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ABSTRACT 

---------------------------------------------------------------------- 

This study presents the development of a non-linear control strategy for a semi-active 

suspension controller using a gain-scheduling structure controller. The aim of the study is to 

overcome the constraints of conventional control strategies and improve semi-active 

suspension to achieve performance close to that of full active control. Various control strategies 

have been investigated to improve the performance of semi-active vibration control systems. 

A wide range of semi-active control strategies have also been experimentally tested by 

researchers in the attempt to enhance the performance of semi-active suspension systems. 

However, the findings published in the literature indicate that there appears to be a ceiling to 

performance improvements with the control strategies that have been proposed to date, which 

is about the half of what could be achieved with full active control. The main constraint for 

semi-active devices such as Magnetorheological (MR) dampers is that they are only capable of 

providing active control forces by dissipating energy, in their active mode, and they switch to 

work as simple passive dampers, the passive mode, when energy injection is demanded by the 

associated control laws. The split in durations of time between the active and passive modes 

for the conventional semi-active control strategies is around 50:50. This study will focus on 

the development of a novel semi-active control strategy that aims to extend the duration of the 

active mode and hence reduce the duration of the passive mode for semi-active suspensions by 

using a gain-scheduling control structure that dynamically changes the control force demanded 

by the operating conditions. The proposed control method is applied to both vertical and lateral 

suspensions of a railway vehicle in this study and the improvements in ride quality are 

evaluated with several different track data. For the purpose of performance comparison, a semi-

active controller based on skyhook damping control integrated with MR dampers and also a 

vehicle with passive suspensions are used as the benchmark, and are used as a reference case 
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for assessment of the proposed design. Numerical simulations are carried out to assess the 

performance of the proposed gain-scheduling controller. The simulation results obtained 

illustrate the performance improvement of the proposed control strategy over conventional 

semi-active control approaches, where the ride quality of the new controller is shown to be 

significantly improved and comparable with that of full active control. Potentially, this kind of 

adaptive capability with variable control approaches can be used to deliver the level of the 

performance that is currently only possible with fully active suspension without incurring the 

associated high costs and power consumption. 
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CHAPTER ONE 

1 INTRODUCTION 

1.1 Introduction 

Suspension systems play an essential part in improving the ride quality and stability of the 

vehicle system. It reduces the motion and acceleration of the sprung mass in the system. 

Conventional passive suspensions have some advantages such as design simplicity and cost-

effectiveness. However, the performance due to the wide frequency range of excitations 

induced by track irregularities may be limited because of the associated fixed design, in which 

the damping and spring cannot be controlled when the system and/or operating conditions 

change.  

Therefore, in the last decade, controllable suspension systems, which include full-active and 

semi-active systems, have been proposed by using computer-based control devices and 

controllable actuators [1, 2]. Although full-active suspension systems can provide high control 

performance over a wide frequency range of vibrations, the cost and high power requirement 

of the actuators imposes significant obstacles to their commercial adoption. A promising 

alternative to full-active suspension system is a semi-active suspension. 

 The semi-active suspension offers advantages over passive suspension for desirable 

performance whilst also providing a more cost-effective solution than full-active 

suspensions[3]. During the past decade, the semi-active suspension has been investigated by a 

number of researchers as used in railway vehicles, automotive and vibration control 

applications [4, 5]. More recently, MR dampers, which can change the damping ratio by 

suitable magnetic fields, have been studied by some researchers for use in the vibration control 
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of vehicle suspension because of their fast response, low power consumption and ability to 

control the damping ratio [6]. 

  However, the tracking of the desired damping force is a significant issue in semi-active 

suspension systems. The variable dampers are only capable of dissipating energy, but cannot 

develop a positive force when the damper velocity reverses and hence the semi-active 

controller will simply apply a damping force using passive mode; therefore, a semi-active 

damper cannot create the necessary forces, or apply the same level of control, in the same way 

as a full-active control in such conditions. 

This study will focus on the development of a novel semi-active control strategy that aims 

to extend the duration of the active mode and hence reduce the duration of the passive mode 

for semi-active suspensions by using a gain-scheduling control structure that dynamically 

changes the control force demanded according to the operating conditions.  

1.2 Identification of the Problem  

Many control strategies have been studied for the semi-active suspension systems in the 

attempt to achieve high levels of performance. Most semi-active control strategies are based 

on achieving a control force equivalent to the behaviour of the skyhook control strategy[7]. 

Some linear feedback control methods and intelligent strategies have also been investigated in 

the semi-active suspension system [8, 9]. More recently, many control strategies including 

fuzzy logic control [10], skyhook, ground-hook and hybrid control[11], neural network 

predictive control algorithm[12], semi-active fuzzy control [13], and adaptive vibration control 

[14] have been explored. 

 However, the findings published in the literature indicate that there appears to be a ceiling 

on performance improvements with the control strategies proposed to date, which is about the 

half of what could be achieved with full-active control. The main constraint for semi-active 
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devices such as MR dampers is that they are only capable of providing active control forces by 

dissipating energy, i.e., in their active mode, and are switched to work as simple passive 

dampers, i.e., the passive mode, when energy injection is demanded by the appropriate control 

laws. The split in durations of time between the active and passive modes for the conventional 

semi-active control strategies is around 50:50. In the full-active suspension system, the force-

velocity diagram (Figure1.1) shows that the actuator force versus actuator relative velocity it 

works in all four quarters, which means the energy can be injected into the suspension system 

or dissipated from the suspension system. 

However, the semi-active damper can only be dissipated energy from the system, which 

follows from the possibility to work only in the first and third quarter of the force-velocity 

diagram, as shown in Figure 1.1. Therefore, the semi-active damper is not able to develop a 

damping force in the opposite direction as the relative damper velocity, and it is switched to 

the minimum damper setting, i.e., in their passive mode, as the damper is transmitting the force 

rather than dissipating energy. 

This study will focus on the development of a novel semi-active control strategy that aims 

to extend the duration of the active mode and hence reduce the duration of the passive mode 

for semi-active suspensions by using a gain-scheduling control structure that dynamically 

changes the control force demanded according to the operating conditions. 
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Figure 1.1: Force – velocity diagram for semi-active damper[15] 

1.3 Research Motivation, Aim and Objectives 

The aim of the research is to overcome the constraints of conventional linear control 

strategies and improve semi-active suspension to achieve a performance close to that of full-

active control. The improved performance may be used to deliver the same level of the 

performance that is currently only possible with full-active suspension systems without 

incurring the associated high costs and power consumption. 

The improved performance can be used to deliver a better ride quality or will be used to 

enable higher railway vehicle speeds while maintaining the same level of passenger comfort. 

The other possibility is to provide the same ride quality on less well-maintained or lower quality 

track. 

In order to achieve this aim, the following research objectives have been identified: 
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 Undertake a comprehensive literature review of current full-active and semi-active 

control strategies for suspension systems. 

 Undertake a comprehensive literature review of semi-active suspension control of the 

MR damper. 

 Work on the modelling and simulation of a railway vehicle as a case study and control 

design for active/semi-active suspension control. 

 Develop an adaptive control strategy for a semi-active suspension in order to minimise 

the use of minimum level of damper settings as much as possible. 

 Verify the development of the proposed control strategy via the MR damper model and 

assess the associated system performance. 

 Discuss dynamic performance and draw conclusions from the research carried out, and 

further make recommendations as to how the proposed control design for semi-active 

suspension of a railway vehicle can improve ride quality.  

 Publish results of research in journals, and present the same at conferences. 

1.4 Contributions of This Thesis 

This thesis presents the development of a non-linear control strategy for semi-active 

suspension that can be used to deliver a level of the performance that is only currently possible 

with full-active suspension without incurring the associated high costs and power consumption. 

This thesis is believed to make the following contributions to the present research field: 

 A new semi-active control strategy using a gain-scheduling structure controller, 

which can be used to improve semi-active suspension performance, has been 

developed and optimised through simulation. 
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 The proposed control method is applied to both vertical and lateral secondary 

suspensions of the railway vehicle in this study and the improvements in the ride 

quality are evaluated with several different track data. 

1.5 The Layout of the Thesis 

The thesis is organised as follows:  

In chapter 1, the introduction and an overview of the study are given, as well as a brief 

description of the motivation, aims, and objectives of this research. 

In chapter 2, the background of thesis and an overview of different categories of control 

suspensions are presented. The advantages and limitations are briefly discussed.  

In chapter 3, the comprehensive literature review of full-active and semi-active suspension 

systems for railway vehicles is presented. The use of an MR damper-based semi-active 

suspension for railway vehicles is also discussed. The literature review highlights the 

importance of this research.  

In chapter 4, the modelling of the conventional railway vehicle in vertical and lateral 

directions are introduced. Vehicles with passive suspension, full-active and conventional semi-

active controls are introduced as benchmarks and are used for comparative assessment of the 

proposed semi-active controlled suspension design. 

In chapter 5, both the modelling and control of semi-active MR dampers are presented. 

In chapter 6, the proposed semi-active suspension based on gain-scheduling control is 

introduced. The design process, tuning, and applications for the secondary suspension system 

of the railway vehicle are also presented. 
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In Chapter 7, the numerical simulation results of vertical secondary suspension performed 

in the Matlab Simulink environment to evaluate and analyse the performance of different 

control strategies for the secondary suspension system of the railway vehicle are discussed.  

In Chapter 8, the results of lateral  suspension used to assess the performance of different 

control strategies for the secondary suspension system of the railway vehicle are further 

analysed. 

In chapter 9, a summary of the main conclusions from this thesis and recommendations for 

future work are given. 
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CHAPTER TWO 

2 BACKGROUND 

2.1 Introduction 

Increased velocity is one way for railway vehicles to compete with other means of 

transportation. However, higher velocity usually causes increased forces and accelerations on 

the vehicle, which negatively affect ride comfort. Therefore, some form of active technology 

in the secondary suspension system might represent a solution to improved ride quality in cases 

where conventional passive suspension systems cannot be further optimised. The improved 

performance can be used to deliver better ride quality or will be used to enable higher railway 

vehicle speeds while maintaining the same level of passenger comfort. The other possibility is 

to provide the same ride quality on lower quality track. In this regard, the active secondary 

suspension can be used in the lateral and/or vertical directions when different actuator 

configurations are installed. 

      The concepts of full-active suspension in railway vehicles have been studied 

theoretically and experimentally for decades, generally showing significant ride quality 

improvements compared to passive suspension systems. In full-active suspension systems, 

actuators, which are operating by the external power supply, are used to generate the necessary 

damping force to suppress the vibrations. However, active suspensions have disadvantages 

regarding their weight, size, high power consumption, and fail-safety issues[16]. 

 Therefore, full-active suspension systems have not yet been implemented for in-service 

operation. Generally speaking, full-active suspension system solutions are excessively 

expensive in relation to the potential benefits they can deliver. Compared to conventional 
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passive suspension, full-active suspension systems must be safe and reliable in order to be 

considered a feasible option for industrial railway implementation[16, 17]. 

During the past decade, among the many different types of controlled suspension systems, 

the semi-active suspension has been investigated by a number of researchers for use in railway 

vehicles, automotive, and vibration control applications [5]. The semi-active suspension offer 

advantages over passive suspension in terms of its more desirable performance and, on the 

other hand, provides a more cost-effective solution when compared with full-active 

suspensions. 

Semi-active suspension systems usually use controllable dampers to change the damping 

force, and do not add energy to the suspension system such as semi-active hydraulic damper 

changes the size of an orifice in the hydraulic flow valve to adjust the damping force, an 

electrorheological (ER) damper applies different of the electric field to control the viscosity of 

the ER damper. 

More recently, Magnetorheological (MR) dampers, which can change the damping ratio by 

suitable magnetic fields, have been studied for railway vehicles in semi-active suspension by 

many researchers, because of their low power consumption, fast response, and the capability 

to control the damping ratio. 

The fundamental idea of the semi-active controlled suspension system is to regenerate the 

action of skyhook damping as closely as possible, but an MR damper cannot develop a positive 

force when the relative velocity reverses because it would require a negative damper setting. 

In this instance, the semi-active controller will simply apply a minimum damper setting, and 

hence a semi-active damper cannot create the necessary forces. However, if a control strategy 

can be found that manages the desired control force so as to minimise the use of the minimum 

damper setting, this would represent an improved damping efficiency of the damper and 
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thereby increase energy dissipation, and for which there is significant potential for future 

implementation.  

2.2 Railway Vehicle Suspension Systems 

Prior to developing the controller, a model of a railway vehicle, which is shown in Figure 

2.1, is constructed as the benchmark model for assessment and comparative studies of control 

strategies. The railway vehicle studied in the research is composed of one vehicle body, two 

bogies, and four wheelsets. The two bogies, which are identified simply as the front and rear 

bogies, are connected to the vehicle body by the secondary suspension. Each of the two bogies 

is also connected to two wheelsets by the primary suspension. The primary and the secondary 

suspensions are provided in the vertical and lateral directions. The main aim of active 

technology in railway vehicle suspension can fall into one of two categories: improving running 

stability and wheelset guidance through controlling the primary suspension, and improving ride 

quality through controlling the secondary suspension. 

 

Vehicle

Bogie

Wheelset

Secondary 

suspension

Primary 

suspension

a:vertical model of railway vehicle b:lateral model of railway vehicle
 

Figure 2.1: Diagram of a railway vehicle model (a) vertical model; (b) lateral model 
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2.2.1 Primary Suspension 

The most significant challenge in the primary suspension of railway vehicles is to achieve 

a good compromise between stability and guidance, which with a passive suspension is 

difficult. The critical speed of the railway vehicle on the straight track is a function of an 

exceedingly stiff wheelset guidance, especially in the longitudinal direction, and is often 

integrated with a stiff yaw damping between vehicle and bogie. However, the curving 

performance is thereby negatively affected, since a high primary suspension stiffness reduces 

the radial steering ability, which causes larger track shift forces and a higher amount of wheel 

and rail wear. With the actively controlled primary suspension, the stiffness can be adapted to 

the running conditions[16]. Active technology in the primary suspension can improve the 

curving performance whilst maintaining an adequate level of running on the straight track. The 

concept of active primary suspension has been under investigation for decades and has been 

theoretically and practically developed and improved. There are a variety of approaches to 

enhance stability and guidance through an active technology, which has been categorised and 

summarised by Goodall et al. [18]. However, high cost and reliability issue have prevented the 

implementation of this technology for active primary suspension. 

2.2.2 Secondary Suspension 

The aim of the secondary suspension is to isolate the vehicle body from track irregularities. 

There are two elements of the suspension that have an influence on its performance, namely a 

spring element and a damper. For a passive suspension, the designer has to assume the most 

frequent condition of running (such as characteristics of railway track, vehicle speed, and 

acceptable level of acceleration) and find the best suspension stiffness and damping for these 

conditions. However, the performances due to the wide frequency range of excitations induced 

by rail track irregularities may be limited, the parameters of the passive damper are fixed, which 

means that once the system is designed, the damping cannot be varied. The purpose of active 
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control of the secondary suspension is to provide better isolation of the vehicle from excitations 

transmitted from track irregularities than the passive damping can offer by itself, and hence 

improves passenger comfort. The secondary suspension is usually controlled in the lateral 

direction, including the yaw mode, or in the vertical direction, including the pitch mode. It is 

important to realise that the improved performance offered by an active suspension can be 

employed from an operational point of view through a variety of methods.  

Figure 2.2 illustrated the general relationship of ride quality with railway vehicle speed, 

which shows the accelerations on the vehicle body increases with speed. As shown in Figure 

2.2, active technology in secondary suspension can be used in order to achieve one or more of 

the following options. The first option is simply to improve passenger ride comfort, but if the 

passenger ride comfort is already good, further improvement at unchanged railway vehicle 

speed and track conditions is little justification for the extra cost of the active technology in 

secondary suspension. The second option shows the possibility of increasing vehicle speed and 

using the improved performance to maintain good ride quality, with the reduced journey time 

and enhanced utilisation of the railway vehicle bringing benefits that offer a clear rationale for 

the use of an active technology in secondary suspension. The third option is to operate the 

railway vehicle on a lower quality track, with the active technology in secondary suspension 

again being used to maintain acceptable ride quality, in this option, the significant savings in 

track maintenance that arise from the reduced need to ensure high track quality, can be used to 

justify the active technology in secondary suspension. 
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Figure 2.2: Use of improved active secondary suspension performance[19] 

2.3 Control Schemes in Suspension 

 The suspension system can be categorised depends on the control bandwidth and external 

power supply to the system in terms of three categories, which are passive, full-active, and 

semi-active suspension systems. A passive suspension is a conventional suspension system that 

consists of a spring and damper, and which means the damping rate is fixed. A semi-active 

suspension system has the same configuration as the passive suspension, but with a controllable 

damping rate for the damper. A full-active suspension consists of a spring and an actuator that 

supply additional force. Figure 2.3 shows a schematic of a quarter of the railway vehicle system 

with a conventional passive, semi-active and full-active damper. 
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Figure 2.3: Conventional passive, semi-active, and full-active suspension systems[20] 

2.3.1 Passive Suspension Systems 

Passive suspension systems for railway vehicles using springs and pneumatic or oil dampers 

have some advantages such as cost-effectiveness and design simplicity. However, the 

performance due to the wide frequency range of excitations induced by rail track irregularities 

may be limited, and the parameters of the passive damper are fixed, which means that once the 

system is designed, the damping cannot be adapted. In addition, a fixed passive damper may 

become ineffective due to other phenomena such as instability of the vehicle, which is velocity 

dependent.  In fact, when the railway vehicle velocity reaches a critical value, the amplitude of 

the railway vehicle vibration grows exponentially with time and theoretically reaches infinity 

in a linear system[21]. Figure 2.4 shows the relationship between damping force (𝐹𝑑) and 

relative velocity (�̇�-�̇�𝑜)   for a conventional passive damper, where the magnitude and direction 

of the force exerted depend only on the relative velocity across the damper.  

In many applications, the relationship between the damping force and the relative velocity 

for the conventional passive damper is nonlinear, and the gradient tends to decrease as the 

relative velocity increases. However, in the passive model considered in this study, the slope 

of the force-velocity curve is constant. 
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Figure 2.4: Force-velocity diagram for a passive damper[22] 

2.3.2 Full-Active Suspension Systems 

 

In general, the principle of an active suspension system is based on the idea of controlling 

a specific variable system, such as vehicle acceleration, according to the feedback signals, as 

illustrated in Figure 2.5. In order to incorporate a control loop in the suspension system of 

railway vehicles, actuators, sensors and controller must be included in the railway vehicle 

system. Actuators can replace conventional passive dampers, for instance, between the vehicle-

body and bogies. They should actively generate the necessary damping force, according to the 

desired force from the system controller. The desired force is determined based on the vehicle 

output signals measured by appropriate sensors. The feedback signals, in turn, depend on the 

generated actuator force managing the mechanical system. Therefore, the control loop is closed 

[20]. 
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Figure 2.5: Principle of an active suspension system [23] 

 

2.3.3 Dynamic Response of the Actuator for a Full-Active Suspension 

The ideal actuator generates precisely the same force as requested over wide range of 

bandwidth and without time delay. In real applications, this is not possible and designing with 

active suspension is always a difficult challenge of balance between different parameters, such 

as cost and actuator performance. In order to implement a full-active suspension system, it is 

necessary to have an actuator force controller. Figure 2.6 shows the actuator force control, 

which is a generalised scheme of a force-controlled actuator. 

Force feedback
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Figure 2.6: Actuator force controller[15] 
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    An active suspension controller generates the command force to the actuator. The track 

input will impact the dynamic system, which will induce actuator movement. Therefore, the 

actuator force controller adjusts the control signal to keep the actuator forces as close as 

possible to the command force[15]. 

2.3.3.1 Actuator Device 

The active suspension system consists of actuators, sensors and a specific control law, which 

generates the control force demanded for the actuator. The actuator should be able to generate 

the demanded control force. However, how this is achieved depends on the performance of the 

actuator. There are various types of actuators that can be used for active vehicle suspension 

systems, such as electromechanical, hydraulic, electromagnetic[16]. 

2.3.4 Semi-Active Suspension Systems 

Recently, semi-active controlled suspension systems have attracted a great interest by 

researchers because the semi-active suspension systems only require a low power consumption 

and can adjust the damping force in real time. Semi-active controlled suspension systems 

usually use controllable dampers, although the concept is not restricted to the dampers 

themselves. Semi-active control systems are composed of a system controller and damper 

controller, as shown in Figure 2.7. The system controller generates the desired damping force 

according to the feedback signals measured by sensors. The damper controller adjusts the 

control signal to track the desired damping force. 
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Figure 2.7: Semi-active suspension system 

2.3.5 Semi-Active Dampers 

  Semi-active dampers are passive dampers whose dynamic properties can be varied with 

time but can only dissipate energy. Although the direction of the damper force in semi-active 

dampers still depends on the relative velocity of the damper, the magnitude of the damper force 

is considered to be adjustable.  

Semi-active dampers are operated according to semi-active damping control strategies to 

generate a damping force passively. Semi-active dampers could be of the on-off category or 

the continuously variable category. Semi-active dampers of the first category are switched, in 

accordance with a suitable control algorithm, between alternate on and off damping modes, as 

shown in Figure 2.8(a), which shows the relationship between damping force (𝐹𝑑) and relative 

velocity (�̇�-�̇�𝑜) for a semi-active on-off type damper. Continuously variable semi-active 

dampers are also switched during operation between the on and off modes; however, when 

continuously variable dampers are in their on-mode, the damping coefficient and 

corresponding damper force may be changed over a range of magnitudes, as shown in Figure 

2.8(b). The damping coefficient of the on-off category is a discontinuous function in the time 
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domain, as illustrated in Figure 2.9 (a). The damping coefficient of the continuously variable 

category is a continuous function, as shown in Figure 2.9 (b). 

 

Figure 2.8:Semi-active damper concepts[22] (a) on-off category; (b) continuously variable 

category  

 

Figure 2.9 :Semi-active damper characteristics in the time domain[22] (a) on-off damper, 

(b) continuously variable damper  
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For the purpose of semi-active damping control, various energy-dissipating devices have 

been used to obtain the desired damping. These devices include hydraulic dampers, 

Electrorheological (ER) and Magnetorheological (MR) dampers, semi-active friction devices 

and electromagnetic devices.  

In this study, the MR damper used due to the mechanical simplicity, high dynamic range, 

fast time response, low power consumption, large force capacity, robustness and safe manner 

operation in case of fail. In addition, the essential characteristic of controllable fluids (MR 

fluid) of the MR damper is their ability to change from a free-flowing viscous liquid to a semi-

solid with a controllable yield strength in milliseconds when exposed to a magnetic field, which 

changes it is stiffness and damping setting. Therefore, the MR damper has the capability of 

changing the effective damping force depending on the control current applied to the damper. 

2.4  Design Considerations and Requirement 

The development of high-velocity railway vehicles has been an interest of many companies 

because high- velocity railway vehicles have shown to be an economical and efficient 

transportation means. However, the high velocity of the railway vehicles can induce significant 

vibrations of a railway vehicle, which cause ride discomfort, wear down wheel and railway 

profiles, and cost of track maintenance. Another issue is related to the resonance phenomenon 

where the external disturbance of the vehicle is equal to, or close, to the natural frequency of 

the whole system, and instability appears at higher velocities as an oscillation in the wheelset 

and other vehicle components such as the bogie and vehicle body. Therefore, the suspension 

system of the vehicle has to be modified in order to compensate for the deteriorated dynamic 

performance. However, the performance improvements possibilities by the mechanism of 

passive suspension technology have been reached a limit, due to the lack of damping force 

controllability. Therefore, various active suspension technologies for railway vehicles have 
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been proposed to overcome the limitations of passive suspension. Active suspension 

technologies can achieve considerable control performances over the wide bandwidth of the 

frequency excitations induced by track irregularities. However, full-active actuators consume 

a considerable amount of power, are more complex, and less reliable than passive systems. 

 Moreover, the active suspension systems inject mechanical power into the system of the 

railway vehicle, so the stability of the control system needs to be more inspected. Furthermore, 

the forces generated by the actuator depending on the performance of the actuator. The ideal 

actuator generates precisely the same force as demanded over an infinite bandwidth and 

without time delay. In real applications, this is not applicable, and working with active 

suspension is usually an issue of trade-offs between different parameters, such as actuator 

performance and cost[19]. 

Another issue is related to the multi-objective nature of the design process for any 

suspension systems( passive or active), as shown in Figure 2.11, which emphasises the 

difficulty in meeting design parameters that fall within these conflicting constraints. There are 

varieties of input types and output variables that must be considered, and each output can be 

affected by different combinations of inputs. The design process will require an optimisation 

involving conflict constraints. For example, the active secondary suspension design must 

minimise the accelerations on the vehicle body without exceeding the maximum suspension 

deflection, whilst the active primary suspension must achieve good curving performance while 

maintaining acceptable levels of running stability on the straight track. Active control can be 

used for any or all of the suspension degrees-of-freedom, but, when used in the lateral direction, 

will necessarily include the yaw mode and in the bounce direction will include the pitching 

mode[20]. 



 

22 

 

 

Figure 2.10: Design process [20] 

Although full-active suspension systems can provide high control performance over a wide 

frequency range of vibration, the cost, complexity of this system, and high power requirements 

of the actuators bring significant obstacles to their commercial adoption. A promising 

alternative to full-active suspension system is a semi-active suspension. 

The advantages of the semi-active approach compared with full active that it is simplicity. 

They do not require either higher-power actuators or a large power supply. When the control 

system fails, the semi-active suspension can still work in a passive state. However, the damping 

force of a semi-active damper remains dependent upon the relative velocity of the damper, 

which means that larger forces cannot be generated when its relative velocity is low. Another 

issue is that such systems cannot generate a positive force when the relative velocity reverses 

because it is only possible to dissipate energy, not inject it. Figure 2.8 illustrates this limitation 

by showing areas on the force-velocity diagram that are available in a semi-active damper 

based upon its minimum and maximum levels, whereas the actuator in the full-active 

suspension system can cover all four quadrants. This limitation restricts the performance of a 

semi-active suspension to a significant degree.  
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2.5 Track Inputs 

The dynamic behaviour of the railway vehicle is dependent on the wheel-rail interaction. 

The wheel-rail interaction is affected by both deterministic (low-frequency signals) and random 

track inputs (high-frequency signals). The deterministic track inputs are things such as 

curvatures and gradients whilst the random track inputs are due to the track irregularities (in 

both lateral and vertical directions). The suspension systems of the railway vehicle have to cope 

with deterministic and random track inputs. 

 Various studies have been carried out to turn the trade-off between the random and 

deterministic track input requirements to active suspension. A number of approaches are 

presented to achieve good curving performance whilst maintaining an adequate level of 

running straight track; for example, using a linear complementary filter control and non-linear 

Kalman filter methods [24-26]. 

However, how the track irregularities influence the wheel-rail interaction is important when 

studying issues related to ride quality. Track irregularities represent the deviations of the track 

from its design geometry. The irregularities appear on the track substructure resulting from 

construction defects or environmental effects. These irregularities are represented by the 

vertical and lateral displacement of each track. 

In the literature review, there are two methods used to represent track irregularities in the 

computational models for railway vehicle dynamics. The first method considers track 

irregularities as measured data and is defined as a function of the distance run, which is 

measured with a railway vehicle that has been specially modified to simulate track defects [1, 

27]. 

 The second method considers track irregularities as stochastic inputs and is defined as a 

function of frequency [28-31]. Many measurements have demonstrated that these track 
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irregularities represent a stochastic process and they could be described by spectral power 

density functions [32].  

The spatial power spectrum is widely used for this purpose and generally approximated to 

a fourth-order relationship [33]. The vertical track spectra are approximated as follows: 

𝑆𝑡(𝑓𝑡) =
𝐴𝑟

𝑓𝑡
2+5.86𝑓𝑡

3+17.29𝑓𝑡
4    ------------------------ (2.1)  

 
 

  Whereas 𝑓𝑡 is a spatial frequency in (cycle/m), this can be converted to a temporal 

frequency using the railway vehicle speed, and 𝐴𝑟 is a scalar factor of the track irregularities 

in (m). 

  However, for secondary suspension evaluation, the higher-order relationship does not have 

any significant effect over 14 Hz. Therefore, the random track inputs can be approximated by 

a simplified power spectrum for the vertical track irregularities, which gives a good 

representation of the track irregularities in order to study the dynamics of railway vehicles[34]. 

𝑆𝑡(𝑓𝑡) =
𝐴𝑟𝑣

𝑓𝑡
2     ----------------------------------------------------- (2.2) 

 
 Where 𝐴𝑟𝑣  is the track roughness factor in the vertical direction (2.5 x 10-7 m) [26]. 

For the sake of simplicity, the stochastic track inputs that are used to represent the lateral track 

irregularities of typical mainlines are generated from a filtered Gaussian white noise function 

to characterise an approximate spatial spectrum equal to 

𝑆𝑡(𝑓𝑡) =
𝐴𝑟𝑙

𝑓𝑡
3        --------------------------------------------------- (2.3) 

 

Where 𝐴𝑟𝑙 is the lateral track roughness ( 0.33 x 10−8 m) [35-37], which provides a good 

representation of the track irregularities in the range 0.1–14 Hz, and the velocity as 83.333 m/s, 

that is, to represent conditions for railway vehicles travelling at 300 km/h. Time delay-

dependent velocities are used to provide the inputs to the other axles of the vehicle. 
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2.6 Performance Assessment Approach 

The performance of suspension systems is influenced by many, often conflicting, factors and 

attributes. For the secondary suspension, there are two conflicting factors that have that most 

influence on its performance, namely the suspension deflection and the ride quality. In practice, 

the possible suspension displacement is limited. Therefore, the control design must improve 

the ride quality on the vehicle body without exceeding the maximum suspension deflection. 

Many studies in the literature have shown that a good compromise between ride quality and 

suspension deflection can be achieved by filtering the absolute velocity to remove the low-

frequency variations associated with the deterministic input [24-26]. 

       However, the ride quality analysis is essential to evaluate the performance of secondary 

suspension systems, which is generally performed by considering the track irregularity inputs. 

In general, the ride quality evaluation of choice will depend on the context of its usage. One of 

the most popular ride quality measures is based on the root mean square (RMS) value of vehicle 

floor acceleration [38-40]. The International Organisation for Standardization (ISO) has 

developed standard ISO 2631 to measure the ride quality for the frequency dependence of 

human sensitivity to vibration and the length of time constituting reasonable human expose 

[40-42]. Many studies have developed a more comprehensive ride quality evaluation that 

considers the interdependence of various modes/direction of vibration [40, 43, 44]. E. Foo used 

frequency-weighted accelerations to evaluate vertical  ride quality, which includes frequency 

weighting before the RMS is calculated to allow for human sensitivity to vibration. 

However, for comparative studies in which relative levels of ride quality are being 

evaluated, the frequency weighting can be neglected[33]. The simple RMS approach of 

measuring ride quality, which is based on calculating the RMS value of vehicle acceleration 

levels experienced by the vehicle, is used in this study. 
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For simplicity, the percentage reduction index of the RMS value of vehicle acceleration is 

used in this study to evaluate the relative ride quality improvement as follows:  

𝑃𝑅𝐼 =
𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑅𝑀𝑆)− 𝑠𝑒𝑚𝑖𝑎𝑐𝑡𝑖𝑣𝑒(RMS)

𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑅𝑀𝑆)
 100 %  ----------------------------- (2.4) 

Where PRI is the percentage reduction index of the relative ride quality 

improvement, 𝑝𝑎𝑠𝑠𝑖𝑣𝑒(𝑅𝑀𝑆) is the RMS acceleration value of passive suspension, and 

𝑠𝑒𝑚𝑖𝑎𝑐𝑡𝑖𝑣𝑒(RMS) is the RMS acceleration value of semi-active suspension. 
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CHAPTER THREE 

3 LITERATURE REVIEW 

3.1 Introduction 

Increases in railway vehicle velocity is limited by track geometry, and higher velocities 

usually generate increased forces and accelerations on the vehicle, which negatively affect ride 

comfort. Moreover, hunting, which is related to the resonance phenomenon where the external 

disturbance of the vehicle is equal or close to the natural frequency of the whole system, is an 

instability which appears at higher velocities as an oscillation in the wheelset and other vehicle 

components such as the bogie and car body. Hunting in a railway vehicle is undesirable since 

it can wear down wheel and railway profiles and cause ride discomfort[45]. One possible 

solution to this is to build new high-quality tracks for high-speed passenger railway vehicles. 

However, this is a costly solution, and another problem is track maintenance, which is also 

expensive. Therefore, research is being carried out to implement modifications and different 

configurations of suspension technologies to balance reasonable cost and acceptable 

performance. Many survey papers have considered basic concepts and requirements for safety 

and reliability, and the opportunities available with the development of full-active suspension 

systems [19, 20, 23, 40, 46]. A great variety of possible approaches to the active suspension 

issue exist for either improving running stability through controlling the primary suspension or 

improving ride quality through controlling the secondary suspension. This chapter provides an 

overview of suspension technologies and the semi-active control algorithms and devices 

proposed in the literature. 
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3.2 Full-active Suspension Systems 

In the last decade, full-active controllable suspension systems have been proposed by using 

computer-based control devices and controllable actuators [16]. Actuators can replace 

conventional passive dampers and should actively generate a required control force according 

to the force requested by the controller. Full-active technology represents one possible solution 

to improved ride quality through controlling the secondary suspension and improving running 

stability and wheelset guidance through controlling the primary suspension.  

3.2.1 Configurations of Suspension Technologies 

The trade-off between curving and stability is a particularly critical problem, which where 

the most considerable benefits are expected by the implementation of active control solutions. 

Many studies have suggested control strategies to solve the problematic design of trade-off 

between the stability and curving performance of railway vehicles[18, 46]. Secondary yaw 

control strategy has been used for the improvement of railway vehicle stability and curving 

performance. This configuration is based on the application of a yaw force at the secondary 

suspension which is used to both raise the critical speed of the vehicle by introducing additional 

damping, and to improve curving performance by adding a steering torque on the bogie frame 

[47, 48]. Shen and Goodall have proposed an active yaw relaxation  concept for a two-axle 

bogie for improved bogie performance, which is based on applying control forces to a solid 

axle wheelset, either in the longitudinal direction or in the lateral direction, to provide a steering 

and stability torque[49]. Another approach to improving steering performance is to use directly 

steered wheels in conjunction with the application of independently rotating wheels. According 

to this concept, the active control strategy is accomplished by guiding independent wheel pairs 

[50]. 

Many different configurations have been proposed for suspension technologies to improve 

the ride comfort without exceeding the maximum suspension deflection, which with a passive 
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suspension is difficult [1, 16, 23, 51]. Active control can be applied to any of the suspension 

system’s degrees of freedom, and a number of actuator configurations are possible. The 

secondary suspension is normally controlled in the lateral direction, including the yaw mode, 

or in the vertical direction, including the pitch mode. Goodall et al. [29] have investigated a 

comprehensive comparison between full-active and semi-active suspensions based on 

hydraulic actuation technology in order to improve the vertical ride quality of railway vehicles. 

In another study, the performance of an electromechanical actuator in an active railway vertical 

secondary suspension for ride quality improvement was also investigated [52]. In addition, 

active control can be applied in the roll direction (tilting control) to improve ride quality, in 

which vehicle body is tilting inwards through curves where high track plane acceleration is 

applied to allow higher speeds without negatively impacting the ride quality [53, 54]. 

Another issue is related to bump stop contact during curve passing or due to lateral 

displacement having a negative impact on ride quality. Mellado et al. [55] proposed a solution 

based on lateral pneumatic actuators placed between the bogie and car body and connected to 

the vertical secondary suspension air springs in order to keep lateral displacement of the vehicle 

within limits. Orvnas et al. [56] investigated the benefits of using a Hold-Off-Device (HOD) 

function in the lateral secondary suspension. Alfi et al. [57]developed the active air spring 

based on suitable open and closed loop control strategy to improve ride quality and safety 

against crosswinds.  

 

In addition, single suspension stage configurations have also been investigated to improve 

ride quality on the active suspension of the railway. Goodall et al. [58] presented the potential 

improvements in ride quality using an electromechanical actuator for a two-axle railway 

vehicle with a single stage of vertical suspension. 
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Another configuration to improve the ride comfort is an active vibration reduction system 

of the flexible vehicle body itself [59]. Schandl et al. [60] have presented an active vibration 

reduction system using piezo-stack actuators to improve the ride quality of the lightweight 

railway vehicle. It was concluded that a reasonable reduction in vibrations could be achieved 

using a small number of sensors and actuators. Another study analysed the influences of car 

body vertical flexibility on railway vehicle ride quality. Here, a vertical model of railway 

passenger vehicles, which includes the effects of car body flexibility and all rigid vertical 

modes, has determined lower limits for the bending frequency to avoid deterioration of vehicle 

ride quality [61].     

In contrast, the active suspension system has been shown to allow higher isolation 

performance than a passive system. However, an actuator requires an external power supply in 

the active control system. This is one of the drawbacks of active suspension systems. In order 

to solve the problem, many researchers have presented self-powered active suspension 

methods. Suda et al. [62] proposed a method of active vibration control system using 

regenerated vibration energy. Another study on the self-powered active vibration control was 

proposed by Suda et al. [63]. Singal et al. [64] explored the idea of a zero-energy active 

suspension using a simulation study of a novel self-powered active suspension system for 

automobiles. In recent studies, a new design methodology was investigated in terms of energy 

consumption and regeneration in the lateral secondary active suspension. The study concluded 

that the performance gain in ride quality from self-powered suspension is dependent upon the 

internal power losses of the actuator and the efficiency of the energy supply/storage [65, 66]. 

3.2.2 Control strategies 

In the existing literature, a large number of control strategies have been proposed for 

developing basic configurations and technology options for active suspension in rail vehicles 

depending on the design objectives. 
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Selamat et al. [67] presented the design of an active suspension control of a two-axle railway 

vehicle using an optimised linear quadratic regulator (LQR). The control objective was to 

minimise the yaw angle and lateral displacement of the wheelsets when the vehicle travels on 

straight and curved tracks with lateral irregularities, where the active yaw damping replaced 

the longitudinal springs to provide yaw torque. 

Li and  Hong[24] investigated the trade-off between the maximum deflection of the damper 

and acceptable levels of ride quality. Different control methods have been applied to the 

Skyhook active suspension system in order to optimise the trade-off between the random and 

deterministic track input requirements. Results showed that improvement of around 20% in 

ride comfort could be achieved with a linear complementary filter and about 50% by using 

nonlinear Kalman filter strategies. 

     Moreover, the dynamic movements of railway vehicles are highly interactive, and the 

DOF order is usually high. Therefore, some form of dynamic simplification can be applied. 

Mei et al. [68] performed a modal decomposition using the modal controller approach to active 

steering of the railway vehicle. The development of a modal control approach was applied to a 

two-axle railway vehicle to decouple body lateral and yaw motions, which enables the 

development of independent controllers for the two movements. Results showed a significant 

improvement in vehicle performance on curves and improved the ride quality by around 25% 

compared to a passive vehicle on a straight track. 

Furthermore, the interaction issue between the vehicle body roll and the lateral dynamics 

substantially influence the tilting system in a high-velocity railway vehicle, which results in a 

negative impact on ride quality. Therefore, integrating an active secondary suspension system 

into the tilting control system is one of the solutions to improving the design trade-off between 

straight truck ride quality and curving performance. In the study, Zhou et al. [69] presented a 

novel active suspension integration strategy that combines tilting control with active lateral 
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secondary suspension, which can enhance tilt control system performance and ride quality. 

Another study by Zhou et al. [70] investigated H∞ decentralised control compared with a 

traditional decentralised control for the integrated tilt control with active lateral secondary 

suspension in high-speed railway vehicles. H∞ decentralised control was used to overcome the 

control loop interaction in the classical decentralised control and improve the performance of 

the local integrated suspension control. Zhou et al. [71] applied advanced system state 

estimation technology, which used the estimated vehicle body lateral acceleration and true cant 

deficiency to enhance the system performance further. 

     Further, the hunting phenomenon is a very common instability exhibited by railway 

vehicles. It is a self-excited lateral oscillation that is produced by the forward speed of the 

vehicle and wheel-rail interactive force, which results from the conicity of the wheel – railway 

contours and friction – and the creep characteristic of the wheel – railway geometry. 

A theoretical and an experimental study of stabilisation control methods for the hunting 

problem in a simple wheelset model was proposed by Yabuno et al. [72]. It was concluded that 

applying a lateral force proportional to yawing motion can increase the critical speed of the 

railway vehicle. In another study, a controlled electro-mechanical actuator was designed to 

substitute for a traditional yaw damper that was used to apply a longitudinal force between the 

vehicle and the bogie. It was concluded that applying longitudinal forces opposite to yawing 

velocity can maximise the amount of energy dissipation. Mohamadi et al. [73]  designed an 

active control for lateral vibration for a bogie using a variable structure model reference 

adaptive control. Results showed that using active suspension can be achieved at higher 

velocities. Pearson et al. [74] presented a comparison of control algorithms for an actively 

stabilised wheelset on a high-speed railway vehicle; this was applied to yaw torque to provide 

a bogie which is stable at high speed without the need for a heavy secondary yaw damper. 
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Model predictive control based on a mixed H2/H∞ control method has been compared with 

a classical skyhook controller. This control approach achieved good ride quality while keeping 

the suspension deflection to its minimum limits, and it is concluded that the proposed controller 

has the advantage of being multi-objective [75]. 

3.3 Semi-Active Suspension Systems 

Among the many different types of controlled suspensions, semi-active suspension systems 

have received considerable attention since they achieve the best compromise between cost and 

performance[15, 40]. The concept of the semi-active suspension system is to apply a 

controllable device which does not need significant external power to work. The semi-active 

controllable device is able to respond to feedback control signal from a semi-active control 

system to control undesired vibrations. The performance of the semi-active suspension system 

is highly dependent on the selection of an appropriate control strategy and characteristics of 

the semi-active damper, such as the lower and the upper limits of the damping setting and how 

fast it can be switched, are particularly important [76]. 

3.3.1 Control Strategies 

During the past decade, various semi-active control strategies have been proposed for 

improving the performance of semi-active suspension systems for railway vehicles, automotive 

and vibration control applications [77, 78]. The initial semi-active suspension system was 

proposed by Karnopp et al. [7]using the skyhook control strategy. The skyhook strategy 

improves the ride quality with a virtual damping term proportional to the sprung mass velocity 

by setting an imaginary damper between the vehicle body and the imaginary sky. The skyhook 

strategy is the simplest control, but very effective in a semi-active control system. 

Recently, the on-off skyhook control strategy (which is a kind of clipped-optimal control) 

have been studied for railway vehicles and automotive applications.  Stribersky et al. [79] have 
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been presented the development of semi-active damping based on the hydraulic damper system 

used on railway vehicles. By applying the skyhook control strategy, an improvement of up to 

15% in ride quality, as measured by the RMS acceleration, can be achieved. 

Gao et al.[80] used an on-off skyhook control strategy  in order to study the control of the 

vibration of suspension system based on an MR damper for a railway vehicle suspension 

system tested over random excitations. 

 In studies performed by Cristiano et al. [81],  a skyhook (SH) control, acceleration drive 

damping (ADD) control, Mixed SH-ADD control , with the electro-hydraulic damper on lateral 

secondary suspension, were all investigated. Results illustrated that the Mixed SH-ADD 

control has the effectiveness of semi-active control with respect to passive suspension. The 

Mixed SH-ADD control provides up to a 34% reduction of the acceleration experienced 

by the vehicle body. Khisbullah et al. [82]investigated the performance of semi-active control 

of the lateral suspension system using a body based on skyhook and a bogie-based skyhook for 

the purpose of attenuating the effects of track irregularities on body lateral displacement. 

In addition to the above control strategies, there are many other control strategies developed 

for improving the ride quality, such as that of Lu-Hang Zong et al. [28], who investigated semi-

active H∞ control with an MR damper for railway vehicle suspension systems to improve the 

lateral ride quality. They concluded that the MR damper-based semi-active suspension system 

used for the railway vehicles attenuate the lateral, yaw, and roll accelerations of the car body 

significantly (about 30%). 

    Liao and Wang [83]applied Linear-quadratic-Gaussian (LQG) semi-active control 

integrated with an MR damper to improve ride quality in vertical secondary suspension. Results 

have proven that applying LQG semi-active control can achieve an improvement of up to 29% 

in ride quality. 



 

35 

 

 

The semi-active adaptive control based air spring suspension that works at both low and 

high frequencies was proposed by Liang et al.[3]. It adopted an adaptive feedforward control 

law in operation, and it was concluded that the semi-active air spring suspension has the ability 

to isolate the vibration and noise across a wide range of frequencies. 

Bideleh et al.presented different on-off switching control strategies (various combinations 

of displacement and velocity) based on an MR damper and applied this to the primary 

suspension of railway vehicle in order to investigate the effects on wear. 

 Liao et al. [76] presented a study demonstrating the feasibility of improving the ride quality 

of railway vehicles with semi-active vertical secondary suspension systems using MR dampers.  

Lau et al. [84] proposed a novel MR damper for a semi-active railway vehicle suspension 

systems. It was developed through the design, fabrication, and tests to ensure the suitability for 

the railway vehicle suspension. A scaled half railway vehicle model was set up that included a 

modified Bouc-Wen model of the MR damper in a suspension system that used a semi-active 

control strategy to improve ride quality [80]. 

 Another study by D. H. Wang et al. [85] used a 17–degrees of freedom full-scale model of 

a railway vehicle that adopted a semi-active MR damper in its secondary suspension, which 

was used to control lateral and yaw vibration.  

Allotta, Pugi[86] investigated different control strategies for semi-active suspension using 

an MR damper for the secondary suspension system, demonstrating that the skyhook approach 

was suitable for railway vehicle using MR damper suspension.  

    In a study by Sun, Deng [21], a 15- DOF high-speed railway vehicle was developed, and 

the damping ratio used to investigate the sensitivity of the critical speed with respect to the 

suspension parameters. It was concluded that the secondary lateral damping rate is the most 

sensitive parameter impacting the critical speed. It was verified that semi-active secondary 



 

36 

 

lateral suspension installed with the MR damper had the ability to improve the railway vehicle 

stability and critical speed. 

In recent years, fuzzy logic control and neural network strategies have been introduced into 

semi-active control suspension systems. SH Ha et al. [87] evaluated the control performance 

of a railway vehicle MR suspension using fuzzy sky-ground hook control. This controller takes 

into account both the vibration control of the car body and increases the stability of bogie by 

adopting a weighting parameter between two performance requirements. Another  study 

performed by Zhiqiang et al. [4] used a PID controller based on BP neural network with a semi-

active suspension of a quarter model  of a railway vehicle to improve lateral ride comfort. 

    Another class of semi-active devices used controllable fluids. The essential characteristic 

of controllable fluids is their ability to reversibly change from a free-flowing viscous fluid to a 

semi-solid with a controllable yield strength in milliseconds when exposed to an electric or 

magnetic field. Therefore, semi-active suspension integrated with an MR damper for the 

railway vehicle was proposed to overcome the drawbacks of other systems. Compared with the 

semi-active dampers mentioned in the previous paragraph, an advantage of the controllable 

fluid devices is that they contain no moving parts other than the pistons of the dampers, which 

makes them simple and potentially highly reliable. Semi-active control integrated with an MR 

damper can achieve high performance with low power requirements while the system is fail-

safe and stable.  

Liao and Wang [83] applied semi-active control integrated with an MR damper in the 

vertical secondary suspension to improve ride quality. They used semi-active control via an 

MR damper to attenuate the lateral and yaw vibration of the railway vehicle. 
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Lau and Liao [84] proposed a novel MR damper for a semi-active railway vehicle 

suspension system. It was developed through the design, fabrication, and tests to ensure its 

suitability for railway vehicle suspension.  

A scaled half railway vehicle model was set up including the modified Bouc-Wen model of 

the MR damper in a suspension system that applied a semi-active control strategy to improve 

ride quality [80].  

Allotta, Pugi [86] investigated skyhook damping and slide mode strategies for semi-active 

with MR damper for the secondary suspension system. Results have proven that skyhook 

approach to be suitable for MR damper suspension systems.  

In general, the performance of a semi-active control system is highly dependent on the 

control strategy, which is the core of the system controller. Various control strategies, such as 

classical control strategies include a skyhook controller, advanced model control strategies 

include an adaptive controller and hybrid controller strategies combining more than two 

different control strategies such as the adaptive fuzzy sliding mode controller have been 

proposed to improve the performance of semi-active vibration control system. A wide range of 

semi-active control strategies have been experimentally tested for the semi-active suspension 

to improve the ride quality of railway vehicles.  However, the findings published so far indicate 

that there appears to be a ceiling on performance improvements with the control strategies that 

have been proposed, which is about the half of what could be achieved with the full active 

control. This is mostly because the main constraint for the semi-active suspensions is that the 

variable dampers are only possible to dissipate energy and they cannot develop a positive force 

when the damper velocity reverses because it would require a negative damper setting. In this 

case, the semi-active controller will simply employ a minimum damping setting hence a semi-

active damper cannot create the necessary forces in the same way as the full active control in 

such conditions.  
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Based on the analysis of limitations of different contributions in the area of full active and 

semi-active damping control, a new control algorithm is proposed in this study. The motivation 

of this control strategy is to provide a better comprehensive performance.  

The proposed design of the control strategy is focused on minimising the use of the 

minimum damper setting by using gain-scheduling control. 

3.4 Summary  

In this chapter, an overview of different contributions in the area of full active and semi-

active damping control are presented. The advantages and limitations are briefly discussed, 

mainly focusing on the secondary suspension to improve ride quality, and the motivation 

behind semi-active damping control for vibration isolation is also presented in this chapter. 

From the literature review, it can  be concluded that: 

 The full-active control suspension system has been used to obtain levels of dynamic 

performance that are not possible with a passive suspension system. 

 Many practical issues have to be considered in the development of active 

suspension: controller developed must be robust against parameters variation, some 

feedback signals are costly and difficult to measure such as relative velocity. 

Therefore one must use alternative methods that are also cost-effective. 

 The dynamic models of railway vehicles are highly interactive, and the DOF order 

is usually high therefore some form of dynamic simplification should be applied.  

 The trade-off between curving and stability is a particularly critical issue, and where 

most of the considerable benefits from the implementation of semi-active solutions 

are expected to arise. 

 There is a trade-off between the maximum deflection of the suspension and an 

acceptable level of ride quality. 
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 In a high-speed railway vehicle, the behaviour of the lateral secondary suspension is 

more important than in a conventional railway vehicle as this has a significant effect 

on both comfort and stability. 

 In order to improve the ride quality of railway vehicles, there are four parameters 

that must be acknowledged, which are sprung mass acceleration, sprung mass 

displacement, unsprung displacement and suspension deflection. 

 In most numerical studies, the off-mode damping setting of the semi-active damper 

is assumed zero. However, the actual damper setting is constrained to be between 

the minimum and maximum levels of damper setting. This limitation restricts the 

performance of a semi-active suspension. 

 The findings published in the literature indicate that there appears to be a ceiling on 

performance improvements with the control strategies that have been proposed, 

which is about the half of what could be achieved with the full active control. 

 The challenge to researchers and suspension system designers is to design both an 

effective and cost reasonable strategy. However, if a control strategy so designed 

can provide excellent performance at acceptable costs, there is significant potential 

for future implementation. 
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CHAPTER FOUR 

4 MODELLING AND CONTROL OF THE RAILWAY 

VEHICLE 

4.1 Introduction 

The main aim of the proposal for semi-active suspension system on railway vehicles is to 

improve the ride quality through controlling the secondary suspension. A full-scale railway 

vehicle with four solid axle wheelsets, two bogies, and primary and secondary suspension is 

taken as the benchmark model for assessment and comparison of the different control strategies 

considered in this research. For the performance comparison, three suspension configurations 

are selected: a full-active suspension system, a conventional semi-active suspension based on 

skyhook damping control (conventional controller) integrated with MR dampers, and a vehicle 

with passive suspensions; the latter two represent the benchmark and reference cases, 

respectively, for the assessment of the proposed design, which is presented in the next chapter.  

The outline of this chapter is as follows: firstly, analytical models of railway vehicles will 

be discussed. Then, both the vertical and lateral dynamic models of railway vehicles will be 

presented as the benchmark model. The full-active suspension based on the skyhook control 

strategy will then be designed and integrated with the electromechanical actuator. Finally, the 

conventional semi-active suspension system combined with MR damper will be adapted to a 

dynamic vehicle simulator as a benchmark of the control of vibration over track irregularities. 

4.2 Analytical Model 

The railway vehicle is a dynamically complex multi-body system, where each body within 

the system has six dynamic degrees of freedom corresponding to three displacements (vertical, 

lateral and longitudinal) and three rotations (pitch, yaw and roll). In addition, wheel-rail contact 
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presents a nonlinear dynamic/kinematic problem, adding extra complexity to the already 

complex system. 

In order to apply control over complex systems such as these, it is necessary to recognise 

the difference between the design model and the simulation model. The design model is a 

simplified version than the simulation model, and the suspension can be considered to be 

mainly linear components and used for the design of the control strategy and algorithm. 

However, the simulation model is a more complicated version used to test the full system 

performance [36]. 

In the existing literature, some researchers selected the degree of the dynamic model for 

railway vehicle depending on the objectives of the control. For example, to study the vertical 

response, it would be appropriate to include the bounce, pitch and sometimes the roll degrees 

of freedom of the components, whereas for the lateral response, the lateral, yaw and sometimes 

roll degrees of freedom are sufficient. Karim [88] used a mathematical dynamic model of 

railway vehicle with 12 degrees of freedom (DOFs) in the equations of motion   to study the 

hunting phenomenon, whose dynamic model consists of a conventional truck with two single 

wheelsets in which are equipped with lateral, longitudinal and vertical linear stiffness and 

damping in the primary and secondary suspensions. Sun[21] adopted a dynamic model of a 

railway truck with 15 DOFs to investigate the influence of different suspension parameters on 

the sensitivity of the critical velocity and to investigate the MR damper effects on the railway 

vehicle’s stability and critical velocity.  Liao[89] present a dynamic model of railway with 17 

DOFs to study semi-active suspension systems using magnetorheological (MR) fluid dampers 

for improving the ride quality of railway vehicles. Hudha et al. [90]studied the performance of 

semi-active control of lateral suspension system on 17 DOFs railway vehicle. Another study 

by D. H. Wang et al. [85], a 17 degree of freedom model of a full-scale railway vehicle was 
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adopted with a semi-active MR damper in secondary suspension, it is used to investigate the 

control of lateral and yaw vibration. 

 Hisbullah et al. [82]used 17 DOFs railway vehicle dynamics model to investigates the 

performance of semi-active control of lateral suspension system based skyhook control for the 

purpose of attenuating the effects of track irregularities.  

 

However, for studying some objectives is not necessary to consider all the DOFs, as this 

will make any mathematical processing more complicated. Furthermore, many studies used the 

dynamic model of the railway with a small number of DOFs. For instance, Scheffel [91] 

presented a dynamic model of railway with 8 DOFs to develop self-steering bogies. SH et al. 

[92] established 9 DOFs for railway vehicles featuring MR dampers to investigate the fuzzy 

sky-ground hook controller, which includes car body, bogie, and the wheel-set data loaded 

from the values measured for a railway vehicle. However, railway vehicle dynamic models 

with fewer DOFs cannot accurately reflect the real-world dynamic performance of such 

vehicles. 

In this study, two case studies (the vertical and the lateral dynamics model of conventional 

railway vehicle) are used in the simulation for the assessment of the proposed semi-active 

control because it can adequately characterise the main dynamic performance and contains 

detailed descriptions of suspension components such as vehicle body, bogie, and wheelsets. 

Firstly, the vertical dynamics of the railway vehicle is considered in this study, where the 

vehicle being considered is only the vertical and pitch movement. Secondly, the lateral 

dynamics of the railway vehicle is considered in this study, where the vehicle being considered 

is only the lateral and yaw movement. The numerical simulation of the vehicle suspension 

system under different track irregularities are carried out in Matlab/Simulink for a simulation 

time of 10 seconds. Three performance criteria are considered in this study; they are 
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acceleration at the centre of the vehicle, accelerations at front and rear of the vehicle, in addition 

to the maximum deflation of the suspensions. 

4.3 Vertical Dynamic Model 

In this section, the vehicle is only considered in terms of the bounce and pitch movements, 

assuming rigid body motion for the vehicle, whereas track characteristics have been considered 

as disturbance inputs of the system. To evaluate the performance of the proposed control 

strategy, three states of the art suspension configurations are chosen for comparison: a vehicle 

with passive suspensions, a vehicle with full-active suspension, and a vehicle with the semi-

active suspension system. 

The vehicle with passive suspensions, which consists of spring and damper that means the 

damping rate is fixed, is used as the benchmark and are used as a reference case for assessment 

of the proposed design, as shown in Figure 4.1. 
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Figure 4.1: Schematic representation of the airspring in vertical secondary suspension of 

the railway vehicle 

The governing equations of motion for the railway vehicle are listed below: 

The equation of vehicle motion into the vertical direction is: 

�̈�𝑣 =
1

𝑚𝑣
 [−𝑘𝑎(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑘𝑠(𝑧𝑓 − 𝑧𝑚𝑝𝑓) − 𝑘𝑎(𝑧𝑟 − 𝑧𝑏𝑟)−𝑘𝑠(𝑧𝑟 − 𝑧𝑚𝑝𝑟) ]…… (4.1) 

The equation of vehicle motion for pitch is: 

�̈�𝑣 =
1

𝐽𝑣
 [−𝑘𝑎𝑙𝑡(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑘𝑠𝑙𝑡(𝑧𝑓 − 𝑧𝑚𝑝𝑓) + 𝑘𝑎𝑙𝑡(𝑧𝑟 − 𝑧𝑏𝑟)+𝑘𝑠𝑙𝑡(𝑧𝑟 −

𝑧𝑚𝑝𝑟)]…………………………………………………………………………….. (4.2) 

From Figure 4.1, the displacements at the front and rear secondary suspension are: 

𝑧𝑓 = 𝑧𝑣 + 𝑙𝑡 . sin (𝜃𝑣) 

𝑧𝑟 = 𝑧𝑣 − 𝑙𝑡 . sin (𝜃𝑣) 
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For simplicity, assuming sin (𝜃𝑣) approximately equal to 𝜃𝑣 because of the pitch angle (𝜃𝑣 ) is 

small angle. Under these assumptions, the displacements at the front and rear secondary 

suspension are given by Equations below: 

𝑧𝑓 ≅ 𝑧𝑣 + 𝑙𝑡 . 𝜃𝑣  

𝑧𝑟 ≅ 𝑧𝑣 − 𝑙𝑡 . 𝜃𝑣  

The equations for the bogies can be formulated in a similar way, and similarly for the rear 

bogie. For the front bogie: 

�̈�𝑏𝑓 =
1

𝑚𝑏
 [𝑘𝑎(𝑧𝑓 − 𝑧𝑏𝑓) + 𝑘𝑟(𝑧𝑚𝑝𝑓 − 𝑧𝑏𝑓) + 𝑐𝑟(𝑧𝑚𝑝𝑓̇ − 𝑧𝑏𝑓̇ ) − 𝑐𝑝𝑟(𝑧𝑏𝑓1̇ −

𝑧𝑡11̇ )−𝑘𝑝(𝑧𝑏𝑓1 − 𝑧𝑡11) − 𝑐𝑝𝑟(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )−𝑘𝑝(𝑧𝑏𝑓2 − 𝑧𝑡12)]……….... (4.3) 

�̈�𝑏𝑓 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓1̇ − 𝑧𝑡11̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑓1 − 𝑧𝑡11) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑓2 −

𝑧𝑡12)]…………………………………………………………………….. (4.4) 

Whereas the displacements at the front and rear of front bogie are: 

𝑧𝑏𝑓1 ≅ 𝑧𝑏𝑓 + 𝑙𝑏 . 𝜃𝑏𝑓 

𝑧𝑏𝑓2 ≅ 𝑧𝑏𝑓 − 𝑙𝑏 . 𝜃𝑏𝑓 

For the rear bogie: 

�̈�𝑏𝑟 =
1

𝑚𝑏
 [𝑘𝑎(𝑧𝑟 − 𝑧𝑏𝑟) + 𝑘𝑟(𝑧𝑚𝑝𝑟 − 𝑧𝑏𝑟) + 𝑐𝑟(𝑧𝑚𝑝𝑟̇ − 𝑧𝑏𝑟̇ ) − 𝑐𝑝𝑟(𝑧𝑏𝑟1̇ −

𝑧𝑡21̇ )−𝑘𝑝(𝑧𝑏𝑟1 − 𝑧𝑡21) − 𝑐𝑝𝑟(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )−𝑘𝑝(𝑧𝑏𝑟2 − 𝑧𝑡22)]………….... (4.5) 

�̈�𝑏𝑟 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟1̇ − 𝑧𝑡21̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑟1 − 𝑧𝑡21) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑟2 −

𝑧𝑡22)]…………………………………………………………………….. (4.6) 

Whereas the displacements at the front and rear of rear bogie are: 

𝑧𝑏𝑟1 ≅ 𝑧𝑏𝑟 + 𝑙𝑏 . 𝜃𝑏𝑟 
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𝑧𝑏𝑟2 ≅ 𝑧𝑏𝑟 − 𝑙𝑏 . 𝜃𝑏𝑟 

The internal dynamics of the front air spring are shown in equation 4.7. The change of area 

stiffness (𝑘𝑎), which is usually small, has been assumed to be zero. 

�̈�𝑚𝑝𝑓 =
1

𝑚𝑚𝑝𝑓
[𝑘𝑠(𝑧𝑓 − 𝑧𝑚𝑝𝑓) − 𝑐𝑟(𝑧𝑚𝑝𝑓̇ − 𝑧𝑏𝑓̇ ) − 𝑘𝑟(𝑧𝑚𝑝𝑓 − 𝑧𝑏𝑓)]   …… (4.7) 

Similarly, the internal dynamics of the rear air spring are shown in equation 4.8. 

�̈�𝑚𝑝𝑟 =
1

𝑚𝑚𝑝𝑟
[𝑘𝑠(𝑧𝑟 − 𝑧𝑚𝑝𝑟) − 𝑐𝑟(𝑧𝑚𝑝𝑟̇ − 𝑧𝑏𝑟̇ ) − 𝑘𝑟(𝑧𝑚𝑝𝑟 − 𝑧𝑏𝑟)]   …… (4.8) 

Equation (4.1- 4.8) describes the system shown in Figure 4.1, and parameters are defined in 

Table 4.1[34]. In these equations, 𝑧𝑡11,𝑧𝑡12 , 𝑧𝑡21, and 𝑧𝑡22 are the vertical movements of 

leading and trailing wheelsets, which are also the track inputs to the system. 

Table 4.1: Vehicle parameters of the vertical model 

Symbols Description Symbols Description 

𝑚𝑣  Mass of the vehicle (38000kg) 𝑘𝑟𝑧 Secondary reservoir stiffness per bogie 

(508 kNm-1) 

𝐽𝑣  Body pitch inertia (2310000 kgm2) 𝑘𝑆  Secondary damping stiffness per bogie 

(1.116 MNm-1) 

𝑚𝑏 Mass of the bogie Frame (2500kg) 𝑐𝑟𝑧 Secondary passive damping per bogie 

(50000 Nsm-1) 

𝑖𝑏 Bogie frame pitch inertia (2000 kgm2) 𝑘𝑎
 Airspring change of area stiffness  

(0 Nm-1) 

𝑚𝑚𝑝 Air spring mass (5 Kg) 𝑘𝑃  Primary spring stiffness per axle  

(4.935 MNm-1) 

𝑙𝑡  The semi-longitudinal spacing of the 

secondary suspension (9.5 m) 
𝑐𝑃𝑟 Primary passive damping per axle 

(50.74 kNsm-1) 

𝑙𝑏 The semi-longitudinal spacing of the 

wheelsets (1.25 m) 
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For the simulation of the full-active suspension in the comparative assessment, the damping 

force of the actuator replaces the passive damper forces in the model, as shown in Figure 4.2. 
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Figure 4.2: Schematic representation of the actuator in vertical secondary suspension of 

the railway vehicle 

Equations (4.9 - 4.14) describe the system representation of the actuator in vertical 

secondary suspension of the railway vehicle, as listed below: 

The equation of vehicle motion into the vertical direction is: 

�̈�𝑣 =
1

𝑚𝑣
 [−𝑘𝑒𝑞(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑓𝑎𝑐𝑡.𝑓 − 𝑘𝑒𝑞(𝑧𝑟 − 𝑧𝑏𝑟)  − 𝑓𝑎𝑐𝑡.𝑟]……….…… (4.9) 

The equation of vehicle motion for pitch is: 

�̈�𝑣 =
1

𝐽𝑣
 [−𝑘𝑒𝑞𝑙𝑡(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑙𝑡𝑓𝑎𝑐𝑡.𝑓 + 𝑘𝑒𝑞𝑙𝑡(𝑧𝑟 − 𝑧𝑏𝑟)  + 𝑙𝑡𝑓𝑎𝑐𝑡.𝑟]…….. (4.10) 

The equations for the bogies can be formulated in a similar way, and similarly for the rear 

bogie. The equation of front bogie motion for vertical direction is: 
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�̈�𝑏𝑓 =
1

𝑚𝑏
 [𝑘𝑒𝑞(𝑧𝑓 − 𝑧𝑏𝑓) + 𝑓𝑎𝑐𝑡.𝑓 − 𝑐𝑝𝑟(𝑧𝑏𝑓1̇ − 𝑧𝑡11̇ )−𝑘𝑝(𝑧𝑏𝑓1 − 𝑧𝑡11) −

𝑐𝑝𝑟(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )−𝑘𝑝(𝑧𝑏𝑓2 − 𝑧𝑡12)]………………….. (4.11) 

The equation of front bogie motion for pitch direction is: 

�̈�𝑏𝑓 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓1̇ − 𝑧𝑡11̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑓1 − 𝑧𝑡11) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑓2 −

𝑧𝑡12)]………………………………………………….. (4.12) 

The equation of rear bogie motion for vertical direction is: 

�̈�𝑏𝑟 =
1

𝑚𝑏
 [𝑘𝑒𝑞(𝑧𝑟 − 𝑧𝑏𝑟) + 𝑓𝑎𝑐𝑡.𝑟 − 𝑐𝑝𝑟(𝑧𝑏𝑟1̇ − 𝑧𝑡21̇ )−𝑘𝑝(𝑧𝑏𝑟1 − 𝑧𝑡21) −

𝑐𝑝𝑟(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )−𝑘𝑝(𝑧𝑏𝑟2 − 𝑧𝑡22)]………………....... (4.13) 

The equation of rear bogie motion for pitch direction is: 

�̈�𝑏𝑟 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟1̇ − 𝑧𝑡21̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑟1 − 𝑧𝑡21) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑟2 −

𝑧𝑡22)]……………………………………….………….. (4.14) 

Whereas 𝑘𝑒𝑞 is secondary damping stiffness per bogie, which represented the equivalent 

stiffness per bogie for reservoir stiffness and damping stiffness of air spring(𝑘𝑒𝑞 =
𝑘𝑠.𝑘𝑟

𝑘𝑠+𝑘𝑟
), 

𝑓𝑎𝑐𝑡.𝑓  and 𝑓𝑎𝑐𝑡.𝑟 are full active damping forces at front and rear actuators which are electro-

mechanical actuators, respectively. 

For the simulation of the semi-active suspension system in the comparative assessment, the 

damping force of the MR damper replaces the passive damper forces in the model, as shown 

in Figure 4.3. 
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Figure 4.3: Schematic representation of the MR damper in vertical secondary suspension 

of the railway vehicle 

Equations (4.15 - 4.20) describe the system representation of the MR damper in vertical 

secondary suspension of the railway vehicle, as listed below: 

The equation of vehicle motion into the vertical direction is: 

�̈�𝑣 =
1

𝑚𝑣
 [−𝑘𝑒𝑞(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑓𝑀𝑅.𝑓 − 𝑘𝑒𝑞(𝑧𝑟 − 𝑧𝑏𝑟)  − 𝑓𝑀𝑅.𝑟]……….…… (4.15) 

The equation of vehicle motion for pitch is: 

�̈�𝑣 =
1

𝐽𝑣
 [−𝑘𝑒𝑞𝑙𝑡(𝑧𝑓 − 𝑧𝑏𝑓) − 𝑙𝑡𝑓𝑀𝑅.𝑓 + 𝑘𝑒𝑞𝑙𝑡(𝑧𝑟 − 𝑧𝑏𝑟)  + 𝑙𝑡𝑓𝑀𝑅.𝑟]…….. (4.16) 

The equations for the bogies can be formulated in a similar way, and similarly for the rear 

bogie. For the front bogie: 

�̈�𝑏𝑓 =
1

𝑚𝑏
 [𝑘𝑒𝑞(𝑧𝑓 − 𝑧𝑏𝑓) + 𝑓𝑀𝑅.𝑓 − 𝑐𝑝𝑟(𝑧𝑏𝑓1̇ − 𝑧𝑡11̇ )−𝑘𝑝(𝑧𝑏𝑓1 − 𝑧𝑡11) −

𝑐𝑝𝑟(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )−𝑘𝑝(𝑧𝑏𝑓2 − 𝑧𝑡12)]………………………………………...... (4.17) 
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�̈�𝑏𝑓 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓1̇ − 𝑧𝑡11̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑓1 − 𝑧𝑡11) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑓2̇ − 𝑧𝑡12̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑓2 −

𝑧𝑡12)]…………………………………………………………….. (4.18) 

For the rear bogie: 

�̈�𝑏𝑟 =
1

𝑚𝑏
 [𝑘𝑒𝑞(𝑧𝑟 − 𝑧𝑏𝑟) + 𝑓𝑀𝑅.𝑟 − 𝑐𝑝𝑟(𝑧𝑏𝑟1̇ − 𝑧𝑡21̇ )−𝑘𝑝(𝑧𝑏𝑟1 − 𝑧𝑡21) −

𝑐𝑝𝑟(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )−𝑘𝑝(𝑧𝑏𝑟2 − 𝑧𝑡22)]……………………………..... (4.19) 

�̈�𝑏𝑟 =
1

𝐽𝑏
 [−𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟1̇ − 𝑧𝑡21̇ )−𝑘𝑝𝑙𝑏(𝑧𝑏𝑟1 − 𝑧𝑡21) + 𝑐𝑝𝑟𝑙𝑏(𝑧𝑏𝑟2̇ − 𝑧𝑡22̇ )+𝑘𝑝𝑙𝑏(𝑧𝑏𝑟2 −

𝑧𝑡22)]…………………………………………………………….. (4.20) 

Where 𝑓𝑀𝑅.𝑓   and 𝑓𝑀𝑅.𝑟are semi-active damping forces at the front and rear of rear bogie 

which are MR dampers, respectively. 

4.4 Lateral Dynamic Model 

As mentioned in the preview section, for performance comparison, full-active and semi-

active suspensions and the vehicle with passive suspensions are used as the benchmark and 

are used as a reference case for assessment of the proposed design. In this section, the 

dynamics of the railway vehicle are only considered in terms of the lateral and yaw 

movement. A plan view diagram of the railway vehicle with passive suspensions is shown in 

Figure 4.4.  
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Figure 4.4: Schematic representation of the passive damper in lateral secondary 

suspension of the railway vehicle 

From Figure 4.4, the governing equations of motion for the railway vehicle are listed as 

follows: �̈�𝑣 + 𝑙�̇�𝑣
̈  

 The equation of vehicle motion into the lateral direction is: 

𝑀𝑣�̈�𝑣 = −𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] − 𝐶𝑠𝑦[�̇�𝑣 + 𝑙�̇�𝑣 − �̇�𝑏1] − 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] − 𝐶𝑠𝑦[�̇�𝑣 −

𝑙�̇�
𝑣
− �̇�𝑏2]……………… (4.21) 

The equation of vehicle motion into the yaw direction is: 

𝐼𝑣�̈�𝑣 = −𝐾𝑠𝑦𝑙[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] − 𝐶𝑠𝑦𝑙[�̇�𝑣 + 𝑙�̇�𝑣 − �̇�𝑏1] + 𝐾𝑠𝑦𝑙[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] + 𝐶𝑠𝑦𝑙[�̇�𝑣 −

𝑙�̇�
𝑣
− �̇�𝑏2] − 𝐾𝑠𝑥𝑏2

2(𝜓
𝑣
− 𝜓

𝑏1
) − 𝐾𝑠𝑥𝑏2

2(𝜓
𝑣
− 𝜓

𝑏2
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏1
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏2
)   

………………………….. (4.22) 

The equation of front bogie dynamics into the lateral direction is: 
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𝑀𝑏�̈�𝑏1 = 𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] + 𝐶𝑠𝑦[�̇�𝑣 + 𝑙�̇�𝑣 − �̇�𝑏1] − 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] −

𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] − 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] − 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] ………. (4.23) 

The equation of front bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏1 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏1) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏1) − 𝐾𝑝𝑦𝑎[𝑦𝑏𝑖 + 𝑎𝜓𝑏1 − 𝑦𝑤1] −

𝐶𝑝𝑦𝑎[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] + 𝐾𝑝𝑦𝑎[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦𝑎[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 −

�̇�𝑤2)…………………… (4.24) 

The equation of rear bogie dynamics into the lateral direction is: 

𝑀𝑏�̈�𝑏2 = 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] + 𝐶𝑠𝑦[�̇�𝑣 − 𝑙�̇�𝑣 − �̇�𝑏2] − 𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] −

𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] − 𝐾𝑝𝑦[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] − 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] ………. (4.25) 

The equation of rear bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏2 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏2) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏2) − 𝐾𝑝𝑦𝑎[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] −

𝐶𝑝𝑦𝑎[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] + 𝐾𝑝𝑦𝑎[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦𝑎[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 −

�̇�𝑤4)…………………… (4.26) 

For the leading wheelset dynamics of the front bogie, the governing equation are given by: 

𝑀𝑤�̈�𝑤1 = 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] + 𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] −
2𝑓22

𝑣
�̇�𝑤1 + 2𝑓22𝜓𝑤1   

….…………………..…. (4.27) 

𝐼𝑤�̈�𝑤1 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) −
2𝑓11𝑏

2

𝑣
�̇�𝑤1 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤1 − 𝑦𝑟1)                                 

……………………..…. (4.28) 

For the trailing wheelset dynamics of the front bogie, the governing equation are given by: 
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𝑀𝑤�̈�𝑤2 = 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −
2𝑓22

𝑣
�̇�𝑤2 + 2𝑓22𝜓𝑤2   

……………………..……. (4.29) 

𝐼𝑤�̈�𝑤2 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤2) −
2𝑓11𝑏

2

𝑣
�̇�𝑤2 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤2 − 𝑦𝑟2)                                 

…………………………. (4.30) 

For the leading wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤3 = 𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] + 𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] −
2𝑓22

𝑣
�̇�𝑤3 + 2𝑓22𝜓𝑤3   

………….………………. (4.31) 

𝐼𝑤�̈�𝑤3 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) −
2𝑓11𝑏

2

𝑣
�̇�𝑤3 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤3 − 𝑦𝑟3)                                 

…………………………. (4.32) 

For the trailing wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤4 = 𝐾𝑝𝑦[𝑦𝑏𝑗 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −
2𝑓22

𝑣
�̇�𝑤4 + 2𝑓22𝜓𝑤4   

………….…………..…. (4.33) 

𝐼𝑤�̈�𝑤4 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤4) −
2𝑓11𝑏

2

𝑣
�̇�𝑤4 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤4 − 𝑦𝑟4)                                 

…………………………. (4.34) 

Equations (4.21-4.34) describe the system shown in Figure 4.4, whose parameters are listed 

in Table 4.2. 
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Table 4.2:Vehicle parameters of the lateral model [28, 65] 

Symbols  Symbols  

𝑦𝑣,𝑦𝑏1,𝑦𝑏2 Lateral displacement of the 

vehicle, front bogie, rear bogie 

𝐾𝑠𝑥  Double of secondary longitudinal 

stiffness (3.4x105 N/m) 

𝑦𝑤1,𝑦𝑤2,𝑦𝑤3,𝑦𝑤4 Lateral displacement of the 

wheelset  

𝐾𝑠𝑦 Double of secondary lateral 

stiffness (3.5x105 N/m) 

𝜓𝑣, 𝜓𝑏1, 𝜓𝑏2 Yaw angle of the vehicle, front 

bogie, rear bogie 

𝐶𝑝𝑥 Double of primary longitudinal 

damping  

(0 Ns/m) 

𝜓𝑤1,𝜓𝑤2,𝜓𝑤3,𝜓𝑤4 Yaw angle of the wheelset 𝐶𝑝𝑦 Double of primary lateral damping 

(0 N/m) 

𝑦𝑟1,𝑦𝑟2,𝑦𝑟3,𝑦𝑟4 Track lateral displacement 

(irregularities) 

𝐶𝑠𝑥, 𝐶𝑠𝑦 Double of secondary longitudinal 

damping (5x105 Ns/m), lateral 

damping (5.2x105 Ns/m)  

𝑀𝑤 Wheelset mass(1750 Kg) 𝑙 Half of the bogie centre pin spacing 

(9 m) 

𝑀𝑏 Bogie mass(3296kg) 𝑎 Half of the wheelbase (1.25m) 

𝑀𝑣 Vehicle mass(32000kg) 𝑏 Half of wheelset contact distance 

(0.7465 m) 

𝐼𝑤 Wheelset yaw inertia 

(1400kg.m2) 

𝑏1,𝑏2 Half of the primary longitudinal 

and secondary longitudinal(1 m) 

𝐼𝑏 Bogie yaw inertia (2100 

kg.m2) 

v Vehicle speed(83.33 m/s) 
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𝐼𝑣 Vehicle yaw inertia (2.24x106 

kg.m2) 

𝑟𝑜 Wheel rolling radius (0.4575 m) 

𝐾𝑝𝑥 Double of primary 

longitudinal stiffness (2.9x107 

N/m) 

𝑓11, 𝑓22 Longitudinal creep coefficient 

(1.12x107) and lateral creep 

coefficient (9.98x107) 

𝐾𝑝𝑦 Double of primary lateral 

stiffness (1.5x107 N/m) 

𝜆 Effective wheel conicity(0.05) 

 

Note in this study, to achieve a comparative assessment, the secondary lateral passive 

dampers are replaced by the actuators to study the full-active controlled suspensions, as shown 

in Figure 4.5. 

yb1 yw1yw2yw3yb2yw4 yv

Ψv
Ψw2 Ψw1Ψw3Ψw4 Ψb1Ψb2

½ Kpx

½ Cpx

½ Cpy

½ Kpy

½ Ksx

½ CsxActuator
½ Ksy

 

Figure 4.5: Schematic representation of the actuator in lateral secondary suspension of the 

railway vehicle 

From Figure 4.5, the governing equations of motion for the railway vehicle are listed as 

follows: 
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The equation of vehicle motion into the lateral direction is: 

𝑀𝑣�̈�𝑣 = −𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] − 𝑓𝑎𝑐𝑡.𝑓 − 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] − 𝑓𝑎𝑐𝑡.𝑟……………… (4.35) 

The equation of vehicle motion into the yaw direction is: 

𝐼𝑣�̈�𝑣 = −𝐾𝑠𝑦𝑙[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] + 𝐾𝑠𝑦𝑙[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] − 𝑙𝑓𝑎𝑐𝑡.𝑓 + 𝑙𝑓𝑎𝑐𝑡.𝑟 − 𝐾𝑠𝑥𝑏2
2(𝜓

𝑣
−

𝜓
𝑏1
) − 𝐾𝑠𝑥𝑏2

2(𝜓
𝑣
− 𝜓

𝑏2
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏1
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏2
)   ………………………….. (4.36) 

The equation of front bogie dynamics into the lateral direction is: 

𝑀𝑏�̈�𝑏1 = 𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] + 𝑓𝑎𝑐𝑡.𝑓 − 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] − 𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 −

�̇�𝑤1] − 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] − 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] …………………………………. (4.37) 

The equation of front bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏1 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏1) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏1) − 𝐾𝑝𝑦𝑎[𝑦𝑏𝑖 + 𝑎𝜓𝑏1 − 𝑦𝑤1] −

𝐶𝑝𝑦𝑎[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] + 𝐾𝑝𝑦𝑎[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦𝑎[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 −

�̇�𝑤2)…………………………………..… (4.38) 

The equation of rear bogie dynamics into the lateral direction is: 

𝑀𝑏�̈�𝑏2 = 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] + 𝑓𝑎𝑐𝑡.𝑟 − 𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] − 𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 −

�̇�𝑤3] − 𝐾𝑝𝑦[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] − 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] ………. (4.39) 

The equation of rear bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏2 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏2) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏2) − 𝐾𝑝𝑦𝑎[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] −

𝐶𝑝𝑦𝑎[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] + 𝐾𝑝𝑦𝑎[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦𝑎[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 −

�̇�𝑤4)…………………………………………………………………………………… (4.40) 
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For the leading wheelset dynamics of the front bogie, the governing equation are given by: 

𝑀𝑤�̈�𝑤1 = 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] + 𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] −
2𝑓22

𝑣
�̇�𝑤1 + 2𝑓22𝜓𝑤1   

….…………………………………………………………………………………………. (4.41) 

𝐼𝑤�̈�𝑤1 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) −
2𝑓11𝑏

2

𝑣
�̇�𝑤1 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤1 − 𝑦𝑟1)                                 

…………………………………………………………………………………………..…. (4.42) 

For the trailing wheelset dynamics of the front bogie, the governing equation are given by: 

𝑀𝑤�̈�𝑤2 = 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −
2𝑓22

𝑣
�̇�𝑤2 + 2𝑓22𝜓𝑤2   

………………………………………………………………………………………………. (4.43) 

𝐼𝑤�̈�𝑤2 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤2) −
2𝑓11𝑏

2

𝑣
�̇�𝑤2 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤2 − 𝑦𝑟2)                                 

…………………………. (4.44) 

For the leading wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤3 = 𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] + 𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] −
2𝑓22

𝑣
�̇�𝑤3 + 2𝑓22𝜓𝑤3   

………….………………. (4.45) 

𝐼𝑤�̈�𝑤3 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) −
2𝑓11𝑏

2

𝑣
�̇�𝑤3 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤3 − 𝑦𝑟3)                                 

…………………………. (4.46) 

For the trailing wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤4 = 𝐾𝑝𝑦[𝑦𝑏𝑗 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −
2𝑓22

𝑣
�̇�𝑤4 + 2𝑓22𝜓𝑤4   

………….…………..…. (4.47) 

𝐼𝑤�̈�𝑤4 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤4) −
2𝑓11𝑏

2

𝑣
�̇�𝑤4 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤4 − 𝑦𝑟4)                                 

…………………………. (4.48) 
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Equations (4.35-4.48) describe the system shown in Figure 4.5 

Equations (4.35 - 4.48) describe the system representation of the actuator in lateral 

secondary suspension of the railway vehicle, whereas 𝑓𝑎𝑐𝑡.𝑓  and 𝑓𝑎𝑐𝑡.𝑟 are full-active 

damping forces at front and rear actuators which are electromechanical actuators, 

respectively. 

 

 

For the simulation of the semi-active suspension in the comparative assessment, the 

damping force of the MR damper replaces the secondary lateral passive damper forces in the 

model, as shown in Figure 4.6. 

yb1 yw1yw2yw3yb2yw4 yv

Ψv
Ψw2 Ψw1Ψw3Ψw4 Ψb1Ψb2

½ Kpx

½ Cpx

½ Cpy

½ Kpy

½ Ksx

½ CsxMR damper
½ Ksy

 

Figure 4.6: Schematic representation of the MR damper in lateral secondary suspension of 

the railway vehicle 

From Figure 4.6, the governing equations of motion for the railway vehicle are listed as 

follows: 

The equation of vehicle motion into the lateral direction is: 



 

59 

 

𝑀𝑣�̈�𝑣 = −𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] − 𝑓𝑀𝑅.𝑓 − 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] − 𝑓𝑀𝑅.𝑟……………… (4.49) 

The equation of vehicle motion into the yaw direction is: 

𝐼𝑣�̈�𝑣 = −𝐾𝑠𝑦𝑙[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] + 𝐾𝑠𝑦𝑙[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] − 𝑙𝑓𝑀𝑅.𝑓 + 𝑙𝑓𝑀𝑅.𝑟 −𝐾𝑠𝑥𝑏2
2(𝜓

𝑣
−

𝜓
𝑏1
) − 𝐾𝑠𝑥𝑏2

2(𝜓
𝑣
− 𝜓

𝑏2
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏1
) − 𝐶𝑠𝑥𝑏2

2(�̇�
𝑣
− �̇�

𝑏2
)   ………………………….. (4.50) 

The equation of front bogie dynamics into the lateral direction is: 

 

𝑀𝑏�̈�𝑏1 = 𝐾𝑠𝑦[𝑦𝑣 + 𝑙𝜓𝑣 − 𝑦𝑏1] + 𝑓𝑀𝑅.𝑓 − 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] − 𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 −

�̇�𝑤1] − 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] − 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] ………. (4.51) 

The equation of front bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏1 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏1) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏1) − 𝐾𝑝𝑦𝑎[𝑦𝑏𝑖 + 𝑎𝜓𝑏1 − 𝑦𝑤1] −

𝐶𝑝𝑦𝑎[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] + 𝐾𝑝𝑦𝑎[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦𝑎[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 −

�̇�𝑤2)………………………………………………………………………………….… (4.52) 

The equation of rear bogie dynamics into the lateral direction is: 

𝑀𝑏�̈�𝑏2 = 𝐾𝑠𝑦[𝑦𝑣 − 𝑙𝜓𝑣 − 𝑦𝑏2] + 𝑓𝑀𝑅.𝑟 −𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] − 𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 −

�̇�𝑤3] − 𝐾𝑝𝑦[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] − 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] ………. (4.53) 

The equation of rear bogie dynamics into the yaw direction is: 

𝐼𝑏�̈�𝑏2 = 𝐾𝑠𝑥𝑏2
2(𝜓𝑣 − 𝜓𝑏2) + 𝐶𝑠𝑥𝑏2

2(�̇�𝑣 − �̇�𝑏2) − 𝐾𝑝𝑦𝑎[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] −

𝐶𝑝𝑦𝑎[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] + 𝐾𝑝𝑦𝑎[𝑦𝑏2 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦𝑎[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −

𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) − 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) − 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 −

�̇�𝑤4)…………………………………………………………………………………… (4.54) 
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For the leading wheelset dynamics of the front bogie, the governing equation are given by: 

𝑀𝑤�̈�𝑤1 = 𝐾𝑝𝑦[𝑦𝑏1 + 𝑎𝜓𝑏1 − 𝑦𝑤1] + 𝐶𝑝𝑦[�̇�𝑏1 + 𝑎�̇�𝑏1 − �̇�𝑤1] −
2𝑓22

𝑣
�̇�𝑤1 + 2𝑓22𝜓𝑤1   

….…………………………………………………………………………………………. (4.55) 

𝐼𝑤�̈�𝑤1 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤1) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤1) −
2𝑓11𝑏

2

𝑣
�̇�𝑤1 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤1 − 𝑦𝑟1)                                 

…………………………………………………………………………………………….…. (4.56) 

For the trailing wheelset dynamics of the front bogie, the governing equation are given by: 

𝑀𝑤�̈�𝑤2 = 𝐾𝑝𝑦[𝑦𝑏1 − 𝑎𝜓𝑏1 − 𝑦𝑤2] + 𝐶𝑝𝑦[�̇�𝑏1 − 𝑎�̇�𝑏1 − �̇�𝑤2] −
2𝑓22

𝑣
�̇�𝑤2 + 2𝑓22𝜓𝑤2   

……………………..……. (4.57) 

𝐼𝑤�̈�𝑤2 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏1 − 𝜓𝑤2) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏1 − �̇�𝑤2) −
2𝑓11𝑏

2

𝑣
�̇�𝑤2 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤2 − 𝑦𝑟2)                                 

……………….…………. (4.58) 

For the leading wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤3 = 𝐾𝑝𝑦[𝑦𝑏2 + 𝑎𝜓𝑏2 − 𝑦𝑤3] + 𝐶𝑝𝑦[�̇�𝑏2 + 𝑎�̇�𝑏2 − �̇�𝑤3] −
2𝑓22

𝑣
�̇�𝑤3 + 2𝑓22𝜓𝑤3   

………….………………. (4.59) 

𝐼𝑤�̈�𝑤3 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤3) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤3) −
2𝑓11𝑏

2

𝑣
�̇�𝑤3 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤3 − 𝑦𝑟3)                                 

…………………………. (4.60) 

For the trailing wheelset dynamics of the rear bogie, the governing equations are given by: 

𝑀𝑤�̈�𝑤4 = 𝐾𝑝𝑦[𝑦𝑏𝑗 − 𝑎𝜓𝑏2 − 𝑦𝑤4] + 𝐶𝑝𝑦[�̇�𝑏2 − 𝑎�̇�𝑏2 − �̇�𝑤4] −
2𝑓22

𝑣
�̇�𝑤4 + 2𝑓22𝜓𝑤4   

………….…………..…. (4.61) 

𝐼𝑤�̈�𝑤4 = 𝐾𝑝𝑥𝑏1
2(𝜓𝑏2 − 𝜓𝑤4) + 𝐶𝑝𝑥𝑏1

2(�̇�𝑏2 − �̇�𝑤4) −
2𝑓11𝑏

2

𝑣
�̇�𝑤4 −

2𝑓11𝜆𝑏

𝑟0
(𝑦𝑤4 − 𝑦𝑟4)                                 

…………………………. (4.62) 



 

61 

 

Equations (4.49 - 4.62) describe the system representation of the semi-active damper in 

lateral secondary suspension of the railway vehicle, whereas𝑓𝑀𝑅.𝑓  and 𝑓𝑀𝑅.𝑟 are semi-active 

damping forces at front and rear MR dampers, respectively. 

4.5 Full-Active Suspension System 

In the existing literature, a wide variety of control strategies have been proposed for full-

active suspension systems. One of the most implemented and analysed over the years is 

skyhook damping. In order to make performance comparisons between suspension systems, 

skyhook damping is used as the full-active control strategy, as introduced by Karnopp[7]. 

Although there are many advanced control methods such as H∞, linear quadratic Gaussian 

(LQG), that can be used, skyhook is, however, a simple and effective strategy to assess the ride 

quality in full-active suspension systems. In this section, the skyhook damping control will be 

used which is known to give excellent improvements in ride quality. 

4.5.1 Skyhook Damping 

The skyhook damping concept was first introduced by Karnopp in the late 1970s[7]. Many 

researchers have since investigated and analysed skyhook damping with regards to improved 

ride quality[93-95]. The absolute velocity damping can be used to improve ride quality by 

damping to an imaginary sky reference point. The idea of absolute damping is illustrated in 

Figure 4.7, where a damper is connected between the body mass ad the sky, so, it is called 

skyhook damping.  
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Body

Absolute 
damping ,Csky

 

Figure 4.7:The skyhook damping concept [25]  

Practically, the absolute velocity measurement is difficult and costly. Therefore, required 

absolute velocity signal is obtained by integrating the signal measured by a sensor 

accelerometer on the car body. Then, the velocity signal is high-pass filtered in order to remove 

integrator drift and then multiplied by the skyhook damping coefficient in order to generate the 

desired force. Figure 4.8 illustrates the practical implementation of the skyhook damping 

control system. 

HPF*1/s

-Cs

Mass(Mb)

Zb

Zt

Accelerometer

Desired 
damping force

Random track  

Figure 4.8: Schematic of the skyhook damping control system [25] 

Skyhook control strategy gives a significant improvement of ride quality on straight track 

operation. However, it generates large suspension deflections at deterministic inputs such as 

curves.  A challenge with the full-active skyhook damping is to manage the trade-off between 

improved ride quality and suspension deflection during curving. There are a number of possible 
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solutions proposed to overcome the trade-off problem, and considerable results can be achieved 

by optimising the filtering of the absolute velocity signal. Li and Goodall[25] have investigated 

three linear and two non-linear approaches to skyhook damping with different filtering 

methods.  

 

Figure 4.9:Trade-off between ride quality and suspension deflection[15] 

Figure 4.9 illustrates typical trade-offs for different control approaches. An improvement of 

around 23% in ride quality can be achieved with the linear complementary filter control while 

keeping the defection damper at the same level as for passive suspension and Kalman filtering 

can result in an improvement of over 50% in ride quality.  

4.5.2 Model Decomposition 

Model decomposition is used to decouple interconnected motions. It is possible to apply 

different control strategies to different modes of vibration, enabling different design 

possibilities for the active system. In this study, a modal control structure is used for the 

skyhook controller to manage the bounce and pitch modes in the vertical suspension, as shown 
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in Figure 4.10(a) and to manage lateral and yaw motions in the lateral suspension, as shown in 

Figure4.10 (b).  
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a: modal control for vertical suspension  
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b: modal control for lateral suspension  

Figure 4.10: Schematic of the modal control diagram 

The output measurements from the two bogies are decomposed to give feedback signals 

required by the skyhook controller to manage the bounce and pitch motion modes for vertical 

suspension or to manage lateral and yaw motions for lateral suspension, and the output 

command from the two controllers are then recombined to control the front and rear 

actuators/dampers accordingly. 
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4.6 Application of Full-Active Control to Vertical Suspensions 

To make a performance comparison between suspension systems, sky-hook damping was 

used as the full-active control strategy, which is a simple and effective strategy by which to 

assess ride quality in full-active suspension systems. The modal control structure is used as the 

skyhook controller to manage the bounce and pitch modes for vertical suspension. These can 

be handled individually and recombined to drive the actuators. Figure 4.11 shows a full-active 

suspension system based on the modal control structure, with the relationships between vehicle 

velocities and actuator forces given by Equation 4.63 and 4.64 [58]. 
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Figure 4.11: Schematic of the full-active of vertical suspension system based on the modal 

control structure 

𝐹𝑓 = 𝐶𝑏�̇�𝑣 + 𝐶𝑝𝑙𝑡 . �̇�𝑣   − − − −(4.63)                  

 𝐹𝑟 = 𝐶𝑏�̇�𝑣 − 𝐶𝑝𝑙𝑡 . �̇�𝑣   − − − −(4.64)     

In these equations, �̇�𝑣 is bounce velocity of the vehicle, �̇�𝑣  is pitch angular velocity of the 

vehicle, and 𝑙𝑡 is the half-longitudinal spacing of the secondary suspension, whereas  𝐶𝑏�̇�𝑣 and 

𝐶𝑝𝑙𝑡 . �̇�𝑣  are the skyhook damping forces of bounce and pitch modes, which are these can be 
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processed individually and recombined to drive the actuators, 𝐹𝑓 and 𝐹𝑟  are the desired 

damping forces for the front and rear suspension, respectively. The skyhook damping 

coefficients of bounce and pitch controller (𝐶𝑏 , 𝐶𝑝 ) are chosen to give a good ride quality and 

ensure the suspension deflection does not pass the maximum allowed value of 55 mm. 

As mentioned previously, the skyhook damping control provides a force dependent upon 

the absolute velocity of the vehicle body. Practically, the absolute velocity measurement is 

obtained by integrating the signal from an accelerometer, and in order to remove integrator 

drift, it becomes practical to integrate this with a high-pass filter. A high-pass filter (HPF) with 

a cut-off frequency of 0.16 Hz frequency is used both to dispose of long-term drift in the 

integrator and to minimise the suspension deflection due to deterministic track input. The 

electromechanical actuators replace conventional passive dampers between the vehicle and 

bogies. 

Electromechanical actuator is selected as a practical solution achieves the main 

requirements for the full-active suspension systems, such as required force to size ratio, 

bandwidth, robustness weight, and maintainability. Figure 4.12 is shown the structure of the 

actuator [65]. 

 

Figure 4.12: Diagrams of the electro-mechanical actuator [65] 

The actuator consists of a combination of the direct current (DC) motor and the ball-screw 

mechanism set. The DC motor generates the required torque, and the ball-screw set converts 
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the rotation of the DC motor to the linear motion to provide the required damping force that 

works between the bogie and the vehicle body. For the equivalent electrical model of the DC 

motor, the governing equation is given by: 

𝑙𝑎𝑟𝑚. 𝑖̇�̇� = −𝑟𝑎𝑟𝑚𝑖𝑎 − 𝑘𝑒𝜃�̇� + 𝑣𝑎 …………………..………………… (4.65) 

 

Figure 4.13 shown an equivalent mechanical model of the electro-mechanical actuator. The 

gearing block represents a fixed kinematic ratio between motor shaft rotation and the linear 

displacement of the screw. Where the connection between the vehicle and the actuator is 

represented by the springs 𝑘𝑠𝑐  and 𝑘𝑚, whereas the damper 𝑐𝑠𝑐 represents the damping effect 

in the connection. The variable 𝑥𝑚 is internal to the actuator, whereas 𝑥𝑎𝑐𝑡 represents the 

relative displacement between the ends. 

 

Figure 4.13: The equivalent mechanical model of the electro-mechanical actuator [65] 

For the equivalent mechanical model of the electro-mechanical actuator, the governing 

equations are given by: 

�̈�𝑚. 𝐽𝑚 = 𝑘𝑡 . 𝑖𝑎 − 𝑐𝑚. �̇�𝑚 − 𝑘𝑚(𝑛. 𝑥𝑚  − 𝑛
2. 𝜃𝑚 ) 

 

�̈�𝑚. 𝑚𝑠𝑐 = 𝑘𝑚 (𝑛. 𝜃𝑚 − 𝑥𝑚) + 𝑘𝑠𝑐( 𝑥𝑎𝑐𝑡 − 𝑥𝑚) + 𝑐𝑠𝑐( �̇�𝑎𝑐𝑡 − �̇�𝑚) 

𝑓𝑎𝑐𝑡 = 𝑘𝑠𝑐(𝑥𝑚 − 𝑥𝑎𝑐𝑡) +𝑐𝑠𝑐(�̇�𝑚 − �̇�𝑎𝑐𝑡) …………………..………………… (4.66) 

 

 The variables and parameters of the electromechanical actuator are defined in Table 4.3. 
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Table 4.3:Variables and parameters of the electromechanical actuator[65] 

Symbols Description Symbols Description 

𝑋𝑎𝑐𝑡 The relative displacement of the 

actuator 

𝑘𝑚 Motor series stiffness (1 x 107 N/m) 

𝑋𝑚 Displacement of the ball-screw 𝑐𝑚 Motor damping (8 x 10-5 N.m.s/rad 

𝜃𝑚 The rotation angle of the motor 𝐽𝑚 Motor inertia (3.67 x 10-4 kg.m2) 

𝑓𝑎𝑐𝑡  Force generated by the actuator n Screw pitch (7.96 x 10-4 m/rad) 

𝑣𝑎  ,  𝑖𝑎 Voltage and current of the motor 𝑘𝑡 Motor torque constant (0.297 N.m/A) 

𝑚𝑠𝑐 Screw mass (2 kg) 𝑘𝑒 Motor back-emf gain (0.297 V/rad/s) 

𝑘𝑠𝑐  Screw stiffness ( 1.8 x 105 N/m) 𝑙𝑎𝑟𝑚 Winding inductance (3.7 mH) 

𝑐𝑠𝑐 Screw damping ( 1.2 x 103Ns/m) 𝑟𝑎𝑟𝑚 Winding resistance(1.8Ω) 

 

The full-active suspension controller generates the command damping force to the actuator. 

The track inputs will influence the dynamic system, which will effect actuator displacement. 

Therefore, the proportional-integral-derivative (PID) local controller for the electromechanical 

actuators is used in the study to maintain as close the generated actuator forces to the damping 

force demand as possible, as shown in Figure 4.14. 

The PID controller is a control loop feedback mechanism widely used in industrial control 

systems. The PID controller is a simple design and offers a robust performance. The governing 

equation of the PID controller is shown as following[96]: 

𝑢 = 𝐾𝑝𝑒 + 𝐾𝑖 ∫ 𝑒𝑑𝑡 + 𝐾𝑑
𝑑𝑒

𝑑𝑡
 …………….. (4.67) 
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Where 𝑢 is the control variable(control voltage), 𝑒 is the error defined as 𝑒 = 𝐹𝑑 - 𝐹𝑎𝑐𝑡, 𝐾𝑝is 

the proportional feedback gain, 𝐾𝑖 is the integral feedback gain, 𝐾𝑑 is the derivative feedback 

gain, 𝐹𝑎𝑐𝑡 is the generated actuator force and 𝐹𝑑 is the desired damping force that generated by 

the system controller. Control gain for this local controller are tuned to match the out to the 

input at best possible level for the bandwidth of (0-14Hz) which is considered appropriate for 

the control of the secondary suspension. 
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Figure 4.14: The PID local controller for the electromechanical actuator 

4.7 Application of Full-active Control to Lateral Suspensions 

In this section, the same structure of full-active control system with the electromechanical 

actuator that shown in Figure 4.11 is used, but the modal control structure is used in the system 

controller to manage the lateral and yaw modes in the lateral suspension. Figure 4.15 shows 

schematic of the full-active of lateral suspension system based on the modal control structure, 

with the relationships between vehicle velocities and full-active damping forces are given by 

Equation 4.68 and 4.69. 
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Figure 4.15: Schematic of the full-active of lateral suspension system based on the modal 

control structure 

Equation 4.68 and 4.69 give the full-active forces: 

𝐹𝑓 = 𝐶𝑙�̇�𝑣 + 𝐶𝑦𝑙 . �̇�𝑣   − − − −(4.68)                  

 𝐹𝑟 = 𝐶𝑙�̇�𝑣 − 𝐶𝑦𝑙 . �̇�𝑣   − − − −(4.69)                                                

Where  𝐹𝑓 and 𝐹𝑟 are the desired damping forces for the front and rear suspension, 

respectively, �̇�𝑣 is lateral the  velocity of the vehicle, �̇�𝑣 is yaw angular velocity of the vehicle, 

and 𝑙 is the half-longitudinal spacing of the secondary suspension, 𝐶𝑙  is skyhook damping gain 

of lateral controller, 𝐶𝑦 is skyhook damping gain of yaw controller . The terms  𝐶𝑙�̇�𝑣 and 

𝐶𝑦𝑙 . �̇�𝑣  are the skyhook damping forces of lateral and yaw modes, which are these can be 

optimised individually and recombined to drive the actuators. 

In practical, the absolute vehicle velocities that are required for skyhook damping will be 

obtained by integrating by the acceleration measurement, as shown in Figure 4.14. However, a 

pure integration will cause drift in the accelerometer. Therefore, a high-pass filter (HPF), which 

is inserted between the skyhook damping and the integrator, with a cut-off frequency of 0.16 

Hz frequency, is used both to deduct of long-term drift in the integrator and to minimise the 
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suspension defalcation due to deterministic track input. The skyhook damping coefficients 

(𝐶𝑙 , 𝐶𝑦 ) for full-active forces (𝐹𝑓 , 𝐹𝑟)  is normally determined based on a trial-and-error method 

by considering the magnitude of required damping force and tuned to achieve the best results 

by decreasing the RMS values for vehicle body accelerations. 

As mentioned in preview section 4.6, the electromechanical actuators replace conventional 

passive dampers, between the vehicle and bogies. A PID local controller for the 

electromechanical actuators is used to maintain as close the generated actuator forces to the 

damping force demand as possible. 

4.8 Conventional Semi-Active Suspension System 

The semi-active control system integrated with the MR damper consists of a system 

controller and a damper controller. The system controller calculates the desired damping force 

according to the measured output. The damper controller then adjusts the command current 

applied to the MR damper to track the desired control force. Finally, the desired damping forces 

are approximately realised by the MR damper. Figure 4.16 shows the semi-active control 

system with the MR fluid damper. 
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Figure 4.16: Schematic of the semi-active control system with the MR damper 

As a classical semi-active control strategy, the skyhook damping control approach has 

been widely adopted to control semi-active suspension studies and is used in this study for 

performance comparison. The semi-active skyhook strategy can be described by the 

equations below[7]: 

𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = {

𝐹𝑓 ,                                         𝐹𝑓 . ∆𝑉𝑓 ≥ 0

𝐶𝑚𝑖𝑛  ∆𝑉𝑓  ,                       𝐹𝑓 . ∆𝑉𝑓 < 0
  − − − (4.70) 

𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = {

𝐹𝑟 ,                                     𝐹𝑟∆𝑉𝑟 ≥ 0

𝐶𝑚𝑖𝑛  ∆𝑉𝑟 ,                    𝐹𝑟 . ∆𝑉𝑟 < 0
  − − − − − (4.71) 

where 𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡  and 𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 are the desired semi-active damping forces at the front and rear 

dampers that can be tracked by the MR dampers, 𝐹𝑓 and 𝐹𝑟 are full-active damping 

forces, ∆𝑉𝑓 and ∆𝑉𝑟 are MR damper front  and rear relative velocities, and 𝐶𝑚𝑖𝑛  is minimum 

damping setting when the control current is minimum (𝐼𝑚𝑖𝑛). The switching policy turns on the 

minimum damper setting when velocity reverses because this would otherwise require a 
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negative damper setting. In this case, the semi-active controller will simply employ a minimum 

damping setting. 

4.9 Summary 

In this chapter, the modelling of the conventional railway vehicle in vertical and lateral 

directions are presented. Vehicles with passive suspension, full-active and conventional semi-

active controls are introduced as benchmarks and are used for comparative assessment of the 

proposed semi-active controlled suspension design. 

In this study, a model decomposition is used to decouple interconnected motions, which is 

used for the full-active controller to manage the bounce and pitch modes in the vertical 

suspension and to manage lateral and yaw motions in the lateral suspension. In order to make 

performance comparisons between suspension systems, the skyhook damping control strategy 

is used as the full-active control strategy, which is a simple and effective strategy to assess the 

ride quality in full-active suspension systems. 

The conventional semi-active control system integrated with the MR damper, which 

consists of a system controller and a damper controller, is presented as a benchmark. As a 

classical semi-active control strategy, the skyhook damping control strategy is adopted to 

control semi-active suspension and is used in this study for performance comparison.  

In semi-active control, the tracking of the desired force is the main issue. In particular, the 

semi-active damper cannot develop a positive force when the relative velocity reverses because 

it is only possible to dissipate energy. The force that is available for a semi-active damper is 

based upon its minimum and maximum levels of damping setting. This limitation upon 

controllability restricts the performance of a semi-active suspension system. 
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CHAPTER FIVE 

5 DYNAMICS OF THE MR DAMPER 

5.1 Introduction 

The magnetorheological (MR) damper is a semi-active control device that has recently 

received a great deal of attention from the vibration control community. The MR damper is 

a device that uses the MR fluid to adapt its mechanical properties. The unique characteristics 

of MR dampers such as low power consumption, large damping force range, consistent 

efficacy across temperature variations, fast response time, essential system stability (no 

active forces generated), and safe-mode operation in case of failure are have made them 

attractive devices for semi-active control in suspension applications[97]. 

5.2 MR Fluid 

The MR fluid consists of micro-sized ferromagnetic particles such as iron particles that 

are suspended in a carrier fluid. In the absence of a magnetic field, the particles are randomly 

distributed, and the MR fluid will be free-flowing with a solidity similar to liquid oil, and the 

particles are in a formless state, as shown in Figure 5.1(a). When the magnetic field is applied, 

the particles are polarised and attract each other in accordance with the magnetic field path, 

as shown in Figure 5.1(b), and the particles form chains, as shown in Figure 5.1(c). This 

results in chains of particles within the fluid which increase its viscosity. The MR fluid 

accordingly changes from liquid to that of semi-solid behaviour on a fast timescale [98-100].  
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(a) No magnetic field 
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applied
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Figure 5.1: Changes to ferromagnetic particles in an MR fluid 

As a result, MR fluids can reversibly and rapidly change from a liquid type behaviour to a 

semi-solid in a millisecond with controllable yield strength when subjected to a known 

magnetic field[101].  

5.3 MR Damper 

The MR damper consists of MR fluid belonging to the type of controllable fluids that 

show the ability to change from liquid-type behaviour to that of semi-solid when subjected 

to an external magnetic field. The MR damper achieves the essential performance criteria 

such as continuous controllability of dynamic range and fast response, low power 

consumption, and temperature stability. The unique characteristics of MR dampers have 

made them suitable for semi-active energy-dissipating applications in suspension 

applications [99, 102, 103]. In MR dampers, varying the control current flow to coils seated 

on the piston allow the dynamical properties of the MR fluid to be modified and, as a result, 

change the viscous damping coefficient. MR dampers typically consist of a piston, magnetic 

coils, seal, bearing, accumulator, and a damper chamber filled with the MR fluid. Figure 5.2 

shows a Lord RD-1005-3 MR fluid damper[104].  



 

76 

 

 

Figure 5.2: Cross-section of typical MR fluid damper[104]  

5.4 Modelling of the MR Fluid Damper  

There is a considerable body of the literature that has considered MR damper modelling, 

and various models have been developed based on sets of well-suited functions [105]. 

Spencer et al.[106] successfully developed a phenomenological model to simulate the 

dynamic behaviour of the damper. The model is capable of predicting the response of the MR 

damper over a wide range of loading while under a constant or variable voltage signal. The 

model proposed by Spencer et al. is governed by seven simultaneous differential equations 

containing 14 parameters. The parameters are obtained according to a constrained nonlinear 

optimization technique such that the model closely emulates the behavioural data of the 

damper as obtained experimentally. A novel MR damper designed by Lau and Liao [84]  was 

developed through the design, fabrication, and testing stages to ensure suitability for railway 

vehicle suspension in order to improve ride comfort. Wang and Liao [89]used 

phenomenological model proposed by into to integrate the MR damper dynamics with the 

secondary suspension of the railway vehicle to improve ride quality. Bideleh, Milad  used a 
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Bouc-Wen model to integrate the MR damper dynamics with the primary suspension of a 

railway vehicle to investigate the effects of semi-active control on wear, safety and ride 

comfort. 

In this study, a modified Bouc-Wen model was used to represent the dynamic behaviour 

of prototype MR damper developed by Zong and Gong[28]. It has been specifically designed 

for railway vehicles. The modified Bouc-Wen model, which is described by the equations 

and the parameters are explained in the next section. 

5.4.1 Modified Bouc–Wen Model for MR Damper 

 In this section, the dynamic phenomenological model is introduced to describe the 

dynamic performance of a prototype MR damper designed for railway vehicles by Zong and 

Gong [28]. The mechanical equivalent model is shown in Figure 5.3. 

Buc-Wen

Co

C1

xy

F

 

Figure 5.3: The modified Bouc–Wen model for the MR damper 

    A modified Bouc–Wen model is based on the phenomenological model, which is 

represented by the following equations (5.1) – (5.6): 

𝐹 = 𝑐1�̇� …………………………………………….. (5.1) 

�̇� =
1

𝑐0+𝑐1
 [𝛼𝑧 + 𝑐0�̇�]……………………………. (5.2) 
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�̇� = −𝛾|�̇� − �̇�|𝑧|𝑧|𝑛−1 − 𝛽(�̇� − �̇�)|𝑧|𝑛 + 𝐴(�̇� − �̇�)…………….. (5.3) 

Where F is the damping force, 𝑐1 is represents the viscous damping at low velocities, the 

parameters 𝑐0 represents the viscous damping at high velocities, x is the piston relative 

displacement, y is the internal displacement of the damper and z is the evolutionary variable, 

and α is a scaling value for the Bouc–Wen model. The parameters γ, β, A, n are parameters 

used to adjust the scale and shape of the hysteresis loop, respectively. 

In order to determine the MR damper model that is valid for fluctuating magnetic fields, it 

is necessary to determine the functional dependence of the parameters on the applied current. 

The viscous damping constant (𝑐0) and yield stress of the MR fluid (∝) is directly dependent 

on the magnetic field strength[28, 106], therefore the parameters 𝑐0 and α are  assumed to be a 

functions of the applied current (I), as shown in equation (5.5) and (5.6). 

∝=∝𝑎+∝𝑏 𝐼 +∝𝑐 𝐼
2…………………………….. (5.4) 

𝑐0 = 𝑐0𝑎 + 𝑐0𝑏𝐼 ……………………………….…… (5.5) 

Consequently, experimentally validated results for the MR damper with application in 

railway vehicle given in [28] are chosen for analysis here. The optimum values of parameters 

for the MR damper model are listed in Table 5.1[28] 
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Table 5.1:MR damper parameters[28] 

Symbols Description 

𝐶𝑜𝑎  8.4 N s mm-1 

𝐶𝑜𝑏 11.23 N s mm-1A-1 

∝𝑎 40 N mm-1 

∝𝑏  2036.8 N s mm-1A-1 

∝𝑐  -535.95 N s mm-1A-2 

𝐶1 the viscous damping at low velocities (91.6 Ns mm-1)  

𝛽 parameters used to adjust the scale and shape of the hysteresis loop  (0.15 mm-2 )  

A parameters used to adjust the scale and shape of the hysteresis loop (0.45) 

𝛾 parameters used to adjust the scale and shape of the hysteresis loop (0.15 mm-2) 

n parameters used to adjust the scale and shape of the hysteresis loop (2) 

 

Finally, to assure that the modified Bouc–Wen model accurately predicts the MR damper 

behaviour is given in [28], the damping force versus velocity are introduced as shown in Figure 

5.4 and Figure 5.5, where I is the control current ,which can be changed from 0~1.2A, and the 

excitation inputs (sinewave) applied across the MR damper were 1 Hz frequency, ±20 mm 

amplitude and 2 Hz frequency, ±15 mm amplitude, respectively.  
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Figure 5.4: The damping force versus velocity (1 Hz, ±20 mm/s) 

 

 

Figure 5.5: The damping force versus velocity (2 Hz, ±15 mm/s) 
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From Figure 5.4 and Figure 5.5, it is observed that the damping force is not centred at zero. 

This behaviour in the damping force is due to the stiffness associated with the accumulator in 

the MR damper (see Figure 5.2), which acts as a spring in the MR damper. The accumulator is 

necessary to prevent cavitation in the MR fluids during normal operations. In addition, from 

Figure 5.4 and Figure 5.5, it observed that for large velocity, the force in the damper varies 

linearly with velocity. However, as the velocity decrease and before it becomes zero, the force-

velocity relationship is no longer linear. This type of behaviour in the force at small velocity is 

due to bleed of MR fluid between the cylinder and the piston, which is necessary to eliminate 

harshness of the MR damper. 

5.5 Local Controller for MR Damper Based Semi-Active Systems 

MR dampers are favourable semi-active devices in which the viscosity of an MR fluid can 

be controlled depending on a control current. In order to use the MR damper to control 

vibrations efficiently, the necessary control current to the MR damper to generate the required 

damping force should be determined. 

   The MR damper control current is determined based on the semi-active control strategy 

in use. One of the most popular strategies is the on-off swathing control law [107]. The MR 

damper is set to a relatively low damping rate by applying the minimum current control as the 

passive on low mode (off swathing). When swathing control law is on, the MR damper will be 

set to a relatively high damping rate by applying a maximum current control as the passive on 

high mode. The applied current for the MR damper can vary between a minimum and 

maximum current control, but the MR damper with too low or too high damping is not 

favourable in a suspension system [84]. 
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However, there are several alternative methods to specify the relationship between the 

desired damping force for the MR damper and control current. Wang et al.[85] used a Signum 

function as the damper controller to generate the desired control current for the MR damper. 

Because of the highly nonlinear features of the MR damper, as well as the complexity of a 

mathematical description of its behaviour, the nonlinear technique are used as a local controller 

for MR damper. The inverse MR damper models are used to obtain the control current 

according to the desired force in actual application, for which suitable model relating the force 

generated by the damper to the piston velocity and current driving the coil has to be identified 

based on data derived from specially designed experiments. The adaptive neuro-fuzzy 

inference system (ANFIS) technique has been investigated to build the inverse MR damper 

model [28, 85, 108]. Neural network and system identification technique have been 

investigated to build the inverse MR damper model[109]. Wang and Hu [110] presented a novel 

technique to the model inverse model of the MR damper by using the universal approximation 

of neuro-fuzzy systems in which two different neuron-fuzzy systems are designed to identify 

the inverse models on the basis of the ANFIS. 

In this study, the inverse MR damper model using a lookup table is introduced to obtain the 

control current according to the desired damping force, which is illustrated in the following 

section. 

5.6 Inverse Model of MR Damper 

The inverse MR damper model was used to obtain the command current according to the 

desired force in the actual application. The lookup table technique, which possesses universal 

approximations to the nonlinear system was used to build the inverse MR damper model. 

Figure 5.6 illustrates the lookup table for the inverse model of the MR damper.  
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Figure 5.6: Lookup table for the inverse model of MR Damper 

The lookup table for the inverse model of the MR damper generates the command current 

by using the damping force and relative velocity as inputs. For building lookup table, the 

desired damping force is recorded according to the particular velocity and specific current 

inputs applied to the MR damper. Then, the recorded data are used to build the lookup table 

for the inverse model of the MR damper, as shown in Table 5.1. 

Table 5.1 shows the lookup table of the command current that is used to control the positive 

damping force of the MR damper, where ( I ) is the control current which can be changed from 

0~1.6A dependence on desired damping force (F) and relative velocity(ΔV). In order to control 

the reverse damping force of the MR damper, the lookup table of the command current as 

shown in Table 5.1 is used, with changes the inputs direction for the reverse. 
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Table 5.2: Lookup table for the inverse model of MR damper 

   F1=Fmin F2= 799N F3= 920N F4= 1373N ... ... Fmax 

ΔV1=0.01 Imin 0.080645A 0.13226A 0.2A … Imax Imax 

ΔV2=0.03 Imin 0.06A 0.09354A 0.1406A … Imax Imax 

ΔV3=0.06 Imin 0.028A 0.045A 0.1A … … Imax 

ΔV4=0.09 Imin 0.005A 0.013A 0.07A … … Imax 

… Imin … … … … … Imax 

… Imin Imin … … … … Imax 

ΔVmax Imin Imin Imin … … … Imax 

 

In order to validate the inverse model, the single mass model with semi-active skyhook 

controller is used as a benchmark as shown in Figure 5.7.  
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Figure 5.7: Single mass model with semi-active controller 
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The governing equation of motion for the single mass model is shown below: 

𝑚𝑏.�̈�𝑏 = −𝐹𝑀𝑅 − 𝑘(𝑧𝑏 − 𝑧𝑡)……… (5.6) 

Whereas 𝑧𝑏 is the displacement of body, 𝑧𝑡 is the track inputs to the system, 𝑚𝑏.is the mass 

of the body (7500kg), 𝑘  is damping stiffness (1022 kNm-1), and 𝐹𝑀𝑅 is the MR damper force. 

For simplicity and investigating MR damper dynamics in the suspension system, a skyhook 

damping is used a semi-active control strategy. The semi-active skyhook strategy can be 

described by the equations below: 

𝐹𝑠𝑎 = {

𝑐𝑠. �̇�𝑏 ,                                         (𝑐𝑠. �̇�𝑏). (�̇�𝑏 − �̇�𝑡) ≥ 0

𝐹𝑚𝑖𝑛  ,                                          (𝑐𝑠. �̇�𝑏). (�̇�𝑏 − �̇�𝑡)   < 0
……………. (5.7) 

Whereas 𝐹𝑠𝑎 is the desired semi-active damping force, 𝑐𝑠 is skyhook damping gain, ( 𝑐𝑠. �̇�𝑏 )is 

the active control forces, 𝐹𝑚𝑖𝑛 is the minimum damping force. 

 When the relative velocity across the MR damper is in the same direction of the velocity of 

the sprung mass, a control current is applied to the MR damper by using the lookup table 

inverse model. Otherwise, no damping force is required. However, for MR damper it is 

impossible to provide a zero force. Therefore, we should minimise the semi-active damping 

force by setting the input current at zero. In this study, the operating range for the damping 

force between 𝐹𝑚𝑖𝑛, which gives the minimum damping coefficient (𝐶𝑚𝑖𝑛) when 𝐼𝑚𝑖𝑛 = 0 𝐴, 

and 𝐹𝑚𝑎𝑥 which gives the maximum damping coefficient (𝐶𝑚𝑎𝑥) when 𝐼𝑚𝑎𝑥 = 1.6 𝐴. 

The damping forces are generated and compared under various excitation conditions as 

shown in Figure 5.8. 
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Figure 5.8: Validation of the inverse model 

 

 

Figure 5.9: Comparison of MR damper forces under the random track 
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Figure 5.9 shows the desired damping force generated by the semi-active controller 

synchronises with the damping force generated by the control current. It can be seen from 

Figure 5.9 that when using the lookup table inverse model of MR damper, the MR damper 

force closely follow the desired damping force, which indicates that the lookup table inverse 

model of MR damper can satisfy the needs of semi-active control requirements, with which the 

inverse model is used to track the desired damping force. 

5.7 Summary 

In this chapter, magnetorheological (MR) dampers, which can change the damping ratio by 

suitable magnetic fields, have been studied for semi-active suspensions. The unique 

characteristics of MR dampers such as fast response time, large damping force range, low 

power consumption, consistent efficacy across temperature variations, essential system 

stability, and safe-mode operation in case of failure are have made them attractive devices for 

semi-active control in suspension applications.  

The dynamic phenomenological model is introduced to describe the dynamic performance 

of a prototype MR damper. The modified Bouc-Wen model was used to represent the dynamic 

behaviour of prototype MR damper. The simulation results show that the model is capable of 

predicting the response of the MR damper over a wide range of excitation inputs while under 

a constant or variable current signal. 

Then, in order to use the MR damper to efficiently control vibrations, the control current to 

the MR damper to generate the required damping force is introduced. Because of the highly 

nonlinear features of the MR damper, as well as the complexity of a mathematical description 

of its behaviour, the inverse model technique is used as a local controller for MR damper. In 

this study, the inverse MR damper model using a lookup table is introduced to obtain the 

control current according to the desired damping force. The simulation results show that the 
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lookup table inverse model of MR damper can satisfy the needs of semi-active control 

requirements. 
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CHAPTER SIX 

6 SEMI-ACTIVE SUSPENSIONS BASED ON GAIN-

SCHEDULING CONTROL 

6.1 Introduction 

In recent years, various control strategies have been presented for the semi-active 

suspension systems to achieve a competitive level of performance. A wide range of semi-active 

control strategies have been experimentally tested for semi-active suspension systems to 

improve the ride quality of railway vehicles.  

However, the findings published so far indicate that there appears to be a ceiling on 

performance improvements with the control strategies that have been proposed, which is 

approximately the half of what can be achieved with the full active control. This is mostly due 

to semi-active devices such as MR dampers being essentially passive components that are only 

capable of providing active control forces by dissipating energy, as they switch to work as 

passive dampers when the control laws demand energy injection. In this case, the semi-active 

controller will simply employ a minimum damping setting, and hence cannot generate the 

necessary forces in the same way as the full-active control in such conditions. 

In this study, a semi-active control strategy based on gain-scheduling control is presented 

to overcome the constraints of the conventional semi-active control strategies and to control 

the dynamics of semi-active suspensions to achieve a ride quality close to that of full-active 

control suspensions. Gain scheduling is an approach to the control of non-linear systems that 

employs a group of linear controllers, where each controller provides satisfactory performance 

control for a different operating condition of the system. The gain-scheduling strategy is 

realised using a set of controllers whose gains are adjusted as a function of scheduling variables 

that represent the current operating conditions. The gain-scheduling approach has been 

https://en.wikipedia.org/wiki/Non-linear_system
https://en.wikipedia.org/wiki/Controller_%28control_theory%29
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successfully and widely applied in fields ranging from process control to aerospace [111-113]. 

The gain-scheduling strategy, which has a form of adaptive ability, is used to design the 

nonlinear semi-active controller. This kind of adaptive capability with gains that are 

automatically adjusted as a function of the operating condition is used for adaptive adjustment 

(gain scheduling) of controller parameters depending on the working state of the system. 

6.2 Semi-Active Controller based on Gain-Scheduling  

In order to achieve the semi-active constraint and performance requirement, a generalised 

control scheme is designed as shown in Figure 6.1. 
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Figure 6.1: Semi-active suspension based on gain scheduling 

In this configuration, the required absolute velocity signals are obtained by integrating the 

signal measured by a sensor accelerometer on the front and rear suspensions. Then, the velocity 

signal is high-pass filtered in order to remove integrator drift and then used to generate the 
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desired force. The system controller generates the desired damping force depending on the 

operating condition by using a group of linear controllers, where each linear controller 

generates the desired damping force by using the skyhook control structure with a set of gain 

scheduling of different stiffnesses and damping coefficients. Then, the decision maker (the 

switching process) in the control algorithm will select the desired damping force that satisfies 

the performance control and the passive constraints. Then, the force filter is used to make the 

frequency of the desired force concentrate in the frequency range of the railway vehicle system 

and remove high frequency harmonic the impact of rapid switching between controllers.  

Then, the lookup table inverse model of the MR damper (the damper controller) is used to 

generate the control current to track the desired damping force. Finally, the desired damping 

forces are approximately realised by MR damper. 

6.3 Control Strategies 

The proposed design of the control strategy is focussed on minimising the use of the 

minimum damper setting by using a gain-scheduling structure control. The gain-scheduling 

structure controller is used to generate the desired damping forces in order to achieve the 

appropriate conditions to keep the dampers within their normal working range as much as 

possible. The desired damping force is generated using the control structure with a set of 

different stiffness and damping parameters that provides forces dependent upon the absolute 

velocity of the vehicle body and relative displacement of the suspension. 

In the proposed gain-scheduling strategy, the desired damping force for each controller is 

generated using the skyhook control as per a set of different damping and stiffness parameters 

that provides desired forces dependent upon the absolute velocity of the vehicle and the relative 

displacement of the damper. Using a variable stiffness parameter and a variable damping 

coefficient, a semi-active controller can adapt to different running conditions. 

https://en.wikipedia.org/wiki/Controller_%28control_theory%29
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 A decision-making procedure in the control algorithms will then determine and select the 

desired damping force that satisfies the passive constraints. Finally, the damper controller 

adjusts the command current applied to the MR damper to track the desired control force. 

Equations (6.1-6.2) describes the use of variable damper settings with a variable stiffness in 

order to generate the desired forces to minimise the using minimum damper setting for front 

and rear damper of the vertical suspension, as shown in Figure 6.2. 
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Figure 6.2: Semi-active control based on gain scheduling for vertical suspension model 
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The desired damping force for front damper of the vertical suspension: 

𝐹𝑓1 = 𝐶𝑏1�̇�𝑣+𝐶𝑝1𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠1 (𝑍𝑓 − 𝑍𝑏𝑓)  

𝑖𝑓     𝐹𝑓1(�̇�𝑓− �̇�𝑏𝑓) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓1         

Otherwise 

𝐹𝑓2 = 𝐶𝑏2�̇�𝑣+𝐶𝑝2𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠2 (𝑍𝑓 − 𝑍𝑏𝑓)  

𝑖𝑓     𝐹𝑓2(�̇�𝑓− �̇�𝑏𝑓) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓2         

Otherwise 

𝐹𝑓3 = 𝐶𝑏3�̇�𝑣+𝐶𝑝3𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠3 (𝑍𝑓 − 𝑍𝑏𝑓)  

𝑖𝑓     𝐹𝑓3(�̇�𝑓− �̇�𝑏𝑓) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓3         

Otherwise 

𝐹𝑓𝑛 = 𝐶𝑏𝑛�̇�𝑣+𝐶𝑝𝑛𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠𝑛 (𝑍𝑓 − 𝑍𝑏𝑓)  

𝑖𝑓     𝐹𝑓𝑛(�̇�𝑓− �̇�𝑏𝑓) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓𝑛         

    Otherwise 

                             𝑖𝑓     𝐹𝑓𝑛(�̇�𝑓− �̇�𝑏𝑓) < 0      
𝑠𝑒𝑙𝑒𝑐𝑡
→   𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐶𝑚𝑖𝑛  (�̇�𝑓− �̇�𝑏𝑓) -------- (6.1) 

Where  𝐹𝑓1 , 𝐹𝑓2 , 𝐹𝑓3 , and 𝐹𝑓𝑛 are a set of different full-active damping forces. 𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡  is 

the desired semi-active damping force at the front suspension that can be tracked by the MR 

damper. 

The desired damping force for rear damper of the vertical suspension: 

𝐹𝑟1 = 𝐶𝑏1�̇�𝑣−𝐶𝑝1𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠1 (𝑍𝑟 − 𝑍𝑏𝑟)  

𝑖𝑓     𝐹𝑟1(�̇�𝑟− �̇�𝑏𝑟) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟1         

Otherwise 

𝐹𝑟2 = 𝐶𝑏2�̇�𝑣−𝐶𝑝2𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠2 (𝑍𝑟 − 𝑍𝑏𝑟)  

𝑖𝑓     𝐹𝑟2(�̇�𝑟− �̇�𝑏𝑟) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟2         

Otherwise 

𝐹𝑟3 = 𝐶𝑏3�̇�𝑣−𝐶𝑝3𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠3 (𝑍𝑟 − 𝑍𝑏𝑟)  
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𝑖𝑓     𝐹𝑟3(�̇�𝑟− �̇�𝑏𝑟) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟3         

Otherwise 

𝐹𝑟𝑛 = 𝐶𝑏𝑛�̇�𝑣−𝐶𝑝𝑛𝑙𝑡 . �̇�𝑣 + 𝑘𝑣𝑠𝑛 (𝑍𝑟 − 𝑍𝑏𝑟)  

𝑖𝑓     𝐹𝑟𝑛(�̇�𝑟− �̇�𝑏𝑟) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟𝑛         

    Otherwise 

                             𝑖𝑓     𝐹𝑟𝑛(�̇�𝑟− �̇�𝑏𝑟) < 0      
𝑠𝑒𝑙𝑒𝑐𝑡
→   𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐶𝑚𝑖𝑛  (�̇�𝑟− �̇�𝑏𝑟) -------- (6.2) 

Where  𝐹𝑟1 , 𝐹𝑟2 , 𝐹𝑟3 , and 𝐹𝑟𝑛 are a set of different full-active damping forces, (𝐶𝑏, 𝐶𝑝, 𝑘𝑣𝑠) 

are gain-scheduling controller coefficients, 𝐹𝑠𝑎.𝑟𝑒𝑎𝑟  is the desired semi-active damping force 

at the rear suspension that can be tracked by the MR damper.  

The goal of the switching policy is to improve the ride quality level while operating within 

the constraints of the MR dampers by adjusting the gain control parameters as appropriate. The 

gain-scheduling controller can minimise the use of the minimum damper setting  by selecting 

skyhook gain (𝐶𝑏, 𝐶𝑝) and dynamic stiffness (𝑘𝑣𝑠) from a set of different stiffness and damping 

parameters that provide a damping force which satisfies the passive constraint range of the 

semi-active damper as far as possible. Otherwise, the switching policy turns on the minimum 

damper setting when the direction of the damper velocity is not consistent with the direction of 

the desired damping force. 

A similar control strategy was used for generating the desired semi-active damping force 

for front and rear damper of the lateral suspension as shown in Figure 6.3. 
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Figure 6.3: Semi-active control based on gain scheduling for lateral suspension model 

The desired damping force for front damper of the lateral suspension: 

𝐹𝑓1 = 𝐶𝑙1�̇�𝑣+𝐶𝑦1𝑙 . �̇�𝑣 + 𝑘𝑠1 (𝑦𝑓 − 𝑦𝑏1)  

𝑖𝑓     𝐹𝑓1(�̇�𝑓− �̇�𝑏1) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓1         

Otherwise 

𝐹𝑓2 = 𝐶𝑙2�̇�𝑣+𝐶𝑦2𝑙 . �̇�𝑣 + 𝑘𝑠2 (𝑦𝑓 − 𝑦𝑏1)  

𝑖𝑓     𝐹𝑓2(�̇�𝑓− �̇�𝑏1) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓2      

Otherwise 

𝐹𝑓3 = 𝐶𝑙3�̇�𝑣+𝐶𝑦3𝑙 . �̇�𝑣 + 𝑘𝑠3 (𝑦𝑓 − 𝑦𝑏1)  

𝑖𝑓     𝐹𝑓3(�̇�𝑓− �̇�𝑏1) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓3        

Otherwise 

. 

𝐹𝑓𝑛 = 𝐶𝑙𝑛�̇�𝑣+𝐶𝑦𝑛𝑙 . �̇�𝑣 + 𝑘𝑠𝑛 (𝑦𝑓 − 𝑦𝑏1)  



 

96 

 

𝑖𝑓     𝐹𝑓𝑛(�̇�𝑓− �̇�𝑏1) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐹𝑓𝑛         

    Otherwise 

                            𝑖𝑓     𝐹𝑓𝑛(𝑦𝑓
̇ − �̇�𝑏1) < 0      

𝑠𝑒𝑙𝑒𝑐𝑡
→   𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡 = 𝐶𝑚𝑖𝑛  (𝑦𝑓

̇ − �̇�𝑏1) -------- (6.3) 

Where  𝐹𝑓1 , 𝐹𝑓2 , 𝐹𝑓3 , and 𝐹𝑓𝑛 are a set of different full-active damping forces. 𝐹𝑠𝑎.𝑓𝑟𝑜𝑛𝑡  is 

the desired semi-active damping force at the front suspension that can be tracked by the MR 

damper. 

The desired damping force for front damper of the lateral suspension: 

𝐹𝑟1 = 𝐶𝑙1�̇�𝑣−𝐶𝑦1𝑙 . �̇�𝑣 + 𝑘𝑙𝑠1 (𝑦𝑟 − 𝑦𝑏2)  

𝑖𝑓     𝐹𝑟1(�̇�𝑟− �̇�𝑏2) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟1         

Otherwise 

𝐹𝑟2 = 𝐶𝑙2�̇�𝑣−𝐶𝑦2𝑙 . �̇�𝑣 + 𝑘𝑙𝑠2 (𝑦𝑟 − 𝑦𝑏2)  

𝑖𝑓     𝐹𝑟2(�̇�𝑟− �̇�𝑏2) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟2         

Otherwise 

𝐹𝑟3 = 𝐶𝑙3�̇�𝑣−𝐶𝑦3𝑙 . �̇�𝑣 + 𝑘𝑙𝑠3 (𝑦𝑟 − 𝑦𝑏2)  

𝑖𝑓     𝐹𝑟3(�̇�𝑟− �̇�𝑏2) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟3             

Otherwise 

. 

𝐹𝑟𝑛 = 𝐶𝑙𝑛�̇�𝑣−𝐶𝑦𝑛𝑙 . �̇�𝑣 + 𝑘𝑙𝑠𝑛 (𝑦𝑟 − 𝑦𝑏2)  

𝑖𝑓     𝐹𝑟𝑛(�̇�𝑟− �̇�𝑏2) ≥ 0   
𝑠𝑒𝑙𝑒𝑐𝑡
→         𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐹𝑟𝑛            

    Otherwise 

                            𝑖𝑓     𝐹𝑟𝑛(�̇�𝑟− �̇�𝑏2) < 0      
𝑠𝑒𝑙𝑒𝑐𝑡
→   𝐹𝑠𝑎.𝑟𝑒𝑎𝑟 = 𝐶𝑚𝑖𝑛  (�̇�𝑟− �̇�𝑏2) -------- (6.4) 

Where  𝐹𝑟1 , 𝐹𝑟2 , 𝐹𝑟3 , and 𝐹𝑟𝑛 are a set of different full-active damping forces, (𝐶𝑙, 𝐶𝑦 , 𝑘𝑙𝑠) 

are gain-scheduling controller coefficient, 𝐹𝑠𝑎.𝑟𝑒𝑎𝑟  is the desired semi-active damping force at 

the rear suspension that can be tracked by the MR damper.  
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6.4 Design Process and Tuning 

As mentioned previously, the proposed control strategy aims to improve the performance 

of a semi-active suspension by using gain-scheduling control structure that dynamically 

extends the duration of the active mode that satisfies the passive constraints of the MR damper. 

The gain-scheduling control structure controller is used to generate the desired damping forces 

to keep the dampers within their normal working range. The desired damping force is generated 

by using the control structure with a set of different stiffness and damping parameters that 

provide forces dependent upon the absolute velocity of the vehicle body and the relative 

displacement of the suspension. Then, a decision-making procedure in the control algorithm 

will determine and select the desired damping force that satisfies the passive constraints.  

The challenge in the gain-scheduling controller design is in the selection of appropriate 

parameters. There is no standard method for selecting gain parameters. Therefore, gain-

scheduling control systems are designed by choosing a small set of operating points and 

developing a suitable linear controller for each point. In operation, the system switches or 

interpolates between these controllers according to the current values of the scheduling 

variables. 

For tuning the system controller, the parameters are optimised for each gain-scheduling 

controller individually to achieve the best results by minimising the RMS values of vehicle 

body accelerations. Simulink Design Optimization tools in MATLAB® were used to optimise 

controller parameters to meet design requirements. Simulink Design Optimization is a 

numerical optimisation tool used to improve designs by estimating and tuning Simulink model 

parameters using numerical optimisation. Simulink Design Optimization offers a 

comprehensive interface for setting up and running optimisation problems within Simulink 

itself. The optimisation process is repeated sequentially and cumulatively for the remaining 

controllers. Then, the decision-making procedure in the control algorithms will then determine 
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and select the desired damping force that satisfies the passive constraints. Finally, the damper 

controller adjusts the command current applied to the MR damper to track the desired control 

force. 

6.5 Application to Vertical suspension (tuning) 

Gain-scheduling coefficients (𝐶𝑏, 𝐶𝑝, 𝑘𝑣𝑠) are determined for each gain-scheduling 

controller individually and tuned to achieve the best results by decreasing the RMS values for 

vehicle body accelerations. Table 6.1shows controller coefficients of gain-scheduling semi-

active control for vertical suspension and ride quality improvement. 

Table 6.1: Controller coefficients of gain-scheduling semi-active control for vertical 

suspension and ride quality improvement 

Control 

 

Front 

(m/s2) 

Centre 

(m/s2) 

Rear 

(m/s2) 

Pitch 

(rad/s2) 

Time use min. 

damper at 

damper1 

Time use min. 

damper at 

damper2 

One condition(conventional 

semi-active) 

𝑪𝒃𝟏=2.3058 x 105 N/m s−1 

𝑪𝒑𝟏=2.7614 x 105 N/m s−1 

𝒌𝒗𝒔𝟏=0 

26.638% 22.366% 23.079% 26.105% 3.999s 3.5313s 

Two conditions 

𝑪𝒃𝟐=2.1615 x 105 N/m s−1 

𝑪𝒑𝟐=2.3257 x 105 N/m s−1 

𝒌𝒗𝒔𝟐=3.6233 x 105 N/m  

29.87% 24.121% 25.777% 29.769% 3.805s 3.2492s 

Three conditions 

𝑪𝒃𝟑=1.5131 x 105 N/m s−1 

𝑪𝒑𝟑=1.3954 x 105 N/m s−1 

𝒌𝒗𝒔𝟑=9.3316 x 104 N/m  

35.105%     28.654 %    30.422%     34.919%     1.074s     1.1703 s    

Four conditions 

𝑪𝒃𝟒=1.2969 x 105 N/m s−1 

𝑪𝒑𝟒=1.8605 x 105 N/m s−1 

𝒌𝒗𝒔𝟒=263120 N/m  

36.251%     29.341%     30.775%     35.642%     0.593s     0.87081s     

Five conditions 

𝑪𝒃𝟓=7.6463 x 104 N/m s−1 

36.383%     29.341%     30.789 %   35.734%     0.531s     0.86059 s    
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𝑪𝒑𝟓=2.0931 x 105 N/m s−1 

𝒌𝒗𝒔𝟓=2.8312 x 105 N/m 

six conditions 

𝑪𝒃𝟔=3.90 x 104 N/m s−1 

𝑪𝒑𝟔=2.00013 x 105 N/m s−1 

𝒌𝒗𝒔𝟔=3.37739 x 105 N/m  

36.471%     29.451%     30.798%     35.753  %   0.391s     0.75327 s    

 

Whereas (𝐶𝑏1, 𝐶𝑝1, 𝑘𝑣𝑠1), (𝐶𝑏2, 𝐶𝑝2, 𝑘𝑣𝑠2), (𝐶𝑏3, 𝐶𝑝3, 𝑘𝑣𝑠3), (𝐶𝑏4, 𝐶𝑝4, 𝑘𝑣𝑠4), (𝐶𝑏5, 𝐶𝑝5, 𝑘𝑣𝑠5),  

and (𝐶𝑏6, 𝐶𝑝6, 𝑘𝑣𝑠6) are gain-scheduling coefficients of the first linear controller, the second 

linear controller, the third linear controller, the fourth linear controller, the fifth linear 

controller, and the sixth linear controller, respectively. 

 

Figure 6.4: Tuning process of gain-scheduling semi-active control for vertical suspension 

It is worth noting that the time for the MR damper being set at the minimum damping is 

significantly reduced (i.e. the suspension is in the passive mode)  and the extending duration 

of the active mode was proximity 9.6 seconds for a simulation time of 10 seconds, as shown in 

Table 6.1. Moreover, it can also be seen from Table 6.1 and Figure 6.4 that the ride quality 

improvements using a gain-scheduling semi-active suspension system reached almost the 
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saturation point after six conditions.  Therefore, it is worthless to add extra controllers after the 

saturation point. 

6.6 Application to lateral suspension (tuning) 

Gain-scheduling controller coefficient (𝐶𝑙, 𝐶𝑦, 𝑘𝑙𝑠) are determined for each gain-scheduling 

controller individually and tuned to achieve the best results by decreasing the RMS values for 

vehicle body accelerations. Table 6.2 shows the controller coefficients of gain-scheduling 

semi-active control for lateral suspension and ride quality improvement. Figure 6.5 shows the 

tuning process of gain-scheduling semi-active control for lateral suspension. 

Table 6.2: Controller coefficients of gain-scheduling semi-active control for lateral 

suspension and ride quality improvement 

Control 

 

Front 

(m/s2) 

lateral 

(m/s2) 

Rear 

(m/s2) 

yaw 

(rad/s2) 

Time use 

min. damper 

at damper1 

Time use 

min. damper 

at damper2 

One condition 

𝑪𝒍𝟏=1.6108 x 105 N/m s−1 

𝑪𝒚𝟏=1.4125 x 105 N/m s−1 

𝒌𝒍𝒔𝟏=0 

32.755%   30.251%      29.848 %    31.406%      3.962s     3.792s 

Two conditions 

𝑪𝒍𝟐=1.9851 x 105 N/m s−1 

𝑪𝒚𝟐=1.4037 x 105 N/m s−1 

𝒌𝒍𝒔𝟐=1.6077 x 105 N/m  

38.05%      33.24%       35.01%      37.25%      2.776 s    2.833s 

Three conditions 

𝑪𝒍𝟑=1.1979 x 105 N/m s−1 

𝑪𝒚𝟑=1.9830 x 105 N/m s−1 

𝒌𝒍𝒔𝟑=2.1223 x 104 N/m  

40.08%      36.73 %      37.08%     38.90%      1.654s     1.554s 

Four conditions 

𝑪𝒍𝟒=4.3599 x 104 N/m s−1 

41.85 %     38.65%       38.40%      40.31% 0.352s     0.496s 
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𝑪𝒚𝟒=2.7105 x 104 N/m s−1 

𝒌𝒍𝒔𝟒=1.2710 x 105 N/m  

Five conditions 

𝑪𝒍𝟓=9.5466 x 104 N/m s−1 

𝑪𝒚𝟓=6.3254 x 104 N/m s−1 

𝒌𝒍𝒔𝟓=4.6569 x 105 N/m  

41.86 %     38.86%       38.66%      40.44 %     0.311s  0.373s 

 

Whereas (𝐶𝑙1, 𝐶𝑦1, 𝑘𝑙𝑠1), (𝐶𝑙2, 𝐶𝑦2, 𝑘𝑙𝑠2), (𝐶𝑙3, 𝐶𝑦3, 𝑘𝑙𝑠3), (𝐶𝑙4, 𝐶𝑦4, 𝑘𝑙𝑠4), and (𝐶𝑙5, 𝐶𝑦5, 𝑘𝑙𝑠5) 

are gain-scheduling coefficients for the first linear controller, the second linear controller, the 

third linear controller, the fourth linear controller, and the fifth linear controller, respectively. 

Figure 6.5: shows the tuning process of gain-scheduling semi-active control for lateral 

suspension 

 

Figure 6.5: Tuning process of gain-scheduling semi-active control for lateral suspension 

It can clearly be seen from Figure 6.5 and Table 6.2 that the gain-scheduling semi-active 

control reached almost the saturation point by using five controllers (five conditions), where 

the lateral ride quality improvements using gain-scheduling semi-active suspension system was 
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about 38.66%, and the duration of the passive mode was around 0.31 seconds for a simulation 

time of 10 seconds. 

6.7 Force Filter Tuning 

The gain scheduling semi-active suspension is an approach to control nonlinear systems that 

employs a group of linear controllers, where the decision maker in the control algorithm will 

select the desired damping force that satisfies performance control and the passive constraints. 

The drawback of the switching process between the group of linear controllers is that while 

this controls the vehicle vibration effectively, the rapid switching generates high-frequency 

harmonics that lead to the creation of unacceptable noise. 

As stated previously, the frequency range of the vibration with the most significant impact 

on the ride quality is between 0.16 to 14 Hz, therefore, a first-order low pass filter (with gain 

equal to one) is used to make the frequency of desired force concentrate in that the frequency 

range and remove the impact of high frequency switching between controllers.  

𝐻(𝑠) =
87.92

𝑠+87.92
 ------------------- (6.5) 

Figure 6.6 provides a comparison between desired force without force filter and desired 

force with force filter.  

https://en.wikipedia.org/wiki/Non-linear_system
https://en.wikipedia.org/wiki/Controller_%28control_theory%29
https://en.wikipedia.org/wiki/Controller_%28control_theory%29
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Figure 6.6: Comparison desired force without force filter and desired force filter damping 

force at the front suspension 

 

Figure 6.7: Comparison acceleration response at the front suspension 
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Moreover, the MR damper because of the time delay could not easily track the control force 

with high frequency. Thus, a lowpass filter would maintain the frequency range of the control 

force in the range where the influence on the ride quality is most considerable.  

6.8 Summary 

In this chapter, a gain-scheduling controller is presented to overcome the constraints of the 

conventional semi-active control strategies and to control the dynamics of semi-active 

suspensions using controllable/variable dampers such as MR dampers to achieve the ride 

quality close to that of the full active control suspensions. The proposed control strategy is 

focused on extending the duration of the active mode for semi-active dampers by using a novel 

gain-scheduling control structure that dynamically changes the control forces demanded 

according to the operating conditions. 

 Conventional railway vehicle vertical and lateral models are used to design and evaluate 

the performance of the proposed semi-active controlled suspension systems. For a control 

design and tuning, the numerical simulation of the vehicle suspension system under generalised 

track irregularities are carried out in Matlab/Simulink for a simulation time of 10 seconds. 

Three performance criteria are considered in this study; they are acceleration at the centre of 

the vehicle, accelerations at front and rear of the vehicle, in addition to the maximum deflation 

of the suspensions. 

The obtained simulation results show that a significant improvement of the vehicle ride 

quality is achieved via the use of gain scheduling control integrated with the MR damper of the 

secondary suspension. In addition, the results obtained with the use of a gain-scheduling 

controller show the improvements increased by reducing the use of minimum damper setting. 
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CHAPTER SEVEN 

7 NUMERICAL SIMULATION OF VERTICAL 

SECONDARY SUSPENSION 

The numerical simulations of the vehicle suspension system under different track 

irregularities were carried out in Matlab/Simulink for a simulation time of 10 seconds. Three 

performance criteria were considered in this study: acceleration at the centre of the vehicle, 

accelerations at the front and rear of the vehicle, and the maximum deflection of the 

suspensions. For control design and tuning, computer-generated random data is used to 

represent generalised track irregularities[26], which provides a good representation of real-

world track irregularities in the range 0.1–12 Hz, and a velocity of 83.333 m/s, that is, to 

represent conditions for a 300 km/h railway vehicle. Time delay-dependent velocities are used 

to provide the inputs to the other axles of the vehicle. For assessment, real measured data for 

different track sections between two Stations in Britain are used to represent track irregularities 

[65]. 

7.1 Results of Vertical Secondary Suspension 

Computer simulation was used to evaluate the proposed gain scheduling-based semi-active 

suspension and compared against the benchmarking models, as presented in the preview 

chapters. For a more comprehensive assessment, real measured data for four different track 

sections are used to represent track irregularities. The proposed semi-active control using the 

gain-scheduling approach is applied to the vertical secondary suspensions of a railway and 

evaluated the passive suspension, full-active suspension, semi-active suspension with skyhook 

controller again. Table 7.1 gives simulation results for the ride quality, and suspension 

deflection using computer generated track data as input. A comparison of ride quality 
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improvements and maximum suspension deflection for three sections of the measured track 

data are shown in Tables 7.2, 7.3, and 7.4. 

Table 7.1: Ride quality and suspension deflection results from time simulation under 

random track irregularities 

Control 

strategy 

Front 

(m/s2) 

Centre 

(m/s2) 

Rear 

(m/s2) 

Pitch 

(rad/s2) 

Time use min. 

damper 

setting at 

damper1 

Time use min. 

damper 

setting at 

damper2 

Def. 

damper

1(mm) 

Def. 

Damper2

(mm) 

Passive 

(RMS value) 

0.69836     0.43592     0.7396     0.06357   27.885     29.256 

Full-active 

with actuator 

(%vs passive) 

0.17438     0.1199   0.1744    0.01406   52.328     51.852 

75.01%     72.45%     76.57%     77.99% 

Semi-active 

with MR 

damper 

(% vs passive) 

0.51183     0.3379   0.5728   0.04724   3.999s     3.5313s     35.494     32.694 

26.638%    22.36%    23.07%     26.10%     

Gain 

scheduling 

with MR 

damper 

(% vs passive) 

0.44323     0.30714     0.5153  0.0410     0.391s     0.75327s     37.895     34.341 

36.47%    29.45%     30.79%     35.75%    

 

As can be seen in Table 7.1, the active suspension delivers a better ride quality than passive, 

conventional semi-active, and gain-scheduling semi-active suspensions. For conventional 

semi-active, it should be noted that the time uses the minimum damper setting of MR damper 

(indicating the suspension is in the passive mode) proximity 4 seconds for a simulation time of 

10 seconds, and the ride quality improvements are around 30%. However, the time during 
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which the MR damper is in the minimum setting (indicating the suspension is in the passive 

mode) in the semi-active suspension with a gain-scheduling controller is significantly 

decreased. As a result, the gain-scheduling semi-active suspension achieves a much better ride 

quality than conventional semi-active suspension.  

Moreover, Figures 7.1, 7.2, and 7.3 (accelerations comparison at the centre, front, and rear 

of the vehicle body) show that the gain-scheduling semi-active suspension achieves a much 

smoother and lower acceleration (and closer to that of the full-active suspension) when 

compared with the conventional semi-active and passive suspensions. 

 

Figure 7.1: Vertical acceleration comparison at the centre of the vehicle body using 

computer-generated track data input 
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Figure 7.2: Vertical acceleration comparison at the front of the vehicle body using 

computer-generated track data input 

 

Figure 7.3: Vertical acceleration comparison at the rear of the vehicle body using 

computer-generated track data input 
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In order to investigate the effects of the control strategies on the accelerations of the 

vehicle over frequency, the power spectrum densities (PSD) of the vertical, pitch, front, and 

rear of the vehicle with the control strategies (under the random track irregularities) are 

illustrated in Figures 7.4 -7.7. It can be seen that the vertical vibrations of the vehicle body 

using gain-scheduling semi-active suspension are lower than using conventional semi-active 

systems. 

 

Figure 7.4: PSD of vertical comparison acceleration at the centre of the vehicle body using 

computer-generated track data 
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Figure 7.5: PSD of vertical comparison acceleration at the pitch of the vehicle body using 

computer-generated track data 

 

Figure 7.6: PSD of vertical comparison acceleration at the front of the vehicle body using 

computer data 



 

111 

 

 

Figure 7.7: PSD of vertical comparison acceleration at the rear of the vehicle body using 

computer data 

For more research assessments, a comparison of ride-quality improvements and maximum 

suspension deflections for the vertical secondary suspension system under measured track 

irregularity data for three different sections are shown in Tables 7.2, 7.3, and 7.4. 

Table 7.2: Ride-quality improvements and suspension deflection results using measuring 

track data input (track1) 

Control strategy/ 

track1 

Front 

(m/s2) 

Centre 

(m/s2) 

Rear 

(m/s2) 

Pitch 

(rad/s2) 

Time use min. 

damping 

settingr at 

damper1 

Time use min. 

damping 

setting at 

damper2 

Def. 

damper1

(mm) 

Def. 

Damper

2(mm) 

Passive(RMS 

value) 

0.87389     0.54561     0.85242     0.07432  - - 29.697     28 

Full-active with 

actuator 

(%vs passive) 

0.24107     0.1519     0.21586     0.01901  - - 29.06     28.916 

72.41%     72.15%     74.67%     74.42%     
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Semi-active with 

MR damper 

(% vs passive) 

0.59147     0.3582     0.58107     0.05157   3.041 s    3.4434s     29.3     30.078 

32.31%    34.34%    31.83%     30.61%     

Gain scheduling 

with MR damper 

(% vs passive) 

0.39908     0.2359     0.39196     0.03527 0.023s     0.085854 s    30.184     30.464 

54.33%     56.76%    54.01%     52.53%     

 

 

Table 7.3: Ride-quality improvements and suspension deflection results using measuring 

track data input (track2) 

Control strategy/ 

track2 

 

Front 

(m/s2) 

Centre 

(m/s2) 

Rear 

(m/s2) 

Pitch 

(rad/s2) 

Time use 

min. damper 

at damper1 

Time use 

min. damper 

at damper1 

Def. 

damper1 

(mm) 

Def. 

Damper2 

(mm) 

Passive(RMS value) 0.77602     0.54941     0.7580   0.05948   - -     36.889     35.843 

Full-active with 

actuator 

(%vs passive) 

0.20833     0.14932     0.18749     0.01447   -     -     39.818     39.567 

73.15%    72.82%     75.26%     75.66     

Semi-active with 

MR damper 

(% vs passive) 

0.53084     0.37314     0.52325     0.04135     3.135 s    3.6212s     36.821     35.823 

31.59%    32.08%    30.97%     30.46%     

Gain scheduling 

with MR damper 

(% vs passive) 

0.33952     0.23262     0.33547     0.02717     0.054 s    0.20033 s    39.695     39.57 

56.24%    57.66%     55.74%   54.32%     
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Table 7.4: Ride-quality improvements and suspension deflection results using measuring 

track data input (track3) 

Control/ 

Track3 

 

Front 

(m/s2) 

Centre 

(m/s2) 

Rear 

(m/s2) 

Pitch 

(rad/s2) 

Time use 

min. damper 

at damper1 

Time use 

min. damper 

at damper1 

Def. 

damper1 

(mm) 

Def. 

Damper2

(mm) 

Passive(RMS 

value) 
0.58176     0.36226     0.55359     0.04858  - - 19.343     19.47 

Full-active 

with actuator 

(%vs passive) 

0.14679     0.09594    0.13313     0.01134   - -     21.694     21.664 

74.76%  73.51%   75.95%    76.64%     

Semi-active 

with MR 

damper(% vs 

passive) 

0.37119     0.22903     0.35616     0.0314     3.138   s  3.1817 s    20.506     20.993 

36.19%     36.77%   35.66%    35.37%     

Gain 

scheduling 

with MR 

damper 

(% vs passive) 

0.25596     0.15548     0.2464     0.02192 0.097s     0.11754 s    21.217     22.098 

56.01%    57.08%  55.49%  54.87%     

 

The time histories of the accelerations of the vehicle body with the passive, full-active, 

conventional semi-active, and gain-scheduling semi-active suspension systems under 

measured track irregularity data for three different track sections are shown in Figures 

7.8~7.16. Observing the time histories of the accelerations of the vehicle body in different 

suspension systems in Figures7.8 ~7.16, it would be noted that the gain-scheduling semi-active 

suspension system provides better attenuation of the vibration of the vehicle than the 

conventional semi-active suspension.  
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Figure 7.8: Vertical acceleration comparison at the centre of the vehicle body using 

measured track data input (track1) 

 

Figure 7.9: Vertical acceleration comparison at the rear of the vehicle body using 

measured track data input (track1) 
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Figure 7.10: Vertical acceleration comparison at the rear of the vehicle body using 

measured track data input (track1) 

 

 

Figure 7.11: Vertical acceleration comparison at the centre of the vehicle body using 

measured track data input (track2) 
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Figure 7.12: Vertical acceleration comparison at the front of the vehicle body using 

measured track data input (track2) 
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Figure 7.13: Vertical acceleration comparison at the rear of the vehicle body using 

measured track data input (track2) 

 

Figure 7.14: Vertical acceleration comparison at the centre of the vehicle body using 

measured track data input (track3) 
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Figure 7.15: Vertical acceleration comparison at the front of the vehicle body using 

measured track data input (track3) 

 

Figure 7.16: Vertical acceleration comparison at the rear of the vehicle body using 

measured track data input (track3) 
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     The PSDs of the vehicle body accelerations of the railway vehicle with the passive, full-

active, conventional semi-active, and gain-scheduling semi-active suspension systems were 

also studied, and the results using different track data to examine their effects regarding 

different frequencies. Figures 7.17~7.28 gives a clear view of the additional improvements 

achievable with the gain-scheduling controller solution, and it would be noted that the gain 

scheduling-based semi-active suspension improvement was much closer to that of the full-

active control when compared with the conventional semi-active and passive suspensions. 

 

Figure 7.17: PSD of vertical accelerations at the centre of the vehicle body using measured 

track data input (track1) 
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Figure 7.18: PSD of vertical accelerations at the pitch of the vehicle body using measured 

track data input (track1) 

 

Figure 7.19: PSD of vertical comparison acceleration at the front of the vehicle body using 

measured track data input (track1) 
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Figure 7.20: PSD of vertical comparison acceleration at the rear of the vehicle body using 

measured track data input (track1) 

 

Figure 7.21: PSD of vertical comparison acceleration at the centre of the vehicle body 

using measured track data input (track2) 
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Figure 7.22: PSD of vertical comparison acceleration at the pitch of the vehicle body using 

measured track data input (track2) 

 

Figure 7.23: PSD of vertical comparison acceleration at the centre of the vehicle body 

using measured track data input (track3) 
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Figure 7.24: PSD of vertical comparison acceleration at the pitch of the vehicle body using 

measured track data input (track3) 

7.2 Summary 

Simulation works were performed in the Matlab Simulink environment to investigate the 

development of a nonlinear semi-active controller for improving the ride quality of railway 

vehicles and has evaluated the performance of the novel control approach against a passive 

suspension, a conventional semi-active and a full active control system.  

In general, according to Tables 7.2, 7.3, and 7.4, the ride-quality improvements of the 

vertical and pitch acceleration of the railway vehicle with a full-active suspension system are 

similar to those of the railway vehicle with the full-active suspension system in Table7.1 and 

are around 75%. However, the ride quality improvements using conventional semi-active 

suspension system was approximately 25% in Table 7.1 (under random track irregularities) 

while quality improvements using conventional semi-active suspension was approximately 

35% in Table 7.2, 7.3 and 7.4 (under measured track irregularities data for three different 
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sections). It is worth noting that the duration of the passive mode under random track 

irregularities (Table 7.1) was around 4 seconds, while the duration of the passive mode under 

measured track irregularities data for three different sections (Table 7.2, 7.3 and 7.4) was about 

3 seconds.  

Moreover, it can also be seen from Table 7.1 that the ride quality improvements using a 

gain-scheduling semi-active suspension system was about 35% and the duration of the 

passive mode was around 0.55 seconds. However, the improvements using gain-scheduling 

semi-active suspension under measured track irregularity data for three different sections 

(Table 7.2, 7.3, and 7.4) was around 55%, and the duration of the passive mode was less than 

0.55 seconds.  This indicates that the ride quality of semi-active suspension systems by 

extending the duration of the active mode is superior to those of the semi-active suspension 

systems whilst lowering the duration of the active mode.  

Furthermore, it can be seen in Figures 7.4, 7.5, and 7.6 there are a very wide range of 

frequencies in the computer-generated track irregularities which reflects an improvement of 

around 10% for the gain scheduling-based semi-active control when compared with the 

conventional semi-active system listed in Table 7.1. Figures 7.11, 6.4, and 6.5 show a narrower 

range of frequencies from the measured track data, whilst Tables 7.2, 7.3, and 7.4 indicate an 

improvement of around 20% when compared with conventional semi-active suspension. 
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CHAPTER EIGHT 

8 NUMERICAL SIMULATION OF LATERAL SECONDARY 

SUSPENSION 

The proposed semi-active control using the gain-scheduling approach is also applied to the 

lateral secondary suspensions of a railway and evaluated as compared to the passive 

suspension, full-active suspension, and semi-active suspension with skyhook controller 

8.1 Results of Lateral Secondary Suspension 

Table 8.1 gives simulation results for the ride quality, and suspension deflection using 

computer-generated track data as input.  

Table 8.1: Ride quality and suspension deflection results using computer-generated track 

data input 

Control strategy Front 

(m/s2) 

lateral 

(m/s2) 

Rear 

(m/s2) 

yaw 

(rad/s2) 

Time use 

min. 

damper at 

damper1 

Time use 

min. 

damper at 

damper1 

Def. 

damper1 

(mm) 

Def. 

Damper2 

(mm) 

Passive(RMS 

value) 

0.67305     0.32661     0.7358     0.069435     - - 41.6     47.362 

Full-active with 

actuator 

(%vs passive) 

0.22348     0.10244     0.27499     0.025407     -     -     51.682     56.143 

66.79%    68.63%     62.62%     63.40%   

Semi-active with 

MR damper 

(% vs passive) 

0.45258     0.22779     0.51614     0.047626     3.96   s  3.792 s    42.268     48.42 

32.75%     30.25%    29.85%     31.41 %    

0.39131     0.19966     0.45128     0.041354     0.311 s    0.373  s   41.84     48.63 
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Gain scheduling 

with MR damper 

(% vs passive) 

41.86%    38.87 %      38.669     40.44%    

 

As shown in Table 8.1, the active suspension delivers the best ride quality improvement as 

expected. For the conventional semi-active, it should be noted that the time that the system is 

in the minimum damper setting of MR damper (i.e. the suspension is in the passive mode) is 

proximity 4 seconds for a simulation time of 10 seconds, and the ride quality improvements 

are around 30%. However, the time during which the MR damper is in the minimum setting 

(indicating the suspension is in the passive mode) in the semi-active suspension with a gain-

scheduling controller is significantly decreased. As a result, the gain-scheduling semi-active 

suspension achieves a much better ride quality than the conventional semi-active suspension. 

Moreover, Figures 8.1,8.2 and 8.3 show that the gain-scheduling semi-active suspension 

achieves a much smoother and lower acceleration (and closer to that of the full-active 

suspension) when compared with the conventional semi-active and passive suspensions. 



 

127 

 

 

Figure 8.1: Acceleration comparison at the front of the vehicle body using computer-

generated track data 

 

Figure 8.2: Acceleration comparison at the centre of the vehicle body using computer-

generated track data 
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Figure 8.3: Acceleration comparison at the rear of the vehicle body using computer-

generated track data 
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Figure 8.4: PSD of lateral acceleration at the centre of the vehicle body using computer-

generated track data 

 

Figure 8.5: PSD of yaw comparison acceleration at the yaw of the vehicle body using 

computer-generated track data 
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Figure 8.6: PSD of lateral comparison acceleration at the front of the vehicle body using 

computer-generated track data 

 

Figure 8.7: PSD of lateral comparison acceleration at the rear of the vehicle body using 

computer-generated track data 
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A comparison of ride quality improvements and maximum suspension deflection for three 

sections of the measured track data are shown in Tables 8.2, 8.3, and 8.4. 

Table 8.2: Ride quality and suspension deflection results from time simulation using 

measured track data input (track1) 

Control Front 

(m/s2) 

lateral 

(m/s2) 

Rear 

(m/s2) 

yaw 

(rad/s2) 

Time use 

min. damper 

at damper1 

Time use 

min. damper 

at damper1 

Def. 

damper1

(mm) 

Def. 

Damper2 

(mm) 

Passive(RMS 

value) 

0.59489     0.21562     0.66584     0.06593      36.681     37.183 

Full-active with 

actuator(%vs 

passive) 

0.1967     0.05546   0.22791     0.02283    - -     34.284     36.121 

66.93%     74.27%    65.77%    65.36%    

Semi-active with 

MR damper(% vs 

passive) 

0.40042     0.14527     0.45471     0.04478    3.503     3.342     35.616     37.798 

32.69%    32.62%      31.70%    32.07%    

Gain scheduling 

with MR damper 

(% vs passive) 

0.34103     0.12302     0.38693     0.03814  0.065     0.019     35.081     37.965 

42.673     42.948      41.889     42.143     

 

Table 8.3: Ride quality and suspension deflection results from time simulation using 

measured track data input (track2) 

Control 

strategy 
Front 

(m/s2) 

lateral 

(m/s2) 

Rear 

(m/s2) 

yaw 

(rad/s2) 

Time use 

min. 

damper at 

damper1 

Time use 

min. damper 

at damper1 

Def. 

damper

1(mm) 

Def. 

Damper2

(mm) 

Passive(RMS 

value) 
0.52474     0.27955     0.644     0.05740     - - 41.504     48.17 

Full-active 

with actuator 

(%vs passive) 

0.18497     0.07655    0.25371     0.02315   -     -     51.697     54.528 

64.75 %    72.61%     60.61%   59.66   %  

Semi-active 

with MR 

damper 

0.37235     0.20096     0.46607     0.041209        3.931s     3.398 s    42.39     47.205 

29.04%     28.11%      27.62%     28.21 %    
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(% vs passive) 

Gain 

scheduling 

with MR 

damper 

(% vs passive) 

0.2808     0.13239     0.36104     0.032787     0.458 s  0.043 s  47.967     51.931 

46.487     52.642      43.937     42.882     

 

Table 8.4: Ride quality and suspension deflection results from time simulation using 

measured track data input (track3) 

Control 

strategy 

 

Front 

(m/s2) 

lateral 

(m/s2) 

Rear 

(m/s2) 

yaw 

(rad/s2) 

Time use 

min. 

damper at 

damper1 

Time use 

min. 

damper at 

damper1 

Def. 

damper1 

(mm) 

Def. 

Damper2

(mm) 

Passive(RMS 

value) 
0.3512     0.21573     0.41242     0.035167     - - 18.031     19.68 

Full-active 

with actuator 

(%vs passive) 

0.1101     0.05804 0.16755     0.014371     -     -     21.858     23.09 

68.65 %    73.09%      59.37%     59.13%   

Semi-active 

with MR 

damper 

(% vs passive) 

0.2234     0.1391      0.28529     0.023909     3.612s     2.929 s    19.45     21.931 

36.38%     35.52%      30.82%    32.01%     

Gain 

scheduling 

with MR 

damper 

(% vs passive) 

0.17505     0.10843     0.23875     0.019896     0.352 s    0.071 s   20.583     22.927 

50.15%     49.73%     42.10%     43.42%     

 

Tables 8.2, 8.3, and 8.4 show the ride quality improvements of the gain-scheduling control 

based semi-active suspension in comparison to the conventional semi-active suspension on 

three real measured track inputs. In all cases, the time for the MR damper being set at the 

minimum damping (i.e., in the passive mode) is significantly reduced on every track section, 

and the ride quality is further improved by around 14% to 20% compared to the conventional 

semi-active control. 
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Figure 8.8: Acceleration comparison at the centre of the vehicle body using measured 

track data (track1) 

 

Figure 8.9: Acceleration comparison at the front of the vehicle body using measured track 

data (track1) 
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Figure 8.10: Acceleration comparison at the rear of the vehicle body using measured track 

data (track1) 

 

Figure 8.11: Lateral acceleration at the centre of the vehicle body using measured track 

data (track2) 
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Figure 8.12: Lateral acceleration at the front of the vehicle body using measured track data 

(track2) 

 

Figure 8.13: Lateral acceleration at the rear of the vehicle body using measured track data 

(track2) 
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Figure 8.14: Acceleration comparison at the centre of the vehicle body using measured 

track data (track3) 

 

Figure 8.15: Acceleration comparison at the front of the vehicle body using measured 

track data (track3) 
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Figure 8.16: Acceleration comparison at the rear of the vehicle body using measured track 

data (track3) 

The PSD of the vehicle body acceleration with the proposed control, conventional semi-

active and full-active strategies is also studied and the results using different track data to 

evaluate their effects in terms of different frequencies. 
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Figure 8.17: PSD of lateral acceleration at the centre of the vehicle body using measured 

track data (track1) 

 

Figure 8.18: PSD of lateral acceleration at the yaw of the vehicle body using measured 

track data (track1) 
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Figure 8.19: PSD of lateral acceleration at the front of the vehicle body using measured 

track data (track1) 

 

Figure 8.20: PSD of lateral acceleration at the rear of the vehicle body using measured 

track data (track1) 
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Figure 8.21: PSD of lateral acceleration at the centre of the vehicle body using measured 

track data (track2) 

 

Figure 8.22: PSD of lateral acceleration at the yaw of the vehicle body using measured 

track data (track2) 
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Figure 8.23: PSD of lateral acceleration at the front of the vehicle body using measured 

track data (track2) 

 

Figure 8.24: PSD of lateral acceleration at the rear of the vehicle body using measured 

track data (track2) 
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Figure 8.25: PSD of lateral acceleration at the centre of the vehicle body using measured 

track data (track3) 
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Figure 8.26: PSD of lateral acceleration at the yaw of the vehicle body using measured 

track data (track3) 

 

Figure 8.27: PSD of lateral acceleration at the front of the vehicle body using measured 

track data (track3) 
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Figure 8.28: PSD of lateral acceleration at the rear of the vehicle body using measured 

track data (track3) 

8.2 Summary 

In this chapter, the study has investigated the development of a nonlinear semi-active 

controller for lateral secondary suspension for improving the ride quality of railway vehicles 

and has evaluated the performance of the novel control approach against a passive suspension, 

a conventional semi-active and a full active control system. 

In general, according to Tables 8.2, 8.3, and 8.4, the ride-quality improvements of the lateral 

and yaw acceleration of the railway vehicle with a full-active suspension system on real 

measured track input are consistent with that using the generic track data as given in Table8.1 

and are around 65%. However, the ride quality improvements using conventional semi-active 

suspension system was approximately 30% in Table 8.1 (under generic track irregularities) 

while quality improvements using conventional semi-active suspension was approximately 

35% in Table 8.2, 8.3 and 8.4 (under measured track irregularities data for three different 
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sections). It is worth noting that the duration of the passive mode under random track 

irregularities (Table 8.1) was around 4 seconds, while the duration of the passive mode under 

measured track irregularities data for three different sections (Table 8.2, 8.3 and 8.4) was about 

3 seconds.  

Moreover, it can also be seen from Table 8.1 that the ride quality improvements using a 

gain-scheduling semi-active suspension system was about 38% and the duration of the passive 

mode was around 0.55 seconds. However, the improvements using the gain-scheduling semi-

active suspension under measured track irregularity data for three different sections (Table 8.2, 

8.3, and 8.4) was around 50% and the duration of the passive mode was lower than 0.55 seconds 

which indicates that the ride quality of semi-active suspension systems by extending the 

duration of the active mode is superior to those of the semi-active suspension systems whilst 

lowering the duration of the active mode.  

Moreover, broad frequencies are noticed for the computer-generated track irregularities in 

Figures 8.4, which reflects an improvement of around 10% for the gain scheduling-based semi-

active control when compared with the conventional semi-active system listed in Table 8.1. 

Figures 8.17, 8.21, and 8.25 shows a narrower range of frequencies from the measured track 

data, whilst Tables 8.2, 8.3, and 8.4 indicate an improvement of around 20% when compared 

with conventional semi-active suspension. 
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CHAPTER NINE 

9 CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

    This chapter contains the general conclusions of this thesis. Detailed findings are included in 

each chapter. Throughout the thesis, the study has covered aspects involving the development of 

a nonlinear control strategy for semi-active suspensions based on Magnetorheological (MR) 

dampers for a railway vehicle using gain-scheduling structure control. The aim of the research 

was to overcome the constraints of the conventional linear control strategies and improve the 

semi-active suspensions to gain a performance close to that of full-active systems. 

    For the purposes of performance comparison, a semi-active controller based on skyhook 

damping control integrated with MR dampers and a vehicle with passive suspension were used 

as the benchmark, and are used as a reference case for assessment of the proposed design. 

Computer simulation using the model of a conventional bogie vehicle was performed in the 

Matlab Simulink environment to investigate the performance of different control strategies for 

the secondary suspension system of the railway vehicle. The performance of the proposed 

controller is investigated in term of car body acceleration and the relative displacement of the 

suspension units. For the purposes of control design and assessment, a generalised computer data 

was used to represent track irregularities. Then, for research assessment, real measured data for 

track irregularities were also used. Numerical simulation for semi-active secondary suspension 

cases was used to study the effectiveness and efficiency of the proposed control strategy. 

Potentially, this kind of adaptive capability with variable control approaches may be used to 

deliver the level of the performance that is currently only possible with a full-active suspension 

without incurring the associated high costs and power consumption. 
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The results are presented by PSDs and RMS values for vehicle accelerations. According to the 

simulation and analyses, it can be established that: 

 The simulation results show that the full-active-based skyhook control always provides the 

best performance over a wide range of frequencies than passive, conventional semi-active, 

and gain-scheduling semi-active suspensions. 

 For the full-active suspension system-based skyhook control, it should be noted that vertical 

full-active suspension delivers better ride quality than lateral full-active suspension. This is 

mainly because the full-active suspension is affected by two conflicting factors that have an 

influence on its performance, namely the suspension deflection and the ride quality. The 

lateral full-active suspension is more restricted to trade-offs between the performance and the 

suspension deflection because the lateral suspension system is affected by low-frequency 

track irregularities.  

 The simulation result indicates that the lookup table inverse model of the MR damper can 

satisfy the needs of the application where the inverse model was employed to track the desired 

damping force. 

 For conventional semi-active suspension, the results showed that percentage of time when the 

semi-active damper is in active-mode is dependent on the frequency of track irregularity 

input, which indicates that the switching of the semi-active control may depend on the 

amplitude and frequency of the irregularities. 

  It should be noted that the split in time between the active and passive modes for the 

conventional semi-active control strategies has an impact on ride-quality improvements. 

Results indicate that the ride quality of semi-active suspension systems with longer active-



 

148 

 

mode durations deliver better ride quality than those of the semi-active suspension systems 

with shorter active-mode durations. 

 The results illustrate that the gain-scheduling controller delivers smooth switching behaviour 

as it enables the maximum use of possible damping forces hence minimises the time when 

the semi-active control is switched to passive mode.  

 This study has shown that a significant improvement in vehicle ride quality is achieved using 

gain scheduling control integrated with the MR damper of the secondary suspension. It has 

shown that, in comparison to the conventional semi-active controller, the ride quality of the 

vehicle would be improved by around 15% to 20% when the gain-scheduling controller is 

applied. In addition, the results obtained with the use of gain-scheduling controller show a 

potential to reduce the use of the minimum damper setting. It has been illustrated that the 

gain-scheduling controller delivers smooth switching behaviour as it enables the maximum 

use of possible damping forces hence minimises the time when the semi-active control is 

switched to passive mode. 

9.2 Recommendations for Future Work 

This thesis presents the development of a non-linear control strategy for semi-active 

suspension that can be used to deliver the level of the performance that is currently only 

possible with full-active suspension without incurring the associated high costs and power 

consumption. This thesis presents a scientific contribution to a new approach to the above ends. 

Further research directions that need to be pursued to bring such a system to industrial adoption 

are as follows:   

 A semi-active device with higher damping on active state and lower damping on 

passive state would work best. 
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 Research into the design control strategy using alternative semi-active devices could 

be of value.  

 The research is carried out assuming the vehicle is moving on a straight track, which 

can further be extended for both deterministic (low-frequency signals) and the 

random track inputs (high-frequency signals) as well. 

 This study is carried out using the dynamic model of two-stage suspension systems, 

with the potential of this research being assessed using a single-stage suspension 

model. The research idea can be further extended to achieve a better compromise 

between stability and guidance. 

 Finally, experimental implementation and validation of the semi-active suspension-

based gain-scheduling control will be required before it can be used in practical 

applications.  
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1. Husam Hammood and Mie TX, “Variable structure control for railway vehicle semi-

active suspension”. Proceedings of the Salford Postgraduate Annual Research 
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2. H. Hammood and Mie TX, “Gain-scheduling control for railway vehicle semi-active 

suspension”, Proceedings of the 25th Symposium of the International Association of 

Vehicle System Dynamics (IAVSD 2017), Rockhampton, Queensland, Australia, 14–

18 August 2017 

3. Husam Hammood and Mie TX, “Improvement of semi-active suspensions based on 

gain-scheduling control”. Proceedings of the Salford Postgraduate Annual Research 

Conference 2018,4-5 July 2018,University of Salford UK,p.123-124 

4. Husam Hammood and Mie TX, “Gain-scheduling Control for Semi-active 

Suspensions”, (under review)



 

 

 

151 

 

11  REFERENCES 

[1] J. Fagerlund, "Towards Active Car Body Suspension in Railway Vehicles," LEng 

thesis, Chalmers University of Technology, Goteborg, Sweden, 2009. 

[2] K. Tanifuji, S. Koizumi, and R. Shimamune, "Mechatronics in Japanese rail vehicles: 

active and semi-active suspensions," Control Engineering Practice, vol. 10, pp. 999-

1004, Sep 2002. 

[3] L. Tianye, W. Zhongdong, T. M. Xiang, and Z. Wanling, "Study on Semi-active 

Secondary Suspension of Railway Vehicle," International Conference on 

Transportation, Mechanical, and Electrical Engineering (TMEE), pp. 237–253, 2011. 

[4] Y. Zhiqiang, Z. Baoan, Z. Jimin, and W. Chenhui, "Research on Semi-active Control 

of High-speed Railway Vehicle Based on Neural Network-PID Control," presented at 

the Seventh International Conference on Natural Computation, 2011. 

[5] D. S. Pour and S. Behbahani, "Semi-active fuzzy control of machine tool chatter 

vibration using smart MR dampers," International Journal of Advanced Manufacturing 

Technology, vol. 83, pp. 421-428, Mar 2016. 

[6] X. Wei, M. Zhu, and L. Jia, "A semi-active control suspension system for railway 

vehicles with magnetorheological fluid dampers," Vehicle System Dynamics, vol. 54, 

pp. 982-1003, Jul 2016. 

[7] D. Karnopp, M. J. Crosby, and R. Harwood, "Vibration control using semi-active force 

generators," Journal of Engineering for Industry, vol. 96, pp. 619-626, 1974. 

[8] M. H. A. Talib and I. Z. M. Darus, "Self-Tuning PID Controller with MR damper and 

Hydraulic Actuator for Suspension System," pp. 119-124, 2013. 



 

 

 

152 

 

[9] C. Lin, W. Liu, and H. B. Ren, "Neutral network-PID control algorithm for semi-active 

suspensions with magneto-rheological damper," Journal of Vibroengineering, vol. 17, 

pp. 4432-4444, Dec 2015. 

[10] M. L. Aggarwal, "Comparative Analysis of Passenger Ride Comfort using Various 

Semi-Active Suspension Alternatives," International Journal of Recent advances in 

Mechanical Engineering, vol. 3, pp. 79-89, 2014. 

[11] L. C. Félix-Herrán, J. d. J. Rodríguez-Ortiz, R. Soto, and R. Ramírez-Mendoza, 

"Modeling and Control for a Semi-active Suspension with a Magnetorheological 

Damper Including the Actuator Dynamics," pp. 338-343, 2008. 

[12] A. K-Karamodin and H. H-Kazemi, "Semi-active control of structures using neuro-

predictive algorithm for MR dampers," Structural Control and Health Monitoring, pp. 

237–253, 2008. 

[13] S.-Y. Ok, D.-S. Kim, K.-S. Park, and H.-M. Koh, "Semi-active fuzzy control of cable-

stayed bridges using magneto-rheological dampers," Engineering Structures, vol. 29, 

pp. 776-788, 2007. 

[14] J. C. Tudon-Martinez and R. Morales-Menendez, "Adaptive Vibration Control System 

for MR Damper Faults," Shock and Vibration, 2015 2015. 

[15] S. Iwnicki, Handbook of railway vehicle dynamics. Boca Raton, FL: CRC press, 2006. 

[16] A. Orvnäs, Active secondary suspension in trains: A literature survey of concepts and 

previous work: KTH, 2008. 

[17] B. Ebrahimi, "Development of Hybrid Electromagnetic Dampers for Vehicle 

Suspension Systems," PhD thesis, University of Waterloo, Waterloo, Ontario, 2009. 



 

 

 

153 

 

[18] R. M. Goodall, S. Bruni, and T. X. Mei, "Concepts and prospects for actively controlled 

railway running gear," Vehicle System Dynamics, vol. 44, pp. 60-70, 2006. 

[19] S. Bruni, R. Goodall, T. Mei, and H. Tsunashima, "Control and monitoring for railway 

vehicle dynamics," Vehicle System Dynamics, vol. 45, pp. 743-779, 2007. 

[20] R. Goodall, "Active Railway Suspensions: Implementation Status and Technological 

Trends," Vehicle System Dynamics, vol. 28, pp. 87-117, 1997. 

[21] S. Sun, H. Deng, W. Li, H. Du, Y. Q. Ni, J. Zhang, et al., "Improving the critical speeds 

of high-speed trains using magnetorheological technology," Smart Materials and 

Structures, vol. 22, p. 115012, 2013. 

[22] Y. Liu, "Semi-active damping control for vibration isolation of base disturbances," PhD 

thesis, University of Southampton, Southampton, 2004. 

[23] R. M. Goodall and W. Kort, "Mechatronic developments for railway vehicles of the 

future," Control Engineering Practice, vol. 10, pp. 887–898, 2002. 

[24] H. Li and R. Goodall, "Distinguishing between Random and Deterministic Track Inputs 

for Active Railway Suspensions," Vehicle System Dynamics, vol. 29, pp. 772-777, 

1998. 

[25] H. Li and R. M. Goodall, "Linear and non-linear skyhook damping control laws for 

active railway suspensions," Control Engineering Practice, vol. 7, pp. 843-850, Jul 

1999. 

[26] T. X. Mei, H. Li, and R. M. Goodall, "Kalman filters applied to actively controlled 

railway vehicle suspensions," Transactions of the Institute of Measurement and 

Control, vol. 23, pp. 163-181, 2001 2001. 



 

 

 

154 

 

[27] J. Pombo and J. Ambrosio, "An alternative method to include track irregularities in 

railway vehicle dynamic analyses," Nonlinear Dynamics, vol. 68, pp. 161-176, Apr 

2012. 

[28] L.-H. Zong, X.-L. Gong, S.-H. Xuan, and C.-Y. Guo, "Semi-active H∞ control of high-

speed railway vehicle suspension with magnetorheological dampers," Vehicle System 

Dynamics, vol. 51, pp. 600-626, 2013. 

[29] R. Goodall, G. Freudenthaler, and R. Dixon, "Hydraulic actuation technology for full- 

and semi-active railway suspensions," Vehicle System Dynamics, vol. 52, pp. 1642-

1657, 2014. 

[30] J. Zhou, G. Shen, H. Zhang, and L. Ren, "Application of modal parameters on ride 

quality improvement of railway vehicles," Vehicle System Dynamics, vol. 46, pp. 629-

641, 2008. 

[31] H. B. Zheng, Q. S. Yan, J. L. Hu, and Z. Chen, "Numerical Simulation of Railway 

Track Irregularities Based on Stochastic Expansion Method of Standard Orthogonal 

Bases," in Sustainable Environment and Transportation, Pts 1-4. vol. 178-181, M. J. 

Chu, H. H. Xu, Z. Jia, Y. Fan, and J. P. Xu, Eds., ed Durnten-Zurich: Trans Tech 

Publications Ltd, 2012, pp. 1373-1378. 

[32] H. Claus and W. Schiehlen, "Modeling and simulation of railway bogie structural 

vibrations," Vehicle System Dynamics, vol. 29, pp. 538-552, 1998. 

[33] E. Foo and R. M. Goodall, "Active suspension control of flexible-bodied railway 

vehicles using electro-hydraulic and electro-magnetic actuators," Control Engineering 

Practice, vol. 8, pp. 507-518, May 2000. 



 

 

 

155 

 

[34] H. M. Yusof, R. Goodall, and R. Dixon, "Active railway suspension controllers using 

electro-mechanical actuation technology," presented at the Control 2010, UKACC 

International Conference on Control, Coventry, UK 2010. 

[35] R. Zhou, A. Zolotas, and R. Goodall, "H∞-based control system and its digital 

implementation for the integrated tilt with active lateral secondary suspensions in high," 

presented at the 32nd  Chinse Control Conference, Xian, China, 2013. 

[36] A. C. Zolotas and R. M. Goodall, "Modelling and control of railway vehicle 

suspensions," in Lecture Notes in Control and Information Sciences, Mathematical 

Methods for Robust and Nonlinear Control, M. C. Turner and D. G. Bates, Eds., ed 

New York: Springer, 2007, pp. 373-412. 

[37] A. C. Zolotas, R. M. Goodall, and G. D. Halikias, "Recent results in tilt control design 

and assessment of high-speed railway vehicles," Proceedings of the Institution of 

Mechanical Engineers Part F-Journal of Rail and Rapid Transit, vol. 221, pp. 291-312, 

Jun 2007. 

[38] C. C. Smith, D. Y. McGehee, and A. J. Healey, "Prediction of passenger riding comfort 

from acceleration data," Journal of Dynamic Systems Measurement and Control-

Transactions of the Asme, vol. 100, pp. 34-41, 1978. 

[39] S. D. Nie, Y. Zhuang, W. P. Liu, and F. Chen, "A semi-active suspension control 

algorithm for vehicle comprehensive vertical dynamics performance," Vehicle System 

Dynamics, vol. 55, pp. 1099-1122, Aug 2017. 

[40] H. E. Tseng and D. Hrovat, "State of the art survey: active and semi-active suspension 

control," Vehicle System Dynamics, vol. 53, pp. 1034-1062, Jul 3 2015. 



 

 

 

156 

 

[41] C. C. Smith, "Using ISO standard to evaluate ride quality of broad-band vibration-

spectra in transportation vehicles," Journal of Dynamic Systems Measurement and 

Control-Transactions of the Asme, vol. 98, pp. 440-443, 1976. 

[42] J. J. Allan and E. Arias, "Computers in Railways XI: Computer System Design and 

Operation in the Railway and Other Transit Systems." vol. 11, ed: WIT Press, 2008. 

[43] D. G. Stephens and American Society of Mechanical Engineers, "Comparative 

vibration environments of transportation vehicles," presented at the ASME AMD, 

Passenger Vib in Transp Veh, Chicago, 1977. 

[44] W. S. Yoo, C. H. Lee, W. B. Jeong, and S. H. Kim, "Development and application of 

new evaluation system for ride comfort and vibration on railway vehicles," Journal of 

Mechanical Science and Technology, vol. 19, pp. 1469-1477, Jul 2005. 

[45] K. Abood and R. Khan, "Hunting phenomenon study of railway conventional truck on 

tangent tracks due to change in rail wheel geometry," Journal of Engineering Science 

and Technology, vol. 6, pp. 146-160, 2011. 

[46] T. X. Mei and R. M. Goodall, "Recent Development in Active Steering of Railway 

Vehicles," Vehicle System Dynamics, vol. 39, pp. 415-436, 2003. 

[47] G. Diana, S. Bruni, F. Cheli, and F. Resta, "Active control of the running behaviour of 

a railway vehicle: Stability and curving performances," Vehicle System Dynamics, vol. 

37, pp. 157-170, 2002. 

[48] F. Braghin, S. Bruni, and F. Resta, "Active yaw damper for the improvement of railway 

vehicle stability and curving performances: simulations and experimental results," 

Vehicle System Dynamics, vol. 44, pp. 857-869, Nov 2006. 



 

 

 

157 

 

[49] G. Shen and R. Goodall, "Active yaw relaxation for improved bogie performance," 

Vehicle System Dynamics, vol. 28, pp. 273-289, Oct 1997. 

[50] A. H. Wickens, "Dynamic stability of articulated and steered railway vehicles guided 

by lateral displacement feedback," Vehicle System Dynamics, vol. 23, pp. 541-553, 

1994. 

[51] A. Orvn, "On Active Secondary Suspension in Rail Vehicles to Improve Ride 

Comfort," PhD thesis, KTH Engineering Sciences, Stockholm, 2011. 

[52] N. Al-Holou, A. Bajwa, and D. S. Joo, "Computer controlled individual semi-active 

suspension system," presented at the Circuits and Systems, 1993., Proceedings of the 

36th Midwest Symposium on, 1993. 

[53] Goodall and Roger, "Tilting trains and beyond-the future for active railway 

suspensions. Part 1: Improving passenger comfort," Computing & Control Engineering 

Journal, vol. 10, pp. 153-160, 1999. 

[54] R. Persson, "Tilting trains: enhanced benefits and strategies for less motion sickness," 

PhD Thesis, KTH Royal Institute of Technology, Stockholm, 2011. 

[55] A. C. Mellado, C. Casanueva, J. Vinolas, and J. G. Giménez, "A lateral active 

suspension for conventional railway bogies " Vehicle System Dynamics, vol. 47, pp. 1-

14, 2009. 

[56] A. OrvnÄS, S. Stichel, and R. Persson, "Ride Comfort Improvements in a High-Speed 

Train with Active Secondary Suspension," Journal of Mechanical Systems for 

Transportation and Logistics, vol. 3, pp. 206-215, 2010. 

[57] S. Alfi, S. Bruni, G. Diana, A. Facchinetti, and L. Mazzola, "Active control of airspring 

secondary suspension to improve ride quality and safety against crosswinds," 



 

 

 

158 

 

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and 

Rapid Transit, vol. 225, pp. 84-98, 2011. 

[58] A. Pacchioni, R. M. Goodall, and S. Bruni, "Active suspension for a two-axle railway 

vehicle," Vehicle System Dynamics, vol. 48, pp. 105-120, 2010. 

[59] E. Foo and R. Goodall, "Active suspension control strategies for flexible-bodied 

railway vehicles," in Control'98. UKACC International Conference on (Conf. Publ. No. 

455), 1998, pp. 1300-1305. 

[60] G. Schandl, P. Lugner, C. Benatzky, M. Kozek, and A. Stribersky, "Comfort 

enhancement by an active vibration reduction system for a flexible railway car body," 

Vehicle System Dynamics, vol. 45, pp. 835-847, 2007. 

[61] H. Zhang, L. Ren, R. Goodall, and J. Zhou, "Influences of car body vertical flexibility 

on ride quality of passenger railway vehicles," Proceedings of the Institution of 

Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 223, pp. 461-

471, 2009. 

[62] Y. Suda, S. Nakadai, and K. Nakano, "Hybrid Suspension System with Skyhook 

Control and Energy Regeneration (Development of Self-Powered Active Suspension)," 

Vehicle System Dynamics, vol. 29, pp. 619-634, 1998. 

[63] Y. Suda, "Study on the self-powered active vibration control," JSME International 

Journal Series C Mechanical Systems, Machine Elements and Manufacturing Vol. 

43(2000) No. 3, pp. 726-731, 2000. 

[64] K. Singal and R. Rajamani, "Simulation study of a novel self-powered active 

suspension system for automobiles," in Proceedings of the 2011 American Control 

Conference, 2011, pp. 3332-3337. 



 

 

 

159 

 

[65] P. Wang, T. Mei, J. Zhang, and H. Li, "Self-Powered Active Lateral Secondary 

Suspension for Railway Vehicles," IEEE Transactions on Vehicular Technology, vol. 

65, pp. 1121-1129, 2016. 

[66] P. Wang, T. Mei, and J. Zhang, "Towards self-powered lateral active suspension for 

railway vehicles," in Control (CONTROL), 2014 UKACC International Conference on, 

2014, pp. 567-572. 

[67] H. Selamat and S. D. A. Bilong, "Optimal Controller Design for a Railway Vehicle 

Suspension System Using Particle Swarm Optimization," 2013 9th Asian Control 

Conference (Ascc), 2013. 

[68] T. X. Mei and R. M. Goodall, "Modal Controllers for Active Steering of Railway 

Vehicles with Solid Axle Wheelsets," Vehicle System Dynamics, vol. 34, pp. 25-41, 

2000. 

[69] R. Zhou, A. Zolotas, and R. Goodall, "Integrated tilt with active lateral secondary 

suspension control for high speed railway vehicles," Mechatronics, vol. 21, pp. 1108-

1122, 2011. 

[70] R. Zhou, A. Zolotas, and R. Goodall, "H-infinity based control system and its digital 

implementation for the integrated tilt with active lateral secondary suspensions in high 

speed trains," in Control Conference (CCC), 2013 32nd Chinese, China, 2013. 

[71] R. Zhou, A. Zolotas, and R. Goodall, "Robust system state estimation for active 

suspension control in high-speed tilting trains," Vehicle System Dynamics, vol. 52, pp. 

355-369, 2014. 

[72] H. Yabuno, T. Okamoto, and N. Aoshima, "Stabilization control for the hunting motion 

of a railway wheelset," Vehicle System Dynamics, vol. 35, pp. 41-55, 2001. 



 

 

 

160 

 

[73] A. K. Mohamadi and N. Al-e-Ali, "Active Control of Lateral Vibration for Bogie Using 

Variable Structure Model Reference Adaptive Control," presented at the 2008 

International Conference on Computational Intelligence for Modelling Control & 

Automation (CIMCA 2008)(CIMCA), Vienna, Austria, 2008. 

[74] J. Pearson, R. Goodall, T. Mei, and G. Himmelstein, "Active stability control strategies 

for a high speed bogie," Control Engineering Practice, vol. 12, pp. 1381-1391, 2004. 

[75] P. E. Orukpe, X. Zheng, I. M. Jaimoukha, A. C. Zolotas, and R. M. Goodall, "Model 

predictive control based on mixed ℋ2/ℋ∞control approach for active vibration control 

of railway vehicles," Vehicle System Dynamics, vol. 46, pp. 151-160, 2008. 

[76] W. Liao and D. Wang, "Semiactive vibration control of train suspension systems via 

magnetorheological dampers," Journal of Intelligent Material Systems and Structures, 

vol. 14, pp. 161-172, 2003. 

[77] S. B. Choi, W. H. Li, M. Yu, H. P. Du, J. Fu, and P. X. Do, "State of the art of control 

schemes for smart systems featuring magneto-rheological materials," Smart Materials 

and Structures, vol. 25, p. 24, Apr 2016. 

[78] D. H. Wang and W. H. Liao, Application of MR dampers for semiactive suspension of 

railway vehicles vol. 10, 2000. 

[79] A. Stribersky, A. Kienberger, G. Wagner, and H. Muller, "Design and evaluation of a 

semi-active damping system for rail vehicles," Vehicle System Dynamics, vol. 29, pp. 

669-681, 1998. 

[80] G. S. Gao and S. P. Yang, "Semi-active Control Performance of Railway Vehicle 

Suspension Featuring Magnetorheological Dampers," presented at the 2006 1ST IEEE 

Conference on Industrial Electronics and Applications, Singapore, 2006. 



 

 

 

161 

 

[81] C. Spelta, S. M. Savaresi, F. Codecà, M. Montiglio, and M. Ieluzzi, "Smart-Bogie: 

Semi-Active Lateral Control of Railway Vehicles," Asian Journal of Control, vol. 14, 

pp. 875-890, 2012. 

[82] K. Hudha, M. H. Harun, M. H. Harun, and H. Jamaluddin, "Lateral Suspension Control 

of Railway Vehicle Using Semi-Active Magnetorheological Damper," presented at the 

2011 IEEE Intelligent Vehicles Symposium (IV), Germany, 2011. 

[83] W. H. Liao and D. H. Wang, "Semiactive vibration control of train suspension systems 

via magnetorheological dampers," Journal of Intelligent Material Systems and 

Structures, vol. 14, pp. 161-172, Mar 2003. 

[84] Y. Lau and W. Liao, "Design and analysis of magnetorheological dampers for train 

suspension," Proceedings of the Institution of Mechanical Engineers, Part F: Journal 

of Rail and Rapid Transit, vol. 219, pp. 261-276, 2005. 

[85] D. H. Wang and W. H. Liao, "Semi-active suspension systems for railway vehicles 

using magnetorheological dampers. Part I: system integration and modelling," Vehicle 

System Dynamics, vol. 47, pp. 1305-1325, 2009. 

[86] B. Allotta, L. Pugi, F. Bartolini, F. Cangioli, and V. Colla, "Comparison of different 

control approaches aiming at enhancing the comfort of a railway vehicle," in 2010 

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2010, 

pp. 676-681. 

[87] S. H. Ha, S. B. Choi, G. S. Lee, and W. H. Yoo, "Control performance evaluation of 

railway vehicle MR suspension using fuzzy sky-ground hook control algorithm," 13th 

International Conference on Electrorheological Fluids and Magnetorheological 

Suspensions (Ermr2012), vol. 412, 2013 2013. 



 

 

 

162 

 

[88] K. H. A. Abood and R. A. Khan, "Hunting Phenomenon Study of Railway 

Conventional Truck on Tangent Tracks Due to Changein Rail Wheel Geometry," 

Journal of Engineering Science and Technology vol. 6, pp. 146-160, 2011. 

[89] D. H. Wang and W. H. Liao, "Semi-active suspension systems for railway vehicles 

using magnetorheological dampers. Part II: simulation and analysis," Vehicle System 

Dynamics, vol. 47, pp. 1439-1471, 2009. 

[90] K. Hudha, M. H. Harun, M. H. Harun, H. Jamaluddin, and Ieee, "Lateral Suspension 

Control of Railway Vehicle Using Semi-Active Magnetorheological Damper," IEEE 

Intelligent Vehicles Symposium (IV), pp. 728-733, 2011. 

[91] H. Scheffel, R. D. Frohling, and P. S. Heyns, "Curving and stability analysis of self-

steering bogies having a variable yaw constraint," Vehicle System Dynamics, vol. 23, 

pp. 425-436, 1994. 

[92] S. H. Ha, S. B. Choi, G. S. Lee, and W. H. Yoo, "Control performance evaluation of 

railway vehicle MR suspension using fuzzy sky-ground hook control algorithm," in 

13th International Conference on Electrorheological Fluids and Magnetorheological 

Suspensions. vol. 412, H. I. Unal, Ed., ed, 2013. 

[93] Karnopp and Dean, "Active and semi-active vibration isolation," in Current Advances 

in Mechanical Design and Production VI, ed: Elsevier, 1995, pp. 409-423. 

[94] S. B. A. Kashem, S. Roy, and R. Mukharjee, "A modified skyhook control system 

(SKDT) to improve suspension control strategy of vehicles," in Informatics, 

Electronics & Vision (ICIEV), 2014 International Conference on, 2014, pp. 1-8. 

[95] A. Z. Solehin and C. Hasan, "Modelling and simulation of modified skyhook control 

for semi-active suspension," Universiti Malaysia Pahang, 2011. 



 

 

 

163 

 

[96] K. J. Åström and B. Wittenmark, Adaptive control: Courier Corporation, 2013. 

[97] M. Rahman, Z. C. Ong, S. Julai, M. M. Ferdaus, and R. Ahamed, "A review of advances 

in magnetorheological dampers: their design optimization and applications," Journal of 

Zhejiang University-Science A, vol. 18, pp. 991-1010, Dec 2017. 

[98] J. D. Carlson, "A growing attraction to magnetic fluids," Machine Design, vol. 66, pp. 

61-64, Aug 1994. 

[99] O. Ashour, C. A. Rogers, and W. Kordonsky, "Magnetorheological fluids: Materials, 

characterization, and devices," Journal of Intelligent Material Systems and Structures, 

vol. 7, pp. 123-130, Mar 1996. 

[100] N. I. N. Ismail and S. Kamaruddin, "Development of Magnetorheological Elastomers 

based on Deproteinised Natural Rubber as Smart Damping Materials," in Advanced 

Materials for Sustainability and Growth. vol. 1901, S. M. Ibrahim and K. Noorsal, Eds., 

ed Melville: Amer Inst Physics, 2017. 

[101] K. D. Weiss, J. D. Carlson, and D. A. Nixon, "Viscoelastic properties of 

magnetorheological and electrorheological fluids," Journal of Intelligent Material 

Systems and Structures, vol. 5, pp. 772-775, Nov 1994. 

[102] J. H. Koo, F. D. Goncalves, and M. Ahmadian, "A comprehensive analysis of the 

response time of MR dampers," Smart Materials & Structures, vol. 15, pp. 351-358, 

Apr 2006. 

[103] M. Ahmadian, "Magneto-rheological suspensions for improving ground vehicle's ride 

comfort, stability, and handling," Vehicle System Dynamics, vol. 55, pp. 1618-1642, 

2017. 



 

 

 

164 

 

[104] H. A. Metered, "Modelling and control of magnetorheological dampers for vehicle 

suspension systems," University of Manchester, 2010. 

[105] D. Wang and W. H. Liao, "Magnetorheological fluid dampers: a review of parametric 

modelling," Smart materials and structures, vol. 20, p. 023001, 2011. 

[106] B. Spencer, S. Dyke, M. Sain, and J. Carlson, "Phenomenological model for 

magnetorheological dampers," Journal of engineering mechanics, vol. 123, pp. 230-

238, 1997. 

[107] M. Bideleh, S. Milad, and V. Berbyuk, "Application of Semi-Active Control Strategies 

in Bogie Primary Suspension System," in Proceedings of the Second International 

Conference on Railway Technology: Research, Development and Maintenance, J. 

Pombo,(Editor), Civil-Comp Press, Stirlingshire, United Kingdom, paper 318, 2014. 

[108] L.-H. Zong, X.-L. Gong, C.-Y. Guo, and S.-H. Xuan, "Inverse neuro-fuzzy MR damper 

model and its application in vibration control of vehicle suspension system," Vehicle 

System Dynamics, vol. 50, pp. 1025-1041, 2012 2012. 

[109] P.-Q. Xia, "An inverse model of MR damper using optimal neural network and system 

identification," Journal of Sound and Vibration, vol. 266, pp. 1009-1023, 2003. 

[110] H. Wang and H. Hu, "The Neuro-fuzzy Identification of MR Damper," pp. 464-468, 

2009. 

[111] D. J. Leith and W. E. Leithead, "Survey of gain-scheduling analysis and design," 

International Journal of Control, vol. 73, pp. 1001-1025, Jul 2000. 

[112] T. Chaiyatham and I. Ngamroo, "Improvement of Power System Transient Stability by 

PV Farm With Fuzzy Gain Scheduling of PID Controller," IEEE Systems Journal, vol. 

11, pp. 1684-1691, Sep 2017. 



 

 

 

165 

 

[113] J. A. Brizuela-Mendoza, C. M. Astorga-Zaragoza, A. Zavala-Rio, F. Canales-Abarca, 

and M. Martinez-Garcia, "Gain-scheduled linear quadratic regulator applied to the 

stabilization of a riderless bicycle," Proceedings of the Institution of Mechanical 

Engineers Part I-Journal of Systems and Control Engineering, vol. 231, pp. 669-682, 

Sep 2017. 

 

 


