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Abstract

High‐throughput sequencing data have greatly improved our ability to understand the

processes that contribute to current biodiversity patterns. The “vanishing refuge”
diversification model is speculated for the coastal forests of eastern Africa, whereby

some taxa have persisted and diversified between forest refugia, while others have

switched to becoming generalists also present in non‐forest habitats. Complex

arrangements of geographical barriers (hydrology and topography) and ecological gra-

dients between forest and non‐forest habitats may have further influenced the

region's biodiversity, but elucidation of general diversification processes has been lim-

ited by lack of suitable data. Here, we explicitly test alternative diversification modes

in the coastal forests using genome‐wide single nucleotide polymorphisms, mtDNA,

spatial and environmental data for three forest (Arthroleptis xenodactyloides, Leptopelis

flavomaculatus and Afrixalus sylvaticus) and four generalist (Afrixalus fornasini, A. delica-

tus, Leptopelis concolor and Leptopelis argenteus) amphibians. Multiple analyses provide

insight about divergence times, spatial population structure, dispersal barriers, envi-

ronmental stability and demographic history. We reveal highly congruent intra‐specific
diversity and population structure across taxa, with most divergences occurring during

the late Pliocene and Pleistocene. Although stability models support the existence of

some forest refugia, dispersal barriers and demographic models point towards idiosyn-

cratic diversification modes across taxa. We identify a consistent role for riverine bar-

riers in the diversification of generalist taxa, but mechanisms of diversification are

more complex for forest taxa and potentially include topographical barriers, forest

refugia and ecological gradients. Our work demonstrates the complexity of diversifica-

tion processes in this region, which vary between forest and generalist taxa, but also

for ecologically similar species with shared population boundaries.
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1 | INTRODUCTION

Biodiversity is unequally distributed across the earth, with the great-

est concentration occurring in tropical regions (Gaston, 2000).

Understanding the processes that have generated and maintained

this pattern has been a major question in biology for the best part

of a century (Brown, 2013). Landscape changes are hypothesized to

have driven vicariant evolution by fragmenting species distributions

that were formerly continuous, generating congruent spatial and

temporal patterns of genetic differentiation across co‐distributed
taxa (Rosenzweig, 1995; Smith et al., 2014). Vicariance may occur

due to a number of different processes, including the formation of

dispersal barriers by rivers (the riverine barrier hypothesis; Gascon et

al., 2000; Haffer, 1997; Moritz, Patton, Schneider, & Smith, 2000;

Plana, 2004; Voelker et al., 2013; Wallace, 1852), by mountains

(Fjeldså & Lovett, 1997) or by areas of unsuitable habitat (Kirschel et

al., 2011; Schneider, Smith, Larison, & Moritz, 1999). In some

regions, landscape changes over time may have been so severe that

particular areas would have functioned as refugia, while diversity in

surrounding areas was entirely lost (e.g., the forest refuge hypothe-

sis: Endler, 1982; Haffer, 1969, 1997; Mayr & O'Hara, 1986; Mor-

eau, 1954; Moritz et al., 2000; Plana, 2004). In some cases,

diversification may have been triggered by climate change, with taxa

making an ecological switch from forest to non‐forest habitats in

order to persist (the vanishing refuge hypothesis, Vanzolini & Wil-

liams, 1981). Finally, ecotones can facilitate disruptive selection on

phenotypes despite the presence of gene flow, which may lead to

dispersal with incomplete genetic barriers (e.g., range expansion),

ultimately driving parapatric divergence (Moritz et al., 2000; Smith,

Wayne, Girman, & Bruford, 1997). To understand how and why bio-

diversity accumulates in tropical regions, the underlying diversifica-

tion processes need to be tested (e.g., Charles et al., 2018; Ntie

et al., 2017; Portik et al., 2017). However, this has remained difficult

for most tropical biodiversity hotspots due to a lack of thorough

taxonomic, geographic and molecular (genome‐wide) sampling.

The Coastal Forests of Eastern Africa (CFEA) are one of Africa's

foremost centres of diversity and a designated global biodiversity

hotspot (Burgess, D'Amico Hales, Underwood, Dinerstein, & Ecore-

gion, 2004). Along with the adjacent Eastern Arc Mountains, the

CFEA form an important area of endemism highly threatened by

anthropogenic impacts (Barratt et al., 2014; Burgess & Clarke, 2000;

Burgess, Clarke, & Rodgers, 1998; Burgess, Mwasumbi, Hawthorne,

Dickinson, & Doggett, 1992). Distributional data from plants, verte-

brates and invertebrates demonstrate a high number of narrow‐ran-
ged endemics and a pronounced north–south biogeographic divide

caused by the rain shadow of Madagascar (Burgess & Clarke, 2000;

Burgess et al., 1998). Diverse communities of taxa, many endemic,

are found in the remaining forest fragments of Kenya (Tana River,

Kwale, Arabuko‐Sokoke), Tanzania (East Usambara, Pemba island,

Uluguru, Udzungwa, Pugu hills and Lindi), Mozambique (Bazaruto

archipelago), Malawi (Mulanje massif) and Chimanimani and Haroni–
Rusitu in Zimbabwe (Burgess et al., 1998; Figure 1a). Historical

environmental change across tropical East Africa has been frequent

since the Miocene, and the current CFEA are considered to be the

remnants of a once continuous forest that has expanded and con-

tracted for the past 40 million years (Axelrod & Raven, 1978;

Demenocal, 1995; Maslin et al., 2014; Mumbi, Marchant, Hooghiem-

stra, & Wooller, 2008). Combined knowledge of endemism patterns

and environmental change have led to the assumption that current

CFEA biodiversity mainly originated from the isolation and persis-

tence of ancient lineages in forest refugia, with local extinctions and

in some cases adaptation to non‐forest habitats across the rest of

the region (Azeria, Sanmartín, Ås, Carlson, & Burgess, 2007; Barratt

et al., 2017a; Burgess et al., 1998). The coastal forests have thus

been described as a “vanishing refuge” (Burgess et al., 1998),

although to date forest refugial processes have not been thoroughly

tested against alternative modes of diversification (Damasceno,

Strangas, Carnaval, Rodrigues, & Moritz, 2014; Kirschel et al., 2011;

Schneider et al., 1999; Zhen et al., 2017).

To test competing hypotheses of ecological association over long

time periods (i.e., millions of years), it is helpful to use taxa that retain

ancestral variation at small spatial scales. Amphibians are ideal candi-

dates due to their poor dispersal abilities and highly deme‐structured
species in East Africa (Bittencourt‐Silva et al., 2017; Blackburn &

Measey, 2009; Lawson, 2013; Zimkus et al., 2017). Here, we use

nuclear DNA (nucDNA) single nucleotide polymorphism (SNP) data

acquired from restriction site‐associated DNA sequencing (RAD‐seq),
mitochondrial DNA (mtDNA) and georeferenced occurrences for

seven widespread amphibians found in forest and non‐forest habitats
across the CFEA. Although these seven taxa represent only a small

proportion of the 55 known amphibians in this region (Barratt et al.,

2017a), they cover a variety of life histories and ecological associa-

tions (from generalists to forest specialists), which should reflect the

evolutionary processes that have occurred in this region. Our sam-

pling represents almost the complete range of each of the study taxa,

allowing us to test the forest refuge hypothesis against alternative

modes of diversification, including allopatric divergence across land-

scape barriers (rivers and topographic) and parapatric divergence

across ecological gradients. Using our analytical framework, we make

an important first step towards understanding fine‐scale diversifica-

tion patterns and processes in this highly threatened biodiversity hot-

spot which is a suitable model for similar studies in other tropical

regions. For each focal taxon, we assess (a) How many distinct popu-

lations are there, and how are they related? (b) Do population bound-

aries coincide with geographic features and dispersal barriers, and are

these boundaries shared across taxa? (c) Which demographic mecha-

nisms have played a role in population diversity and divergence?

For forest taxa which may be older in terms of their evolutionary

history, we predict concordant population structure across taxa (Bur-

gess et al., 1998), with distributions that have remained locally stable

over multiple time periods (i.e., refugia), and demographic signals of

allopatric divergence and size expansion/secondary contact which

would represent forest contraction and expansions. Generalist taxa

present in non‐forest habitats such as Miombo woodland and
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savannah, on the other hand, should demonstrate signals of migra-

tion between populations and incomplete dispersal barriers, indicat-

ing the potential role of ecological gradients in line with the

vanishing refuge hypothesis. Given the large number of major rivers,

mountains and raised plateaus intersecting our CFEA sampling, we

additionally investigate the role of landscape barriers, which would

F IGURE 1 Study region in East Africa, encompassing the Coastal Forests of Eastern Africa and surrounding areas, with sampling locations
marked (forest and generalist taxa). (a) Major hydrological and topographical features, including forest refugia demarcated by red polygons
based on data from Burgess et al. (1998). (b) Terrestrial ecoregions indicating the location of known biogeographic realms, associated with
climate gradients, and sampling localities used in this study (black dots) [Colour figure can be viewed at wileyonlinelibrary.com]
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result in clear population structure without subsequent migration,

size changes or secondary contact. We make a distinction between

forest and non‐forest (Miombo woodland and savannah) to aid inter-

pretation of results with regard to the long‐term (pre‐Pleistocene)
environmental stability of these areas and to the ecological prefer-

ences of the study taxa.

2 | MATERIALS AND METHODS

2.1 | Study system and conceptual framework

The leaf‐folding frogs, Afrixalus fornasini (Bianconi, 1849), Afrixalus

delicatus (Pickersgill, 1984), and Afrixalus sylvaticus (Schiøtz, 1974),

the tree frogs, Leptopelis argenteus (Pfeffer, 1893), Leptopelis concolor

(Ahl, 1929) and Leptopelis flavomaculatus (Günther, 1864), and the

forest leaf‐litter frog, Arthroleptis xenodactyloides (Hewitt, 1933),

have large geographic ranges distributed throughout the CFEA and

surrounding areas. Afrixalus fornasini, A. delicatus, L. argenteus and

L. concolor are generalist taxa, inhabiting forest edges, woodlands

and savannah, whereas A. xenodactyloides, L. flavomaculatus and

A. sylvaticus are considered forest‐restricted (IUCN, 2017, see

Table 1). For A. delicatus/A. sylvaticus and L. argenteus/L. concolor,

geographic boundaries are poorly defined, and some taxonomic con-

fusion exists (IUCN, 2017; Poynton, 2006), which we attempt to elu-

cidate in this study. Due to their wide distributional ranges, these

taxa should harbour diversity that reflects population expansion,

contraction and persistence, events caused by past environmental

changes in the region.

We firstly investigate population structure within taxa to define

putative geographic boundaries of populations. We then use explicit

demographic model selection to reach a conclusion on whether refu-

gial models of diversification are applicable for forest and generalist

taxa. We support demographic results by modelling evolutionary

relationships, geographic distributions, effective migration and diver-

sity, and long‐term environmental stability based on ecological niche

models (ENMS). This approach allows us to assess the congruence of

patterns across taxa and evaluate their consistency with putative

forest refugia, geographic features (river and topographic barriers)

and known biogeographic regions caused by ecological (rainfall) gra-

dients.

2.2 | Sample collection

Tissue samples (leg muscle, liver or toe clips, n = 191) stored in

100% ethanol or RNase Later to preserve DNA were collected

across the study region in 2013–2015. Geographic coordinates for

all samples were recorded with a handheld GPS device. Additional

samples (n = 40) held in collections at the University of Basel,

University of Jena, Natural History Museum, London, Science

Museum of Trento, Museum of Comparative Zoology, Harvard and

Museum of Vertebrate Zoology, Berkeley (collected between 2001

and 2012), were used to complement recently collected field data

(Supporting Information Table S1).

2.3 | DNA sequencing and data filtering

Genomic DNA was extracted using the DNeasy Blood and Tissue Kit

(Qiagen) following manufacturer's instructions. A partial fragment of

the mitochondrial 16S gene was amplified via polymerase chain reac-

tion to verify species identity using the NCBI BLAST tool against our

own barcoding database of amphibians across the region (full details

can be found in Barratt et al., 2017a; GenBank Accession nos

included in Supporting Information Table S1). DNA was quantified

prior to RAD‐seq library preparation using a Qubit fluorometer (Invit-

rogen). We followed the Etter, Bassham, Hohenlohe, Johnson, and

Cresko (2011) laboratory protocol to prepare RAD‐seq libraries using

the SbfI restriction enzyme (Supporting Information Appendix S1).

Final RAD‐seq libraries included 43 A. fornasini from 30 sites, 49

A. delicatus/A. sylvaticus from 35 sites (comprising of 22 A. delicatus

from 15 sites and 27 A. sylvaticus from 20 sites), 59 L. flavomaculatus

from 24 sites, 27 L. argenteus/L. concolor from 18 sites (comprising of

12 L. argenteus from 8 sites and 15 L. concolor from 10 sites) and 53

TABLE 1 Summary of taxa studied including information on taxonomy and currently recognized species according to the IUCN red list

Species group Recognized species (including recently synonymised) Type locality Habitat

Afrixalus fornasini Afrixalus fornasini (Bianconi, 1849)

Afrixalus unicolor (Boettger, 1913)a (A. fornasini)

Mozambique

Tanzania

Generalist

Generalist

Afrixalus stuhlmanni Afrixalus stuhlmanni (Pfeffer, 1894)

Afrixalus brachycnemis (Boulenger, 1896)

Afrixalus sylvaticus (Schiøtz, 1974)

Afrixalus delicatus (Pickersgill, 2005)

Zanzibar, Tanzania

Malawi

Kwale, Kenya

St. Lucia, South Africa

Generalist

Generalist

Forest

Generalist

Arthroleptis xenodactyloides Arthroleptis xenodactyloides (Hewitt, 1933)

Arthroleptis stridens (Pickersgill, 2007)b
Chimanimani, Zimbabwe

East Usambara, Tanzania

Forest

Forest

Leptopelis argenteus Leptopelis argenteus (Pfeffer, 1893)

Leptopelis concolor (Ahl, 1929)

Leptopelis broadleyi (Poynton, 1985)a (L. argenteus)

Bagamoyo, Tanzania

Witu, Kenya

Mozambique

Generalist

Generalist

Generalist

Leptopelis flavomaculatus Leptopelis flavomaculatus (Günther, 1864) Ruvuma bay, Tanzania Forest

Notes. Habitat: Forest = species is primarily forest associated; Generalist = species is a generalist, not confined to forest.
aSpecies synonymized with conspecific (in brackets). bRecognized by IUCN red list but taxonomic status is uncertain.
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A. xenodactyloides from 35 sites (Supporting Information Table S1).

We sequenced individuals across five RAD‐seq libraries (45–51 sam-

ples each), with a unique barcode adapter per individual in each

library to demultiplex sequences bioinformatically. The final eluted

products were sequenced in a single run on an Illumina Hi‐seq 2500

(100‐bp single‐end reads) at the D‐BSSE sequencing facility in Basel,

Switzerland (Supporting Information Table S2).

We used STACKS 1.41 (Catchen, Hohenlohe, Bassham, Amores, &

Cresko, 2013) to process RAD‐seq data and produce single nucleo-

tide polymorphism (SNP) data sets. We used the process_radtags

module to filter out low‐quality reads, demultiplexing individuals into

their own fastq file. The standard workflow of ustacks, cstacks and

sstacks modules was used to align reads into stacks, to build a cata-

logue of consensus loci by merging alleles across individuals and to

match individuals to the catalogue, respectively (data sets summa-

rized in Supporting Information Table S3). Catalogues of loci were

built separately for A. fornasini, A. xenodactyloides and L. flavomacula-

tus. For A. delicatus/A. sylvaticus and L. argenteus/L. concolor, the cata-

logues included the combined individuals in each species pair due to

possible admixture between them given their overlapping distribu-

tions. We wished to capture all possible loci in the catalogue and

then filter data, so for all downstream analyses, we subsequently

separated each of these taxa based on population structure results,

resulting in seven separate data sets. As sampling bias is inherent in

RAD‐seq data sets, we acknowledge that our results could poten-

tially be affected by allelic dropout and null alleles, PCR duplicates

and genotyping errors, and variance in depth of coverage amongst

loci (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016), which we

mitigated against as described in each relevant section. Our final cat-

alogues of loci used a minimum depth of sequencing coverage of 5×,

and a maximum of 2 bp mismatches between the fragments, with

only loci present in at least half of the individuals in each catalogue

retained. Data matrices were then generated using the populations

module, retaining only a single random SNP per RAD locus to avoid

linkage disequilibrium (Andrews et al., 2016).

2.4 | Population structure

We filtered STACKS “haplotype” files to remove loci that were invari-

ant between samples, loci with at least one individual with more

than two alleles (i.e., potentially paralogous loci), and loci that were

not bi‐allelic. We investigated population structure per taxon using

discriminant analysis of principal components (DAPC) in the ADEGENET R

package (Jombart & Ahmed, 2011), after converting STACKS output

files into Fstat format using PGDSPIDER 2.1.0.3 (Lischer & Excoffier,

2012). Unlike model‐based clustering methods, the DAPC method is

free of assumptions regarding Hardy–Weinberg equilibrium (Jeffries

et al., 2015; Jombart & Ahmed, 2011) and less sensitive to minor

allele frequency thresholds (Linck & Battey, 2017). We defined val-

ues of k between 1 (i.e., a single panmictic population) and 8, using

Bayesian information criterion (BIC, Schwarz, 1978) scores across

tested k values to infer the number of populations. Due to the taxo-

nomic uncertainty of some samples of A. delicatus/A. sylvaticus and

L. argenteus/L. concolor, we conducted an initial analysis of the full

data set to confirm species memberships, followed by analyses of

each taxon separately. To complement our DAPC analyses, we also

ran ADMIXTURE (Alexander, Novembre, & Lange, 2009) with formatted

bed files converted using PLINK 1.07 (Purcell et al., 2007). As with

DAPC analyses, k ranged between 1 and 8, and we used the 10‐fold
cross‐validation procedure to estimate the number of population

clusters. Population membership of each individual for chosen k val-

ues was verified by inspecting the clustering analysis plots in DAPC

and ancestry coefficients in ADMIXTURE barplots (Supporting Informa-

tion Tables S4 and S5). DAPC clustering for multiple values of k is

shown in Supporting Information Figure S1.

2.5 | Demographic model selection

To evaluate the likelihoods of alternative demographic models within

each taxon based on RAD‐seq data, we used the diffusion approxi-

mation method implemented in δaδi (Gutenkunst, Hernandez, Wil-

liamson, & Bustamante, 2009) to analyse two‐ and three‐dimensional

Joint Site Frequency Spectra (JSFS). The number of dimensions used

in models (2D or 3D) refers to the number of populations being

compared (based on population structure results), using folded JSFS

because we lacked out‐group information. For L. flavomaculatus we

excluded the Mozambique populations, which only contained two

individuals after data filtering. Following Portik et al. (2017), included

parameters in models allowed for the broad categorization of models

into three competing diversification modes. Landscape (i.e., riverine

or topographic) barriers fall under a general allopatric model of popu-

lation splitting with no gene flow, and no assumptions of migration

or secondary contact. Forest refugia models follow a similar model

of allopatric divergence, but expect initial population isolation fol-

lowed by size change and/or secondary contact. Parapatric models

expect gene flow accompanying divergence and subsequent isolation

and represent divergence due to ecological gradients. Although these

broad categorizations are simplistic, they enable comparisons across

taxa to be more readily made, although it should be noted that other

processes which are not explicitly captured by our model parameters

may also contribute to the demographic patterns observed (e.g.,

range expansion, local adaptation, recent anthropogenic impacts).

We ran a total of 15 alternative 2D models that differed in parame-

ters for migration rates, periods of isolation and population size

changes (visually represented in Supporting Information Figure S2),

including a null model of no divergence between populations. A set

of 15 models was run for 3D population comparisons (visually repre-

sented in Supporting Information Figure S3), including several mod-

els that account for the simultaneous divergence of populations

based on potential polytomies in dating analyses for each of A. deli-

catus, A. sylvaticus and L. flavomaculatus. Because the SFS cannot be

constructed using an incomplete data matrix, it is necessary to first

down‐project the data to smaller sample sizes of alleles. We did this

by exploring a range of values per population (between 2 and 30),

choosing the configuration per data set with the largest number of

segregating sites. We ran three sets of increasingly focused
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optimizations for each model before performing the final model

selection. We did not transform obtained parameters into absolute

migration rates and divergence times because our primary aim was

to perform model selection, and these parameter values should ide-

ally be estimated using an accurate mutation rate which we lack for

our study taxa (Gutenkunst et al., 2009). We therefore compare the

relative time intervals of population divergences obtained from δaδi

with those obtained from a Bayesian coalescent‐based approach

using bi‐allelic SNPs as described in the next section. To determine

the best fitting models, the AIC and log likelihoods were inspected,

and ΔAIC scores were used to calculate relative likelihoods and

Akaike weights (ωi). The model with the highest Akaike weight was

selected as the most likely for each divergence event (Burnham &

Anderson, 2002). To explore the possible influence of recent anthro-

pogenic impacts, we ensured that a variation in the top‐ranked
model per taxon was also tested that included a size change step.

Two‐dimensional models already had these models within the origi-

nal fifteen tested, and we built an additional three 3D models to test

for each of A. fornasini, L. flavomaculatus and A. xenodactyloides. To

verify that our models were reasonable explanations of the JSFS, we

performed goodness of fit tests. For each taxon, we fit the top‐
ranked model using our optimized parameters, scaled the resulting

model spectrum by the inferred theta value and used the model

spectrum to generate 100 Poisson‐sampled frequency spectra. We

then optimized each simulated frequency spectrum to obtain a distri-

bution of log‐likelihood scores and Pearson's chi‐squared test statis-

tic and subsequently determined whether our empirical values were

contained within these distributions. A more detailed description of

demographic model selection and goodness of fit tests is shown in

Supporting Information Appendix S1. To support our demographic

model selection, we also estimated evolutionary relationships, effec-

tive migration and diversity, and the long‐term stability of taxa using

ENMS, as described below.

2.6 | Evolutionary relationships

We explored evolutionary relationships with mtDNA and RAD‐seq
data separately. Sequences of 16S mtDNA for all samples included

in RAD‐seq libraries were edited in GENEIOUS 6 (Kearse et al., 2012)

and aligned with the RAxML tree estimator using a GTRCAT model

in SATé‐II (Liu et al., 2012) before analyses in BEAST 2.4.8 (Bouckaert

et al., 2014). We used BMODELTEST (Bouckaert & Drummond, 2017) to

average over all possible substitution models instead of selecting a

single model. We used a strict clock with a log‐normal prior distribu-

tion to estimate divergence times in millions of years. Estimated

mitochondrial substitution rates for 16S in amphibians range from

0.16% to 1.98% pairwise divergence per million years (Jongsma et

al., 2017), and the prior mean was set to the mid‐point of this range

(1.07%, set as 0.00535 substitutions/site/MYR) with a standard devi-

ation of 0.3 for the interquartile range to reach the approximate

lower and upper range limits. A birth–death tree prior was used, run-

ning the MCMC for 20,000,000 generations, sampling every 1,000

trees.

We reconstructed phylogenomic relationships using SNAPP 1.3

(Bryant, Bouckaert, Felsenstein, Rosenberg, & Roychoudhury, 2012)

implemented in BEAST 2.4.8 (Bouckaert et al., 2014). SNAPP is a pack-

age that infers species or population trees from unlinked markers

such as bi‐allelic SNPs, implementing a coalescent model with an

algorithm to integrate all possible gene trees rather than explicitly

sampling them. To reduce computational requirements and run

times, we selected 2–6 representative individuals per population

(based on population structure results) with at least 50% complete

data matrices. Backwards (u) and forwards (v) mutation rates (ex-

pected mutations per site per generation) were estimated from the

data in SNAPP, with the birth rate (λ) of the Yule prior (indicating the

rate at which populations diverge from one another) based on the

number of samples used (Supporting Information Table S6). The run

for each data set used a chain length of 1,000,000 generations, sam-

pling every 1,000 trees. We inspected final log files and created

maximum clade credibility trees (median node heights) by combining

two independent runs per taxon in TREEANNOTATOR 2.4.6 after discard-

ing 10% as burn‐in. To verify that the selected individuals did not

severely bias SNAPP results, we repeated each analysis using a differ-

ent random selection of individuals per population (non‐overlapping
where possible, Supporting Information Table S6).

Given that an accurate mutation rate for amphibians is unavail-

able, we refrained from inferring the absolute timing of divergence

events based on bi‐allelic SNP data. Furthermore, as the SNAPP model

is coalescent‐based, it can account for incomplete lineage sorting,

but the presence of high gene flow can cause underestimates of

node ages (Leaché, Harris, Rannala, & Yang, 2014a). Additionally, the

assembly and filtering of our RAD‐seq data sets may also adversely

affect dating estimates due to high numbers of retained loci being

under selection or linked, which would potentially reduce calculated

genetic diversity (Huang & Knowles, 2016). Despite the uncertainties

of absolute dating, our SNAPP and δaδi analyses enabled a relative

comparison of the divergence time intervals between populations of

each species. We investigated divergence estimates for each of

these analyses alongside mtDNA estimates and conducted Pearson's

correlation tests between the relative divergence time intervals to

aid our discussion of forest and generalist taxa.

2.7 | Effective migration and diversity surfaces

We visualized effective migration and diversity surfaces (i.e., gene

flow and barriers) using the ESTIMATED EFFECTIVE MIGRATION SURFACES

(EEMS) program 0.0.0.9000 (Petkova, Novembre, & Stephens, 2016).

This program identifies geographic areas where genetic similarity is

greater than expected under isolation by distance using spatial and

SNP data, without the need for environmental and topographic

information. The effective migration and effective diversity estimates

are interpolated across geographic space and provide a visual repre-

sentation of observed genetic dissimilarities, including regions with

higher or lower gene flow (i.e., barriers) and effective (i.e., genetic)

diversity than expected. We converted filtered STACKS “haplotype”
files into PLINK format (.bed files, Purcell et al., 2007) and used the
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BED2DIFFS program to calculate dissimilarity matrices for each taxon.

Based on the size of the habitat and the number of demes required

to fill that habitat, we defined a deme size (the density of popula-

tions) of 700 in EEMS, but also explored results using smaller deme

sizes of 250 and 500 using the SNP version of EEMS (runeems_snps).

We used a MCMC length of 25,000,000 with a burn‐in of

1,000,000, each for three replicates. We combined results using the

EEMS R plotting (rEEMSplot) package and plotted surfaces of effective

migration (m) and effective diversity rates (q).

2.8 | Ecological niche and stability models

To evaluate the geographic distributions over time per taxon (i.e.,

stability), we first used ENMS to define the realized macroclimatic

niche of each taxon based on current environmental conditions. We

then used this model to determine whether similar environmental

conditions were found at a specific past epoch. Finally, we summed

models over multiple time periods to visualize the potential spatio‐
temporal distributions of each taxon. We collected all available local-

ity information per taxon using the Global Biodiversity Information

Facility (GBIF), published data (Barratt et al., 2017a; Burgess &

Clarke, 2000; Ohler & Frétey, 2015) and our own and collaborator's

fieldwork. Data were filtered to remove any imprecise or ambiguous

localities, or points that could not be accurately matched to each

taxon with certainty. This resulted in 59–144 unique records per

taxon (Supporting Information Table S7). To ensure that georefer-

enced data were not spatially autocorrelated, we rarefied all points

to be a minimum of 10 km apart, resulting in 20–112 unique locali-

ties per taxon (n = 112, 86, 36, 62, 38, 20, 32, for A. xenodactyloides,

L. flavomaculatus, A. sylvaticus, A. fornasini, A. delicatus, L. argenteus

and L. concolor, respectively). We built ENMS in MAXENT per taxon

using elevation data derived from the USGS (http://csgtm.isgcm.

org/dataset/gtopo30) and six bioclim variables (mean diurnal temper-

ature range, temperature seasonality, maximal temperature of warm-

est month, annual precipitation, precipitation of driest month and

precipitation of warmest quarter), at 30 arc‐second resolution (ap-

proximately 1 km2 grid cells). These variables were obtained from

the WordClim Database, based on the Community Climate System

Model (CCSM) global circulation model (Hijmans, Cameron, Parra,

Jones, & Jarvis, 2005), and selected based on low between‐variable
correlations (Pearson's r < 0.7), to minimize model overfitting. Back-

ground data from 10,000 random points were sampled from a mini-

mum convex polygon defined by a 150 km buffer around each

occurrence record. To select optimal parameters for models, we

tested a range of feature classes (hinge, quadratic, linear, product

and threshold), each with a regularization multiplier between 1 and 3

in increments of 1. To project models into the past, this procedure

was repeated for three different palaeoclimate epochs (the mid‐
Holocene ca. 6 kybp, the Last Glacial Maximum ca. 21 kybp and the

Last Interglacial ca. 120 kybp). We selected the best models for each

taxon (Supporting Information Table S8) based on the lowest test

omission and highest AUC scores (Brown, 2014). To create stability

models, we calculated the mean of the negative log suitability per

epoch, using the exponent of this value to create continuous stabil-

ity models per taxon ranging between 0 (absent) and 1 (present,

Rosauer, Catullo, Vanderwal, & Moussalli, 2015). As the Last Glacial

Maximum data were only available at 2.5 arc‐seconds (approximately

5 km2), continuous stability models are resampled to this resolution.

The palaeoclimatic data we used for the ENM projection only cover

the period until the Last Interglacial (120 kybp). We therefore use

the stability models to reflect recent major climatic events, and as a

proxy for deeper time in the absence of accurate palaeoclimate data

further back to the Miocene.

3 | RESULTS

3.1 | Illumina reads and filtered loci

We obtained single‐end Illumina reads for 43 A. fornasini

(182,663,928 reads in total), 49 Afrixalus sylvaticus/Afrixalus delicatus

(243,690,376 reads), 27 Leptopelis argenteus/Leptopelis concolor

(154,933,766 reads), 59 Leptopelis flavomaculatus (299,581,783

reads) and 53 Arthroleptis xenodactyloides individuals (199,514,898

reads, Supporting Information Table S2). STACKS output haplotype

files contained between 1,930 (A. delicatus/A. sylvaticus) and 9,867

(L. flavomaculatus) loci. After excluding invariant, paralogous and

non‐bi‐allelic loci, and individuals with high amounts of missing data

(>90%), final numbers of SNPs per taxon used for subsequent analy-

ses (Supporting Information Table S3) were as follows; 3,753 (A. for-

nasini), 1,646 (A. delicatus and A. sylvaticus), 3,371 (L. argenteus and

L. concolor, 1,505 (A. xenodactyloides) and 8,598 (L. flavomaculatus).

3.2 | Population structure

DAPC and ADMIXTURE analyses produced congruent results for the num-

ber of inferred populations (L. flavomaculatus: k = 4; A. delicatus:

k = 3; A. sylvaticus: k = 3, L. argenteus: k = 2; L. concolor: k = 2; Fig-

ure 2, Supporting Information Tables S4 and S5). In two taxa (A. for-

nasini and A. xenodactyloides), there was discordance across analyses,

and for A. fornasini, the DAPC analysis suggested a tripartition (k = 3),

while ADMIXTURE suggested a single panmictic population (k = 1). For

A. xenodactyloides, DAPC and ADMIXTURE results were also incongruent

(k = 4 and k = 8, respectively). As DAPC is known to be less sensitive

to minor allele frequency thresholds than other model‐based cluster-

ing methods (Linck & Battey, 2017), we based subsequent A. for-

nasini analyses on the DAPC results given their congruence with

phylogenetic and phylogenomic inferences. Similarly, for A. xen-

odactyloides, subsequent analyses were based on k = 3 following

consistently lowest BIC and CV scores in DAPC and ADMIXTURE analy-

ses (Supporting Information Table S4), and consistency with phyloge-

netic clustering. Results for other values of k are shown in

Supporting Information Figure S1. Population structure analyses

across all taxa revealed that thirteen of the twenty populations were

restricted to six allopatric areas which are non‐overlapping. The

remaining seven populations exhibited wider ranges associated with

either the northern or southern parts of the CFEA region (Figure 3).
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F IGURE 2 Population structure for each of the seven amphibian taxa including ADMIXTURE plots detailing ancestry coefficients and
discriminant analyses of principal components (DAPC) showing the most likely numbers of population clusters based on BIC scores (line
graph). (a–c) Forest taxa (Arthroleptis xenodactyloides, Leptopelis flavomaculatus, Arthroleptis sylvaticus). (d–g). Generalist taxa (Afrixalus fornasini,
Afrixalus delicatus, Leptopelis concolor, Leptopelis argenteus). Populations are coloured corresponding to their spatial distributions on
accompanying maps [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Demographic model selection

The consistency of log likelihoods and parameters across replicates

of each model increased after the first, second and third optimization

rounds and indicated convergence for the best‐ranked models across

replicates (Supporting Information Table S9, Figure S4). Null models

(no divergences) were consistently lowest ranked for 2D models,

supporting the genetic distinctiveness of populations. For forest taxa,

demographic model selection was inconsistent across taxa (Table 2;

Figure 4a), with the best‐ranked model selected as historical gene

flow for A. xenodactyloides, and allopatric divergence models selected

for L. flavomaculatus (historical isolation followed by secondary con-

tact) and A. sylvaticus (divergence and isolation). For all generalist

taxa, allopatric models were consistently found as the best‐ranked
(Table 2; Figure 4b), with diversification without subsequent migra-

tion and/or size change. Based on Akaike weights (Supporting Infor-

mation Table S10), best‐ranked models were significantly better than

the next best alternative models for all taxa (ωi > 0.99) with the

exception of L. argenteus (ωi = 0.74) and L. concolor (ωi = 0.65), for

which the second‐best model was only characterized by the addition

(L. argenteus) or the absence of a size change (L. concolor). The

amended top‐ranked models that included a size change step over

multiple epochs implied that human impacts could potentially have

played a role for L. concolor, and, to a lesser extent, L. argenteus,

which were characterized by high Akaike weights for size change

models and a recent time interval since the change occurred.

F IGURE 3 (a) Cumulative summary of major population breaks shown in 13 of the 20 discovered populations, with nearby river systems
(i–iv) and forest refugia (1–10) labelled. (b) Latitudinal range of each population grouped into forest and generalist taxa. Colours correspond to
populations identified in Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]

BARRATT ET AL. | 4297



Goodness of fit tests showed that most models were within reason-

able expectations of the simulated data, with the exception of

L. concolor for which the empirical result lay outside of the simulated

data distributions of log likelihoods and log‐transformed Pearson's

chi‐squared test statistics (Figure 4). Visualizations of the data, mod-

els and residuals are shown in Supporting Information Figure S4,

along with likelihood plots of the best model to demonstrate conver-

gence across each of the three rounds of replicates. Parameters and

full results of best scoring replicates for all models across taxa are

shown in Supporting Information Table S10, and full goodness of fit

results are shown in Supporting Information Table S11.

3.4 | Evolutionary relationships

Mitochondrial DNA‐inferred relationships (Figure 5a) were mostly

congruent with those inferred using bi‐allelic SNPs from RAD‐seq
data, despite some discordance in population membership and the

evolutionary relationships between populations, which we suspect is

due to incomplete lineage sorting of the 16S mtDNA locus. For

A. fornasini, L. flavomaculatus and A. xenodactyloides, mtDNA haplo-

type clades were consistent with the RAD‐seq inferred population

clusters, but in A. delicatus, and L. argenteus/L. concolor, population

clusters did not always form monophyletic haplotype groups.

According to mtDNA data, the earliest divergences within taxa are

during the Pliocene (3.67 mya, 95% HPD 1.59–6.89 mya for A. syl-

vaticus and 3.44 mya, 95% HPD 1.55–6.30 mya for A. xenodacty-

loides). The large confidence intervals indicate that the earliest

divergences in A. fornasini and A. delicatus could have also occurred

around the late Pliocene (as early as 2.37 and 3.68 mya, respec-

tively). The remainder of later population divergences in these taxa

and all divergences within L. flavomaculatus, L. argenteus and L. con-

color occurred at different stages throughout the Pleistocene.

Evolutionary relationships reconstructed from bi‐allelic SNPs in

SNAPP (Figure 5b) showed that divergences between taxa occurred

at broadly comparable timescales. Contrary to our expectations that

forest taxa diverged earlier than generalists, we found similar time-

scales for most generalists and forest taxa except for the much

more recently diverged generalist populations of L. argenteus and

L. concolor. Analyses based on different random representatives of

individuals per population showed similar results in terms of rela-

tionships and divergence rates, with one exception (the south

Taratibu population divergence for L. flavomaculatus) indicating that

results may potentially be sensitive to the population sets used in

some cases (Supporting Information Table S6). Our comparison of

time interval parameter estimates between SNAPP and δaδi (Support-

ing Information Table S6) yielded remarkably similar results (Pear-

son's r > 0.88 for forest taxa and r > 0.93 for generalist taxa

across replicates), indicating that the divergence times obtained are

congruent in relative terms in spite of the aforementioned prob-

lems of absolute dating. Mitochondrial DNA divergence dates were

more closely correlated with δaδi and SNAPP estimates across repli-

cates for generalist taxa (r > 0.87) than for forest taxa due to the

handful of incongruent relationships between mtDNA and SNP

data (r = 0.43).

Cumulatively, population structure, phylogenetic and phyloge-

nomic results indicate a strong north‐south pattern of differentiation

between populations, in addition to at least four major breaks that

segregate populations across multiple taxa (Figure 3). Divergences

between southern populations in Mozambique, Zimbabwe and

Malawi, and the remaining CFEA regions in Tanzania and Kenya are

approximately located around major river barriers (Figure 3, labels i–
iv). In Tanzania and Kenya, populations are regularly separated from

each other in the Lindi region (evident in A. xenodactyloides, L. flavo-

maculatus, L. argenteus and A. delicatus). The Usambara‐Kwale region

TABLE 2 Demographic model selection using δaδi for each species group

Habitat Species
Population
comparison

JSFS
model
type

Proj.
sample
size Best model General model ln‐l AIC

Akaike
weight
(ωi)

Forest Arthroleptis

xenodactyloides

Montane—south–
north

3D 9,9,10 Ancient migration 2

(shorter isolation)

Ecological gradient −266.22 546.44 0.999

Forest Leptopelis

flavomaculatus

Taratibu—south–
north

3D 15,29,36 Simultaneous split in

refugia, symmetrical

migration (adjacent)

Forest refugia −641.51 1297.02 0.999

Forest Afrixalus sylvaticus North–central—
montane_south

3D 4,10,13 Simultaneous split,

no migration

Landscape barrier −203.2 414.4 0.999

Generalist Afrixalus fornasini Central–south–moz 3D 6,8,10 Split, no migration Landscape barrier −605.56 1223.12 1

Generalist Afrixalus delicatus South–central–north 3D 9,8,6 Simultaneous split,

no migration

Landscape barrier −96.02 200.04 0.999

Generalist Leptopelis argenteus South–north 2D 5,6 Split, no migration Landscape barrier −50.13 106.26 0.739

Generalist Leptopelis concolor South–north 2D 6,6 Split, no migration,

size change

Landscape

barrier/
Anthropogenic

−69.45 150.9 0.65

Note. Model type is shown (2D or 3D‐JSFS) along with sample projection size. Best model from all tested models is listed along with its final log likeli-

hood, AIC score and Akaike weight (ωi).
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spanning across the Tanzania–Kenya border also divides unique pop-

ulations within A. xenodactyloides, L. concolor and A. delicatus.

3.5 | Effective migration and diversity surfaces

The EEMS analyses based on smaller deme sizes (250, 500, not

shown) merged numerous localities that we consider important to

keep separate, particularly around the border of Tanzania and Kenya,

and within southern Tanzania. Therefore, we only present results

from deme sizes of 700 (Figure 6). The analyses revealed several

barriers to migration mostly matching with the population breaks

shown in Figure 3. For the forest taxa A. xenodactyloides and L. flavo-

maculatus, at least three major barriers in Tanzania and one in

Mozambique were found, also approximately coinciding with the

F IGURE 4 Visual representation of the best‐ranked demographic models selected by δaδi from a choice of 15 alternative 2D JSFS
demographic models and 15 alternative 3D JSFS models. Next to each model are goodness of fit test results, showing the location of the
empirical (blue lines) value within the distribution of simulation values (grey bars) for log likelihood and Pearson's log‐transformed chi‐squared
test statistic. Empirical values occurring within distributions indicate good fits, with poorer fits indicated by a lower log likelihood (left of
distribution) or a higher log‐transformed chi‐squared test statistic (right of distribution). (a) Forest taxa 3D best models (population divergences
in Arthroleptis xenodactyloides, Leptopelis flavomaculatus and Afrixalus sylvaticus), (b) generalist taxa best 2D and 3D models (A. fornasini,
Afrixalus delicatus, Leptopelis concolor, Leptopelis argenteus). Populations are colour coded matching Figures 2 and 5. Comparisons of the
pairwise joint site frequency spectra for the data, the model and resulting residuals can be found in Supporting Information Figure S4, along
with likelihood estimates across optimization rounds to indicate convergence. Parameter values and results for all models are shown in
Supporting Information Table S9 [Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 (a) Dated phylogenies per species in BEAST based on 16S mtDNA sequence data. Node labels between populations indicate
divergence time in millions of years. (b) Population trees per species from SNAPP based on bi‐allelic SNPs from RAD‐seq data. Node labels
indicate node ages in SNAPP (numbers after the slash are time intervals in δaδi). Error bars represent SNAPP 95% HPD (Highest Posterior Density)
intervals [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Maps representing posterior means of effective migration and diversity surfaces for all seven taxa. Size of sampling dots
represents the number of samples merged into a locality. (a) Forest taxa. (b) Generalist taxa. Upper panel: Effective migration surfaces (m); blue
colours represent areas of gene flow, orange colours represent genetic barriers, and rivers are shown in blue. Lower panel: Effective diversity
surfaces (q); blue colours represent areas of higher than expected diversity (green circles correspond to approximate location of refugia shown
in Figure 1; A—Usambara‐Kwale, B—Pugu/inland to Udzungwa, C—Lindi/Maçondes plateau, D—Mt. Mulanje, Mt. Mabu and surrounding
lowlands), and orange colours represent areas of lower diversity
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location of major rivers (Figure 3; i: Pangani, ii: Rufiji‐Great Ruaha‐
Kilombero, iii: Lukuledi/Ruvuma. iv: Lúrio). For A. sylvaticus, only the

Pangani and Lúrio rivers represented barriers. For the generalist

taxa A. fornasini and L. argenteus, we identified a single barrier

around the Ruvuma/Lúrio rivers in Mozambique; A. delicatus and

L. concolor showed low migration around the Pangani River,

however, extending across a wider area of coastal Tanzania for

A. delicatus. Despite population barriers across taxa coinciding

closely with rivers, we caution that they do not consistently struc-

ture all populations, and other features such as topography, ecologi-

cal gradients and forest refugia may have played a role in shaping

the observed patterns.

F IGURE 7 Stability models representing areas of persistent suitable habitat across from the Last Interglacial period (120 kya) until the
present. (a) Forest taxa. (b) Generalist taxa. Black and white colours represent topography (white = higher elevation, black = lower elevation),
and yellow‐red colours represent highest stability (ranging between 0 and 1). Rivers are also shown, along with refugia identified by Burgess
et al. (1998) shown as red polygons, matching the labelled refugia in Figure 1a [Colour figure can be viewed at wileyonlinelibrary.com]
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We identified at least three main areas of high effective diversity

(Figure 6), which correspond to the refugial areas outlined in Fig-

ure 1a as well as contact areas where genetically distinct populations

meet. High effective diversity is found in a large area surrounding the

Usambara‐Kwale refuge for L. flavomaculatus, A. sylvaticus, A. fornasini

and L. concolor, extending southwards to southern Tanzania for the

latter two, generalist taxa. A second large area of high effective diver-

sity is found in southern Tanzania and northern Mozambique, includ-

ing the Lindi and Maçondes plateau refugia (for the forest‐restricted
A. xenodactyloides and L. flavomaculatus and the generalists A. delica-

tus and L. argenteus). The Afromontane regions of Mozambique close

to the Mt. Mulanje massif, Mt. Mabu and surrounding lowlands

further support high effective diversity for A. xenodactyloides, A. for-

nasini, A. sylvaticus and A. delicatus. However, patterns are idiosyn-

cratic across taxa, and some of these same areas demonstrate lower

effective diversity for A. xenodactyloides and A. delicatus (Usambara‐
Kwale), A. fornasini, A. sylvaticus and L. argenteus (southern Tanzania/

northern Mozambique), and L. flavomaculatus and L. argenteus (Mt.

Mulanje massif and surrounding areas).

3.6 | Ecological niche and stability models

The best ENMS per taxon had AUC scores between 0.89 and 0.99

(Supporting Information Table S8), with Bio14 (precipitation of driest

month) consistently having the highest contribution to the models

for six taxa along with input from Bio4 (temperature seasonality) and

Bio2 (mean diurnal range). Together, these three variables accounted

for 70.9%–94.9% of the variation in the models. For L. argenteus and

L. concolor, altitude had the highest model contribution, along with

Bio2 (mean diurnal range) and Bio18 (precipitation of warmest quar-

ter), together contributing to 63.3%–87.8% of the variation in the

models. Stability models per taxon (Figure 7) showed that several

areas in the Northern Zanzibar‐Inhambane coastal forest ecoregion

have remained more climatically stable over time. A difference

between stability models for forest taxa (A. xenodactyloides, L. flavo-

maculatus, A. sylvaticus) and generalist taxa is apparent, with areas of

stability being smaller and more fragmented for forest taxa. These

areas of stability are situated at proposed refugia (in particular

Usambara‐Kwale, Pugu hills, Uluguru, Udzungwa, Lindi) and in south-

ern CFEA regions such as Mt. Mulanje (Malawi), Mt. Mabu (Mozam-

bique) and Haroni–Rusitu (Zimbabwe). With the exception of

L. argenteus, which is restricted to the Southern Zanzibar‐Inhambane

ecoregion, the generalist taxa display mostly congruent patterns,

with larger areas of stability that extend into non‐forest (savannah

and Miombo woodland) habitats.

4 | DISCUSSION

At present, our understanding of diversification in the CFEA is far

from complete. We used analyses of population structure, demo-

graphic model selection, evolutionary relationships and stability

models to evaluate diversification patterns and processes with

genome‐wide data for the first time within this highly threatened

biodiversity hotspot. Utilizing such data for multiple co‐distributed
taxa provides insight into the spatial distribution of biodiversity and

the underlying diversification processes (e.g., Bell et al., 2017), which

smaller spatial and genetic data sets have previously been unable to

address in detail (see Davey & Blaxter, 2010; Lexer et al., 2013).

Using a multi‐faceted analytical strategy, our findings suggest that,

although biodiversity patterns across the CFEA appear consistent

with a forest refugia‐driven model of diversification, this hypothesis

alone is insufficient to fully explain the region's biological diversity

even for forest taxa. We show that multi‐taxon approaches can help

to develop a more comprehensive understanding of the biotic his-

tory of the region.

4.1 | Broad‐scale phylogeographic patterns

Previous species richness and endemism studies in the CFEA have

recognized the existence of a biogeographic division situated

between the northern (Zanzibar) and southern (Inhambane) Zanzibar‐
Inhambane ecoregions (Azeria et al., 2007; Burgess et al., 1992,

1998, 2004). Together, our analyses across taxa lend support to this

division, with congruent divergences between southern populations

in Mozambique, Zimbabwe and Malawi, and the remaining CFEA

regions in Tanzania and Kenya. The patterns shown by our data clo-

sely match numerous other phylogeographic studies in vertebrates,

notably between Tanzania and Mozambique (Bertola et al., 2016;

Bryja et al., 2017; Levinsky et al., 2013; Lorenzen, Heller, & Siegis-

mund, 2012). Analyses of effective migration and diversity surfaces

confirm these patterns, but show that the location of the major Tan-

zania‐Mozambique barrier across different sampled taxa varies, being

present in a similar location for some (L. flavomaculatus, A. sylvaticus,

A. fornasini), geographically shifted (Arthroleptis xenodactyloides),

smaller (Leptopelis argenteus) or absent (Leptopelis concolor, Afrixalus

delicatus) for others. These differences may reflect true variation

across taxa but are most likely explained by variations in geographic

sampling, which may have influenced results. Further targeted sam-

pling in underrepresented areas would help to address issues con-

cerning robustness of our spatial estimations, especially in northern

and central Mozambique and around the other major phylogeo-

graphic barriers revealed by our analyses (e.g., through Tanzania and

Mozambique in the vicinity of the Pangani, Rufiji‐Great Ruaha‐Kilo-
mbero, Lukuledi‐Ruvuma and Lúrio rivers, which also occur between

refugial areas). The presence of range‐restricted diversity in these

areas has been documented for several taxonomic groups (Burgess

& Clarke, 2000; Burgess et al., 1998), including amphibian popula-

tions (Barratt, 2017; Barratt et al., 2017a, 2017b; Bwong et al.,

2017). In East Africa, such patterns are often associated with vicari-

ant diversification through a forest refuge model of speciation (End-

ler, 1982; Haffer, 1969, 1997; Mayr & O'Hara, 1986; Moreau, 1954;

Moritz et al., 2000; Plana, 2004) or attributed to ecological change

(Lorenzen et al., 2012).

Most divergence events observed in our focal taxa occurred dur-

ing the Pliocene–Pleistocene based on mtDNA analysis. Differences
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in topologies with SNP data and difficulties in inferring absolute

dates without an accurate mutation rate for amphibians make direct

comparisons of node ages across these data sets difficult. Despite

this, we note that almost all divergences are temporally consistent

between SNAPP and δaδi, with time interval parameters (in genetic

units) being highly correlated. Although gene flow can have adverse

effects on divergence date estimates using Bayesian coalescent mod-

els (Leaché, Fujita, Minin, & Bouckaert, 2014b), we found evidence

for a lack of gene flow in six of our seven population comparisons,

indicating age estimates are not likely to be underestimated from

this cause. However, we do note that divergence times may be over-

estimated when dealing with closely related lineages due to inappro-

priate models of nucleotide evolution using genome‐wide data

(Lischer, Excoffier, & Heckel, 2014). The Plio‐Pleistocene divergences

observed in our focal taxa for both forest and generalist taxa are

particularly interesting as they provide further evidence of older

diversification events across the CFEA, in addition to the more

recent divergences likely due to Pleistocene forest refugia. Together,

evolutionary relationships and demographic analyses lend support to

the high complexity of temporal and spatial diversification processes

that have occurred across the CFEA, which have resulted in idiosyn-

cratic responses across forest and generalist taxa.

4.2 | Diversification processes in forest vs.
generalist taxa

For the forest taxa (A. xenodactyloides, L. flavomaculatus, and A. syl-

vaticus), geographic distributions of populations were well defined,

divergences between populations were in general early, and stability

models showed more fragmented distributions of stable habitats

since at least the Last Interglacial than for generalist taxa. Effective

migration and diversity surfaces highlighted more numerous but geo-

graphically smaller dispersal barriers than detected for the generalist

taxa, which encompass areas of low elevation and arid habitat (e.g.,

north of the Rufiji and Lukuledi rivers and south of the Ruvuma).

Although these lines of evidence are in general accordance with the

forest refuge hypothesis, more detailed analyses through demo-

graphic models revealed mixed results. For L. flavomaculatus, simulta-

neous divergence followed by secondary contact is consistent with

forest refugial processes. Conversely, we found evidence of parap-

atric divergence (ancient migration followed by size change) in

A. xenodactyloides and a simple model of allopatric divergence (no

gene flow or size changes) for A. sylvaticus, indicating other pro-

cesses have driven divergence in forest taxa. Taken together, our

molecular results and the spatial location of forest taxa populations

only partially support a previous assertion that some CFEA taxa may

have evolved from isolated forest refugial taxa since the Miocene,

with predicted population divergence and periods of re‐connectivity
during the cyclical expansion and contraction of forests during the

Pliocene and Pleistocene (Blackburn & Measey, 2009; Pickersgill,

2005). However, landscape barriers (A. sylvaticus) and ecological gra-

dients (A. xenodactyloides) may have also contributed to the diver-

gence of forest taxa, with no strong evidence for recent size

changes caused by human influence. The overall patterns of general-

ist taxa (A. fornasini, L. argenteus, L. concolor and A. delicatus) demon-

strated earlier than expected divergences for all taxa except

L. argenteus and L. concolor, and limited gene flow between popula-

tions despite fewer dispersal barriers shown by EEMS analyses. Demo-

graphic model selection results are highly congruent across

generalist taxa, with all four patterns consistent with allopatric diver-

gence without subsequent migration. As for forest taxa, the geo-

graphic distribution of populations is highly structured and appears

to correspond more closely to river barriers (Pangani, Rufiji, Great

Ruaha, Kilombero, Lukuledi, Ruvuma and Lúrio) than topographic

barriers, in line with previous results for amphibian populations in

sub‐Saharan Africa (Lawson, 2013; Measey, Galbusera, Breyne, &

Matthysen, 2007; Portik et al., 2017). Stability models for these taxa

highlight several areas that could be considered as potential refugia

(e.g., Usambara‐Kwale, Pugu hills, Lindi), although the large sizes of

these are likely due to the broader niche of generalists compared to

those of forest taxa. However, generalists may facultatively occupy

forest habitats, being sympatric with forest taxa in some cases (e.g.,

see A. delicatus and A. sylvaticus distributions in Figure 2c,e). In sum-

mary, the diversity patterns shown by generalist taxa are best inter-

preted as the result of vicariance due to landscape barriers (most

likely rivers) rather than ecological gradients or forest refugia, and

our goodness of fit tests indicate that our best‐ranked models are

good explanations of the JSFS in all taxa except L. concolor, which

should be interpreted with caution, although human impacts could

potentially have played an additional role.

4.3 | Understanding tropical diversification using
multiple taxa

Taxa found across the CFEA, as in other heterogeneous tropical bio-

diversity hotspots, are a rich mixture of old and young taxa, each

with unique ecological characteristics. Inferring diversification pro-

cesses in tropical biodiversity hotspots is therefore challenging, as

even congruent biodiversity patterns are likely to be generated by

highly complex processes that vary both temporally and spatially.

With this study, we managed to capture some of these complex pro-

cesses for forest and generalist taxa and were able to evaluate

potential diversification processes at work across taxa using several

high‐throughput data sets. In doing so, we were able to explicitly

test existing hypotheses against alternative diversification modes for

the first time in this region and make a broad evaluation of the for-

est refuge model. Forest refugial processes appear to be only par-

tially responsible for the current diversity in the CFEA, and a range

of other diversification mechanisms support the idiosyncrasy of

these processes across taxa. Although we found some clear differ-

ences between forest specialists and generalist taxa, counter to our

predictions the forest specialists were less consistent in diversifica-

tion mechanisms than generalists.

While the conceptual framework we employ is by no means the

only available option to address such hypotheses, approaches such

as ours can help to reveal the nuances of diversification which lie
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behind the correct but rather coarsely defined forest refuge hypoth-

esis. Building upon this work, new statistical tools and techniques

for handling high‐throughput data, such as minimizing allelic dropout

while maximizing amounts of informative data and building more

accurate demographic models will be key to leveraging optimal

information from RAD‐seq data sets in particular. Moreover, newly

published model‐based methods for genome-wide SNP data (Smith

et al. 2017; Xue & Hickerson, 2017) as well as those already exist-

ing for mtDNA (Huang, Takebayashi, Qi, & Hickerson, 2011; Oaks,

2014) will enable further work for assessing concordant patterns of

co‐diversification amongst co‐distributed taxa in tropical hotspots.

These methods allow empirical investigation of the synchronicity of

divergences within and between species and populations, detecting

if co‐distributed taxa exhibit shared responses to major historical

events. We strongly encourage future work in tropical regions to

take advantage of these emerging tools as well as those we utilized

here, and as burgeoning quantities of genome-wide spatial and

molecular data become available, we advocate that research collabo-

rations incorporating multiple taxonomic groups will further improve

our understanding of the evolutionary processes occurring in biodi-

versity hotspots.
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