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ABSTRACT 

Patellofemoral pain (PFP) is the most frequently diagnosed condition in patients with knee 

complaints and is particularly prevalent in young physically active individuals. Studies revealed 

that despite receiving treatment, the majority of individuals with PFP suffer from persistent 

complaints, indicating that current treatments fail to prevent the chronicity of symptoms. The 

failing long-term outcomes reflect the need to provide an update on the evidence of underlying 

muscular dysfunctional factors of PFP, as well as the investigation of different treatment 

approaches. 

As part of this PhD, a literature and a systematic review were conducted, which discussed the 

definition, risk factors, prognosis, pathophysiology and treatment of PFP. The meta-analysis 

showed that the majority of studies analysed muscle strength or muscular activity. Whereas, 

muscular dysfunctional factors such as atrophy, muscular inhibition, fatigue and flexibility 

remained understudied in individuals with PFP.  

To develop a robust and reliable test protocol for the investigation of muscular dysfunctional 

factors in individuals with PFP, a reliability study was performed, which enabled the 

development of a protocol that was applied in the following studies of the thesis. Knee braces 

are recommended in the acute phase of PFP. However, research on knee braces analysing the 

effect on stabilising the sagittal and coronal plane of the knee joint demonstrated conflicting 

results. Thus, the effect on lower limb biomechanics and pain of the Powers
TM

 strap was 

investigated in 24 individuals with PFP and 22 healthy individuals and revealed that the 

Powers
TM

 strap reduced pain and was able to modify lower limb biomechanics during functional 

tasks. Furthermore, a six week exercise programme for individuals with PFP was developed and 

investigated in 25 individuals with PFP. It could be shown that the treatment was effective to 

reduce pain, improve function and the functional performance of individuals with PFP. The final 

study of this PhD focused on the influence of acute pain on the functional performance, strength 

and quadriceps inhibition in 21 individuals with PFP. It was found that acute pain caused an 

increase of quadriceps inhibition in individuals with PFP, but did not affect functional 

performance or quadriceps strength.  

Thus, this thesis investigated the role of muscle dysfunction in PFP, explored the link to pain and 

showed how different treatment approaches were able to influence muscle dysfunction in 

individuals with PFP. 
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Chapter 1: Introduction 

The terms patellofemoral pain (PFP) and anterior knee pain (AKP) are usually used 

synonymously and describe a syndrome with aching or diffusing pain in the peripatellar or 

retropatella regions (Farzin, Reza, & Tohid, 2013; Roush & Curtis Bay, 2012; Witvrouw, 

Callaghan, Stefanik, Noehren, Bazett-Jones, Willson, Earl-Boehm, Davis, Powers, 

McConnell, & Crossley, 2014). Commonly, the pain is aggravated during loaded knee 

flexion, such as ascending and descending stairs, squatting and/ or prolonged sitting (Nunes, 

Stapait, Kirsten, de Noronha, & Santos, 2013; Thomee, Augustsson, & Karlsson, 1999).  

PFP is the most frequently diagnosed condition in individuals with knee complaints and is 

prevalent in 7%-19% of the general population (Boling, Padua, Marshall, Guskiewicz, Pyne, 

& Beutler 2010; Wilson, Masterson, & Seagrave, 2012). In particular young and physically 

active people are affected (Powers, Bolgla, Callaghan, Collins, & Sheehan, 2012). Roush and 

colleagues (2012), reported PFP symptoms in 12-13% of young females (aged 18 - 35 years), 

which might cause limitation in physical activity or even lead to sport cessation (Myer, Ford, 

Barber Foss, Goodman, Ceasar, Rauh, Divine & Hewett, 2010; Rathleff, Skuldbol, Rasch, 

Roos, Rasmussen, & Olesen 2013).  

To date, the underlying mechanisms in PFP are unknown and the pathophysiological 

processes associated with PFP can be compared with a complex mosaic (Collado & 

Fredericson, 2010; Powers, Bolgla, Callaghan, Collins, & Sheehan, 2012). It is believed that 

patellofemoral malalignment and maltracking play an important role in PFP, which might be 

caused by poor neuromuscular control of the trunk or the lower extremities, weakness or 

abnormal muscular activation (Earl, Hertel, & Denegar, 2005; Lankhorst, Bierma-Zeinstra, & 

van Middelkoop, 2013; Powers et al., 2012; Thomee, Augustsson, & Karlsson, 1999; 

Witvrouw, et al., 2014). Several factors have been postulated to contribute to malalignment 

and maltracking of the patella, including quadriceps weakness, quadriceps muscle 

imbalances, excessive soft tissue tightness, gluteal muscle weakness and altered foot posture 

(Baldon, Nakagawa, Muniz, Amorim, Maciel, & Serrao, 2009; Bolgla, Malone, Umberger, & 

Uhl, 2008; Cheung, Ng, & Chen, 2006; Collins, Bierma-Zeinstra, Crossley, van Linschoten, 

Vicenzino, & van Middelkoop, 2013; Cowan, Bennell, Crossley, Hodges, & McConnell, 

2002; Dierks, Manal, Hamill, & Davis, 2008; Fagan & Delahunt, 2008; Ferber, Farr, & 

Kendall, 2010; Fukuda, Rossetto, Magalhaes, Bryk, Lucareli, & de Almeida Carvalho, 2010; 
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Halabchi, Mazaheri, & Seif-Barghi, 2013; Khayambashi, Mohammadkhani, Ghaznavi, Lyle, 

& Powers, 2012; Kwon, Yun, & Lee, 2014; Lankhorst, Bierma-Zeinstra, & van Middelkoop, 

2012; Laprade, 2000; Nakagawa, Baldon, Muniz, & Serrao, 2011; Pappas & Wong-Tom, 

2012; Powers et al., 2012; Song, Lin, Jan, & Lin, 2011; Van Cant, Pineux, Pitance, & Feipel, 

2014; Waryasz & McDermott, 2008; Weiss & Whatman, 2015). Although pathophysiological 

muscular factors in individuals with PFP have been addressed in several studies, important 

underlying factors, such as arthrogenic muscle inhibition (AMI) and the break phenomenon 

appear to be relatively understudied. AMI and break phenomenon describe the neurological 

decline in quadriceps muscle activation, which results in the inability to recruit the motor-

neuron pool fully during a maximal voluntary contraction (Drover, Forand, & Herzog, 2004; 

Hopkins & Ingersoll, 2000; Hurley & Newham, 1993; Palmieri-Smith, Villwock, Downie, 

Hecht, & Zernicke, 2013; Suter, Herzog, De Souza, & Bray, 1998). Thus, an investigation of 

AMI and the break phenomenon might enable insights into quadriceps weakness and a further 

understanding of these factors might even lead to an amendment of the current treatment 

scheme.  

Beside pathophysiological factors, pain is believed to play a crucial role in the aetiology and 

progression of PFP (Bazett-Jones, 2011; Collins et al., 2013; Rathleff, Rathleff, Olesen, 

Rasmussen, & Roos, 2015; Wyndow, Collins, Vicenzino, Tucker, & Crossley, 2016). 

Previous studies reported a link of pain to several factors, such as the alterations of lower 

limb biomechanics and muscular coordination, quadriceps strength deficits, gluteal strength 

deficits, knee instability, irregularities in the quadriceps torque curve and AMI (Dvir & 

Halperin, 1992; Dvir, Halperin, Shklar, & Robinson, 1991; Guney, Yuksel, Kaya, & Doral, 

2015; Hart, Collins, Ackland, Cowan, & Crossley, 2015; Khayambashi et al., 2012; Long-

Rossi & Salsich, 2010; Nakagawa, Serrao, Maciel, & Powers, 2013; Noehren, Sanchez, 

Cunningham, & McKeon, 2012; Riddle & Stratford, 2011; Silva, Briani, Pazzinatto, Ferrari, 

Aragao, & de Azevedo, 2015; Yilmaz, Baltaci, Bayrakci Tunay, & Atay, 2015). Research has 

been conducted in individuals with PFP and analysed the influence of pain intensity on 

functional performance and strength. However, this exclusive focus on functional 

performance and strength did not enable the analysis of AMI in individuals with PFP nor the 

direct link of AMI to pain. Furthermore, none of the existing studies have investigated the 

direct influence of pain in individuals with PFP by comparing the pain condition with the 

baseline results of the same participants performing the tasks without having acute pain.  
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The conservative intervention and management in individuals with PFP varies, however, an 

expert consensus published high-quality guidelines on the treatment of PFP (Barton, Lack, 

Hemmings, Tufail, & Morrissey, 2015; Crossley, van Middelkoop, Callaghan, Collins, 

Rathleff, & Barton, 2016). These guidelines summarised the findings of a high-quality 

systematic reviews and combined them with clinical reasoning of an international consensus 

panel of PFP investigators. The developed guidelines advise to combine passive and active 

interventions, whereby passive interventions are recommended to reduce pain and active 

interventions are recommended to improve function in individuals with PFP.  

Passive interventions such as knee braces are relatively inexpensive and can be applied during 

sport and recreational activities to reduce pain especially in the short term (Aminaka & 

Gribble, 2005; Barton, Balachandar, Lack, & Morrissey, 2014; Barton et al., 2015; Barton, 

Munteanu, Menz, & Crossley, 2010; Bolgla & Boling, 2011; Callaghan & Selfe, 2012; 

Crossley, Bennell, Green, & McConnell, 2001; Crossley, Cowan, Bennell, & McConnell, 

2000; Crossley et al., 2016b). Knee braces and straps have been shown to be effective in pain 

reduction, but demonstrated heterogeneous findings in the modification of lower limb 

biomechanics in individuals with PFP (Denton, Willson, Ballantyne, & Davis, 2005; Devita, 

Hunter, & Skelly, 1992; McCall, Galen, Callaghan, Chapman, Liu, & Jones, 2014; Powers, 

Ward, Chen, Chan, & Terk, 2004a; Richards, Chohan, Janssen, & Selfe, 2015; Theoret & 

Lamontagne, 2006). A commonly observed biomechanical abnormality in individuals with 

PFP is the dynamic knee valgus, which is characterised by an excessive pronation of the foot, 

an increased femoral adduction and internal rotation and an increased tibial external rotation 

(Levinger & Gilleard, 2007; Nakagawa, Maciel, & Serrao, 2015; Nakagawa, Moriya, Maciel, 

& Serrao, 2012; Nakagawa et al., 2013; Powers, 2003; Willson, Binder-Macleod, & Davis, 

2008; Willson & Davis, 2008). To date research focuses on knee braces and straps that aim to 

stabilise the knee joint locally. However, there is still a paucity of research that aims to reduce 

the dynamic knee valgus. The analysis of a knee brace or strap that addresses the reduction of 

an excessive hip internal rotation and thereby achieves the reduction of the dynamic knee 

valgus might have a strong potential to not only reduce pain, but also to modify lower limb 

biomechanics and to decrease the dynamic knee valgus in individuals with PFP.  

Secondly, the guidelines recommend active interventions to improve function and pain in the 

long term. The guidelines include detailed information of how an exercise treatment should 
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be structured to ensure an improvement of function and a decrease of pain in the long-term in 

individuals with PFP. Since these guidelines are very recent, no studies developed and tested 

an exercise programme that is based on the recommendations of these high-quality 

guidelines.  

In summary, the pathophysiology of PFP appears to be complex and although much research 

in this field has been published specific factors such as, AMI, as well as the influence of pain 

itself remain understudied. Since the guidelines for conservative treatments in PFP have been 

published, these guidelines need to be practically applied and their effect on PFP should be 

investigated.  

 

1.1. Thesis aims 

The aim of this thesis is to provide a multifaceted investigation of the effect of current 

recommended treatment approaches on muscular and biomechanical factors in individuals 

with PFP.  

Therefore the current literature related to Patellofemoral Pain (PFP) was reviewed, including 

the definition, the risk factors, the pathophysiology of PFP and the treatment of PFP (chapter 

2).  

To establish the confidence in data quality a test and re-test reliability study was performed 

on biomechanical data (gained by 3D motion analysis) and surface EMG data of the 

quadriceps and hamstrings muscles during running, the single leg squat and the step down 

task. Furthermore, a repeatability analysis of the patella position, foot posture, muscle 

flexibility, muscle strength and quadriceps inhibition measures was carried out. Thereby the 

aim of chapter 3 was to create the main research study design.  

The aim of chapter 4 was to investigate the effect of the Powers
TM

 strap on lower limb 

biomechanics and the sEMG activity of the quadriceps and hamstrings in individuals with and 

without PFP during functional tasks. 

The aim of chapter 5 was the development of a 6-week intervention programme based on the 

current guidelines and the investigation of the effect of this 6-week intervention programme 

on muscular dysfunction and functional performance in individuals with PFP. 
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The aim of the last study was to analyse link of pain to muscular dysfunction in individuals 

with PFP (Chapter 6).  

Chapter 7-8 highlights the findings of this thesis and discusses the future work..  
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Chapter 2: Literature review and meta-analysis 

2.1. Introduction 

This chapter investigated the definition of patellofemoral pain (PFP), the prognosis of PFP, 

the risk factors of PFP, the pathophysiological factors which might lead to PFP and the 

treatment of PFP. 

 

2.2. Patellofemoral pain definition and prevalence 

There is no clear consensus on the definition of patellofemoral pain (PFP), also known as 

anterior knee pain, or commonly known as the runner's knee (Crossley, Callaghan, & 

Linschoten, 2016; Cutbill, Ladly, Bray, Thorne, & Verhoef, 1997; Thomee et al., 1999). 

Literature describes patellofemoral pain (PFP) as a diffuse pain in the peripatellar region and 

unrelated to a trauma (Crossley et al., 2016a). However, the definition of patellofemoral pain 

still remains vague. To find a consensus on the terminology and definition of PFP, 

investigators who attended the patellofemoral pain research retreat in 2016 worked together 

on a consensus statement (Crossley, Stefanik, et al., 2016). This consensus statement names 

two core criteria to define patellofemoral pain, which are: 

1) Pain around or behind the patella. 

2) Pain by at least one activity that loads the patellofemoral joint, such as hiking, squatting, 

stair ambulation, jogging/ running and hopping/ jumping (Crossley, Stefanik, et al., 2016). 

Although PFP is the most frequently diagnosed condition in individuals with knee 

complaints, current epidemiological evidence for the incidence of PFP is lacking (Wilson 

Masterson, & Seagrave, 2012; Wood, Muller, & Peat, 2011). One reason for the lack of 

knowledge about the exact incidence of PFP is that most studies recruited the PFP population 

from sports medicine or military settings and thus the results are not transferable to the 

general population (Callaghan & Selfe, 2007). Glaviano et al. (2015) investigated the 

occurrence of PFP in the United States of America (USA) over a period of five years based 

on a national database containing orthopaedic patient records. They reported an incidence 

rate of PFP of approximately 1.5 to 7.3% of all orthopaedic visits (Glaviano, Kew, Hart, & 

Saliba, 2015). Wilson et al. (2012) examined medical records of individuals seen for knee 
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injuries from a multisite, urban-based hospital in the USA over a period of thirteen years and 

showed that PFP was the most prevalent diagnosis in every age group. Wood et al. (2011) 

investigated the epidemiology of PFP in adulthood by analysing data from eight general 

practices in the UK and confirmed that PFP was the most prevalent diagnosis.  

In conclusion, PFP is a common overuse injury and particularly young and physically active 

people are affected, which might cause limitation in physical activity or even lead to sport 

cessation (Myer et al., 2010; Powers et al., 2012; Wilson et al., 2012). Although PFP is a 

frequently diagnosed condition, the core criteria to define PFP, which have been defined 

within a consensus meeting, still reamin vague still. Furthermore, the knowledge about the 

incidence of PFP is still lacking.  

 

2.3. The risk factors of patellofemoral pain 

Risk factors are described as the factors which create a predisposition for the development of 

PFP (Dixit, DiFiori, Burton, & Mines, 2007). The risk factors of PFP have been described in 

various studies and have been shown to be multifactorial and closely linked to the 

pathophysiology of PFP (Lankhorst et al., 2012). PFP is associated with intrinsic as well as 

extrinsic factors (Witvrouw, Lysens, Bellemans, Cambier, & Vanderstraeten, 2000). Intrinsic 

factors are related to the physical and psychological characteristics of the individual 

(Witvrouw et al., 2000). Whereas extrinsic factors refer to the factors outside the human 

body, such as sport activities or the environmental conditions (Witvrouw et al., 2000). 

 

2.3.1. Intrinsic risk factors 

Intrinsic risk factors are predisposing factors and determined by the physical and 

psychological characteristics of the human body, such as age, body structure, physical 

condition, joint alignment, quality and quantity of joint motion, muscle strength, walking 

style or gait pattern etc. (Hewett, Briem, & Bahr, 2007; Witvrouw et al., 2000).  

One of the main intrinsic factors for PFP is the abnormal patellofemoral joint alignment, 

maltracking and an abnormal trochlear morphology (Crossley, Stefanik, et al., 2016; Song et 

al., 2011; Waryasz & McDermott, 2008). Two studies showed that beside the patellar 
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tracking increased medial patellar mobility seemed to be significantly related to the 

development of PFP (Dixit et al., 2007; Witvrouw et al., 2000). However, these findings are 

not consistent across all studies and thus, patellar maltracking may not be a universial 

findings in individuals with PFP (Powers, Witvrouw, Davis, & Crossley, 2017).  

In addition, abnormal biomechanics have been shown to be an important risk factor for the 

development of PFP (Crossley, Stefanik, et al., 2016; Holden, Boreham, Doherty, & 

Delahunt, 2017; Weiss & Whatman, 2015; Witvrouw, et al., 2014). Holden et al. (2017) 

revealed that knee valgus displacement was a predictor factor for the development of PFP. 

Furthermore, it could be shown that an increased abduction loading, a shallow knee flexion 

angle and an increased hip flexion angle are associated risk factors for PFP (Boling, 2008; 

Boling, Padua, Marshall, Guskiewicz, Pyne, & Beutler, 2009; Powers, et al., 2017; Weiss & 

Whatman, 2015). Other studies showed that lower internal knee extension moments and 

internal hip external rotation moments were risk factors for the development of PFP (Boling, 

et al., 2009; Fok, Schache, Crossley, Lin, & Pandy, 2013). Although many studies discussed 

the importance of the Q-angle in PFP, it was found that the Q-angle is not a risk factor for 

PFP (Duffey, Martin, Cannon, Craven, & Messier, 2000; Messier, Davis, Curl, Lowery, & 

Pack, 1991; Witvrouw, et al., 2014; Witvrouw et al., 2000). 

Several studies showed that a reduced knee extensor strength is associated with a higher risk 

for future PFP (Boling, 2008; Boling, et al., 2009; Crossley, Callaghan et al., 2016; Dixit et 

al., 2007; Halabchi et al., 2013; Lankhorst et al., 2012; Waryasz & McDermott, 2008). In 

addition, it has been shown that individuals with future PFP were more prone to have a 

delayed onset of the vastus medialis (VM) in relation to the vastus lateralis (VL) (Briani, de 

Oliveira Silva, Pazzinatto, Ferreira, Ferrari, & de Azevedo, 2016; Cavazzuti, Merlo, Orlandi, 

& Campanini, 2010; Chen, Chien, Wu, Liau, & Jan, 2012; Chester, Smith, Sweeting, Dixon, 

Wood, & Song, 2008; Cowan, Bennell, Hodges, Crossley, & McConnell, 2001; Kim & 

Chang Ho, 2012) and a slower reflex response time of the VM and VL muscle of the 

quadriceps (Lankhorst et al., 2012; Waryasz & McDermott, 2008; Witvrouw et al., 2000). 

However, due to a high heterogeneity in studies assessing the quadriceps timing, it remains 

unknown if the delayed onset of the VM in relation to the VL is a risk factor for PFP 

(Lankhorst et al., 2012). Gluteus minimus and medius weakness has been well documented 

and is believed to be associated with the increased risk for the development of PFP (Boling, 

et al., 2009; Crossley, Callaghan et al., 2016). However, longitudinal studies on hip muscle 
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weakness are lacking and thus the association of gluteal muscle weakness as a risk factor 

could not be proven (Crossley, Callaghan et al., 2016) and Rathleff et al. concluded that 

reduced hip strength might be a result of PFP rather than the cause (Rathleff, Rathleff, 

Crossley, & Barton, 2014).  

Several studies revealed that a reduced muscle flexibility of the quadriceps (Dixit et al., 2007; 

Song et al., 2011; Waryasz & McDermott, 2008; Witvrouw et al., 2000) and the hamstrings 

muscle (Kwon et al., 2014; Song et al., 2011; Waryasz & McDermott, 2008; Witvrouw et al., 

2000) seem to be associated with the development of PFP. 

Recent studies have found that excessive pronation is an intrinsic factor for PFP (Boling, 

2008; Boling, et al., 2009; Kwon et al., 2014) and limited evidence showed that dynamic foot 

function during walking and running is a risk factor for PFP (Dowling, Murley, Munteanu, 

Smith, Neal, Griffiths, Collins,2014).Whereas Witvrouw et al. (2000) detected no significant 

difference between the foot alignment and PFP. Thus, experts agreed that static foot 

alignment measures are not identified as risk factors for the development of PFP (Cheung & 

Ng, 2007; Powers et al., 2012).  

Hormonal factors, such as oestrogen, progesterone and relaxin are believed to affect the 

female neuromuscular and musculoskeletal systems and thus, female gender is believed to be 

a risk factor for the development of PFP (Cowan & Crossley, 2009), which has been proven 

by several studies (Boling, 2008; Boling, et al., 2009; Lankhorst et al., 2012). 

 

2.3.2. Extrinsic risk factors 

Extrinsic risk factors of PFP are factors outside the human body, such as sports activities, 

environmental conditions, e.g. walking surface and the equipment used, such as. footwear o 

knee braces (Witvrouw et al., 2000). In contrast to the intrinsic factors which remain 

understudied, extrinsic factors have been well investigated (Witvrouw et al., 2000). 

Studies showed that individuals with PFP had increased pain and more rear-foot pronation in 

normal cushioned shoes, than in shoes which controlled their foot movement and avoided an 

excessive foot pronation (Cheung & Ng, 2007; Dicharry & Depenbrock, 2016). However, the 

direct and exclusively association between a single extrinsic factor, such as footwear and PFP 
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is challenging to investigate and thus it remains unclear whether footwear might be a risk 

factor for the development of PFP.  

One study investigated the effect of a dynamic patellofemoral brace,  that aimed to correct the 

position of the patella and to stimulate the vastus medialis obliquus (VMO) muscle to prevent 

the development of PFP (Van Tiggelen, Witvrouw, Roget, Cambier, Danneels, & Verdonk, 

2004). This brace was effective, which might indicate that wearing a dynamic patellofemoral 

brace might decrease the risk to develop PFP (Van Tiggelen, et al., 2004). 

This chapter showed that many risk factors seem to be related to PFP. In addition, risk factors 

are often closely linked to each other; for example reduced gluteal strength can lead to 

increased hip adductor and hip internal rotation angles, which leads to a dynamic knee valgus 

and can result in PFP. However, most studies investigated one specific risk factor in isolation 

rather than comparing several risk factors. Linking these aforementioned risk factors seems to 

be crucial to gain a full understanding of the impact of risk factors in the development of 

PFP.  

 

2.4. Prognosis of patellofemoral pain 

Several follow-up studies have investigated the long-term outcome of patients with PFP.  

Milgrom, Finestone, A., Shlamkovitch, N., Giladi, M., & Radin (1996) determined in a 

prospective study the natural history of PFP was caused by overactivity. A population of 390 

elite Israeli infantry recruits with PFP were included. After 6 years 50% of these participants 

with PFP were still symptomatic, however, only 8% reported that the severity of the pain 

hindered them to from their physical activity.  

Nimon, Murray, Sandow, & Goodfellow (1998) investigated the progress of girls with 

idiopathic PFP and showed that one in four patients still suffered from significant symptoms 

20 years after the first pain presentation. 

Price, Jones, & Allum (2000) reviewed the cases of 46 patients with PFP with chronic 

traumatic PFP after 4 years and 8 months. 78% of these patients received physiotherapy, but 

only 12% of these patients with PFP found the treatment significantly effective. After 4 years 
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and 8 months only 4% of all patients with PFP were pain free. Of the 96% of patients who 

still suffered from PFP only 20% felt that they are still improving.  

Stathopulu & Baildam (2003) contacted patients with PFP 4-18 years after their initial 

presentation at a hospital. Their results revealed that 91% of patients who replied still 

suffered from knee pain. 45% of the respondents stated that the pain affected their daily life 

and more than a third of the respondents required medication. They concluded that even 

when all non-respondents were pain-free at the time of the follow-up, the total group of 

patients who are still having pain would be 42%, which could be regarded as high. 

Furthermore, among the patients being investigated 50% of men and 31% of women reported 

daily knee pain. All the respondents were active young people and three-quarters of them 

exercised regularly although they suffered from PFP. 

Collins et al. (2013) carried out an observational study to determine the predictors for an 

unfavourable recovery and analysed the data of 179 individuals with PFP from Australia and 

131 individuals with PFP from the Netherlands. 40% of these individuals reported an 

unfavourable recovery 12 months after a physiotherapeutic intervention (exercises and foot 

orthoses). An unfavourable recovery was defined as "moderate improvements" to "worse than 

ever". They also revealed that men had overall a poorer prognosis and poorer function than 

females after 12 months. Furthermore, they found that patients suffered from PFP for at least 

6 months before they visited their health professional, which might affect poorer long-term 

results. 

Lankhorst, van Middelkoop, Crossley, Bierma-Zeinstra, Oei, Vicenzino, & Collins (2015) 

performed a 5-8 years follow up with the same cohort of the study of Collins et al. (2013). 60 

patients replied to the questionnaires after 5-8 years and 57.6% of them reported an 

unfavourable recovery. Furthermore, they investigated whether the patients had signs of 

osteoarthritis, using a MRI scan and showed that the majority did not demonstrate signs of 

knee osteoarthritis. 

These results show that PFP is not a self limiting and suggests that PFP should be seen as a 

condition that has the strong potential to become chronic. These findings also suggest that 

there is a need to improve treatment outcomes and to critically reflect the current treatment 

recommendations.  
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2.5. The pathophysiology of patellofemoral pain 

The patellofemoral joint is the compartment of the knee joint, which has remained 

understudied for a long time (Guillen-Garcia, Concejero-Lopez, Rodriguez-Vasquez, 

Guillen-Vicente, Vicente, & Fernandez-Jaén, 2014). In addition, it is an often misunderstood 

region of the knee and a very complex joint (LaParade, Rasmussen, & LaParade, 2014).  

The patella is the largest sesamoid bone and is embedded in the tendon of the quadriceps 

muscle (LaParade et al., 2014; Thomee et al., 1999). The patella articulates with the trochlea, 

which consists of the lateral and medial facets of the epicondyles of the femur (Fulkerson, 

2004; LaParade et al., 2014). The main function of the patella is thereby to improve the 

quadriceps efficacy by increasing the lever arm for the quadriceps muscle and forming a 

pulley-rope arrangement (Aglietti, Paolo, & Menchetti, 1999; Fulkerson, 2004; McLester & 

St. Pierre, 2008; Özkaya & Nordin, 1999; Thomee et al., 1999). In addition, the patella 

diverges the forces coming from the four heads of the quadriceps muscle and serves as a 

central structure in the knee extensor mechanism (Aglietti et al., 1999; Fulkerson, 2004). An 

increased muscle tension of the quadriceps thereby always results in an increased 

compressive force on the patellofemoral joint (Fulkerson, 2004; Özkaya & Nordin, 1999). 

The movement of the patella relative to the trochlea of the femur is called "patellar tracking" 

and is mainly dynamically controlled. The dynamic stabilisation of the patellofemoral joint is 

executed by the quadriceps muscle (especially vastus medialis, vastus lateralis and vastus 

intermedius) and the hamstrings muscles (Abrahamson, Hyland, Hicks, & Koukoullis, 2010; 

Crossley, Stefanik, Selfe, Collins, Davis, Powers, McConnell, Vicenzino, Bazett-Jones, 

Esculier, Morrissey, & Callaghan, 2016; Fulkerson, 2004; Swanik, Lephart, Giannantonio, & 

Fu, 1997; Thomee et al., 1999).  

Apart from the dynamic control, the patellar tracking is also influenced by passive structures 

which provide a passive stabilisation of the patellofemoral joint. These passive structures are 

the trochlea of the femur, the shape of the patella and the peripatellar retinaculum (Fulkerson, 

2004; Thomee et al., 1999). 

The pathophysiology of PFP is presumed to be multifactorial (Powers et al., 2012; Song et 

al., 2011; Thomee et al., 1999). In particular, patellofemoral malalignment and maltracking 

are believed to play an important role in PFP (Lankhorst et al., 2013; Lopis & Padron, 2007; 

Pal, Besier, Beaupre, Fredericson, Delp, & Gold, 2013; Powers et al., 2012; Thomee et al., 
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1999). Evidence suggests that the shape of the patella and the trochlea of the femur, as well 

as the patella alignment are associated with PFP and maltracking of the patellofemoral joint 

(Crossley et al., 2016a; Crossley, Stefanik, et al., 2016; Thomee et al., 1999; Witvrouw, 

Crossley, Davis, McConnell, & Powers, 2014). Furthermore, poor biomechanical factors are 

expected to increase the likelihood of patellar maltracking and thereby PFP (Collado & 

Fredericson, 2010; Crossley, Stefanik, et al., 2016). Poor biomechanical factors are mostly 

the result of dynamic malalignment, due to muscular dysfunctional factors, such as poor 

neuromuscular control, weakness, muscle fatigue, or atrophy (Earl, et al., 2005; Powers et al., 

2012; Rathleff, Baird, Olesen, Roos, Rasmussen, & Rathleff, 2013; Witvrouw, et al., 2014). 

Thus, the pathophysiological factors can be divided into three categories:  

 Structural factors that contribute to a malalignment of the lower limb 

 Abnormal biomechanical factors that contribute to a malalignment of the lower limb 

 Muscular dysfunctional factors that contribute to a malalignment of the lower limb 

 

2.5.1. Structural factors 

Studies have shown that patella displacement and patella tilting were associated with PFP 

(Hunter, Zhang, Niu, Felson, Kwoh, Newman, Kritchevsky, Harris, Carbone, & Nevitt, 2007; 

Luyckx et al., 2009; Pal et al., 2013; Pal et al., 2012; Ward & Powers, 2004; Ward, Terk, & 

Powers, 2007). It also has been shown that the lateral patellofemoral compartment is more 

affected than the medial compartment, mainly caused by an increased patella tilt and a lateral 

subluxation (Hunter et al., 2007; Powers et al., 2017).  

Furthermore, studies showed that a patella alta was more prevalent in patients with PFP (Pal 

et al., 2013; Stefanik et al., 2010; Stefanik, Zumwalt, Segal, Lynch, & Powers, 2013; Powers 

et al, 2017). Studies investigating the contact force showed that a patella alta was associated 

with the highest contact force and contact pressure (Luyckx et al., 2009; Ward & Powers, 

2004; Ward et al., 2007). Moreover, the patella alta is associated with a lateral patellar 

displacement and a greater lateral patellar tilt (Stefanik et al., 2013; Ward et al., 2007).  

A shallow trochlear grove seems to be another factor which leads to an increased lateral 

patella tilt and is more prevalent in patients with PFP (Harbaugh, Wilson, & Sheehan, 2010; 

Powers, 2000). 
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Structural abnormalities of the patellofemoral joint, such as reduced thickness of the 

cartilage, cartilage defects, patellar bone marrow lesions and high signal intensity of the 

Hoffa fat pad seem to be associated with the development of PFP (Van der Heijden, Oei, 

Bron, van Tiel, van Veldhoven, Klein, Verhaar, Krestin, Bierma-Zeinstra, van Middelkoop, 

2016). However, these findings were not consistent across the groups (Powers et al., 2017).  

 

2.5.2. Abnormal biomechanical factors  

Previous research has demonstrated that altered knee joint kinematics and kinetics are present 

in individuals with PFP. The abnormal joint biomechanics often result in a dynamic 

malalignment, which is defined as a poor alignment of the patella during a movement 

resulting from a neuromuscular control deficit of the trunk and the lower extremity (Earl, 

2002; Earl, et al., 2005) 

Dynamic knee valgus during dynamic activities has been described as one of the most 

important factors in individuals with PFP (Levinger & Gilleard, 2007; Nakagawa, Maciel, & 

Serrao, 2015; Nakagawa et al., 2012; Nakagawa et al., 2013; Powers, 2003; Willson et al., 

2008; Willson & Davis, 2008). The dynamic knee valgus is described as the combination of 

femoral adduction, femoral internal rotation, tibial abduction and external knee rotation 

(Levinger & Gilleard, 2007; Powers, 2003). Furthermore, compared with individuals without 

PFP individuals with PFP have an increased knee abduction angle, an increased internal knee 

abductor moment (Myer et al., 2010; Nakagawa et al., 2013, Powers et al., 2017) and a 

decreased knee extensor moment (Bley et al., 2014; Claudon, Poussel, Billon-Grumillier, 

Beyaert, & Paysant, 2012; Lucareli, Amir, Bley, Nayra, Jeniffer, et al., 2014; Salsich, 

Brechter, & Powers, 2001).  

Several studies have revealed an increased Q-angle in individuals with PFP, which is 

believed to relate with excessive anterior pelvic tilt, increased femoral anteversion, increased 

knee valgus, excessive external tibial rotation and foot and patellar position (Almeida, de 

Moura Campos Carvalho de Silva, Franca, Magalhaes, Burke, & Marques, 2016; Emami, 

Ghahramani, Abdinejad, & Namazi, 2007; Herrington & Nester, 2004; Kaya & Doral, 2012). 

However, studies investigating the reliability and validity of the Q-angle in individuals with 

PFP showed a considerable disagreement and concluded that the use of the Q-angle in 
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individuals with PFP is not recommended (Aliberti, Costa, João, Pássaro, Arnone, & Sacco, 

2012; de Oliveira Silva, Briani, Pazzinatto, Goncalves, Ferrari, Aragao, & de Azevedo, 2015; 

Smith, Hunt, & Donell, 2008).  

Furthermore, it could be shown that an increased hamstrings loading lead to an increase of 

the total contact force and an increase of the average patellar flexion, lateral tilt and lateral 

shift (Elias, Kirkpatrick, Saranathan, Mani, Smith, & Tanaka, 2011). 

Studies analysing the foot posture in individuals with PFP showed that they had a larger 

contact area in the medial region of the foot and possessed a more pronated foot posture ( 

Aliberti, Costa, Passaro, Arnone, & Sacco, 2010; Barton, Bonanno, Levinger, & Menz, 2010; 

Barton, Levinger, Crossley, Webster, & Menz, 2011; Bley, Correa, Dos Reis, Rabelo, 

Marchetti, Lucareli, 2014). PFP seems to be also associated with an increased foot mobility 

(Barton, et al., 2010), a greater rearfoot eversion (Barton, et al., 2010; Barton, Levinger, 

Crossley, et al., 2011; Barton, Menz, Levinger, Webster, & Crossley, 2011; De Oliveira 

Silva, & Azevedo, 2016) and a delayed peak rearfoot eversion (Levinger, Menz, Morrow, 

Bartlett, Feller, & Bergman, 2013). 

Thus, the pathophysiology of PFP is manifold. Factors that affect the alignment of the patella, 

the knee, the hip joint and the trunk affect the patellofemoral joint and can provoke and 

aggravate PFP. Thus, structural factors, as well as abnormal biomechanical factors contribute 

to the development of PFP. The next chapter will discuss the contribution of muscular 

dysfunctional factors to PFP.  

 

2.5.3. Muscular dysfunctional factors  

Poor biomechanical factors in individuals with PFP mostly result from muscular 

dysfunctional factors, such as poor neuromuscular control, weakness, or muscle fatigue (Earl, 

et al., 2005; Powers et al., 2012; C. R. Rathleff et al., 2013; Witvrouw, et al., 2014). Muscle 

function describes a comprehensive functioning of a muscle, which implies force-generating 

capacity, muscle balance, neuromuscular control and muscle mass (Herzog, 2000b; Lieber, 

2010). Muscular dysfunction describes the alteration of these functions. These dysfunctional 

factors are interconnected to each other and likely to contribute to pain. For example poor 

neuromuscular activation, which describes the inability to adjust to sensory information 
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might result in an abnormal muscle strength, power, or muscle activation pattern leading to 

increased joint loads (Herzog, 2000b; Hewett et al., 2007). Thus, muscular dysfunctional 

factors in individuals with PFP are mostly a combination of several factors and only very 

rarely exist in isolation. The interconnection of muscular dysfunctional factors means that 

researching these in PFP becomes more complicated. To date, only case studies have 

described the combination of muscular dysfunction factors in individuals with PFP and 

outlined muscular weakness in combination with neuromuscular control deficits of lower 

limb muscles in individuals with PFP (Mascal, Landel, & Powers, 2003; Willy & Davis, 

2013). Numerous systematic and literature reviews have been published that analysed 

muscular dysfunctional factors in individuals with PFP. However, these systematic reviews 

focussed on specific muscular dysfunctional factors in isolation, such as quadriceps or gluteal 

weakness, quadriceps atrophy, gluteal or quadriceps muscle activation (Barton, Lack, 

Malliaras, & Morrissey, 2013; Giles, Webster, McClelland, & Cook, 2013; Lankhorst et al., 

2013; Rathleff et al., 2014; Van Cant et al., 2014; Waryasz & McDermott, 2008). This allows 

a detailed and specific analysis of the individual muscular dysfunctional factor. However, a 

systematic review that investigates muscular dysfunction in individuals with PFP holistically 

is still lacking.  

Thus, it has been decided to carry out a systematic review on muscular dysfunctional factors 

of PFP. This will enable the: 

(1) Identification of the existing muscular dysfunctional factors in patients with PFP. 

(2) Synthesis of the evidence of the identified muscular dysfunctional factors.  

 

2.6. Literature review and meta-analysis methods  

The primary search was conducted in PubMed (MEDLINE), Cochrane library, CINAHL, 

SPORTDiscus and Web of Science (WoS) up to March 2015. The primary search was carried 

out until March 2015 to ensure that the ethical applications for the main studies were based 

on the reviewed literature. Therefore the search for studies was completed by March 2015 

and the reviewing procedure by August 2015. The Physiotherapy Evidence Database 

(PedRO) was searched to confirm that all relevant systematic reviews and clinical trials were 

included in this review. Randomized controlled trials, experimental studies without 
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randomization, prospective and cohort studies, written in English were included, regardless of 

the year of publication. References of studies as well as literature and systematic reviews 

were screened for relevant citations. Search keywords comprised of synonyms of 

patellofemoral pain, muscle strength, muscular inhibition, atrophy and flexibility (full details 

of terms used appear in Appendix Methods 2.1). The trials must include 1) a group of adults 

suffering from PFP, who have not received any operative treatment or arthroscopy and 2) a 

healthy control group. Owing to the lack of consistent terminology for PFP, the PFP inclusion 

criteria were: aged 18-50 years old; no other disease, knee pathology or knee surgery and a 

given patellofemoral/ anterior knee pain criteria. Cadaveric and animal studies as well as 

reviews, case studies and studies that lacked numerical data were excluded. Trials that 

analysed individuals with chondromalacia patella were excluded. Data from studies 

comparing the non-injured limb with the injured limb were excluded as it has been shown 

that muscular deficits in individuals with unilateral PFP were present bilaterally (Esther 

Suter, 1998; Magalhaes et al., 2010).  

 

2.6.1. Literature quality assessment 

The review process was performed in two-stages. The first reviewer (HG) screened titles and 

abstracts of all identified citations and searched the reference lists of the retrieved articles to 

identify potential studies. Titles and abstracts were evaluated for potential inclusion and were 

excluded if one or more exclusion criteria were met. 

During the second stage, all of the admitted articles were read by two reviewers (HG and RJ) 

and assessed by applying the modified „Quality Index‟, developed by Downs and Black 

(Downs & Black, 1998). The two reviewers applied each scale on the detected articles, 

whereby any discrepancies were resolved during a consensus meeting in consultation with a 

third reviewer (LH). The checklist of Downs and Black was chosen as it has been shown to 

be reliable and can be applied to studies with different study designs. Furthermore, the 

checklist provided subscales enabling a more accurate assessment of the studies. However, 

this checklist was designed for assessing interventional studies and thus did not fully match 

the purpose of evaluating observational studies. To bring this discrepancy into balance the 

checklist had been adapted and questions concerning the dropout of the individuals, the 

follow-up length, the compliance with the intervention, the individuals and therapist blinding 

and the randomisation procedure were excluded. As a result the maximal score for each study 
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became 13 points on the adapted checklist of Downs and Black. In addition, specific 

checklists were developed to include questions on the abstract and the specific method (the 

checklists appear in Methods 2.2).  

One reviewer (HG) extracted the relevant data on study design (authors, year of publication), 

study population (sample size, participant demographics, population sources, pain intensity 

and duration, gender, age, definition of PFP) and the outcomes (means and SD of all relevant 

results). The second reviewer RJ checked the data accuracy of the spreadsheet.  

 

2.6.2. Statistical analysis and presentation of the results 

The standardised mean differences (SMD) and the matching 95% CI were calculated 

(Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration) (Appendix Table 

2.10- 2.30). The level of statistical heterogeneity which was established by X
2 

and l
2
 

statistics, described a significant homogeneity of the comparisons with p>0.05. The indicated 

heterogeneity/ homogeneity are presented together with levels of evidence in the result 

section. To ensure representativity and an appropriate weighting of the studies within the 

meta-analysis, only specific data were included for the meta-analysis. The inclusion criteria 

for the meta-analysis are listed in Appendix Methods 2.3.  

Due to the differences in study designs and characteristics, a random-effects model of the 

generic inverse variance method was used. This model gives more weight to studies with less 

variance in the pooled analysis. In addition, if the meta-analysis showed significant 

heterogeneous results (p< 0.05) a regression-analysis was executed to analyse whether the 

study characteristics could explain the observed heterogeneity (the complete regression-

analysis can be found in Appendix Table 2.28-2.32).  

Due to the heterogeneity of the studies the results of atrophy, inhibition, fatigue and the break 

phenomenon were analysed descriptively.  

The individual or pooled SMD were categorised as small (< 0.59), medium (0.6-1.19) or 

large (>1.2), as these criteria have been used in previous systematic reviews on PFP and have 

been shown to be valid (Barton et al., 2013; Lack, Barton, Vicenzino, & Morrissey, 2014; 

Rathleff et al., 2014).  

High quality (HQ) studies were defined as studies with an overall score of > 85%, moderate 

quality (MQ) was defined with an obtained overall score of 70-85% and low quality (LQ) 

studies were defined as studies which scored overall >70%.  
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Levels of evidence were defined based on the guidelines of van Tulder, M., Furlan, A., 

Bombardier, C., & Bouter, (2003): 

Strong evidence: pooled results derived from three or more studies, including a minimum of 

two high quality studies, which are statistical homogenous (p>0.05), might be associated with 

statistically significant or non-significant pooled result.  

Moderate evidence: statistically significant pooled results derived from multiple studies, 

including at least one high quality study which are statistical heterogenous (p<0.05), or from 

multiple low quality studies which are statistical homogenous (p>0.05). 

Low evidence: Limited evidence: results from multiple LQ studies which are statistically 

heterogeneous (p<0.05); or from one HQ study. 

Very limited evidence: results from one LQ study. 

Conflicting evidence: pooled results from multiple studies regardless of quality are 

inconsistent and heterogenous, (p<0.05, i.e., inconsistent). 

 

This systematic review aimed to identify and to synthesise the evidence of muscular 

dysfunctional factors. Therefore the calculated standardised mean differences (SMD), the 

matching 95% CI and the overall heterogeneity were presented in summary tables instead of 

being presented in individual forest plots. These summary tables enable a direct overview of 

the amount of published studies on the specific muscle dysfunctional factor. The forest plots 

that are summarised in Table 2.1 to 2.6 can be found in Appendix Table 2.10 to 2.30.  

 

2.6.3 Results of the literature review 

The initial search identified 3388 records. After removing study duplicates and studies that 

did not pertain to the research question, the search yielded a total of 168 papers. In total 105 

studies were excluded because of the lack of a control group, lacking numerical data, a 

quality criteria below 50%, unclear participants characteristics, excluded study designs, other 

knee pathologies or the inaccessibility of the study (Figure 2.1). In total 26 studies on muscle 

weakness, 25 studies on EMG, 6 studies on muscle flexibility, 4 studies on atrophy, 6 studies 

on fatigue and endurance, one study on the break phenomenon and 2 studies on muscle 

inhibition were included. Four studies investigated muscle strength and EMG (Kaya, 

Callaghan, Ozkan, Ozdag, Atay, Yuksel, & Doral, 2010; Nakagawa et al., 2015; Nakagawa, 
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Moriya, Maciel, & Serrao, 2012; Ott, Cosby, Grindstaff, & Hart, 2011), one study 

investigated muscle strength and flexibility (Piva, Goodnite, & Childs, 2005), two studies 

investigated muscle strength and fatigue (Dierks et al., 2008; McMoreland, O'Sullivan, 

Sainsbury, Clifford, & McCreesh, 2011), one study investigated muscle flexibility and EMG 

(Earl, et al., 2005), one study investigated muscle strength and muscle atrophy (Callaghan & 

Oldham, 2004b) and one study investigated muscle strength and inhibition (Thomee, Grimby, 

Svantesson, & Osterberg, 1996) in individuals with PFP. Thus, in total 62 studies with a 

sample size of 1391 individuals with PFP and 1617 healthy controls were included for final 

review (Aminaka, Pietrosimone, Armstrong, Meszaros, & Gribble, 2011; Anderson & 

Herrington, 2003; Bazett-Jones, Cobb, Huddleston, O'Connor, Armstrong, & Earl-Boehm, 

2013; Bley et al., 2014; Bolgla, Malone, Umberger, & Uhl, 2011; Boling, Padua, Blackburn, 

Petschauer, & Hirth, 2006; Boling, Padua, & Creighton, 2009; Briani, de Oliveira Silva, et 

al., 2015; Callaghan, McCarthy, & Oldham, 2001; Callaghan & Oldham, 2004b; Cavazzuti et 

al., 2010; Cichanowski, Schmitt, Johnson, & Niemuth, 2007; Coqueiro, Bevilaqua-Grossi, 

Berzin, Soares, Candolo, & Monteiro-Pedro, 2005; de Moura Campos Carvalho, Magalhaes, 

Bryk, & Fukuda, 2014; Dierks et al., 2008; Duvigneaud, Bernard, Stevens, Witvrouw, & Van 

Tiggelen, 2008; Dvir et al., 1990; Earl, et al., 2005; Esculier, Roy, & Bouyer, 2015; Felicio, 

Baffa, Liporacci, Saad, De Oliveira, & Bevilaqua-Grossi, 2011; Ferber, Kendall, & Farr, 

2011; Ferrari, Kuriki, Silva, Alves, & Micolis de Azevedo, 2014; Giles, Webster, 

McClelland, & Cook, 2015; Hudson, 2006; Ireland, Willson, Ballantyne, & Davis, 2003; Jan, 

Lin, Lin, Lin, Cheng, & Lin, 2009; Karst & Willett, 1995; Kaya, et al., 2010; Liebensteiner, 

Szubski, Raschner, Krismer, Burtscher, Platzer, Deibl, & Dirnberger, 2008; Magalhaes, 

Fukuda, Sacramento, Forgas, Cohen, & Abdalla, 2010; McMoreland et al., 2011; Moradi, 

Akbari, Ansari, Emrani, & Mohammadi, 2014; Mostamand, Bader, & Hudson, 2011; 

Nakagawa et al., 2015; Nakagawa et al., 2012; Nakagawa, Muniz, Baldon, Maciel, Amorim, 

& Serrao, 2011; Negahban, Etemadi, Naghibi, Emrani, Shaterzadeh Yazdi, Salehi, & Moradi 

Bousari, 2013; O'Sullivan, Herbert, Sainsbury, McCreesh, & Clifford, 2012; Ohjeoung, 

Mijung, & Wanhee, 2014; Oliveira, Saad, Felício, & Grossi, 2014; Ott et al., 2011; Owings & 

Grabiner, 2002; Pattyn, Verdonk, Steyaert, Vanden Bossche, Van den Broecke, Thijs, & 

Witvrouw, 2011; Peeler, 2007; Piva et al., 2005; Powers, Landel, & Perry, 1996; Powers, 

Perry, Hsu, & Hislop, 1997; C. R. Rathleff et al., 2013; Robinson & Nee, 2007; Saad, Felicio, 

Masullo, Liporaci, & Bevilaqua-Grossi, 2011; Song, Huang, Chen, Lin, & Chang, 2015; 

Souza & Powers, 2009a; Suter, Herzog, De Souza, & Bray, 1998; Thijs, Pattyn, Van 
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Tiggelen, Rombaut, & Witvrouw, 2011; Thomee et al., 1996; Van Tiggelen, Witvrouw, 

Coorevits, Croisier, & Roget, 2004; Werner, 1995; White, 2009; Willson et al., 2008; 

Willson, Kernozek, Arndt, Reznichek, & Scott Straker, 2011; Witvrouw et al., 2000). Details 

of the searched results are shown in the flowchart Figure 2.1 and further information about 

the participant‟s characteristics are listed in Appendix: Table 2.1-2.8. 
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Figure 2.1: Selection process for studies included in this review 

N=26 

 

Atrophy studies: n=9 N=4 

 

No control group included: n=3 

Other knee pathologies: n=2 

 

Muscle Inhibition studies: 

n=5 

N=1 

 No control group included: n=2 

Other knee pathologies: n=1 

 

Break phenomenon studies: 

n=4 

N=2 

 

No control group included: n=1 

Study not accessible: n=1 

Quality criteria below 50% n=1 

 

 

Fatigue and endurance 

studies: n=10 
N=6 

 

No control group included: n=3 

Other knee pathologies: n=1 

Other study design: n=1 

 

Flexibility studies: n=12 N=6 

 

No control group included: n=2 

Lacking numerical data: n=1 

Other knee pathologies: n=3 

168 articles seemed to be relevant to 

the research question 

Weakness studies: n=59  

 

No control group included: n=11 

Lacking numerical data: n=7 

Quality criteria below 50% n=6 

Age above 50: n=2 

Other study designs: n=2 

Other knee pathologies: n=4 

Articles recovered from web search and 

review reference lists: n=3388 

Removal of 1789 study duplicates 

1431 titles or abstracts did not pertain to the research 

question or did not study patients with PFP 

EMG studies: n=69  

No control group included: n=4 

Lacking numerical data: n=22 

Quality criteria below 50% n=12 

Age above 50: n=1 

Unclear patients characteristics: n=1 

Other study design: n=1 

Studies not accessible: n=3 
N=25: 

n=15: EMG activity 

n=14: EMG onset/offset 

n=2: EMG frequency 
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2.6.3.1. Muscle weakness 

The most common definition of weakness defines muscle weakness as the inability of a 

muscle or muscle group to produce force at a given speed (Berryman Reese, 2012; Kostek, 

Hubal, & Pescatello, 2011; McBride, 2016). Muscle weakness is caused by numerous factors, 

such a loss in the cross-sectional area of individual fibres, and an overall reduction of fibres, 

(Kostek et al., 2011; Faulkner, Larkin, Clafin & Brooks, 2007). A reduced excitability in the 

coricospinal pathways, inhibited agonist motor neurons, reduced motor unit firing rates and a 

reduced motor neuron conduction velocity also result in muscle weakness (Clark & Fielding, 

2012). In addition, muscle weakness is believed to be associated to a decrease in the number 

of cross-bridges per unit area and the averaged force developed per cross-bridge of the fast 

type 2 fibres (Brooks & Faulkner, 1994; Faulkner et al., 2007). Muscle weakness is also 

interconnected with other muscular dysfunctional factors, such as atrophy, arthrogenous 

muscle inhibiton or neuromuscular control deficits. If a muscle is weak over a prolonged 

period the muscle can also become atrophied. Furthermore, poor neuromuscular activation 

and arthrogenous muscle inhibition can result in reduced muscle strength and power (Herzog, 

2000b; Hewett et al., 2007). Knee injuries can lead to an increased muscle inhibition, an 

impaired neuromuscular activation or a reduced muscle mass after immobilisation and 

thereby result in muscle weakness (Karatzaferi & Chase, 2013; Yoshida, Mizner, & Snyder-

Mackler, 2013). Studies showed that quadriceps weakness is a common problem after knee 

injuries and the weakness of the vastus medialis has been frequently addressed in knee injury 

studies (Callaghan, Parkes, Hutchinson, & Felson, 2014; Felício, Dias, Silva, Oliveira, & 

Bevilaqua-Grossi, 2011; Glass, Torner, Frey Law, Torner, Frey Law, Wang, Yang, Nevitt, 

Segal, Wang, Yang, Nevitt, Felson, Lewis, Segal, 2013; Halabchi et al., 2013; Konishi, 

Fukubayashi, & Takeshita, 2002; Krishnan & Theuerkauf, 2015; Lin et al., 2010; Petterson, 

Barrance, Buchanan, Binder-Macleod, & Snyder-Mackler, 2008; Saleh, Lee, Gandhi, 

Ingersoll, Mahomed, Sheibani-Rad, Novicoff, & Mihalko, 2010; Sawatsky, Bourne, 

Horisberger, Jinha, & Herzog, 2012; Stevens, Mizner, & Snyder-Mackler, 2003). A weak 

vastus medialis is assumed to be associated with an increased lateral pull of the patella in the 

femoral grove resulting in a dynamic malalignment of the patellofemoral joint (Cowan, 

Bennell, Crossley, et al., 2002; Sakai, Luo, Rand, & An, 2000; Sawatsky et al., 2012). In 

addition, studies on PFP found that an impaired neuromuscular control of the hip muscles 

could result in an increased hip adduction and internal rotation angle which could cause an 



Chapter 2: Literature review and meta-analysis      

 

24 

 

increase in lateral patellofemoral joint (PFJ) stress (Barton et al., 2013; Weiss & Whatman, 

2015). This excessive hip motion is believed to be caused by a weak gluteus medius and 

gluteus maximus muscle (Barton et al., 2013). 

For the final meta-analysis in this study twenty-six studies (4HQ, 13 mQ, 9LQ studies) with a 

sample size of 625 individuals with PFP and 645 healthy controls were included for the final 

meta-analysis (Appendix: Table 2.1, 2.4 & 2.7) (Boling, Padua, & Creighton, 2009; 

Callaghan & Oldham, 2004b; Cichanowski et al., 2007; de Moura Campos Carvalho et al., 

2014; Dierks et al., 2008; Duvigneaud et al., 2008; Dvir et al., 1990; Ferber et al., 2011; 

Ireland et al., 2003; Kaya, et al., 2010; Magalhaes et al., 2010; McMoreland et al., 2011; 

Moradi et al., 2014; Nakagawa et al., 2012; Oliveira et al., 2014; Ott et al., 2011; Piva et al., 

2005; Powers et al., 1997; C. R. Rathleff et al., 2013; Robinson & Nee, 2007; Souza & 

Powers, 2009a; Thijs et al., 2011; Thomee et al., 1996; Van Tiggelen, Witvrouw, Coorevits, 

et al., 2004; Werner, 1995). Strong evidence indicates that individuals with PFP have weaker 

hip abductor muscles (3HQ, 8 mQ & 4LQ studies, SMD: -0.68, 95% CI: -0.96 to -0.40, l
2
= 

63%, p= 0.0005) (Boling, Padua, & Creighton, 2009; Cichanowski et al., 2007; Dierks et al., 

2008; Ferber et al., 2011; Ireland et al., 2003; Magalhaes et al., 2010; McMoreland et al., 

2011; Moradi et al., 2014; Nakagawa et al., 2015; Nakagawa et al., 2012; Oliveira et al., 

2014; Piva et al., 2005; C. R. Rathleff et al., 2013; Robinson & Nee, 2007; Souza & Powers, 

2009a; Thijs et al., 2011) and a weaker hip external rotator strength compared with healthy 

controls (3HQ, 8 mQ & 3LQ studies, SMD: -0.54, 95% CI: -0.81 to -0.26, l
2
= 60%, p< 

0.002) (Boling, Padua, & Creighton, 2009; Cichanowski et al., 2007; Dierks et al., 2008; 

Ireland et al., 2003; Magalhaes et al., 2010; McMoreland et al., 2011; Moradi et al., 2014; 

Nakagawa et al., 2012; Oliveira et al., 2014; Piva et al., 2005; C. R. Rathleff et al., 2013; 

Robinson & Nee, 2007; Souza & Powers, 2009a; Thijs et al., 2011) (Table 2.1, Appendix: 

Table 2.11, 2.13). 

Moderate evidence indicates that individuals with PFP have reduced knee extensor strength 

(1HQ, 4 mQ and 6LQ studies, SMD: -0.91, 95% CI: -1.25 to -0.58, l
2
= 68%, p= 0.0006) 

(Callaghan & Oldham, 2004b; Duvigneaud et al., 2008; Dvir et al., 1990; Kaya, et al., 2010; 

Oliveira et al., 2014; Ott et al., 2011; Powers et al., 1997; C. R. Rathleff et al., 2013; Thomee 

et al., 1996; Van Tiggelen, Witvrouw, Coorevits, et al., 2004; Werner, 1995), a reduced hip 

extensor strength (1HQ, 4 mQ& 3LQ studies SMD: -0.48, 95% CI: -0.91 to -0.04, l
2
= 70%, 

p=0.002) (Boling, Padua, & Creighton, 2009; Cichanowski et al., 2007; Magalhaes et al., 
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2010; Moradi et al., 2014; Oliveira et al., 2014; Robinson & Nee, 2007; Souza & Powers, 

2009a; Thijs et al., 2011), a reduced hip internal rotation strength (1HQ, 4 mQ& 2LQ studies, 

SMD: -0.51, 95% CI: -0.9 to -0.12, l
2
= 59%, p=0.02) and a weaker hip adductor strength in 

individuals with PFP (1HQ, 3 mQ& 2LQ studies, SMD: -0.51, 95% CI: -1 to -0.02, l
2
= 71%, 

p= 0.004) (Cichanowski et al., 2007; Magalhaes et al., 2010; Moradi et al., 2014; Oliveira et 

al., 2014; C. R. Rathleff et al., 2013; Thijs et al., 2011) (Table 2.1, Appendix: Table 2.11, 

2.13).  

Low evidence indicates that individuals with PFP have a reduced hip flexor strength (3 mQ& 

2LQ studies, SMD: -0.52, 95% CI: -1.16 to -0.13, l
2
= 80%, p= 0.004) (Cichanowski et al., 

2007; Magalhaes et al., 2010; Moradi et al., 2014; Oliveira et al., 2014; Thijs et al., 2011) 

(Table 2.1), a reduced trunk strength (1HQ study, extension: SMD: -0.68, 95% CI: -1.2 to -

0.16, side bridging: SMD: -0.68, 95% CI: -1.2 to -0.16, a trunk flexion with rotation: SMD: -

1.66, 95% CI: -2.25 to -1.06) (Nakagawa et al., 2015) and pelvis drop deficits (1HQ, SMD: --

0.01, 95% CI: -0.64 to 0.63) (Souza & Powers, 2009a) (Table 2.1, Appendix Table 2.12, 

2.13).  

Inconclusive evidence exists about the reduced strength in knee flexors in individuals with 

PFP (1HQ, 1 mQ and 3LQ studies, SMD: -0.09, 95%CI: -0.33 to 0.14, l
2
= 0%, p= 0.86) 

(Duvigneaud et al., 2008; Oliveira et al., 2014; C. R. Rathleff et al., 2013; Van Tiggelen, 

Witvrouw, Coorevits, et al., 2004; Werner, 1995) as well as the ankle strength (1 mQ study, 

ankle dorsiflexion: SMD: 0.1, 95% CI: -0.52 to 0.73, ankle inversion: SMD: 0.11, 95% CI: -

0.5 to 0.74) (de Moura Campos Carvalho et al., 2014) (Appendix Table 2.10, 2.11). 

This meta-analysis shows that much research has been carried out on the strength of hip and 

knee muscles. In contrast, the strength of the trunk and ankle muscles in individuals with PFP 

has only been addressed in single studies and requires further investigation.   

The heterogeneity in studies assessing strength was moderate to substantial. The regression-

analysis revealed a significant association with the same test position for knee extension 

(p=0.04), hip abduction (p=0.001) and hip internal rotation (p=0.0005) strength (Appendix: 

Table 2.31, 2.32 & 2.33). Furthermore, the normalisation method was associated with hip 

adduction (p=0.003) strength (Appendix: Table 2.30). However, these factors were not 

consistently associated with strength results throughout the studies (Appendix: Table 2.31, 

2.32 & 2.33). 
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Table 2.1: The comparison of ankle, knee, hip, trunk and pelvis strength between individuals with PFP and 

healthy controls 

2.6.3.2. Muscle atrophy 

Muscle atrophy describes a decrease in the muscle volume due to a decreased size of muscle 

cells, often accompanied with a fatty infiltration (Boutin & Pathria, 2013). The decrease in 

cell size occurs when when functional demand is decreased. It is also characterised by a 

decreased motor fibre size and motor fibre number, protein/ DNA ratios and a shift in 

contractile properties towards the slow-twitch fibres (Häkkinen, 2002). Immobilisation and 

Strength 
No of 

studies 

Sample size Std Mean difference 

IV, Random 95%CI 
Heterogeneity 

Std Mean difference IV, 

Random 95%CI PFP Healthy 

Ankle dorsiflexion 1 20 20 -0.1 [-0.52; 0.73] - 

 

Ankle inversion 1 20 20 0.12 [-0.5; 0.74] - 

Knee extension 11 287 283 -0.91 [-1.25; 0.58] 
Tau2=0.21. Chi2= 31.13, 

df=10 (p=0.0006), l2= 68% 

Knee flexion 6 124 168 -0.09 [-0.33; 0.14] 
Tau2=0.00. Chi2= 1.29, df=4 

(p=0.86), l2=0% 

Hip abduction 15 296 352 -0.68 [-0.96; -0.4] 
Tau2=0.19. Chi2= 38.31, 

df=14 (p=0.0005), l2= 63% 

Hip adduction 6 115 176 -0.51 [-1; -0.02] 
Tau2=0.25. Chi2= 17.38, df=5 

(p=0.004), l2=71% 

Hip extension 8 144 205 -0.48 [-0.91; -0.04] 
Tau2=0.26. Chi2= 23.26, df=7 

(p=0.002), l2= 70% 

Hip flexion 5 95 156 -0.52 [-1.16; 0.13] 
Tau2=0.42. Chi2= 20.36, df=4 

(p=0.004), l2= 80% 

Hip external 

rotation 
14 281 342 -0.54 [-0.81; -0.26] 

Tau2=0.17. Chi2= 32.87, 

df=13 (p=0.002), l2= 60% 

Hip internal 

rotation 
7 127 188 -0.51 [-0.9; -0.12] 

Tau2=0.16. Chi2= 14.71, df=6 

(p=0.02), l2= 59% 

Pelvis drop 1 19 19 -0.01 [-0.64; 0.63] 
 

- 

Trunk extension 1 30 30 -0.68 [-1.2; -0.16] 
- 

 

Trunk flexion with 

rotation 
1 30 30 -1.66 [-2.25; -1.06] - 

Side bridging 1 30 30 -0.68 [-1.2; -0.16] 

 

- 

 

 

 

1.5

6.5

11.5

-3 -1 1 3

      Reduced in      Increased in 

             PFP                 PFP 
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disuse due to pain leads to a quickly activated reduced muscle protein synthesis and an 

increase in protein degradation that leads to muscle atrophy (Gibson, 2007; Brocca, McPhee, 

Longa, Canepari, Seynnes, De Vito, Pellegrino, Narici, & Bottinelli, 2017). Muscle atrophy is 

a physiological consequence of aging, but it can also be caused by a prolonged period of 

disuse and unloading of the muscle (Fanzani, Conraads, Penna, & Martinet, 2012; Häkkinen, 

2002). Furthermore, it can result from many muscle abnormalities, such as muscle weakness, 

impaired muscle activation or a reduced neuromuscular control (Boutin & Pathria, 2013). 

Resistance exercise and heavy strength training have shown to lead to increased cross 

sectional areas, a greater fast to slow-twitch fibre ratio, increased muscle thickness and 

increased pennation angles and thereby and resulted in increased muscle strength and power 

(Suchomel, Comfort, & Stone, 2018). Thus, atrophy and muscular weakness can be 

prevented by maintaining functional demand on muscles and can be treated by heavy strength 

and exercise training.  

Quadriceps atrophy is commonly seen in patients with lower limb injuries (Callaghan & 

Oldham, 2004b; Chen, Haas, & Powers, 2008; Giles et al., 2013, 2015; Guler, Mahirogullari, 

Isyar, Piskin, Yalcin, Mutlu, & Sahin, 2016; Meier, Mizner, Marcus, Dibble, Peters, & 

Lastayo, 2008; Otzel, Chow, & Tillman, 2015; Pattyn et al., 2011; Thomas, Wojtys, Brandon, 

& Palmieri-Smith, 2016). In particular, myofibre shrinking was a mechanism which 

accounted for quadriceps atrophy (Young, Hughes, Round, & Edwards, 1982).. 

In the final meta-analysis four MQ studies were included with a total sample size of 192 

individuals with PFP and 129 healthy controls (Callaghan & Oldham, 2004b; Giles et al., 

2015; Jan et al., 2009; Pattyn et al., 2011) (Appendix: Table 2.3, 2.6 & 2.9). Moderate 

evidence (4 mQ studies) with a small pooled effect size indicates reduced muscle mass of the 

quadriceps in individuals with PFP compared with healthy controls (SMD: -0. 4, 95% CI: -

0.64 to -0.172, l
2
= 0%, p=0.44) (Table 2.2, Appendix Table 2.14). 

 

Table 2.2: The comparison of muscle atrophy in individuals with and without PFP 

Atrophy 
No of 

studies 

Sample size Std Mean difference 

IV, Random 95%CI 
Heterogeneity 

Std Mean difference IV, 

Random 95%CI PFP healthy 

Quadriceps 

  atrophy 
4 192 129 -0.4 [-0.64; -0.17] 

Tau2=0, Chi2= 2.72, df=3 

(p=0.44), l2= 0% 

 
 Atrophy in PFP      Hypertrophy  

                                  in PFP 

  

-1 0 1
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2.6.2.3. Muscle inhibition 

Arthrogenic muscle inhibition (AMI) describes an ongoing reflex response, resulting in a 

neural inhibition which causes the inability to completely contract a muscle voluntarily, 

despite no structural damage to the muscle or the innervating nerve (Bolgla & Keskula, 2000; 

Hart, Pietrosimone, Hertel, & Ingersoll, 2010; Hopkins & Ingersoll, 2000; Rice & McNair, 

2010). Authors described that this reflex inhibition is modulated by the pre- and postsynaptic 

mechanism and elicited by abnormal afferents from a damaged joint (Callaghan et al., 2014; 

Drover et al., 2004). The damaged joint causes a decreased motor drive to muscles and thus a 

limited potential of the muscle to generate force (Callaghan et al., 2014).  

Other authors described AMI as a neurological decline in muscle activation (Palmieri-Smith 

et al., 2013) or the failure to activate all motor units of a muscle during a maximal voluntary 

contraction (Drover et al., 2004; Hurley & Newham, 1993; Suter, Herzog, De Souza, et al., 

1998). The inhibition occurs because either a reduced number of motor units are recruited or 

because motor units are recruited at submaximal frequencies (Drover et al., 2004). 

Arthrogenic muscle inhibition (AMI) has been reported to be a limiting factor in a wide range 

of knee joint pathologies, such as knee osteoarthritis and rheumatoid arthritis (Hart et al., 

2010; Rice & McNair, 2010). 

For the final analysis two studies with the sample size of 30 individuals with PFP and 37 

healthy controls were included (Suter et al., 1998; Thomee et al., 1996). Further information 

about the studies is listed in Appendix Table 2.3, 2.6 & 2.9. Since only two studies were 

included no pooling of the data was undertaken and the results of the two studies will be 

presented descriptively. Suter et al. (1998) investigated quadriceps muscle inhibition by 

calculating the difference of the interpolated twitch torque during a maximum isometric 

voluntary contraction (MVIC) and the resting twitch torque (RTT). They found significant 

higher muscle inhibition (MI) and lower extensor moments in individuals with PFP compared 

with healthy controls. By grouping the subjects according to their pain ratings they identified 

that individuals with moderate pain had higher MI and lower knee extensor moments 

compared with control subjects and individuals with low PFP (Suter et al., 1998).  

Thomeé et al. (1996) analysed quadriceps inhibition by a single-twitch superimposed 

electrical stimulation and calculated the additional percentage of generated torque. They 
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showed that an additional 18% (range 6.7-25%) of knee extensor torque was generated with 

the single-twitch superimposed electrical stimulation in individuals with PFP, compared with 

4.9% in healthy controls (range: 0-12%). These results revealed that individuals with PFP 

were unable to maximally activate their quadriceps muscle voluntarily, which might be 

caused by reflex inhibition (Thomee et al., 1996). 

  

2.6.3.4. Poor neuromuscular control 

Neuromuscular control or dynamic stability are defined as the ability to produce a controlled 

movement during a coordinated muscle activity in response to motion or loading in order to 

maintain functional stability (Madhavan, 2007; Potach & Grindstaff, 2016). Neuromuscular 

control is also described as a response to sensory, proprioceptive information, which causes a 

conscious and unconscious efferent control of posture, balance, stability and the sense of 

position (Potach & Grindstaff, 2016). This neuromuscular control is needed in situations such 

as running on uneven surface, which require an adjustment to the ground to prevent falls, 

joint overloading and injuries (Potach & Grindstaff, 2016).  

Neuromuscular control involves two mechanisms to interpret information and to coordinate 

the efferent response; the feed-forward and the feedback process. The feed-forward 

neuromuscular control plans the movement based on information from past experiences and 

is a mechanism for preparatory muscle activity. The feedback neuromuscular control is in 

contrast a reactive control pattern, which is processed through the reflex pathways and is 

associated with reactive muscle activity (Abrahamson et al., 2010; Swanik et al., 1997). 

Thereby, the knee is dynamically stabilised through a preparatory/ feed-forward and 

reflexive/ feedback neuromuscular control system (Iturri, 2003).  

Conversely a poor neuromuscular control describes the inability to adjust to sensory 

information and thus causes an abnormal muscle strength, power, or muscle activation pattern 

which lead to increased joint loads (Hewett et al., 2007). Studies have shown that 

neuromuscular control is impaired after lower limb injuries, such as PFP or an anterior 

cruciate ligament rupture (Aminaka & Gribble, 2008; Aminaka et al., 2011; Bolgla, Malone, 

Umberger, & Uhl, 2010; Bolgla et al., 2011; Dos Anjos Rabelo, Lima, Dos Reis, Bley, Yi, 

Fukuda, Pena Costa, & Garcia Lucareli, 2014; Earl, 2002; Kuenze et al., 2015; Lindley, 



Chapter 2: Literature review and meta-analysis      

 

30 

 

2015; Potach & Grindstaff, 2016; Rosenthal, Moore, Stoneman, & DeBerardino, 2009). The 

lack of neuromuscular control can be caused by various reasons. Firstly, the injury might lead 

to an insufficient somatosensory awareness to coordinate the muscle activity and thereby 

maintain the dynamic stability (Swanik et al., 1997). Secondly a knee injury might lead to a 

reduction of joint motion and position sense which affects the feed-forward and feedback 

mechanism and diminishes the dynamic stability (Swanik et al., 1997). 

Each muscle consists of motor units, which are formed by a motorneuron, its axon, the 

neuromuscular junction and the muscle fibres innervated by that motorneuron (Rhoades & 

Tanner, 2003). These motor units are classified into low- and high-threshold motor units 

(Figure 2.2). The high-threshold motor units have a larger α-motorneuron cell and innervate 

fast-twitch muscle fibres, which are high-force but fatigable muscle fibres (McCorry, 2008; 

Rhoades & Tanner, 2003). The low-threshold motor units conduct action potentials slower 

and innervate slow-twitch muscle fibres, which are low-force but fatigue-resistant (Lieber, 

2010; Rhoades & Tanner, 2003). 

 
Figure 2.2: Motor unit structure (Rhoades & Tanner, 2003) 

 

Muscles are activated by nerve signals, which originate from the central nervous system 

leaving the spinal cord via α-motorneurons which terminate at the neuromuscular junction on 

muscle fibres (Herzog, 2000b; Rhoades & Tanner, 2003). These nerve signals are called 

Motor Unit Action Potentials (MUAPs) which propagate down to a motorneuron, along the 

axon and terminate at the neuromuscular junction, where they cause a postsynaptic 

depolarisation which generates an electromagnetic field (Basmajian & De Luca, 1985).  
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This electrical activity of the skeletal muscles can be captured qualitatively by measuring the 

electromyographic (EMG) signal (Multon, 2013). Each action potential produces an electrical 

signal. If an EMG-electrode is located in the area of the postsynaptic depolarisation the 

MUAPs of all active motor units it can be recorded in voltage (Figure 2.3) (Basmajian & De 

Luca, 1985; Herzog, 2000a).  

The repetitive sequence of MUAPs is called Motor Unit Action Potential trains (MUAPTs) 

and produce a waveform (Figure 2.3) (Burden, 2008). The produced electromyography 

represents the summation of all MUAPTs within the detected volume of the electrodes 

(Burden, 2008) (Figure 2.3). The more active MUAPs per muscle fibre are present the larger 

the EMG signal will be (Herzog, 2000a). 

 

 

Figure 2.3: Outline of the decomposition of the surface EMG signal (De Luca & Adam, 1999) 

 

A controlled muscle activation will result in force production. The magnitude of the force 

production depends on the size of the activated motor units, the number of activated motor 

units and the frequency of the motor unit recruitment (Herzog, 2000b). During a muscle 

contraction the slow motor units are recruited first and with increasing force the muscle 

generates more muscle force by: (1) recruiting more motor units (2) higher frequency firing 

rate of the recruited motor units (3) and an increased amount of tension developed by each 

muscle fibre (Herzog, 2000a; McCorry, 2008).  

Neuromuscular control has been associated with decreased joint stability, reduced muscle 

weakness, disuse muscle atrophy, deficits in proprioception, balance and altered 
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neuromuscular activation and has been assessed in different ways, such as analysing balance 

or performance during functional tasks (e.g. single leg squat and hop down test) (Meininger, 

2014). These measurements enable the investigation of functional movement alterations; 

however, they do not allow insights into the muscle activation.  

Since sEMG captures the electromyographic signal of the motor units, it enables the direct 

link to the muscles (Multon, 2013). The generation of an electrical is closely associated with 

the generation of force by a muscle. However it is not possible to measure muscle force 

directly using EMG and the understanding of the relationship between internal forces and 

movement, as well as movement control is one of the major methodological challenges for 

biomechanics (Kuriki, Azevedo, Takahashi, Mello, & Filho, 2012). During voluntary 

contractions, muscle force is modulated by the central nervous system, which controls the 

number and type of fibres activated, the recruitment frequency of MUAPs and the 

synchronization of the activated motor units (MUs) (Kuriki, et al., 2012). In addition, muscle 

strength is influenced by force-length relationship, force-velocity relationship, as well as 

force-sharing among synergistic muscles. Although sEMG cannot enable direct insights into 

muscle force, it reflects the recruitment and firing characteristics of MUAPs and thus enables 

insights into neuromuscular control strategies. Therefore, to analyse neuromuscular control 

sEMG can be used and measured in mainly in three ways: 

- The analysis of the intensity of the MUAPs, by analysing the EMG amplitude (De 

Luca, 1997; Fee & Miller, 2012).  

- The analysis of the EMG onset/ offset, thus the presence or absence of the muscle 

activity during a specific movement, such as the stance phase in gait (De Luca, 1997; 

Fee & Miller, 2012). 

- The analysis of the neural drive by analysing the EMG frequency, which investigates 

the frequency of the motor unit recruitment and the firing rate of the recruited motor 

units (Herzog, 2000b). 

In the final meta-analysis of this study in total 25 studies that analysed the EMG signal in 

individuals with and without PFP were included (Aminaka et al., 2011; Bley et al., 2014; 

Bolgla et al., 2011; Boling et al., 2006; Briani, de Oliveira Silva, et al., 2015; Cavazzuti et al., 

2010; Coqueiro et al., 2005; Earl, et al., 2005; Esculier et al., 2015; Felicio et al., 2011; 

Ferrari et al., 2014; Karst & Willett, 1995; Kaya et al., 2010; Liebensteiner et al., 2008; 
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Mostamand et al., 2011; Nakagawa et al., 2015; Nakagawa et al., 2012; Nakagawa, Muniz, et 

al., 2011; O'Sullivan et al., 2012; Ott et al., 2011; Owings & Grabiner, 2002; Powers et al., 

1996; Saad et al., 2011; Song et al., 2014; Willson et al., 2011). Thus, in total 63 studies with 

a sample size of 1449 individuals with PFP and 1645 healthy controls were included for final 

review (Appendix Table 2.2, 2.5. & 2.8). 

 

2.6.3.4.1. EMG amplitude analysis  

In total fifteen papers (5LQ, 8 mQ and 2HQ studies) that analysed amplitude differences 

were included in the final meta-analysis, with a total of 295 individuals with PFP and 281 

healthy controls (Bley et al., 2014; Coqueiro et al., 2005; Esculier et al., 2015; Felicio et al., 

2011; Liebensteiner et al., 2008; Mostamand et al., 2011; Nakagawa et al., 2015; Nakagawa 

et al., 2012; Nakagawa, Muniz, et al., 2011; O'Sullivan et al., 2012; Ott et al., 2011; Powers 

et al., 1996; Saad et al., 2011; Song et al., 2014; Willson et al., 2011). 

Low evidence shows a reduced iliocostalis activity (1HQ study, SMD: -0.63, 95% CI: -1.15 

to -0.11) (Nakagawa et al., 2015) and a reduced vastus lateralis longus (VLL) (2LQ studies, 

SMD: -0.51, 95% CI: -1 to -0.03, l
2
= 0%, p=0.54) (Felicio et al., 2011; Saad et al., 2011) in 

individuals with PFP compared with healthy controls (Appendix Table 2.18 & Table 2.19).  

Very low evidence indicates a reduced semitendinosus activity in individuals with PFP (1LQ 

study, semitendinosus: SMD: -0.76, 95% CI: -1.42 to -0.1) (Liebensteiner et al., 2008) (Table 

2.3, Appendix Table 2.16).  

The majority of results revealed no differences in muscular activity between individuals with 

and without PFP (Table 2.3, Appendix Table 2.15 to 2.19) (1HQ study: obliquus externus: 

SMD: 0.04. 95% CI: -0.47 to 0.55 (Nakagawa et al., 2015); 1HQ, 6 mQ& 2LQ studies: 

gluteus medius (GMed): SMD: 0.28, 95% CI: -0.24 to 0.8, l
2
=81%, p< 0.00001 (Bley et al., 

2014; Esculier et al., 2015; Nakagawa et al., 2012; Nakagawa, Muniz, et al., 2011; O'Sullivan 

et al., 2012; Ott et al., 2011; Saad et al., 2011; Song et al., 2014; Willson et al., 2011); 1HQ& 

4 mQ studies: gluteus maximus (GMax): SMD: 0.11, 95% CI: -0.29 to 0.51, l
2
=52%, p= 0.08 

(Bley et al., 2014; Esculier et al., 2015; Nakagawa et al., 2012; Song et al., 2014; Willson et 

al., 2011); 1 mQ study: rectus femoris: SMD: 0, 95% CI: -0.85 to 0.85 (Song et al., 2014), 3 

mQ& 5LQ studies: vastus medialis (VM): SMD: 0.09, 95% CI: -0.35 to 0.53, l
2
= 69%, 
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p=0.002 (Coqueiro et al., 2005; Esculier et al., 2015; Felicio et al., 2011; Liebensteiner et al., 

2008; Mostamand et al., 2011; Ott et al., 2011; Powers et al., 1996; Saad et al., 2011); 4 

mQ& 5LQ studies: Vastus lateralis (VL): SMD: 0.33, 95% CI: -0.37 to 1.03, l
2
= 89%, 

p<0.00001 (Bley et al., 2014; Coqueiro et al., 2005; Esculier et al., 2015; Felicio et al., 2011; 

Liebensteiner et al., 2008; Mostamand et al., 2011; Ott et al., 2011; Powers et al., 1996; Saad 

et al., 2011); 1 mQ& 1LQ study: biceps femoris: SMD: 0.09, 95% CI: -1.13 to 1.31, l
2
=86%, 

p=0.008 (Bley et al., 2014; Liebensteiner et al., 2008); 1LQ study: gastrocnemius: SMD: -

0.42, 95% CI: -1.06 to 0.22 (Liebensteiner et al., 2008); peroneus longus: SMD: -0.24, 95% 

CI: -0.88 to 0.39 (Liebensteiner et al., 2008); 1 mQ study: soleus: SMD: -0.37, 95% CI: -0.99 

to 0.25 (Esculier et al., 2015) (Table 2.3, Appendix Table 2.15 to 2.19). 

The heterogeneity in studies that assessed GMax, VM, VL and biceps femoris activity was 

substantial. The regression-analysis revealed an association with the two factors. Firstly, the 

normalisation method was significantly associated with the peak amplitude (GMed: p=0.001, 

VM: p=0.002, VL: p<0.00001), as well as the rectification method of the sEMG (GMed: 

p=0.004, VM: p=0.006, VL: p=0.0008) (Appendix: Table 2.34). In addition, a significant 

difference in SMD could be shown between different tasks in GMed and VL amplitude 

studies (GMed: p<0.0001, VL: p<0.00001) (Appendix: Table 2.34).  
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Table 2.3: The comparison of iliocostalis, obliquus externus, gluteus, quadriceps, thigh muscles, 

lower limb muscles and trunk muscle amplitudes in individuals with and without PFP. 

 

2.6.3.4.2. EMG onset/ offset analysis  

Twelve studies (8 mQ and 4LQ studies) analysed the muscular onset in individuals with PFP 

and healthy controls (Aminaka et al., 2011; Bolgla et al., 2011; Boling et al., 2006; Cavazzuti 

et al., 2010; Earl, et al., 2005; Karst & Willett, 1995; Kaya et al., 2010; Mostamand et al., 

2011; Nakagawa, Muniz, et al., 2011; Owings & Grabiner, 2002; Powers et al., 1996; 

Willson et al., 2011). Moderate evidence indicates a delay of the VM in relation to VL 

activity (3 mQ& 3LQ studies, SMD: -0.62, 95% CI: -1.05 to -0.18, l
2
= 54%, p=0.05) (Bolgla 

sEMG 

amplitude 

No of 

studies 

Sample size Std Mean difference, 

Random 95%CI 
Heterogeneity 

Std Mean difference, 

Random 95%CI PFP Healthy 

Iliocostalis 1 30 30 -0.63 [-1.15; -0.11] - 

   Reduced           Increased 

          in PFP                in PFP 

Obliquus 

externus 
1 30 30 0.04 [-0.47; 0.55] - 

Gluteus medius 9 173 165 0.28 [-0.24; 0.8] 
Tau2=0.5. Chi2= 41.73, 

df=8 (p<0.00001), l2= 81% 

Gluteus 

maximus 
5 117 108 0.11 [-0.29; 0.51] 

Tau2=0.11. Chi2= 8.38, 

df=4 (p=0.08), l2= 52% 

Rectus femoris 1 16 8 0 [-0.85; 0.85] - 

Vastus medialis 8 139 141 0.09 [-0.35, 0.53] 
Tau2=0.28. Chi2= 22.78, 

df=7 (p=0.002), l2= 69% 

Vastus lateralis 9 159 161 0.33 [-0.37; 1.03] 
Tau2=1.02, Chi2= 69.75, 

df=8 (p<0.00001), l2= 89% 

Vastus lateralis 

longus 
2 34 34 -0.51 [-1.00; -0.03] 

Tau2=0. Chi2= 0.37, df=1 

(p=0.54), l2=0% 

Biceps femoris 2 39 39 0.09 [-1.13; 1.31] 
Tau2=0.66. Chi2= 7.14, 

df=1 (p=0.008), l2= 86% 

Semitendinosus 1 19 19 -0.76 [-1.42; -0.1] - 

Gastrocnemius 1 19 19 -0.42 [-1.06; 0.22] - 

Peroneus 

longus 
1 19 19 -0.24 [-0.88; 0.39] - 

Soleus 1 30 30 -0.37 [-0.99; 0.25] - 

 

      

1.5

6.5

11.5
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et al., 2011; Boling et al., 2006; Cavazzuti et al., 2010; Kaya et al., 2010; Mostamand et al., 

2011; Owings & Grabiner, 2002) (Table 2.4, Appendix Table 2.28).  

Inconclusive evidence indicates no delay of the quadriceps, the gluteal and the thigh muscles 

in individuals with PFP compared with healthy controls (4 mQ& 1LQ studies: VM: SMD: 

0.27, 95% CI: -0.02 to 0.55, l
2
=0%, p= 0.64 (Aminaka et al., 2011; Boling et al., 2006; Earl, 

et al., 2005; Karst & Willett, 1995; Powers et al., 1996), 3 mQ&1LQ studies: VL: SMD: 0.1, 

95% CI: -0.25 to 0.46, l
2
=16%, p=0.31 (Boling et al., 2006; Earl, et al., 2005; Karst & 

Willett, 1995; Powers et al., 1996), 1 mQ study: GMax: SMD: 0.1, 95% CI: -0.52 to 0.72 

(Willson et al., 2011), 5 mQ studies: GMed: SMD: -0.09, 95% CI: -0.6 to 0.42, l
2
=61%, p= 

0.04 (Aminaka et al., 2011; Boling, Bolgla, Mattacola, Uhl, & Hosey, 2006; Earl, et al., 2005; 

Nakagawa, Muniz, et al., 2011; Willson et al., 2011), 1 mQ study: Adductor longus: SMD: 

0.42, 95% CI: -0.2 to 1.05 (Aminaka et al., 2011), 1 mQ study: tensor: SMD: -0.06, 96%CI: -

0.75 to 0.63 (Earl, et al., 2005), 1 mQ study: VL/ GMed: SMD: 0.12, 95% CI: -0.53 to 0.78 

(Bolgla et al., 2011), 2 mQ studies: VM/ GMed: SMD: 0.46, 95% CI: -0.28 to 1.21, l
2
=59%, 

p=0.12 (Bolgla et al., 2011; Mostamand et al., 2011) (Table 2.4, Appendix 2.20 to 2.22).  

Four studies analysed the onset duration of the VM, VL, GMed, GMax and adductor longus 

muscle of lower limb muscles, whereby no significant differences could be identified 

between individuals with PFP and healthy controls (2 mQ studies: VM: SMD: -0.44, 95% CI: 

-1.51 to 0.63, l
2
= 83%, p=0.02 (Aminaka et al., 2011; Powers et al., 1996); 1 mQ study: VL: 

SMD: 0.11, 95% CI: -0.48 to 0.7 (Powers et al., 1996); 2 mQ studies: GMed: SMD: -0.55, 

95% CI: -1.11 to 0, l
2
= 35%, p= 0.22 (Aminaka et al., 2011; Willson et al., 2011); 1 mQ: 

GMax: SMD: -0.24, 95% CI: -0.86 to 0.38 (Willson et al., 2011); 1LQ study: adductor 

longus: SMD: 0, 95% CI: -0.62 to 0.62 (Aminaka et al., 2011); (Table 2.4, Appendix Table 

2.23 to 2.27).  

The heterogeneity in studies assessing GMed onset and the onset of VL related to VM was 

moderate. The regression-analysis showed an association with the different tasks in the onset 

of the GMed (p=0.04), but not in studies that investigated the onset of VL related to VM 

(Appendix Table 2.35).  
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Table 2.4: The comparison of quadriceps, gluteal and thigh muscles onset and the onset duration in individuals with 

and without PFP  

 

2.6.3.4.3. EMG frequency analysis 

The neural drive of a muscle is a complex neural code of the movement, which implies 

information about a motor task (Farina & Negro, 2012). The information of the neural drive 

sEMG onset 
No of 

studies 

Sample size Std Mean 

difference IV, 

Random 95%CI 

Heterogeneity 
Std Mean difference IV, 

Random 95%CI PFP  healthy 

Vastus medialis  5 100 93 0.27 [-0.02; 0.55] 
Tau2=0. Chi2= 2.51, df=4 

(p=0.64), l2= 0% 

 

 
  
Delayed in PFP  Earlier in PFP 

 

Vastus lateralis  4 80 73 0.1 [-0.25; 0.46] 
Tau2=0.02. Chi2= 3.55, 

df=3 (p=0.31), l2= 16% 

Gluteus 

maximus  
1 20 20 0.1 [-0.52; 0.72] 

 

- 

 

Gluteus medius  5 79 80 -0.09 [-0.6; 0.42] 
Tau2=0.2. Chi2= 10.15, 

df=4 (p=0.04), l2= 61% 

Adductor 

longus  
1 20 20 0.42 [-0.2; 1.05] 

 

- 

 

Tensor fasciae 

latae  
1 16 16 -0.06 [-0.75, 0.63] 

 

- 

 

Vastus lateralis- 

gluteus medius  
1 18 18 0.12 [-0.53; 0.78] 

 

- 

 

Vastus 

medialis- 

gluteus medius  

2 36 36 0.46 [-0.28; 1.21] 

 

Tau2=0.17. Chi2= 2.46, 

df=1 (p=0.12), l2=59% 

 

Vastus lateralis- 

vastus medialis  
6 97 100 -0.62 [-1.05; -0.18] 

Tau2=0.16. Chi2= 10.88, 

df=5 (p=0.05), l2=54% 

      

sEMG onset duration 

 

 
 
 
 
 

 
Reduced in PFP  Increased in PFP 

Vastus medialis 

duration 
2 46 39 -0.44 [-1.51; 0.63] 

Tau2=0.49. Chi2= 5.83, 

df=1 (p=0.02), l2=83% 

Vastus lateralis 

duration 
1 26 19 0.11 [-0.48; 0.7] - 

Gluteus medius 

duration 
2 40 40 -0.55 [-1.11; 0] 

Tau2=0.06. Chi2= 1.53, 

df=1 (p=0.22), l2=35% 

Gluteus maximus 

duration 
1 20 20 -0.24 [-0.86; 0.38] 

 

- 

 

Adductor longus 

duration 
1 20 20 0 [-0.62: 0.62] 

 

- 
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can be identified by their frequency bandwidths because altered frequency domain 

parameters indicate neuromuscular alterations (Briani, de Oliveira Silva, et al., 2015; Farina, 

Merletti, & Enoka, 2014) 

In the final meta-analysis two studies (1 mQ& 1LQ studies) with a total of 53 individuals 

with PFP and 57 healthy controls investigated the muscular frequency differences between 

individuals with PFP and healthy participants (Briani, de Oliveira Silva, et al., 2015; Ferrari 

et al., 2014). Inconclusive evidence indicates no quadriceps frequency differences betweeen 

individuals with and without PFP (low frequency band: VM: SMD: 0.27, 95% CI: -0.02 to 

0.55, l
2
=78%, p=0.03, VL: -0.11, 95% CI: -0.65 to 0.43, l

2
=37%, p=0.21; medium frequency 

band: VM: 0.2, 95% CI: -0.02 to 0.41, l
2
=91%, p=0.0008, VL: 0.42, 95% CI: -0.2 to 1.05, l

2
= 

95% p<0.00001; high frequency band: VM: -0.24, 95% CI: -0.86 to 0.38, l
2
= 0%, p=0.68, 

VL: -0.06, 95% CI: -0.75 to 0.63, l
2
= 56%, p=0.13, median frequency band: VM: 0.33, 95% 

CI: -0.09 to 0.75, l
2
=0%, p=0.49, VL: 0.32, 95% CI: -0.06 to 0.7, l

2
= 0% p=0.69) (Briani, de 

Oliveira Silva, et al., 2015; Ferrari et al., 2014) (Table 2.5, Appendix Table 2.29). 

 

Table 2.5: The comparison of quadriceps muscles frequency in individuals with and without PFP 

 

 

sEMG frequency 
No of 

studies 

Sample size Std Mean difference 

IV, Random 95%CI 
Heterogeneity 

Std Mean difference 

IV, Random 95%CI PFP healthy 

Vastus medialis 

low frequency band 
2 53 57 0.27 [-0.02; 0.55] 

Tau2=0.27 Chi2= 4.53, 

df=1 (p=0.03), l2=78% 

 

 
     Reduced          Increased 

        in PFP                in PFP 

Vastus medialis 

medium frequency 

band 

2 53 57 0.2 [-0.02; 0.41] 
Tau2=0.81. Chi2= 11.31, 

df=1 (p=0.0008), l2=91% 

Vastus medialis 

high frequency 

band 

2 53 57 -0.24 [-0.86; 0.38] 

Tau2=0. Chi2= 0.17, 

df=1 (p=0.68), l2= 0% 

Vastus medialis 

median frequency 

band 

2 53 57 0.33 [-0.09; 0.75] 

Tau2=0. Chi2= 0.49, 

df=1 (p=0.49), l2= 0% 

Vastus lateralis low 

frequency band 
2 53 57 -0.11 [-0.65; 0.43] 

Tau2=0.04. Chi2= 1.59, 

df=1 (p=0.21), l2= 37% 

Vastus lateralis 

medium frequency 

band 

2 53 57 0.42 [-0.2; 1.05] 

Tau2=1.63, Chi2= 20.71 

df=1 (p<0.00001), 

l2=95% 

Vastus lateralis 

high frequency 

band 

2 53 57 -0.06 [-0.75, 0.63] 

Tau2=0.1 Chi2= 2.27, 

df=1 (p=0.13), l2=56% 

Vastus lateralis 

median frequency 

band 

2 53 57 0.32 [-0.06; 0.70] 

Tau2=0. Chi2= 0.16, 

df=1 (p=0.69), l2= 0% 
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2.6.3.4.4. Break phenomenon analysis 

The break phenomenon describes a break in torque value during a slow isokinetic eccentric 

quadriceps open chain activity and is defined as a disturbance in the regularity of the trace if 

it exceeds more than 10% of the pre-break moment (Anderson & Herrington, 2003). It is 

believed to be caused by reflex inhibition of the quadriceps muscle, to avoid overstress of the 

knee joint (Herrington, Williams, & George, 2003). It can be assumed that patients with PFP 

adopt this strategy to decrease the PFJ load and the experienced pain (Anderson & 

Herrington, 2003).  

In the final meta-analysis only one LQ study (LQ studies) with a total of 20 individuals with 

PFP and 20 healthy controls was included in this systematic review (Appendix: Table 2.3, 2.6 

& 2.9) (Anderson & Herrington, 2003). Anderson & Herrington, 2003 analysed the break 

phenomenon during an isokinetic measurement and a stair stepping task and showed the 

presence of the break phenomenon in 60% to 70% of the patients with PFP and in 15% of the 

control group during both tasks (Anderson & Herrington, 2003).  

 

2.6.3.5. Reduced muscle flexibility 

Muscle flexibility refers to the ability of a muscle to yield to a stretch force and the ability to 

move a muscle through the full range of motion (ROM) (Can, 2012; Wallmann, 2016). 

Flexibility is classified into static flexibility and dynamic flexibility. Static flexibility relates 

to the ability of a muscle to be passively moved to the end range of motion and dynamic 

flexibility refers to the ability of a muscle to be moved as a result of muscle contraction (Can, 

2012; Wallmann, 2016).  

Reduced muscle flexibility is associated with an increased risk to develop injuries, because 

only an adequate joint mobility allows a normal kinesiological relationship between the limb 

segments during a movement (Can, 2012; Williams & Welch, 2015). Immobilisation after a 

knee injury might be one reason causing a shortness of a muscle (Wallmann, 2016). The 

shortness is mostly caused by a spasm of the surrounding muscle to protect the affected joint 

(Alonso, McHugh, Mullaney, & Tyler, 2009; Can, 2012).  

In total seven studies (4 mQ and 3LQ studies) with a sample size of 153 individuals with PFP 

and 426 without PFP analysed muscle flexibility were included (Earl, et al., 2005; Hudson, 
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2006; Ohjeoung et al., 2014; Peeler, 2007; Piva et al., 2005; White, 2009; Witvrouw et al., 

2000) (Appendix: Table 2.3, 2.6 & 2.9). 

Moderate evidence reveals a reduced muscle flexibility of the hamstrings in individuals with 

PFP compared with healthy controls (hamstrings: 3 mQ& 2LQ studies, SMD: -0.48, 95% CI: 

-0.83 to -0.14, l
2
= 40%, p= 0.15) (Earl, et al., 2005; Ohjeoung et al., 2014; Piva et al., 2005; 

White, 2009; Witvrouw et al., 2000) (Table 2.6, Appendix Table 2.27).  

Low evidence shows that individuals with PFP have a decreased flexibility in ITB and 

quadriceps compared with healthy controls (ITB: 3 mQ studies, SMD: -0.85, 95%CI: -1.43 to 

-0.26, l
2
= 51%, p=0.13) (Earl, et al., 2005; Hudson, 2006; Piva et al., 2005), (quadriceps: 1 

mQ& 2LQ studies, SMD: -0.58, 95% CI: -0.97 to -0.19; l
2
= 54%, p= 0.12) (Peeler, 2007; 

Piva et al., 2005; Witvrouw et al., 2000). Very limited evidence suggests a reduced flexibility 

of the soleus muscle (1 mQ study, SMD: -1.42, 95% CI: -1.99 to -0.85) (Piva et al., 2005). 

Inconclusive evidence indicates no difference in flexibility of the gastrocnemius muscle 

between individuals with PFP and healthy controls (1 mQ& 1LQ studies, SMD: -1.12, 95% 

CI: -2.41 to 0.17, l
2
= 92%, p= 0.0005) (Piva et al., 2005; Witvrouw et al., 2000) (Table 2.6, 

Appendix Table 2.30).  

 

Table 2.6: The comparison of muscle flexibility in individuals with and without PFP 

 

2.6.4.6. Muscular fatigue 

Muscle fatigue is defined very heterogeneously in the literature (Williams & Ratel, 2009). 

Two definitions of fatigue are commonly accepted, which are:  

Flexibility 
No of 

studies 

Sample size Std Mean difference 

IV, Random 95%CI 
Heterogeneity 

Std Mean difference IV, 

Random 95%CI PFP healthy 

Iliotibial band 

flexibility 
3 58 58 -0.85 [-1.43; -0.26] 

Tau2=0.14 Chi2= 4.12, 

df=2 (p=0.13), l2= 51% 

  Reduced in PFP   Increased in PFP 

Quadriceps 

flexibility 
3 94 331 -0.58 [-0.97; -0.19] 

Tau2=0.06 Chi2= 4.31, 

df=2 (p=0.12), l2= 54% 

Hamstrings 

flexibility 
5 95 358 -0.48 [-0.83; -0.14] 

Tau2=0.06 Chi2= 6.72 

df=4 (p=0.15), l2= 40% 

Gastrocnemiu

s flexibility 
2 54 288 -1.12 [-2.41; 0.17] 

Tau2=0.8. Chi2= 12.28, 

df=1 (p=0.0005), l2= 

92% 

Soleus 

flexibility 
1 30 30 -1.42 [-1.99; -0.85] 

 

- 

 

 

 
    

 
-2.5 -0.5 1.5
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1) Fatigue is an inability to maintain and generate a required force after repeated muscle 

contractions (Jones & Round, 1990; Negahban et al., 2013; Williams & Ratel, 2009).  

2) Fatigue is an exercise-induced reduction in the muscular ability to produce power, 

irrespective of the task completion (Williams & Ratel, 2009). 

Fatigue can be caused by various factors, such as an impaired reflex drive, impaired 

neuromuscular transmission, impaired motor unit action potential (MUAP), impaired 

excitation, impaired energy supply or a reduced motivation (Williams & Ratel, 2009). Studies 

revealed that the risk of developing a sport injury increased during the late stage of 

competitions in which the muscles were more fatigued (Gabbett, 2000; Pinto, Kuhn, 

Greenfield, & Hawkins, 1999; Reimer & Wikstrom, 2010; Woods, Hawkins, Hulse, & 

Hodson, 2003). It is believed that muscle fatigue is one of the main mechanisms that causes 

impaired balance and thereby a dynamic instability of the lower limb (Bayramoglu, Toprak, 

& Sozay, 2007; Negahban et al., 2013; Reimer & Wikstrom, 2010). Thus, quadriceps fatigue 

seems to play a particularly important role in knee injuries, such as PFP, knee osteoarthritis 

and anterior cruciate ligament rupture (Bazett-Jones, Cobb, O‟Connor, Huddleston, & Earl-

Boehm, 2015; Berger, Regueme, & Forestier, 2010; Bouillard, Jubeau, Nordez, & Hug, 2014; 

Callaghan et al., 2001; Callaghan, McCarthy, & Oldham, 2009; Chan, Lee, Wong, Wong, & 

Yeung, 2001; R. T. H. Cheung, 2012; Lessi & Serrao, 2015; Bayramoglu et al., 2007; 

Negahban et al., 2013; Power, 2008).  

In the final meta-analysis in total six studies (3 mQ and 3LQ studies) on fatigue and 

endurance with a sample size of 96 individuals with and 96 without PFP were included 

(Bazett-Jones et al., 2013; Callaghan et al., 2001; Dierks et al., 2008; McMoreland et al., 

2011; Negahban et al., 2013; Willson et al., 2008). Due to the heterogeneity of outcome 

measures, no pooling of data from the six included studies was undertaken and the studies are 

presented descriptively (Appendix: Table 2.3, 2.6 & 2.9). 

Two studies (1 mQ, 1LQ) tested fatigue by analysing strength of the hip abductors and 

external rotators before and after an exhaustive run (Bazett-Jones et al., 2013; Dierks et al., 

2008). Bazett Jones et al. (2013) showed that the external hip rotator, hip extensor and hip 

abductor strength was significantly reduced after the run in individuals with PFP. In contrast, 

Dierks et al. (2008) detected the only significant difference between both groups in run 
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duration, whereby the running duration of individuals with PFP was 10 minutes shorter than 

that in healthy controls. 

One LQ study analysed EMG VM: VL fatigue ratio and characteristics after an isometric 

closed chain quadriceps contraction in individuals with and without PFP. The study could not 

identify differences between and within the groups, but described a higher variability of VM: 

VL fatigue ratios in individuals with PFP (Callaghan et al., 2001).  

In one MQ study the fatigability of hip muscles in individuals with and without PFP was 

tested by means of an isokinetic contraction with 30 repetitions. The results demonstrated no 

significant group difference in endurance for hip abduction and internal rotation and only a 

moderate correlation between isometric strength and endurance for hip abduction and external 

rotation (McMoreland et al., 2011). 

One LQ study also used an isokinetic strength repetition to fatigue the hip abductors and knee 

extensors in individuals with and without PFP. Both groups had similar fatigue effects, 

whereby fatigue significantly influenced stability. Fatigue of the hip abductors led to greater 

changes in stability compared with quadriceps fatigue (Negahban et al., 2013).  

And lastly, one MQ study applied a lower extremity exertion protocol of repetitive single-

legged jumps. Individuals with PFP demonstrated a greater pelvis drop than the control 

group, with a growing difference with exertion. Furthermore, individuals with PFP had an 

increased hip flexion and hip adduction angle and a decreased hip internal rotation angle 

throughout the exertion protocol. These group differences were consistent after exertion. 

Mean strength measurements for the lateral trunk flexion, hip abduction and hip external 

rotation were significantly lower in individuals with PFP than that in healthy controls, 

however, these differences were not dependent on exhaustion (Willson et al., 2008).  

 

2.6.5. Discussion 

This review provides important findings regarding muscular dysfunction in PFP. The studies 

that assessed muscle strength revealed a strong evidence for weaker hip abductor and external 

hip rotator muscles and a moderate evidence for a reduced internal hip rotator, hip extensor, 

hip adductor and knee extensor strength in individuals with PFP. These findings are in 

accordance with previous systematic literature reviews, which found reduced hip (Almeida, 
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de Moura Campos Carvalho de Silva, Franca, Magalhaes, Burke, & Marques, 2015; 

Lankhorst et al., 2013; Rathleff et al., 2014; Van Cant et al., 2014; Waryasz & McDermott, 

2008) and knee muscle strength (Lankhorst et al., 2013; Waryasz & McDermott, 2008). 

However, a substantial heterogeneity, with l
2
 between 59% and 80%, was evident in strength 

studies, which has also been reported in previous systematic reviews (Almeida et al., 2015; 

Rathleff et al., 2014). In contrast to previous literature, this study carried out an analysis of 

factors that potentially relate to the observed heterogeneity, such as gender, test-position, 

normalisation method and values used (peak or averaged peak). However, neither of these 

factors influenced the strength results in studies consistently and thus, the present 

heterogeneity remains unexplained. Furthermore, even factors that revealed a significant 

association to the heterogeneity, such as the same testing-position during the knee extension 

strength test (p=0.04), still showed a substantial heterogeneity in the subgroups (68% and 

72%) (Appendix Table 3.32). This emphasises the complexity of the current assessment of 

strength and emphasises that further research should strive for a greater homogeneity in 

strength assessments.  

In addition to reduced quadriceps strength, the meta-analysis also revealed that individuals 

with PFP had reduced quadriceps muscle mass, which is in agreement with previous literature 

(Giles et al., 2013). However, this result should be interpreted with caution, because despite a 

significant result only one of the four included studies found a significant difference in 

quadriceps atrophy between the two groups. Muscle size is strongly correlated to muscle 

strength (Giles et al., 2013; Lieber, 2010) and thus atrophy is most likely a result of reduced 

force output, that can be caused by physiological changes or pain induced AMI (Giles et al., 

2013). However, it does not allow firm evidence to draw conclusions about the reason for the 

existence of atrophy nor the conclusion about atrophy being the effect or the cause of PFP. In 

addition, the number of studies analysing muscular atrophy is still limited and further 

research is needed to be able to evaluate the extent of atrophy in individuals with PFP.  

Although, weakness and atrophy might be caused by pain induced quadriceps arthrogenic 

muscular inhibition (AMI), only two studies investigated quadriceps AMI in individuals with 

PFP. These studies demonstrated a significantly higher AMI in individuals with PFP 

compared to healthy participants. AMI has been commonly observed in individuals with knee 

injuries and is a protective, reflexive mechanism of the body to alter the neural drive of the 

joint's surrounding muscles and thereby reducing the joint load (Hart et al., 2010; Rice & 
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McNair, 2010). Sustained AMI of the quadriceps can lead to persistent quadriceps weakness, 

which might cause alterations of kinetics and kinematics (Hart et al., 2010; Pietrosimone et 

al., 2014; Rice & McNair, 2010). Thus, if AMI is left untreated it might prevent recovery and 

might lead to joint damage (Hart et al., 2010; Palmieri-Smith et al., 2013; Rice & McNair, 

2010). Furthermore, AMI can also lead to the loss of the ability to efficiently control the 

eccentric quadriceps phase (Hart et al., 2010). Such an inability to control the eccentric 

quadriceps phase can be investigated by analysing the break phenomenon, which describes a 

break in the quadriceps torque or knee velocity curve during an eccentric quadriceps activity 

(Anderson & Herrington, 2003) and is believed to be caused by reflex inhibition of the 

quadriceps muscle, to avoid overstress of the PFJ (Anderson & Herrington, 2003; Herrington 

et al., 2003) and to decrease the pain experienced at a specific point in range (Anderson & 

Herrington, 2003). Thus, the break phenomenon might enable crucial insights into the muscle 

function. Although the majority of studies have investigated the eccentric quadriceps strength 

(Callaghan & Oldham, 2004b; Duvigneaud et al., 2008; Dvir et al., 1990; Kaya, et al., 2010; 

Van Tiggelen, Witvrouw, Coorevits, et al., 2004; Werner, 1995), only one study (LQ) 

analysed the break phenomenon. This study revealed that the break phenomenon was present 

in individuals with PFP (Anderson & Herrington, 2003). It appears that individuals with PFP 

are unable to smoothly control the eccentric quadriceps contraction (Anderson & Herrington, 

2003; Herrington et al., 2003). However, further research is required to investigate the 

prevalence of AMI and the associated break phenomenon in individuals with PFP (Anderson 

& Herrington, 2003). A combined analysis of AMI and the break phenomenon might enable 

the investigation of their contribution to muscular weakness and neuromuscular control 

deficits and whether these factors are correlated.  

Neuromuscular control deficits are commonly observed due to a relieving posture after an 

injury (Grimby & Thomee, 2003). Surface EMG can be used as a non-invasive method to 

supply clinically meaningful information about these neuromuscular control deficits as it 

provides the direct link to the muscle and information related to disturbed motor control and 

locomotor gait-related coordination strategies (Farina et al., 2014; Frigo & Crenna, 2009). 

These neuromuscular control deficits can be analysed by investigating the muscle activation 

intensity (EMG amplitude), muscle timing (EMG onset/ offset) and the motor unit 

recruitment (EMG frequency).  
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EMG amplitude has often been used to provide measures of the intensity of the neural drive 

and motor unit recruitment strategies (Farina et al., 2014). This systematic review revealed no 

difference of the EMG amplitude between individuals with and without PFP. These findings 

are in agreement with a prior systematic review on gluteal muscle activation in individuals 

with PFP (Barton et al., 2013). However, the included studies demonstrated a great 

heterogeneity. The analysis of factors that potentially related to the observed heterogeneity 

showed that two factors were significantly associated with the heterogeneity: (1) the EMG 

rectification and processing parameters and (2) the normalisation method. However, it should 

be noted that the heterogeneity within the subgroups was still substantial. To date the 

maximal voluntary contraction (MVC) normalisation is the most common method used to 

normalise the EMG signal (Frigo & Crenna, 2009). However, MVC measurements are carried 

out in different test positions, with different isokinetic and isometric test devices and different 

test intensities (submaximal and maximal contraction) and the diversity in MVC could be the 

reason for the differences in the normalised EMG results. Another problem of the MVC 

normalisation is the fact that it is impossible to ensure that the participant is really performing 

their maximum force during the MVC test. Furthermore, as several muscles are contributing 

to a voluntary effort it is difficult to determine the MVC value of a particular muscle correctly 

(Frigo & Crenna, 2009). Thus, the normalisation of the EMG signal with the MVC method 

can cause a greater variability within the EMG amplitude studies (Frigo & Crenna, 2009). 

Even studies that used the same task and the same electrode application showed significant 

differences (Coqueiro et al., 2005; Mostamand et al., 2011). Two studies described the similar 

electrode-placement and analysed the amplitude of the VL and the VM during a semi-squat 

(45° of knee flexion). One study revealed during a bilateral squat significantly higher 

intensities of VL and VM in the PFP population (Coqueiro et al., 2005), whereas the other 

study demonstrated significantly reduced intensities during a single leg squat in individuals 

with PFP (Mostamand et al., 2011). This heterogeneity raises the key question of what 

portion of variability is truly linked to the differences in motor control and what to the EMG 

measuring and processing technique. In addition, previous studies have shown that the size of 

surface action potential is only moderately linked to the motor-unit size and thus the 

amplitude size depends on factors which are difficult to monitor in experimental conditions 

(Farina, Holobar, Merletti, & Enoka, 2010). This reveals the impracticality to express the 

muscle activation in absolute values, as it is currently done with the MVC normalisation.  
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Another possible reason that no differences between the groups in EMG intensity were 

detected might be because the tasks were not sufficiently demanding to elicit differences. 

However, it should be emphasized that if PFP individuals had altered muscle activity within a 

specific muscle it would be expected to be apparent throughout all tasks even in less 

demanding tasks.  

The analysis of the muscle timing (EMG onset/ offset) suggested a trend towards a delay of 

VM and VL in individuals with PFP compared with healthy controls, which is in accordance 

with previous literature (Chester et al., 2008). Previous studies suggested that a delayed onset 

of the VM in relation to VL causes an abnormal lateral tracking, which results in an increased 

patellofemoral contact pressure (Bolgla et al., 2010; Fagan & Delahunt, 2008). It has been 

hypothesized that VM must be activated before VL for an optimal patella-tracking (Cowan et 

al., 2001). The imbalance is believed to originate from an altered neuromuscular motor 

control of the VM and VL or from a reduced capability of VM to produce force (Fagan & 

Delahunt, 2008). 

However, the clinical relevance of these significant differences is debatable. Wong (2009) 

emphasized that the EMG onset does not necessarily show that the muscle tension of the VM 

is strong enough to mobilize the patella and thus the EMG onset might not represent the 

mechanical onset of patella motion. Other authors critically scrutinised whether small 

differences of VM delay are clinically relevant (Chester et al., 2008; Lankhorst et al., 2012). 

Additionally, studies have reported a considerable heterogeneity between and within studies 

and remarked that differences in results might be equally due to chance and thus should be 

viewed with caution (Chester et al., 2008; Hug, 2011; Lankhorst et al., 2012). To date, the 

methods to determine the onset and offset vary considerably. Most studies defined the onset 

and offset by using the standard deviation (SD) of the signal above the baseline. But the SD 

definition for the onset/ offset of the muscles varies between 2SD up to 5SD of the signal 

above the baseline. Some studies combined the SD with the time of the occurrence by 

requiring a minimum period of 20 to 25 ms activation. Other studies required for the 

definition of the onset/ offset an intensity of the signal of at least 200-300 µV to define it as 

muscle activity or used computer detection algorithms. Another drawback is that onset/ offset 

detection methods usually do not take inter-cycle variability into account. The inter-cycle 

variability describes the intra- and inter-individual variability in kinematics during the phases 

of each task, e.g. stance phase in running. The presence of the inter-cycle variability makes it 
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difficult to determine the significance of the shift within a subject. That is why a slight shift 

should not be considered as significant if the inter-cycle variability is high and supports the 

critical question of the clinical relevance of small differences (Hug, 2011). However, the 

heterogeneity of the studies that investigated the EMG onset in this meta-analysis of the 

quadriceps was very low.  

The meta-analysis revealed no differences of the frequency bandwidth of the VM and VL in 

individuals with PFP. It is assumed that EMG frequency domain parameters provide 

information of the altered muscle activation or muscle inhibition, because these changes are 

reflected in the properties of the EMG (Farina et al., 2014). However, the studies included in 

this meta-analysis aimed to investigate the diagnostic accuracy of the EMG parameters 

associated with PFP and did not focus on the examination of differences between individuals 

with PFP and healthy controls. Furthermore, although the two studies were conducted by the 

same research groups, the heterogeneity between the two studies was substantial. Thus, future 

research is required to analyse the neural drive of lower extremity muscles in individuals with 

PFP and to investigate the real potential of it.  

Electromyography enables a direct link to the muscle performance. However, the EMG signal 

requires a careful interpretation. Despite the existence of the Standards for Reporting EMG 

data (Merletti, Wallinga, Hermens, & Freriks, 1999), the SENIAM guidelines (Hermens, 

Freriks, Merletti, Stegeman, Blok, Rau, Disselhorst-Kling, & Hägg,1999), recommendations 

provided by the Journal of Electromyography & Kinesiology (Journal of Electromyography 

& Kinesiology, 1996) and the International Society of Electromyography and Kinesiology 

(Winter, Rau, Kadefors, Broman, & De Luca, 1980) studies collect, analyse and report 

differently EMG data. Thus, further research should strive for a harmonisation of the 

recording techniques in terms of electrode positioning, signal conditioning, signal 

normalisation and filtering (Frigo & Crenna, 2009; Hug, 2011). In addition, the combination 

of EMG with kinematic and kinetic measurements might enable a better detection of 

underlying pathomechanical mechanisms and should receive more attention in future studies 

(Frigo & Crenna, 2009). The analysis of co-contraction pattern between muscle groups, such 

as the hamstrings and quadriceps muscle group, would be a useful addition, as this might give 

important information and should be addressed more in future studies.  

The meta-analysis also revealed that individuals with PFP have a reduced flexibility of the 

hamstrings muscles. Reduced flexibility in the hamstrings might be clinically relevant as it 
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could elicit more knee flexion during activities and might thereby lead to increased 

patellofemoral joint reaction forces (Piva et al., 2005). A reduced flexibility of the iliotibialis 

(ITB) is believed to cause a reduced rotation flexibility of the hip and thereby result in a 

lateral tracking of the patella, which might lead to higher contact pressure of the patella and 

thereby increase patellofemoral stress (Hamstra-Wright, Earl-Boehm, Bolgla, Emery, & 

Ferber, 2016). In addition, reduced flexibility of the hamstrings require a higher quadriceps 

force to overcome the passive resistance of the hamstrings muscles and can thereby result in 

an increased patellofemoral joint reaction forces (Piva et al., 2005). Furthermore, a reduction 

of hamstrings flexibility might increase the hamstrings loading and thereby cause an increase 

of the total contact force to the lateral facet of the patella (Elias et al., 2011).  

This meta-analysis found inconsistent results on differences after fatiguing exercises between 

individuals with PFP and healthy controls. Low evidence indicates that participants with PFP 

tend to have weaker hip abductor muscles when running in the exerted state, which was 

associated with an increased hip adduction angle, which could result in a dynamic knee 

valgus and might cause an increased lateral patellar tilt and thereby could result in 

retropatellar stress (Dierks et al., 2008; Willson et al., 2008). Most studies documented the 

pain levels before and after the fatiguing exercises and reported a pain increase with increased 

fatigue. This could make it difficult to distinguish if the changes have been triggered by pain 

or fatigue and requires further research. 

 

2.6.6. Conclusion 

This review confirmed the strong to moderate evidence of gluteal and quadriceps weakness in 

individuals with PFP. However, the review also showed that the existing heterogeneity of the 

recent studies that assessed lower limb strength remained to be an important and unexplained 

fact. Further research should strive for a harmonisation of strength assessments. Furthermore, 

this review showed that, although many studies investigated muscle function of individuals 

with PFP, some important underlying factors, such as AMI and the break phenomenon 

remained relatively understudied. These factors might enable an insight into muscular 

dysfunction and might even lead to an amendment of the current treatment scheme. Thus, 

future research is needed to investigate AMI and the break phenomenon in individuals with 

PFP.  
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This systematic review revealed: (1) no difference of the EMG amplitude between individuals 

with and without PFP, (2) inconclusive findings of the frequency bandwidth of the VM and 

VL and (3) a trend towards a delay of VM and VL in individuals with PFP. The different 

rectification, filtering and normalisation techniques of the EMG signal explained partially the 

increased heterogeneity between the studies. EMG is a useful tool to investigate muscular 

dysfunction in individuals with PFP, however, a greater homogeneity in EMG analysis is 

needed to allow a comparison of the EMG study results and to be able to review the current 

evidence more appropriately. Furthermore, the combination of EMG with kinematic and 

kinetic measurements and the analysis of muscular co-contraction patterns might enable a 

more clinical understanding of contributing muscular dysfunctional factors of PFP.  

 

2.6.7. Methodical considerations and limitations  

The literature search was performed in PubMed (MEDLINE), Cochrane library, CINAHL, 

SPORTDiscus and Web of Science (WoS). Since not all literature databases available were 

included, there was a risk that relevant literature was missing, this risk was heightened by the 

exclusion of 24 studies which had not been accessible. Furthermore, only studies with enough 

numerical data were included, which caused the exclusion of in total 30 articles. This might 

have biased the results, especially the results of the EMG analysis, with a total of 22 studies 

excluded.  

Since this systematic review aimed to identify the current evidence of muscular dysfunction 

in PFP it seemed to be essential to include all relevant studies. Consequently the 

heterogeneity of the included studies increased, especially because some studies recruited 

exclusively military recruits, students or athletes performing a specific sport. In addition, 

many studies did not provide information about a clear defined pain location, pain duration, 

or activities that aggravate the pain. Thus, more homogeneity could have been established by 

applying stricter inclusion criteria for studies. However, since many studies did not report 

detailed information about their participants, it would have caused an exclusion of a high 

number of studies and that would have biased the outcome as the reduced number of studies 

would have not been representative for the current evidence.  
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2.7. Treatment of patellofemoral pain 

The numerous factors which were linked to PFP resulted in the development of various 

conservative treatments. Several studies investigated the effects of exercise treatment 

(Clijsen, Fuchs, & Taeymans, 2014; Heintjes et al., 2003; Honarpishe, Bakhtiary, & Olyaei, 

2015; Van der Heijden, Lankhorst, van Linschoten, Bierma-Zeinstra, & van Middelkoop, 

2015; Van Linschoten, van Middelkoop, Heintjes, Bierma-Zeinstra, Verhaar, & Koes, 2011), 

strength training (Chiu, Wong, Yung, & Ng, 2012; Dolak, Silkman, McKeon, Hosey, 

Lattermann, & Uhl, 2012; Ferber et al., 2015; Fukuda et al., 2012; Ismail, Gamaleldein, & 

Hassa, 2013; Nakagawa et al., 2008; Willy & Davis, 2011), education (Barton & Crossley, 

2016; Barton & Rathleff, 2016), taping (Aminaka & Gribble, 2008; Christou, 2004; Cowan, 

Bennell, & Hodges, 2002; Crossley et al., 2001; Crossley et al., 2000; Lee Herrington, 2001; 

Hickey, Hopper, Hall, & Wild, 2016; Mostamand, Bader, & Hudson, 2010; Mostamand, 

Bader, & Hudson, 2013; Osorio et al., 2013; Salsich, Brechter, Farwell, & Powers, 2002; 

Song et al., 2014), braces (Denton et al., 2005; Lun, Wiley, Meeuwisse, & Yanagawa, 2005; 

Petersen, Ellmann, Rembitzki, Scheffler, Herbort, Bruggemann, Best, Zantop, & Liebau, 

2016; Petersen, Ellermann, Rembitzki, Scheffler, Herbort, Sprenker, Achtnich, Bruggemann, 

Best, Hoffmann, Koppenburg, & Liebau, 2014; Powers, Doubleday, & Escudero, 2008; 

Powers, Ward, et al., 2004a; Powers, Ward, Chen, Chan, & Terk, 2004b; Swart, van 

Linschoten, Bierma-Zeinstra, & van Middelkoop, 2012), foot orthoses (Barton, Munteanu, et 

al., 2010; Boldt, Willson, Barrios, & Kernozek, 2013; M. S. Rathleff et al., 2015), 

manipulation (Crowell & Wofford, 2012; Grindstaff, 2009; Grindstaff, Hertel, Beazell, 

Magrum, Kerrigan, Fan, & Ingersoll, 2012; Miller, Westrick, Diebal, Marks, & Gerber, 2013) 

and acupuncture (Bizzini, Childs, Piva, & Delitto, 2003; Crossley et al., 2001).  

Although high-quality systematic reviews have been carried out on treatment approaches of 

individuals with PFP, a paucity of research and a discord between the evidence base and 

expert clinical reasoning became apparent (Barton et al., 2015). Thus, Barton et al. carried out 

a high-quality systematic review covering the literature up to September 2013. Moreover they 

combined the findings with clinical reasoning from 17 international experts, who were 

required to have at least 5 years clinical experience with PFP as a specialist focus and had to 

be actively involved in PFP research (Barton et al., 2015). Their opinion was obtained by 

semi-structured interviews. Based on these findings Barton et al. created a „Best Practice 

Guide to Conservative Management of Patellofemoral Pain‟ (Barton et al., 2015).  
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At the International Patellofemoral Pain Research Retreat in Manchester 2015 a consensus 

meeting was held to update the evidence base and to generate a consensus-based 

recommendation. Therefore a systematic review was carried out that summarised the findings 

between January 2010 and June 2015. Based on the findings of the systematic review and the 

„Best Practice Guide to Conservative Management of Patellofemoral Pain‟ statements were 

formulated regarding each intervention, which reflected the evidence and the effect on pain, 

function and overall improvement. A PFP investigators panel was formed by 35 attendees of 

the International Patellofemoral Research Retreat, including physiotherapists, doctors, 

podiatrists, biomechanics, epidemiologists and sports therapists. The experts were asked to 

vote on 24 statements by using a scale from 0 (not appropriate) to 9 (appropriate) (Crossley et 

al., 2016b). Based on the consensus voting, the following six recommendations were made: 

1. To reduce pain in the short, medium and long term and to improve function in the medium 

and long term, exercise-therapy is recommended. 

2. Combining hip and knee exercises is recommended to reduce pain and improve function in 

the short, medium and long term and this should be favoured over knee exercises alone. 

3. To reduce pain in the short and medium term, combined interventions are recommended. 

4. To reduce pain in the short term, foot orthoses are recommended. 

5. Patellofemoral, knee and lumbar mobilisations are not recommended. 

6. Electrophysical agents are not recommended (Crossley et al., 2016b). 

These recommendations and the recommendations of Barton et al. (Barton et al., 2015) will 

be explained more into depth in the following chapter.  

 

2.7.1. Exercise principles 

The findings showed that five principles are key factors to ensure a successful treatment: 

1) PFP is a multifactorial condition and requires an individually tailored multimodal approach 

(Barton et al., 2015; Crossley et al., 2016b). 

2) Immediate pain relief is a priority to gain the trust of the patients and to improve function 

(Barton et al., 2015; Crossley et al., 2016b). 
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3) Active over passive interventions should be emphasised (Barton et al., 2015) and exercises 

as a stand-alone treatment are recommended Crossley et al., 2016b). 

4) Patient education and activity modification is essential for a successful treatment (Barton et 

al., 2015). 

5) Combined interventions are recommended to reduce pain in the short and medium term 

(Crossley et al., 2016). Furthermore, multimodal interventions, such as the gluteal and 

quadriceps strengthening and stretching combined with patellofemoral joint mobilisation and 

taping, resulted in the strongest and most consistent evidence (Barton et al., 2015; Crossley et 

al., 2016). 

The investigators recommended that no more than 3-4 exercises should be prescribed to 

ensure the compliance of the patient with the treatment. These recommendations were 

contrary to high dose rehabilitation programmes of more than 4 exercises, which had shown 

to be more successful than low dose rehabilitation programmes (Barton et al., 2015). 

 

2.7.2. Active interventions 

 

    Evidence suggests:  

 

 

     Research lacks:  

 

 

Figure 2.4: Summary of the current recommended active interventions 

 

Active interventions need to include gluteal strengthening exercises to ensure successful 

rehabilitation (Barton et al., 2015). Whereby knee and hip exercises should be combined to 

reduce pain and improve function (Crossley et al., 2016). A therapy-regimen tailoring hip-

focused combined with knee-focused exercises seem to result in superior outcomes compared 

with isolated knee-focused exercises (Crossley et al., 2016) (Figure 2.4). 

Combined knee and hip exercises Preference to CKC exercises Biofeedback training 

Studies investigating gait retraining Detailed descriptions of the exercise interventions 
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No clarity could be reached if open kinetic or closed kinetic exercises are more effective to 

train the quadriceps strength. However, it could be concluded that preference should be given 

to closed kinetic chain (CKC) exercise in order to replicate function (Figure 2.4). Open 

kinetic chain exercises contrarily can be useful during early stage rehabilitation to strengthen 

the quadriceps more specifically (Barton et al., 2015).  

Current evidence suggests that the vastus medialis shows a delayed activity in relation to the 

vastus lateralis and thus EMG biofeedback is recommended to address this problem (Barton 

et al., 2015). If an EMG biofeedback training programme cannot be performed because of the 

lack of material, instead the biofeedback can be provided by using mirrors, or video recording 

to facilitate an improvement of hip and knee mechanics (Barton et al., 2015) (Figure 2.4). 

Furthermore, the active interventions can also incorporate core stability or trunk 

strengthening exercises (Barton et al., 2015). 

Active interventions such as gait retaining were advocated by experts. However, the 

implementation of these retraining programmes in clinical practice might be challenging, as 

running retraining is mostly carried out in gait laboratories (Barton et al., 2015). 

Although exercise therapy has proven to be successful the current research lacks detailed 

descriptions of the exercise interventions, which is limiting the translation of research 

findings into clinical practice (Crossley et al., 2016). 

 

2.7.3. Passive interventions 

 

    Evidence suggests:  

 

 

 

    Research lacks:  
 

 

 

Figure 2.5: Summary of the current recommended passive interventions 

Hamstrings and 

calf muscles 

stretching 

Patella taping and bracing and foot 

orthoses if more specifically targeted 

to individuals 

Studies investigating braces and straps that focus on the stabilisation of the frontal and 

transverse plane of the hip, rather than the coronal and sagittal plane of the knee. 

Trrigger points, electrotherapy, 

lumbar manipulations cannot 

be recommended 
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Studies have shown that patella taping might decrease acute pain and thus can be 

recommended in early rehabilitation stages (Barton et al., 2015; Logan et al., 2017). Patella 

braces also showed an immediate pain relief and thus can be recommended in early 

rehabilitation stages if patella tape cannot be applied due to skin irritation or allergies (Barton 

et al., 2015) (Figure 2.5). 

The evidence on foot orthoses showed conflicting results, which is also caused by the 

situation that they are heterogenously prescribed for individuals with PFP. Despite the 

conflicting evidence experts concluded that foot orthoses can be recommended to reduce pain 

in the early stage of rehabilitation (Crossley et al., 2016) (Figure 2.5). However, the efficacy 

of foot orthoses might improve if they are more specifically targeted to individuals with a 

clear foot pronation and thus who are more likely to benefit (Barton et al., 2015). 

Passive interventions such as lower limb stretching should not be performed in isolation. 

However, the involvement of especially hamstrings and calf stretches is recommended to 

ensure optimised knee and ankle biomechanics (Barton et al., 2015). Experts did not 

recommend the stretching of the iliotibial band (Barton et al., 2015) (Figure 2.5). 

Both guidelines recommended flexible knee braces in acute knee pain conditions (Barton et 

al., 2015; Crossley et al., 2016). Studies revealed that patellofemoral bracing did not improve 

patella tracking under dynamic loaded (Powers, Ward, Chan, Chen, & Terk, 2004). It is 

believed that patellofemoral braces might reduce pain by increasing contact area. A sleeve or 

stabilising strap might increase the contact of the patella in the femoral tochlea. However, 

results of knee braces in PFP are still mixed and it is often believed that they might cause 

weakness in the surrounding muscles (Callaghan, Parkes, & Felson, 2016; Rodriguez-

Merchan, 2014; Van der Heijden et al., 2015). Callaghan et al. (2016) tested a flexible knee 

brace over a period of 6 and 12 weeks in individuals with patellofemoral osteoarthritis and 

showed that the maximal strength of the quadriceps remained the same, but that the AMI 

significantly decreased. In addition, the study of Callaghan et al. (2016) revealed that 

participants with patellofemoral osteoarthritis showed a modest increase in quadriceps 

strength after 12 weeks. Sinclair et al. (2016) investigated the effect of a knee brace on lower 

extremity kinematics in participants with PFP. They showed that the knee brace reduced 

significantly the internal peak knee abduction moment and improved the outcome of pain, 
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sport function and daily living and quality of life of the knee injury and osteoarthritis 

Outcome score in individuals with PFP (Sinclair, Selfe, Taylor, Shore, & Richards, 2016). 

Since flexible knee braces seem to not cause quadriceps weakness and improve lower limb 

kinetics, they might be a beneficial treatment for participants with PFP to modify lower limb 

biomechanics. Although it is known that an excessive dynamic knee valgus is prevalent in 

individuals with PFP, to date braces focus on the stabilisation of the coronal and sagittal plane 

of the knee joint and do not address the transverse plane of the hip (Figure 2.5). 

Other passive interventions, such as trigger points, electrotherapy, lumbar manipulations and 

ultrasound were not effective and thus are not recommended in the therapy of PFP (Barton et 

al., 2015; Crossley et al., 2016) (Figure 2.5). However, if muscle and facial tightness is 

present massage can be additionally performed. Patellofemoral joint mobilisation can be 

additionally performed, but only if the patellofemoral joint is not hypermobile. Mobilisation 

of the ankle is considered as an important exercise to avoid an over-pronation and to ensure 

appropriate shock absorption (Barton et al., 2015; Crossley et al., 2016).  

 

2.8. Discussion and conclusion 

Patellofemoral pain is the most frequently diagnosed condition in individuals with knee 

complaints and especially prevalent in young and physical active adults.  

Long term follow up studies revealed that the majority of individuals with PFP experienced 

an unfavourable recovery, despite initially receiving treatment and education. These results 

show that PFP is not self-limiting (Lankhorst et al., 2015). Persistent pain can negatively 

affect daily occupational tasks, physical activity, social participation and general and mental 

health. Thus, PFP should be framed as a condition that has the potential to become chronic 

and the treatment should address the chronic aspect as well.  

The pathophysiology of PFP is multifactorial and associated with factors which are causing a 

maltracking of the patellofemoral joint. Biomechanical studies have shown that individuals 

with PFP demonstrated altered kinematic and kinetic pattern. Although studies emphasise the 

importance of investigating active structures (muscles and tendons) in combination with a 

biomechanical analysis, it has not yet been realized in individuals with PFP (Claudon et al., 

2012; Dionisio, Marconi, dos Santos, & Almeida, 2011; Kwak et al., 2000; Lucareli, Amir, 

Bley, Nayra, Garbelotti, et al., 2014; Munkh-Erdene, Masaaki, Nakazawa, Aoyagi, & 
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Kasuyama, 2011; Powers et al., 1997; Salsich et al., 2001). Many studies have been published 

on muscular dysfunctional factors and revealed that current research focuses predominantly 

on muscle strength measurements and the investigation of neuromuscular control deficits by 

using EMG. In contrast, the investigation of AMI is lacking and to date it remains unclear 

whether individuals with PFP have weak or inhibited muscles. The advantage of a holistic 

approach by combining biomechanical analysis with functional muscle measurements has 

been proven in several studies. However, holistic approaches combing biomechanical 

analysis with functional muscle measurements have not been applied in individuals with PFP. 

Thus, it remains unknown which biomechanical alterations are associated with muscular 

underlying factors of PFP.  

Guidelines for treatment programmes of PFP have been recently developed based on 

systematic reviews on conservative treatments and expert opinions. These guidelines 

recommend that pain should be reduced in the short, medium and long term. Furthermore, to 

improve function in the medium and long term, exercise-therapy is recommended. To achieve 

the reduction in pain and improvement in function it is advised to combine hip and knee 

exercises. Foot orthoses, knee braces, straps and patellar tape can be applied to reduce pain in 

the short term. The use of patellofemoral, knee and lumbar mobilisations, as well as 

electrophysical agents are not recommended. 

Despite the well-developed treatment guidelines, the long-term prognosis of PFP is alarming. 

As it was discussed in chapter 2.4, the prognosis of PFP and the long-term effect of PFP 

treatments showed that the majority of individuals with PFP still suffered 4-5 years after their 

initial treatment of PFP. This raises questions over the validity of current treatments and their 

ability to address and sufficiently alter the pathophysiological factors that might lead to 

chronic PFP.  

Since the guidelines have been published very recently, one explanation why current 

treatments in individuals with PFP seem to be unable to prevent the chronicity of PFP could 

be because no treatment has been established based on these guidelines yet. Thus, to date 

studies that investigate the effect of an intervention based on the current recommendations on 

muscular dysfunction in individuals with PFP have not been carried out.  
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2.9. Gaps in literature 

This review showed that several knowledge gaps in research on patellofemoral pain currently 

exist: 

1. In 2016 a high-quality guideline on recommended physical interventions for PFP were 

developed, which included recommendations on exercises, bracing and combined 

interventions (Crossley et al., 2016). However, to date no study has developed an 

exercise programme based on these high-quality guideline and investigated the effect of 

such an exercise programme.  

2. Furthermore, the high-quality guideline from 2016 recommended that knee braces and 

straps could reduce the pain in short term (Crossley et al., 2016). However, to date no 

brace or strap was able to modify the hip biomechanics to thereby reduce the dynamic 

knee valgus in individuals with PFP. Thus, further research on the effect of knee braces/ 

straps that aim to modify hip biomechanics is needed.  

3. Although much research has been published on pathophysiological factors in individuals 

with PFP, yet little is known whether and to what extent acute pain would influence the 

functional performance, muscular strength and AMI in individuals with PFP.  

 

2.10. Aim of this thesis 

This thesis aimed to investigate the effect of treatments on muscular dysfunction in 

individuals with PFP.  

Chapter 3: Therefore a robust holistic test protocol which encompassed the reliable 

biomechanical measures, patella position and foot posture measures, muscle flexibility, 

strength and inhibition tests and a reliable measurement tool to investigate muscle activation 

and co-contraction of the quadriceps and the hamstrings muscles was developed.  

Chapter 4: Flexible knee braces are recommended to reduce acute PFP. The Powers
TM

 strap 

has been invented to decrease the hip internal rotation angle in individuals with PFP. 

However, the effect of the Powers
TM

 strap has not been investigated. Thus, a study on the 

effect of the Powers
TM

 strap in individuals with and without PFP was performed. The primary 

null-hypothesis was as follows:  
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1. H0: There would be no significant differences in hip and knee internal rotation, 

flexion and adduction angles and moments when wearing the Powers
TM

 strap.  

Null-hypotheses for the secondary outcomes:  

1. H0: There would be no significant differences in hip and knee internal rotation, 

flexion and adduction angles and moments between individuals with and without PFP. 

2. H0: There would be no significant difference in co-contraction ratio and the net-

activation of the quadriceps and hamstrings muscles between individuals with and 

without PFP. 

Chapter 5: Guidelines for treatment programmes of PFP have been recently published. 

However, no treatment has been established based on these guidelines yet. Thus, this study 

aimed to develop a 6-week intervention programme based on the current guidelines and 

investigated the effect of this 6-week intervention programme on muscular dysfunction and 

functional performance in PFP.  

Therefore the Null-Hypotheses for the primary outcomes were:  

1. "Pain and function would not be significantly improved after the 6-week evidence 

base exercise programme in individuals with PFP." 

2. "The 6-week exercise programme would not significantly modify lower limb 

biomechanics in individuals with PFP." 

3. "The 6-week exercise programme would not increase muscle flexibility in individuals 

with PFP."  

4. "Quadriceps strength would not be increased after the 6-week exercise programme."  

 

Secondary outcomes were also investigated whereby the relevant null hypothesis would be that: 

"There would be no significant differences after a 6-week evidence base exercise programme in 

individuals with PFP in the following: 

 balance 

 the break phenomenon 

 quadriceps inhibition 

 co-contraction ratio and net activation of the quadriceps and hamstrings muscles." 
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Chapter 6: Pain is believed to be linked to several factors, such as alterations of lower limb 

biomechanics, muscular coordination, strength and AMI. However, to date in individuals with 

PFP the isolated effect of pain has not been investigated. This study aimed to investigate this 

direct link of pain on muscular dysfunction in individuals with PFP. 

Therefore, the hypotheses of this study were:  

1. H0: There would be no significant differences in knee and hip kinematics and kinetics 

between pain and no pain in individuals with PFP. 

2. H0: There would be no significant differences in AMI and muscular strength between 

pain and no pain in individuals with PFP. 

3. H0: The break phenomenon would be equally present in pain and no pain in individuals 

with PFP.  

4. H0: Participants with PFP would show an equal co-contraction of the quadriceps and 

hamstrings muscles in a) running, b) step down task and c) single leg squat task. 



 

Chapter 3: Methodology and repeatability 
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Chapter 3: Methodology and repeatability 

This chapter analysed the reliability of posture and flexibility assessments of the lower limb, 

measurements to assess strength, arthrogenic muscle inhibition (AMI) of the quadriceps, as 

well as biomechanical assessments (3D movement analysis, surface EMG of lower limb 

muscles).  

 

3.1. Introduction 

The results of the systematic review demonstrated that a broad range of studies on 

patellofemoral pain exist but that a more thorough understanding of muscular dysfunction and 

its effects on functional performance is still lacking. This study aimed to assess the reliability of 

a test-protocol, which investigated muscle dysfunction in an integrated approach by combing 

measurements to assess AMI, the break phenomenon, strength of the quadriceps muscle, lower 

limb flexibility and foot and patella posture assessments, the 3D motion-analysis system and 

the sEMG analysis during functional tasks in healthy participants. The results of this study will 

enable the development of a robust and integrated protocol on muscle dysfunction, which will 

be used to examine how different treatment approaches and pain influence muscle dysfunction 

in individuals with PFP and healthy controls.  

 

3.2. Experiment procedures  

The ethical application HSR 15-22 was obtained from the University of Salford Research and 

Governance committee on the 21nd May 2015 (Appendix Methods 3.1).  

 

3.2.1. Participants 

Four healthy men and five healthy women (age: 26.11± 3.02 years, height: 1.71±0.1 m, mass: 

66.96±12.46kg, BMI: 22.73 ±2.74kg/m
2
) were tested in two separate sessions within two 

weeks. Participants were recruited from Salford University staff and student population.  

To be included in the study a participant had to meet all of the following criteria: (1) Being 

healthy and having no previous lower limb injuries, (2) Being able to perform squatting, step 
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down, running, anterior reach test and the maximal voluntary isometric contraction (MVIC), (3) 

Age range: 18-45 years old.  

Participants were excluded if: (1) They had any history of previous lower limb surgery or 

patella instability and dislocation (2) They had any history of traumatic, inflammatory or 

infectious pathology in the lower extremities or any internal derangements. (3) They reported 

previous or existing knee pain. (4) They could not perform one of the required tests during the 

measurement.  

 

3.2.2. Procedures 

The test was performed in the human performance laboratory in the Mary Seacole building at 

the University of Salford. If a participant was interested in taking part he/ she received a 

participant information sheet (Appendix Methods 3.2) and an appointment was booked. Upon 

arrival at the laboratory, the participant was briefed through the study and the objectives of the 

investigations and the study equipment was explained. If the participant still agreed to take part 

in this research study and had no questions, he/ she was asked to sign the informed consent form 

and a health history questionnaire (Appendix Methods 3.3 and 3.4). The health history 

questionnaire consisted of 13 questions investigating potential risks associated with the study. If 

potential risks to the participant were identified, then participation within the study was 

discussed and the individual was either asked to consult a physician to receive approval for the 

participation or was advised not to participate in this study.  

The individual was then asked to change into their shorts and a comfortable t-shirt. Firstly, the 

body mass and height of each participant was taken followed by the posture and flexibility 

assessment.  

The following flow-chart gives and overview over the measurement procdure for this study 

(Figure 3.1).  

 

3.2.3. Main outcome measures 

The following outcome measures were investigated:  

1. 6-item foot posture index 
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2. Patella medial/ lateral displacement in cm, patella tilting on grading scale: -2 to 2 

3. Hamstrings and quadriceps flexibility in degrees 

4. Ankle range of motion in degrees and cm 

5. Quadriceps inhibition in % (of the Central Activation Ratio) 

6. Isometric quadriceps and hamstrings strength in Nm and normalised to body mass (kg) 

7. Eccentric and concentric quadriceps strength in Nm and normalised to body mass (kg) 

8. Ant reach test distance in cm and reach distance normalised to leg length 

9. Peaks of hip and knee flexion, adduction and internal-rotation angles and moments 

during functional tasks 

10. sEMG waveform and the peak of the sEMG signal during each task. 

 

3.2.4. Flowchart of the testing procedure 

The following flowchart (Figure 3.1) describes the originally planned measurement procedure 

and the amendments undertaken to address the challenges that occurred during the 

measurement procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.1: Flow chart of the test procedure (part 1) 

Hamstrings and quadriceps flexibility in supine lying and 

ankle range of motion in standing: 10 minutes 

Briefing through study, filling in the informed consent 

and the health history  questionnaire and changing into 

shorts and t-shirt: 15 minutes 

6 item foot posture index: 5 minutes 

Patella assessment (med/ lat, tilting): 5 minutes 
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Figure 3.1: Flow chart of the test procedure (part 2) 

Hamstrings and quadriceps strength 

and inhibition test: 10 minutes 

Placement of the 40 retro-reflective 

markers and sEMG placement on 

original measurement: 1 hour, after 

the reduction to 8 sEMG channels: 

35 minutes:  

- Vastus lateralis 

- Vastus medialis 

- Biceps femoris 

- Semitendinosus 

- Gluteus medius 

- Gluteus maximus 

- Medial gastrocnemius 

- Tibialis anterior 

 

3D tasks (original measurement: 1 

hour 20 minutes, after the 

exclusion of the anterior reach test 

and 8 sEMG channels: 45 minutes 

- Static trial in standing 

- Running at self selected 

speed 

- Single leg squat 

- Step down task 

- Anterior reach test with the 

star excursion balance test 

The data-collection with 16 channels 

of sEMG was not feasible, because:  

- the preparation and application of 

the sEMG took more than an hour 

- during the data collection the 

following problems occurred: 

Qualisys became very slow, 

Qualisys crashed frequently, and 

at least one sEMG channel was 

lost during each trial.  

Thus, to ensure the feasibility of the 

study the sEMG collection was 

reduced to the quadriceps and 

hamstrings muscles.  

The anterior reach test was performed 

very differently by the participants. 

However, a standardisation of the task 

should be avoided and it is required 

that the individual determine his/ her 

optimal movement patterns to perform 

the task. Due to the heterogeneity of 

movement patterns, the 3D analysis of 

the anterior reach test was not feasible. 

Thus, it has been decided to not collect 

3D motion data during this task and to 

collect only the reach distance in cm. 
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3.3. Methodology of the static and dynamic measurements 

The static and dynamic measurements involved posture, muscle flexibility, strength, quadriceps 

AMI and the quadriceps break phenomenon assessments. 

 

3.3.1. Posture and flexibility 

The examination of the foot posture was performed by using the 6-item foot posture index 

(FPI-6) (Figure 3.2), which was a novel method of rating foot posture in standing using a 

simple 6-item scale (Jarvis, Nester, Jones, Williams, & Bowden, 2012). The 6-item foot posture 

index has been chosen as it is quick and simple to perform and showed excellent intra-rater 

reliability and good validity as a clinical instrument (Keenan, Redmond, Horton, Conaghan, & 

Tennant, 2007; Redmond, Crosbie, & Ouvrier, 2006). Furthermore, a moderate correlation 

between the FPI and the dynamic foot function could be identified in participants with and 

without PFP (Barton, Levinger, Crossley, et al., 2011). Since participants with PFP showed a 

more pronated foot posture resulting in an earlier timing of the peak rearfoot eversion during 

walking, it seemed to be essential that the foot posture was assessed (Barton, Levinger, 

Crossley, et al., 2011; Barton, Levinger, Webster, & Menz, 2011).  
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Figure 3.2: The 6-item foot posture index (Redmond, 2005) 
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Patellofemoral malalignment has been shown to be associated with patellofemoral pain 

progression (Hunter et al., 2007; Lin, Lin, Cheng, Lin, & Jan, 2008; Pal et al., 2013; Pal et al., 

2012; Pal et al., 2011), thus patella alignment was assessed. The patella alignment (lateral-

medial displacement and lateral-medial tilt) was assessed in supine lying. For assessing the 

lateral-medial displacement, the method described by McConnell was used (1986), which had 

been shown to be reliable (Herrington, 2002; McConnell, 1986; McEwan, Herrington, & Thom, 

2007). Therefore, the knees were positioned with a pillow in 20° knee flexion, to ensure that the 

patella was placed in the trochlea groove. A soft tape was gently applied over the knee, starting 

medially and laterally on the femoral epicondyles. Then, the medial and lateral epicondyles of 

the femur were palpated and marked with a small line on the previously applied tape. 

Afterwards, the mid-point on the patella was marked with a pen. The distance from the medial 

epicondyle to the mid-point of the patella, as well as the lateral epicondyle to the mid-point of 

the patella were measured and noted in cm (Figure 3.3). Afterwards the lateral distance was 

subtracted from the medial distance and noted in cm.  

 

 

Figure 3.3: Measurement of the lateral-medial patella displacement: left picture medial measurement, right 

picture lateral measurement 

 

To measure the lateral-medial tilt the method described by Fitzgerald & McClure (1995) was 

used. Therefore the thumb and the index finger were placed on the medial and lateral boarder of 

the patella. Both digits should be of equal height (Figure 3.4). If the digit palpating the medial 

boarder is more anterior than the finger on the lateral boarder, then the patella is laterally tilted. 

The patella is medially tilted if the finger on the lateral boarder is more anterior than the finger 

on the medial boarder (Fitzgerald & McClure, 1995). The tilting was ranked on a scale from -2 

(= highly medially tilted) to +2 (highly laterally tilted). 
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Figure 3.4: Measurement of the medial/ lateral tilt of the patella (Biedert, 2004) 

 

To investigate the anterior/ posterior tilt of the patella, the technique described by Fitzgerald & 

McClure (1995) was utilised. The anterior tilt was determined by palpating the inferior pole of 

the patella. If the anterior pole was easily palpable, it was noted as no significant anterior tilt. If 

the anterior tilt was prevalent a downward pressure was applied on the superior pole of the 

patella, so that the inferior pole became more superficial enough to palpate (Figure 3.5). The 

tilting was ranked on a scale from -2 (= highly anteriorly tilted) to +2 (highly posteriorly tilted). 

 

 

Figure 3.5: Measurement of the anterior/ posterior tilt of the patella 
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All flexibility measurements were assessed with active tests for feasibility reasons: Firstly, to 

measure range of motion (ROM) in a reliable way is more challenging with a passive 

measurement than with an active measurement, because the force exerted by the investigator to 

push the limb into the end-range position can vary and thereby result in goniometric 

discrepancies (Gajdosik & Bohannon, 1987). Secondly, a second investigator is needed to carry 

out passive ROM tests in a standardised manner (Cejudo, Sainz de Baranda, Ayala, & Santonja, 

2015; Gabbe, Bennell, Wajswelner, & Finch, 2004). Thus, all ROM tests were carried out with 

an active ROM test. However, active ROM represents the "initial length" of the hamstrings, 

whereas the passive ROM represents more the maximal length of the muscle stretch (Gajdosik, 

Rieck, Sullivan, & Wightman, 1993). Literature revealed that a reduced quadriceps and 

hamstrings flexibility, as well as a reduced ankle ROM were associated with PFP and should be 

addressed in current treatments (Barton et al., 2015; Crossley et al., 2016b; Macrum, Bell, 

Boling, Lewek, & Padua, 2012; Piva, 2005; Piva et al., 2009). Thus, the flexibility of the ankle 

ROM, the hamstrings and the quadriceps were assessed in this study.  

The hamstrings flexibility was measured by using the active knee extension test, which has 

been shown to be reliable (Gabbe et al., 2004; Gajdosik et al., 1993; Hamid, Ali, & Yusof, 

2013; Neto, Jacobsohn, Carita, & Oliveira, 2014). The participants laid down supine, with the 

arms across the chest. The hip and knee of the dominant leg were actively held in 90° flexion, 

while the opposite leg fully extended. The participants actively straightened the knee of the 

dominant leg until the point when the other thigh began to move from the vertical position. The 

popliteal angle at this point was measured with a goniometer by the assessor (Figure 3.6).  
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Figure 3.6: Measurement of the hamstrings flexibility 

 

For assessing the flexibility of the quadriceps, the modified Thomas test was utilised, which has 

been shown to be reliable (Cejudo et al., 2015; Gabbe et al., 2004). Therefore, the participants 

laid down supine at the edge of the examination couch. The participants were asked to pull the 

non-dominant leg towards the chest and to hold it. The other knee was extended in a neutral hip 

position. The participant flexed then slowly the knee of the dominant leg until he/ she was able 

to maintain a neutral hip position. The assessor measured the knee angle in this position with a 

goniometer (Figure 3.7).  

 

 

Figure 3.7: Measurement of quadriceps flexibility  



 

Chapter 3: Methodology and repeatability 

 

70 

 

The ankle ROM was measured by using a weight-bearing lunge, which has been shown to be 

reliable, have a low measurement error and can be obtained from a novice rater (Konor, 

Morton, Eckerson, & Grindstaff, 2012). The participants were asked to stand facing a wall, 

with about 10 cm between the feet and the wall. Throughout the test the heel stayed in contact 

with the ground and the knee was always in line with the second toe. The participants bent the 

front knee and thereby lunged forward until their knee touched the wall without lifting the heel 

from the ground. The assessor recorded the distance of the great toe from the wall and the ankle 

range of motion by using a goniometer (Figure 3.8). 

 

  

Figure 3.8: Measurement of ankle flexibility  

 

3.3.2. Assessment of arthrogenic muscle inhibition (AMI) 

The neurophysiology that causes AMI is quite complex. AMI is characterised by a reduction in 

the Motor-Neuron (MN) pool recruitment. This MN-pool recruitment can mainly be assessed in 

two ways:  

1. the product of neuromuscular recruitment of the MN pool and 

2. the voluntary force output of that MN pool 

Both methods have advantages as well as disadvantages (Hopkins & Ingersoll, 2000).  
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3.3.2.1. Assessment of the neuromuscular recruitment of the MN pool 

One possibility to investigate the measure of the MN-pool recruitment is by using the 

Hoffmann-reflex (H-reflex), which is a low-voltage stimulation of the femoral nerve, resulting 

in a monosynaptic excitation of alpha-MN in the anterior horn of the spinal cord, (Bolgla & 

Keskula, 2000; Hopkins & Ingersoll, 2000) or by investigating the V-wave, which is an 

electrophysiological variant of the H-reflex and recorded during a MVIC (Aagaard, Simonsen, 

Andersen, Magnusson, & Dyhre-Poulsen, 2002). The V-wave can be used to reflect the level of 

efferent neural drive from spinal alpha-MNs during a maximum voluntary contraction (MVC). 

The main difference to the H-reflex is the involvement of the motor cortex (Aagaard et al., 

2002). Previous studies have shown that the V-wave response has been reliable in the 

gastrocnemius medialis, the soleus and the flexor carpi radialis, when it was normalised to the 

corresponding M-wave (El Bouse, Gabriel, & Tokuno, 2013; Solstad, Fimland, Helgerud, 

Iversen, & Hoff, 2011; Stutzig & Siebert, 2015). The electric stimulation of the peripheral 

nerve causes direct activation of the efferent fibers, sending action potentials immediately from 

the point of stimulation to the neuromuscular junction. This efferent arc produces a response in 

the EMG known as the muscle response (M-wave). However, so far the reliability of the V-

wave in the quadriceps has not been investigated.  

Previously in literature it has been described that the H-reflex and V-wave represent the 

stimulated portion of the MN. This means that a decreased H-reflex indicated an inhibitory 

action from the knee joint afferents on the quadriceps motor neurons (Bolgla & Keskula, 2000; 

Hopkins & Ingersoll, 2000). However, the assumption that the H-reflex faithfully represents the 

MN excitability is inaccurate, as oligosynaptic inputs, Ib and recurrent and presynaptic 

inhibitory pathways are likely to contribute to the H-reflex as well (Knikou, 2008; Palmieri et 

al., 2004; Pierrot-Deseilligny & Mazevet, 2000). Moreover presynaptic inhibition differs with 

age and training type and might be influenced by anatomical or genetic differences (Aagaard et 

al., 2002; Palmieri et al., 2004). However, altered H-reflexes do not automatically indicate 

unphysiological changes and inhibition. Endurance athletes showed elevated H-reflexes 

compared to power and sprint athletes. Whereby ballet dancers had reduced H-reflexes in 

comparison to physical educational students (Aagaard et al., 2002). Furthermore, the 

excitability state of cells and their sub-threshold excitability level varies across and within 

subjects. Thus, the use of the H-reflex in individuals with patellofemoral pain (PFP) should be 

critically examined as it has been shown to be reliable in healthy controls (Briani, Souto Faria, 

et al., 2015; Hopkins, Ingersoll, Cordova, & Edwards, 2000), but unreliable in individuals with 
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PFP (Briani, Souto Faria, Ferraz Pazzinatto, de Oliveira Silva, Ferrari, Magalhaes, & de 

Azevedo, 2015). 

 

3.3.2.2. Voluntary force output of a motorneuron (MN) 

In contrast to the H-reflex and the V-wave, the measurement of force output is easy to execute 

with only small technical effort and is straightforward to interpret (Hopkins & Ingersoll, 2000). 

A simple assessment of muscular inhibition is the calculation of the difference in baseline 

MVC and post-operative/ post-injury MVC, whereby the reduction in torque can be expressed 

as the percentage of inhibition (Henriksen, Rosager, Aaboe, Graven-Nielsen, & Bliddal, 2011; 

Hopkins & Ingersoll, 2000; Young, 1993). But this measurement also has drawbacks, which 

are: 

- that a required MVC post-operative/ injured might be not executable, because the 

participant experiences pain or is too anxious to deliver a MVC. 

- that to date, baseline data has been only rarely collected (Hopkins & Ingersoll, 2000).  

To overcome these problems other techniques can be used, such as the burst superimposition 

technique (SIB) or the interpolation twitch technique (ITT) (Hopkins & Ingersoll, 2000). Both 

techniques are the most commonly used methods in quadriceps AMI. They analyse AMI by 

calculating the central activation ratio (CAR) by using electrical stimulation to investigate the 

difference between voluntary activation (during MVC) and involuntary activation (during 

MVC and electrical stimulation) (Hart et al., 2010; Rice & McNair, 2010).  

During the SIB technique a train of submaximal stimuli is delivered via electrodes directly over 

the quadriceps muscle (Chmielewski, Stackhouse, Axe, & Snyder-Mackler, 2004; Knarr, 

Higginson, & Binder-Macleod, 2012; Park & Hopkins, 2011; Roberts, Kuenze, Saliba, & Hart, 

2012).Whereas during the ITT the femoral nerve is stimulated (Paillard, Noe, Passelergue, & 

Dupui, 2005; Rutherford, Jones, & Newham, 1986; Suter, Herzog, & Bray, 1998; Suter, 

Herzog, De Souza, et al., 1998). However, other authors defined the difference between the SIB 

and ITT by the stimuli, whereby during the ITT one or multiple electrical stimuli are applied 

and during the SIB a train of stimuli (Callaghan et al., 2014; Rice & McNair, 2010). The SIB 

technique enables the calculation of the CAR by dividing torque measurements of the MVC by 

the sum of torque during MVC and the applied superimposed electrical stimuli (Chmielewski et 

al., 2004; Knarr et al., 2012; Park & Hopkins, 2011; Roberts et al., 2012). Thus, a CAR of 1.0 
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indicated the full activation of the whole quadriceps and the MN pool and has been described in 

healthy participants as ranging between 0.93 to 0.99 (Park & Hopkins, 2011). The twitch 

interpolation technique involves the comparison of the magnitude of an electrically induced 

muscle twitch in rest to the torque magnitude evoked when the superimposed stimulus is added 

to a MVC (Figure 3.9) (Chmielewski et al., 2004; Drover et al., 2004; Folland & Williams, 

2007). In addition, there is one other commonly used equation to assess muscle activation, 

which is termed interpolated twitch torque. For this technique an additional electrical twitch is 

evoked at rest. The percentage voluntary activation is quantified by expressing the stimulus 

evoked torque during MVC as a percentage of the stimulus-evoked torque at rest (Callaghan et 

al., 2014; Krishnan & Williams, 2011; Shield & Zhou, 2004). 

 

 

Figure 3.9: Representation of techniques used to estimate voluntary quadriceps activation. a= stimulus evoked 

torque at rest, b= torque at rest, c= voluntary torque, d= peak torque evoked due to the superimposition of the 

electrical impulse, e= onset of MVIC, f= peak force  

 

Behm et al (2001) showed that the interpolated-twitch technique was the most valid measure of 

muscle inactivation when a tetanic stimulation was applied (Behm, Power, & Drinkwater, 

2001). However, interpolated twitch torque ratios are likely to overestimate muscle activation 

(Behm et al., 2001; Kendall, Black, Elder, Gorgey, & Dudley, 2006; Stackhouse, Dean, Lee, & 

Binder-MacLeod, 2000). Stackhouse et al. (2000) reported that the central activation ratio 

central activation ratio (CAR) = (c/d) x 100 

interpolated twitch torque = (1-         ) x 100 

central activation deficit (CAD) = (d/a) x 100 
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Torque (Nm/kg*100) 

d c 
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d-b  
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time to peak force in ms = f-e 
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(CAR) is curvilinear related to maximal voluntary effort and thus the use of a linear 

relationship resulted in a markedly overestimated CAR (Stackhouse et al., 2000). 

Although these measurements are straightforward, they also have some disadvantages. Even if 

the tetanic stimulation showed to be the most valid measure of AMI, the tetanic stimulation is 

often too painful to be executed (Behm et al., 2001). In addition, all these techniques require 

the ability to effectively isolate knee extensors during a MVC. Thus, an appropriate participant 

position and fixation to eliminate compensatory muscular patterns is of vital importance (Hart 

et al., 2010). However, even if the participant position and fixation is optimal, the MVC 

measurement relies on the ability of the participants to voluntary activate their muscle, which 

depends on the sex, the training level and other factors, such injuries or pain (Hopkins & 

Ingersoll, 2000; Paillard et al., 2005). The optimal electrical stimulation settings are crucial, as 

well as an optimal skin-to-muscle transmission of pulse trains (Dousset & Jammes, 2003; Hart 

et al., 2010; Shield & Zhou, 2004). 

Thus, the SIB as well as the ITT are the most commonly applied techniques for assessing AMI 

after knee injuries and pain, but reliability results on these techniques are still lacking.  

However, if an optimal electrical stimulation setting as well as an accurate participant 

positioning and fixation was selected, the twitch interpolation torque was shown to be reliable 

and allowed the examination of the extent to which muscular and neural adaptations influence 

performance (Callaghan et al., 2014; Norregaard, Lykkegaard, Bulow, & Danneskiold-Samsoe, 

1997; Shield & Zhou, 2004). Thus, for this study the assessment using the voluntary force 

output of a motorneuron (MN) and the interpolated twitch torque technique have been chosen.  

 

3.3.3. Strength and arthrogenic muscle inhibition 

The muscular inhibition of the quadriceps was assessed during a maximal isometric contraction 

(MVIC) of the quadriceps with the interpolated twitch technique. Therefore, the participants 

were seated in an isokinetic dynamometer and positioned in 90° hip flexion and 60° knee 

flexion (Kin-Com, Figure 3.10). This position had been chosen as previous studies showed that 

peak torques and flexor-to-extensor torque ratios were only symmetrical at 60° knee flexion 

(Krishnan & Williams, 2014). The Kin-Com shin pad was attached 1 cm proximal to the 

malleoli of the ankle to the dominant shank in line with previous recommendations (Brown & 

Weir, 2001). The length of the lower lever arm, to which the resistance pad was attached, was 



 

Chapter 3: Methodology and repeatability 

 

75 

 

measured in cm and the results were entered into the Kin-Com menu. Each participant was 

secured to the test chair with a chest and pelvic belt and the dominant thigh was fixated to the 

seat with another strap. The Kin-Com shin pad was attached 1 cm proximal to the malleoli of 

the ankle to the dominant shank, according to previous recommendations (Brown & Weir, 

2001). The participants were advised to keep their arms across their chest and to hold on to the 

chest belts for stability during the test. Two electrodes (proximal: 50×130 mm, distal: 7.5×100 

mm) (Axelgaard, Fallbrook, Ca, USA) were placed on the quadriceps muscle at one-third and 

two-thirds from the distance between the anterior superior iliac spine and the upper border of 

the patella (Figure 3.10). 

 

 

Figure 3.10: Kin-Com dynamometer (left side) and the digitimer (right side) 

 

Prior to the test a warm-up session of 4 submaximal isometric quadriceps contractions was 

performed to habituate the participants to the test equipment and to ensure that the participants 

were warmed up. The familiarisation and warm up session was performed in accordance with 

previous recommendations (Brown & Weir, 2001). The AMI measurements were taken using a 

Digitimer High Voltage Stimulator (DS7AH Digitimer Ltd, Hertfordshire, England), using a 

single twitch with a pulse duration of 200 ms. The participants were acclimated to the stimulus 

through a series of 5 slowly increasing stimulus amplitude (at 40 mA, 60 mA, 80 mA, 100 mA, 
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125 mA). After the acclimatisation to the electrical twitches the participant delivered two more 

submaximal warming up contractions.  

The test began with applying two resting twitches (RTT) of 125 mA before the MVIC attempt. 

Directly after these two resting twitches the participant was verbally encouraged with the 

instruction: "push as much as possible" to ensure their attempt to a maximal voluntary effort. 

Each participant was verbally encouraged throughout the 5 seconds of maximal attempt. The 

isometric muscle test was performed using the „„make test‟‟ method of muscle test. The muscle 

contraction was held for 3 to 5seconds. During the MVIC attempt two single pulses of 200µs 

duration, 200Volt and 125 mA were triggered three times (beginning, mid and end of the 

contraction) manually by the investigator when the MVIC force had plateaued on the monitor 

(ITT). Thus, electrical twitches were evoked at rest and added during a MVIC. AMI was 

quantified by calculating the difference between the stimulus-evoked torque during MVIC to 

the stimulus-evoked torque at rest and expressed in %: activation deficit (AD) at 100% MVIC 

from the ratio: AD = (ITT/RTT) x 100 (Figure 3.9) (Chmielewski et al., 2004; Drover et al., 

2004; Folland & Williams, 2007). The smaller the deficit, the less the inhibition, whereby an 

inhibition of 0% means that the subject was able to fully recruit the muscle without showing 

any signs of inhibition.  

In addition, the peak of the voluntary MVIC was recorded to assess the maximum strength. 

Participants were asked to perform 3 maximal contractions of their knee extensor muscles 

while additional electrical stimulation was applied. In accordance to strength guidelines, the 

participant performed each maximal contraction for 5 seconds, with resting times of 30 seconds 

in between each maximal contraction (Brown & Weir, 2001). 

After the isometric MVIC test the participants had a break of five minutes before they 

performed the isokinetic knee extensor strength measurement in sitting. The quadriceps muscle 

was measured concentrically and eccentrically, each maximal force measurement was 

performed 3 times with a break of 1 minute between the tests. Each participant was therefore 

secured to the test chair with a chest and pelvic belt again. Prior to the test, all participants 

received a warm-up session of six submaximal repetitions of concentric and eccentric 

quadriceps activation. After completion of the warm-up trials, each participant was tested at the 

angular velocity of 60°/second through the full available range of motion (ROM) from 90° knee 

flexion to maximal knee extension. The interaction of velocity and force has been well 

established and it could be shown that the higher the velocity the lower the force production 
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becomes (Brown & Weir, 2001). Thus, it is recommended to choose a low velocity for the tests 

to enable the production of high forces. However, it has been shown that during 30°/second the 

compressive force is equal to 12 times body mass (Nisell & Ekholm, 1985; Nisell & Ericson, 

1992). Thus, to decrease the patella forces 60°/second has been chosen, also because it could be 

shown that this would be a good velocity to investigate the break phenomenon (Herrington et 

al., 2003). To test participants with PFP with a velocity of 60°/second is in accordance with the 

majority of the studies (Duffey et al., 2000; Duvigneaud et al., 2008; Dvir et al., 1990; Kaya et 

al., 2010; Ott et al., 2011). In addition, strength at 60°/second has been shown to be a predictor 

for functional quadriceps tasks (Yapici, Findikoglu, & Dundar, 2016).  

The break phenomenon was investigated during the eccentric quadriceps task, whereby a 

"break phenomenon" was defined as a trace dip which exceeded more than 10% (Figure 3.11) 

(Anderson & Herrington, 2003; Dvir & Halperin, 1992).  

 

 

Figure 3.11: Break phenomenon of 14%. A= pre-break maximum, B= within break maximum  

 

3.3.4. Analysis of the strength measurements, AMI and the break phenomenon 

The strength data of each participant was exported from the Kin-Com to ascii-files and loaded 

into Excel. The peak torque was determined for each file. AMI, the time to peak force and the 

rate to force development (RFD) were calculated from the individual maximal isometric force 

development record.  

AMI was quantified with the following equation: AMI = [(d-c)/(b-a)]*100 (Figure 3.9). An 

inhibition of 0% means that the subject was able to fully recruit the muscle without showing 
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any signs of inhibition) (Chmielewski et al., 2004; Drover et al., 2004; Folland & Williams, 

2007). 

The onset of muscle contraction was defined for the calculation of the time to peak force and 

RFD as the instant when the knee extensor torque exceeded the baseline by 2% at the start of 

the MVC (Andersen, Andersen, Zebis, & Aagaard, 2010). The time to peak force expresses the 

time it takes to develop maximal force and was calculated by the following equation: time to 

peak force in seconds= f-e (Figure 3.9) (Zatsiorsky & Kraemer, 2006). The rate to force 

development (RFD) refers to the rate of change in force over time and can be used as a measure 

of explosiveness. In this study the RFD was defined as the maximal slope of the force time 

curve. Therefore the average RFD was determined as the time to peak force relative to the onset 

of force and calculated in the following way: RFD= Change in Force (f-e)/ change in time (f-e) 

(Figure 3.9) (Andersen, et al. 2010; Zatsiorsky & Kraemer, 2006).  

The break phenomenon was investigated during the eccentric quadriceps task. A break was 

defined as a trace dip which exceeded more than 10% of the pre-break moment (Figure 3.11). 

  

3.4. Methodology of the functional measurements 

The functional investigation involved 3-dimensional gait analysis combined with a surface 

electromyography analysis of the quadriceps and hamstrings muscles.  

 

3.4.1. Three dimensional (3D) motion data, force data and EMG data capture: 

The three dimensional motion (3D) capture system (QTM Oqus300, Qualisys AB, Sweden) 

enables the conversion of the image of a movement into quantified data by transmitting the data 

directly to the computer, rather than providing the usual video image (Perry & Burnfield, 

2010). Positional markers are recorded by at least two cameras and redefined with their new 3D 

location in the global coordinate system (LAB system), which enables the storage of positional 

information that can be used to analyse the kinematics (Perry & Burnfield, 2010). Powerful 

infrared light reflects from the retro-reflective markers and produces a bright spot in each 

image. These spots are then reconstructed and generate a 3D position in the LAB system, a 

series of such position spots then forms the trajectories of the markers (Kirtley, 2006).  
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To generate 3D trajectories, the software firstly looks for a time when at least two cameras 

record the same marker. This image of the marker is then processed. The camera operation 

software will look for the same marker in the next time frame. If a marker is found it will be 

jointed to the former marker to form a trajectory. To ensure a smooth trajectory of each marker, 

QTM
©

 software uses a 3D tracking function of a buffer of 4-10 frames to predict the next 

location of the trajectory's marker (2011). The maximal frame gap, which specifies the number 

of frames allowing the joining of two trajectories, had been set in this study to 10 frames (42 

ms). Although this is a precise system, this algorithm might still cause problems such as the (1) 

prediction error or the (2) maximum residual.  

1) Prediction error: To predict the next marker a mathematically deviation (Figure 3.12) is 

included to enable the next marker to be detected and to resolve the changes of unpredictability 

during a real movement. However, the greater the deviation, the higher the chance for a cross-

over swapping between two trajectories. If the prediction error value is set too high, the 

likelihood increase that jumpy motions within single trajectories are seen. If this parameter is 

set too small, division of trajectories can occur, which might result in many more trajectories 

than markers. Thus, QTM recommends a prediction error value of 30 mm (QTM, 2011), which 

had been applied in this study.  

 

Figure 3.12: Prediction error (red ball: marker, arrow: prediction, red ball: deviation) (QTM
©
) (QTM, 2011) 

 

2) Maximum residual: The maximum residual function has been implemented together with the 

prediction error to ensure the continuation of the trajectory and sets the limit to the distance 

from the final location of the 3D point. If the value is too large, it can slow down the 

calculation and can cause a merger of 3D points, if it is too small it can cause ghost markers 

and results in more trajectories than markers (QTM, 2011). The default value of the maximum 

residual is 10 mm, however, due to the good visibility it has been set in this study to 5 mm.  

For the collection of 3D kinematic and kinetic data, 12 infrared cameras (Pro-Reflex MCU, 

Qualisys AB, Sweden) with a sampling rate of 250Hz were positioned around the gait track and 
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adjusted. The cameras were centered around three force platforms (BP600900, AMTI, USA), 

which had a sampling rate of 1500Hz embedded into the floor.  

To allow the conversion of the given 2-dimensional (2D) image of the cameras into a 3-

dimensional (3D) workspace, a spatial calibration is needed. To complete the calibration 

procedure, the position of an L-shaped frame with mounted markers, which are positioned at 

known locations and distances to each other was recorded. This reference L-shaped metal 

frame (equipped with 4 markers along the frame) was placed on the corner of the third force 

platform and aligned with the two sides of the force plate. The calibration process was 

performed by moving a T-wand, equipped with two markers at the end, randomly around the 

test space for 45 seconds. During the calibration, the position of each marker relative to the 

origin of the global coordinate system (LAB System) was collected by cameras and recorded in 

the computer. The L-shaped frame stayed in position on the platform during the calibration. 

(David A. Winter, 2005). The T-shaped wand had a length of 750.7 mm and was moved during 

the calibration in as many orientations as possible to ensure that the volume between the lower 

floor level and the top level were covered completely.  

The resulting calibration values indicate the difference between the factory-measured distance 

between the two static markers on the L-frame and the calculated distance based on the actual 

marker coordinates of the wand in the lab coordinate system. It was aimed that the errors were 

as low as possible, because the higher the residuals are, the more inaccurate the calibration and 

the more likely a higher error will be involved in the results of the measurements. Therefore the 

result of a calibration was accepted only when the standard deviation of the wand length was 

below 1 mm (Figure 3.13). Although only the overall result was used to accept or reject the 

calibration, the results of each camera were examined to ensure that the average residual of 

each camera was below 1.3 mm (Figure 3.13).  

The calibration established the global coordinate system so that the output of the data could be 

saved as a file of x, y, z coordinates of each marker at each sample point of time. Whereby x is 

the forward/ backward, z the vertical and y the left/ right (medial/ lateral) axis. After the 

calibration, the accuracy of tracking markers was typically ±0.1% of the captured volume 

(Kirtley, 2006). 
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Figure 3.13: The calibration results 

 

To ensure that the measured area was well covered, the calibrated volume was additionally 

visually checked (Figure 3.14).  
 

 

 

Figure 3.14: A shows calibration volume and B shows the calibrated volume in relation to the camera cone length.  
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3.4.1.1. Retro-reflective marker set up 

For the 3D movement analysis 40 retroflective markers, with a diameter of 14.5 mm, were 

placed on the lower limb of the participants. The markers were attached, with double sided 

hypoallergic tape, on the surface of body segments that are aligned with particular bony 

landmarks (Schneck & Bronzino, 2003). To process 3D-coordinates of each marker trajectory 

at least three markers of reference points had to be identified of each body segment, as they 

enable the calculation of a body-fixed coordinate system for each cluster (Schneck & Bronzino, 

2003). Cappozzo, Catani, Leardini, Benedetti, & Croce, (1996) investigated the number of 

markers needed to define one segment and showed that the number of 4 represented the most 

advisable solution. Thus, all segments (pelvis, thigh, shank and foot) have been tracked with 4 

markers.  

The calculation of the body-fixed coordinate system is based for practical reasons on a bone- 

frame and thus should meet requirements which are rigidly associated with the anatomy of the 

bone. As the markers are placed on the skin and not directly on the bone, the position of the 

marker is estimated and associated with the underlying bone. This causes instrumental errors 

due to the position error in the reconstructed coordinate system relative to the global frame and 

skin artefacts caused by the movement of the skin relative to the bone (Cappozzo, Catani, 

Croce, & Leardini, 1995). To overcome these challenges Cappozzo, Catani, Croce, & Leardini, 

(1995) developed a calibration procedure which involved anatomical landmarks (markers on 

anatomical bony landmarks) in combination with anatomical frames (segment mounted 

markers). This calibrated anatomical system technique (CAST) model enables that during 

dynamic trials only the segment mounted markers are used to decrease the skin artefacts of 

anatomical landmarks. Therefore, a calibration trial with anatomical landmarks and frames is 

needed. After the calibration, the majority of the anatomical landmarks will be taken off during 

the dynamic trials to reduce the data amount and obstruction to the participant.  

The CAST model was introduced to standardise and define the references and to bring the 

internal anatomical landmarks in accordance to the external technical markers (Salah & Gevers, 

2011). Cappozzo et al. (1996) investigated the position artefacts of the markers and revealed 

that the displacement with respect to the underlying bone during the movements amounted up 

to 40 mm. They also showed that skin movement artefacts can cause maximal errors in the 

estimation of bone orientation (Cappozzo, Catani, Leardini, Benedetti, & Croce, 1996). As the 

marker placements on anatomical landmarks, such as greater trochanter, lateral epicondyle of 
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the femur, head of the fibula and lateral malleolus undergo significant displacements in relation 

to the underlying bone, it has been concluded that these markers are not suitable for tracking 

the movement of the bone. Skin markers which were located on the lateral portion of the thigh 

and shank caused smaller artefacts and are thus more suitable (Cappozzo et al., 1996). Thus, the 

calibrated anatomical system technique (CAST) has been proven to be reliable and reduce skin 

artefacts (Cappozzo et al., 1995; Pinzone, Baker, Preece, & Jones, 2015). Manal, McClay, 

Stanhope, Richards, & Galinat (2010) investigated differences between various marker sets and 

revealed good results of markers mounted to a moulded overwrapped Orthoplast shell. Thus, 

for this study, the shank and thigh markers were mounted on rigid plates and were attached to 

the segments with an overwrapped technique.  

In this study a 6 degrees of freedom modelling method was used, which provides six variables 

for each segment to describe its position and orientation. It provides information about the 

origin of x,y,z and the rotation about the principal axes. Thereby it describes the segment 

translation along the three axes (vertical, medial/lateral and anterior/posterior) and the rotation 

is described about each axis of the segment (sagittal, frontal and transversal). It has been shown 

to be valid and repeatable and thus has been applied in this study (Collins, Ghoussayni, Ewins, 

& Kent, 2009; Schmitz et al., 2016; Żuk & Pezowicz, 2015).  

 

3.4.1.2. The marker placement  

The researcher attached in total 40 retro-reflective markers to the skin of the lower limb on both 

legs (Figure 3.15). All markers were put on the subjects through palpating the anatomical 

landmarks by the same researcher.  

To define the pelvis segment the markers were positioned on the anatomical landmarks of the 

anterior-superior and posterior-superior iliac spine. Additionally, markers were placed on the 

landmark of the greater trochanter. On each side one marker was placed on the iliac crest 

vertically aligned with the greater trochanter marker (Figure 3.15).  

The cluster, each of which had 4 markers mounted on a moulded Orthoblast shell, was placed 

laterally on each segment of thighs and shanks. They were attached to the skin by using double-

sided tape and elastic bandages to avoid sliding on the skin surface. The position of the corners 

of each cluster were marked with a pen, to ensure that the clusters did not move during the 
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trials. If they moved the data would be scrapped and the experiment would be started again 

with new marker placement.  

Markers were placed on the femoral epicondylus medialis and lateralis on each leg. Therefore, 

the assessor palpated the epicondylus from inferiorly and placed the marker slightly above the 

knee joint onto the epicondylus. One marker was placed on the malleolus medius and one on 

the malleolus lateralis. The lateral marker was aligned vertically with the medial marker to 

ensure that the markers defining the knee axis were aligned with the landmark that defined true 

knee axis of the knee joint (Figure 3.15). To ensure that the markers were placed on the true 

knee axis, the participant was asked to squat and the marker placement was visually checked. 

Lastly, four foot markers were permanently attached to the test shoes, which were provided in 

several different sizes. This permanent attachment of markers to the shoes enabled a consistent 

marker placement for the feet. On each shoe one marker was placed on the heel (calcaneus), 

one marker on the proximal head of the 1st and 5th metatarsal bone and one marker was placed 

distally on the metatarsal head of the 2nd toe (Figure 3.15).  

  
 

Figure 3.15: Marker and electromyographic electrodes placement (four muscles on each leg were measured)  

 



 

Chapter 3: Methodology and repeatability 

 

85 

 

3.4.1.3. Surface electromyography (sEMG) 

Although the sEMG might enable a great insight into the muscle, the sEMG signal always 

contains unavoidable noise and might lead to an erroneous interpretation of the signal (De 

Luca, Gilmore, Kuznetsov, & Roy, 2010). The amount of noise depends on the signal 

influencing factors such as the fat-tissue thickness between the skin and the muscle, the action 

potential shapes and the muscle types (Clancy, Morin, & Merletti, 2002; De Luca et al., 2010). 

Thus, to increase the fidelity of the sEMG signal attention should be paid in particular to the 

sampling rate, the skin preparation, the position of the electrodes as well as the signal analysis 

(filtering, rectification and smoothing).  

The sEMG data was collected by using the Noraxon Telemyo DTS system which is a surface 

EMG system that can collect up to 16 channels of single differential surface data. The sampling 

rate was 1500Hz. Based on the Nyquist Theorem, the selection of an adequate sampling 

frequency should be at least twice as high as the frequency component being measured 

(Millette, 2013). As the content of sEMG signals can be up to 500Hz (Clancy et al., 2002; 

Winter, 2009), the sEMG signal should be sampled at a minimum of 1000Hz to avoid aliasing 

of the signals (Burden, 2008; Ives & Wigglesworth, 2003).  

A key factor when using sEMG is the electrode placement and the skin preparation (Farina, 

Cescon, & Merletti, 2002; Farina et al., 2014; Wong & Ng, 2006). To ensure a high fidelity of 

the sEMG signal, the skin preparation and placement was performed in strict accordance to the 

SENIAM guidelines (Hermens et al., 1999). Therefore, the skin was shaved if the electrode 

placement spot was covered with hair. The shaved area was then rubbed with a hypoallergenic 

abrasive gel and then wiped with alcohol. As action potentials from motor neurons propagate 

along the muscle fibre, the self-adhesive electrodes were placed on the skin in the direction of 

the muscle fibres (Hermens et al., 1999; Nishihara & Isho, 2012).  

The sEMG electrodes were placed to collect the signals of the vastus medialis (VM) and 

lateralis (VL), biceps femoris and semitendinosus. To avoid additional artefacts, the electrodes, 

sEMG boxes and the cable were covered and fixated with bandages. The VM and VL 

electrodes were not covered with bandages because they were closely located to the knee and 

the bandages in this area might influence the knee motion. As the electrodes and boxes were 

occasionally covered with bandages, the question arose whether the bandages and the box 

placement might affect the sEMG signal. Thus, a pilot study on this was completed (chapter 

3.4.5.1).  
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Supine position:  

The participants were asked to lie on the examination couch with the knees resting on a pillow 

with 20° knee flexion. 

Vastus medialis (VM):  

The electrode was placed at 80% on the line between the anterior spina iliaca superior and the 

joint space in front of the anterior border of the medial ligament. The participants were then 

asked to extend their knee to confirm the placement by visually controlling the muscle bulge 

(Figure 3.16) 

 

Vastus lateralis (VL):  

The electrode was placed at 2/3 on the line between the anterior spina iliaca superior and the 

lateral side of the patella. The participants were then asked to extend their knee to confirm the 

placement by visually controlling the muscle bulge of the vastus lateralis (Figure 3.16). 

 

 

Figure 3.16: Photos of the sEMG application: vastus medials and vastus lateralis 
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Prone position: 

The participants were asked to lie prone on the examination couch. 

Biceps femoris:  

The electrode was placed at 50% on the line between the ischial tuberosity and the lateral 

epicondyle of the tibia. The participants were then asked to bend their knee against the 

resistance applied by the examiner. The electrode position was then controlled by palpating the 

muscular contraction of the biceps femoris (Figure 3.17).  

 

Semitendinosus:  

The electrode was placed at 50% on the line between the ischial tuberosity and the medial 

epycondyle of the tibia and controlled by palpating the muscle activation during knee flexion 

contraction with resistance (Hermens et al., 1999) (Figure 3.17).  

 

 

Figure 3.17: Photos of the sEMG application: semitendinosus and biceps femoris 
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After all markers and EMG electrodes were attached, the test was ready to start. Each trial was 

firstly explained and demonstrated to the participant. Then each participant had three practice 

trials to habituate to the task.  

The first task was a static trial. The participant was asked to stand on the ground next to the third 

platform. When the trial started the participant was asked to step onto the third platform and 

then to stand still for 8 seconds with the arms across the chest. After ensuring that all of the 

markers were captured during the static trial, the following markers were removed for the 

dynamic trials: iliac crest, greater trochanter, epicondylus lateralis and medialis, malleolus 

lateralis and medialis. Thus, each segment (pelvis, thigh, shank, foot) was defined with a total of 

four markers during the dynamic trials.  

 

3.4.1.4. Running 

The participant was asked to run on a 15 m walkway at a self-selected speed and to walk back 

slowly to ensure a sufficient recovery time and to limit fatigue. The self-selected speed has 

been chosen as it has been previously shown to increase gait symmetry (Chung & Giuliani, 

1997). The participant was asked to practice these running trials 3 times as a period of 

habituation. During this habituation phase, the assessor adjusted the start position for the 

participant so that he/ she would hit one platform with the dominant leg without an overlap of 

the foot between the force platform and ground floor. Running speed was controlled and 

reported by using Brower timing lights (Draper, UT) to ensure that each trial was within ±5% 

of the original self-selected speed. The set of Brower timing lights (Draper, UT) were set at hip 

height for all participants. Each participant was asked to perform five successful running trials 

at a self-selected speed for the dominant and non-dominant leg. A successful trial required an 

occurrence of the stance phase on the force plate (AMTI), without an overlap of the foot 

between force plate and ground floor, within the field of the view of the high-speed motion 

analysis camera system. Unsuccessful trials were ones whereby less than three markers per 

segment were visible, speed changes were seen during the trials, or a partial/double contact 

with the force platforms occured. 
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3.4.1.5. Step down task 

The participant was then asked to perform five times a unipedal step-down test. The participant 

stood on a 15.8 cm high step and was holding his/her arms folded across his/her chest. 

Throughout the whole test the participant stood on his/her dominant leg. Each participant was 

then asked to lower the non-dominant leg down from the step as far as possible and return the 

leg back to the starting position. If the investigator observed compensatory movement 

strategies, such as lateral flexion of the trunk or trunk rotation, the participant was verbally 

cued. If the participant attempted to push off the ground to propel themselves upward while 

returning to level with the platform, they were warned and instructed to step down less deep to 

ensure that they could maintain their balance. The participant was instructed to perform that 

task until five successful trials were recorded. A trial was successful when the participants 

performed that task without losing the balance during the trial.  

 

3.4.1.6. Single leg squat  

For the performance of a single leg squat task, the participant was asked to maintain a single-

leg stance on the dominant leg and to fold his/her arms across his/her chest. Then he/ she was 

asked to squat down as far as possible in a slow, controlled manner, while maintaining his/her 

balance, at a rate of approximately 1 squat per 2 seconds. The single leg squat was performed 

until five successful trials were recorded. A trial was successful when the participants 

performed that task without shifting any weight to the non-dominant leg and without losing 

balance during the trial. 

 

3.4.1.7. Star excursion balance test 

The star excursion balance test (SEBT) is an assessment to investigate dynamic postural control 

(Hertel, Miller, & Denegar, 2010; Kinzey & Armstrong, 1998). The SEBT is a closed-kinetic 

chain exercise which mimics the single leg squat exercise and thereby requires adequate stance 

leg strength, proprioception, neuromuscular control and adequate range of motion at the hip, 

knee and ankle joints (Olmsted, Carcia, Hertel, & Shultz, 2002; Robinson & Gribble, 2008). 

The participant stood on the platform of the star excursion balance test (SEBT) and was asked 

to maintain a single-leg stance on the dominant leg whilst reaching the opposite leg forwards to 
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move the reach indicator as far forward as possible along the arm of the SEBT with the most 

distal part of his/her foot. The participant was instructed to maintain the weight on the 

dominant leg and was not allowed to touch down the free leg to keep balance or to put the foot 

on top of the reach indicator to gain support. Furthermore, the participant was instructed to 

keep the arms folded across the chest throughout the task. This was attempted until five 

successful trials were recorded. A trial was successful when the participant performed that task 

without shifting any weight to the non-dominant leg and without losing balance during the trial. 

The reach direction was evaluated by moving the counter with the foot, where the distance was 

identified on the arm of the SEBT. Whilst eight directions can be assessed, the reaching 

direction was reduced to the anterior direction as this produces a high level of quadriceps 

muscle activation which commonly is observed clinically as a deficiency in individuals with 

PFP (Earl & Hertel, 2001; Gribble, Hertel, & Plisky, 2012) 

 

3.4.2. Kinetic and kinematic data processing  

After the 3D, force and sEMG recordings were recorded with Qualisys 2.11 Track Manager 

(QTM
TM

), the markers were labelled and inspected for any marker irregularities or 

inconsistencies and exported to C3D files. The files were then loaded onto Visual3D v5 

Professional (C-motion, inc., USA).  

In Visual3D, a six degrees of freedom model was adopted for each segment. Therefore the 

height and weight of each participant was entered to enable the calculation of moments and 

forces. For each segment: Pelvis, right thigh, right shank, right foot, left thigh, left shank and 

the left foot the proximal and distal joint and radius were defined. By setting the proximal and 

distal joints and radius, the position and orientation of each segment was created in Visual3D 

(Figure 3.18). 
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Figure 3.18: QTM
TM

 (left) and Visual3D segment models (middle) and Visual3D full bone model (right) 

 

For the pelvis segment the CODA model was used. For this pelvis coda model, the anatomical 

locations of the Anterior Superior Iliac Spine (ASIS) and the Posterior Superior Iliac Spine 

(PSIS) on both sides were utilised. The x-y plane of the segment coordinate system is defined 

as the plane passing through the right and left ASIS markers and the mid-point of the right and 

left PSIS markers and the z-axis is perpendicular to the (x-y) plane (Figure 3.19).  

 

Figure 3.19: Pelvis coda model by Charnwood Dynamics 
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Based on the coda pelvis segment the centre of the hip joint was calculated in the following 

way: 

 the coordinates of the right hip joint centre: 0.36*ASIS_Distance, -

0.19*ASIS_Distance, -0.3*ASIS_Distance (ASIS_Distance is the distance between the 

ASIS of both sides) 

 the coordinates of the left hip joint centre: -0.36*ASIS_Distance, -0.19*ASIS_Distance, 

-0.3*ASIS_Distance 

 

This estimation is based on the established prediction method of Bell et al. (Bell, Brand, & 

Pedersen, 1989; Bell, Pedersen, & Brand, 1990), which has been recommended for the use in 

motion analysis as a non-invasive technique with relatively small and un-biased errors 

(Leardini et al., 1999).  

The thigh segment was created using the hip joint centre as the proximal marker and the medial 

and lateral femoral epicondylus as distal landmarks. The thigh cluster was used as tracking 

targets.  

The proximal landmarks of the shank segment were the medial and lateral femoral epicondylus 

and the distal landmarks were the medial and lateral malleolus. The four markers on the shank 

clusters were the tracking targets.  

The proximal markers for the foot segment were the medial and lateral malleolus and the distal 

landmarks were the 1st and 5th toe. Since the ankle joint and the toe targets were not parallel to 

the floor, an offset was caused in the ankle angle which resulted an increased plantarflexion. To 

remove this offset, a left and right virtual foot were built to create a clinical relevant ankle joint 

angle. Therefore the neutral ankle angle was defined as a flat foot with a vertical shank 

segment, regardless of the actual foot posture during the static trial. Three landmarks were 

created which represented the lab and removed the offset. Then four further landmarks 

representing the projection of the malleolus medialis and lateralis, the 5th and the 1st toe were 

used to build the neutral virtual foot and to calculate the ankle kinematics. 

Automatic gait events were created with Visual3D for the running trials, whereby right/ left 

heel strike (RHS/ LHS) and right/ left toe off (RTO/ LTO) were created for kinematic based 

categories and right/ left on (RON/ LON) and right/ left off (ROFF/ LOFF) for kinetic based 

categories. RON/ LON and ROFF/ LOFF events were only created when stance phase was 
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completed on a force platform (Figure 3.20). The single leg squat and step down task started 

when the dominant leg was in 10-15° knee flexion and ended when the dominant leg reached 

10-15° knee flexion (Figure 3.20).  

 

 

Figure 3.20: Events during running, the single leg squat and the step down task (Visual 3D). 

 

A Butterworth Bidirectional Filter for low-pass filtering with a cut-off frequency of 12Hz was 

used to filter the markers raw data. Then the marker coordinate data was interpolated for all 

tasks, to fill the gaps for any markers which had absent data for maximally 10 frames (Besier, 

Fredericson, Gold, Beaupre, & Delp, 2009; Mok, Kristianslund, & Krosshaug, 2015) (Figure 

3.21). 
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Figure 3.21: Sagittal right anterior superior iliac spine marker during running without (graph above) and with a 

12Hz low-pass filter and an interpolation of a maximum of 10 frames(graph below). The red framed areas show 

the effect of the 12Hz low-pass filter on the force data. The green framed areas show missing data (graph above), 

which was interpolated successfully with a maximum of 10 frames (graph below).  

 

To delete unwanted electrical interference noise, kinematic and kinetic data were filtered with a 

Butterworth Bidirectional Filter with a cut-off frequency of 12Hz. Kristanslund et al (2012) 

revealed a significant effect on joint moments when different cut-off frequencies had been 

chosen for movement and force data. Thus, to avoid impact artefacts, they strongly 

recommended that kinetic and kinematic data should be processed with the same filter 

(Kristianslund, Krosshaug, & van den Bogert, 2012). To make the data comparable to findings 

from previous studies a filter of 12Hz has been chosen as this was the most frequently applied 

filter (Alenezi, Herrington, Jones, & Jones, 2014; Almonroeder, Benson, & O‟Connor, 2015; 

Bazett-Jones et al., 2013; Liew, Morris, Robinson, & Netto, 2016).  

The three dimensional inverse dynamics were used to calculate the external hip and knee joint 

moments. The joint moments were normalised to body mass to ensure that the observed 

differences are related to the physical characteristics and task rather than the body mass 

(Andriacchi, Natarajan, & Hurwitz, 2005). The joint moments were presented as external 
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moments referenced to the proximal segment. The external moments are the gravitational 

forces that act on the joint. Thus, an external knee flexion load describes the tendency to flex 

the knee (Hewett et al., 2005). In contrary, the internal moments are generated by muscle 

contractions and bone-on-bone forces by tension in the soft tissue and are the reaction to 

maintain a joint equilibrium to the external moments acting on the body (Levine, Richards, & 

Whittle, 2012). 

 

3.4.3. Electromyographic analysis 

The data collection was synchronised with the motion capture system. To reduce the influence 

of variability in sEMG signals during functional tasks, a maximum number of recordings per 

participant and per velocity condition were included and a minimum of 5 trials per 

measurement was required.  

The surface electromyography (sEMG) signal is inevitably affected by noise and artefacts. At 

the high-frequency end of the sEMG signal, the bandpass filter cut-off should be set where the 

noise exceeds the sEMG signal (De Luca et al., 2010). This high frequency cut-off is set in 

most studies at 500Hz (Aminaka et al., 2011; Boling et al., 2006; Cavazzuti et al., 2010; 

Coqueiro et al., 2005; Earl, et al., 2005; Ferrari et al., 2014; Nakagawa et al., 2015; Nakagawa 

et al., 2012; Ott et al., 2011; Owings & Grabiner, 2002; Saad et al., 2011; Tang et al., 2001). 

Furthermore, guidelines recommended the use of a high frequency cut-off of 500Hz (Hermens 

et al., 1999; Merletti et al., 1999). Based on these findings, a high-frequency cut-off of 500Hz 

was chosen. To define a filter for the low-frequency end is more challenging, as the low-

frequency noises overlap with the signals of the sEMG. Low frequency noises are mostly 

baseline noises, such as skin-electrical noise and the movement artefact noise. To date, 

different recommendations for a low end of a bandpass filter have been reported, such as the 

recommendation for 5Hz by the Standards for Reporting EMG data (Merletti et al., 1999), 

10Hz by the Journal of Electromyography & Kinesiology (Kinesiology, 1996), 20Hz by the 

International Society of Electromyography and Kinesiology (Winter et al., 1980) and 10-20Hz 

by the SENIAM guidelines (Hermens et al., 1999). DeLuca et al. (2010) investigated the effect 

on the sEMG data with low-frequency cut-offs of 10, 20, 30 and 40Hz and showed that the rate 

of artefact where the greatest between 1 and 10Hz and showed that 30 and 40Hz filter caused a 

signal loss of the sEMG signal of 7 to 13%. The 20Hz filter showed to retrain the desired 

sEMG content and remove the low frequency noise, thus they recommended for natural and 
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common movements a corner frequency of 20Hz (De Luca et al., 2010), which was chosen and 

applied in this study as well (Figure 3.22). 

  

 
Figure 3.22: Vastus medialis sEMG signal of the dominant leg during running: raw data (graph above) and after 

the band-pass filter of 20-500Hz (graph below).  

 

After band-pass filtering, the sEMG signal is assumed to be noise-free and uncorrelated 

(Clancy, Negro, & Farina, 2016). Since averaging the EMG signal would result in zero, the 

signal has to be rectified. The rectification can be carried out with two different techniques: the 

half and the full rectification. The half rectification removes the negative values, whereas the 

full rectification takes the absolute values or the square of each sample (Clancy et al., 2016; 

Gerdle, Karlsson, Day, & Djupsjöbacka, 1999) (Figure 3.23).  
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Figure 3.23: Vastus medialis sEMG signal of the dominant leg during running: band-pass filtered sEMG signal 

(20-500Hz) (graph above) and the full rectified signal (graph below).  

 

After a full-rectification of the sEMG signal, a digital smoothing algorithm had to be applied to 

diminish the random fluctuations and to outline the trend of the signal development (Clancy et 

al., 2016; Gerdle et al., 1999; Konrad, 2005). This smoothing process can be accomplished by 

using a linear low-pass filter or a moving average (Clancy et al., 2016). The alternative for 

smoothing the signal without a previous rectification is to compute the root mean square (rms), 

where the squared values of the original EMG signal at each moment of time are calculated and 

thus do not require a previous rectification (Kamen, 2014) (Figure 3.24). The moving average 

is calculated by averaging a certain amount of data using a gliding window technique (Figure 

3.25). In literature, the moving average is often called average rectified value (ARV), because it 

describes the process of averaging the rectified signal (Burden, 2008; Gerdle et al., 1999; 

Konrad, 2005). Alternatively the signal can be smoothed with a linear envelope which is 

computed with a low-pass filter, which is a type of moving average indicator of the EMG 

magnitude (Figure 3.24). Although all smoothing methods are recognised as appropriate, the 

rms is considered to provide the most insight of the EMG signal, as it averages the electrical 

power and thereby measures the power of the EMG signal (Burden, 2008; Gerdle et al., 1999; 

Konrad, 2005). In addition, the rms produces a waveform which is easily analysable (Delsys, 
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2016). Thus, the rms has been recommended to smooth the sEMG signal and was used for the 

sEMG analysis in this thesis (Burden, 2008; Gerdle et al., 1999; Konrad, 2005).  

 

 
Figure 3.24: Vastus medialis sEMG signal of the dominant leg during running: smoothed with a moving average 

of 100 ms (first graph), smoothed with a rms of 100 ms (graph in the middle), smoothed with a low-pass filter of 

6Hz (graph below).  

 

The envelope filtering and smoothing of the sEMG signal has a significant influence on the 

within and between subjects variability, but also on the variations which occur in the signal 

(Burden, 2010; Burden, Lewis, & Willcox, 2014). However, the smoothing of the sEMG signal 

is essential to increase the reliability and validity of the findings (Konrad, 2005). One study 

recommended that a linear envelope cut-off should be at least 9Hz during a gait task (Burden et 

al., 2014). Although it is known that an inadequate envelope filtering can result in sEMG data 

loss, the envelope EMG frequency still ranges in studies from 3.8Hz up to 12.8Hz during gait 

(Frigo & Crenna, 2009). So far there is no recommendation for the choice of the size of the 

envelope filter or sEMG signal smoothing during single leg squat, step down or the running 
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task. Thus, the current literature was reviewed to investigate which envelope filter in these 

tasks have been applied so far. Eight identified studies analysed sEMG amplitude data in 

participants with patellofemoral pain (PFP) during stair stepping (Bolgla et al., 2011; Crossley, 

Cowan, Bennell, & McConnell, 2004; Earl, et al., 2005; Kim & Chang Ho, 2012; McClinton, 

Donatell, Weir, & Heiderscheit, 2007; Nakagawa, Muniz, et al., 2011; O'Sullivan et al., 2012; 

Powers, 1996), four during squatting (Boling et al., 2006; Cavazzuti et al., 2010; Nakagawa et 

al., 2012; Tang et al., 2001) and two during running (Esculier et al., 2015; Willson et al., 2011). 

The stair stepping task had been smoothed with a rms or moving average with window sizes of 

10 ms (Earl, et al., 2005; Powers et al., 1996), 50 ms (Kim & Chang Ho, 2012), 55 ms (Bolgla 

et al., 2011) and 150 ms (O'Sullivan & Popelas, 2005) and had been smoothed with a low-pass 

filtered of 4Hz (K. M. Crossley et al., 2004), 6Hz (McClinton et al., 2007; Tang et al., 2001), 

10Hz (Cavazzuti et al., 2010) and 15Hz (Nakagawa, Muniz, et al., 2011). The envelope 

filtering during the squat task had been carried out with rms windows of 20 ms (Boling et al., 

2006) and 75 ms (Nakagawa et al., 2012) and a low-pass filter of 6Hz (Tang et al., 2001) and 

10Hz (Cavazzuti et al., 2010). The running task had been rectified and smoothed with a low-

pass filter of 6Hz (Willson et al., 2011) and 20Hz (Esculier et al., 2015). These results show the 

current heterogeneity of envelope filtering and sEMG smoothing in studies which investigate 

the sEMG amplitude in participants with PFP. This heterogeneity is also caused by the variety 

of analysed muscles and the different purposes of the sEMG analysis, such as the investigation 

of neuromuscular control, peak amplitude or cocontraction. To investigate which sEMG 

smoothing might be the most appropriate for this study, a pilot study on different rms window 

sizes had been carried out, which can be found in chapter 3.4.4.2. 

The magnitude of the EMG signal can be influenced by many anatomical and physiological 

factors, such as cross-talk, joint angles, velocity, or muscle length (De Luca, 1997). To 

eliminate these influences, the EMG signal has to be normalised, which is carried out by 

dividing the EMG signal by a reference contraction value (Burden, 2010; De Luca, 1997). 

Additionally, the normalisation method allows that the EMG data is presented as a percentage 

of the reference contraction and thereby allows comparisons between individuals or different 

muscles (French, Huang, Cummiskey, Meldrum, & Malone, 2015). The Journal of 

Electromyography and Kinesiology and the SENIAM guidelines recommend the normalisation 

by using a MVC as the reference contraction (Kinesiology, 1996; Merletti, 1999), which 

expresses the task EMG as a percentage of the maximal activation capacity of the muscle 

(Burden, 2010). Alternatively to the MVC normalisation, dynamic normalisation methods exist 
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such as the mean or peak normalisation. The dynamic normalisation method express the task 

EMG as a percentage of the mean or peak of the same EMG signal (Burden, 2010; Burden, 

Trew, & Baltzopoulos, 2003). The dynamic normalisation has also been individually adapted to 

the study design by expressing the running task EMG by 70% of a peak sprint (Albertus-Kajee, 

Tucker, Derman, Lamberts, & Lambert, 2011) or by expressing a squat EMG by 60%, 70% and 

80% of the mean squat (Balshaw & Hunter, 2012). Although to date, the MVC normalisation 

method is the most commonly applied normalisation method, no consensus has been reached 

about which method is the most appropriate normalisation method. Several studies investigated 

different normalisation methods and showed a higher intra-subject variability and reduced 

sensitivity of the MVC normalisation method compared with dynamic normalisation methods 

(Albertus-Kajee et al., 2011; Balshaw & Hunter, 2012; Burden & Bartlett, 1999; Burden et al., 

2003; Chapman, Vicenzino, Blanch, Knox, & Hodges, 2010; French et al., 2015). Two other 

studies found that, in contrary, the MVC normalisation method demonstrated a high 

repeatability (Bolgla & Uhl, 2007) and high sensitivity (Benoit, Lamontagne, Cerulli, & Liti, 

2003). Burden (2010) carried out a literature review on normalisation methods and revealed 

that the mean and peak normalisation techniques reduced the inter-subject variability more than 

any other normalisation technique (Burden, 2010). In addition, during the quadriceps MVIC 

testing in this reliability study the muscles were also stimulated to investigate quadriceps AMI. 

The application of the electrodes for the stimulation was not possible without overlapping with 

the quadriceps sEMG electrodes and boxes. However, it is not known whether the stimulation 

might damage the Noraxon equipment. Thus, to ensure that the Noraxon equipment remained 

intact, it has been decided to not collect MVIC values with the sEMG for this study. The 

disadvantage of using the mean normalisation technique is that it does not enable the 

investigation of the co-contraction ratio of the quadriceps and the hamstring muscle group, 

because the magnitude would be reflected in the denominator (i.e. the peak or mean EMG) 

(Burden, 2010). However, since this study aimed to investigate the reliability of the sEMG 

data, the mean normalisation did not cause any disadvantages and was used in this study.  

 

3.4.3. Pilot studies to investigate sEMG analysis  

As previously described the sEMG boxes and electrodes were partly covered with bandages to 

fixate them appropriately. As it was unclear whether the bandages above the boxes and the 

electrodes affect the sEMG signal, a pilot study was carried out. Furthermore, it is important 
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that the sEMG smoothing results in a waveform that represents the EMG signal and eliminates 

the random fluctuations of the sEMG signal. Thus, the second pilot study investigated the 

optimal window width for the sEMG during the stance phase of running and during the step 

down task. 

 

3.4.4.1 Pilot study on sEMG application 

The sEMG boxes and electrodes were partly covered with bandages to fixate them 

appropriately. As it was unclear whether the bandages above the boxes and the electrodes affect 

the sEMG signal following pilot study was carried out.  

 

Methodology 

One male participant (age: 28 years, 1.75 m height, 74kg weight) was tested. Before electrode 

placement, the skin was shaved, cleaned with an abrasive gel and alcohol to reduce the 

electrical impedance. The electrode was then placed on the medial gastrocnemius according to 

the SENIAM guidelines (Hermens et al., 1999). Furthermore, retro-reflective markers were 

attached to the skin of the lower limb on the tested leg and the pelvis, so that the start and end 

of the tip-toe standing task could be defined.  

The participant was asked to slowly perform a tip toe stand and then to return back to standing. 

This task was performed five times for each of the following conditions:  

- A: no bandages on the box and the electrode 

- B: two tight bandages on the box  

- C: two tight bandages on the electrode  

- D: two tight bandages on the box and the electrode 

The sEMG signal was filtered with a fourth order zero-lag Butterworth filter of 20-500Hz, 

smoothed with a rms of 300 ms and mean-normalised.  

The statistical analysis was performed using SPSS (v. 20, IBM corporation, USA) and Excel 

2013 (Microsoft, Office Ultimate 2013, USA). The graphs were plotted by using Matlab 

(R2016b, Math Works, USA). The difference of the averaged peak activity during the tip toe 

standing task during the four different conditions was analysed by using the Friedman test 
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(p=0.05) and the Wilcoxon test as a post-hoc analysis (p=0.017). The mean and one standard 

deviation (SD) of the normalised sEMG signal of the gastrocnemius muscle were plotted for 

each of the four conditions.  

 

Results 

The averaged peak activity during the tip toe standing task during the four different conditions 

was not significantly different (p=0.443), which were confirmed with the results of the post hoc 

analysis (Table 3.1). The averaged peak results during the tip toe standing were highest when 

the bandages were applied on the electrodes and the boxes and lowest when the electrodes were 

applied without bandages (Table 3.2). In addition, the graphs showed the highest variability 

when no bandages were applied and the lowest variability with bandages on the box and the 

electrodes (Figure 3.25).  

 
Table 3.1: comparison of the peak sEMG signal of the Gastrocnemius muscle during the tip toe stand  

Test condition  

P value: (Wilcoxon, 

sig 2-tailed) 

A. no bandage B. bandage on electrode 0.327 

C. bandage on box 0.327 

D. bandage on box & electrode 0.249 

B. bandage on electrode C. bandage on box 0.889 

D. bandage on box & electrode 0.345 

C. bandage on box D. bandage on box & electrode 0.753 
 

* indicate significant differences between the four conditions. 

 

Table 3.2: Averaged peak sEMG signal (% norm) of the Gastrocnemius muscle during the tip-toe stand.  

 

Averaged peak value (% norm) of the sEMG activity 

No bandage Bandage on electrode Bandage on box Bandage on both 

Mean (SD) 1.67 ±0.03 1.72 ±0.9 1.75 ±0.17 1.79 ±0.16 
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Figure 3.25: Gastrocnemius activity averaged during tip toe standing task: A= without bandage, B=Bandage on 

electrode, C= Bandage on Box, D= Bandage on both  

 

 

Discussion and conclusion 

The results showed that the differences between the conditions were not significant and thus, 

the electrodes and boxes could be either fixated with or without bandages. However, the results 

also showed that the signal was less variable when the boxes and electrodes were secured with 

bandages. Thus, if the bandages did not limit the comfort and movement of the participant, the 

electrodes as well as the boxes should be fixated with bandages to receive a clear and less 

variable EMG signal.  
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3.4.4.2. Pilot study on sEMG smoothing 

As this thesis aimed to investigate the cocontraction of the quadriceps muscle (vastus medialis, 

vastus lateralis) and the hamstring muscles (biceps femoris and semitendinosus), it is important 

that the sEMG smoothing results in a waveform of the sEMG, which represents the EMG 

signal and eliminates the random fluctuations of the sEMG signal. Smaller window widths, 

such as 10-50 ms, allow the detection of rapid activity alterations, whereby larger widths, such 

as 100-500 ms decrease the variability of the amplitude and can be applied in slow or static 

activities (Burden, 2008; Konrad, 2005). Thus, different window widths of 25 ms up to 500 ms 

were applied for the stance phase of running and the step down task. The aim of this pilot study 

was to investigate the optimal window width for the sEMG during the stance phase of running 

and during the step down task. 

 

Methodology 

5 healthy participants, three female and two male individuals (age: 24.6 ±2.9 years, height: 1.72 

±0.1 m, mass: 64.18 ±7.66kg, BMI: 21.6 ±0.52kg/m
2
) were tested twice, with a 7-day gap 

between the two test sessions. Electrodes were applied on the vastus medialis, vastus lateralis, 

biceps femoris and semitendinosus as described in chapter 3.4.1.3. Each participant was asked 

to perform the step down task until 5 successful trials were recorded and then he/ she was asked 

to run 5 times along a 15 m walkway at his/her own selected speed. The sEMG signal of the 

VM, VL, biceps and semitendinosus were sampled with a frequency of 1500Hz. The sEMG 

data was filtered using a fourth order zero-lag Butterworth filter of 20-500Hz. The sEMG data 

was smoothed during the stance phase of running by using a rms with window widths of 25, 50, 

75 and 100 ms and was mean normalised. The sEMG data during the step down task was 

smoothed by applying a rms with 25, 50, 75, 100, 150, 300 and 500 ms window widths and was 

mean normalised. The step down task was investigated with larger window widths as it is a 

slower activity, then running.  

The statistical analysis was performed using SPSS (v. 20, IBM corporation, USA) and Excel 

2013 (Microsoft, Office Ultimate 2013, USA). The graphs were plotted by using Matlab 

(R2010a, Math Works, USA).  

The difference of the averaged peak activity during the stance phase in running and the step 

down task with different window sizes were analysed using the Friedman test and the Wilcoxon 
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test as a post-hoc analysis. The percentage of alteration of the signal caused by an increased 

window size was expressed in %. Therefore the peak value of the signal smoothed with a 

window size of 25 ms was set as equal to 100% of the EMG signal. The percentage of the cut-

off of the EMG signal peak caused by a smaller window was calculated by the following 

equation:  

% = 100- [(100/ peak of 25 ms window)* peak of 50/ 75/ 100/ 150/ 300/ 400/ 500 ms window]  

The mean and one standard deviation (SD) of the normalised sEMG signal of the VM and the 

biceps muscle were plotted for the first and the second test and the different window sizes for 

each task. The graphs were plotted to visually examine the effect of the smoothing of the signal 

with different window sizes.  

The reliability of the sEMG signal between-session with different window sizes were assessed 

by using the intra-class correlation coefficients (ICC) and the correlation of multiple coefficient 

(CMC). The average of the peak values of the sEMG curves during the stance phase of running 

and the step down task were used to investigate the between-session reliability by using the 

ICC, model 3.5. The model 3 indicated the use of the two-way-mixed model of ICC, whereas 

the second number represents the number of the averaged measurement (Denegar, 1993; 

Portney, 2009; Weir, 2005).  

The CMC is a measure of similarity of waveforms (Røislien, Skare, Opheim, & Rennie, 2012). 

The CMC analysis was carried out by comparing the five curves of each subject and each task 

of the first test session to the five curves of the same participant to the second test session 

(intersession CMC). In addition, the sEMG data of the five trials running and the five trials of 

the step down task were averaged for each subject for the first and the second test. The 

averaged EMG curves of the five subjects of the first test session were then compared with the 

second test session for the stance phase and the step down task by using the CMC (inter-subject 

CMC).  

ICC and CMC values below 0.5 represent poor, between 0.5 and 0.75 moderate and above 0.75 

good reliability (Kadaba, Ramakrishnan, Wootten, Gainey, Gorton, & Cochran, 1989; Portney, 

2009). 
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Results 

The post-hoc analysis showed no significant differences between the different window sizes 

(Table 3.3 & Table 3.4).  
 

Table 3.3: Comparison of the peak sEMG signal of the Quadriceps (VM, VL) and Hamstrings (biceps, 

semitendinosus) muscles during the stance phase in running  
 

Rms window width 

P value: (Wilcoxon, sig 2-tailed) 

Biceps Semitendinosus VL VM 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

25 ms 50 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.07 

 75 ms 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04 

 100 ms 0.04 0.35 0.04 0.04 0.04 0.04 0.04 0.04 

50 ms 75 ms 0.04 0.04 0.23 0.23 0.04 0.04 0.04 0.14 

 100 ms 0.04 0.04 0.23 0.04 0.04 0.04 0.04 0.08 

75 ms 100 ms 0.04 0.89 0.23 0.04 0.04 0.04 0.07 0.04 
 

* Significant (p< 0.0125) 
 

Table 3.4: Comparison of the peak sEMG signal of the Quadriceps (VM, VL) and Hamstrings (biceps, 

semitendinosus) muscles during the step down task  
 

Rms window width 

P value: (Wilcoxon, sig 2-tailed) 

Biceps Semitendinosus VL VM 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

25 ms 50 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 75 ms 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 100 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 150 ms 0.04 0.04 0.04 0.14 0.04 0.04 0.04 0.08 

 300 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 400 ms 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.04 

 500 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

50 ms 75 ms 0.22 0.04 0.04 0.08 0.08 0.04 0.69 0.08 

 100 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 150 ms 0.04 0.04 0.04 0.89 0.04 0.04 0.08 0.50 

 300 ms 0.04 0.04 0.04 0.22 0.04 0.04 0.08 0.08 

 400 ms 0.04 0.04 0.14 0.14 0.04 0.04 0.04 0.08 

 500 ms 0.04 0.04 0.08 0.08 0.04 0.04 0.04 0.04 

75 ms 100 ms 0.69 0.22 0.08 0.35 0.50 0.50 0.08 0.69 

 150 ms 0.22 0.89 0.08 0.50 0.35 0.89 0.08 0.22 

 300 ms 0.04 0.22 0.04 0.69 0.08 0.69 0.04 0.22 

 400 ms 0.04 0.14 0.35 0.35 0.04 0.04 0.04 0.04 

 500 ms 0.04 0.04 0.22 0.22 0.04 0.04 0.04 0.04 

100 ms 150 ms 0.04 0.04 0.14 0.69 0.04 0.08 0.50 0.69 

 300 ms 0.04 0.04 0.04 0.69 0.04 0.04 0.22 0.35 

 400 ms 0.04 0.04 0.50 0.50 0.04 0.04 0.08 0.08 

 500 ms 0.04 0.04 0.50 0.35 0.04 0.04 0.08 0.04 

150 ms 300 ms 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 

 400 ms 0.04 0.04 0.50 0.04 0.04 0.04 0.04 0.04 

 500 ms 0.04 0.04 0.50 0.04 0.04 0.04 0.04 0.04 

300 ms 400 ms 0.04 0.04 0.50 0.04 0.04 0.04 0.04 0.08 

 500 ms 0.04 0.04 0.50 0.04 0.04 0.04 0.04 0.04 

400 ms 500 ms 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
 

* Significant (p< 0.007) 
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The percentage of peak cut-off showed that the peak value was on average 19.6% reduced with 

a window size of 50 ms, 26.5% with a window size of 75 ms and 32.1% with a window size of 

100 ms during the stance phase (Table 3.5). During the step down task the 50 ms window size 

reduced the peak value on average 15.6%. Window sizes of 75 ms, 100 ms and 150 ms window 

sizes reduced the peak value on average, between 25.6% and 28.1%. Window sizes of 300 ms 

up to 500 ms reduced the peak value between 35.3% and 40.8% (Table 3.6).  

 

Table 3.5: Averaged peak sEMG (% norm) and percentage of the cut-off of the peak sEMG (%) signal of the 

Quadriceps (VM, VL) and Hamstrings (biceps, semitendinosus) muscles during the stance phase in running.  

Rms 

window 

width 

Averaged peak value (% norm) of the sEMG activity 

biceps semitendinosus VL VM mean of all 

muscles Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

25 ms 2.45 2.8 2.51 2.67 3.21 3.21 2.87 2.76 2.81 

50 ms 1.91 2.13 1.98 2.24 2.54 2.37 2.4 2.33 2.24 

75 ms 1.68 1.9 1.89 2.11 2.27 2.16 2.14 2.17 2.04 

100 ms 1.55 1.92 1.82 1.87 2.05 1.93 1.93 1.94 1.88 

Rms 

window 

width 

% cut-off of the averaged peak value of the sEMG activity 

biceps semitendinosus VL VM mean of all 

muscles Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

50 ms 23.24 21.72 21.11 15.38 20.45 24.42 16.12 14.7 19.64 

75 ms 31.12 31.24 24.09 19.41 28.88 31.32 25.01 20.88 26.49 

100 ms 29.33 36.25 26.65 28.37 35.8 38.48 32.66 29.37 32.11 
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Table 3.6: Averaged peak sEMG (% norm) and percentage of the cut-off of the peak sEMG (%) signal of the 

quadriceps (VM, VL) and hamstrings (biceps, semitendinosus) muscles during the step down task. 

 

Rms 

window 

width 

Averaged peak value (% norm) of the sEMG activity 

biceps semitendinosus VL VM mean of  

all muscles Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

25 ms 3.98 2.90 2.90 2.79 3.05 2.76 3.24 2.71 3.04 

50 ms 3.27 2.48 2.48 2.28 2.56 2.47 2.67 2.30 2.56 

75 ms 2.54 1.95 1.95 2.06 2.24 2.03 2.63 1.99 2.17 

100 ms 2.62 2.11 2.11 1.99 2.22 2.16 2.32 2.05 2.19 

150 ms 2.30 1.97 1.97 2.22 2.12 2.06 2.31 2.19 2.14 

300 ms 1.93 1.73 1.73 2.00 1.91 1.86 2.09 1.86 1.88 

400 ms 1.80 1.65 1.65 1.89 1.83 1.73 2.00 1.78 1.79 

500 ms 1.73 1.58 1.58 1.82 1.77 1.66 1.93 1.59 1.71 

Rms 

window 

width 

% cut-off of the averaged peak value of the sEMG activity 

biceps semitendinosus VL VM mean of 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 all muscles 

50 ms 17.64 14.45 17.84 23.24 15.59 10.32 17.36 15.15 16.45 

75 ms 29.11 33.21 24.01 31.12 25.94 26.78 18.41 26.07 26.83 

100 ms 32.10 27.27 31.25 29.33 26.90 21.52 28.22 23.93 27.56 

150 ms 39.92 31.91 33.23 23.24 30.34 25.49 27.41 18.62 28.77 

300 ms 47.84 40.44 39.80 31.12 37.13 32.55 34.00 30.84 36.72 

400 ms 50.73 42.88 34.05 29.33 39.60 37.51 36.95 33.88 38.12 

500 ms 52.54 45.47 35.87 29.33 41.73 39.99 39.13 40.99 40.63 

 

 

The ICC for the peak values during the stance phase revealed a poor reliability for all window 

sizes (Table 4.5). The CMC results showed good reliability for all muscles during stance phase 

in running when the data was smoothed with a 50 ms, 75 ms and 100 ms window (Table 3.7).  

The ICC for the peak values during the step down task showed moderate to good reliability 

when the sEMG signal was smoothed with a window size greater than 300 ms. The CMC 

results showed a moderate to good reliability for all window sizes greater than 50 ms. The 

CMC results were overall good when the data was smoothed with a window size of 75 ms and 

a window size greater than 300 ms, with exception of the semitendinosus (Table 3.8).  
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Table 3.7: Between sessions reliability of the sEMG signal, smoothed with different window sizes of 25, 50, 75 and 

100 ms: ICC, intersession CMC and intersubject CMC), during the stance phase in running. 

Window 

size 

ICC CMC intersession CMC intersubject 

Biceps Semiten*. VL VM Biceps Semiten.* VL VM Biceps Semiten.* VL VM 

25 ms 0.37 0.24 0.41 0.44 0.68 0.77 0.91 0.92 0.73 0.7 0.91 0.95 

50 ms 0.62 0 0 0 0.73 0.82 0.94 0.96 0.78 0.77 0.95 0.97 

75 ms 0.62 0 0 0 0.77 0.83 0.97 0.96 0.81 0.83 0.96 0.98 

100 ms 0 0 0 0.23 0.8 0.84 0.96 0.97 0.83 0.87 0.96 0.98 

*Semiten.= semitendinosus 

 

Table 3.8: Between sessions reliability of the sEMG signal, smoothed with different window sizes of 25, 50, 75, 

100, 150, 300, 400 and 500 ms: ICC, intersession CMC and intersubject CMC), during the step down task. 

Window 

size 

ICC CMC intersession CMC intersubject 

Biceps Semiten*. VL VM Biceps Semiten.* VL VM Biceps Semiten.* VL VM 

25 ms 0.87 0 0.22 0.81 0.51 0.44 0.69 0.75 0.68 0.52 0.81 0.76 

50 ms 0.83 0.37 0.52 0.73 0.58 0.50 0.77 0.82 0.73 0.55 0.84 0.77 

75 ms 0.37 0.32 0.61 0.78 0.56 0.69 0.82 0.86 0.76 0.65 0.82 0.87 

100 ms 0.89 0.33 0.57 0.85 0.64 0.54 0.83 0.87 0.75 0.56 0.85 0.8 

150 ms 0.92 0.16 0.50 0.97 0.66 0.55 0.85 0.88 0.75 0.55 0.87 0.87 

300 ms 0.95 0.55 0.53 0.82 0.74 0.72 0.89 0.91 0.77 0.55 0.88 0.86 

400 ms 0.92 0.81 0.63 0.79 0.71 0.61 0.88 0.91 0.78 0.56 0.89 0.87 

500 ms 0.85 0.62 0.64 0.82 0.74 0.76 0.90 0.93 0.79 0.57 0.89 0.88 

*Semiten.= semitendinosus 

 

The plotted curves of the VM and biceps during the stance phase showed that the variability of 

the curves was reduced with larger window sizes. The VM and biceps curves showed that the 

activation peaks were highest in the window size of 25 ms. The activation peak of the VM 

plateaued from 15- 20% stance phase. The plateau became longer with greater window sizes: 

50 ms, 75 ms: 10-35% and 100 ms: 10-45%. Furthermore, the second test (red line and red 

shaded area) showed also that two peaks occurred during the beginning stance phase in the VM 

muscle (Figure 3.26). These two peaks disappeared in the smoothing with a 100 ms window 

size (Figure 3.26).  
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Figure 3.26: VM smoothing with a 25 ms, 50 ms, 75 ms and 100 ms window size for the stance phase in running 

(first test (blue line) and the second test (red line). The shaded area represents ±1SD. 

 

The first test of the biceps showed that two peaks occurred during the biceps activity during the 

stance phase. The first peak appeared during 20-35% of the stance phase and the second peak 

during 40 and 60% of the stance phase. These two peaks disappeared when the data was 

smoothed with a 100 ms window size (Figure 3.27).  
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Figure 3.27: Biceps smoothing with a 25 ms, 50 ms, 75 ms and 100 ms window size for the stance phase in 

running (first test (blue line) and the second test (red line). The shaded area represents ±1SD. 

 

The step down test was more variable than the stance phase and thus the curves were 

dominated by spikes when they were smoothed with window sizes smaller than 300 ms. The 

smoothing with window sizes between 300 ms and 500 ms seem to not influence the peak nor 

the shape of the curve much in both muscles (Figure 3.28, 3.29).  

 

 

 

 

0

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

0

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

0

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

0

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

       25ms window size     50 ms window size 
 

% mean normalised      % mean normalised  

 

 

 

 

 

 

 

 

 

 

 

 
   % of stance phase in running      % of stance phase in running   

     

     75ms window size      100 ms window size 
 

% mean normalised      % mean normalised  

 

 

 

 

 

 

 

 

 

 

 

 
    
 

    % of stance phase in running      % of stance phase in running 

 

 



 

Chapter 3: Methodology and repeatability 

 

112 

 

 

 

 

 

 

 

 
 

          
% of step down task     % of step down task 

 
Figure 3.28: VM smoothing with a 25 ms, 50 ms, 75 ms, 100 ms, 150 ms, 300 ms, 400 ms and 500 m window size 

for the step down task. The shaded area represents ±1SD.  
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Figure 3.29: Biceps smoothing with a 25 ms, 50 ms, 75 ms, 100 ms, 150 ms, 300 ms, 400 ms and 500 m window 

size for the step down task. The shaded area represents ±1SD.  
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Discussion and conclusion 

The smoothing of the sEMG signal with different window sizes demonstrated a significant 

difference in the averaged peak values and the % of cut-off showed that the greater the window 

size, the smaller the averaged peak of the signal became. Window sizes greater than 100 ms 

resulted in a decline of the peak by 27-38%. The ICCs showed poor reliability during the stance 

phase with all window sizes and moderate to good reliability during the step down task when 

the signal was smoothed with window sizes above 300 ms. During the stance phase the CMCs 

revealed good repeatability for window size greater than 75 ms and during the step down task 

the CMCs revealed good repeatability for window size greater than 300 ms.  

The plotted curves illustrated that too small window sizes resulted in spiky curves and had a 

greater variability, whereby too large window sizes smoothed the curves in such a way that the 

individuality of the curves, such as two occurring peaks, disappeared. Furthermore, the graphs 

also showed that the stance phase in running was less variable than the slower step down task. 

Based on these results, the stance phase in running will be smoothed with a rms and a window 

size of 75 ms. The slower tasks "step down task" and "single leg squat" will be smoothed with a 

rms and a window size of 300 ms. These window sizes will allow curves to be smoothed, 

without losing the individuality of each curve. In addition, this pilot study showed the strong 

influence of smoothing on the peak value of each curve and revealed a low repeatability for the 

peak of the signal during stance phase. Thus, the peak values of each curve will not be 

investigated. However, the reduced peaks will not affect the data in this study, because to be 

able to analyse cocontraction, the aim is to receive curves which represent the sEMG activity 

without losing important signal information. In addition, it could be shown that the peaks of the 

sEMG curves were equally reduced throughout the muscles with different window sizes and 

thus the relation between quadriceps and hamstrings muscles will not be affected by the 

window size. 

 

3.5. Statistical analysis 

The statistical analysis was performed using SPSS (v. 20) and Excel 2013. The graphs were 

plotted by using Matlab (R2010a).  

The peaks of the five trials of the flexibility, anterior reach and strength tests, as well as the 

angles and moments of the hip and knee flexion, adduction and rotation and the sEMG signal 
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were averaged for the first and second test and used to assess the within-day reliability by using 

the ICC. Furthermore, these averaged peaks were used to investigate if significant differences 

between the first and second test were present (Wilcoxon).  

The means of the five trials of the patella assessments, the running speed, the knee and hip 

angles and moments and the sEMG signals were averaged and used to investigate the within-

day reliability (ICC) and if significant differences between the first and second test occurred 

(Wilcoxon). 

Non-parametric tests had been chosen because the sample size of 9 participants was too small 

to represent a normal distribution.  

The reliability of the averaged means and peaks for the numeric outcome were assessed by 

using the intra-class correlation coefficients (ICC), model 3.5, for the ordinal data (patella 

position and foot posture) the weighted Kappa was used. The CMC was utilised to compare the 

five sEMG curves and the hip and knee kinetic and kinematic curves of each subject and each 

task of the first and second test (intra-subject CMC). In addition, the averaged sEMG curves of 

the participants were compared between the first and second test for each muscle and each task 

to investigate the intersubject CMC. The CMCs examine if the sEMG waveforms are similar 

between the first and the second session.  

Although the ICC and CMCs provide a lot of information about the reliability, they do not 

indicate the amount of disagreement between measurements. The standard error of the 

measurement (SEM) indicated the standard deviation of the measurement errors and reflects the 

reliability of the measure (Portney, 2009). A low SEM in combination with a high ICC, Kappa 

and CMC indicated good reliability of a measure. The SEM was calculated by using the 

formula: SD√(1 − ICC) (Harvill, 1991; Portney, 2009). The SEM was expressed in the units of 

each particular measure (Carter & Lubinsky, 2016; Portney, 2009). 

The patella displacement was categorised as a central patella position when the distance was -

0.5 to 0.5 cm. If the distance was greater than 0.5 cm, the patella position was categorised as 

lateral and below -0.5 cm as medial displaced position.  

The results of the 6-item foot posture index were categorised as a normal foot posture when the 

overall score was between -2 to 2. If the participant had a score below -2, the foot posture was 

classified as supinated and below -6 as a much supinated foot posture. If the participant had an 
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overall score above 2 the foot posture was classified as pronated and above 6 as a much 

pronated foot.  

 

3.6. Results 

Significant differences were found in the anterior reach test (p=0.03) and the concentric 

quadriceps strength (p=0.02, normalised strength: p=0.02). The knee adduction angle during the 

step down task (p=0.004) and the knee rotation angle during running (p=0.005) were significant 

different between the two different days. Furthermore, the knee flexor impulse during the single 

leg squat task (p=0.01) and running (p=0.03) was different between the test days.  

The between-sessions ICC values showed a moderate to excellent reliability for the flexibility 

assessments (hamstrings and quadriceps flexibility and ankle range of motion) (ICC: 0.61-0.93) 

(Table 5.9).  

The assessment of the patella to investigate lateral/ medial patella displacement was reliable 

(ICC: 0.6), whereas the assessment of the medial/ lateral tilt and anterior/ posterior tilt of the 

patella were unreliable (Kappa: 0-0.21). The 6-item foot posture index showed to be reliable 

measurement outcome (Kappa: 0.73) (Table 3.9, Table 3.10).  

Although the anterior reach distance was significantly different between the days (first test 

mean: 68.6 cm, second test mean: 73.41 cm), the test seem to be reliable (ICC: 0.66, 0.75) 

(Table 5.9).  

The strength tests of the quadriceps and hamstrings were very reliable (ICC: 0.76-0.94). 

Although, the concentric quadriceps strength was significantly different between the first and 

the second meeting, it still revealed a high repeatability. The ratio of force development and the 

time to peak strength measurement during the isometric quadriceps strength test were very 

reliable (ICC: 0.78-0.83), as well as the quadriceps inhibition measurement (ICC: 0.83) (Table 

3.9).  
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Table 3.9: Between sessions mean, SD, p-value, ICC and SEM (*indicated the results were significantly different) 

  mean, SD P value: 

(Wilcoxon, 

sig 2-tailed) 
ICC (95% CI) SEM 

Test 1 Test 2 

hamstrings flexibility in degrees 28.89 ±10.54 27.78 ±11.76 0.59 0.86 (0.49-0.97) 4.17 

quadriceps flexibility in degrees 110 ±7.07 106.88 ±7.04 0.4 0.61 (0-0.84) 4.40 

ankle range of motion in cm 11. ±3.74 11.33 ±2.96 0.36 0.93 (0.74-0.99) 0.89 

ankle range of motion in degrees 54.44 ±10.44 52.78 ±7.12 0.32 0.84 (0.45-0.96) 3.50 

anterior reach test in cm 68.64 ±8.32 73.41 ±6.39 0.04* 0.66 (0.5-0.91) 4.29 

anterior reach test (distance in cm/ leg 

length) 
75.8 ±10.3 81.1 ±8.67 0.03* 0.75 (0.23-0.94) 4.75 

patella lateral-medial displacement in cm 0.39 ±0.45 0.25 ±0.4 0.91 0.6 (0-0.92) 0.28 

isometric quadriceps strength in Nm 166.67 ±42.08 175.63 ±47.58 0.59 0.94 (0.77-0.98) 10.99 

isometric quadriceps strength (Nm/ kg) 1.91 ±0.56 1.81 ±0.58 0.77 0.94 (0.79-0.99) 0.14 

AMI in % 9.92 ±10.52 13.38 ±13.7 0.18 0.83 (0.46-0.96) 4.99 

time to peak in s 0.67 ±0.17 0.65 ±0.21 0.68 0.78 (0.27-0.93) 0.09 

rate to force development in s/Nm 258.36 ±87.02 243.36 ±81.33 0.39 0.84 (0.48-0.96) 33.66 

isometric hamstrings strength in Nm 88.89 ±27.73 84.33 ±43.87 0.59 0.9 (0.58-0.98) 9.52 

isometric hamstrings strength (Nm/kg) 1.31±0.26 1.24±0.56 0.77 0.81 (0.3-0.96) 0.13 

eccentric quadriceps strength in Nm 128 ±37.28 145.78 ±42.09 0.1 0.87 (0.49-0.97) 12.64 

eccentric quadriceps strength (Nm/kg) 1.93 ±0.36 2.12± 0.46 0.21 0.76 (0.18-0.95) 0.20 

concentric quadriceps strength in Nm 91.63 ±37.5 120.56 ±49.35 0.01* 0.94 (0.73-0.99) 10.64 

concentric quadriceps strength (Nm/kg) 1.36 ±0.44 1.74 ±0.58 0.02* 0.87 (0.48-0.97) 0.18 

self-selected speed in m/s 3.66 ±0.54 3.66 ±0.33 0.86 0.76 (0.24-0.94) 0.21 

self-selected speed [(m/s)/ leg 

length*100] 
4.05 ±0.61 4.03 ±0.52 0.95 0.82 (0.38-0.96) 0.24 

 

 

Table 3.10: Between sessions median, 25th and 75th interquartile range, p-value and Kappa.  

  median (interquartile range) P value: 

(Wilcoxon, 

sig 2-tailed) 
Kappa 

Test 1 Test 2 

6-item foot posture  5 (3 to 5) 4 (1.5 to 5) 0.34 0.73 

medial/ lateral patella tilt 0 (0 to 1) 0 (0 to 1) 0.48 0.21 

anterior/ posterior patella tilt 0 (0 to 1) 0 (0 to 1) 0.16 0 

 

The between-session reliability of the posture and flexibility assessments were also investigated 

when the results were categorised. Therefore the hamstrings flexibility was classified as normal 

when the participants had a knee flexion between 20 and 40°. Hamstrings stiffness was 

described when they had a knee flexion greater than 40° and an increased hamstrings flexibility 

with a knee flexion less than 20°. The quadriceps stiffness was defined as such when the 

participants had a knee flexion during the test which was less than 90° and an increased 

quadriceps flexibility with a knee flexion greater than 115°.  

The between sessions reliability of the categorised flexibility and posture data showed that the 

tests were also reliable when they were categorised (Table 3.11).  
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Table 3.11: Between sessions median, 25th and 75th interquartile range, p-value and Kappa.  

  
median (interquartile range) P value: 

(Wilcoxon, 

sig 2-tailed) 
Kappa 

Test 1 Test 2 

Quadriceps flexibility in ° 1 (1-2) 1 (1-2) 0.89 0.98 

Hamstrings flexibility in ° 1 (0-2) 1 (0-2) 0.99 0.55 

Ankle range of motion in ° 1 (1-2) 1 (1-2) 0.32 0.77 

patella medial/ lateral displacement 

in cm 
1 (1-2) 1 (1-2) 0.16 0.5 

6-item foot posture index 1 (1-2) 1 (1-2) 0.32 0.73 

 

Throughout all tasks, the knee and hip angles and moments showed a moderate to good 

reliability (ICC: 0.51- 0.97). The CMC results during the single leg squat and step down task 

were high for the knee flexion and hip adduction (CMC: 0.67-0.93), low for the hip and knee 

rotation, as well as the knee valgus (CMC: 0.1-0.54) (Table 3.12, Table 3.13). The intersession 

CMC results for the knee and hip angles and moments during running were all moderate to 

very good (CMC: 0.48-0.97) (Table 3.14). The intersubject CMC results were good for knee 

flexion, rotation and hip adduction angle and moments (CMC: 0.65-0.97) and lower for the 

knee valgus angles and moment and hip internal rotation angle (CMC: 0.18-0. 59). 

The knee adductor angular impulse was not reliable (ICC: 0-0.35). The knee flexor impulse 

was highly reliable during the single leg squat and step down task (ICC: 0.78, 0.82), but 

unreliable during the stance phase in running (ICC: 0.27) (Table 3.12-3.14).  
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Table 3.12: Between sessions mean, SD, p-value, ICC, SEM and CMCs for the single leg squat task. Hip and knee 

flexion, adduction and internal rotation are reported in positive values (*indicated the results were significantly 

different). 

 
mean, SD P value: 

(Wilcoxon, 

sig 2-tailed) 
ICC (95% CI) SEM 

CMC 

intra-

subject 

CMC 

inter-

subject Test 1 Test 2 

Ankle flexion angle 34.25 ±5.99  33.83 ±4.53 0.67 0.86 (0.43-0.97) 1.97 0.88 0.69 

Ankle flexion moment 0.96 ±0.17 30.88 ±0.38 0.67 0.53 (0-0.86) 0.19 0.45 0.32 

Knee flexion angle 78.09 ±4.98  77.59 ±4.27 0.44 0.75 (0.2-0.95) 3.20 0.93 0.84 

Knee abduction angle 4.79 ±5.4 5.14 ±2.96 0.86 0.58 (0-0.91) 2.73 0.39 0.2 

  Knee int. rotation angle 1.39 ±3.91 0.86 ±4.67 0.67 0.51 (0-0.86) 2.93 0.37 0.76 

Knee flexion moment 1.59 ±0.22 1.65 ±0.25 0.37 0.77 (0.27-0.94) 0.11 0.86 0.67 

Knee adduction moment 0.35 ±0.17 0.31 ±0.13 0.44 0.77 (0.27-0.94) 0.07 0.78 0.1 

  Knee int. rotation moment 0.4 ±0.09 0.41 ±0.1 0.68 0.71 (0.16-0.93) 0.05 0.31 0.51 

  Hip flexion angle  72.41 ±12.69 73.4 ±12.43 0.48 0.91 (0.61-0.98) 3.78 0.86 0.74 

Hip adduction angle 16.42 ±6.12 17.4 ±6.17 0.11 0.97 (0.85-0.99) 1.04 0.72 0.67 

Hip int. rotation angle 4.86 ±6.72 0.41 ±4.23 0.05* 0.51 (0-0.86) 4.14 0.31 0.1 

  Hip flexion moment 0.85 ±0.64 0.87 ±0.59 0.78 0.93 (0.70-0.99) 0.16 0.72 0.67 

Hip adduction moment 0.97 ±0.21 0.96 ±0.13 0.77 0.8 (0.34-0.95) 0.08 0.46 0.51 

  Hip int. rotation moment -0.23 ±0.07 -0.19 ±0.9 0.11 0.6 (0-0.89) 0.52 0.49 0.55 

 KAAI (%Bw*height*s) 0.82 ±0.78 0.54 ±0.53 0.31 0 (0-0.64) 0.66   

 Knee flexor angular     

 impulse (%Bw*height*s) 
4.9 ±1.67 3.82 ±1.21 0.01* 0.82 (0.39-0.96) 0.64   

 
 
 

 

Table 3.13: Between sessions mean, SD, p-value, ICC, SEM and CMCs for the step down task. Hip and knee 

flexion, adduction and internal rotation are reported in positive values (*indicated the results were significantly 

different). 

 
mean, SD P value: 

(Wilcoxon, 

sig 2-tailed) 
ICC (95% CI) SEM 

CMC 

intra-

subject 

CMC 

inter-

subject Test 1 Test 2 

Ankle flexion angle 36.12 ±5.39 7 35.11 ±4.06 0.24 0.85 (0.43-0.97) 1.81 0.90 0.79 

Ankle flexion moment 1.30 ±0.28 3 1.27 ±0.21 0.92 0.52 (0-0.88) 0.17 0.66 0.53 

Knee flexion angle 78.76 ±2.94 80.11 ±2.79 0.26 0.53 (0-0.89) 1.96 0.93 0.88 

Knee abduction angle 6.99 ±5.22 3.59 ±4.8 0.04* 0.64 (0.01-0.91) 3.10 0.42 0.43 

  Knee int. rotation angle 2.24 ±4.74 5.59 ±5.84 0.14 0.51 (0-0.86) 3.81 0.39 0.35 

Knee flexion moment 1.55 ±0.3 1.57 ±0.23 0.95 0.74 (0.2-0.93) 0.13 0.90 0.89 

Knee adduction moment 0.43 ±0.19 0.37 ±0.12 0.44 0.51 (0-0.86) 0.11 0.86 0.2 

  Knee int. rotation moment 0.4 ±0.12 0.41 ±0.07 0.37 0.51 (0-0.86) 0.06 0.29 0.8 

  Hip flexion angle  62.71 ±11.83 62.14 ±5.88 0.78 0.74 (0.14-0.94) 4.52 0.9 0.74 

Hip adduction angle 17.89 ±4.3 18.8 ±5.74 0.68 0.61 (0-0.91) 3.09 0.77 0.74 

Hip int. rotation angle 7.16 ±7.74 3.25 ±5.21 0.14 0.59 (0-0.88) 4.30 0.56 0.2 

  Hip flexion moment 1.11 ±0.47 0.99 ±0.32 0.74 0.51 (0-0.92) 0.28 0.79 0.77 

Hip adduction moment 1.1 ±0.23 1.1 ±0.22 0.95 0.64 (0.02-0.91) 0.13 0.50 0.45 

  Hip int. rotation moment -0.19 ±0.09 -0.16 ±0.08 0.44 0.67 (0.69-0.92) 0.05 0.54 0.5 

 KAAI (%Bw*height*s) 0.8 ±0.77 0.86 ±0.63 0.86 0.32 (0-0.79) 0.56   

 Knee flexor angular     

 impulse (%Bw*height*s) 
3.56 ±0.88 3.29 ±1.03 0.14 0.78 (0.29-0.95) 0.44   
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Table 3.14: Between sessions mean, SD, p-value, ICC, SEM and CMCs for the stance phase in running. Hip and 

knee flexion, adduction and internal rotation are reported in positive values. 

 
mean, SD P value: 

(Wilcoxon, 

sig 2-tailed) 
ICC (95% CI) SEM 

CMC 

intra-

subject 

CMC 

inter-

subject Test 1 Test 2 

Ankle flexion angle 25.03 ±4.16 7 26.14 ±3.97 0.40 0.63 (0-0.91) 2.47 0.96 0.84 

Ankle flexion moment 2.49 ±0.89 3 1.83 ±1.10 0.21 0.52 (0-0.88) 0.67 0.45 0.95 

Knee flexion angle 45.89 ±4.59 44.21 ±3.44 0.21 0.7 (0.13-0.92) 2.21 0.75 0.85 

Knee abduction angle 2.33 ±3.28 1.99 ±3.04 0.59 0.75 (0.22-0.94) 1.54 0.64 0.41 

  Knee int. rotation angle 3.04 ±4.93 5.9 ±6.85 0.05* 0.75 (0.23-0.94) 2.99 0.82 0.65 

Knee flexion moment 2.6 ±0.22 2.5 ±0.41 0.37 0.5 (0-0.86) 0.23 0.97 0.94 

Knee adduction moment 0.54 ±0.39 0.63 ±0.47 0.26 0.87 (0.53-0.97) 0.15 0.89 0.59 

  Knee int. rotation moment 0.4 ±0.18 0.39 ±0.2 0.77 0.88 (0.56-0.97) 0.06 0.48 0.81 

  Hip flexion angle  45.65 ±8.12 47.19 ±7.20 0.40 0.77 (0.22-0.95) 3.67 0.89 0.65 

Hip adduction angle 11.59 ±5.93 11.47 ±5.2 0.44 0.89 (0.61-0.98) 1.79 0.84 0.72 

Hip int. rotation angle 6.28 ±6.55 6.48 ±6.71 0.95 0.59 (0-0.91) 4.12 0.86 0.18 

  Hip flexion moment 1.84 ±0.68 2.04 ±0.53 0.21 0.79 (0.27-0.96) 0.28 0.84 0.75 

Hip adduction moment 1.84 ±0.34 1.67 ±0.38 0.17 0.7 (0.12-0.92) 0.20 0.68 0.93 

  Hip int. rotation moment 0.07 ±0.06 0.09 ±0.07 0.77 0.74 (0.2-0.93) 0.03 0.97 0.77 

 KAAI (%Bw*height*s) 0.06 ±0.06 0.04 ±0.03 0.68 0.35 (0-0.81) 0.04   

 Knee flexor angular     

 impulse (%Bw*height*s) 
0.25 ±0.08 0.19 ±0.05 0.03* 0.27 (0-0.77) 0.06   

 

Table 3.15: Between sessions mean, SD, p-value, ICC, SEM and CMCs for the single leg squat, step down task 

and the stance phase in running. Quadriceps and hamstrings sEMG activity is reported in % of the peak EMG 

activity.  

sEMG activity in 

% of peak EMG 

activity 

mean, SD P value: 

(Wilcoxon, sig     

2-tailed) 
ICC (95% CI) SEM 

CMC 

intra-

subject 

CMC 

inter-

subject Test 1 Test 2 

single leg squat 

Vastus medialis 1.52 ±0.21 1.6 ±0.21 0.44 0.5 (0-0.86) 0.15 0.88 0.86 

Vastus lateralis 1.5 ±0.21 1.62 ±0.24 0.21 0.47 (0-0.85) 0.17 0.89 0.87 

semitendinosus 1.52 ±0.16 1.53 ±0.12 0.95 0.53 (0-0.87) 0.10 0.71 0.67 

biceps femoris 1.55 ±0.16 1.63 ±0.23 0.77 0.05 (0-0.67) 0.19 0.65 0.76 

step down task 

Vastus medialis 1.67 ±0.2 1.68 ±0.3 0.77 0.57 (0-0.88) 0.16 0.88 0.88 

Vastus lateralis 1.65 ±0.23 1.64 ±0.24 0.95 0 0.23 0.88 0.90 

semitendinosus 1.44 ±0.18 1.56 ±0.24 0.09 0.11 (0-0.92) 0.20 0.69 0.53 

biceps femoris 1.49 ±0.1 1.52 ±0.15 0.59 0.1 (0-0.69) 0.12 0.73 0.82 

running stance phase V1 

Vastus medialis 2.09 ±0.13 2.08 ±0.18 0.77 0.44 (0-0.84) 0.12 0.97 0.97 

Vastus lateralis 2.21 ±1.04 2.15 ±0.19 0.31 0 0.15 0.97 0.97 

semitendinosus 1.69 ±0.22 1.81 ±0.29 0.21 0.53 (0-0.87) 0.18 0.82 0.81 

biceps femoris 1.64 ±0.1 1.63 ±0.17 0.77 0.38 (0-0.82) 0.11 0.82 0.82 
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The peak values of the sEMG were low to moderate (ICC: 0-0.57). However, the waveform of 

the sEMG signal during each task was moderate to highly reliable (CMC: 0.53-0.97) (Table 

3.15).  

 

3.7. Discussion 

The aim of this chapter was to investigate the between-session reliability of the AMI, the break 

phenomenon, strength of the quadriceps muscle, lower limb flexibility and foot and patella 

posture assessments, the 3D motion-analysis system and the sEMG analysis system during 

functional tasks.  

The high repeatability of the hamstrings flexibility measurement by using the active knee 

extension (AKE) test is in line with repeatability results in previous studies (Gabbe et al., 2004; 

Gajdosik & Lusin, 1983; Gajdosik et al., 1993; Hamid et al., 2013; Neto et al., 2014). The 

reliability of the modified Thomas test to assess the quadriceps flexibility was only moderate, 

which has been reported in previous studies as well (Peeler & Anderson, 2008).  

The current study revealed a high reliability of the ankle ROM measurement, which was in line 

with previous studies (Calatayud et al., 2015; Konor et al., 2012). Konor et al. (2012) 

emphasised the advantage of the weight bearing lunge because it showed to be reliable even 

when it was assessed by novice raters.  

The posture assessment of the patella showed that only the assessment of the medial/ lateral 

patella displacement was reliable which has been confirmed in previous studies (Herrington, 

2002). However, the patella tilt assessments were unreliable which has also been reported in 

previous research (Fitzgerald & McClure, 1995).  

The assessment of the foot posture investigated using the 6-item foot posture index was 

reliable, which is in accordance with previous studies (McLaughlin, Vaughan, Shanahan, 

Martin, & Linger, 2016; Terada, Wittwer, & Gribble, 2014). 

The strength tests showed that the quadriceps and hamstrings strength tests were reliable. These 

results were in accordance with previous literature showing that the quadriceps strength test 

was reliable (Pincivero, Lephart, & Karunakara, 1997; Sole, Milosavljevic, Sullivan, 

Nicholson, & Hamrén, 2007; Wollin, Purdam, & Drew, 2016). Although the reliability of the 



 

Chapter 3: Methodology and repeatability 

 

122 

 

normalised quadriceps strength (Nm/ kg) was lower than the raw strength data, it still showed 

good reliable results.  

The knee and hip angles and moments were moderate to good reliable throughout all tasks. 

However, the CMC results were low for the hip and knee rotation, as well as the knee valgus 

during the single leg squat and step down task. Røislien et al. (2012) described that kinematic 

curves with a larger range of motion (ROM) appeared more similar, which was reflected in a 

higher CMC result. This might be an explanation for the decreased CMC results, because the 

rotation and adduction angles and moments are relatively small during these tasks (Røislien et 

al., 2012). Thus, Røislien et al. (2012) concluded that the CMC results should be interpreted 

with caution. During the stance phase in running, the ICCs and CMCs were from „moderate' to 

'good' for the repeatability of the hip and knee angles and moments. The CMC results during 

the stance phase in running were from „moderate‟ to „good‟ and thereby in line with previous 

reliability findings during running (Alenezi, Herrington, Jones, & Jones, 2016). The reliability 

of the single leg squat ranged from „moderate‟ to „good‟, which was in accordance to the 

previous findings (Alenezi et al., 2014). Although the knee flexor impulse was reliable during 

the step down and single leg squat task, it was not reliable during the stance phase in running. 

The knee adductor impulse was unreliable through all tasks. 

The intersession CMC results for the knee and hip angles and moments during running were all 

moderate to very good (CMC: 0.48-0.97) (Table 5.14). The inter-subject CMC results were 

good for knee flexion, rotation and hip adduction angle and moments (CMC: 0.65-0.97) and 

lower for the knee valgus angles and moment and hip internal rotation angle (CMC: 0.18-0.59). 

Although only one assessor applied the markers, a variability between sessions became 

apparent. To reduce this variability within the study, the CAST marker-based protocol 

(Cappozzo et al., 1995) was used, which attempts to reduce skin-movement artefacts by 

attaching markers to the centre of segments rather than single markers close to the joints, as in 

the Helen Hayes model (Collins et al., 2009). However, it could still be shown that the single 

leg squat as well as the step down task were less reliable than the stance phase in running. The 

lower reliability might be caused by different velocities during these tasks. Thus, to reduce the 

variability and improve the reliability, in the test protocol for the further studies the velocity 

will be verbally cued to provide the desired movement speed. Therefore the patient will be 

instructed to squat down/ lower the leg down during two seconds which will be verbally cued 

by the instructor saying: "One, two" and instructed to come back into the starting position 
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within a period of two seconds which will be again verbally cued with "one, two". In addition, 

the participant will be instructed to maintain an upright posture and to hold the non-stance foot 

in line with the anle of the stance leg.  

The peak values of the sEMG were low to moderate (ICC: 0-0.57). However, the waveform of 

the sEMG signal during each task was moderate to highly reliable (CMC: 0.53-0.97) (Table 

5.15). Not many studies investigated the reliability of sEMG during the single leg squat task, 

step down and running task and thus the comparison to previous literature remains challenging. 

However, these results indicate that the analysis of the peak values of the sEMG signal would 

be inappropriate as they seem to not be reliable. Whereas the waveform of the sEMG signal 

showed moderate to high reliability and thus can be used for further investigations.  

This study also provided the SEM reference values for all tests. The SEM calculation depends 

on the standard deviation of the measurement, which allows the clinician to be 68% confident 

that the true value lies within ±1 SEM of an observed value or 95% confident that the true 

value lies within ±2 SEMs (Portney, 2009). The SEM values for hamstrings and quadriceps 

flexibility ranged in previous studies from 2° to 7° and thus are in accordance with the findings 

in this study that showed for both measurements a SEM value of 4° (Cejudo et al., 2015; 

Clapis, Davis, & Davis, 2008; Gabbe et al., 2004; Neto et al., 2014; Peeler & Anderson, 2008; 

Reurink, Goudswaard, Oomen, Moen, Tol, Verhaar, & Weir, 2013). The ankle range of motion 

SEM values in this study were 3.5° and 0.89 cm, which is in accordance with the reliability 

findings in previous studies, which ranged from 2° to 4° and 0.6 cm (Cejudo et al., 2015; Konor 

et al., 2012). The SEM values in the star excursion balance test were 4.29 cm and normalised to 

the leg length 4.75 cm, which is greater than reported in previous literature where the SEM 

ranged from 2.01 cm to 3.43 cm (Hertel et al., 2010; Hyong & Kim, 2014; Kinzey & 

Armstrong, 1998; Munro, Herrington, & Carolan, 2012; Plisky et al., 2009). The SEM for the 

lateral/ medial patella displacement was only investigated by McEwan et al. (2007), who 

reported a smaller SEM of 0.1 mm, in comparison to 0.28 mm in this study. The SEM values 

for the quadriceps isometric strength ranged from 10.64 to 12.64 Nm and from 0.14 to 0.20 

Nm/kg when it was normalised to the body mass, which is in accordance to previous literature 

of ranging SEM values from 6.48 Nm to 12.24 Nm (De Araujo Ribeiro Alvares et al., 2015; De 

Carvalho Froufe Andrade, Caserotti, de Carvalho, de Azevedo Abade, & da Eira Sampaio, 

2013; Sole et al., 2007). Only one study investigated the reliability of quadriceps inhibition 

assessments (Norte, Frye, & Hart, 2015). They reported a ranging AMI from 2.97 to 4.53%, 
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which is in agreement to the SEM in this study of 4.99%. Previous literature that investigated 

the reliability of 3D kinetics and kinematics showed very comparable results regarding the 

mean, SD and SEM (Alenezi et al., 2014; Alenezi, Herrington, Jones, & Jones, 2016; Ferber, 

McClay Davis, Williams, & Laughton, 2002). Those studies have been carried out with a larger 

sample size and concluded that all kinematic and kinetic variables showed good to excellent 

consistency (Alenezi et al., 2014, 2016; Ferber et al., 2002). Thus, the reliability findings of this 

study were in line with previous research and confirmed that the lower limb kinematics and 

kinetics were repeatable.  

Due to the different normalisation techniques of the sEMG signal, it was difficult to compare 

the mean, SD and SEM with previous reported results. However, the SEM was reported as 

approximately 10% of the mean of the sEMG signal (Bolgla et al., 2010; Pazzinatto et al., 

2015). Thus, these findings are in accordance with the result in this study.  

 

3.8. Limitations to the study 

Although the reliability study was planned as a pilot study to develop the test protocol, the 

sample size of 9 participants was low. Previously, it has been reported that 10-12 participants 

are sufficient for a pilot study (Johanson & Brooks, 2010). However, it has been recommended 

to increase the sample size to ensure a representativeness (Johanson & Brooks, 2010).  

It should be addressed that the assessor's ability of markers placement might affected the 

results. However, this effect should be small because the assessor had 3 years of clinical 

experience as a physiotherapist and was specialised in manual therapy. Furthermore, the 

assessor participated in the clinical gait analysis course at the University of Salford, in which 

marker placement was discussed and practised.  

Subjects were instructed to squat down, step down as far as possible and return to a single-

legged standing position without losing his/her balance. Thus, the squat and step down depth 

were not sufficiently controlled for each participant, which reflects normal practice, but 

challenges the comparability. Since the repeatability for these two tasks was lower it has been 

decided to standardise the task velocity by providing a verbal cue to the participant.  

To standardise the running task, the participants wore standard trainers. However, this does fail 

to represent typical shoe-surface interactions in real environment.  
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3.9. Conclusion 

Based on these results, it could be proven that the following outcome measures were reliable:  

1. Hamstrings and quadriceps flexibility in degrees 

2. Ankle range of motion in degrees and cm 

3. Anterior reach test distance in cm and reach distance normalised to leg length 

4. Patella medial/lateral displacement in cm,  

5. 6-item foot posture index 

6. Isometric quadriceps strength in Nm and normalised to body mass 

7. Eccentric and concentric quadriceps and hamstrings strength in Nm and normalised to 

body mass 

8. Quadriceps inhibition in %  

9. Peaks of hip-flexion, adduction and internal-rotation angles and moments. 

10. Peaks of knee-flexion, adduction and internal-rotation angles and moments. 

11. sEMG waveform 

12. Knee angular velocity 

  

Whereas, these outcome measures revealed to be poor in reliability: 

1. patella tilting on grading scale: -2 to 2 

2. the peak of the sEMG signal during each task  

3. Knee adductor angular impulse (KAAI) and the knee flexor impulse. 

 

Thus, only the reliable outcome measures will be carried forward as part of the test protocol. 
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Chapter 4: Influence of the PowersTM strap on lower limb kinetics and kinematics 

in individuals with and without PFP 

The first intervention assessed was the Powers
TM 

strap. This chapter will present the results of 

how the the Powers
TM

 strap influenced pain and lower limb biomechanics in individuals with 

and without PFP. This allowed the analysis of the mechanistic and the clinical aspects of the 

Powers
TM

 strap.  

 

4.1. Introduction 

Abnormal biomechanics, especially the dynamic knee valgus, which is a combination of 

femoral adduction, femoral internal rotation, external knee rotation, tibial abduction and ankle 

eversion are known to be associated with PFP (Nakagawa et al., 2015; Nakagawa et al., 2012; 

Powers, 2003; Willson & Davis, 2008). Studies that have investigated the biomechanics of 

individuals with PFP reported an increased hip internal rotation and hip adduction angle 

compared with individuals without PFP (Araújo, de Souza Guerino Macedo, Ferreira, Shigaki, 

& da Silva, 2016; Bley et al., 2014; Graci & Salsich, 2015; Lucareli, Amir, Bley, Nayra, 

Garbelotti, et al., 2014; Lucareli, Amir, Bley, Nayra, Jeniffer, et al., 2014; McKenzie, Galea, 

Wessel, & Pierrynowski, 2010; Nakagawa et al., 2015; Nakagawa et al., 2012; Nakagawa et al., 

2013; Noehren, Pohl, et al., 2012; Souza & Powers, 2009b). Furthermore, it was shown that an 

increased hip adduction and internal rotation angle is associated with higher levels of pain and 

reduced function in individuals with PFP (Graci & Salsich, 2015; Nakagawa et al., 2013; 

Souza, 2008; Souza, Draper, Fredericson, & Powers, 2010). 

Studies that have investigated the influence of knee braces and straps on lower limb 

biomechanics in individuals with PFP have demonstrated heterogeneous findings. Several 

studies reported that knee braces modified the frontal and transverse planes of the knee joint 

(McCall et al., 2014; Richards et al, 2015.; Theoret & Lamontagne, 2006), whereas other 

studies could not identify any significant changes (Denton et al., 2005; Devita et al., 1992; 

Powers, Ward, et al., 2004a). However, current research is focused on knee braces that aim to 

stabilise the knee joint locally, so directly influencing the joint (Bolgla & Boling, 2011; Smith, 

Drew, Meek, & Clark, 2015; Swart et al., 2012; Yeung & Yeung, 2001; Selfe, Selfe, Richards, 

Thewlis, & Kilmurray, 2008; Selfe, Thewlis, Hill, Whitaker, Sutton, & Richards, 2011). Since 

hip internal rotation appears to be associated with PFP, a brace or strap that aims to reduce the 
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excessive hip internal rotation and thereby potentially reduce the dynamic knee valgus might be 

a potential treatment for running related injuries, such as PFP. Only one study has investigated 

the influence of such a knee strap in patients with PFP during an unilateral squat and a step 

landing task (Herrington, 2013). They found that the strap significantly reduced pain during 

these functional tasks and in addition significantly reduced knee valgus (Herrington, 2013). The 

authors measured the two-dimensional (2D) frontal-plane projection angle of the knee-valgus 

alignment by using a digital video camera. However, this 2D measurement did not allow the 

investigation of whether the strap modified the transverse plane of the hip and the knee, nor 

whether the strap modified lower limb kinetics. 

The quadriceps avoidance strategy is a mechanism that minimises the demand of knee extensor 

muscles and is commonly observed in individuals with knee injuries such as patellofemoral 

pain (Clark et al., 2016; Salsich et al., 2001; Torry et al., 2000). The quadriceps and hamstring 

muscle groups provide dynamic frontal-plane stability of the knee joint (Palmieri-Smith et al., 

2009). Decreased hamstrings/ quadriceps activation ratio is associated with an increased risk of 

lower limb injuries (Hewett et al., 2006; Hewett et al., 2008; Myer et al., 2005). Previous 

studies showed that straps and patellar tapes were able to influence and modify quadriceps 

activation (Cowan et al., 2002; Gilleard et al., 1998; Herrington, 2001; Kaya, et al., 2010; Keet 

et al., 2007; Ng & Cheng, 2002; Ng & Wong, 2009; Ryan & Rowe, 2006; Warden et al., 2008; 

Werner, Knutsson, & Eriksson, 1993). Thus, this study also aimed to investigate whether the 

Powers
TM

 strap influences and modifies the co-contraction of the quadriceps and the hamstrings 

muscles as well. 

Therefore, this study aimed to investigate whether a strap designed to increase hip external 

rotation was able to modify hip kinematics and kinetics and whether these alterations would 

also modify knee kinematics and kinetics and the co-contraction of the quadriceps and the 

hamstrings muscles during sports activities in individuals with and without PFP. 

1. H0: There would be no significant differences in hip internal rotation angle and moment 

when wearing the Powers
TM

 strap in individuals with and without PFP. 

2. H0: There would be no significant differences in hip flexion and adduction and knee 

flexion, adduction and internal rotation angles and moments when wearing the 

Powers
TM

 strap in individuals with and without PFP. 

3. H0: The Powers
TM

 strap would not significantly decrease pain in individuals with PFP. 
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4. H0: There would be no significant difference in co-contraction ratio and the net-

activation of the quadriceps and hamstrings muscles when wearing the Powers
TM

 strap 

in individuals with and without PFP. 

 

4.2. Methodology 

Ethical approval was obtained in compliance with the Declaration of Helsinki Committee for 

Proprietary Medicinal Products "Note for Guidance on Good Clinical Research Practice". 

Therefore, the ethical approval HSR 15-142 was obtained from the University of Salford 

Research and Governance Committee and the trial was registered with clinicaltrials.gov 

(NCT02914574; Appendix Methods 4.1).  

Advertisements placed at fitness centres, gyms, climbing centres and sports clubs in 

Manchester and Salford were used to recruit participants with PFP and without PFP. 

The Powers
TM

 strap is a knee strap that has been developed by researchers in the US and aimed 

to stabilise the patellofemoral joint through external rotation of the femur. The Powers
TM

 strap 

is still a prototype and not yet available for commercial sale. Thus, the principal researcher 

contacted the inventor of the strap, Prof. Powers and informed him about the planned study. 

Prof. Powers provided a prototype of the strap for the study. 

 

4.2.1. Participants 

To be included in the study a healthy participant PFP had to meet all of the following criteria: 

(1) performing sports activities for at least 2 hours a week, (2) no previous significant lower 

limb injuries, (3) aged: 18-45 years.  

Participants without PFP were excluded if: (1) they had any history of previous lower limb 

surgery or patella instability and dislocation, (2) they had lower limb deformities or any history 

of traumatic, inflammatory or infectious pathology in the lower extremities or any internal 

derangements, (3) they reported previous or existing knee pain, (4) they could not perform 

running, squatting and the step down task during the measurement.  

The eligibility criteria for individuals with PFP were: 1) aged 18-45 years; 2) antero- or retro-

patellar pain with at least two of these activities: ascending or descending stairs or ramps, 
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squatting, kneeling, prolonged sitting, hopping/ jumping, isometric quadriceps contraction or 

running 3) duration of current PFP symptoms >1 month.  

The exclusion criteria for individuals with PFP were: (1) any history of previous lower limb 

surgery or patella instability and dislocation, (2) lower limb deformities or any history of 

traumatic, inflammatory or infectious pathology in the lower extremities or any internal 

derangements, (3) not able to perform running, squatting and/ or the step down task during the 

measurement.  

The principal investigator assessed suitability for the trial using the aforementioned inclusion 

and exclusion criteria. Participants were asked to fill in an online survey and had afterwards a 

telephone interview with the principal investigator prior to the study starting. Once the 

inclusion criteria were met, the participant received via email an invitation letter and an 

information sheet about the study. If the participant agreed to participate, he/ she arranged a 

date for the gait laboratory measurement with the principal investigator. Following this an 

email with a confirmation of his/her booking with a route description, important information, 

such as which clothing to wear at the test, contact details of the principal investigator, as well as 

an informed consent form was sent one week prior to the test. Upon arrival at the laboratory, 

the participants were briefed through the study and the objectives of the investigations and the 

study equipment were explained to all participants. Each participant was asked to sign the 

informed consent form and a health history questionnaire (Appendix Methods 4.2). The health 

history questionnaire for all participants consisted of 13 questions investigating potential risks 

associated with the study. If potential risks were identified, study participation was discussed 

and the individual was either asked to consult a physician to receive an approval for the 

participation or was advised not to participate. The health history questionnaire for individuals 

with PFP included additionally 4 questions that were related to PFP. The individual was then 

asked to change into his/her shorts and a comfortable t-shirt and was fitted with standard 

running shoes (New Balance, UK), to control the interface of the shoe and the surface. Before 

the test, the mass and height of each participant were measured. 

A clinical assessment was carried out for individuals with PFP, which involved the Clarke‟s 

test and a palpation test to investigate the pain region. The participant with PFP was then asked 

to run 15 m, to perform a single leg squat and step down task and to show the pain location 

during these tests and to rate his/her pain intensity using the numeric pain rating scale (NPRS). 
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The NPRS is a unidimensional measure of pain intensity and is the numeric version of the 

visual analogue scale (VAS) scale. The 11-point numeric scale ranges from "0", representing 

"no pain", to "10", representing the “worst pain imaginable” and has been shown to be valid, 

reliable and sensitive (Williamson & Hoggart, 2005).  

 

4.2.2. Procedure 

Three-dimensional movement data was collected with ten Qualisys OQUS7 cameras (Qualisys 

AB, Sweden) at a sampling rate of 250Hz. The ground reaction forces were collected with three 

force plates (BP600900, Advanced Mechanical Technology, Inc.USA) at a sampling rate of 

1500Hz, which were embedded into the floor and synchronised with the Qualisys system. Forty 

retro-reflective markers with a diameter of 14 mm were attached, with double sided 

hypoallergic tape and bandages, to the lower limb of the participants (Figure 4.1). The 

calibrated anatomical system technique (CAST) model, which included anatomical landmarks 

(markers on anatomical bony landmarks) and anatomical frames (segment mounted marker 

clusters), was used (Cappozzo et al., 1995).  

The retro-reflective markers were placed as explained in chapter 3.4.1.2. In this study, a smaller 

thigh cluster was a used, to ensure that the Powers
TM

 strap could be applied below the thigh 

cluster and thereby did not affect the cluster placement. The ankle and knee joint centres were 

calculated as midpoints between the medial and lateral malleoli and femoral epicondyles 

respectively. The hip joint centre was calculated using the regression model of Bell, et al. 1990. 

For the electrode placement of the EMG, the skin was shaved, abraded and cleaned with 

isopropyl alcohol and the electrodes were placed as described in chapter 3.4.1.3 (Figure 4.1).  
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Figure 4.1.: The application of the markers and the Powers
TM

 strap 

 

A static reference trial was collected without the applied Powers
TM

 strap but was used for both 

conditions with and without the Powers
TM

 strap because the marker clusters remained in the 

same place during both conditions (Figure 4.1.). 

Each subject was then asked to run on a 15 m walkway at his/her own selected speed, to 

perform a single leg squat and step down tasks during two conditions: without and with the 

Powers
TM

 strap. The Powers
TM

 strap was only applied on the preferred limb in individuals 

without PFP, whereby the limb preference was established by asking participants which limb 

they would prefer to kick a ball. In individuals with PFP the Powers
TM

 strap was applied on the 

more painful limb. To investigate whether the application of the 3D markers and bandages 

modified the pain, the participants with PFP were asked to rate his/her pain intensity (using the 

NPRS) after performing the tasks without and with the Powers
TM

 strap.  

Running speed was controlled and reported by using Brower timing lights (Draper, UT) to 

ensure that each trial was within ±10% of the original self-selected speed. Each task was 
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performed until five successful trials were collected. Unsuccessful trials were ones whereby 

less than three markers per segment were visible, speed changes were seen during the trials, or 

a partial/double contact with the force platforms occured.  

The participants received a voucher of £10 as compensation for his/her time participation in 

this study. This voucher was exchangeable for goods in shops in Manchester and Salford. 

 

4.2.3. Data processing 

The kinematic and kinetic outcomes were calculated by utilising a 6 degrees of freedom model 

in Visual3D (Version 5, C-motion Inc, USA). Motion and force plate data were filtered with a 

4th order Butterworth filter with cut-off frequencies of 12Hz. The Cardan sequence used in the 

kinematics calculation with Visual3D was the ordered sequence of rotations (x, y, z), with: x = 

flexion/extension, y = abduction/adduction, z = longitudinal rotation (R. B. Davis, Ounpuu, 

Tyburski, & Gage, 1991). 

The joint kinetic data was calculated using a three-dimensional inverse dynamics algorithm. 

The joint moments were normalised to body mass and presented as external moments 

referenced to the proximal segment. The kinematic and kinetic data were normalised to 100% 

of the single leg squat, step down task and the stance phase, whereby the stance phase was sub-

grouped in early-stance (0-24% of stance phase), mid-stance (25-62%) and late-stance phase 

(63%-100%) (Perry & Burnfield, 2010). The peaks of the hip and knee flexion, adduction and 

internal rotation angles and the moments were calculated for the single leg squat, step down 

task and the early, mid and late stance phase. Furthermore, the average knee angular velocity 

was calculated for the eccentric phase during the single leg squat and step down task.  

The sEMG data was band-pass filtered at 20-500Hz and rectified by using a root mean square 

over a 75 ms window for running and a 300 ms window for the single leg squat and step down 

task. Co-contraction ratios (CCR) were calculated using the following formula:  

If agonist mean EMG > antagonistic mean EMG: 

 CCR= 1- antagonistic mean EMG/agonist mean EMG 
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If agonist mean EMG < antagonistic mean EMG: 

 CCR= agonist mean EMG/ antagonistic mean EMG -1  

(Heiden, Lloyd, & Ackland, 2009) 

 

4.3. Statistical analysis 

The statistical analysis was performed using IBM SPSS (v. 20) and Microsoft Excel 2013. The 

normality was assessed by applying the Shapiro-Wilk test and by the investigation of the 

normal q-q plots. For the data that was normally distributed paired t-tests were performed at the 

95% confidence interval to investigate whether the Powers
TM

 strap significantly influenced the 

lower limb biomechanics. If the data was not normal distributed and for ordinal data (pain 

scale) the Wilcoxon rank test was used with a significance level set at p<0.05.  

To investigate whether there were significant differences in hip and knee biomechanics 

between individuals with and without PFP a two-tailed t-test was used when the data was 

normal distributed and a Mann Whitney test was used when the data was not normal 

distributed. 

The peak of the hip flexion, hip adduction, hip internal rotation, knee flexion, knee adduction 

and knee internal rotation angles and moments, the co-contraction ratio, net activation of the 

quadriceps and hamstrings activation, as well as the averaged knee angular velocity were 

compared between the conditions: individuals with and without PFP and both with and without 

the Powers
TM

 strap.  

The standard error mean (SEM) is the estimated standard deviation of the sample mean and was 

calculated using the following formula: SEM = SD/√sample size. The effect size for each 

significant variable was calculated using the Cohen d to give an indication of the magnitude of 

the effect of the intervention (>0.8 large effect, 0.5 moderate effect, <0.3 small effect) (Cohen, 

1988). 
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4.3.1. Power calculation:  

A post hoc power calculation on individuals with PFP with G-Power (Version 3.1.9.2) (n=24, 

one tailed t-test) was performed for all three tasks on hip internal rotation angle, by using a 

two-tailed t-test for two dependent means. The effect size (ES) was calculated by using the 

following equation (McCrum-Gardner, 2010): 

  (Mean of the hip IR angle with the brace)-(Mean of the hip IR angle without the brace) 

ES =     Standard deviation  

 

The calculated effect size for the stance phase in running was d= 0.54 (medium) and thus a 

power of 85% was reached. The calculated effect size for the single leg squat task was ES= 

0.31 and thus only a power of 45% was achieved. For the step down task an effect size of 

ES=0.17 was calculated and thus a power of 20% was reached.  

 

4.4. Results 

A total of 22 individuals without PFP (11 males and 11 females, age: 27.45 ±4.43 years, height: 

1.73 ± 0.06 m, mass: 66.77 ±9.24kg) and 24 individuals with PFP (12 males and 12 females, 

age: 29.55 ±6.44 years, height: 1.74 ± 0.09 m, mass: 70.08 ±8.78kg) participated in the study. 

The groups were age and BMI matched (age: p= 0.213, BMI: p= 0.308). The speed was not 

significantly different between these two conditions (Individuals without PFP: p= 0.08, 

individuals with PFP p=0.06). 

Participants without PFP had an average running speed of 3.44 m/s (±0.33 m/s) without the 

Powers
TM

 strap and 3.34 m/s (±0.26 m/s) and with the Powers
TM

 strap. The running speed of 

participants with PFP was on average without the Powers
TM

 strap 3.46 m/s (±0.15 m/s) and 

with the Powers
TM

 strap 3.38 m/s (±0.17 m/s). The speed was not significantly different 

between these two conditions (Individuals without PFP: p= 0.08, individuals with PFP p=0.06).  

Pain was significantly reduced with the Powers
TM

 strap during the functional tasks (p=0.0001) 

(without the marker and bandage application: 4.04±1.91; with the Powers
TM

 strap application: 

1.93±2.13, effect size: 1.04). Whereas the marker and bandage application did not modify the 

pain significantly (p=0.48, with the marker and bandage application: 3.76±2.07). 
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Hip internal rotation angle was significantly reduced in both groups throughout the entire 

stance phase when the participants were running with the Powers
TM

 strap (early stance phase 

(ESP): in individuals without PFP: 3.2°, with PFP: 6°, mid-stance phase (MSP): in individuals 

without PFP: 3.4°, with PFP: 3.5°, late-stance phase (LSP): in individuals without PFP: 4.9°, 

with PFP: 4.3°) (Table 4.1, Figure 4.2, 4.3). However, the effect size for the early stance phase 

was moderate for early and small for the mid and late stance phase. Furthermore, knee internal 

rotation angle was significantly decreased with small effect sizes during the entire stance phase 

in running in individuals with PFP and during the early and mid-stance phase in individuals 

without PFP (ESP: in individuals without PFP: 1.6°, with PFP: 1.5°, MSP: in individuals 

without PFP: 2°, with PFP: 2.7°, LSP: in individuals with PFP: 2.8°, Table 4.1, Figure 4.4, 4.5). 

In individuals with and without PFP the hip rotation moment was modified during the early 

stance phase with the applied Powers
TM

 strap with a moderate effect size (in individuals with 

PFP: ESP: 0.07 Nm/kg, in individuals without PFP: MSP: 0.1 Nm/kg). However, the kinetic 

changes were not visible in the averaged curves of the hip rotation moments curves (Figure 4.6 

to Figure 4.7). Lastly, the knee adduction moment was significantly increased in individuals 

with PFP during the early and mid-stance phase (ESP: 0.09 Nm/kg, MSP: 0.09 Nm/kg, Table 

4.2., Figure 4.9), however only with small effect sizes. But the changes in hip and knee rotation 

angles were also apparent during the mean kinematic curves. The averaged hip rotation 

moment showed no clear differences with and without the Powers strap. The averaged knee 

adduction curve showed a significant increase during the stance phase in running.  
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Table 4.1: The lower extremity kinematics during the stance phase in running (*indicated the results were 

significantly different.) 

The kinematic variables (º) during stance phase 

Individuals without PFP Individuals with PFP 

Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 

Early 

stance 

phase 

 

Hip flexion angle 
without strap 36.7 7.4 1.6 

0.071 0.18 
36.3 5.3 1.1 

0.535 0.11 
with strap 35.4 7.0 1.5 35.9 5.1 1.0 

Hip adduction angle 
without strap 8.3 3.7 0.8 

0.842 0.03 
7.0 4.6 0.9 

0.716 0.06 
with strap 8.2 3.7 0.8 7.3 5.1 1.0 

Hip internal rotation 

angle  

without strap 4.3 7.0 1.5 
0.011* 0.42 

3.2 8.3 1.7 
0.0001* 0.79 

with strap 1.1 8.3 1.8 -3.2 8.0 1.6 

Knee flexion angle 
without strap 29.6 4.8 1.0 

0.626 0.08 
31.8 4.2 0.9 

0.847 0.02 
with strap 29.2 4.7 1.0 31.7 4.1 0.8 

Knee adduction angle 
without strap 2.6 3.6 0.8 

0.238 0.13 
2.3 4.1 0.8 

0.058 0.24 
with strap 2.1 4.0 0.9 1.2 4.9 1.0 

Knee internal rotation 

angle 

without strap -1.4 5.1 1.1 
0.025* 0.29 

-3.2 5.3 1.1 
0.037* 0.27 

with strap -3.0 6.0 1.3 -4.7 5.7 1.2 

Mid-

stance 

phase 

Hip flexion angle 
without strap 37.4 8.5 1.8 

0.116 0.18 
34.5 5.7 1.2 

0.498 0.11 
with strap 36.0 7.3 1.5 35.1 5.1 1.0 

Hip adduction angle 
without strap 11.4 3.9 0.8 

0.374 0.12 
9.7 5.3 1.1 

0.567 0.10 
with strap 10.9 4.5 1.0 9.1 6.8 1.4 

Hip internal rotation 

angle  

without strap 4.2 6.6 1.4 
0.001* 0.51 

-1.0 8.8 1.8 
0.0002* 0.40 

with strap 0.8 6.8 1.5 -4.5 8.7 1.8 

Knee flexion angle 
without strap 42.0 4.9 1.0 

0.361 0.09 
43.4 6.3 1.3 

0.422 0.16 
with strap 41.6 4.5 1.0 42.5 4.4 0.9 

Knee adduction angle 
without strap 3.6 3.2 0.7 

0.307 0.11 
0.5 5.0 1.0 

0.651 0.04 
with strap 3.2 3.9 0.8 0.7 5.2 1.1 

Knee internal rotation 

angle 

without strap 3.9 6.5 1.4 
0.0001* 0.29 

1.9 5.7 1.2 
0.0002* 0.47 

with strap 1.9 7.2 1.5 -0.8 5.9 1.2 

Late-

stance 

phase 

Hip flexion angle 
without strap 5.1 5.2 1.1 

0.895 0.03 
20.4 5.5 1.1 

0.330 0.13 
with strap 5.3 6.8 1.5 21.1 5.1 1.0 

Hip adduction angle 
without strap -0.3 3.0 0.7 

0.371 0.15 
7.2 4.6 0.9 

0.274 0.14 
with strap -0.8 3.6 0.8 6.5 5.2 1.1 

Hip internal rotation 

angle  

without strap 3.8 6.9 1.5 
0.0001* 0.69 

-0.2 9.8 2.0 
0.0001* 0.43 

with strap -1.1 7.3 1.6 -4.5 10.2 2.1 

Knee flexion angle 
without strap 23.0 4.4 0.9 

0.321 0.21 
41.5 4.5 0.9 

0.501 0.09 
with strap 24.1 5.8 1.3 41.1 4.1 0.8 

Knee adduction angle 
without strap 2.0 2.6 0.6 

0.034* 0.32 
1.0 4.3 0.9 

0.495 0.05 
with strap 1.1 3.0 0.7 0.8 4.3 0.9 

Knee internal rotation 

angle 

without strap -7.4 7.1 1.6 
0.985 0 

1.1 5.8 1.2 
0.002* 0.45 

with strap -7.4 7.9 1.7 -1.7 6.7 1.4 
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Figure 4.2: The transverse plane hip angle during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals without PFP. The shaded areas represent ±1SD for each 

condition, internal rotation as the positive angle. 

 

 

 

Figure 4.3: The transverse plane hip angle during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle. 
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Figure 4.4: The transverse plane knee angle during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals without PFP. The shaded areas represent ±1SD for each 

condition, internal rotation as the positive angle.  

 

 

 

Figure 4.5: The transverse plane knee angle during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle.  
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Table 4.2: The lower extremity kinetics during stance phase in running (*indicated the results were significantly 

different.) 

The kinetic variables (º) during stance phase 

Individuals without PFP Individuals with PFP 

Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 

Early 

stance 

phase 

 

Hip flexion moment 
without strap 1.75 0.58 0.12 

0.469 0.17 
2.01 0.44 0.09 

0.852 0.02 
with strap 1.66 0.45 0.10 2.00 0.51 0.10 

Hip adduction 

moment 

without strap 1.47 0.31 0.07 
0.135 0.49 

1.12 0.33 0.07 
0.059 0.35 

with strap 1.30 0.38 0.08 1.26 0.45 0.09 

Hip internal rotation 

moment 

without strap 0.03 0.23 0.05 
0.556 0.11 

0.05 0.10 0.02 
0.0001* 0.77 

with strap 0.05 0.13 0.03 0.12 0.08 0.02 

Knee flexion moment 
without strap 1.38 0.39 0.08 

0.774 0.05 
1.32 0.49 0.10 

0.177 0.20 
with strap 1.36 0.44 0.09 1.43 0.58 0.12 

Knee adduction 

moment 

without strap 0.61 0.23 0.05 
0.607 0.08 

0.44 0.28 0.06 
0.037* 0.29 

with strap 0.59 0.25 0.05 0.53 0.33 0.07 

Knee internal rotation 

moment 

without strap 0.26 0.11 0.02 
0.889 0 

0.20 0.11 0.02 
0.18 0.40 

with strap 0.26 0.09 0.02 0.25 0.14 0.03 

Mid-

stance 

phase 

Hip flexion moment 
without strap 1.33 0.61 0.14 

0.211 0.20 
0.90 0.64 0.13 

0.919 0.04 
with strap 1.21 0.58 0.12 0.92 0.49 0.10 

Hip adduction 

moment 

without strap 2.00 0.24 0.05 
0.240 0.38 

1.82 0.45 0.09 
0.719 0.04 

with strap 1.81 0.66 0.14 1.84 0.52 0.11 

Hip internal rotation 

moment 

without strap -0.01 0.06 0.01 
0.744 0.09 

-0.24 0.20 0.04 
0.198 0.27 

with strap 0.00 0.15 0.03 -0.29 0.17 0.04 

Knee flexion moment 
without strap 2.57 0.45 0.10 

0.480 0.14 
2.41 0.99 0.20 

0.561 0.11 
with strap 2.50 0.54 0.12 2.52 0.99 0.20 

Knee adduction 

moment 

without strap 0.85 0.32 0.07 
0.290 0.23 

0.46 0.32 0.07 
0.009* 0.32 

with strap 0.75 0.42 0.09 0.57 0.37 0.08 

Knee internal rotation 

moment 

without strap 0.46 0.13 0.03 
0.418 0.16 

0.41 0.15 0.03 
0.278 0.18 

with strap 0.44 0.12 0.03 0.44 0.17 0.03 

Late-

stance 

phase 

Hip flexion moment 
without strap -0.07 0.35 0.08 

0.38 0.16 
0.00 0.26 0.05 

0.486 0.07 
with strap -0.12 0.28 0.06 -0.02 0.28 0.06 

Hip adduction 

moment 

without strap 0.24 0.14 0.03 
0.772 0.07 

1.37 0.44 0.09 
0.586 0.06 

with strap 0.23 0.14 0.03 1.40 0.50 0.10 

Hip internal rotation 

moment 

without strap 0.01 0.03 0.01 
0.157 0.24 

0.01 0.04 0.01 
0.202 0.48 

with strap 0.02 0.05 0.01 0.05 0.11 0.02 

Knee flexion moment 
without strap -0.01 0.14 0.03 

0.063 0.33 
1.67 0.66 0.14 

0.478 0.13 
with strap 0.04 0.16 0.04 1.78 0.95 0.20 

Knee adduction 

moment 

without strap 0.09 0.11 0.02 
0.822 0 

0.31 0.23 0.05 
0.063 0.29 

with strap 0.09 0.12 0.03 0.38 0.26 0.05 

Knee internal rotation 

moment 

without strap 0.02 0.04 0.01 
0.180 0 

0.23 0.11 0.02 
0.204 0.17 

with strap 0.02 0.03 0.01 0.25 0.12 0.02 
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Figure 4.6: The transverse plane hip moment during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals without PFP. The shaded areas represent ±1SD for each 

condition, internal rotation as the positive angle. 

 

 

 

 

Figure 4.7: The transverse plane hip moment during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle. 
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Figure 4.8: The frontal plane knee moment during the stance phase of running under 2 conditions: without (red) 

and with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle 

 

Individuals without PFP reduced their squatting depth with the Powers strap and flexed the hip 

on average 5.5° and the knee 3.5° less with the Powers strap (Table 4.3). A reduction in hip and 

knee flexion angles and moments might affect the hip and knee rotation and abduction angles 

as well. The hip internal rotation angle significantly decreased by 2° during the single leg squat 

in individuals without PFP and by 2.4° in individuals with PFP (Table 4.3, Figure 4.7). 

Furthermore, the knee external rotation angle increased by 1.7° in healthy controls and 1.9° in 

individuals with PFP (Table 4.3, Figure 4.10). In individuals with PFP also the hip adduction 

angle decreased by 1.1° (Table 4.3). However, these changes were not apparent in the averaged 

curve of the hip adduction angle in individuals with PFP (Figure 4.11). However, the kinematic 

changes during the single leg squat and step down task showed only small effect sizes. The 

external knee adduction moment was significantly increased in both groups with a moderate 

effect size for individuals with PFP (in individuals without PFP: 0.4 Nm/kg and in individuals 

with PFP: 0.6 Nm/kg, Table 4.4, Figure 4.15). This increase was visible during the averaged 

knee adduction curves (Figure 4.8) However, in individuals without PFP also the hip and knee 

flexor moments were significantly reduced (hip flexor moment: 0.11 Nm/kg, knee flexor 

moment: 0.05 Nm/kg), as well as the knee internal rotation moment (0.02 Nm/kg, Table 4.4). 

But all of these changes had only small effect sizes.   
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During the step down task the hip adduction and knee internal rotation angle were significantly 

reduced in both groups when participants performed the task with the Powers strap. The hip 

adduction angle was 1.7° reduced in individuals without PFP and 1.8° in individuals with PFP 

(Table 4.3, Figure 4.12). The knee internal rotation angle was 2° decreased in individuals 

without PFP and knee external rotation angle was 2.2° increased in individuals with PFP 

(Figure 4.13). But these changes in Individuals with PFP also showed a significant increase of 

the knee adduction angle of 0.8° (Figure 4.14). Individuals without PFP showed a significant 

reduced hip internal rotation angle of 2.9° (Table 4.3). However, lower limb kinetic and 

kinematic changes during the step down task had only small effect sizes (Table 4.4.). 

 

Table 4.3: The lower extremity kinematics during the single leg squat task and the step down task (*indicated the 

results were significantly different.) 

The kinematic variables (º) during stance phase 

Individuals without PFP Individuals with PFP 

Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 

Single 

leg 

squat 

 

Hip flexion angle 
without strap 64.0 16.7 3.7 

0.002* 0.29 
73.4 18.2 3.7 

0.378 0.07 
with strap 59.5 14.5 3.2 72.2 18.3 3.7 

Hip adduction angle 
without strap 12.0 4.7 1.1 

0.623 0.10 
13.6 7.6 1.6 

0.015* 0.12 
with strap 11.5 5.4 1.2 12.7 7.0 1.4 

Hip internal rotation 

angle  

without strap 5.7 7.6 1.7 
0.0001* 0.26 

0.6 8.1 1.7 
0.0001* 0.31 

with strap 3.7 7.9 1.8 -1.8 7.6 1.6 

Knee flexion angle 
with strap 78.2 11.5 2.6 

0.034* 0.22 
80.8 10.7 2.2 

0.876 0.02 
without strap 75.7 10.9 2.4 81.0 11.4 2.3 

Knee adduction angle 
with strap 7.2 5.0 1.1 

0.156 0.17 
4.3 4.9 1.0 

0.172 0.1 
without strap 8.1 5.4 1.2 4.8 5.5 1.1 

Knee internal rotation 

angle 

with strap 1.1 5.5 1.2 
0.002 0.29 

-1.4 5.6 1.1 
0.017* 0.34 

without strap -0.6 6.2 1.4 -3.3 5.6 1.1 

Knee angular velocity 

(°/seconds) 

without strap -35.9 9.9 2.2 
0.389 0.13 

-35.3 13.6 2.8 
0.791 0.52 

with strap -34.7 9.1 2.0 -36.0 13.4 2.7 

Step 

down 

task 

Hip flexion angle 
without strap 57.0 13.3 3.0 

0.297 0.08 
71.8 16.1 3.3 

0.306 0.08 
with strap 55.9 14.2 3.2 70.5 16.3 3.3 

Hip adduction angle 
without strap 13.4 5.7 1.3 

0.029* 0.30 
15.5 6.6 1.4 

0.013* 0.26 
with strap 11.7 5.6 1.3 13.7 7.1 1.5 

Hip internal rotation 

angle  

without strap 5.4 6.8 1.5 
0.0001* 0.41 

0.6 7.9 1.6 
0.286 0.17 

without strap 2.5 7.2 1.6 -0.8 8.6 1.8 

Knee flexion angle 
with strap 81.6 14.4 3.2 

0.264 0.07 
88.6 12.9 2.6 

0.281 0.24 
without strap 80.6 14.6 3.3 84.4 21.1 4.3 

Knee adduction angle 
with strap 7.4 5.0 1.12 

0.139 0.15 
4.4 4.9 1.0 

0.043* 0.15 
without strap 8.2 5.5 1.22 5.2 5.6 1.1 

Knee internal rotation 

angle 

with strap 2.2 5.7 1.26 
0.002* 0.33 

-0.8 5.8 1.2 
0.044* 0.31 

without strap 0.2 6.4 1.44 -3.0 8.3 1.7 

Knee angular velocity 

(°/seconds) 

with strap -32.5 11.4 2.54 
0.534 0.05 

-35.3 12.5 2.5 
0.864 0.12 

without strap -33.1 11.0 2.46 -33.7 14.8 3.0 
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Figure 4.9: The transversal plane hip angle during the single leg squat under 2 conditions: without (red) and with 

the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, internal 

rotation as the positive angle. 

 

 

 

Figure 4.10: The transversal plane knee angle during the single leg squat under 2 conditions: without (red) and 

with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle. 
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Figure 4.11: The frontal plane hip angle during the single leg squat under 2 conditions: without (red) and with the 

Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, internal 

rotation as the positive angle. 

 

 

 

Figure 4.12: The frontal plane hip angle during the step down task under 2 conditions: without (red) and with the 

Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, internal 

rotation as the positive angle.  
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Figure 4.13: The transversal plane knee angle during the step down task under 2 conditions: without (red) and 

with the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, 

internal rotation as the positive angle.  

 

 

 

Figure 4.14: The frontal plane knee angle during the step down task under 2 conditions: without (red) and with the 

Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, internal 

rotation as the positive angle.  
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Table 4.4: The lower extremity kinetics during the single leg squat task and the step down task (*indicated the 

results were significantly different.) 

The kinetic variables (º) during stance phase 

Individuals without PFP Individuals with PFP 

Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 

Single 

leg 

squat 

 

Hip flexion moment 
without strap 1.02 0.57 0.13 

0.006* 0.20 
1.25 0.58 0.12 

0.935 0 
with strap 0.91 0.52 0.12 1.25 0.67 0.14 

Hip adduction 

moment 

without strap 1.00 0.13 0.03 
0.653 0.08 

0.92 0.20 0.04 
0.821 0 

with strap 0.99 0.13 0.03 0.92 0.19 0.04 

Hip internal rotation 

moment 

without strap -0.15 0.08 0.02 
0.075 0.27 

-0.14 0.08 0.02 
0.302 0.13 

with strap -0.13 0.07 0.02 -0.13 0.08 0.02 

Knee flexion moment 
with strap 1.73 0.29 0.06 

0.008* 0.17 
1.70 0.28 0.06 

0.689 0.03 
without strap 1.68 0.30 0.07 1.71 0.30 0.06 

Knee adduction 

moment 

with strap 0.38 0.14 0.03 
0.020* 0.26 

0.30 0.10 0.02 
0.009* 0.57 

without strap 0.42 0.17 0.04 0.36 0.11 0.02 

Knee internal rotation 

moment 

with strap 0.43 0.10 0.02 
0.022* 0.21 

0.37 0.09 0.12 
0.109 0.21 

without strap 0.41 0.09 0.02 0.39 0.10 0.14 

Step 

down 

task 

Hip flexion moment 
without strap 1.00 0.56 0.13 

0.263 0.10 
1.50 0.70 0.14 

0.158 0.17 
with strap 1.06 0.63 0.14 1.38 0.70 0.14 

Hip adduction 

moment 

without strap 1.10 0.17 0.04 
0.521 0.06 

1.06 0.19 0.04 
0.103 0.29 

with strap 1.09 0.14 0.03 0.99 0.28 0.06 

Hip internal rotation 

moment 

without strap -0.08 0.11 0.02 
0.887 0.08 

-0.10 0.06 0.01 
0.133 0.14 

without strap -0.07 0.09 0.02 -0.09 0.08 0.02 

Knee flexion moment 
with strap 1.77 0.30 0.07 

0.160 0.14 
1.71 0.28 0.06 

0.265 0.20 
without strap 1.73 0.27 0.06 1.64 0.42 0.09 

Knee adduction 

moment 

with strap 0.43 0.14 0.03 
0.533 0.13 

0.35 0.13 0.03 
0.217 0.29 

without strap 0.45 0.16 0.04 0.39 0.15 0.03 

Knee internal rotation 

moment 

with strap 0.42 0.11 0.02 
0.522 0.22 

0.38 0.09 0.02 
0.952 0.10 

without strap 0.44 0.07 0.02 0.37 0.11 0.02 
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Figure 4.15: The frontal plane knee moment during the step down task under 2 conditions: without (red) and with 

the Powers
TM

 strap (blue) in individuals with PFP. The shaded areas represent ±1SD for each condition, internal 

rotation as the positive angle.  

 

The Powers
TM

 strap did not result in significant changes in co-contraction ratio and the net 

activation of the knee extensors and knee flexors in individuals with PFP during the functional 

tasks. In individuals without PFP, the knee flexor net activation decreased during the single leg 

squat (p=0.0001), step down task (p=0.048) and the early stance phase (p=0.0001) of running 

(Table 4.5). However, these changes only had very small effect sizes (< 0.048) and thus need to 

be critically questioned.  
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Table 4.5: Differences in lower sEMG activity with and without the Powers
TM 

strap (*indicated the results were 

significantly different.) 

 

Individuals without PFP Individuals with PFP  

Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 

Single 

leg 

squat 

 

Co-contraction ratio 

(knee ext: knee flx.) 

without strap 0.70 0.17 0.04 
0.618 0.06 

0.67 0.18 0.04 
0.879 0 

with strap 0.69 0.17 0.04 0.67 0.19 0.04 

Net activation knee 

extensors in % 

without strap 82.35 38.13 8.75 
0.04* 0.43 

104.7 31.53 6.58 
0.062 0.24 

with strap 68.27 26.61 6.10 97.74 26.87 5.60 

Net activation knee 

flexors in % 

without strap 24.23 11.72 2.69 
0.001* 0.34 

32.11 13.89 2.90 
0.137 0.15 

with strap 20.44 10.58 2.43 29.98 14.68 3.06 

Step 

down 

task 

Co-contraction ratio 

(knee ext: knee flx.) 

without strap 0.63 0.19 0.04 
0.966 0 

0.62 0.20 0.04 
0.876 0.05 

with strap 0.63 0.18 0.04 0.61 0.21 0.05 

Net activation knee 

extensors in % 

without strap 72.84 28.49 6.72 
0.064 0.18 

99.97 29.31 6.25 
0.292 0.12 

with strap 67.80 28.04 6.61 96.38 30.17 6.43 

Net activation knee 

flexors in % 

without strap 27.52 13.60 3.21 
0.048* 0.13 

35.79 15.77 3.36 
0.313 0.10 

with strap 25.84 12.18 2.87 34.21 16.38 3.49 

Early 

stance 

phase 

 

Co-contraction ratio 

(knee ext: knee flx.) 

without strap 0.59 0.22 0.05 
0.201 0.10 

0.66 0.21 0.04 
0.738 0.05 

with strap 0.61 0.20 0.04 0.67 0.22 0.05 

Net activation knee 

extensors in % 

without strap 118.00 69.60 14.51 
0.212 0.15 

142.84 60.97 12.71 
0.879 0.02 

with strap 107.15 77.28 16.11 144.02 83.20 17.35 

Net activation knee 

flexors in % 

without strap 45.04 31.73 6.62 
0.0001* 0.29 

43.44 29.41 6.13 
0.094 0.09 

with strap 36.78 24.48 5.10 40.82 31.75 6.62 

Mid 

stance 

phase 

Co-contraction ratio 

(knee ext: knee flx.) 

without strap 0.31 0.34 0.07 
0.274 0.05 

0.38 0.29 0.06 
0.605 0.14 

with strap 0.29 0.40 0.08 0.31 0.67 0.14 

Net activation knee 

extensors in % 

without strap 67.93 43.50 9.07 
0.447 0.10 

90.64 40.44 8.43 
0.362 0.05 

with strap 65.35 50.53 10.54 88.44 48.37 10.09 

Net activation knee 

flexors in % 

without strap 41.96 26.52 5.53 
0.121 0.15 

50.15 23.88 4.98 
0.101 0.01 

with strap 38.33 22.45 4.68 50.43 38.17 7.96 

Late 

stance 

phase 

Co-contraction ratio 

(knee ext: knee flx.) 

without strap -0.39 0.57 0.12 
0.976 0.09 

-0.40 0.72 0.15 
0.543 0.33 

with strap -0.34 0.52 0.11 -0.15 0.81 0.17 

Net activation knee 

extensors in % 

without strap 8.66 6.89 1.44 
0.465 0.29 

11.45 12.07 2.52 
0.412 0.10 

with strap 14.45 27.42 5.72 13.55 25.93 5.41 

Net activation knee 

flexors in % 

without strap 15.44 15.11 3.15 
0.346 0.15 

16.80 9.82 2.05 
0.171 0.26 

with strap 13.47 10.03 2.09 14.32 9.15 1.91 

 

 

4.5. Discussion 

To the authors knowledge this is the first study that has investigated hip and knee kinematics 

and kinetics, as well as the quadriceps and hamstrings activation during functional tasks with 

and without a strap that is designed to reduce hip internal rotation and thereby modify lower 

limb alignment. This study revealed that the hip rotation angle and moment were significantly 

modified with the Powers
TM

 strap and thus, the first null-hypothesis was rejected. The second 

null-hypothesis stating that there would be no kinetic or kinematic changes of the knee and hip 

joint was rejected, because it could be shown that the Powers
TM 

strap significantly modified the 

knee internal rotation angle and the knee adduction moment. The third hypothesis stating that 



 
Chapter 4: Influence of the Powers strap on lower limb kinetics and kinematics in individuals with and without PFP 

 

 

149 

 

there would be no significant differences in co-contraction ratio and hamstrings and quadriceps 

activation was accepted, because no differences could be identified with and without the 

Powers
TM

 strap.  

This study showed that the Powers
TM

 strap significantly reduced pain and the hip internal 

rotation angle during running and eccentric quadriceps tasks in individuals with and without 

PFP. Pain decreased by 1.9 on the NRPS, which has been rated as a small to moderate change 

in pain (Abbott & Schmitt, 2014). Thus, although the pain rating was relatively small before the 

strap application (NPRS: 4.04), the pain still decreased by almost 2 on the NPRS to 1.93 with 

the strap application. The reduced hip internal rotation angle is important, because altered 

patellofemoral joint kinetics are often a result of excessive hip internal rotation in individuals 

with PFP (Almonroeder & Benson, 2017; Baldon et al., 2009; Bolgla et al., 2008; Mirzaie, 

Kajbafvala, Rahimi, Manshadi, & Kalantari, 2016; Neal, Barton, Gallie, O‟Halloran, & 

Morrissey, 2016; Song et al., 2014; Souza, 2008). Studies revealed that controlled femur 

rotation can restore normal patellofemoral joint kinetics (Powers, 2010; Souza et al., 2010). 

Furthermore, increased femoral internal rotation leads to increased shear stress of the patella 

and increased patellofemoral contact pressure (Besier, Gold, Delp, Fredericson, & Beaupre, 

2008; Lee, Morris, & Csintalan, 2003). The Powers
TM

 strap significantly reduced hip internal 

rotation angle throughout the stance phase. Furthermore, the strap also modified the knee 

external rotation angle towards a neutral transverse alignment in both groups. However, the 

changes were lower than the modifications of the hip internal rotation. The Powers
TM

 strap also 

resulted in an increased knee adduction moment during the early and mid-stance phase in 

running in individuals with PFP. Thus, the assumption that a transverse correction of the hip 

might decrease the dynamic knee valgus could be confirmed in running and the single leg squat 

task. The dynamic knee valgus creates a lateral force vector on the patella, thereby increasing 

patellofemoral joint stress, particularly on the lateral face of the patella (Almeida et al., 2016) 

and is associated with an increased risk of PFP (Myer et al., 2015). In addition, the hip IR 

moment was significantly increased during the early stance phase, which is in accordance to the 

significantly increased hip external rotation angle. However, the increase of the hip internal 

rotation moment might also be related to an increase of the gluteal muscle activity or to an 

earlier and longer activation of the gluteal muscles, especially of the gluteus medius and gluteus 

maximus muscle. A reduced and delayed activity of the gluteal muscles has been described in 

individuals with PFP in previous literature (Barton et al., 2013; Hollman, Galardi, Lin, Voth, & 
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Whitmarsh, 2014; Nakagawa, Muniz, et al., 2011; Souza & Powers, 2008, 2009a, 2009b; 

Willson et al., 2011). This tendency might have been triggered from the strap that brought the 

hip passively into this position and thereby facilitated the gluteal activation. Thus, future 

research should investigate the activity of the gluteal muscles with and without the strap. The 

increased knee adduction moment and the decreased hip IR angle during the early and mid 

stance phase are important clinical findings, because the patellofemoral joint stress reaches a 

peak during the early and mid-stance phase (Wirtz, Willson, Kernozek, & Hong, 2012) and 

most injuries, such as patellofemoral pain occur as a result of the high impact forces at the time 

of the initial contact (Novacheck, 1998). Furthermore, the early stance phase is a crucial phase 

in which the quadriceps absorbs the shock at impact (Novacheck, 1998; Pink, 2010). Previous 

research reported that the hip abductor, hip extensor, knee extensor and knee flexor muscles 

exhibited a burst of activity during the early and mid-stance phase to stabilise the knee and hip 

joint motion and were only slightly active in the late-stance phase (McClay, Lake, & Cavanagh, 

1990; Novacheck, 1998; Pink, 2010). In addition, the late-stance phase as the push off and 

transition phase to the swing phase is believed to be irrelevant in the development of PFP 

(McClay et al., 1990; Novacheck, 1998). 

The results during the single leg squat and step down task were more heterogeneous. 

Individuals without PFP performed the squat to less depth with the Powers
TM

 strap, which 

caused a reduction in hip and knee flexion angles and moment and would affect the hip and 

knee rotation and abduction angles significantly as well. Since individuals without PFP 

performed the single leg squat differently with the Powers
TM

 strap, it could not be analysed 

whether the Powers
TM

 strap reduced the hip internal rotation or whether the reduction was 

caused by a reduced hip and knee flexion. In contrast, individuals with PFP did not change the 

depth of the squat and showed a significant decrease of hip and knee internal rotation angle and 

hip adduction angle, as well as a significant increased knee adduction moment with the 

Powers
TM

 strap. These kinetic and kinematic changes indicate that the Powers
TM

 strap did not 

only successfully reduced pain but also reduced effectively the dynamic knee valgus in 

individuals with PFP.  

During the step down task, individuals with and without PFP showed a decrease of the hip 

adduction angle, and knee internal rotation and an increase of the knee adduction with the 

Powers
TM

 strap. In both groups were no kinetic changes observed during the step down task. 

Thus, although it seems that the Powers
TM

 strap was able to decrease the dynamic knee valgus 
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in individuals with PFP during both eccentric tasks, it did not influence the dynamic knee 

valgus kinetically during the step down task. Since both tasks are closely related to each other, 

the kinetic influence of the Powers
TM

 strap remains uncertain during eccentric quadriceps 

activities. However, the tendency of a decrease of hip internal rotational, hip adduction angle 

and an increase of knee adduction moment became apparent and shows a promising approach 

to reduce effectively the dynamic knee valgus in individuals with PFP.  

 In individuals without PFP, hamstrings activation was significantly decreased during the 

single leg squat and the step down task, as well as the early stance phase in running with the 

applied Powers
TM

 strap. However, the reduction of hamstrings activation ranged from 1.7% up 

to 8% and thus it is questionable if these differences are clinically meaningful. It seems that the 

tactile stimulus that was applied by the Powers
TM

 strap was not sufficient to alter 

neuromuscular performance of hamstrings and quadriceps function. One explanation might be 

that the participants did not exhibit neuromuscular dysfunctions that could be modified or that 

the localisation of the strap did not stimulate the population of recruited motor units.  

Thus, the first and second hypothesis suggesting no change of the hip and knee angles and 

moments were rejected. The Powers
TM

 strap significantly reduced pain in individuals with PFP 

and thus, the third hypothesis suggesting no changes in pain with the Powers
TM

 strap was 

rejected. Although biomechanical changes could be achieved, the Powers strap did not modify 

significantly the quadriceps and hamstrings activation in individuals with PFP. Thus, the fourth 

hypothesis suggesting no difference in co-contraction ratio and the net-activation of the 

quadriceps and hamstrings muscles with the Powers
TM

 strap was accepted. 

Previous literature reported that tibial external rotation increases patellofemoral contact 

pressures (Lee et al., 2003; Powers, 2003). The knee internal rotation significantly decreased 

with the Powers
TM

 strap throughout the tasks, which would be a harmful effect of the strap. 

However, increased patellofemoral contact pressures have been reported in an excessive 

external rotation of at least 15° external rotation (Csintalan, Schulz, Woo, McMahon, & Lee, 

2002; Lee et al., 2003). The data was subsequently checked to determine if participants showed 

an excessive external rotation of >15° and revealed that none of the participants in this study 

showed an excessive external rotation. The knee rotation ranged from 1.9° internal rotation to 

maximal 4.5° external rotation and thus no increase of patellofemoral contact pressure can be 

expected due to an increased external rotation with the Powers
TM

 strap. However, the effect of 
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the Powers
TM

 strap on knee rotation should be investigated in individuals with PFP that show 

an increase in tibial external rotation.  

To date, only limited research on knee braces, straps and patellar taping is available with 

heterogeneous findings (Theoret & Lamontagne, 2006; Van Tiggelen, et al., 2004; Wilson, 

Weltman, Martin, & Weltman, 1998; Yeung, Yeung, & Gillespie, 2011). Studies that 

investigated the influence of knee braces, straps and patellar taping in individuals with 

patellofemoral pain, concluded that bracing or taping seem to improve acute pain, however, it 

does not seem to help function and stability (Bolgla & Boling, 2011; Collins, Bisset, Crossley, 

& Vicenzino, 2012; Swart et al., 2012; Theoret & Lamontagne, 2006; Van Tiggelen, et al., 

2004; Wilson et al., 1998; Yeung et al., 2011). Thus, the evidence supporting the use of 

patellar taping, knee straps and braces to modify lower limb biomechanics in individuals with 

PFP is still lacking (Barton et al., 2015; Richards et al., 2015; Smith et al., 2015). One reason 

for this deficit is that current research shows a great heterogeneity in the types and use of knee 

orthoses and taping techniques (N. J. Collins et al., 2012), as well as vast hetereogeneity in the 

patient population (Lack et al., 2014). But despite the great heterogeneity of braces and taping 

techniques, to date literature is focused on knee braces, straps and sleeves that aim to provide a 

local stabilisation of the knee and the patella (Barton et al., 2015; Richards et al., 2015; Smith 

et al., 2015). 

The design of the Powers
TM

 strap is fundamentally different and aims to facilitate an external 

rotation of the thigh and not a local stabilisation of the knee. The strap focuses on the decrease 

of an excessive internal rotation of the hip, which is an important risk factor for patellofemoral 

pain (Boling et al., 2009; Powers et al., 2012). An increased femoral internal rotation has been 

commonly observed in individuals with PFP and is linked to an increased lateral patellar tilt, 

peak patella shear stress and can result in excessive lateral patellar displacement and tilt 

(Besier et al., 2008; Lee et al., 2003; Powers, 2003; Souza, 2008; Souza et al., 2010; Souza & 

Powers, 2009a). Furthermore, an increased femoral internal rotation causes a rapid decrease of 

patellofemoral contact area (Besier et al., 2008). To the authors' knowledge, this was the first 

study that investigated with 3D gait analysis the influence of a knee strap that aimed to reduce 

of the hip internal rotation during running and eccentric quadriceps tasks. This study showed 

that the Powers
TM

 strap has the potential to decrease hip internal rotation during running and 

squatting. Besides the influence of the Powers
TM

 strap on lower limb biomechanics it also 

reduced the acute pain significantly. The Powers
TM

 strap has been tested in individuals with 
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and without PFP and reduced hip internal rotation in both groups. This is important from a 

mechanistic perspective as even in individuals who do not have pain, hip internal rotation can 

be reduced with the strap and gives confidence that this change was not influenced by pain 

changes. The reduction of the hip internal rotation angles were ranging from 2.2° to 6° and 

although these changes were partially quite small, they seemed to result in clinically significant 

changes, with a significant decrease in pain.  

Thus, this strap might be a promising treatment approach to treat patients with patellofemoral 

pain in acute pain and during sports activities, and might enable the decrease of patellofemoral 

contact pressure and shear stress. However, the individuals in this study did not show an 

excessive hip internal rotation angle and thus, the effect of the Powers
TM

 strap should be 

further investigated in individuals with PFP that show an excessive hip internal rotation.  

 

4.6. Limitations to the study 

There were some limitations in regards to the findings of the study. It is important to note that 

the participants were fitted with standard training shoes to control the shoe-surface interface 

and to minimise the influence of footwear. However, the standard training shoes might have 

limited the comfort during running and thereby might have influenced the running 

performance.  

Furthermore, the single leg squat and the step down task showed only small effect sizes and 

only a maximal power of 43% was achieved. Thus, a greater sample size is needed to establish 

significant findings during the single leg squat and step down task. However, a post-hoc power 

calculation was carried out for the hip internal rotation during stance phase, which revealed a 

power of 85% and thus it could be concluded that enough power was reached to present 

significant results during running. 

This study investigated the effect of the Powers
TM

 strap within the same session and did not 

analyse the effect of the Powers
TM

 strap over time. Thus, further research is required that 

analyses the effect of the Powers
TM

 strap over a longer period of time to examine whether the 

strap might result in long-term modifications of the lower limb biomechanics and pain 

reduction.  
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And lastly, the range of motion of the hip and knee of the individuals with and without PFP 

were in the normal range of motion and individuals with PFP did not show an excessive hip 

adduction or a hip internal rotation (Alenezi et al., 2016; Novacheck, 1998). Thus, further 

research is required to investigate the effect of the Powers
TM

 strap in individuals with PFP that 

show an excessive hip internal rotation angle.  

 

4.7. Conclusion 

In conclusion, this study has demonstrated that the Powers
TM

 strap altered the transverse plane 

rotations of the hip and knee and might be a therapy to prevent excessive internal rotation in 

individuals with patellofemoral pain. Future research should investigate the influence of the 

Powers
TM

 strap on the lower limb kinematics and kinetics during eccentric quadriceps 

activities, such as squatting and the step down task in a larger sample of individuals with 

patellofemoral pain to achieve enough power. 
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Chapter 5: How does a 6-week exercise intervention influence pain, functional 

performance, balance, quadriceps strength and inhibition in individuals with 

patellofemoral pain? 

The second intervention assessed was the influence of a 6-week exercise intervention 

programme, which was investigated in individuals with PFP. This chapter will present the 

findings from the study focussing on the lower limb kinematics and kinetics, quadriceps 

strength, quadriceps inhibition, lower limb flexibility, patella and foot posture and clinical 

outcomes. 

 

5.1. Introduction: 

Long term follow up studies have shown that the majority of individuals with PFP develop 

chronic knee pain despite receiving treatment (chapter 2.4). This underlines that the condition 

of PFP is not self-limiting and requires a comprehensive rehabilitation programme (Lankhorst 

et al., 2015). The guidelines for such comprehensive rehabilitation programmes have been 

developed by international investigators during a consensus meeting at the International 

Patellofemoral Pain Research Retreat in Manchester 2015 (Crossley et al., 2016b). These 

guidelines recommend the reduction of pain in the short, medium and long term and the 

improvement of function in the medium and long term through exercise-therapy (Crossley et 

al., 2016b). Therefore, the combination of hip and knee exercises is recommended to reduce 

pain and improve function and should be favoured over knee exercises alone (Crossley et al., 

2016b). The guidelines support the use of active over passive exercises and recommend 

exercise programmes. However, since the guidelines are very recent, no study has developed 

and investigated the effect of an exercise programme, which is based on the current guidelines 

on PFP and functional performance.  

Thus, this study aimed to develop an exercise programme based on the current guidelines and 

to investigate whether and how such an exercise programme influences pain, function, 

functional performance, strength, muscle flexibility, balance and AMI in individuals with PFP.  

Therefore Null-Hypotheses for the primary outcomes were:  

1. "Pain and function would not be significantly improved after the 6-week evidence based 

exercise programme in individuals with PFP." 
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2. "The 6-week exercise programme would not significantly modify lower limb biomechanics 

in individuals with PFP." 

3. "The 6-week exercise programme would not increase muscle flexibility in individuals with 

PFP."  

4. "Quadriceps strength would not be increased after the 6-week exercise programme."  

 

The Null-Hypothesis for the secondary outcomes was: "There would be no significant 

differences after a 6-week evidence based exercise programme in individuals with PFP in: 

 balance 

 the break phenomenon 

 quadriceps inhibition 

 co-contraction ratio and net activation of the quadriceps and hamstrings muscles." 

 

5.2. Methodology 

The ethical application HSR 15-142 was obtained from the University of Salford Research and 

Governance committee on the 11th January 2016. The HRA approval was received on the 12th 

August 2016, with the REC reference: 16/NW/0497 (Appendix Methods 6.1). Informed 

consent was obtained from each study participant.  

 

5.2.1. Development of a 6-week exercise programme:  

A six-week exercise programme was developed based on the current recommendations, and 

consisted of four strength exercises and two stretching exercises. Since the current guidelines 

recommend an exercise programme as a stand-alone treatment (Crossley et al., 2016b), it has 

been decided to develop a 6-week exercise programme that patients could follow on his/her 

own at home.  

An exercise booklet was created, which described the correct execution of the exercise 

programme. To ensure that participants were able to understand the exercises without a 

therapist, each exercise was additionally video recorded and all videos were uploaded on a 

password-protected website (vimeo). The website address, as well as the password were 

provided in the exercise booklet.  
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The introduction in the exercise booklet gave information about the PFP exercise training 

programme and the handling of the booklet. The brochure then introduced a short selection of 

warm up and cooling down exercises, such as leg swing, low resistance cycling or slow 

walking in place.  

The main exercise programme consisted of four exercises, which aimed to strengthen the 

gluteus medius, maximus and the muscle. Experts recommended that not more than 3-4 

exercises should be prescribed to ensure the compliance of the patient with the treatment 

(Crossley et al., 2016b). The exercise programme included the combination of hip and knee 

strength focused exercises which has been shown to reflect the strongest current evidence and 

clinical practice (Barton et al., 2015; Crossley et al., 2016b).  

In addition to the four strength exercises, two exercises that aimed to stretch the hamstrings 

muscles and to increase the ankle dorsiflexion range of motion were included. Reduced ankle 

dorsiflexion range of motion has shown to increase dynamic knee valgus during functional 

tasks (Rabin & Kozol, 2010). Thus, mobilisations to address dorsiflexion restrictions to limit 

compensatory pronation, optimise shock absorption and internal tibial rotation was 

recommended (Barton et al., 2015). Reduced hamstring flexibility was associated with an 

increased knee extensor moment during gait (Williams & Welch, 2015). To ensure optimised 

knee and ankle biomechanics, the integration of a hamstrings stretch exercise has been 

recommended by other investigators (Barton et al., 2015).  

The exercise programme was organised as a circuit training strategy, with three sets and a total 

circuit time of maximal 30 minutes.  

The current PFP treatment guidelines emphasised that there was a need to individualise the 

treatments to each patient, as not all patients will require the same treatment (Barton et al., 

2015; Crossley et al., 2016b). To meet these needs, each exercise included a progressive 

loading in six steps. The participants were instructed to progress individually for each exercise. 

They were allowed to enter a higher progression stage, if they did not experience any pain and 

if they felt only light or no exertion. If patients experienced pain during an exercise, they were 

instructed to either progress to the next lower level of the exercise or to contact the Principal 

Investigator of the study.  

Studies have shown that the combination of open and closed kinetic chain strength exercises 

seem to be the most effective method to strengthen the quadriceps (Herrington & Al-Sherhi, 
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2007; Witvrouw, Danneels, Van Tiggelen, Willems, & Cambier, 2004). The first exercise was 

the squatting exercise, which has shown to strengthen and activate successfully the quadriceps 

and gluteal muscles with a relative low hamstrings co-activation (Begalle, Distefano, 

Blackburn, & Padua, 2012; Claiborne, Armstrong, Gandhi, & Pincivero, 2006; Lee et al., 2016; 

Reiman, Bolgla, & Loudon, 2012; Shields et al., 2005; Willson, Ireland, & Davis, 2006; Willy 

& Davis, 2011). Furthermore, patellofemoral joint contact forces during the squat exercise are 

relatively low when knee flexion is limited to 90° knee flexion and thus the squat is a safe 

exercise for individuals with PFP (Powers, Ho, Chen, Souza, & Farrokhi, 2014; Wood, 

Metcalfe, Dodge, & Templeton-Ward, 2016). If the participant experienced pain, he/ she were 

instructed to lean their trunk more forward or/ and place their feet wider (Escamilla, Fleisig, 

Zheng, Lander, Barrentine, Andrews, Bergemann, & Moorman, 2001; Kulas, Hortobagyi, & 

DeVita, 2012). The exercise progressed from a bilateral squat (stage 1) to an unilateral squat 

combined with 20% body mass (stage 6) (Figure 5.1). 
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 Figure 5.1: Strength exercise: squat 

 

Poor hip stability is associated with PFP and increased knee loads and needs addressing in the 

management of PFP (Barton et al., 2015; Barton et al., 2013; Esculier et al., 2015; Ramskov, 

Barton, Nielsen, & Rasmussen, 2015; Rathleff et al., 2014). The bridging exercise has been 

shown to be a successful method to strengthen the gluteus medius muscle (Choi, Cynn, Yi, 

Kwon, Yoon, Choi, & Lee, 2015; Reiman et al., 2012). In addition, the bridging exercise has 

also proven to target the gluteus maximus activity (Reiman et al., 2012). Unilateral bridging 

resulted in increased gluteus maximus activity as the gluteus maximus has to control the hip 
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and the pelvis movement in multiple planes (Reiman et al., 2012). The addition of the 

theraband and the unstable surface generated more gluteus medius activity (Choi et al., 2015; 

Reiman et al., 2012). Thus, the second exercise in the programme was the bridging exercise, 

which progressed from a bilateral bridging (stage 1) to an unilateral bridging with a thera-band 

around the knees, which progressed to the use of an unstable surface (stage 6) (Figure 5.2).  

 

Figure 5.2: Strength exercise: bridging 

 

The third strengthening exercise were the side band (stage 1) and rotational walks (stage 6). 

This exercise acts as an active alignment control exercise, which have shown to be successful 

in female basketball players (Kato, Urabe, & Kawamura, 2008). Besides the active 

modification of the lower limb alignment, the side band and rotational walks produce 

consistently high levels of gluteus medius and maximus activity and thus are believed to 
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successfully strengthen the gluteus medius muscle (Boren, Conrey, Le Coguic, Paprocki, 

Voight, & Robinson, 2011; De Marche Baldon, Serrao, Silva, & Piva, 2014; Distefano, 

Blackburn, Marshall, & Padua, 2009) (Figure 5.3). 

 

Figure 5.3: Strength exercise: side bend and rotational walks 

 

The fourth strengthening exercise was an open kinetic chain exercise to strengthen the 

quadriceps. Stage 1 of this exercise was an isometric knee extension exercise and the exercise 
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progressed to stage 6: knee extension exercise with a resistance of 15-25% of the own body 

mass (Figure 5.4). 

 

Figure 5.4: Strength exercise: quadriceps strengthening in open kinetic chain 

 

The exercise booklet involved an exercise schedule. The participants were asked to note on a 

daily basis his/her level of progression and the number of repetitions for each exercise. In 

addition, the exercise schedule involved a box in which participants were asked to note when 

an unexpected event happened, such as pain or swelling. They were asked to bring the booklet 

back after the 6-week exercise treatment, so that the individual progression could be examined.  
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Ankle weights and thera-bands were given to the participants and were returned to the Principal 

Investigator after the 6-week exercise treatment.  

 

5.2.2. Participants recruitment 

The participants were recruited by physiotherapists of the Salford Royal Hospital (Salford 

Royal NHS Foundation Trust, SRFT). The study and especially the recruitment process has 

been introduced within three different meetings to the physiotherapists and the leading 

orthopaedic consultant. Regular meetings with the recruiting physiotherapists were scheduled 

to ensure that questions and concerns could be raised and discussed. Therefore, the Principal 

Investigator visited the Physiotherapy department to explain the study and provided the 

required information and material. The physiotherapists and the Principal Investigator agreed 

on a procedure of how patients should be screened and how the study should be introduced to 

the patients, if they met the inclusion criteria. Beside the clinical examination, a standardised, 

feasible and quick screening was essential to ensure that all patients met the study inclusion 

criteria (chapter 4.2.1.). Therefore nine questions that checked the inclusion and exclusion 

criteria were integrated in the computer system as additional questions, that each patient with 

PFP was asked by his/ her physiotherapist. If the patient met the inclusion criteria the 

physiotherapist explained the study to the patient and asked for his/her interest in participation, 

whereby each patient was informed that his/her decision would not affect any treatment plans. 

If the patients were unwilling to participate they were thanked for considering taking part. If the 

patient was willing to participate the inclusion/ exclusion-criteria and the patients‟ details were 

forwarded either online or via mail to the Principal Investigator. Furthermore, these patients 

received the study information pack consisting of an invitation letter, the patient information 

sheet and the informed consent form.  

After receiving the patient information from the physiotherapist, the Principal Investigator 

called the patient, explained the study more into detail and replied to questions that arouse. If 

the patient decided at this point to not take part, they were thanked for considering and advised 

to follow a treatment programme at the Salford Royal hospital (Figure 5.5). If participants 

decided to take part, a date for the gait laboratory measurement was arranged and the patient 

received an email that confirmed their measurement date and provided a route description, car 

park information, contact details of the Principal Investigator and gave information about which 

clothing should be worn during the test. 
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In addition to the recruitment from the SFRT patients were also recruited via advertisements at 

fitness centres, gyms, climbing centres and sports clubs in Manchester and Salford, as 

described in chapter 4.2. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Recruitment process for this study 

 

5.2.3. Procedure 

Upon arrival at the laboratory, the participants were briefed through the study and the 

objectives of the investigations and the study equipment was explained to them. They were 
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asked to sign the informed consent form and a health history questionnaire, which consisted of 

13 questions. If potential risks were identified the individual was either asked to consult a 

physician to receive an approval for the participation or was advised not to participate in this 

study. Furthermore, they were asked to fill in the Knee injury and osteoarthritis outcome score 

(KOOS), the anterior knee pain scale KUJALA score and the Tampa scale for kinesiophobia. 

The KOOS consists of 5 subscales; Pain, Other Symptoms, Function in daily living (ADL), 

Function in sport and recreation (Sport/Rec) and Knee related quality of life (QOL). Each 

question is ranked on a score from 0 to 4. A normalized score (100 indicated no symptoms and 

0 indicated extreme symptoms) wass calculated for the overall score and each subscale. The 

Kujala score is a 13-item scale, which contains questions related to symptoms at rest as well as 

during functional tasks. Each item includes a specific response, which is assigned to a point 

value to allow an easy scoring. A result of the maximum score of 100 represents the presence 

of no pain and 0 the maximum presence of pain. The Tampa Scale of Kinesiophobia is a 17-

item instrument assessing pain-related fear of movement. All questions are ranked on a 4 point 

Likert scale (from 1= strongly disagree, to 4= strongly agree). The total score was calculated, 

ranging from 17=no fear to 68=strong fear avoidance beliefs.  

The individual was then asked to wear shorts and a comfortable t-shirt and standard running 

shoes (New Balance, UK). Before the test, the mass and height of each participant was 

measured. The foot posture was assessed by using the 6-item foot posture index. The ankle 

ROM was measured by using a weight-bearing lunge (chapter 3.3. 1). The hamstrings flexibility 

was measured by using the active knee extension test and the quadriceps flexibility was assessed 

by using the modified Thomas test. Furthermore, the dynamic balance was measured by using 

the reaching forward test on the balance board of the star excursion balance test and the reach 

distance was normalised to the leg length (chapter 3.3.1).  

Each individual performed three isometric and isokinetic knee extensor strength tests. The peak 

isometric, eccentric and concentric torque were measured with an isokinetic dynamometer 

(Kin-Com, Chattanooga, USA). The muscular inhibition, averaged rate to force development 

(RFD) and peak force of the quadriceps was assessed during the maximal isometric contraction 

of the quadriceps with the interpolated twitch technique, using a Digitimer High Voltage 

Stimulator (DS7AH Digitimer Ltd, Hertfordshire, England) (chapter 3.3.3). The participants 

were seated in an isokinetic dynamometer and positioned in 90° hip flexion and 60° knee 

flexion. The isokinetic knee extensor measurements were tested at the angular velocity of 

60°/second (chapter 3.3.3). 
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For the electrode placement of the EMG, the skin was shaved, abraded and cleaned with 

isopropyl alcohol and the sEMG electrodes were applied on the vastus medialis, vastus 

lateralis, semitendinosus and the biceps femoris, in accordance with the SENIAM guidelines 

(chapter 3.4.1.3). The surface EMG data was collected with the Noraxon Telemyo system and 

sampled at 1500Hz. The sEMG data was synchronised to the kinematic and kinetic data.  

Three-dimensional movement data was collected with ten Qualisys OQUS7 cameras (Qualisys 

AB, Sweden) at a sampling rate of 250Hz. Therefore, forty retroflective markers were placed as 

described in the previous chapters 3.4.1.2. Force data was collected with three force plates 

(BP600900, Advanced Mechanical Technology, Inc.USA), at a sampling rate of 1500Hz, 

which were synchronised with the Qualisys system. The calibrated anatomical system 

technique (CAST) was used to calculate lower limb biomechanics. 

After the static trial, each subject was asked to run on a 15 m walkway at his/her own selected 

speed, to perform the single leg squat and step down task. The running speed was controlled 

and reported (Brower timing lights, Draper, UT), to ensure that each trial was within ±10% of 

the original self-selected speed. Each task was performed until five successful trials were 

collected. Unsuccessful trials were ones whereby less than three markers per segment were 

visible, speed changes were seen during the trials, or a partial/double contact with the force 

platforms.  

After finishing all the tasks, the exercise programme was introduced to the patients, whereby 

each exercise was explained and shown to the patients. The booklet and especially the exercise 

schedule were explained to the patient and he/she was instructed how to document the exercises 

for the upcoming 6 weeks. They received the information that they should contact the 

researcher if they struggle with an exercise or if they develop pain. Furthermore, each 

participant was offered that a skype call could be arranged, in which the Principal Investigator 

could show the correct exercise execution again, could follow up the treatment progress and 

where questions and concerns could be addressed. 

After finishing the six week exercise programme a second measurement was arranged, at which 

the strength and inhibition, flexibility, the dynamic balance assessment and the functional 

performance of each participant was reassessed. Furthermore, the patient was asked to fill in 

the KOOS, the Tampa scale and the KUJALA score. Each participant received on each 

occasion as a compensation a voucher of £15, which was exchangeable for goods in shops in 

Manchester and Salford. 
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5.2.4. Data processing 

The kinematic and kinetic outcomes were calculated by utilising a 6 degrees of freedom model 

in Visual3D (Version 5, C-motion Inc, USA). Motion and force plate data was filtered with a 

4th order Butterworth filter with cut-off frequencies of 12Hz and the joint moments were 

normalised to body mass. The kinematic and kinetic data was normalised to 100% of the single 

leg squat, step down task and the stance phase. The stance phase was sub-grouped into early (0-

24% of stance phase), mid (25-62%) and late-stance phase (63%-100%) (Perry & Burnfield, 

2010). The peaks of the hip and knee flexion, adduction and internal rotation angles and the 

moments were calculated for the single leg squat, step down task and the early, mid and late-

stance phase. Furthermore, the average knee angular velocity was calculated for the eccentric 

phase during the single leg squat and step down task.  

The sEMG data was band-pass filtered at 20-500Hz and rectified by using a root mean square 

over a 75 ms window for the running task and 300 ms for the single leg squat and step down 

task. Co-contraction ratios were (CCR) calculated by using the formula of Heiden et al. 

(Heiden et al., 2009). 

The strength data of each participant was loaded into Excel. The peak torque, AMI, time to 

peak, the break phenomenon and the rate to force development (RFD) were determined and 

calculated by using Excel (chapter 3.3.4).  

 

5.3. Statistical analysis 

The statistical analysis was performed using SPSS (v. 20) and Excel 2013. Normality was 

assessed by applying the Shapiro-Wilk test and by the investigation of the normal q-q plots. For 

the data that was normally distributed, paired sample t-tests were performed at the 95% 

confidence interval to investigate whether the 6 week exercise programme significantly 

influenced the lower limb biomechanics. Data that was not normal distributed, as well as 

ordinal data (pain scale) was tested by using the Wilcoxon rank test with a significance level set 

at p<0.05.  

To investigate whether the 6-week intervention treatment resulted in significant differences in 

hip and knee biomechanics in individuals with PFP a paired two-tailed t-test was used, if the 

data was normal distributed and a Wilcoxon test, if the data was not normal distributed. 
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The following values were compared before and after the 6-week exercise intervention:  

Primary outcomes:  

 the final score of the KOOS, Tampa scale of kinesiophobia and the KUJALA score 

 pain rated on the numeric pain rating scale  

 peak of the hip flexion, hip adduction, hip internal rotation, knee flexion, knee 

adduction and knee internal rotation angles and moments 

 peak isometric, eccentric and concentric knee extensor torque 

 RTF development and time to peak of the knee extensor muscle 

 quadriceps AMI in % 

 the peak score in degrees of the quadriceps and hamstrings flexibility, as well as the 

ankle range of motion 

 the peak score in cm of the ankle range of motion 

 

Secondary outcomes:  

 the co-contraction ratio, net activation of the quadriceps and hamstrings activation 

 averaged knee angular velocity during the eccentric quadriceps tasks (single leg squat 

and step down task) 

 the peak score in cm of the star excursion balance test 

 

5.4. Results 

Twenty-five participants with PFP were measured and started the 6-week intervention 

programme. However, after a drop-out of in total 9 participants, only 16 participants with PFP 

(9 males and 7 females, age: 30.75± 6.34 years, height: 1.73± 0.08 m, mass: 69.04± 9.07kg) 

completed the 6-week intervention programme and were reassessed (Figure 5.6).  
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Figure 5.6: Study flow diagram 

 

The foot posture index was on average 4.0± 0.63. However, three individuals with PFP had a 

foot posture index above 6. The participants running speed before and after the exercise 

treatment was not significantly different (p= 0.717, before the treatment: 3.42 m/s ±0.12 m/s, 

after the treatment: 3.43 m/s ±0.12 m/s).  

Function was assessed by using the KUJALA and the KOOS and improved significantly in 

patients with PFP after the 6-week intervention programme. The KUJALA score is a 100-point 

patient-reported outcome that measures 13 domains of knee function. A low score suggests 

knee dysfunction and a higher score indicated no disability (Bolgla, Earl-Boehm, Emery, 

Hamstra-Wright, & Ferber, 2016). The KUJALA improved by 10.06 points (p=0.003) and the 

KOOS by 16.25 points (p=0.0001) (Table 5.1). Both improvements had large effect sizes. To 

investigate how patients improved with a lower KUJALA score, all patients that a KUJALA 

score lower than 70 were compared separately before and after the treatment. These patients 

improved by 21.33 points with a large effect size of 2.87 (KUJALA score before the treatment: 

68.33, after the treatment: 89.67).  

Furthermore, function was assessed by using the KOOS. The KOOS is a knee-specific 

instrument, which assessed the patients' opinion about their knee associated disability and 

Initial evaluation (n=12 females, n=15 males) 

1st measurement (n=13 females, n=12 males) 

3 excluded:  

postoperative after knee arthroscopy: 2 

other knee pathology: 1 

2nd measurement after 6 week exercise programme (n=7 

females, n=9 males) 

drop out of 9 patients:  

knee operation: 1 

pregnancy and miscarriage: 1 

no time to exercise regularly: 8 
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consisted of 42 items in 5 separately scored subscales (Roos & Lohmander, 2003). Patients 

with PFP improved after the exercise programme by 16.26 points, which represents an 

improvement of 22.1%. The KOOS is structured into five separately scored subscales: Pain, 

other symptoms, function in daily living (ADL), function in sports and recreation (Sport/ Rec), 

and knee-related Quality of Life (QOL). The changes in all 5 subscales were significant and 

presented a meaningful difference (KOOS-working-group, 2012). The subscales of pain, 

symptoms and ADL improved on average between 8 to 13 points and thus resulted in an 

improvement of 10.2 to 16.5%. The subscales of Sport/ Rec and QOL increased by 23.4 and 

25.7 points and thereby improved on average by 40% (Table 5.1). The changes in all subscales 

of the KOOS had large effect sizes, ranging from 071 to 1.79. 

The Tampa scale of kinesiophobia, is an instrument that has been developed to measure the fear 

of movement related to pain (Hapidou, O'Brien, Pierrynowski, de Las Heras, Patel, & Patla, 

2012; Neblett, Hartzell, Mayer, Bradford, & Gatchel, 2016). In this study, patients showed a 

reduced kinesiophobia of 3.44 points (p=0.021) after the treatment with a moderate effect size 

(Table 5.1). However, the overall Tampa score was mild to moderate in the recruited group 

(Neblett et al., 2016). To investigate how patients improved with a mild, moderate and severe 

kinesiophobia, patients with a mild kinesiophobia (≤ 32 points), moderate kinesiophobia (33-42 

points) and severe kinesiophobia (≥ 43 points) were compared separately within their groups. It 

could be shown that patients with a mild kinesiophobia improved by 1.83 points, with a 

moderate kinesiophobia by 4.11 points and one patient with a severe kinesiophobia improved 

by 12 points (Table 5.1). The changes of the subgroups showed large effect sizes.  

The patients recorded on the numeric pain rating scale their pain level before the study on 

average 0.88. After the study no patient reported any pain anymore (NPRS: 0) (Table 5.1). 

Since the baseline pain was very low, the pain change was not significantly different after the 

exercise-programme (p=0.068). However, despite no significant difference the change in pain 

the effect size for the change in pain was large. Furthermore, the pain-subscale of the KOOS 

significantly improved from 79.7 points before the intervention to 92.88 points after the 6-week 

exercise treatment with a large effect size (p=0.001) (Table 5.1). 

The lower limb biomechanics during the stance phase in running did not significantly change 

after the exercise intervention (Table 5.2 & 5.3). In contrast, the lower limb biomechanics 

during the single leg squat and the step down task were modified after the 6-week exercise 

programme (Table 5.4 & 5.5). The patients squatted deeper after the 6-week intervention 
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programme and flexed his/her hips 10.0° (p=0.004) and his/her knees 8.4° more (p=0.023) 

(Table 5.4, Figure 5.7& 5.8). The changes in knee and hip flexion angle showed moderate 

effect sizes. Furthermore, the hip flexor and knee internal rotation moment increased 

significantly with moderate effect sizes (p=0.003, p=0.008) (Table 5.5, Figure 5.10 & 5.11). 

Also the step down task was performed with a significantly increased knee flexion angle after 

the exercise programme, with only a small effect size (5.6°, p=0.011) (Table 5.4, Figure 5.9). 

The changes during the step down task did not result in modified lower limb kinetics (Table 

5.5).  

The quadriceps strength was not significantly different after the 6-week exercise programme 

(isometric: p=0.570, concentric: p=0.064, eccentric: p=0.594). However, the concentric 

strength showed the tendency to increase with a moderate effect size. When the groups were 

divided into females and males the tendency of an increase in isometric strength could be 

observed with moderate to large effect sizes. However, the eccentric quadriceps strength 

showed the tendency to decrease with small effect sizes (Table 5.1). The rate to force 

development and time to peak were not significantly modified (p-value: RTF development: 

0.394, time to peak: 0.112). The break phenomenon was present in 4 out of 16 participants 

before the treatment and in only 3 after the treatment. However, the change was not significant 

(p=1.0). Although the quadriceps AMI was not significantly changed (p-value: 0.096), the 

inhibition decreased by 5.3% after the 6-week exercise programme with a large effect size 

(Table 5.1).  

The flexibility of the hamstrings muscles increased significantly after the exercise treatment 

with a large effect size (decreased knee flexion of 6.1°, p=0.014) (Table5.1). The flexibility of 

the quadriceps muscle increased. Although, the change was not significant (p=0.087), the effect 

size was moderate. The range of motion (ROM) of the dorsi-flexion increased significantly by 

1.16 cm (p=0.024). However, the ROM measured in degrees was not significantly increased 

(p=0.058, increase by 2.8°) and the effect sizes were small to moderate (Table 5.1). 

The net-activation of the knee extensors increased significantly during the early stance phase in 

running after the 6-week exercise programme with a moderate effect size (p=0.019).  

The averaged knee angular velocity during the eccentric quadriceps tasks was not significantly 

different after the 6-week exercise treatment (p-value: single leg squat: 0.211, step down task: 

0.82).  
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And lastly, the balance was measured by using the star excursion balance test (SEBT) and the 

reach distance was normalised to the leg length of each participant. The SEBT showed an 

increased reach distance of 4.46 cm after the 6-week exercise intervention with a large effect 

size (p=0.008) (Table 5.1). 

 

Table 5.1: The lower extremity kinetics during the single leg squat task and the step down task (*indicated the 

results were significantly different.)  

 

Before the exercise 

treatment 

After the exercise 

treatment 
P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Strength 

(Nm/kg)0.28 

 

Quadriceps isometric torque 2.92 0.65 0.16 2.91 0.57 0.15 0.570 0.02 

Quadriceps concentric torque 1.78 0.59 0.15 2.08 0.39 0.10 0.064 0.60 

Quadriceps eccentric torque 3.36 1.29 0.33 3.05 0.74 0.19 0.594 0.29 

Strength 

(Nm/kg) 

Females 

Quadriceps isometric torque 2.62 0.56 0.21 2.6 0.45 0.17 1.000 0.04 

Quadriceps concentric torque 1.46 0.52 0.2 1.85 0.21 0.08 0.063 0.98 

Quadriceps eccentric torque 2.78 0.56 0.21 2.6 0.49 0.18 6.12 0.34 

Strength 

(Nm/kg) 

Males 

Quadriceps isometric torque 3.15 0.64 0.21 3.18 0.54 0.19 0.484 0.05 

Quadriceps concentric torque 2.05 0.52 0.19 2.27 0.41 0.14 0.237 0.47 

Quadriceps eccentric torque 3.87 1.56 0.55 3.44 0.73 0.26 0.735 0.35 

Time to peak (ms) 0.74 0.40 0.10 0.82 0.24 0.06 0.112 0.24 

Rate to force development (torque/ms) 283.06 141.10 36.43 247.81 112.54 29.06 0.394 0.28 

Quadriceps AMI in % 13.04 10.84 2.80 7.72 5.66 1.46 0.096 0.62 

Pain 
numeric pain rating scale 0.88 0.46 1.82 0 0 0 0.068 2.71 

KOOS pain 79.70 11.19 2.80 92.88 8.42 2.11 0.001* 1.33 

Tampa scale: all results 32.63 6.34 1.59 29.19 7.70 1.93 0.021* 0.46 

Tampa: mild kinesiophobia (≤ 32 points) 25.5 2.07 0.85 23.67 1.51 0.61 0.176 1.01 

Tampa: moderate kinesiophobia (33-42 points) 36.11 2.20 0.73 40.22 1.39 7.13 0.593 2.23 

Tampa: severe kinesiophobia (≥43 points) 44 - - 32 - - -  

Balance in cm/leg length 90.21 5.62 1.45 94.67 6.94 1.79 0.008* 0.71 

Function 

KUJALA scale 81.69 9.23 2.31 91.75 7.23 1.81 0.003* 1.21 

KUJALA scale (≤ 70 points) 68.33 0.58 0.33 89.67 10.50 6.06 0.11 2.87 

KOOS sum 73.50 10.54 2.63 89.76 8.89 2.22 0.0001* 1.67 

KOOS symptoms 79.62 13.11 3.28 87.72 9.40 2.35 0.059 0.71 

KOOS ADL 87.08 12.91 3.23 96.34 6.46 1.61 0.016* 0.91 

KOOS Sport/ Rec 65.31 16.88 4.22 91.00 11.25 2.81 0.0001* 1.79 

KOOS QOL 57.42 17.26 4.32 80.86 18.88 4.72 0.004* 1.30 

Flexibility 

Ankle ROM in cm 12.60 3.03 0.78 13.73 3.46 0.89 0.024* 0.35 

Ankle ROM in degrees 50.3 5.0 1.3 47.5 6.3 1.6 0.058 0.49 

Quadriceps flexibility in degrees 106.0 16.9 4.4 113.3 13.2 3.4 0.089 0.48 

Hamstrings flexibility in degrees 154.4 8.4 2.2 160.3 8.1 2.0 0.015* 0.72 
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Table 5.2: The lower extremity kinematics during the stance phase in running (*indicated the results were 

significantly different.) 

The kinematic variables (º) during stance 

phase 

Before the exercise treatment 
After the exercise 

treatment 
P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. Error 

Mean 
Mean SD 

Std. 

Error 

Mean 

Early 

stance 

phase 

 

Hip flexion angle 35.1 6.5 1.7 34.2 5.9 1.5 0.427 0.15 

Hip adduction angle 5.9 5.0 1.3 6.4 3.8 1.0 0.609 0.11 

Hip internal rotation angle  4.5 7.2 1.9 3.4 7.0 1.8 0.910 0.15 

Knee flexion angle 32.1 3.5 0.9 30.8 2.9 0.8 0.173 0.40 

Knee adduction angle 3.6 3.7 1.0 3.0 3.3 0.9 0.691 0.17 

Knee internal rotation angle -4.5 4.8 1.3 -4.4 6.2 1.6 0.955 0.02 

Mid-

stance 

phase 

Hip flexion angle 35.1 6.8 1.8 33.6 6.2 1.6 0.233 0.23 

Hip adduction angle 8.6 5.2 1.3 9.9 5.4 1.4 0.570 0.25 

Hip internal rotation angle  0.7 8.6 2.2 -0.8 8.1 2.1 0.570 0.18 

Knee flexion angle 45.3 4.4 1.1 43.2 5.7 1.5 0.125 0.41 

Knee adduction angle 2.9 3.6 0.9 2.0 3.2 0.8 0.609 0.26 

Knee internal rotation angle 0.9 4.8 1.2 2.3 5.9 1.5 0.256 0.26 

Late-

stance 

phase 

Hip flexion angle 20.8 6.4 1.7 19.4 5.6 1.4 0.233 0.23 

Hip adduction angle 5.7 4.7 1.2 6.2 4.7 1.2 0.394 0.11 

Hip internal rotation angle  1.7 8.4 2.2 -0.2 7.9 2.0 0.233 0.23 

Knee flexion angle 42.0 4.7 1.2 40.8 4.5 1.2 0.334 0.26 

Knee adduction angle 2.2 3.4 0.9 1.6 2.5 0.6 0.609 0.20 

Knee internal rotation angle 0.3 3.9 1.1 0.8 6.2 1.6 0.433 0.10 

 

 

Table 5.3: The lower extremity kinetics during stance phase in running (*indicated the results were significantly 

different. 

The kinematic variables (º) during stance 

phase 

Before the exercise treatment 
After the exercise 

treatment 
P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. Error 

Mean 
Mean SD 

Std. 

Error 

Mean 

Early 

stance 

phase 

 

Hip flexion moment 1.92 0.43 0.11 1.85 0.47 0.12 0.776 0.16 

Hip adduction moment 1.23 0.36 0.09 1.28 0.35 0.09 0.460 0.14 

Hip internal rotation moment 0.06 0.09 0.02 0.09 0.15 0.04 0.532 0.24 

Knee flexion moment 1.52 0.31 0.08 1.40 0.18 0.05 0.125 0.47 

Knee adduction moment 0.58 0.27 0.07 0.54 0.25 0.06 0.334 0.16 

Knee internal rotation moment 0.25 0.11 0.03 0.24 0.07 0.02 0.496 0.11 

Mid-

stance 

phase 

Hip flexion moment 0.74 0.52 0.13 0.82 0.35 0.09 0.820 0.18 

Hip adduction moment 1.87 0.39 0.10 1.92 0.34 0.09 0.691 0.14 

Hip internal rotation moment -0.27 0.21 0.05 -0.25 0.18 0.05 0.281 0.10 

Knee flexion moment 2.64 0.63 0.16 2.80 0.49 0.13 0.460 0.28 

Knee adduction moment 0.54 0.25 0.06 0.57 0.25 0.07 0.865 0.12 

Knee internal rotation moment 0.44 0.13 0.03 0.45 0.13 0.03 0.776 0.08 

Late-

stance 

phase 

Hip flexion moment -0.08 0.24 0.06 -0.12 0.22 0.06 0.570 0.17 

Hip adduction moment 1.37 0.45 0.12 1.41 0.31 0.08 0.570 0.10 

Hip internal rotation moment 0.02 0.03 0.01 0.03 0.04 0.01 0.532 0.28 

Knee flexion moment 1.80 0.49 0.13 1.98 0.34 0.09 0.233 0.43 

Knee adduction moment 0.36 0.19 0.05 0.38 0.22 0.06 0.532 0.10 

Knee internal rotation moment 0.24 0.11 0.03 0.27 0.11 0.03 0.460 0.27 
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Table 5.4: The lower extremity kinematics during the single leg squat task and the step down task (*indicated the 

results were significantly different.) 

The kinematic variables (º) during the 

single leg squat and step down task 

Before the exercise treatment 
After the exercise 

treatment 
P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. Error 

Mean 
Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

 

Hip flexion angle 72.2 19.6 5.1 82.5 15.8 4.1 0.004* 0.58 

Hip adduction angle 15.1 7.1 1.8 15.4 6.0 1.5 1.000 0.05 

Hip internal rotation angle  4.0 6.9 1.8 1.0 7.4 1.9 0.100 0.42 

Knee flexion angle 81.8 9.9 2.5 88.4 11.4 2.9 0.023* 0.62 

Knee adduction angle 6.3 4.6 1.2 5.6 3.7 1.0 0.609 0.17 

Knee internal rotation angle -2.1 5.4 1.4 -0.3 5.4 1.4 0.496 0.33 

Knee angular velocity (°/sec.) -35.9 9.9 2.2 -35.3 13.6 2.8 0.211 0.05 

Step 

down 

task 

Hip flexion angle 70.4 20.6 5.3 77.4 16.8 4.3 0.061 0.37 

Hip adduction angle 15.6 7.3 1.9 17.0 5.3 1.4 0.088 0.22 

Hip internal rotation angle  4.1 6.0 1.5 1.2 6.9 1.8 0.191 0.45 

Knee flexion angle 89.8 13.9 3.6 95.4 11.4 2.9 0.011* 0.44 

Knee adduction angle 6.9 4.2 1.1 5.7 3.7 0.9 0.532 0.30 

Knee internal rotation angle -0.5 5.4 1.4 1.3 5.6 1.4 0.233 0.33 

Knee angular velocity (°/sec.) -35.8 14.1 3.7 -35.7 10.6 2.7 0.820 0.01 

 

 

 

 

Figure 5.7: The sagittal plane hip angle during the single leg squat task under 2 conditions: before (red) and after 

(blue) the 6-week exercise treatment. The shaded areas represent ±1SD for each condition, internal rotation as the 

positive angle. 

 

0

30

60

90

120

0% 20% 40% 60% 80% 100%

% of single leg squat task 

Flx 



Chapter 5: How does a 6-week exercise intervention influence pain, functional performance, 

balance, quadriceps strength and inhibition in individuals with patellofemoral pain?  

 

175 

 

  

 

Figure 5.8: The sagittal plane knee angle during the single leg squat task under 2 conditions: before (red) and 

after (blue) the 6-week exercise treatment. The shaded areas represent ±1SD for each condition, internal rotation 

as the positive angle. 

 

 

 

Figure 5.9: The sagittal plane knee angle during the step down task under 2 conditions: before (red) and after 

(blue) the 6-week exercise treatment. The shaded areas represent ±1SD for each condition, internal rotation as the 

positive angle. 

0

30

60

90

0% 20% 40% 60% 80% 100%

0

30

60

90

120

0% 20% 40% 60% 80% 100%

% of single leg squat task 

% of step down task 

Flx 

Flx 



Chapter 5: How does a 6-week exercise intervention influence pain, functional performance, 

balance, quadriceps strength and inhibition in individuals with patellofemoral pain?  

 

176 

 

 

Table 5.5: The lower extremity kinetics during the single leg squat task and the step down task (*indicated the 

results were significantly different.)  

The kinetic variables (Nm/kg) during the 

single leg squat and step down task 

Before the exercise treatment 
After the exercise 

treatment 
P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size 
Mean SD 

Std. Error 

Mean 
Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

 

Hip flexion moment 1.07 0.64 0.16 1.37 0.56 0.01 0.003* 0.50 

Hip adduction moment 0.95 0.29 0.07 0.95 0.16 0.16 0.156 0 

Hip internal rotation moment -0.13 0.06 0.02 -0.11 0.08 0.36 0.363 0.28 

Knee flexion moment 1.82 0.44 0.11 1.82 0.23 0.19 0.191 0 

Knee adduction moment 0.35 0.11 0.03 0.37 0.13 0.11 0.112 0.17 

Knee internal rotation moment 0.39 0.09 0.02 0.43 0.08 0.01 0.008* 0.47 

Hip flexion moment 1.31 0.80 0.21 1.46 0.70 0.36 0.363 0.20 

Step 

down 

task 

Hip adduction moment 1.12 0.31 0.08 1.05 0.35 0.14 0.140 0.21 

Hip internal rotation moment -0.08 0.07 0.02 -0.06 0.08 0.11 0.112 0.27 

Knee flexion moment 1.82 0.36 0.09 1.61 0.50 0.46 0.460 0.48 

Knee adduction moment 0.43 0.17 0.04 0.34 0.13 0.53 0.532 0.59 

Knee internal rotation moment 0.41 0.09 0.02 0.41 0.14 0.21 0.211 0 

Hip flexion moment 1.07 0.64 0.16 1.37 0.56 0.01 0.003* 0.50 

Hip adduction moment 0.95 0.29 0.07 0.95 0.16 0.16 0.156 0 

 

 

 

 

Figure 5.10: The sagittal plane hip moment during the single leg squat under 2 conditions: before (red) and after 

(blue) the 6-week exercise treatment. The shaded areas represent ±1SD for each condition, internal rotation as the 

positive angle. 
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Figure 5.11: The transverse plane knee moment during the single leg squat under 2 conditions: before (red) and 

after (blue) the 6-week exercise treatment. The shaded areas represent ±1SD for each condition, internal rotation 

as the positive angle. 

 

 

Table 5.6: Co-contraction ratio, net activation of the knee flexors and knee extensors during the stance phase in 

running, the single leg squat task and the step down task with and without acute pain (*indicated the results were 

significantly different.) 

 

Before the exercise treatment After the exercise treatment P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Early 

stance 

phase 

Co-contraction ratio  0.53 0.62 0.17 0.71 0.08 0.02 0.814 0.41 

Net activation knee extensors in % 137.22 54.00 14.98 166.57 75.80 20.26 0.019* 0.45 

Net activation knee flexors in % 40.31 37.31 10.35 47.14 23.70 6.33 0.084 0.22 

Mid-

stance 

phase 

Co-contraction ratio  0.30 0.33 0.09 0.30 0.30 0.08 0.272 0 

Net activation knee extensors in % 75.01 35.78 9.92 89.56 46.56 12.44 0.060 0.35 

Net activation knee flexors in % 48.35 27.76 7.70 52.88 20.72 5.54 0.272 0.18 

Late-

stance 

phase 

Co-contraction ratio  -0.24 0.15 0.56 -0.44 0.09 0.34 0.084 1.62 

Net activation knee extensors in % 9.00 2.08 7.50 7.54 1.21 4.51 0.695 0.86 

Net activation knee flexors in % 15.75 3.04 10.96 18.75 3.41 12.77 0.239 0.93 

Single 

leg 

squat 

Co-contraction ratio  0.68 0.21 0.06 0.68 0.16 0.04 0.272 0 

Net activation knee extensors in % 104.69 36.86 10.22 109.10 42.37 11.32 0.638 0.11 

Net activation knee flexors in % 31.06 14.66 4.07 32.70 13.38 3.58 0.638 0.12 

Step 

down 

task 

Co-contraction ratio  0.62 0.24 0.07 0.63 0.19 0.05 0.433 0.05 

Net activation knee extensors in % 102.75 35.11 9.38 103.91 41.53 11.10 0.311 0.03 

Net activation knee flexors in % 36.36 17.78 4.93 35.01 15.43 4.13 0.875 0.08 
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5.5. Discussion and conclusion 

This study showed that individuals with PFP improved in function and showed reduced pain 

after the 6-week exercise treatment. Thus, the first null-hypothesis was rejected. The second 

hypothesis suggesting that the 6-week exercise programme would not modify the lower limb 

biomechanics was rejected for the single leg squat and step down task and accepted for the 

stance phase in running. The third hypothesis suggesting that the exercise programme would 

not increase muscle flexibility was rejected and the fourth hypothesis suggesting that the 

treatment would result in increased quadriceps strength was accepted.  

Individuals with PFP showed a significantly improved function after the 6-week exercise 

programme. Function in this study was assessed using the KUJALA score and the KOOS. In 

this study, patients with PFP showed an improved KUJALA score of 10.06 points after the 

exercise programme. It has been previously reported that a clinically meaningful difference in 

the KUJALA score should be 14 points and thus it is not clear whether the change is clinically 

meaningful (Watson et al., 2005). That the patients improved only by 10 points in this study 

might also be caused by the relatively high KUJALA score before the exercise treatment. Thus, 

to investigate how patients with more pain and less function improved, patients with a 

KUJALA score below 70 were analysed separately and it could be shown that they improved 

by 21.33points. 

Function had been additionally assessed with the KOOS, a knee-specific instrument (Roos & 

Lohmander, 2003). Patients with PFP improved after the exercise programme by 16.26 points, 

which represents an improvement of 22.1%. The meaningful difference of the KOOS is 

reflected by a change of the score between 8- 10 points improvement (Roos & Lohmander, 

2003). Thus, the result of this study shows a clinically meaningful improvement of function. 

The KOOS is structured into five separately scored subscales: Pain, other symptoms, function 

in daily living (ADL), function in sports and recreation (Sport/ Rec) and knee-related Quality of 

Life (QOL). The changes in all 5 subscales were significant and presented a meaningful 

difference (KOOS-working-group, 2012). The subscales of pain, symptoms and ADL improved 

on average between 8 to 13 points and thus resulted in an improvement of 10.2 to 16.5%. The 

subscales of Sport/ Rec and QOL increased by 23.4 and 25.7 points and thereby improved on 

average by 40%. Thus, the exercise programme seemed to have especially a positive impact on 

function in sports and quality of life in the patients with PFP.  
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The Tampa scale showed a significant reduction of kinesiophobia by 3.44 points after the 

exercise treatment (p=0.021). However, the overall Tampa score was mild to moderate in the 

recruited group (Neblett et al., 2016). Thus, the subgroups mild, moderate and severe 

kinesiophobia were investigated independently. These results showed that the greater the 

kinesiophobia before the exercise programme, the more patients improved in kinesiophobia 

after the exercise programme. However, the sample size of this study was too small to draw 

conclusions from this analysis, but it revealed the potential of the exercise treatment to improve 

kinesiophobia in patients with a moderate and severe kinesiophobia. Previous studies reported 

that a change of 5.5 points should be reported to define a clinical meaningful difference for the 

Tampa Scale of Kinesiophobia (Monticone, Ambrosini, Rocca, Foti, & Ferrante, 2016). The 

groups with mild and moderate kinesiophobia showed no change of 5.5 points and thus despite 

the tendency of an improved kinesiophobia, it should be critically questioned whether these 

differences are clinical meaningful.  

Pain was assessed with the numerical pain rating scale and did not improve significantly. 

However, the patients had very low pain scores to begin (0.88± 0.46 on the numeric pain rating 

scale (NPRS) and thus only little room for improvement (p=0.068). Although, pain did not 

significantly improve no patient reported pain after the 6-week intervention treatment (0 ± 0 on 

the NPRS). Furthermore, the pain assessed with the KUJALA and the KOOS subscale 

improved significantly (KUJALA: p=0.003 and KOOS pain subscale: p=0.001). The large 

improvements in function and pain are strong clinical indicators of the effectiveness of the 6-

week exercise programme in individuals with PFP. Thus, the first null-hypothesis suggesting 

that the exercise programme would not result in decreased pain and improved function was 

rejected.  

The biomechanical outcomes were more heterogeneous than the findings on function and pain. 

During the stance phase in running no changes of the lower limb kinematics and kinetics could 

be observed after the 6-week exercise treatment. However, the single leg squat as well as the 

step down task were significantly modified. The patients with PFP were able to squat deeper 

(10° increased hip and 8.4° increased knee flexion) and to reach lower during the step down 

task (5.6° increased knee flexion). In addition, the internal hip flexor moment significantly 

increased which might indicate an increased activity of the hip stabilising gluteal muscles, 

resulting from the gluteal muscle strengthening. However, an increased hip flexor moment 

might also be linked to an increased trunk flexion, which moved the line of gravity closer to the 

knee and away from the hip thereby decreasing the knee flexor moment and increasing the hip 
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flexor moment (Salem, Salinas, & Harding, 2003). This might explain why the knee flexor 

moment was not significantly increased despite the significantly increased knee flexion angle. 

In addition, the hip flexion angle was increased which supports the assumption of an increased 

trunk flexion. However, the biomechanical model that was used did not describe the trunk 

movement and thus this assumption cannot be proven. Another explanation for an unchanged 

knee flexor moment might be a compensatory mechanism of the hip flexor moment. One study 

described this compensatory strategy in individuals with PFP during stair descending (Salsich 

et al., 2001). Here the elevated hip flexor moment maintains a consistent support and thereby 

compensates for the less active knee extensors muscle (Salsich et al., 2001). The sEMG 

analysis showed no increased quadriceps net activation after the 6-week exercise, which either 

might confirm the presumption of a compensatory strategy or might confirm the hypothesis of 

an increased trunk flexion. 

In addition, the knee internal rotation moment was significantly increased. Such an increase of 

the knee external rotation has been associated with an increased trunk flexion, as well as an 

increased supination (Frank et al., 2013; Williams, Zambardino, & Banning, 2008). Not much 

literature in individuals with PFP has been published on the rotational moments of the knee. 

However, an increased knee external rotation angle has been associated with an increased 

dynamic knee valgus and the development of PFP and ACL ruptures (Schwane et al., 2015; 

Shimokochi & Shultz, 2008). Thus, an increased knee internal rotation moment might also 

indicate a shift towards a decreased dynamic knee valgus in PFP.  

Although the patients flexed their hips on average 7° and their knees 5.6° more during the step 

down task after the 6-week exercise treatment, no changes in the hip or knee kinetics could be 

observed. However, the hip flexion moment showed the tendency to be increased and the knee 

flexion moment showed a tendency for a decrease, which suggests a similar movement 

modification as described during the single leg squat. However, based on the results of the 

reliability study of Alenezi et al. (2014) and the results in chapter 3.7 the MDDs for hip and 

knee flexion angle are reported to range from 4.1 to 5.4 degrees. Thus, it should be critically 

questioned if these changes between 5.6 and 7° are clinically significant. In addition, no 

changes could be identified during the stance phase in running. Thus, the second hypothesis 

suggesting that the 6-week exercise programme would not modify the lower limb biomechanics 

was accepted (Tables 5.1 to 5.5). 
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Flexibility of the ankle ROM, the quadriceps and the hamstrings muscles were assessed before 

and after the exercise programme. The exercise programme included flexibility exercises to 

increase the ankle dorsi-flexion ROM and the hamstrings flexibility. It could be shown that 

ankle ROM, as well as hamstrings flexibility significantly increased. However, the ankle ROM 

should be interpreted with caution. The minimal detectable difference (MDD) of the distance-

to-wall has been reported ranging from 1.1 to 2.2 cm (Calatayud, Martin, Gargallo, Garcia-

Redondo, Colado, & Marin, 2015; Konor et al., 2012). Thus, the observed distance-to-wall of 

1.13 cm might not describe a clinically meaningful change. The change in the degrees of dorsi-

flexion ROM, assessed with the goniometer, was 2.81° (p=0.058). The MDD of the dorsi-

flexion angle ranged between 3.7 to 7.7° (Konor et al., 2012). Thus the dorsi-flexion angle 

seemed to not only be statistically not significant, but also not clinically meaningful. Although 

it is not clear whether the change in ankle dorsi-flexion ROM represents a clinically meaningful 

result, it indicated the tendency of an improvement in dorsi-flexion ROM. The flexibility of the 

hamstrings improved by 5.7° (p=0.015). However, the MDD has been reported between 8.3° 

and 15°, thus it is questionable if a difference of 6° is clinically meaningful. The quadriceps 

flexibility did not improve (p=0.089). This was expected since the exercise programme did not 

include exercises to increase the quadriceps ROM. However, future research is needed to 

further investigate the effect of the exercise programme on muscle flexibility and ankle ROM. 

In summary, although the clinically meaningfulness should be critically discussed, the 

flexibility of the ankle dorsi-flexion as well as the hamstrings muscle was increased Thus, the 

third hypothesis suggesting that the exercise programme would not increase muscle flexibility 

was rejected. 

The exercise programme consisted of four strengthening exercises, whereby three of the four 

exercises focussed on quadriceps strengthening. To analyse if the quadriceps strength improved 

the isometric, concentric and eccentric quadriceps torque were measured before and after the 

intervention. In addition, the time to peak and the rate to force development (RFD) were 

calculated. None of the strength values of the quadriceps was significantly modified after the 

exercise treatment and thus, the fourth hypothesis suggesting that the treatment would result in 

an increased quadriceps strength was accepted.  

However, some of the findings in this study are surprising, such as that no improvement of the 

quadriceps strength were achieved, despite an evidence-based strengthening programme. 

Secondly, it was surprising that no kinematic or kinetic changes of the sagittal and transverse 
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plane of the hip and the sagittal plane of the knee after the intervention programme were 

detected. Thus, these findings will be discussed in the following paragraph in more detail.  

To date, guidelines on exercise trainings for individuals with PFP are still lacking. However, 

the exercise treatment in this study has been developed based on the current guidelines and 

previous exercise treatments. Previous studies that focussed on gluteal and quadriceps 

strengthening in individuals with PFP performed the exercises with 10-15 repetitions in 3 sets 

at 60-70% 1 repetition maximum (1RM), which has been applied in this study as well (Bisi-

Balogun & Torlak, 2016; Ramazzina, Pogliacomi, Bertuletti, & Costantino, 2016; Rathleff et 

al., 2016; Santos, Oliveira, Ocarino, Holt, & Fonseca, 2015). The decreased loads and the 

higher amount of repetitions compared to a traditional hypertrophy/ strength training are chosen 

to reduce the flare up of symptoms. However, such a strength endurance programme has shown 

to increase muscle endurance and muscle power, but only increased slightly muscle strength 

(American College of Sports Medicine, 2011). That previous exercise trainings in individuals 

with PFP were still successful in increasing significantly muscle strength might be related to 

the training status and quadriceps strength of the recruited individuals. The isometric 

quadriceps strength of the individuals with PFP in this study was on average before the 

treatment 2.92± 0.65 Nm/kg. Compared to individuals with PFP in previous studies, the 

individuals with PFP in this study produced two to three times higher isometric quadriceps 

torque (Callaghan & Oldham, 2004b; Duffey et al., 2000; Duvigneaud et al., 2008; Dvir et al., 

1990; Kaya et al., 2010; Oliveira et al., 2014; Ott et al., 2011; Powers et al., 1997; C. R. 

Rathleff et al., 2013; Thomee et al., 1996; Van Tiggelen, Witvrouw, Coorevits, et al., 2004; 

Werner, 1995). Thus, the individuals with PFP in this study appeared to be very strong and the 

strength endurance training was very likely not demanding enough to improve quadriceps 

strength. It seems that individuals with PFP require strength training and not a strength 

endurance training to enhance their quadriceps performance. To ensure that an increased 

loading does not flare up the PFP, modifications of a traditional strength training should be 

investigated. One study investigated the application of a blood flow restriction (BFR) training 

in individuals with PFP (Giles, Webster, McClelland, & Cook, 2017). The BFR training uses 

the application of a pneumatic cuff proximal to the target muscle during strengthening exercises 

to restrict arterial blood flow and venous return, causing a greater rate of muscle fatigue than 

normal conditions. Thereby it aims to induce muscle hypertrophy and increase strength more 

than the same programme without BFR (Giles et al, 2017). This study showed that a low load 

with BFR reduced PFP and had larger improvements in quadriceps strength, compared to a 
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standardies quadriceps strengthening group (Giles et al., 2017). This study showed that strong 

individuals with PFP were not able to improve quadriceps strength with a low-load and high 

repetition strength endurance training. Thus, the currently recommended exercise programmes 

are not in line with current strength training guidelines (American College of Sports Medicine, 

2011).  Furthermore, they are not appropriate in terms of increasing strength in individuals with 

PFP, which emphasises the need for a reconsideration of the current available exercise 

guidelines in strong individuals with PFP. Furthermore, it also shows the need of further studies 

that investigate forms of modified hypertrophy trainings in individuals with PFP. 

To investigate whether the strength is related to the sex, the groups were divided into male and 

female. Females produced before the treatment maximal isometric quadriceps forces of: 2.62± 

0.56 Nm/kg and men of: 3.15± 0.64 Nm/kg. Thus, although females were weaker than males, 

overall in this study the individuals with PFP produced two to three times higher isometric 

quadriceps torque values than previously observed in individuals with PFP (Callaghan & 

Oldham, 2004b; Duffey et al., 2000; Duvigneaud et al., 2008; Dvir et al., 1990; Kaya et al., 

2010; Oliveira et al., 2014; Ott et al., 2011; Powers et al., 1997; C. R. Rathleff et al., 2013; 

Thomee et al., 1996; Van Tiggelen, Witvrouw, Coorevits, et al., 2004; Werner, 1995). Thus, 

the recruited individuals appeared to be a very strong patient group and it might be difficult to 

compare this patient group results to previously published findings. The diversity of patients 

with PFP emerged during the International Patellofemoral Research Retreat (Davis & Powers, 

2010). Selfe et al. (2013) addressed this challenge and developed a framework of subgroups of 

individuals with PFP. They defined three main subgroups: 1. "Weak and tighter", 2. "Weak and 

pronated", 3. "strong" individuals with PFP (Selfe, Callaghan, Witvrouw, Richards, Dey, 

Sutton, Dixon, Martin, Stokes, Janssen, Ritchie, & Turner et al., 2013; Selfe, Janssen, 

Callaghan, Witvrouw, Sutton, Richards, Stokes, Martin, Dixon, Hogarth, Baltzopoulos, Ritchie, 

Arden, & Dey, 2016). The ‘strong’ subgroup showed the highest mean quadriceps and hip 

abductor strength, a flexible rectus femoris, lower BMI scores, higher levels of activity, reduced 

pain and improved levels of function.The ‘weak and tighter’ subgroup was characterised by a 

weak mean quadriceps and hip abductor strength, a reduced flexibility of the rectus femoris and 

the gastrocnemius and increased BMI levels. Furthermore, they showed a trend towards low 

physical activity and a longer duration of PFP. The ‘weak and pronated foot’ subgroup showed 

an increased foot pronation and patellar mobility. Furthermore, they were significantly younger 

at time of first assessment and had the shortest duration since the onset of their PFP (Selfe et al., 

2016). The strength results of the quadriceps showed that the recruited individuals with PFP in 
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this study could be categorised as "strong". Selfe et al. also observed that the "strong" patients 

showed a trend towards less pain, higher function and better quality of life (Selfe et al., 2016). 

These findings could be supported by this study, because the patients showed very low pain 

scores in the beginning (NPRS: 0.88) and a higher KUJALA score than in previous studies on 

individuals with PFP (Callaghan & Oldham, 2004a; Collins, Crossley, Darnell, & Vicenzino, 

2010; Kettunen, Harilainen, Sandelin, Schlenzka, Hietaniemi, Seitsalo, Malmivaara, & Kujala, 

2012; Lantz, Emerson-Kavchak, Mischke, & Courtney, 2016; Petersen et al., 2016; Van 

Linschoten et al., 2009). However, the scores of the KOOS were similar to previous studies on 

individuals with PFP (Esculier, Roy, & Bouyer, 2013; Lankhorst et al., 2015; Petersen et al., 

2016; C. R. Rathleff et al., 2013; Sinclair et al., 2016). That the patients were strong and did not 

show signs of quadriceps weakness might also be an explanation why they did not show an 

excessive dynamic knee valgus pattern. Excessive dynamic knee valgus pattern have been 

commonly observed in previous studies in individuals with PFP. The hip and knee adduction 

and internal rotation angles in this study were comparable to the range of motion described in 

studies on healthy individuals (Alenezi et al., 2014, 2016; Novacheck, 1998). In previous 

studies on individuals with PFP, it could be shown that individuals with PFP exhibited a greater 

hip adduction and internal rotation as well as tibial abduction and knee rotation (Myer et al., 

2015; Nakagawa et al., 2012; Neal et al., 2016; Noehren, Pohl, et al., 2012). Thus, it seems that 

the recruited study group also showed a different biomechanical movement than previously 

described in individuals with PFP. These individuals with PFP seem to not show lower limb 

abnormalities, which explains why no kinematic or kinetic changes of the sagittal and 

transverse plane of the hip and the sagittal plane of the knee after the intervention programme 

were found. 

The secondary outcomes in this study showed that the anterior reach distance during the SEBT 

was significantly increased by 4.46 cm (p=0.008). Previous studies reported a MDD of 6.9 cm 

(Munro & Herrington, 2010), 9 cm (Hyong & Kim, 2014; Plisky et al., 2009) and thus the 

clinically meaningfulness of the difference in this balance test could be questioned. However, 

the improvement in balance in this study showed a large effect size and this might be one 

explanation for the significant improvement in function and pain. One explanation for the 

increased anterior reach distance might be the increased range of ankle dorsiflexion motion 

after the 6 week exercise treatment. However, the effect sizes of the increased ankle ROM were 

only small and thus it should be critically questioned whether this might have influenced the 

forward reaching distance enough. Another explanation might be that the strength endurance 
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exercises (squatting, side walks, rotational walks, and the open kinetic chain quadriceps 

exercise) may have resulted in an improved neuromuscular knee control, which has been 

observed in previous studies (Rathleff et al., 2016; Ferber et al, 2011; Earl and Hoch, 2011). 

Previous studies also observed improved function and pain without alterations in biomechanics 

and linked the improvements to an increase in strength and neuromuscular control (Ferber et 

al., 2011; Bolgla et al., 2008). Furthermore, the quadriceps inhibition reduced from 13.04% 

before to 7.72% after the treatment. Although this change was not significant (p=0.096) it 

showed the tendency of a reduced quadriceps inhibition of 5.32% with a large effect size. The 

reduced quadriceps inhibition might be one explanation why individuals with PFP improved 

significantly in function and pain without observed improvements in strength or loer limb 

biomechanics. Furthermore, in chapter 6 it could be shown that an increase in pain caused also 

no alterations of lower limb biomechanics or strength but resulted in an increased quadriceps 

AMI by 6%. Thus, it seems that quadriceps AMI might be a key factor in individuals with PFP. 

However, to date studies investigating quadriceps AMI in individuals with PFP are rare and 

more research that investigates the relationship of AMI and PFP is needed.  

However, further research should be performed with a greater sample size. In addition, it could 

be shown that the break phenomenon was present in 4 out of 16 participants before the 

treatment and only 3 after the treatment. The break phenomenon has been previously described 

as a compensatory mechanism of individuals with PFP that were intolerant to eccentric 

quadriceps contractions, avoided loading and increased the knee angular velocity during 

eccentric quadriceps activities (such as stair descending) (Anderson & Herrington, 2003). 

However, the patients with PFP in this study showed a good tolerance to quadriceps loading 

during eccentric activities and were able to deliver high quadriceps torques. Thus, it seems that 

the break phenomenon is not common in individuals with PFP that have a high tolerance to 

quadriceps loading. However, further research is required to prove these findings.  

Thus, the hypothesis of the secondary outcomes was accepted for the break phenomenon, AMI, 

the co-contraction ratio and the net activation of the knee flexors and rejected for balance and 

the net-activation of the knee extensor muscles. 
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5.6. Limitations to the study 

One great limitation of this study is the high-drop-out rate of the individuals with PFP that 

caused an underpowered sample size. However, in total 24 participants were included in this 

study and a drop-out ratio of 5-10% (a total of 2 participants) was expected. Thus, the high 

drop-out rate of 33.3% indicated that the exercise programme should be amended to increase 

compliance with the exercise programme. In future one solution could be a follow-up meeting 

after 3 weeks between the Principal Investigator and the patients, either by a personal treatment 

session or via a skype call. During this meeting the exercise programme could be discussed and 

the programme could be amended. Furthermore, this might also ensure that motivational 

support could be given to encourage a successful treatment participation. However, it was not 

possible to reliably document compliance with the programme. Besides compliance, other 

factors might have contributed to unsuccessful results, such as that patients did not increase the 

intensity enough or progressed adequately, individual differences in exercise response, or 

psychological factors.  

The sample size was too small to allow an investigation of subgroups of the data. 

Consequently, although some results, such as the results of the Tampa Scale of Kinesiophobia 

or the KOOS, were further investigated by sub-classifying the groups, the sample size was too 

small to receive reliable results. Thus, more individuals are needed to allow an investigation 

into depth after of the data and to allow subgroup-classification.  

Another limitation is that the individuals with PFP in this study represented a sample of very 

active and strong individuals with PFP. However, there is limited literature on this group of 

individuals with PFP and thus the results could not be compared with previous findings.  

Lastly, participants were fitted with standard training shoes to control the shoe-surface 

interface, which might negatively influenced the comfort during running and thereby might 

have influenced the movement performances. Future studies should be conducted in their own 

training shoes. 

 

5.7. Conclusion 

The condition of PFP is not self-limiting and requires a comprehensive rehabilitation 

programme. Based on the current evidence and guidelines an exercise programme was 

developed and investigated. To date, this was the first study that investigated the influence of 
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an evidence-based exercise programme on pain, function, the functional performance, strength, 

muscle flexibility, balance and AMI in individuals with PFP.  

The individuals with PFP showed a significantly improved in function and pain and were able 

to perform the single leg squat as well as the step down task lower. Despite the strength training 

the quadriceps strength did not increase, however, it emerged that the recruited individuals with 

PFP were stronger than in previous literature reported. The quadriceps AMI decreased by 5.3%, 

although this change was not significant, it did show a tendency of an improved quadriceps 

AMI. However, the sample size was small and thus future research is required with enough 

power to verify the findings of this study. 
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Chapter 6: How does acute pain influence functional performance, quadriceps 

strength and inhibition in individuals with patellofemoral pain 

The previous intervention studies showed that despite relatively small or no biomechanical 

changes of the lower limb, the pain decreased significantly. This raised the question whether 

and how pain might be linked to alterations of the lower limb biomechanics, strength, and 

inhibition in individuals with PFP. Thus, this chapter investigated the direct influence of pain in 

21 individuals with PFP on the lower limb kinematics and kinetics, quadriceps strength and 

inhibition, as well as quadriceps-hamstrings cocontraction. 

 

6.1. Introduction: 

Both intervention studies in individuals with PFP (chapter 4 and 5) demonstrated that pain 

significantly decreased, although only small or no biomechanical changes of the lower limb 

were achieved. These significant changes in pain raised the question of whether and how pain 

might be linked to lower limb biomechanics, strength, inhibition and lower limb co-contraction 

in individuals with PFP.  

Bazett et al. (2011) described that pain “is more than a symptom and might play a role in the 

aetiology or progression of PFP” (Bazett-Jones, 2011). This description has been confirmed by 

long-term studies that showed that individuals with longer baseline pain and worse pain were 

more likely to develop an unfavourable outcome and a more progressive pathology (Collins et 

al., 2013; Rathleff et al., 2015; Wyndow et al., 2016).  

Previous studies reported the link of pain in individuals with PFP and described a link to 

quadriceps strength deficits, gluteal strength deficits, knee stability, irregularities in the 

quadriceps torque curve, AMI and functional performance (Dvir & Halperin, 1992; Dvir et al., 

1991; Guney et al., 2015; Hart et al., 2015; Khayambashi et al., 2012; Long-Rossi & Salsich, 

2010; Nakagawa et al., 2013; Noehren, Sanchez, et al., 2012; Riddle & Stratford, 2011; Silva et 

al., 2015; Yilmaz et al., 2015). But all of these studies either correlated the pain intensity to 

specific factors or based their findings on the comparison of the pain intensity before and after 

a treatment. To date, no study investigated the direct influence of pain by comparing the 

individual‟s performance without pain to the individual‟s performance in acute pain. The only 

studies that investigated the influence of acute knee pain on muscular coordination, lower limb 

biomechanics and quadriceps AMI, were studies that analysed the effect of an artificial induced 
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knee pain (Henriksen, Alkjaer, Simonsen, & Bliddal, 2009; Henriksen, Alkjær, Lund, 

Simonsen, Graven-Nielsen, Danneskiold-Samsøe, & Bliddal, 2011; Park et al., 2016; Rice, 

Graven-Nielsen, Lewis, McNair, & Dalbeth, 2015; Seeley, Park, King, & Hopkins, 2013). 

Furthermore, one conference abstract examined the influence of fatigue and pain on kinematic 

changes in individuals with PFP (Bazett-Jones et al., 2015). The authors identified no changes 

of the lower limb kinematics following exhaustion but significant changes due to pain. 

However, they concluded that further research is needed to understand the relationship of pain 

and lower limb biomechanics (Bazett-Jones et al., 2015).  

Thus, it seems that pain is linked to several factors, such as alterations of lower limb 

biomechanics, muscular coordination, quadriceps strength and AMI. However, to date in 

individuals with PFP the isolated effect of pain on these factors has not been investigated. 

Therefore, this study aimed to investigate the effect of acute pain on quadriceps strength and 

AMI, the break phenomenon, quadriceps and hamstrings co-contraction and hip and knee 

biomechanics in individuals with PFP. 

Therefore the hypotheses of this study were:  

1. H0: There would be no significant differences in knee and hip kinematics and kinetics 

between acute pain and no pain in individuals with PFP. 

2. H0: There would be no significant differences in quadriceps AMI and strength between 

acute pain and no pain in individuals with PFP. 

3. H0: The break phenomenon would be equally present in acute pain and no pain in 

individuals with PFP.  

4. H0: Participants with PFP would show an equal co-contraction of the quadriceps and 

hamstrings muscles in acute pain and no pain in a) running, the b) step down task and 

the c) single leg squat task. 

 

6.2. Methodology 

The ethical application HSR 15-143 was obtained from the University of Salford Research and 

Governance committee on the 1st February 2016. Informed consent was obtained from each 

participant (Appendix B4).  
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Advertisements at fitness centres, gyms, climbing centres and sports clubs in Manchester and 

Salford were used to recruit participants with PFP.  

To be included in the study a participant with PFP had to meet all of the following criteria:  

1) aged 18-45 years; 2) antero- or retro-patellar pain with at least two of these activities: 

ascending or descending stairs or ramps, squatting, kneeling, prolonged sitting, hopping/ 

jumping, isometric quadriceps contraction or running 3) duration of current PFP symptoms >1 

month;  

The exclusion criteria were: (1) any history of previous lower limb surgery or patella instability 

and dislocation, (2) lower limb deformities or any history of traumatic, inflammatory or 

infectious pathology in the lower extremities or any internal derangements, (3) not able to 

perform running, squatting and the step down task during the measurement.  

Suitability for the trial was first assessed by the principal investigator. Therefore the 

participants were asked to fill in an online survey and the responses were checked against the 

inclusion and exclusion criteria. If responses were unclear the participants had a telephone 

conversation with the principal investigator prior to the study begin. Once the inclusion criteria 

were met, the participant received via email an invitation letter and an information sheet about 

the study, as well as the informed consent form. If the participant was willed to participate, an 

appointment with the principal investigator at the gait laboratory measurement was arranged. 

Upon the arrival a clinical assessment was carried out, which involved the Clarke‟s test and a 

palpation test to investigate the pain region. The participant was asked to run 15 m, to perform 

a single leg squat and step down task and to show the pain location during these test and to rate 

his/her pain intensity using the numeric pain rating scale (NPRS).  

If the participant was still suitable, he/ she was briefed through the study and he/ she was asked 

to sign the informed consent form and a health history questionnaire, consisting of 13 questions 

investigating potential risks associated with the study. Furthermore, the participant was asked 

to fill in the KOOS questionnaire, the KUJALA score, and the Tampa scale for kinesiophobia. 

The participant changed into his/her shorts and a comfortable t-shirt and was fitted with 

standard running shoes (New Balance, UK). Then, the mass and height of each participant were 

measured. 
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6.2.2. Procedure 

Three-dimensional motion data were collected with ten Qualisys OQUS7 cameras (Qualisys 

AB, Sweden) at a sampling rate of 250Hz. Three force plates (BP600900, Advanced 

Mechanical Technology, Inc. USA) collected force data at a sampling rate of 1500Hz. Sixteen 

retroflective markers were attached, with double sided hypoallergic tape to anatomical 

landmarks of the lower limb of the participants (Figure 6.1). Twenty-four segmental mounted 

markers were applied with double sided tape and bandages to the shank, thigh and feet, as 

described in chapter 3.4.1.2.  

For the electrode placement of the EMG, the skin was shaved, abraded and cleaned with 

isopropyl alcohol, in accordance with the SENIAM guidelines (Figure 6.1.). The surface EMG 

electrodes (Noraxon Dual Electrodes, 2 cm spacing) were placed on the vastus medialis, vastus 

lateralis, biceps femoris and semitendinosus muscle, as described in chapter 3.4.1.3. The 

surface EMG data was collected through the Noraxon Telemyo system and sampled at 1500Hz. 

The sEMG data was synchronised to the kinematic and kinetic data.  

All participants were measured at one occasion without acute pain or only very light pain and at 

the second occasion while the participant experienced acute PFP. The participants were asked 

on both occasions to rate their pain intensity using the numeric pain rating scale (NPRS) after 

performing the tasks. To investigate whether the application of the 3D markers and bandages 

modified the pain, the participant was asked to rank his/her pain intensity with and without the 

applied bandages and markers. Each subject was asked at both occasions to perform a static 

trial, to run on a 15 m walkway at his/her own selected speed, to perform a single leg squat and 

step down task. The running speed was controlled and reported (Brower timing lights, Draper, 

UT). Each task was performed until five successful trials were collected. Unsuccessful trials 

were ones whereby less than three markers per segment were visible, speed changes were seen 

during the trials, or a partial/double contact with the force platforms.  

Each individual performed at both occasions three times an isometric and isokinetic knee 

extensor strength test. The peak isometric, eccentric and concentric torque were measured with 

an isokinetic dynamometer (Kin-Com, Chatanooga, USA). The isokinetic knee extensor 

measurements were tested at the angular velocity of 60 degrees/second (chapter 3.3.3). The 

muscular inhibition of the quadriceps was assessed, during a maximal isometric contraction of 

the quadriceps with the interpolated twitch technique, using a Digitimer High Voltage 

Stimulator (DS7AH Digitimer Ltd, Hertfordshire, England) (chapter 3.3.3).  
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Figure 6.1.: The application of the markers and the sEMG electrodes 

 

The participant received as a compensation for his/her participation in this study a voucher of 

£10 on each occasion. This voucher was exchangeable for goods in shops in Manchester and 

Salford. 

 

6.2.3. Data processing 

The kinematic and kinetic outcomes were calculated by utilising a 6 degrees of freedom model 

in Visual3D (Version 5, C-motion Inc, USA). Motion and force plate data were filtered with a 

4th order Butterworth filter with cut-off frequencies of 12Hz. The joint moments were 

calculated using three dimensional inverse dynamics and normalised to body mass. The 

kinematic and kinetic data were normalised to 100% of the single leg squat, step down task and 

the stance phase, whereby the stance phase was sub-grouped in early (0-24% of stance phase), 

mid (25-62%) and late-stance phase (63%-100%) (Perry & Burnfield, 2010). The peaks of the 

hip and knee flexion, adduction and internal rotation angles and the moments were calculated 
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for the single leg squat, step down task and the early, mid and late-stance phase. Furthermore, 

the average knee angular velocity was calculated for the eccentric phase during the single leg 

squat and step down task.  

The sEMG data was band-pass filtered at 20-500Hz and rectified by using a root mean square 

over a 75 ms window for the running task and 300 ms for the single leg squat and step down 

task. Co-contraction ratios were (CCR) calculated by using the formula of Heiden et al. 

(Heiden et al., 2009): 

If agonist mean EMG > antagonistic mean EMG:  

 CCR= 1- antagonistic mean EMG/ agonist mean EMG 

If agonist mean EMG < antagonistic mean EMG: 

 CCR= agonist mean EMG/ antagonistic mean EMG -1(Heiden et al., 2009) 

The strength data of each participant was exported from the Kin-Com to asc-files and loaded 

into Excel. The peak torque was determined for each file. AMI, the time to peak and rate to 

force development (RFD) were determined during the isometric contraction. The break 

phenomenon was investigated during the eccentric quadriceps task, whereby a break was 

defined as a trace dip which exceeded more than 10% of the pre-break moment.  

 

6.3. Statistical analysis 

The statistical analysis was performed using SPSS (v. 20) and Excel 2013. The normality was 

assessed by applying the Shapiro-Wilk test and by the investigation of the normal q-q plots. For 

the data that was normal distributed paired sample t-tests were performed at the 95% 

confidence interval, to investigate whether acute pain significantly influenced the lower limb 

biomechanics. If the data was not normally distributed and for ordinal data (pain scale) the 

Wilcoxon rank test was used with a significance level set at p<0.05.  

The peak of the hip flexion, hip adduction, hip internal rotation, knee flexion, knee adduction 

and knee internal rotation angles and moments, as well as the averaged knee angular velocity 

were compared between the two conditions: with and without acute pain.  
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The quadriceps isometric, concentric, and eccentric strength torque, quadriceps AMI and the 

break phenomenon were compared between with and without acute pain.  

The co-contraction ratios during early, mid and late-stance phase, as well as the single leg squat 

and step down task were compared between with and without acute pain. 

 

6.4. Results 

Twenty-one individuals with PFP (11 males and 10 females, age: 29.76 ±6.36 years, height: 

1.74 ± 0.09 m, mass: 70.12 ±8.56kg) participated in the study.  

Pain was significantly increased when participants performed the tasks with acute pain (with 

and without pain: p=0.0001) (without acute pain: without the marker and bandage application: 

1.29±1.95; with the marker and bandage application: 1.17±1.95, in acute pain: without the 

marker and bandage application: 3.88±1.92; with the marker and bandage application: 

3.86±1.96). The marker and bandage application did not modify the pain significantly (without 

pain: p=0.598, with acute pain: p=0.864). A clinically significant change in pain has been 

described as 1.74, thus the pain increase by 3.0 represents a clinical meaningful increase in pain 

(Farrar, Young, LaMoreaux, Werth, & Poole, 2001). 

The running speed without and with pain was not significantly different (p=0.608) (without 

pain: 3.32±0.71 m/s, with pain: 3.4 ±0.15 m/s).  

The lower limb biomechanics during the single leg squat and step down task did not change 

with or without acute pain (Table 6.1& 6.2). The lower limb kinematics during the entire stance 

phase in running, as well as the lower limb kinetics during the early stance remained unchanged 

with or without experiencing acute pain (Table 6.3). During the mid and late-stance phase in 

running the external knee flexor moment was significantly decreased when the individuals run 

in acute pain (p=0.017) (Table 6.4, Figure 6.3). In addition, it could be shown that the 

variability during running was greater in acute than without acute pain (Figure 6.3). 

The net activation of the knee extensors and flexors decreased significantly during the single 

leg squat (quadriceps: 22.02% reduction, p=0.025, hamstrings: 9.98% reduction, p=0.010) and 

the step down task (quadriceps: 19.62% reduction, p=0.028, hamstrings: 11.26% reduction, 

p=0.016) in acute pain (Table 6.5). During the early and mid-stance phase the net activation of 

the knee flexors was significantly reduced in acute pain (early stance phase: 11.04% reduction, 
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p=0.0019, mid-stance phase: 16.92% reduction, p= 0.010). Furthermore, during the early stance 

phase in acute pain the ratio significantly changed towards an increased knee flexor activation 

in relation to the knee extensor activity (p=0.019). Although the ratio of knee flexor-knee 

extensor activation changed only significantly during the early stance phase, the results showed 

a trend towards an increase in knee flexor activity and a decrease in knee extensor activity 

during all tasks and stance phases in acute pain (Table 6.5).  

The peak isometric, concentric and eccentric torque did not change with or without acute pain. 

Neither the time to peak and the rate to force development were significantly altered by acute 

pain. The occurrence of the break phenomenon was without acute pain: n=5 and n=7 with acute 

pain and thus was not significantly changed (p=0.48) (Table 6.6). However, the AMI increased 

significantly in acute pain (5.56% increase, p=0.024) (Table 6.6).  

 

Table 6.1.: The lower extremity kinematics during the single leg squat task and the step down task with and 

without acute pain (*indicated the results were significantly different.) 

The kinematic variables (º) during the single 

leg squat and step down task 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

 

Hip flexion angle 75.7 15.6 3.4 76.9 16.4 3.6 0.656 0.08 

Hip adduction angle 14.5 7 1.5 13.6 7.6 1.7 0.335 0.08 

Hip internal rotation angle  1.9 7.5 1.6 0.7 7.8 1.7 0.256 0.16 

Knee flexion angle 81.1 9.3 2 81.9 10.7 2.3 0.656 0.08 

Knee adduction angle 5.3 4.7 1 4.2 4.5 1 0.179 0.24 

Knee internal rotation angle -2.5 6.3 1.4 -1.5 5.9 1.3 0.232 0.16 

Knee angular velocity (°/sec.) -38.9 11.7 2.5 -35.6 14.6 3.2 0.263 0.25 

Step 

down 

task 

Hip flexion angle 71.8 18.2 4 74.5 15 3.3 0.168 0.16 

Hip adduction angle 16.4 6.7 1.5 15.7 6.7 1.5 0.459 0.10 

Hip internal rotation angle  2.2 6.8 1.5 0.6 7.6 1.7 0.141 0.22 

Knee flexion angle 89.4 14 3.1 90.3 13 2.8 0.553 0.07 

Knee adduction angle 5.4 4.4 1 4.5 4.6 1 0.134 0.2 

Knee internal rotation angle -1.1 6.5 1.4 -1.1 6.1 1.3 0.950 0 

Knee angular velocity (°/sec.) -38.2 14 3.1 -35.6 13.1 2.9 0.289 0.19 
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Table 6.2.: The lower extremity kinetics during the single leg squat task and the step down task with and without 

acute pain (*indicated the results were significantly different.) 

The kinetic variables (Nm/kg) during the 

single leg squat and step down task 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

 

Hip flexion moment 1.29 0.55 0.12 1.34 0.55 0.12 0.495 0.09 

Hip adduction moment 0.95 0.28 0.06 0.91 0.2 0.04 0.473 0.16 

Hip internal rotation moment -0.14 0.05 0.01 -0.15 0.07 0.02 0.501 0.16 

Knee flexion moment 1.74 0.41 0.09 1.67 0.28 0.06 0.313 0.20 

Knee adduction moment 0.33 0.12 0.03 0.3 0.11 0.02 0.351 0.26 

Knee internal rotation moment 0.4 0.09 0.02 0.37 0.09 0.02 0.291 0.33 

Step 

down 

task 

Hip flexion moment 1.49 0.72 0.16 1.58 0.69 0.15 0.167 0.13 

Hip adduction moment 1.13 0.27 0.06 1.06 0.2 0.04 0.140 0.29 

Hip internal rotation moment -0.1 0.07 0.02 -0.12 0.06 0.01 0.137 0.31 

Knee flexion moment 1.74 0.35 0.08 1.69 0.29 0.06 0.353 0.16 

Knee adduction moment 0.39 0.18 0.04 0.35 0.14 0.03 0.342 0.25 

Knee internal rotation moment 0.4 0.09 0.02 0.37 0.09 0.02 0.224 0.33 

 

 

Table 6.3.: The lower extremity kinematics during the stance phase in running with and without acute pain 

(*indicated the results were significantly different.) 

The kinematic variables (º) during stance 

phase 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Early 

stance 

phase 

 

Hip flexion angle 36.5 5.9 1.3 36.8 5.5 1.2 0.738 0.05 

Hip adduction angle 7.1 4.6 1 6.7 4.8 1.1 0.848 0.09 

Hip internal rotation angle  2.9 7.9 1.7 3.4 7.4 1.6 0.829 0.07 

Knee flexion angle 30.6 3.9 0.9 31.6 4 0.9 0.964 0.25 

Knee adduction angle 2.2 3.4 0.7 2.5 3.9 0.8 0.829 0.08 

Knee internal rotation angle -4.8 5.9 1.3 -3.9 5.2 1.1 0.171 0.18 

Mid-

stance 

phase 

Hip flexion angle 34.6 6.5 1.4 34.9 5.9 1.3 0.964 0.05 

Hip adduction angle 11.5 4.8 1 10.1 5.3 1.2 0.486 0.28 

Hip internal rotation angle  -0.1 7.5 1.6 -0.9 8.7 1.9 0.829 0.10 

Knee flexion angle 43.3 5 1.1 44.6 5 1.1 0.246 0.26 

Knee adduction angle 1.7 3.3 0.7 0.9 4.8 1 0.171 0.19 

Knee internal rotation angle 1 6.3 1.4 1.2 5.5 1.2 0.713 0.03 

Late-

stance 

phase 

Hip flexion angle 21.1 5.7 1.2 21 5.2 1.1 0.964 0.18 

Hip adduction angle 7.2 5 1.1 7 4.9 1.1 0.762 0.04 

Hip internal rotation angle  1.1 7.4 1.6 0.2 9.2 2 0.486 0.11 

Knee flexion angle 40.9 4 0.9 41.7 4.6 1 0.216 0.19 

Knee adduction angle 1.2 2.7 0.6 1.1 3.8 0.8 0.829 0.03 

Knee internal rotation angle 0 7.1 1.5 0.6 5.4 1.2 0.510 0.10 
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Table 6.4.: The lower extremity kinetics during stance phase in running with and without acute pain, (*indicated 

the results were significantly different.) 

The kinetic variables (Nm/kg) during 

stance phase 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Early 

stance 

phase 

 

Hip flexion moment 2.03 0.42 0.09 1.99 0.4 0.09 0.876 0.10 

Hip adduction moment 1.24 0.45 0.1 1.08 0.33 0.07 0.130 0.41 

Hip internal rotation moment 0.05 0.12 0.03 0.06 0.09 0.02 0.511 0.09 

Knee flexion moment 1.42 0.48 0.11 1.38 0.33 0.07 0.395 0.10 

Knee adduction moment 0.52 0.28 0.06 0.45 0.26 0.06 0.511 0.26 

Knee internal rotation moment 0.22 0.1 0.02 0.2 0.11 0.02 0.374 0.19 

Mid-

stance 

phase 

Hip flexion moment 0.94 0.59 0.13 0.87 0.42 0.09 0.395 0.14 

Hip adduction moment 1.95 0.42 0.09 1.82 0.47 0.1 0.491 0.29 

Hip internal rotation moment -0.26 0.17 0.04 -0.26 0.17 0.04 0.511 0 

Knee flexion moment 2.89 0.72 0.16 2.48 0.77 0.17 0.017* 0.55 

Knee adduction moment 0.55 0.29 0.06 0.5 0.3 0.07 0.374 0.17 

Knee internal rotation moment 0.44 0.14 0.03 0.41 0.15 0.03 0.281 0.21 

Late-

stance 

phase 

Hip flexion moment -0.03 0.28 0.06 0.02 0.26 0.06 0.395 0.19 

Hip adduction moment 1.43 0.42 0.09 1.37 0.46 0.1 0.503 0.14 

Hip internal rotation moment 0.02 0.03 0.01 0.02 0.04 0.01 0.491 0 

Knee flexion moment 1.96 0.51 0.11 1.68 0.51 0.11 0.017* 0.55 

Knee adduction moment 0.36 0.21 0.05 0.33 0.21 0.05 0.511 0.14 

Knee internal rotation moment 0.25 0.11 0.02 0.23 0.11 0.02 0.253 0.19 

 

 

 

Figure 6.2: The sagittal plane knee moment during the stance phase in running without acute pain (red) and 

with acute pain (blue). The shaded areas represent ±1SD for each condition, internal rotation as the positive 

angle. 
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Table 6.5.: Co-contraction ratio, net activation of the knee flexors and knee extensors during the stance phase in 

running, the single leg squat task and the step down task with and without acute pain, (*indicated the results 

were significantly different.) 

 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Single 

leg 

squat 

Co-contraction ratio (knee ext: knee flx.) 0.6 0.28 0.07 0.65 0.19 0.05 0.141 0.20 

Net activation knee extensors in % 74.97 36.65 8.64 52.95 35.32 8.32 0.025* 0.61 

Net activation knee flexors in % 28.81 16.93 3.99 18.83 14.78 3.48 0.010* 0.63 

Step 

down 

task 

Co-contraction ratio (knee ext: knee flx.) 0.58 0.29 0.07 0.63 0.23 0.05 0.396 0.19 

Net activation knee extensors in % 72.43 30.6 7.21 52.81 36.72 8.66 0.028* 0.58 

Net activation knee flexors in % 30.55 20.7 4.88 19.29 14.74 3.47 0.016* 0.63 

Early 

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) 0.66 0.15 0.04 0.72 0.13 0.03 0028* 0.43 

Net activation knee extensors in % 134.49 67 15.79 102.29 59.11 13.93 0.068 0.51 

Net activation knee flexors in % 38.26 17.91 4.22 26.86 17.99 4.24 0.019* 0.64 

Mid-

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) 0.32 0.24 0.06 0.41 0.25 0.06 0.117 0.37 

Net activation knee extensors in % 81.74 41.9 9.88 63.16 35.75 8.43 0.093 0.48 

Net activation knee flexors in % 50.21 21.43 5.05 33.29 19.61 4.62 0.010* 0.82 

Late-

stance 

phase 

Co-contraction ratio (knee ext: knee flx.) -0.44 0.47 0.11 -0.33 0.44 0.1 0.113 0.24 

Net activation knee extensors in % 6.76 5.67 1.34 8.9 16.29 3.84 0.554 0.18 

Net activation knee flexors in % 20.03 15.55 3.67 14.05 10.98 2.59 0.149 0.44 

 

 

Table 6.6.: Strength, AMI, time to peak, rate to force development and the break phenomenon with and without 

acute pain. (*indicated the results were significantly different.) 

 

Without pain With acute pain P value: 

(T-test, 

sig 2-

tailed) 

Effect 

size Mean SD 

Std. 

Error 

Mean 

Mean SD 

Std. 

Error 

Mean 

Isometric quadriceps strength (Nm/kg*100) 2.86 0.76 0.17 2.90 1.26 0.27 0.859 0.04 

Eccentric quadriceps strength (Nm/kg*100) 3.14 1.40 0.30 2.74 0.69 0.15 0.067 0.36 

Concentric quadriceps strength (Nm/kg*100) 1.74 0.71 0.15 1.88 0.57 0.12 0.433 0.22 

AMI in % 10.58 9.33 2.04 16.14 12.71 2.77 0.024* 0.50 

Time to peak (ms) 0.62 0.21 0.05 0.73 0.36 0.08 0.455 0.37 

Rate to force development (torque/ms) 281.53 120.62 26.32 248.24 136.14 29.71 0.079 0.26 

 

 

6.5. Discussion 

To the authors‟ knowledge, this is the first study that has investigated the direct influence of 

acute pain on hip and knee kinematics and kinetics, quadriceps and hamstrings activation and 

quadriceps strength and AMI. This study showed that despite pain, hip and knee kinematics 

were not significantly changed. Thus, the first hypothesis suggesting no significant 

differences in knee and hip kinematics and kinetics between acute pain and no pain in 

individuals with PFP was accepted. The second null-hypothesis was partially accepted, 

because no differences in strength could be shown. However, AMI significantly increased in 
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acute pain. Since no differences in the occurrence of the break phenomenon, nor in the co-

contraction of the thigh muscles were identified the third and fourth null-hypotheses were 

accepted.  

However, the external knee flexor moment was significantly decreased in acute pain during 

the early and mid-stance phase in running. This is in accordance with previous studies which 

demonstrated that artificially induced knee pain resulted in a decreased knee flexor moment 

(Henriksen et al., 2007; Seeley et al., 2013). Furthermore, a decreased knee flexor moment 

has been also shown in individuals with PFP (Besier et al., 2009; Bley et al., 2014; Claudon 

et al., 2012; Dos Reis et al., 2015; Salsich et al., 2001). It is believed that a decreased knee 

flexor moment might be caused by the quadriceps avoidance strategy and is believed to be a 

compensatory strategy to decrease joint loading (Henriksen et al., 2007;Salsich et al., 2001). 

Although this assumption could be supported by the findings of a significantly increased 

quadriceps inhibition, it could not be supported by the co-contraction results, which showed a 

significantly decreased hamstrings activity. Furthermore, the co-contraction ratio was shifted 

towards an increased knee extensor activation in relation to the knee flexor activity during the 

early stance phase. However, throughout the stance phase the knee extensors activity 

appeared to be reduced. Although the quadriceps and the hamstrings activity decreased the 

ratio still shifted towards an increased knee extensor activation. The same tendency of a 

shifted co-contraction ratio towards a greater quadriceps muscle activity in relation to 

hamstrings activity became apparent during the single leg squat and step down task. Besier et 

al. (2009) found an increased hamstrings and quadriceps activity in individuals with PFP, 

compared to healthy individuals and concluded that the experienced pain might be a result of 

increased joint contact forces due to a greater co-contraction of the hamstrings and 

quadriceps muscles (Besier et al., 2009). Another study reported that quadriceps weakness 

resulted in an increased hamstrings loading which lead to an increase of the total contact 

force and an increase of the average patellar flexion, lateral tilt and lateral shift (Elias et al., 

2011). This could not be confirmed, because the individuals with PFP in this study showed a 

shift towards more quadriceps activity in acute pain. However, a balanced co-contraction of 

the quadriceps and hamstrings activation leads to increased knee joint stabilisation in the 

frontal plane, due to increased joint compression (Palmieri-Smith et al., 2009). Thus, the 

overall reduced co-contraction of the quadriceps and hamstrings might result in knee 

instability during the loading response and thus also might be responsible for the 
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development of pain and the greater reduction and variability of the knee flexor moment 

(Besier, Lloyd, & Ackland, 2003; Henriksen et al., 2007; Henriksen et al., 2009). The 

reduced activation of the quadriceps and hamstrings activity has also been described in 

individuals with artificial induced pain (Henriksen et al., 2007; Henriksen et al., 2009). The 

reduced quadriceps muscle activation during the single leg squat and step down task could 

also be a compensatory strategy to reduce patellofemoral joint reaction forces during painful 

activities (Nadeau, Hebert, Arsenault, & Lepage 1997). In the present study, pain caused an 

overall decrease of the activity of the hamstrings and quadriceps muscles during the single 

leg squat and step down task, as well as the stance phase in running, where the quadriceps 

muscles controls eccentrically the knee flexion and the hamstrings contribute to knee 

stability. Especially during the eccentric quadriceps tasks (the single leg squat and step down 

task) the quadriceps activation decreased, which demonstrates that pain might result in a 

quadriceps avoidance strategy and is capable of modulating the movement pattern 

significantly. Previous literature described that the quadriceps avoidance strategy might be 

linked to quadriceps inhibition (Henriksen et al., 2007; Henriksen et al., 2009; Sterling, Jull, 

& Wright, 2001). This link could be proven in this study, because it could be shown that the 

quadriceps AMI significantly increased in acute pain. Several previous studies suggested that 

the voluntary antagonist neural drive can be increased, overcoming any inhibitory 

contractions (Graven-Nielsen, Lund, Arendt-Nielsen, Danneskiold-Samsoe, & Bliddal, 2002; 

Lund, Donga, Widmer, & Stohler, 1991; Sterling et al., 2001). However, this study showed 

that the nociceptive input caused a decrease of the antagonistic muscles and thus indicates 

that not only the quadriceps, but also the hamstrings muscles might be inhibited due to pain 

(Henriksen et al., 2011). The results of this study suggest that pain suppressed the motor 

output globally, however, despite the significant altered muscle activity of the quadriceps and 

the hamstrings muscle, no biomechanical changes during the step down and single leg squat 

task occurred. Although, the quadriceps AMI indicated that central neural control 

mechanisms are involved in the altered movement pattern, in contrast to previous studies, the 

pain did not result in a reduced maximal voluntary quadriceps contraction and also did not 

result in a more hamstrings dominant, but rather a more quadriceps dominant pattern 

(Graven-Nielsen et al., 2002; Henriksen et al., 2007; Henriksen et al., 2009), The hamstring 

muscles work antagonistically to the quadriceps muscle. Reduced hamstring activity reduces 

the antagonist hamstring moment that the quadriceps must overcome to enable the loading 
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phase in running with reduced net extensor moment and EMG activity. This study revealed a 

reduced knee flexor moment during the stance phase in running, which might be caused by an 

overall reduced quadriceps activity resulting in a decreased knee flexor moment. 

AMI is present in a wide range of knee joint pathologies, such as knee osteoarthritis, 

rheumatoid arthritis, anterior knee pain, patella contusion, anterior cruciate ligament rupture, 

meniscal damage and after knee arthroplasty (Hart et al., 2010; Rice & McNair, 2010). AMI 

is believed to be caused by altered afferent input originating from mechanoreceptors and 

nociceptors which reflexively reduce the efferent quadriceps alpha MN output (Hart et al., 

2010; Rice & McNair, 2010). The protective, reflexive and unconscious mechanism to reduce 

the neural drive to the surrounding musculature is described as a reflexive "shut-down" 

mechanism and is an initially protective mechanism (Hart et al., 2010). Studies which 

investigated the corticospinal excitability of the vastus medialis (VM) and vastus lateralis 

(VL) showed that the corticospinal excitability was significantly increased during 

experimental knee pain (On, Uludag, Taskiran, & Ertekin, 2004; Rice et al., 2015; Rice, 

McNair, Lewis, & Dalbeth, 2014). Rice et al. (2015) described that the inhibitory response 

occurs partially due to spinal reflex inhibition of the quadriceps alpha-motor-neuron (MN).  

In contrast, a recent study found no association between AMI and measures of corticospinal 

or intracortical excitability (Kittelson, Thomas, Kluger, & Stevens-Lapsley, 2014). These 

findings indicate that although pain is involved in the neural mechanisms of quadriceps 

activation, corticospinal or intracortical pathways are not directly involved within the primary 

motor cortex in the mechanisms of CAD (Kittelson et al., 2014). Studies which investigated 

the association of pain to AMI found that it was significantly associated to knee pain 

(Callaghan et al., 2014; Drover et al., 2004; Graven-Nielsen et al., 2002; Hart et al., 2010; 

Hopkins & Ingersoll, 2000; Palmieri-Smith et al., 2013) and that already the increase of 1 on 

the VAS scale caused an increase in AMI of 1.6% (Callaghan et al., 2014). These findings are 

in accordance with the results of this study, where the pain increase of 1 on the NPRS caused 

an increase of 2.1% AMI. Thus, AMI seems to play an important role in the injury cycle of 

knee pain. Another indicator for AMI is the break phenomenon, which is believed to be 

caused by reflex inhibition of the quadriceps muscle, to avoid overstress of the knee joint 

(Herrington et al., 2003). However, although the break phenomenon occurred more often in 

acute pain, this study did not find a significant increase in the occurrence of the break 

phenomenon in acute pain. 
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As previously explained the participants with PFP did not show decreased quadriceps 

strength, despite the significant increase of quadriceps inhibition. These results are in contrast 

to results of studies that showed a decreased quadriceps strength in the presence of 

quadriceps inhibition (Henriksen et al., 2011; Park, Chinn, Squires, & Hopkins, 2012). These 

results are difficult to interpret, however, in comparison to strength results of individuals with 

PFP in previous studies the participants with PFP in this study were very strong. Selfe et al. 

(2016) carried out a study to explore whether subgrouping of non-specific individuals with 

PFP is possible. They concluded that three subgroups of patients with PFP exist; a "strong 

subgroup" with high quadriceps and hip abductor strength scores, a "weak and tight 

subgroup" with weak quadriceps and hip abductor muscles and low muscle flexibility and a 

"weak and pronated foot subgroup" with weak quadriceps and hip abductor muscles, greater 

patellar mobility and an increased foot pronation (Selfe et al., 2016). The strong subgroup 

had quadriceps strength scores of 1.65 ±0.53 Nm/kg in comparison with the weak groups that 

had quadriceps strength values of 0.84 ±0.32 Nm/kg and 0.82 ±0.32 Nm/kg. The group of 

individuals with PFP who participated in this study were highly active and had an isometric 

quadriceps strength score of: 2.86±0.76 Nm/kg without acute pain and with acute pain of 

2.90±1.26 Nm/kg. These results show that the participants with PFP who participated in this 

study were stronger than previously reported in literature. Even literature that described 

quadriceps strengthening in athletes with PFP showed smaller quadriceps strength results 

than the results of this study, which makes an interpretation of the findings challenging 

(Ramazzina, Pogliacomi, Bertuletti, & Costantino, 2016; Yildiz et al., 2003). Furthermore, 

research on strong individuals with PFP remains understudied (Selfe et al., 2016). However, 

one explanation for these results might be that the good training status of the participants with 

PFP enabled them to deliver maximal contractions even if they experience pain.  

Thus, it could be shown that pain did not alter lower limb kinematics, but resulted in a 

decreased knee flexor moment. Although the AMI was significantly increased, the 

quadriceps strength torque remained unchanged. Lastly, this study showed that acute pain 

caused a decreased quadriceps and hamstrings activity.  
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6.6. Limitations to the study 

One great limitation of this study was that the activities that caused pain were not monitored 

and standardised. The participants were asked to come to the first appointment whilst not 

experiencing pain and to the second appointment after performing exercises that caused them 

acute pain. To ensure that they were not fatigued they were asked to not perform the painful 

activity at least 5 hours before coming to the appointment and were advised to rest before 

arriving at the gait laboratory. Thereby the participant performed his/her functional activities 

that caused them pain. However, this procedure did not allow us to monitor and standardise 

the painful activities.  

It is important to note that the participants were fitted for this study with standard training 

shoes to control the shoe-surface interface and to minimise the influence of footwear. The 

standard training shoes might have negatively influenced the comfort during running and 

thereby might have influenced the movement performances.  

 

6.7. Conclusion 

Pain in individuals with PFP is more than a symptom and is believed to play a role in the 

aetiology of PFP. To the authors knowledge this was the first study investigating the effect of 

knee pain on lower limb biomechanics, AMI and strength. It could be shown that pain 

significantly decreased the knee flexor moment, caused a significant decrease of muscular 

activity of the quadriceps and hamstrings muscles and resulted in a significant increase of 

AMI of the quadriceps. Furthermore, this was the first holistic investigation of acute pain in 

individuals with PFP, combining the assessment of AMI, the break phenomenon, muscular 

strength and coordination, with a biomechanical analysis. 
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Chapter 7: Discussion 

This last chapter aims to summarise and to discuss the findings of this thesis and to 

contextualise the findings to contemporary research.  

This study started with a thorough literature review and a meta-analysis, with which the 

definition, the prevalence, the risk factors, the prognosis, the pathophysiology and different 

treatments of PFP were identified and addressed in detail. Following the literature review, the 

research gaps were identified and the focus of this study was determined. Then a reliability 

study was performed to develop a robust and reliable test protocol for the investigation of 

lower limb kinematics and kinetics, quadriceps strength, quadriceps inhibition, lower limb 

flexibility, patella and foot posture and clinical outcomes. To ensure that the sEMG data was 

collected and analysed in a reliable way, two pilot studies were carried out. As the focus of 

the main study was to investigate the effect of several chosen treatments such as Power strap 

and a 6-week exercise programme. The developed reliable test protocol was firstly applied in 

the study which investigated the influence of the Powers
TM

 strap on pain and lower limb 

biomechanics in individuals with and without PFP. Then the effect of a 6-week exercise 

programme on lower limb kinematics and kinetics, quadriceps strength, quadriceps 

inhibition, lower limb flexibility, patella and foot posture and clinical outcomes in individuals 

with PFP was studied. The last chapter explored the effect of acute PFP pain on functional 

performance, the quadriceps strength and quadriceps inhibition in individuals with PFP.  

This is to the author‟s knowledge the first study that investigated the influence of a the 

Powers
TM

 strap as a passive intervention and the evidence based 6 week exercise programme 

as an active treatment on muscular dysfunction in individuals with PFP. This was also the 

first study that investigated the direct influence of pain on muscle dysfunction in individuals 

with PFP.  

 

7.1. Hypotheses H01-H04: Influence of the Powers
TM

 strap on lower limb kinetics and 

kinematics in individuals with and without PFP  

The first objective of the thesis was to investigate the influence of the Powers
TM

 strap as a 

novel passive intervention in individuals with PFP. This study revealed that the Powers
TM

 

strap was able to modify lower limb biomechanics during functional tasks in individuals with 

and without PFP and reduced pain in individuals with PFP. To date, no study investigated 
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whether a strap or brace reduced the hip internal rotation angle and thus, these results cannot 

be compared with previously published studies. However, in comparison with studies that 

investigated the hip internal rotation in individuals with PFP it became apparent that the 

individuals in this study did not show an excessive hip internal rotation and hip adduction 

during running and performed the tasks comparable to the healthy individuals (Table 7.1).  

The kinematics during the single leg squat and step down task are more diverse and are 

linked to hip and knee flexion. The knee and hip flexion angle appear to be greater in this 

study compared with previous literature (Table 7.2. and 7.3.), which indicates that the 

participants in this study squatted deeper and flexed their knee more during the step down 

task. However, many studies did not report the hip and knee flexion angle and thus it is 

difficult to compare the kinematic data to previously reported data (Table 7.2. and Table 

7.3.). 

However, to date no study investigated the influence of a knee strap or brace on hip internal 

rotation and adduction. Thus, the findings of the hip internal rotation cannot be compared 

with any previous data.  

 

Table 7.1.: Comparison of the hip and knee kinematics (in degrees) during the stance phase in running in the 

literature (IR: Internal rotation, Add: Adduction) 

Author Subject population Hip IR Hip Add Knee IR Knee Add 

Noehren et al., 2011 10 subjects 11.0± 4.1 22.0± 1.5   

Souza & Powers, 2009a 21 females 11.8± 6.9    

Souza & Powers, 2009b 19 females 8.2± 6.6    

Noehren et al., 2012 30 females 9.7± 3.9 16.7±3.2 -1.1± 4.9 4.1± 4.1 

Willy at al., 2012 18 males, 18 females 6.0± 3.8 11.9± 3.0  2.7± 3.2 

Esculier et al., 2015 21 subjects 7.9±5.5 12±3.4   

Dierks et al., 2008 5 males, 15 females 5.1± 6.8 8.7± 5.2  1.6± 5.1 

Bazett-Jones et al., 2013 10 males, 9 females 3.03± 4.2 13.2± 3.3 1.52± 4.1 0.24± 2.1 

Willson et al., 2011 20 females 2.94± 4.43 13.67± 4.41   

 

This study (stance phase) 
 

12 males, 12 females 2.0± 7.9 8.0± 4.8 -0.1± 5.6 1.3± 4.5 
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Table 7.2.: The comparison of the hip and knee kinematics (in degrees) during single leg squat in the literature  

Author Subject population Hip Flx Hip IR Hip Add Knee Flx Knee IR Knee Add 

Song et al., 2014 16 females 27.7± 6.0 27.1±15.6 23.5±11.3    

Willy et al., 2012 18 males, 18 females  5.7± 5.1 6.2± 3.7   2.74± 4.3 

Nakagawa et al., 

2012 
20 males, 20 females  12.7± 6.1 14.8± 7.8   9.2± 5.0 

De Marche Baldon 

et al., 2014 
31 females 

46.9± 9.3 

52.5± 14.6 
 

17.1± 4.3 

23.5± 6.2 
  

-11.0± 7.2 

-12.3± 5.2 

Noehren et al., 2011 10 subjects  11.0± 4.1 22.0± 1.5    

Salsich et al., 2012 20 females  1.1± 5.8 14.3± 5.9 70.0± 7.5 2.7± 5.7 0.3± 6.9 

 

This study 
 

12 males, 12 females 73.4± 18.2 0.6± 8.1 13.6± 7.6 80.8± 10.7 -1.4± 5.6 4.3± 4.9 

 

 

Table 7.3.: The comparison of the hip and knee kinematics (in degrees) during the step down task in the 

literature  

Author Subject population Hip Flx Hip IR Hip Add Knee Flx Knee IR Knee Add 

Cheung et al., 2012 22 males  9.98±3.14     

Willy et al., 2012 10 females  7.0± 5.7 7.8± 2.7    

Grenholm et al., 2009 17 females   7.3± 4.3 54.2± 4.2   

McKenzie et al., 2010 10 females 52.3± 9.4 -11.7± 5.0 -2.8± 5.0 86.6± 7.4   

This study  12 males, 12 females 71.8± 16.1 0.6± 7.9 15.5± 6.6 88.6± 12.9 -0.8± 5.8 4.4± 4.9 

 

 

Previous studies described the reduction of pain after the application of a brace, and thus, the 

application of the knee brace or patellar tape in individuals with PFP has been recommended 

(Barton et al., 2015; Crossley, van Middelkoop, et al., 2016). However, to date no brace 

achieved a significant reduction of the hip internal rotation angle (Aminaka & Gribble, 2005; 

Barton et al., 2015; Bolgla & Boling, 2011;Crossley et al., 2001; Swart et al., 2012; Warden 

et al., 2008). The Powers
TM 

strap showed the ability to significantly modify the lower limb 

biomechanics in individuals with PFP, which gives confidence that the Powers
TM 

strap has a 

mechanical influence on the hip internal rotation angle. Thus, the Powers
TM 

strap seems to 

not only be able to reduce pain significantly, but also to modify lower limb biomechanics. 

However, the individuals with PFP in this study did not show an excessive hip IR or 
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adduction angle. Thus, future research is required, to investigate the influence of the 

Powers
TM 

strap to examine the effect of the strap in individuals with PFP that show an 

excessive hip internal rotation angle and dynamic knee valgus. 

Previous research on the effect of patellar taping on quadriceps activation showed 

contradictory results (Christou, 2004; Cowan, Bennell, & Hodges, 2002; Herrington, 2001; 

Macgregor et al., 2005; Ng & Cheng, 2002; Salsich et al., 2002; Song et al., 2014). Some 

studies reported an increased quadriceps activity and earlier VM onset (Christou, 2004; 

Cowan, Bennell, & Hodges, 2002; Herrington, 2001; Macgregor et al., 2005), other studies 

reported a decreased quadriceps activity (Ng & Cheng, 2002; Song et al., 2014) and other 

studies reported no changes in quadriceps activity (Salsich et al., 2002; Song et al., 2014). 

This study is in agreement with studies that reported a decreased quadriceps activity. 

However, the heterogeneity in findings emphasises the importance of further research to 

understand whether and how bracing and taping can affect the quadriceps activity. 

 

7.2. Hypotheses H05-H09: Influence of a 6 week exercise treatment on pain, functional 

performance, balance, muscular strength and inhibition in individuals with 

patellofemoral pain 

This study was to the author‟s knowledge the first study that developed an exercise 

programme based on the current recommendations and evaluated its effect in individuals with 

PFP. Pain as well as function significantly improved after the 6-week exercise programme. 

Especially the function during sport and recreational activities as well as quality of life 

improved on average by over 40%. Previous studies that investigated exercise programmes in 

individuals with PFP, that consisted of quadriceps and/ or gluteal exercises also reported 

improvements of function and pain (Alba-Martin et al., 2015; Bily, Trimmel, Modlin, Kaider, 

& Kern, 2008; Clark et al., 2000; Clijsen et al., 2014; Collins et al., 2008; Earl & Hoch, 2011; 

Harrison EL, 1999; Hazneci, Yildiz, Sekir, Aydin, & Kalyon, 2005; Khayambashi, Fallah, 

Movahedi, Bagwell, & Powers, 2014; Khayambashi et al., 2012; Lack, Barton, Sohan, 

Crossley, & Morrissey, 2015; Loudon, 2004; Petersen et al., 2016; Santos, Oliveira, Ocarino, 

Holt, & Fonseca, 2015; Syme, Rowe, Martin, & Daly, 2009; Thomson, Krouwel, Kuisma, & 

Hebron, 2016; Van Linschoten et al., 2009; Witvrouw et al., 2004; Yilmaz, Baltaci, Tunay, & 

Atay, 2011; Yip & Ng, 2006).  
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However, the participants in this study had lower pain and had a higher KUJALA score than 

individuals with PFP in previous studies (Table 7.4). Selfe et al. (2016) reported that the 

"strong" subgroup showed a trend towards less pain, higher function and better quality of life. 

Based on these results the trend of less pain and a higher function in this group of individuals 

with PFP could be confirmed. 

 

Table 7.4: The comparison of the pain and function of the individuals with PFP in the literature  

Author Subject population Pain (VAS or NPRS) KUJALA 

Harrison & McQuarrie, 1999 113 subjects 4.6±2.51  

Bolgla et al., 2016 61 males, 124 females 4.8± 1.7 76.5± 9.2 

Syme et al., 2009 110 subjects 4.8± 3.0  

Loudon, 2004 22 males, 7 females 4.3± 2.6 66.9±8.1 

Hazneci et al., 2005 24 males 4.6± 0.9  

Earl & Hoch, 2011 19 females 4.0± 1.8 70.4± 11.2 

Van Linschoten et al., 2009 131 subjects 4.1± 2.3 65± 14.1 

Clark et al., 2000 49 subjects 7.8± 40  

Bily et al., 2008 14 males, 24 females 5.5 78 

Khayambashi et al., 2014 18 males, 18 females 7.3± 1.8  

Khayambashi et al., 2012 28 females 7.2± 1.8  

Witvrouw et al., 2004 60 subjects 3.5±2.2 ~70 

Callaghan & Oldham, 2004a 33 males, 47 females 3 70± 13.6 

Collins et al., 2010 179 subjects 3.6± 1.7 71.5± 9.8 

Kettunen et al., 2012 56 subjects 3.8± 2.6 71.5± 12.4 

Sinclair et al., 2016 11 males, 9 females   

Lankhorst et al., 2015 100 subjects 6.1± 1.9 68.8± 12.4 

C. R. Rathleff et al., 2013 40 subjects 5.5  

This study (early stance) 12 males, 12 females 0.8±0.5 81.7±9.2 
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Table 7.5: The comparison quadriceps of the strength before and after an exercise treatment in the literature 

(Nm/kg*100) 

Author Subject population  Isometric eccentric concentric 

Yip & Ng, 2006 16 females, 10 males 

Pre intervention   1.01± 0.77 

Post intervention   1.1± 0.74 

Witvrouw et al., 

2004 (data 

estimated based on 

graphs) 

60 subjects 

Pre intervention   ~2.25 

Post intervention   
~2.35 (3 months) 

~2.60 (5years) 

Rathleff et al., 

2016 
47 females 

Pre intervention 2.17   

Post intervention 2.54   

 Bily et al., 2008 14 males, 24 females 

Pre intervention   1.77±0.61 

Post intervention   1.74±0.55 

This study 9 males, 7 females 

Pre intervention 2.92± 0.65 3.36± 1.29 1.78±0.59 

Post intervention 2.91±0.57 3.05± 0.74 2.08± 039 

 

However, studies that analysed "strong" individuals with PFP are still lacking and further 

research of this subgroup is required to confirm the findings of this study.  

In this study, individuals with PFP did not gain quadriceps strength after the exercise 

treatment that contained quadriceps strengthening. These results are in contrast to previous 

findings (Rathleff et al., 2016; Witvrouw et al., 2004; Yip & Ng, 2006) (Table 7.5). Only 

Bily et al. (2008) reported no significant changes after the exercise treatment. However, the 

individuals with PFP in previous studies showed a considerable weakness of the quadriceps 

muscle and thus should not be compared to strong individuals with PFP. Since function and 

pain improved significantly in individuals with PFP despite no changes in strength it seems 

that quadriceps weakness cannot be associated with pain and function in strong individuals 

with PFP. However, further research on a larger sample size of strong individuals with PFP is 

required to confirm these results.  

Most of the previous studies investigated the effect of an exercise programme that was 

supervised by physiotherapists in a clinical setting (Baldon, Serrao, Scattone Silva, & Piva, 

2014; Boling et al., 2006; Clark et al., 2000; Collins et al., 2008; Coppack, Etherington, & 

Wills, 2011; Dolak et al., 2011; Earl & Hoch, 2011; Fukuda et al., 2012; Fukuda et al., 2010; 

Harrison EL, 1999; Hazneci et al., 2005; Ismail et al., 2013; Khayambashi et al., 2014; 
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Khayambashi et al., 2012; Lee, Lee, & Lee, 2014; Loudon, 2004; McMullen, Roncarati, & 

Koval, 1990; Moyano et al., 2013; Nakagawa et al., 2008; Syme et al., 2009; Van Linschoten 

et al., 2009; Witvrouw et al., 2004; Yilmaz et al., 2011; Yip & Ng, 2006) and only the 

minority of studies investigated the effect of home-based exercises pain (Bily et al., 2008; 

Harrison, 1999; L. Herrington & Al-Sherhi, 2007; Tyler, Nicholas, Mullaney, & McHugh, 

2006). Thus, not many studies investigated the effect of a home-based exercise programme. 

In addition, only the study of Herrington et al. (2007) contained an individualised progression 

(Herrington & Al-Sherhi, 2007). However, the study of Herrington et al. (2007) investigated 

only the effect of quadriceps exercises (Herrington & Al-Sherhi, 2007). Thus, this study was 

the first study that investigated the effects of a home-based exercise programme that was 

based on the current guidelines and consisted of quadriceps, as well as gluteal strengthening 

exercises and flexibility exercises for the hamstrings and ankle dorsi-flexion ROM.  

Although no biomechanical changes were identified during the stance phase in running, the 

participants with PFP flexed their knees and hips more during the single leg squat and the 

step down task. However, studies investigating the influence of exercises on lower limb 

biomechanics are still lacking. Baldon et al. (2014) analysed the effect of exercises on the 

squatting performance and reported that an exercise treatment in these individuals with PFP 

resulted in an increased demand of the gluteal muscles and thereby a decreased demand of 

the quadriceps during the single leg squat (Baldon, Serrao, Scattone Silva, & Piva, 2014). 

They also found that individuals with PFP demonstrated a greater forward trunk lean during 

the single-leg squat and thereby decreased the knee-flexion moment and increased the hip-

flexion-moment (Baldon et al., 2014), which is in accordance with the findings of this study. 

Witvrouw et al. (2004) investigated the maximal knee flexion during a squat task and found 

that individuals with PFP who were pain free five years after the intervention were able to 

bend their knees 10° more during the squat (Witvrouw et al., 2004). The increase of knee 

flexion is very similar to the findings of this study, however this study lack long-term results. 

Earl et al. (2011) investigated the lower limb biomechanics during running and found a 

significant decreased external knee abduction moment (Earl & Hoch, 2011). They viewed 

this change as positive, however, since no kinematic changes were observed it remained 

unclear what contributed to the increased knee abduction moment (Earl & Hoch, 2011). To 

date, most studies investigate the effect of exercises on function, pain and muscular strength, 

but not on the effect on functional performance. Thus, more attention in studies should be 
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given to the effect of exercises on the functional performance, by investigating lower limb 

biomechanics, in individuals with PFP.  

 

7.3. Hypotheses H010-H013: Influence of acute pain on functional performance, 

quadriceps strength and inhibition in individuals with patellofemoral pain 

The passive as well as the active intervention study showed that despite relatively small or no 

biomechanical changes of the lower limb, the pain was significantly decreased and function 

improved. These observations raised the question whether and how pain might be linked to 

alterations of the lower limb biomechanics, strength and inhibition in individuals with PFP. 

Although previous studies analysed pain in healthy individuals and individuals with PFP no 

study investigated the direct influence of pain by comparing the individuals‟ performance 

without pain with the individual‟s performance in acute pain. Thus, this study aimed to 

investigate the effect of pain in individuals with PFP by combining the assessment of AMI, 

the break phenomenon, muscular strength and coordination, with a biomechanical analysis. 

Previous studies analysing artificially induced knee pain also found a decreased knee flexor 

moment (Henriksen et al., 2007; Seeley et al., 2013). However, none of the studies reported 

lower limb kinematics, thus it is difficult to compare the data, because it is not clear if in 

these studies pain resulted in altered kinetics without altered kinematics. Bazett Jones et al. 

(2015) investigated whether pain influenced lower limb biomechanics in individuals with 

PFP and they reported a significant decrease of the hip internal rotation angle during acute 

pain. Although a slight decrease of the hip internal rotation was apparent in this study as well, 

the differences were not significant. These findings emphasise that an increase in pain does 

not always result in altered lower limb biomechanics.  

Previous literature described a link of the quadriceps avoidance strategy to quadriceps AMI 

(Henriksen et al., 2007; Henriksen et al., 2009; Sterling et al., 2001). This study could 

confirm this link, because this study showed an overall decrease of the knee flexor and 

extensor muscles activity, increased quadriceps inhibition and a co-contraction shift towards 

the knee extensor activation. Although the shift was towards an increased quadriceps 

activation, the overall reduction in muscle activation might indicate an inhibition of the knee 

flexors as well as knee extensor muscles, which was previously described by Henriksen et al. 

(2011). Also other studies described that a reduced quadriceps muscle activation might be a 
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compensatory strategy to reduce patellofemoral joint reaction forces during painful activities 

(Henriksen et al., 2007; Henriksen et al., 2009; Nadeau et al., 1997).  

The findings of this study are in accordance to previous studies that revealed that increased 

knee pain caused a significant increase of AMI (Callaghan et al., 2014; Drover et al., 2004; 

Graven-Nielsen et al., 2002; Hart et al., 2010; Hopkins & Ingersoll, 2000; Palmieri-Smith et 

al., 2013). AMI has been described as a reflexive and unconscious mechanism to reduce the 

neural drive to the surrounding musculature to protect the muscles from further damage by a 

decrease in muscle activity (Hart et al., 2010). Only three other studies investigated AMI in 

individuals with PFP. Drover et al. (2004) investigated AMI in 9 individuals with PFP and 

showed that they had 18.3% AMI (Drover et al., 2004). Suter et al. (1998) reported AMI in 

42 individuals with PFP and showed an inhibition of 30-40%. Furthermore, they also 

reported that the AMI was higher in individuals with higher pain levels (Suter, Herzog, 

Souza, et al., 1998). Thomee (1996) reported in 5 individuals with PFP an AMI of 17.8% 

(Thomee et al., 1996). The results of this study are comparable to the results of Drover et al. 

and Thomee et al. However, the study of Drover and Thomee had very small sample sizes, 

which did not enable an appropriate representativeness. This highlights the current lack of 

studies investigating AMI in individuals with PFP.  

 

7.4. Implications for clinical practice 

Numerous factors are linked to the development of PFP. To address these numerous factors a 

multimodal conservative treatment is required. The current recommendation of a multimodal 

intervention include:  

- active over passive exercises are recommended to reduce pain in the medium and long 

term and to improve function in the medium and long term  

- knee braces, taping and straps to reduce acute pain 

- combined interventions are recommended to reduce pain in the short and medium 

term  

In this study, these recommendations have been transferred into two studies. The first study 

investigated the effect of a specific knee strap (the Powers
TM

 strap) in individuals with and 

without PFP. And the second study investigated the effect of an exercise programme based 

on the current guidelines in individuals with PFP.  
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The first study showed that the strap significantly decreased pain in individuals with PFP and 

increased the hip internal rotation angle in both groups. In the clinical context, these findings 

of this study have crucial value, as they indicate that the strap was able to reduce immediately 

pain during a number of functional lower limb-loading tasks (running, single leg squat and 

step down task). The reduction of pain is a crucial feature in early patient management to 

gain trust, but also to facilitate active engagement (Barton et al., 2015). If the patient is able 

to participate in lower limb-loading tasks without pain, it allows a further progression of the 

patient down a loading continuum, increasing their envelope of function to safely build up 

their activity levels (Barton & Rathleff, 2016; Herrington, 2013). 

But also the findings of a significantly decreased hip internal rotation angle are of clinical 

importance. An increased femoral internal rotation has been commonly observed in 

individuals with PFP and leads to increased lateral patellar tilt, patellar shear stress and 

patellofemoral contact pressure (Besier et al., 2008; Lee et al., 2003; Powers, 2003; Souza, 

2008; Souza et al., 2010; Souza & Powers, 2009a). The Powers
TM

 strap has been tested in 

individuals with and without PFP and the decrease of hip internal rotation could be proven in 

both groups. This is important from a mechanistic perspective as even in individuals who do 

not have pain, internal rotation can be reduced with the strap and gives confidence that this 

change was not influenced by pain changes. Although, the reduction of the hip internal 

rotation were quite small, they resulted in clinically significant changes, with a significant 

decrease in pain. Thus, this strap has not only the potential to decrease pain but also to 

control and modify femoral rotation and thus might be able to restore normal patellofemoral 

joint kinetics. In addition, the effect sizes for the hip internal rotation angle during the stance 

phase in running were moderate. Thus, it could be concluded that enough participants were 

recruited to present significant results. The results suggest that individuals with PFP might 

benefit from the Powers
TM

 strap to reduce pain in the short term. In addition, the results of 

this study indicate that especially individuals with PFP and an increased hip internal rotation 

might benefit from the Powers
TM

 strap to reduce pain in the short term and lower limb 

alignment in the short term.  

PFP is one of the most challenging pathologies, because of its multifactor nature and the 

challenge to address the various factors that contribute to PFP (Bolgla et al., 2016). The 

second study addressed in a 6-week exercise programme function, pain, lower limb 

biomechanics, flexibility, muscle activation and muscle flexibility and showed that function 

and pain improved in individuals with PFP. The participants were also able to squat lower 
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and flex their knees more during the single leg squat task after the exercise programme. The 

flexibility of the hamstring muscles increased and the ankle range of motion showed the 

tendency of an increased ankle dorsi-flexion ROM. In addition, the results suggest the trend 

of a decreased quadriceps inhibition after the exercise treatment. However, no improvements 

of quadriceps strength, nor a change of co-contraction ratio and hamstrings and quadriceps 

activation could be identified.  

The significant improvements of pain and function were reflected in the self-reported 

recovery and suggest the potential of the 6-week exercise programme to improve pain and 

function in the short and medium term. Also the improvements in flexibility and lower limb 

biomechanics indicate the benefit for individuals with PFP to perform the 6-week exercise 

programme. Based on these findings, the 6-week exercise programme can be recommended 

for individuals with PFP to improve pain and function, modify lower limb biomechanics, 

increase hamstrings flexibility. Potentially the exercise programme is also able to decrease 

quadriceps inhibition and improve ankle-dorsi-flexion ROM. However, the findings of this 

study are not strong enough to recommend the 6-week exercise programme for individuals 

with PFP to improve quadriceps inhibition and ankle-dorsi-flexion ROM. 

No changes in quadriceps strength were identifiable, which critically questions whether the 

exercise programme is able to improve quadriceps strength in individuals with PFP. Although 

quadriceps strengthening is recommended as a treatment approach, several previous studies 

reported as well that the individuals with PFP did not or only slightly improve the quadriceps 

strength after an exercise programme (Bily et al., 2008; Witvrouw et al., 2004; Yip & Ng, 

2006). The only study that reported a significant improvement of quadriceps strength tested a 

3 months exercise programme (Rathleff et al., 2016). The length of the programme might be 

an important influential factor. Although not much literature has been published on the 

muscular changes over time during a strength training, one study reported that muscle 

strength increased after 2 months training by 7.9% and by 8.9% after three months (Kubo, 

Ikebukuro, Yata, Tsunoda, & Kanehisa, 2010). However, they reported that cross-sectional 

areas did not change until 2 months strength training (Kubo et al., 2010). The exercise 

programme in this study was 6 weeks long and thus might be too short to capture changes in 

quadriceps muscle strength. In addition, no studies have been published on "strong" 

individuals with PFP (Selfe et al., 2016). It might be that strong individuals with PFP adapt 

slower to a strength training programme, or that they do not increase quadriceps strength. 
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Thus, further research is required. However, based on the results in this study, the exercise 

programme cannot be recommended to increase quadriceps strength in individuals with PFP.  

The third study investigated the effect of acute pain on lower limb biomechanics, quadriceps 

strength and inhibition in individuals with PFP. This study showed that despite the increase 

of pain the lower limb biomechanics and quadriceps strength remained unchanged. On the 

contrary, the quadriceps inhibition significantly increased in acute pain. Furthermore, the 

study showed a reduction of the quadriceps and hamstrings muscle activation during all tasks, 

which is has also been described in individuals with artificial induced pain (Henriksen et al., 

2007; Henriksen et al., 2009). Especially the quadriceps muscle activation during the single 

leg squat and step down task was reduced which might be a compensatory strategy to reduce 

patellofemoral joint reaction forces during painful activities (Nadeau et al., 1997). These 

findings demonstrate that pain is capable of modulating the muscle activation pattern 

significantly and is linked to quadriceps inhibition. However, this study also showed that pain 

does not necessarily result in abnormalities of lower limb biomechanics or muscle weakness. 

These results are important because to date studies on PFP focus on muscle strength and 

lower limb alignment. Despite the extensive research on PFP, studies on quadriceps 

inhibition in these individuals have not been carried out. However, the results of this study 

emphasise the importance on future research on quadriceps inhibition.  

  

7.5. Future studies 

The majority of studies investigated the influence of coronal and sagittal stabilising knee 

straps and braces on PFP. The study on the Powers
TM

 strap was to the author‟s knowledge the 

first study that examined the lower limb biomechanics with a strap that aims to stabilise the 

patellofemoral joint through an external rotation of the femur. 

This study proved the positive effect of the strap on pain, as well as lower limb biomechanics. 

However, the recruited group of participants with PFP appeared to be strong and had neither 

an excessive hip internal rotation angle nor a dynamic knee valgus. Thus, the study could not 

conclude whether and how the Powers
TM

 strap is able to align the lower limb if the 

participant has an excessive hip internal rotation or dynamic knee valgus. Thus, it is 

recommended that the Powers
TM

 strap should be analysed in future studies in "weak" and 

"weak and tight" groups of individuals with PFP (Selfe et al., 2016) and thereby especially in 

groups that are likely to show an excessive hip internal rotation or dynamic knee valgus. 
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In addition, the strap was only investigated short-term for the tasks and no medium or long 

term results were achieved. Further research should investigate the effect of the Powers
TM

 

strap over a longer period of time. Therefore, the effect of the strap on individuals with PFP 

when they wear the strap over a longer period of time and regularly during sport and daily 

life activities should be fully investigated. 

And lastly the study did not reach enough power during eccentric quadriceps activities, 

therefore more individuals should be recruited to reach enough power for the analysis.  

The second study investigated the effect of a 6-week exercise treatment on pain, function, 

lower limb biomechanics, strength, muscle flexibility, balance and AMI in individuals with 

PFP. The study showed an improvement of pain, function, muscle flexibility and a debatable 

influence on muscle activation, quadriceps AMI and lower limb kinetics. However, the drop-

out rate was very high (33%) in this study and only 16 participants with PFP completed 

successfully the study. Thus, more individuals should be recruited to investigate the effect 

with a larger sample size. One previous study showed good results in a home-based 

programme that was combined with a video-conference (e.g. via skype) (Bennell, Nelligan, 

Dobson, Rini, Keefe, Kasza, French, Bryant, Dalwood, Abbott, & Hinman, 2017). This might 

be an opportunity as well to reduce the drop-out rate and motivate the participants to continue 

with the exercises.  

In addition, the recruited participants in this study appeared to be a "strong" patients group 

and showed no differences in quadriceps strength after the treatment (Selfe et al., 2016). This 

might have been caused because current treatment programmes recommend decreased loads 

and a higher amount of repetitions compared to a traditional hypertrophy/ strength training to 

reduce the flare up of symptoms. However, this study showed that strong individuals with 

PFP were not able to improve quadriceps strength with a low-load and high repetition 

strength endurance training. Thus, the currently recommended exercise programmes are not 

appropriate in terms of increasing strength in strong individuals with PFP, and further studies 

should investigate forms of modified hypertrophy trainings in individuals with PFP that are 

able to increase strength without flaring up the symptoms.  

Furthermore, the results on "strong" individuals with PFP show that the underlying 

mechanisms in these individuals still remain understudied and need further investigation. 

Thus, a larger sample size of "strong" individuals with PFP should be compared with weak" 

and "weak and tight" individuals with PFP before and after the exercise treatment. These 
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findings might enable insights in underlying mechanisms in these three groups and how they 

can be influenced by an exercise treatment that is based on the current guidelines. 

The third study investigated whether and how acute pain influenced lower limb 

biomechanics, quadriceps activation, strength and inhibition in individuals with PFP. This 

study demonstrated that the quadriceps inhibition increased and quadriceps and hamstrings 

muscle activation decreased in acute pain. Thus, although a significant inhibition was 

apparent the quadriceps strength was not significantly influenced.  

The participants in this study were as in the previous two studies also "strong" individuals 

with PFP. These individuals might be able to compensate the pain without showing a 

decrease in quadriceps strength. Thus, the influence of acute pain should be investigated in 

"weak" and "weak and tight" groups of individuals with PFP. These findings will enable the 

insight whether pain influences lower limb biomechanics, quadriceps activation, strength and 

inhibition differently in these three groups and how the "weak" and "weak and tight" 

individuals with PFP compensate the acute pain compared with "strong" individuals with 

PFP.  

 

7.6. Conclusions 

The aim of this thesis was to provide a multifaceted investigation of the effect of current 

recommended treatment approaches on muscular and biomechanical factors in individuals 

with PFP.  

The literature review showed that, although many studies investigated muscle function of 

individuals with PFP, important underlying factors, such as AMI and the break phenomenon 

remain relatively understudied. In addition, the review showed that although studies 

emphasise the importance of investigating active structures (muscles and tendons) in 

combination with a biomechanical analysis, it has not yet been realized in individuals with 

PFP to explore the effect of active and passive treatments in a holistic way.  

The methodology and repeatability study enabled the development of a holistic measurement 

protocol, which was applied in the further studies.  

The intervention studies revealed that the Powers
TM

 strap as a passive intervention is able to 

reduce pain short term and moreover is able to decrease the hip internal rotation angle and 
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decrease the dynamic knee valgus during eccentric quadriceps tasks. The 6-week exercise 

treatment proved to be effective in modifying lower limb biomechanics, decreasing pain and 

improving function. However, strong individuals with PFP did not improve quadriceps 

strength with a low-load and high repetition strength endurance training.  

Lastly this thesis examined the effect of acute pain in individuals with PFP and showed that 

pain caused a significant increase in quadriceps inhibition and a reduced muscle activation of 

the knee flexor and knee extensor muscles.  

However, future research should focus on:  

 the medium and long term effects of the Powers
TM

 strap and the 6-week exercise 

treatment, 

 the effects of an exercise treatment in "strong" individuals with PFP compared with 

"weak" and "weak and tight" individuals with PFP, 
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Methods 2.1 Literature Search Keywords 

 

1. PFPS 

2. PFP 

3. AKP 

4. AKPS 

5. Patellar pain 

6. Knee pain 

7. Anterior knee pain 

8. Patellofemoral pain 

9. OR 1 2 3 4 5 6 7 8 9  

10. Muscle strength  

11. Strength  

12. Weak* 

13. Weakness 

14. Vast*  

15. Vastus  

16. Glut* 

17. Gluteus  

18. Force 

19. Muscle force 

20. Power 

21. Muscle power 

22. Imbalance 

23. Dysbalance 

24. Isometric 

25. Isokinetic 

26. Concentric 

27. Eccentric 

28. EMG 

29. Electromyography 

30. Electromyographic 

31. Onset 

32. Amplitude 

33. frequency 

34. OR 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

35. 9 AND 35 

36. Inhibition 

37. AMI  

38. Central activation ratio 

39. CAR 

40. Central fatigue  

41. OR 36 37 38 39 40 

42. 9 AND 41 

43. Flexibility  

44. Hamstrings 

45. Quadriceps 

46. Iliotibial band  

47. ITB  
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48. Quad* 

49. OR 43 44 45 46 47 48  

50. 9 AND 49  

51. Atrophy 

52. Muscle mass 

53. OR 51 52 

54. 9 AND 53 

 

The syntax was altered appropriately when using other databases, but the search keywords 

remained identical in 

all searches. 
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Methods 2.2 Quality checklists 

 
Downs checklist:  

11. Is the hypothesis/aim/objective of the study clearly described?  

12. Are the main outcomes to be measured clearly described in the Introduction or 

Methods section? If the main outcomes are first mentioned in the Results section, the 

question should be answered no. 

13. Are the characteristics of the patients included in the study clearly described? In cohort 

studies and trials, inclusion and/or exclusion criteria should be given. In case-control 

studies, a case-definition and the source for controls should be given. 

14. Are the interventions of interest clearly described? Treatments and placebo (where 

relevant) that are to be compared should be clearly described. 

15. Are the distributions of principal confounders in each group of subjects to be compared 

clearly described? A list of principal confounders is provided 

16. Are the main findings of the study clearly described? Simple outcome data (including 

denominators and numerators) should be reported for all major findings so that the 

reader can check the major analyses and conclusions. (This question does not cover 

statistical tests which are considered below).  

17. Does the study provide estimates of the random variability in the data for the main 

outcomes? In non normally distributed data the inter-quartile range of results should be 

reported. In normally distributed data the standard error, standard deviation or 

confidence intervals should be reported. If the distribution of the data is not described, 

it must be assumed that the estimates used were appropriate and the question should be 

answered yes. 

18. Have all important adverse events that may be a consequence of the intervention been 

reported? This should be answered yes if the study demonstrates that there was a 

comprehensive attempt to measure adverse events. (A list of possible adverse events is 

provided).  

19. Have the characteristics of patients lost to follow-up been described? This should be 

answered yes where there were no losses to follow-up or where losses to follow-up 

were so small that findings would be unaffected by their inclusion. This should be 

answered no where a study does not report the number of patients lost to follow-up.  

20. Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the 

main outcomes except where the probability value is less than 0.001? 

 

 

External validity 
All the following criteria attempt to address the representativeness of the findings of 

the study and whether they may be generalised to the population from which the 

study subjects were derived. 

21. Were the subjects asked to participate in the study representative of the entire 

population from which they were recruited? The study must identify the source 

population for patients and describe how the patients were selected. Patients 

would be representative if they comprised the entire source population, an 

unselected sample of consecutive patients, or a random sample. Random 

sampling is only feasible where a list of all members of the relevant population 

exists. Where a study does not report the proportion of the source population 

from which the patients are derived, the question should be answered as unable 

to determine. 

 

 

 

 

 

 

                                                 
1
 Unable to determine 

 Yes  No comments 

1    

2 

 

 

 

 

  

 

3 

 

 

   

4    

 

5  

 

  

6 

 

 

 

  

 

 

 

7 

 

 

 

 

 

    

8 

 

 

 

   

 

9 

 

 

 

   

 

 

10 

 

   

 yes no UTD1 comments 

11 
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22. Were those subjects who were prepared to participate representative of the 

entire population from which they were recruited? The proportion of those 

asked who agreed should be stated. Validation that the sample was 

representative would include demonstrating that the distribution of the main 

confounding factors was the same in the study sample and the source 

population.  

23. Were the staff, places and facilities where the patients were treated, 

representative of the treatment the majority of patients receive? For the 

question to be answered yes the study should demonstrate that the intervention 

was representative of that in use in the source population. The question should 

be answered no if, for example, the intervention was undertaken in a specialist 

centre unrepresentative of the hospitals most of the source population would 

attend. 

 

 

 

Internal validity - bias 
24. Was an attempt made to blind study subjects to the intervention they have 

received? For studies where the patients would have no way of knowing which 

intervention they received, this should be answered yes 

25. Was an attempt made to blind those measuring the main outcomes of the 

intervention? 

26. If any of the results of the study were based on “data dredging”, was this made 

clear? Any analyses that had not been planned at the outset of the study should 

be clearly indicated. If no retrospective unplanned subgroup analyses were 

reported, then answer yes. 

27. In trials and cohort studies, do the analyses adjust for different lengths of 

follow-up of patients, or in case-control studies, is the time period between the 

intervention and outcome the same for cases and controls? Where follow-up 

was the same for all study patients the answer should yes. If different lengths 

of follow-up were adjusted for by, for example, survival analysis the answer 

should be yes. Studies where differences in follow-up are ignored should be 

answered no. 

28. Were the statistical tests used to assess the main outcomes appropriate? The 

statistical techniques used must be appropriate to the data. For example 

nonparametric methods should be used for small sample sizes. Where little 

statistical analysis has been undertaken but where there is no evidence of bias, 

the question should be answered yes. If the distribution of the data (normal or 

not) is not described it must be assumed that the estimates used were 

appropriate and the question should be answered yes. 

29. Was compliance with the intervention/s reliable? Where there was non 

compliance with the allocated treatment or where there was contamination of 

one group, the question should be answered no. For studies where the effect of 

any misclassification was likely to bias any association to the null, the question 

should be answered yes.  

30. Were the main outcome measures used accurate (valid and reliable)? For 

studies where the outcome measures are clearly described, the question should 

be answered yes. For studies which refer to other work or that demonstrates the 

outcome measures are accurate, the question should be answered as yes. 

 

 

 

 

 

 

 

 

 yes no UTD comments 

12     

 

13     

 

 

 

 

 

 yes no UTD comments 

14     

15     

16     

17     

18     

 

 

 

 

 

19     

 

 

 

20     
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Internal validity - confounding (selection bias) 
31. Were the patients in different intervention groups (trials and cohort studies) 

or were the cases and controls (case-control studies) recruited from the same 

population? For example, patients for all comparison groups should be 

selected from the same hospital. The question should be answered unable to 

determine for cohort and case-control studies where there is no information 

concerning the source of patients included in the study. 

32. Were study subjects in different intervention groups (trials and cohort 

studies) or were the cases and controls (case-control studies) recruited over 

the same period of time? For a study which does not specify the time period 

over which patients were recruited, the question should be answered as no. 

33. Were study subjects randomised to intervention groups? Studies which state 

that subjects were randomised should be answered yes except where method 

of randomisation would not ensure random allocation. For example alternate 

allocation would score no because it is predictable. 

34. Was the randomised intervention assignment concealed from both patients 

and health care staff until recruitment was complete and irrevocable? All 

non-randomised studies should be answered no. If assignment was concealed 

from patients but not from staff, it should be answered no. 

35. Was there adequate adjustment for confounding in the analyses from which 

the main findings were drawn? This question should be answered no for 

trials if: the main conclusions of the study were based on analyses of 

treatment rather than intention to treat; the distribution of known confounders 

in the different treatment groups was not described; or the distribution of 

known confounders differed between the treatment groups but was not taken 

into account in the analyses. In nonrandomised studies if the effect of the 

main confounders was not investigated or confounding was demonstrated but 

no adjustment was made in the final analyses the question should be 

answered as no 

36. Were losses of patients to follow-up taken into account? If the numbers of 

patients lost to follow-up are not reported, the question should be answered 

as unable to determine. If the proportion lost to follow-up was too small to 

affect the main findings, the question should be answered yes. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 yes no UTD comments 

21 

 

 

 

 

    

22 

 

 
 

    

23 

 

 

 

    

24 

 

 

    

25  

 

 

 

 

 

 

 

 

   

26  
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Further checklist: Strength studies 

   

Participant information: (one reviewer) 

Sample size, Gender Mean age (range/ SD) 

PFP (S) Control 
PFP(S) Control 

♀ ♂ ♀ ♂ 

      
 

  PFP criteria: (one reviewer) 
Inclusion criteria PFP(S) Exclusion criteria PFP(S) 

Clearly defined 

pain location 

Duration longer 

than at least 6 weeks 

reproducible pain with: 

stairs, squatting, kneeling, 

prolonged sitting, isom. 

quadr. contraction 

Previous 

surgery 

Ligamentous 

instability 

Internal 

derangement or 

other causes 

      
 

 

 

 

  Yes  no UTD comments 

Abstract Is the abstract clear, transparent and sufficiently detailed written?     

Introduction Is the scientific background and explanation of rationale provided?     

  Yes  no UTD comments 

Methods A power calculation was executed?     If yes: value = 

if not: calculation with 

GPower 

 Is the assessment with sufficient details to allow replication?     

 Reliability and validity is provided or mentioned for each assessment?      

 If walking as a task was included, was the gait cycle model explained?      

Discussion The study discussed the clinical relevance of the data?      

One reviewer: yes no Comments/ details 

Are questionnaires included?    

Which tasks (squat, running,...)    

How was pain assessed?    If VAS mean & SD: 

Are patients having pain during the task/ strength 

measurement/...? 

  If yes how much ( mean & SD)?  
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Isokinetic/ isometric measurements: 

  Yes No  UTD Comments 

Methods Is the position of how resistance was applied well 

described to allow replication? (height of resistance, 

degrees of flexion/ abd., etc)?  

    

 Does the study provide enough numerical data?     

 Did they ensure an appropriate fixation?      

 Did they test the reliability and validity of their 

methods?  

    

 If HHD was used did they fixate it in a standardized 

manner? 

    

 

 

EMG checklist:  

 EMG (just one reviewer): 
 

 

 

 

 

 

 

 

 

EMG measurements:  

    

    

What did they analyze?  On- offset  Amplitude Frequency 

Procedure of normalization  

Which muscles have been assessed?   

Values of measurements:  

  Yes  no UTD comments 

Methods Did they follow guidelines for the application of the EMG?     

 Is the position of how electrodes were placed well described to allow replication?      

 Is the filtering procedure well described to allow replication?     

 Is the normalization procedure well described to allow replication?      
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Methods 2.3 Inclusion criteria for the meta-analysis:  

1. If studies provided data from patients-group with different pain-levels, the data of all 

patients with the different pain levels was averaged.  

2. If studies provided data from patient-groups which were subdivided into bilateral and 

unilateral pain, the data of both groups was averaged. 

3. If studies tested the affected and the not affected leg, only the data of the affected leg was 

included 

4. If studies provided data of individual components of a muscles (e.g. quadriceps: vastus 

medialis, lateralis, rectus femoris) as well as the overall result of the muscle, only the 

overall result of the quadriceps was included. If the overall result of the muscle was not 

given, it was calculated by averaging the results of the individual components.  

5. If studies included different step heights, only the step height which was closest to the 

average step height of 19.5 cm (+ 3.03SD, range: 15.24 to 25.4 cm) was included.  

6. If studies had published raw data and normalised strength data, only the normalised data 

was included, as normalised data is more representative and was published in all strength 

studies. 

7. If studies published data of the average and the peak strength, only the peak strength 

results were included, as the majority of studies had published peak strength.  

8. If studies published data of the isometric and isokinetic strength, only the data of the 

isokinetic strength was included, as the isokinetic dynamometers are considered as the 

gold standard in simultaneous strength and angle measurements for the evaluation of 

dynamic muscular performance (Kannus, 1994; H. Lund et al., 2005; Pincivero et al., 

1997) 

9. If studies presented results for the eccentric and concentric phase these results were 

averaged, as most studies presented the average force of the movement throughout an 

isokinetic task. 

10. If studies provided data from isokinetic measurements at different speeds only the results 

at 60 degrees/seconds were included, as this speed had been assessed in all isokinetic 

trials. 

11. If studies reported the mean and peak results of the amplitude. Only the mean amplitude 

results had been included, as the differences between mean and peak amplitude had been 
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shown to be not significant and the mean amplitude was more representative throughout 

the studies (Esculier: peak amplitude: SMD: -0.52, 95% CI: -1.15 to 0.1, Willson: peak 

amplitude: SMD: 0.54, 95% CI: -0.1 to 1.17 ) (J.-F. Esculier et al., 2015; Willson et al., 

2011).  

12. To ensure that the results within the meta-analysis were representative and that the 

heterogeneity between the studies was reduced, a hierarchy of activities was developed. If 

studies measured the individual during several activities only the data from the activity 

which was highest in the hierarchy was included. The main two criteria for the hierarchy 

were: 

a. The more frequently activities were used within the studies the higher the activity 

was ranked. 

b. The more similar the activities were, the higher they were ranked. Additionally 

the following criteria were applied: closed kinetic chain over open kinetic chain 

and eccentric over concentric exercises.  

The highest rank (1) was assigned to “squatting” (single leg squat or double leg squat). 

The second highest rank (2) was given to closed kinetic chain exercises, which were 

mostly leg press exercises and thus closely related to squatting. The third rank (3) was 

assigned to “stair stepping” (whereby in studies data on ascending and descending stairs 

was averaged to make it comparable to studies which had analysed the “stair stepping” 

task). The following ranks were 4) eccentric quadriceps exercises; 5) stair descending, 6) 

stair ascending, 7) ramp descending and 8) ascending, 9) anterior reach test and 10) 

single leg vertical jump. More information can be found in the table of hierarchy 

13. If studies compared the muscle activity ratio during different joint angles of knee flexion, 

only the knee flexion degree results which were closest to the average of 45° degrees 

knee flexion were included. 

14. If studies had assessed the quadriceps flexibility by using different tests, only the data 

from the Ely‟s test was included as it was used in all studies.  

15. If studies distinguished the results between female and male participant the data was 

averaged. 
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Table 2.1: Characteristics of included studies: strength studies 

Paper 
sample size PFP sample size control  low:  

range 

upper: 

range 

age  height (m) weight (kg) VAS AKPS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control  PFP  control  mean mean 

Boling (2009) 13 7 20 13 7 20 18 40 26.8 25.6 171.8 169.5 72.4 70 5.06 68.9 

Callaghan (2004) 35 22 57 6 4 10 - - - - - - - - - - 

Cichanowski (2007) 13 0 13 13 0 13 - - 19.3 19.5 177 192 68.6 61.4 - - 

De Moura Campos (2014) 20 0 20 20 0 20 20 40 23 24 162 163 56.8 61.9 6 78.9 

Dierks (2008) 15 5 20 15 5 20 18 45 24.1 24.6 171 170 65.75 63.02 4.9 - 

Duvigneaud (2008) 26 0 26 36 0 36 18 34 - - 166.8 167.1 60.2 61.9 - - 

Dvir (1990) 21 34 55 15 15 30 18 42 20.5 19 - - - - - - 

Ferber (2011) 10 5 15 6 4 10 - - 35.2 29.9 165 173 69.1 73.1 - - 

Ireland (2003) 15 0 15 15 0 15 12 21 15.7 15.7 - - 63.1 56.6 5.8 - 

Kaya (2010) 0 12 12 0 16 16 15 45 26.08 22.37 173.75 176 72.83 76.62 6.33 - 

Magalhaes (2010) 50 0 50 50 0 50 15 40 24.6 24.1 161.8 161.2 59.7 57.9 1.3 - 

McMoreland (2011) 12 0 12 12 0 12 19 31 23 21 165.75 164.58 62.75 62.58 - - 

Moradi (2014) 12 0 12 12 0 12 19 23 20.58 20.83 162 162 58.74 58.54 - - 

Nakagawa (2012) 20 20 40 20 20 40 18 35 23.25 22.7 173 169.5 69.05 67 - - 

Nakagawa (2015) 20 10 30 20 10 30 18 35 22.7 22.3 171.3 168.6 65.3 63.3 - - 

Oliveira (2014) 25 0 25 20 0 20 - - 22.2 23.36 159.3.4 154.62 55.34 57.36 - - 

Ott (2011) - - 20 - - 20 18 45 20.9 22.6 170.69 168.21 70.34 65.5 1.24  

Piva (2005) 17 13 30 17 13 30 20 42 25.8 25.7 169.7 170.9 76.9 68.8 3.9 - 

Powers (1997) 19 0 19 19 0 19 14 46 25.4 27.5 165.1 165.3 62.4 59.2 4.4 - 

Rathleff (2013) 16 4 20 16 4 20 12 16 14.6 14.8 167 167.4 55.2 56.1 5.5 - 

Robinson (2007) 10 0 10 10 0 10 12 35 21 26.6 - - 63.5 66.5 - 69.7 

Souza (2009) 19 0 19 19 0 19 - 45 27 26 169 169 64.7 62.9 - - 

Thijs (2011) 16 0 16 61 0 61 - - 41.6 37.5 166 167 70.1 68.3 - - 

Thomeé (1996) 11 0 11 20 0 20 17 30 23.5 24.7 165.6 167.3 60.7 61.8 4.2 - 

Van Tiggelen (2004) 0 31 31 0 65 65 17 27 - - 178.4 181.5 70.6 70.2 - - 

Werner (1995) 14 13 27 14 13 27 - - 28.1 - - - - - - - 

 mean x (SD) 
19.38 

(15.02) 

7.69 

(10.46) 

26.81 

(19.42) 

19.12 

(14.5) 

7.62 

(13.63) 

26.48 

(16.98) 

16.74 

(2.62) 

35.85 

(8.85) 

24.62 

(6.05) 

24.15 

(5.2) 

168.8 

(4.7) 

169.19 

(7.51) 

65.15 

(5.87) 

64.2 

(5.48) 

4.42 

(1.73) 

72.5 

(5.56) 
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Table 2.2: Characteristics of included studies: electromyographic studies 

 

 

 

 

Paper 

sample size PFP sample size control 
 lower  

range: 

upper: 

range 

age  height (m) weight (kg) VAS AKPS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control  PFP  control  mean Mean 

Aminaka (2011) 13 7 20 13 7 20 - - 21.45 21.35 169.96 172.21 71.3 69.68 - - 

Bley (2014) 20 0 20 20 0 20 18 35 23.5 23.1 165 162 55.3 55.9 4.9 80.2 

Bolgla (2011) 18 0 18 18 0 18 - - 24.5 23.9 170 170 63.1 62.1 4.4 - 

Boling (2006) 9 5 14 9 5 14 18 42 24 23 167.5 171 71.6 72.4 5.32 - 

Briani (2015) 31 0 31 28 0 28 - - 21.9 22.07 165 165 65.72 62.3 - - 

Cavazzuti (2010) 13 2 15 10 10 20 12 50 19 23 - - - - - - 

Coqueiro (2005) 10 0 10 10 0 10 - - 23.2 21.8 158 165 50.53 58.38 - - 

Earl (2005) 13 3 16 13 3 16 - - 21.5 21.1 165.3 165.6 62.1 65 - - 

Esculier (2015) 16 5 21 15 5 20 18 45 34.1 33.2 167.8 169.1 67.4 62.8 2.8 - 

Felicio (2011) 19 0 19 20 0 20     23.5 21.5 161.6 160.8 57.9 54.4 - - 

Ferrari (2014) - - 22 - - 29 18 30 20.42 22.65 164 164 57.94 61.79 - - 

Karst (1995) 18 6 24 16 8 24 15 46 28.3 28.8 172 173.6 64.4 66 - - 

Kaya (2010) 0 12 12 0 16 16 15 45 26.08 22.37 173.75 176 72.83 76.62 - - 

Liebensteiner (2008) 11 8 19 11 8 19 - 40 25.2 25.7 174 177 66.1 66.9 - - 

Mostamand (2011) 7 11 18 7 11 18 - 40 27.9 26.4 171 172 71.5 71.6 - - 

Nakagawa (2011) 9 0 9 10 0 10 18 35 23.33 22.7 165.2 163.4 61.39 56 - 73 

Nakagawa (2012) 20 20 40 20 20 40 18 35 23.25 22.7 173 169.5 69.05 67 - - 

Nakagawa (2015) 20 10 30 20 10 30 18 35 22.7 22.3 171.3 168.6 65.3 63.3 - - 

O'Sullivan (2012) 12 0 12 12 0 12 18 35 23 21 165.7 164.6 62.8 62.6 0.33 78 

Ott (2011) - - 20 - - 20 18 45 20.9 22.6 170.69 168.21 70.34 65.5 1.24 - 

Owings (2002) 12 8 20 4 10 14 - - 31.86 23.89 169.8 175.78 77.12 74.19 - - 

Powers (1996) 26 0 26 19 0 19 14 46 25.6 27.5 165.1 165.3 63.9 59.2 - - 

Saad (2011) 15 0 15 15 0 15 - - 23.16 23.3 159.66 160.4 58.66 53.47 - - 

Song (2014) 16 0 16 8 0 8 - - 25.7 28.6 164.1 161.1 55.5 52.1 4.16 77.8 

Willson (2011) 20 0 20 20 0 20 18 35 21.3 21.6 168 169 62.9 62.1 - - 

 mean x (SD) 

15.13 

(6.55) 

4.22 

(5.36) 

19.48 

(6.92) 

13.83 

(6.37) 

4.91 

(5.87) 

19.2 

(7.05) 

16.86 

(1.99) 

39.94 

(5.78) 

24.21 

(3.45) 

23.85 

(2.96) 

167.39 

(4.32) 

167.88 

(4.94) 

64.36 

(6.41) 

63.39 

(6.55) 

3.31 

(1.91) 

77.25 

(3.03) 
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Table 2.3: Characteristics of included studies: flexibility, fatigue/ endurance, inhibition, atrophy and break phenomenon studies 

 

Flexibility 

sample size PFP sample size control  lower  

range: 

upper: 

range 

age  height (m) weight (kg) VAS PSS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control PFP control mean Mean 

Earl (2005) 13 3 16 13 3 16 - - 21.5 21.1 165.3 165.6 62.1 65 -  

Hudson (2009) 4 8 12 4 8 12 18 40 32.9 30.6 171.5 173.8 75.3 71 - - 

Ohejoung (2014) 9 5 14 23 19 42 18 25 22.1 21.9 167.4 167.1 62 57.64 - - 

Peeler (2007) 24 16 40 13 30 43 18 45 31 28 169 167 71.2 68.2 - 28 

Piva (2005) 17 13 30 17 13 30 20 42 25.8 25.7 169.7 170.9 76.9 68.8 3.9 - 

White (2009) 11 6 17 12 13 25 18 35 27 25.2 171 175 77.7 74.3 3.1 - 

Witvrouw (2000) 13 11 24 118 140 258 17 21 - - 179.3 180.16 68.14 69.96 - - 

 mean x (SD) 
13 

(6.3) 

8.86 

(4.67) 

21.86 

(10.14) 

28.57 

(39.84) 

32.29 

(48.26) 

60.86 

(87.73) 

18.17 

(0.98) 

34.67 

(9.69) 

26.72 

(4.6) 

25.42 

(3.6) 

170.46 

(4.44) 

171.37 

(5.28) 

70.48 

(6.64) 

67.84 

(5.31) 

3.5 

(0.57) 
28 

Fatigue/ endurance 
sample size PFP sample size control lower  

range: 

upper: 

range 

age height (m) weight (kg) VAS PSS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control PFP control mean Mean 

Bazett Jones (2013) 9 10 19 9 10 19 18 40 26 24.3 174 174 77.3 70.2 - - 

Callaghan (2001) - - 10 - - 10 - - 31.3 29.7 - - - - 4 - 

Dierks (2008) 15 5 20 15 5 20 18 45 24.1 24.6 171 170 65.75 63.02 4.9 - 

Negahban (2013) 12 3 15 12 3 15 19 35 25.8 25.2 164 164 - - 5.66 - 

McMoreland (2011) 12 0 12 12 0 12 19 31 23 21 165.75 164.58 62.75 62.58 - - 

Willson (2008) 20 0 20 20 0 20 18 35 23.3 23.7 166 166 61.5 61.1 - 80.4 

 mean x (SD) 
13.6 

(4.16) 
6 (3.6) 

16 

(4.34) 

13.6 

(4.16) 
6 (3.6) 

16 

(4.34) 

18.4 

(0.55) 

37.2 

(5.4) 

25.58 

(3.07) 

24.75 

(2.84) 

168.15 

(4.18) 

167.72 

(4.22) 

66.83 

(7.21) 

64.23 

(4.07) 

4.85 

(0.83) 
80.4 

Inhibition 
sample size PFP sample size control lower  

range: 

upper: 

range 

age height (m) weight (kg) VAS PSS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control PFP control mean Mean 

Suter (1998) 6 13 19 5 12 17 - - 35.6 - - - - - - - 

Thomeé (1996) 11 0 11 20 0 20 17 30 23.5 24.7 165.6 167.3 60.7 61.8 4.2 - 

 mean x (SD) 
8.5 

(3.54) 
6.5 

(9.19) 
15 

(5.66) 
12.5 

(10.61) 
6 

(8.49) 
18.5 

(2.12) 
17 30 

29.55 
(8.56) 

24.7 165.6 167.3 60.7 61.8 4.2 - 

Atrophy 
sample size PFP sample size control lower  

range: 

upper: 

range 

age height (m) weight (kg) VAS PSS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control PFP control mean Mean 

Callaghan (2004) 35 22 57 6 4 10   34.4 30.6 - - - - - - 

Giles (2015) 20 15 35 20 15 35 18 40 28.2 28.3 172.5 171.2 72.6 72.6 5.4 - 

Jan (2009) 41 13 54 41 13 54 
 

50 40.8 40.8 160.7 160.1 58.4 57.9 - - 

Pattyn (2011) 25 21 46 17 13 30 12 40 25 21.6 173.4 173.1 68.9 66.7 - - 

 mean x (SD) 
30.25 

(9.5) 

17.75 

(4.43) 

48 

(9.83) 

21 

(14.63) 

11.25 

(4.92) 

32.25 

(18.08) 

15 

(4.25) 

43.33 

(5.77) 

32.1 

(6.99) 

30.33 

(7.96) 

168.87 

(7.09) 

168.13 

(7.02) 

66.63 

(7.37) 

65.73 

(7.4) 
5.4 - 

Break phenomenon 
sample size PFP sample size control lower  

range: 

upper: 

range 

age height (m) weight (kg) VAS PSS 

♀ ♂ ♂♀ ♀ ♂ ♂♀ PFP control PFP control PFP control mean Mean 

Anderson (2003) 20 0 20 20 0 20 19 29 166 167 63.7 62.7 29 166 - - 
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Table 2.4: Characteristics of included studies: Downs and Black quality checklist for strength studies

Paper 
1  

clear aim 

2 clear 

outcome  

measure 

3  

clear patients 

characteristics 

4 clear 

explanation  

of  

methodology 

6 clear  

findings 

7 random 

variability  

outcome 

10 clear  

p-values 

11 subject  

representativity 

12 population  

representativity 

18 appropriate  

statistics 

20 accurate  

outcomes 

21 

appropriate 

case- 

control 

matching 

27  

power 

analysis 

total of 

13 

Boling (2009) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Callaghan (2004) Yes Yes  No No  Yes Yes Yes UTD UTD Yes Yes UTD Yes 8 

Cichanowski (2007) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 

De Moura Campos (2014) Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes No 11 

Dierks (2008) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 

Duvigneaud (2008) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes UTD No 11 

Dvir (1990) Yes Yes No Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Ferber (2011) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes No Yes 9 

Ireland (2003) Yes Yes No Yes Yes Yes Yes UTD UTD No Yes Yes Yes 9 

Kaya (2010) Yes Yes Yes No Yes Yes Yes UTD UTD No Yes No Yes 8 

Magalhaes (2010) Yes Yes Yes Yes Yes Yes No YES UTD No Yes Yes No 9 

McMoreland (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes UTD No 8 

Moradi (2014) Yes Yes Yes Yes Yes Yes No UTD UTD No Yes Yes No 8 

Nakagawa (2012) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 13 

Nakagawa (2015) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Oliveira (2014) Yes Yes Yes No Yes Yes No UTD UTD UTD Yes Yes No 7 

Ott (2011) Yes Yes No Yes Yes Yes Yes UTD UTD No Yes UTD No 7 

Piva (2005) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes Yes 11 

Powers (1997) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Rathleff (2013) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 13 

Robinson (2007) Yes Yes No Yes Yes Yes Yes UTD UTD Yes Yes UTD No 8 

Souza (2009) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes No 11 

Thijs (2011) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No No 10 

Thomeé (1996) Yes Yes Yes UTD Yes Yes Yes UTD UTD No Yes Yes No 8 

Van Tiggelen (2004) Yes Yes No Yes Yes Yes Yes UTD UTD No Yes UTD No 8 

Werner (1995) Yes Yes No Yes Yes Yes Yes UTD UTD Yes Yes UTD No 8 
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Table 2.5: Characteristics of included studies: Downs and Black quality checklist for electromyographic studies 

 

 

 

Paper 
1 clear 

aim 

2 clear 

outcome  

measure 

3 

clear 

patients 

characteristi

cs 

4 clear 

explanation  

of 

methodology 

6 clear  

finding

s 

7 random 

variability  

outcome 

10 clear  

p-values 

11 subject  

representativity 

12 population  

representativity 

18 

appropriate  

statistics 

20 

accurate  

outcomes 

21 

appropriate 

case- 

control 

matching 

27  

power 

analysis 

total 

of 13 

Aminaka (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Bley (2014) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes Yes 11 

Bolgla (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No UTD Yes No 8 

Boling (2006) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Briani (2015) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes Yes 11 

Cavazzuti (2010) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes No No 8 

Coqueiro (2005) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Earl (2005) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 

Esculier (2015) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Felicio (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Ferrari (2014) Yes Yes No No Yes Yes No UTD UTD No Yes UTD No 5 

Karst (1995) Yes Yes Yes No Yes Yes Yes UTD UTD No Yes Yes No 8 

Kaya (2010) Yes Yes Yes UTD Yes Yes Yes UTD UTD No Yes UTD Yes 8 

Liebensteiner (2008) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes Yes Yes 10 

Mostamand (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Nakagawa (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Nakagawa (2012) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 13 

Nakagawa (2015) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

O'Sullivan (2012) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes Yes Yes 10 

Ott (2011) Yes Yes No No Yes Yes Yes UTD UTD Yes Yes UTD No 7 

Owings (2002) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes No No 8 

Powers (1996) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Saad (2011) Yes Yes Yes No Yes Yes Yes UTD UTD No Yes Yes No 9 

Song (2014) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes Yes Yes 10 

Willson (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 
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Table 2.6: Characteristics of included studies: Downs and Black quality checklist for flexibility, fatigue/ endurance, inhibition, 

atrophy and break phenomenon studies 

Paper 
1  

clear aim 

2 clear 

outcome  

measure 

3  

clear patients 

characteristics 

4 clear 

explanation  

of  

methodology 

6 clear  

findings 

7 random 

variability  

outcome 

10 clear  

p-values 

11 subject  

representativity 

12 population  

representativity 

18 appropriate  

statistics 

20 accurate  

outcomes 

21 

appropriate 

case- 

control 

matching 

27  

power 

analysis 

total of 

13 

Flexibility studies 

Earl (2005) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 

Hudson (2009) Yes Yes No Yes Yes Yes Yes UTD UTD Yes Yes Yes Yes 10 

Ohejoung (2014) Yes Yes No No Yes Yes No UTD UTD No Yes Yes No 6 

Peeler (2007) Yes Yes Yes Yes Yes Yes No UTD UTD No Yes Yes No 8 

Piva (2005) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes Yes 11 

White (2009) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes UTD No 9 

Witvrouw (2000) Yes Yes No No Yes Yes Yes UTD UTD Yes Yes UTD Yes 8 

Fatigue and endurance studies 

Bazett Jones (2013) Yes Yes Yes No Yes Yes Yes UTD UTD Yes Yes Yes No 9 

Callaghan (2001) Yes Yes No Yes Yes Yes Yes UTD UTD Yes Yes UTD UTD 8 

Dierks (2008) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes Yes 10 

McMoreland (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes UTD No 8 

Negahban (2013) Yes Yes No  Yes Yes Yes No UTD UTD No Yes UTD No 6 

Willson (2008) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes UTD Yes 10 

Muscle inhibition studies 

Suter (1998) Yes Yes No Yes No No No UTD UTD Yes Yes UTD No 5 

Thomeé (1996) Yes Yes Yes UTD Yes Yes Yes UTD UTD No Yes Yes No 8 

Muscle atrophy studies 

Callaghan (2004) Yes Yes No Yes Yes Yes Yes UTD UTD Yes Yes UTD Yes 9 

Giles (2015) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Jan (2009) Yes Yes Yes Yes Yes Yes Yes UTD UTD No Yes Yes No 9 

Pattyn (2011) Yes Yes Yes Yes Yes Yes Yes UTD UTD Yes Yes Yes No 10 

Break phenomenon studies  

Herrington (2003) Yes Yes No Yes Yes Yes Yes UTD UTD UTD UTD UTD No 6 
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Table 2.7: Characteristics of included studies: additional quality checklist for strength studies

Paper 

general questionnaire strength questionnaire 

total 
Max 

score 

Overall 

score 

High/ 

Moderate or low 

quality 

clear  

abstract 

clear  

introduction 

allow  

replication 

Reliability 

for measures 

clinical  

relevance 

clear 

position 

enough 

numerical 

data 

appropriate  

fixation 

HHD 

fixated 

Boling (2009) Yes Yes 8 Yes Yes Yes Yes Yes Not needed 8 21 17 81% MQ 

Callaghan (2004) Yes Yes 7 Yes Yes Yes Yes Yes Not needed 7 22 15 68.2% LQ 

Cichanowski (2007) Yes Yes 5 No No Yes Yes No No 5 22 15 68.2% LQ 

De Moura Campos (2014) Yes Yes 6 Yes No Yes Yes No No 6 22 17 77.3% MQ 

Dierks (2008) Yes Yes 8 Yes No Yes Yes Yes Yes 8 22 18 81.8% MQ 

Duvigneaud (2008) Yes Yes 6 No No Yes Yes Yes Not needed 6 21 17 81% MQ 

Dvir (1990) Yes Yes 8 Yes Yes Yes Yes Yes Not needed 8 21 17 81% MQ 

Ferber (2011) Yes Yes 5 No Yes No Yes UTD UTD 5 22 14 63.6% LQ 

Ireland (2003) Yes Yes 8 No Yes Yes Yes Yes Yes 8 22 17 77.3% MQ 

Kaya (2010) Yes Yes 4 No Yes No Yes UTD Not needed 4 21 12 57.4% LQ 

Magalhaes (2010) Yes Yes 7 Yes Yes Yes Yes No No 7 22 16 72.7% MQ 

McMoreland (2011) Yes Yes 8 Yes Yes Yes Yes Yes Not needed 8 21 16 76.2% MQ 

Moradi (2014) Yes Yes 8 No Yes Yes Yes Yes Yes 8 22 16 72.7% MQ 

Nakagawa (2012) Yes Yes 8 Yes Yes Yes Yes Yes Yes 8 22 21 95.5% HQ 

Nakagawa (2015) Yes Yes 9 Yes No Yes Yes Yes Yes 9 22 19 86.4% HQ 

Oliveira (2004) Yes Yes 6 Yes Yes Yes Yes UTD Not needed 6 21 13 61.9% LQ 

Ott (2011) Yes Yes 4 No Yes No Yes UTD Not needed 4 22 12 54.5% LQ 

Piva (2005) Yes Yes 6 Yes No Yes Yes No No 6 22 17 77.3% MQ 

Powers (1997) Yes Yes 5 No Yes No Yes Yes Not needed 5 21 15 71.4% MQ 

Rathleff (2013) Yes Yes 9 Yes Yes Yes Yes Yes Yes 9 22 22 100% HQ 

Robinson (2007) Yes Yes 6 Yes No Yes Yes No UTD 6 22 14 63.6% LQ 

Souza (2009) Yes Yes 7 Yes No Yes Yes Yes Not needed 7 21 18 85.7% HQ 

Thijs (2011) Yes Yes 6 Yes No Yes Yes No No 6 22 16 72.7% MQ 

Thomeé (1996) Yes Yes 7 Yes Yes Yes No Yes Not needed 7 21 15 71.4% MQ 

Van Tiggelen (2004) Yes Yes 6 No No Yes Yes Yes Not needed 6 21 14 66.7% LQ 

Werner (1995) Yes Yes 5 Yes Yes No No UTD Not needed 5 21 13 61.9% LQ 
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Table 2.8: Characteristics of included studies: additional quality checklist for electromyographic studies 

Paper 

general questionnaire Muscle activity questionnaire 

total 
Max 

score 

Overall 

score 

 

High/ 

Moderate or low 

quality 

clear  

abstract 

clear  

introduction 

allow  

replication 

Reliability  

for  

measures 

clinical  

relevance 

Existing 

guidelines 

Electrode 

placement allow 

replication 

Filtering 

procedure well 

described 

Normalisation 

procedure well 

described 

Aminaka (2011) Yes Yes UTD No Yes No Yes Yes Not needed 5 21 15 71.4% MQ 

Bley (2014) Yes Yes UTD UTD Yes No Yes Yes UTD 5 22 16 72.7% MQ 

Bolgla (2011) Yes Yes Yes No Yes Yes Yes Yes Not needed 7 21 15 71.4% MQ 

Boling (2006) Yes Yes Yes Yes Yes Yes Yes Yes Not needed 8 21 17 81% MQ 

Briani (2015) Yes Yes No Yes Yes Yes No Yes Not needed 6 21 17 81% MQ 

Cavazzuti (2010) Yes Yes Yes No Yes UTD Yes Yes Yes 7 22 15 68.2% LQ 

Coqueiro (2005) Yes Yes No Yes Yes No Yes No Yes 6 22 15 68.2% LQ 

Earl (2005) Yes Yes Yes Yes Yes No Yes No Not needed 6 21 16 76.2% MQ 

Esculier (2015) Yes Yes Yes No Yes Yes Yes Yes Yes 7 22 17 77.3% MQ 

Felicio (2011) Yes Yes Yes No Yes Yes Yes No No 6 22 15 68.2% LQ 

Ferrari (2014) Yes Yes No Yes Yes No Yes Yes Not needed 6 21 11 52.4% LQ 

Karst (1995) Yes Yes No Yes Yes Yes UTD UTD Not needed 5 21 13 61.9% LQ 

Kaya (2010) Yes Yes Yes No Yes No Yes No Not needed 5 21 13 61.9% LQ 

Liebensteiner (2008) Yes Yes No No No No No No No 2 22 12 54.5% LQ 

Mostamand (2011) Yes Yes Yes No Yes No Yes Yes Yes 7 22 16 72.7% MQ 

Nakagawa (2011) Yes Yes Yes No No Yes Yes Yes Yes 7 22 17 77.3% MQ 

Nakagawa (2012) Yes Yes Yes Yes No Yes Yes Yes Yes 8 22 21 95.5% HQ 

Nakagawa (2015) Yes Yes Yes Yes Yes Yes Yes Yes Yes 9 22 19 86.4% HQ 

O'Sullivan (2012) Yes Yes Yes No No Yes Yes No Yes 6 22 16 72.7% MQ 

Ott (2011) Yes Yes No No Yes Yes Yes No No 5 22 12 54.5% LQ 

Owings (2002) Yes Yes No No No Yes No No Yes 4 22 12 54.5% LQ 

Powers (1996) Yes Yes No No Yes Yes Yes No Yes 6 22 16 72.7% MQ 

Saad (2011) Yes Yes No No Yes No Yes No Yes 5 22 14 63.6% LQ 

Song (2014) Yes Yes Yes No Yes Yes Yes No No 6 22 16 72.7% MQ 

Willson (2011) Yes Yes Yes Yes No Yes Yes Yes Yes 8 22 18 81.8% MQ 
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Table 2.9: Characteristics of included studies: additional quality checklist for flexibility, fatigue/ endurance, inhibition, atrophy and 

break phenomenon studies 

Paper general questionnaire 

total 
Overall 

score 

High/ Moderate 

or low quality 
 

clear  

abstract 

clear  

introduction 

allow  

replication 

Reliability 

for 

measures 

clinical  

relevance 

Flexibility studies 

Earl (2005) Yes Yes Yes No Yes 4 14 77.8% MQ 

Hudson (2009) Yes Yes Yes No Yes 4 14 77.8% MQ 

Ohejoung (2014) Yes Yes No No Yes 3 9 50% LQ 

Peeler (2007) Yes Yes Yes No No 3 11 61.1% LQ 

Piva (2005) Yes Yes Yes Yes No 4 15 83.3% MQ 

White (2009) Yes Yes Yes Yes No 4 13 72.2% MQ 

Witvrouw (2000) Yes Yes UTD No UTD 2 10 55.6% LQ 

fatigue and endurance studies 

Bazett Jones (2013) Yes Yes No No Yes 3 12 66.7% LQ 

Callaghan (2001) Yes Yes Yes Yes UTD 4 12 66.7% LQ 

Dierks (2008) Yes Yes Yes No No 3 13 72.2% MQ 

McMoreland (2011) Yes Yes Yes Yes Yes 5 15 83.3% MQ 

Negahban (2013) Yes Yes Yes No Yes 4 10 55.6% LQ 

Willson (2008) Yes Yes Yes No Yes 4 14 77.8% MQ 

Muscle inhibition studies 

Suter (1998) Yes Yes Yes No Yes 4 9 50% LQ 

Thomeé (1996) Yes Yes Yes Yes Yes 5 13 72.2% MQ 

Muscle atrophy studies 

Callaghan (2004) Yes Yes No Yes Yes 4 13 72.2% MQ 

Giles (2015) Yes Yes Yes No Yes 4 13 72.2% MQ 

Jan (2009) Yes Yes Yes Yes Yes 5 14 77.8% MQ 

Pattyn (2011) Yes Yes Yes Yes Yes 5 15 83.3% MQ 

Break phenomenon studies  

Herrington (2003) Yes Yes Yes No Yes 4 9 50% LQ 
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Table 2.10: Forest plot of Effect Size for ankle strength  

 
 

 

Table 2.11: Forest plot of Effect Size for knee strength  

 
 

Table 2.12: Forest plot of Effect Size for trunk and pelvis strength 
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Table 2.13: Forest plot of Effect Size for hip strength  
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Table 2.14: Forest plot of Effect Size for quadriceps atrophy 

 
 

 

Table 2.15: Forest plot of Effect Size for lower limb muscle amplitude 

  
 

 

Table 2.16: Forest plot of Effect Size for thigh muscle amplitude
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Table 2.17: Forest plot of Effect Size for gluteal muscle amplitude 

 

 

Table 2.18: Forest plot of Effect Size for quadriceps muscle amplitude  
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Table 2.19: Forest plot of Effect Size for trunk muscle amplitude 

 

 

Table 2.20: Forest plot of Effect Size for thigh muscle onset 

 

 

Table 2.21: Forest plot of Effect Size for gluteal muscle onset 
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Table 2.22: Forest plot of Effect Size for quadriceps muscle onset  

 

 
 

 

Table 2.23: Forest plot of Effect Size for thigh muscle onset duration  

 

  
 

Table 2.24: Forest plot of Effect Size for gluteal muscle onset duration  

 

 
 

 

Table 2.25: Forest plot of Effect Size for quadriceps muscle onset duration 
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Table 2.26: Forest plot of Effect Size for quadriceps muscle onset duration ratio of VM and 

GMed 

 

 
 

 

Table 2.27: Forest plot of Effect Size for quadriceps muscle onset duration ratio of VL and 

GMed 

 

 

 
 

 

Table 2.28: Forest plot of Effect Size for quadriceps muscle onset duration ratio of VL and 

VM 
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Table 2.29: Forest plot of Effect Size for quadriceps muscle frequency 
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Table 2.30: Forest plot of Effect Size for muscle flexibility 
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Table 2.31: Regression-analysis of Factors potentially related to heterogeneity in knee strength studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Studies were excluded if they not reported the factor 

 

 

Strength subgroups 

Test for subgroup 

differences  

(p-value) 

No of 

studies 

Knee extension 

SMD (95% 

CI) 
l2, P value 

Testing position 

Squat 

0.04 

2 
-1.36 

(-2.42; -0.3) 

72%, 

0.06 

Sitting 6 
-1.03 

(-1.44; -0.61) 
68%,  
0.008 

60 degrees knee 

flx 
2 

-0.64 

(-1.14; -0.14) 

0%, 

0.42 

90 degrees knee 
flx 

1 
-0.02 

(-0.63; 0.6) 
 

Testinga 

isometric 

testing 

0.54 

4 
-0.75 

(-1.49; 0) 

76%, 

0.006 

Isokinetic 

testing 7 
-1.01 

(-1.37; -0.65) 

62%, 

0.01 

Normalisation methoda 

Nm/body weight 

0.60 

5 
-0.75 

(-1.33; -0.16) 

78%, 

0.001 

Nm 4 
-0.95 

(-1.48; -0.43) 

58%, 

0.07 

Values used for 

analysisa  

averaged peak 

torque of all 
trialsb 0.0001 

7 
-1.02 

(-2.21; 0.17) 

82%, 

0.02 

peak 2 
-0.91 

(-1.36; -0.46) 

75%, 

<0.0001 

gender 

Female 

0.46 

4 
-0.99 

(-1.46; -0.51) 
51%, 
0.11 

Male 2 
-0.63 

(-1.01; -0.25) 

0%, 

0.68 

both 5 
-0.92 

(-1.59; -0.25) 
82%, 

0.00002 
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Table 2.32: Regression-analysis of Factors potentially related to heterogeneity in hip flexion and rotator strength studies 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Studies were excluded if they not reported the factor 

 

 

 

Strength subgroups 

Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip flexion Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip external rotation Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip internal rotation 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

Testing position 

Prone lying 

 0.5 

12 
-1.14  

(-3.05; 0.77) 
91%. 

0.001 
0.0005 

1 
-2.17 

(-3.22; -1.13) 
 

Sitting 2 
-0.47 

(-0.73; -0.22) 
49%, 

0.03 
6 

-0.24 

(-0.54; 0.06) 

30%, 

0.21 

Normalisation 

methoda 

 

Nm/kg* 
height 

0.15 

 

0.34 

2 
-0.47 

(-1.08; 0.14) 
61%, 
0.11 

0.49 

 

Nm/BW 
2 

-0.26  
(-1.39; 0.87) 

81%, 
0.02 

4 
-0.41 

(-1.01, 0.18) 
69%, 
0.02 

3 
-0.2 

(-0.75; 0.36) 
54%, 
0.12 

kg/cm*BW 

 

1 
-0.46 

(-1.09, 0.17) 
  

kg/BW 
1 

-1.21 

(-2; -0.43) 

Nm/BW*100 
1 

-1.65 

(-2.6; -0.7) 
 3 

-1.17 

(-2.04; -0.3) 

69%, 

0.04 
2 

-0.87 

(-2.16; 0.42) 

77%, 

0.04 

kg/BW*100 
1 

-0.81  
(-1.29; -0.34) 

 2 
-0.7 

(-1.61; 0.21) 
66%, 
0.09 

1 
-0.56 

(-1.03; -0.1) 
 

kg/BMI*100 
 1 

-0.22 

(-0.73; 0.29) 
  

Values used for 

analysisa 

averaged peak 

torque of all 

trialsb 0.22 

2 
-1.13 

(-1.92; -0.33) 
81%, 
0.02 

0.41 

3 
-0.76 

(-1.62; 0.09) 
83%, 
0.003 

0.19 

2 
-1.3 

(-2.87; 0.27) 
87%, 
0.006 

peak 2 
-0.26  

(-1.39; 0.87) 

81%, 

0.02 
6 

-0.37 

(-0.76; 0.03) 

54%, 

0.05 
3 

-0.2 

(-0.75; 0.36) 

54%, 

0.12 

gender 

Female 

 0.1 

9 
-0.73 

(-1.13; -0.33) 

66%, 

0.003 
0.27 

6 
-0.52 

(-1.05; 0.01) 

73%, 

0.002 

both 5 
-0.29 

(-0.63; 0.05) 

45%, 

0.12 
1 

-0.06 

(-0.68; 0.56) 
 



    

Appendices  

287 

 

 

Table 2.33: Regression-analysis of Factors potentially related to heterogeneity in hip abductor, adductor and extension strength 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Studies were excluded if they not reported the factor 

 

 

 

Strength subgroups 

Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip abduction Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip adduction Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Hip extension 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

Testing position 

Side lying 

0.001 

13 
-0.8 

(-1.07; -0.53) 
53%, 
0.01 

0.12 

2 
-0.11 

(-0.56; 0.33) 
13%, 
0.28 

 

Supine lying 2 
0.02 

(-0.39; 0.44) 

1%, 

0.31 
4 

-0.77 

(-1.48; -0.06) 

77%, 

0.005 

Normalisation 
methoda 

 

Nm/kg* 
height 

0.93 

2 
-0.64 

(-1; -0.27) 
0%, 
0.58 

0.003 

 

0.92 

1 
-0.31 

(-0.94; 0.31) 
 

Nm/BW 
4 

-0.7 
(-1.19; -0.21) 

47%, 
0.13 

3 
-0.24 

(-0.65; 0.18) 
20%, 
0.29 

3 
-0.43 

(-0.81; -0.06) 
0%, 
0.51 

kg/cm*BW 
1 

-0.81 

(-1.46; -0.17) 
 

  
kg/BW 

3 
-0.73 

(-1.73; 0.27) 
87%, 

0.0005 

Nm/BW*100 
4 

-1.04 

(-1.92; -0.16) 

80%, 

0.002 
1 

-0.64 

(-1.11; -0.17) 
 

3 
-0.58 

(-2.1; 0.94) 
91%, 

<0.00001 

kg/BW*100 
 1 

-2.2 
(-3.25; -1.15) 

 
kg/BMI*100 

1 
-0.5 

(-1.02; 0.01) 
  

Values used for 

analysisa 

averaged peak 

torque of all trials 
0.1 

4 
-1.08 

(-1.58; -0.59) 

55%, 

0.09 
0.17 

2 
-1.35 

(-2.87; 0.18) 

86%, 

0.0008 
0.49 

2 
0.17 

(-1.45; 1.79) 

91%, 

0.001 

peak 6 
-0.53 

(-0.97; -0.1) 
61%, 
0.02 

3 
-0.63 

(-1.2; -0.06) 
20%, 
0.29 

3 
-0.41 

(-0.78; -0.04) 
0%,  
0.48 

gender 

Female 

0.4 

9 
-0.79 

(-1.22; -0.35) 

70%, 

0.0007 
0.06 

5 
-0.65 

(-1.18; -0.11) 

71%, 

0.008 
0.63 

7 
-0.51 

(-1.01; 0) 

74%, 

0.0008 

both 6 
-0.55 

(-0.9; -0.2) 
51%, 
0.07 

1 
0.14 

(-0.48; 0.76) 
 1 

-0.31 
(-0.94; 0.31) 
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Table 2.34: Regression-analysis of Factors potentially related to heterogeneity in muscle amplitude studies 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Studies were excluded if they not reported the factor 

 

 

 

Amplitude  subgroups 

Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Gluteus medius 
Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Vastus medialis  
Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Vastus lateralis 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

SMD (95% 

CI) 
l2, P value 

Task 

Single leg 

triple hop test 

<0.0001 

1 
1.01  

(0.35; 1.68) 
 

0.09 

 

<0.00001 

1 
1.97 

(1.2; 2.74) 
 

Running 2 
0.01 

(-1.03; 1.04 

82%,  

0.02 
1 

0.08 

(-0.53; 0.69) 
 1 

0.28  

(-0.33; 0.9) 
 

Stairs stepping 2 
0.07  

(-1.65; 1.79) 

87%, 

0.005 
2 

-0.32 

(-1.16; 0.52) 

68%, 

0.08 
2 

-0.53 

(-0.99; -0.06) 

0%, 

0.4 

squat 3 
-0.18  

(-0.53; 0.17) 

0%, 

0.52 
2 

0.24 

(-1.65; 2.13) 

90%, 

0.001 
2 

0.06 

(-2.49; 2.62) 

94%, 

<0.0001 

Anterior reach 

test 
1 

1.63  

(0.9; 2.35) 
 1 

1.17  

(0.37; 1.97) 
 1 

2.16 

(1.23; 3.09) 
 

CKC  2 
-0.02 

(-0.47; 0.42) 

0%, 

0.92 
2 

-0.08 

(-0.53; 0.37) 

0%, 

0.44 

Normalisation 

methoda 

MVIC 

0.001 

6 
0.24  

(-0.3; 0.77) 

75%, 

0.001 

0.002 

6 
0.04 

(-0.35; 0.43) 

52%, 

0.07 

<0.00001 

7 
0.24  

(-0.48; 0.96) 

87%, 

<0.00001 

Mean 2 
-0.33  

(-1.26; 0.6) 

63%, 

0.1 
1 

-0.78 

(-1.53; -0.03) 
 1 

-0.78 

(-1.53; -0.03) 
 

Other method 1 
1.63  

(0.9; 2.35) 
 1 

1.17 

(0.37; 1.97) 
 1 

2.16 

(1.23. 3.09) 
 

Rectification 

and processing 

methoda 

Rms 

0.04 

4 
0.73  

(0; 1.46) 

73%, 

0.01 

0.006 

4 
0.53 

(-0.15; 1.2) 

70%, 

0.02 

0.0008 

5 
1.04 

(0.03; 2.04) 

88%, 

<0.00001 

“full wave 

rectification” 
1 

-0.52  

(-1.15; 0.1) 
 2 

0.08  

(-0.35; 0.5) 

0%, 

1 
2 

-0.05 

(-0.68; 0.59) 

54%, 

0.14 

Bandpass filter 4 
0.05  

(-0.64; 0.74) 

77%, 

0.005 
2 

-0.73  

(-1.23; -0.23) 

0%, 

0.86 
2 

-1.01 

(-1.52; -0.49) 

0%, 

0.41 

Gender  

Female 

0.45 

6 
0.1  

(-0.42; 0.62) 

72%, 

0.003 
0.96 

4 
0.08 

(-0.59; 0.75) 

71%, 

0.02 
0.94 

5 
0.36 

(-0.64; 1.36) 

89%, 

<0.00001 

Both gender 3 
0.68 

(-0.73, 2.08) 

90%, 

<0.0001 
4 

0.1  

(-0.58; 0.79) 

76%, 

0.006 
4 

0.3 

(-0.86; 1.46) 

91%, 

<0.00001 
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Table 2.35: Regression-analysis of Factors potentially related to heterogeneity in sEMG onset studies 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Studies were excluded if they not reported the factor 

 

 

 

 

 

sEMG onset subgroups 

Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Gluteus medius 
Test for 

subgroup 

differences  

(p-value) 

No of 

studies 

Vastus medialis-Vastus 

lateralis 

SMD (95% CI) l2, P value 
SMD (95% 

CI) 
l2, P value 

Task 

Stairs stepping 

0.04 

4 
0.1  

(-0.38; 0.57) 
41%, 
0.17 

0.2 

2 
-0.91  

(-2.17; 0.36) 
82%, 
0.02 

Running 1 
-0.74  

(-1.38; -0.1) 
  

squat 

 

2 
-0.2  

(-0.67; 0.27) 
0%, 
0.55 

Strength testing 2 
-0.84 

(-1.43; -0.25) 

18%, 

0.27 

Onset 

definitiona 

2SD for 25 ms 

0.12 

3 
0.05  

(-0.58; 0.68) 
59%, 
0.08 

0.25 

 

3SD for 25 ms 1 
0.26  

(-0.65; 1.16) 
 3 

-0.69 

(-1.44; 0.06) 

69%, 

0.04 

5SD for 25 ms 1 
-0.74 

(-1.38; -0.1) 
  

Double threshold onset  1 
-0.05  

(-0.72; 0.62) 
 

Gender  

Female 

0.56 

2 
-0.29 

(-1.27; 0.68) 
68%, 
0.08 

0.21 

1 
-0.29 

(-0.95; 0.36) 
 

Both gender 3 
0.05 

(-0.58; 0.68)) 

59%, 

0.08 
4 

-0.59 

(-1.18; 0) 

63%, 

0.05 

male  1 
-1.18  

(-2; -0.35) 
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Chapter 3:  

Methods 3.1.: HSCR 15-22 approval letter 
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Methods 3.2: Participant information sheet 
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Methods 3.3: Informed Consent form 
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Methods 3.4: Health history questionnaire 
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Chapter 4:  

Methods 4.1.: HSCR 15-22 approval letter 
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Methods: 4.2 History questionnaire for individuals with PFP  
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Chapter 5:  

Methods 5.1.: HSCR 15-22 approval letter 
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Chapter 6: 

Methods 6.1.: HSCR 15-22 approval letter 

 

 


