

FAST FLUX BOTNET DETECTION BASED ON

ADAPTIVE DYNAMIC EVOLVING SPIKING NEURAL

NETWORK

Ahmad Al Nawasrah

Thesis Submitted in Partial Fulfilment of the Requirements of the Degree of

Doctor of Philosophy

School of Computing, Science and Engineering

University of Salford, Salford, UK

2018

Supervisor:

Prof. Farid Meziane

i

TABLE OF CONTENTS

TABLE OF CONTENTS ..I
LIST OF TABLES ... III

LIST OF FIGURES ... V
DECLARATION ..VIII
ABBREVIATIONS ... IX
LIST OF PUBLICATIONS ... XII
ABSTRACT ..XIII

KEYWORDS ..XIII
CHAPTER ONE ... 1
INTRODUCTION ... 1

1.1 Introduction ... 1
1.2 Research Problem .. 4
1.3 Research Motivation: .. 6
1.4 Research Aim and Objectives ... 6
1.5 Research Methodology .. 7
1.6 Contributions of the Research ... 10
1.7 The Scope of the Research .. 10
1.8 Thesis Structure ... 10

CHAPTER 2 .. 13
BACKGROUND LITERATURE REVIEW AND RELATED WORK 13

2.1 Background ... 13
2.1.1 Single Fast Flux .. 15
2.1.2 Double Fast Flux .. 17
2.1.3 Hydra Fast Flux .. 20
2.1.4 Domain Flux ... 20

2.2 Literature Review .. 21
2.2.1 Host-based Detection Methods ... 24
2.2.2 Router-based Detection Methods ... 44
2.2.3 DNS-based Detection Methods .. 46
2.2.4 Hydra Flux Service Network .. 53
2.2.6 Dynamic evolving Spiking Neural Network (DeSNN) .. 53

2.3 Related Work ... 55
2.4 Conclusion ... 60

CHAPTER THREE .. 62

ADAPTIVE DYNAMIC EVOLVING SPIKING NEURAL NETWORK – ADESNN.... 62
3.1 Introduction ... 62
3.2 Adaptive Dynamic Evolving Spiking Neural Network ... 62
3.3 Dataset ... 69
3.4 Experiments, Result, and Comparison .. 70
3.5 Chapter Summary: ... 78

CHAPTER FOUR ... 80
SUPERVISED FAST FLUX KILLER APPROACH FFKA .. 80

4.1 Introduction ... 80

ii

4.2 Fast Flux Killer Approach ... 80
4.3 Supervised Learning Phase ... 82

4.3.1 The Preprocessing Stage ... 82
4.3.2 Feature Extraction ... 83
4.3.3 Adaptive dynamic evolving spiking neural network .. 83

4.4 Dataset ... 84
4.5 Feature Selection ... 84
4.6 Feature Set ... 85
4.7 Experiments and Discussion ... 86

4.7.1 Introduction .. 86
4.7.2 Supervised Fast Flux Killer Approach Experiment .. 87
4.7.3 Feature Set Discussion .. 93

4.8 Conclusion ... 97
CHAPTER FIVE .. 99
HYBRID FAST FLUX KILLER APPROACH ... 99

5.1 Introduction ... 99
5.2 The Hybrid Fast Flux Killer Approach (Supervised and unsupervised) 100

5.2.1 Introduction .. 100
5.2.2 The FFKA Supervised Phase .. 100
5.2.3 The FFKA Unsupervised Phase ... 100

5.3 Dataset ... 103
5.4 Feature Set ... 103
5.5 Experiment and Discussion ... 103

5.5.1 The Results of the Hybrid FFKA ... 104
5.5.2 Comparison of Supervised and Hybrid approach ... 106
5.5.3 Parameter Adjustment and Customization ... 109

5.6 chapter summary ... 110
CHAPTER SIX ... 112

DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE

WORK ... 112
6.1 Discussion ... 112
6.2 Limitations and Future Work .. 116
6.3 Conclusion ... 117

REFERENCES .. 119
APPENDICES ... 125

iii

LIST OF TABLES

Table 2. 1 Summary of passive approaches .. 25

Table 2. 2 Summary of score-based approaches. .. 28

Table 2. 3 Summary of machine learning approaches. ... 32

Table 2. 4 Summary of the approaches using decision tree algorithms. 34

Table 2. 5 Summary of approaches using geo-information. ... 36

Table 2. 6 Summary of spatial informational real-time approaches. .. 38

Table 2. 7 Summary of behavior-based approaches. .. 40

Table 2. 8 Summary of real-time learning approaches. .. 42

Table 2. 9 Summary of router-based approaches. ... 45

Table 2. 10 Summary of passive DNS-based detection approaches. .. 49

Table 2. 11 Summary of active approaches. ... 50

Table 2. 12 Summary of real-time approaches. .. 52

Table 2. 13 List of the features used in previous works ... 57

Table 3. 1 Characteristics of the WDBC dataset. ... 70

Table 3. 2 Accuracy measure used in all experiments .. 71

Table 3. 3 The 3-fold cross-validation result of both the original DeSNN and the proposed

ADeSNN of the first experiment .. 73

Table 3. 4 The parameter values used in the 3-cross-validations of the first experiment 75

Table 3. 5 The 5-fold cross-validation result of both the original DeSNN and the proposed

ADeSNN of the second experiment .. 76

Table 3. 6 The parameter values used in the second experiment .. 78

Table 4. 1 The proposed feature set .. 85

Table 4. 2 The accuracy measures of the detection algorithms .. 88

Table 4. 3 The parameters of the ADeSNN algorithm used in the experiment. 93

iv

Table 4. 4 The results of the three experiments by eliminating one new feature at a time. 94

Table 4. 5 The features set ranking importance .. 96

Table 5. 1 Results of the hybrid FFKA ... 104

Table 5. 2 Parameters used in the hybrid experiment ... 106

Table 5. 3 The comparison results of supervised and hybrid FFKA approach 107

Table 5. 4 The parameters values of the ADeSNN algorithm in FFKA approach 110

v

LIST OF FIGURES

 Figure 1. 1 The Research Methodology ... 8

Figure 2. 1 Comparison of IP resolutions of fast flux techniques .. 15

Figure 2. 2 Single fast flux of IP addresses of a malicious website .. 16

Figure 2. 3 Double FFSN of name server and IP addresses of the malicious website 18

Figure 2. 4 Multilayer FFSN of the Asprox botnet and hydra-flux service network 20

Figure 2. 5 Solution scope of FF botnet detection methods ... 22

Figure 2. 6 Chart of the solutions scope ... 23

Figure 2. 7 ADAPT system architecture(Otgonbold, 2014) ... 28

Figure 2. 8 FLUXOR system deployment(Passerini et al., 2008) .. 31

Figure 2. 9 The process of visiting a domain(Y. Zhao & Jin, 2015) .. 34

Figure 2. 10 Alternative decision tree detection approach(Qassrawi & Zhang, 2012) 41

Figure 2. 11 GRADE system architecture(H.-T. Lin et al., 2013) .. 42

Figure 2. 12 System architecture of the clustering detection method (Paul et al., 2014) 45

Figure 2. 13 Analysis procedure of an anomaly-based technique using a decision tree with

AdaBoost algorithm (Vu Hong, 2012) .. 48

Figure 2. 14 LarSID architecture (Zhou et al., 2009) ... 51

Figure 2. 15 Hybrid detection system(Futai et al., 2013) ... 52

Figure 3. 1 An evolving spiking neural network (classification) (Kasabov et al., 2013) 63

Figure 3. 2 An example of the RO and Spike Times initial values .. 65

vi

Figure 3. 3 The DeSNN algorithm architecture .. 68

Figure 3. 4 The accuracy measures of both DeSNN and ADeSNN ... 74

Figure 3. 5 The accuracy measures of both DeSNN and ADeSNN ... 77

Figure 4. 1 The architecture of the FFKA ... 81

Figure 4. 2 The pre-processing phase ... 82

Figure 4. 3 The overall detection accuracy ... 90

Figure 4. 4 The area under ROC curve ... 91

Figure 4. 5 The F measure score .. 91

Figure 4. 6 The root mean square error ... 92

Figure 4. 7 The accuracy comparison between the feature set experiments 94

Figure 4. 8 The RMSE of the feature set experiment ... 95

Figure 4. 9 Feature set ranking based on the feature selection method 96

Figure 5. 1 The Hybrid FFKA .. 102

Figure 5. 2 The results of the hybrid FFKA .. 105

Figure 5. 3 Comparison of the supervised and hybrid FFKA approaches 108

Figure 5. 4 The error comparison of the supervised and hybrid FFKA approach 109

vii

ACKNOWLEDGMENT

First and foremost, I would like to express deep gratitude to my supervisors Prof. Farid Meziane

and Dr.Ammar Almomani for their helpful contributions, encouragement, and guidance through

my period of study.

Also, I would like to thank my brother Noun Alnawasreh for his support in every part of my

life.

Finally, I wish to thank my parents, my wife Oroba, my siblings, and my dearest children Mera,

Ameer, and Layan for their support.

viii

DECLARATION

No portion of the work referred to in this thesis has been submitted in support of an application

for another degree or qualification of this or any other university, or institute of learning.

ix

ABBREVIATIONS

A The resolved record information returned from DNS

ANN Artificial Neural Network

Auth_NS Authoritative Name Server

AOR Average Online Rate

C2 Command and Control

CDN Content distributed network

DDoS Distributed Denial-of-Service

DENFIS Dynamic Evolving Neural Fuzzy Inference System

DeSNN Dynamic evolving Spiking Neural Network

DNS Domain name system/domain name server

DoS Denial-of-Service

DyNFIS Dynamic Neural Fuzzy Inference System

ECoS Evolving Connectionist System

eSNN evolving Spiking Neural Network

FF Fast Flux

FFDD Fast Flux Domain Detector

FFN Fast Flux Network

FFM Fast Flux Monitor

FFSN Fast Flux Service Network

x

FN False Negative

FP False Positive

FQDN Fully Qualified Domain Name

GRADE Genetic ReAl-time approach for FFSN DEtection

HTTP Hypertext Transport Protocol

ICCAN Internet Corporation for Assigned Names and Numbers

IP Internet Protocol

KFFS Killer Fast Flux System

LSGD Localized Spatial Geo-location Detection

MAR Minimum Availability Rate

NS Name Server

RDNS Recursive Domain Name Server

RR Resource Record

RRDNS Round Robin DNS

SLD Second Level Domain

SNN Spiking Neural Network

SSFD Spatial Snapshot Fast flux Detection

SVM Super Vector Machine

SYN Synchronous Packet

xi

TLD Top Level Domain

TN True Negative

TP True Positive

TTL Time To Live

xii

LIST OF PUBLICATIONS

A. ALnawasrah, A. Almomani, F. Meziane, M. Alauthman. Fast Flux Botnet Detection Based

on Adaptive Dynamic Evolving Spiking Neural Network Algorithm, The 9th International

Conference on Information and Communication Systems, (ICICT 2018), IEEE.

xiii

ABSTRACT

A botnet, a set of compromised machines controlled distantly by an attacker, is the basis of

numerous security threats around the world. Command and Control (C&C) servers are the

backbone of botnet communications, where the bots and botmaster send reports and attack

orders to each other, respectively. Botnets are also categorised according to their C&C

protocols. A Domain Name System (DNS) method known as Fast-Flux Service Network

(FFSN) is a special type of botnet that has been engaged by bot herders to cover malicious

botnet activities, and increase the lifetime of malicious servers by quickly changing the IP

addresses of the domain name over time. Although several methods have been suggested for

detecting FFSNs domains, nevertheless they have low detection accuracy especially with zero-

day domain, quite a long detection time, and consume high memory storage. In this research we

propose a new system called Fast Flux Killer System (FFKA) that has the ability to detect “zero-

day” FF-Domains in online mode with an implementation constructed on Adaptive Dynamic

evolving Spiking Neural Network (ADeSNN) and in an offline mode to enhance the

classification process which is a novelty in this field. The adaptation includes the initial weight,

testing criteria, parameters customization, and parameters adjustment. The proposed system is

expected to detect fast flux domains in online mode with high detection accuracy and low false

positive and false negative rates respectively. It is also expected to have a high level of

performance and the proposed system is designed to work for a lifetime with low memory usage.

Three public datasets are exploited in the experiments to show the effects of the adaptive

ADeSNN algorithm, two of them conducted on the ADeSNN algorithm itself and the last one

on the process of detecting fast flux domains. The experiments showed an improved accuracy

when using the proposed adaptive ADeSNN over the original algorithm. It also achieved a high

detection accuracy in detecting zero-day fast flux domains that was about (99.54%) in an online

mode, when using the public fast flux dataset. Finally, the improvements made to the

performance of the adaptive algorithm are confirmed by the experiments.

KEYWORDS

Fast-Flux, Zero-day domain, dynamic evolving spiking neural network, botnet detection.

1

CHAPTER ONE

INTRODUCTION

Chapter Overview

This chapter provides the definitions of the area of research, the gap in the knowledge, the

research aim and objectives, the research methodology, the research motivation, the scope of

the research, and the structure of the thesis.

1.1 Introduction

Botnets are networks of compromised computers that are controlled remotely by attackers and

are the basis of numerous security threats, such as distributed denial-of-service (DDoS) attacks,

identity theft, phishing, and spam (Almomani, Obeidat, Alsaedi, Obaida, & Al-Betar, 2015;

Almomani, Wan, et al., 2013; Barford & Yegneswaran, 2007; Dagon, Gu, & Lee, 2008; Fabian

& Terzis, 2007; Grizzard, Sharma, Nunnery, Kang, & Dagon, 2007; Gu, Perdisci, Zhang, &

Lee, 2008; Karasaridis, Rexroad, & Hoeflin, 2007; Levy & Arce, 2006; Rajab, Zarfoss,

Monrose, & Terzis, 2006). Fast flux networks (FFNs) are a special type of botnet being used by

criminals in the same manner as those used in round robin domain name systems (RRDNSs)

and content distribution networks (CDNs) to offer high availability and flexibility for their

malicious websites (Alieyan, Almomani, Manasrah, & Kadhum, 2015). Botnet writers disguise

their malicious activities and design new tactics and mechanisms to hide their communications.

One such a method is the IP fast flux, which is a mechanism that frequently changes IP addresses

corresponding to a unique domain name. Another method is the domain flux, which is a

mechanism that automatically and periodically generates domain names related to a URL of a

command and control (C&C) server. The core idea of FFNs is to use bot computers as proxies

(flux agents) that forward user queries to the backend servers called “motherships.” A recurrent

and fast change in the IP addresses of proxies is essential to evade detection and a potential shut

down and to ensure high availability to those backend servers.

2

FFNs are considered to be a new development in the operation and management of spam

campaigns. Along with campaigns, spammers send thousands of emails that contain interesting

advertisements of products or services (e.g., pharmaceutical, adult content, and phishing) to

users’ email inboxes (Al-Duwairi & Al-Hammouri, 2014). These advertisements generally

contain hyperlinks to malicious websites for the campaigns. Until recently, only a single static

IP address is related to a website for a certain period of time; such a characteristic provides the

security defenders the chance to take down that website. According to FFNs, a domain name of

a malicious website points to more than one IP address (FF-agents), which is frequently and

rapidly changing.

According to Kalige, Burkey, and Director (2012), HTTP botnets are considered dangerous

because they attack and exploit systems. Current HTTP botnets use the strongest techniques to

perform attacks. An example is the Asprox botnet, which has affected about 3.5 billions

computers in the United States. The Asprox botnet uses an advanced double fast flux, called the

hydra fast flux, as its main technique (Al-Bataineh & White, 2012). This technique renders

efforts to take down and defeat C&C servers useless. Additional details are presented in

Subsection 2.3.

The report of the Cost of Cyber-Crime Study (Enterprise, 2015) points out that the mean

annualized cost of cyber-attacks for 252 benchmarked organizations is $7.7 million/year. The

report also shows that these attacks are carried out with or supported by either a botnet or a web-

based attack, and fast flux is used as an evasion technique to provide availability and resilience.

The report mentions that the most dangerous cyber-crimes are those caused by denial of services

(DoS) and web-based attacks. The fast flux evasion technique has been widely used in botnets

and web-based botnets to carry out DoS and others attacks (e.g., phishing and spam), with fast

flux serving as the backbone C&C communication between the compromised computers and

the mothership/malicious website.

Cyber-criminals have stolen around $78 million through various means using financial malware

(Marcus, 2012). In addition, McAfee stated that previous fraud cases in Eastern Europe could

be attributed to Zeus and SpyEye activities; after tracing some of these attacks, they found a

highly complex fast flux botnet, as well as hidden compromised servers supporting the

3

website’s long life (Marcus, 2012). Botnets are also responsible for spam e-mails. Spammers

earn an average annual income of $50,000 to $100,000 (Su & Tsai, 2012). Fake online

pharmacies are one of the many illegal activities available on the Internet; such activities are

notorious for selling fake or inefficient medications and are involved in identity theft cases

(Spamwiki, Online). A report from the Fortinet Global Cyber Security Research Team states

that the fast flux technique has been used in fake Canadian online pharmacies to avoid detection

(Pharmacy, Online). Security researchers have recently reported that a new variation of the

“Gameover ZeuS” botnet makes use of the fast flux technique to protect its C&C servers (Inc,

Online).

One of the core problems in botnet detection is the so-called unknown “zero-day” fast flux

domain. Zero-day domains are defined as those related to bots (FF-agents) that are not

blacklisted (Lin, Lin, & Chiang, 2013). A fast flux attack is a complex evasive technique that

cannot be identified by many current techniques because attackers can use new and previously

unseen bots. A number of potential solutions to fast flux botnet attacks have been proposed, but

these solutions are not yet effective. These solutions range from passive, to active, to real-time

approaches. The misclassification of malicious and legitimate domains increases with time,

especially when dealing with unknown zero-day fast flux botnet domains. The proposed

approach exploited the adaptive DeSNN to detect these zero-day fast flux domains, experiments

are conducted to compare and show the improvement of adaptation made on the DeSNN

algorithm on the performance of the algorithm itself, and on the process of detecting FF

domains. Furthermore, other improvements are made on the adaptive algorithm to enhance the

testing criteria, as well as making a contribution in the field of parameters customization.

The rest of this chapter is arranged as follows. A research problem is provided in subsection

1.2. The research motivation is detailed in subsection 1.3. Research aim and objectives are

discussed in subsection 1.4. Research methodology is discussed in subsection 1.5. Subsection

1.6 shows the contribution of the research. The scope of the research is presented in subsection

1.7 Finally, the thesis structure is shown in subsection1.8.

4

1.2 Research Problem

There is a myriad of security threats that are caused by botnets, such as distributed denial-of-

service (DDoS) attacks, identity theft, and spam (Barford & Yegneswaran, 2007; Dagon et al.,

2008; Fabian & Terzis, 2007; Grizzard et al., 2007; Gu et al., 2008; Karasaridis et al., 2007;

Levy & Arce, 2006; Rajab et al., 2006). Referring to the FBI’s report of the “Operation Bot

Roast” project, more than a million IP addresses belonging to normal users had been identified

on the Internet, while the number continuously increases. Other statistics display that botnets

generate large revenues for bot herders. Gartner estimated that the economic loss generated

solely by phishing attacks is about 3 billion US dollars per year (Hsu, Huang, & Chen, 2010).

Fast-Flux Service Networks (FFSN) are the core of certain botnet types and play the role of

command and control carrier between the mothership and its bots. Fast-flux networks forward

and host a scam service to provide a website (back-end server) with high availability, which

helps them avoid being tracked and shut down by security professionals (Qassrawi & Zhang,

2012). Risks analytics report from 2016 identified that 84 percent of the campaigns analyzed in

Ukraine, host a fast flux proxy infrastructure (Doborjeh & Kasabov, 2016). An attacker earns

many benefits from the botnet fast flux techniques (Otgonbold, 2014). The first benefit is

simplicity; the attacker can use just a few powerful back-end servers as motherships. FF-agents

can also add an extra layer of protection against tracking and discovery. Finally, the extra layer

of protection of these FF-agents extends the life span of the motherships.

The 2018 internet security threat report by Symantec was still very much concerned with

redirecting the resolution of the DNS responses and the IPs to malicious websites (Semantec,

2018). Due to fast flux service networks, the biggest problem is distinguishing between

malicious and benign FFSNs. Looking back to the related work, many researches have tried to

differentiate between benign and malicious FFSNs, but they still need to increase the true

positive (TP) and true negative (TN), while also trying to achieve an acceptable and accurate

ratio of the classification of benign and malicious FFSNs (Martinez-Bea, Castillo-Perez, &

Garcia-Alfaro, 2013; Perdisci, Corona, Dagon, & Wenke, 2009; Qassrawi & Zhang, 2012).

5

Passive, active, and real time approaches are used in fast flux botnet detection. According to

Al-Duwairi and Al-Hammouri (2014), the main drawback of the passive approach is the need

to deal with a huge amount of DNS traffic traces that correspond to legitimate and non-

legitimate domain names. In contrast, the active detection-based approaches deal with less DNS

traffic traces that correspond to non-legitimate domain names in most cases. Finally, the real-

time approaches suffer from high FP and FN rates. Besides, none of the previously mentioned

approaches helped to detect zero-day malicious domains and FFSN while simultaneously

keeping track of the detection accuracy and the time required to detect such a botnet fast flux

domain.

From the algorithmic point of view, many researchers have indicated that the DeSNN algorithm

is one of the eSNN algorithms that has numerous features such as speed, which helps in

detecting zero-day fast flux domains in a reasonable period (Hagras, Pounds-Cornish, Colley,

Callaghan, & Clarke, 2004; Kasabov, Dhoble, Nuntalid, & Indiveri, 2013; Nuntalid, Dhoble, &

Kasabov, 2011; Schliebs & Kasabov, 2013). However, the DeSNN algorithm suffers from the

fact that several parameters must be set before running the algorithm. Contributing to this

disadvantage, the sub-process of setting the initial weight of the spiking neural network based

on the Rank Order (RO) may lead to the misclassification of incoming inputs. Besides,

determining the best chosen value for the parameters is a significant problem.

Overall, the problems that are explored and solved in the current thesis are:

 How to adapt the DeSNN algorithm to improve the classification performance.

 How to detect the fast flux domains in online mode using the adaptive DeSNN

algorithm.

 How to choose a feature set that maximizes the classification performance.

 How to improve the testing criteria of the DeSNN.

 How to minimize the number of DeSNN parameters.

 How to minimize the memory storage used.

6

1.3 Research Motivation:

The detection of botnet fast flux zero-day domains that are not caught by existing methods is a

significant challenge. This challenge motivated the proposal of a new methodology which

would be able to detect the unknown “zero-day” fast flux domains in an online mode. Further

motivations include:

 The enhanced robustness of malicious websites. Fast flux assistance attackers keep their

sites active as long as possible using victim machines.

 There is an increasing interest in adaptive auto-learning approaches as an effective

technology in Internet security, which can be applied to distinguish between malicious

and legitimate domains in online mode and high speed.

 The availability of a suitable online approach which is applicable to work in the real

world for a lifetime with small memory usage.

 The classification process of DeSNN needs to be modified to help in minimizing the

damages made by fast flux attack.

1.4 Research Aim and Objectives

The aim of the proposed research is to build a novel approach for fast-flux botnet detection that

utilizes life-long learning, leads to improve classification performance and various capabilities to

solve the problem of Fast flux domain detection. To achieve this aim, the following objectives have

been defined:

 Develop an approach to solve the problem of Fast-flux service network, especially to detect the

malicious unknown zero-day FFDN in online mode, with the minimum memory usage.

 Propose an approach to detect fast-flux domain in online mode using a learning method with a

minimum number of parameters used in the proposed algorithm.

 Select the features that will lead to greater accuracy in detecting FF domains.

 Evaluate the proposed approach by comparing it with existing approaches.

 Improve the performance and accuracy (reducing FP and FN rates) of the classification by

changing the weights initialization and the classification criteria.

7

1.5 Research Methodology

The research methodology defines the stages of how the research will be conducted. So, the

stages are designated so that each step has a defined set of inputs and the expected output, and

how the outputs of each stage helps in the next stage. Besides, the feedback from the front stages

to the back ones will help in the process of modifying the errors and improve the performance

in order to gain high accuracy or minimize errors. The research methodology employed in this

research is depicted in Figure 1.1.

8

Spiking neural network
SNN, eSNN, DeSNN

Phase 1: Literature review and related work

Study previous work and
related work of fast flux

detection
Attack detection

Fast flux network types
Fast flux nature with DNS
TLD,Auth-NS, FF-agents

Feature set for classifying
FFD/

Spike time for initial weight
initialization

Outlines of the proposed solution

Problem statement

Problem of current ML
approaches used for FF

botnet detection/Problem of
DeSNN (initial weight)

Zero-day fast flux domains/
Problem of initial weight of

the DeSNN algorithm

Phase 2: Literature review and related work analyesis

Developing a code for
ADeSNN for Fast flux botnet

detection

Design of combined framework

 Fast flux botnet detection
analysis

“Feature extraction”/
Adaptive DeSNN

Phase 3: Design and modelling

Investigated algorithms:
Investigated performance parameters such as (false positive, false negative, accuracy, F-measure, ROC, RMSE)

Phase 4: Performance and Evaluation

Framework simulation and Result analysis

Feedback
Feedback

Figure 1. 1 The Research Methodology

9

The following subsections describe in detail the activities performed during each phase.

Phase 1 (Literature Review)

The literature review discusses the currently developed approaches to filter fast flux botnet

attacks, and outlines the most used techniques in detecting FF attacks. In addition, the literature

review displays the spiking neural network algorithms and their development to serve the new

adaptation proposed in this thesis.

Phase 2 (Literature Analysis)

This phase evaluates the major approaches against FF attacks, which are classified according to

the detection method used. This section offers a better understanding of the current problem,

possible solutions, and the scope of future studies to detect FFDs.

Phase 3 (Design and Modeling)

This shows the analysis process of a fast flux botnet and how the adaptation of DeSNN

positively affects the learning performance, which added a value to the proposed approach

which is dynamically used to detect fast flux domains. Also, this section compares the other

algorithms used to solve this problem.

Phase 4 (Performance Evaluation)

The final phase presents the performance evaluation, the experimental environment of the

proposed solution, and the dataset used to show the proposed approach’s effectiveness in

detecting fast flux domains, especially the zero-day domains. Moreover, the accuracy measures

used to prove the enhancement of the improvements made on the DeSNN algorithm according

to the proposed adaptations are shown here.

10

1.6 Contributions of the Research

The main contribution of this thesis is to develop a novel approach called Fast Flux Killer

Approach (FFKA), which adapts DeSNN algorithm. This approach has many sub-contributions

in the field of fast flux domains detection and are be summarized as follows.

 Increase the detection performance using the adaptive fast one-pass algorithm (ADeSNN).

Employ the spike time as the initial weight, then the achieved performance is evaluated

using true positive, true negative, recall, precision, f-Measure and overall accuracy.

 Improve the detection accuracy, especially the classification criteria by conducting a

similarity measure between the new and already trained inputs.

 Design of a new feature set which can be used with the suggested algorithm to accurately

classify fast flux domains.

 Introduce a new adaptive dynamic classification threshold in order to classify new

incoming inputs, as well as minimizing the memory storage used.

 Adaptive life-long learning approach able to detect dynamically the unknown zero-day fast

flux domains.

1.7 The Scope of the Research

The scope of this work is presented in two tracks. First, this research is about fast flux botnet

detection aiming to detect those domains in which they behave like malicious fast flux domain.

Second, this proposed approach is implemented as a host-based approach where it is able to be

implemented at the local DNS server in order to work as a defender in case of threats and risks.

1.8 Thesis Structure

This thesis is divided into 6 chapter where the word developed to achieve the aim and objectives

of this research is described. The next subsections will summarise each of these chapters.

Chapter One:

This chapter gave a brief introduction about fast flux botnets and listed the motivations of the

researcher to pursue this study. The research problem, research aim, and objectives are also

11

listed here. Finally, this chapter presented the research methodology and the structure of the

thesis.

Chapter Two:

A solid background about different types of fast flux and domain flux are discussed in this

chapter. A rich literature review of what have been done in the area of fast flux is detailed. The

author structured this chapter based on the scope of previous methods and solutions that tried

to solve the problem of fast flux botnet detection. Additionally, the previous work done related

to the proposed algorithm is mentioned. Furthermore, some brief information regarding the

evolving spiking neural network is presented. This information is the foundation of the

algorithm proposed in this work.

Chapter Three:

Part of the proposed solution was the changing of the initial weight. This is discussed in this

chapter. In addition, the adaptive dynamic evolving spiking neural network and the original

DeSNN are compared based on two public datasets. The results of the adaptive version with the

original algorithm are then discussed in details.

Chapter Four

Here the first part of the proposed FFKA is introduced, the supervised phase which works

offline to train the ADeSNN algorithm to detect the fast flux domains based on labelled data.

Moreover, the testing criteria was introduced to use the similarity measure to classify the fast

flux domains. This chapter also introduces the classification threshold that will be used in the

next phase of the FFKA approach in an online mode in chapter five. The chapter concludes by

a discussion and chapter summary.

Chapter Five:

This chapter presents the proposed FFKA approach to detect the zero-day fast flux domains in

online mode supported by offline mode to enhance the classification performance. Moreover,

this chapter shows the improvements on the classification process and the parameters

12

customization process and compares the results of the proposed Hybrid FFKA approach with

the supervised phase in chapter four. The chapter concludes by a discussion and chapter

summary.

Chapter Six:

This chapter give the overall discussion and present the conclusion of the work. In this chapter,

we state the limitations of this research, recommendations, and the possible future works.

13

CHAPTER 2

BACKGROUND LITERATURE REVIEW AND RELATED WORK

Chapter Overview

This study covered the literature review regarding the fast flux botnet problem. This chapter is

organized based on the three solution scope of the literature approaches which they were the

host-based, router-based, and the DNS-based. Then the related work from the literature was

discussed.

2.1 Background

Numerous websites provide commercial services to users. The efficiency of these services is

highly dependent on their availability. Server systems are distributed to large redundant service

networks in multiple areas to achieve high availability (Scharrenberg, 2008). The DNS is a

hierarchical distributed naming system for computers and resources that are connected to the

Internet (Shaikh, Tewari, & Agrawal, 2001). A browser usually automatically acquires the IP

address of the desired host name to access a website. The DNS server typically returns the same

reply each time. Thus, the same IP address is returned each time a host name is requested. Some

requests, such as RRDNSs, CDNs, and fast flux service networks (FFSNs), do not work in the

same manner as previously described. RRDNSs, CDNs, and FFSNs share similar

characteristics, such as a low time to live (TTL) feature. RRDNSs and CDNs are DNS-based

methods for load balancing that provide a high degree of performance, availability, and

scalability for content websites. RRDNSs distribute user requests to their distributed servers by

swapping the IP addresses of the DNS response of the same domain each time to provide load

balancing. CDNs represent a network of globally distributed nodes to return the IP address of

the nearest accessible node to the client; they thus support service speed and availability.

Similarly, fast flux uses a similar concept of frequently changing IP addresses that correspond

to a specific domain. This strategy helps cyber-criminals to remain undetected. The main

14

difference between FFSNs and CDNs is that CDN nodes are fully administered machines,

whereas FFSNs are malware-infected computers (Lin et al., 2013).

The business side of fast flux hosting begins with malware authors. By developing phishing

kits, this software package can be used to deliver phishing emails to a set (list) of victims and

host an illegal website to which those emails are directed. Others sell lists of addresses for spam

purposes, whereas others improve Bot software. A flexible, remotely controllable software

known as bot software enables subsequent downloads on a particular computer once it has been

installed on a victim’s computer. E-mail-borne worms are used by bot herders to infect and

exploit thousands of computers. Such tools are the most valued these days by malware authors

and cyber-criminals. Malware authors and bot herders are significant sections of the cyber-

criminal community (ICANN Security and Stability Advisory Committee (SSAC), March

2008).

FFNs provide high availability and reliability to scam websites ("GNSO Fast Flux Hosting

Working Group Publishes Final Report," 7 August 2009). The ICCAN report (ICANN Security

and Stability Advisory Committee (SSAC), March 2008) defines a fast flux technique as one in

which multiple IP addresses (sometimes hundreds or even thousands) are assigned and re-

assigned to a single fully qualified domain name (FQDN), such as www.example.com. The

URLs and domain names for the announced content are not resolved to any IP addresses of

back-end servers. Instead of pointing to back-end servers, the URLs and domain names

addresses are changed among many front-end agents, which serve as redirectors; thus, the

content is forwarded to the back-end servers (the mothership) (Gasster, 2008; "GNSO Fast Flux

Hosting Working Group Publishes Final Report," 7 August 2009; ICANN Security and Stability

Advisory Committee (SSAC), March 2008).

Fast flux mainly involves two techniques, namely, the IP fast flux and the domain flux. The IP

fast flux comes in two types as depicted in Figure 2.1: the single fast flux and the double fast

flux. An extension type of the double flux is called the hydra flux (Subsection 2.1.3). The details

of these techniques are discussed in the subsections that follow.

15

Mothership

Request:
 www.bad.com

User

1

2

3

H
o

st
_

R
e

q
: w

w
w

.b
a

d
.c

o
m

4

10.10.10.1

Redircet_Req:
www.bad.com

Mothership

User

1

2

3

H
o

st
_

R
e

q
: w

w
w

.b
ad

.c
o

m

4

Redircet_Req:
www.bad.com

Bulletproof
hosted DNS

Agent Agent

10.10.10.1

10.10.10.1
TLD

10.10.10.1

Request: www.bad.com

NS.www.bad.com

NS.www.bad.com

Single Fast Flux Double Fast Flux

Figure 2. 1 Comparison of IP resolutions of fast flux techniques

2.1.1 Single Fast Flux

Domain names are registered in an official registrar by an attacker for use in illegal activities

by an official registrar. The attacker registers a domain name for an FFSN referring to illegal

websites (e.g., bad.com) and another domain name (Resolvernameserver.com) to serve the

mapping domain name resolution services. As mentioned previously, the attacker adds IP

addresses to the bulletproof server and then provides the control of the FFSN to a mothership.

In a single fast flux as displayed in Figure 2.2, the attacker deploys a bulletproof server to host

the zone file. The bulletproof web hosting server leads customers to the desired malicious

website. Such services are well-known among botnet owners, who need a reliable environment,

and assist in deploying a botnet C&C server.

16

Mothership

FF-agents

Request: www.bad.com

Victim/User

1

2

3

Bulletproof
Name Server

Download the Zone file

Recruiting Agents
4

Response
192.10.10.1
50.74.0.12
100.7.10.1

5

6

HTTP Get:www.bad.com

192.10.10.1

Redircet_HReq: www.bad.com

8

7

Figure 2. 2 Single fast flux of IP addresses of a malicious website

Figure 2.2 shows the process of a single fast flux of the IP addresses of a malicious website.

1. The attacker recruits some of the compromised computers to work as proxies, which directly

redirect user requests to the mothership/operator.

2. The attacker adds the name server (Resolvernameserver.com) and records of the malicious

website (www.bad.com/mothership) to the zone file via the registrar.

3. The victim (user) requests the FQDN (www.bad.com). Hence, a request is sent to the DNS

looking to resolve the FQDN. Assuming the absence of caching, a recursive DNS server asks

for the authoritative name server for this FQDN. The part of the recursive process from the top-

level domain (TLD) to the authoritative server is omitted.

4. Instead of sending the IP address of the FQDN (www.bad.com), the authoritative name server

sends back a list of the IP addresses of the proxies to the user.

5. The user initiates a GET message to one of the IP addresses in the list.

6. The FF-agent (proxy) simply redirects the message to the malicious web server (the mothership)

to handle the message.

7. The malicious web server sends the response (answer) back to the FF-proxy.

8. The FF-agent returns the response to the user.

http://www.bad.com/
http://www.bad.com/
http://www.bad.com/

17

The A records of the web servers are constructed with short TTLs (Holz, Gorecki, Rieck, &

Freiling, 2008), “A” is the resolved record information returned from DNS. The FFSN operators

directly provide a new set of A records to replace the old set of records (of the FF-agents) when

the TTLs of the request expire. Thus, there is very little chance of identifying and shutting down

the web servers, which are supported by this FF technique. The records associated with the

illegal website in the zone file of the DNS bot (Resolvernameserver.com) might appear as

follows:

 bad.com. 180 IN A 192.10.10.1

 bad.com. 180 IN A 50.74.0.12

 bad.com. 180 IN A 100.7.10.1

The TTL for each RR is clearly very low (180 s). The RRs are directly replaced with new bot

(FF-agents) IP addresses when the TTL expires. The zone file might be read as follows after a

time of TTL+1:

 bad.com. 180 IN A 155.1.1.14

 bad.com. 180 IN A 180.88.0.9

 bad.com. 180 IN A 120.1.1.2

2.1.2 Double Fast Flux

Furthermore, the fast flux mothership/operator identifies the abovementioned domains, which

correspond to its FFSN. The FF-agents in the two FFSNs are separated to simplify the

understanding of the idea behind the double fast flux because FF-agents are commonly used to

serve both DNS and HTTP requests at the same time (Xu, Wang, & Xie, 2013) as the

mothership/operator. Figure 2.3 shows the double fast flux process.

18

Mothership

FF-agents

Request: www.bad.com

Victim/User

1

2

3

Legitimate
DNS(TLD)

Update TLD Zone file

Recruiting Agents

4

Response
11.11.11.11
22.22.22.22
33.33.33.33

5

6

HTTP Get:www.bad.com

192.10.10.1

Redircet_HReq: www.bad.com
8

9

10

7

FF-NAME SERVERS

Recruiting NS(Agents)

11.11.11.11

22.22.22.22 33.33.33.33

11

12

13

Redircet_HReq:
 www.bad.com

Response
192.10.10.1
50.74.0.12
100.7.10.1

Response
192.10.10.1
50.74.0.12
100.7.10.1

Request: www.bad.com

Figure 2. 3 Double FFSN of name server and IP addresses of the malicious website

Figure 2.3 summarizes the double fast flux process of the IP addresses of the malicious website

and the authoritative name server.

1. The attacker recruits some of the compromised computers to work as proxies, which directly

redirect the user request to the FF mothership/operator.

2. The attacker recruits some of the compromised computers to work as NS proxies, which directly

redirect the DNS request to the mothership/operator.

3. The attacker adds the name server records (Resolvernameserver.com) to the TLD zone file via

the registrar and keeps updating the legitimate DNS RR of the authoritative name servers of the

malicious domain.

4. The victim (user) sends a request for (www.bad.com) to the DNS server to resolve the FQDN.

5. The DNS returns a list of authoritative name servers for this FQDN, which are a part of the

malicious compromised pool of NS agents.

6. The user sends the authoritative NS asking for the IP address of the FQDN.

http://www.bad.com/

19

7. The authoritative name server forwards the DNS request to the mothership instead of resolving

and directly returning the IP address of the FQDN.

8. The mothership returns a list of IP addresses that are FF-agent proxies of the website server

(mothership).

9. The authoritative name server sends the IP addresses back to the user.

10. The user initiates a GET message to one of the IP addresses in the list (which is actually one of

the FF-agents).

11. The FF-agent (proxy) simply redirects the message to the malicious web server (mothership) to

handle the message.

12. The malicious web server sends the response back to the FF-agent.

13. The FF-agent returns the response to the user.

The attacker continuously updates the NS records of the TLD. Through the registrar, the domain

owner has the ability to modify the domain information. The attacker frequently changes the IP

addresses of the NS servers to point to different hosts and sets the TTL value for these NS

servers to a very small value (e.g., 180 s). The RRs of the NS might be shown in a TLD zone

file as follows:

bad.com. NS NS1.Resolvernameserver.com

bad.com. NS NS2.Resolvernameserver.com

NS1.Resolvernameserver.com A 11.11.11.11

NS2.Resolvernameserver.com A 10.0.0.2

The attacker automatically replaces the A records of the NS when the TTL expires. Therefore,

the RRs of the NS might be shown in a TLD zone file as follows:

bad.com. NS NS1.Resolvernameserver.com

bad.com. NS NS2.Resolvernameserver.com

NS1.Resolvernameserver.com. A 22.22.22.22

NS2.Resolvernameserver.com. A 10.10.10.233

20

Consequently, there is very little opportunity to detect and shut down the name servers that

support this fast flux attack. Combining the two FFSNs is an effective method for keeping the

website alive for longer periods than websites that do not use the same techniques.

2.1.3 Hydra Fast Flux

The new advanced FFSN does the same thing as the traditional FFSN, but taking it down is

impossible. Similar to the traditional FFSN, the mothership of the new advanced FFSN can be

deactivated by law enforcement, but the bots have an alternative IP address to another

mothership related to the same FFSN. As depicted in figure 2.4 the Asprox botnet, the bots

download a list of available motherships. Ultimately, alternative IP addresses adds a multilayer

of double fast flux to the botnet and maintains extra availability to the malicious content. Figure

2.4 depicts the multilayer FFSN of the Asprox botnet, which is usually denoted as a hydra-flux

service network.

FFSN

FFSN

botbot bot bot bot

Asprox C&C Servers

bot

Mothership A Mothership B Mothership C

Hydra-Flux
Service network

Figure 2. 4 Multilayer FFSN of the Asprox botnet and hydra-flux service network

2.1.4 Domain Flux

Another type of fluxing technique is the domain flux. In contrast to the fast flux of the IP

addresses related to a domain name, the domain flux is the process of fluxing domain names

related to a URL of the C&C server.

21

The domain flux is used by bots to contact the C&C server. The domain generating algorithm

generates the same domain names for both the C&C server and its bots when seeded with the

same value. The C&C server is used to register some of the auto-generated domains. Stone-

Gross et al. (2009) revealed that the Torpig botnet calculates domain names by combining the

current week and year and adding the TLD (e.g., “weekyear.net”) to them. These auto-generated

domains are then used by bots to contact the C&C server; if the connection fails, then the bots

attempt to use the day information to produce the daily domains. If all the domains fail, then the

bots use the hard-coded domain names in their configuration file as a last resort (Stone-Gross

et al., 2009). All of these generated domain names are sent to the DNS server in an attempt to

resolve it. The bots then establish contact with the C&C server. This process of failed requests

generates a high observable number of non-existing domain responses in the DNS traffic that

create a footprint of these bots that send most of the failed DNS requests (Jiang, Cao, Jin, Li, &

Zhang, 2010; Pappas et al., 2009; S. Yu, 2014).

2.2 Literature Review

Numerous studies have explored botnet detection, especially fast flux botnet detection (Al-

Duwairi & Al-Hammouri, 2014; Chahal & Khurana, 2016; Z. Chen, Wang, Zhou, & Li, 2011;

Scharrenberg, 2008; Yu, Zhang, Kang, & Chen, 2012). Most previous researches discussed the

detection of FFSNs or malicious fast flux domains, which serve as the main element of the fast

flux botnet technique. The related works on fast flux argued about fast flux in terms of what is

fluxed or what technique is used to detect an FF domain. However, to the best of our knowledge,

the present study is the first to investigate fast flux botnet approaches on the basis of the solution

scope of detection techniques as depicted in Figure 2.5.

22

Mothership

FF-agents

Authoritative
name server

Local DNS
server

DNS System

Router
Victim/User

1
2

3

Figure 2. 5 Solution scope of FF botnet detection methods

Figure 2. 5 presents the solution scope of fast flux botnet detection. In addition, the current

study classifies fast flux botnet approaches according to the solution scope. Hence, number 1 in

Figure 2.5 refers to host-based methods, number 2 refers to router-based methods, and number

3 refers to DNS-based methods. Moreover, the current study discusses the mode of each

detection technique and identifies whether it is active, passive, or real time as depicted in Figure

2. 6. Within these parts, each approach discusses the features, the datasets, and the classifier

used.

23

Scope of solution

Router-based DND-basedHost-based

Real-time Host
approaches

Active Host
approaches

Passive host
approaches

Real-time DNS
approaches

Active DNS
approaches

Passive DNS
approaches

Score-based approaches

Machine learning
approaches

Decision tree approaches

Geo-locational
approaches

Spatial information-
based approaches

Behavior-based
approaches

Machine learning-based
approaches

Figure 2. 6 Chart of the solutions scope

24

2.2.1 Host-based Detection Methods

Host-based means that the proposed approach is applied to a host device or a set of devices from

the user point of view. According to the literature, the majority of the reported works were using

the host-based detection approach. These approaches are divided into three subgroups: passive,

active, and real-time approaches.

2.2.1.1 Passive Host-based Approaches

The idea behind passive approaches is that they rely on the monitoring part of a specific network

area for a period of time. The collected data are then analyzed to prove predefined propositions.

Passive monitoring provides the detection methods the advantage of not being noticed by

attackers and adds no extra traffic flows to the network.

A Bayesian method is proposed to detect bots on the basis of DNS traffic similarity (Villamarín-

Salomón & Brustoloni, 2009). The proposed approach relies on the idea that a bot at the same

botnet has the same traffic similarity as the other botnets. One bot should be known at the

beginning; then, the search for other bots with the same traffic similarities in the DNS traffic is

initiated. However, the poor tuning of parameters generates large false positive (FP) values

(Villamarín-Salomón & Brustoloni, 2009).

Another method of using decision trees to identify malicious FFSNs was proposed in (Zhao &

Traore, 2012). The classifier begins by classifying malicious domains, and then monitors the

suspicious ones for a longer period. The proposed approach may be able to identify legitimate

and malicious FFSNs, but it may not easily classify them on the basis of malicious website

behaviors. The proposed approach is also unable to detect unknown FFSNs, as well as unknown

zero-day domains. In addition, the author suggested generating a new system that can develop

its classifier while running on the basis of an existing dataset and newly generated data, which

would enable the system to identify new threats (Zhao & Traore, 2012). Table 2.1 summarizes

the passive approaches.

25

Table 2. 1 Summary of passive approaches

Authors Algorithm Mechanism Advantages Disadvantages

Zhao and

Traore (2012)

Decision

tree

Monitoring

malicious domains

to detect FFSNs

Low

computationa

l complexity

 -Classification

problem

- -Unable to detect

unknown zero-day

domains

Villamarín-

Salomón and

Brustoloni

(2009)

Bayesian

method

Detecting bots

based on DNS

traffic similarities

and known bot

traffic

Effective and

robust

Parameter tuning causes

FP

Overall, fast flux botnet domains still need to be detected in a short time because of the quick

change in the IP addresses of motherships that hampers the easy tracking of their locations.

Thus, detecting this type of “Fast Flux zero-day” domains as quickly as possible is important.

Moreover, passive approaches deal with a huge amount of data and are thus unsuitable for fast

processing in a short time with few resources.

2.2.1.2 Host-based Active Approaches

In contrast to passive approaches, active approaches require assistance from third-party data

sources, such as the WHOIS or GeoIP database. Such third parties provide additional necessary

information (e.g., IP address registrar name and creation data). The following subsections

describe related works that applied host-based active approaches.

A) Score-based Approaches

Many fast flux domain detection approaches are based on the flux score calculation of a set of

features adopted (Al-Duwairi & Al-Hammouri, 2014; C.-M. Chen, Cheng, & Chou, 2013; Holz

et al., 2008; Hsu et al., 2014; Koo, Chang, & Chuang, 2012; Otgonbold, 2014; Sheng, Shijie, &

26

Sha, 2010). Holz et al. (2008) proposed a system that measures and detects a FFSN on the basis

of the calculated flux score. Their proposed system takes malicious domains from spam emails

and then uses the Dig tool to generate DNS lookups and reverse DNS lookups and thereby

obtain necessary information about a feature set (number of A records, number of autonomous

system numbers (ASNs), and number of (NS). Thus, the flux score calculation is fed for use

later in distinguishing between malicious FFSNs and legitimate ones. Their results showed that

the proposed system achieves a detection accuracy of 99.98%. However, the coefficients used

in the score calculation require modification to ensure the highest possible accuracy of the

detection system. Moreover, the set of features chosen cannot purely distinguish between

FFSNs and CDNs.

Hsu et al. (2014) proposed a fast flux domain detector (FFDD) system that adds to Holz’s source

of malicious domains and taking unknown URLs from spam or social networks. The FFDD

system is used to calculate the flux score on the basis of the response time series between each

of the two subsequent requests from a host to the FF-agent. The FFDD is a lightweight

standalone system that does not need support from other parties. Consequently, the FFDD can

accurately detect a fast flux domain with 3% FP and 2% FN in less than 20 min. Therefore, this

technique is not suitable for fast flux detection.

Sheng et al. (2010) proposed two metrics, namely, the average online rate (AOR) and the

minimum availability rate (MAR) to detect fast flux agents on the basis of the agents

themselves. The calculations of these two methods are initiated from the beginning of the

monitoring process. The monitoring is extended for 1 h using the AOR and MAR calculation

once a malicious domain is detected. The results show that most FFSNs have lower values than

legitimate ones. Moreover, these methods are easy to implement and deploy and are useful for

distinguishing between benign and malicious FFSNs but not for FFSN detection. However, the

metrics may work incorrectly if the group of agents is small or only a few agents are found

(Sheng et al., 2010). According to Sheng, the metrics depend on the quality of the HTTP service,

which may affect network accessibility and thus stop reaching agents.

The Google search engine has also been used as a technique to classify malicious domains by

feeding the search process with IP addresses of suspicious domains (Al-Duwairi & Al-

27

Hammouri, 2014). The number of hits is then observed. As expected, the number of hits

comprising domains associated with FFSNs would be much less than the number of legitimate

domains. The new legitimate domain could also mislead the classifier. The proposed system is

still at its infancy and thus needs other features to confirm its detection accuracy.

Koo et al. (2012) proposed a computed formula to detect malicious domains being used in

FFSNs, with the domains obtained from a malware domain list. They explored the actual status

of FFSNs employed in cyber-crimes and analyzed the distribution of compromised computers.

Consequently, the detection accuracy is high. However, their data were not sufficient to estimate

the scope of the FFSN. Thus, their proposed procedure may lead to misclassified domains.

(Chen et al., 2013) proposed a probability formula to detect malicious fast flux domains. The

network behavior of malicious domains are formalistic based on the time–space behavior of

malicious FF-domains. In addition, an analysis was proposed to reduce the time complexity of

feature modeling. The results of this study show that the proposed solution performs better than

the blacklists. However, a threshold is still needed to compute the probability formula.

Moreover, gathering information about domain names requires more time, which affects

detection performance.

Otgonbold (2014) proposed a fast flux formula to help detect fast flux domains in the wild. The

proposed ADAPT system takes inputs from the domain zone file to collect the DNS information

needed in the detection system. The zone file is targeted because it contains domains scattered

all around the globe using the Tor network as shown in Figure 2. 7. The system’s clients gather

suspicious domains from various DNS servers over the Tor network and then analyzes the

collected information. Thus, the decision is made as to whether the domain needs further

scanning to confirm its maliciousness. The results of this study indicate that the proposed system

is capable of detecting malicious fast flux domains in their infancy. However, the RDNS server

should be queried to collect full DNS information, and such requirement could affect detection

performance. The current version of Grails also shows a memory leak problem, which causes

out-of-memory exceptions and long-running tasks. Table 2. 2.2 summarizes the calculated

score-based approaches.

28

DB

ADAPT
Server

DNS Servers

ADAPT Clients

Domain
zone
files

TOR
Network

Suspected
domain

Figure 2. 7 ADAPT system architecture(Otgonbold, 2014)

Table 2. 2 Summary of score-based approaches.

Authors Algorithms Mechanism Advantages Weakness

Holz et al.

(2008)

Flux score The flux score is

computed on the basis

of DNS records

Uses two

consecutive DNS

lookups

- Coefficients require

periodic adjustment

- Feature is not

distinguishable

Hsu et al.

(2014)

Flux score Fast flux score is

computed on the basis

of the response time

differences of

subsequent requests of

FF domains

Lightweight stand-

alone system

Long detection time

29

Sheng et

al. (2010)

AOR, MAR Once the existence of a

fast flux domain agent is

discovered, its activities

are monitored every

hour using calculations

based on AOR and

MAR

Easy to implement

and deploy; metrics

are time saving

- Inaccurate result

- Based on the quality

of the HTTP service

Al-

Duwairi

and Al-

Hammouri

(2014)

Number of

hits in the

Google

search engine

Depending on the

number of hits of query

responses using the

Google search engine

Lightweight

approach

- Still in the

development phase

- Needs more features

to confirm detection

accuracy

- Misclassifies new

domains as malicious

Koo et al.

(2012)

Calculated

formulas

Calculated formulas

based on the actual

status of the FFSN being

employed

High detection

accuracy

- Data problem

- Misclassified

domains

Chen et al.

(2013)

Probability

formula

- Time–space behavior

of malicious FF

domains and network

behavior of domains are

formulistic

Outperforms

blacklists

- Threshold is needed

- Long detection time

Otgonbold

(Otgonbol

d, 2014)

Flux score

formula

- Detection system

collects domains from

DNS zone files

Detects malicious

fast flux domains in

their infancy

- RDNS servers

should be queried,

30

- Anonymously

provides domains all

around the globe in a

short period of time with

little resource using the

Tor network

which could affect

performance

- Out-of-memory

exception

B) Machine Learning-based Approaches

A number of machine learning algorithms are used to classify domains as either malicious or

benign (Chen, Huang, & Ou, 2014; Passerini, Paleari, Martignoni, & Bruschi, 2008) as

summarized in Table 2.3. In the naïve Bayes classifier proposed by Passerini et al. (2008), all

malicious domains are collected from spam emails. Their detection and monitoring “FluXOR”

system relies on the idea of a host being a victim to such scam. The system begins to send

requests and gathers the feature set information to feed the naïve Bayes classifier as in Figure

2. 8. The naïve Bayes classifier is a supervised algorithm, which is not suitable for detecting

unknown attacks. FluXOR reduces the time of detection to 1–3 h, which is still relatively long;

a domain with a TTL of more than 3 h is still considered legitimate (Huang, Mao, & Lee, 2010).

31

DB

Monitor Monitor Monitor Monitor

Detector

Collector 1

Collector 3

Collector 2

Internet

Figure 2. 8 FLUXOR system deployment(Passerini et al., 2008)

Chen et al. (2014) proposed a Bayesian probability theory to distinguish between benign and

malicious domains using dissimilar ASNs, reverse DNS lookups, and domain registration time

features. They aimed to detect a fast flux website on the basis of its fluxed characteristics. The

result of this proposed system presents its ability to identify possible threats. Nevertheless, their

judgment was not perfect enough to reflect the good precision of the proposed system.

Chen et al. (2011) used the k-nearest neighbor (KNN) and random forest (RF) as sampling

techniques to solve the imbalanced problem, with respect to FFSN detection. In addition, they

proposed a sampling technique that is combined with feature extraction from datasets for use in

fast flux detection. The result showed that the TTL is an important feature to the classification

of the proposed technique. However, its detection accuracy in the case of a long TTL is affected.

The support vector machine (SVM) was proposed by Yu et al. (2012) to detect fast flux botnets

by analyzing the patterns of DNS queries from FF botnets. They extracted six features to build

the weighted SVM classifier for use in distinguishing legitimate and FF botnet domains. They

noted that using SVM to identify fast flux botnets is effective and provides a satisfactory

32

detection accuracy. Overall, the proposed method entails a long detection time because it waits

for additional information from a third party. Moreover, such a supervised method is not helpful

in detecting new and unknown zero-day attacks.

Table 2. 3 Summary of machine learning approaches.

Authors Algorithms
Mechanism

Advantages Weakness

Passerini

et al.

(2008)

Naïve

Bayesian

classifier

Analyzes a set of features

observed from the victim’s

point of view on botnet

scams

Reduces

detection delay

- Long detection

delay

- Unable to detect

zero-day domains

Chen et al.

(2014)

Bayesian

probability

theory

Uses different

characteristics to

distinguish benign and

malicious domains

Enhances

detection

accuracy of web-

based botnets

- Achieves inaccurate

precision

 Chen et al.

(2011)

KNN and RF Use the resampling

technique to solve the

imbalanced classification

problem with respect to

FFSN detection

Solve the

imbalanced

dataset problem

- Long TTL affects

detection accuracy

Yu et al.

(2012)

Weighted

SVM

Extracts six features to the

weighted SVM by

analyzing the patterns of

DNS responses to FFSNs

Satisfies

detection

accuracy

- Earlier domains

create FP

- Unable to detect

zero-day domains

33

C) Decision Tree-based Approaches

Celik and Oktug (2013) proposed the C4.5 decision tree algorithm to evaluate various DNS

feature sets and put forward a detection approach, which is a high-dimensional feature vector

with various features, including timing network, spatial, and NS and DNS response information.

C4.5 evaluates each feature set of previous vectors and decides which one is the best feature

vector on the basis of detection accuracy. Combining all features together provides a detection

accuracy of 98.9%. However, the detection is unaffected in those timing and domain name

feature sets. The C4.5 unsupervised algorithm depends on clustering and is good for detecting

unknown attacks; however, it suffers from a low accuracy level in most applications

(Almomani, Gupta, Atawneh, Meulenberg, & Almomani, 2013).

D. Zhao and Traore (2012) proposed another method (REPTree) for botnet detection using a

decision tree with reduced error pruning. This type of machine learning decision tree is used to

classify and identify malicious FFSNs by defining and computing some of the network metrics

captured from network flows. Although decision tree-based classifiers are considered as a well-

known classification technique with low computational complexity, the authors were not sure

of the results because some benign websites were misclassified as malicious websites. They

also searched for other reliable evidence. Table 2. 4 summarizes the approaches using the

decision tree algorithm.

The classification and regression tree algorithm is used in the method proposed by Y. Zhao and

Jin (2015). This method uses a small dataset to quickly distinguish legitimate and malicious

FFSNs. This method is mainly based on FFSN domains, DNS, and the process of HTTP visiting.

The domain distinct features are shown in Figure 2. 9. Another researcher used distinct mapping

of features (Pa, Yoshioka, & Matsumoto, 2015). The classification process needs less than a

few days, and the detection accuracy is 90%. The detection time is also relatively long, and

other detection methods exhibit higher accuracy and lower detection time. Moreover, this

method cannot detect zero-day domains.

34

SYN

SYN/ACK

ACK

HTTP REQUEST

SYN

SYN/ACK

ACK

HTTP REQUEST

HTTP REPLY

HTTP REPLY

CLIENT FLUX-AGENT(PROXY) MOTHERSHIP SERVER

Figure 2. 9 The process of visiting a domain(Y. Zhao & Jin, 2015)

Table 2. 4 Summary of the approaches using decision tree algorithms.

Authors Algorithms
Mechanism

Advantages Disadvantages

Celik and

Oktug

(2013)

C4.5

decision

tree

A number of feature

sets are experimented

on to detect FFN.

Detect

unknown

attacks

- Unaffected by

some of feature sets

- Low level of

accuracy

D. Zhao

and Traore

(2012)

Decision

tree using

reduced

error

pruning

(REPTree)

Computed metrics of

captured network flows

that are analyzed using

REPTree.

Low

computational

complexity

-Misclassification

-Needs additional

discriminators

35

Y. Zhao

and Jin

(2015)

 Regression

tree

algorithm

Detect FFSN domains

on the basis of the

intrinsic features of

DNS analysis and the

process of HTTP

visiting.

Ability to

classify FFSN

domains

-Long detection

time

-Low accuracy rate

-Unable to detect

zero- day domains

D) Geo-informational Based Approaches

A constraint-based geolocation technique was employed in (Castelluccia, Kaafar, Manils, &

Perito, 2009), and the proposed approach utilizes a geo-localized fast flux hidden server. Thus,

mean error distance is used in this approach to determine the physical location of the mothership

server. As a result, their approach localizes the mothership with a mean error of below 100 km.

However, the system requires extensive resources, achieves low precision, and is incomplete.

Buhariwala (2011) used the same technique and determined that the 100 km mean error is

inaccurate; moreover, the result indicated that the right error value is 1,000 km from the

mothership server. A virtual private proxy server was proposed to decrease the overhead of

requesting data from the content server. The result indicated a 300 km mean error, which is

three times better than that obtained by Castelluccia et al. (2009). A large mean error rate for

physically localizing the mothership server still exists. Table 2. 5 summarizes the methods that

utilize geo-information.

The system proposed by Stalmans, Hunter, and Irwin (2012) used Moran’s I and Geary’s C

features to produce classifiers to detect the fast flux C&C domain names of C2 servers. The

proposed system can detect domain names on the basis of the geographic locations of C2

servers. Moran’s I assumes that close geographical C2 servers are similar, whereas Geary’s C

measures the spatial autocorrelations between C2 servers. Their system can reliably detect FF

domains with a small FP rate. Moran’s I measurement is influenced by the number of white

spaces at a large scale (Stalmans et al., 2012).

36

Stornig (2013) employed another approach in which Moran’s I of spatial autocorrelation and

spatial service distance are used to classify legitimate and non-legitimate fast flux domains. This

approach is based on the geo-information of the distributed IP addresses of FF-agents. The

spatial autocorrelation between two distant geographical points means that they are not similar,

and close points share more similarities. The spatial service distance denotes the average

distance between the geolocation of the IP addresses that is correlated with the same domain

and the geolocation of the IP addresses of the name server. As a result, the author was convinced

that the proposed approach is accurate and lightweight for detecting fast flux domains with low

FPs. However, botmasters could cause the detection approach to yield to misclassified results

by changing the distribution of the IP addresses of the agents.

Table 2. 5 Summary of approaches using geo-information.

Authors Algorithms
Mechanism

Advantages Disadvantages

Castellucci

a et al.

(2009)

Constraint-based

geolocation

technique

Determines the

physical location of

the FF mothership

on the basis of

network

measurements

Can localize

with a mean

error distance

below 100 km

-Requires extensive

resources to set up

-Less precise and

less complete

Buhariwal

a (2011)

Constraint-based

geolocation

technique

Determines the

physical location of

the FF mothership

on the basis of

network

measurements

Decreases the

overhead of

requesting

content servers

Inaccurate rate (300

km)

Stalmans et

al. (2012)

Time zone, UTM,

MGRS

Identify fast flux

domains on the sole

basis of the

Only a small

percentage of

FPs

Classifier is

affected by a large

37

geographic

locations of C2

servers

amount of

whitespace

Stornig

(2013)

Moran’s I of

spatial

autocorrelation

and spatial

service distance

Utilizes methods of

geo-information

and spatial statistics

-Lightweight

system

-Avoids FPs

Could be

misclassified by

botmasters

The problem with active detection-based approaches is that they deal with minimal DNS traffic

traces, which correspond to non-legitimate domain names in most cases. According to the nature

of active approaches that mostly deal with malicious domains, they are obviously unable to

detect unknown zero-day domains.

2.2.1.3 Host-based Real-time Approaches

The previous methods involve passive and active approaches, which presented many detection

techniques to detect malicious fast flux botnet domains and FFSNs. Fast flux detection requires

a fast and accurate approach to identify malicious domains before they change their IP

addresses. Thus, a new era of real-time approaches have been developed to increase the power

of detection techniques. The main idea behind employing real-time approaches is to reduce the

time needed to detect attacks to real-time processing.

A) Spatial Information-based Approaches

Caglayan, Toothaker, Drapeau, Burke, and Eaton (2009) were the first to conduct a related

empirical study. The authors presented a fast flux monitor (FFM) that could detect and classify

FFSNs in real time within minutes. The FFM comprises active and passive DNS monitors,

which reduce the long-term observation of FFSNs. Using active and passive monitoring can

reduce observation duration, but the system still requires a few additional minutes. Obtaining

extra information from a data center helps classify botnet domain names.

38

Huang et al. (2010) proposed a real-time system called spatial snapshot fast flux detection

(SSFD). SSFD detects FFSNs by extracting the IP addresses of the hosts (agents) from the DNS

responses and determining the geographical traffic patterns of these agents in a geographic

coordinate system. Two spatial measures were used: spatial distribution estimation and spatial

service relationship evaluation. A Bayesian network classifier was also employed to distinguish

FFSNs from benign networks. The experimental results indicated that SSFD is effective (less

than 0.5 s) and yields lower FP rates than flux score detection systems through their data sets.

However, SSFD suffers from a single IP problem and missing geographical information

problem, which may cause the system to malfunction. The experiments verify that the detection

accuracy is 62% (H.-T. Lin et al., 2013).

A Bayesian network classifier algorithm classifier was proposed by Horng-Tzer, Ching-Hao,

Kuo-Ping, and Hahn-Ming (2012) to detect FFSNs in real time. The authors believed that the

grid distribution of the localized spatial-locating capability is ideal to depict the spatial

relationship between the resolutions of IP addresses. To enhance the localized geo-locational

characteristics, the proposed system incorporated ASNs, localized spatial geo-location detection

(LSGD) system, and DNS to achieve the identification of potential FFSNs. The authors believe

that the detection capability of the LSGD system is better than spatial or temporal detection

approaches. The LSGD system exhibits a lower FP rate than the spatial snapshot system in real-

time detection, which is completed within seconds. However, the highest FP rates are caused

by CDNs, which have a similar localized spatial distribution signature that affects accuracy.

Table 2. 6 shows the summary of spatial informational approaches.

Table 2. 6 Summary of spatial informational real-time approaches.

Authors Algorithms Mechanism Advantages Disadvantages

Caglayan

et al.

(2009)

Bayesian

belief

network

-Bayesian classifier

employs multiple active

and passive DNS

sensors

Reduces the

observation

period

-Long time

-Data center help

is needed

39

-Generates a

probabilistic assessment

of the existence of a

FFSNs

Huang et

al. (2010)

Bayesian

network

classifier

and

K2 algorithm

Determines the

geographic traffic

patterns of hosts and

maps the IP address of a

DNS response in a

geographic coordinate

system

Lower FP rate

than flux score-

based detection

-Single IP

problem

-Missing value

problem

Horng-

Tzer et al.

(2012)

Bayesian

network

classifier and

K2 algorithm

Propose LSGD system

for identifying FFSNs in

real time

Better detection

capability than

spatial or

temporal

detection

approaches

-Misled by CDN

service sites

B) Behaviour-based Approaches

Many researchers have studied the behavior of the changes in fast flux domains. Caglayan,

Toothaker, Drapaeau, Burke, and Eaton (2010) modeled the behavior pattern of FF botnets on

the basis of DNS resource records using a Bayesian classifier. The authors determined that

botnets exhibit common characteristics and form clusters according to botnet size, growth, and

operations. Their findings show that a majority of fast flux botnets operate in at least five

countries and between 20 and 40 countries on average. Unfortunately, their approach is misled

by benign servers, such as CDNs, thus resulting in a high number of FPs (Caglayan et al., 2010).

B. Yu, Smith, and Threefoot (2014) addressed the behaviour of fluxed domain changes and

proposed a novel time series model on the basis of carefully selected features. Their model uses

40

network security and a semi-supervised training approach to overcome and identify difficulties

in known supervised machine learning approaches. A horizontal scalable online system was

proposed to deal with the large amount of data that passes through a network in real deployment.

Their system can identify flux domains despite the presence of long TTLs or a limited number

of mapped IP addresses. Actual latency is determined by an online system (10 min) given a

domain name, whereas most active threats can be detected in less than 10 min. Their approach

does not address the FN rates in the evaluation of the results. Table 2. 7 shows the behavior-

based approaches.

Table 2. 7 Summary of behavior-based approaches.

Authors Algorithms Mechanism Advantages Disadvantages

Caglayan

et al.

(2010)

Bayesian

classifier

Modeling the behavioral

patterns of fast flux botnets

using DNS records

-Botnets operate in

20 to 40 countries

- < 250 ASNs

- Misled by

CDNs

-High number of

FPs

B. Yu et

al. (2014)

Time-series

model

-A time-series model

–A horizontally scalable

online system

Captures fast flux

domains

 -Long detection

time.

-FN rate is not

considered

C) Machine Learning-based Approaches

Qassrawi and Zhang (2012) used the algorithm of an alternative decision tree (Gothai &

Balasubramanie, 2012) to determine whether a domain is an FF domain. Figure 2. 10 shows

that only one DNS response resource record is needed to achieve fast detection in real time.

Previous studies show that DNS information is insufficient to detect FF botnets (Martinez-Bea

et al., 2013).

41

DNS LOOKUPDNS RESPONSE

ACCEPT

REJECT AND BLOCK

WEB SERVER

AD ALGORITHM CLIENT BROWSER

Figure 2. 10 Alternative decision tree detection approach(Qassrawi & Zhang, 2012)

Unlike Qassrawi, Hsu et al. (C.-H. Hsu et al., 2010) proposed a real-time system to measure the

delay for HTTP responses by relaying user requests from an FF-agent to back-end servers. Thus,

a long delay means that a host (FF-agent) relayed a request to another server. The authors

proposed this real-time system to reduce detection time to a few seconds without affecting

detection accuracy (96% with FP and FN rates below 5%). The authors utilized a classification

based on supervised learning using SVM trained on six features. The delays in the relaying

request are counted because of the limited power and bandwidth of the relaying hosts (FF-

agents). However, extracting the six features from this volume is time consuming. Thus,

keeping the detection time within the real-time range is difficult. The proposed system cannot

effectively detect fast flux domains with long TTLs, and the detection accuracy is 67% (H.-T.

Lin et al., 2013). The proposed detection system cannot detect zero-day domains.

SVM was built by McGrath to detect fluxed phishing domains (D. Kevin McGrath,

2009/09/01). The classifier was trained on the basis of the features extracted from the DNS

responses, such as the number of IP addresses related to one domain, ASNs, number of different

prefixes, and number of countries of an IP address. The main limitation of the classifier, based

42

on the nature of its features, is that it can be misled by botmasters. The previous classifier

proposed in (C.-H. Hsu et al., 2010) can be misled by a benign server, such as a CDN or

RRDNS. A new SVM classifier proposed by Martinez et al. (Martinez-Bea et al., 2013) was

trained on real features from both domains and bots. Combining the two feature sets from the

two previous approaches (D. Kevin McGrath, 2009/09/01; C.-H. Hsu et al., 2010) increased the

TP and TN rates and decreased the FP and FN rates. Unfortunately, the author stated that the

proposed method for detecting fast flux domains may still be evaded theoretically and that the

proposed detection system cannot detect zero-day domains.

The genetic based real-time approach for FFSN detection (GRADE) was proposed by H.-T. Lin

et al. (2013). The authors assumed that fast flux bots are distributed arbitrarily in a multitude

geographical locations. Thus, the distances between bots (FF-agent) and users differ. The fast

flux domains would result in significant differences in the round trip time between the user and

the agents. The GRADE system architecture is depicted in Figure 2. 11. GRADE can more

effectively detect FFSNs (within a few seconds) than flux scores and is more accurate (98%)

than fast flux bot detection and SSFD. However, GRADE suffers from the single IP problem,

in which only one point in the geographic coordination system may cause GRADE to

malfunction. Table 2. 8 summarizes real-time machine learning approaches.

ASN QUERY MODULE

E-DPN MODULE

SD-RTT MODULE

WEIGHT OPTIMIZATION
MODULE

FFSN DETECTION ENGINEDOMAIN NAME IP EXTRACTOR

Figure 2. 11 GRADE system architecture(H.-T. Lin et al., 2013)

Table 2. 8 Summary of real-time learning approaches.

43

Authors Algorithms Mechanism Advantages Disadvantages

Qassrawi

and Zhang

(2012)

Alternative

decision tree

One DNS response RR is

needed to achieve FF

detection in real time

One DNS

response RR in

needed

Insufficient

features to

conduct

classification

C.-H. Hsu

et al. (2010)

Linear SVM

algorithm

Observes longer delays

for HTTP responses as a

result of relaying the

requests via fast flux

agents

-Real time

-Robust

-Lightweight

-Long detection

time

-Cannot detect

long TTL

domains

-Unable to detect

zero-day

domains

Martinez-

Bea et al.

(2013)

Linear SVM

algorithm

Builds an SVM classifier

trained via real features

extracted from domains

and bots to differentiate

malicious FFNs

-Increased TP

and TN

-Reduced FP

and FN

Unable to

detect zero-day

domains

H.-T. Lin et

al. (2013)

Genetic

algorithm

The distances between

clients and flux bots

varies significantly

Outperforms

other systems,

such as flux

score, FFBD,

and SSFD

Single IP

problem

The proposed real-time approaches can detect malicious domain names and malicious FFSNs

in most cases. However, the above-mentioned techniques have certain limitations, which cast

doubt on their results (accuracy, TP, TN, FP, and FN), as some methods have high percentage

44

of false positive and others have low detection accuracy. We still lack a stable technique that

can detect malicious domains, particularly zero-day domains, in an acceptable period of time

with high detection accuracy.

2.2.2 Router-based Detection Methods

Many researchers have used different sets of information from network traffic to solve several

network problems generally and particularly for the fast-flux botnet problem. Network traffic

comprises both DNS traffic and non-DNS traffic. Recent studies (Al-Duwairi & Al-Hammouri,

2014; Paul, Tyagi, Manoj, & Thanudas, 2014) did not rely on DNS data traffic. Al-Duwairi

and Al-Hammouri (2014) compared incoming and outgoing data traffic at a leaf router of stub

networks to find matches between incoming and outgoing SYN packets. This online approach

efficiently detects malicious fast flux agents within stub networks. However, installing the

system on all the leaf routers of stub networks is difficult to achieve (scalability problem), and

the utilized data traffic traces do not have fast flux traffic (Al-Duwairi & Al-Hammouri, 2014).

A previous work (Paul et al., 2014) aimed to cluster similar packets in data traffic from both

router sides assuming that the C&C servers had to change their IP addresses automatically. The

approach assembles all packets, as shown in Figure 2. 12, between the C&C server and the host

for analysis and obtains the malicious pattern in each cluster. The detection accuracy of this

approach to malicious traffic is 95.8%, and its low FP rate is 1.6% in the worst case. However,

the approach suffers from a scalability problem. Thus, when data traffic is insufficient, the

malicious packet sensitivity decreases. Table 2. 9summarizes the router-based approaches.

45

HTTP traffic capture
& Store module

Packet field
extractor

Clustering module

Classifier

Power spectral
density module

Enterprise
network

Internet

Cluster 1

Cluster 2

Cluster 3

Malicious trafficNormal traffic

Enterprise
network
gateway

Figure 2. 12 System architecture of the clustering detection method (Paul et al., 2014)

Table 2. 9 Summary of router-based approaches.

Author-s Algorithms
Mechanism

Advantages Disadvantages

Al-

Duwairi

and Al-

FF-watch

algorithm

Correlates incoming TCP

connection requests to flux

agents within a stub network

with outgoing TCP connection

Eliminates

the need for

large DNS

traffic

-Old dataset which

may not contain FF

traces

-Scalability problem

46

Hammouri

(2014)

requests from the same agents to

the point-of-sale website

Paul et al.

(2014)

 PSD value

used as

classifier

Computes the power spectral

density (PSD) for each cluster

and feeds it to the classifier,

which examines the PSD data

for significant peaks

Detects

traditional

HTTP and

fast flux

botnets

-Scalability problem

-Malicious packet

detection sensitivity

problem

Table 2.9 clearly indicates that constructing router-based systems to detect fast flux botnets may

produce acceptable results for the authors. However, the speed and the large amount of data

passing through the router cause three main problems to build systems: high false rates based

on the concept of a fast detection of FF botnets, memory problems (databases) due to handling

large traffic data flows, and a scalability problem. Therefore, detecting fast flux botnets and

particularly zero-day domains at this part of the network is ineffective.

2.2.3 DNS-based Detection Methods

Researchers studied DNS data traffic in their country of origin. Thus, their work focused on

monitoring and analyzing DNS data traffic and detecting malicious activities, such as fast flux

botnets. Some researchers employed passive, active, and real-time approaches, as presented in

the following subsections.

2.2.3.1 Passive Approaches

Researchers monitored DNS servers and analyzed data traffic passively to detect malicious

activities. Gržnić, Perhoč, Marić, Vlašić, and Kulcsar (2014) presented a detection system called

CROFlux that detects fast flux domains relying on a passive DNS replication method. Their

system aims to reduce FP rates and detect unknown fast flux domains with flux characteristics,

which are usually used to share malware. Thus, the approach avoids the reporting of legitimate

domains with similar characteristics. The proposed system suffers from a design problem

because it does not utilize active DNS requests to feed the system and many IP addresses can

47

enhance fast flux detection (Gržnić et al., 2014). The proposed system cannot detect zero-day

fast flux domains because the classification process depends on the comparison of the number

of malicious domains in the candidate fast flux cluster with predefined fixed malicious domains.

A scalable and fast approach proposed by Kwon, Lee, Lee, and Perrig (2016) detects fast flux

botnets on the basis of large-scale DNS traffic. This approach analyzes the collected large-scale

DNS data traffic to extract malicious behaviors. A signal processing technique, namely, PSD

analysis, is leveraged to determine the main frequencies from the periodic DNS queries initiated

by botnets. Their system detection accuracy is 95%, given its detection of 23 unknown and 26

known botnet groups with 0.1% FP. However, the proposed method relies on the number of

hosts. Thus, increasing the number of hosts should decrease speed and detection efficiency. A

threshold number should be assigned according to the circumstances of DNS servers; such

threshold number differs for all DNS servers (Kwon et al., 2016).

Some decision tree algorithm versions have been used for many detection techniques, such as

the system proposed by Perdisci, Corona, Dagon, and Lee (2009). This system passively collects

recursive DNS queries and responses by deploying multiple sensors in front of RDNS servers

in two ISP networks. Perdisci analyzed the extracted features to detect malicious FFSNs using

C4.5 decision tree. Their experiments showed that they accurately distinguished malicious and

legitimate FFSNs. They used a statistically supervised learning approach to build a service

classifier. Thus, this classifier cannot detect malicious zero-day flux services.

Similarly, Perdisci, Corona, and Giacinto (2012) proposed a novel passive DNS system called

FluxBuster using C4.5 decision tree as a classifier; this system analyzes DNS traffic for

malicious FFN detection and blocking. Their approach gathers DNS traffic generated from

hundreds of RDNSs, which are scattered in many networks around the world. A large-scale

analysis is carried out on the basis of the resultant traffic. Thus, FluxBuster can detect unknown

FFNs before they are reported in a public blacklist. However, the detection system waits for a

user to click on a domain name to initiate a request and detect a domain. Furthermore, more IP

addresses are needed to set the threshold value of their classifier.

An anomaly-based technique using a decision tree with AdaBoost algorithm was proposed in a

previous work (Vu Hong, 2012). This approach depends on the passive analyses of extracted

48

DNS data traffic to detect fast flux botnets. Two graphs were constructed, the lookup graph and

the failure graph, from the extracted DNS traffic. The resulting graphs were distributed into

clusters, as depicted in Figure 2. 13. These clusters exhibited a strong correlation between traffic

elements (domain, host, and IP addresses). The related features of DNS traffic were extracted

from these clusters to feed the classification module in the detection system and identify the

existence of a fast flux botnet. The authors believed that they succeeded in detecting a fast flux

botnet from traffic analysis. However, the system produces FP rates when the number of domain

names in a malicious subgraph was small and produced FN rates when a benign subgraph

included a large number of random-looking domain names. The malicious characteristics

exhibited by the subgraph were not sufficiently distinctive for the technique to obtain. Table 2.

10 summarizes passive DNS-based detection approaches.

Graph construction

Graph
decomposition

Feature extraction

Regression function

Domain DBWhoIS DB

Maliciousness score

Blacklist
Whitelist

Lookup and Frailer Graph

Dense Subgraph

Features

Inspected
network

Figure 2. 13 Analysis procedure of an anomaly-based technique using a decision tree with

AdaBoost algorithm (Vu Hong, 2012)

49

Table 2. 10 Summary of passive DNS-based detection approaches.

Authors Algorithms
Mechanism

Advantages Disadvantages

Gržnić et

al. (2014)

Publicly

available and

private

malware lists

Relies on the passive DNS

replication method to detect

suspicious fast flux domains

Reduces FP -Design problem

 -Unable to detect

zero-day fast flux

domains

Kwon et

al. (2016)

PSD Leverages a signal processing

technique to discover the

major frequencies of periodic

DNS queries of botnets

Detection of 23

unknown and

26 known

botnet groups

-Increases in the

number of hosts

decreases the

efficiency

-Fixed threshold for

all DNS servers

Roberto

Perdisci et

al. (2009)

C4.5

decision tree

Detects malicious flux service

networks through passive

analysis of recursive DNS

traces

Accurate

classification

Cannot detect zero-

day malicious flux

services

Roberto

Perdisci et

al. (2012)

C4.5

decision tree

A passive DNS traffic analysis

system for detecting and

tracking malicious flux

networks

Detects

unknown flux

networks before

blacklisting

-wait user click

-The threshold

needs sufficient IP

addresses to be set

Vu Hong

(2012)

Decision tree

with

AdaBoost

algorithm

-Constructs a lookup graph and

a failure graph from captured

DNS traffic

Helps detect

botnets through

traffic analysis

-Produces FN and

FP

-Insufficient

distinctive features

50

-Decomposes these graphs into

clusters with a strong

correlation between their

domains, hosts, and IP

addresses

2.2.3.2 Active Approaches

An active approach (Zhou, Leckie, & Karunasekera, 2009) adopts a collaborative detection

system based on a decentralized correlation model called large-scale intrusion detection to

detect fast flux phishing domains by analyzing the relationship between the number of IP

addresses and DNS requests from different networks.

Figure 2. 14 shows the combination of different DNS server responses to quantify the probable

time to be saved. The results indicated that combining evidence from multiple DNS servers

would speed up the process of fast flux detection. No significant time was saved, which leads

to fast detection of fast flux domains. Table 2. 11 summarizes the active approaches.

Table 2. 11 Summary of active approaches.

Authors Algorithms Mechanism Advantages Disadvantages

Zhou et al.

(2009)

Decentralized

correlation

model called

LarSID

Correlation of

multiple responses of

DNS servers to

increase detection

time

Reduces query

time up to 30%

Detection time

is long

51

DETECTION

DETECTION

DETECTION

DETECTION

DETECTION

DETECTION

DETECTION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

UNDERLAYING
PEER TO PEER

NETWORK

Figure 2. 14 LarSID architecture (Zhou et al., 2009)

2.2.3.3 Real-time Approaches

A real-time approach (Futai, Siyu, & Weixiong, 2013) was used to develop a fast flux botnet

detection method. This approach employs the J48 decision tree algorithm as a classifier in a

hybrid system, which combines real-time detection and long-term monitoring, as depicted in

Figure 2. 15. Their approach can achieve a higher real-time detection rate compared with flux

score-based methods. Still, the proposed approach cannot detect fast flux domains with high

TTL values. Table 2. 12 summarizes the real-time approaches.

52

DNS Response

Suspicious domain
filter

Long-term classifier

Real-time detector

Reached time limit

Probing &
monitoring

Fast Flux

Benign

Figure 2. 15 Hybrid detection system(Futai et al., 2013)

Table 2. 12 Summary of real-time approaches.

The detection systems initiated over a DNS server do not exhibit network time delays. Many

researchers determined that systems that depend on DNS features cannot provide an accurate

detection rate for fast flux domains (Martinez-Bea et al., 2013).

The main problem of fast flux botnet detection methods is detecting the evasion detection

mechanism before the attack is initiated to support botnet malicious activities. This is

Authors Algorithms Mechanism Advantages Disadvantages

Futai et

al.

(2013)

J48 decision

tree

Combines real-time

detection and long-

term monitoring

 Higher detection

rate compared with

flux score-based

algorithms

-Cannot detect FF domain

with high TTL value

-Cannot detect unknown

FFSNs

53

particularly true when detecting zero-day domains without any prior knowledge about the

incoming domain name, which serves malicious websites, C2 servers, and motherships. At the

same time, detection accuracy and low detection error rates are monitored. On the basis of the

developing strategies of attackers, the detection system should develop new systems that are

long-lasting and adaptive to allow the future modification of their functions. Detection systems

should continuously learn by analyzing new system inputs as new data instead of training with

old data.

2.2.4 Hydra Flux Service Network

Hydra fast flux networks and SQL injection attacks are the main advanced features of Asprox

botnets. Al-Bataineh and White (2012) studied the design and structure of Asprox botnets, in

which communication protocols are used to download malicious codes, propagate malicious

codes, and employ hydra FFSNs. The authors mentioned that SQL injection attacks are

responsible for the recruitment of new bots and social engineering ruses to spread malware

binaries. Hydra FFSNs prevent the disruption of the communication channel between bots and

the C&C server.

The crucial aspect of the hydra fast flux is the possibility of bots contacting other C&C servers

when the original C&C server is taken down. Hydra is an advanced double fast flux that refluxes

the name server and the host IP addresses, making the prevention of massive disruption

impossible.

2.2.6 Dynamic evolving Spiking Neural Network (DeSNN)

Spiking Neural Network (SNN) is the third generation of neural network that adds the time

element to the network. eSNN is an improvement on spiking neural network, as well as an

extension of the ECOS models, employing integrate and fire neuron (IF) and Rank-Order

learning (RO). A new improvement is a Dynamic evolving Spiking Neural Network (DeSNN)

(Kasabov et al., 2013). The RO learning is built on the theory where the most significant

information of an input pattern is enclosed in earlier incoming spikes, the priority of the inputs

is comes from the incoming spikes order at the input synapses for a specific pattern. This is a

54

simulation of the biological system as well as an important base for some spatio-temporal hard

cases.

One of the main problems facing the fast flux Botnet detection methods is how to detect such

an evasion detection mechanism before the attack begins, to support botnet malicious activities.

This is especially so when detecting zero-day FFSNs without any prior knowledge about the

incoming domain name serving the malicious website/C2 server/mothership, at the same time

as keeping track of the detection accuracy and low detection error rates. In previous related

work done by Almomani et al. to detect unknown zero-day phishing emails in online

mode(Deeb Al-Mo et al., 2011), they classified phishing emails based on ECoS, which gives a

promising platform for phishing detection. ECOS proved its adaptability in classification of

ham and phishing emails in online mode based on a one pass algorithm for increased speed

(Deeb Al-Mo et al., 2011), which accesses the data only once from the memory to create rules.

A limitation of the ECoS algorithm used in that paper is that it classified phishing emails as

traditional connectionist algorithms which need a careful assignment of their parameters.

According to Demertzis and Iliadis (2015), eSNN is used to detect DGA domain names. The

authors proposed a fast evolving Smart URL Filter in Zone-based Policy Firewall. Their work

promised improvement on zone-based policy, but the inclusion of self-modified parameter

values are still necessary to get more efficiency.

Dynamic evolving spiking neural network is used as an output classifier under the NeuCube

platform (Alvi, Pears, & Kasabov, 2017), as the DeSNN is achieved outstanding success in

spatio-temporal classification problem in many areas. Also, the DeSNN algorithm was used in

(Doborjeh & Kasabov, 2016) to perform the output classifier with NeuCube platform in

supervised learning mode.

(Kasabov et al., 2013) introduced the dynamic evolving spiking neural network that utilized the

rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-

supervised modes. The results were performed a high level of accuracy and speed comparing

with other SNN algorithms. However, the algorithm suffer from many parameters to be set

before implement the algorithm.

55

According to (Doborjeh, Capecci, & Kasabov, 2014), a DeSNN algorithm used as classifier in

NeuCube platform, where the NeuCube model was used for FMRI data learning. Nevertheless,

the model is extremely influenced by its parameters values. Alauthman and Almomani (2017)

used the DeSNN as a classifier over the NeuCube platform to detect the spam email.

As a result, all the three solution scopes were discussed, the advantages and disadvantages,

current work tends to be implemented as a root at the end host-based part of the network, Also,

this system can be implemented at the local DNS server in order to work as defender in case of

threats and risks. Fast flux domains act in an online mode to keep up their duties as a response

to the mothership orders, so the need for online detection system became necessary to try to

shut down such threats. The proposed system is expected to detect FFDN in online mode with

high detection accuracy and low false positive and negative rates respectively. It is also expected

to have a high level of performance depending on using one-pass algorithm and chosen proper

feature set, also the proposed system should work for a lifetime with low memory usage.

2.3 Related Work

Holz et al. (2008) were the first who proposed a system that measures and detects a FFSN on

the basis of the calculated flux score. Their proposed system takes malicious domains from

spam emails and then uses the Dig tool to generate DNS lookups and reverse DNS lookups and

thereby obtain necessary information about a feature set, for the sake of space all the features

of all the related works displayed in Table 2.13. Thus, the flux score calculation is fed for use

later in distinguishing between malicious FFSNs and legitimate ones. Their results showed that

the proposed system achieves a detection accuracy of 99.98%.

Some decision tree algorithm versions have been used for many detection techniques, such as

the system proposed by Roberto Perdisci et al. (2009), which passively collects recursive DNS

queries and responses by deploying multiple sensors in front of RDNS servers in two ISP

networks. They analyzed the extracted features to detect malicious FFSNs using a C4.5 decision

tree. Their experiments showed that they accurately distinguished malicious and legitimate

FFSNs.

56

In the naïve Bayes classifier used by Passerini et al. (2008), all malicious domains are collected

from spam emails. Their detection and monitoring “FluXOR” system relies on the idea of a host

being a victim to such scams. The system begins to send requests and gathers the feature set

information to feed the naïve Bayes classifier. FluXOR reduces the time of detection to 1–3 h,

which is still relatively long.

Zhao and Traore (2012) proposed another method (REPTree) for botnet detection using a

decision tree with reduced error pruning. This type of machine learning decision tree is used to

classify and identify malicious FFSNs by defining and computing some of the network metrics

captured from network flows.

The support vector machine (SVM) was used by X. Yu et al. (2012) to detect fast flux botnets

by analyzing the patterns of DNS queries from FF botnets. They extracted six features to build

the weighted SVM classifier for use in distinguishing legitimate and FF botnet domains. They

noted that using SVM to identify fast flux botnets is effective and provides a satisfactory

detection accuracy.

Celik and Oktug (2013) used the C4.5 decision tree algorithm to evaluate various DNS feature

sets and put forward a detection approach, which is a high-dimensional feature vector with

various features, including timing network, spatial, and NS and DNS response information.

C4.5 evaluates each feature set of previous vectors and decides which one is the best feature

vector on the basis of detection accuracy. Combining all features together provides a detection

accuracy of 98.9%.

The above researches used different features as stated in Table 2.13, Holz et al. (2008);

(Passerini et al., 2008; Perdisci et al., 2009; X. Yu et al., 2012; Zhao & Traore, 2012) provided

different methods to detect the fast flux domains and FFSN. All except Holz used supervised

learning approaches to build their classifiers. Thus, the classifiers cannot detect malicious zero-

day flux domains. The coefficients used in the score calculation (Holz et al., 2008) require

modification to ensure the highest possible accuracy of the detection system.

57

Table 2. 13 List of the features used in previous works

Related work

papers

Features

Holz et al.

(2008)

Number of A records, number of autonomous system numbers (ASNs), and

number of NS.

Perdisci et al.

(2009)
Number of resolved IPs, Number of domains, Avg TTL per domain,

Network prefix diversity, Number of domains per network, IP Growth Ratio,

Autonomous System (AS) diversity, BGP prefix diversity, Organization

diversity, Country Code diversity, Dynamic IP ratio, and Average Uptime

Index.

Passerini et al.

(2008)
Domain age, Domain registrar, Number of distinct DNS records of type “A,

Time-to-live of DNS resource records, Number of distinct networks, Number

of distinct, ASN, , Number of distinct resolved qualified domain names ,

Number of distinct assigned network names, and Number of distinct

organizations.

Chen et al.

(2014)

Number of A records in answer section, number of distinct ASNs for all A

records, number of A records for NSs, number of distinct ASNs for all NSs,

TTL of A records in answer section, and TTL of A records for domain’s

NSs.

Chen et al.

(2011)

Number of unique ASNs, The number of Cname, number of name server

(NS), number of different IP addresses, TTL, and Rate flux.

Yu et al. (2012) Domain age, number of IP addresses of a distinct DNS A records, TTL, IP

distribution, ASN, and organizational distribution.

Celik and

Oktug (2013)

Various features including: timing network, spatial, NS and DNS response

information.

Zhao and

Traore (2012)

TTL, Number of unique A records, IP in the same Networks, IP Geolocation,

IP Geolocation, and Domain lifetime,

58

Zhao and Jin

(2015)

Intrinsic Characteristics of Fast-flux Net, Intrinsic Features of DNS Analysis,

and Intrinsic Features of Process of Visiting FFSN Domains

Vu Hong

(2012)

Median domain's life time, Median IP's life time, Domain/IP ratio, Median

number of distinct domains, Median number of distinct IPs, Median number

of IPs per query, Median maximum TTL value, Network diversity of return

IPs, Dominant domain ratio, Dominant host ratio, Lexical features on domain

labels, Query pattern, IP overlap, and IP growth rate.

Chen et al. (2014) proposed Bayesian probability theory to distinguish between benign and

malicious domains using dissimilar ASNs, reverse DNS lookups, and domain registration time

features. They aimed to detect a fast flux website on the basis of its fluxed characteristics. The

result of this proposed system presents its ability to identify possible threats.

Chen et al. (2011) used the k-nearest neighbor (KNN) and random forest (RF) as sampling

techniques to solve the imbalanced problem, with respect to FFSN detection. In addition, they

proposed a sampling technique that is combined with feature extraction from datasets for use in

fast flux detection. The result showed that the TTL is an important feature to the classification

of the proposed technique.

The classification and regression tree algorithm is used in the method proposed by Zhao and Jin

(2015). This method uses a small dataset to quickly distinguish legitimate and malicious FFSNs.

This method is mainly based on FFSN domains, DNS, and the process of HTTP visiting.

Yoshioka and Matsumoto used distinct mapping of features (Pa et al., 2015). The classification

process needs less than a few days, and the detection accuracy is 90%.

An anomaly-based technique using a decision tree with AdaBoost algorithm was proposed by

Vu Hong (2012). This approach depends on the passive analyses of extracted DNS data traffic

to detect fast flux botnets. Two graphs were constructed, namely, the lookup and failure graphs,

from the extracted DNS traffic. The resulting graphs were distributed into clusters. These

clusters exhibited a strong correlation between traffic elements (domain, host, and IP addresses).

59

The related features of DNS traffic were extracted from these clusters to feed the classification

module in the detection system and identify the existence of a fast flux botnet.

Some of the related work showed low detection accuracy based on the feature set chosen, such

as in (Celik & Oktug, 2013; Chen et al., 2014; Chen et al., 2011; Vu Hong, 2012), and others

need long time to gather sufficient information for these features, such as in (Passerini et al.,

2008; Zhao & Jin, 2015).

The two closest works to the current study are the works developed by Celik and Oktug (2013)

and Lin et al. (2013).

According to H.-T. Lin et al. (2013) a genetic approach was proposed as a real-time detection

solution of the fast flux domains problem. This method suggested a two-detection feature to

classify the benign and the flux domains. Firstly, the entropy of the domain name (E-DPN) of

the preceding node of the flux node (flux-agent). By using the trace route of all the returned IPs

from the DNS response. Of course, if the E-DPN is high then, most probably, the domain is

classified as benign, otherwise it is classified as fluxed. Secondly, the Standard Deviation of

Round Trip Time (SD-RTT) between the user and all the return IPs of the flux-agents, assuming

that the scatter flux-agent is going to produce a high value of the SD-RTT. This spatial feature

takes the number of different ASNs and number of IPs return in single DNS response in their

calculations. Unfortunately, this two detection features was evaded by the botmaster, as it

controls the returned list of IPS that the user receives. The returned list could have IPs in the

same ASN or adjacent to the user ASN, so the above measures can inaccurately classify the

benign and flux domains. On the other hand, botmaster may return a list that contains just a

single IP address, which leads to ineffective detection of the domains (F.-H. Hsu et al., 2014;

Otgonbold, 2014). Although genetic algorithms provide good accuracy (as stated in their paper),

their results could be affected by returning a list of IP addresses belonging to the same AS.

According to current implementations the overall accuracy of the linear classifier was (95.37

%). Also, the linear decision function used as the classifier needs to estimate the categorizer of

the linear function, so if the estimation is good then the linear function will work properly,

otherwise the classification process will contain significant errors. (Chahal & Khurana, 2016).

60

On the other hand, the second compared algorithm was the C4.5 as presented in (Celik & Oktug,

2013). Several feature sets were examined to detect fast flux network. Such feature sets consist

of timing based, spatial based, network based, domain based, and DNS answer-based feature

sets. As mentioned in the literature the data set was small and the accuracy of the experiment

was high. Also, when all features are involved in the experiment the prediction results become

insensitive to two features (timing and domain based feature sets) (Otgonbold, 2014). Besides,

as C4.5 algorithm is considered as a supervised learning algorithm, it could not be used to

discover the unknown attacks, especially the zero-day fast flux domains. Moreover, according

to our implementation the accuracy was not as high as stated in their paper; rather it was 93.38%.

When this result and the previous linear results were compared to the current proposed

ADeSNN, obviously the proposed approach overcame the two methods. Discussions in section

in chapters four and five showed other accuracy measures indicating the results.

2.4 Conclusion

In this chapter, a wide-range of the literature on fast flux detection approaches was studied to

choose the most suitable techniques and methods that were used for detecting fast flux domains.

The techniques and methods were explored based on various aspects, such as the feature sets

used to classify FFD and classification accuracy. The approach of this study includes scope of

solution, testing criteria for classification, and mode of detection, whether online or offline.

Also included is a theoretical background for evaluating the selected approaches.

Besides, the literature showed some approaches that have used the dynamic evolving neural

network in different areas, most of them were implemented as a classifiers under the NeuCube

platform, its been clear that the DeSNN algorithm has many parameters that has to be set before

run the algorithm. Based on this the current research is going to address this issue as one of its

problem space.

On the other hand, the DeSNN algorithm still need to be improved to best enhanced the

classification accuracy, so the current research will focus on improving the performance of the

algorithm as well. Also, the literature review proved that the gap of knowledge according to the

zero-day domains problem. Where most of the work done so far do not solve this problem.

61

In the next chapter, the adaptive dynamic evolving spiking neural network based on the

proposed initial weight of spike time, as one of the contributions of this study, will be introduced

and explained in detail.

62

CHAPTER THREE

ADAPTIVE DYNAMIC EVOLVING SPIKING NEURAL NETWORK –

ADESNN

Chapter Overview

This chapter presents the first contribution of the current work, which is the initial weight

initialization based on the spike time of the incoming inputs. Then, the adaptive dynamic

evolving spiking neural network algorithm and the original one are compared. Finally, the

achieved results are discussed.

3.1 Introduction

This chapter presents the proposed adaptive DeSNN. DeSNN algorithm that is built based on

the RO learning rules and the SDSP learning algorithm. According to previous work, the initial

weight of the DeSNN is calculated based on the RO rules. As stated in (Kasabov et al., 2013),

the output of the DeSNN algorithm consists of the initial and final weight matrices, as a new

incoming input pattern is arrived an initial weight is computed as well as the final weight. At

the recall mode the classification of the new arrival is going to be based on the Euclidean

distance testing measure-. Experiments showed that the current initial weight based on the RO

setting introduces a clear misclassification percentage of detecting of the incoming inputs, while

the proposed approaches give a satisfactory accuracy percentage compared with the former one.

3.2 Adaptive Dynamic Evolving Spiking Neural Network

The expected approach is an online detection approach, and is dealing with real data so spiking

neural network (SNN) is used. Systems based on SNN have already showed their ability to

capture spatial and temporal data. Evolving Spiking Neural Network (eSNN), are based on a

one-pass rank order (RO) learning rules and a scheme to evolve a new spiking neuron and

connections, which lead to learn new patterns from arriving data. This chapter presents an

63

adaptation of the dynamic evolving spiking neural network (deSNN), that employ both RO

learning and dynamic synapses to learn spatial and temporal data in a fast and on-line mode. By

employing both RO learning and Spike Driven Synaptic Plasticity SDSP, deSNN -as depicted

in Figure 3. 1 - could be used in unsupervised, supervised, or semi-supervised learning modes.

The proposed approach is a hybrid learning approach, where the supervised learning phase

works offline and the unsupervised learning phase works online to detect the zero-day domains.

The SDSP learning is used to dynamically update the connection weights of the network that

capture data clusters both through training and through recall.

INPUT(FEATURES)

CLASS 1
CLASS K

ROC

L1 NEURONS

L2 NEURONS

Figure 3. 1 An evolving spiking neural network (classification) (Kasabov et al., 2013)

At training phase for each training input pattern 𝜒 𝜄 , a new output neuron j is created, also the

connection weights wij of the input neurons (feature) is initiated according to Matrix (1), the

weights calculations are based on the spike times of each input:

64

Matrix 𝜒0 contains the input records of all inputs.

𝜒 =

{

𝜒11 𝜒11 … 𝜒1𝑚
𝜒21 𝜒21 … 𝜒2𝑚

.

.

.
𝜒𝑛1 𝜒𝑛1 … 𝜒𝑛𝑚}

 (𝜒 0)

Here the first row of the matrix 𝜒 refers to the input record, where the first record consists of

the feature set, and so on. "n" refers to the number of the inputs records, “m" is the number of

features in each input record. Matrix (1) below contains the spike times of all input records after

ROC encoding process exploiting Gaussian receptive field (Soltic & Kasabov, 2010). Here, the

first contribution of the proposed approach is to use the spike time records as the initial weight

instead of the initial weight created using RO learning rules as stated in (Kasabov et al., 2013).

More about this contribution is discussed in details in this chapter.

𝑺𝑻 =

{

𝑆𝑇11 𝑆𝑇11 … 𝑆𝑇1𝑚
𝑆𝑇21 𝑆𝑇21 … 𝑆𝑇2𝑚

.

.

.
𝑆𝑇𝑛1 𝑆𝑇𝑛1 … 𝑆𝑇𝑛𝑚}

 (1)

Where 𝑆𝑇ij refers to the spike time of the 𝜄th input record. Each record comes as a result of the

number of the Gaussian receptive fields multiplied by the number of the features of the original

input record. Moreover, the proposed contribution is to replace the initial value that was set by

the RO learning rules by the spike times of the input records after the ROC encoding. The reason

behind this modification is to improve the detection accuracy. Figure 3.2 shows both the initial

65

weights initiation techniques for both the RO and the spiketime initial weights, it is clear that

using the spike time instead of the rank of the spikes order is more related to the incoming data,

and helps in classifying input records correctly as depicted in Figure 3.2:

0.12

0.07

0.03

0.11

0.21

0.33

0.39

Gaussian_out_of_input

0

3

2

6

5

4

1

0.13 ms

0.17 ms

0.43 ms

0.14 ms

0.25 ms

0.38 ms

0.32 ms

SpikeTimes_of_input i

RO initial weight of input i+1

0

2

5

6

2

4

1

0.12 ms

0.07 ms

0.03 ms

0.11 ms

0.21 ms

0.33 ms

0.39 ms

SpikeTimes_of_input i

RO initial weight of input i

5

0

1

6

4

3

2

0.52 ms

0.47 ms

0.73 ms

0.28 ms

0.71 ms

0.83 ms

0.19 ms

SpikeTimes_of_input i

RO initial weight of input i+2

0.13

0.17

0.43

0.14

0.25

0.38

0.32

0.52

0.47

0.73

0.28

0.71

0.83

0.19

i i+1 i+2

Figure 3. 2 An example of the RO and Spike Times initial values

According to the work done in (Kasabov et al., 2013), DeSNN algorithm is belt based on rank

order learning rules to set the initial weight of the synapses among the input and the output

neurons. Furthermore, SDSP adjusts the weight of the synapses based on the upcoming spikes,

so at the end the DeSNN algorithm, the output is the weight matrices of the initial weight based

on the RO rules, and the final weight is based on the SDSP learning rules.

One significant insight into the initial weight setting by the RO learning rules is that it has been

noticed that all malicious and non-malicious input values are given the same initial values as

depicted in Figure 3.2. This is because of the fixed mechanism of the RO initial values, the

similarities between the outputs values of the final weight of the SDSP weight matrix of

different inputs will be almost high, even with the updates on the synapses weights caused by

the working of the evolving spiking neural network. These similarities are going to affect the

classification process of both the malicious and non-malicious inputs, as the classification here

66

is based on the minimum Euclidian distances between the testing sample and the weight of the

training samples at recall phase.

When the initial weight initialized based on the spike time matrix, so this helps in the

classification process butter than assigned the same fixed weights mechanism for all different

inputs. Figure 3.2 shows the idea more clearly. To show the effect of this change, this

phenomenon will be discussed in the results and discussion sections of this chapter.

After the initiation of the weight on the synapses of jth neuron based on the spike time matrices

of the incoming inputs, the dynamic synapses adjust their weights based on the SDSP algorithm

according to equation (2). While the spike arrives at any time t, weight value increases, as there

is no spikes arriving at this time, weight value decreases:

∆𝜔𝑗, 𝑖
(𝑡) = 𝑆𝑇𝑗(𝑡). 𝐷 (2)

Where 𝑆𝑇j(t) equals to 1, if there is a sequenced spike at time t arrives at synapse j of arriving

learning patterns at the output neuron j, and it equals to (-1) otherwise. D is the drift parameter,

which can be changed for up or down drifts.

In parallel, all synapses change their values in every time unit t according to equation (3), while

the input patterns Pi arrive at the output neuron i. Based on these values which may go up or

down, the synapses of the neuron all together could capture nearly all relationships of spike

timing through the learned pattern. Continuously, as the incoming training patterns arrive (input

spikes on different synapses), they are encoded within the time window T. Then the threshold

Thi of the neuron is defined. Based on the value of this threshold the neuron i spikes or not. The

threshold is defined in equation (4) as a fraction of the entire PSPi (PSPimax) collected through

the appearance of the Entire input pattern

𝑃𝑆𝑃𝑖𝑚𝑎𝑥 = ∑ ∑ 𝑓𝑗(𝑡). 𝜔𝑗, 𝑖(𝑡)𝑗=1,2,…,𝑀𝑡=1,2,…,𝑇 (3)

𝑇ℎ𝑖 = 𝐶. 𝑃𝑆𝑃𝑖𝑚𝑎𝑥 (4)

67

Where: T is the time window in which the input patterns arrived, M is the number of neuron I

input synapses, 𝑓𝑗(𝑡) equals to 1 if the spike appears in the time window at the synapse j for

this input pattern, if not it equals to 0. 𝜔𝑗, 𝑖(𝑡) is the efficacy of the dynamic synapse between

the neurons j,i which is calculated in equation (2).

Figure 3.3 shows the architecture of the DeSNN algorithm, also positions the rank order

encoding method based on multiple Gaussian receptive fields. In addition, the figure presents

the SDSP learning rule which adjusts the synapses weights. These weights change up and down

based on the drift parameter value which is discussed before.

68

Set all
parameters

Enter input
pattern

ROC

Create input layer

Create output layer

Initiate W0 based
on formula(1)

Calculate
PSPimax

using
formula(3)

Calculate spiking
Thi of the ith

neuron based on
formula(4)

Add the output
neuron to output

neuron
repository

No

Yes End

D
e

S
N

N
 A

rc
h

it
a

c
tu

re

End of
inputs

Adjust Wi
based on SDSP

using
formula(2)

Vw0=I pot (t post)/Cp, V

memt>Vmth
Vw0=I dep (t post)/Cd, V

mem<Vmth

T
im

e

Input feature value

Neuro
n

Gaussian receptive
fields

Figure 3. 3 The DeSNN algorithm architecture

69

The original DeSNN algorithm is mentioned in the algorithm 3.1 in this chapter.

Algorithm 3.1 The original deSNN algorithm(Kasabov et al., 2013):

 Setting deSNN parameters* (RO and the SDSP parameters too)

 For each input spatio-temporal spiking pattern Pi Do

o Create a new output neuron i for this pattern and calculate the initial values of

connection weights wi(0) using the RO learning formula (1).

o Adjust the connection weights wi for consecutive spikes on the corresponding

synapses using the SDSP learning rule formula (2).

o Calculate PSPimax using formula (3).

o Calculate the spiking threshold of the ith neuron using formula (4).

o (Optional) If [The new neuron weight vector wi is to the weight vector of an

already trained output neuron] then

 merge the two neurons

o Else

 Add it to the output neurons repository.

o End If

 End For

3.3 Dataset

Two public datasets were used in this chapter to evaluate the performance of both the DeSNN

and the Adaptive DeSNN algorithms (Especially to evaluate the effect of using the new

proposed initial weight). As the proposed adaptive algorithm classify fast flux and benign

domains and the unsupervised phase of the proposed FFKA approach capture the new fast flux

pattern. So, IRIS dataset (Benjamin & R.A., 2013) and Wisconsin Diagnostic Breast Cancer

(WDBC) dataset (Dua, 2017) is introduced. The public IRIS dataset, consists of 3 classes each

with 50 instances, this dataset is the best known dataset for pattern recognition (Barra,

Casanova, Narducci, & Ricciardi, 2015; Z. Lin, Ma, Meng, & Chen, 2018). One class is linearly

separable from the other two, but the latter two classes are not separable from each other. The

IRIS dataset has 4 features which are (sepal length, sepal width, petal length, and petal width).

WDBC public dataset is a well-known binary medical dataset and many of machine learning

algorithms used it in their experiments for pattern recognition and classification purposes

(Aličković & Subasi, 2017; Basu, Roy, & Savitha, 2018; Mandal, 2017; Zheng, Yoon, & Lam,

2014), the characteristics of both datasets are depicted in Table 3.1.

70

Table 3. 1 Characteristics of the WDBC dataset.

Dataset Number of

Classes Records features

IRIS dataset 3 150 4

Wisconsin Diagnostic breast cancer

(WDBC)

2 569 10

The ten real-valued features of WDBC are computed for each cell nucleus: (radius (mean of

distances from center to points on the perimeter), texture (standard deviation of gray-scale

values), perimeter, area, smoothness (local variation in radius lengths), compactness

(perimeter^2 / area - 1.0), concavity (severity of concave portions of the contour), concave

points (number of concave portions of the contour), symmetry, and fractal dimension).

3.4 Experiments, Result, and Comparison

This subsection shows the results of the experiments that were conducted on the DeSNN and

ADeSNN algorithms. Then, both results were compared to each other to prove that the

performance of the adaptations that have been introduced on DeSNN have significantly

improved the results.

The idea behind modifying the DeSNN algorithm came from many of our experiments; it

seemed that the result always gave the same range of certain results boundaries. While tracing

the variables’ values and each process outputs, it became clear that the problem was the setting

of the initial weight that is the RO initial weight. The initial weight sets by the RO is based on

giving the same values with different orders, and this order was changed based on the spike

time of the incoming spike at the identified neuron, as depicted in Figure 3.2.

Next, two experiments were conducted to prove the efficiency of the proposed adaptive

ADeSNN compared with the original DeSNN as mentioned in algorithm 3.1. Two public

datasets were also used. These datasets have non-leaner separable attributes, and therefore the

classification task was not straight forward.

71

The software and hardware used in these experiments were based on Linux mint operating

system run with the following attributes, core i7 7500U CPU, 16GB RAM, the simulations of

the compared method were conducted using MATLAB 8.5 and Python 2.7 environments.

Various detection accuracy methods were conducted to evaluate the proposed algorithm, and

the results of these measures are presented in each experiment. Table 3.2 provides the

description of the measures used in this experiment.

Table 3. 2 Accuracy measure used in all experiments

Measure Equation Description

True positive

TP

∑ (1),𝑖
𝟏 where 𝑖 belongs to positive

instances

Number of benign domains accurately

identified as benign domains

True negative

TN

∑ (1),𝑖
𝟏 where 𝑖 belongs to negative

instances

Number of fast flux domains accurately

identified as fast flux domains

False positive

FP

∑ (1),𝑖
𝟏 where 𝑖 does not belong to

positive instances

Number of fast flux domains identified as

benign domains.

False negative

FN

∑ (1),𝑖
𝟏 where 𝑖 does not belong to

negative instances

Number of benign domains identified as fast

flux domains.

False positive

rate

𝑭𝑷𝑹

𝑭𝑷

(𝑻𝑵 + 𝑭𝑷)

The percentage of positive cases

misclassified as negative cases

Recall or True

positive rate

𝑻𝑷𝑹

𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)

The percentage of positive cases that

classified as positive cases.

72

Accuracy

𝑨𝑪𝑪

(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)

The percentage of correct predictions of all

instances.

Precision

𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)

The percentage of cases correctly classified

as positive cases.

Fmeasure
(𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)

Accuracy test measure using both the

precision and the recall.

Root mean

square error

RMSE

√∑
(𝒚𝒊 − 𝒕𝒊)𝟐

𝑵

𝑵

𝒊=𝟏

The differences between the target and the

actual expected value

Where: 𝑁 ∶ 𝑁umber of input, 𝑦𝑖: Actual value, 𝑡𝑖: Target value.

𝑅𝑀𝑆𝐸 is an vital measure of differences between the values expected from a model

and the values actually detected.

Non-

Dimensional E

rror Index

𝑵𝑫𝑬𝑰 =
𝑹𝑴𝑺𝑬

𝒔𝒕𝒅(𝒕𝒊)

NDEI is used to estimate the prediction

quality (Espinosa & Vandewalle, 2000).

The Matthews

Correlation

Coefficient

(𝑻𝑷 × 𝑻𝑵) − (𝑭𝑷 × 𝑭𝑵)

√((𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)

 MCC is used to evaluate the efficiency of

the classifier in imbalanced classes

(Matthews, 1975).

The receiver

operating

characteristic

ROC

Graphical plot that depicts a binary

classifier’s performance
ROC arcs plot the true positive rate on the

vertical axis and the false positive rate on the

horizontal axis

73

The AUC represents the classifier’s performance (Swets, 2014). Likewise, the AUC is well-

known to be a more robust estimator of classifier performance (Fawcett, 2006).

A question may raise why the two datasets were used in this research. This was done to prove

that the initial weight initialization based on the spike times would give better results in the

classification process than the old method. To the best of our knowledge, no one has pointed to

this problem before. To ensure the quality of the proposed adaptation of the AdeSNN algorithm,

a cross-validation method is used to estimate the error rate.

 The first experiment was conducted to show the performance of the two algorithms, the

proposed adaptive ADeSNN and the original DeSNN as mentioned in algorithm 3.1. Therefore,

the IRIS public dataset was exploited. It consists of 3 classes each with 50 instances; this dataset

is the best-known dataset for pattern recognition as this study is dealing with looking to detect

new unknown patterns (zero-day domains). One class is linearly separable from the other two,

but the latter two classes are not separable from each other. The dataset was randomly initiated

into three groups, then the experiments of 3-fold cross-validation datasets were selected. At the

end of these three experiments the average was taken to present the results shown in Table 3.3

and Figure 3.4.

Table 3. 3 The 3-fold cross-validation result of both the original DeSNN and the proposed

ADeSNN of the first experiment

Evaluation measures DeSNN ADeSNN

FNR 0.4400 0.0625

TPR 0.5600 0.9375

ACC 0.5600 0.9167

Precision 0.5600 0.9091

Recall 0.5600 0.9375

F1-Measure 0.5600 0.9231

MCC 0.1200 0.8327

AUC 0.5600 0.9152

RMSE 0.6633 0.2887

NDEI 1.3200 0.5749

MSE 0.4400 0.0833

74

Figure 3. 4 The accuracy measures of both DeSNN and ADeSNN

Table 3.3 shows the results of the average of the cross-validations of both algorithms. The error

measures (RSME, NDEI, and MSE-ERROR) of the proposed adaptive ADeSNN were less than

those for the original DeSNN as mentioned in algorithm 3.1, which means that the adaptation

of the DeSNN will minimize the misclassification of the input instances. For example, the root

mean square error of the original algorithm was 66% while in the adaptive algorithm became

28%, also the non-dimensional error index value for the original algorithm according to this

experiments was 1.32 compared with the adaptive algorithm which was 0.57. This also helps to

maximize the accuracy of the detection and classification. In addition, the MCC is a

performance metric which is widely used in bioinformatics. The two algorithms used this metric

because it best deals with the imbalanced data, and this leads us to conclude that the adaptive

algorithm has a high degree of correctness, surpassing the original one even in cases of

imbalanced data. By comparing the following accuracy measures, all of F-measure, Recall, and

ACC they revealed that the proposed adaptation produced more accurate results than the

original DeSNN. The precision measure value enhanced to reach 90% while it was 56% in the

original algorithm, as well as the recall measure reached the 93%, and the f-measure became

92% .The overall accuracy of DeSNN was (56%) while it was (91.67%) for ADeSNN.

According to the IRIS dataset two classes were non-linearly separable which cause to show

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

V
al

u
e

Measures

Evaluation measures

DeSNN ADeSNN

75

almost 91% accuracy while it was tested on the first linearly separable classes and give 100%

accuracy. This leads to the ability of the adaptive DeSNN to classify classes even when inputs

are mutually mixed. Finally, ADeSNN exhibited higher true positive rate and less false negative

rate than DeSNN as depicted in Figure 3.4.

The parameters of the ADeSNN algorithm set in the experiment are shown in Table 3.4.

Table 3. 4 The parameter values used in the 3-cross-validations of the first experiment

Neurons and synapses equations

parameters

Value Unit

Excitatory synapse time constant (tau_exc) 2 Ms

Inhibitory synapse time constant (tau_inh) 5 Ms

Neuron time constant (tau_mem) 20 Ms

Membrane leak (El) 20 mV

Spike threshold (Vthr) 800 mV

Reset value (Vrst) 0 mV

Fixed inhibitory weight (winh) 0.20 V

Fixed excitatory weight (wexc) 0.40 V

Thermal voltage (UT) 25 mV

Refractory period (refr) 4 Ms

SDSP parameters

Up/Down weight jumps (Vthm) 0.75*Vthr mV

Calcium variable time constant (tau_ca) 5 *tau mem Ms

Steady-state asymptote for Calcium

variable (wca)

50 mV

Stop-learning threshold 1 (stop if Vca <

thk1)

1.7 × wca mV

Stop-learning threshold 2 (stop LTD if Vca

> thk2)

2.2 × wca mV

Stop-learning threshold 2 (stop LTP if Vca

> thk3)

8 × (wca–wca) mV

Plastic synapse (NMDA) time constant 9 Ms

Plastic synapse high value (wp hi) 6 mV

Plastic synapse low value (wp lo) 0 mV

Bistability drift 0.25

Delta weight 0.12 × wp_hi mV

Input size 150 spike train

Simulation time 40 Ms

Default clock unit 0.2 Ms

76

The second experiment was conducted and exploited the public WDBC dataset in order to prove

the effectiveness of the proposed adaptation on the original DeSNN algorithm. WDBC public

dataset is a well-known binary medical dataset and many machine learning algorithms used it

in their experiments for pattern recognition and classification purposes. The WDBC dataset has

ten real-valued features for each cell nucleus, where they computed from a digitized image of a

fine needle aspirate of a breast mass, which are radius, texture, perimeter, area, smoothness,

compactness, concavity, concave points, symmetry, and fractal dimension. Furthermore, the

dataset contains 569 instances presenting two classes the (diagnosis: B = benign, M =

malignant), the two classes distribution were 357 benign, 212 malignant. Finally, this dataset

has no missing attribute values.

Current experiment distributed the dataset into 5-fold cross-validations groups. So, five

separated experiments were done, where the instances randomly distributed on the five groups,

then the results were computed and the average was taken, as depicted in Table 3.5 and Figure

3.5, the result of several measures to compare both of the original and the proposed adaptive

algorithms were presented.

Table 3. 5 The 5-fold cross-validation result of both the original DeSNN and the proposed

ADeSNN of the second experiment

Evaluation measures DeSNN ADeSNN

FNR 0.402439 0.04898

TPR 0.597561 0.95102

ACC 0.765957 0.971631

Recall 0.597561 0.95102

F_measure 0.748092 0.958824

MCC 0.619046 0.937925

RMSE 0.483779 0.172406

NDEI 0.965842 0.344209

mse_error 0.234043 0.029787

77

 Figure 3. 5 The accuracy measures of both DeSNN and ADeSNN

Table 3.5 showed the result of average of the cross-validations of both algorithms. The error

measure (RSME, NDEI, and MSE-ERROR) values of the proposed adaptive ADeSNN were

less than those for the original DeSNN, which means the adaptation on the DeSNN will

minimize the misclassification of the input instances, and maximize the accuracy of the

detection and classification. In addition, the MCC is a performance metric which is widely used

in bioinformatics, the two algorithms used this metric because they best deal with the

imbalanced data, and this leads to conclude that the adaptive algorithm has higher accuracy than

the original one. Coming to compare the accuracy all of F-measure, Recall, and ACC revealed

that the proposed adapted algorithm produced more accurate results (97.16%) than the original

DeSNN (76.59%). Finally, ADeSNN exhibited higher true positive rate and less false negative

rate than DeSNN as depicted in Figure 3.5.

The parameters of the ADeSNN algorithm set in the experiment are shown in Table 3.6.

0
0.2
0.4
0.6
0.8
1
1.2

V
al

u
e

Measure

Evaluation measures

DeSNN ADeSNN

78

Table 3. 6 The parameter values used in the second experiment

Neurons and synapses equations

parameters

Value Unit

Excitatory synapse time constant (tau_exc) 2 Ms

Inhibitory synapse time constant (tau_inh) 5 Ms

Neuron time constant (tau_mem) 20 Ms

Membrane leak (El) 20 mV

Spike threshold (Vthr) 800 mV

Reset value (Vrst) 0 mV

Fixed inhibitory weight (winh) 0.20 V

Fixed excitatory weight (wexc) 0.40 V

Thermal voltage (UT) 25 mV

Refractory period (refr) 4 Ms

SDSP parameters

Up/Down weight jumps (Vthm) 0.75*Vthr mV

Calcium variable time constant (tau_ca) 5 *tau mem Ms

Steady-state asymptote for Calcium

variable (wca)

50 mV

Stop-learning threshold 1 (stop if Vca <

thk1)

1.7 × wca mV

Stop-learning threshold 2 (stop LTD if Vca

> thk2)

2.2 × wca mV

Stop-learning threshold 2 (stop LTP if Vca

> thk3)

8 × (wca–wca) mV

Plastic synapse (NMDA) time constant 9 Ms

Plastic synapse high value (wp hi) 6 mV

Plastic synapse low value (wp lo) 0 mV

Bistability drift 0.25

Delta weight 0.12 × wp_hi mV

Input size 569 spike train

Simulation time 40 ms

Default clock unit 0.2 Ms

Based on the above two experiments, the adaptation on the algorithm gave excellent results

compared to the original one. The next chapter will build on this adaptation to detect the zero-

day fast flux domains.

3.5 Chapter Summary:

This chapter presented our first contribution in adapting the ADeSNN algorithm, and the

comparison experiments have been conducted on both supervised FFKA algorithm ADeSNN

and the original DeSNN. The proposed adaptation can be summarized as producing the initial

79

weight of the RO based on the spike time itself rather than the RO initial weight based on the

ranks of the order of the incoming spikes. The current version has been modified based on the

changing of the initial weight of the RO, where the initial weight is based on the spike time of

the incoming spikes, as a results the (mod) variable became useless, which leads that the current

contribution improved the parameters customization problem.

Furthermore, two public datasets were used to evaluate the two DeSNN and the adaptive

ADeSNN algorithms. The first experiment used the IRIS dataset and produced 3-fold cross-

validations, then the average of their result was computed. The results of the experiment showed

that the adaptive algorithm has enhanced the performance of the DeSNN, where the overall

accuracy was (91.67%) of the ADeSNN over DeSNN (56%).

The second experiment exploited the public WDBC dataset and this dataset was randomly

distributed over 5-fold cross-validations. The average of the results was taken, and several

accuracy measures were tested, all the discussed results above proved that the performance of

the adaptive ADeSNN algorithm is better than DeSNN, the overall accuracy of the ADeSNN

was (97.16%) while the original DeSNN was (76.59%).

As a result, the contribution presented in the adaptation on the DeSNN algorithm by modifying

the initial weight mechanism, improves the performance of the algorithm, and achieves better

results in several ways. The adaptation also minimizes the error rates of the classification

process, as show in Tables 3.3, respectively. Finally, the exploitation of two other public

datasets gave comparable results. In chapter four, the new adaptive supervised FFKA frame

work will be introduced to detect the fast flux domains.

80

CHAPTER FOUR

SUPERVISED FAST FLUX KILLER APPROACH FFKA

Chapter Overview

This chapter presents the fast flux killer approach, then introduces the first phase, which is the

supervised one. FFKA in this phase trains the adaptive dynamic evolving spiking neural

network and sets the classification threshold. The evaluation of the proposed method is then

compared with two fast flux detection approaches in the field. Also, this chapter presents the

new feature set that helps the proposed approach to accurately classify the fast flux domains.

4.1 Introduction

According to the achieved enhancement regarding the initial weight described in the chapter

three, that the proposed adaptation of the DeSNN algorithm improved its performance, this

chapter introduces the FFKA which has to be exploited to detect the fast flux domains. FFKA

works online and offline. In the online mode, FFKA deals with unknown new domains which

the approach was not trained on in order to detect the zero-day fast flux domains. On the other

hand, the offline mode deals with labelled data where the supervised learning phase of the FFKA

will be trained to produce an enhancement in the classification process. Section 4.2 will present

the FFKA in both phases: the supervised and the unsupervised. Finally, the rest of this chapter

will discuss the supervised mode, and the unsupervised mode will be discussed in chapter five

as a part of the FFKA Hybrid approach.

4.2 Fast Flux Killer Approach

ADeSNN was discussed in chapter three in details, this algorithm was designed to work online,

that means it adapts its' structure and functionality based on the incoming data. FFKA as

depicted in Figure 4.1, is a Hybrid learning approach that employed two parallel ADeSNN

algorithms, the former works as supervised in an offline mode and the later works as

unsupervised in an online mode.

81

To evaluate the proposed supervised FFKA, a public fast flux dataset was used in order to test

the ability of the ADeSNN algorithm to detect fast flux domains with labeled dataset at the

supervised phase in an off-line mode to adjust the threshold value of the classification process.

The supervised mode in FFKA is about training the ADeSNN algorithm on both fast flux

domains and benign domains. Besides, a threshold of the classification process will be trained

along the training process. The outputs of the supervised training mode are the final weight and

the classification threshold, where the weights are stored in the weights repository. Furthermore,

the threshold stored to be accessed by both the supervised and unsupervised modes later.

BenignFast Flux

Pre-processing
(feature

exctraction)

Collected Dataset

S e t a l l
p a r a m e t e r s

E n t e r i n p u t
p a t t e r n

R O C

C r e a t e i n p u t l a y e r

C r e a t e o u t p u t l a y e r

I n i t i a t e W 0 b a s e d
o n fo r m u l a(1)

C a l cu l a t e
P S P i m a x

u s i n g
fo r m u l a (3)

C a l cu l a t e s p i k i n g
T h i o f t h e i t h

n e u r o n b a s e d o n
fo r m u l a (4)

A d d t h e o u t p u t
n e u r o n t o o u t p u t

n e u r o n
r e p o s i t o r y

N o

Y e s E n d

De
SN

N
 A

rc
hi

ta
ct

ur
e

E n d o f
i n p u t s

A d j u s t W i
b a s e d o n S D S P

u s i n g
fo r m u l a(2)

V w 0= I p o t (t p o s t)/ C p , V

m e m t> V m th
V w 0 = I d e p (t p o s t)/ C d , V

m e m < V m th

Ti
m

e

I n p u t f e a t u r e v a l u e

N e u r o
n

G a u s s i a n r e c e p t i v e
f i e l d s

Supervised

Final-weights
repository

Classification
Threshold

S e t a l l
p a r a m e t e r s

E n t e r i n p u t
p a t t e r n

R O C

C r e a t e i n p u t l a y e r

C r e a t e o u t p u t l a y e r

I n i t i a t e W 0 b a s e d
o n fo r m u l a(1)

C a l cu l a t e
P S P i m a x

u s i n g
fo r m u l a (3)

C a l cu l a t e s p i k i n g
T h i o f t h e i t h

n e u r o n b a s e d o n
fo r m u l a (4)

A d d t h e o u t p u t
n e u r o n t o o u t p u t

n e u r o n
r e p o s i t o r y

N o

Y e s E n d

De
SN

N
 A

rc
hi

ta
ct

ur
e

E n d o f
i n p u t s

A d j u s t W i
b a s e d o n S D S P

u s i n g
fo r m u l a(2)

V w 0= I p o t (t p o s t)/ C p , V

m e m t> V m th
V w 0 = I d e p (t p o s t)/ C d , V

m e m < V m th

Ti
m

e

I n p u t f e a t u r e v a l u e

N e u r o
n

G a u s s i a n r e c e p t i v e
f i e l d s

Un-supervised

Off-line mode On-line mode

Pre-processing
(feature

exctraction)

New Unknown
dataset

BenignFast Flux

Figure 4. 1 The architecture of the FFKA

Figure 4.1 shows the two supervised and unsupervised phases of the FFKA Hybrid approach.

The first step starts with letting the approach learn how to classify the benign and fast flux

domains based on labelled data, then stores the output of the ADeSNN algorithm in the weights

82

repository and stores the calculated classification threshold as well. The second unsupervised

phase that will be discussed in chapter five continues to deal with new unknown unlabeled data.

The decision here is taken based on the output of phase one, specifically the classification

threshold.

4.3 Supervised Learning Phase

The supervised learning phase as mentioned in section 3.2 trains the classifier used (ADeSNN)

on labelled data. It also produces the classification ability based on the features of each class.

Based on this, the discussion here is about the stage of preparing the dataset, the process of the

feature extraction, and the learning process based on the FFKA supervised phase.

4.3.1 The Preprocessing Stage

The fast flux public dataset found as stacks of DNS responses, a script of python was written to

extract information needed to build the feature set. Some feature needs to contact the ASN to

get extra information about the IP addresses, and to speed up the process of building the feature

an ASN repository that is located in the local dive of the approach as depicted in Figure 4.2.

Pre-processing
(feature exctraction)

S e t a l l
p a r a m e t e r s

E n t e r i n p u t
p a t t e r n

R O C

C r e a t e i n p u t l a y e r

C r e a t e o u t p u t l a y e r

I n i t i a t e W 0 b a s e d
o n fo r m u l a(1)

C a l cu l a t e
P S P i m a x

u s i n g
fo r m u l a (3)

C a l cu l a t e s p i k i n g
T h i o f t h e i t h

n e u r o n b a s e d o n
fo r m u l a (4)

A d d t h e o u t p u t
n e u r o n t o o u t p u t

n e u r o n
r e p o s i t o r y

N o

Y e s E n d

D
e

SN
N

 A
rc

h
it

ac
tu

re

E n d o f
i n p u t s

A d j u s t W i
b a s e d o n S D S P

u s i n g
fo r m u l a(2)

V w 0= I p o t (t p o s t)/ C p , V

m e m t> V m th
V w 0 = I d e p (t p o s t)/ C d , V

m e m < V m th

Ti
m

e

I n p u t f e a t u r e v a l u e

N e u r o
n

G a u s s i a n r e c e p t i v e
f i e l d s

ADeSNN
ASN DataBase

Benign

Fast Flux

Figure 4. 2 The pre-processing phase

83

4.3.2 Feature Extraction

This stage is about how to build and calculate some of the features that need calculations.

Building some features requires extra information from the ASN repository so one of the

updated and freely downloadable ones was saved into the local drive to speed up the process of

detection. For example, the number of the ASN for the answer section of the DNS response as

well as the number of ASN of the additional section in the same DNS response message needs

extra information from the ASN repository, in this case from the local drive. Another example,

the similarity feature need to access the same repository to calculate the similarity between the

autonomous system numbers of the user and the autonomous system numbers of the returned

IPs. Finally some other features could be taken straight away from the DNS response message.

4.3.3 Adaptive dynamic evolving spiking neural network

The trained ADeSNN starts to classify the new upcoming inputs to the proper class benign/fast

flux, one by one, so for each input the algorithm creates one output neuron, and so on. Moreover,

the algorithm continues learning from the incoming inputs incrementally. The ADeSNN

algorithm was discussed in details in section 3.2.

The criteria of testing and classification of the DeSNN and ADeSNN algorithms was to perform

the Euclidean distance between the weight of the new input record and the weights of the trained

inputs. As shown in chapter 3, the results were good so far, but in case of changing this criteria

to the proposed similarity measure, it is expected that this would give better results than before.

The similarity criteria is based on the calculation of the similarity between the new input weight

and the already trained inputs weights according to formula 1 in chapter 4, which is one another

contributions of this work. Two variables are significantly similar if the similarity between them

is closest to 1, and they are not similar to each other if their similarity is closest to 0, which

means that the bigger value refers to highest similarity between the two variables. As there are

a classification process to classify more than one class, a testing threshold is needed to be set to

each class, with suitable threshold value that separates all classes. Moreover, the threshold takes

its value while the training phase is in progress, as each input is classified for one class so the

threshold of this class is calculated based on the values of the inputs of the specific class.

84

4.4 Dataset

The proposed adaptation on ADeSNN method has to be evaluated and tested in case of detecting

fast flux domains, so a public dataset was used in this study (Alvi et al., 2017),which is also

used in (Huang et al., 2010).The majority of the learning machine approaches such as, the real-

time, active, passive approaches used also the same sources (Castelluccia et al., 2009; C.-M.

Chen et al., 2013; Holz et al., 2008; Martinez-Bea et al., 2013; Qassrawi & Zhang, 2012; Sheng

et al., 2010; B. Yu et al., 2014). This dataset consists of DNS responses that were labeled domain

names as benign and fast flux. The benign domains are selected from the top trusted websites

like Alexa (Alexa), top blogs as Blogs On Top "BOT". While the fast flux domains are collected

from the famous fast flux blacklisted websites such as ATLAS ("ATLAS URL:

https://www.arbornetworks.com/atlas-portal,"), DNSBL ("DNSBL URL:

https://www.zerobounce.net/,"), and FluXOR (information security expert's detection systems).

Each record contains the selected feature set that helps to identify each class. Fast flux dataset

contains (1710) instances, while the benign dataset contains (3420) instances.

4.5 Feature Selection

Building detection systems and other classification systems needs to identify the feature or

attribute set that best describes the problem and the needed solution. Also, these features should

help in minimizing the irrelevance and redundancy problems, as well as minimizing the false

correlation and classification of the detection and classification systems. Based on that, feature

selection methods needs to get released of the irrelevancy and redundancy of the feature set

without affecting or decreasing the performance (Balepin, Maltsev, Rowe, & Levitt, 2003;

Giacinto, Roli, & Didaci, 2003; Lee & Stolfo, 2000).

The embedded model, as one of the main methods that deals with feature selection, joins the

training phase for particular method E.g., decision tree algorithms, such as C4.5. The algorithm

selects the greatest feature which is the best for classification. At that time they divided sub-

space based on the carefully chosen feature. The algorithm repeats this process until a certain

threshold is reached (Boutemedjet, Bouguila, & Ziou, 2009; Jeong, Kang, Jeong, & Kong,

2012).

85

4.6 Feature Set

The first stage of the proposed solution is the feature extraction. A well-built fast flux botnet

detection method should distinguish between a legitimate and malicious network. On the other

side, a well-built Fast Flux Network (FFN) seems like a benign CDN, due to returning a DNS

records that belong to the same geographic areas. This leads to a detection systems that depends

on IP address features to misclassify those types of FFN domains as benign CDNs. In addition,

the FFN developers are trying to change the characteristics of the fast flux Network to evade

detection, even if this modification affects the performance of the FFN. Therefore, a new

detection approach should rely on features belonging to the FFN itself, as these features are not

prone to change quickly.

Based on the current fast flux dataset, some of the features used in the proposed solution are

used before in related works. Moreover, new features are suggested to improve and enhance the

performance of the classifying process of the fast flux and benign domains. Table 4.1 shows the

selected features set.

Table 4. 1 The proposed feature set

Feature Description New

feature

IPans Number of IP addresses in the answer section Not

NSadd Number of IP addresses in the additional section Not

NASN_ans Number of ASN for the IP addresses of the answer section Not

NASN_add Number of ASN for the IP addresses of the additional section Not

AVGSIM The average of similarity of the ASN (among the answer section

and the ASN of the victim himself)
New

Qtime Time of the query New

Msgs Message size New

Table 4.1 shows the definition of all the feature set. The first two feature are straight forward

and obtained from the response directly, NASN_ans and NASN_add need to get extra

information from the local ASN repository as presented in Figure 4.2. AVGSIM is a new feature

that computes the average of the similarity between the ASN number of the requested IP address

and the other ASN number of the returned IP addresses of the DNS response. In other words,

86

AVGSIM refers to the average of the similarity between the autonomous system number of the

user's IP and autonomous system numbers of the proxy bots (compromised computers) returned

in the answer section of the DNS response, and is computed according to equation (1)

(Alkhazaleh, Salleh, & Hassan, 2011):

Mi(𝑦(𝑒) − 𝑥(𝑒)) = 1 −
∑ 𝑦𝑖𝑗(𝑒)−𝑥𝑖𝑗(𝑒)
𝑛

𝑗=1

∑ 𝑦𝑖𝑗(𝑒)−𝑥𝑖𝑗(𝑒)
𝑛

𝑗=1

 (1)

Where ẻ is the input vector. It could say that µ(ẻ) and δ(ẻ) are significantly similar if

M(µ(ẻ),δ(ẻ)) ≥ ½, which means that the bigger value refers to high similarity between the two

variables.

The majority of the chosen features were found in the literature work, but the last three features

are new. In addition, the other two new features are the time of the query and the DNS packet

size. All these features together showed that their ability to distinguish between the fast flux

network (served by domains) and the legitimate domains. In the discussion section, these new

features will be tested to show their effect on the process of classification. Finally, all the feature

set was put into a feature selection evaluation to show their effectiveness rank on detection

process.

4.7 Experiments and Discussion

This section discusses the experiments made to prove the effects of the proposed similarity

measure to be used as a classification criteria in order to detect the fast flux domains in

supervised offline mode. Furthermore, it discusses the feature set proposed from the point of

view of the influence they affect the process of detection fast flux domains.

4.7.1 Introduction

The first part of the FFKA is the supervised learning offline mode. Here one more contribution

is going to be added to the adaptation proposed on the DeSNN algorithm. In this chapter, the

FFKA approach based on the ADeSNN algorithm detects the fast flux domains in an offline

mode by using the fast flux public data set. In addition, the testing criteria in this stage is based

on the proposed similarity measure in formula 1 in chapter 4. The results of the proposed

87

supervised phase of the FFKA will be evaluated based on a comparison with two of the fast flux

detection approaches in the same field.

The feature set has been tested different times via several experiments, especially the new

proposed features. The results was promising for some feature, at the same time one of the

feature showed negative effect on the classification process. Thus, our recommendation is to

exclude this feature from the list in future work.

4.7.2 Supervised Fast Flux Killer Approach Experiment

When the feature set became ready, the experiment can start. The supervised learning takes the

inputs records and feeds them to the ADeSNN algorithm one by one. As the new input record

has entered a new output neuron is created, at the end of the supervised phase the output neuron

weight will have the captured pattern of the input records stored as a weighted matrix.

Furthermore, these output weights will be saved at the weight repository. In addition, the

threshold value was learning while the supervised phase was in progress, and the final value

will be stored to be in the next phase of the unsupervised learning phase in order to help in the

process of classification. Of course, this current supervised phase will classify the input records

at the end in one of the two classes, the benign domain or fast flux domain.

The current supervised phase of the approach continuously run in an offline mode, where its

output will be used in the unsupervised learning phase in an online mode. Periodically, the

supervised phase re-executed once every 1000 (in the current experiment) new incoming

domains at the unsupervised online mode. Where the learning this time will be based on the

new data from the stored inputs from the unsupervised phase, then the threshold tuned to be

best related to new nature of the new data and helps in the classification process.

The following discussion is part of the research validation and evaluation processes, which

presented the comparison between the proposed FFKA and two other approaches from the

related works (Celik & Oktug, 2013; Lin et al., 2013). A public dataset has been used to test the

chosen classifiers, then compare their performance among the related previous works done in

same field. The experiments were conducted using the mentioned fast flux public dataset, to

test the ability of the proposed approach to solve fast flux problem based on the proposed

88

similarity measure in classification process as well as the proposed fast flux feature set. The

performance and results of the experiments were promising and indicated an increase in the

detection accuracy of fast flux domains.

Three different simulations were implemented on MATLAB and Python platforms. The

hardware and software used for this experiment are the same as used in the subsection 3.4, two

of them were selected based on two related previous researches, which is the linear decision

function in (H.-T. Lin et al., 2013) and the C4.5 in (Celik & Oktug, 2013) algorithm. The third

was the proposed adaptive ADeSNN based on the new adaptation of the similarity measure and

the proposed feature set.

To ensure the quality of the supervised learnning phase of the ADeSNN, a 3-folded cross-

validation method is used to estimate the error rate of the proposed classifier and the other two

methods as well. Based on this, the average was taken of the linear decision, C4.5, and the

FFKA classifiers. All the results of the three experiments are presented in Table 4.2.

Table 4. 2 The accuracy measures of the detection algorithms

Evaluation measures C4.5 Linear Supervised FFKA

FNR 0.06987 0.03930 0.00000

FPR 0.05333 0.05333 0.02410

TPR 0.93013 0.96070 1.00000

TNR 0.94667 0.94667 0.97590

ACC 0.93833 0.95374 0.98765

Precision 0.94667 0.94828 0.97531

Recall 0.93013 0.96070 1.00000

F-measure 0.93833 0.95445 0.98750

MCC 0.87680 0.90755 0.97561

AUC 0.9383988 0.9536827 0.9879518

RMSE 0.24834 0.21507 0.11111

NDEI 0.49641 0.42990 0.22188

According to Lin et al. (2013) a genetic approach was proposed as a real-time detection solution

of the fast flux domains problem. This method suggested two detection features to classify the

benign and the flux domains. Firstly, entropy of the domain name (E-DPN) of the preceding

89

node of the flux node (flux-agent), by using the trace route of all the returned IPs from the DNS

response. Of course, if the E-DPN is high then, most probably, the domain that is classified as

benign is otherwise classified as fluxed. Secondly, the Standard Deviation of Round Trip Time

(SD-RTT) between the user and all the return IPs of the flux-agents, so assumed that the scatter

flux-agent is going to produce high value of the SD-RTT. This spatial feature takes the number

of different ASNs and number of IPs return in single DNS response in their calculations.

However, these two detection features were evaded by the botmaster, as botmaster is controlling

the returned list of IPS that the user receives. The returned list could have IPs in the same ASN

or adjacent to the user ASN, so the above measures can inaccurately be classified as the benign

and flux domains. On the other hand, botmaster may return a list containing just a single IP

address, which leads to ineffective detection of the domains(Hsu et al., 2014; Otgonbold, 2014).

Although genetic algorithms provide good accuracy as stated in their paper, but in case the

botmaster decides to return the list of IP addresses in the same AS so the genetic algorithm

results based on the countermeasures will be affected (Hsu et al., 2014). According to our

implementations the overall accuracy of the linear classifier is 95.37 % as shown in Figure 4.3.

Similarly, the linear decision function used as a classifier needs to estimate the categorizer of

the linear function, so if the estimation is good then the linear function works properly,

otherwise the error will be high in the classification process (Chahal & Khurana, 2016). So, the

need for a classifier that detects the zero-day domains is still unsatisfied.

90

Figure 4. 3 The overall detection accuracy

On the other hand, the second compared algorithm was the C4.5 as presented in (Celik & Oktug,

2013). A number of feature sets were examined to detect fast flux network, such feature sets

consist of timing based, spatial based, network based, domain based, and DNS answer based

feature sets. As mentioned in the literature review, the data set was small even though the

accuracy of the experiment was high; also when all features are involved in the experiment the

prediction results become insensitive to two features (timing and domain based feature sets)

(Otgonbold, 2014), which is the most related features to the domain resolution process.

Besides, as C4.5 algorithm is considered as a supervised learning algorithm, it could not be used

to discover the unknown attacks, especially the zero-day fast flux domains, while the current

Hybrid FFKA could efficiently detect this kind of domains.

Moreover, according to our implementation of the C4.5, the accuracy was not high as stated in

their paper. According to the current experiment it was 93.38%. when this result and the

previous linear results were compared to the current proposed FFKA, obviously the proposed

approach overcome the two methods even in this part of the FFKA supervised phase with a total

detection accuracy of 98.76%. Figures 4.4 and 4.5 showed other accuracy measures which are

the ROC curve and F-measure, respectively.

0.93833

0.95374

0.98765

0.91000

0.92000

0.93000

0.94000

0.95000

0.96000

0.97000

0.98000

0.99000

1.00000

c4.5linearFFKS

A
cc

u
ra

cy

Methods

Accuracy

91

Figure 4. 4 The area under ROC curve

Figure 4. 5 The F measure score

Figure 4.4 exhibited the area under ROC curve of the three classifiers, as the AUC denotes the

strength estimator of classifier performance. The proposed ADeSNN proved that it is the best

0.938398836

0.953682678

0.987951807

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

c4.5linearFFKS

A
re

a

Methods

Area under ROC curve

0.93833

0.95445

0.98750

0.91000

0.92000

0.93000

0.94000

0.95000

0.96000

0.97000

0.98000

0.99000

1.00000

c4.5linearFFKS

V
la

u
e

Methods

F Measure

92

among the others. In addition, Figure 4.5 displayed that the results of the f-measure which

overcame the other two classifiers C4.5 and the linear decision function. As a result, all those

measures proved that our contribution of the adaptation revealed that the performance of the

ADeSNN was enhanced, and leads us to a new version of the spiking neural network that will

help solve the problem of fast flux domains .Figure 4.6 depicts the error estimation measure

which is the RMSE.

Figure 4. 6 The root mean square error

As shown in Figure 4.6 the error measure indicated that the proposed algorithm over performed

the two other methods by almost 50%, which achieves an enhancement of the misclassified

instances as RMSE measures the differences between the actual and the estimated targets. So,

as the FFKA obtained better results, this means that it will be more accurate to deal with

classification problems in an efficient way. The parameters of the ADeSNN algorithm set in

the experiment are shown in Table 4.3.

0.24834

0.21507

0.11111

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

c4.5linearFFKS

V
al

u
e

o
f

R
M

SE

Methods

Root Mean Square Erroe

93

Table 4. 3 The parameters of the ADeSNN algorithm used in the experiment.

Neurons and synapses equations parameters Value Unit

Excitatory synapse time constant (tau_exc) 2 Ms

Inhibitory synapse time constant (tau_inh) 5 Ms

Neuron time constant (tau_mem) 20 Ms

Membrane leak (El) 20 mV

Spike threshold (Vthr) 800 mV

Reset value (Vrst) 0 mV

Fixed inhibitory weight (winh) 0.20 V

Fixed excitatory weight (wexc) 0.40 V

Thermal voltage (UT) 25 mV

Refractory period (refr) 4 Ms

SDSP parameters

Up/Down weight jumps (Vthm) 0.75*Vthr mV

Calcium variable time constant (tau_ca) 5 *tau mem Ms

Steady-state asymptote for Calcium variable (wca) 50 mV

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV

Stop-learning threshold 2 (stop LTD if Vca > thk2) 2.2 × wca mV

Stop-learning threshold 2 (stop LTP if Vca > thk3) 8 × (wca–wca) mV

Plastic synapse (NMDA) time constant 9 Ms

Plastic synapse high value (wp hi) 6 mV

Plastic synapse low value (wp lo) 0 mV

Bistability drift 0.25

Delta weight 0.12 × wp_hi mV

Input size 5130 spike train

Simulation time 40 ms

Default clock unit 0.2 Ms

4.7.3 Feature Set Discussion

The feature set used gave excellent results with the adaptive approach. On the other hand, some

experiments were performed in order to check the influence of these feature set on the whole

detection process. Based on that, three experiments were conducted. Every experiment was

implemented by deleting one of the three new proposed features, keeping the other used features

the same for the all experiments. The results of these experiments are illustrated in Table 4.4.

94

Table 4. 4 The results of the three experiments by eliminating one new feature at a time.

 The three Experiments without feature of

Evaluation

measures
AVGSIM Qtime Msgs

ADeSNN(ALL)

FNR 0 0 0 0

FPR 0.283950617 0 0.209876543 0.02410

TPR 1 1 1 1

TNR 0.716049383 1 0.790123457 0.97590

ACC 0.858024691 1 0.895061728 0.98765

Precision 0.716049383 1 0.790123457 0.97531

Recall 1 1 1 1

F-Measure 0.834532374 1 0.882758621 0.98750

MCC 0.746787994 1 0.808122036 0.97561

RMSE 0.37679611 0 0.323941772 0.11111

NDEI 0.752428371 0 0.646882951 0.22188

MSE 0.141975309 0 0.104938272 0.01235

According to Table 4.4, the first experiment eliminated the feature (AVGSIM) from the feature

set, then implemented the ADeSNN algorithm on the other sixth features, the accuracy was

almost about 85.8%. Comparing this results with the others it is clear that implementing the

algorithm while excluding this feature will give low detection rate, so this indicates that the

AVGSIM played important role in classifying the input instances, as depicted in Figure 4.7.

Figure 4. 7 The accuracy comparison between the feature set experiments

0.858024691

1

0.895061728

0.98765

0.750.80.850.90.9511.05

 AVGSIM

Qtime

 Msgs

ADeSNN

Value

A
cc

u
ra

cy
 w

it
o

u
t

th
is

 f
ea

tu
re
Accuracy

95

By looking at the results of the second experiment shown in the Figure 4.7, it is obvious that

the detection rate reached 100%. Which tells us that this feature (Qtime) affects badly on the

classification process. In addition, the 3rd experiment that was implemented without the message

size showed an accuracy of nearly 89.5%. Actually, this is adequate as the experiment ran

including Qtime feature, which seemed the worst feature among them all. The last column in

Table 4.4 showed the result of the ADeSNN algorithm with all features included. Here we can

say that the accuracy of 98.76% is excellent, considering Qtime was one of its features.

The root Mean Square Error was also computed for all three experiments. Figure 4.8 shows that

the experiment excluded the average similarity feature was the highest RMSE value. This

proves that the average similarity feature is important to the classification process, while its

absence will increase the number of misclassified results. On the other hand, the query time

feature showed bad results, where the absence of this feature gave 0 value for RMSE, which is

excellent for the classification process as no instances will be missed.

Finally, the combination of the features together, even with including the query time feature,

still produces good results, as depicted in Figure 4.8.

Figure 4. 8 The RMSE of the feature set experiment

0.37679611

0

0.323941772

0.11111

00.050.10.150.20.250.30.350.4

 AVGSIM

Qtime

 Msgs

ADeSNN

Value

R
M

SE
 o

f
th

e
ex

p
ir

em
en

ts

RMSE

96

Another test was implemented to prove the quality of the feature set was the feature selection

method based on the decision tree (Alauthaman, Aslam, Zhang, Alasem, & Hossain, 2016; Kira

& Rendell, 1992), for more details about the feature selection method see section 4.5. Table 4.5

shows the result of the current feature set.

Table 4. 5 The features set ranking importance

Feature Important rate

Msgs 100

IPans 4.01

AVGSIM 3.45

NSadd 1.94

NASN_ans 1.75

NASN_add 1.13

Qtime 0.58

Figure 4. 9 Feature set ranking based on the feature selection method

According to the result of the features selection method in Figure 4.9, the results emphasized

the previous results regarding feature quality, and indicated that Qtime is the least important

feature among the selected and proposed features. Also, the AVGSIM came in the third position,

and this shows its importance compared to the other features.

100

4.013.451.941.751.130.58
0

20

40

60

80

100

120

MsgsIPansAVGSIMNSaddNASN_ansNASN_addQtime

R
an

k

Features

Feature set rank based on the Feature selection
method

97

4.8 Conclusion

This chapter displayed the enhancement of the proposed supervised FFKA by exploiting

ADeSNN to detect the fast flux domains in offline mode. The purpose of this chapter was to

show the improvement in the performance of the FFKA approach based on the similarity

measure used to classify the fast flux domain and the benign domains, as well as the feature set

that facilitated the classification process.

In order to evaluate the proposed adaptation of the supervised FFKA phase, a public fast flux

dataset was used. Three experiments were conducted, the first was the proposed supervised

phase of the FFKA and the other two methods were chosen from the same field of the fast flux

detection approaches, the linear decision function and C4.5 classifiers.

The discussion started with the stages of preparing the dataset and the process of the feature

extraction. The fast flux public dataset found that as stacks of DNS responses, a script of python

was written to extract the features and store it in a secondary database, and then began building

and calculating some of the features that needed calculations. A local copy of the ASN database

was also used to speed up the process of IP address information retrieval.

The feature set of the all three experiments was tested using the feature selection method, this

later used a decision tree to rank the importance of the features on board. The proposed three

features have been tested as well, the Qtime feature showed the worse influence on the

classification and detection processes. In contrast, the average similarity feature has the best

influence on the classification process. Another experiment proved the same results: the three

proposed features were tested in three different experiments. Each experiment has to delete one

of these three features and record the result of the classification. At the end of the experiment

the results had the same indication of the feature selection method.

The supervised phase trained the ADeSNN to detect the fast flux domains. The output of the

supervised phase was the final weights and the classification threshold, where the weights stored

at the weight repository, as well as the classification threshold. Moreover, the weight repository

and the threshold helped to save more memory storage as no need to store all inputs forever,

just a particular space to store a certain number of inputs is required.

98

The results of the FFKA were compared with linear decision function and C4.5 classifiers from

the previous related works. Overall, the performance of the FFKA over perform both of them

based on previously discussed accuracy measures. Overall, the current results based on the

comparisons have made were promising to move forward and added a value to the process of

fast flux domains detection. Where the Overall accuracy of the FFKA to detect fast flux domains

was (98.76%).

99

CHAPTER FIVE

HYBRID FAST FLUX KILLER APPROACH

Chapter Overview

This chapter presents the two parts of the fast flux killer approach namely the supervised and

the unsupervised phases. The supervised phase trains the adaptive dynamic evolving spiking

neural network at the beginning, sets the classification threshold, and stores the weights in the

weights repository. The unsupervised phase detects and classifies the zero-day domains based

on the output of the supervised phase. The evaluation of the proposed FFKA approach in this

chapter is then compared with supervised phase results presented in chapter four. The result will

be discussed at the end of this chapter.

5.1 Introduction

The improvements presented the last two chapters were substantial based on the enhanced

performance obtained from the ADeSNN algorithm. The improvements enhanced the

performance of the algorithm in different ways. Improvements were observed in the initial

weights, the similarity classification measure, and the features set. Other slight improvements

made over the ADeSNN algorithm focused on the parameter customization problem, which was

discussed a part of the parameters adjustment.

There is confusion in the community about the meaning of online detection. The offline

detection approaches for example trained on data once and started to detect the incoming data.

If, however, some of the new data kept changing, problems may occur. This leads us to search

for a new model which is trained on offline dataset and adapts itself for the new incoming data,

which is called the online model. In our field, online is concerned with dealing with the new

fast flux domain threats once seen.

The proposed FFKA approach deals with two phases in order to detect the fast flux domains,

the first is the supervised learning phase which works offline and train the approach to detect

fast flux domains, while the second is unsupervised learning phase which works online and

100

based on the output of the supervised phase, the online learning mode will be able to detect the

zero-day fast flux domains.

5.2 The Hybrid Fast Flux Killer Approach (Supervised and unsupervised)

5.2.1 Introduction

At this chapter the FFKA will be discussed in details and this include the supervised and

unsupervised phases. We will look at the full life cycle of the FFKA starting from the setting of

the bases of the approach at the supervised phase, until the detection of zero-day fast flux

domains at the unsupervised phase. Then, a comparison between the output of the supervised

phase described in chapter four and the output of the Hybrid approach described in this chapter

will be performed.

5.2.2 The FFKA Supervised Phase

In chapter four, we discussed the supervised process in detail. The Supervised phase deals with

labelled data, while the process of learning is in progress and the classification threshold is

being set. As the process of learning reaches the end, the output of this phase will be the final

weights of the output spiking neurons and the classification threshold. The weights are stored

in the weights repository and the threshold will be saved as well.

5.2.3 The FFKA Unsupervised Phase

In this section the unsupervised phase will be introduced as part of the FFKA approach. The

following sections describe the whole unsupervised phase in details.

5.2.3.1 Introduction

This is the second phase of the proposed FFKA approach, called the unsupervised learning

phase. This phase deals with new instances (domains), so that the unsupervised learning part of

the approach will be able to deal with unknown data, in our case the zero-day fast flux domains.

The classification process will be based on the output of the previous supervised phase as it will

be described later on in this chapter.

101

5.2.3.2 The Preprocessing Stage

The preprocessing stage of the dataset from the DNS responses was introduced in detail in

section 4.3.1, the dataset will be prepared, as it will be fed to the unsupervised learning phase

one by one.

5.2.3.3 Feature Extraction

This stage is about how to build and calculate some of the features that need calculations. As

discussed in details in section 4.3.2, some features need to be calculated based on extra

information provided from a third-party database and some other features could be taken

straight away from the DNS response message.

5.2.3.4 Hybrid Fast Flux Killer Approach

The two phases of the supervised and the unsupervised learning phases were combined together

in order to achieve the main goal of the research, which is the detection of the zero-day fast flux

domains in an online mode.

The FFKA approach started with the supervised phase to set the basic seeds of the classification

process, then begins the online detection mode to detect the zero-day fast flux domains. After

this phase, the supervised learning offline mode is re-executed once again to refine the

classification criteria.

As shown in Figure 5.1, the supervised phase receives the labelled inputs one by one and builds

the spiking neural network based on the ADeSNN algorithm. As more inputs kept coming the

spiking neural network becomes bigger and its learning from the inputs produces the final

weights matrix. Subsequently, for each input record there is an output neuron created to capture

the input pattern along the learning process. At the end of this phase all the output neurons'

weights were stored in the weights repository. Furthermore, during the learning process, the

classification threshold was computed to be used in the classification process, which is based

on the similarity measure.

102

The unsupervised mode deals with unlabeled data and the ADeSNN algorithm will capture the

features of the domains, then trains the ADeSNN on the new inputs. the algorithm will then

accessed the classification threshold stored from the supervised phase to classify the unknown

domains. While the new un-labelled records are trained by the ADeSNN in an online mode, the

final weights became ready to be stored in the weights repository.

The new weights of the new input records stored at the weights repository will be used later

after certain number of records and time. In our case after 1000 records, in supervised learning

again to enhance the classification threshold value as the new inputs become part of the training

dataset of the supervised phase. This process is depicted in Figure 5.1.

BenignFast Flux

Pre-processing
(feature

exctraction)

Collected Dataset

S e t a l l
p a r a m e t e r s

E n t e r i n p u t
p a t t e r n

R O C

C r e a t e i n p u t l a y e r

C r e a t e o u t p u t l a y e r

I n i t i a t e W 0 b a s e d
o n fo r m u l a(1)

C a l cu l a t e
P S P i m a x

u s i n g
fo r m u l a (3)

C a l cu l a t e s p i k i n g
T h i o f t h e i t h

n e u r o n b a s e d o n
fo r m u l a (4)

A d d t h e o u t p u t
n e u r o n t o o u t p u t

n e u r o n
r e p o s i t o r y

N o

Y e s E n d

D
e

SN
N

 A
rc

h
it

ac
tu

re

E n d o f
i n p u t s

A d j u s t W i
b a s e d o n S D S P

u s i n g
fo r m u l a(2)

V w 0= I p o t (t p o s t)/ C p , V

m e m t> V m th
V w 0 = I d e p (t p o s t)/ C d , V

m e m < V m th

Ti
m

e

I n p u t f e a t u r e v a l u e

N e u r o
n

G a u s s i a n r e c e p t i v e
f i e l d s

Supervised

Final-weights
repository

Classification
Threshold

S e t a l l
p a r a m e t e r s

E n t e r i n p u t
p a t t e r n

R O C

C r e a t e i n p u t l a y e r

C r e a t e o u t p u t l a y e r

I n i t i a t e W 0 b a s e d
o n fo r m u l a(1)

C a l cu l a t e
P S P i m a x

u s i n g
fo r m u l a (3)

C a l cu l a t e s p i k i n g
T h i o f t h e i t h

n e u r o n b a s e d o n
fo r m u l a (4)

A d d t h e o u t p u t
n e u r o n t o o u t p u t

n e u r o n
r e p o s i t o r y

N o

Y e s E n d

D
e

SN
N

 A
rc

h
it

ac
tu

re

E n d o f
i n p u t s

A d j u s t W i
b a s e d o n S D S P

u s i n g
fo r m u l a(2)

V w 0= I p o t (t p o s t)/ C p , V

m e m t> V m th
V w 0 = I d e p (t p o s t)/ C d , V

m e m < V m th

Ti
m

e

I n p u t f e a t u r e v a l u e

N e u r o
n

G a u s s i a n r e c e p t i v e
f i e l d s

Un-supervised

Off-line mode On-line mode

Pre-processing
(feature

exctraction)

New Unknown
dataset

Figure 5. 1 The Hybrid FFKA

103

The weight repository and the classification threshold helped to save on the memory storage, as

there is no need to store all incoming inputs forever but just the specified space to store certain

number of inputs is required (1000 records in this case).

5.3 Dataset

The proposed modification on ADeSNN method has to be evaluated and tested by exploiting

the public fast flux dataset as discussed in section 4.4.

5.4 Feature Set

A public fast flux data set was used as discussed in section 4.4. So, the feature set proposed here

is the same as the one proposed in section 4.6. The seven features remain the same for

comparison purposes.

5.5 Experiment and Discussion

Both supervised and unsupervised learning phases are now working at the same time, in the first

step the supervised model will train the algorithm on the fast flux data then produce the seeds

of the classification process to the next step. The second step, the unsupervised learning phase

deals with the new input records and executes the algorithm to produce the final weights then

uses the first step results to help the unsupervised phase to classify the new incoming inputs if

they are fast flux domains, especially the zero-day fast flux domains.

To achieve that, the public fast flux data set was exploited in order to evaluate the Hybrid FFKA

approach and compare the achieved results with the results of the supervised phase alone in

chapter four. A 3-folded cross-validation is used and three experiments were conducted for this

purpose. Based on that, each experiment in the first two folds is used in the supervised learning

to train ADeSNN in the offline mode. While the third fold was fed into the unsupervised

learning in an online mode.

At the supervised phase of the approach the first two folds are used to train the ADeSNN

algorithm on the benign and fast flux domains, while the running of the spiking neural network

the initial weights are updated according to the new inputs, and the final weights of the

supervised phase will be stored at the weights repository. At the same time, the classification

104

threshold trained to classify both the benign and the fast flux domains while training, and the

final value of the threshold stored will be used by the next step at the unsupervised phase.

The third fold was fed to the unsupervised phase as un-labelled data inputs, so the algorithm of

ADeSNN will execute the spiking neural network and produces the final weights of those

inputs, the unsupervised phase has an access to the classification threshold produced from the

supervised phase and will be used to classify the new inputs. Then, the new weights are

added/replaced in the weights repository.

For every 1000 new input records the approach will re-train the supervised phase on the weights

stored in the weights repository to enhance the classification threshold. This leads to the fact

that the proposed approach will update its classification ability based on the changing of the

input upon time. Which give the approach the lifelong workability, as the functionality adapts

to the new changes in the form of what the fast flux domains might do.

5.5.1 The Results of the Hybrid FFKA

Based on the three experiments mentioned in section 5.5, the hybrid FFKA approach worked

offline and online in a hybrid mode to detect the fast flux domains in offline mode and trained

the FFKA approach to the zero-day fast flux domains in online mode. The average of the three

experiments’ results are displayed in Table 5.1.

Table 5. 1 Results of the hybrid FFKA

Evaluation measures Hybrid FFKA

FNR 0.00%

FPR 0.59%

TPR 100.00%

TNR 99.41%

ACC 99.54%

Precision 99.41%

Recall 100.00%

F-measure 99.71%

MCC 98.67%

RMSE 6.78%

NDEI 13.55%

105

According to the results displayed in Table 5.1 the approach accurately classifies the benign

domains with a true positive rate of 100%. Additionally, the approach classified the fast flux

domains with false positive rate of (0.59%). All the accuracy measures of the detection approach

results were displayed in Table 5.1. The error results are displayed in Figure 5.2.

Figure 5. 2 The results of the hybrid FFKA

Figure 5.2 displays the results of the hybrid FFKA approach where the error estimators shows

that the approach was able to minimize the number of misclassified instances based on the new

contributed enhancements.

The set on parameters used in this experiment is shown in Table 5.2.

0.00% 0.59%

100.00% 99.41% 99.54% 99.41% 100.00% 99.71% 98.67%

6.78%
13.55%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

V
al

u
e

Measures

Hybrid FFKS

106

Table 5. 2 Parameters used in the hybrid experiment

Neurons and synapses equations parameters Value Unit

Excitatory synapse time constant (tau_exc) 2 Ms

Inhibitory synapse time constant (tau_inh) 5 Ms

Neuron time constant (tau_mem) 20 Ms

Membrane leak (El) 20 mV

Spike threshold (Vthr) 800 mV

Reset value (Vrst) 0 mV

Fixed inhibitory weight (winh) 0.20 V

Fixed excitatory weight (wexc) 0.40 V

Thermal voltage (UT) 25 mV

Refractory period (refr) 4 Ms

SDSP parameters

Up/Down weight jumps (Vthm) 0.75*Vthr mV

Calcium variable time constant (tau_ca) 5 *tau mem Ms

Steady-state asymptote for Calcium variable

(wca)

50 mV

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV

Stop-learning threshold 2 (stop LTD if Vca >

thk2)

2.2 × wca mV

Stop-learning threshold 2 (stop LTP if Vca >

thk3)

8 × (wca–wca) mV

Plastic synapse (NMDA) time constant 9 Ms

Plastic synapse high value (wp hi) 6 mV

Plastic synapse low value (wp lo) 0 mV

Bistability drift 0.02

Delta weight 0.12 × wp_hi mV

Input size 5130 spike train

Simulation time 40 ms

Default clock unit 0.2 Ms

Overall, the Hybrid FFKA approach proved its ability to detect the zero-day fast flux domains in

the online mode where the total accuracy achieved was 99.54%, and enhanced the classification

accuracy in offline mode periodically.

5.5.2 Comparison of Supervised and Hybrid approach

In chapter 4, the supervised FFKA approach was introduce to train the approach in detecting the

fast flux domain and produced and enhanced (later) the classification threshold of the

unsupervised phase.

107

The following discussion is about the comparison between the supervised FFKA approach phase

from chapter 5 and the hybrid (supervised and unsupervised) FFKA approach. A public dataset

was used to test the chosen classifiers in section 4.4. Three experiments were conducted using

the mentioned fast flux public dataset to test the ability of the proposed FFKA approach to solve

fast flux domains problem. The performance and the results of the experiments were promising

and indicated an increase in the detection accuracy of fast flux domains. To ensure the quality of

the learnning phase of the ADeSNN, a 3-folded cross-validation method is used to estimate the

error rate of the algorithm. The three experiments were implemented then the average has been

taken. Table 5.3 summarizes the results obtained in this experiments those obtained from the

experiments in chapter 4.

Table 5. 3 The comparison results of supervised and hybrid FFKA approach

Evaluation measures Supervised FFKA Hybrid FFKA

FNR 0.00% 0.00%

FPR 2.41% 0.59%

TPR 100.00% 100.00%

TNR 97.59% 99.41%

ACC 98.77% 99.54%

Precision 97.53% 99.41%

Recall 100.00% 100.00%

F-measure 98.75% 99.71%

MCC 97.56% 98.67%

RMSE 11.11% 6.78%

NDEI 22.19% 13.55%

Table 5.3 shows the result of the comparison between the supervised phase experiment from

chapter 4 and the hybrid FFKA experiment discussed in section 5.5.1.

By looking at the results, both sides shared the same achievement in detecting the benign

domains where the detection rate of the benign domains was 100%. But, in the case of detecting

the fast flux domains the hybrid approach performs better than the supervised phase result to

achieve a detection rate of 99.41% while the supervised achieved 97.59%. Other measures were

108

also used as shown in Table 5.3 and include Precision, Recall, F-measure, and MCC. All the

measures show that the hybrid approach outperforms the supervised one.

Figure 5.3 displays the compared graph that shows all the measures in both the supervised

experiment and the hybrid FFKA approach experiment.

Figure 5. 3 Comparison of the supervised and hybrid FFKA approaches

In the case of the error estimator's performance, RMSE and NDEI exhibited an improvement in

their values compared to the same in the supervised phase, which leads to conclude that the

percentage of an error in misclassifying the normal and fast flux domains decreased in the

hybrid approach, as depicted in Figure 5.4.

0.00% 2.41%

100.00% 97.59% 98.77% 97.53% 100.00% 98.75% 97.56%

0.00% 0.59%

100.00% 99.41% 99.54% 99.41% 100.00% 99.71% 98.67%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

FNR FPR TPR TNR ACC Precision Recall F-measure MCC

V
al

u
e

Methods

Accuracy measures

Supervised FFKS Hybrid FFKS

109

Figure 5. 4 The error comparison of the supervised and hybrid FFKA approach

Overall, the proposed contribution of the hybrid FFKA approach improved the detection

accuracy and ability to detect the fast flux domains and especially the zero-day fast flux domains

in online mode. Furthermore, the Precision and F-measure showed an enhancement in their

values compared to the last experiment results. We conclude that the detection accuracy of the

proposed hybrid FFKA approach has improved the ability of the ADeSNN algorithm to classify

the incoming inputs more correctly than before.

5.5.3 Parameter Adjustment and Customization

The algorithm of the DeSNN suffers from the many parameters needed to be set before running

the algorithm. Our adaptive ADeSNN modifies the process of the initial weight setting, so this

adaptation added a value in the parameters customization problem by excluding the (Mod)

parameter as shown in section 3.4. According to (Kasabov et al., 2013) the best values of the

parameters were given in their research is the same as those shown in Table 5.4 and the same

parameters are used in the current research for the sake of consistency and comparison purposes.

However, the best results obtained were based on the parameters’ values of the current research

as displayed in Table 5.4.

11.11%

6.78%

22.19%

13.55%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Supervised FFKS Hybrid FFKS

V
al

u
e

Method

Error estimators

RMSE NDEI

110

Table 5. 4 The parameters values of the ADeSNN algorithm in FFKA approach

Neurons and synapses equations parameters Value Unit

Excitatory synapse time constant (tau_exc) 2 Ms

Inhibitory synapse time constant (tau_inh) 5 Ms

Neuron time constant (tau_mem) 20 Ms

Membrane leak (El) 20 mV

Spike threshold (Vthr) 800 mV

Reset value (Vrst) 0 mV

Fixed inhibitory weight (winh) 0.20 V

Fixed excitatory weight (wexc) 0.40 V

Thermal voltage (UT) 25 mV

Refractory period (refr) 4 Ms

SDSP parameters

Up/Down weight jumps (Vthm) 0.75*Vthr mV

Calcium variable time constant (tau_ca) 5 *tau mem Ms

Steady-state asymptote for Calcium variable

(wca)

50 mV

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV

Stop-learning threshold 2 (stop LTD if Vca >

thk2)

2.2 × wca mV

Stop-learning threshold 2 (stop LTP if Vca >

thk3)

8 × (wca–wca) mV

Plastic synapse (NMDA) time constant 9 Ms

Plastic synapse high value (wp hi) 6 mV

Plastic synapse low value (wp lo) 0 mV

Bistability drift 0.02

Delta weight 0.12 × wp_hi mV

Input size 5130 spike train

Simulation time 40 ms

Default clock unit 0.2 Ms

5.6 chapter summary

This chapter discussed the main proposed contribution, which is the Fast Flux Killer Approach

or FFKA. The improvements made in chapter 3 and chapter 4 were substantial according to the

enhancements in the performance of the ADeSNN algorithm. This chapter introduced the hybrid

FFKA approach that worked offline to train the approach and initialize the classification

threshold, and online to detect the zero-day fast flux domains based on the threshold value that

was set by the supervised phase.

111

The same fast flux public dataset used in chapter 4 was used in the current chapter. Furthermore,

a 3 fold cross-validation was used, as the experiments were conducted in the two chapters were

then compared according to various accuracy measures and error estimators. The result proved

that the enhancement of the hybrid FFKA approach over the supervised phase alone in both the

accuracy measures where the total accuracy achieved was 99.54, and the error estimators

showed that the hybrid approach had lower error values in misclassifying the domains.

This chapter also discussed the parameter customization problem, by reducing the number of

parameters used in the algorithm, for example the (Mod) parameter used in RO initial weight

calculations, but it became useless as the new proposed approach used the spike time as initial

weight.

Finally, the parameters adjustment was discussed. A comparison between the adaptive version

of the algorithm introduced in chapter 4 and the current modification in this chapter was

implemented, then we discussed the improvements of the performance of the algorithm based

on the same parameters values, as introduced in the original DeSNN as mentioned in algorithm

3.1(Kasabov et al., 2013).

112

CHAPTER SIX

DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE

WORK

Chapter Overview

This chapter summaries the whole research conducted in this study and give some directions

for future researchers to guide them in detecting the fast flux domains as well as improving the

performance of the proposed methodology.

6.1 Discussion

This thesis discussed the process of detecting fast flux botnet based on a novel proposed FFKA.

Starting from the title the thesis treated two tracks, the fast flux botnet detection and the

adaptation of the DeSNN algorithm. Hence, the structure of the thesis was built to develop the

adaptation process first, then use the proposed adaptive algorithm to detect the fast flux problem.

Based on that, chapter one discussed the fundamentals of the thesis (where the research identified

the gap in the knowledge), the motivation of the research, the main aim and the objectives, the

methodology of the solution, and the contribution of the proposed research were discussed as

well. Chapter two revealed a solid background that covers the subject of the thesis, discussed the

literature review, and examined the related work done so far in the same field.

In chapter three, two public datasets were used to evaluate the proposed adaptation on the DeSNN

and compared the results with original DeSNN itself. DeSNN algorithm is built based on both

the RO learning rules and the SDSP learning rules. According to previous work, the initial weight

of the DeSNN is calculated based on the RO rules. As stated in (Kasabov et al., 2013), the output

of the DeSNN algorithm consists of the initial and final weight matrices, as a new incoming input

pattern arrives, an initial weight and final weight are computed. Then, the updates happened while

running the algorithm on the initial weight. At the recall mode the classification of the new arrival

is going to be based on testing the similarity measure, which is Euclidean distance in this research.

Experiments showed that the current initial weight based on the RO setting introduces a clear

113

misclassification percentage of detecting the incoming inputs. So, the contribution here was to

use the spike time as initial weight and the results obtained were satisfactory. The overall

accuracy of DeSNN was (56%) while it was (91.67%) for ADeSNN using on the IRIS dataset.

According to the IRIS dataset two classes were non-linearly separable which cause to show

almost 91% accuracy while it was tested on the first linearly separable classes and give 100%

accuracy. This leads to the ability of the adaptive DeSNN to classify classes even when inputs

are mutually mixed. Finally, ADeSNN exhibited higher true positive rate and less false negative

rate than DeSNN.

For the second public WDBC dataset, the experiment distributed the dataset into 5-fold cross-

validations groups. So, five separated experiments were done, where the instances randomly

distributed on the five groups, then the results were computed and the average was taken. It is

noted that the error measures (RSME, NDEI, and MSE-ERROR) values of the proposed adaptive

ADeSNN were less than those for the original DeSNN, which means the adaptation on the

DeSNN will minimize the misclassification of the input instances, and maximize the accuracy of

the detection and classification. In addition, the MCC is a performance metric which is widely

used in bioinformatics. The two algorithms used this metric as it best deals with imbalanced data,

and this leads the researcher to conclude that the adaptive algorithm is more accurate than the

original one. Coming to compare the accuracy, the F-measure, Recall, and ACC revealed that the

proposed adaptation produced more accurate results (97.16%) than the original DeSNN

(76.59%). Finally, ADeSNN exhibited higher true positive rate and less false negative rate than

DeSNN. Overall, all the measures used proved the improvement of the performance of the

proposed adaptive algorithm.

According to the achieved enhancement in chapter three, which showed that the proposed

adaptation on the DeSNN algorithm improved its performance. In chapter four, FFKA was

tested in order to detect the fast flux domains in an online mode. The proposed FFKA consists

of two parts, the supervised and unsupervised learning modes. The supervised ADeSNN in

FFKA is about training the ADeSNN algorithm on both fast flux domains and benign domains.

Besides, a threshold of the classification process will be trained along the training process. The

outputs of the supervised training mode are the final weight and the classification threshold,

114

where the weights are stored in the weights repository. Furthermore, the threshold stored to be

accessed by both the supervised and un-supervised modes later. The un-supervised mode deals

with new unknown data, so the ADeSNN algorithm will capture the features of the domains,

then access the value of the classification threshold to classify the inputs domains, then the final

weights of the new inputs are calculated. The weights of the new input records then will be

stored in the weights repository to be used later after certain (number of records/ time) in

supervised learning mode again to enhance the classification threshold value as the new inputs

become part of the training dataset. The weight repository and the threshold helped to save

memory storage as there is no need to store all inputs forever, but just the specified space to

store certain number if inputs is required.

Also, the contribution made over the ADeSNN algorithm focused on the testing criteria where

the current research implemented the similarity measure defined by formula 1 in chapter 4,

which according to the best of my knowledge, it is the first time this formula has been used in

this field. Furthermore, chapter discussed the parameter customization problem by reducing the

number of parameters for example the (Mod) parameter used before with the initial weight

calculations.

To achieve that, a comparison between the proposed algorithm and two other approaches from

the works developed in (Celik & Oktug, 2013; H.-T. Lin et al., 2013) were implemented. A

public dataset has been used to test the chosen classifiers, then compares their performance

among the related previous works developed in same field. Three experiments were conducted

using the mentioned fast flux public dataset, to test the ability of the proposed algorithm to solve

the fast flux problem. Two of them were selected based on two related previous researches, the

linear decision function in (H.-T. Lin et al., 2013) and the C4.5 in (Celik & Oktug, 2013)

algorithm. The third was the supervised FFKA. To ensure the quality of the learnning phase of

the ADeSNN, a 3-folded cross-validation method is used to estimate the error rate of the three

classifiers. The three experiments were implemented then the average has been taken.

According to the implementations the overall accuracy of the linear classifier was (95.37 %). In

addition, the linear decision function used as a classifier needs to estimate the categorizer of the

linear function, to see if the estimation is good and the linear function work properly, otherwise

the error will be high in the classification process. Besides, as C4.5 algorithm is considered as

115

a supervised learning algorithm, it could not be used to discover the unknown attacks especially

the zero-day fast flux domains. Moreover, according to the implementation, the accuracy was

not high as stated in their paper at 93.38%. When this result and the previous linear results were

compared to the current proposed ADeSNN, it shows that the proposed approach outperforms

the two methods with a total detection accuracy of 98.76%. Other accuracy measures have also

been implemented.

The feature set proposed by the current thesis consists of several features, where three of them

are for the best of our knowledge the first time to be used in the field. AVGSIM is a new feature

that computes the average of the similarity between the ASN number of the requested IP address

and the other ASN number of the returned IP addresses of the DNS response. In other words,

AVGSIM refers to the average of the similarity between the autonomous system number of the

user's IP and autonomous system numbers of the proxy bots returned in the answer section of

the DNS response, and is computed using formula 1 in chapter 4. The other two new features

are the time of the query and the DNS packet size. All these features together showed their

ability to distinguish between the fast flux network (served by domains) and the legitimate

domains. The feature set used gave excellent results with the adaptive approach. Further

experiments were conducted to check the influence of these feature set on the whole detection

process. Based on that, three experiments were conducted, every experiment is implemented by

deleting one of the new three features with keeping the other used features the same for the all

experiments. According to feature evaluation results, the first experiment eliminated the feature

(AVGSIM) from the feature set, then implemented the ADeSNN algorithm on the other six

features, the accuracy was about 85.8%. Comparing this result with the others it is clearly that

implementing the algorithm with excluding this feature will give low detection rate, so this

indicate that the AVGSIM played an important role in classifying the input instances. By

reading the results of the second feature experiment, it was noted that the detection rate reached

100%. This tells us that the feature (Qtime) badly affects the classification process. In addition,

the 3rd experiment showed an accuracy of almost 89.5% which is actually good enough as the

experiment ran includs the Qtime feature. The last column in Table 4.4 showed the result of the

ADeSNN algorithm with all features included. Here we can say that the accuracy of 98.77 is

excellent, considering it had Qtime as one of its features.

116

Another test was implemented to prove the quality of the feature set was the feature selection

method based on decision trees (Alauthaman et al., 2016; Kira & Rendell, 1992), the result of

the features selection method emphasized the previous results regarding the Qtime feature. In

short, Qtime is the least important feature among the selected features. The AVGSIM came in

the third position during this test, and this shows its importance among the other features.

Chapter five discussed the main proposed contribution which is the Fast Flux Killer Approach

FFKA. In chapter 3 and chapter 4 many improvements were proposed and proved their

enhancements in the performance of the ADeSNN algorithm. This chapter introduced the hybrid

FFKA approach that worked offline to train the approach and initialize the classification

threshold, and worked online to detect the zero-day fast flux domains based on the threshold

value that was set by the supervised phase. These two supervised and unsupervised phases play

important roles in enhancing the detection performance of the proposed approach to detect the

fast flux domains and especially the zero-day domains, as the approach re-trained the algorithm

based on the old and the new data. This gives the approach the ability to adapt itself to whatever

new changes the fast flux domains will implement to evade detection.

The same fast flux public dataset used in chapter 4 was used in the chapter 5. A 3 fold cross-

validation was used as the experiments that were conducted in the two chapters and had their

results compared according to various accuracy measures and error estimators. The result

proved the the enhancement of the hybrid FFKA approach over the supervised phase alone in

both the accuracy measures where the total accuracy achieved was 99.54, and the error

estimators showed that the hybrid approach had lower error values in misclassified the domains.

Overall, the proposed adaptation and modification have improved the performance of the

original algorithm and obtained better classification results.

6.2 Limitations and Future Work

The DeSNN algorithm suffers from the fact that many parameters have to be set before running

it. The proposed contribution of this work has partially solved this problem, but still there are

many parameters that need to be set. It is clear that the problem of fast flux is not solved and it

needs several efforts to be gathered together at different levels. Governmental, private sector,

117

and research efforts have to be implemented and coordinated. This is because of the need to

acquire a real-time dataset for a long period of time, and ensure that the dataset is controlled

and tested correctly.

The suggested future work for saving more memory usage could be the use of fuzzy rules to be

saved instead of the weight matrices, as each current cluster is dedicated for one weight matrix.

6.3 Conclusion

Botnets have expanded radically and is an interesting research field that concerns expertise

based on the threats that it provided, fast flux botnets offer a bridge to carry other malicious

threats such as DDoS, internet fraud, and identity thief. Although several methods have been

suggested for detecting fast flux domains, they still have low detection accuracy, especially with

the zero-day domain, quite a long detection time, and consume high memory storage.

The main contribution of this study is to come out with a approach for the detection and

classification of fast flux domains. So, we proposed a new approach called Fast Flux Killer

Approach (FFKA) that has the ability to detect FF-Domains, especially the zero-day domains

in online mode, with an implementation constructed on Adaptive Dynamic evolving Spiking

Neural Network (ADeSNN). The proposed approach proved its ability to detect fast flux

domains with high detection accuracy according to the experiments have implemented.

The aspects were considered and addressed in this study has contributed scientifically to the

field in many ways. Most of previous studies in the fast flux domains detection field were based

on machine learning algorithms, stand-alone approaches, and network monitoring. The research

was conducted through its contributions as presented in section 1.6 as follows.

 The first and second objectives were developed as described in chapters 3. The

contribution focused on increasing the detection performance using adaptive fast one-

pass algorithm (ADeSNN). By employing the spike time as initial weight, then the

achieved performance evaluated according to true positive, true negative, recall,

precision, f-Measure and overall accuracy.

118

 The third and fourth objective was also achieved with the proposed supervised FFKA

approach phase as described in chapter 4. This contribution represents the most

important part of this research that aimed to improve the detection accuracy, especially

the classification criteria by conducting the similarity measure between the new and

already trained inputs. Also, design of a new feature set which can be used with

suggested algorithm to accurately classify fast flux domains.

 The fifth and sixth contributions were developed in chapter 4. Where a proposed Hybrid

FFKA method was proposed based on an adaptive life-long learning approach able to

detect dynamically the unknown zero-day fast flux domains in online mode and enhance

the classification process in offline mode. Also, a new adaptive dynamic classification

threshold was introduced in order to classify new incoming inputs, as well as minimize

the memory storage used.

This comparisons stated that the proposed approach outperformed the other recently developed

approaches. Three public datasets are exploited in the experiments to show the effects of the

adaptation of the DeSNN algorithm, a high detection accuracy achieved of detecting fast flux

domains especially the zero-day domains was about (99.54%) in an online mode.

119

References

Al-Bataineh, A., & White, G. (2012). Analysis and detection of malicious data exfiltration in web traffic.
Paper presented at the Malicious and Unwanted Software (MALWARE), 2012 7th International
Conference on.

Al-Duwairi, B. N., & Al-Hammouri, A. T. (2014). Fast Flux Watch: A mechanism for online detection of
fast flux networks. Journal of Advanced Research, 5(4), 473-479.
doi:http://dx.doi.org/10.1016/j.jare.2014.01.002

Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., & Hossain, M. (2016). A P2P Botnet detection scheme
based on decision tree and adaptive multilayer neural networks. Neural Computing and
Applications, 1-14.

Alauthman, M., & Almomani, O. (2017). A proposed framework for Botnet Spam-email Filtering using
Neucube.

Alexa. Retrieved from: https://www.kaggle.com/cheedcheed/top1m
Aličković, E., & Subasi, A. (2017). Breast cancer diagnosis using GA feature selection and Rotation

Forest. Neural Computing and Applications, 28(4), 753-763.
Alieyan, K., ALmomani, A., Manasrah, A., & Kadhum, M. M. (2015). A survey of botnet detection based

on DNS. Neural Computing and Applications, 1-18.
Alkhazaleh, S., Salleh, A. R., & Hassan, N. (2011). Possibility fuzzy soft set. Advances in Decision Sciences,

2011.
Almomani, A., Gupta, B., Atawneh, S., Meulenberg, A., & Almomani, E. (2013). A survey of phishing

email filtering techniques. Communications Surveys & Tutorials, IEEE, 15(4), 2070-2090.
Almomani, A., Obeidat, A., Alsaedi, K., Obaida, M. A.-H., & Al-Betar, M. (2015). Spam E-mail Filtering

using ECOS Algorithms. Indian Journal of Science and Technology, 8(S9), 260-272.
Almomani, A., Wan, T.-C., Manasrah, A., Altaher, A., Baklizi, M., & Ramadass, S. (2013). An enhanced

online phishing e-mail detection framework based on evolving connectionist system.
International Journal of Innovative Computing, Information and Control (IJICIC), 9(3), 169-175.

Alvi, F. B., Pears, R., & Kasabov, N. (2017). An evolving spatio-temporal approach for gender and age
group classification with Spiking Neural Networks. Evolving Systems, 1-12.

ATLAS URL: https://www.arbornetworks.com/atlas-portal.
Balepin, I., Maltsev, S., Rowe, J., & Levitt, K. (2003). Using specification-based intrusion detection for

automated response. Paper presented at the International Workshop on Recent Advances in
Intrusion Detection.

Barford, P., & Yegneswaran, V. (2007). An inside look at botnets Malware Detection (pp. 171-191):
Springer.

Barra, S., Casanova, A., Narducci, F., & Ricciardi, S. (2015). Ubiquitous iris recognition by means of
mobile devices. Pattern Recognition Letters, 57, 66-73.

Basu, A., Roy, R., & Savitha, N. (2018). Performance Analysis of Regression and Classification Models in
the Prediction of Breast Cancer. Indian Journal of Science and Technology, 11(3).

Benjamin, Z., & R.A., F. (2013). Iris DataSet.
Boutemedjet, S., Bouguila, N., & Ziou, D. (2009). A hybrid feature extraction selection approach for

high-dimensional non-Gaussian data clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(8), 1429-1443.

Buhariwala, K. (2011). Geo-locating Hidden Servers Behind Fast-Flux Proxies.

http://dx.doi.org/10.1016/j.jare.2014.01.002
https://www.kaggle.com/cheedcheed/top1m
https://www.arbornetworks.com/atlas-portal

120

Caglayan, A., Toothaker, M., Drapaeau, D., Burke, D., & Eaton, G. (2010, 5-8 Jan. 2010). Behavioral
Patterns of Fast Flux Service Networks. Paper presented at the System Sciences (HICSS), 2010
43rd Hawaii International Conference on.

Caglayan, A., Toothaker, M., Drapeau, D., Burke, D., & Eaton, G. (2009, 3-4 March 2009). Real-Time
Detection of Fast Flux Service Networks. Paper presented at the Conference For Homeland
Security, 2009. CATCH '09. Cybersecurity Applications & Technology.

Castelluccia, C., Kaafar, M. A., Manils, P., & Perito, D. (2009). Geolocalization of proxied services and its
application to fast-flux hidden servers. Paper presented at the Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference.

Celik, Z. B., & Oktug, S. (2013). Detection of fast-flux networks using various dns feature sets. Paper
presented at the Computers and Communications (ISCC), 2013 IEEE Symposium on.

Chahal, P. S., & Khurana, S. S. (2016). TempR: Application of Stricture Dependent Intelligent Classifier
for Fast Flux Domain Detection. International Journal of Computer Network & Information
Security, 8(10).

Chen, C.-M., Cheng, S.-T., & Chou, J.-H. (2013). Detection of Fast-Flux Domains. Journal of Advances in
Computer Networks, 1(2).

Chen, C.-M., Huang, M.-Z., & Ou, Y.-H. (2014). Detecting Hybrid Botnets with Web Command and
Control Servers or Fast Flux Domain.

Chen, Z., Wang, J., Zhou, Y., & Li, C. (2011). An improvement for fast-flux service networks detection
based on data mining techniques Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
(pp. 302-309): Springer.

D. Kevin McGrath, A. K., Minaxi Gupta. (2009/09/01). Phishing Infrastructure Fluxes All the Way. IEEE
Security & Privacy, 7(5), 8.

Dagon, D., Gu, G., & Lee, C. (2008). A Taxonomy of Botnet Structures Botnet Detection: Countering the
Largest Security Threa (Vol. 36, pp. 143-164). Boston: Springer US.

Dave Marcus, R. S. (2012). Dissecting operation high roller. McAfee and Guardian Analytics, white
paper, June.

Deeb Al-Mo, A. A., Wan, T.-C., Al-Saedi, K., Altaher, A., Ramadass, S., Manasrah, A., . . . Anbar, M. (2011).
An online model on evolving phishing e-mail detection and classification method. Journal of
Applied Sciences, 11, 3301-3307.

Demertzis, K., & Iliadis, L. (2015). Evolving Smart URL Filter in a Zone-Based Policy Firewall for Detecting
Algorithmically Generated Malicious Domains. Paper presented at the International
Symposium on Statistical Learning and Data Sciences.

DNSBL URL: https://www.zerobounce.net/.
Doborjeh, M. G., Capecci, E., & Kasabov, N. (2014). Classification and segmentation of fMRI spatio-

temporal brain data with a NeuCube evolving spiking neural network model. Paper presented
at the Evolving and Autonomous Learning Systems (EALS), 2014 IEEE Symposium on.

Doborjeh, M. G., & Kasabov, N. (2016). Personalised modelling on integrated clinical and EEG spatio-
temporal brain data in the NeuCube spiking neural network system. Paper presented at the
Neural Networks (IJCNN), 2016 International Joint Conference on.

Dua, D. a. K. T., E. (2017). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

Enterprise, H.-P. (2015). 2015 Cost of Cyber Crime Study: Global. Retrieved from
http://engage.hpe.com/LP_510004609_HPSW-ESP_WW_EN-US_PonemonGate

Espinosa, J., & Vandewalle, J. (2000). Constructing fuzzy models with linguistic integrity from numerical
data-AFRELI algorithm. IEEE Transactions on Fuzzy Systems, 8(5). doi:10.1109/91.873582

https://www.zerobounce.net/
http://archive.ics.uci.edu/ml
http://engage.hpe.com/LP_510004609_HPSW-ESP_WW_EN-US_PonemonGate

121

Fabian, M., & Terzis, M. A. (2007). My botnet is bigger than yours (maybe, better than yours): why size
estimates remain challenging. Paper presented at the Proceedings of the 1st USENIX Workshop
on Hot Topics in Understanding Botnets, Cambridge, USA.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.
doi:10.1016/j.patrec.2005.10.010

Futai, Z., Siyu, Z., & Weixiong, R. (2013). Hybrid detection and tracking of fast-flux botnet on domain
name system traffic. Communications, China, 10(11), 81-94.

Gasster, L. (2008). GNSO issues report on fast flux hosting. Issue Report on Fast Flux Hosting.
Giacinto, G., Roli, F., & Didaci, L. (2003). Fusion of multiple classifiers for intrusion detection in

computer networks. Pattern Recognition Letters, 24(12), 1795-1803.
GNSO Fast Flux Hosting Working Group Publishes Final Report. (7 August 2009).
Gothai, E., & Balasubramanie, P. (2012). An Efficient Way for Clustering Using Alternative Decision Tree.

American Journal of Applied Sciences, 9(4), 531.
Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. (2007). Peer-to-peer botnets: Overview

and case study. Paper presented at the Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets.

Gržnić, T., Perhoč, D., Marić, M., Vlašić, F., & Kulcsar, T. (2014). CROFlux—Passive DNS method for
detecting fast-flux domains. Paper presented at the Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2014 37th International Convention on.

Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008). BotMiner: Clustering Analysis of Network Traffic for
Protocol-and Structure-Independent Botnet Detection. Paper presented at the USENIX Security
Symposium.

Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., & Clarke, G. (2004). Evolving spiking neural
network controllers for autonomous robots. Paper presented at the Robotics and Automation,
2004. Proceedings. ICRA'04. 2004 IEEE International Conference on.

Holz, T., Gorecki, C., Rieck, K., & Freiling, F. C. (2008). Measuring and Detecting Fast-Flux Service
Networks. Paper presented at the NDSS.

Horng-Tzer, W., Ching-Hao, M., Kuo-Ping, W., & Hahn-Ming, L. (2012, 16-20 July 2012). Real-Time Fast-
Flux Identification via Localized Spatial Geolocation Detection. Paper presented at the
Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual.

Hsu, C.-H., Huang, C.-Y., & Chen, K.-T. (2010). Fast-Flux Bot Detection in Real Time. In S. Jha, R. Sommer,
& C. Kreibich (Eds.), Recent Advances in Intrusion Detection (Vol. 6307, pp. 464-483): Springer
Berlin Heidelberg.

Hsu, F.-H., Wang, C.-S., Hsu, C.-H., Tso, C.-K., Chen, L.-H., & Lin, S.-H. (2014). Detect fast-flux domains
through response time differences. Selected Areas in Communications, IEEE Journal on, 32(10),
1947-1956.

Huang, S.-Y., Mao, C.-H., & Lee, H.-M. (2010). Fast-flux service network detection based on spatial
snapshot mechanism for delay-free detection. Paper presented at the Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security, Beijing, China.

ICANN Security and Stability Advisory Committee (SSAC). (March 2008). SSAC Advisory on Fast Flux
Hosting and DNS, Fast and Double Flux Attacks.

Inc, T. E.-T. M. (Online). New Zeus Gameover Employs DGA and Fast Flux Techniques.
Jeong, Y.-S., Kang, I.-H., Jeong, M.-K., & Kong, D. (2012). A new feature selection method for one-class

classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6), 1500-1509.

122

Jiang, N., Cao, J., Jin, Y., Li, L. E., & Zhang, Z.-L. (2010). Identifying suspicious activities through dns failure
graph analysis. Paper presented at the Network Protocols (ICNP), 2010 18th IEEE International
Conference on.

Kalige, E., Burkey, D., & Director, I. (2012). A case study of eurograbber: How 36 million euros was
stolen via malware. Versafe (White paper).

Karasaridis, A., Rexroad, B., & Hoeflin, D. (2007). Wide-scale botnet detection and characterization.
Paper presented at the Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets.

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic evolving spiking neural networks
for on-line spatio-and spectro-temporal pattern recognition. Neural Networks, 41, 188-201.

Kira, K., & Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new
algorithm. Paper presented at the Aaai.

Koo, T.-M., Chang, H.-C., & Chuang, C.-C. (2012). Detecting and Analyzing Fast-Flux Service Networks.
Advances in Information Sciences & Service Sciences, 4(10).

Kwon, J., Lee, J., Lee, H., & Perrig, A. (2016). PsyBoG: A scalable botnet detection method for large-
scale DNS traffic. Computer Networks, 97, 48-73.
doi:http://dx.doi.org/10.1016/j.comnet.2015.12.008

Lee, W., & Stolfo, S. J. (2000). A framework for constructing features and models for intrusion detection
systems. ACM transactions on Information and system security (TiSSEC), 3(4), 227-261.

Levy, E., & Arce, I. (2006). A Short Visit to the Bot Zoo. IEEE Security & Privacy, vol, 76-79.
Lin, H.-T., Lin, Y.-Y., & Chiang, J.-W. (2013). Genetic-based real-time fast-flux service networks

detection. Computer Networks, 57(2), 501-513.
doi:http://dx.doi.org/10.1016/j.comnet.2012.07.017

Lin, Z., Ma, D., Meng, J., & Chen, L. (2018). Relative ordering learning in spiking neural network for
pattern recognition. Neurocomputing, 275, 94-106.

Mandal, S. K. (2017). Performance Analysis Of Data Mining Algorithms For Breast Cancer Cell Detection
Using Naïve Bayes, Logistic Regression and Decision Tree. International Journal Of Engineering
And Computer Science, 6(2).

Martinez-Bea, S., Castillo-Perez, S., & Garcia-Alfaro, J. (2013). Real-time malicious fast-flux detection
using DNS and bot related features. Paper presented at the PST.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2), 442-451.
doi:http://dx.doi.org/10.1016/0005-2795(75)90109-9

Nuntalid, N., Dhoble, K., & Kasabov, N. (2011). EEG classification with BSA spike encoding algorithm
and evolving probabilistic spiking neural network. Paper presented at the Neural information
processing.

Otgonbold, T. (2014). ADAPT: An anonymous, distributed, and active probing-based technique for
detecting malicious fast-flux domains.

Pa, Y. M. P., Yoshioka, K., & Matsumoto, T. (2015). Detecting malicious domains and authoritative name
servers based on their distinct mappings to IP addresses. Journal of information processing,
23(5), 623-632.

Pappas, V., Wessels, D., Massey, D., Lu, S., Terzis, A., & Zhang, L. (2009). Impact of configuration errors
on DNS robustness. Selected Areas in Communications, IEEE Journal on, 27(3), 275-290.

Passerini, E., Paleari, R., Martignoni, L., & Bruschi, D. (2008). Fluxor: Detecting and monitoring fast-flux
service networks Detection of intrusions and malware, and vulnerability assessment (pp. 186-
206): Springer.

http://dx.doi.org/10.1016/j.comnet.2015.12.008
http://dx.doi.org/10.1016/j.comnet.2012.07.017
http://dx.doi.org/10.1016/0005-2795(75)90109-9

123

Paul, T., Tyagi, R., Manoj, B., & Thanudas, B. (2014). Fast-flux botnet detection from network traffic.
Paper presented at the India Conference (INDICON), 2014 Annual IEEE.

Perdisci, R., Corona, I., Dagon, D., & Lee, W. (2009). Detecting malicious flux service networks through
passive analysis of recursive dns traces. Paper presented at the Computer Security Applications
Conference, 2009. ACSAC'09. Annual.

Perdisci, R., Corona, I., Dagon, D., & Wenke, L. (2009, 7-11 Dec. 2009). Detecting Malicious Flux Service
Networks through Passive Analysis of Recursive DNS Traces. Paper presented at the Computer
Security Applications Conference, 2009. ACSAC '09. Annual.

Perdisci, R., Corona, I., & Giacinto, G. (2012). Early detection of malicious flux networks via large-scale
passive DNS traffic analysis. Dependable and Secure Computing, IEEE Transactions on, 9(5),
714-726.

Pharmacy, F. c. C. (Online).
Qassrawi, M. T., & Zhang, H. L. (2012). Detecting Malicious Fast Flux Domains. Paper presented at the

Applied Mechanics and Materials.
Rajab, M. A., Zarfoss, J., Monrose, F., & Terzis, A. (2006). A multifaceted approach to understanding the

botnet phenomenon. Paper presented at the Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, Rio de Janeriro, Brazil.

Scharrenberg, P. (2008). Analyzing Fast-Flux Service Networks. Diploma Dissertation, RWTH Aachen
University, Aachen, North Rhine Westphalia, Germany.

Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural network—a survey. Evolving Systems, 4(2),
87-98.

Semantec. (2018). Internet security threat report
Shaikh, A., Tewari, R., & Agrawal, M. (2001). On the effectiveness of DNS-based server selection. Paper

presented at the INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE.

Sheng, Y., Shijie, Z., & Sha, W. (2010, 25-27 June 2010). Fast-flux attack network identification based
on agent lifespan. Paper presented at the Wireless Communications, Networking and
Information Security (WCNIS), 2010 IEEE International Conference on.

Soltic, S., & Kasabov, N. (2010). Knowledge extraction from evolving spiking neural networks with rank
order population coding. International Journal of Neural Systems, 20(06), 437-445.

Spamwiki., C. P.-. (Online). Retrieved from
http://spamtrackers.eu/wiki/index.php/Canadian_Pharmacy

Stalmans, E., Hunter, S. O., & Irwin, B. (2012, 15-17 Aug. 2012). Geo-spatial autocorrelation as a metric
for the detection of Fast-Flux botnet domains. Paper presented at the Information Security for
South Africa (ISSA), 2012.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer, R., . . . Vigna, G. (2009).
Your botnet is my botnet: analysis of a botnet takeover. Paper presented at the Proceedings of
the 16th ACM conference on Computer and communications security.

Stornig, F. (2013). Detection of Botnet Fast-Flux Domains by the aid of spatial analysis methods.
Su, M.-Y., & Tsai, C.-H. (2012). A prevention system for spam over Internet telephony. Appl. Math,

6(2S), 579S-585S.
Swets, J. A. (2014). Signal detection theory and ROC analysis in psychology and diagnostics: Collected

papers: Psychology Press.
Villamarín-Salomón, R., & Brustoloni, J. C. (2009). Bayesian bot detection based on DNS traffic

similarity. Paper presented at the Proceedings of the 2009 ACM symposium on Applied
Computing.

Vu Hong, L. (2012). DNS Traffic Analysis for Network-based Malware Detection.

http://spamtrackers.eu/wiki/index.php/Canadian_Pharmacy

124

Xu, W., Wang, X., & Xie, H. (2013). New Trends in FastFlux Networks. media. blackhat. com.
Yu, B., Smith, L., & Threefoot, M. (2014). Semi-supervised Time Series Modeling for Real-Time Flux

Domain Detection on Passive DNS Traffic. In P. Perner (Ed.), Machine Learning and Data Mining
in Pattern Recognition (Vol. 8556, pp. 258-271): Springer International Publishing.

Yu, S. (2014). Malicious Networks for DDoS Attacks Distributed Denial of Service Attack and Defense
(pp. 15-29): Springer.

Yu, X., Zhang, B., Kang, L., & Chen, J. (2012). Fast-Flux Botnet Detection Based on Weighted SVM.
Information Technology Journal, 11(8), 1048.

Zhao, D., & Traore, I. (2012). P2P botnet detection through malicious fast flux network identification.
Paper presented at the P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2012
Seventh International Conference on.

Zhao, Y., & Jin, Z. (2015). Quickly Identifying FFSN Domain and CDN Domain with Little Dataset.
Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a

hybrid of K-means and support vector machine algorithms. Expert Systems with Applications,
41(4), 1476-1482.

Zhou, C. V., Leckie, C., & Karunasekera, S. (2009). Collaborative detection of fast flux phishing domains.
Journal of Networks, 4(1), 75-84.

125

APPENDICES

Dataset and code samples

Sample of the feature file:

126

Code in python for extract feature from the dataset:

127

128

Classifier code in python (DeSNN):

129

Initial weight code based on Spiketime:

130

