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ABSTRACT 

A botnet, a set of compromised machines controlled distantly by an attacker, is the basis of 

numerous security threats around the world. Command and Control (C&C) servers are the 

backbone of botnet communications, where the bots and botmaster send reports and attack 

orders to each other, respectively. Botnets are also categorised according to their C&C 

protocols. A Domain Name System (DNS) method known as Fast-Flux Service Network 

(FFSN) is a special type of botnet that has been engaged by bot herders to cover malicious 

botnet activities, and increase the lifetime of malicious servers by quickly changing the IP 

addresses of the domain name over time. Although several methods have been suggested for 

detecting FFSNs domains, nevertheless they have low detection accuracy especially with zero-

day domain, quite a long detection time, and consume high memory storage. In this research we 

propose a new system called Fast Flux Killer System (FFKA) that has the ability to detect “zero-

day” FF-Domains in online mode with an implementation constructed on Adaptive Dynamic 

evolving Spiking Neural Network (ADeSNN) and in an offline mode to enhance the 

classification process which is a novelty in this field. The adaptation includes the initial weight, 

testing criteria, parameters customization, and parameters adjustment. The proposed system is 

expected to detect fast flux domains in online mode with high detection accuracy and low false 

positive and false negative rates respectively. It is also expected to have a high level of 

performance and the proposed system is designed to work for a lifetime with low memory usage. 

Three public datasets are exploited in the experiments to show the effects of the adaptive 

ADeSNN algorithm, two of them conducted on the ADeSNN algorithm itself and the last one 

on the process of detecting fast flux domains. The experiments showed an improved accuracy 

when using the proposed adaptive ADeSNN over the original algorithm. It also achieved a high 

detection accuracy in detecting zero-day fast flux domains that was about (99.54%) in an online 

mode, when using the public fast flux dataset. Finally, the improvements made to the 

performance of the adaptive algorithm are confirmed by the experiments.   

KEYWORDS 

Fast-Flux, Zero-day domain, dynamic evolving spiking neural network, botnet detection.



1 

 

CHAPTER ONE 

INTRODUCTION  

Chapter Overview 

This chapter provides the definitions of the area of research, the gap in the knowledge, the 

research aim and objectives, the research methodology, the research motivation, the scope of 

the research, and the structure of the thesis.   

 

1.1 Introduction 

Botnets are networks of compromised computers that are controlled remotely by attackers and 

are the basis of numerous security threats, such as distributed denial-of-service (DDoS) attacks, 

identity theft, phishing, and spam (Almomani, Obeidat, Alsaedi, Obaida, & Al-Betar, 2015; 

Almomani, Wan, et al., 2013; Barford & Yegneswaran, 2007; Dagon, Gu, & Lee, 2008; Fabian 

& Terzis, 2007; Grizzard, Sharma, Nunnery, Kang, & Dagon, 2007; Gu, Perdisci, Zhang, & 

Lee, 2008; Karasaridis, Rexroad, & Hoeflin, 2007; Levy & Arce, 2006; Rajab, Zarfoss, 

Monrose, & Terzis, 2006). Fast flux networks (FFNs) are a special type of botnet being used by 

criminals in the same manner as those used in round robin domain name systems (RRDNSs) 

and content distribution networks (CDNs) to offer high availability and flexibility for their 

malicious websites (Alieyan, Almomani, Manasrah, & Kadhum, 2015). Botnet writers disguise 

their malicious activities and design new tactics and mechanisms to hide their communications. 

One such a method is the IP fast flux, which is a mechanism that frequently changes IP addresses 

corresponding to a unique domain name. Another method is the domain flux, which is a 

mechanism that automatically and periodically generates domain names related to a URL of a 

command and control (C&C) server. The core idea of FFNs is to use bot computers as proxies 

(flux agents) that forward user queries to the backend servers called “motherships.” A recurrent 

and fast change in the IP addresses of proxies is essential to evade detection and a potential shut 

down and to ensure high availability to those backend servers. 
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FFNs are considered to be a new development in the operation and management of spam 

campaigns. Along with campaigns, spammers send thousands of emails that contain interesting 

advertisements of products or services (e.g., pharmaceutical, adult content, and phishing) to 

users’ email inboxes (Al-Duwairi & Al-Hammouri, 2014). These advertisements generally 

contain hyperlinks to malicious websites for the campaigns. Until recently, only a single static 

IP address is related to a website for a certain period of time; such a characteristic provides the 

security defenders the chance to take down that website. According to FFNs, a domain name of 

a malicious website points to more than one IP address (FF-agents), which is frequently and 

rapidly changing.  

According to Kalige, Burkey, and Director (2012), HTTP botnets are considered dangerous 

because they attack and exploit systems. Current HTTP botnets use the strongest techniques to 

perform attacks. An example is the Asprox botnet, which has affected about 3.5 billions 

computers in the United States. The Asprox botnet uses an advanced double fast flux, called the 

hydra fast flux, as its main technique (Al-Bataineh & White, 2012). This technique renders 

efforts to take down and defeat C&C servers useless. Additional details are presented in 

Subsection 2.3. 

The report of the Cost of Cyber-Crime Study (Enterprise, 2015) points out that the mean 

annualized cost of cyber-attacks for 252 benchmarked organizations is $7.7 million/year. The 

report also shows that these attacks are carried out with or supported by either a botnet or a web-

based attack, and fast flux is used as an evasion technique to provide availability and resilience. 

The report mentions that the most dangerous cyber-crimes are those caused by denial of services 

(DoS) and web-based attacks. The fast flux evasion technique has been widely used in botnets 

and web-based botnets to carry out DoS and others attacks (e.g., phishing and spam), with fast 

flux serving as the backbone C&C communication between the compromised computers and 

the mothership/malicious website. 

Cyber-criminals have stolen around $78 million through various means using financial malware 

(Marcus, 2012). In addition, McAfee stated that previous fraud cases in Eastern Europe could 

be attributed to Zeus and SpyEye activities; after tracing some of these attacks, they found a 

highly complex fast flux botnet, as well as hidden compromised servers supporting the 



3 

 

website’s long life (Marcus, 2012). Botnets are also responsible for spam e-mails. Spammers 

earn an average annual income of $50,000 to $100,000 (Su & Tsai, 2012). Fake online 

pharmacies are one of the many illegal activities available on the Internet; such activities are 

notorious for selling fake or inefficient medications and are involved in identity theft cases 

(Spamwiki, Online). A report from the Fortinet Global Cyber Security Research Team states 

that the fast flux technique has been used in fake Canadian online pharmacies to avoid detection 

(Pharmacy, Online). Security researchers have recently reported that a new variation of the 

“Gameover ZeuS” botnet makes use of the fast flux technique to protect its C&C servers (Inc, 

Online). 

One of the core problems in botnet detection is the so-called unknown “zero-day” fast flux 

domain. Zero-day domains are defined as those related to bots (FF-agents) that are not 

blacklisted (Lin, Lin, & Chiang, 2013). A fast flux attack is a complex evasive technique that 

cannot be identified by many current techniques because attackers can use new and previously 

unseen bots. A number of potential solutions to fast flux botnet attacks have been proposed, but 

these solutions are not yet effective. These solutions range from passive, to active, to real-time 

approaches. The misclassification of malicious and legitimate domains increases with time, 

especially when dealing with unknown zero-day fast flux botnet domains. The proposed 

approach exploited the adaptive DeSNN to detect these zero-day fast flux domains, experiments 

are conducted to compare and show the improvement of adaptation made on the DeSNN 

algorithm on the performance of the algorithm itself, and on the process of detecting FF 

domains. Furthermore, other improvements are made on the adaptive algorithm to enhance the 

testing criteria, as well as making a contribution in the field of parameters customization.  

The rest of this chapter is arranged as follows. A research problem is provided in subsection 

1.2. The research motivation is detailed in subsection 1.3. Research aim and objectives are 

discussed in subsection 1.4. Research methodology is discussed in subsection 1.5. Subsection 

1.6 shows the contribution of the research. The scope of the research is presented in subsection 

1.7 Finally, the thesis structure is shown in subsection1.8. 
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1.2 Research Problem 

There is a myriad of security threats that are caused by botnets, such as distributed denial-of-

service (DDoS) attacks, identity theft, and spam (Barford & Yegneswaran, 2007; Dagon et al., 

2008; Fabian & Terzis, 2007; Grizzard et al., 2007; Gu et al., 2008; Karasaridis et al., 2007; 

Levy & Arce, 2006; Rajab et al., 2006). Referring to the FBI’s report of the “Operation Bot 

Roast” project, more than a million IP addresses belonging to normal users had been identified 

on the Internet, while the number continuously increases. Other statistics display that botnets 

generate large revenues for bot herders. Gartner estimated that the economic loss generated 

solely by phishing attacks is about 3 billion US dollars per year (Hsu, Huang, & Chen, 2010). 

Fast-Flux Service Networks (FFSN) are the core of certain botnet types and play the role of 

command and control carrier between the mothership and its bots. Fast-flux networks forward 

and host a scam service to provide a website (back-end server) with high availability, which 

helps them avoid being tracked and shut down by security professionals (Qassrawi & Zhang, 

2012). Risks analytics report from 2016 identified that 84 percent of the campaigns analyzed in 

Ukraine, host a fast flux proxy infrastructure (Doborjeh & Kasabov, 2016). An attacker earns 

many benefits from the botnet fast flux techniques (Otgonbold, 2014). The first benefit is 

simplicity; the attacker can use just a few powerful back-end servers as motherships. FF-agents 

can also add an extra layer of protection against tracking and discovery. Finally, the extra layer 

of protection of these FF-agents extends the life span of the motherships.  

 

The 2018 internet security threat report by Symantec was still very much concerned with 

redirecting the resolution of the DNS responses and the IPs to malicious websites (Semantec, 

2018). Due to fast flux service networks, the biggest problem is distinguishing between 

malicious and benign FFSNs. Looking back to the related work, many researches have tried to 

differentiate between benign and malicious FFSNs, but they still need to increase the true 

positive (TP) and true negative (TN), while also trying to achieve an acceptable and accurate 

ratio of the classification of benign and malicious FFSNs (Martinez-Bea, Castillo-Perez, & 

Garcia-Alfaro, 2013; Perdisci, Corona, Dagon, & Wenke, 2009; Qassrawi & Zhang, 2012). 
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Passive, active, and real time approaches are used in fast flux botnet detection. According to 

Al-Duwairi and Al-Hammouri (2014), the main drawback of the passive approach is the need 

to deal with a huge amount of DNS traffic traces that correspond to legitimate and non-

legitimate domain names. In contrast, the active detection-based approaches deal with less DNS 

traffic traces that correspond to non-legitimate domain names in most cases. Finally, the real-

time approaches suffer from high FP and FN rates. Besides, none of the previously mentioned 

approaches helped to detect zero-day malicious domains and FFSN while simultaneously 

keeping track of the detection accuracy and the time required to detect such a botnet fast flux 

domain. 

From the algorithmic point of view, many researchers have indicated that the DeSNN algorithm 

is one of the eSNN algorithms that has numerous features such as speed, which helps in 

detecting zero-day fast flux domains in a reasonable period (Hagras, Pounds-Cornish, Colley, 

Callaghan, & Clarke, 2004; Kasabov, Dhoble, Nuntalid, & Indiveri, 2013; Nuntalid, Dhoble, & 

Kasabov, 2011; Schliebs & Kasabov, 2013). However, the DeSNN algorithm suffers from the 

fact that several parameters must be set before running the algorithm. Contributing to this 

disadvantage, the sub-process of setting the initial weight of the spiking neural network based 

on the Rank Order (RO) may lead to the misclassification of incoming inputs. Besides, 

determining the best chosen value for the parameters is a significant problem.   

Overall, the problems that are explored and solved in the current thesis are: 

 How to adapt the DeSNN algorithm to improve the classification performance. 

 How to detect the fast flux domains in online mode using the adaptive DeSNN 

algorithm. 

 How to choose a feature set that maximizes the classification performance. 

 How to improve the testing criteria of the DeSNN. 

 How to minimize the number of DeSNN parameters. 

 How to minimize the memory storage used. 
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1.3 Research Motivation: 

The detection of botnet fast flux zero-day domains that are not caught by existing methods is a 

significant challenge. This challenge motivated the proposal of a new methodology which 

would be able to detect the unknown “zero-day” fast flux domains in an online mode. Further 

motivations include: 

 The enhanced robustness of malicious websites. Fast flux assistance attackers keep their 

sites active as long as possible using victim machines. 

 There is an increasing interest in adaptive auto-learning approaches as an effective 

technology in Internet security, which can be applied to distinguish between malicious 

and legitimate domains in online mode and high speed. 

 The availability of a suitable online approach which is applicable to work in the real 

world for a lifetime with small memory usage.  

 The classification process of DeSNN needs to be modified to help in minimizing the 

damages made by fast flux attack. 

1.4 Research Aim and Objectives 

The aim of the proposed research is to build a novel approach for fast-flux botnet detection that 

utilizes life-long learning, leads to improve classification performance and various capabilities to 

solve the problem of Fast flux domain detection. To achieve this aim, the following objectives have 

been defined: 

 Develop an approach to solve the problem of Fast-flux service network, especially to detect the 

malicious unknown zero-day FFDN in online mode, with the minimum memory usage. 

 Propose an approach to detect fast-flux domain in online mode using a learning method with a 

minimum number of parameters used in the proposed algorithm. 

 Select the features that will lead to greater accuracy in detecting FF domains. 

 Evaluate the proposed approach by comparing it with existing approaches. 

 Improve the performance and accuracy (reducing FP and FN rates) of the classification by 

changing the weights initialization and the classification criteria. 
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1.5 Research Methodology 

The research methodology defines the stages of how the research will be conducted. So, the 

stages are designated so that each step has a defined set of inputs and the expected output, and 

how the outputs of each stage helps in the next stage. Besides, the feedback from the front stages 

to the back ones will help in the process of modifying the errors and improve the performance 

in order to gain high accuracy or minimize errors. The research methodology employed in this 

research is depicted in Figure 1.1. 
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Spiking neural network
SNN, eSNN, DeSNN

Phase 1: Literature review and related work 

Study previous work and 
related work of fast flux 

detection
Attack detection 

Fast flux network types
Fast flux nature with DNS
TLD,Auth-NS, FF-agents

Feature set for classifying 
FFD/

Spike time for initial weight 
initialization

Outlines of the proposed solution

Problem statement

Problem of current ML 
approaches used for FF 

botnet detection/Problem of 
DeSNN (initial weight)

Zero-day fast flux domains/
Problem of initial weight of 

the DeSNN algorithm

Phase 2: Literature review and related work analyesis 

Developing a code for 
ADeSNN for Fast flux botnet 

detection

Design of combined framework

 Fast flux botnet detection 
analysis

“Feature extraction”/
Adaptive DeSNN

Phase 3: Design and modelling  

Investigated algorithms:
Investigated performance parameters such as (false positive, false negative, accuracy, F-measure, ROC, RMSE)

Phase 4: Performance and Evaluation  

Framework simulation and Result analysis

Feedback
Feedback

 

Figure 1. 1 The Research Methodology 
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The following subsections describe in detail the activities performed during each phase.  

Phase 1 (Literature Review) 

The literature review discusses the currently developed approaches to filter fast flux botnet 

attacks, and outlines the most used techniques in detecting FF attacks. In addition, the literature 

review displays the spiking neural network algorithms and their development to serve the new 

adaptation proposed in this thesis. 

Phase 2 (Literature Analysis) 

This phase evaluates the major approaches against FF attacks, which are classified according to 

the detection method used. This section offers a better understanding of the current problem,  

possible solutions, and the scope of future studies to detect FFDs.  

Phase 3 (Design and Modeling) 

This shows the analysis process of a fast flux botnet and how the adaptation of DeSNN 

positively affects the learning performance, which added a value to the proposed approach 

which is dynamically used to detect fast flux domains. Also, this section compares the other 

algorithms used to solve this problem.  

Phase 4 (Performance Evaluation) 

The final phase presents the performance evaluation, the experimental environment of the 

proposed solution, and the dataset used to show the proposed approach’s effectiveness in 

detecting fast flux domains, especially the zero-day domains. Moreover, the accuracy measures 

used to prove the enhancement of the improvements made on the DeSNN algorithm according 

to the proposed adaptations are shown here. 
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1.6 Contributions of the Research 

The main contribution of this thesis is to develop a novel approach called Fast Flux Killer 

Approach (FFKA), which adapts DeSNN algorithm. This approach has many sub-contributions 

in the field of fast flux domains detection and are be summarized as follows.  

 Increase the detection performance using the adaptive fast one-pass algorithm (ADeSNN). 

Employ the spike time as the initial weight, then the achieved performance is evaluated 

using true positive, true negative, recall, precision, f-Measure and overall accuracy. 

 Improve the detection accuracy, especially the classification criteria by conducting a 

similarity measure between the new and already trained inputs. 

 Design of a new feature set which can be used with the suggested algorithm to accurately 

classify fast flux domains. 

 Introduce a new adaptive dynamic classification threshold in order to classify new 

incoming inputs, as well as minimizing the memory storage used. 

 Adaptive life-long learning approach able to detect dynamically the unknown zero-day fast 

flux domains. 

1.7 The Scope of the Research 

The scope of this work is presented in two tracks. First, this research is about fast flux botnet 

detection aiming to detect those domains in which they behave like malicious fast flux domain. 

Second, this proposed approach is implemented as a host-based approach where it is able to be 

implemented at the local DNS server in order to work as a defender in case of threats and risks.   

1.8 Thesis Structure   

This thesis is divided into 6 chapter where the word developed to achieve the aim and objectives 

of this research is described. The next subsections will summarise each of these chapters.  

Chapter One: 

This chapter gave a brief introduction about fast flux botnets and listed the motivations of the 

researcher to pursue this study. The research problem, research aim, and objectives are also 
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listed here. Finally, this chapter presented the research methodology and the structure of the 

thesis. 

Chapter Two: 

A solid background about different types of fast flux and domain flux are discussed in this 

chapter. A rich literature review of what have been done in the area of fast flux is detailed. The 

author structured this chapter based on the scope of previous methods and solutions that tried 

to solve the problem of fast flux botnet detection. Additionally, the previous work done related 

to the proposed algorithm is mentioned.  Furthermore, some brief information regarding the 

evolving spiking neural network is presented. This information is the foundation of the 

algorithm proposed in this work. 

Chapter Three: 

Part of the proposed solution was the changing of the initial weight. This is discussed in this 

chapter. In addition, the adaptive dynamic evolving spiking neural network and the original 

DeSNN are compared based on two public datasets. The results of the adaptive version with the 

original algorithm are then discussed in details.  

Chapter Four 

Here the first part of the proposed FFKA is introduced, the supervised phase which works 

offline to train the ADeSNN algorithm to detect the fast flux domains based on labelled data. 

Moreover, the testing criteria was introduced to use the similarity measure to classify the fast 

flux domains. This chapter also introduces the classification threshold that will be used in the 

next phase of the FFKA approach in an online mode in chapter five. The chapter concludes by 

a discussion and chapter summary. 

Chapter Five: 

This chapter presents the proposed FFKA approach to detect the zero-day fast flux domains in 

online mode supported by offline mode to enhance the classification performance. Moreover, 

this chapter shows the improvements on the classification process and the parameters 
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customization process and compares the results of the proposed Hybrid FFKA approach with 

the supervised phase in chapter four. The chapter concludes by a discussion and chapter 

summary. 

Chapter Six: 

This chapter give the overall discussion and present the conclusion of the work. In this chapter, 

we state the limitations of this research, recommendations, and the possible future works. 
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CHAPTER 2  

BACKGROUND LITERATURE REVIEW AND RELATED WORK 

Chapter Overview 

This study covered the literature review regarding the fast flux botnet problem. This chapter is 

organized based on the three solution scope of the literature approaches which they were the 

host-based, router-based, and the DNS-based. Then the related work from the literature was 

discussed. 

 

 

2.1 Background 

Numerous websites provide commercial services to users. The efficiency of these services is 

highly dependent on their availability. Server systems are distributed to large redundant service 

networks in multiple areas to achieve high availability (Scharrenberg, 2008). The DNS is a 

hierarchical distributed naming system for computers and resources that are connected to the 

Internet (Shaikh, Tewari, & Agrawal, 2001). A browser usually automatically acquires the IP 

address of the desired host name to access a website. The DNS server typically returns the same 

reply each time. Thus, the same IP address is returned each time a host name is requested. Some 

requests, such as RRDNSs, CDNs, and fast flux service networks (FFSNs), do not work in the 

same manner as previously described. RRDNSs, CDNs, and FFSNs share similar 

characteristics, such as a low time to live (TTL) feature. RRDNSs and CDNs are DNS-based 

methods for load balancing that provide a high degree of performance, availability, and 

scalability for content websites. RRDNSs distribute user requests to their distributed servers by 

swapping the IP addresses of the DNS response of the same domain each time to provide load 

balancing. CDNs represent a network of globally distributed nodes to return the IP address of 

the nearest accessible node to the client; they thus support service speed and availability. 

Similarly, fast flux uses a similar concept of frequently changing IP addresses that correspond 

to a specific domain. This strategy helps cyber-criminals to remain undetected. The main 
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difference between FFSNs and CDNs is that CDN nodes are fully administered machines, 

whereas FFSNs are malware-infected computers (Lin et al., 2013). 

The business side of fast flux hosting begins with malware authors. By developing phishing 

kits, this software package can be used to deliver phishing emails to a set (list) of victims and 

host an illegal website to which those emails are directed. Others sell lists of addresses for spam 

purposes, whereas others improve Bot software. A flexible, remotely controllable software 

known as bot software enables subsequent downloads on a particular computer once it has been 

installed on a victim’s computer. E-mail-borne worms are used by bot herders to infect and 

exploit thousands of computers. Such tools are the most valued these days by malware authors 

and cyber-criminals. Malware authors and bot herders are significant sections of the cyber-

criminal community (ICANN Security and Stability Advisory Committee (SSAC), March 

2008). 

FFNs provide high availability and reliability to scam websites ("GNSO Fast Flux Hosting 

Working Group Publishes Final Report," 7 August 2009). The ICCAN report (ICANN Security 

and Stability Advisory Committee (SSAC), March 2008) defines a fast flux technique as one in 

which multiple IP addresses (sometimes hundreds or even thousands) are assigned and re-

assigned to a single fully qualified domain name (FQDN), such as www.example.com. The 

URLs and domain names for the announced content are not resolved to any IP addresses of 

back-end servers. Instead of pointing to back-end servers, the URLs and domain names 

addresses are changed among many front-end agents, which serve as redirectors; thus, the 

content is forwarded to the back-end servers (the mothership) (Gasster, 2008; "GNSO Fast Flux 

Hosting Working Group Publishes Final Report," 7 August 2009; ICANN Security and Stability 

Advisory Committee (SSAC), March 2008). 

Fast flux mainly involves two techniques, namely, the IP fast flux and the domain flux. The IP 

fast flux comes in two types as depicted in Figure 2.1: the single fast flux and the double fast 

flux. An extension type of the double flux is called the hydra flux (Subsection 2.1.3). The details 

of these techniques are discussed in the subsections that follow. 
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Figure 2. 1 Comparison of IP resolutions of fast flux techniques 

 

2.1.1 Single Fast Flux 

Domain names are registered in an official registrar by an attacker for use in illegal activities 

by an official registrar. The attacker registers a domain name for an FFSN referring to illegal 

websites (e.g., bad.com) and another domain name (Resolvernameserver.com) to serve the 

mapping domain name resolution services. As mentioned previously, the attacker adds IP 

addresses to the bulletproof server and then provides the control of the FFSN to a mothership. 

In a single fast flux as displayed in Figure 2.2, the attacker deploys a bulletproof server to host 

the zone file. The bulletproof web hosting server leads customers to the desired malicious 

website. Such services are well-known among botnet owners, who need a reliable environment, 

and assist in deploying a botnet C&C server. 
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Figure 2. 2 Single fast flux of IP addresses of a malicious website 

Figure 2.2 shows the process of a single fast flux of the IP addresses of a malicious website. 

1. The attacker recruits some of the compromised computers to work as proxies, which directly 

redirect user requests to the mothership/operator. 

2. The attacker adds the name server (Resolvernameserver.com) and records of the malicious 

website (www.bad.com/mothership) to the zone file via the registrar. 

3. The victim (user) requests the FQDN (www.bad.com). Hence, a request is sent to the DNS 

looking to resolve the FQDN. Assuming the absence of caching, a recursive DNS server asks 

for the authoritative name server for this FQDN. The part of the recursive process from the top-

level domain (TLD) to the authoritative server is omitted. 

4. Instead of sending the IP address of the FQDN (www.bad.com), the authoritative name server 

sends back a list of the IP addresses of the proxies to the user. 

5. The user initiates a GET message to one of the IP addresses in the list. 

6. The FF-agent (proxy) simply redirects the message to the malicious web server (the mothership) 

to handle the message. 

7. The malicious web server sends the response (answer) back to the FF-proxy. 

8. The FF-agent returns the response to the user. 

http://www.bad.com/
http://www.bad.com/
http://www.bad.com/
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The A records of the web servers are constructed with short TTLs (Holz, Gorecki, Rieck, & 

Freiling, 2008), “A” is the resolved record information returned from DNS. The FFSN operators 

directly provide a new set of A records to replace the old set of records (of the FF-agents) when 

the TTLs of the request expire. Thus, there is very little chance of identifying and shutting down 

the web servers, which are supported by this FF technique. The records associated with the 

illegal website in the zone file of the DNS bot (Resolvernameserver.com) might appear as 

follows: 

              bad.com. 180 IN A 192.10.10.1 

              bad.com. 180 IN A 50.74.0.12 

              bad.com. 180 IN A 100.7.10.1 

The TTL for each RR is clearly very low (180 s). The RRs are directly replaced with new bot 

(FF-agents) IP addresses when the TTL expires. The zone file might be read as follows after a 

time of TTL+1: 

              bad.com. 180 IN A 155.1.1.14 

              bad.com. 180 IN A 180.88.0.9 

              bad.com. 180 IN A 120.1.1.2 

2.1.2 Double Fast Flux 

Furthermore, the fast flux mothership/operator identifies the abovementioned domains, which 

correspond to its FFSN. The FF-agents in the two FFSNs are separated to simplify the 

understanding of the idea behind the double fast flux because FF-agents are commonly used to 

serve both DNS and HTTP requests at the same time (Xu, Wang, & Xie, 2013) as the 

mothership/operator. Figure 2.3 shows the double fast flux process. 
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Figure 2. 3 Double FFSN of name server and IP addresses of the malicious website 

Figure 2.3 summarizes the double fast flux process of the IP addresses of the malicious website 

and the authoritative name server. 

1. The attacker recruits some of the compromised computers to work as proxies, which directly 

redirect the user request to the FF mothership/operator. 

2. The attacker recruits some of the compromised computers to work as NS proxies, which directly 

redirect the DNS request to the mothership/operator. 

3. The attacker adds the name server records (Resolvernameserver.com) to the TLD zone file via 

the registrar and keeps updating the legitimate DNS RR of the authoritative name servers of the 

malicious domain. 

4. The victim (user) sends a request for (www.bad.com) to the DNS server to resolve the FQDN. 

5. The DNS returns a list of authoritative name servers for this FQDN, which are a part of the 

malicious compromised pool of NS agents. 

6. The user sends the authoritative NS asking for the IP address of the FQDN. 

http://www.bad.com/
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7. The authoritative name server forwards the DNS request to the mothership instead of resolving 

and directly returning the IP address of the FQDN. 

8. The mothership returns a list of IP addresses that are FF-agent proxies of the website server 

(mothership). 

9. The authoritative name server sends the IP addresses back to the user. 

10. The user initiates a GET message to one of the IP addresses in the list (which is actually one of 

the FF-agents). 

11. The FF-agent (proxy) simply redirects the message to the malicious web server (mothership) to 

handle the message. 

12. The malicious web server sends the response back to the FF-agent. 

13. The FF-agent returns the response to the user. 

 

The attacker continuously updates the NS records of the TLD. Through the registrar, the domain 

owner has the ability to modify the domain information. The attacker frequently changes the IP 

addresses of the NS servers to point to different hosts and sets the TTL value for these NS 

servers to a very small value (e.g., 180 s). The RRs of the NS might be shown in a TLD zone 

file as follows: 

bad.com. NS NS1.Resolvernameserver.com 

bad.com. NS NS2.Resolvernameserver.com 

NS1.Resolvernameserver.com A 11.11.11.11 

NS2.Resolvernameserver.com A 10.0.0.2 

The attacker automatically replaces the A records of the NS when the TTL expires. Therefore, 

the RRs of the NS might be shown in a TLD zone file as follows: 

bad.com. NS NS1.Resolvernameserver.com 

bad.com. NS NS2.Resolvernameserver.com 

NS1.Resolvernameserver.com. A 22.22.22.22 

NS2.Resolvernameserver.com. A 10.10.10.233 
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Consequently, there is very little opportunity to detect and shut down the name servers that 

support this fast flux attack. Combining the two FFSNs is an effective method for keeping the 

website alive for longer periods than websites that do not use the same techniques. 

2.1.3 Hydra Fast Flux 

The new advanced FFSN does the same thing as the traditional FFSN, but taking it down is 

impossible. Similar to the traditional FFSN, the mothership of the new advanced FFSN can be 

deactivated by law enforcement, but the bots have an alternative IP address to another 

mothership related to the same FFSN. As depicted in figure 2.4 the Asprox botnet, the bots 

download a list of available motherships. Ultimately, alternative IP addresses adds a multilayer 

of double fast flux to the botnet and maintains extra availability to the malicious content. Figure 

2.4 depicts the multilayer FFSN of the Asprox botnet, which is usually denoted as a hydra-flux 

service network. 

FFSN

FFSN

botbot bot bot bot

Asprox C&C Servers

bot

Mothership A Mothership B Mothership C

Hydra-Flux 
Service network

 

Figure 2. 4 Multilayer FFSN of the Asprox botnet and hydra-flux service network 

2.1.4 Domain Flux 

Another type of fluxing technique is the domain flux. In contrast to the fast flux of the IP 

addresses related to a domain name, the domain flux is the process of fluxing domain names 

related to a URL of the C&C server. 
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The domain flux is used by bots to contact the C&C server. The domain generating algorithm 

generates the same domain names for both the C&C server and its bots when seeded with the 

same value. The C&C server is used to register some of the auto-generated domains. Stone-

Gross et al. (2009) revealed that the Torpig botnet calculates domain names by combining the 

current week and year and adding the TLD (e.g., “weekyear.net”) to them. These auto-generated 

domains are then used by bots to contact the C&C server; if the connection fails, then the bots 

attempt to use the day information to produce the daily domains. If all the domains fail, then the 

bots use the hard-coded domain names in their configuration file as a last resort (Stone-Gross 

et al., 2009). All of these generated domain names are sent to the DNS server in an attempt to 

resolve it. The bots then establish contact with the C&C server. This process of failed requests 

generates a high observable number of non-existing domain responses in the DNS traffic that 

create a footprint of these bots that send most of the failed DNS requests (Jiang, Cao, Jin, Li, & 

Zhang, 2010; Pappas et al., 2009; S. Yu, 2014). 

2.2 Literature Review 

Numerous studies have explored botnet detection, especially fast flux botnet detection (Al-

Duwairi & Al-Hammouri, 2014; Chahal & Khurana, 2016; Z. Chen, Wang, Zhou, & Li, 2011; 

Scharrenberg, 2008; Yu, Zhang, Kang, & Chen, 2012). Most previous researches discussed the 

detection of FFSNs or malicious fast flux domains, which serve as the main element of the fast 

flux botnet technique. The related works on fast flux argued about fast flux in terms of what is 

fluxed or what technique is used to detect an FF domain. However, to the best of our knowledge, 

the present study is the first to investigate fast flux botnet approaches on the basis of the solution 

scope of detection techniques as depicted in Figure 2.5. 
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Figure 2. 5 Solution scope of FF botnet detection methods 

Figure 2. 5 presents the solution scope of fast flux botnet detection. In addition, the current 

study classifies fast flux botnet approaches according to the solution scope. Hence, number 1 in 

Figure 2.5 refers to host-based methods, number 2 refers to router-based methods, and number 

3 refers to DNS-based methods. Moreover, the current study discusses the mode of each 

detection technique and identifies whether it is active, passive, or real time as depicted in Figure 

2. 6. Within these parts, each approach discusses the features, the datasets, and the classifier 

used.  
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2.2.1 Host-based Detection Methods 

Host-based means that the proposed approach is applied to a host device or a set of devices from 

the user point of view. According to the literature, the majority of the reported works were using 

the host-based detection approach.  These approaches are divided into three subgroups: passive, 

active, and real-time approaches. 

2.2.1.1 Passive Host-based Approaches 

The idea behind passive approaches is that they rely on the monitoring part of a specific network 

area for a period of time. The collected data are then analyzed to prove predefined propositions. 

Passive monitoring provides the detection methods the advantage of not being noticed by 

attackers and adds no extra traffic flows to the network. 

A Bayesian method is proposed to detect bots on the basis of DNS traffic similarity (Villamarín-

Salomón & Brustoloni, 2009). The proposed approach relies on the idea that a bot at the same 

botnet has the same traffic similarity as the other botnets. One bot should be known at the 

beginning; then, the search for other bots with the same traffic similarities in the DNS traffic is 

initiated. However, the poor tuning of parameters generates large false positive (FP) values 

(Villamarín-Salomón & Brustoloni, 2009). 

Another method of using decision trees to identify malicious FFSNs was proposed in (Zhao & 

Traore, 2012). The classifier begins by classifying malicious domains, and then monitors the 

suspicious ones for a longer period. The proposed approach may be able to identify legitimate 

and malicious FFSNs, but it may not easily classify them on the basis of malicious website 

behaviors. The proposed approach is also unable to detect unknown FFSNs, as well as unknown 

zero-day domains. In addition, the author suggested generating a new system that can develop 

its classifier while running on the basis of an existing dataset and newly generated data, which 

would enable the system to identify new threats (Zhao & Traore, 2012). Table 2.1 summarizes 

the passive approaches. 
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Table 2. 1 Summary of passive approaches 

Authors Algorithm Mechanism Advantages Disadvantages 

Zhao and 

Traore (2012) 

Decision 

tree 

Monitoring 

malicious domains 

to detect FFSNs 

Low 

computationa

l complexity 

 -Classification 

problem 

- -Unable to detect 

unknown zero-day 

domains 

Villamarín-

Salomón and 

Brustoloni 

(2009) 

Bayesian 

method 

Detecting bots 

based on DNS 

traffic similarities 

and known bot 

traffic 

Effective and 

robust 

Parameter tuning causes 

FP 

 

Overall, fast flux botnet domains still need to be detected in a short time because of the quick 

change in the IP addresses of motherships that hampers the easy tracking of their locations. 

Thus, detecting this type of “Fast Flux zero-day” domains as quickly as possible is important. 

Moreover, passive approaches deal with a huge amount of data and are thus unsuitable for fast 

processing in a short time with few resources. 

2.2.1.2 Host-based Active Approaches 

In contrast to passive approaches, active approaches require assistance from third-party data 

sources, such as the WHOIS or GeoIP database. Such third parties provide additional necessary 

information (e.g., IP address registrar name and creation data). The following subsections 

describe related works that applied host-based active approaches. 

A) Score-based Approaches 

Many fast flux domain detection approaches are based on the flux score calculation of a set of 

features adopted (Al-Duwairi & Al-Hammouri, 2014; C.-M. Chen, Cheng, & Chou, 2013; Holz 

et al., 2008; Hsu et al., 2014; Koo, Chang, & Chuang, 2012; Otgonbold, 2014; Sheng, Shijie, & 
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Sha, 2010). Holz et al. (2008) proposed a system that measures and detects a FFSN on the basis 

of the calculated flux score. Their proposed system takes malicious domains from spam emails 

and then uses the Dig tool to generate DNS lookups and reverse DNS lookups and thereby 

obtain necessary information about a feature set (number of A records, number of autonomous 

system numbers (ASNs), and number of (NS). Thus, the flux score calculation is fed for use 

later in distinguishing between malicious FFSNs and legitimate ones. Their results showed that 

the proposed system achieves a detection accuracy of 99.98%. However, the coefficients used 

in the score calculation require modification to ensure the highest possible accuracy of the 

detection system. Moreover, the set of features chosen cannot purely distinguish between 

FFSNs and CDNs. 

Hsu et al. (2014) proposed a fast flux domain detector (FFDD) system that adds to Holz’s source 

of malicious domains and taking unknown URLs from spam or social networks. The FFDD 

system is used to calculate the flux score on the basis of the response time series between each 

of the two subsequent requests from a host to the FF-agent. The FFDD is a lightweight 

standalone system that does not need support from other parties. Consequently, the FFDD can 

accurately detect a fast flux domain with 3% FP and 2% FN in less than 20 min. Therefore, this 

technique is not suitable for fast flux detection. 

Sheng et al. (2010) proposed two metrics, namely, the average online rate (AOR) and the 

minimum availability rate (MAR) to detect fast flux agents on the basis of the agents 

themselves. The calculations of these two methods are initiated from the beginning of the 

monitoring process. The monitoring is extended for 1 h using the AOR and MAR calculation 

once a malicious domain is detected. The results show that most FFSNs have lower values than 

legitimate ones. Moreover, these methods are easy to implement and deploy and are useful for 

distinguishing between benign and malicious FFSNs but not for FFSN detection. However, the 

metrics may work incorrectly if the group of agents is small or only a few agents are found 

(Sheng et al., 2010). According to Sheng, the metrics depend on the quality of the HTTP service, 

which may affect network accessibility and thus stop reaching agents. 

The Google search engine has also been used as a technique to classify malicious domains by 

feeding the search process with IP addresses of suspicious domains (Al-Duwairi & Al-
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Hammouri, 2014). The number of hits is then observed. As expected, the number of hits 

comprising domains associated with FFSNs would be much less than the number of legitimate 

domains. The new legitimate domain could also mislead the classifier. The proposed system is 

still at its infancy and thus needs other features to confirm its detection accuracy. 

Koo et al. (2012) proposed a computed formula to detect malicious domains being used in 

FFSNs, with the domains obtained from a malware domain list. They explored the actual status 

of FFSNs employed in cyber-crimes and analyzed the distribution of compromised computers. 

Consequently, the detection accuracy is high. However, their data were not sufficient to estimate 

the scope of the FFSN. Thus, their proposed procedure may lead to misclassified domains. 

(Chen et al., 2013) proposed a probability formula to detect malicious fast flux domains. The 

network behavior of malicious domains are formalistic based on the time–space behavior of 

malicious FF-domains. In addition, an analysis was proposed to reduce the time complexity of 

feature modeling. The results of this study show that the proposed solution performs better than 

the blacklists. However, a threshold is still needed to compute the probability formula. 

Moreover, gathering information about domain names requires more time, which affects 

detection performance. 

Otgonbold (2014) proposed a fast flux formula to help detect fast flux domains in the wild. The 

proposed ADAPT system takes inputs from the domain zone file to collect the DNS information 

needed in the detection system. The zone file is targeted because it contains domains scattered 

all around the globe using the Tor network as shown in Figure 2. 7. The system’s clients gather 

suspicious domains from various DNS servers over the Tor network and then analyzes the 

collected information. Thus, the decision is made as to whether the domain needs further 

scanning to confirm its maliciousness. The results of this study indicate that the proposed system 

is capable of detecting malicious fast flux domains in their infancy. However, the RDNS server 

should be queried to collect full DNS information, and such requirement could affect detection 

performance. The current version of Grails also shows a memory leak problem, which causes 

out-of-memory exceptions and long-running tasks. Table 2. 2.2 summarizes the calculated 

score-based approaches. 
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Figure 2. 7 ADAPT system architecture(Otgonbold, 2014) 

 

Table 2. 2 Summary of score-based approaches. 

Authors Algorithms Mechanism Advantages Weakness 

Holz et al. 

(2008) 

Flux score The flux score is 

computed on the basis 

of DNS records 

Uses two 

consecutive DNS 

lookups 

- Coefficients require 

periodic adjustment 

- Feature is not 

distinguishable 

Hsu et al. 

(2014) 

Flux score Fast flux score is 

computed on the basis 

of the response time 

differences of 

subsequent requests of 

FF domains 

Lightweight stand-

alone system 

Long detection time  
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Sheng et 

al. (2010) 

 

AOR, MAR Once the existence of a 

fast flux domain agent is 

discovered, its activities 

are monitored every 

hour using calculations 

based on AOR and 

MAR 

Easy to implement 

and deploy; metrics 

are time saving 

- Inaccurate result 

- Based on the quality 

of the HTTP service 

 

Al-

Duwairi 

and Al-

Hammouri 

(2014) 

Number of 

hits in the 

Google 

search engine 

Depending on the 

number of hits of query 

responses using the 

Google search engine 

Lightweight 

approach 

 

- Still in the 

development phase 

- Needs more features 

to confirm detection 

accuracy 

- Misclassifies new 

domains as malicious 

Koo et al. 

(2012) 

Calculated 

formulas 

Calculated formulas 

based on the actual 

status of the FFSN being 

employed 

High detection 

accuracy 

- Data problem 

- Misclassified 

domains 

Chen et al. 

(2013) 

Probability 

formula 

- Time–space behavior 

of malicious FF 

domains and network 

behavior of domains are 

formulistic 

Outperforms 

blacklists 

- Threshold is needed 

- Long detection time 

Otgonbold 

(Otgonbol

d, 2014) 

Flux score 

formula 

- Detection system 

collects domains from 

DNS zone files 

Detects malicious 

fast flux domains in 

their infancy 

- RDNS servers 

should be queried, 
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- Anonymously 

provides domains all 

around the globe in a 

short period of time with 

little resource using the 

Tor network 

which could affect 

performance 

- Out-of-memory 

exception 

 

B) Machine Learning-based Approaches 

A number of machine learning algorithms are used to classify domains as either malicious or 

benign (Chen, Huang, & Ou, 2014; Passerini, Paleari, Martignoni, & Bruschi, 2008) as 

summarized in Table 2.3. In the naïve Bayes classifier proposed by Passerini et al. (2008), all 

malicious domains are collected from spam emails. Their detection and monitoring “FluXOR” 

system relies on the idea of a host being a victim to such scam. The system begins to send 

requests and gathers the feature set information to feed the naïve Bayes classifier as in Figure 

2. 8. The naïve Bayes classifier is a supervised algorithm, which is not suitable for detecting 

unknown attacks. FluXOR reduces the time of detection to 1–3 h, which is still relatively long; 

a domain with a TTL of more than 3 h is still considered legitimate (Huang, Mao, & Lee, 2010). 
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Figure 2. 8 FLUXOR system deployment(Passerini et al., 2008) 

 

Chen et al. (2014) proposed a Bayesian probability theory to distinguish between benign and 

malicious domains using dissimilar ASNs, reverse DNS lookups, and domain registration time 

features. They aimed to detect a fast flux website on the basis of its fluxed characteristics. The 

result of this proposed system presents its ability to identify possible threats. Nevertheless, their 

judgment was not perfect enough to reflect the good precision of the proposed system. 

Chen et al. (2011) used the k-nearest neighbor (KNN) and random forest (RF) as sampling 

techniques to solve the imbalanced problem, with respect to FFSN detection. In addition, they 

proposed a sampling technique that is combined with feature extraction from datasets for use in 

fast flux detection. The result showed that the TTL is an important feature to the classification 

of the proposed technique. However, its detection accuracy in the case of a long TTL is affected. 

The support vector machine (SVM) was proposed by Yu et al. (2012) to detect fast flux botnets 

by analyzing the patterns of DNS queries from FF botnets. They extracted six features to build 

the weighted SVM classifier for use in distinguishing legitimate and FF botnet domains. They 

noted that using SVM to identify fast flux botnets is effective and provides a satisfactory 
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detection accuracy. Overall, the proposed method entails a long detection time because it waits 

for additional information from a third party. Moreover, such a supervised method is not helpful 

in detecting new and unknown zero-day attacks. 

Table 2. 3 Summary of machine learning approaches. 

Authors Algorithms 
Mechanism 

Advantages Weakness 

Passerini 

et al. 

(2008) 

Naïve 

Bayesian 

classifier 

Analyzes a set of features 

observed from the victim’s 

point of view on botnet 

scams 

Reduces 

detection delay 

- Long detection 

delay 

- Unable to detect 

zero-day domains 

Chen et al. 

(2014) 

Bayesian 

probability 

theory 

Uses different 

characteristics to 

distinguish benign and 

malicious domains 

Enhances 

detection 

accuracy of web-

based botnets 

- Achieves inaccurate 

precision 

 Chen et al. 

(2011) 

KNN and RF Use the resampling 

technique to solve the 

imbalanced classification 

problem with respect to 

FFSN detection 

Solve the 

imbalanced 

dataset problem 

- Long TTL affects 

detection accuracy 

Yu et al. 

(2012) 

Weighted 

SVM 

Extracts six features to the 

weighted SVM by 

analyzing the patterns of 

DNS responses to FFSNs 

Satisfies 

detection 

accuracy 

- Earlier domains 

create FP 

- Unable to detect 

zero-day domains 
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C) Decision Tree-based Approaches 

Celik and Oktug (2013) proposed the C4.5 decision tree algorithm to evaluate various DNS 

feature sets and put forward a detection approach, which is a high-dimensional feature vector 

with various features, including timing network, spatial, and NS and DNS response information. 

C4.5 evaluates each feature set of previous vectors and decides which one is the best feature 

vector on the basis of detection accuracy. Combining all features together provides a detection 

accuracy of 98.9%. However, the detection is unaffected in those timing and domain name 

feature sets. The C4.5 unsupervised algorithm depends on clustering and is good for detecting 

unknown attacks; however, it suffers from a low accuracy level in most applications 

(Almomani, Gupta, Atawneh, Meulenberg, & Almomani, 2013). 

D. Zhao and Traore (2012) proposed another method (REPTree) for botnet detection using a 

decision tree with reduced error pruning. This type of machine learning decision tree is used to 

classify and identify malicious FFSNs by defining and computing some of the network metrics 

captured from network flows. Although decision tree-based classifiers are considered as a well-

known classification technique with low computational complexity, the authors were not sure 

of the results because some benign websites were misclassified as malicious websites. They 

also searched for other reliable evidence. Table 2. 4 summarizes the approaches using the 

decision tree algorithm. 

The classification and regression tree algorithm is used in the method proposed by Y. Zhao and 

Jin (2015). This method uses a small dataset to quickly distinguish legitimate and malicious 

FFSNs. This method is mainly based on FFSN domains, DNS, and the process of HTTP visiting. 

The domain distinct features are shown in Figure 2. 9. Another researcher used distinct mapping 

of features (Pa, Yoshioka, & Matsumoto, 2015). The classification process needs less than a 

few days, and the detection accuracy is 90%. The detection time is also relatively long, and 

other detection methods exhibit higher accuracy and lower detection time. Moreover, this 

method cannot detect zero-day domains. 
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Figure 2. 9 The process of visiting a domain(Y. Zhao & Jin, 2015) 

Table 2. 4 Summary of the approaches using decision tree algorithms. 

Authors Algorithms 
Mechanism 

Advantages Disadvantages 

Celik and 

Oktug 

(2013) 

C4.5 

decision 

tree 

A number of feature 

sets are experimented 

on to detect FFN.  

Detect 

unknown 

attacks 

 

- Unaffected by 

some of feature sets  

- Low level of 

accuracy 

D. Zhao 

and Traore 

(2012) 

Decision 

tree using 

reduced 

error 

pruning 

(REPTree) 

Computed metrics of 

captured network flows 

that are analyzed using 

REPTree. 

Low 

computational 

complexity 

-Misclassification  

-Needs additional 

discriminators 
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Y. Zhao 

and Jin 

(2015) 

 Regression 

tree 

algorithm 

Detect FFSN domains 

on the basis of the 

intrinsic features of 

DNS analysis and the 

process of HTTP 

visiting. 

Ability to 

classify FFSN 

domains  

 

-Long detection 

time 

-Low accuracy rate 

-Unable to detect 

zero- day domains 

 

D) Geo-informational Based Approaches 

A constraint-based geolocation technique was employed in (Castelluccia, Kaafar, Manils, & 

Perito, 2009), and the proposed approach utilizes a geo-localized fast flux hidden server. Thus, 

mean error distance is used in this approach to determine the physical location of the mothership 

server. As a result, their approach localizes the mothership with a mean error of below 100 km. 

However, the system requires extensive resources, achieves low precision, and is incomplete. 

Buhariwala (2011) used the same technique and determined that the 100 km mean error is 

inaccurate; moreover, the result indicated that the right error value is 1,000 km from the 

mothership server. A virtual private proxy server was proposed to decrease the overhead of 

requesting data from the content server. The result indicated a 300 km mean error, which is 

three times better than that obtained by Castelluccia et al. (2009). A large mean error rate for 

physically localizing the mothership server still exists. Table 2. 5 summarizes the methods that 

utilize geo-information. 

The system proposed by Stalmans, Hunter, and Irwin (2012) used Moran’s I and Geary’s C 

features to produce classifiers to detect the fast flux C&C domain names of C2 servers. The 

proposed system can detect domain names on the basis of the geographic locations of C2 

servers. Moran’s I assumes that close geographical C2 servers are similar, whereas Geary’s C 

measures the spatial autocorrelations between C2 servers. Their system can reliably detect FF 

domains with a small FP rate. Moran’s I measurement is influenced by the number of white 

spaces at a large scale (Stalmans et al., 2012).  
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Stornig (2013) employed another approach in which Moran’s I of spatial autocorrelation and 

spatial service distance are used to classify legitimate and non-legitimate fast flux domains. This 

approach is based on the geo-information of the distributed IP addresses of FF-agents. The 

spatial autocorrelation between two distant geographical points means that they are not similar, 

and close points share more similarities. The spatial service distance denotes the average 

distance between the geolocation of the IP addresses that is correlated with the same domain 

and the geolocation of the IP addresses of the name server. As a result, the author was convinced 

that the proposed approach is accurate and lightweight for detecting fast flux domains with low 

FPs. However, botmasters could cause the detection approach to yield to misclassified results 

by changing the distribution of the IP addresses of the agents. 

Table 2. 5 Summary of approaches using geo-information. 

Authors Algorithms 
Mechanism 

Advantages Disadvantages 

Castellucci

a et al. 

(2009) 

Constraint-based 

geolocation 

technique 

Determines the 

physical location of 

the FF mothership 

on the basis of 

network 

measurements 

Can localize 

with a mean 

error distance 

below 100 km 

-Requires extensive 

resources to set up 

-Less precise and 

less complete 

Buhariwal

a (2011) 

Constraint-based 

geolocation 

technique 

Determines the 

physical location of 

the FF mothership 

on the basis of 

network 

measurements 

Decreases the 

overhead of 

requesting 

content servers  

Inaccurate rate (300 

km) 

Stalmans et 

al. (2012) 

Time zone, UTM, 

MGRS 

Identify fast flux 

domains on the sole 

basis of the 

Only a small 

percentage of 

FPs 

Classifier is 

affected by a large 
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geographic 

locations of C2 

servers 

amount of 

whitespace 

Stornig 

(2013) 

 

 

Moran’s I of 

spatial 

autocorrelation 

and spatial 

service distance 

Utilizes methods of 

geo-information 

and spatial statistics 

-Lightweight 

system 

-Avoids FPs 

Could be 

misclassified by 

botmasters 

 

The problem with active detection-based approaches is that they deal with minimal DNS traffic 

traces, which correspond to non-legitimate domain names in most cases. According to the nature 

of active approaches that mostly deal with malicious domains, they are obviously unable to 

detect unknown zero-day domains. 

2.2.1.3 Host-based Real-time Approaches 

The previous methods involve passive and active approaches, which presented many detection 

techniques to detect malicious fast flux botnet domains and FFSNs. Fast flux detection requires 

a fast and accurate approach to identify malicious domains before they change their IP 

addresses. Thus, a new era of real-time approaches have been developed to increase the power 

of detection techniques. The main idea behind employing real-time approaches is to reduce the 

time needed to detect attacks to real-time processing. 

A) Spatial Information-based Approaches 

Caglayan, Toothaker, Drapeau, Burke, and Eaton (2009) were the first to conduct a related 

empirical study. The authors presented a fast flux monitor (FFM) that could detect and classify 

FFSNs in real time within minutes. The FFM comprises active and passive DNS monitors, 

which reduce the long-term observation of FFSNs. Using active and passive monitoring can 

reduce observation duration, but the system still requires a few additional minutes. Obtaining 

extra information from a data center helps classify botnet domain names. 
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Huang et al. (2010) proposed a real-time system called spatial snapshot fast flux detection 

(SSFD). SSFD detects FFSNs by extracting the IP addresses of the hosts (agents) from the DNS 

responses and determining the geographical traffic patterns of these agents in a geographic 

coordinate system. Two spatial measures were used: spatial distribution estimation and spatial 

service relationship evaluation. A Bayesian network classifier was also employed to distinguish 

FFSNs from benign networks. The experimental results indicated that SSFD is effective (less 

than 0.5 s) and yields lower FP rates than flux score detection systems through their data sets. 

However, SSFD suffers from a single IP problem and missing geographical information 

problem, which may cause the system to malfunction. The experiments verify that the detection 

accuracy is 62% (H.-T. Lin et al., 2013). 

A Bayesian network classifier algorithm classifier was proposed by Horng-Tzer, Ching-Hao, 

Kuo-Ping, and Hahn-Ming (2012) to detect FFSNs in real time. The authors believed that the 

grid distribution of the localized spatial-locating capability is ideal to depict the spatial 

relationship between the resolutions of IP addresses. To enhance the localized geo-locational 

characteristics, the proposed system incorporated ASNs, localized spatial geo-location detection 

(LSGD) system, and DNS to achieve the identification of potential FFSNs. The authors believe 

that the detection capability of the LSGD system is better than spatial or temporal detection 

approaches. The LSGD system exhibits a lower FP rate than the spatial snapshot system in real-

time detection, which is completed within seconds. However, the highest FP rates are caused 

by CDNs, which have a similar localized spatial distribution signature that affects accuracy. 

Table 2. 6 shows the summary of spatial informational approaches. 

Table 2. 6 Summary of spatial informational real-time approaches. 

Authors Algorithms Mechanism Advantages Disadvantages 

Caglayan 

et al. 

(2009) 

Bayesian 

belief 

network 

-Bayesian classifier 

employs multiple active 

and passive DNS 

sensors 

Reduces the 

observation 

period 

-Long time 

-Data center help 

is needed 
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-Generates a 

probabilistic assessment 

of the existence of a 

FFSNs 

Huang et 

al. (2010) 

Bayesian 

network 

classifier 

and 

K2 algorithm 

Determines the 

geographic traffic 

patterns of hosts and 

maps the IP address of a 

DNS response in a 

geographic coordinate 

system 

Lower FP rate 

than flux score-

based detection 

-Single IP 

problem  

-Missing value 

problem 

Horng-

Tzer et al. 

(2012) 

Bayesian 

network 

classifier and 

K2 algorithm 

Propose LSGD system 

for identifying FFSNs in 

real time  

Better detection 

capability than 

spatial or 

temporal 

detection 

approaches 

-Misled by CDN 

service sites 

 

B) Behaviour-based Approaches 

Many researchers have studied the behavior of the changes in fast flux domains. Caglayan, 

Toothaker, Drapaeau, Burke, and Eaton (2010) modeled the behavior pattern of FF botnets on 

the basis of DNS resource records using a Bayesian classifier. The authors determined that 

botnets exhibit common characteristics and form clusters according to botnet size, growth, and 

operations. Their findings show that a majority of fast flux botnets operate in at least five 

countries and between 20 and 40 countries on average. Unfortunately, their approach is misled 

by benign servers, such as CDNs, thus resulting in a high number of FPs (Caglayan et al., 2010).  

B. Yu, Smith, and Threefoot (2014) addressed the behaviour of fluxed domain changes and 

proposed a novel time series model on the basis of carefully selected features. Their model uses 
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network security and a semi-supervised training approach to overcome and identify difficulties 

in known supervised machine learning approaches. A horizontal scalable online system was 

proposed to deal with the large amount of data that passes through a network in real deployment. 

Their system can identify flux domains despite the presence of long TTLs or a limited number 

of mapped IP addresses. Actual latency is determined by an online system (10 min) given a 

domain name, whereas most active threats can be detected in less than 10 min. Their approach 

does not address the FN rates in the evaluation of the results. Table 2. 7 shows the behavior-

based approaches. 

Table 2. 7 Summary of behavior-based approaches. 

Authors Algorithms Mechanism Advantages Disadvantages 

Caglayan 

et al. 

(2010) 

Bayesian 

classifier 

Modeling the behavioral 

patterns of fast flux botnets 

using DNS records 

-Botnets operate in 

20 to 40 countries 

- < 250 ASNs 

- Misled by 

CDNs 

-High number of 

FPs 

B. Yu et 

al. (2014) 

Time-series 

model 

-A time-series model 

–A horizontally scalable 

online system 

Captures fast flux 

domains 

 -Long detection 

time. 

-FN rate is not 

considered 

 

C) Machine Learning-based Approaches 

Qassrawi and Zhang (2012) used the algorithm of an alternative decision tree (Gothai & 

Balasubramanie, 2012) to determine whether a domain is an FF domain. Figure 2. 10 shows 

that only one DNS response resource record is needed to achieve fast detection in real time. 

Previous studies show that DNS information is insufficient to detect FF botnets (Martinez-Bea 

et al., 2013). 
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Figure 2. 10 Alternative decision tree detection approach(Qassrawi & Zhang, 2012) 

 

Unlike Qassrawi, Hsu et al. (C.-H. Hsu et al., 2010) proposed a real-time system to measure the 

delay for HTTP responses by relaying user requests from an FF-agent to back-end servers. Thus, 

a long delay means that a host (FF-agent) relayed a request to another server. The authors 

proposed this real-time system to reduce detection time to a few seconds without affecting 

detection accuracy (96% with FP and FN rates below 5%). The authors utilized a classification 

based on supervised learning using SVM trained on six features. The delays in the relaying 

request are counted because of the limited power and bandwidth of the relaying hosts (FF-

agents). However, extracting the six features from this volume is time consuming. Thus, 

keeping the detection time within the real-time range is difficult. The proposed system cannot 

effectively detect fast flux domains with long TTLs, and the detection accuracy is 67% (H.-T. 

Lin et al., 2013). The proposed detection system cannot detect zero-day domains. 

SVM was built by McGrath to detect fluxed phishing domains (D. Kevin McGrath, 

2009/09/01). The classifier was trained on the basis of the features extracted from the DNS 

responses, such as the number of IP addresses related to one domain, ASNs, number of different 

prefixes, and number of countries of an IP address. The main limitation of the classifier, based 
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on the nature of its features, is that it can be misled by botmasters. The previous classifier 

proposed in (C.-H. Hsu et al., 2010) can be misled by a benign server, such as a CDN or 

RRDNS. A new SVM classifier proposed by Martinez et al. (Martinez-Bea et al., 2013) was 

trained on real features from both domains and bots. Combining the two feature sets from the 

two previous approaches (D. Kevin McGrath, 2009/09/01; C.-H. Hsu et al., 2010) increased the 

TP and TN rates and decreased the FP and FN rates. Unfortunately, the author stated that the 

proposed method for detecting fast flux domains may still be evaded theoretically and that the 

proposed detection system cannot detect zero-day domains. 

The genetic based real-time approach for FFSN detection (GRADE) was proposed by H.-T. Lin 

et al. (2013). The authors assumed that fast flux bots are distributed arbitrarily in a multitude 

geographical locations. Thus, the distances between bots (FF-agent) and users differ. The fast 

flux domains would result in significant differences in the round trip time between the user and 

the agents. The GRADE system architecture is depicted in Figure 2. 11. GRADE can more 

effectively detect FFSNs (within a few seconds) than flux scores and is more accurate (98%) 

than fast flux bot detection and SSFD. However, GRADE suffers from the single IP problem, 

in which only one point in the geographic coordination system may cause GRADE to 

malfunction. Table 2. 8 summarizes real-time machine learning approaches. 

ASN QUERY MODULE

E-DPN MODULE

SD-RTT MODULE

WEIGHT OPTIMIZATION 
MODULE

FFSN DETECTION ENGINEDOMAIN NAME IP EXTRACTOR

Figure 2. 11 GRADE system architecture(H.-T. Lin et al., 2013) 

Table 2. 8 Summary of real-time learning approaches. 
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Authors Algorithms Mechanism Advantages Disadvantages 

Qassrawi 

and Zhang 

(2012) 

Alternative 

decision tree 

One DNS response RR is 

needed to achieve FF 

detection in real time 

 

One DNS 

response RR in 

needed 

Insufficient 

features to 

conduct 

classification 

C.-H. Hsu 

et al. (2010) 

Linear SVM 

algorithm 

Observes longer delays 

for HTTP responses as a 

result of relaying the 

requests via fast flux 

agents 

 

-Real time  

-Robust 

-Lightweight 

-Long detection 

time 

-Cannot detect 

long TTL 

domains  

-Unable to detect 

zero-day 

domains 

Martinez-

Bea et al. 

(2013) 

Linear SVM 

algorithm 

Builds an SVM classifier 

trained via real features 

extracted from domains 

and bots to differentiate 

malicious FFNs 

-Increased TP 

and TN 

-Reduced FP 

and FN 

Unable to 

detect zero-day 

domains  

H.-T. Lin et 

al. (2013) 

Genetic 

algorithm 

The distances between 

clients and flux bots 

varies significantly 

Outperforms 

other systems, 

such as flux 

score, FFBD, 

and SSFD 

Single IP 

problem 

 

The proposed real-time approaches can detect malicious domain names and malicious FFSNs 

in most cases. However, the above-mentioned techniques have certain limitations, which cast 

doubt on their results (accuracy, TP, TN, FP, and FN), as some methods have high percentage 
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of false positive and others have low detection accuracy. We still lack a stable technique that 

can detect malicious domains, particularly zero-day domains, in an acceptable period of time 

with high detection accuracy.  

2.2.2 Router-based Detection Methods 

Many researchers have used different sets of information from network traffic to solve several 

network problems generally and particularly for the fast-flux botnet problem. Network traffic 

comprises both DNS traffic and non-DNS traffic. Recent studies (Al-Duwairi & Al-Hammouri, 

2014; Paul, Tyagi, Manoj, & Thanudas, 2014) did not rely on DNS data traffic.  Al-Duwairi 

and Al-Hammouri (2014) compared incoming and outgoing data traffic at a leaf router of stub 

networks to find matches between incoming and outgoing SYN packets. This online approach 

efficiently detects malicious fast flux agents within stub networks. However, installing the 

system on all the leaf routers of stub networks is difficult to achieve (scalability problem), and 

the utilized data traffic traces do not have fast flux traffic (Al-Duwairi & Al-Hammouri, 2014).  

A previous work (Paul et al., 2014) aimed to cluster similar packets in data traffic from both 

router sides assuming that the C&C servers had to change their IP addresses automatically. The 

approach assembles all packets, as shown in Figure 2. 12, between the C&C server and the host 

for analysis and obtains the malicious pattern in each cluster. The detection accuracy of this 

approach to malicious traffic is 95.8%, and its low FP rate is 1.6% in the worst case. However, 

the approach suffers from a scalability problem. Thus, when data traffic is insufficient, the 

malicious packet sensitivity decreases. Table 2. 9summarizes the router-based approaches. 
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Figure 2. 12 System architecture of the clustering detection method (Paul et al., 2014) 

 

Table 2. 9 Summary of router-based approaches. 

Author-s Algorithms 
Mechanism 

Advantages Disadvantages 

Al-

Duwairi 

and Al-

FF-watch 

algorithm 

Correlates incoming TCP 

connection requests to flux 

agents within a stub network 

with outgoing TCP connection 

Eliminates 

the need for 

large DNS 

traffic 

-Old dataset which 

may not contain FF 

traces 

-Scalability problem 
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Hammouri 

(2014) 

requests from the same agents to 

the point-of-sale website 
 

Paul et al. 

(2014) 

 PSD value 

used as 

classifier 

Computes the power spectral 

density (PSD) for each cluster 

and feeds it to the classifier, 

which examines the PSD data 

for significant peaks 

Detects 

traditional 

HTTP and 

fast flux 

botnets 

-Scalability problem  

-Malicious packet 

detection sensitivity 

problem 

 

Table 2.9 clearly indicates that constructing router-based systems to detect fast flux botnets may 

produce acceptable results for the authors. However, the speed and the large amount of data 

passing through the router cause three main problems to build systems: high false rates based 

on the concept of a fast detection of FF botnets, memory problems (databases) due to handling 

large traffic data flows, and a scalability problem. Therefore, detecting fast flux botnets and 

particularly zero-day domains at this part of the network is ineffective. 

2.2.3 DNS-based Detection Methods 

Researchers studied DNS data traffic in their country of origin. Thus, their work focused on 

monitoring and analyzing DNS data traffic and detecting malicious activities, such as fast flux 

botnets. Some researchers employed passive, active, and real-time approaches, as presented in 

the following subsections.  

2.2.3.1 Passive Approaches 

Researchers monitored DNS servers and analyzed data traffic passively to detect malicious 

activities. Gržnić, Perhoč, Marić, Vlašić, and Kulcsar (2014) presented a detection system called 

CROFlux that detects fast flux domains relying on a passive DNS replication method. Their 

system aims to reduce FP rates and detect unknown fast flux domains with flux characteristics, 

which are usually used to share malware. Thus, the approach avoids the reporting of legitimate 

domains with similar characteristics. The proposed system suffers from a design problem 

because it does not utilize active DNS requests to feed the system and many IP addresses can 
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enhance fast flux detection (Gržnić et al., 2014). The proposed system cannot detect zero-day 

fast flux domains because the classification process depends on the comparison of the number 

of malicious domains in the candidate fast flux cluster with predefined fixed malicious domains. 

A scalable and fast approach proposed by Kwon, Lee, Lee, and Perrig (2016) detects fast flux 

botnets on the basis of large-scale DNS traffic. This approach analyzes the collected large-scale 

DNS data traffic to extract malicious behaviors. A signal processing technique, namely, PSD 

analysis, is leveraged to determine the main frequencies from the periodic DNS queries initiated 

by botnets. Their system detection accuracy is 95%, given its detection of 23 unknown and 26 

known botnet groups with 0.1% FP. However, the proposed method relies on the number of 

hosts. Thus, increasing the number of hosts should decrease speed and detection efficiency. A 

threshold number should be assigned according to the circumstances of DNS servers; such 

threshold number differs for all DNS servers (Kwon et al., 2016). 

Some decision tree algorithm versions have been used for many detection techniques, such as 

the system proposed by Perdisci, Corona, Dagon, and Lee (2009). This system passively collects 

recursive DNS queries and responses by deploying multiple sensors in front of RDNS servers 

in two ISP networks. Perdisci analyzed the extracted features to detect malicious FFSNs using 

C4.5 decision tree. Their experiments showed that they accurately distinguished malicious and 

legitimate FFSNs. They used a statistically supervised learning approach to build a service 

classifier. Thus, this classifier cannot detect malicious zero-day flux services. 

Similarly, Perdisci, Corona, and Giacinto (2012) proposed a novel passive DNS system called 

FluxBuster using C4.5 decision tree as a classifier; this system analyzes DNS traffic for 

malicious FFN detection and blocking. Their approach gathers DNS traffic generated from 

hundreds of RDNSs, which are scattered in many networks around the world. A large-scale 

analysis is carried out on the basis of the resultant traffic. Thus, FluxBuster can detect unknown 

FFNs before they are reported in a public blacklist. However, the detection system waits for a 

user to click on a domain name to initiate a request and detect a domain. Furthermore, more IP 

addresses are needed to set the threshold value of their classifier. 

An anomaly-based technique using a decision tree with AdaBoost algorithm was proposed in a 

previous work (Vu Hong, 2012). This approach depends on the passive analyses of extracted 
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DNS data traffic to detect fast flux botnets. Two graphs were constructed, the lookup graph and 

the failure graph, from the extracted DNS traffic. The resulting graphs were distributed into 

clusters, as depicted in Figure 2. 13. These clusters exhibited a strong correlation between traffic 

elements (domain, host, and IP addresses). The related features of DNS traffic were extracted 

from these clusters to feed the classification module in the detection system and identify the 

existence of a fast flux botnet. The authors believed that they succeeded in detecting a fast flux 

botnet from traffic analysis. However, the system produces FP rates when the number of domain 

names in a malicious subgraph was small and produced FN rates when a benign subgraph 

included a large number of random-looking domain names. The malicious characteristics 

exhibited by the subgraph were not sufficiently distinctive for the technique to obtain. Table 2. 

10 summarizes passive DNS-based detection approaches. 

Graph construction

Graph 
decomposition

Feature extraction

Regression function

Domain DBWhoIS DB

Maliciousness score

Blacklist
Whitelist

Lookup and Frailer Graph

Dense Subgraph

Features

Inspected 
network

 

Figure 2. 13 Analysis procedure of an anomaly-based technique using a decision tree with 

AdaBoost algorithm (Vu Hong, 2012) 
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Table 2. 10 Summary of passive DNS-based detection approaches. 

Authors Algorithms 
Mechanism 

Advantages Disadvantages 

Gržnić et 

al. (2014) 

Publicly 

available and 

private 

malware lists 

Relies on the passive DNS 

replication method to detect 

suspicious fast flux domains 

Reduces FP -Design problem  

 -Unable to detect 

zero-day fast flux 

domains 

Kwon et 

al. (2016) 

PSD Leverages a signal processing 

technique to discover the 

major frequencies of periodic 

DNS queries of botnets 

Detection of 23 

unknown and 

26 known 

botnet groups 

-Increases in the 

number of hosts 

decreases the 

efficiency 

-Fixed threshold for 

all DNS servers 

Roberto 

Perdisci et 

al. (2009) 

C4.5 

decision tree 

Detects malicious flux service 

networks through passive 

analysis of recursive DNS 

traces 

Accurate 

classification 

Cannot detect zero-

day malicious flux 

services 

Roberto 

Perdisci et 

al. (2012) 

C4.5 

decision tree 

A passive DNS traffic analysis 

system for detecting and 

tracking malicious flux 

networks 

Detects 

unknown flux 

networks before 

blacklisting 

-wait user click 

-The threshold 

needs sufficient IP 

addresses to be set 

Vu Hong 

(2012) 

Decision tree 

with 

AdaBoost 

algorithm 

-Constructs a lookup graph and 

a failure graph from captured 

DNS traffic 

Helps detect 

botnets through 

traffic analysis 

-Produces FN and 

FP 

-Insufficient 

distinctive features 
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-Decomposes these graphs into 

clusters with a strong 

correlation between their 

domains, hosts, and IP 

addresses 

 

2.2.3.2 Active Approaches 

An active approach (Zhou, Leckie, & Karunasekera, 2009) adopts a collaborative detection 

system based on a decentralized correlation model called large-scale intrusion detection to 

detect fast flux phishing domains by analyzing the relationship between the number of IP 

addresses and DNS requests from different networks.  

Figure 2. 14 shows the combination of different DNS server responses to quantify the probable 

time to be saved. The results indicated that combining evidence from multiple DNS servers 

would speed up the process of fast flux detection. No significant time was saved, which leads 

to fast detection of fast flux domains. Table 2. 11 summarizes the active approaches. 

Table 2. 11 Summary of active approaches. 

Authors Algorithms Mechanism Advantages Disadvantages 

Zhou et al. 

(2009) 

Decentralized 

correlation 

model called 

LarSID 

Correlation of 

multiple responses of 

DNS servers to 

increase detection 

time 

Reduces query 

time up to 30% 

Detection time 

is long 
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Figure 2. 14 LarSID architecture (Zhou et al., 2009) 

2.2.3.3 Real-time Approaches 

A real-time approach (Futai, Siyu, & Weixiong, 2013) was used to develop a fast flux botnet 

detection method. This approach employs the J48 decision tree algorithm as a classifier in a 

hybrid system, which combines real-time detection and long-term monitoring, as depicted in 

Figure 2. 15. Their approach can achieve a higher real-time detection rate compared with flux 

score-based methods. Still, the proposed approach cannot detect fast flux domains with high 

TTL values. Table 2. 12 summarizes the real-time approaches. 
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DNS Response

Suspicious domain 
filter
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Real-time detector
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Probing & 
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Fast Flux

Benign

 

Figure 2. 15 Hybrid detection system(Futai et al., 2013) 

Table 2. 12 Summary of real-time approaches. 

 

The detection systems initiated over a DNS server do not exhibit network time delays. Many 

researchers determined that systems that depend on DNS features cannot provide an accurate 

detection rate for fast flux domains (Martinez-Bea et al., 2013). 

The main problem of fast flux botnet detection methods is detecting the evasion detection 

mechanism before the attack is initiated to support botnet malicious activities. This is 

Authors Algorithms Mechanism Advantages Disadvantages 

Futai et 

al. 

(2013) 

J48 decision 

tree 

Combines real-time 

detection and long-

term monitoring 

 Higher detection 

rate compared with 

flux score-based 

algorithms 

-Cannot detect FF domain 

with high TTL value 

-Cannot detect unknown 

FFSNs 
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particularly true when detecting zero-day domains without any prior knowledge about the 

incoming domain name, which serves malicious websites, C2 servers, and motherships. At the 

same time, detection accuracy and low detection error rates are monitored. On the basis of the 

developing strategies of attackers, the detection system should develop new systems that are 

long-lasting and adaptive to allow the future modification of their functions. Detection systems 

should continuously learn by analyzing new system inputs as new data instead of training with 

old data. 

2.2.4 Hydra Flux Service Network 

Hydra fast flux networks and SQL injection attacks are the main advanced features of Asprox 

botnets. Al-Bataineh and White (2012) studied the design and structure of Asprox botnets, in 

which communication protocols are used to download malicious codes, propagate malicious 

codes, and employ hydra FFSNs. The authors mentioned that SQL injection attacks are 

responsible for the recruitment of new bots and social engineering ruses to spread malware 

binaries. Hydra FFSNs prevent the disruption of the communication channel between bots and 

the C&C server. 

The crucial aspect of the hydra fast flux is the possibility of bots contacting other C&C servers 

when the original C&C server is taken down. Hydra is an advanced double fast flux that refluxes 

the name server and the host IP addresses, making the prevention of massive disruption 

impossible.  

2.2.6 Dynamic evolving Spiking Neural Network (DeSNN) 

 

Spiking Neural Network (SNN) is the third generation of neural network that adds the time 

element to the network. eSNN is an improvement on spiking neural network, as well as an 

extension of the ECOS models, employing integrate and fire neuron (IF) and Rank-Order 

learning (RO). A new improvement is a Dynamic evolving Spiking Neural Network (DeSNN) 

(Kasabov et al., 2013). The RO learning is built on the theory where the most significant 

information of an input pattern is enclosed in earlier incoming spikes, the priority of the inputs 

is comes from the incoming spikes order at the input synapses for a specific pattern. This is a 



54 

 

simulation of the biological system as well as an important base for some spatio-temporal hard 

cases.  

One of the main problems facing the fast flux Botnet detection methods is how to detect such 

an evasion detection mechanism before the attack begins, to support botnet malicious activities. 

This is especially so when detecting zero-day FFSNs without any prior knowledge about the 

incoming domain name serving the malicious website/C2 server/mothership, at the same time 

as keeping track of the detection accuracy and low detection error rates. In previous related 

work done by Almomani et al. to detect unknown zero-day phishing emails in online 

mode(Deeb Al-Mo et al., 2011), they classified phishing emails based on ECoS, which gives a 

promising platform for phishing detection. ECOS proved its adaptability in classification of 

ham and phishing emails in online mode based on a one pass algorithm for increased speed 

(Deeb Al-Mo et al., 2011), which accesses the data only once from the memory to create rules. 

A limitation of the ECoS algorithm used in that paper is that it classified phishing emails as 

traditional connectionist algorithms which need a careful assignment of their parameters. 

According to Demertzis and Iliadis (2015), eSNN is used to detect DGA domain names. The 

authors proposed a fast evolving Smart URL Filter in Zone-based Policy Firewall. Their work 

promised improvement on zone-based policy, but the inclusion of self-modified parameter 

values are still necessary to get more efficiency. 

Dynamic evolving spiking neural network is used as an output classifier under the NeuCube 

platform (Alvi, Pears, & Kasabov, 2017), as the DeSNN is achieved outstanding success in 

spatio-temporal classification problem in many areas. Also, the DeSNN algorithm was used in 

(Doborjeh & Kasabov, 2016) to perform the output classifier with NeuCube platform in 

supervised learning mode. 

(Kasabov et al., 2013) introduced the dynamic evolving spiking neural network that utilized  the 

rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-

supervised modes. The results were performed a high level of accuracy and speed comparing 

with other SNN algorithms. However, the algorithm suffer from many parameters to be set 

before implement the algorithm.  
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According to (Doborjeh, Capecci, & Kasabov, 2014), a DeSNN algorithm used as classifier in 

NeuCube platform, where the NeuCube model was used for FMRI data learning. Nevertheless, 

the model is extremely influenced by its parameters values. Alauthman and Almomani (2017) 

used the DeSNN as a classifier over the NeuCube platform to detect the spam email.   

As a result, all the three solution scopes were discussed, the advantages and disadvantages, 

current work tends to be implemented as a root at the end host-based part of the network, Also, 

this system can be implemented at the local DNS server in order to work as defender in case of 

threats and risks. Fast flux domains act in an online mode to keep up their duties as a response 

to the mothership orders, so the need for online detection system became necessary to try to 

shut down such threats. The proposed system is expected to detect FFDN in online mode with 

high detection accuracy and low false positive and negative rates respectively. It is also expected 

to have a high level of performance depending on using one-pass algorithm and chosen proper 

feature set, also the proposed system should work for a lifetime with low memory usage.  

2.3 Related Work  

Holz et al. (2008) were the first who proposed a system that measures and detects a FFSN on 

the basis of the calculated flux score. Their proposed system takes malicious domains from 

spam emails and then uses the Dig tool to generate DNS lookups and reverse DNS lookups and 

thereby obtain necessary information about a feature set, for the sake of space all the features 

of all the related works displayed in Table 2.13. Thus, the flux score calculation is fed for use 

later in distinguishing between malicious FFSNs and legitimate ones. Their results showed that 

the proposed system achieves a detection accuracy of 99.98%.  

Some decision tree algorithm versions have been used for many detection techniques, such as 

the system proposed by Roberto Perdisci et al. (2009), which passively collects recursive DNS 

queries and responses by deploying multiple sensors in front of RDNS servers in two ISP 

networks. They analyzed the extracted features to detect malicious FFSNs using a C4.5 decision 

tree. Their experiments showed that they accurately distinguished malicious and legitimate 

FFSNs.  
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In the naïve Bayes classifier used by Passerini et al. (2008), all malicious domains are collected 

from spam emails. Their detection and monitoring “FluXOR” system relies on the idea of a host 

being a victim to such scams. The system begins to send requests and gathers the feature set 

information to feed the naïve Bayes classifier. FluXOR reduces the time of detection to 1–3 h, 

which is still relatively long. 

Zhao and Traore (2012) proposed another method (REPTree) for botnet detection using a 

decision tree with reduced error pruning. This type of machine learning decision tree is used to 

classify and identify malicious FFSNs by defining and computing some of the network metrics 

captured from network flows.  

The support vector machine (SVM) was used by X. Yu et al. (2012) to detect fast flux botnets 

by analyzing the patterns of DNS queries from FF botnets. They extracted six features to build 

the weighted SVM classifier for use in distinguishing legitimate and FF botnet domains. They 

noted that using SVM to identify fast flux botnets is effective and provides a satisfactory 

detection accuracy.  

Celik and Oktug (2013) used the C4.5 decision tree algorithm to evaluate various DNS feature 

sets and put forward a detection approach, which is a high-dimensional feature vector with 

various features, including timing network, spatial, and NS and DNS response information. 

C4.5 evaluates each feature set of previous vectors and decides which one is the best feature 

vector on the basis of detection accuracy. Combining all features together provides a detection 

accuracy of 98.9%. 

The above researches used different features as stated in Table 2.13,  Holz et al. (2008); 

(Passerini et al., 2008; Perdisci et al., 2009; X. Yu et al., 2012; Zhao & Traore, 2012) provided 

different methods to detect the fast flux domains and FFSN. All except Holz used supervised 

learning approaches to build their classifiers. Thus, the classifiers cannot detect malicious zero-

day flux domains. The coefficients used in the score calculation (Holz et al., 2008) require 

modification to ensure the highest possible accuracy of the detection system. 
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Table 2. 13 List of the features used in previous works  

Related work 

papers 

Features 

Holz et al. 

(2008) 

Number of A records, number of autonomous system numbers (ASNs), and 

number of NS. 

Perdisci et al. 

(2009) 
Number of resolved IPs, Number of domains, Avg TTL per domain, 

Network prefix diversity, Number of domains per network, IP Growth Ratio, 

Autonomous System (AS) diversity, BGP prefix diversity, Organization 

diversity, Country Code diversity, Dynamic IP ratio, and Average Uptime 

Index. 

Passerini et al. 

(2008) 
Domain age, Domain registrar, Number of distinct DNS records of type “A, 

Time-to-live of DNS resource records, Number of distinct networks, Number 

of distinct, ASN, , Number of distinct resolved qualified domain names , 

Number of distinct assigned network names, and Number of distinct 

organizations. 

Chen et al. 

(2014) 

Number of A records in answer section, number of distinct ASNs for all A 

records, number of A records for NSs, number of distinct ASNs for all NSs, 

TTL of A records in answer section,  and TTL of A records for domain’s 

NSs. 

Chen et al. 

(2011) 

Number of unique ASNs, The number of Cname, number of name server 

(NS), number of different IP addresses, TTL, and Rate flux. 

Yu et al. (2012) Domain age, number of IP addresses of a distinct DNS A records, TTL, IP 

distribution, ASN, and organizational distribution. 

Celik and 

Oktug (2013) 

Various features including: timing network, spatial, NS and DNS response 

information. 

Zhao and 

Traore (2012) 

TTL, Number of unique A records, IP in the same Networks, IP Geolocation, 

IP Geolocation, and Domain lifetime,  
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Zhao and Jin 

(2015) 

Intrinsic Characteristics of Fast-flux Net, Intrinsic Features of DNS Analysis, 

and Intrinsic Features of Process of Visiting FFSN Domains 

Vu Hong 

(2012) 

Median domain's life time, Median IP's life time, Domain/IP ratio, Median 

number of distinct domains, Median number of distinct IPs, Median number 

of IPs per query, Median maximum TTL value, Network diversity of return 

IPs, Dominant domain ratio, Dominant host ratio, Lexical features on domain 

labels, Query pattern, IP overlap, and IP growth rate. 

 

Chen et al. (2014) proposed Bayesian probability theory to distinguish between benign and 

malicious domains using dissimilar ASNs, reverse DNS lookups, and domain registration time 

features. They aimed to detect a fast flux website on the basis of its fluxed characteristics. The 

result of this proposed system presents its ability to identify possible threats.  

Chen et al. (2011) used the k-nearest neighbor (KNN) and random forest (RF) as sampling 

techniques to solve the imbalanced problem, with respect to FFSN detection. In addition, they 

proposed a sampling technique that is combined with feature extraction from datasets for use in 

fast flux detection. The result showed that the TTL is an important feature to the classification 

of the proposed technique.  

The classification and regression tree algorithm is used in the method proposed by Zhao and Jin 

(2015). This method uses a small dataset to quickly distinguish legitimate and malicious FFSNs. 

This method is mainly based on FFSN domains, DNS, and the process of HTTP visiting.  

Yoshioka and Matsumoto used distinct mapping of features (Pa et al., 2015). The classification 

process needs less than a few days, and the detection accuracy is 90%.  

An anomaly-based technique using a decision tree with AdaBoost algorithm was proposed by 

Vu Hong (2012). This approach depends on the passive analyses of extracted DNS data traffic 

to detect fast flux botnets. Two graphs were constructed, namely, the lookup and failure graphs, 

from the extracted DNS traffic. The resulting graphs were distributed into clusters. These 

clusters exhibited a strong correlation between traffic elements (domain, host, and IP addresses). 
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The related features of DNS traffic were extracted from these clusters to feed the classification 

module in the detection system and identify the existence of a fast flux botnet.  

Some of the related work showed low detection accuracy based on the feature set chosen, such 

as in (Celik & Oktug, 2013; Chen et al., 2014; Chen et al., 2011; Vu Hong, 2012), and others 

need long time to gather sufficient information for these features, such as in (Passerini et al., 

2008; Zhao & Jin, 2015).  

The two closest works to the current study are the works developed by Celik and Oktug (2013) 

and Lin et al. (2013). 

According to H.-T. Lin et al. (2013) a genetic approach was proposed as a real-time detection 

solution of the fast flux domains problem. This method suggested a two-detection feature to 

classify the benign and the flux domains. Firstly, the entropy of the domain name (E-DPN) of 

the preceding node of the flux node (flux-agent). By using the trace route of all the returned IPs 

from the DNS response. Of course, if the E-DPN is high then, most probably, the domain is 

classified as benign, otherwise it is classified as fluxed. Secondly, the Standard Deviation of 

Round Trip Time (SD-RTT) between the user and all the return IPs of the flux-agents, assuming 

that the scatter flux-agent is going to produce a high value of the SD-RTT. This spatial feature 

takes the number of different ASNs and number of IPs return in single DNS response in their 

calculations. Unfortunately, this two detection features was evaded by the botmaster, as it 

controls the returned list of IPS that the user receives. The returned list could have IPs in the 

same ASN or adjacent to the user ASN, so the above measures can inaccurately classify the 

benign and flux domains. On the other hand, botmaster may return a list that contains just a 

single IP address, which leads to ineffective detection of the domains (F.-H. Hsu et al., 2014; 

Otgonbold, 2014). Although genetic algorithms provide good accuracy (as stated in their paper), 

their results could be affected by returning a list of IP addresses belonging to the same AS. 

According to current implementations the overall accuracy of the linear classifier was (95.37 

%). Also, the linear decision function used as the classifier needs to estimate the categorizer of 

the linear function, so if the estimation is good then the linear function will work properly, 

otherwise the classification process will contain significant errors. (Chahal & Khurana, 2016). 
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On the other hand, the second compared algorithm was the C4.5 as presented in (Celik & Oktug, 

2013). Several feature sets were examined to detect fast flux network. Such feature sets consist 

of timing based, spatial based, network based, domain based, and DNS answer-based feature 

sets. As mentioned in the literature the data set was small and the accuracy of the experiment 

was high. Also, when all features are involved in the experiment the prediction results become 

insensitive to two features (timing and domain based feature sets) (Otgonbold, 2014). Besides, 

as C4.5 algorithm is considered as a supervised learning algorithm, it could not be used to 

discover the unknown attacks, especially the zero-day fast flux domains. Moreover, according 

to our implementation the accuracy was not as high as stated in their paper; rather it was 93.38%. 

When this result and the previous linear results were compared to the current proposed 

ADeSNN, obviously the proposed approach overcame the two methods. Discussions in section 

in chapters four and five showed other accuracy measures indicating the results. 

2.4 Conclusion 

In this chapter, a wide-range of the literature on fast flux detection approaches was studied to 

choose the most suitable techniques and methods that were used for detecting fast flux domains. 

The techniques and methods were explored based on various aspects, such as the feature sets 

used to classify FFD and classification accuracy. The approach of this study includes scope of 

solution, testing criteria for classification, and mode of detection, whether online or offline. 

Also included is a theoretical background for evaluating the selected approaches.  

Besides, the literature showed some approaches that have used the dynamic evolving neural 

network in different areas, most of them were implemented as a classifiers under the NeuCube 

platform, its been clear that the DeSNN algorithm has many parameters that has to be set before 

run the algorithm. Based on this the current research is going to address this issue as one of its 

problem space. 

On the other hand, the DeSNN algorithm still need to be improved to best enhanced the 

classification accuracy, so the current research will focus on improving the performance of the 

algorithm as well. Also, the literature review proved that the gap of knowledge according to the 

zero-day domains problem. Where most of the work done so far do not solve this problem. 
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In the next chapter, the adaptive dynamic evolving spiking neural network based on the 

proposed initial weight of spike time, as one of the contributions of this study, will be introduced 

and explained in detail.  
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CHAPTER THREE 

ADAPTIVE DYNAMIC EVOLVING SPIKING NEURAL NETWORK – 

ADESNN 

 

Chapter Overview 

This chapter presents the first contribution of the current work, which is the initial weight 

initialization based on the spike time of the incoming inputs. Then, the adaptive dynamic 

evolving spiking neural network algorithm and the original one are compared. Finally, the 

achieved results are discussed.  

 

3.1 Introduction 

This chapter presents the proposed adaptive DeSNN. DeSNN algorithm that is built based on 

the RO learning rules and the SDSP learning algorithm. According to previous work, the initial 

weight of the DeSNN is calculated based on the RO rules. As stated in (Kasabov et al., 2013), 

the output of the DeSNN algorithm consists of the initial and final weight matrices, as a new 

incoming input pattern is arrived an initial weight is computed as well as the final weight. At 

the recall mode the classification of the new arrival is going to be based on the Euclidean 

distance testing measure-. Experiments showed that the current initial weight based on the RO 

setting introduces a clear misclassification percentage of detecting of the incoming inputs, while 

the proposed approaches give a satisfactory accuracy percentage compared with the former one. 

3.2 Adaptive Dynamic Evolving Spiking Neural Network  

The expected approach is an online detection approach, and is dealing with real data so spiking 

neural network (SNN) is used. Systems based on SNN have already showed their ability to 

capture spatial and temporal data. Evolving Spiking Neural Network (eSNN), are based on a 

one-pass rank order (RO) learning rules and a scheme to evolve a new spiking neuron and 

connections, which lead to learn new patterns from arriving data. This chapter presents an 



63 

 

adaptation of the dynamic evolving spiking neural network (deSNN), that employ both RO 

learning and dynamic synapses to learn spatial and temporal data in a fast and on-line mode. By 

employing both RO learning and Spike Driven Synaptic Plasticity SDSP, deSNN -as depicted 

in Figure 3. 1 - could be used in unsupervised, supervised, or semi-supervised learning modes. 

The proposed approach is a hybrid learning approach, where the supervised learning phase 

works offline and the unsupervised learning phase works online to detect the zero-day domains. 

The SDSP learning is used to dynamically update the connection weights of the network that 

capture data clusters both through training and through recall. 

 

INPUT(FEATURES)

CLASS  1
CLASS  K

ROC

L1 NEURONS

L2 NEURONS

 

Figure 3. 1 An evolving spiking neural network (classification) (Kasabov et al., 2013) 

 

At training phase for each training input pattern 𝜒 𝜄 , a new output neuron j is created, also the 

connection weights wij of the input neurons (feature) is initiated according to Matrix (1), the 

weights calculations are based on the spike times of each input: 
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Matrix 𝜒0 contains the input records of all inputs.  

 

𝜒 =

{
 
 

 
 
𝜒11   𝜒11 …    𝜒1𝑚
𝜒21   𝜒21 …    𝜒2𝑚

.

.

.
𝜒𝑛1   𝜒𝑛1 …    𝜒𝑛𝑚}

 
 

 
 

                                                                                    (𝜒 0)                                                                    

 

Here the first row of the matrix 𝜒 refers to the input record, where the first record consists of 

the feature set, and so on. "n" refers to the number of the inputs records, “m" is the number of 

features in each input record. Matrix (1) below contains the spike times of all input records after 

ROC encoding process exploiting Gaussian receptive field (Soltic & Kasabov, 2010). Here, the 

first contribution of the proposed approach is to use the spike time records as the initial weight 

instead of the initial weight created using RO learning rules as stated in (Kasabov et al., 2013). 

More about this contribution is discussed in details in this chapter. 

 

𝑺𝑻 =

{
 
 

 
 
𝑆𝑇11   𝑆𝑇11 …    𝑆𝑇1𝑚
𝑆𝑇21   𝑆𝑇21 …    𝑆𝑇2𝑚

.

.

.
𝑆𝑇𝑛1   𝑆𝑇𝑛1 …    𝑆𝑇𝑛𝑚}

 
 

 
 

                                                                                 (1) 

 

Where 𝑆𝑇ij refers to the spike time of the 𝜄th input record. Each record comes as a result of the 

number of the Gaussian receptive fields multiplied by the number of the features of the original 

input record. Moreover, the proposed contribution is to replace the initial value that was set by 

the RO learning rules by the spike times of the input records after the ROC encoding. The reason 

behind this modification is to improve the detection accuracy. Figure 3.2 shows both the initial 
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weights initiation techniques for both the RO and the spiketime initial weights, it is clear that 

using the spike time instead of the rank of the spikes order is more related to the incoming data, 

and helps in classifying input records correctly as depicted in Figure 3.2: 
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Figure 3. 2 An example of the RO and Spike Times initial values 

According to the work done in (Kasabov et al., 2013), DeSNN algorithm is belt based on rank 

order learning rules to set the initial weight of the synapses among the input and the output 

neurons. Furthermore, SDSP adjusts the weight of the synapses based on the upcoming spikes, 

so at the end the DeSNN algorithm, the output is the weight matrices of the initial weight based 

on the RO rules, and the final weight is based on the SDSP learning rules.  

One significant insight into the initial weight setting by the RO learning rules is that it has been 

noticed that all malicious and non-malicious input values are given the same initial values as 

depicted in Figure 3.2. This is because of the fixed mechanism of the RO initial values, the 

similarities between the outputs values of the final weight of the SDSP weight matrix of 

different inputs will be almost high, even with the updates on the synapses weights caused by 

the working of the evolving spiking neural network. These similarities are going to affect the 

classification process of both the malicious and non-malicious inputs, as the classification here 
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is based on the minimum Euclidian distances between the testing sample and the weight of the 

training samples at recall phase.  

When the initial weight initialized based on the spike time matrix, so this helps in the 

classification process butter than assigned the same fixed weights mechanism for all different 

inputs. Figure 3.2 shows the idea more clearly. To show the effect of this change, this 

phenomenon will be discussed in the results and discussion sections of this chapter. 

After the initiation of the weight on the synapses of jth neuron based on the spike time matrices 

of the incoming inputs, the dynamic synapses adjust their weights based on the SDSP algorithm 

according to equation (2). While the spike arrives at any time t, weight value increases, as there 

is no spikes arriving at this time, weight value decreases: 

∆𝜔𝑗, 𝑖
(𝑡) = 𝑆𝑇𝑗(𝑡). 𝐷                                                                                           (2) 

Where 𝑆𝑇j(t) equals to 1, if there is a sequenced spike at time t arrives at synapse j of arriving 

learning patterns at the output neuron j, and it equals to (-1) otherwise. D is the drift parameter, 

which can be changed for up or down drifts. 

In parallel, all synapses change their values in every time unit t according to equation (3), while 

the input patterns Pi arrive at the output neuron i. Based on these values which may go up or 

down, the synapses of the neuron all together could capture nearly all relationships of spike 

timing through the learned pattern. Continuously, as the incoming training patterns arrive (input 

spikes on different synapses), they are encoded within the time window T. Then the threshold 

Thi of the neuron is defined. Based on the value of this threshold the neuron i spikes or not. The 

threshold is defined in equation (4) as a fraction of the entire PSPi (PSPimax) collected through 

the appearance of the Entire input pattern 

 

𝑃𝑆𝑃𝑖𝑚𝑎𝑥 = ∑ ∑ 𝑓𝑗(𝑡). 𝜔𝑗, 𝑖(𝑡)𝑗=1,2,…,𝑀𝑡=1,2,…,𝑇                                                     (3) 

𝑇ℎ𝑖 = 𝐶. 𝑃𝑆𝑃𝑖𝑚𝑎𝑥                                                                                                 (4) 
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Where: T is the time window in which the input patterns arrived, M is the number of neuron I 

input synapses, 𝑓𝑗(𝑡) equals to 1 if the spike appears in the time window at the synapse j for 

this input pattern, if not it equals to 0. 𝜔𝑗, 𝑖(𝑡) is the efficacy of the dynamic synapse between 

the neurons j,i which is calculated in equation (2). 

Figure 3.3 shows the architecture of the DeSNN algorithm, also positions the rank order 

encoding method based on multiple Gaussian receptive fields. In addition, the figure presents 

the SDSP learning rule which adjusts the synapses weights.  These weights change up and down 

based on the drift parameter value which is discussed before. 
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Figure 3. 3 The DeSNN algorithm architecture 
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The original DeSNN algorithm is mentioned in the algorithm 3.1 in this chapter.   

Algorithm 3.1 The original deSNN algorithm(Kasabov et al., 2013): 

 

 Setting deSNN parameters* (RO and the SDSP parameters too) 

 For each input spatio-temporal spiking pattern Pi Do 

o Create a new output neuron i for this pattern and calculate the initial values of 

connection weights wi(0) using the RO learning formula (1). 

o Adjust the connection weights wi for consecutive spikes on the corresponding 

synapses using the SDSP learning rule formula (2). 

o Calculate PSPimax using formula (3). 

o Calculate the spiking threshold of the ith neuron using formula (4). 

o (Optional) If [ The new neuron weight vector wi is to the weight vector of an 

already trained output neuron] then  

 merge the two neurons 

o Else 

 Add it to the output neurons repository. 

o End If 

 End For  

 

3.3 Dataset  

Two public datasets were used in this chapter to evaluate the performance of both the DeSNN 

and the Adaptive DeSNN algorithms (Especially to evaluate the effect of using the new 

proposed initial weight ). As the proposed adaptive algorithm classify fast flux and benign 

domains and the unsupervised phase of the proposed FFKA approach capture the new fast flux 

pattern. So, IRIS dataset (Benjamin & R.A., 2013) and Wisconsin Diagnostic Breast Cancer 

(WDBC) dataset (Dua, 2017) is introduced. The public IRIS dataset, consists of 3 classes each 

with 50 instances, this dataset is the best known dataset for pattern recognition (Barra, 

Casanova, Narducci, & Ricciardi, 2015; Z. Lin, Ma, Meng, & Chen, 2018). One class is linearly 

separable from the other two, but the latter two classes are not separable from each other. The 

IRIS dataset has 4 features which are (sepal length, sepal width, petal length, and petal width). 

WDBC public dataset is a well-known binary medical dataset and many of machine learning 

algorithms used it in their experiments for pattern recognition and classification purposes 

(Aličković & Subasi, 2017; Basu, Roy, & Savitha, 2018; Mandal, 2017; Zheng, Yoon, & Lam, 

2014), the characteristics of both datasets are depicted in Table 3.1. 
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Table 3. 1 Characteristics of the WDBC dataset. 

Dataset Number of 

Classes Records features 

IRIS dataset 3 150 4 

Wisconsin Diagnostic breast cancer 

(WDBC) 

2 569 10 

The ten real-valued features of WDBC are computed for each cell nucleus: (radius (mean of 

distances from center to points on the perimeter), texture (standard deviation of gray-scale 

values), perimeter, area, smoothness (local variation in radius lengths), compactness 

(perimeter^2 / area - 1.0), concavity (severity of concave portions of the contour), concave 

points (number of concave portions of the contour), symmetry, and fractal dimension). 

3.4 Experiments, Result, and Comparison 

This subsection shows the results of the experiments that were conducted on the DeSNN and 

ADeSNN algorithms. Then, both results were compared to each other to prove that the 

performance of the adaptations that have been introduced on DeSNN have significantly 

improved the results.  

The idea behind modifying the DeSNN algorithm came from many of our experiments; it 

seemed that the result always gave the same range of certain results boundaries. While tracing 

the variables’ values and each process outputs, it became clear that the problem was the setting 

of the initial weight that is the RO initial weight. The initial weight sets by the RO is based on 

giving the same values with different orders, and this order was changed based on the spike 

time of the incoming spike at the identified neuron, as depicted in Figure 3.2.  

Next, two experiments were conducted to prove the efficiency of the proposed adaptive 

ADeSNN compared with the original DeSNN as mentioned in algorithm 3.1. Two public 

datasets were also used. These datasets have non-leaner separable attributes, and therefore the 

classification task was not straight forward. 
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The software and hardware used in these experiments were based on Linux mint operating 

system run with the following attributes, core i7 7500U CPU, 16GB RAM,  the simulations of 

the compared method were conducted using MATLAB 8.5 and Python 2.7 environments. 

Various detection accuracy methods were conducted to evaluate the proposed algorithm, and 

the results of these measures are presented in each experiment. Table 3.2 provides the 

description of the measures used in this experiment. 

Table 3. 2 Accuracy measure used in all experiments 

Measure Equation Description 

True positive 

TP 

∑ (1),𝑖
𝟏  where 𝑖 belongs to positive 

instances 

Number of benign domains accurately 

identified as benign domains 

True negative 

TN 

∑ (1),𝑖
𝟏  where 𝑖 belongs to negative 

instances 

Number of fast flux domains accurately 

identified as fast flux domains 

False positive 

FP 

∑ (1),𝑖
𝟏  where 𝑖 does not belong to 

positive instances 

Number of fast flux domains identified as 

benign domains. 

False negative 

FN 

∑ (1),𝑖
𝟏  where 𝑖 does not belong to 

negative instances 

Number of benign domains identified as fast 

flux domains. 

False positive 

rate  

𝑭𝑷𝑹 

 

𝑭𝑷

(𝑻𝑵 + 𝑭𝑷)
 

 

 

The percentage of positive cases 

misclassified as negative cases 

 

Recall or True 

positive rate 

𝑻𝑷𝑹 

𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)
 

 

 

The percentage of positive cases that 

classified as positive cases. 
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Accuracy 

𝑨𝑪𝑪 

(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)
 

 

 

The percentage of correct predictions of all 

instances. 

Precision 

 

 

𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)
 

 
The percentage of cases correctly classified 

as positive cases. 

Fmeasure 
(𝟐 ×   𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×   𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

 

 

Accuracy test measure using both the 

precision and the recall. 

 

Root mean 

square error 

RMSE 

 

√∑
(𝒚𝒊 − 𝒕𝒊)𝟐

𝑵

𝑵

𝒊=𝟏

 

 

 

The differences between the target and the 

actual expected value 

 

Where:  𝑁 ∶ 𝑁umber of input, 𝑦𝑖: Actual value, 𝑡𝑖: Target value. 

𝑅𝑀𝑆𝐸 is an vital measure of differences between the values expected from a model 

and the values actually detected. 

Non-

Dimensional E

rror Index 

 

𝑵𝑫𝑬𝑰 =
𝑹𝑴𝑺𝑬 

𝒔𝒕𝒅(𝒕𝒊)
 

 

 

NDEI is used to estimate the prediction 

quality (Espinosa & Vandewalle, 2000). 

The Matthews 

Correlation 

Coefficient  

(𝑻𝑷 × 𝑻𝑵) − (𝑭𝑷 × 𝑭𝑵)

√((𝑻𝑷 + 𝑭𝑷)(𝑻𝑷 + 𝑭𝑵)(𝑻𝑵 + 𝑭𝑷)(𝑻𝑵 + 𝑭𝑵)
 

 

 

  MCC is used to evaluate the efficiency of 

the classifier in imbalanced classes 

(Matthews, 1975). 

The receiver 

operating 

characteristic 

ROC 

Graphical plot that depicts a binary 

classifier’s performance 
ROC arcs plot the true positive rate on the 

vertical axis and the false positive rate on the 

horizontal axis 
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The AUC represents the classifier’s performance (Swets, 2014). Likewise, the AUC is well-

known to be a more robust estimator of classifier performance (Fawcett, 2006). 

A question may raise why the two datasets were used in this research. This was done to prove 

that the initial weight initialization based on the spike times would give better results in the 

classification process than the old method. To the best of our knowledge, no one has pointed to 

this problem before. To ensure the quality of the proposed adaptation of the AdeSNN algorithm, 

a cross-validation method is used to estimate the error rate.  

 The first experiment was conducted to show the performance of the two algorithms, the 

proposed adaptive ADeSNN and the original DeSNN as mentioned in algorithm 3.1. Therefore, 

the IRIS public dataset was exploited. It consists of 3 classes each with 50 instances; this dataset 

is the best-known dataset for pattern recognition as this study is dealing with looking to detect 

new unknown patterns (zero-day domains). One class is linearly separable from the other two, 

but the latter two classes are not separable from each other. The dataset was randomly initiated 

into three groups, then the experiments of 3-fold cross-validation datasets were selected. At the 

end of these three experiments the average was taken to present the results shown in Table 3.3 

and Figure 3.4. 

Table 3. 3 The 3-fold cross-validation result of both the original DeSNN and the proposed 

ADeSNN of the first experiment 

Evaluation measures DeSNN ADeSNN 

FNR 0.4400 0.0625 

TPR 0.5600 0.9375 

ACC 0.5600 0.9167 

Precision 0.5600 0.9091 

Recall 0.5600 0.9375 

F1-Measure 0.5600 0.9231 

MCC 0.1200 0.8327 

AUC 0.5600 0.9152 

RMSE 0.6633 0.2887 

NDEI 1.3200 0.5749 

MSE 0.4400 0.0833 
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Figure 3. 4 The accuracy measures of both DeSNN and ADeSNN 

Table 3.3 shows the results of the average of the cross-validations of both algorithms. The error 

measures (RSME, NDEI, and MSE-ERROR) of the proposed adaptive ADeSNN were less than 

those for the original DeSNN as mentioned in algorithm 3.1, which means that the adaptation 

of the DeSNN will minimize the misclassification of the input instances. For example, the root 

mean square error of the original algorithm was 66% while in the adaptive algorithm became 

28%, also the non-dimensional error index value for the original algorithm according to this 

experiments was 1.32 compared with the adaptive algorithm which was 0.57. This also helps to 

maximize the accuracy of the detection and classification. In addition, the MCC is a 

performance metric which is widely used in bioinformatics. The two algorithms used this metric 

because it best deals with the imbalanced data, and this leads us to conclude that the adaptive 

algorithm has a high degree of correctness, surpassing the original one even in cases of 

imbalanced data. By comparing the following accuracy measures, all of F-measure, Recall, and 

ACC they revealed that the proposed adaptation produced more accurate results than the 

original DeSNN. The precision measure value enhanced to reach 90% while it was 56% in the 

original algorithm, as well as the recall measure reached the 93%, and the f-measure became 

92% .The overall accuracy of DeSNN was (56%) while it was (91.67%) for ADeSNN. 

According to the IRIS dataset two classes were non-linearly separable which cause to show 
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almost 91% accuracy while it was tested on the first linearly separable classes and give 100% 

accuracy. This leads to the ability of the adaptive DeSNN to classify classes even when inputs 

are mutually mixed. Finally, ADeSNN exhibited higher true positive rate and less false negative 

rate than DeSNN as depicted in Figure 3.4.    

The parameters of the ADeSNN algorithm set in the experiment are shown in Table 3.4. 

Table 3. 4 The parameter values used in the 3-cross-validations of the first experiment 

Neurons and synapses equations 

parameters 

Value Unit 

Excitatory synapse time constant (tau_exc) 2  Ms 

Inhibitory synapse time constant (tau_inh) 5  Ms 

Neuron time constant (tau_mem) 20 Ms 

Membrane leak (El) 20 mV 

Spike threshold (Vthr) 800 mV 

Reset value (Vrst) 0  mV 

Fixed inhibitory weight (winh) 0.20 V 

Fixed excitatory weight (wexc) 0.40 V 

Thermal voltage (UT) 25  mV 

Refractory period (refr) 4  Ms 

SDSP parameters   

Up/Down weight jumps (Vthm) 0.75*Vthr mV 

Calcium variable time constant (tau_ca) 5 *tau mem Ms 

Steady-state asymptote for Calcium 

variable (wca) 

50  mV 

Stop-learning threshold 1 (stop if Vca < 

thk1) 

1.7 × wca mV 

Stop-learning threshold 2 (stop LTD if Vca 

> thk2) 

2.2 × wca mV 

Stop-learning threshold 2 (stop LTP if Vca 

> thk3) 

8 × (wca–wca) mV 

Plastic synapse (NMDA) time constant 9  Ms 

Plastic synapse high value (wp hi) 6  mV 

Plastic synapse low value (wp lo) 0  mV 

Bistability drift 0.25  

Delta weight 0.12 × wp_hi mV 

Input size 150 spike train  

Simulation time 40  Ms 

Default clock unit 0.2 Ms 
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The second experiment was conducted and exploited the public WDBC dataset in order to prove 

the effectiveness of the proposed adaptation on the original DeSNN algorithm. WDBC public 

dataset is a well-known binary medical dataset and many machine learning algorithms used it 

in their experiments for pattern recognition and classification purposes. The WDBC dataset has 

ten real-valued features for each cell nucleus, where they computed from a digitized image of a 

fine needle aspirate of a breast mass, which are radius, texture, perimeter, area, smoothness, 

compactness, concavity, concave points, symmetry, and fractal dimension. Furthermore, the 

dataset contains 569 instances presenting two classes the (diagnosis: B = benign, M = 

malignant), the two classes distribution were 357 benign, 212 malignant. Finally, this dataset 

has no missing attribute values. 

Current experiment distributed the dataset into 5-fold cross-validations groups. So, five 

separated experiments were done, where the instances randomly distributed on the five groups, 

then the results were computed and the average was taken, as depicted in Table 3.5 and Figure 

3.5, the result of several measures to compare both of the original and the proposed adaptive 

algorithms were presented.    

Table 3. 5 The 5-fold cross-validation result of both the original DeSNN and the proposed 

ADeSNN of the second experiment 

 

Evaluation measures DeSNN ADeSNN 

FNR 0.402439 0.04898 

TPR 0.597561 0.95102 

ACC 0.765957 0.971631 

Recall 0.597561 0.95102 

F_measure 0.748092 0.958824 

MCC 0.619046 0.937925 

RMSE 0.483779 0.172406 

NDEI 0.965842 0.344209 

mse_error 0.234043 0.029787 
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  Figure 3. 5 The accuracy measures of both DeSNN and ADeSNN 

 

Table 3.5 showed the result of average of the cross-validations of both algorithms. The error 

measure (RSME, NDEI, and MSE-ERROR) values of the proposed adaptive ADeSNN were 

less than those for the original DeSNN, which means the adaptation on the DeSNN will 

minimize the misclassification of the input instances, and maximize the accuracy of the 

detection and classification. In addition, the MCC is a performance metric which is widely used 

in bioinformatics, the two algorithms  used this metric  because they best deal with the 

imbalanced data, and this leads to conclude that the adaptive algorithm has higher accuracy than 

the original one. Coming to compare the accuracy all of F-measure, Recall, and ACC revealed 

that the proposed adapted algorithm produced more accurate results (97.16%) than the original 

DeSNN (76.59%). Finally, ADeSNN exhibited higher true positive rate and less false negative 

rate than DeSNN as depicted in Figure 3.5.   

The parameters of the ADeSNN algorithm set in the experiment are shown in Table 3.6. 
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Table 3. 6 The parameter values used in the second experiment 

Neurons and synapses equations 

parameters 

Value Unit 

Excitatory synapse time constant (tau_exc) 2  Ms 

Inhibitory synapse time constant (tau_inh) 5  Ms 

Neuron time constant (tau_mem) 20 Ms 

Membrane leak (El) 20 mV 

Spike threshold (Vthr) 800 mV 

Reset value (Vrst) 0  mV 

Fixed inhibitory weight (winh) 0.20 V 

Fixed excitatory weight (wexc) 0.40 V 

Thermal voltage (UT) 25  mV 

Refractory period (refr) 4  Ms 

SDSP parameters   

Up/Down weight jumps (Vthm) 0.75*Vthr mV 

Calcium variable time constant (tau_ca) 5 *tau mem Ms 

Steady-state asymptote for Calcium 

variable (wca) 

50  mV 

Stop-learning threshold 1 (stop if Vca < 

thk1) 

1.7 × wca mV 

Stop-learning threshold 2 (stop LTD if Vca 

> thk2) 

2.2 × wca mV 

Stop-learning threshold 2 (stop LTP if Vca 

> thk3) 

8 × (wca–wca) mV 

Plastic synapse (NMDA) time constant 9  Ms 

Plastic synapse high value (wp hi) 6  mV 

Plastic synapse low value (wp lo) 0  mV 

Bistability drift 0.25  

Delta weight 0.12 × wp_hi mV 

Input size 569 spike train  

Simulation time 40  ms 

Default clock unit 0.2 Ms 

Based on the above two experiments, the adaptation on the algorithm gave excellent results 

compared to the original one. The next chapter will build on this adaptation to detect the zero-

day fast flux domains. 

3.5 Chapter Summary: 

This chapter presented our first contribution in adapting the ADeSNN algorithm, and the 

comparison experiments have been conducted on both supervised FFKA algorithm ADeSNN 

and the original DeSNN. The proposed adaptation can be summarized as producing the initial 
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weight of the RO based on the spike time itself rather than the RO initial weight based on the 

ranks of the order of the incoming spikes. The current version has been modified based on the 

changing of the initial weight of the RO, where the initial weight is based on the spike time of 

the incoming spikes, as a results the (mod) variable became useless, which leads that the current 

contribution improved the parameters customization problem.  

Furthermore, two public datasets were used to evaluate the two DeSNN and the adaptive 

ADeSNN algorithms. The first experiment used the IRIS dataset and produced 3-fold cross-

validations, then the average of their result was computed. The results of the experiment showed 

that the adaptive algorithm has enhanced the performance of the DeSNN, where the overall 

accuracy was (91.67%) of the ADeSNN over DeSNN (56%). 

The second experiment exploited the public WDBC dataset and this dataset was randomly 

distributed over 5-fold cross-validations. The average of the results was taken, and several 

accuracy measures were tested, all the discussed results above proved that the performance of 

the adaptive ADeSNN algorithm is better than DeSNN, the overall accuracy of the ADeSNN 

was (97.16%) while the original DeSNN was (76.59%). 

As a result, the contribution presented in the adaptation on the DeSNN algorithm by modifying 

the initial weight mechanism, improves the performance of the algorithm, and achieves better 

results in several ways. The adaptation also minimizes the error rates of the classification 

process, as show in Tables 3.3, respectively. Finally, the exploitation of two other public 

datasets gave comparable results. In chapter four, the new adaptive supervised FFKA frame 

work will be introduced to detect the fast flux domains.  
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CHAPTER FOUR 

SUPERVISED FAST FLUX KILLER APPROACH FFKA  

 

Chapter Overview 

This chapter presents the fast flux killer approach, then introduces the first phase, which is the 

supervised one. FFKA in this phase trains the adaptive dynamic evolving spiking neural 

network and sets the classification threshold. The evaluation of the proposed method is then 

compared with two fast flux detection approaches in the field. Also, this chapter presents the 

new feature set that helps the proposed approach to accurately classify the fast flux domains.  

4.1 Introduction 

According to the achieved enhancement regarding the initial weight described in the chapter 

three, that the proposed adaptation of the DeSNN algorithm improved its performance,  this 

chapter introduces the FFKA which has to be exploited to detect the fast flux domains. FFKA 

works online and offline. In the online mode, FFKA deals with unknown new domains which 

the approach was not trained on in order to detect the zero-day fast flux domains. On the other 

hand, the offline mode deals with labelled data where the supervised learning phase of the FFKA 

will be trained to produce an enhancement in the classification process.  Section 4.2 will present 

the FFKA in both phases: the supervised and the unsupervised. Finally, the rest of this chapter 

will discuss the supervised mode, and the unsupervised mode will be discussed in chapter five 

as a part of the FFKA Hybrid approach. 

4.2 Fast Flux Killer Approach 

ADeSNN was discussed in chapter three in details, this algorithm was designed to work online, 

that means it adapts its' structure and functionality based on the incoming data. FFKA as 

depicted in Figure 4.1, is a Hybrid learning approach that employed two parallel ADeSNN 

algorithms, the former works as supervised in an offline mode and the later works as 

unsupervised in an online mode.  



81 

 

To evaluate the proposed supervised FFKA, a public fast flux dataset was used in order to test 

the ability of the ADeSNN algorithm to detect fast flux domains with labeled dataset at the 

supervised phase in an off-line mode to adjust the threshold value of the classification process.  

The supervised mode in FFKA is about training the ADeSNN algorithm on both fast flux 

domains and benign domains. Besides, a threshold of the classification process will be trained 

along the training process. The outputs of the supervised training mode are the final weight and 

the classification threshold, where the weights are stored in the weights repository. Furthermore, 

the threshold stored to be accessed by both the supervised and unsupervised modes later. 
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Figure 4. 1 The architecture of the FFKA 

Figure 4.1 shows the two supervised and unsupervised phases of the FFKA Hybrid approach. 

The first step starts with letting the approach learn how to classify the benign and fast flux 

domains based on labelled data, then stores the output of the ADeSNN algorithm in the weights 
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repository and stores the calculated classification threshold as well. The second unsupervised 

phase that will be discussed in chapter five continues to deal with new unknown unlabeled data. 

The decision here is taken based on the output of phase one, specifically the classification 

threshold. 

4.3 Supervised Learning Phase 

The supervised learning phase as mentioned in section 3.2 trains the classifier used (ADeSNN) 

on labelled data. It also produces the classification ability based on the features of each class. 

Based on this, the discussion here is about the stage of preparing the dataset, the process of the 

feature extraction, and the learning process based on the FFKA supervised phase.      

4.3.1 The Preprocessing Stage 

The fast flux public dataset found as stacks of DNS responses, a script of python was written to 

extract information needed to build the feature set. Some feature needs to contact the ASN to 

get extra information about the IP addresses, and to speed up the process of building the feature 

an ASN repository that is located in the local dive of the approach as depicted in Figure 4.2. 
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Figure 4. 2 The pre-processing phase 
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4.3.2 Feature Extraction 

This stage is about how to build and calculate some of the features that need calculations. 

Building some features requires extra information from the ASN repository so one of the 

updated and freely downloadable ones was saved into the local drive to speed up the process of 

detection. For example, the number of the ASN for the answer section of the DNS response as 

well as the number of ASN of the additional section in the same DNS response message needs 

extra information from the ASN repository, in this case from the local drive. Another example, 

the similarity feature need to access the same repository to calculate the similarity between the 

autonomous system numbers of the user and the autonomous system numbers of the returned 

IPs. Finally some other features could be taken straight away from the DNS response message.  

4.3.3 Adaptive dynamic evolving spiking neural network 

The trained ADeSNN starts to classify the new upcoming inputs to the proper class benign/fast 

flux, one by one, so for each input the algorithm creates one output neuron, and so on. Moreover, 

the algorithm continues learning from the incoming inputs incrementally. The ADeSNN 

algorithm was discussed in details in section 3.2. 

The criteria of testing and classification of the DeSNN and ADeSNN algorithms was to perform 

the Euclidean distance between the weight of the new input record and the weights of the trained 

inputs. As shown in chapter 3, the results were good so far, but in case of changing this criteria 

to the proposed similarity measure, it is expected that this would give better results than before. 

The similarity criteria is based on the calculation of the similarity between the new input weight 

and the already trained inputs weights according to formula 1 in chapter 4, which is one another 

contributions of this work. Two variables are significantly similar if the similarity between them 

is closest to 1, and they are not similar to each other if their similarity is closest to 0, which 

means that the bigger value refers to highest similarity between the two variables. As there are 

a classification process to classify more than one class, a testing threshold is needed to be set to 

each class, with suitable threshold value that separates all classes. Moreover, the threshold takes 

its value while the training phase is in progress, as each input is classified for one class so the 

threshold of this class is calculated based on the values of the inputs of the specific class.  
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4.4 Dataset 

The proposed adaptation on ADeSNN method has to be evaluated and tested in case of detecting 

fast flux domains, so a public dataset was used in this study (Alvi et al., 2017),which is also 

used in (Huang et al., 2010).The majority of the learning machine approaches such as, the real-

time, active, passive approaches used also the same sources (Castelluccia et al., 2009; C.-M. 

Chen et al., 2013; Holz et al., 2008; Martinez-Bea et al., 2013; Qassrawi & Zhang, 2012; Sheng 

et al., 2010; B. Yu et al., 2014). This dataset consists of DNS responses that were labeled domain 

names as benign and fast flux. The benign domains are selected from the top trusted websites 

like Alexa (Alexa), top blogs as Blogs On Top "BOT". While the fast flux domains are collected 

from the famous fast flux blacklisted websites such as ATLAS ("ATLAS URL: 

https://www.arbornetworks.com/atlas-portal,"), DNSBL ("DNSBL URL: 

https://www.zerobounce.net/,"), and FluXOR (information security expert's detection systems). 

Each record contains the selected feature set that helps to identify each class. Fast flux dataset 

contains (1710) instances, while the benign dataset contains (3420) instances.  

4.5 Feature Selection 

Building detection systems and other classification systems needs to identify the feature or 

attribute set that best describes the problem and the needed solution. Also, these features should 

help in minimizing the irrelevance and redundancy problems, as well as minimizing the false 

correlation and classification of the detection and classification systems. Based on that, feature 

selection methods needs to get released of the irrelevancy and redundancy of the feature set 

without affecting or decreasing the performance (Balepin, Maltsev, Rowe, & Levitt, 2003; 

Giacinto, Roli, & Didaci, 2003; Lee & Stolfo, 2000). 

The embedded model, as one of the main methods that deals with feature selection, joins the 

training phase for particular method E.g., decision tree algorithms, such as C4.5. The algorithm 

selects the greatest feature which is the best for classification. At that time they divided sub-

space based on the carefully chosen feature. The algorithm repeats this process until a certain 

threshold is reached (Boutemedjet, Bouguila, & Ziou, 2009; Jeong, Kang, Jeong, & Kong, 

2012).  
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4.6 Feature Set 

The first stage of the proposed solution is the feature extraction. A well-built fast flux botnet 

detection method should distinguish between a legitimate and malicious network. On the other 

side, a well-built Fast Flux Network (FFN) seems like a benign CDN, due to returning a DNS 

records that belong to the same geographic areas. This leads to a detection systems that depends 

on IP address features to misclassify those types of FFN domains as benign CDNs. In addition, 

the FFN developers are trying to change the characteristics of the fast flux Network to evade 

detection, even if this modification affects the performance of the FFN. Therefore, a new 

detection approach should rely on features belonging to the FFN itself, as these features are not 

prone to change quickly. 

Based on the current fast flux dataset, some of the features used in the proposed solution are 

used before in related works. Moreover, new features are suggested to improve and enhance the 

performance of the classifying process of the fast flux and benign domains. Table 4.1 shows the 

selected features set. 

Table 4. 1 The proposed feature set 

Feature Description New 

feature 

IPans Number of IP addresses in the answer section Not 

NSadd Number of IP addresses in the additional section Not 

NASN_ans Number of ASN for the IP addresses of the answer section Not 

NASN_add Number of ASN for the IP addresses of the additional section Not 

AVGSIM The average of similarity of the ASN (among the answer section 

and the ASN of the victim himself) 
New 

Qtime Time of the query  New 

Msgs Message size  New 

 

Table 4.1 shows the definition of all the feature set. The first two feature are straight forward 

and obtained from the response directly, NASN_ans and NASN_add need to get extra 

information from the local ASN repository as presented in Figure 4.2. AVGSIM is a new feature 

that computes the average of the similarity between the ASN number of the requested IP address 

and the other ASN number of the returned IP addresses of the DNS response. In other words, 
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AVGSIM refers to the average of the similarity between the autonomous system number of the 

user's IP and autonomous system numbers of the proxy bots (compromised computers) returned 

in the answer section of the DNS response, and is computed according to equation (1) 

(Alkhazaleh, Salleh, & Hassan, 2011): 

Mi(𝑦(𝑒) − 𝑥(𝑒)) = 1 −
∑ 𝑦𝑖𝑗(𝑒)−𝑥𝑖𝑗(𝑒)
𝑛

𝑗=1

∑ 𝑦𝑖𝑗(𝑒)−𝑥𝑖𝑗(𝑒)
𝑛

𝑗=1

                                                                          (1) 

Where ẻ is the input vector. It could say that µ(ẻ) and δ(ẻ) are significantly similar if 

M(µ(ẻ),δ(ẻ)) ≥ ½, which means that the bigger value refers to high similarity between the two 

variables.  

The majority of the chosen features were found in the literature work, but the last three features 

are new. In addition, the other two new features are the time of the query and the DNS packet 

size. All these features together showed that their ability to distinguish between the fast flux 

network (served by domains) and the legitimate domains. In the discussion section, these new 

features will be tested to show their effect on the process of classification. Finally, all the feature 

set was put into a feature selection evaluation to show their effectiveness rank on detection 

process.  

4.7 Experiments and Discussion 

This section discusses the experiments made to prove the effects of the proposed similarity 

measure to be used as a classification criteria in order to detect the fast flux domains in 

supervised offline mode. Furthermore, it discusses the feature set proposed from the point of 

view of the influence they affect the process of detection fast flux domains. 

4.7.1 Introduction 

The first part of the FFKA is the supervised learning offline mode. Here one more contribution 

is going to be added to the adaptation proposed on the DeSNN algorithm. In this chapter, the 

FFKA approach based on the ADeSNN algorithm detects the fast flux domains in an offline 

mode by using the fast flux public data set. In addition, the testing criteria in this stage is based 

on the proposed similarity measure in formula 1 in chapter 4. The results of the proposed 



87 

 

supervised phase of the FFKA will be evaluated based on a comparison with two of the fast flux 

detection approaches in the same field. 

The feature set has been tested different times via several experiments, especially the new 

proposed features. The results was promising for some feature, at the same time one of the 

feature showed negative effect on the classification process. Thus, our recommendation is to 

exclude this feature from the list in future work. 

4.7.2 Supervised Fast Flux Killer Approach Experiment 

When the feature set became ready, the experiment can start. The supervised learning takes the 

inputs records and feeds them to the ADeSNN algorithm one by one. As the new input record 

has entered a new output neuron is created, at the end of the supervised phase the output neuron 

weight will have the captured pattern of the input records stored as a weighted matrix. 

Furthermore, these output weights will be saved at the weight repository. In addition, the 

threshold value was learning while the supervised phase was in progress, and the final value 

will be stored to be in the next phase of the unsupervised learning phase in order to help in the 

process of classification. Of course, this current supervised phase will classify the input records 

at the end in one of the two classes, the benign domain or fast flux domain. 

The current supervised phase of the approach continuously run in an offline mode, where its 

output will be used in the unsupervised learning phase in an online mode. Periodically, the 

supervised phase re-executed once every 1000 (in the current experiment) new incoming 

domains at the unsupervised online mode. Where the learning this time will be based on the 

new data from the stored inputs from the unsupervised phase, then the threshold tuned to be 

best related to new nature of the new data and helps in the classification process.    

The following discussion is part of the research validation and evaluation processes, which 

presented the comparison between the proposed FFKA and two other approaches from the 

related works (Celik & Oktug, 2013; Lin et al., 2013). A public dataset has been used to test the 

chosen classifiers, then compare their performance among the related previous works done in 

same field. The experiments were conducted using the mentioned fast flux public dataset, to 

test the ability of the proposed approach to solve fast flux problem based on the proposed 
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similarity measure in classification process as well as the proposed fast flux feature set. The 

performance and results of the experiments were promising and indicated an increase in the 

detection accuracy of fast flux domains. 

Three different simulations were implemented on MATLAB and Python platforms. The 

hardware and software used for this experiment are the same as used in the subsection 3.4, two 

of them were selected based on two related previous researches, which is the linear decision 

function in (H.-T. Lin et al., 2013) and the C4.5 in (Celik & Oktug, 2013) algorithm. The third 

was the proposed adaptive ADeSNN based on the new adaptation of the similarity measure and 

the proposed feature set.  

To ensure the quality of the supervised learnning phase of the ADeSNN, a 3-folded cross-

validation method is used to estimate the error rate of the proposed classifier and the other two 

methods as well. Based on this, the average was taken of the linear decision, C4.5, and the 

FFKA classifiers. All the results of the three experiments are presented in Table 4.2. 

Table 4. 2 The accuracy measures of the detection algorithms  

Evaluation measures C4.5 Linear Supervised FFKA 

FNR 0.06987 0.03930 0.00000 

FPR 0.05333 0.05333 0.02410 

TPR 0.93013 0.96070 1.00000 

TNR 0.94667 0.94667 0.97590 

ACC 0.93833 0.95374 0.98765 

Precision 0.94667 0.94828 0.97531 

Recall 0.93013 0.96070 1.00000 

F-measure 0.93833 0.95445 0.98750 

MCC 0.87680 0.90755 0.97561 

AUC 0.9383988 0.9536827 0.9879518 

RMSE 0.24834 0.21507 0.11111 

NDEI 0.49641 0.42990 0.22188 

 

According to Lin et al. (2013) a genetic approach was proposed as a real-time detection solution 

of the fast flux domains problem. This method suggested two detection features to classify the 

benign and the flux domains. Firstly, entropy of the domain name (E-DPN) of the preceding 



89 

 

node of the flux node (flux-agent), by using the trace route of all the returned IPs from the DNS 

response. Of course, if the E-DPN is high then, most probably, the domain that is classified as 

benign is otherwise classified as fluxed. Secondly, the Standard Deviation of Round Trip Time 

(SD-RTT) between the user and all the return IPs of the flux-agents, so assumed that the scatter 

flux-agent is going to produce high value of the SD-RTT. This spatial feature takes the number 

of different ASNs and number of IPs return in single DNS response in their calculations. 

However, these two detection features were evaded by the botmaster, as botmaster is controlling 

the returned list of IPS that the user receives. The returned list could have IPs in the same ASN 

or adjacent to the user ASN, so the above measures can inaccurately be classified as the benign 

and flux domains. On the other hand, botmaster may return a list containing just a single IP 

address, which leads to ineffective detection of the domains(Hsu et al., 2014; Otgonbold, 2014). 

Although genetic algorithms provide good accuracy as stated in their paper, but in case the 

botmaster decides to return the list of IP addresses in the same AS so the genetic algorithm 

results based on the countermeasures will be affected (Hsu et al., 2014). According to our 

implementations the overall accuracy of the linear classifier is 95.37 % as shown in Figure 4.3. 

Similarly, the linear decision function used as a classifier needs to estimate the categorizer of 

the linear function, so if the estimation is good then the linear function works properly, 

otherwise the error will be high in the classification process (Chahal & Khurana, 2016). So, the 

need for a classifier that detects the zero-day domains is still unsatisfied.  
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Figure 4. 3 The overall detection accuracy 

On the other hand, the second compared algorithm was the C4.5 as presented in (Celik & Oktug, 

2013). A number of feature sets were examined to detect fast flux network, such feature sets 

consist of timing based, spatial based, network based, domain based, and DNS answer based 

feature sets. As mentioned in the literature review, the data set was small even though  the 

accuracy of the experiment was high; also when all features are involved in the experiment the 

prediction results become insensitive to two features (timing and domain based feature sets) 

(Otgonbold, 2014), which is the most related features to the domain resolution process.  

Besides, as C4.5 algorithm is considered as a supervised learning algorithm, it could not be used 

to discover the unknown attacks, especially the zero-day fast flux domains, while the current 

Hybrid FFKA could efficiently detect this kind of domains.  

Moreover, according to our implementation of the C4.5, the accuracy was not high as stated in 

their paper. According to the current experiment it was 93.38%. when this result and the 

previous linear results were compared to the current proposed FFKA, obviously the proposed 

approach overcome the two methods even in this part of the FFKA supervised phase with a total 

detection accuracy of 98.76%. Figures 4.4 and 4.5 showed other accuracy measures which are 

the ROC curve and F-measure, respectively.  
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Figure 4. 4 The area under ROC curve 

 

 

Figure 4. 5  The F measure score 

Figure 4.4 exhibited the area under ROC curve of the three classifiers, as the AUC denotes the 

strength estimator of classifier performance. The proposed ADeSNN proved that it is the best 
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among the others. In addition, Figure 4.5 displayed that the results of the f-measure which 

overcame the other two classifiers C4.5 and the linear decision function. As a result, all those 

measures proved that our contribution of the adaptation revealed that the performance of the 

ADeSNN was enhanced, and leads us to a new version of the spiking neural network that will 

help solve the problem of fast flux domains .Figure 4.6 depicts the error estimation measure 

which is the RMSE.  

 

Figure 4. 6 The root mean square error 

As shown in Figure 4.6 the error measure indicated that the proposed algorithm over performed 

the two other methods by almost 50%, which achieves an enhancement of the misclassified 

instances as RMSE measures the differences between the actual and the estimated targets. So, 

as the FFKA obtained better results, this means that it will be more accurate to deal with 

classification problems in an efficient way. The parameters of the ADeSNN algorithm   set in 

the experiment are shown in Table 4.3. 
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Table 4. 3 The parameters of the ADeSNN algorithm used in the experiment. 

Neurons and synapses equations parameters Value Unit 

Excitatory synapse time constant (tau_exc) 2  Ms 

Inhibitory synapse time constant (tau_inh) 5  Ms 

Neuron time constant (tau_mem) 20 Ms 

Membrane leak (El) 20 mV 

Spike threshold (Vthr) 800 mV 

Reset value (Vrst) 0  mV 

Fixed inhibitory weight (winh) 0.20 V 

Fixed excitatory weight (wexc) 0.40 V 

Thermal voltage (UT) 25  mV 

Refractory period (refr) 4  Ms 

SDSP parameters   

Up/Down weight jumps (Vthm) 0.75*Vthr mV 

Calcium variable time constant (tau_ca) 5 *tau mem Ms 

Steady-state asymptote for Calcium variable (wca) 50  mV 

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV 

Stop-learning threshold 2 (stop LTD if Vca > thk2) 2.2 × wca mV 

Stop-learning threshold 2 (stop LTP if Vca > thk3) 8 × (wca–wca) mV 

Plastic synapse (NMDA) time constant 9  Ms 

Plastic synapse high value (wp hi) 6  mV 

Plastic synapse low value (wp lo) 0  mV 

Bistability drift 0.25  

Delta weight 0.12 × wp_hi mV 

Input size 5130 spike train  

Simulation time 40  ms 

Default clock unit 0.2 Ms 

 

4.7.3 Feature Set Discussion 

The feature set used gave excellent results with the adaptive approach. On the other hand, some 

experiments were performed in order to check the influence of these feature set on the whole 

detection process. Based on that, three experiments were conducted. Every experiment was 

implemented by deleting one of the three new proposed features, keeping the other used features 

the same for the all experiments. The results of these experiments are illustrated in Table 4.4. 
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Table 4. 4 The results of the three experiments by eliminating one new feature at a time. 

 The three Experiments without feature of  

Evaluation 

measures 
AVGSIM Qtime  Msgs 

ADeSNN(ALL) 

FNR 0 0 0 0 

FPR 0.283950617 0 0.209876543 0.02410 

TPR 1 1 1 1 

TNR 0.716049383 1 0.790123457 0.97590 

ACC 0.858024691 1 0.895061728 0.98765 

Precision 0.716049383 1 0.790123457 0.97531 

Recall 1 1 1 1 

F-Measure 0.834532374 1 0.882758621 0.98750 

MCC 0.746787994 1 0.808122036 0.97561 

RMSE 0.37679611 0 0.323941772 0.11111 

NDEI 0.752428371 0 0.646882951 0.22188 

MSE 0.141975309 0 0.104938272 0.01235 

According to Table 4.4, the first experiment eliminated the feature (AVGSIM) from the feature 

set, then implemented the ADeSNN algorithm on the other sixth features, the accuracy was 

almost about 85.8%. Comparing this results with the others it is clear that implementing the 

algorithm while excluding this feature will give low detection rate, so this indicates that the 

AVGSIM played important role in classifying the input instances, as depicted in Figure 4.7. 

 

Figure 4. 7 The accuracy comparison between the feature set experiments 
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By looking at the results of the second experiment shown in the Figure 4.7, it is obvious that 

the detection rate reached 100%. Which tells us that this feature (Qtime) affects badly on the 

classification process. In addition, the 3rd experiment that was implemented without the message 

size showed an accuracy of nearly 89.5%. Actually, this is adequate as the experiment ran 

including Qtime feature, which seemed the worst feature among them all. The last column in 

Table 4.4 showed the result of the ADeSNN algorithm with all features included. Here we can 

say that the accuracy of 98.76% is excellent, considering Qtime was one of its features.   

The root Mean Square Error was also computed for all three experiments. Figure 4.8 shows that 

the experiment excluded the average similarity feature was the highest RMSE value. This 

proves that the average similarity feature is important to the classification process, while its 

absence will increase the number of misclassified results.  On the other hand, the query time 

feature showed bad results, where the absence of this feature gave 0 value for RMSE, which is 

excellent for the classification process as no instances will be missed. 

Finally, the combination of the features together, even with including the query time feature, 

still produces good results, as depicted in Figure 4.8.  

 

Figure 4. 8 The RMSE of the feature set experiment 
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Another test was implemented to prove the quality of the feature set was the feature selection 

method based on the decision tree (Alauthaman, Aslam, Zhang, Alasem, & Hossain, 2016; Kira 

& Rendell, 1992), for more details about the feature selection method see section 4.5. Table 4.5 

shows the result of the current feature set. 

Table 4. 5 The features set ranking importance 

Feature Important rate 

Msgs 100 

IPans 4.01 

AVGSIM 3.45 

NSadd 1.94 

NASN_ans 1.75 

NASN_add 1.13 

Qtime 0.58 

 

 

Figure 4. 9 Feature set ranking based on the feature selection method 
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4.8 Conclusion 

This chapter displayed the enhancement of the proposed supervised FFKA by exploiting 

ADeSNN to detect the fast flux domains in offline mode. The purpose of this chapter was to 

show the improvement in the performance of the FFKA approach based on the similarity 

measure used to classify the fast flux domain and the benign domains, as well as the feature set 

that facilitated the classification process. 

In order to evaluate the proposed adaptation of the supervised FFKA phase, a public fast flux 

dataset was used. Three experiments were conducted, the first was the proposed supervised 

phase of the FFKA and the other two methods were chosen from the same field of the fast flux 

detection approaches, the linear decision function and C4.5 classifiers.  

The discussion started with the stages of preparing the dataset and the process of the feature 

extraction. The fast flux public dataset found that as stacks of DNS responses, a script of python 

was written to extract the features and store it in a secondary database, and then began building 

and calculating some of the features that needed calculations. A local copy of the ASN database 

was also used to speed up the process of IP address information retrieval. 

The feature set of the all three experiments was tested using the feature selection method, this 

later used a decision tree to rank the importance of the features on board. The proposed three 

features have been tested as well, the Qtime feature showed the worse influence on the 

classification and detection processes. In contrast, the average similarity feature has the best 

influence on the classification process. Another experiment proved the same results: the three 

proposed features were tested in three different experiments. Each experiment has to delete one 

of these three features and record the result of the classification. At the end of the experiment 

the results had the same indication of the feature selection method. 

The supervised phase trained the ADeSNN to detect the fast flux domains. The output of the 

supervised phase was the final weights and the classification threshold, where the weights stored 

at the weight repository, as well as the classification threshold. Moreover, the weight repository 

and the threshold helped to save more memory storage as no need to store all inputs forever, 

just a particular space to store a certain number of inputs is required.   
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The results of the FFKA were compared with linear decision function and C4.5 classifiers from 

the previous related works. Overall, the performance of the FFKA over perform both of them 

based on previously discussed accuracy measures. Overall, the current results based on the 

comparisons have made were promising to move forward and added a value to the process of 

fast flux domains detection. Where the Overall accuracy of the FFKA to detect fast flux domains 

was (98.76%).  
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CHAPTER FIVE 

HYBRID FAST FLUX KILLER APPROACH  

Chapter Overview 

This chapter presents the two parts of the fast flux killer approach namely the supervised and 

the unsupervised phases. The supervised phase trains the adaptive dynamic evolving spiking 

neural network at the beginning, sets the classification threshold, and stores the weights in the 

weights repository. The unsupervised phase detects and classifies the zero-day domains based 

on the output of the supervised phase. The evaluation of the proposed FFKA approach in this 

chapter is then compared with supervised phase results presented in chapter four. The result will 

be discussed at the end of this chapter.  

5.1 Introduction 

The improvements presented the last two chapters were substantial based on the enhanced 

performance obtained from the ADeSNN algorithm. The improvements enhanced the 

performance of the algorithm in different ways. Improvements were observed in the initial 

weights, the similarity classification measure, and the features set. Other slight improvements 

made over the ADeSNN algorithm focused on the parameter customization problem, which was 

discussed a part of the parameters adjustment.  

There is confusion in the community about the meaning of online detection. The offline 

detection approaches for example trained on data once and started to detect the incoming data. 

If, however, some of the new data kept changing, problems may occur.  This leads us to search 

for a new model which is trained on offline dataset and adapts itself for the new incoming data, 

which is called the online model. In our field, online is concerned with dealing with the new 

fast flux domain threats once seen. 

The proposed FFKA approach deals with two phases in order to detect the fast flux domains, 

the first is the supervised learning phase which works offline and train the approach to detect 

fast flux domains, while the second is unsupervised learning phase which works online and 
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based on the output of the supervised phase, the online learning mode will be able to detect the 

zero-day fast flux domains.    

5.2 The Hybrid Fast Flux Killer Approach (Supervised and unsupervised) 

5.2.1 Introduction 

At this chapter the FFKA will be discussed in details and this include the supervised and 

unsupervised phases. We will look at the full life cycle of the FFKA starting from the setting of 

the bases of the approach at the supervised phase, until the detection of zero-day fast flux 

domains at the unsupervised phase. Then, a comparison between the output of the supervised 

phase described in  chapter four and the output of the Hybrid approach described in this chapter 

will be performed. 

5.2.2 The FFKA Supervised Phase 

In chapter four, we discussed the supervised process in detail.  The Supervised phase deals with 

labelled data, while the process of learning is in progress and the classification threshold is 

being set. As the process of learning reaches the end, the output of this phase will be the final 

weights of the output spiking neurons and the classification threshold. The weights are stored 

in the weights repository and the threshold will be saved as well.  

5.2.3 The FFKA Unsupervised Phase 

In this section the unsupervised phase will be introduced as part of the FFKA approach.  The 

following sections describe the whole unsupervised phase in details. 

5.2.3.1 Introduction 

This is the second phase of the proposed FFKA approach, called the unsupervised learning 

phase. This phase deals with new instances (domains), so that the unsupervised learning part of 

the approach will be able to deal with unknown data, in our case the zero-day fast flux domains. 

The classification process will be based on the output of the previous supervised phase as it will 

be described later on in this chapter. 
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5.2.3.2 The Preprocessing Stage 

The preprocessing stage of the dataset from the DNS responses was introduced in detail in 

section 4.3.1, the dataset will be prepared, as it will be fed to the unsupervised learning phase 

one by one.  

5.2.3.3 Feature Extraction 

This stage is about how to build and calculate some of the features that need calculations. As 

discussed in details in section 4.3.2, some features need to be calculated based on extra 

information provided from a third-party database and some other features could be taken 

straight away from the DNS response message.  

5.2.3.4 Hybrid Fast Flux Killer Approach 

The two phases of the supervised and the unsupervised learning phases were combined together 

in order to achieve the main goal of the research, which is the detection of the zero-day fast flux 

domains in an online mode. 

The FFKA approach started with the supervised phase to set the basic seeds of the classification 

process, then begins the online detection mode to detect the zero-day fast flux domains. After 

this phase, the supervised learning offline mode is re-executed once again to refine the 

classification criteria. 

As shown in Figure 5.1, the supervised phase receives the labelled inputs one by one and builds 

the spiking neural network based on the ADeSNN algorithm. As more inputs kept coming the 

spiking neural network becomes bigger and its learning from the inputs produces the final 

weights matrix. Subsequently, for each input record there is an output neuron created to capture 

the input pattern along the learning process. At the end of this phase all the output neurons' 

weights were stored in the weights repository. Furthermore, during the learning process, the 

classification threshold was computed to be used in the classification process, which is based 

on the similarity measure.   
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The unsupervised mode deals with unlabeled data and the ADeSNN algorithm will capture the 

features of the domains, then trains the ADeSNN on the new inputs.  the algorithm will then 

accessed the classification threshold stored from the supervised phase to classify the unknown 

domains. While the new un-labelled records are trained by the ADeSNN in an online mode, the 

final weights became ready to be stored in the weights repository.  

The new weights of the new input records stored at the weights repository will be used later 

after certain number of records and time.  In our case after 1000 records, in supervised learning 

again to enhance the classification threshold value as the new inputs become part of the training 

dataset of the supervised phase. This process is depicted in Figure 5.1. 
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Figure 5. 1 The Hybrid FFKA 
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The weight repository and the classification threshold helped to save on the memory storage, as 

there is no need to store all incoming inputs forever but just the specified space to store certain 

number of inputs is required (1000 records in this case). 

5.3 Dataset 

The proposed modification on ADeSNN method has to be evaluated and tested by exploiting 

the public fast flux dataset as discussed in section 4.4.  

5.4 Feature Set 

A public fast flux data set was used as discussed in section 4.4. So, the feature set proposed here 

is the same as the one proposed in section 4.6. The seven features remain the same for 

comparison purposes.  

5.5 Experiment and Discussion  

Both supervised and unsupervised learning phases are now working at the same time, in the first 

step the supervised model will train the algorithm on the fast flux data then produce the seeds 

of the classification process to the next step. The second step, the unsupervised learning phase 

deals with the new input records and executes the algorithm to produce the final weights then 

uses the first step results to help the unsupervised phase to classify the new incoming inputs if 

they are fast flux domains, especially the zero-day fast flux domains. 

To achieve that, the public fast flux data set was exploited in order to evaluate the Hybrid FFKA 

approach and compare the achieved results with the results of the supervised phase alone in 

chapter four. A 3-folded cross-validation is used and three experiments were conducted for this 

purpose. Based on that, each experiment in the first two folds is used in the supervised learning 

to train ADeSNN in the offline mode. While the third fold was fed into the unsupervised 

learning in an online mode.  

At the supervised phase of the approach the first two folds are used to train the ADeSNN 

algorithm on the benign and fast flux domains, while the running of the spiking neural network 

the initial weights are updated according to the new inputs, and the final weights of the 

supervised phase will be stored at the weights repository. At the same time, the classification 
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threshold trained to classify both the benign and the fast flux domains while training, and the 

final value of the threshold stored will be used by the next step at the unsupervised phase. 

The third fold was fed to the unsupervised phase as un-labelled data inputs, so the algorithm of 

ADeSNN will execute the spiking neural network and produces the final weights of those 

inputs, the unsupervised phase has an access to the classification threshold produced from the 

supervised phase and will be used to classify the new inputs. Then, the new weights are 

added/replaced in the weights repository.  

For every 1000 new input records the approach will re-train the supervised phase on the weights 

stored in the weights repository to enhance the classification threshold. This leads to the fact 

that the proposed approach will update its classification ability based on the changing of the 

input upon time. Which give the approach the lifelong workability, as the functionality adapts 

to the new changes in the form of what the fast flux domains might do.  

5.5.1 The Results of the Hybrid FFKA 

Based on the three experiments mentioned in section 5.5, the hybrid FFKA approach worked 

offline and online in a hybrid mode to detect the fast flux domains in offline mode and trained 

the FFKA approach to the zero-day fast flux domains in online mode. The average of the three 

experiments’ results are displayed in Table 5.1.  

Table 5. 1 Results of the hybrid FFKA 

Evaluation measures Hybrid FFKA 

FNR 0.00% 

FPR 0.59% 

TPR 100.00% 

TNR 99.41% 

ACC 99.54% 

Precision 99.41% 

Recall 100.00% 

F-measure 99.71% 

MCC 98.67% 

RMSE 6.78% 

NDEI 13.55% 
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According to the results displayed in Table 5.1 the approach accurately classifies the benign 

domains with a true positive rate of 100%. Additionally, the approach classified the fast flux 

domains with false positive rate of (0.59%). All the accuracy measures of the detection approach 

results were displayed in Table 5.1. The error results are displayed in Figure 5.2. 

 

Figure 5. 2 The results of the hybrid FFKA 

 

Figure 5.2 displays the results of the hybrid FFKA approach where the error estimators shows 

that the approach was able to minimize the number of misclassified instances based on the new 

contributed enhancements.  

The set on parameters used in this experiment is shown in Table 5.2. 
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Table 5. 2 Parameters used in the hybrid experiment 

Neurons and synapses equations parameters Value Unit 

Excitatory synapse time constant (tau_exc) 2  Ms 

Inhibitory synapse time constant (tau_inh) 5  Ms 

Neuron time constant (tau_mem) 20 Ms 

Membrane leak (El) 20 mV 

Spike threshold (Vthr) 800 mV 

Reset value (Vrst) 0  mV 

Fixed inhibitory weight (winh) 0.20 V 

Fixed excitatory weight (wexc) 0.40 V 

Thermal voltage (UT) 25  mV 

Refractory period (refr) 4  Ms 

SDSP parameters   

Up/Down weight jumps (Vthm) 0.75*Vthr mV 

Calcium variable time constant (tau_ca) 5 *tau mem Ms 

Steady-state asymptote for Calcium variable 

(wca) 

50  mV 

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV 

Stop-learning threshold 2 (stop LTD if Vca > 

thk2) 

2.2 × wca mV 

Stop-learning threshold 2 (stop LTP if Vca > 

thk3) 

8 × (wca–wca) mV 

Plastic synapse (NMDA) time constant 9  Ms 

Plastic synapse high value (wp hi) 6  mV 

Plastic synapse low value (wp lo) 0  mV 

Bistability drift 0.02  

Delta weight 0.12 × wp_hi mV 

Input size 5130 spike train  

Simulation time 40  ms 

Default clock unit 0.2 Ms 

 

Overall, the Hybrid FFKA approach proved its ability to detect the zero-day fast flux domains in 

the online mode where the total accuracy achieved was 99.54%, and enhanced the classification 

accuracy in offline mode periodically. 

5.5.2 Comparison of Supervised and Hybrid approach 

In chapter 4, the supervised FFKA approach was introduce to train the approach in detecting the 

fast flux domain and produced and enhanced (later) the classification threshold of the 

unsupervised phase.  
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The following discussion is about the comparison between the supervised FFKA approach phase 

from chapter 5 and the hybrid (supervised and unsupervised) FFKA approach. A public dataset 

was used to test the chosen classifiers in section 4.4. Three experiments were conducted using 

the mentioned fast flux public dataset to test the ability of the proposed FFKA approach to solve 

fast flux domains problem. The performance and the results of the experiments were promising 

and indicated an increase in the detection accuracy of fast flux domains. To ensure the quality of 

the learnning phase of the ADeSNN, a 3-folded cross-validation method is used to estimate the 

error rate of the algorithm. The three experiments were implemented then the average has been 

taken. Table 5.3 summarizes the results obtained in this experiments those obtained from the 

experiments in chapter 4. 

Table 5. 3 The comparison results of supervised and hybrid FFKA approach 

Evaluation measures Supervised FFKA Hybrid FFKA 

FNR 0.00% 0.00% 

FPR 2.41% 0.59% 

TPR 100.00% 100.00% 

TNR 97.59% 99.41% 

ACC 98.77% 99.54% 

Precision 97.53% 99.41% 

Recall 100.00% 100.00% 

F-measure 98.75% 99.71% 

MCC 97.56% 98.67% 

RMSE 11.11% 6.78% 

NDEI 22.19% 13.55% 

 

Table 5.3 shows the result of the comparison between the supervised phase experiment from 

chapter 4 and the hybrid FFKA experiment discussed in section 5.5.1. 

By looking at the results, both sides shared the same achievement in detecting the benign 

domains where the detection rate of the benign domains was 100%. But, in the case of detecting 

the fast flux domains the hybrid approach performs better than the supervised phase result to 

achieve a detection rate of 99.41% while the supervised achieved 97.59%. Other measures were 
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also used as shown in Table 5.3 and include Precision, Recall, F-measure, and MCC.  All the 

measures show that the hybrid approach outperforms the supervised one. 

Figure 5.3 displays the compared graph that shows all the measures in both the supervised 

experiment and the hybrid FFKA approach experiment. 

 

 

Figure 5. 3 Comparison of the supervised and hybrid FFKA approaches 

 

In the case of the error estimator's performance, RMSE and NDEI exhibited an improvement in 

their values compared to the same in the supervised phase, which leads to conclude that the 

percentage of an error in misclassifying the normal and fast flux domains decreased in the 

hybrid approach, as depicted in Figure 5.4.  
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Figure 5. 4 The error comparison of the supervised and hybrid FFKA approach 

Overall, the proposed contribution of the hybrid FFKA approach improved the detection 
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in online mode. Furthermore, the Precision and F-measure showed an enhancement in their 
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Table 5. 4  The parameters values of the ADeSNN algorithm in FFKA approach 

Neurons and synapses equations parameters Value Unit 

Excitatory synapse time constant (tau_exc) 2  Ms 

Inhibitory synapse time constant (tau_inh) 5  Ms 

Neuron time constant (tau_mem) 20 Ms 

Membrane leak (El) 20 mV 

Spike threshold (Vthr) 800 mV 

Reset value (Vrst) 0  mV 

Fixed inhibitory weight (winh) 0.20 V 

Fixed excitatory weight (wexc) 0.40 V 

Thermal voltage (UT) 25  mV 

Refractory period (refr) 4  Ms 

SDSP parameters   

Up/Down weight jumps (Vthm) 0.75*Vthr mV 

Calcium variable time constant (tau_ca) 5 *tau mem Ms 

Steady-state asymptote for Calcium variable 

(wca) 

50  mV 

Stop-learning threshold 1 (stop if Vca < thk1) 1.7 × wca mV 

Stop-learning threshold 2 (stop LTD if Vca > 

thk2) 

2.2 × wca mV 

Stop-learning threshold 2 (stop LTP if Vca > 

thk3) 

8 × (wca–wca) mV 

Plastic synapse (NMDA) time constant 9  Ms 

Plastic synapse high value (wp hi) 6  mV 

Plastic synapse low value (wp lo) 0  mV 

Bistability drift 0.02  

Delta weight 0.12 × wp_hi mV 

Input size 5130 spike train  

Simulation time 40  ms 

Default clock unit 0.2 Ms 

 

5.6 chapter summary 

This chapter discussed the main proposed contribution, which is the Fast Flux Killer Approach 

or FFKA. The improvements made in chapter 3 and chapter 4 were substantial according to the 

enhancements in the performance of the ADeSNN algorithm. This chapter introduced the hybrid 

FFKA approach that worked offline to train the approach and initialize the classification 

threshold, and online to detect the zero-day fast flux domains based on the threshold value that 

was set by the supervised phase. 
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The same fast flux public dataset used in chapter 4 was used in the current chapter. Furthermore, 

a 3 fold cross-validation was used, as the experiments were conducted in the two chapters were 

then compared according to various accuracy measures and error estimators. The result proved 

that the enhancement of the hybrid FFKA approach over the supervised phase alone in both the 

accuracy measures where the total accuracy achieved was 99.54, and the error estimators 

showed that the hybrid approach had lower error values in misclassifying the domains. 

This chapter also discussed the parameter customization problem, by reducing the number of 

parameters used in the algorithm, for example the (Mod) parameter used in RO initial weight 

calculations, but it became useless as the new proposed approach used the spike time as initial 

weight.  

Finally, the parameters adjustment was discussed. A comparison between the adaptive version 

of the algorithm introduced in chapter 4 and the current modification in this chapter was 

implemented, then we discussed the improvements of the performance of the algorithm based 

on the same parameters values, as introduced in the original DeSNN as mentioned in algorithm 

3.1(Kasabov et al., 2013). 
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CHAPTER SIX 

DISCUSSION, CONCLUSION AND RECOMMENDATION FOR FUTURE 

WORK 

Chapter Overview 

This chapter summaries the whole research conducted in this study and give some directions 

for future researchers to guide them in detecting the fast flux domains as well as improving the 

performance of the proposed methodology.  

 

6.1 Discussion 

This thesis discussed the process of detecting fast flux botnet based on a novel proposed FFKA. 

Starting from the title the thesis treated two tracks, the fast flux botnet detection and the 

adaptation of the DeSNN algorithm. Hence, the structure of the thesis was built to develop the 

adaptation process first, then use the proposed adaptive algorithm to detect the fast flux problem.  

Based on that, chapter one discussed the fundamentals of the thesis (where the research identified 

the gap in the knowledge), the motivation of the research, the main aim and the objectives, the 

methodology of the solution, and the contribution of the proposed research were discussed as 

well. Chapter two revealed a solid background that covers the subject of the thesis, discussed the 

literature review, and examined the related work done so far in the same field. 

In chapter three, two public datasets were used to evaluate the proposed adaptation on the DeSNN 

and compared the results with original DeSNN itself. DeSNN algorithm is built based on both 

the RO learning rules and the SDSP learning rules. According to previous work, the initial weight 

of the DeSNN is calculated based on the RO rules. As stated in (Kasabov et al., 2013), the output 

of the DeSNN algorithm consists of the initial and final weight matrices, as a new incoming input 

pattern arrives, an initial weight and final weight are computed. Then, the updates happened while 

running the algorithm on the initial weight. At the recall mode the classification of the new arrival 

is going to be based on testing the similarity measure, which is Euclidean distance in this research. 

Experiments showed that the current initial weight based on the RO setting introduces a clear 



113 

 

misclassification percentage of detecting the incoming inputs. So, the contribution here was to 

use the spike time as initial weight and the results obtained were satisfactory. The overall 

accuracy of DeSNN was (56%) while it was (91.67%) for ADeSNN using on the IRIS dataset. 

According to the IRIS dataset two classes were non-linearly separable which cause to show 

almost 91% accuracy while it was tested on the first linearly separable classes and give 100% 

accuracy. This leads to the ability of the adaptive DeSNN to classify classes even when inputs 

are mutually mixed. Finally, ADeSNN exhibited higher true positive rate and less false negative 

rate than DeSNN.  

For the second public WDBC dataset, the experiment distributed the dataset into 5-fold cross-

validations groups. So, five separated experiments were done, where the instances randomly 

distributed on the five groups, then the results were computed and the average was taken. It is 

noted that the error measures (RSME, NDEI, and MSE-ERROR) values of the proposed adaptive 

ADeSNN were less than those for the original DeSNN, which means the adaptation on the 

DeSNN will minimize the misclassification of the input instances, and maximize the accuracy of 

the detection and classification. In addition, the MCC is a performance metric which is widely 

used in bioinformatics. The two algorithms used this metric as it best deals with imbalanced data, 

and this leads the researcher to conclude that the adaptive algorithm is more accurate than the 

original one. Coming to compare the accuracy, the F-measure, Recall, and ACC revealed that the 

proposed adaptation produced more accurate results (97.16%) than the original DeSNN 

(76.59%). Finally, ADeSNN exhibited higher true positive rate and less false negative rate than 

DeSNN. Overall, all the measures used proved the improvement of the performance of the 

proposed adaptive algorithm. 

According to the achieved enhancement in chapter three, which showed that the proposed 

adaptation on the DeSNN algorithm improved its performance. In chapter four, FFKA was 

tested in order to detect the fast flux domains in an online mode. The proposed FFKA consists 

of two parts, the supervised and unsupervised learning modes. The supervised ADeSNN in 

FFKA is about training the ADeSNN algorithm on both fast flux domains and benign domains. 

Besides, a threshold of the classification process will be trained along the training process. The 

outputs of the supervised training mode are the final weight and the classification threshold, 
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where the weights are stored in the weights repository. Furthermore, the threshold stored to be 

accessed by both the supervised and un-supervised modes later. The un-supervised mode deals 

with new unknown data, so the ADeSNN algorithm will capture the features of the domains, 

then access the value of the classification threshold to classify the inputs domains, then the final 

weights of the new inputs are calculated. The weights of the new input records then will be 

stored in the weights repository to be used later after certain (number of records/ time) in 

supervised learning mode again to enhance the classification threshold value as the new inputs 

become part of the training dataset. The weight repository and the threshold helped to save 

memory storage as there is no need to store all inputs forever, but just the specified space to 

store certain number if inputs is required.   

Also, the contribution made over the ADeSNN algorithm focused on the testing criteria where 

the current research implemented the similarity measure defined by formula 1 in chapter 4, 

which according to the best of my knowledge, it is the first time this formula has been used in 

this field. Furthermore, chapter discussed the parameter customization problem by reducing the 

number of parameters for example the (Mod) parameter used before with the initial weight 

calculations. 

To achieve that, a comparison between the proposed algorithm and two other approaches from  

the works developed in (Celik & Oktug, 2013; H.-T. Lin et al., 2013) were implemented. A 

public dataset has been used to test the chosen classifiers, then compares their performance 

among the related previous works developed in same field. Three experiments were conducted 

using the mentioned fast flux public dataset, to test the ability of the proposed algorithm to solve 

the fast flux problem. Two of them were selected based on two related previous researches, the 

linear decision function in (H.-T. Lin et al., 2013) and the C4.5 in (Celik & Oktug, 2013) 

algorithm. The third was the supervised FFKA. To ensure the quality of the learnning phase of 

the ADeSNN, a 3-folded cross-validation method is used to estimate the error rate of the three 

classifiers. The three experiments were implemented then the average has been taken. 

According to the implementations the overall accuracy of the linear classifier was (95.37 %). In 

addition, the linear decision function used as a classifier needs to estimate the categorizer of the 

linear function, to see if the estimation is good and the linear function work properly, otherwise 

the error will be high in the classification process. Besides, as C4.5 algorithm is considered as 
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a supervised learning algorithm, it could not be used to discover the unknown attacks especially 

the zero-day fast flux domains. Moreover, according to the implementation, the accuracy was 

not high as stated in their paper at 93.38%. When this result and the previous linear results were 

compared to the current proposed ADeSNN, it shows that the proposed approach outperforms 

the two methods with a total detection accuracy of 98.76%. Other accuracy measures have also 

been implemented. 

The feature set proposed by the current thesis consists of several features, where three of them 

are for the best of our knowledge the first time to be used in the field. AVGSIM is a new feature 

that computes the average of the similarity between the ASN number of the requested IP address 

and the other ASN number of the returned IP addresses of the DNS response. In other words, 

AVGSIM refers to the average of the similarity between the autonomous system number of the 

user's IP and autonomous system numbers of the proxy bots returned in the answer section of 

the DNS response, and is computed using formula 1 in chapter 4. The other two new features 

are the time of the query and the DNS packet size. All these features together showed their 

ability to distinguish between the fast flux network (served by domains) and the legitimate 

domains. The feature set used gave excellent results with the adaptive approach. Further 

experiments were conducted to check the influence of these feature set on the whole detection 

process. Based on that, three experiments were conducted, every experiment is implemented by 

deleting one of the new three features with keeping the other used features the same for the all 

experiments. According to feature evaluation results, the first experiment eliminated the feature 

(AVGSIM) from the feature set, then implemented the ADeSNN algorithm on the other six 

features, the accuracy was about 85.8%. Comparing this result with the others it is clearly that 

implementing the algorithm with excluding this feature will give low detection rate, so this 

indicate that the AVGSIM played an important role in classifying the input instances. By 

reading the results of the second feature experiment, it was noted that the detection rate reached 

100%. This tells us that the feature (Qtime) badly affects the classification process. In addition, 

the 3rd experiment showed an accuracy of almost 89.5% which is actually good enough as the 

experiment ran includs the Qtime feature. The last column in Table 4.4 showed the result of the 

ADeSNN algorithm with all features included. Here we can say that the accuracy of 98.77 is 

excellent, considering it had Qtime as one of its features.  
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Another test was implemented to prove the quality of the feature set was the feature selection 

method based on  decision trees (Alauthaman et al., 2016; Kira & Rendell, 1992), the result of 

the features selection method emphasized the previous results regarding the Qtime feature. In 

short, Qtime is the least important feature among the selected features. The AVGSIM came in 

the third position during this test, and this shows its importance among the other features. 

Chapter five discussed the main proposed contribution which is the Fast Flux Killer Approach 

FFKA. In chapter 3 and chapter 4 many improvements were proposed and proved their 

enhancements in the performance of the ADeSNN algorithm. This chapter introduced the hybrid 

FFKA approach that worked offline to train the approach and initialize the classification 

threshold, and worked online to detect the zero-day fast flux domains based on the threshold 

value that was set by the supervised phase. These two supervised and unsupervised phases play 

important roles in enhancing the detection performance of the proposed approach to detect the 

fast flux domains and especially the zero-day domains, as the approach re-trained the algorithm 

based on the old and the new data. This gives the approach the ability to adapt itself to whatever 

new changes the fast flux domains will implement to evade detection.  

The same fast flux public dataset used in chapter 4 was used in the chapter 5. A 3 fold cross-

validation was used as the experiments that were conducted in the two chapters and had their 

results compared according to various accuracy measures and error estimators. The result 

proved the the enhancement of the hybrid FFKA approach over the supervised phase alone in 

both the accuracy measures where the total accuracy achieved was 99.54, and the error 

estimators showed that the hybrid approach had lower error values in misclassified the domains. 

Overall, the proposed adaptation and modification have improved the performance of the 

original algorithm and obtained better classification results. 

6.2 Limitations and Future Work 

The DeSNN algorithm suffers from the fact that many parameters have to be set before running 

it. The proposed contribution of this work has partially solved this problem, but still there are 

many parameters that need to be set. It is clear that the problem of fast flux is not solved and it 

needs several efforts to be gathered together at different levels. Governmental, private sector, 
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and research efforts have to be implemented and coordinated. This is because of the need to 

acquire a real-time dataset for a long period of time, and ensure that the dataset is controlled 

and tested correctly.  

The suggested future work for saving more memory usage could be the use of fuzzy rules to be 

saved instead of the weight matrices, as each current cluster is dedicated for one weight matrix. 

6.3 Conclusion 

Botnets have expanded radically and is an interesting research field that concerns expertise 

based on the threats that it provided, fast flux botnets offer a bridge to carry other malicious 

threats such as DDoS, internet fraud, and identity thief. Although several methods have been 

suggested for detecting fast flux domains, they still have low detection accuracy, especially with 

the zero-day domain, quite a long detection time, and consume high memory storage.  

The main contribution of this study is to come out with a approach for the detection and 

classification of fast flux domains. So, we proposed a new approach called Fast Flux Killer 

Approach (FFKA) that has the ability to detect FF-Domains, especially the zero-day domains 

in online mode, with an implementation constructed on Adaptive Dynamic evolving Spiking 

Neural Network (ADeSNN). The proposed approach proved its ability to detect fast flux 

domains with high detection accuracy according to the experiments have implemented.  

The aspects were considered and addressed in this study has contributed scientifically to the 

field in many ways. Most of previous studies in the fast flux domains detection field were based 

on machine learning algorithms, stand-alone approaches, and network monitoring. The research 

was conducted through its contributions as presented in section 1.6 as follows.  

 The first and second objectives were developed as described in chapters 3. The 

contribution focused on increasing the detection performance using adaptive fast one-

pass algorithm (ADeSNN). By employing the spike time as initial weight, then the 

achieved performance evaluated according to true positive, true negative, recall, 

precision, f-Measure and overall accuracy. 
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 The third and fourth objective was also achieved with the proposed supervised FFKA 

approach phase as described in chapter 4. This contribution represents the most 

important part of this research that aimed to improve the detection accuracy, especially 

the classification criteria by conducting the similarity measure between the new and 

already trained inputs. Also, design of a new feature set which can be used with 

suggested algorithm to accurately classify fast flux domains. 

 The fifth and sixth contributions were developed in chapter 4. Where a proposed Hybrid 

FFKA method was proposed based on an adaptive life-long learning approach able to 

detect dynamically the unknown zero-day fast flux domains in online mode and enhance 

the classification process in offline mode. Also, a new adaptive dynamic classification 

threshold was introduced in order to classify new incoming inputs, as well as minimize 

the memory storage used. 

This comparisons stated that the proposed approach outperformed the other recently developed 

approaches. Three public datasets are exploited in the experiments to show the effects of the 

adaptation of the DeSNN algorithm, a high detection accuracy achieved of detecting fast flux 

domains especially the zero-day domains was about (99.54%) in an online mode.  
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APPENDICES 

 

Dataset and code samples 
 

Sample of the feature file: 
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Code in python for extract feature from the dataset: 
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Classifier code in python (DeSNN): 
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Initial weight code based on Spiketime: 
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