtained from 110 
Speakers (55 male, 55 female) including English 
native and non-native speakers. 

 English speech samples were obtained from 
630 speakers (438 Male and 192 female 
speakers) of 8 various dialects of American 
English 

 For non-native speakers, SALU-AC provides 
two sets one for English utterances and the 
second for native language of the speaker.   

 Provides speech samples in English only. 

 The time duration for each speech sample is 5 
seconds with sample rate 16 kHz. 

 The time duration for each speech sample 
between 1-3 seconds with sample rate 16 
kHz. 

 Speakers are not constrained by specific 
sentences. 

 Each speaker provided 10 utterances for 
specific sentences 
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Table 3-3: Language Distribution of SALU-AC 

 

Speaker Native Language Male Speaker Female speaker Total Speaker 

English (Native language) 21  15  36  

Arabic 8  14  22  

Spanish 0  4  4  

Hindi 4  3  7  

Polish 1  3  4 

Italian 1  3  4 

French 8  2 10 

Chinese 2 2 4 

Farsi 1 2 3 

Kurdish 0 1 1 

Romanian 0 1 1 

Portuguese  1 1 2 

Shona 0 1 1 

Swahili 0 1 1 

Bengali 2 1 3 

Greek 2 1 3 

Urdu 1 0 1 

German 1 0 1 

Nigerian 1 0 1 

Indonesian  1 0 1 

Total Speakers 55(50%) 55(50%) 110 (100%) 
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3.2 Noise Dataset 

Six types of noises were used in this research, four of which were environmental noises, and 

they were recorded by Loizou (2013) using a laptop and a MC391 (Shure) microphone. Each 

one was recorded with a 44.1 kHz sample rate. In addition to artificial white noise and Pink 

noise, the types of noises were as follows: 

1. Cafeteria Speech Babble Noise: This type of noise refers to multi-talker babble in the 

University’s cafeteria where the interference is speech from other speakers in the vicinity. 

This noise is uniquely challenging because of its highly time evolving structure and 

similarity to the target speaker.  

2. Interior of moving Car: the noise heard inside a moving car with fixed speed 60m/second. 

This type of noise has a similar frequency content to brown noise and it is periodically 

modulated due to the uneven road surface.  

3.  Interior of underground train compartment: The sounds heard inside a moving train 

compartment, containing static noise, pulses of sound from motion along tracks, and sounds 

changing frequency over time due to change of train speed.  

4. Street Noise: Sounds heard while walking in the streets of a city. This type contains noise 

from traffic, sirens, wind noise, and miscellaneous sound from the street.  

5. White Noise: representing a random signal of equal intensity at different frequencies, 

giving it a fixed power spectrum density. In discrete time, white noise is described as a 

discrete signal whose samples are regarded as a sequence of serially uncorrelated random 

variables with zero mean and finite variance.   

6. Pink Noise: refers to a signal with a frequency spectrum such that power spectral density 

is inversely proportional to the frequency of the signal. In pink noise, the total sound power 

in each octave in the same as the total sound power in the octave immediately above or 

below it. This type of noise is used only in noise training investigation described in Chapter 

5.   
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3.3 Mixing Procedure and noisy data 

As mentioned before, the evaluation speech datasets were typically recorded in clean 

environments (Anechoic Chamber) with no environmental noise affecting the recorded speech 

signal. The noisy speech samples were therefore obtained by mixing speech samples with the 

various types of noise mentioned in the last section in different signal to noise ratios (SNR) (20, 

15,10,5, and 0 dB). Figure 3.2 illustrates the mixing process of speech and noise signals. 

 

Figure 3.2: Mixing process block Diagram of Speech and noise Signal 
 

The procedure of mixing was as follows:  

1. The Noise signals were truncated to become the same length as target speech utterances. The 

aim of this step was to make sure that mixing of noise would occur on the entire speech 

signal. This signal was then resampled to be equal to the speech signal sample rate.   

2. The signal to noise ratio SNR (in dB) was specified to determine the ratio at which the speech 

signal and noise were mixed. For research purposes, a range of mixing between 20dB to 0dB 

was selected, since the SNR above 20dB is almost clean (i.e. the ratio of speech is high 

compared with the noise, which is too low) and SNR lower than 0 dB is barely recognised by 

the human ear. 

Speech Signal Noise Signal 

Mixing Process 

Signal to noise Ratio (in dB) 

Output mixing signal (Noisy Signal) 

Noise Scaled

Noise Signal Resample 

Speech/Noise Signals Normalization  
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3. The speech and the noise signals were normalised (root mean square was used for signal 

normalisation). 

4. Finally, the noise signal was scaled to reach the desired SNR before it was mixed with the 

speech signal. Figure 3.3 illustrates the same signal contaminated with cafeteria babble noise 

with different SNRs.   

Figure 3.3: Speech Sample contaminated with different SNRs 

 

3.4 Chapter Summary  

This chapter has given a description of the speech databases used in this research and the types 

of noise adopted. A new speech database for speaker recognition is presented in this chapter 

(SALU-AC), with the main characteristics of this database followed by an explanation of the 

mixture process used to obtained noisy speech samples contaminated with different SNRs. 

Since it is recorded in a clean environment, SALU-AC represents a good model to deal with 

environmental noise separately from other types of adverse condition when mixing with 

different types of noise. Then, it is easy to deal with the noise issue far from any other effect of 

adverse conditions.  TIMIT, on the other hand, represents the most commonly used database to 

evaluate the performance of speaker recognition application. 
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GMM-UBM BASED SPEAKER RECOGNITION  

Chapter Overview 

This Chapter focuses mainly on explaining the structure of the Speaker Recognition based on 

GMM-UBM which is adopted in this research and how this system works. This is followed by a 

description of experiments that investigate the variant effects of different kinds of noise with 

different SNRs on the robustness of Speaker Recognition. A review, and how GMM-UBM based 

SR works, are presented in section 4.1, and the experiments that show the impact of different 

environmental noises on speaker recognition are presented in section 4.2.   
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4.1 GMM-UBM based Speaker Recognition  

In order to implement Speaker Recognition based on GMM-UBM, the Microsoft speaker 

recognition (MSR) identity toolbox (Sadjadi et al., 2013) was adopted for this purpose. The next 

sections give a review of the GMM-UBM, and then the process of this system is explained. 

4.1.A Review of GMM-UBM based Speaker Recognition 

GMM-UBM Speaker Recognition (like other Speaker Recognition system models) includes 

two primary components: a front-end and a back end. The front-end of this system is responsible 

for transforming the speech signals to acoustic features in the features extraction process. The 

Cepstral features are most commonly used with this SR model (as seen in chapter 2). The back–

end, on the other hand, includes the training (enrolment) and testing (recognition) phases. The 

training (enrolment) phase is responsible for estimating a model for each registered speaker to 

generate a reference model. This can be done by using one of the modelling approaches 

explained in Chapter 2. In the test phase (recognition), on the other hand, the test segment is 

scored against all enrolled speaker models to determine the identity of the speaker (speaker 

identification) or against the reference model of the claimed speaker to make a decision on 

whether the speaker is the target speaker or an imposter.  

4.1.B How GMM-UBM based Speaker recognition works  

As mentioned earlier, the GMM-UBM model has been adopted for this research. The operation 

of this SR model, like any other recognition system, can be summarised in the following 

processes (Figure 4.1): 

1. Pre-processing: This step includes the following processes: read signal, use Speaker 

Activity Detection (SAD) to remove the silence from the speech signal, ignore the SNR 

frames, and remove the linear channel effects.  

2. Features parameters extraction: Extract Cepstral features for each audio speech utterance 

in the enrolment and recognition phases. This process is responsible for converting the 

audio speech signal for each speaker to Cepstral features (this study focuses mainly on 

MFCC and GFCC features as will described later in Chapter 6). The features of each 

speaker are then stored in a unique file. The created files are classified into training files 

(Traini-j , i=1,..,number of users j=1,..,number of utterances for ith speaker )which 
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represent the  features space for each user (i) that has been used to create the reference 

model, and, testing file (Testi, i=1,…number of users) which represents the feature space 

for each user(i) in recognition phase. More details about features extaction algorithms are 

given in Chapter 6.   

3. Training a UBM from background data: This process is responsible for creating 

background models from a huge number of speakers by fitting GMM to acoustic features 

using binary splitting and Expectation Maximisation (EM). 

4. Maximum a Posteriori (MAP): This process is responsible for adapting speaker specific 

GMM from UBM. The output of this process represents the reference model of each 

speaker. More details about generating UBM models and adaptation process are given 

in Chapter 5.  

5. Scoring verification: Computes the verification score between the reference model of 

the claimed speaker and recognition features of the input speech signal (Test i). The 

scores are measured as a log-likelihood ratio between the two models. 

6. System Evaluation: Making an evaluation for the performance of the system depends on 

the output of verification (in this work error equal rate (EER) and Detection Error Trade-

Off (DET) Curve were adopted). 

 

Figure 4.1: Gaussian Mixture Model -Universal Background Model Speaker Recogniton 
(Sadjadi et al., 2013) 
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In most of the experiments in this research, a GMM baseline speaker recognition was used 

instead of a GMM-UBM one. The main reasons behind this are the limitation of data in SALU-

AC compared with the data required to train UBM. Furthermore, in a training on the fly 

approach, the adapted model for claimed person requires to be built from scratch instead of 

adapted from UBM. To be more precise, in these experiments UBM is still used, but the speech 

data used in UBM and in training are the same. Thus each speaker will adapt his/her own model 

from UBM instead of adapting an independent model using MAP. This is also useful because 

the adapted model from UBM will be treated as a supervector in order to make the recognition 

more robust. For simplicity, we call this the GMM based system. More details about the 

difference between GMM and GMM-UBM baseline speaker recognition will be given in the 

next chapter. 

4.2 The Impact of environmental noises on the performance of SR         

In the last section, a detailed description GMM-UBM based system was given. In this section, 

the impact of various noises with different SNRs on the accuracy of verification of this system 

will be investigated. Statistical relationships between recognition accuracy and SNR have 

therefore been established. Results show various noises with different SNRs degrade the 

performance of verification to different extents. 

4.2.A Experimental Setup  

The aim of this experiment is to characterise the effectiveness of noisy speech sets contaminated 

with different SNRs and different types of noise on the accuracy of the GMM-UBM speaker 

recognition. The details of these experiments are as follows: 

 Mel Frequency Cepstral coefficients MFCC including delta and delta-delta coefficients 

were used in these experiments with dimension 39*514 where the row represents the 

number of Mel-filters and the column represents the number of frames (more details about 

MFCC extraction are given in Chapter 6). 

 Gaussian mixture model GMM was applied for creating reference models and classification 

with 256 Mixture. In this experiment, only GMM was applied. 

 The experiments were conducted on two speech samples from 60 speakers (30 Male and 

30 Female) in both SALU-AC and TIMIT databases. Five groups of noisy speech samples 
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were used in these experiments. Each group represents speech samples contaminated with 

a specific type of noise. Each group also includes five sub-groups which represent the same 

data contaminated with different signal to noise ratios, in addition to one group that includes 

a clean speech sample.          

 The evaluation of the GMM-UBM based speaker recognition, in these experiments, is 

based mainly on Error Equal rate and Detection Error Trade-off (DET) graphs. These 

evaluations depend on 60 cases of target speakers (authorised speakers) against 3540 cases 

of imposters (unauthorised speakers) based on log-likelihood scores.    

4.2.B Experimental Results and Discussion    

As mentioned before, the aim of these experiments is to investigate the impact of differed types 

of noise with a various speech to noise ratios (SNRs). Figure 4.2 illustrates the degradation 

accuracy based on EER when the SNR decreases for each type of noise using the SALU-AC 

database. The X axis represents the SNR (in dB) between clean signals (which is usually greater 

than 25 dB) and 0 dB (where the level of speech and noise are equal) and each bar in the figure 

represents a different type of noisy speech (Cafeteria Babble, Interior Car, Interior Train, Street, 

and White noise). 

Figure 4.2: Speaker Recognition Performance for different noises for SALU-AC 
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It is very clear that the various noises have different impacts on the accuracy of speaker 

recognition. Interior Moving Car noise, for instant, has only a slight effect on accuracy of SR 

(0% EER and 0.14% for 20, and 15 dB respectively) if compared with other types of noise like 

white and train, which have a higher impact on SR accuracy (2.9% and 6.6% EER for 20, and 

15 dB in white noise, and 1.15% and 1.7% EER for Train for the same SNRs). On the other 

hand, the Cafeteria Speech Babble noise has more effect on accuracy at 0dB with 29.6% EER 

than interior moving train noise; while for other SNRs, it is clear the effect of interior moving 

train noise is higher. Figure 4.3 shows the DET graph for different types of noise in 10dB SNR. 

As can be seen, the effect of car noise on FPR (FRR) and FNR (FAR)  is lower, while the white 

noise has a higher effect on both compared with other types of noise. Furthermore, the interior 

moving train, street, and cafeteria babble also have a high effect on accuracy, especially on false 

positive rate.                        

 

Figure 4.3: DET Graph for 10 dB SNR for Different types of noise in SALU-AC 
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Figure 4.4: Speaker Recognition Performance for different noises for TIMIT 

 

When TIMIT was used, it is still clear that the white noise has a higher impact on accuracy than 

the other kinds of noise, while the car noise still has a limited effect compared with other types 

of noise (Figure 4.4). Cafeteria Babble and interior moving train noise have approximately the 

same effect, through whole SNRs except at 5dB where the effect of Cafeteria Babble is higher. 

Also, it can be noticed that the interior moving car and street noise have the same EER in higher 

SNR (20dB and 15dB with 0.45% and 1.6% EER respectively), while the effect of street noise 

becomes higher at 10, 5, and 0 dB (i.e. when SNR are decreased). Figure 4.5 shows a DET 

graph for these types of noise at 15 dB. 
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Figure 4.5: DET Graph for 15 dB SNR for Different types of noise in TIMIT 

 

Again, the white noise showed the most effect on both FPR and FNR; Babble and Train have 

approximately the same effect on FPR, and the car noise has the least impact on SR for both 

FPR and FNR.   Overall, through these experiments, it is clear that the impacts of different types 

of noise on speaker recognition accuracy are varied from one type of noise to another. 

Furthermore, the ratio of noise in signal (i.e. SNR) also plays a major role in the SR 

performance. In the next chapter, an investigation of using different noisy speech data with 

different SNRs in the enrollment phase has been investigated, as well as how much the 

robustness of speaker recognition can be improved. 
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4.3 Chapter Summary  

In this chapter, the GMM-UBM based speaker recognition adopted in the study has been 

reviewed, with an explanation of how this type works. Finally, an implementation of this type 

of system with the impact of different types of noisy speech with different types of SNR has 

been investigated. The results show the variation of the effects of different types of noise on the 

performance of speaker recognition. Clearly, signal to noise ratio has the main role in the 

robustness of speaker recognition. Furthermore, the value of SNR can play a major role to find 

the threshold at which the speaker recognition performance is affected with additive noise. In 

the next chapters, different approaches are employed to improve the robustness of speaker 

recognition in environmental noise.     
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IMPROVING THE ROBUSTNESS OF SPEAKER 

RECOGNITION IN NOISY CONDITIONS VIA TRAINING 

Chapter Overview 

As mentioned before, environmental noises are known to be one of the greatest challenges in 

speaker recognition since they significantly compromise the system reliability due to Channel 

Mismatch. The previous chapter investigated the effect of different types of noise and different 

SNRs on the robustness of speaker recognition.  This chapter describes attempts to improve 

robustness by including possible channel mismatching, i.e. using noisy speech to create training 

models. Validation testing was carried out in emulated noisy conditions with a controlled signal 

to noise ratio. Below (Section 5.1) is a description of how to employ Gaussian mixture model 

(GMM) and Gaussian mixture model - Universal Background Model (GMM-UBM) for 

modelling and classification, followed by experiments to investigate the robustness of using 

GMM and GMM-UBM with limited data in section 5.2. After that, the experiments using noisy 

data in the enrolment phase and their results are described in 5.3. 
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5.1 Gaussian Mixture Model (GMM) and Universal Background Model 

(UBM) 

     The Gaussian Mixture model is one of most commonly used models in the field of speaker 

recognition. This model represents the probability density functions (PDFs) of a random 

variable by a weighted sum of α components (or Mixtures), where  is an integer. This weighted 

summation is given by Reynolds (1995) and Reynolds and Rose (1995): 

| | , (5.1) 

 

where  is a H-dimensional feature vector,	   are   the mixture weights of each of the 

components . | ,  is a Gaussian density function parameterized by  which represents 

the mean of the  vector ,  is a covariance matrix, and  i=1,…,α,. | ,    are constrained 

by 	 1. 

 The Gaussian density function is given by: 

| ,
| |

(  (5.2) 

for 1,2, … , . Operations |. | and .  indicate the determinant and transpose respectively. 

The collection of the mixture weights	 , means   , and covariance  can be represented in 

notation such that 	 , , . The form of the models generated by GMM supports full 

variance matrices. Therefore, the GMM implemented based on diagonal covariance matrices 

are applied. The main reasons are in three parts. First, as a result of employing cepstral feature 

parameters, they are to be highly uncorrelated. The covariance of these parameters is therefore 

trivially small compared with the covariance of the matrix which is diagonally dominant. 

Second, using one covariance matrix for each mixture offers better modelling capabilities 

(Reynolds and Rose, 1995). In addition, employing diagonal matrices requires small storage, 

and improves computational efficiency and simplicity (Pillay, 2010). 

To estimate the parameters of GMM the iterative Expectation-maximization algorithm (EM) is 

commonly used (Dempster et al., 1977). EM is an unsupervised approach, which depends 
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mainly on the maximum likelihood (ML) principle. Reynolds et al. (2000) proposed a novel 

approach for creating speaker dependent GMM. This approach depends on using Maximum a 

Posteriori (MAP) adaptation of a speaker independent model, which is based on a Bayesian 

framework. Conversely to maximum likelihood enrolling, this approach is based on the 

assumption of the prior distribution of a model, which is derived from speaker independent 

distributions. This is generated by applying the EM algorithm depending on using a large set of 

speakers. This set of models from independent speakers is commonly known as the Universal 

Background Model (UBM) or world model, while the whole approach is referred to as  GMM-

UBM or adapted-GMM (Reynolds et al., 2000). 

The approach of GMM-UBM can be described as follows: 

 Given  which represents UBM extracted by EM, and a set T of enrolling vectors, 

, , … . . ,  (extracted from speech segment), the probabilistic alignment of enrolling 

features vectors related to the  mixture of the UBM is determined. This can be done by 

measuring the a posteriori probability for acoustic mixture i, given the observation  

              | ,
| ∑

 (5.3) 

 

 Next, calculate the appropriate statistics for weights	 , means   , and variance  of each 

mixture i as follows (Reynolds et al., 2000): 

 

 | ,  (5.4) 

  | ,  (5.5) 

  | ,  (5.6) 
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where ,	  and  are the count and the first and second moment of the enrolment 

features respectively. 

 Based on statistics from the previous step, the new estimates for each mixture of the 

adapted model are then obtained  by merging  them with existing UBM parameters as 

follows (Reynolds et al., 2000): 

     (5.7) 

      

 

(5.8) 

    (5.9) 

where  is a scaling factor that ensures all adapted mixture weights sum to unity. The adaptation 

coefficients , ,  are coefficients for mixture ith, which are responsible for controlling 

the balance between old and new estimates for weight , mean	 , and variance . These 

compute as: 

       (5.10) 

where ∈ , , , is the fixed relevance factor for parameter  . Generally, single 

adaptation coefficients are used, such as  . Moreover, the adaptation of only 

mean statistics gives better performance of speaker recognition compared with full adaptation 

of weight, means, and covariance for GMM as reported by (Reynolds et al., 2000). 

As discussed earlier, the GMM-UBM approach includes the adaptation of the background 

model in UBM using register enrolling materials to obtain particular speaker GMMs. This 

UBM, as mentioned before, is enrolled by applying the EM techniques on a large amount of 

developed data from different speakers. Consequently, the parameters of each speaker model, 

through adaptation procedure, are derived by updating the well-enrolled parameters in the 

universal model according to available enrolling materials. Hence, the adaptation procedure 

results in tighter coupling between the particular speaker model and UBM (Pillay, 2010). The 

reason for this is that the parameters of the mixture, which are not supervised in the enrolling 
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speech of a particular speaker are simply copied from the UBM. Furthermore, this tighter 

coupling obtained by the GMM-UBM approach allows a fast scoring technique to be 

implemented through the recognition phase without any degradation in accuracy (Reynolds et 

al., 2000).This approach depends on two observations: Firstly, for each feature vector of a 

recognition utterance, it is noticed that only a few of the mixture contributes significantly to the 

overall likelihood value. Second, it is also seen that feature vectors, which are near to a specific 

mixture in the general model (UBM) tend to be near the corresponding mixture in the speaker 

model (Pillay, 2010). 

As a result, the fast-scoring approach merges these two observation as follows (Pillay, 2010): 

the Largest D scoring mixtures in UBM are determined for each feature vector, and the UBM 

likelihood is calculated depending only on those mixtures. Then, to evaluate the speaker’s 

likelihood, the feature vector is scored with the corresponding D mixtures of the speaker model.  

For instance, if we consider a UBM has D mixture, the fast scoring would include α+D 

computation for each feature vector instead of 2α log-likelihood in normal procedure. This is 

particularly useful especially when the amount of mixtures is large. 

In the classification stage, as soon as the speaker GMMs are produced, this model has been used 

for recognising speakers based on their recognition utterances. In the case of speaker 

verification, the function is evaluating the likelihood of hypothesis (claimed) speakers model λ 

for given observation   which is written by using Baye’s theorem in form λ|σ  such that: 

   |
|

 (5.11) 

where λ  is a priori likelihood of target speaker model which is considered similar for all 

models and can be ignored.  is the unconditional likelihood of the observation  being 

generated by any speaker.  can also be represented as a constant value.  

Next, in order to obtain a log-likelihood function, equation 5.11 is transformed into log-domain. 

     |  (5.12) 
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The decision of verification is then made depending on whether the result of log-likelihood 

 is greater or less than a specified threshold φ ; for example, if  φ the speaker is 

classified as Target, otherwise classified as Imposter:     

   
,
,

 (5.13) 

where    represents the verification decision.  

In the case of Speaker Identification (SI), a similar principle is applied, but in this case, the 

enrolled speaker model should be found which produced the highest log likelihood against the 

given recognition segment. This is given as: 

│       (5.14) 

 

5.2 GMM vs. GMM-UBM Experiments 

In the previous chapter, the experiments of speaker recognition in noisy environments were 

presented based on a GMM approach instead of GMM-UBM.  The reason for the use of Speaker 

Recognition SR1 based GMM will be discussed in the report on the next experiments. These 

experiments studied the difference between using both systems (GMM, GMM-UBM) with 

limited data. 

The experiments in this section were intended to evaluate the performance of speaker 

recognition in a noisy environment with limited data from a SALU-AC database using two 

different modelling based systems: GMM and GMM-UBM. Furthermore, the effect of language 

mismatch on both systems was investigated in the same environments. For the GMM-UBM 

based system, 80 speakers were used to train the UBM and 30 speakers as register speakers in 

SR (the enrolment speaker). For the GMM based system, only 30 were used as register speakers. 

To be more particular, the GMM based system also used UBM, but in this case, the data used 

to train UBM was the same data used in the training section. As a result, each enrolled speaker 

adapted his/her model from UBM instead of adapting an independent speaker model. For the 

recognition (test) phase, two sets of data were applied to both systems. The first set included 

                                                 
1 the terminology of Speaker Recognition (SR) in this thesis is referred to Speaker Verification (SV) 
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speech samples using English only and the second recognition set included speech samples for 

the same speakers with different languages: each one with his/her native language. The details 

of these experiments are as follows:  

 MFCC including delta and delta-delta coefficients were adopted in these experiments 

with dimension 39*514 where the row represents the number of Mel-filters and column 

represents the number of frames. 

 GMM and GMM-UBM were used for generating reference models and classification 

with 256 components (mixture).  

 The experiments were conducted on speech samples from 30 speakers (15 male, and 15 

female) and 80 speakers for training UBM in the case of GMM-UBM model.  

 For the recognition phase in both systems, two sets of recognition speech samples were 

used: the first set included the English speech utterances from 30 speakers, and the 

second set included different language utterances (except English) from the same 

speakers. In addition, each set included a number of subsets. Each subset represented 

the same speech samples contaminated with different SNRs (20, 15, 10, 5, and 0) for a 

specific type of noise. In these experiments, three types of noise were used (Babble, 

Train, and Street).     

   In these experiments, the evaluation of both verification systems is based on using EER 

and detection error trade-off DET graph.  
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5.2.A Experimental Results  

As discussed before, the main purpose of these experiments was to investigate the performance 

of SR using two modelling approaches, including GMM, GMM-UBM with limited enrolling 

data sets. The main motivation for these experiments was to check the performance of the 

universal model for SR using SAL-AC, which is, unlike TIMIT, based on speech samples from 

a limited number of speaker participants. In particular, as discussed before, UBM requires a 

huge number of speaker utterances to achieve robust recognition performance. Figure 5.1 a, b, 

and c shows the accuracy of speaker recognition (based on EER) using the first recognition set 

(the set that includes English utterances) based on GMM and GMM-UBM modelling 

approaches. The abscissa represents the signal to noise ratio SNR in dB, while the ordinate 

represents the recognition accuracy of the system based on EER. Each line graph represents the 

degradation of the impact of specific noise on the accuracy of speaker recognition. It is clear 

that both systems have very close EER in clean and high SNR, and possibly, that SR based 

GMM has slightly better EER than SR based GMM-UBM. For instance, in the clean and 20dB 

SNR for the three types of noisy speech (Babble, Train, and street) the SR based GMM has 

slightly less ERR than SR based GMM-UBM. However, both have the same accuracy in 15dB 

for speech contaminated with babble and train noise (with 3.33% ERR), while for noisy street 

speech the better performance is from the GMM based system with very small differences 

(2.98%  EER). However, for the noisy speech with 5 and 0 dB, the accuracy of both systems 

varies from one type of noise to another. 
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Figure 5.1: Speaker Recognition accuracy (EER) for GMM/GMM-UBM based systems  
(first set)
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Figure 5.2 shows a DET graph for both systems for 15 dB noisy speech for three types of noise. 

It is clear that the GMM based system (the red dashed curve) gives the best performance over 

GMM-UBM (the blue bold curve) for the three types of noise in both FPR and FNR, but in 

some cases (e.g. babble noise) the accuracy of FPR is slightly different. 

Figure 5.2: DET graph for both GMM/GMM-UBM based systems (first set) 
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Conversely, when the second set of speech samples are used (the set that includes utterances 

from different languages) in the recognition phase (Figure 5.3), the performance of SR based 

GMM-UBM shows a significant decrease in accuracy in the clean and high SNRs (20dB and 

15dB) for the three types of noise, while SR based GMM shows more robustness to language 

mismatch in the same SNRs. However, both based SRs show almost the same EER between 10 

and 0 dB for speech utterances contaminated with train and street noise (Figure 5.3 b, c). Babble 

noise, on the other hand, shows higher performance from the GMM-UBM based system for the 

same SNRs (Figure 5.3 a).      

 

Figure 5.3: Speaker Recognition accuracy (EER) for GMM/GMM-UBM based systems 
(Second set) 
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In the DET graph for the second set (Figure 5.4), which represents the performance of both 

GMM (the red dashed curve), and GMM-UBM based SRs in 20dB SNR for the three type of 

noise, it is clear that there is a significant difference in performance, with GMM base line 

demonstrating improvement in both FPR and FNR over GMM-UMB baseline.    

 

Figure 5.4: DET graph for both GMM/GMM-UBM based systems (Second set) 
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From the last experiments, the main findings can be summarised as follows: 

 Both baseline(GMM and GMM-UBM)  give different performance in different types of 

noise and different SNRs. However, in general, the GMM baseline is more robust to 

noise in clean and high SNRs while in low SNRs both systems have almost the same 

performance in most cases.  

 The GMM-UBM baseline is affected by language mismatches more than GMM-

baseline, especially when the signal is clean or has high SNR, which makes GMM 

baseline more robust, especially when it is known that each speaker will adapt its model 

instead of using an independent model.  

As a result, the findings of this study suggest that it is better to use GMM baseline than 

GMM-UBM baseline with limited data, especially with a database like SALU-AC. 

Therefore, these experiments may lead to the following question: is the SR with GMM 

baseline better than the one with GMM-UBM baseline? The answer is no, and that was 

shown by Reynolds et al. (2000). However, the main important point in the GMM-UBM 

baseline is providing a large number of utterances for training the background model to 

obtain a good SR performance. In this research, it was possible to do this with the TIMIT 

database, since there was enough data for the background model to learn. However, in the 

case of the SAL-AC database, it is difficult to apply UBM, since it is based on a very limited 

number of speech samples.  

One other important reason, as will be seen in Chapter 8, ‘Training on the fly’, where it is 

intended to build an adaptive model based on estimated SNR and type of noise, it is 

necessary to build one from nothing instead of adapting one from UBM. Otherwise, the 

UBM should re-train again to make it suitable for the on the fly model.  

Therefore, based on previous experiments, the next experiments in this thesis are based 

mainly on using SR based GMM.   
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5.3 The robustness of SR using noisy speech Training 

This section describes an attempt to improve speaker recognition robustness in a noisy 

environment by including noises with different controlled SNRs in the enrolment phase of 

typical Gaussian Mixture Model based speaker recognition systems. Validation testing was 

carried out in emulated noisy conditions with a controlled signal to noise ratios SNR. The aim 

of these experiments was to characterise the effectiveness of using noisy speech samples 

contaminated with different types of noise with different signal to noise ratios (SNRs) on the 

accuracy of speaker recognition, and what kind of improvement was obtained when using noisy 

speech samples in enrolment phase.   

5.3.A Experimental setup  

The experiments on noisy speech were based on using three different scenarios: the first one 

was based on using speech samples contaminated with five types of noise (cafeteria speech 

babble, interior moving car noise, interior moving train, street noise, and white noise) in 

enrolment phase (Training phase). These enrollment speech samples were contaminated with 

fixed signal to noise ratio (15 dB in this case ) for each type of noise. Results were then 

compared with those obtained from clean speech samples training. The second scenario was 

based on using speech samples contaminated with different SNRs of Cafeteria speech, Babble 

noise, and interior moving train noise (in this case 4 types of SNR were used: 15, 10, 5 and 0 

dB). The third scenario included using speech samples contaminated with a specific type of 

noise (in this experiment pink noise was used) in the enrollment phase (with 15dB SNR) and 

investigated the performance of SR with different types of noisy recognition data. The details 

of these experiments are as follows: 

 Mel-frequency Cepstral coefficients MFCC with delta and delta-delta coefficients were 

used in these experiments with dimensions 39*514 where the row represents the number 

of Mel-filters and column represent the number of MFCC frames (more details about 

MFCC extraction in Chapter Five). 

 Gaussian mixture model GMM was applied for creating reference models and 

classification with 256 Mixture. 

 The experiments were conducted on speech samples from 60 speakers (30 male and 30 

female) in the SALU-AC database. 
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 One set of speech samples was used. This set was divided into a number of subsets. Each 

subset represents the same speech samples contaminated with different SNRs (20, 15, 

10, 5, and 0 dB) for a specific type of noise. In these experiments, five types of noise 

were used (Cafeteria speech babble, Interior moving car noise, interior moving train, 

Street noise, and white noise).  

 The evaluation of the MSR speaker recognition toolbox, in these experiments, is based 

mainly on using Error Equal Rate (EER) and Detection Error Tradeoff (DET).  

5.3.B Experimental Results and Discussion 

In the first scenario, Figure 5.5 a, b, c, d and e illustrate the differences that occur in degradation 

in recognition accuracy (based on EER) for each sample of noisy and clean enrollment speech 

when SNR is decreased. As discussed before, the abscissa represents the signal to noise ratio 

SNR in dB, the ordinate represents the recognition accuracy for SR based on EER, and the table 

included with each line graph represents the values of ERR for each SNR.  

Regarding additive babble noise (Figure 5.5 a), the accuracy of SR shows greater noise 

robustness when noisy speech samples are used in the enrolling phase (training phase) compared 

with using clean speech samples for enrolling. In particular, when the SNR becomes low (i.e., 

between 10 and 0 dB) the difference in accuracy between both cases (clean and noisy) is 

increased. For example, at 15, 10, and 5 dB, the EERs for Babble noisy enrolment are 0.113%, 

0.59%, and 3.92% respectively, with only 1.66%, 5.39% and 13.33% respectively for clean 

speech enrolling. Likewise, the additive interior train and Street noise show the same 

improvement in noisy training. However, a significant improvement can be demonstrated 

between 10 and 5 dB, with EER 1.6% and 3.33% respectively for interior train noisy enrolment 

against 6.66% and 14.57% EER respectively for clean enrolment. Street noisy enrolment 

demonstrated EER 0.48% and 1.66% respectively compared to 3.33% and 10% EER 

respectively for clean training. On the other hand, the interior car noise (Figure 5.5 b) shows the 

best improvement at 5 and 0 dB while the white noise samples also showed very significant 

improvement between 15dB and 5dB (Figure 5.5 e). In addition, the experiments discovered, 

for some noise, that the best results were obtained when the enrolment and recognition samples 

have the same SNR (in this case 15 dB) as seen in cafeteria babble, interior car, and white noisy 

speech sample. However, this cannot be generalised for all types of noisy speech training. 
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Conversely, using noisy speech in the training phase with clean speech recognition samples in 

the recognition phase causes degradation in performance. 

 

Figure 5.5: EER of SR using Noisy Speech Training 
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Figure 5.6: DET Graphs for Noisy and Clean Training at 10dB recognition data 
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Figure 5.6 a-e represent the detection error trade-off (DET) graph for clean and noisy training 

for noisy recognition speech samples contaminated with 10 dB SNR. The red dashed curve 

represents the noisy training accuracy of SR, while the solid blue one represents the accuracy 

of clean training. It is noticeable that the improvements obtained from noisy training in both 

false positive rate FPR and false negative rate FNR are high compared with clean training for 

all types of noisy speech training. Note that the curve of noisy training for interior car noise is 

not shown since the EER, in this case, is too small (0.02 %). Furthermore, it can be seen that 

the improvement of white noise speech training is the highest. 

More details about DET graphs for the other SNRs are illustrated in Appendix -I-. 

In the second scenario, as mentioned before, noisy speech samples contaminated with different 

SNRs (15, 10, 5, and 0) of specific types of noise (in this case cafeteria babble noise and interior 

train noise) were applied in the enrolment phase. Figure 5.7 a, b demonstrates the EER of each 

SNR training (orange, red, green, and purple bars for 15, 10, 5, and 0 dB respectively) in 

addition to clean training (which is represented as a blue bar). Compared with clean speech 

training, it is clear that babble noisy speech training at 15, 10, and 5 dB outperforms the clean 

speech training, especially when SNRs of recognition samples (test sample) are decreased. For 

example, in cafeteria babble noisy speech training, when the recognition speech samples (test 

speech samples) are contaminated with 10 dB SNR, the best performance was obtained in 15dB 

and 10 dB noisy training with 0.59% and 1.3 % EER respectively compared with 5.39% EER 

for clean training (Figure 5.7 (a)). The same result can be seen when the interior train noisy 

samples are applied in the enrolment phase. 



Chapter 5: Improving the Robustness of Speaker Recognition in Noisy Conditions via Training 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      97 
 

Figure 5.7: EER of Speaker Recognition for clean and different Noisy training SNRs 
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The performance of SR using noisy training showed significant improvement over the clean 

training, especially when the recognition speech samples were at 10, and 5 dB SNR. For 

instance, when the recognition sample was contaminated with 5 dB SNR less EER was obtained 

than when SR was trained in 15 dB and 10 dB SNRs, with 3.33% for both cases, while in the 

case of clean training the EER was 14.5. However, the training in 0 dB SNR (where the level 

of noise and speech was the same), for both type of noise, did not give any improvement even 

when the recognition speech data had the same rate. Similar to the first scenario, the accuracy 

of using noisy speech training with a clean speech in the recognition phase shows degradation in 

the accuracy compared with using clean speech in enrolment phase.   

Moreover, the experiments show that when recognition speech samples are contaminated with 

high SNRs (e.g. 15 dB) the best results can be obtained when enrolment noisy speech is trained 

with the same signal to noise ratio (i.e. when channels are matching between testing and 

enrollment phases). However, for recognition samples with low SNRs (e.g. 10, 5 and 0 dB) it 

is better to use a higher SNR than that in recognition samples, as seen in Figure 5.7 a, b.   

Figure 5.8 shows the DET Graph for clean and noisy training with different SNRs for 05 and 

10 dB speech samples contaminated with cafeteria babble noise (Figure 5.8 a, c) and interior 

Train noise (Figure 5.8 b, d). The bold black curve represents the clean training, while the 

remaining curves represent different SNRs training. Again it is clear that noisy training for 15, 

10, and 5 dB outperformed the clean training in both FPR and FNR and with the two types of 

noise. Moreover, for the noisy recognition speech at 10dB, the best performance was obtained 

when training at 15dB for both types of noise (Figure 5.8 c, d); while for the 5dB noisy 

recognition speech set, the best performance is at 10dB training in case of cafeteria babble noise 

and 15db training in case of interior moving train. More details about DET graphs for the other 

SNRs are illustrated in Appendix -I-. 
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Figure 5.8: DET Graph for Clean and Different SNRs Training 
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Figure 5.9: Pink Noisy Training compared with other types of Training 
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The third scenario includes applying a noisy enrollment speech contaminated with a specific 

type of noise (the pink noise was chosen) at 15dB and investigating the performance of SR with 

different sets of recognition noisy speech contaminated with different types of noise and 

different SNRs. The main goal of these experiments was to answer the following question: can 

an improvement in SR be obtained by using noisy speech data contaminated with a fixed type 

of noise in the enrollment phase for all types of recognition speech sample contaminated with 

different types of noise? 

Figure 5.9 illustrates the degradation of EER for pink noisy speech samples training (the black 

dashed & dotted line) compared with clean samples training (the blue bold line) and speech 

samples training using the same noise already used in the test sample (the red dashed line). 

From this figure, it is observed that using speech samples contaminated with the pink noise in 

training phase causes degradation in performance of SR for four types of testing noisy data 

(Cafeteria Babble, interior car, interior train, and street noise). In some cases, the EER of SR 

even becomes worse than using the clean sample for training (Figure 5.9 a, b, c, and d). On the 

other hand, when this training was used with test samples contaminated with white noise, a 

promising improvement in accuracy was found, compared with clean samples training 

(Figure 5.9 e). However, this improvement is still limited compared with white noise sample 

training which produces a significant improvement in accuracy when compared with other 

training types (pink and clean training). Figure 5.10 shows the DET graph for the test samples 

contaminated with 15 dB SNR for the five types of noise using the three types of training. 

According to Figure 5.10, the training with pink noisy sample affects both FPR and FNR (the 

dash-dot curve) negatively for the four types of noisy test sample mentioned before, while there 

is an improvement with noisy test samples with white noise. However, the best results still come 

from using the same type of noise as used with the test sample.  
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Figure 5.10: DET graph of pink noisy training for 15 dB test samples 
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From the results of this scenario, it can be concluded that each type of noise has a unique profile 

and unique characteristics that make it different from other kinds of noise. Therefore noisy 

reference models cannot be generalised based on one type of noise for other type speech sample 

data contaminated with a different type of noise.  

From the last three scenarios, the findings can be summarised as follows: 

 Using noisy speech samples in a training phase gives significant improvement in 

performance of a speaker recognition system compared with clean speech training, 

especially when the system is used in noisy environments. 

 To provide suitable noisy models that closely resemble the noisy input signal, two factors 

should be taken into account: signal to noise ratio SNR that matches or is at least close to 

SNR of the input signal, and a noise profile which includes the same characteristics that 

are embedded in the input signal.  

 It is very necessary to specify SNR for noisy speech training, since the investigations from 

the last scenarios showed that, to ensure a good SR performance, the noisy speech training 

must have the same SNR or at least close to that included in the recognition signal if SNR 

is high (e.g. 20, and 15 dB), while for low SNR it is better to provide noisy training 

samples with SNR greater than that included in the recognition signal. However, this still 

differs from one noise to another. 

 Using noisy reference samples contaminated with one type of noise with recognition 

speech samples contaminated with a different type of noise in order to improve the 

robustness of speaker recognition is not a good solution (sometimes this works with some 

kinds of noise but not for all noises) ,since each type of noise has its own unique 

characteristics.  

As a result, if suitable SNR and noise profile estimations can somehow be provided, it is 

possible to re-build a noisy adaptive reference which comes closer to matching the noisy input 

signal to improve the performance of speaker recognition in noisy environments. In chapter 8 a 

new approach has been proposed to make the speaker recognition more robust in noisy 

environments, namely “Training on the fly” based on creating a noisy adaptive model dependent 

on SNR and noise profile.  
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5.4 Chapter Summary 

This chapter can be divided into two parts. 

The first part included an investigation of robustness of using GMM and GMM-UBM based SR 

with limited speech data and performance of each based system in noisy environments and 

mismatched languages.  

The second part included investigations made to deal with the degradation in speaker 

recognition caused by environmental noises. This investigation involved enrolment with various 

types of noisy speech with different SNRs. Results show using noisy speech samples in a 

training phase gives significant improvement in performance of a speaker recognition system 

compared with clean speech training.  

 These experiments suggest that inclusion of noisy environmental conditions in the enrolling 

can mitigate the performance degradation to some extent, but this works best when channels are 

perfectly matched or at least close. This further suggests that if acoustic conditions can 

somehow be estimated and suitably pre-trained models chosen, the robustness of the system can 

be improved. 
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COMPARISON OF FEATURE SPACES FOR ROBUST 

SPEAKER RECOGNITION AND MISMATCHED 

LANGUAGES 

Chapter Overview 

Chapter Two presented a review of the most common features extraction algorithms, which 

focused mainly on Cepstral features, since they are the most commonly used in the speaker 

recognition field. This chapter is focused on making a systematic comparison between the 

robustness of two kinds of features extraction algorithms in the performance of speaker 

recognition. Conventional Mel-frequency Cepstral coefficients (MFCC) - including the 

Dynamic Mel cepstral - were adopted, together with Gamatone Cepstral Coefficients (GFCC).  

Furthermore, the current work extends the experiments to include investigations into language 

independency features in recognition phases.  The experiments used an MSR toolbox with two 

types of database (TIMIT, and SALU-AC) and two types of recognition data sets (test data). The 

first type was based only on using a text-independent English speech dataset for recognition 

purposes in various kinds of noisy environments with different SNRs. The second type was based 

on applying a text-independent noisy speech data set from various languages for recognition 

purposes in the same noisy environments. The chapter starts with a description of Extraction 

algorithms for each MFCC and GFCC and the main differences between the two features. The 

experiment details are given in Section 6.2, and results and discussion in Sections 6.3 and 6.4 

respectively. This work is published by the author at 140th International AES Convention, Paris, 

France (Al-Noori et al., 2016).  
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6.1 Features Extraction Process 

As discussed in Chapter Two, Low-level features (specifically Cepstral features) are the most 

appropriate and widely adopted speech representation for applying in speaker recognition fields 

since they are easy to calculate, and have a good performance compared with other types of 

features. Generally, most applications of speaker recognition utilise a front-end processing 

section in order to characterise the speech signal in this way. This section focuses on processes 

of extracting features of both MFCC and GFCC. 

6.1.A Mel-Frequency Cepstral Coefficients MFCC 

The Mel-Frequency Cepstral Coefficients are one of the most commonly used features in both 

speech and speaker recognition (Davis and Mermelstein, 1980) since they are a close 

representation of the human speech signal. The Mel-Scale in MFCC has been used to 

approximate the human auditory system (Kim et al., 2006). Figure 6.1 illustrates the process of 

MFCC extraction. The main steps of MFCC extraction are as follows: 

Figure 6.1: Extraction process of MFCC 

 

1. Pre-emphasis: the input speech signal is pre-emphasized in order to flatten the speech 

spectral slope. This spectral slope represents the nature of the audio signal. Pre-emphasis 

represents a high pass filter responsible for amplifying the energy at high frequencies and 

decreasing the difference in the power signal’s components (Combrinck and Botha, 1996). 

The transfer function of this filter is a first order function: 
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, . .  (6.1) 

where the   is chosen to be 0.95. 

2. Framing and Windowing: The aims of this process are slicing the speech signal into 

overlapping frames and reducing any signal discontinuities. The process of windowing is 

done by taking the samples of the signal and multiplying by a window function. Hamming 

window is most commonly (Figure 6.2) used in speaker recognition fields since it prevents 

any sharp edge like rectangular windows (Beigi, 2011). To trade-off the spectral and 

temporal resolution a 20-30ms window has typically been used.   The equation of Hamming 

windows is: 

. . 	  (6.2) 

3. The Discrete Fourier Transform (DFT): To convert the speech signal from time domain to 

frequency domain the DFT has been used. The DFT can be defined as: 

 

 

 

where N is a number of samples,  is the signal at sample n ,  is fourier tranform signal 

Figure 6.2: The Hamming window in time and Frequency Domain 

 

 

(6.3) 
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4. Mel filter-bank: in order to wrap the magnitude spectrum into Mel-spectrum, a Mel –filter 

bank which effectively maps the frequency bin centre has been applied in this step. The 

main goal of this step is to approximate the frequencies to human auditory perception 

because the DFT computations only pertain to a linear frequency scale (Burgos, 2014). 

Therefore, the logarithmetic Mel Scale has been used to convert spectrum frequencies to a 

smaller number with a process called frequency wrapping (Equation 6.4). Figure 6.3 illustrates 

the shape of 24-filter Mel-filter bank sampled at 8000Hz 

 (6.4) 

 

Figure 6.3: Mel filter bank for 24-filter with 8 kHz sample rate (Beigi, 2011) 
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5. Discrete Cosine Transform (DCT): this step is responsible for transforming the spectral 

information to Cepstral domain in order to produce MFCC, which contain the meaningful 

information and offer the particular characteristic of the speaker. 

6. Dynamic MFCC (Delta and Delta Delta): in order to model the local dynamics of speech 

and make the extracted feature more robust to interfering noise, Wang et al. (2008 and 2009) 

proposed measuring the first and second order derivatives of the MFCC to capture the 

dynamic of Mel Cepstral Coefficients. These dynamic features, known as delta MFCC 

(∆MFCC) and Delta Delta (∆∆ MFCC), are somewhat independent of conventional MFCC. 

As a result, the total number of final features for the speaker vector is 39 including the energy 

of MFCC and Dynamic MFCC.Table 6-1 illustrate the total extracting features of MFCC in 

standard speaker.  

Table 6-1:  Total Number of MFCC feature for Speaker Vectors 

Feature Type Number 
Mel Cepstral Coefficients  12 
Delta Mel Cepstral Coefficients   12 
Delta Delta Mel Cepstral Coefficents 12 
Energy Coefficients 1 
Delta Energy Coefficients 1 
Delta Delta Energy Coefficients 1 

 

 

6.1.B Gammatone Frequency Cepstral coefficients (GFCC) 

Gammatone Frequency Cepstral coefficients (GFCC) are auditory features based on the 

Gammatone Filter bank. This filter bank represents a standard model of the cochlear filtering 

of human ears, which is derived from psychological and physiological monitoring of auditory 

peripheral (Patterson et al., 1992). The output of a Gammatone Filter Bank can be represented 

as a time-frequency of the signal which is known as a Cochleagram. To extract GFCCs from 

the speech signal, the following steps should be followed: Figure 6.4 shows the block diagram 

of GFCC extraction. 

1. Pre-Emphasis: as in MFCC, the input speech signal is pre-emphasised by a Pre-emphasis 

filter (high pass filter) in order to spectrally flatten the speech signal. According to Zhao and 

Wang (2013), this can be ignored. 
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2. Framing and windowing: dividing the signal into overlapping frames. The Hamming 

window is then applied to deal with the edges of the frame. 

Figure 6.4: Block Diagram of GFCC features extraction 

 

3. DFT: transforms the windowed frame of the speech signal from time domain to frequency 

domain. 

4. Gammatone Filter Bank:  the design of Gammatone Filter-Bank is based on the operation 

of the human auditory system. This filter bank consists of 64 filters, centred from 50 Hz to 

8 kHz distributed equally on an Equivalent Rectangular Bandwidth (ERB) scale (Patterson 

et al., 1992) and the filters with higher centre frequencies having wider 

bandwidth(Figure 6.5). The impulse response of each filter centred at frequency f  is 

represented by the following equation (Shao et al., 2007, Shao and Wang, 2008): 

   , ,
,

 (6.5) 

where  refers to time ; 4 is the order of filter;  is rectangular bandwidth which increase 

with centre frequencies  

5. For each channel, the filter response is decimated to 100 Hz along the time dimension. The 

absolute value is taken afterwards. 

6. The magnitudes of output sample are warped using a cubic root operation such as:  
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| , |  , (6.6) 

where 0, . . , 1, N is number of filter channels, 0, . . , 1.  is the frame 

index;  is number of frames obtained after decimate sampling, and decs is decimate 

sample.  

The result of   is in the form of a matrix representing time-frequencies (T-F) of 

input. This (T-F) representation refers to the differences of cochleagram (Wang and 

Brown, 2006). The time frame  is known as Gammatone feature (GF). In some 

studies (Moinuddin and Kanthi, 2014) the cubic root operation is replaced by logarithm 

operation. In this work the cubic root operation has been used.   

 

7. Discrete cosine transform is applied to GF in order to decrease the dimension of GF and 

de-correlate the component. The coefficients produced from this operation are known 

as Gammatone Cepstral Coefficients GFCC.  

As a result, the total of number of GFCC features for each speaker vector is 23. 

 

Figure 6.5: Frequency response of Gammatone filter bank 
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Table 6-2 shows the main differences between Mel Frequency Cepstral Coefficients MFCC 

and Gammatone Frequency Cepstral Coefficients GFCC. 

Table 6-2: The Main Differences between MFCC and GFCCC 

Category MFCC GFCC 

Pre-emphasis Yes Yes/No 

Frequency bands 26-39 64 

Frequency Scale Mel-Scale ERB 

Nonlinear Rectification Logarithmic Cubic root/ Logarithmic 

Intermediate T-F representation Mel-Spectrum Variant of Cochleagram 

 

6.2 Robustness SR  Based on MFCC and GFCC from noisy speech samples 

and Mismatched Languages 

What will be the overall performance of these two features based speaker recognition systems?  

A comparative study is justified, hence these experiments. In addition to the comparisons of 

recognition accuracies in various signal to noise ratios and a variety of noises, system robustness 

against language mismatch is also investigated in this section.   

6.2.A Experimental Setup  

These experiments present a systematic comparison of robustness between the GFCC and 

conventional MFCC baseline speaker recognitions with various collected noisy speech datasets. 

The experiments were conducted using two data sets, namely the TIMIT and SAL-AC. For each 

speaker, nine utterances were used in the enrolment phase and one utterance for the recognition 

phase. Two data sets of recognition speech were used in SALU-AC. The first set included 

samples of utterances spoken in English. The second set included samples of utterances spoken 

in different languages (including English). 
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The aim of using two different sets of samples was to evaluate the performance of speaker 

recognition based on two kind of features (MFCC, GFCC) when the languages of the 

recognition dataset  used in the recognition phase are different from those that have been used 

in the enrollment phase (note that only English speech data sets are used in the enrolment phase), 

and to evaluate the sensitivity of both MFCC and  GFCC to changes of language. It was also 

intended to evaluate the robustness of speaker recognition systems based on those features in 

clean and noisy environments. The details of these experiments were as follows: 

 The dimension of the GFCC features in these experiments was 23 for each speaker 

vector while the dimensional of the baseline MFCC was 39 for each features vector 

including the dynamic features as demonstrated in Table 6-1. 

 Gaussian mixture model GMM was applied for creating reference models and 

classification with 256 Mixture. 

 As mentioned earlier, the experiments were conducted on speech sample sets from two 

types of database TIMIT and SALU-AC. Each set included speech samples from 30 

speakers (15 male and 15 Female). For each speaker, 9 utterances were used in the 

training phase, all in English (for both TIMIT and SALU-AC database). In addition, 1 

utterance was used in the test phase for each speaker. For the SALU-AC database, two 

datasets of speech samples were used. The first set included utterances spoken in 

English, while the second set contained utterances spoken in various languages (Arabic, 

French, Indian, Italian, Persian etc.) in addition to English. Furthermore, each data set 

was divided into a number of subsets, each subset including the same utterances 

contaminated with different SNRs (20, 15, 10, 5, and 0dB). Table 6-3 illustrates the 

languages of utterances used in the recognition phase. 

  The evaluation of the MSR speaker recognition toolbox was based mainly on using 

Error Equal Rate (EER) to evaluate the performance of the SR baselines, as well as 

Detection Error Tradeoff (DET). These evaluations are measured mainly based on the 

recognition scores (log-likelihood score) based on 30 authentic cases (verified cases) 

and 870 inauthentic cases (imposter cases).    
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Table 6-3: Recognition (test) speech sample using different languages 

Language Male Speakers Female Speakers Total speakers 
English 7 1 9 
Arabic 2 6 7 
Itally 1 2 2 

Spanish 0 2 2 
Portuguese 0 1 1 

Polish 0 1 1 
Bangladeshi 2 0 2 

Swahili 0 1 1 
Hindi 1 1 2 
France 2 0 2 
Total  15 15 30 

 

6.2.B Experimental Results 

As described earlier, the evaluation of speaker recognition used in these experiments depended 

on using two metrics: EER, and Detection Error Trade-off. Figure 6.6 a to e show the impacts 

of various types of noise on the accuracy of speaker recognition based on GFCC and MFCC 

features using the TIMIT database. The x-axis represents signal to noise ratio SNR in dB 

(clean,20dB to 0dB) while the y-axis represents EER (in %). According to this figure, the 

performance of the GFCC-baseline shows greater robustness to the various noises with different 

SNRs compared with the performance of the MFCC baseline, especially when SNR becomes 

too low. For instance, in speech samples contaminated with Cafeteria babble noise (Figure 6.6 

-a-), there is a significant improvement in EER for the GFCC baseline for all SNRs, especially 

at 10, 5, and 0 dB SNR with 3.56%, 10%, and 16.66 EER respectively, compared with only 

9.42%, 16.78%, and 23.33% for the MFCC baseline for the same SNRs. Results for speech 

samples contaminated with Interior Moving Car noise, Street noise, and White noises show 

similar trends (Figure 6.6- b, c, d, and e) for all SNRs, specifically for 10, 5, and 0 dB SNR. For 

Interior Train noise speech samples (Figure 6.6 c), there is a slight improvement in EER for the 

GFCC baseline, and especially at 5dB with 10% EER, compared with 10.8% EER for the MFCC 

based system. This represents a clear improvement compared with the EER results of the MFCC 

baseline. In contrast, both systems show the same performance for a clean environment with 

0.114% EER for both.   
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Figure 6.6: EER for Speaker Recognition using TIMIT dataset 
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Figure 6.7: DET Graph for GFCC- MFCC based systems in 20 dB using TIMIT 
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Figure 6.7 illustrates a DET graph for GFCC-MFCC baselines for the five types of noisy speech 

samples with 20 dB SNR. It is clear that the accuracy of false positive rate FPR (False rejection 

rate) for the GFCC baseline (the bold blue curve) is better than the MFCC baseline (the dashed 

red line). False Negative Rate FNR (False Acceptance Rate) for the MFCC baseline, conversely, 

shows higher performance for some types of noisy samples.  

More details about DET graphs for different SNRs are illustrated in Appendix -II-. 

When the SALU-AC database was used with the first set of speech samples (a set that included 

English utterances), both baselines (GFCC and MFCC based speaker recognition) showed 

significant robustness for the various noise types (Figure 6.8). However, the GFCC baseline 

still showed greater robustness for various noises than the MFCC baseline, especially when the 

SNR became too low. For example, in speech samples with street noise (Figure 6.8. d), the 

GFCC baseline gave 1.49%, 5.52% EER for 5dB, and 0 dB respectively, compared with 10%, 

26.67% EER for the MFCC baseline for the same SNRs. Similarly, other noisy speech sample 

types showed a significant improvement for the GFCC baseline especially for 20 dB and 15 dB 

with an accuracy of approximately 0% EER as seen with speech samples contaminated with 

Cafeteria Speech Babble and Interior moving Car noisy speech (Figure 6.8 a, b).  

For White noise speech samples (Figure 6.8 e), it is clear that there is a considerable 

improvement in the accuracy of the GFCC baseline, especially between 15 and 0 dB SNR 

compared with the MFCC baseline for the same range. As when using the TIMIT database, both 

baselines show the same accuracy in a clean environment with 0% EER. 
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Figure 6.8: EER for speaker recognition using English set of SALU-AC 
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Figure 6.9: DET Graph for GFCC- MFCC based systems in10 dB using SALU-AC (First set) 
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Figure 6.9 shows DET graphs for GFCC/MFCC baselines using the SALU-AC database with 

the English utterances set applied for recognition phase in 10 dB SNR. It is noticeable that the 

GFCC baseline has a better rate for both FPR, FNR than the MFCC baseline. It is also noticeable 

that the DET Graphs of speech set contaminated with interior moving car noise did not appear, 

since EER for baselines equals 0 and accuracy of recognition is 100% for both Speaker 

recognitions. 

On the other hand, when the second set of speech samples from the same database are applied 

(the set that includes utterances from different languages) in the recognition phase (Figure 6.10 

a-e), the performance of the GFCC baseline is decreased dramatically, particularly at the clean 

and high SNRs. At the same time, it can be seen that the change in the accuracy of the MFCC 

baseline remains almost stable compared with the accuracy of the English utterances set for all 

types of noises. 

It can also be seen that sometimes the performance of the MFCC baseline becomes better than 

the GFCC baseline, as seen in clean and 20 dB for most types of noisy samples sets (for a clean 

environment the MFCC baseline has EER 0.114 in contrast to   0.804 EER for the GFCC 

baseline). However, in some kinds of noise, the GFCC baseline still shows better performance 

than the MFCC baseline, as seen in speech samples with Cafeteria babble and White noise at 

5dB, and 0 dB, with EER 10%, and 25.51% for speech babble and 13.33%, and 28.5% for white 

noise respectively (Figure 6.10 a, e). 
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Figure 6.10: EER using second set (different language set) for SALU-AC 
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Figure 6.11: DET Graph for GFCC- MFCC based systems in10 dB using SALU-AC (Second 
set) 
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In the DET graph for the second recognition set (which represents the performance of systems 

at 15dB SNR), it is clear that the accuracy of the GFCC baseline is substantially affected by the 

change of languages in the recognition phase (Figure 6.11). It is clear that FPR for both baselines 

for speech samples contaminated with cafeteria babble noise are approximately similar 

(Figure 6.11-a-), while FPR for the MFCC baseline for samples with interior moving train noise 

is better (Figure 6.11 -c-). Table 6-4 shows the error equal rate for both sets of SALU-AC for 

different types of noise and with various SNRs. The high effect of changing languages on the 

GFCC baseline is obvious compared with the MFCC baseline which is affected to a lower 

degree.  

Table 6-4: EER for MFCC–GFCC based systems using the two sets of SALU-AC 

Noise 
type 

SNR 
MFCC 

(first set) 
MFCC 

(second set) 
Differences 

GFCC 
SALU-AC 
(First set) 

GFCC 
SALU-AC 

(second set) 
Differences 

C
af

et
er

ia
 

B
ab

b
le

 
 

Clean 0 0.1149 0.1149 0 0.8046 0.8046 
20dB 0.2299 3.3333 3.1034 0 4.9425 4.9425 
15dB 1.3793 6.6667 5.2874 0.1149 6.6667 6.5518 
10dB 6.6667 10 3.3333 0.3448 6.6667 6.3219 
05dB 13.3333 21.4943 8.161 1.7241 10 8.2759 
0 dB 30 33.3333 3.3333 17.2414 25.5172 8.2758 

In
te

ri
or

 
m

ov
in

g 
ca

r 

Clean 0 0.1149 0.1149 0 0.8046 0.8046 
20dB 0 1.0345 1.0345 0 1.954 1.954 
15dB 0 1.8391 1.8391 0 1.1494 1.1494 
10dB 0 2.4138 2.4138 0 2.1839 2.1839 
05dB 0.1149 3.3333 3.2184 0 3.3333 3.3333 
0 dB 1.954 3.3333 1.3793 0.2299 3.4483 3.2184 

In
te

ri
or

 
m

ov
in

g 
T

ra
in

 

Clean 0 0.1149 0.1149 0 0.8046 0.8046 
20dB 0.3448 3.908 3.5632 0.2298 6.6667 6.4369 
15dB 1.7241 5.4023 3.6782 0.2298 5.5172 5.2874 
10dB 5.0575 10.1149 5.0574 3.3333 10 6.6667 
05dB 13.3333 20 6.6667 6.6666 16.6667 10.0001 
0 dB 31.4943 33.3333 1.839 20 30 10 

S
tr

ee
t 

Clean 0 0.1149 0.1149 0 0.8046 0.8046 
20dB 0.2299 3.2184 2.9885 0 3.3333 3.3333 
15dB 0.8046 6.666667 5.862067 0 6.206897 6.206897 
10dB 3.3333 10 6.6667 0.8046 6.666667 5.862067 
05dB 10 16.78161 6.78161 1.4943 6.666667 5.172367 
0 dB 26.6667 30 3.3333 5.5172 23.33333 17.81613 

W
h

it
e 

n
oi

se
 Clean 0 0.1149 0.1149 0 0.8046 0.8046 

20dB 1.6092 6.6667 5.0575 0.4598 6.6667 6.2069 
15dB 9.8851 16.6667 6.7816 1.8391 6.6667 4.8276 
10dB 20 26.6667 6.6667 3.3333 9.3103 5.977 
05dB 30 26.6667 3.3333 6.6667 13.3333 6.6666 
0 dB 39.7701 38.2759 1.4942 20 28.5057 8.5057 

 

The Results of this investigation show that the GFCC features are more robust for noisy 

environment, but still have limitations in responding to the change of languages between 

enrolment (Training) and recognitions (Test) phases; MFCC features show more sensitivity to 
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different Environmental noise but are still more active to this change of language. This 

limitation of GFCC for mismatched languages probably reflects the structure of the Gammatone 

filter-bank, since it emulates the auditory system of human ear, which makes it more effect for 

this mismatch. Further investigation on GFCC features and mismatch languages will be subject 

of future work.       

6.3 Chapter Summary  

This chapter has investigated the impact of using different features extraction algorithms on the 

robustness of speaker recognition in different noisy environments. MFCC and GFCC were 

adopted in this study to find their robustness to different kinds of noisy speech sets. In addition, 

the experiments included investigating a change of languages of speakers in the test phase on 

the performance of these features. The results of these experiments show that GFCC has better 

recognition performance than the conventional MFCC, while both features show the same 

recognition performance in a clean environment. On the other hand, the modification in 

languages of the recognition set shows a drop in recognition performance of GFCC both in 

clean and noisy speech, while the results for MFCC show greater robustness for this 

modification. 
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THE IMPACT OF USING SPEECH ENHANCEMENT 

TECHNIQUES ON PERFORMANCE OF SPEAKER 

RECOGNITION 

Chapter Overview 

This chapter describes how different types of speech enhancement approaches were studied and 

compared for their robustness as a pre-processing stage for speaker recognition. Seven 

different speech enhancement algorithms were adopted for this task. These algorithms included 

a spectral subtraction algorithm, statistical based algorithms (e.g. Wiener filtering, and 

Psychoacoustically motivated algorithm), and a subspace algorithm. First, a Wiener filter was 

investigated as a pre-processing stage for the recognition phase only and for the enrolment 

(training) and recognition (test) phases together. Then, the effectiveness of other speech 

enhancement algorithms on the robustness of speaker recognition under noisy environments 

was studied. The following section gives a brief review of these algorithms and their classes. 

Experiment details and results are given in section 7.2. Finally, there is a summary discussion 

in section 7.3. 
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7.1 Speech Enhancement Algorithms 

The primary goal of speech enhancement is to improve the quality and intelligibility of a speech 

signal that has been contaminated with environmental noise. This improvement in quality is 

necessary, especially when the speech signal is generated in a noisy location, or if it is 

contaminated with noise over the communication channel. This reduction of additive noise from 

the speech signal always comes at the expense of introducing speech distortion, which in turn 

may affect speech intelligibility (Loizou, 2013). Therefore, one of the essential challenges in 

developing effective speech enhancement approaches is to suppress noise without causing any 

perceptible distortion in the speech signal. Consequently, the main function of speech 

enhancement approaches is to reduce or suppress the background noise to some degree without 

affecting speech intelligibility. Therefore these algorithms are also known as noise suppression 

algorithms (Loizou, 2013). 

Different algorithms have been developed in the literature to deal with clean speech signal and 

reduce the degree of noise with the primary goal of improving speech quality. These approaches 

can be classified into three main classes (Loizou, 2013): 

1. Spectral Subtraction Algorithms: these algorithms are based on estimating and updating 

the spectrum of the noise when the speech is absent, then subtracting the result from a 

noisy signal. These algorithms were first proposed by Weiss et al. (1975) and Boll 

(1979). 

2. Statistical- model-Based Algorithms:  in these the cleaning speech problems are 

modelled in a statistical estimation framework. This is based on a set of measurements, 

corresponding, for example, to the Fourier transform coefficients of the noisy speech 

signal, in order to find a linear (or nonlinear) estimator of the parameter of interest, 

known as the transform coefficients of the speech signal (Loizou, 2013). For these types 

of approach, the Wiener filter (Lim and Oppenheim, 1978 and  Lim and Oppenheim, 

1979), and Minimum mean square error (MMSE) algorithms (Ephraim and Malah, 

1984) and many others fall into this category. 

3. Subspace Algorithms: these are based on linear algebra. The main idea behind these 

algorithms is that the clean signal might be confined to a subspace of the noisy Euclidean 

Space. Therefore, based on the process of separating the vector space on a noisy speech 
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signal into a clean signal subspace, which is primarily occupied by the clean speech, and 

a noise subspace which is mainly occupied by the noise (Loizou, 2013). Then, the clean 

speech signal is obtained by nulling the component of noisy vector in the noise subspace. 

These algorithms were proposed by Dendrinos et al. (1991) and Ephraim and Van Trees 

(1995). 

These algorithms are focused mainly on enhancing speech quality but they failed in improving 

speech intelligibility. In the next section, the capability of these algorithms as a pre-processing 

stage was investigated to improve the performance of speaker recognition and to determine how 

much they help to increase the accuracy of recognition. 

7.2 A Comparative Investigation of Speech enhancement for the 

performance of Speaker Recognition  

In this study, seven different speech enhancement algorithms were adopted and investigated as 

a pre-processing stage for their robustness for speaker recognition in different noisy 

environments. These algorithms include: 

 Wiener filtering based on a priori SNR estimator (Scalart and Filho, 1996): the authors 

applied Wiener filtering approach based on prior estimation of SNR in order to obtain 

significant results. According to the authors, this priory estimation permits important 

noise power suppression without introducing “musical noise” effects.     

  Spectral subtraction with adaptive gain averaging (Gustafsson et al., 2001): a proposed 

approach based on conventional spectral subtraction. This approach applied a noise and 

speech gain function for each frequency component. This approach, in addition, 

employs spectrum-dependent adaptive averaging to reduce the variance of gain 

function.     

   Psychoacoustical motivated algorithm (MT-mask) (Hu and Loizou, 2004): A 

frequency domain optimal linear estimator which includes the masking properties of 

the human auditory system to make the embedded noise distortion inaudible. 

  Audible noise suppression algorithm (Tsoukalas et al., 1997): this technique is 

dependent on the definition of the psychoacoustically derived quantity of audible noise 
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spectrum and its subsequent suppressing using optimal nonlinear filter on short time 

spectral amplitude envelope. 

 Log Minimum Mean Square Error (LogMMSE) algorithm (Cohen, 2002): an optimal 

modification to the log-spectral amplitude estimator, which decreases the mean-square 

error of log-spectra for speech signal under signal presence uncertainty. 

 Bayesian estimator based on weighted-Euclidian distortion measure (Loizou, 2005): 

this approach represents a development of minimum mean square error (MMSE), which 

employs Bayesian estimators of short-time spectral magnitude of speech depending on 

perceptually motivated cost functions.  

 Perceptually motivated subspace algorithm (Jabloun and Champagne, 2003): a 

Frequency to Eigendomain Transformation (FET) which permits measurement of a 

perceptually based eigenfilter. 

First, Wiener filtering as proposed by Scalart and Filho (1996) was applied as a pre-processing 

stage to filter the noisy speech in the recognition phase only. The same filter was also used as 

pre-processing for both enrolment and recognition phases. A comparison was then made 

between the accuracy of speaker recognition in the two cases as well as its accuracy without 

using this filter. The effect of other aforementioned methods on speaker recognition 

performance was then investigated.  

7.2.A Experimental Setup  

As discussed earlier, the aim of these experiments is to investigate the capability of speech 

enhancement algorithms for improving the robustness of speaker recognition by using them as 

pre-processing for noisy input signal in the test phase only and in the train-test phases together. 

The details of these experiments are as follows: 

 MFCC including dynamic features (delta and double delta) have been used in these 

experiments with 39-dimensional space.  

 Gaussian mixture model (GMM) was used with 256 mixture. 

 The experiments were conducted on a speech samples set from the SALU-AC database. 

This set included speech samples collected from 60 speakers (30 males and 30 females). 

For each speaker, a set of 9 utterances were used in the training phase, all spoken in 
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English, and one utterance for each speaker was used in the recognition phase, also 

spoken in English. In addition, the recognition set was divided into a number of subsets. 

Each subset represents the same speech samples mixing with different SNRs (20, 15, 

10, 5, and 0 dB) for a specific type of noise. In these experiments, the five types of 

noise, that mentioned in Chapter 3 were used.     

 The evaluation speaker recognition system mainly depends on using Error Equal Rate 

(EER) to evaluate the performance of the SR system, as well as a Detection Error 

Tradeoff (DET) graph. The evaluations are computed based on the verification scores 

(log-likelihood score) based on 60 authentic cases (verified cases) and 3540 unauthentic 

cases (imposter cases). 

Figure 7.1 illustrates how speech enhancement methods are applied as a pre-processing stage 

for speaker recognition; the blue arrows refer to the test data filtered by speech enhancement 

algorithms, while the bold red arrows refers to the training data without filtering. The dashed 

red arrows represent the filtered training data.   

Figure 7.1: Speaker Recognition with speech enhancement Techniques 

7.2.B Experimental Results  

The aim of these experiments was to investigate how speech enhancement techniques can 

improve the robustness of speaker recognition under a different type of noise environment. First 

the effect of applying Wiener filtering developed by Scalart and Filho (1996)  as a pre-
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processing stage for the recognition phase only (test phase) in speaker recognition was studied, 

and the evaluation results compared with those obtained when the same filter was applied to 

both enrolment and recognition phases (Figure 7.1).  

Figure 7.2: Speaker Recognition performance with and without Wiener filter 
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The accuracy of speaker recognition (based on EER) in both cases and their comparison with 

the accuracy of the SR without using any filters are demonstrated in Figure 7.2 a-e. The solid 

blue line refers to the performance of the SR without using any filter and the dashed red line 

refers to the performance of the SR using Wiener filter for the recognition phase only, while the 

dashed-dot green line refers to the performance of the SR using Wiener filter for both enrolment 

and recognition phases. 

It is clear that using Wiener filter in the test phase caused degradation in the accuracy of speaker 

recognition in all types of noisy speech samples except in the case of speech samples 

contaminated with White noise when SNR became low (i.e. between 10 and 0 dB). For instance, 

in speech samples with babble noise (Figure 7.2 a) the recognition accuracy was degraded from 

1.66% EER to 3.41 and from 5.39 to 7.88 for 15 dB and 10 dB SNR respectively, and similar 

results were seen for the remaining SNRs for the same noisy speech samples, except at 0dB 

where there was some slight improvement. Speech samples contaminated with interior moving 

Car, interior moving Train, and Street noise (Figure 7.2 b, c, and d) showed the same 

degradation in performance for most SNRs. Conversely, the speech samples with the white 

noise (Figure 7.2 e) showed a minor improvement in accuracy for the SNR between 10 dB and 

0dB when the Wiener filter was applied in the test phase. The SR also shows high degradation 

in performance for the clean samples. 

However, when Wiener filter was used in both training and testing phases, it gave slight 

improvement in the accuracy of the SR for some types of noisy speech samples and in some 

points of SNR. But it is also noticeable how this improvement varies from one type of noisy 

sample to another and from one SNR to another. For example, in speech samples contaminated 

with moving train noise, there was a slight improvement in accuracy between 10 and 0 dB 

(Figure 7.2–c-), and the same improvement can seen in cafeteria babble noisy speech in some 

SNRs. However, noisy speech samples with street noise (Figure 7.2-d-) show degradation in 

performance for most SNRs with almost the same degradation that was seen when using the 

filter in test phase only. On the other hand, for speech samples contaminated with white noise, 

there is an improvement in performance compared with the other two cases (without using a 

filter and with using it in test phase only). 
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In summary, using Wiener filtering in recognition phase only (test-phase) caused degradation 

in the performance of the verification system for most types of noisy speech sample. However, 

applying the same filter for both phases (training-testing) showed some improvement in 

performance for some kinds of noisy speech samples and in some SNRs but this improvement 

was still marginal. Moreover, this improvement was not reliable for all kinds of noises (as seen 

in the street noisy speech sample). The main reason for this degradation when using speech 

enhancement algorithm in test phase is that the input speech signal will become distorted when 

passing through this cleaning processing, so it is necessary to apply these kinds of cleaning 

algorithms on both enrolment and recognition phases in order to improve the performance of 

the verification system. However, even that cannot be generalised for all types of noisy speech, 

since this improvement depends on the type of noise and signal to noise ratio. Figure 7.3 

illustrates the DET graph for previous experiments at 20 dB SNR.  The solid blue curve refers 

to the recognition performance without using a filter, and the dashed red curve refers to the 

performance when using a filter in test phase while the dash-dotted black line refers to the 

performance when using a filter in training and test phases. According to this figure the negative 

effect of the Wiener filter when used as pre-processing to the test phase is very clear, while the 

effects of using this filter in both phases varied from positive impact (such as in interior moving 

train and White noise) to adverse impact (Cafeteria speech babble, interior moving car, and 

Street). Furthermore, as seen in the interior moving train, there is an improvement in false 

positive rate but with degradation in false negative rate.  

 

 

 

 

 

 

 

 



Chapter 7: The Impact of Using Speech Enhancement Techniques on Performance of Speaker Recognition 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      133 
 

 

Figure 7.3: DET graphs for Speaker Recognition with and Without Wiener filter at 20 dB 
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The effects of using the other six speech enhancement algorithms on the performance of speaker 

recognition for each type of noisy speech samples are presented below. Tables 7-1 to 7-6 show 

the EER with using these algorithms compared with the EER of the recognition system without 

using any filter for each type of noisy speech sample. Since applying a filter on the test phase 

caused degradation in the recognition performance (as seen with Wiener filtering) as a result of 

signal distortion, this case was ignored in other filtering algorithms, and we focused mainly on 

the comparison between recognition performance when using the filters in both phases and the 

performance without using any filter.  

 

Table 7-1: EER of Speaker Recognition using Audible noise suppression Algorithm

         Audible Noise Suppression Algorithm  
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 6.666 0 6.666 0 6.666 0 6.666 0 6.666 

20 dB 0.4520 5 0 6.6667 1.1582 10.9887 0.4520 6.6667 2.9944 13.3333 

15 dB 1.6667 8.333 0.1412 4.9153 1.7797 13.3333 1.3277 6.6667 6.6667 18.418 

10 dB 5.3955 16.66 0.4237 5 6.6667 16.6667 3.3333 15 20.0000 26.61 

05 dB 13.3333 26.66 1.6667 8.1356 14.5763 24.0395 10 25 30.1412 26.214 

0 dB 29.6893 36.66 2.5424 10 26.6667 35 24.0960 31.5254 38.3333 33.248 
 

 

 

Table 7-2: EER of Speaker Verification using Log Minimum Mean Square Error algorithm

Log Minimum Mean Square Error (Log-MMSE) Algorithm 
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 1.6667 0 1.6667 0 1.6667 0 1.6667 0 1.6667 
20 dB 0.4520 1.6667 0 1.6667 1.1582 3.3333 0.4520 2.7119 2.9944 2.2316 

15 dB 1.6667 3.0226 0.1412 1.6667 1.7797 5 1.3277 2.7401 6.6667 3.4746 

10 dB 5.3955 8.3333 0.4237 1.6667 6.6667 8.9548 3.3333 6.6667 20.0000 11.2429 

05 dB 13.3333 17.7119 1.6667 3.3333 14.5763 13.3333 10 13.7006 30.1412 23.3333 

0 dB 29.6893 28.3333 2.5424 4.7740 26.6667 26.6667 24.0960 27.9661 38.3333 31.6949 
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Table 7-3: EER of Speaker Recognition using Psychoacoustical motivated algorithm

Psychoacoustical motivated algorithm (MT-mask) 
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 0.226 0 0.226 0 0.226 0 0.226 0 0.226 
20 dB 0.4520 0.6780 0 0.6215 1.1582 0.6780 0.4520 0.6497 2.9944 1.1582 

15 dB 1.6667 0.9322 0.1412 0.9887 1.7797 2.4011 1.3277 1.6667 6.6667 2.3446 

10 dB 5.3955 5.1412 0.4237 1.6667 6.6667 5 3.3333 3.3333 20.0000 9.0960 

05 dB 13.3333 11.6667 1.6667 1.8362 14.5763 12.0339 10 8.3333 30.1412 21.6667 

0 dB 29.6893 23.3333 2.5424 2.5424 26.6667 27.9661 24.0960 16.6667 38.3333 33.9266 
 

 

 

Table 7-4: EER of Speaker Recognition using Spectral subtraction  
with adaptive gain averaging algorithm 

         Spectral subtraction with adaptive gain averaging algorithms 
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 1.6667 0 1.6667 0 1.6667 0 1.6667 0 1.6667 
20 dB 0.4520 3.3333 0 1.6667 1.1582 4.8305 0.4520 1.6667 2.9944 10 

15 dB 1.6667 6.5537 0.1412 3.3333 1.7797 6.6667 1.3277 3.9831 6.6667 17.1751 

10 dB 5.3955 10.4520 0.4237 3.3333 6.6667 12.7401 3.3333 8.9831 20.0000 26.6667 

05 dB 13.3333 26.6667 1.6667 5.3107 14.5763 19.8588 10 16.6667 30.1412 31.6667 

0 dB 29.6893 30 2.5424 8.3333 26.6667 32.7401 24.0960 27.8814 38.3333 38.8983 
 

 

 
Table 7-5: EER of Speaker Recognition using Bayesian estimator based on weighted-Euclidian 

distortion measure 

         Bayesian estimator based on weighted-Euclidian distortion measure 
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 
3.6441 

 
0 

3.6441 
 

0 
3.6441 

 
0 

3.6441 
 

0 
3.6441 

 

20 dB 0.4520 1.3842 0 2.0621 1.1582 4.0960 0.4520 3.3333 2.9944 2.2599 

15 dB 1.6667 2.3164 0.1412 1.6667 1.7797 7.1469 1.3277 3.3333 6.6667 5 

10 dB 5.3955 6.6667 0.4237 1.3842 6.6667 8.3333 3.3333 5.2260 20.0000 13.3333 

05 dB 13.3333 14.6893 1.6667 3.3333 14.5763 13.7571 10 13.3333 30.1412 25 

0 dB 29.6893 25 2.5424 5.4802 26.6667 25 24.0960 24.4068 38.3333 35 
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Table 7-6: EER of Speaker Recognition using perceptually motivated subspace algorithm

         Perceptually motivated subspace algorithm 
Noise Babble Car Train Street White 
SNR 

 
Without 

filter 
With 
filter 

Without 
filter 

With 
filter 

Without 
filter 

With 
filter 

Without
filter 

With 
filter 

Without 
filter 

With 
filter 

Clean 0 1.6667 0 1.6667 0 1.6667 0 1.6667 0 1.6667 
20 dB 0.4520 1.6667 0 1.6667 1.1582 1.9209 0.4520 1.5537 2.9944 1.2994 

15 dB 1.6667 2.0621 0.1412 1.6667 1.7797 2.4011 1.3277 1.3277 6.6667 2.5989 

10 dB 5.3955 3.3898 0.4237 2.4011 6.6667 5 3.3333 3.3333 20.0000 7.7119 

05 dB 13.3333 13.3333 1.6667 5.0000 14.5763 11.6667 10 10 30.1412 16.6667 

0 dB 29.6893 25.4520 2.5424 8.7571 26.6667 23.3333 24.0960 22.3164 38.3333 31.6667 
 

 

 

According to the results obtained from these experiments on speech enchantment algorithms 

the following points emerged from the current investigation: 

1. All of these filters cause degradation in recognition performance when the recognition 

speech samples are clean. However, this degradation varies from one filter to another. 

For example, when using Psychoacoustical motivated algorithm (Table 7-3) there is 

minor increasing in EER from 0 % to 0.22%, while Audible noise suppression (Table 7-

1) and Bayesian estimator (Table 7-5) algorithms cause a higher increasing in EER from 

0% to 6.66 and 3.6 respectively. Figure 7.4 illustrates DET graphs of these six filters on 

the clean signal. Note the curve of the clean signal without using any filter is not visible 

in the graph since EER, in this case, is 0 %.   
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Figure 7.4: DET Graph with /without Speech enhancement approach 

2. The effects of these filter algorithms on the performance of speaker recognition are 

varied from one filter to another and from one noise type to another. For example, the 

Perceptually motivated subspace approach (Table 7-6) showed some improvement in 

accuracy of recognition in a speech sample contaminated with interior moving train 

noise for 10, 5, and 0dB (and the same thing with noisy speech sample contaminated 

with speech cafeteria speech babble), while speech samples with car noise showed 

degradation in recognition accuracy for all SNRs when using the same approach. 

However, audible noise suppression showed degradation in accuracy recognition for all 

types of noise and for most SNRs. 

3. Some of the approaches have different effects on SNRs for the same type of noise. For 

instance, Psychoacoustical motivated algorithm (Table 7-3) showed improvement in 
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accuracy at 20 dB and 10 dB of speech samples contaminated with interior moving train 

from 1.1582% EER to 0.6780 EER and from 6.6667 % EER to 5% EER respectively, 

while the same approach showed degradation in performance at 15dB for the same type 

of noise with 1.7797 % EER to 2.4011. This variety of performance makes this kind of 

approach unreliable for improving the robustness of speaker recognition. 

4. The improvements obtained from using these de-noising approaches are almost 

marginal, which makes employing these kinds of methods for improving the robustness 

of speaker recognition in noisy environments less useful, particularly if it is known that 

these approaches may help to increase the speech quality, but have failed so far in 

improving speech intelligibility. Moreover, using these types of filter to clean the signal 

causes changes in the speech components in the cleaned signal. These changes will 

affect directly the extracted features, since the frequency content of speech will change 

as a result to cleaning this speech signal from noise.       

5. Some of these filters are found to be efficient with stationary noise (e.g. white noise) but 

the same cannot be said with non-stationary noise (e.g. cafeteria speech babble, and 

interior moving train). 

Figure 7.5 shows the DET graphs of speaker recognition using these speech cleaning approaches 

for the clean speech samples and different noisy speech samples with 10dB SNR. The solid 

black line represents the performance of the recognition system without using any kind of filter, 

while the other lines represent the performance of the recognition system using the six 

approaches. The variable effect of different types of filter on noisy speech samples is clear. 

Perceptually motivated subspace algorithm (the dash-dot green curve), for example, shows a 

slight improvement in both FPR and FNR in speech samples contaminated with Cafeteria 

babble noise (Figure 7.5 -a-). But the same filter causes degradation in both speech samples 

contaminated with interior moving car noise and interior moving train (Figure 7.5 b, c).  

However, some filters show significant improvement with white noisy speech samples 

(Figure 7.5 -e-).  

More details about DET graphs for different SNRs are illustrated in Appendix -III-.       
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Figure 7.5: DET graph with /without speech enhancement approach at 10 dB SNR 
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7.3 Chapter Summary 

This Chapter has dealt with investigating the impact of different speech enhancement 

approaches on the the robustness of speaker recognition under additive environmental noise. 

The cleaning approaches studied include Wiener filtering, audible noise suppression, 

LogMMSE, Psychoacoustical motivated algorithm, Spectral subtraction, Bayesian estimator, 

and Subspace Algorithms. First, we studied the effect of using Wiener filtering on the 

performance of speaker recognition by applying this filter on recognition-phase only and on 

recognition and enrolment phases. Then we examined the impact of using the other filters on 

the performance of recognition. The results obtained from these experiments indicate that these 

approaches caused degradation in accuracy of speaker recognition when they were used with 

recognition phase only. However, the experimental results indicate that these speech filtering 

approaches provide very limited robustness for the performance of speaker recognition, and at 

times can even have an adverse effect on the recognition system. 

Therefore, this kind of approach is unreliable for robustness of speaker recognition in different 

noisy environments. In Chapter 9, a different purpose to employ these types of approach will 

be proposed. This proposal includes applying these algorithms to extract the noise from the 

noisy signal instead of focusing on using them to clean the signal.  
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TRAINING ON THE FLY  

FOR ROBUST SPEAKER RECOGNITION  

Chapter Overview  

The results of the experiments in Chapter 5 show significant improvement in accuracy of 

Speaker Recognition when noise reference models have been used. These results suggest that 

inclusion of noisy conditions in the reference models can mitigate, to some extent, the 

performance degradation, particularly when sufficient information is available about the 

identity of the noise and its level (i.e. SNR)  of contamination of the input signal. In other words, 

if the noisy conditions can be somehow estimated based on one of the SNR estimation 

algorithms, and if the identity of the noise can be extracted from an input contaminated signal, 

then it would be possible to provide a suitable re-trained model in order to improve the 

robustness of speaker recognition. Some researchers (i.e. Yoshida et al., 2004 and Pullella et 

al., 2008) proposed adopting noisy speech models to reduce the mismatch between the reference 

model for registered speaker and recognition materials. These multiple models represent 

different noisy conditions for speech signals belonging to each registered speaker. During the 

recognition phase, the reference model that gives the closest matches to the characteristics of 

the input speech signal is selected. One of the major limitations of this type of system is that it 

relies on prior information of the noise sources.  Therefore,  it is difficult for this type of system 

to handle arbitrary environmental noise. In this chapter, a new approach to real world Speaker 

recognition has been proposed. This technique includes re-creating the enrollment models of 

the speakers based on the signal to noise ratio (SNR)  and noise identity estimated from signals 

submitted to the system for recognition. This technique is called “Training on the fly” for 

speaker recognition or “ Adaptive noisy training model” for speaker recognition. The next 

section provides a description of the proposed system. In Section 8.2 an experimental setup and 

result to evaluate the proposed technique has been presented. Finally, a summary and 

discussion are given in Section 8.3. This work is published by the author at AES International 

Conference on Audio Forensics-Finding Signal in the Noise. Audio Engineering Society (Al-

Noori et al., 2017).  
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8.1 Proposed Techniques Description  

To deal with the mismatches that occur between the reference models and recognition input 

signal as a result of additive environmental noise, a “Training on the Fly” approach has been 

proposed (Al-Noori et al., 2017). This technique is based on generating an adaptive noisy model 

to become close enough to the recognition signal, depending on signal to noise ratio (SNR) and 

identity of noise that contaminated this recognition signal. The adaptive and creative model will 

have the same noise characteristics that are embedded with the recognition signal to decrease 

the mismatch between them in recognition phase and give more accurate recognition decisions. 

Figure 8.1 gives a block diagram of the proposed method.  

Figure 8.1: Training on the fly Block Diagram 

The steps of Training on the Fly are as follows:  

1. The input signal (the recognition signal) is first passed through an SNR estimator to find 

the signal to noise ratio of this signal.  

2. If SNR of input signal is higher than the specified SNR threshold (in this work the threshold 

is specified to 25 dB since it is noticed that the accuracy of the speaker recognition starts 

decreasing from 20 dB SNR for different types of noise; however, this threshold may vary 
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from one type of noise to another) then the speech signal is identified as being clean, thus 

the baseline model(s) trained on clean speech is used. 

3. Otherwise, if the SNR of the signal is less than the specified threshold (in this case less than 

25dB) the noisy input signal is passed through a noise signal detection to determine the 

identity of the noise that is contaminating the speech signal. For this process, different 

methods have been adopted. The first one is based on detecting the profile of the noise and 

then generating an emulated noise close enough to the one that contaminates the speech 

signal as described in the next section. The second method is based on extracting the noise 

directly from the noisy input signal using one of the speech cleaning algorithms; more 

details of this method are given in the next chapter. 

4. The detection noise (the emulated or extracted one) is then mixed with the enrolment 

signals (the training signal) for the claimed speaker based on the estimated SNR.  

5. Finally, the new mixture signals are passed through Feature extraction and modelling stages 

to generate a noisy enrolment model for the claimed speaker. After that, this model is used 

in the recognition phase to match the input signal to find whether this signal belongs to the 

claimed person or an imposter.  

In the next section, further details about the SNR estimation and noise detection are 

presented.  

8.1.A Signal to Noise Ratio (SNR) Estimation 

  There are several techniques to estimate the signal to noise ratio (SNR). A simple method to 

estimate SNR based on the time domain envelope of the noisy speech signal was adopted. This 

was done by measuring the distance of the envelope from the time axis (x axis) since the time 

envelope is shifted away from the time axis when the speech signal is noisy, whereas it is close 

to the time axis when the signal is clean. Figure 8.2 shows the envelope of 6 seconds of the 

same speech signal in clean and noisy environments. The first graph, Figure 8.2 -A, is the signal 

in a noise free environment and Figure 8.2-B represents the extracted envelope. Figure 8.2-C is 

the same signal contaminated with cafeteria speech babble noise and Figure 8.2-D represents 

its envelope. The increased distance between the signal envelope and the time axis can be clearly 

seen. 
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Figure 8.2: Envelope Detection for clean/Noisy signal 
 

To estimate the SNR of the speech signal based on the time envelope the following steps are 

followed: 

1. The envelope ev(t) of the speech signal x(t) is determined based on the Hilbert transform 

envelope detector as follows:  

 (8.1) 

where )(ˆ tx is the Hilbert transform of the speech signal x (t) defined by: 

   (8.2) 

Then, a low-pass filter is applied to decimate the sample of the envelope signal. Figure 8.2-A- 

shows 6 seconds of the speech signal and its decimated envelope is shown in Figure 8.2-B-. 

(D)
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2. The extracted envelope is then divided into N non-overlapping frames of size M and the 

minimum sample value for each frame is found (in this work the number of frames N is 10 

and the size of each frame M is 30 samples). Finally, the mean of these minimum values is 

calculated namely α. This value represents the threshold between the speech and the noise 

such that any sample less than or equal to α belongs to the noise region, while samples 

greater than α belong to the speech region. 

∈
,

,
  (8.3) 

 

where s represent the samples of the envelope. 

3. The power of the noise, Pnoise, based on samples from noise region Snoise is found where the 

power of the noise is the sum of the absolute squares of its time-domain samples divided 

by the signal length, or, equivalently, the square of its RMS level: 

| |  (8.4) 

where T is the length of the signal, J no. of samples belonging to noise. 

4. The power of the whole signal, P, is found; then Pnoise is subtracted from it to obtain the 

power of the speech PSpeech . 

 (8.5) 

 

    (8.6) 

5. Finally, to calculate the SNR in dB scalse, the following equation is used: 

 

 
 

(8.7) 
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8.1.B Noise Identity Detection  

The next step in the ‘Training on the fly’ approach is how to detect the type of noise (the identity 

of the noise) from the input recognition signal. As mentioned earlier, two different techniques 

are proposed for this purpose. This chapter is focused on describing the first technique, while 

the second technique will be described later in Chapter 9. The first technique is based on 

estimating the noise profile from a noisy signal using 1/3 octave filter to generate an emulated 

noise close to the original which contaminated the input signal. Figure 8.3 illustrates the block 

diagram of the procedure by which the noise profile is obtained: 

Figure 8.3: Noise Profile Estimation block diagram 

 

The noise profile is obtained via the following procedure: 

1. The noisy signal is passed through a 1/3-octave filter bank, giving M band-limited 

signals fi(t) where i represents the ith band filter (i=1...M). The 1/3-octave band filter 

bank (or fractional octave band Bank) is a bank of bandpass filters where each filter 

determined by its centre frequency and its order (from 25Hz to 16 KHz). The magnitude 

attenuation limits are defined in the ANSI® S1.11-2004 standard. 1/3-octave filters are 

1/3rd octave 
bands bank 

Band 1 

Band 2 

Band n

:
: 

Envelop 1 

Envelop 2

Envelop n 

:
: 

Noisy Input signal 

Envelops 
Extraction 

Noise Threshold 
Detection 

N
o

is
e T

1
 

:: 

Power for each band 
Pii=RMS (NoiseTi)2 

P1 

P2

Pn

:
: 

 

FIR filter

White Noise Generator

Emulated Output 

Noise 

N
o

ise
 T

n
 

N
o

is
e T

2
 



Chapter 8: Training on the Fly for Robust Speaker Recognition 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      147 
 

usually employed to carry out spectral analysis for noise control since they offer a 

meaningful measure of the power of noise in various frequency bands. Since the sample 

rate of speech samples in this work is 16 kHz, the number of bands (M) used is 25 bands 

(from 25 Hz to 6.350 kHz). Figure 8.4 illustrates the filtered signal in each band. 

Figure 8.4: Filtered signals through 1/3 octave bands 

 

2. The envelope ei(t) for each filtered signal  fi(t) is extracted using Hilbert transform and 

low pass filter. 

 

3. By using the same method in a SNR estimator, the noise threshold, α, is detected for 

each envelope ei(t) , and then the samples that belong to the noise section can be 

detected. Figure 8.5 shows the extracted envelope for each band and threshold for each 

envelope (the red line). 
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Figure 8.5: Extracted envelope for each band 

4. Depending on the noise samples detected in step 3, the power for each band is found by 

squaring the root mean square (RMS) of noise samples such that:  

 

  (8.8) 

  Where di(u)  represents the samples belonging to the noise region in each envelope ei(t). 

Then Pi is normalised using RMS normalisation. 

The power spectrum P represents the estimated power of the noise within the signals 

fi(t). Figure 8.6 demonstrates the estimated power bands from a noisy signal 

contaminated with cafeteria babble (red bars) against the power bands of a reference 
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noise sample (the blue bar) with the difference between them (the green bar) in linear 

and dB scale respectively. 

Figure 8.6: Power-band for Babble noisy signal (red bar) and reference signal (blue bar) 
 with error ratio (green bar) 

 

5. Finally, a bank of 1/3 octave FIR bandpass filters, designed to have a summative 

frequency response as defined by the spectrum P, is employed to shape white noise to 

generate an emulated noise that has the similar shape of original noise that contaminated 

the input signal as described in the following equation: 

.  (8.9) 

where wi(t) is, white noise filtered by 1/3 octave band i, demulated is the output noise. This 

noise is used later in mixing procedure. 

The main goal of using white noise is the characteristic of having the constant power 

spectrum density, which makes easy to shape this noise to create an emulated noise 
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which is close to the power density of the original noise. Figure 8.7 shows the output 

emulated noise in time and frequency domain. 

Figure 8.7: The emulated noise signal in Time/Frequency domains 

8.1.C Speech/ Noise mixing procedure 

After SNR and emulated noise are provided. the next procedure is to produce the noisy signals 

to create the noisy reference models. For this purpose, the enrolled speech signals for each 

claimed person are mixed with the emulated noise depending on the estimated SNR. The mixing 

procedure is similar to that described in Chapter 3 (Figure 3.2) to provide speech samples that 

are contaminated with noise with specific SNR. The output noisy signals are then passed 

through training phase stages (features extraction followed by modelling stage) to create a new 

model to use in matching with input recognition signal. 

8.2 Proposal approach evaluation Experiments  

The main aim of these experiments is to show to what extent the proposed approach can achieve 

significant progress in speaker recognition performance. To evaluate the efficiency of the 

Training on the Fly approach, two types of speech database have been adopted: TIMIT and 

SALU-AC. Furthermore, two kinds of features techniques are used, Mel Frequency Cepstrum 

Coefficients MFCC, which represents the most commonly used features in Speaker recognition 
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fields, and Gammatone Cepstrum Coefficients, which represents one of the noise robust features 

as mentioned before. 

8.2.A Experimental Setup       

As mentioned before, the main purpose of these experiments is to show the improvements 

obtained from the proposed system compared with traditional speaker recognition systems 

(based on clean speech samples only). Furthermore, this study focuses mainly on showing that 

this type of technique can achieve a significant improvement in SR accuracy in a noisy 

environment using a suitable SNR estimation and noise profile detection. In this chapter the 

method explained in section 8.1B has been adopted, while a different method is adopted in the 

next chapter. The details of these experiments are as follows:  

 Two types of features spaces are adopted for these experiments, MFCC including 

dynamic Features (delta and delta delta) with 39-dimensional space, and GFCC with 

23-dimensional space, as mentioned in chapter 6. 

 Gaussian Mixture Model was used with 256 mixture. The main reason for using GMM 

instead of using GMM-UBM is the requirement to create the model from scratch 

depending on the characteristics of additive noise (SNR and Noise profile) instead of 

adapting from a Background model. Otherwise, the whole background model would 

need retraining to make it possible to adapt a suitable model.  

 To check the performance of ‘on the fly’ training, two datasets were used from two 

different databases, TIMIT and SALU-AC. Each dataset included speech samples 

from 60 speakers (30 male, 30 female). For each speaker, a set of 9 utterances were 

used in the training phase, all spoken in English, and one utterance for each speaker 

was used in the recognition phase, also spoken in English. In addition, the recognition 

set was divided into a number of subsets. Each subset represents the same speech 

samples mixed with different SNRs (20, 15, 10, 5, and 0 dB) for a specific type of 

noise. The noise types adopted in these experiments are Cafeteria speech babble, 

interior moving Car, interior moving train, Street, and White noise. 

 To evaluate our approach in speaker recognition, two different metrics are used, Error 

Equal rate and detection Error trade-off. The evaluation is computed on the 

recognition scores (log-likelihood scores) based on 60 authentic cases (verified cases) 
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and 3540 inauthentic cases (imposter cases). The results of degradation through 

different SNR for each type of noise are compared with those obtained from the clean 

training mentioned in chapter 4.  

8.2.B Experimental Results  

A. MFCC Baseline Results  

Figure 8.8 (a-e) shows the degradation of accuracy of SR in different noisy conditions with 

various SNRs based on the EER for the proposed method based Speaker recognition and 

conventional speaker recognition (based on reference model from clean signals) using SALU-

AC. The abscissa represents the SNR in dB (20, 15, 10, 5, and 0 dB) while the ordinate 

represents EER (in %). It is clear that there is improved robustness in the performance of the 

proposed approach based speaker recognition to various noise types with different SNRs 

compared with the performance of the traditional system, specifically for car interior and white 

noise contaminated speech having low SNR. For instance, in the range between 15 and 5 dB in 

both types of noise (car interior, and white noise) there is greater improvement in EERs for 

proposed approach (0%, 0.02%, and 0.08%, for car interior noise and 3.33%, 5.31%, and 

12.74% for white) compared to the traditional Speaker Recognition  (0.16%, 0.48%, and 1.6% 

for car interior ,and  8.3%, 20.7%, 31.6 for white noise), while for speech samples contaminated 

with cafeteria babble and street noise there is still clear improvement, especially for the range 

between 10dB, and 0dB. However, the speech sample contaminated with train interior noise 

shows only slight improvement when compared to the other types of noise, possibly because 

this noise sample contains a number of sources which contribute to the noise signal, making the 

estimation of this type difficult compared to other types of noise.  

Figure 8.9 (a to e) illustrates a DET graph for the proposed approach and traditional based SR 

for the five types of noisy speech samples with 10 dB SNR. It can be seen that the accuracy of 

false positive rate (FPR) for the training on the fly approach  (the solid blue line) shows 

significant improvement compared to the traditional speaker recognition, especially for car 

interior and White Noise. Conversely, train interior noise shows the same accuracy for both 

systems since, as mentioned before, the estimation of this kind of noise is difficult. 
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Figure 8.8: EER of proposed approach and clean training based SR using SALU-AC 

 



Chapter 8: Training on the Fly for Robust Speaker Recognition 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      154 
 

Figure 8.9: DET graph for proposed approach based SR and Traditional SR in 10 dB SNR  
using SALU-AC 
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Experimental results using the TIMIT dataset are shown in Figure 8.10 and it is clear that the 

training on the fly approach shows improvement in the accuracy of the speaker recognition for 

both speech samples contaminated with car interior and white noise over the range of SNRs, 

particularly for low SNR, while both babble and street noise show promising progress in EER 

of this approach, specifically in range 10 and 0 dB when compared with SR based on clean 

training.   

The main reason that the improvements involving these types of noise are less dramatic when 

compared to car interior and white noise can be attributed to the difficulty of detecting the 

profile of these types of noise, since they contain different sources of noises, compared to the 

detection of noise profiles such as car interior and white noise, which have very limited sources 

contributing to the noise signal. Furthermore, we can see there are still some limitations in EER 

for train interior noise for the same reasons. 

Figure 8.11 shows DET graphs for the five types of noise in 15dB SNR for TIMIT database 

where the solid green line represents the training on the fly approach and the dashed red line 

represents the conventional SR.  

It is clear that there is a noticeable improvement in four types of noise (Cafeteria speech babble, 

interior car, street and white noise), especially in FPR. In this Figure, it can also be seen that 

improvement involving some kinds of noise (car, and white noise) is better compared with these 

that include different resources (babble, street, and train). However, there is still some limitation 

in FNR of some types of noisy data (such as in car interior and train interior); but not 

substantially different, since the effect of environmental noise is focusing more on False positive 

rate than False negative rate.      

From these experiments, we conclude that given a good SNR estimation and noise profile 

estimation detection from the input recognition signal, an adaptive model can be re-trained using 

these parameters in order to improve the performance of SR system in noisy environments. We 

call this kind of system a ‘training on the fly speaker recognition system’.  
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Figure 8.10: EER of proposed approach and clean training based SR using TIMIT 
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Figure 8.11:DET graph for proposed approach based SR and Traditional SR in 15 dB SNR 
using TIMIT 
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B. GFCC Baseline Results 

When a Training on the fly approach is used with GFCC baseline SR on SALU-AC dataset, the 

EER results show limited improvement, especially in high SNRs, over conventional speaker 

recognition, compared with those obtained from MFCC based Speaker recognition. On the other 

hand, the proposed approach shows promising progress in low SNR (especially in 5 and 0 dB) 

for some types of the noisy speech sample. Figure 8.12 a-e show the degradation of EER through 

SNRs for the proposed approach (the dashed red line) and conventional speaker recognition 

(based on clean training) (the bold blue line) using GFCC based Speaker recognition and SALU-

AC as a dataset. It is clear that there is a minor improvement of EER for the adapted approach 

over clean training based speaker recognition in the SNR range between 20 dB and 10 dB for 

the four types of noisy speech samples (Cafeteria speech babble, car interior, street, and white 

noise) in Figure 8.12 a, b, d, and e. However, the EERs at 5dB and 0dB SNRs show promising 

improvement for speech samples contaminated with car interior, street and white noise. 

Conversely, the EERs for speech samples contaminated with train interior noise show that the 

proposed approach has failed to achieve improvement in performance of speaker recognition 

since the results obtained from these samples are variant from one SNR to another. For example, 

although there is very limited improvement in 20 dB and 15 dB with 0.02% and 0.9% EER 

respectively over clean training SR with 0.19% and 1.66% EER respectively for the same SNRs, 

the EER at 5dB SNR shows the clean training speaker recognition outperforming the proposed 

approach with 6.6 % EER, with just 9.15% for Training on the fly based SR. The main reason 

for this limitation is the difficulty in estimating the profile of this type of noise, since it includes 

different sources which make the created emulated noise not close enough to the original one, 

as mentioned earlier. 

Figure 8.13 a to e illustrate the detection error trade-off (DET) at 05 dB for the five types of 

noisy speech sample using GFCC features extraction approach and SALU-AC dataset. It is clear 

there is limited improvement for the proposed approach in False positive rate (FPR) and False 

negative rate (FNR) (the bold blue curve) over conventional Speaker recognition (dashed red 

curve) in noise samples contaminated with cafeteria speech babble (Figure 8.13 a). Conversely 

the speech samples contaminated with car interior, Street, and white noise (Figure 8.3 b, d, and 

e) show significant improvement in both FPR and FNR, especially in the car interior noise 
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sample. However, the train interior noisy speech sample showed degradation in FPR and very 

limited improvement in FNR (Figure 8.13 c). 

Figure 8.12: EER of proposed approach and clean training based SR using SALU-AC 
(GFFC based) 
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Figure 8.13: DET graph for proposed approach based SR and Traditional SR in 05 dB SNR 
using SALU-AC (GFCC Based SR) 
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When the TIMIT dataset was used (Figure 8.14 a to e) , the EER results showed variation from 

one noisy speech sample to another. In general, however, there are still the same limitations in 

the performance of the proposed approach in the range between 20 dB and 10 dB for whole 

types of noise. Furthermore, in some cases the speaker recognition based clean training 

outperformed the proposed approach based SR, as seen in 20 and 15 dB for street noise with 

0.22 % and 0.7% EER respectively for conventional SR, against 0.48 % and 0.9% EER 

respectively for the proposed approach at the same SNRs (Figure 8.14 d). Again, the speech 

samples contaminated with train interior noise show the same variant in EERs through the 

different SNRs.  

Figure 8.15 a to e show DET curve for training on the fly speaker recognition (the bold green 

curve) and clean training based speaker recognition (the dashed red curve) at 10 dB using GFCC 

based Features and TIMIT dataset. As is clear in this figure, the FPR improvements for the 

proposed approach are very limited for speech samples contaminated with cafeteria speech 

babble, car interior, and street noise, while the speech samples contaminated with the white 

noise show significant improvement in FPR and FNR.  

The main reason that Training on the Fly is more efficient with MFCC features than GFCC 

feature is the robustness of GFCC to different environmental noises, which means this type of 

feature can deal with noisy speech without the requirement for the noisy training model, 

especially for high SNRs (20,15 and 10 dB). However, for low SNRs, there is still a significant 

improvement in speaker recognition performance which makes this approach with GFCC 

possible with low SNRs by changing the SNRs threshold as mentioned in section 8.1.  
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Figure 8.14: EER of proposed approach and clean training based SR  
using TIMIT (GFFC based) 
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Figure 8.15: DET graph for proposed approach based SR and Traditional SR in 10 dB SNR 
using TIMIT (GFCC Based) 
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Another important point from the previous experiments is specification the best SNRs that used 

to provide the adapted noisy reference model. In section 8.1.A simple method are proposed to 

estimate the SNRs of the noisy recognition signal, but the question is how can provide the best 

noisy reference model that gives the best performance based on the suitable SNR. This value is 

based mainly on the type of noise and the level of SNRs estimated from the signal. In general, 

however, based on the experiments made in Chapter 5 (Figure 5.7) and the experiments of 

Training on the Fly, if estimated SNR is high (between 20 and 10 dB) then the best speaker 

recognition performance can be obtained when the SNR used to produce the noisy reference 

model is equal or close to estimated SNR. If the estimated SNR is low (between 10 and 0) then 

the best performance can be obtained when the SNR used to generate the adapted reference 

model is greater than the estimated SNR. For example, if estimated SNR for input signal is 

17dB then the adapted reference noisy model should ideally have the same SNR, while if the 

estimated SNR is 3 dB then the adapted model is generating with 5 or 6 dB SNR. 

Table 8-1 and Table 8-2 present the summary of EERs of previous experiments using MFCC 

and GFCC based speaker recognition for each data set. 

Table 8-1: EER for MFCC and GFCC based Speaker recognition using SALU-AC dataset

Noise 
type 

SNR 
Est. 
SNR 
(dB) 

Train 
SNR 
(dB) 

MFCC 
Clean 

Training 

MFCC 
Training on 

the fly 

GFCC 
Clean 

Training 

GFCC 
Training on 

the fly 

C
af

et
er

ia
 

B
ab

b
le

 
 

20dB 21.5dB 21d.B 0.45 0.31 0.11 0.05 
15dB 17.3 17 1.66 0.5 0.19 0.14 
10dB 12.5 15 5.31 3.33 0.9 0.64 
05dB 7.2 10 14.29 10.87 3.19 2.42 
0 dB 4.1 5 26.6 17 16.66 10 

In
te

ri
or

 
m

ov
in

g 
ca

r 

20dB 21.4 20 0.08 0 0 0 
15dB 16.7 17 0.169 0 0.022 0 
10dB 12.5 15 0.48 0.02 0.028 0 
05dB 8.1 10 1.66 0.08 0.11 0 
0 dB 4.3 5 3.3 0.28 0.48 0.02 

In
te

ri
or

 
m

ov
in

g 
T

ra
in

 

20dB 19.3 19 1.6667 0.39 0.19 0.02 
15dB 16.1 16 2.06 1.66 1.66 0.98 
10dB 11.4 15 6.66 4.43 2.31 2.59 
05dB 7.6 10 15 13.24 6.61 9.15 
0 dB 4.2 5 29.18 23.7 25 18.33 

S
tr

ee
t 

20dB 19.3 19 0.62 0.11 0.028 0 
15dB 15.4 15 1.86 0.98 0.11 0.02 
10dB 11.3 15 3.33 1.77 0.45 0.28 
05dB 6.7 10 10 6.32 3.16 1.66 
0 dB 3.5 5 23.3 15 6.89 6.24 

W
h

it
e 

n
oi

se
 

20dB 19.8 20 2.9 1.21 0.53 0.28 
15dB 14.7 15 8.33 3.33 1.66 1.38 
10dB 9.9 15 20.76 5.31 3.92 3.19 
05dB 5.4 10 31.66 12.74 8.33 4.80 
0 dB 1.1 5 39.49 24.54 15 11.66 
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Table 8-2: EER for MFCC and GFCC based Speaker recognition using TIMIT dataset

Noise 
type 

SNR 
Est. 
SNR 

Train 
SNR 

MFCC 
Clean 

Training 

MFCC 
Training on 

the fly 

GFCC 
Clean 

Training 

GFCC 
Training on 

the fly 

C
af

et
er

ia
 

B
ab

b
le

 
 

20dB 19.7 20 3.22 2.68 0.93 0.73 
15dB 15.4 15 4.23 3.33 1.61 1.24 
10dB 11 15 8.33 5.9 3.33 3.27 
05dB 6.6 10 13.07 11.66 6.61 5.53 
0 dB 3.8 5 21.66 19.03 18.33 11.66 

In
te

ri
or

 
m

ov
in

g 
ca

r 

20dB 19.9 19 1.66 0.87 0.19 0.19 
15dB 16.3 16 1.66 0.98 0.19 0.39 
10dB 12.3 15 2.65 1.66 0.42 0.31 
05dB 7.8 10 3.33 1.66 1.66 1.41 
0 dB 3.9 5 5 2.96 3.33 1.62 

In
te

ri
or

 
m

ov
in

g 
T

ra
in

 

20dB 19.7 20 1.66 1.66 0.79 1.66 
15dB 15.3 15 3.33 3.44 2.82 1.72 
10dB 10.5 15 5 6.97 3.33 5 
05dB 5.6 10 11.66 9.74 7.85 10 
0 dB 3.7 5 20 20 16.66 11.66 

S
tr

ee
t 

20dB 19.7 20 1.27 1.38 0.22 0.48 
15dB 15.1 15 3.33 1.86 0.7 0.9 
10dB 11.6 15 5 3.33 2.06 1.66 
05dB 7.2 10 10 7.31 4.4 4.09 
0 dB 2.2 5 19.15 14.63 9.01 8.33 

W
h

it
e 

n
oi

se
 

20dB 19.6 20 8.24 2.20 1.66 1.35 
15dB 15.4 15 13.33 5.53 3.64 1.66 
10dB 9.8 15 23.33 5.96 6.66 3.53 
05dB 5.2 10 26.24 14.57 15 7.48 
0 dB 1.6 5 34.26 21.66 25.5 11.75 

 

 

Based on the results of previous experiments, the following conclusions can be summarised as 

follows: 

 Training on the Fly shows significant improvement in speaker recognition performance 

when compared with conventional speaker recognition, especially with stationary noise 

(such car interior and white noise). For non-stationary noise, the proposed approach 

showed promising improvement. 

 The results show that the training on the fly approach is more efficient when used with 

MFCC based speaker recognition than GFCC based speaker recognition, since the 

GFCC features are more robust to noise conditions. Hence, the efficiency of the 

proposed method with GFCC based SR is limited (or sometimes negative) with high 

SNRs. However, the proposed method still shows promising results in low SNRs. To 

deal with this limitation, it easy to change the SNR threshold used to select between the 

clean reference model and adapted model to better fit the type of features used.    

 Two types of dataset were used to evaluate the training on the fly. In general, the EER 

results from SALU-AC outperformed those results obtained from TMIT. The main 
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reason was that the duration of the signal in SALU-AC is longer than in TIMIT, which 

makes the estimation of noise profile more efficient in SALU-AC. Furthermore, the 

noisy signal in SALU-AC includes only the speech signal and contaminated noise, 

which makes the estimation easier than TIMIT which contained other adverse 

conditions. 

 For noise profile estimation, simple techniques are used to detect the noise in the signal. 

This technique shows efficient performance when used with speaker recognition for 

different types of noise. However, this technique still shows some limitation in some 

types of noise (such as train interior noise). Therefore, it is recommended to improve 

this technique to get the best performance for training on the fly based systems. In the 

next chapter, different techniques are proposed based on extracting the noise from the 

signal. The results are compared with those obtained from recent techniques as well as 

those obtained from clean training.  

 The estimated SNR used to check whether the signal is noisy or clean (threshold SNR) 

is not necessarily the same SNR used to create the reference adapted model; but it is still 

important to specify the value of SNR used to create the model, such that if the estimated 

SNR is almost high (between 20 and 10) then it better to use the same SNR to create the 

adapted model, while if the estimated SNR for input signal is low (between 10 and 0) 

then it is better to use a higher SNR value than estimated to obtain a better performance 

for Speaker recognition. However, the type of noise still plays the main role in specifying 

the best SNR.   
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8.3 Chapter Summary  

In this Chapter, a new proposed approach to enhance the performance of speaker recognition in 

different noisy environments has been presented. This approach re-trains the enrolment model 

on the fly, depending on the SNR and Noise profile, which are estimated from submitted signals 

for recognition, to decrease the mismatch between enrolment models and the recognition signal. 

For noise profile detection, 1/3 octave band filter bank and time envelope are used to create an 

emulated noise close enough to the original. The EER and DET results of MFCC based speaker 

recognition show promising progress over clean training based SR for the four types of noise. 

On the other hand, when training on the fly is applied with GFCC based Speaker recognition 

the improvement is limited to low SNRs while the high SNRs show only slight progress.  

The next chapter focuses on using different approaches to detect the noise in the signal. This 

technique is based on using a speech enhancement approach and spectral subtraction to extract 

noise from the signal.        
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TRAINING ON THE FLY USING NOISE EXTRACTION 

TECHNIQUE 

Chapter Overview 

In the previous chapter, a new approach has been proposed to tackle the environmental noise 

issue in speaker recognition application. This approach, in contrast to other approaches, is 

based on creating an instant adaptive reference model that includes noise with the same 

characteristics included in the noisy recognition signal. For this purpose, a technique is 

proposed to estimate the profile of noise using 1/3 octave filter bank to create an emulated noise 

that is used to mix with reference signals for the claimed person. Furthermore, in Chapter 7, 

various speech cleaning algorithms were used to investigate their impact on performance on 

speaker recognition in noisy conditions, and the experimental results show these types of 

algorithms are unreliable for speaker recognition applications. In this chapter, a new proposed 

technique for extracting the noise from the input recognition signal is presented. This technique 

is based on employing speech cleaning algorithms to extract the noise from the signal 

contaminated with noise instead of directly cleaning the noisy signal, and then using this 

extracted noise to mix with reference signals and generate the adapted models. The next section 

describes the noise extraction technique. Section 9.2 includes the details of the experimental 

setup to evaluate this technique, with ‘Training on the fly’ being compared with the results in 

the previous chapter and conventional Speaker recognition. Finally, there is a summary and 

discussion in Section 9.3. 
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9.1 Noise Extraction Technique         

This technique is based mainly on trying to split the noise signal from the speech signal 

contaminated with that noise and then using the extracted noise directly in the mixing procedure. 

This technique is based on the concept that the distorted noise signal represents a combination 

of the clean speech signal and additive noise source such that:     

 (9.1) 

where  refers to clean speech signal,  is the additive noise source, and  is the 

corrupted noise signal. The essential goal of a speech enhancement algorithm is to improve the 

quality in the noisy speech signal   by suppressing the background noise  to obtain 

output signal  which is much closer to . One of the major drawbacks of these types 

of approach is that the improvement in quality always comes at the expense of distortion of the 

speech signal, which in turn may affect speech intelligibility (Loizou, 2013). According to the 

previous experiments described in Chapter 7, these types of algorithms give very limited 

improvement in speaker recognition performance, and at times can even have an adverse effect 

on the performance. Furthermore, this improvement is limited to specific types of noise which 

cannot be generalized to all types of noise. 

Now, instead of employing these algorithms to clean speech signal, these approaches are applied 

to extracting the noise from a noisy speech signal. In other words, suppose  is the output 

signal from applying speech cleaning algorithms, and  represents the corrupted speech 

signal with additive noise. Then, the extracted noise signal  can easily be obtained by 

using a spectral subtraction of the cleaning signal   from the original signal , that is:   

 (9.2) 

   Taking the discrete-time Fourier transform DFT (Equation 6.3) of both sides gives: 

 (9.3) 

where  ,  , and   represent the magnitude spectrum of each extracted noise 

signal, original signal, and cleaning signal respectively. Figure 9.1 illustrates the block diagram 

of the extracted noise from signal technique. 
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Figure 9.1: Block Diagram for noise Extraction Technique 

 

In order to extract the noise  signal from a noisy speech signal   the next procedure 

is followed: 

1. noisy signal  is passed through a speech enhancement algorithm (in this case the 

Wiener filter algorithm by Scalart and Filho (1996) is adopted, giving the cleaned signal 

 as seen in Figure 9.2. 

2. For each  and	  , Discrete Fourier Transform has been used to convert the signals 

from time domain to spectral domain to obtain  and   respectively. 

 

 

 

 

 

 

where N is the number of samples in the signal  

 

 

 

 

(9.4) 

 

 

(9.5) 

Speech cleaning 
algorithm DFT 

Spectral subtraction 
D’(ω)=Y(ω)- X’(ω) 

Input noise 
signal y(n) 

Cleaning 
signal x’(n) 

DFT Spectrum of noise 
signal Y(ω) 

Spectrum of cleaning 
signal X’(ω) 

IDFT 

Spectrum of noise 
signal D’(ω) 

Extracted noise 
signal d’(n) 
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Figure 9.2: Original and filtered signals in Time and Frequency domains 

3. Apply spectral subtraction to subtract the cleaned signal   from  using Equation 

9.2 to obtain  which represents the spectrum of the noise signal. 

4. Finally, the extracted signal  is obtained using Inverse Discrete Fourier transform 

IDFT for 	such that:   

 

 

 

Figure 9.3 shows the output signal in time and spectral domains.  

 

 

 

 

 

 

(9.6) 
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Figure 9.3: Output Noise Signal in Time and Frequency Domains 

9.2 Training on the Fly using noise Extraction Technique  

To investigate the training on the fly using noise extraction technique, the following 

experiments were made on speaker recognition to see what degree of progress could be achieved 

in the accuracy of speaker recognition. The results of these experiments are compared with those 

obtained in the previous chapter as well as those obtained from conventional speaker 

recognition. As in the previous chapter, two types of speech data have been adopted for this 

purpose TIMIT and SALU-AC. In addition, two kinds of features techniques are used, Mel 

Frequency Cepstrum Coefficients MFCC and Gammatone Cepstrum Coefficients GFCC. The 

Experiments are focusing on the most three challenging noise types (Cafeteria speech babble, 

interior moving train, and Street noise).  
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9.2.A Experimental Setup  

The details of these experiments are the same as used in the previous chapter in order to see to 

what extent training on the fly using noise extraction can improve the performance of speaker 

recognition. The accuracy of the results is compared with the results from the previous chapter 

in addition to results from clean training based speaker recognition. The following are the details 

for these experiments: -  

 MFCC including dynamic features (delta and delta delta) with 39-dimesional space and 

GFCC with 23- dimensional space were adopted.  

 Gaussian Mixture model was used with 256 mixture. As mentioned before, the main 

reason for using GMM with training on the fly is the need to build the new reference 

model instead of adapting it from a universal model. 

 To check the performance of training on the fly with noise extraction technique two 

datasets were adopted in this research. Each dataset included speech samples from 60 

speakers (30 male, 30 female). 9 utterances were used in enrolment (training) phase for 

every speaker, all spoken in English. For recognition phase (training phase) one English 

utterance was used for each speaker. As before, this recognition set was divided into a 

number of subsets. Each subset represents the same speech samples mixed with different 

SNRs (20, 15, 10, 5, and 0 dB) for a specific type of noise to check the degradation in 

accuracy of speaker recognition. 

 Three types of noise were adopted in these experiments: Cafeteria speech babble, interior 

train, and street noise, since these represent the most challenging types of noise. 

Furthermore, the results from the previous chapter show there is some limitation with 

speech sample contaminated with train interior noise. 

 As before, error equal rate and detection error tradeoff were adopted to evaluate the 

results. The EER results degradation through different SNRs for aforementioned noises 

were compared with results from training on the fly using emulated noise in addition to 

the EER results from conventional speaker recognition. 
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9.2.B   Experimental Results 

1. MFCC Baseline Results 

In general, the EER results of Training on the fly using noise extraction technique (for simplicity 

this approach will be called TOTF-2 and Training on the fly using emulated noise is called 

TOTF-1) show significant improvement in the performance of speaker recognition under 

different SNRs for the specified types of noise when compared with results obtained from 

TOTF-1 and conventional speaker recognition (based on clean training signal). Figure 9.4 a to 

c demonstrate the degradation of performance (based on EER) through different SNRs for the 

three types of noise using the SALU-AC data set for MFCC based Speaker recognition. The 

dashed dot green line represents TOTF-2 and dashed red line represents TOTF-1, while the bold 

blue line represents conventional speaker recognition. 

There is clearly a significant enhancement in speaker recognition accuracy when noise 

extraction techniques are applied with training on the fly, particularly in the range between 10 

and 0 dB for the three types of noisy speech sets. For interior train (Figure 9.4 b), for instance, 

the EERs improve rapidly at 10, 05, and 0 dB from 4.4%, 13.2%, and 23.7% EERs in TOTF-1 

to 3.3%, 5% ,13.3% ERRs in TOTF-2 respectively, which represents very substantial 

improvement for these speech samples contaminated with train interior noise. The other two 

types of noisy data (Cafeteria speech babble, and street noise) show the same improvement in 

EERs for most SNR values except at 20dB where both approaches (TOTF-1 and TOTF-2) have 

closely similar EER accuracy (Figure 9.4 a and Figure 9.4 c).  

In DET Graphs, Figure 9.5 a to c show the performance of speaker recognition for the three 

cases (where the dashed-dot green curve represents TOTF-2 and dashed red curve represents 

TOTF-1, while the blue bold curve represents the conventional SR) for 5 dB SNR using SALU-

AC and MFCC features based SR. It is clear that TOTF-2 outperforms TOTF-1 and 

conventional speaker recognition in both FPR and FNR for speech data contaminated with 

cafeteria speech babble, and street noise (Figure 9.5 a and Figure 9.5 b). Speech samples 

contaminated with interior train noise show the same FPR as conversational SR but still have 

the best FNR compared with the other two cases (Figure 9.5 c). 
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Figure 9.4: EER of two proposed approaches and clean training with MFCC based SR 
using SALU-AC 
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Figure 9.5: DET graphs for two proposed approaches based SR and Conventional SR in 05 dB 
SNR using SALU-AC (MFCC based) 
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When the TIMIT datasets were applied (Figure 9.6 a to c), the training on the fly based noise 

extraction technique (the dashed dot pink line) still showed the same improvement in EERs for 

all SNRs and for the three types of noisy speech. As in the SALU-AC dataset, this enhancement 

in accuracy became very high at 10, 5, and 0 dB, particularly for the speech data contaminated 

with interior train noise (Figure 9.6 b) which showed significant improvement if compared with 

EERs from TOTF-1 described in the last chapter, which showed limited improvement for this 

type of noise. Furthermore, the improvement in EERs for low SNRs (5 and 0 dB) show high 

improvement in values of EERs when compared with the EERs values from TOTF-1 and 

conventional SR. 

In the Detection error trade-off (DET) graphs Figure 9.7 a to c represent the performance of the 

three cases at 10dB SNR for the three types of noise (the dashed dot pink curve represents the 

TOTF-2, the dashed red curve represents the TOTF-1, while the bold green curve represents the 

conventional speaker recognition). As seen in these figures, SR based on TOTF-2 outperformed 

TOTF-1 and conversational SR in both FPR and FNR for speech samples contaminated with 

speech babble and street noise. Speech samples contaminated with interior train noise showed 

the same performance in FPR for adapted approaches (TOTF-1 and TOTF-2) but still 

outperformed the conventional SR (Figure 9.7 b).  

The main reason that noise extraction based training on the fly outperformed noise emulated 

based training on the fly is that the noise used in the first techniques to build the adapted 

reference model is similar to the noise embedded in the input recognition signal, since it is 

extracted directly from the signal; while the second type of technique is based mainly on the 

accuracy of estimations of the profile noise to create an emulated noise close to the original. 
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Figure 9.6: EER of two proposed approaches and clean training with MFCC based SR using 
TIMIT 
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Figure 9.7: DET graph for two proposed approaches based SR and Conventional SR in 10 dB 
SNR using TIMIT (MFCC based) 
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2. GFCC Baseline Results  

 When Training on the fly using noise extraction technique is applied in GFCC based speaker 

recognition using SALU-AC datasets, the EER results, as in the previous approach, show very 

limited improvement (even in some cases a slight degradation) over conventional speaker 

recognition and TOTF-1 for 20, 15, and 10 dB SNRs. On the other hand, the low SNRs (5 and 

0 dB) show significant enhancement in EER values over TOTF-1 and conventional SR, as seen 

in Figure 9.8 a to c, where the dashed dot green line represents the training on the fly based 

noise extraction technique (TOTF-2), dashed red represents training on the fly based on 

estimated emulated noise (TOTF-1), and the bold blue line represents the conventional speaker 

recognition.  

For example, the three cases have close EERs at 20 dB SNR for the three types of noise. 

Conversely, the TOTF-2 shows good improvement at 5, and 0 dB SNR for speech samples 

contaminated with babble noise, and interior train noise, especially in the case of interior train 

noise where the EERs decreased from 6.6 % in conversational SR to 3.3 in TOTF-2 at 5 dB 

SNR, while the TOTF-1 failed to achieve any improvement in this SNR (Figure 9.8 b). 

The DET graphs (Figure 9.9 a to c) which represent the performance of the three cases at 10 dB 

SNR for the three types of noisy speech data, show the improvement in accuracy of TOTF-2 

(the dashed dot shade green curve) over the other two cases (the red dashed curve represents 

TOTF-1, and the bold blue line represents the conventional SR) for speech samples 

contaminated with cafeteria babble and interior train in both FPR and FNR (Figure 9.9 a, b). 

Conversely, the DET graph of speech data contaminated with street noise shows a decrease in 

FPR for TOTF-2, while the best performance is for TOTF-1 (Figure 9.9 c). 
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Figure 9.8: EER of two proposed approaches and clean training with GFCC based SR 
using SALU-AC 
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Figure 9.9: DET graphs for two proposed approaches based and Conventional SR in 10 dB 
SNR using SALU-AC (GFCC based) 

 

As with the SALU-AC, when the TIMIT datasets are used (Figure 9.10 a to c), the EERs for 

TOTF-2 (the dashed dot pink line) show significant improvement over the other two cases (the 

dashed red for TOTF-1 and bold green for conventional SR) at 5 and 0 dB SNR, while the EERs 

at 20, 15 and 10 vary from one type of noise to another. 

The DET graphs (Figure 9.11 a to c) show the performance of three cases using the TIMIT 

datasets with GFCC-based speaker recognition at 5 dB SNR. The TOTF-2 (the dashed dot pink 

curve) outperforms the adapted approach-1(the dashed red curve) and conventional SR (the bold 
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green curve) for cafeteria babble, and train interior noisy data in both FPR and FNR (Figure 9.11 

a, c) . However, TOTF-2 shows the same FPR for conventional SR when speech samples are 

contaminated with street noise. 

 

Figure 9.10: EER of two proposed approaches and clean training with GFCC based SR  
using TIMIT 
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Figure 9.11: DET graph for two proposed approaches based and Conventional SR in 05 dB 
SNR using TIMIT (GFCC based) 

 

In summary, according to the results from previous experiments, the findings are as follows: 

 Training on the fly with noise extraction techniques described at the beginning of this 

chapter is more efficient with speaker recognition than method based on estimated emulated 

noise, since the noise used to create the adapted reference model is the same noise that 

contaminates the input recognition signal, which makes the mismatch between the 

enrolment and recognition phases smaller. However, the extracted noise signal still contains 
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a low level of speech from the original signal, but this level of speech is too low to affect 

the mixing signal used to build the reference model. Furthermore, this remaining speech, 

when mixed with the reference signal for the claimed speaker, will increase the probability 

that the input signal belongs to the claimed person if the recognition signal belongs to the 

target person. Otherwise, if the recognition signal belongs to an imposter, then the 

remaining speech will help to increase the mismatch between the created model and input 

signal.  

  Similar to the finding from the previous chapter, training on the fly based noise extraction 

was shown to be more efficient with MFCC- baseline speaker recognition than GFCC-

baseline. However, the results still show significant improvement for training on fly with 

GFCC based Speaker recognition at low SNRs.  

 As described in the last chapter, the value of SNR used to create an adapted noisy signal 

depends mainly on estimated SNR from input signal; but not necessarily the same value, 

because this SNR varies from one type of noise to another and also the level of estimated 

SNR.                

Table 9-1 and Table 9-2 show the summary of EERs for training on fly approaches using the 

two types of dataset and two types of features extraction.  

Table 9-1: EER for MFCC and GFCC based Speaker recognition using SALU-AC dataset

Noise 
type 

SNR 
Est. 
SNR 
(dB) 

Train 
SNR 
(dB) 

MFCC 
TOTF-2 

MFCC 
TOTF-1 

GFCC 
TOTF-2 

GFCC 
TOTF-2 

C
af

et
er

ia
 

B
ab

b
le

 
 

20dB 21.5dB 21d.B 0.05 0.31 0.11 0.05 
15dB 17.3 17 0.3 0.5 0.11 0.14 
10dB 12.5 15 0.96 3.33 0.25 0.64 
05dB 7.2 10 2.9 10.87 0.96 2.42 
0 dB 4.1 5 8.3 17 5 10 

In
te

ri
or

 
m

ov
in

g 
T

ra
in

 

20dB 19.3 19 0.48 0.39 0.39 0.02 
15dB 16.1 16 1.66 1.66 0.64 0.98 
10dB 11.4 15 3.33 4.43 0.96 2.59 
05dB 7.6 10 5 13.24 3.33 9.15 
0 dB 4.2 5 13 23.7 18.33 18.33 

S
tr

ee
t 

20dB 19.3 19 0.19 0.11 0.028 0 
15dB 15.4 15 0.42 0.98 0.39 0.02 
10dB 11.3 15 0.59 1.77 0.98 0.28 
05dB 6.7 10 1.66 6.32 1.66 1.66 
0 dB 3.5 5 6.66 15 4.2 6.24 
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Table 9-2: EER for MFCC and GFCC based Speaker recognition using TIMIT dataset

Noise 
type 

SNR 
Est. 
SNR 

Train 
SNR 

MFCC 
TOTF-2 

MFCC 
TOTF-1 

GFCC 
TOTF-2 

GFCC 
TOTF- 2 

C
af

et
er

ia
 

B
ab

b
le

 
 

20dB 19.7 20 1.1 2.68 0.16 0.73 
15dB 15.4 15 1.63 3.33 0.31 1.24 
10dB 11 15 2.9 5.9 2.11 3.27 
05dB 6.6 10 6.77 11.66 3.18 5.53 
0 dB 3.8 5 6.92 19.03 5.53 11.66 

In
te

ri
or

 
m

ov
in

g 
T

ra
in

 

20dB 19.7 20 1.01 1.66 0.22 1.66 
15dB 15.3 15 3.33 3.44 1.41 1.72 
10dB 10.5 15 4.66 6.97 4.91 5 
05dB 5.6 10 5.79 9.74 5 10 
0 dB 3.7 5 7.54 20 5 11.66 

S
tr

ee
t 

20dB 19.7 20 1.01 1.38 0.36 0.48 
15dB 15.1 15 1.35 1.86 0.48 0.9 
10dB 11.6 15 2.4 3.33 0.79 1.66 
05dB 7.2 10 3.33 7.31 3.41 4.09 
0 dB 2.2 5 6.66 14.63 6.66 8.33 

 

9.3 Chapter Summary  

In this Chapter, Training on the fly using noise extraction techniques to improve the noise 

robustness of speaker recognition has been presented. This technique includes using one of the 

speech enhancement algorithms (in this case Wiener filter was adopted) as well as a spectral 

subtraction algorithm to extract the noise from the input speech signal and then using this noise 

to mix with the reference signals to build the adapted reference models. The EERs and DET 

results from this technique have been compared with those obtained in the previous chapter in 

addition to results from conventional speaker recognition (based on clean training). The results 

of MFCC- baseline speaker recognition show the proposed techniques increase the efficiency 

of training on the fly over those based on estimated emulated noise since this technique deals 

with noise directly instead of estimating it from input noisy signal. 
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DISCUSSION,CONCLUSIONS  

AND RECOMMENDATION FOR FUTURE WORKS 

The primary goals of this research study can be categorised into two aspects: the general aspect, 

on the one hand, concerned with adopting different approaches to investigate their effectiveness 

in improving the robustness of speaker recognition in the presence of different environmental 

noise sources. In addition, the impact of language mismatch between the enrolment and 

recognition phases on the accuracy of speaker recognition was studied under the same noisy 

conditions.  This was done by using a new database (called SALU-AC) containing audio speech 

samples recorded in different languages in addition to English. These samples were recorded 

without being limited to particular text messages. 

The specific aspect, on the other hand, focused on developing a new approach to improve robust 

text-independent speaker recognition systems for real world application under various 

environmental noises, especially when the information provided about the noise is limited or 

absent. This approach is based on instantly re-training the enrolment models, depending on 

Signal to noise ratio and the identity of noise, which are estimated from signals submitted to 

recognition, to decrease the mismatch between the newly created enrolment models and the 

recognition signal. The summary and conclusions of this research, in addition to some 

suggestions for future work, are presented in sections 10.1 and 10.2 respectively.  

10.1 Discussion  

Automatic Speaker Recognition has recently become one of the most common aspects of 

biometric authentication fields, due to the simplicity of capturing the speech samples from 

speakers compared with other types of biometrics. Furthermore, this type of biometric does not 

require special devices to be implemented, such as in thumbprint and iris authentications. As a 

result, this biometric has recently been receiving a great deal of attention from many researchers. 

One of the major challenges of speaker recognition is that associated with its performance 

against background environmental noise, since these types of applications perform poorly under 

noisy conditions. 
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This study deals with noise challenges to improve the speaker recognition under these adverse 

conditions. For this purpose, different approaches have been adopted. These approaches, as 

mentioned before, can be categorised into general and specific aspects.  

The general aspect, which concerns different approaches to deal with noise issues, can be 

categorised into three scenarios:   

1. To handle the degradation in speaker recognition, an investigation has been made on 

enrolment phase in speaker recognition. This investigation involved training the speaker 

recognition with various types of noisy speech and with controlled SNRs to create noisy 

reference models. The results of using noisy utterances in the enrolment phase showed 

significant improvement in the accuracy of speaker recognition if compared with clean 

speech enrolment. However, it was important to specify the SNR of the noisy speech used 

in the enrolment phase to ensure good speaker recognition performance in noisy conditions. 

Furthermore, the results show that the identity of the noise plays a major role in providing 

a suitable noisy reference model because each type of noise has a different power spectrum 

which represents a unique identity for each type of noise. As a result, to create suitable 

noisy reference model two factors should be taken into account: SNR level, and noise 

identity with the same characteristics as included in the noise that contaminated the 

recognition signal. 

2. The robustness of different features extraction algorithms in the performance of speaker 

recognition was investigated. Conventional MFCC, including dynamic features, and GFCC 

were adopted in this study to investigate their robustness to different kinds of noise, in 

addition to their sensitivity to a variety of languages of recognition samples sets. The results 

of these experiments showed that GFCC baseline models have better performance than 

conventional MFCC baseline under different additive noise conditions. Conversely, 

changing the languages of the recognition speech set adversely affected the performance of 

the GFCC baseline, while the MFCC baseline showed more robustness for this change. The 

reason for this sensitivity of GFCC features for language mismatch is probably the design 

of the Gammatone filter-bank, representing an emulation of the human auditory system, 

which makes it more sensitive to changing the language used in enrolment and recognition 

phases. For this point, two options are suggested, first undertake further investigation on 
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the Gammtone filter-bank in order to improve its robustness to mismatched language. 

Second, investigate the performance of using logarithmic operation instead of cubic root to 

extract GFCC features.         

3.  The impact of speech enhancement algorithms as a pre-processing stage on the 

performance of speaker recognition was investigated under various noisy conditions. The 

cleaning algorithms adopted in this study involved a spectral subtraction algorithm, 

statistical based algorithms, and a subspace algorithm.  First, the effect of Wiener filtering 

algorithms was considered when applied as a pre-processing stage for test-phase and 

training-test phases together on the performance of speaker recognition under additive 

noise conditions. Then the impact of the other cleaning algorithms was examined when 

they were applied as a pre-processing stage for both training and test phases on the 

performance of the verification system in the same environments. The results obtained from 

these experiments indicate that these approaches caused degradation in accuracy of speaker 

recognition when used with the recognition (test) phase only. On the other hand, these noise 

cleaning methods showed very limited improvement and sometimes had an adverse impact 

on speaker recognition performance. Therefore, these kinds of approaches are unreliable 

for robustness of speaker recognition in different noisy conditions. The main reason that 

these types of algorithms are unreliable with speaker recognition is that most of them focus 

on using the same filtering techniques to tackle broadband noise so that when the noise is 

removed from the speech signal this causes alterations in speech components. As a result, 

this change will affect the frequency range of speech after cleaning. This change in 

frequency components will affect the features that are extracted from this filtering signal. 

It is therefore recommended to focus on using speech enhancement algorithms that deal 

with enhancing both quality and intelligibility of the speech signal.     

For the specific aspect, and based on findings in noisy training in chapter 5, a ‘Training on the 

fly’ approach (Al-Noori et al., 2017) has been proposed to improve the performance of speaker 

recognition in the presence of environmental noise. This approach is based on estimating the 

SNR and finding or estimating the noise in the input recognition signal. For SNR estimation, a 

time domain envelope has been employed. For finding the identity of noise in the signal, two 

techniques are proposed: the first is based on estimating the power spectrum on the noise using 

1/3 octave band filter bank and then creating an emulated noise much closer to the original using 
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white noise. The second technique is based on attempting to extract the noise by filtering the 

noisy signal using one of the speech enhancement approaches adopted in Chapter 7 (in this 

research Wiener filters were adopted) and then using spectral subtraction to subtract the filtered 

signal from the original to obtain the noise used later to generate the noisy reference model. 

From experiments on the two types of features adopted in this research with GMM-based 

Speaker recognition, and by using the two types of speech database to evaluate the performance 

of training on the fly approach, the following findings can be drawn: 

1. The ‘Training on the fly’ approach based on the two detection noise techniques shows 

significant improvement in performance of MFCC-baseline when compared with the 

performance of conventional speaker recognition (based on a clean reference model). For 

training on the fly based on emulated noise, the results show significant improvement for 

speech samples contaminated with the interior car and white noise and promising 

improvement for speech samples contaminated with street and cafeteria babble noise. 

However, Training on the fly shows limitation with speech samples contaminated with 

interior train noise, because this type of noise has different sources of noise for which the 

estimation of the power spectrum is difficult. 

2. Training on the fly based on noise extraction technique shows significant improvement 

over the one based on emulated noise and conventional speaker recognition in MFCC-

GMM baseline speaker recognition for all types of the noisy speech sample. The main 

reason that training on the fly based noise extraction outperforms the one based on 

estimated noise is that the characteristics of extracted noise are the same as those included 

in the original signal, which makes the reference model created from mixing this noise with 

the reference speech signal more accurate than one created from the estimated noise. 

However, the extracted noise may still contain a ratio of speech from the original signal, 

but this ratio is too small to affect the created model. In addition, the remaining speech 

when mixed with speech signal belongs to the authorised person, making the model more 

robust. 

3. The evaluation results show that the training on the fly approach is more efficient with 

MFCC-baseline than GFCC-baseline. The improvement of GFCC-baseline is limited in 

low SNR. This leads us to conclude that training on the fly with GFCC-baseline is not 

efficient when SNR is high (i.e. between 20 and 10 dB). 
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4. In order to get the best performance for speaker recognition using training on the fly, it is 

necessary to specify the SNR for the SNR threshold and for speech-noise mixing, since the 

impact of the noise on the accuracy of speaker recognition varies from one type to another 

(as seen in Chapter 4). Therefore, it is necessary to calibrate the signal to noise ratio with 

real world noise to give the best performance accuracy for speaker recognition.  

5. The Training on the fly approach may cause a delay in recognition process since it requires 

extra time to create the adapted model (on the fly model). This delay varies depending on 

the type of speaker recognition system applied for. In real time speaker verification systems 

this delay is not a serious issue since the adapted models will be created only for the claimed 

person. However, in the case of speaker identification this delay becomes very high 

because, in this case, all enrolment models will be re-trained to find the closest model. For 

that reason, training on the fly is limited to a small number of speakers if used with speaker 

identification.   

6. In this thesis, GMM based speaker recognition is used to evaluate the training on the fly 

approach, but that does not mean it cannot be applied with universal background model 

(UBM). In this case, the UBM model can be used if the input signal is clean (i.e. when the 

recognition signal is identified as clean). Otherwise, the UBM is re-trained using the signals 

of the claimed person only and then this model is adapted as a speaker model (in this case 

the speaker model is adapt from itself instead of independent models). The aim of using the 

UBM adaptation, in this case, is to build a robust supervector model. This step will be 

reserved for future research.   

10.2 Conclusions           

From the previous discussion section the conclusions can be summarised as follows: 

1. The impacts of different types of noise on the performance of Speaker recognition in the 

context of accuracy are varied from one type of noise to another. For instance, the effects 

of Train interior and babble noise on the SR accuracy are very high compared with the 

effects of car interior.  

2. To provide suitable adapted noisy models that closely resemble the noisy input signal, two 

factors should be taken into account: first, signal to noise ratio (SNR), which represents the 

main factor to specify whether the input signal is noisy or clean. In addition, this factor 
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specifies the level of noise in a noisy signal through the mixing process. Second, the profile 

of the noise, which represents the unique identity of the noise in noisy signal.  

3. The value of estimated SNR used to specify whether the recognition signal is noisy or clean 

(threshold SNR) is not necessarily the same SNR value that is used to create the reference 

adapted model (on the fly model ) ; but it is still important to specify the value of SNR used 

in the mixture process. However, the profile of the noise still plays the main role in 

specifying the best SNR for the mixture process.  

4. Although the results show that GFCC features are more robust than conventional MFCC in 

noisy environments, mismatched language between the elemental and recognition phase 

affects the performance of GFCC based SR features more than one based on MFCC 

features.  

5. Although the results show that using speech enhancement algorithms is unreliable for 

robustness of speaker recognition, these algorithms showed  efficiency when used to extract 

the noise for the input signal to create noisy adapted models for the Training on the fly 

approach. 

6.  Since the GFCC features are more robust to noisy environments, the improvement for 

training on the fly with GFCC based SR is limited to low SNRs.  

7. Since the noise used to create the adapted reference model is the same noise that 

contaminated the input recognition signal, the performance of training on the fly based on 

noise extraction outperforms the one based on estimated emulated noise.                      

10.3 Recommendations for Future Work  

This section briefly gives some suggestions for future work which could be used to extend the 

work presented in this research:  

1. Examine the performance of using training on the fly approach with different state of the art 

modelling techniques for improving the accuracy of speaker recognition under noisy 

conditions, for example, i-vector baseline. In addition, further investigation of this approach 

with universal background model as mentioned before.  

2. Improve the noise profile estimation to obtain the best estimation for noise contaminated in 

recognition signal, which should lead to improved performance of training on the fly.   
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3. The experiments in this research were conducted on artificial noisy speech samples which 

were already prepared for this purpose. For future work, speaker recognition using training 

on the fly should be applied to realistic noisy speech data collected directly from noisy 

environments (such as recorded speech samples in a cafeteria crowded with many people). 

4. More investigation will be undertaken on the GFCC to improve their performance when the 

languages of test speech samples are different from enrolment speech samples. In this case, 

it may be possible to deal with speech samples in each language separately from other 

languages, to find the greatest impact of language mismatch on GFCC-baseline. This can be 

done using various speech samples recorded in different languages in the SALU-AC 

database.  

5. Most of the speech enhancement algorithms used in this research are focused on improving 

speech quality but failed in improving speech intelligibility. Future work should focus on using 

approaches that deal with enhancing both quality and intelligibility of speech signals. For these 

purposes, Singular Spectral Analysis (SSA) will be employed.  

               

    

 

 

 



Appendices 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      194 
 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 



Appendices 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      195 
 

Appendix I  
DET Graphs for Chapter 5 

 

 
Figure  I.1:DET graphs of noisy training for 10 dB SNR test samples 
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Figure I.2: DET graphs of noisy training for 05 dB SNR test samples 
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Figure I.3: DET Graphs for Clean and Different SNRs (in dB) Training (at 15 dB Test) 

 

 

 

 

 

 

 

 

 

 



Appendices 

Robust Speaker Recognition in presence of non-trivial environmental noise                                                      198 
 

Appendix II 
DET Graphs for Chapter 6 

Figure II.1: DET Graphs for GFCC and MFCC baseline SR at 15 dB using TIMIT
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Figure II.2: DET Graphs for GFCC and MFCC baseline SR at 10 dB using TIMIT 
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Figure II.3: DET Graphs for GFCC and MFCC baseline SR at 15 dB using SALU-AC  
(First Set)
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Figure II.4: DET Graphs for GFCC and MFCC baseline SR at 05 dB using SALU-AC 
(First Set) 
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Figure II.5:DET Graphs for GFCC and MFCC baseline SR at 10 dB using SALU-AC 
(Second Set)
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Figure II.6:DET Graphs for GFCC and MFCC baseline SR at 05 dB using SALU-AC (Second 
Set) 
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Appendix III 
DET Graphs for Chapter 7 

 

 
Figure III.1:DET graphs for SR with and Without Wiener filter at 15 dB 
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Figure III.2:DET graphs for SR with and Without Wiener filter at 10 dB 
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Figure III.3:DET graph with /without speech enhancement approaches at 15 dB SNR 
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Figure III.4: DET graph with /without speech enhancement approaches at 05 dB SNR 
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Appendix IV  
DET Graphs for chapter 8 and chapter 9 

(Training on the fly)   
 

Figure IV.1:DET Graphs for Training on the fly (First technique) for Car, and White noise at 
15db, 05 dB SNR using SALU-AC (MFCC baseline) 
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Figure IV.2: DET Graphs for Training on the fly(First technique)  for Car, and White noise at 
10db, 05 dB SNR using TIMIT (MFCC baseline) 
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Figure IV.3:DET Graphs for Training on the fly (First technique)  for Car, and White noise at 
15db, 05 dB SNR using SALU-AC (GFCC baseline) 
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Figure IV.4: DET Graphs for Training on the fly (First technique) for Car, and White noise at 
15db, 05 dB SNR using TIMIT (GFCC baseline) 
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Figure IV.5:DET Graphs for Training on the fly (both techniques) for Babble, Train, and 
Street noise at 15dB SNR using SALU-AC (MFCC baseline) 
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Figure IV.6:DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 10 dB SNR using SALU-AC (MFCC baseline) 
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Figure IV.7:DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 15 dB SNR using TIMIT (MFCC baseline) 
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Figure IV.8:DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 05 dB SNR using TIMIT (MFCC baseline) 
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 Figure IV.9 :DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 15dB SNR using SALU-AC (GFCC baseline) 
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Figure IV.10:DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 05dB SNR using SALU-AC (GFCC baseline) 
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Figure IV.11: DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 15dB SNR using TIMIT (GFCC baseline) 
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Figure IV.12: DET Graphs for Training on the fly (both techniques) for Babble, Train, 
and Street noise at 10 dB SNR using TIMIT (GFCC baseline) 
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Appendix V 

Ethical Approval 
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