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MDSClone: Multidimensional Scaling Aided
Clone Detection in Internet of Things
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Abstract—Cloning is a very serious threat in the Internet
of Things (IoT), owing to the simplicity for an attacker to
gather configuration and authentication credentials from a
non-tamper-proof node, and replicate it in the network. In
this paper, we propose MDSClone, a novel clone detection
method based on multidimensional scaling (MDS). MDSClone
appears to be very well suited to IoT scenarios, as it (i) detects
clones without the need to know the geographical positions
of nodes, and (ii) unlike prior methods, it can be applied to
hybrid networks that comprise both static and mobile nodes,
for which no mobility pattern may be assumed a priori.
Moreover, a further advantage of MDSClone is that (iii) the core
part of the detection algorithm can be parallelized, resulting
in an acceleration of the whole detection mechanism. Our
thorough analytical and experimental evaluations demonstrate
that MDSClone can achieve a 100% clone detection probability.
Moreover, we propose several modifications to the original MDS
calculation, which lead to over a 75% speed up in large scale
scenarios. The demonstrated efficiency of MDSClone proves that
it is a promising method towards a practical clone detection
design in IoT.

I. INTRODUCTION

Internet of Things (IoT) is an emerging networking
paradigm, in which a large number of interconnected devices
communicate with each other to facilitate communications
between people and objects [1]. For example, a smart city
is composed of several smart sectors, such as [2] smart
homes, smart hospitals, and smart cars, which are significant
applications of IoT. In a smart home scenario, each IoT
gadget is equipped with embedded sensors and wireless
communication capabilities. The sensors are able to gather
environmental information and communicate with each other,
as well as the house owner and a central monitoring system.
In a smart hospital scenario, which could be implemented
using body sensor networks (BSN), patients wear implantable
sensors that collect body signals and send the data to a
local or remote database for further analysis. As another
example, in a smart traffic scenario embedded sensors in cars
are able to detect accident events or traffic information, and
collaboratively exchange such information.

On account of their restricted features and capabilities,
IoT devices are vulnerable to several security threats [3]. For
example, IoT devices could easily be captured, leading to a
clone attack (also known as a node replication attack). In such
a scenario, the captured device is reprogrammed, cloned, and
placed back in the network. Moreover, in special cases (e.g.,
misconfiguration or production by untrusted manufacturers
with adversarial intentions) devices that are supposed to be
trusted can cause clone attacks [4]. A clone attack is extremely
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harmful, because the clones with legitimate credentials will be
considered as legitimate devices. Therefore, such clones can
easily perform various malicious activities in the network [5],
[6], such as launching an insider attack (e.g., blackhole attack)
and injecting false data leading to hazards in an IoT scenario.

Problem Statement. While there exists fairly extensive
literature on clone attack detection approaches in WSNs [7],
[8], this remains an open problem when it comes to IoT
scenarios. In particular, compared with conventional WSNs,
two unique characteristics of IoT environment make the
establishment of clone detection schemes in IoT a more
challenging issue. First, there is a lack of accurate geographical
position information for the devices. For instance, the devices
embedded in smart cars are likely to derive their location
information via the car navigation system, i.e., geographical
positioning system (GPS), while the devices in a smart home
or BSN are unlikely to have embedded GPS capability,
owing to its high energy consumption and extra hardware
requirements [9]. Second, IoT networks are hybrid networks
composed of both static and mobile devices without a priori
mobility pattern (they can be static or moving with high or low
velocity) [10], e.g., a patient carrying wearable sensors and
living in a smart home. Wearable devices could be considered
as mobile nodes, because the patient may move around, while
most of the devices in a smart home are immobile. In fact,
IoT nodes are relocatable, without an a priori mobility pattern
(they can be static, moving with high velocity, or moving
slowly) [10]. Although some of the existing clone detection
methods for mobile networks (e.g., [11]–[13]) could be applied
to hybrid networks (composed of both stationary and mobile
devices), these suffer from a certain detection probability
degradation. In what follows, we explain how we address
these challenges and advance the state-of-the-art solutions in
detecting clone attacks.

Contribution. In this paper, we propose MDSClone, a
novel clone detection mechanism for IoT environments.
MDSClone specifically circumvents the two major
above-mentioned issues that emerge in IoT scenarios by
adopting a multidimensional scaling (MDS) algorithm [14],
[15]. In particular, our main contributions are as follows.

1) We propose a clone detection method that does not rely
on geographic positions of nodes. Instead, by adopting
the MDS algorithm, we generate the network map based
on the relative neighbor-distance information of the
nodes. While most of the state-of-the-art clone detection
methods assume that each node is always aware of its
geographical position, this assumption does not hold for
all the IoT devices [9]. Therefore, by removing such an
assumption in MDSClone, we significantly advance the
existing clone detection solutions for IoT.

2) Our proposed MDSClone method is capable of detecting
clones in the network based on topology distortion,
without considering any specific mobility pattern. This is
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an important feature of MDSClone, since as explained
earlier, IoT nodes do not follow a particular mobility
pattern, and existing clone detection methods for mobile
networks do not have reasonable performance in hybrid
networks (for more details please refer to Section II).
Compared to the related work, MDSClone method is
applicable for all pure static, pure mobile, and hybrid
networks, and the detection probability of MDSClone
remains the same for all of these network topologies.

3) We show that MDSClone is efficient in terms of the
computational overhead, because the main computation
is performed by the base station (BS), and the server-side
computation can easily be parallelized to significantly
improve the performance. This is an outstanding feature
of MDSClone compared to the state-of-the-art, as the
parallelization capability of the existing clone detection
methods remains unclear.

4) Along with the main MDSClone algorithm, we also
propose three techniques (i.e., CIPMLO, TI, and
SMEBM) to speed up the core part of MDSClone, which
comprises the MDS calculation.

5) We provide a thorough evaluation of our proposed
method considering different evaluation criteria, i.e.,
the clone detection probability and computation
time of our algorithm when adopting our proposed
speed-up methods. Moreover, we provide analytical
and experimental comparisons of MDSClone with
state-of-the-art clone detection methods. Our reported
experimental results exhibit a perfect detection of clone
nodes in the network, requiring a constant amount of
memory and a reasonable communication overhead.

II. RELATED WORK

In recent years, owing to the increasing interest in adopting
WSNs in several applications, there has been a surge of interest
in providing WSN-specific security solutions, amongst which
clone attack detection has attracted significant attention. In this
section, we review the clone detection methods that are most
closely related to our work, and clarify the difference between
our proposal and the existing related work.

Researchers [7], [8] have proposed several classifications
for clone detection approaches based on the required
information (i.e., location-based or location-independent),
detection methods (i.e., centralized, distributed, or partially
distributed), and supporting network type (i.e., mobile or
static networks). Our proposed MDSClone approach falls
in the category of location-independent centralized methods
supporting hybrid (both static and mobile) networks. We
believe that the centralized nature of MDSClone is not
a drawback, considering the emerging municipality-scale
IoT networking technologies such as NarrowBand-Internet
of Things (NB-IoT) [16] and LoRaWAN [17]. Indeed, a
centralized security monitoring solution is perfectly inline with
the hierarchical architecture fostered by such technologies,
which are currently being supported by key players, including
among others Cisco and Orange. For instance, the current
LoRaWAN deployment being developed in the city of Rome
concentrates all IoT sensor traffic collected by several tens
of radio stations spread across the whole of the Rome
municipality and relevant neighbors in a (logically) single
centralized network server, which therefore appears to be a
natural candidate to further host anomaly detection approaches
such as MDSClone.

In the case of static networks, a popular approach for
detecting clones is witness finding. In essence, the idea behind
witness finding is that the existence of clones must lead to
location conflicts. More specifically, each node u collects the
location information, L(v), of its neighboring nodes, e.g., v,
and sends the collected location claims 〈v, L(v)〉 to some
selected nodes. Nodes receiving two location claims with the
same ID v, but with two distinct locations, will serve as witness
nodes, and witness the location conflict. The witness finding
strategy not only detects the existence of clones, but also
identifies the clone IDs.

A network-wide broadcast is the simplest way to find
a witness, but this incurs a prohibitive communication cost.
In [18], the authors proposed two approaches, randomized
multicast (RM) and line-selected multicast (LSM), in
order to reduce the communication costs of network-wide
broadcasts. Two other approaches proposed in [19], i.e., single
deterministic cell (SDC) and parallel multiple probabilistic
cells (P-MPC), share the same spirit as RM and LSM.
However, SDC and P-MPC are only efficient when the
network is partitioned into cells. Compared with the
aforementioned approaches, the protocol proposed in [20],
i.e., the randomized, efficient, and distributed (RED) protocol,
provides an almost-perfect guarantee of clone detection. RED
utilizes a special centralized broadcasting device, such as a
satellite and UAV, in order to periodically broadcast the node
IDs responsible for detecting particular conflicting location
claims. In another study, Zhang et al. [21] proposed four
clone detection methods that take advantage of double ruling
and the Bloom filter. Recently, Dong et al. [22] proposed
the low-storage clone detection (LSCD) method, taking into
account the memory requirements and residual energies of
nodes. An inherent weakness among all of the witness
finding-based approaches is the assumption of the knowledge
of location information available for each node. A couple of
solutions take alternative approaches to detect clones, such
as the social fingerprint [23], predistributed keys [24], and
random clustering [25] methods.

In the case of mobile sensor networks, by using a
simple challenge-and-response strategy, XED [11] presents the
first distributed clone detection method for mobile networks.
However, it is vulnerable to collusions of the cloned nodes.
EDD [11], [12] is a distributed clone detection method based
on the discrepancy between the distributions of the numbers
of encounters with clone and ordinary nodes. In [26], a base
station (BS) collects the geographical positions of nodes,
looking for a clone moving with a speed exceeding the
pre-configured speed limit. In [5], [13], the same idea is
employed, but the ordinary nodes play the role filled by the
BS in [26].

We argue that, although most existing clone detection
methods proposed for mobile networks could be applied to
hybrid networks as well, this adoption will degrade the security
and clone detection probability. The clone detection methods
for mobile networks that do not (fully) rely on velocity
violations include XED [11], EDD [11], [12], TDD [13],
SDD-LC [13], SDD-LWC [13], and HIP-HOP [5]. The reason
that XED and EDD suffer from a security degradation when
applied to hybrid networks is that clones that are aware of
the positions of static nodes can either choose not to enter
the proximity of static nodes, or to enter at certain time slots.
If so, static nodes in XED do not have a chance to exchange
secret information with different clones. Moreover, in EDD the
number of times that each static node will encounter a clone
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node will be controlled by clones. Therefore, if clones adopt
the above evasion strategy, then only the mobile nodes (rather
than both static and mobile nodes) will be able to detect clones,
reducing the probability of clone detection. On the other hand,
the detection effectiveness of TDD, SDD-LC, and SDD-LWC
partly relies on whether each node encounters a particular node
too many times (similarly to EDD). As a consequence, if the
clones adopt the above-mentioned evasion strategy, then the
detection capabilities of the TDD, SDD-LC, and SDD-LWC
methods will also be degraded. In addition, the HIP-HOP
approach detects clones based on the fact that if two witness
nodes are either one-hop or two-hop neighbors, then either the
witness nodes or the node connecting two witness nodes will
find the location conflict of clones. However, if witness nodes
far away from each other happen to both be static, then they
have no chance of being either one-hop or two-hop neighbors,
thus reducing the probability of clone detection.

In summary, the existing clone detection methods devised
for static networks cannot be applied to scenarios where
node mobility would destroy the neighborhood and distance
relations among the nodes. On the other hand, as mentioned
above, the adoption of most of the mobile clone detection
methods to hybrid networks results in a degradation of the
clone detection probability. Therefore, in order to deal with
clones in IoT environments, we need to provide a method that
is “particularly” designed for hybrid networks, and does not
rely on any assumption regarding the mobility pattern, if any.
In addition, prior solutions largely rely on the assumption that
each node is aware of its geographical position. However, as
explained in Section I, this is not the case for IoT devices.
As a consequence, the existing clone detection methods
are not applicable to IoT environments. Table I presents a
comparison between MDSClone and the other existing clone
detection schemes, in terms of the communication and memory
overhead, required information, and network type.

III. SYSTEM MODEL

In this section, we describe our considered network
model and assumptions (Section III-A), as well as the attack
model (Section III-B). Table II presents the list of employed
notations.

A. Network Model

We consider an IoT network as a hybrid network consisting
of two main entities: 1) n static and mobile nodes with
unique IDs [29]: ID ∈ {1, . . . , n}; and 2) a base station
(BS). Each IoT device periodically measures its distance
with its neighboring nodes, and sends the information to
the BS. In our system model, the BS is in charge of
executing our proposed MDSClone algorithm and locating
the “clones” (for a definition please refer to Section III-B)
in the network. In particular, the BS periodically receives
neighboring information for each node in the network, and
constructs a location map (based only on the information
received from the nodes) in order to detect clones (we explain
the details of the MDSClone algorithm in Section V-A). The
BS executes MDSClone offline, and each generated location
map is dedicated to a snapshot of the network at time t. The
main idea in our proposed method is that at time t, a node x
cannot have two different sets of neighbors, which means that
x cannot be in two different locations of the network at time
t. In our network model, we make the following assumptions:

• We assume that nodes are not “necessarily” aware of
their exact geographical position. This assumption is
based on the following two factors explained in the
existing literature: i) As explained in [9], using GPS is
costly in terms of energy and the requirements for extra
hardware, and ii) researchers [30] believe that GPS-based
positioning is not efficient in indoor scenarios. Therefore,
we assume that some nodes (e.g., smartphones) may
be GPS-enabled, and others (e.g., home appliances)
may not. Hence, our proposed method does not rely
on geographical positions of nodes. This assumption
is to address the first challenge that we mentioned in
the “Problem Statement” Section, i.e., lack of accurate
geographical position information of the devices.

• We assume that mobile nodes are moving without any
particular mobility pattern. This assumption makes our
network model more realistic, because the mobility
patterns of nodes (e.g., wearable sensors) in IoT scenarios
are unpredictable, as explained in [10]. We make this
assumption to consider the second challenge that we
mentioned in the the “Problem Statement” Section, i.e.,
IoT networks are hybrid networks composed of both
static and mobile devices without a priori mobility
pattern.

• We also assume that IoT devices are capable of
enacting short-range device-to-device communication (as
explained in [10]). Therefore, each node can measure
its distance from its neighboring nodes via radio
signal strength (RSS) or time of arrival (ToA) (as
comprehensively discussed in [9], [30]). Although the
estimated distances are not perfectly accurate, they are
sufficient for our approach. We make this assumption,
as in our proposed approach, each IoT device should
periodically measure its distance with its neighboring
nodes and send to the BS.

• We assume that the BS knows the geographic positions
of IoT devices at the very beginning (only during the
initialization of the network). However, after the network
deployment, the BS is no longer aware of the positions
of the devices. We make this assumption because the
setup and deployment of IoT devices in the network
are generally performed by the network designer, and
so it is reasonable to adopt such an assumption. This
assumption helps the BS in detecting and locating the
clone nodes by comparing the constructed location map
by the information received from the nodes and the
original network map.

• We also assume that there exists a loose time
synchronization between the nodes1, and the network
operation time is divided into time intervals, each of
which has the same length. These assumptions are in line
with other clone detection methods, e.g., [5], [31]. We
make this assumption since each generated location map
is dedicated to a snapshot of the network at time t.

• We assume that the exchanged messages are digitally
signed2 before being sent out, unless stated otherwise.
We have studied the practicality and efficiency of such
operations in [32], [33]. We make this assumption to
ensure the confidentiality and accuracy of the exchanged
neighboring information, based on which the location

1Because IoT devices are usually assumed to have an Internet connection,
relying on the network time protocol (NTP) could be one solution to achieve
a loose time synchronization among nodes.

2Similar to [18], [31], we can assume that a light weight ID-based public
key cryptosystem can be used by the nodes.
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TABLE I: Comparison between different clone detection schemes.
Schemes Communication cost Memory cost Location-based Network type
RM [18] O(n2) O(

√
n) Yes Static

LSM [18] O(n
√
n) O(

√
n) Yes Static

Social Finerprint [23] O(n
√
n) O(1) No Static

CC-MEM [21] O(n
√
n) N/A Yes Static

RAWL & TRAWL [27] O(n
√
n logn) O(

√
n logn) Yes Static

SDC & P-MPC [19] O(ndp
√
n) +O(s) O(t) Yes Static

RED [20] O(nwdp
√
n) O(wdp) Yes Static

ERCD [28] O(n
√
n) O(1) Yes Static

LSCD [22] O(n
√
n) O(dl/re) Yes Static

TDD [13] O(
√
n) O(n) Yes Mobile

SDD-LC & SDD-LWC [13] O(1) O(n) Yes Mobile
SPRT [26] O(

√
n) O(1) Yes Mobile

XED [11] O(1) O(n) No Mobile
EDD [11] O(1) O(1) Yes Mobile
HIP-HOP [5] O(n) O(1) Yes Mobile
MDSClone (proposed approach) O(n

√
n) O(1) No Hybrid

n: number of nodes, w: number of witnesses generated by a neighboring node, d: average node degree, p: probability
of forwarding a message, t: number of witness nodes that store a location claim, c: number of nodes in a cell, l:
length of a witness path, r: transmission range of a node.

TABLE II: List of notations used in this paper.
Notation Description
BS Base station.
n Number of nodes in the network.
di,j Distance between nodes i and j.

D ∈ Rn×n Distance matrix (distance between each pair of
nodes).

X ∈ Rn×p Coordinate matrix (ground truth node map).
B ∈ Rn×n Inner product matrix.
X′t ∈ Rn×p Reconstructed coordinate matrix (node map).

λ Distortion threshold.
Lt Neighbor-distance information received by the BS at

t-th time interval.

D(λ,Lt, X′t, L̄t)
Distortion function.

M(Lt,Lt−1) Localization function.
`ti Location of node i at time interval t (a column

vector).

map will be generated.

It is worth mentioning that all of our assumptions are
consistent with the existing literature, and there are several
real-world applications supporting our assumptions. Examples
of IoT networks are the smart home and smart city, where a
large number of static and mobile devices with unique IDs
collaborate to provide a better quality of life for humans. For
example, the Samsung SmartThings Home Monitoring Kit3
provides a hybrid network in which several static nodes (e.g.,
smart fridges, smart lamps, or smart thermostats) and mobile
nodes (e.g., smartphones) can connect to each other. This kit
comes with a hub and several smart things that could connect
to each other and the hub through single-hop or multi-hop
communication (using the repeaters that exist in the kit)4.
Another example is the Cisco Smart City5, in which there
are static nodes (e.g., traffic lights) and mobile nodes (e.g.,
Internet-connected cars). Moreover, several EU projects (e.g.,
the EU H2020 Wise-IoT project6 or Santander city in the UK7)
are examples of real-world heterogeneous IoT environments.

3https://www.youtube.com/watch?v=XQfAqlc7Vj8
4https://blog.smartthings.com/iot101/a-guide-to-wireless-range-repeaters/
5https://www.youtube.com/watch?v=x6WfZlETbx4
6http://wise-iot.eu/en/home/
7http://www.smartsantander.eu/

B. Attack Model

IoT devices are usually considered not to be
tamper-resistant [34]. In other words, the stored security
credentials can all be extracted in the case of a device bein
compromised. Moreover, the adversary can compromise a
device immediately after the node deployment. No secure
bootstrapping time is available. Thus, the adversary can
access all of the legitimate credentials of the compromised
devices. In this paper, we consider an adversary that is capable
of performing “clone attack”, meaning that they are able
to fabricate compromised devices and store the legitimate
credentials from the compromised devices inside several
fabricated devices, which is (consistent with related work on
clone detection such as [11]). A compromised node, as well
as the fabricated nodes that have the same ID and credentials
as the compromised node, are called clones. Clones can
communicate and collude with each other, attempting to
subvert the detection functionality in a stealthy manner. It
should be noted that we only consider cloning attacks, and
we assume there is no concurrent “node compromise” attack,
meaning that no other nodes (beyond the clones) act in a
malicious manner.

In particular, we deal with clone attacks and not single
node compromise attacks. In essence, a “clone attack” can
be considered as a special kind of node compromise attack,
in which there are two or more compromised nodes with the
same ID in the network at the same time. In other words,
clone nodes are exact copies of the original compromised
node. Although the first step of conducting a clone attack is
to compromise a single node, we only consider the aftermath
of compromising and cloning (similar to all the related work
in this area). Note that a node compromise attack is different
from a clone attack. The former usually refers to a case in
which the attacker compromises a specific node, and then
places that compromised node back into the network, while
the latter refers to a case in which the attacker compromises
a specific node and places multiple replicated copies (clones)
of the compromised node back into the network. Clone attack
detection solutions are also different and independent from
detecting a single node compromise. This is because of the fact
that clone detection methods are usually based on the relations
of clone nodes with the same ID with their neighboring nodes,
or their placements in the network, and these methods are not
capable of detecting “one single” node compromise attack.
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Rather than a generic clone model consisting of s clone
groups, each of which contain at most z clones, we consider
a simplified clone model, similar to [11]. In our model, there
is only one clone group, with exactly two clones having the
same ID. The clone ID refers to the ID of two clones in a
specific clone group, unless stated otherwise. The use of such
a simplified model is to ease the presentation of our main idea,
while our method can naturally be applied to a generic clone
model without compromising the security.

IV. PRELIMINARIES

Before introducing our proposed clone detection
method, we provide a brief background regarding MDS
in Section IV-A, which serves as the foundation of our
approach. A localization method using MDS that we describe
in Section IV-B, called MDS-MAP, provides a core subroutine
in our scheme.

A. Multidimensional Scaling

Multidimensional scaling (MDS) [14] is a hyperspace
embedding technique, through which pairwise distances are
fit into a set of coordinates with the preservation of distance
restrictions. More concretely, MDS takes a distance matrix
D as input, which is formed from the distances between all
pairs of nodes. The output of MDS is a set of coordinates
created using only D. The first step is to calculate an inner
product matrix B = CAC, which satisfies the relation
B = CAC = XXT , where C = I − 1

nEE
T , A = − 1

2D
2,

I is an identity matrix, E is a column vector composed of
1’s, and X is a coordinate matrix with each row being a
p-dimensional coordinate. One can easily observe that B is
a real-valued and symmetric matrix, and hence we can apply
orthogonal diagonalization to B to obtain

B = QMQT , (1)

where M = diag (µ1, . . . , µn), each µi(i ∈ {1, ..., n}) is
an eigenvalue of B, and Q = [q1 · · · qn] is composed of the
corresponding orthogonal eigenvectors. Owing to the fact that
B = XXT , we can obtain the reconstructed coordinate matrix
X ′ by calculating

X ′ = [q1 · · · qp]

√µ1

. . . √
µp

 . (2)

However, the coordinate matrix X ′ reconstructed by MDS
is not necessarily identical to X . In essence, X ′ is only
guaranteed to preserve the pairwise distances D, but is subject
to translations (shifts), rotations, and reflections. In other
words, X and X ′, where we write X 6= X ′, can both act as
the reconstructed coordinate matrix if X and X ′ can induce
the same D.

B. Localization via MDS

Given a network, MDS-MAP [15] is a localization
algorithm executed by the BS. In particular, MDS-MAP takes
a subset of pairwise distances of the nodes as input, and
generates the coordinates of the nodes in the network. The
difference between the ordinary MDS and MDS-MAP lies
in the fact that the calculation of MDS assumes that the BS

has the knowledge of all pairwise distances. However, this
assumption is not realistic, particularly in wireless networks.
Thus, MDS-MAP combines the techniques of MDS and a
shortest path calculation from graph theory to approximate
the ordinary MDS. More specifically, in the case where
nodes i and j are far away from each other and i cannot
obtain a measured distance from j, the BS instead obtains
an approximate di,j (i.e., the distance between i and j)
by calculating the corresponding shortest path. Using this
approach, the BS can easily obtain all of the pairwise
distances, although some of these are approximate. Next,
the BS performs ordinary MDS on the pairwise distances to
derive the coordinate matrix and accomplish the localization.
Although the approximate distances comprising the input to
MDS may cause a certain distortion in the reconstructed
coordinates, Shang et al. [15] demonstrated the acceptable
reconstruction accuracy of MDS-MAP. Figure 1 shows an
illustrative example of the MDS-MAP process. In Figure 1a,
each node measures its distance from its neighbors and reports
this to the BS. Then, the BS uses the MDS-MAP reconstructed
coordinates as the nodes’ positions to construct the network
map, as shown in Figure 1b.
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(a) Nodes send their pairwise
distances to the BS.
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(b) BS uses MDS’s output to
rebuild a map.

Fig. 1: An example of the MDS-MAP procedure.

V. PROPOSED METHOD

In this section, we describe MDSClone, our proposed
method for clone detection. In particular, we explain the basic
construction of MDSClone in detail in Section V-A. Then,
in Section V-B we describe several improvements to our
main construction to yield a more efficient clone detection
algorithm. Note that although we mainly use MDS-MAP [15]
to calculate the coordinates of IoT devices throughout the
paper, we only use the term “MDS” in the remainder of the
paper, for representational simplicity.

A. Main Construction of MDSClone

The idea behind our proposed MDS-based solution,
MDSClone, is inspired by the following observation: When
each node reports its neighbor-distance information, consisting
of its neighbor list along with the measured pairwise distances,
to the BS, the BS can construct a node map8 via MDS
without the need to know the exact location information

8The terms “node map” and “coordinate matrix” are used interchangeably
throughout this paper. While MDSClone detects clones via space distortion,
“node map” puts more emphasis on the shape of the reconstructed network. At
each time interval, the ground truth node map X means the real positions of
nodes, while the reconstructed node map X′ means the estimated positions.
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of the nodes. Note that the node map refers here to a
set of coordinates of IoT devices, and corresponds to the
coordinate matrix X in Section IV-A. In the case that no
clones are present in the network, a coordinate matrix X ′

will be generated such that the collected pairwise distances
can be approximately preserved (i.e., each entry of the matrix
D − D′ is close to 0, where D′ is the distance matrix
calculated from X ′). On the other hand, consider a network
with a clone. From the BS’s perspective, if the information
reported from devices collectively contains two nodes with
the same ID but completely different neighbor lists, then the
reconstructed node map X ′ will be distorted. More precisely,
because two clones can be thought of as two identical nodes
that simultaneously appear at two distant locations (e.g., node
B in Figure 2a), at least one additional dimension is required
in X ′ to achieve distance preservation. Because the number
p of dimensionalities should be a fixed and public parameter,
or we may even restrict ourselves to two-dimensional MDS
reconstruction (p = 2), it follows that a distortion in the
reconstructed map is unavoidable (see Figure 2b). As a
consequence, from the perspective of clone detection, the
failure of MDS in constructing a node map that achieves
distance preservation indicates the existence of clones in
the network. To identify clones, the BS may execute MDS
multiple times, excluding different node IDs. For example,
if the MDS calculation for nodes {1, . . . , n} results in an
erroneous node map, and the MDS calculation excluding node
i (i.e., on nodes {1, . . . , (i − 1), (i + 1), . . . , n}) achieves a
perfect node map reconstruction, then node i must be a clone,
because it caused the distortion in the MDS.

In what follows, we describe three main design challenges
that appear in adopting MDS for clone detection, and explain
how MDSClone addresses these challenges.

• First, BS requires the pairwise distances of all the nodes
in the network in order to run the MDS algorithm.
However, such information is not available. Therefore,
the first challenge is to enable the BS to perform the
MDS calculation using only a “subset” of pairwise
distances. The reason behind this challenge is that in
an IoT network, each IoT device can only estimate its
distance from its neighboring nodes, e.g., via RSS. Hence,
the neighboring information reported to the BS does
not include the pairwise distances of all nodes in the
network. We address this challenge by using the shortest
path between two nodes in order to approximately
calculate the Euclidean distance between them (inspired
by MDS-MAP [15]).

• The second challenge is to design a localization function
(i.e.,M(Lt,Lt−1)) in order to “locate” the clones in the
network. The reason behind this challenge is that the node
map reconstructed by the BS is not necessarily identical
to the real positions of nodes (although the pairwise
distances are guaranteed to be preserved). In order to
address this challenge, we consider two different cases
(i.e., the existence of anchor nodes and lack of anchor
nodes), as we explain in Section V-A1c.

• The third challenge is the computational overhead
imposed on the BS. The reason behind this challenge is
that the BS must perform the MDS calculations iteratively
in order to find clones. In particular, the BS has to
perform, on average, O(nc) rounds of MDS calculations
(where n is the number of nodes in the network and
c is the number of clones). We address this challenge
by proposing two strategies in MDSClone (as explained

in Section V-B): (i) reducing the MDS computational
overhead, and (ii) performing the MDS calculation on
several server-side devices in a parallel manner.

B’

(a) Two nodes with the same
ID (nodes B and B’).

B’

(b) Distorted reconstructed
node map.

Fig. 2: An example IoT network with node B as a clone (we
named the clone nodes as B and B’ for clarification).

1) Detailed Description of MDSClone

The algorithmic description of MDSClone is presented in
Algorithm 1. As can be seen, BS is in charge of running
the algorithm and recognizing the existence of a clone in the
network. Each node i in the network discovers its neighboring
nodes Ni, measures the distance {(di,j)}j∈Ni with each
of its neighboring nodes, and sends this neighbor-distance
information 〈t, i, {(j, di,j)}j∈Ni〉 to the BS (comprising the
input of Algorithm 1) at time t9. Here, the message
〈t, i, {(j, di,j)}j∈Ni〉 can be thought as a star-shaped subgraph
whose nodes are Ni ∪ {i}. The purpose of this step is for
the BS to collect the subset of pairwise distances, similar to
the case in MDS. With the neighbor-distance information of
the nodes and a pre-defined distortion threshold (which we
will explain in Section V-A1a) as input, the BS periodically
executes Algorithm 1.

We assume that the BS maintains a table L for storing
the received neighbor-distance information. After receiving
the messages {〈t, i, {(j, di,j)}j∈Ni〉}i=1,...,n, the BS stores
the star-shape subgraph induced from 〈t, i, {(j, di,j)}j∈Ni〉
at time t in the t-th row, Lt, of the table L (steps 2
and 3 of Algorithm 1). Hence, the t-th entry Lt of the
table L consists of the neighbor-distance information sent
by all the nodes at time t. Then, the BS has to perform
MDS over Lt to check whether there are clones present
(step 4 of Algorithm 1). More specifically, if the Boolean
distortion function D(λ,Lt, X ′t, L̄t), that measures the
dissimilarity between pairwise distances from Lt and X ′t
(we will explain this function in Section V-A1b) returns
true (step 5 of the Algorithm 1), this indicates a significant
distortion in the reconstructed node map. In this case,
the BS recognizes clones by applying MDS iteratively to
Lt\

(
(π1, {(j, dπ1,j)}j∈Nπ1 ) . . . (πρ, {(j, dπρ,j)}j∈Nπρ )

)
(steps 6∼8 of Algorithm 1). In essence, this is equivalent to
applying MDS over the induced subgraph. During the MDS
calculations, after the BS has determined a reconstructed
node map whose pairwise distances are not consistent with
the collected pairwise distances (step 9 of Algorithm 1), the

9Throughout this paper, the notation for time t is sometimes omitted (e.g.,
the set Nt

i of neighboring nodes and the distance dti,j between i and j at
time t are abbreviated as Ni and di,j , respectively) without ambiguity, when
this can be easily inferred from the context.
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Algorithm 1 MDSClone performed by the BS.
1: Input: 〈t, i, {(j, di,j)}j∈Ni 〉: neighbor-distance information received from node i; λ: distortion threshold.
2: If receiving {〈t, i, {(j, di,j)}j∈Ni 〉}i=1,...,n
3: Update Lt by calculating Lt = (i, {(j, di,j)}j∈Ni )
4: X′t = MDS(Lt)
5: If D(λ,Lt, X′t, ∅) = True
6: For ρ = 1 . . . n

7: For distinct tuples
{(

(π1, {(j, dπ1,j)}j∈Nπ1 ) . . . (πρ, {(j, dπρ,j)}j∈Nπρ )
)}

π1,...,πρ∈{1,...,n}

8: X′t = MDS
(
Lt \

{(
(π1, {(j, dπ1,j)}j∈Nπ1 ) . . . (πρ, {(j, dπρ,j)}j∈Nπρ )

)}
π1,...,πρ∈{1,...,n}

)
9: If D(λ,Lt, X′t,

{(
(π1, {(j, dπ1,j)}j∈Nπ1 ) . . . (πρ, {(j, dπρ,j)}j∈Nπρ )

)}
π1,...,πρ∈{1,...,n}

) = False

10: Nodes π1, . . . , πρ are identified as clones
11: Calculate M(Lt,Lt−1) to locate clones π1, . . . , πρ

BS notices that the excluded nodes in the current calculation
are clones (step 10 of Algorithm 1). By calculating the
localization function M(Lt,Lt−1), the BS identifies and
locates the clones (step 11 of Algorithm 1).

a) Choice of λ: The distortion threshold, λ, controls
the trade-off between the tolerance of the MDS reconstruction
error, the computational burden on the BS, and the capability
of MDSClone to identify clones. In essence, in the case of
a small λ value, MDS reconstruction inaccuracies may be
regarded as clones, which leads to repeated MDS calculations
in order to find these clones. On the other hand, an
inappropriately large λ value may result in the misdetection
of clones. As can be seen, determining a suitable λ value
is important, and in fact a high sensitivity of the MDS
reconstruction accuracy leads to a greater capability in
identifying clones. In order to address these challenges, in
the following we propose a data-driven method to determine
an appropriate λ value. Hence, there will be rare cases in
which clones could successfully evade detection owing to an
inappropriate selection of λ.

Owing to the fact that IoT devices are all owned by the
IoT network owner, all the characteristics of the IoT devices,
such as their radio ranges, are available to the network owner.
Therefore, the network owner is able to virtually deploy IoT
devices in a random manner, and then perform the MDSClone
calculation on the virtual deployment. Here, we make two
observations. First, even in the virtual deployment without
clones, the distance matrix D derived directly from Lt will be
slightly different from the distance matrix D′ derived from the
MDS-MAP reconstruction result. Second, in the presence of
clones in the network, the discrepancy between D and D′ must
be significant, because clones are usually not close to each
other, in order to have a more negative impact on the network.
As a result, to determine a suitable λ, the network owner
sets up x virtual deployments without clones, and chooses the
maximum discrepancy value among the x discrepancy values
as λ, where x is a sufficiently large value. More precisely, let
A(D′, D)i be given by A(D′, D) =

∑
i<j(d

′
i,j−di,j)

2

1+···+(n−1) , derived
in the i-th virtual deployment (a more detailed description
of A(D′, D) can be found in Section V-A1b). The distortion
threshold λ is set as the maximum distortion10, i.e., λ =
max{A(D′, D)1, . . . ,A(D′, D)x}.

10In the execution of step 9 of Algorithm 1, D and D′ are not necessarily
of dimensions n×n. Thus, one can calculate different λ’s for the calculation
of D(λ,Lt, X′t, L̄t) on D and D′ of different sizes. This could constitute a
natural extension of the idea behind the calculation of λ here. For the sake of
notational simplicity, we omit the detailed explanation of such a fine-grained
control of λ in this paper.

b) Construction of D(λ,Lt, X ′t, L̄t): Similar to λ, the
distortion function, i.e., D(λ,Lt, X ′t, L̄t), has direct impact
on the trade-off between the tolerance of MDS reconstruction
error, computation burden on the BS, and capability of
MDSClone in identifying the clones, but the corresponding
construction is still unclear.

Here, we propose an algorithm as an implementation of
D(λ,Lt, X ′t, L̄t). More specifically, the algorithm takes as
input a distortion threshold λ, the received neighbor-distance
information Lt, and the reconstructed node map X ′t, and
outputs an indication of whether the pairwise distances from
Lt are inconsistent with the ones from X ′t. In particular, with
the shortest path as an approximation, the BS can calculate
pairwise distances D = {di,j}i,j∈{1,...,n} from Lt \ L̄t.
X ′t can also be used to generate estimated distance matrix
D′ = {d′i,j}i,j∈{1,...,n}. Hence, D(λ,Lt, X ′t, L̄t) returns true
(significant inconsistency between D and D′, indicating clone
existence) if A(D′, D) =

∑
i<j(d

′
i,j−di,j)

2

1+···+(n−1) ≥ λ and false
otherwise. Note that A(D′, D) here is defined based on the
least square error criterion, while, it is possible to adopt other
error metrics.

c) Construction ofM(Lt,Lt−1): After identifying the
clones, one option is to announce and revoke clone IDs. In
this case, since the nodes physically remain in the network,
the attacker might use them in order to conduct other clone
attacks or other types of attack, such as blackhole or jamming
attacks. Another option is to locate clones and then physically
remove them or use one of the existing attestation techniques
in the literature (such as [35]). In order to protect the network
against further attacks, the latter case is preferable. In this latter
case, we need to develop techniques for locating clones in
the network, and for that matter we introduce the localization
function M(Lt,Lt−1), which we detail in the following.

We consider two constructions for M(Lt,Lt−1):
(i) Anchor case: a network having at least two static nodes,
(ii) No anchor case: without having such restriction. The
idea behind the two constructions of M(Lt,Lt−1) is node
alignment: once the real location of nodes at the previous
time are known and the alignment between Lt and Lt−1

can be made, we can easily infer the real locations at the
current time. In what follows, we explain the considered two
scenarios.

Anchor Case. Here, we assume at least two static nodes
in the network and we observe that the static nodes can act
as anchor points for calculating the transformation matrix P .
When P is known, one can obtain the real location of nodes
by applying node alignment to Lt and Lt−1.
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Consider the case where the BS applies MDS to nodes
1, . . . , n. The transformation matrix can also be applied only
to a subset 1, . . . , s, where 1, . . . , s are static nodes, without
loss of generality. In other words, if X = [XT

1 X
T
2 ]T and

X ′ = [X ′T1 X ′T2 ]T , then X ′T1 = X1P and X ′T2 = X2P .
A closer look to the currently used MDS reveals that the
MDS works in a restricted form; the mean of reconstructed
coordinates of the MDS result will always be shifted to
[0 0], in the two-dimensional case. This eliminates the need
for handling the translation operation, because one can shift
the locations at the previous time to be centered at [0 0],
perform the node alignment, and perform the reverse shift on
aligned locations. In this sense, we can therefore take care
of the rotation and reflection operations only. Since the MDS
is primarily featured by an orthogonal diagonalization (see
Section IV-A), we simply find an orthogonal matrix to solve
the problem. In particular, we look for an orthogonal matrix
P such that X

′
= XP with the property of

X
′
X
′T = XP (XP )T = XPPTXT = XXT = B. (3)

To find such a P , we randomly choose two static nodes from
1, . . . , s, and their corresponding reconstructed coordinates.
The transformation matrix P can be calculated by considering

the relation between two chosen nodes,
[
x
′

1 y
′

1

x
′

2 y
′

2

]
= X ′ =

XP =
[x1 y1x2 y2

]
P , and can be derived as follows,

P =
1

x2y1 − x1y2

[
x
′

2y1 − x
′

1y2 y
′

2y1 − y
′

1y2

x
′

2x1 − x
′

1x2 y
′

1x2 − y
′

2x1

]
. (4)

Note that the determinant of P , det(P ), may determine
the operations applied to nodes. Note also that an odd number
of reflections implies det(P ) = 1, while the other cases
(e.g., only rotation or an even number of reflections) imply
det(P ) = −1. After obtaining P , we perform node alignment
to keep track of the clone movement. In particular, the
reconstructed coordinates will be transformed via P to be
consistent with the coordinates at the previous time.

No Anchor Case. In this scenario, we do not have
anchors and instead seek a construction of M(Lt,Lt−1) for
mapping two sets of points with the guarantee of minimal
node-wise discrepancy. The algorithm for the node alignment
is inspired by the problem of point set registration. The point
set registration [36] has been widely used in computer vision
community for finding a spatial transformation that aligns two
sets of points. In particular, the point set registration merges
two data sets into a globally consistent model by mapping a
new measurement to a known data set. The Iterative Closest
Point (ICP) algorithm [37] is the most straightforward way
for minimizing the difference between two clouds of points.
However, ICP works only in the case of a rigid registration
(or say, rigid transformation), which typically consists of
translation and rotation. The point set registration can also
be used in our case where the nodes location at the previous
time are mapped to the ones at the current time. However, our
problem can be thought as a variant of the conventional point
set registration. The differences are stated below:

• While the size of two sets of points in the conventional
point set registration problem are allowed to be different,
in our case they are guaranteed to be the same.

• While one set of points will be deterministically
transformed from another set, in our case due to
the consideration of node mobility, we may consider

the option of either imperfect transformation or noisy
transformation.

Moreover, the MDS-reconstructed node map is subject to not
only translation and rotation but also reflection operations, as
shown in Section IV-A. Thus, inspired by the robust affine
transformation consisting of a richer set of transformations
including translation, rotation, and reflection, we resort to
affine variant of ICP, affine ICP, to find the transformation
matrix P between {`t−1

1 , . . . , `t−1
n } and {`t1, . . . , `tn}, where

`t−1
i and `ti are the coordinate of the i-th node at (t−1)-th time

and t-th time, respectively, with Xt−1 = [`t−1
1 · · · `t−1

n ]T and
Xt = [`t1 · · · `tn]T being the coordinate matrices at (t − 1)-th
time and t-th time, respectively.

Since affine transformation is a richer set of
transformations compared to the three transformations
required in our context, our problem can still be recasted
as the affine registration of two two-dimensional point sets.
More formally, based on the least-square error criterion, the
affine registration between two point sets can be formulated
as

min
P,j∈{1,...,n}

(
n∑
i=1

||P (`t−1
i )− `tj ||22

)
. (5)

However, the transformation P in Equation (5) is too vague;
it needs to be expressed explicitly so as to simplify the
objective function in Equation (5). With the fact that the affine
transformation P can be decomposed into an invertible matrix
Φ together with a translation vector s, Equation (5) can be
rewritten as

min
Φ,s,j∈{1,...,n}

(
n∑
i=1

||(Φ`t−1
i + s)− `tj ||22

)
. (6)

Note that the presence of anchors eliminates the need of
handling coordinate shift but the lack of anchors does
not. Furthermore, an invertible real-valued matrix Φ can be
decomposed via singular value decomposition (SVD) into
Φ = USV T , where U and V are orthogonal matrices and
S is a diagonal matrix with singular values. Because V T is
orthogonal matrix, we define the rotation matrix R = V T .
After all, the objective function in Equation (6) can be
rewritten as

min
U,S,R,s,j∈{1,...,n}

(
n∑
i=1

||(USR`t−1
i + s)− `tj ||22

)
. (7)

Recall that an affine transformation is a combination of
a series of basic transformations, such as translation,
rotation, and reflection. In Equation (7), U and R represent
reflection and rotation matrices, respectively, while S is a
scale matrix. Though U and R are orthogonal matrices,
the collection of nodes does not scale differently in
our consideration. Considering the above constraints, the
unconstrained optimization in Equation (7) can be transformed
to a constrained optimization,

min
U,R,s,j∈{1,...,n}

(
n∑
i=1

||(UR`t−1
i + s)− `tj ||22

)
s.t. UTU = I, det(U) = 1

RTR = I, det(R) = 1

. (8)
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Inspired by robust affine ICP [36], the optimization in
Equation (8) can be solved in the iterative algorithm shown
in Algorithm 2. Algorithm 2 outputs rotation matrices Uk,
Rk, and translation vector sk. More specifically, given the
(k − 1)-th transformations (Uk−1, Rk−1, sk−1), the step 3 of
Algorithm 2 aims to establish the correspondence of point sets:

ck(i) = argmin
j∈{1,...,n}

(
||(Uk−1Rk−1`

t−1
i + sk−1)− `tj ||22

)
, (9)

where i = 1, . . . , n. Note that, step 3 of Algorithm 2 can be
solved by methods such as k-d tree [38] and nearest point
search based on Delaunay tessellation [39]. Given the found
correspondence ck(i), step 5 of Algorithm 2 computes the k-th
transformations (Uk, Rk, sk):

(Uk, Rk, sk) = argmin
U∈L(2),R∈L(2),s∈R2

(
n∑
i=1

||UR`t−1
i + s− `ti||22

)
,

(10)

where L(2) = {Υ ∈ R2×2|ΥTΥ = I2,det(Υ) =
1} denotes an orthogonal group consist of a set of real
2 × 2 orthogonal matrices. Considering the Taylor series
of exponential mappings on Uk, Rk ∈ L(2), step 5 of
Algorithm 2 can be formulated and solved using quadratic
programming.

Algorithm 2 Node alignment based on affine ICP.
1: INPUT: k is initialized as 0; U0, R0, and s0 are randomly chosen; ε is

the considered threshold.
2: Repeat
3: Compute the correspondence (Equation (9)) by using

Uk−1, Rk−1, sk−1
4: Compute the error function εk(U,R, s) =

1
n

∑n
i=1 ||(Uk−1Rk−1`

t
i + sk−1)− `t−1

j ||22
5: Compute the k-th transformation (Uk, Rk, tk) and k = k + 1
6: Until |εk(Uk, Rk, sk) − εk−1(Uk−1, Rk−1, sk−1)| ≤ ε or k

reaches a predefined threshold

Lemma 1. Algorithm 2 converges monotonically to a local
minimum, with respect to the mean squared distance from any
given initial parameters.

Algorithm 2 shares the same spirit as robust affine
ICP [36]. Nevertheless, due to its similarity to robust affine
ICP and the lack of space, we omit the formal proof of
Lemma 1 here.

B. Techniques for Efficiency Improvement of MDSClone

As we explained in Section V-A, the BS should execute
the Algorithm 1 in order to check if the network is under
clone attack, and in case of having clones, BS should execute
MDS function (steps 7 to 10 of Algorithm 1) multiple times
to identify the clone IDs. In such situation, BS has to perform,
on average, O(nc) rounds of MDS calculations11 to find the
clones, provided that c clones exist in the network. Though the
MDS computation is very fast, the iterative calculation of MDS
may still impose a huge computation overhead on the BS. For
example, the execution of the MDS on a matrix of dimension
104×104 takes approximately two minutes. In the case of only

11In the extreme case, assume that there is one clone group consists of
c clones in the network. Since these c clones share the same ID (where
ID∈ {1, . . . , n}), the MDSClone has to perform the MDS calculation for
O(n) times (on average n

2
times) to identify the clone ID. Consider another

extreme case, where c clone groups exist in the network. Since the BS has no
knowledge on the number of clones (i.e., c), the BS has to scan every possible
combination of clone IDs, leading to O(n)+O(n2)+ · · ·+O(nc) = O(nc)
times of MDS calculations, where O(ni) comes with

(n
i

)
possibilities of one

clone ID (where i = 1 . . . c).

one clone in a network of 104 IoT devices, the BS needs to
perform the MDS, on average, 5× 103 times, which requires
hours or even days for detecting the clones. In what follows,
in order to address this issue, we propose an improvement to
the calculation of the MDS function. In particular, we show
that the MDS calculation can be parallelized and offloaded on
several powerful servers, or devices, each of which calculating
one of the required iterations that results in speeding up the
whole clone detection algorithm. We show that our proposal
significantly reduces the computation load on the BS, leading
to improved scalability and performance of the clone detection
method. We provide detailed explanation of our improved
implementation in the following.

1) Speeding Up the MDS Calculation

In general, a significant portion of computation overhead
in the MDS calculation is incurred by computing eigenpairs.
Here, the eigenpairs mean the pairs of eigenvalues and
eigenvectors in Equation (1). In addition, obviously the
computation load in the MDS is proportional to the number of
nodes in the network. To ensure the scalability of MDSClone,
with the observation that the inner product matrix B in our
context is always real-valued and symmetric, we propose three
techniques to improve the performance of the MDS calculation
in MDSClone algorithm:

a) CIPMLO: aims at computing inner product matrix with
less arithmetic operations.

b) TI: is using modified Householder transformation [40] to
speed-up the calculation of eigenpairs.

c) SMEBM: is closely relevant to TI, and basically speeds-up
TI.

Each of these three techniques leads to certain extent of
the speed-up. Among them, CIPMLO and TI can be executed
individually, while SMEBM is useful only when it is used
along with TI. We detail each of these three techniques in the
following.

a) Computing Inner Product Matrix With Less
Operations (CIPMLO): This technique, computes inner
product matrix B with less arithmetic operations. Starting
with a concrete example is helpful in giving an idea of
how CIPMLO achieves the speed-up. Assume that we have
a distance matrix D such that

D2 =

[
0 10 34 20
10 0 52 50
34 52 0 10
20 50 10 0

]
. (11)

We derive matrices C and A as follows,

C =
1

4

[
3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

]
and

A =

[
0 −5 −17 −10
−5 0 −26 −25
−17 −26 0 −5
−10 −25 5 0

]
. (12)

We calculate the matrix Ω = C · A. A partial view of Ω is
shown in the following,

Ω =
1

n

[
5 + 17 + 10 · · ·

−15 + 17 + 10 · · ·
5− 51 + 10 · · ·
5 + 17− 30 · · ·

]
. (13)

With the observation that, the elements in the i-th column of
Ω are related to the element Ωi,i, we can derive non-diagonal
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elements by using diagonal elements. In essence, the matrix
Ω can be represented in a more formal way as follows.

Ω =
−1

n

 D1 D2 − nN1 D3 − nN2 D4 − nN3
D1 − nN1 D2 D3 − nN4 D4 − nN5
D1 − nN2 D2 − nN4 D3 D4 − nN6
D1 − nN3 D2 − nN5 D3 − nN6 D4,

 ,
(14)

where Di =
∑n
j=1Aj,i and Nk is the non-diagonal element

in the lower triangular part of A, with the elements of A being
re-numbered as

0
N1 0

N2 Nn
. . .

...
...

... 0
Nn−1 N2n−3 Nn(n−1)

2
0

 . (15)

Let Ω be

Ω =
−1

n

[e1 e5 e9 e13e2 e6 e10 e14e3 e7 e11 e15e4 e8 e12 e16

]
. (16)

Let S be −(e1 + e5 + e9+13). Recall that B = ΩC = CAC
(see Section IV-A), we obtain

B =
−1

n2

[
4e1 + S 4e5 + S 4e9 + S 4e13 + S

...
...

...
...

]
. (17)

Similarly, we find that each element of B has relation with
the sum of row elements of Ω. In fact, B can be expressed in
the following form,

B =
−1

n2

ne1 −R1 ne5 −R1 ne9 −R1 ne13 −R1
ne2 −R2 ne6 −R2 ne10 −R2 ne14 −R2
ne3 −R3 ne7 −R3 ne11 −R3 ne15 −R3
ne4 −R4 ne8 −R4 ne12 −R4 ne16 −R4

 ,
(18)

where Ri is defined as Ri = S − nDi with S =
∑n
i=1Di.

Then we prove that Ri is the sum of the i-th row of Ω.
Lemma 2. Ri is the sum of the i-th row of Ω.

Proof. Ri = S − nDi =
∑n
i=1Di − n

∑n
j=1Aj,i

=
∑n
j=1 Ωi,j .

Then, we prove that ΩC calculated in our proposed
procedures remains symmetric.
Lemma 3. ΩC is symmetric.

Proof. −1
n ΩCi,j = −1

n (nΩi,j − Ri) = −1
n [n(Dj − nAi,j) −

(S−nDi)] = −1
n [n(Di−nAj,i)− (S−nDj)] = −1

n (nΩj,i−
Rj) = −1

n ΩCj,i, where the first equality and second equality
are due to equations (18) and (14), respectively.

Since B = ΩC is symmetric, we can calculate the elements of
only upper or lower triangular part. In addition, we find that the
upper triangular part of B in Equation (18) is only dependent
on the upper triangular part of Ω in Equation 16. In other
words, we can calculate only a half of elements of Ω and then
compute B with approximately half of the computing burden,
compared to the original computation task. Such calculation
of B is shown below.

B = −
1

n2
ΩC

= −
1

n2

[D1 D2 − nN1 D3 − nN2 D4 − nN3
· D2 D3 − nN4 D4 − nN5
· · D3 D4 − nN6
· · · D4

]
C

= −
1

n2

[ne1 −R1 ne5 −R1 ne9 −R1 ne13 −R1
· ne6 −R2 ne10 −R2 ne14 −R2
· · ne11 −R3 ne15 −R3
· · · ne16 −R4

]
.

(19)

Note that the third equality is due to Equation (18).

b) Tridiagonalization Improvement (TI): Before
calculating eigenvalue decomposition, the existing library for
eigenvalue computation [41] introduces a pre-processing phase
for computation reduction. In particular, when the matrix
is symmetric, one can apply Householder transform to the
input matrix and obtain a tridiagonal matrix. After that, the
eigenvalue decomposition applies to derive the eigenvalues
and eigenvectors. In our context, we focus only on B, which
is naturally symmetric. Consequently, our second proposed
technique, TI, to speed-up the MDS calculation is due to the
performance improvement of matrix tridiagonalization.

Basically, TI achieves the speed-up because some matrix
multiplications can be replaced by matrix additions and inner
product calculations. We also start with how Householder
transform works, to better illustrate the basic idea behind
the design. Let A = A0 be a real-valued symmetric matrix
of dimension n × n. We can reduce A to the tridiagonal
form An−2 by iteratively using decomposition, Am =

PmAm−1Pm, m = 1 . . . (n− 2), where Pm =
[
Hn−m 0

0 Im

]
is

an orthogonal matrix with Im being an m×m identity matrix
and Hn−m being a Householder matrix defined as Hn−m =
In−m − 2vn−mv

T
n−m. Here, vn−m = xn−m−σen−m

‖xn−m−σen−m‖ is a
Householder vector, where xn−m is a column vector composed
of the first n − m elements of the m-th column of A,
σ = −sign(x•)‖xn−m‖ is the length of x with x• being the
last element of xn−m, en−m = (0, 0, . . . , 1)

T is the last
standard basis vector of dimension (n−m)×1, and sign(x•)
is defined as

sign(x•) =
{

1 if x1 ≥ 0
−1 if x1 < 0 . (20)

Afterwards, we can generate the tridiagonal form of a given
symmetric matrix. More concretely, consider the first iteration
of Householder transformation of A,

A = A0 =

[e1 e2 e3 e4e2 e5 e6 e7e3 e6 e8 e9e4 e7 e9 e10

]
. (21)

Let xn−1 =
[e4e7e9

]
and vn−1 =

v̂n−1

sqrt
, where v̂n−1 =

[ e4
e7

(e9+σ)

]
and sqrt =

√
e2

4 + e2
7 + (e9 + σ)2. Then, we obtain

Hn−1 = In−1 −
2

sqrt2

 e24 e4e7 e4(e9 + σ)
e7e4 e27 e7(e9 + σ)

(e9 + σ)e4 (e9 + σ)e7 (e9 + σ)2

 ,
(22)

and

P1 =


1− 2e24

sqrt2
−2e4e7
sqrt2

−2e4(e9+σ)

sqrt2
0

−2e4e7
sqrt2

1− 2e27
sqrt2

−2e7(e9+σ)

sqrt2
0

−2e4(e9+σ)

sqrt2
−2e7(e9+σ)

sqrt2
1− 2(e9+σ)

2

sqrt2
0

0 0 0 1

 . (23)

As concrete examples, we list some elements of P1A.

(P1A)1,1 =

(a)︷︸︸︷
−2 e4

(c)︷ ︸︸ ︷
[e1e4 + e2e7 + e3(e9 + σ)]

sqrt2︸ ︷︷ ︸
(a)

+ e1︸︷︷︸
(b)

and (P1A)2,1 =

(a)︷︸︸︷
−2 e7

(c)︷ ︸︸ ︷
[e1e4 + e2e7 + e3(e9 + σ)]

sqrt2︸ ︷︷ ︸
(a)

+ e2︸︷︷︸
(b)

, (24)
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(P1A)1,2 =

(a)︷︸︸︷
−2 e4

(d)︷ ︸︸ ︷
[e2e4 + e5e7 + e6(e9 + σ)]

sqrt2︸ ︷︷ ︸
(a)

+ e2︸︷︷︸
(b)

and (P1A)2,2 =

(a)︷︸︸︷
−2 e7

(d)︷ ︸︸ ︷
[e2e4 + e5e7 + e6(e9 + σ])

sqrt2︸ ︷︷ ︸
(a)

+ e5︸︷︷︸
(b)

. (25)

Before describing our approach based on modified
Householder transformation, we highlight some observations
from equations (24) and (25) as follows:

1) The elements with the same column have similar
calculations.

2) All elements of P1A share some common operations
(part (a)).

3) The elements in part (b) are the elements from matrix
A.

4) The calculations in part (c) are the same, as well as the
calculations in part (d).

5) The remaining parts, e4 and e7, are elements of v̂n−1.

TI mainly speeds-up some parts of the numerators of the
elements in P1A (e.g., parts (c) and (d)), but for the time being,
we only focus on part (c). Considering e1e4+e2e7+e3(e9+σ),
we recognize that this it is the inner product of v̂Tn−1 and
[ e1 e2 e3 ]

T (i.e., part of matrix A). So, P1A can be represented
as


−2v̂n−1(1)(X123)

sqrt2 + e1
−2v̂n−1(1)(X256)

sqrt2 + e2 · · ·
−2v̂n−1(2)(X123)

sqrt2 + e2
−2v̂n−1(2)(X256)

sqrt2 + e5 · · ·
−2v̂n−1(3)(X123)

sqrt2 + e3
−2v̂n−1(3)(X256)

sqrt2 + e6 · · ·
e4 e7 · · ·

 , (26)

Where v̂n−1(i) is the i-th element of v̂n−1, X123 =
v̂Tn−1· [ e1 e2 e3 ]

T , and X256 = v̂Tn−1· [ e2 e5 e6 ]
T . Let Vr be

the inner product of v̂Tn−1 and [Ar,1 Ar,2 Ar,3 ]. Then, P1A can
be rewritten as

−2

sqrt2

[[
v̂n−1

0

]
⊗ ([V1E V2E V3E V4E])

]
+A, (27)

where ⊗ denotes the element-wise multiplication and E is the
vector of all 1’s. By considering equations (23), (24), and (25),
the same observations and procedures can also be applied to
P1AP1 (= A1) in order to obtain

A1(1,1) = S︸︷︷︸
(e)

 S︸︷︷︸
(e)

v̂n−1(1)V̄1︸ ︷︷ ︸
(f)

+v̂n−1(1)V1+V1v̂n−1(1)

+ e1︸︷︷︸
(g)

,

(28)

A1(2,1) = S︸︷︷︸
(e)

 S︸︷︷︸
(e)

v̂n−1(2)V̄1︸ ︷︷ ︸
(f)

+v̂n−1(2)V1+V2v̂n−1(1)

+ e2︸︷︷︸
(g)

,

(29)

where S = −2
sqrt2 and V̄1 = v̂n−1(1)v̂Tn−1· [ V1 V2 V3 ]

T . We
can see from equations (28) and (29) that for the elements of
the same column in A1, they perform the same operations.
For example, the multiplication with S (part (e)) and an inner
product (part (f)) are common operations. We can also see

that the elements in part (g) are from matrix A. Let V̄i be
v̂n−1(i)v̂Tn−1· [ V1 V2 V3 ]

T . Thus, A1 can be formulated as

A1 =S2
[[
v̂n−1

0

]
⊗ [V̄1E V̄2E V̄3E 0E]

]
+

S

[v̂0]
V1
V2
V3
V4

T+
V1
V2
V3
V4

[v̂
0

]T+A.
(30)

Then, in the following lemma, we prove that A1 calculated
in the above way is symmetric.
Lemma 4. A1 calculated in the above way is symmetric.

Proof. Let w = [v̂n−1 0]
T and W = [V̄1 V̄2 V̄3 0]

T .
A1(i,j)

= S2[w(i)W (j)] + S[w(i)V (j) + V (i)w(j)] +
Ai,j = S2[w(i)W (j)] + [w(i)V (j) + V (i)w(j)] =

S2[v̂n−1(i)v̂n−1(j)(v̂Tn−1 · [V1 V2 V3]
T

)] =

v̂n−1(i)v̂n−1(j)v̂Tn−1 · [V1 V2 V3]
T

) =

S2[v̂n−1(j)v̂n−1(i)(v̂Tn−1 · [V1 V2 V3]
T

)] =
S2[w(j)W (i)] + [V (i)w(j) + w(i)V (j)] = S2[w(j)W (i)] +
S[w(j)V (i) + V (j)w(i)] +Aj,i = A1(j,i)

.

According to the property of Householder transformation,
after the first iteration, A1 can be expressed in the following
form, [

∗ ∗ ∗ 0
∗ ∗ ∗ 0∗ ∗ ∗ e
0 0 e d

]
. (31)

In the following lemma, we formally prove that the upper-right
entry of A1 calculated in the above way is zero.
Lemma 5. The upper-right entry of A1 calculated in the above
way is zero.

Proof. Assume (P1AP1)i,j = 0, where i ≤ j − 2 and
j ≥ n− 2.
A1(i,j)

= S [v̂n−1(i)Vj ] + Ai,j =

S
[
v̂n−1(i)

(
v̂Tn−1 · [Aj,1 Aj,2 Aj,3]

T
)]

+ Ai,j =

S
[
v̂n−1(i)

(
v̂n−1(1)Aj,1 + v̂n−1(2)Aj,2 + v̂n−1(3)Aj,3

)]
+

Ai,j = S [Ai,j (A1,jAj,1 +A2,jAj,2 + (A3,j + σ)Aj,3)] +
Ai,j = S

[
Ai,j

(
A2

1,j +A2
2,j +A2

3,j +Aj,3σ
)]

+ Ai,j =
S
[
Ai,j

(
σ2 +Aj,3σ

)]
+ Ai,j = S

[
Ai,j(−S−1)

]
+ Ai,j =

−Ai,j +Ai,j = 0

We can see from Equation (30), Lemma 4, and Lemma 5 that
the original matrix multiplications in Householder transform
can be replaced by matrix additions and inner product
calculations. The same observations and procedures can also
be applied to A2, A3, and so on. As a consequence, we have
the following corollary.
Corollary 1. The matrix multiplications involved in the
calculation of Ai, where i = 1 . . . (n− 2), can be replaced by
inner product and matrix addition calculations.

Here, our proposed TI for Householder transformation
achieves the speed-up by taking advantage of the
computationally cheaper inner product and matrix
addition calculations. Compared to the current software
implementation, EISPACK [41], our proposed algorithm
needs only half computation.
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c) Searching for Meaningful Eigenpairs of Block
Matrix (SMEBM): If the reconstructed coordinates are
constrained to be two-dimensional, in fact, two largest
eigenpairs suffice to reconstruct X ′. Note that “meaningful
eigenpairs” here refer to those eigenpairs that have impact on
the coordinates of our interest. More specifically, as stated
previously, we perform tridiagonalization and eigenvalue
decomposition to derive X ′. However, we observe that
the two-dimensional node map is only affected by specific
elements. As a result, the idea behind SMEBM is that we
only calculate the entries that may affect the eigenpairs
that have impact on the two-dimensional coordinates. One
distinguishing feature of SMEBM is that one may need n− 2
iterations of calculations of A1, . . . , An−2 in TI, however,
only two or three iterations in SMEBM are needed.

Given that all the elements of A = A0 are very small, we
observe from the tridiagonalized matrix that only some values
of small block submatrix are meaningful. In particular, there
are two forms of block submatrices.

Di Ei−1 0 · · · 0

Ei−1

. . .
. . .

. . .
...

0
. . . d3 e2 0

...
. . . e2 d2 e1

0 · · · 0 e1 d1


and



di ei−1 0 · · · 0

ei−1 di−1 0
. . .

...

0 0
. . . 0 0

...
. . . 0 d2 e1

0 · · · 0 e1 d1

 .
(32)

The first form is a 3× 3 block submatrix (see the former
part of Equation (32)), containing two meaningful eigenvalues,
where an eigenvalue is close to zero and will always be at the
bottom-right corner. The second form is composed of two 2×2
block submatrices (see the latter part of Equation (32)): they
can be found in diagonal part of tridiagonalized matrix, an
one of them is guaranteed to be at the bottom-right corner.
Furthermore, in the case of two 2×2 block submatrices, each
block submatrix contributes one meaningful eigenpairs. The
reason why we can only focus on the block submatrix is that
all the elements of tridiagonal matrix are close to zero except
the elements of block submatrices.

To better illustrate the idea behind SMEBM, we start with
a concrete example. Consider a 5 × 5 tridiagonal matrix in
Equation (33) with a 3× 3 block submatrix and “∗” elements
between 10−10 and 10−16.∗ ∗ 0 0 0

∗ ∗ ∗ 0 0
0 ∗ d3 e2 0
0 0 e2 d2 e1
0 0 0 e1 d1

 . (33)

Since “∗” is very close to 10−10 and 10−16, we consider
them to be zero. So, the eigenvalues of tridiagonal matrix
∆ can be easily extended to be the eigenvalues of matrix[
O 0
0 ∆

]
by padding zero submatrix O. The above works

only in the case where each element is sufficiently small.
Nevertheless, a preprocessing step can be used to counteract
the above problem. After calculating the inner product matrix,
we scale it by calculating B

α , where α =
∑n
d=1Bd,d +∑n−1

r=1

∑n
c=r+1Br,c. Because of the above preprocessing on

the inner product matrix B, the eigenvalues calculated after
the scaling, the values of µ′i, will not be the same as original
ones, µi. However, µi can be recovered by calculating µi =
αµ′i, i = 1 . . . n. Since we only need the block submatrix,
we can reduce some steps when performing Householder
transformation. In particular, for a 3× 3 block submatrix, we
just need to transform the inner product matrix twice. For two

2×2 block submatrices, we need to transform the inner product
matrix two or three times.∗ ∗ ∗ ∗ +∗ ∗ ∗ ∗ +∗ ∗ ∗ ∗ +∗ ∗ ∗ ∗ −

+ + + − d1


matrix A

⇒

∗ ∗ ∗ + 0
∗ ∗ ∗ + 0
∗ ∗ ∗ − 0
+ + − d2 e1
0 0 0 e1 d1


1st iteration (A1)

⇒

? ? ? 0 0
? ? ? 0 0
? ? d3 e2 0
0 0 e2 d2 e1
0 0 0 e1 d1


2nd iteration (A2)

(34)

From Equation (34), we can see that, after one iteration of
Householder transformation, the positions with “+” mark will
become zero, and the elements on the positions with “∗” mark
will be changed because they are multiplied by Householder
matrix. In the case of a 3 × 3 block submatrix, e2 must be
greater than ε ≈ 10−10 and we do not need to compute
the remaining parts with “?” mark. In the case of e2 ≤ ε,
we deflate the matrix, resulting in the case of two 2 × 2
block submatrices. Basically, we check whether the diagonal
elements are greater than ε. To search for the two 2× 2 block
submatrices, we have three different cases as follows.

1) One 2 × 2 block submatrix is at the bottom-right
corner, while another is 1 × 1 block submatrix (or say,
2×2 degenerated block submatrix with the bottom-right
element being 0) at the upper-left corner.

2) One 2×2 block submatrix is at the bottom-right corner,
while another is 2× 2 block submatrix at the upper-left
corner.

3) One 2×2 block submatrix is at the bottom-right corner,
while another is 2 × 2 block submatrix at the matrix
diagonal part (but not at the upper-left corner).

elements with “�” mark are ≈ 0di � � 0 0
� ≤ε � 0 0
� � ≤ε ≤ε 0
0 0 ≤ε d2 e1
0 0 0 e1 d1


first case (A2)

 di ei−1 � 0 0
ei−1 di−1≥ε � 0 0
� � ≤ε ≤ε 0
0 0 ≤ε d2 e1
0 0 0 e1 d1


second case (A2)square matrix? ? ? 0 0

? ? ? 0 0
? ? >ε ≤ε 0
0 0 ≤ε d2 e1
0 0 0 e1 d1


third case (A2)

(35)

The above algorithm for 5 × 5 matrix can be extended to
handle n × n matrix. Algorithm 3 searches for meaningful
eigenpairs with the minimal number of iterations of
Householder transformation. Two largest eigenpairs among
three calculated eigenpairs in the case of a 3× 3 meaningful
block submatrix or among four calculated eigenpairs in the
case of two 2×2 meaningful block submatrices, in fact, suffice
to reconstruct X ′.

VI. EXPERIMENTAL ANALYSIS

In order to evaluate the performance of MDSClone in
detecting clones, we have conducted several experimental
analyses considering various network settings and evaluation
criteria (i.e., detection probability, computation time, and
memory and energy consumption). To study the practicality
of our proposed MDSClone scheme for the current generation
of sensors in an IoT environment, we have implemented
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Algorithm 3 Calculating meaningful eigenpairs.
1: SETTING: (Ai)x,y is the element of Ai at the intersection of x-th row

and y-th column
2: SETTING: A[(i,j),(x,y)] is submatrix whose upper-left (bottom-right)

element is Ai,j (Ax,y)
3: INPUT: A ∈ Rn×n with small values as matrix elements
4: Calculate A1 = HOUSEHOLDER(A) and A2 = HOUSEHOLDER(A1)
5: if (A2)n−2,n−1 ≥ ε
6: (A2)[(n−2,n−2),(n,n)] is the 3× 3 block submatrix
7: else
8: for m = 2 to n− 3
9: if (A2)n−m,n−m ≥ ε

10: X = HOUSEHOLDER((A2)[(1,1),(n−m,n−m)])
11: (X)[(n−m−1,n−m−1),(n−m,n−m)] and

(A2)[(n−1,n−1),(n,n)] are two 2× 2 block submatrices
12: if (A2)2,2 ≥ ε
13: (A2)[(1,1),(2,2)] and (A2)[(n−1,n−1),(n,n)] are two 2×2 block

submatrices
14: if (A2)1,1 ≥ ε
15: (A2)[(1,1),(1,1)] is a 1 × 1 submatrix and

(A2)[(n−1,n−1),(n,n)] is a 2× 2 block submatrix

a prototype of our scheme on TelosB motes running
TinyOS (with the following specifications: Micro-Controller:
TI MSP430F1611; ROM: 48KB+256B; RAM: 10KB; Radio
Chipset: ChipCon CC2420). We executed our algorithm
using TOSSIM [42] on TinyOS 1.1.15 to evaluate the
energy consumption of MDSClone. Note that TOSSIM is
a discrete-event simulator, designed especially for TinyOS
WSNs, on which TinyOS code can be executed directly. Owing
to this feature, although TOSSIM is in essence a simulator,
its estimation of energy consumption is rather accurate. In
our experimental setting, we considered different network
sizes varying from 1,000 to 10,000. Moreover, we considered
different numbers of clone groups in the network, varying from
two to 14.

A. Evaluation Results

Because each node in MDSClone only needs to sense the
RSS, send out the measured distances from its neighbors, and
forward the received neighbor-distance information to the BS,
MDSClone in fact only incurs a limited memory overhead.
The neighboring information occupies 12029 bytes in ROM,
and only 602 bytes in RAM. On the other hand, because each
node is assumed to only execute the above steps, some delay
will be incurred when a node uses the MDSClone algorithm.
Owing to the fact that a node only sends one packet per second
(which is our considered setting), the reported detection time
will be affected by such a setting. If we ignore the time delay
incurred by our hardware setting, we can observe and infer that
the computation time on a sensor node is 0.25 seconds. The
results of the TOSSIM simulation show that for the MDSClone
operations on the mote (i.e., finding the neighboring nodes),
the energy consumption due to the use of the microcontroller
is 1222 mJ, and the energy consumption due to the use of the
radio circuit is 2021 mJ. It is worth noting that the computation
of the MDS, which is the main function of our proposed
algorithm, is basically performed by the BS, and therefore
the computational overhead and energy consumption imposed
on the sensor nodes are negligible.

In Figure 3 we report the result of our evaluation of the
clone detection probability of MDSClone considering three
network settings: (a) varying the total number of nodes in
the network from 1,000 to 10,000, while assuming there are
two clones in the network; (b) considering a fixed number

of nodes in the network, i.e., n = 1, 000, and varying the
number of clones in an ideal network setting without noise;
(c) considering a fixed number of nodes, n = 1, 000, and
varying the number of clones, assuming the environment to be
noisy due to node mobility, as explained in Section V-A1c. For
this experiment we adopted the value of λ that we calculated
in Section V-A1a. In practice, the network owner may choose
a distortion threshold smaller than the one calculated in
Section V-A1a, in order to ensure the successful detection
of nearly all clones. Indeed, the choice of a small λ may
lead to false positives, i.e., some genuine nodes may be
regarded as clones because of distortion due to noisy distance
measurements or using the shortest path to approximate the
Euclidean distance between two nodes in the MDS calculation.
Because the BS may perform attestation on clones instead of
having a network-wide revocation of clone IDs, the BS may
find that a clone under attestation is genuine node. In this
manner, the BS can still almost perfectly detect the clones at
the expense of rare false positives.

As we can see in Figure 3, the clone detection probability
of MDSClone is 100% in various scenarios. In particular,
Figure 3a shows that MDSClone has a full detection
probability for both large and small scale networks. Figure 3b
depicts the probability of clone detection when varying the
number of clone groups. We recall that, as explained in
Section III-B, in each clone group we considered two clones,
for simplicity. In this evaluation, we considered a network of
size n=1,000, and we varied the number of clones from two to
14. The reason behind this choice of range is that if we are able
to detect the clones when there number in the network is few, it
would be much more easier to distinguish them when there are
a large number of clones in the network. This follows because
from the MDS point of view, more clone groups actually imply
more distortion on the reconstructed node map, and therefore
they are easier to detect for the BS. Moreover, Figure 3c shows
that MDSClone is robust to noisy distance measurements.
In particular, as can be seen in the figure, even in the case
of N (2, 10) noise applied to each distance measurement(a
Gaussian distribution with mean two and standard deviation
two), MDSClone is still able to reconstruct the node map with
a slight increase in the approximate preservation distance λ.
The approximate preservation of the node map can therefore
be used to identify the clones.

It is worth mentioning that some extreme rare cases might
still affect the clone detection probability of MDSClone. For
example, consider the case in which clones are the same
distance from most of the other nodes in the network. For
instance, let A and C represent two genuine nodes forming a
connection, while A, B, C, and B′ form a rectangle, where
B and B′ are clones sharing the same ID and have the same
distance to A and C. If the shape formed by the genuine
nodes is symmetric (e.g., the line formed by A and C in the
above example), then the attacker can strategically place the
two clones (e.g., B and B′ in the above example) in such a way
that the distances between the genuine nodes and clones are all
preserved. In this case, MDSClone fails to detect the clones.
In general, the above argument can be extended to the case
where the shape formed by genuine nodes satisfies rotational
symmetry. If so, an attacker can place a particular number of
clones in the network such that the distances between genuine
nodes and clones are all preserved, in order to evade detection
by MDSClone. However, we argue that such cases occur very
rarely in hybrid networks. Considering that (some) nodes in
hybrid networks have mobility, the shape formed by genuine



14

 Number of nodes in total
2000 4000 6000 8000 10000

 D
et

ec
ti

o
n

 p
ro

b
ab

ili
ty

0

0.2

0.4

0.6

0.8

1

1.2

(a) Detection probability vs. number of
nodes.
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(b) Detection probability vs. number of
clone groups (non-noisy environment).
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(c) Detection probability vs. number of
clone groups (noisy environment).

Fig. 3: Clone detection probability.

nodes is constantly changing. At any time slot, the underlying
network topology looks like a random geometric graph, and
the probability that the shape is symmetric or rotationally
symmetric is very low.

Another criterion that we considered in evaluating the
performance of MDSClone is the computational time. As is
evident in Algorithm 1, the main computational complexity
of MDSClone relates to the computing of the MDS function
by the BS, and the other operations contribute negligible
computational overheads to MDSClone. Therefore, here we
just concentrate on the MDS calculation time, and emphasize
how our proposed acceleration techniques help to reduce the
computational time. More specifically, in Section V-B1 we
proposed three techniques to speed up the MDS calculation.
In Figure 4a and Figure 4b we compare the computational
times for our proposals and the conventional MDS calculation.
In particular, in Figure 4a we implemented the TI method
(explained in Section V-B1b) to considerably speed up the
calculation of B = ΩC, which constitutes a significant portion
of the computational burden in the MDS calculation. Figure 4a
shows that our developed TI technique achieves a speed-up
by a factor of five compared with the original MDS for a
matrix of dimension 10000 × 10000, simulated in MATLAB
and adopting the built-in function mdscale. The speed-up
gain will be significantly higher when considering a larger
matrix. In addition, although the speed-up applies only to the
MDS calculation, in fact MDSClone also achieves a speed-up
by a factor of five, because MDS constitutes the core part of
MDSClone.

As can be seen in Figure 4a, the TI method calculates B =
ΩC faster than the original MDS algorithm. However, one may
have concerns regarding the overall performance improvement
of the MDS calculation. Figure 4b shows that by using our
developed speed-up techniques (CIPMLO, TI, and SMEBM),
we can enhance the speed by more than five times compared
with the conventional MDS calculation (e.g., the combined
use of a householder transform and eigendecomposition). The
reason for the performance discrepancy between Figure 4a
and Figure 4b can be attributed to the fact that the speed-up
shown in Figure 4b is the result of adopting CIPMLO, TI,
and SMEBM, while the speed-up shown in Figure 4a is the
result of merely using TI. Another important observation
from Figure 4b is that considering a network size of 1,000
nodes, our MDS calculation requires around two seconds, and
in a very large-scale scenario with 10,000 nodes, it takes
less than 10 seconds. It is worth mentioning that in an IoT
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(a) Computational time of B = ΩC vs. number of nodes.
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Fig. 4: Analysis of the MDS speed-up proposals.

environment, considering 1,000 nodes in a network is more
realistic, and reflects several real-world applications, such as
a smart hospital or smart building. At this stage, one may
have concerns regarding the total detection time of MDSClone,
because Figure 4b shows only one computation of the MDS
function, while in MDSClone the BS needs to iteratively
perform the MDS calculation in order to identify the clones
in the network. It should be noted that because the MDS
calculation in each iteration should be performed on a different
set of nodes in the network, each iteration is independent from
the others. Thanks to this prominent feature, different iterations
of MDS calculation could easily be performed in parallel by
several different devices, or powerful servers, leading to a
reduction in the computational time of the whole algorithm.
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(a) Clone detection time.
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(b) Communication overhead of a node.
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(c) Memory overhead of a node.

Fig. 5: Performance comparison between MDSClone and state-of-the-art clone detection methods.

B. Comparative Analysis

In this section, we provide a comparative analysis between
MDSClone and the state-of-the-art clone detection methods.
For our comparison, we consider the following performance
metrics: (i) The amount of time required for clone detection.
(ii) The communication overhead at an IoT device. (iii) The
memory overhead at an IoT device. We exclude XED [11]
and EDD [11], [12] from our comparison, because XED is
vulnerable to collusive clones and EDD only works when
considering a random waypoint mobility model.

In Figure 5a, we present the required time for clone
detection. As can be seen, TDD [13] and MDSClone require
considerably less time compared with the other detection
methods. Note that TDD and MDSClone are centralized
solutions, and therefore each node needs to forward some
information (materials for clone detection) to a specific
location in the network (e.g., the BS in the case of MDSClone).
Because the average hop distance between two nodes in a flat
network with n randomly distributed nodes is O(

√
n), with the

assumption that each hop distance movement requires one time
unit, O(

√
n) time delays will also be considered in TDD and

MDSClone. Because each node in distributed protocols such
as SDD-LC [13], SDD-LWC [13], and HIP-HOP [5] requires
more time to identify witness nodes, distributed detection
methods usually incur significantly more delays for clone
detection.

Figure 5b shows the communication overhead imposed
on each node. As shown in the figure, TDD and MDSClone
impose higher communication overheads. This is because of
the fact that, similarly to the above case, in these two methods
each node needs to forward the required information to a
central node. On the other hand, in the case of a distributed
solution, each node only needs to communicate with its
neighbors. However, it is worth noting that although the
communication overhead in MDSClone is seemingly higher
than that in distributed solutions, it can be substantially
reduced in certain applications. For example, in certain IoT
applications (e.g., a smart city) there could be multiple relays
capable of cellular communication (e.g., LTE) forming a
backbone network with the BS. An IoT device in the proximity
of a relay node can forward the neighbor-distance information
to the nearby relay, which then forwards the neighbor-distance
information back to the BS. In this manner, not only the time,
but also the communication cost, can be significantly reduced,
while still guaranteeing the detection capability of MDSClone.
It is worth noting that the effect of such a scenario on other
existing clone detection methods remains unclear.

In addition, we conducted experiments regarding the
storage overhead imposed on the IoT nodes. The comparison
results are shown in Figure 5c. The storage overhead of
MDSClone is close to zero. The reason for this is that
in MDSClone each node simply collects neighbor-distance
information from neighboring nodes and forwards it to the BS.
After forwarding, the node can remove this information from
its memory, resulting in a memory footprint of close to zero.
However, all of the other detection methods require the IoT
device to maintain the historic neighbor-distance information
for some time to identify clones, resulting in a considerable
memory overhead.

VII. CONCLUSION

In this paper, we have proposed a clone detection solution,
called MDSClone, based on the multidimensional scaling
(MDS) algorithm for a heterogeneous IoT environment. We
have taken into account the specific features of IoT devices
in designing MDSClone, i.e., unawareness of geographical
positions, the possibility of being both static and mobile, and
the lack of a specific mobility pattern. We showed (in Table I)
that compared with the existing clone detection methods,
MDSClone provides an outstanding approach, because it is
the first method that supports hybrid networks, while its
memory cost is of order O(1), its communication cost is
affordable, and it is a location-independent method. Moreover,
we showed that the clone detection probability of MDSClone
is almost 100%, and the MDS calculation algorithm could be
parallelized, leading to a shorter detection delay. Therefore,
considering all of its advantages, we believe that MDSClone
could be considered as a superior candidate for clone
detection in real-world IoT scenarios. However, in the case
of dense network topologies, our proposal may impose a
communication overhead on the network. Therefore, in future
work we aim to provide a distributed version of MDSClone
for IoT scenarios.
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