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Abstract 

This work presents analysis of the 4-fingered robotic hand and is a continuation of the 

Bachelor’s thesis “Design and Development of an Anthropomorphic Metamorphic Robotic 

Hand”. First, general comparison between scientific and commercial robotic hands is 

introduced. Specification and structure of the hands are studied. Noted tendencies are 

discussed. After that, kinematic analysis of the proposed manipulator is produced. Based on 

kinematics, dynamic model of the hand is investigated and then programmed in MatLab 

software for numerical simulations. Therefore, description of capabilities and properties of the 

proposed robotic hand is given. In addition, control techniques are discussed and 

SimMechanics tool of the MatLab software is used for providing supplementary data. In the 

end, FEA of vulnerable areas is briefly examined. 
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Chapter 1  

Introduction and Objectives 

 

 

1.1. Introduction to Robotics 

Science and engineering today make complicated designs possible and ideas from the past 

decades can eventually find realization. Manufacturing technologies continuously improve, 

allowing key parts to be transferred into small scale. Robotics industry will be one of the first 

to experience new capabilities. 

In terms of robotic manipulators, when the first industrial robot was introduced by Dr. 

Engelberger1, manipulator patterns represented simple grippers with two or three elements to 

compress an object. In course of time, more demanding tasks to robotic hands were given. 

Then, anthropomorphism of the robotic hands has proven that the approach is viable and 

prospective if precision grasping of complicated objects is considered. Unlimited interest in 

anthropomorphic designs was then expressed and various prototypes were developed.  

It is not only the industry that benefits from the advances in robotics sphere, but also medicine 

and prosthetics. Artificial body parts were developed even centuries ago, there are evidences 

that survived the time.2 It was important for people with lost limbs to look the same as others 

– to feel themselves ‘complete’. Nothing has changed since then in terms of understanding 

completeness. Although ancient prostheses were rather cosmetic improvements than 

functional models, with higher level of technological progress it is now possible to almost 

fully retrieve natural limb functionality.3 

While being an industry with a long historical background, robotics field gained significantly 

more attention in last few years, which resulted in increased funding and rapid growth of the 

sector. There are two main points of research interest – industrial robots and prosthetics. As 

the society tends to focus on automatizing most of the processes for both convenience and 

safety purposes, industrial robotic demand significantly increased. The International 

Federation of Robotics (IFR) states that the worldwide supply of industrial robots increased 
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by approximately 15% each year since 2017 and by 2020 is expected to be almost twice the 

number of robots supplied in 2016.4  

As the competition increases, robotics industry attracts more scientist from various fields to 

improve the quality of the product, its functionality and safety of operation. Industrial robotics 

is focused on the simplification of production process, however, most of the robots still lack 

the artificial intelligence for complete autonomy and hence require the supervision of a 

professional to minimize the number of mistakes made during the manufacturing process. 

Therefore, robotics industry also attracts AI specialists, apart from material scientist, 

engineers and others, making it a high demanding interdisciplinary sector with plenty of 

development opportunities. 

Another robotics discipline which deserved attention in last decades – is prosthetics. While 

attracting researchers from all physical disciplines, it is closely related to medicine and human 

psychology. If for industrial robots it is important mostly just to be able to functionate in a 

time- efficient and safe manner, usually regardless of size and complexity of the mechanism, 

then for prothesis requirements are stricter. Main points of concerns in prosthetics are the size 

and weight of the body part. Due to the size restrictions for customer satisfaction, production 

of a highly functional and sophisticated body part becomes a complicated process. Despite the 

market having a well-fitting to human needs prothesis for arms and legs, there is always more 

to be achieved with the development of medicine and physical sciences.  

The minor part of robotics research is focused purely on producing functional stand-alone 

robots, with no direct relation to any of the discussed industries. For example, these can be 

surveillance, delivery, bomb disposal, rescue, animal-like or space robots. However, research 

in this field is vital too as it increases overall understanding of robotic systems and allows 

advanced methods to be employed in other sectors of robotics.  

As a general idea, any robotic system is meant to improve human life – artificial autonomy in 

secondary daily tasks, autonomy in difficult repetitive manipulations, research of other 

planets, body performance enhancement (exoskeleton) or simply limb replacement.  
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1.2. Objectives 

This work presents the metamorphic anthropomorphic robotic hand, which utilizes the 

principles of gear transmission and actuator integration. In order to fully analyse its structure 

and performance, the following objectives were set: 

• Produce the literature review and assess the common tendencies that are present on the 

market and in the research society. 

• Provide detailed description of the robotic hand CAD model and discuss the features it 

has. 

• Assess the kinematics and dynamics of the proposed design; develop and simulate the 

dynamic model. 

• Describe the strategies of how the robotic hand may be controlled. 

• Evaluate the weaknesses of the design and produce the FEA of vulnerable areas. 

• Based on the retrieved overall results, suggest improvements for the design and future 

work. 
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Chapter 2 

Literature Review 

 

 

In order to rightfully compare modern robotic hands and identify their unique design points, it 

is necessary to introduce two categories into which they will be split. Most of the robotic 

hands (quantity, not types) are made with ideas of high pragmatic approach – final product is 

based on profit and high production volume criteria. That said, durability and simplicity are 

main factors to be considered. Usually those hands have particular market and specific area of 

competence. Hence, they fit in commercial category. The other robotic hands, however, 

represent various prototypes to show maximum performance and abilities, broad potential and 

application, and, sometimes, just to acknowledge possibility of concept materialization. Those 

specimens are often made regardless of price matter, weight and aesthetics. Therefore, such 

robotic hands are closer related to scientific category. Scientific hands are a basement for the 

future commercial products. 

2.1. Background of Commercial Hands 

• Bebionic hands [A] 

• Vincent Hand [D] 

• The i-Limb hands [C] 

• Michelangelo Hand [E] 

• DLR hands [B] 

• Body powered or electric fingers as partial hand options from Advanced Arm 

Dynamics [F, G] 

• BarrettHand [H] 

• Robotiq adaptive gripper hands (2-3 fingers) [J] 
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Figure 2.1. Commercial robotic hands for prosthetics and other uses 

 

Figure 2.2. Commercial robotic manipulators for industrial applications 

2.1.1. The i-Limb hands 

Presented in 2007, i-Limb hand by Touch Bionics was first electrically driven multi-joint 

prosthetic hand.5 Since each joint was powered individually, movement freedom has 

significantly increased in contrast to other prosthetic hands available at that time. For such 

breakthrough in prosthetic field, i-Limb hand won the MacRobert Award for Engineering and 

Limbless Association's Prosthetic Product Innovation Award in 2008.6,7 In 2010, Touch 
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Bionics introduced the i-Limb pulse, the hand had more anatomically correct design, 

improved durability and increased pulsing grip strength.8 Starting from the i-Limb pulse hand, 

patients could modify the hand via a special software. Over the next few years, company 

focused on improving the grip strength, durability and the shape of the prosthesis. The i-Limb 

quantum was launched in 2015 with a revolutionary simple control of the grips.8 The hand is 

easy to operate and modify for the patients (via mobile application) and also offers faster 

speed and longer battery life than previous Touch Bionics products.  

2.1.2. Bebionic hands 

First Bebionic hand by RSLSteeper was introduced in 2010. During the presentation of the 

hand in Leipzig, amputees had an opportunity to try the prosthesis in action. The appearance 

of the Bebionic hand is one of the key points that company focuses on as it makes patients 

more confident about their choice. In 2011, RSLSteeper launched Bebionic Hand v2, which 

came in large and medium sizes. It showed overall performance improvement, including 

speed, accuracy and durability. Significantly, several new grip patterns were added.9 New 

Bebionic3 was presented in 2012. It offered greater precision with faster speed and grasp 

strength. Bebionic3 comes with several wrist options, including multi-flex wrist that allows 

more natural wrist movement and positioning (up to 30°).10 This year (2017), Bebionic was 

bought by Ottobock company and all further progression will be led by the new company.   

2.1.3. Vincent Hand 

Vincent Hand was first presented in 2010, at the same conference as Bebionic hand. It had the 

size and shape similar to the natural human hand. An option of production different hand sizes 

was also present without anatomical proprotions.5 The hand allows various types of basic 

grips: cylindrical, precision, lateral, hooking and key. There are, however, more options 

available for professional use.11 In 2014, Vincent Systems GmbH presented Vincentevolution 

2 – first prosthetic hand with touch sensing.12 The hand allows amputee to feel the force 

feedback, which makes gripping much safer and natural. Vincentevolution 2 has anatomically 

correct size and shape of the hand, natural skin-like cover and ability to feel how strong one is 

holding an object. 

2.1.4. Michelangelo Hand 

Michelangelo hand is the prosthesis produced by Ottobock (German manufacturer) in 

partnership with Advanced Arm Dynamics (American company), that joined the research in 

2008. The hand has anatomically correct shape and low weight. The main drawback of the 

hand is that only thumb, index and middle fingers are actively moved: ring and little fingers 
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just follow the driven ones. Thumb, however, can be moved separately and as a result, more 

hand positions are possible.13 The Michelangelo hand has a special, stretchable wrist joint 

(AxonWrist) that allows two possible modes: flexible and rigid. The flexible mode allows 

greater movement freedom and therefore provides the hand with an opportunity of more 

natural behavior. 

2.1.5. DLR hands (Commercial) 

DLR is a national aeronautic and space research center of Germany. Its division – Robotics 

and Mechatronics Center – is a competitive developer of various robotic hands. DLR Hand I – 

one of the first robot hand in which all the motors and electronics were housed within the 

space of the hand – was presented in 1997 and induced active research in integrated 

mechatronics.14 DLR Hand II is an improved multisensory hand produced in 2001. Second 

DLR hand also has fully integrated actuators and electronic, but the shape of the hand was 

changed and amount of cabling was greatly reduced.14 Designed multisensory hand is mostly 

oriented on service use, such as teleoperation.15 The DLR Hand II is used on Rollin’ Justin – a 

humanoid robot for various service operations including both household use and assistance to 

astronauts.16  

DLR Hand II application require high precision of finger position and applied force. Great 

control is achieved by utilizing multiple sensors, including three motors and three joint 

position sensors on each finger, three torque sensors and several temperature sensors. 17 Since 

actuators and electronics are integrated into the hand, it can be easily employed on various 

robots. Design of the hand allows fingers to be bend backwards, which provides more 

grasping options.15 DLR Hand II has reconfigurable palm that adds one more DOF (additional 

to 3 DOF in each finger). Such palm allows different grasps to be effectively obtained.16   

Based on DLR Hand II, a commercial DLR/HIT hand was produced in 2004, in cooperation 

with Harbin Institute of Technology (HIT). DLR/HIT hand is also a 13 DOF (degrees of 

freedom) four-finger hand with 3 DOF in each finger apart from thumb, which has an extra 

DOF for grasping and better manipulation functions. Hand has integrated actuators and 

amount of cables is reduced to four excluding power supply (in comparison to 400 in DLR 

Hand I and 12 in DLR Hand II).18 Sensor system was also improved in comparison to DLR 

Hand II. Amount of sensors did not change, however, Hall effect based (contactless) joint 

position sensors were used instead of potentiometers.18 In 2007, DLR/HIT hand gained IF 

Design Award.  
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With further development, DLR/HIT hand II was produced. It has five (instead of four) 

fingers with 3 DOF each (15 DOF in total). Despite having more fingers, hand is smaller and 

lighter than the previous version due to use of smaller and flatter motors and drivers.19 Second 

generation of the hand has become more human-like as the overall weight and size were 

reduced. An extra DOF from the thumb was removed, as it had no particular impact in the 

manipulation.19 The DLR/HIT hand II is used on humanoids for telemanipulation.20 This hand 

also gained iF Design Award in 2009.  

2.1.6. BarrettHand 

BarrettHand is a multi-fingered grasper that is used in multiple fields including component 

assembly, food industry, handling of various materials and others.  The hand has enough 

dexterity to operate with objects of different shape, weight and size. Flexibility and high 

precision allows such applications as glass handling and even bomb disposal.21 
 

2.1.7. Body powered or electric fingers as partial hand options from Advanced Arm 

Dynamics 

There are many partial hand options available from various manufacturers, including i-digits 

by Touch Bionics and VINCENTpartial. Advanced Arm Dynamics, is an American company 

that works with multiple prosthetic hand developers to supply amputees the prosthesis they 

require. One of the products is partial hand prosthesis that is designed for people who miss 

only some of the fingers. There are various options, including body powered and electric 

fingers. 

An example of body-powered prosthetic finger is an M-finger. It comes in two versions: full 

finger and partial M-finger. These fingers are designed to restore the functionality of the hand, 

not the appearance. Full M-finger is mounted at MCP joint and are moved via Spectra cables 

(special cables with low friction coefficient) on the wrist.22 Partial M-fingers are fixed at 

residual phalanx if sufficient length is present. Both partial and full M-fingers come in 

different lengths and colours to suit patient’s requirements. Electric fingers are built 

specifically for the patient in order to match other fingers and specific requirements.23  

Although many options are available for partial prosthetics, the best option is selected 

according to the activity and work requirements, some medical indications and desired 

appearance of the finger.   



 
17 

 

2.1.8. Robotiq adaptive gripper hands (2-3 fingers) 

Robotiq is Canadian company that focuses on production of service robots. Company 

produces two types of grippers: two-fingered and three-fingered. Two-fingered hand has 

several application fields, oriented on human-work replacement with automation. It is used 

for machine loading and unloading, automated assembly and in quality control.24 The gripper 

is reported to be simple in installation and control, ensuring compatibility with most of 

industrial robots. 

The three-fingered hand gripper has similar application fields with an option of use in 

advanced manufacturing, as it is more dexterous and precise in comparison with two-fingered 

gripper. The hand is suitable for all industrial robots and is designed to pick object of any 

shape with maximum recommended payload of 10 kg.  

 

Figure 2.3. Force capabilities of commercial hands 

Unfortunately, not all the manufacturers provide the full force capabilities of their hands, 

however, it is still possible to compare some of them based on the information summarised on 

figure 2.3.  

Among the prosthetic hands available for purchase, the Bebionic hand shows the greatest 

potential of providing enough grasp force for everyday life. It’s power grasp force is still 

dramatically lower than the potential grasp force of human hand, but not all of the grasp 

strength is used in everyday life, unless there are specific requirements for individual. 

Bebionic hand also provides reasonable palmer grasp force, but not the lateral grasp. 

0 50 100 150 200 250 300 350 400 450 500
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Robotiq adaptive gripper hand (3 fingers)
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The hardest point to achieve is the similar fingertip force as the human hand can provide. 

None of the commercially available prosthetic hands can provide sufficient fingertip force, 

which may make it harder for user to use their prothesis fingers to full extent.  

The robotiq adaptive gripper hand is the only hand which provides similar fingertip force and 

hence can be effectively used in manufacture field or factories.  

The lateral grasp can hardly be implemented by prosthetic hand. Michelangelo hand provides 

only half of the potential male human hand lateral grasp force, whereas the other hands cannot 

produce even a quarter of a human hand potential.  

Despite the force capabilities limitations of prosthetic hands, they still provide sufficient 

strength for most of everyday tasks and hence simplify life of injured individuals and increase 

the overall standard of living.  

 

 

Figure 2.4. Mass of commercial hands in grams 

Masses of commercially available hands are in reasonable range based on the areas of 

application. So the prosthetic hands are in a range of 460-550 grams, which is similar to the 

approximate average mass of human hand. Any other prosthetic hand, which is not included 

in the report, should also fall in the given range as it is the standard requirement for medicinal 

purposes.  

The non-medicinal robotic hands are much heavier due to the requirements of the application 

field. So the Robotiq gripper hand, which is more likely to be used in factories, is the heaviest 
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of the listed hands: just above the 2.25 kg. The second heaviest hand is DLR-HIT hand, which 

reduced the size and mass in the second generation. 

The weight of the commercially available hands differs dramatically based on application, 

however, the mass of the particular hand is always likely to be in an acceptable range for the 

robot utilisation field. 

 

Figure 2.5. Flexion speed of commercial hands 

Another point of comparison robotic hands is the flexion speed they provide. Based on the 

figure 2.5, the main drawback of the commercially available prosthetic hand can be identified 

to be the flexion speed. The second generation of Bebionic hand provides the fastest flexion 

speed of all the prosthetic hands, however, it is still less than ¼ of the human hand capability.  

The lack of flexion speed affects person performance in emergency situations, such as 

inability of catching the falling object. This is the common situation in everyday life and 

hence the small flexion speed will affect the performance of disabled person quite 

dramatically. However, apart from the unexpected situations of objects falling, the flexion 

speed is acceptable in most of the activities. The process of flexion is still much slower than 

for human hand, but the ability to do so already improves the quality of life of disabled 

person.  

Other robotic hands, such as second generation of DLR hands and Barret hand, provide a 

comparable flexion speed to human hand potential. The Robotiq gripper hand, which was 

leading in previous points of comparison, has flexion speed similar to prosthetic hands. But in 
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case of the gripper, the precision and strength of grip are more important than the speed of 

flexion. 

 

Figure 2.6. Static limits of commercial hands 

Static limits are rarely provided by the manufacturer; however, it is an important parameter, 

especially for the prosthetic hands. Based on figure 2.6, it can be concluded that i-limb ultra 

prosthetic hand, greatly outstrip the Bebionic hand. This may be an advantage for individual 

who requires a high load limit to be present. On the other hand, the hand load limit of 

approximately 45 kg in Bebionic hand, should be sufficient for most of the everyday 

activities. Considering other advantages of Bebionic hand listed above, it may still show the 

great performance in heavy loading.  

The finger carry load is nearly similar for both of the available prosthetic hand, with i-limb 

ultra being about 10 kg further.  

The non-prosthetic robotic hands have much lower static limits, which seriously affects the 

range of fields where these hands can successfully be used. 
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Figure 2.7. Actuation and flexibility of commercial hands 

As shown on figure 2.7, commercially available hands are either underactuated or fully 

actuated. Most of the prosthetic hands are underactuated, which slightly affects the ability of 

the hand to follow the commanded arbitrary trajectory. The fewer number of actuators, 

however, reduces the weight of the prothesis, which is more desirable than exceptionally 

accurate motion control for everyday use. The number of degrees of freedom (DOF) is similar 

for most of the prosthetic hand, which is expected as it should obey the human hand 

characteristics.  

The DLR hands have much larger number of DOFs and are fully actuated, therefore, they are 

much more precise in motion. This also explains the large mass (up to 2.25 kg) of the 

prototype and provides an idea of why there cannot be many actuators in prosthetic hands at 

this stage of the robotics field development.  
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Figure 2.8. Prices of the commercial hands 

The final point of comparison is the price of the discussed hands. As expected, the range of 

prices is huge due to the various reasons including the materials used, performance 

characteristics and application field.  

Prosthetic hands prices differ mostly based on similarity of visual appearance of the prothesis 

to human hand: the more alike the prothesis is, the higher the price. Due to the human nature, 

individual is more likely to prefer the weaker hand but which looks similar to the natural 

hand, rather than a high-performance but dissimilar to human hand prothesis. 

The non-prosthetic hands also differ in price, mostly based on the performance characteristic: 

the more efficient hand is, the higher the price. Therefore, DLR hand is much more expensive 

than Robotiq gripper or Barrett Hand.  

*Although the Deka Arm (‘Luke Arm’) is a system that includes more parts than just a hand 

(literature review aims to observe hands, not arms), it is still considered for the reference 

purposes. Deka arm was a scientific project and only recently in 2014 was approved by FDA 

(U.S. Food & Drug Administration)25, making it commercial product. It is important to note 

that mentioned price is set for the product which has the latest technologies integrated and 

allows user to have sensitive feedback. It also supports targeted muscle reinnervation (TMR)26 

that vastly enhances control of the arm. 

2.1.9. Comments 

Prosthetic robotic hands that are currently present on the market tend to have a rigid palm 

structure to store actuators. Their number of DOF is optimised in the way that the size of the 
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hand would be human-like, but at the same time providing considerable force and grasp 

variety for daily operations. In addition, excessive number of actuators leads to increased 

weight of the prosthesis, extra power requirement (battery), enlarged proportions and less 

acceptable shape. Distinctive characteristics dramatically influence production costs and final 

price of the product.  

As for industrial applications, anthropomorphism is not required for basic manipulations with 

objects, so therefore grippers are mostly used as an inexpensive and reliable solution. 

2.2. Review of Scientific Robotic Hands 

• Biomimetic anthropomorphic hand by Zhe Xu and Emanuel Todorov [A] 

• DLR hands [David’s Hand – B] 

• Elu-2 Hand [C] 

• KCL 3-finger metahand [D] 

• Modular soft robotic gripper [E]  

• RBO Hand 2 [F] 

• Multifingered metamorphic hand by G. Wei et. al. (has options of 4 or 5 fingers) [G] 

• The Robonaut Hand [H] 

• UB Hand I-IV [I] 

• The SmartHand [J] 

• The Shadow Hand [K] 
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Figure 2.9. Scientific robotic hands 

2.2.1. Biomimetic anthropomorphic hand by Zhe Xu and Emanuel Todorov27 

The idea of this hand strongly relies on the desire of many engineers to replicate human 

natural hand. Introduced on the 18th of February 201628, the robotic hand represents an 

outcome of the mentioned aim and elastic materials. Its structure includes tendon-based 

actuation with cooperation of unique and novel parts like elastic pulley mechanisms, laser-cut 

extensor hood, artificial joint capsules and crocheted ligaments. In terms of bones re-creation, 

laser/MRI scanner was used to carefully capture shape of bones. In order to prevent abnormal 

sideways bending of each joint of the hand, artificial ligaments as strong fibrous tissues are 

applied. Also, index finger, as well as middle finger and thumb, is actuated with more than 

two servo motors ensuring extra control. Human hand similarity ensures high number of DOF 

(Degrees of Freedom). 

To evaluate hand prototype’s efficiency and kinematics in action, it was tested using 

telemanipulation technique with sensory glove. Manipulations with the prototype evaluated 

drawbacks that will have to be carefully studied further. Underactuation of the fingers may 

put some of them into unknown postures between full flexion and extension. Good point of it 

is additional level of compliance and automatic object shape adjustment. In general, empirical 

research has shown acceptable percentage of finger motion (trajectory) repeatability, which 

means that the prototype is successful. Novel hand design makes real complicated 
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manipulations with objects, grasps; and overall it is an important contribution to the prosthetic 

science. As for minor drawbacks, servo motors are housed outside the hand, so that additional 

space for the actuation system is required. Also, tendon-based systems are known for the 

relative durability.  

It would be important to point out that this hand is a working prototype that shows possibility 

of the concept, so further development will take place. 

2.2.2. DLR “David’s” Hand 

DLR hands were discussed in details in commercial hands section. However, DLR has 

produced an unusual robot hand that is not available commercially. The David’s Hand is the 

same size and shape as human hand. The hand has five separately movable fingers with each 

joint being actuated with two motors.29 Fingers are controlled with 38 tendons, which results 

in 19 DOF. Flexion speed of each joint is described as 720 deg/sec. Apart from structure 

similarity, hand was designed to function as a natural hand: to withstand collisions with heavy 

objects without breaking.30 High durability is achieved because of the controllable stiffness 

due to the produced tension in tendons. Therefore, David’s hand can endure large impacts. 

The hand utilizes strong Dyneema tendons.29 The production of such durable hand can reduce 

the risks of significant damage dealt to the robotic hand during its application in real world. 

The David’s hand is part of DLR Arm System, which is presented in form of David – robot 

developed in 2010 in order to achieve more human-like dexterity, dynamics and robustness.31 

2.2.3. Elu-2 Hand 

Elu-2 Hand is a multi-articulated robotic hand produced by Elumotion Ltd. The hand has five 

fingers with 9 DOF. It was designed to produce movements at human-like speed and therefore 

may easily interact with people and various tools and object in the environment.32 Elu-2 Hand 

is also known as Servo-electric 5-Finger Gripping Hand SVH and is distributed by SCHUNK. 

The hand comes in left- and right-handed versions, both of which can be fitted to most of light 

industrial robots.33  

2.2.4. KCL 3-finger metahand 

The first metamorphic robotic hand was produced by Professor Jian Dai in 2003. The concept 

of the palm made complicated dexterous grasp and manipulations possible.34 Metamorphic 

hand is foldable with several DOF and therefore adds more dexterity to the hand. Because the 

palm is not rigid, motion of fingers must be combined with folding of the palm, which was a 

unique robotic hand system at that time.35
 The metahand has three underactuated fingers 
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which orientation is dependent on the palm’s motion.36 The foldable hand adapts to various 

shapes of the object and hence has wide range of possible applications.  

2.2.5. Modular soft robotic gripper37 

Soft robotics is entirely new approach in robotics and it is a totally new direction in the 

history. There are not yet many systems engineered using this technology, but the modular 

soft robotic gripper is one of them. It was introduced in a scientific paper in 2015. Main 

contrast and advantage of the soft robotics compared to solid designs lies in the pursue of 

many scientists to obtain perfect compliance of their robotic mechanisms. Main industrial 

solutions represent designs like already mentioned BarettHand and Robotiq grippers with 

corresponding limitations. Aim of the modular soft robotic gripper is to successfully grasp 

objects of the unknown shape. Gripper’s specifics allows interaction with very fragile, 

delicate objects. Therefore, this area of research is remarkably, supremely advanced and 

prospective. As a general downside of the soft manipulators, it is pointed out that due to extra 

compliance it would be problematic to predict particular pose of the soft gripper or hand, 

although very likely to obtain object’s shape. The study was manly focused on enveloping 

and pinch grasps. 

Presented soft robotic gripper is underactuated with pneumatics. It is currently made with 

main idea to be attachable to fingers of the solid hands or manipulators. Presented work 

outlines serious superiority over solid manipulators in terms of grasp tenderness. 

Drawbacks evaluated during the study list sensor readings being unacceptably noisy. Further 

research will also involve additional attention to sensorial classification of the objects for 

better grasp accuracy. In addition, slippery and heavy objects do represent certain level of 

problem and should face an engineering solution in the future.  

2.2.6. RBO Hand 238,39 

While some soft robotic systems are tested and addressed more for industrial use, meanwhile 

there are interesting examples of anthropomorphic soft robotic designs intended for future 

prosthetic use. RBO Hand 2 is one of them. It was fully described in 2015.  

RBO hand 2 has underactuated pneumatic system. This means simpler control of the hand. In 

comparison to solid designs of the anthropomorphic hands, RBO hand 2 represents better 

cost-effective option with optimized number of sensors and actuators, while showing high 

performance. Conducted research shows tendency for the passively compliant parts to be 

more advanced than actively elastic. RBO hand 2 is very light – 178g overall. It is capable 
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handling load more than 0.5 kg with certain adjustments, while being able to produce 31 

grasping motions described in Feix grasp hierarchy. Obvious disadvantage of the soft robotic 

designs is restriction from the interaction with sharp objects that can damage the hand. But 

due to seriously decreased cost price, it may not be classified as a defect of the design. 

Moreover, such hands could be used under hazardous conditions, because the overall risk 

does not involve loads of money.  

As to grasping capabilities, it was detected that distal type grasp and light tool grasp of 

scissors and pencil respectively cause problems. But these are minor fails for the first 

prototypes in this area. Hand is able to apply 6-8 N forces and that is enough for most of the 

daily objects. A harder rubber is suggested for making higher forces involved in grasping 

operations. Also, slippery problems that were already discussed in a different section are 

present here as well. All in all, for a hand worth only 77 pounds – presented efficiency is for 

sure a breakthrough in financially optimal robotic anthropomorphic designs. 

2.2.7. Multifingered metamorphic hand by G. Wei et. al.40 

The best example of the practical application of the metamorphic hand developed by G. Wei 

et.al. could be considered the DEXDEB project. The successful prototype was tested in 

serious environment alongside with the Shadow Hand.  

The four-fingered metamorphic hand has 15 DOF overall, its palm is formed by five-bar 

linkage based on spherical principles. Since the hand is metamorphic and highly flexible, for 

simplification, weight reduction and contradiction prevention underactuated tendon-based 

external actuation is integrated. Each finger is actuated by two motors, making overall 

actuator number of 10, including two actuators for the palm. 

Deboning research has evaluated that occurring friction and wear of the tendons should be 

carefully studied further. Recommendation for the metamorphic hand weight reduction was 

made.  

In general, outstanding results of the metamorphic hand were presented and it is possible to 

predict demand in designs based on the metamorphic principles in the nearest future. 

2.2.8. The Robonaut Hands41,42 

In May 1999, anthropomorphic robotic hand, The Robonaut 1 Hand, of the human scale 

intended for space activity was presented. It is obvious that aeronautics department has very 

high requirements for robotic devices; moreover, tasks assigned to space robotics involve 

manipulations with heavy tools and serious force application while doing repairing works. 
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Also, specific conditions of working area should be mentioned – all electronics and actuators 

have to be perfectly sealed and pressurized in order to work in vacuum. The robonaut hand (as 

part of the proper robot) is designed to reduce (or to completely replace) human presence 

outside a space station. Back then it was the most advanced hand engineered for space 

considering several other hands under development and even some grippers already tested in 

space conditions. To list some of the stated requirements: force of 88.9 N and torque of 3.39 

N.m should be achievable (for the whole arm module). Variety of grasps is dictated by 

necessary compatibility with EVA (extra-vehicular activity) interfaces at International Space 

Station. Strict restrictions are applied to materials and motors: extreme temperature level 

change withstanding ability, contamination prevention standard fulfilment, lubrication 

certified for space use, etc. Overall DOF number of the hand is fourteen, including 2-DOF 

wrist. The forearm is carrying all fourteen motors with necessary electronics and is of 10.16 

cm by 20.32 cm size. Leaving hand empty of actuators is justified by limitations applied to its 

required overall size. As a more reliable and durable competitor than tendon actuation, flex 

shafts are used. Leadscrews attached to the fingers provide final linear motion. For 

outstanding control, more than 43 sensors are used. Each finger has not common extra durable 

7-bar linkage system and there are special elements integrated in the fingers and hand that 

reduce backlash and vibration. Since this robotic piece of art was first in class, only the 

following minor disadvantages could be mentioned: most of the parts have complicated 

geometry, leadscrew actuation is done only one way in order to save the tool in the power loss 

scenario – otherwise extra forces required for finger back extension will overheat the motor 

and damage it. 

Second generation of the robonaut hand, The Robonaut 2 Hand, introduced in 2011 is 

expected to have serious advantages over its previous generation. Major differences involve 

increased DOF number of the thumb for better grasping at certain positions and improved 

reachability, overall durability increase and optimization where possible. Number of 

conductors was decreased from 80 to just 6, meaning better utilization of the limited space. In 

addition, while hand module above forearm is now designed to easily be taken off, the 

Cutkosky’s grasping possibility evaluation shows 40% efficiency improvement due to more 

dexterous thumb in comparison to the robonaut hand 1 taxonomy. Hand overall length with 

all electronics is just above 30.4 cm. The weight of it is 9 kg. Speed of the joint rotation is 

given as 200 mm/sec. While number of DOF remained fourteen, actuator number is now 

sixteen in comparison to the previous fourteen. Also, fingers are now relied on four-bar 

linkages. Index and middle finger are independently controlled by four tendons, while thumb 
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by five. Remaining fingers are underactuated. It is important to note that now design has 

polymer tendon system for better finger shape optimization and simplification purposes. 

Special ‘Vectran’ material is used for tendons; its breaking force is 1775.61 N at diameter of 

1.2 mm. Each actuator is able to provide pull force of 225.63 N. But now due to tendon 

system the hand is compliant, so therefore there is a risk of losing a tool in space. As a 

solution and substitution of the leadscrew technology, gloves of whether low or high flexion 

friction are now used. This means that in case of the emergency, fingers will not extend back 

due to high friction. They will only be able to do so when additional torque overcoming the 

friction will be applied.  

It is concluded by researchers that ‘Spectra’ polymer material for tendons is better for 

abrasion resistance and durability properties than ‘Vectra’ material, but the latest is chosen 

only because of the limited compatibility. It is also highlighted that abrasion prevention is 

improved with Dupont Krytox lubricant for tendons and leaded phosphor bronze as finger 

material. New tendon material and overall actuation system design allowed increased level of 

break strength overall durability with considerable factor of safety. Elastic actuation is 

recognized as a positive innovation and further development will continue to replace solid 

parts where it is rightly.  

2.2.9. UB Hand IV 

University of Bologna is working on robotic hand since 1988, when the first three-fingered 

UB Hand I was produced. The hand had two parallel fingers, thumb and a palm all controlled 

by tendons, driven by DC-motors and controlled by complex electronic equipment. Later a 

modernized UB Hand II was developed introducing the wrist articulation. The structure and 

working mechanism was simplified in the third generation of UB Hands. In 2008, new 

approach was applied to produce the UB Hand IV also known as DEXMART Hand.43 UB 

Hand IV is based on endoskeletal model with non-hollow structure. The hand involves tendon 

transmission system with adapted tendon path in order to reduce the curvature and resulting 

friction.43 The hand uses twisted-string actuation system that minimizes the friction and 

simplifies the mechanism as no intermediate hardware is required. As most of the robotic 

hands, UB hand has various position and velocity sensors, force and tactile sensors.43 While 

producing the hand’s prototype, scientists explored and offered various solutions to the 

existing and expected problems, which was later used in further research for range of robotic 

hands. 
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2.2.10. The SmartHand44 

The SmartHand is a prosthetic hand developed by Scuola Superiore Sant'Anna (SSSA, 

University in Pisa, Italy). The hand has five underactuated fingers, 16 DOF and 40 different 

sensors. Hand is actuated only by 4 motors and is bent with single tendon.45 Only thumb and 

index finger are separately actuated, whereas middle to little finger are actuated with one DC-

motor. The last actuator is used for thumb abduction/adduction.45 Moderate flexion speed is 

assured: 90 deg/sec. Such design does not allow complicated grips and movement, although 

power, precision and lateral grasps are possible along with pointing and counting. The aim of 

the SmartHand, however, was just to make possible basic everyday gestures, which was 

achieved with weight and speed characteristics comparable to that in commercial prostheses.45 

2.2.11. The Shadow Hand46,47,48,49 

Another example of solid design that is close to human hand functionality is the Shadow 

Hand. Initially, its prototype was presented in 2002 in Japan. The first commercial version 

with pneumatic muscles was introduced in 2004, but in 2008 option with electric motors 

became available. One of the aims of the whole project was to investigate and develop 

advanced tactile sensors. In general, the hand is intended to serve as a test system for 

intelligent manipulation and grasping. Therefore, it is not designed for non-professional 

public, but rather for research institutions. Prototype that could be bought and tested by 

various research groups. 

Research on tactile sensing has led to the shadow hand’s most unique selling point – it was 

equipped with special novel sensor placed on the fingertip that has 34 tactile regions and is 

vulnerable even to 3g of applied weight. Other advantages are also mentioned: fast 

construction time, high compliance (which back then was not very common) for interaction 

with humans, outstanding dexterity and significant maneuverability ensured by 25 DOF 

producing 24 different movements. The fact that the hand became a product out of the 

prototype means that it was a serious contribution to the overall robotics field and particularly 

general purpose robotics. One of the research groups have tested and positively identified 

hand’s functionality50. 

The Shadow Hand has several models: c6 and c6m, 3-fingered C6F1F3T and 1 finger test unit 

FTU-C6. Various additional features are offered. C6 hand has 20 DOF with 40 air-muscle 

actuators, while C6M has optimized 20 electric actuators. C6F1F3T has 11 DOF and 22 air-

muscle actuators. As a final determination of the Shadow Hand capabilities, the Shadow 

Robot Company states that the hand provides force output similar to human hand. 
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Furthermore, the hand has been involved in neural control, industrial quality control and brain 

computer interface research. 

 

Figure 2.10. Force capabilities of scientific hands 

Unfortunately, only few force parameters are provided by scientists on their hands. The main 

point of interest is therefore the fingertip force and the power grasp. DLR hand provides twice 

higher fingertip force when Dyneema fiber is used instead of steel tendons. The robonaut 

hand uses the polymer tendons and provide just a bit higher fingertip force than DLR hand 

with steel tendons.  

The power grasp information is provided only for three scientific hands, with the first 

generation robonaut hand unquestioningly leading. It may be assumed that the second 

generation robonaut hand should have similar properties, as the force capability tends to 

improve in every next version of the hand, both commercial and scientific.  
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Figure 2.11. Mass of scientific hands 

Scientific hands are much heavier than commercial hands, as they do not require the similarity 

to human hand and only focus on the precision and performance efficiency. The mass of the 

hand mostly is affected by number of actuators, materials and size of the hand. The mass 

range is clearly visible on figure 2.11 and does not require any further explanation. 

 

Figure 2.12. Actuation and flexibility of scientific hands 

As expected from scientific hands, were the accuracy and control of movements is usually the 

most desirable parameter, most of the hands are overactuated. There are, however, plenty of 

examples of underactuated (RBO hand 2, Elu hand, The SmartHand) and fully actuated 

hands. Due to the nature of scientific research, all three types of robotic hands must be studied 

in order for robotic field to develop further. 
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Figure 2.13. Prices of scientific hands 

Not many of scientific hands are available for purchase as it is usually the only exemplar and 

is only studied within particular research group. The hands that are available, however, are 

mostly expensive. The price depends on the performance, material and size of the hand, 

similar to commercial robotic hands. The RBO hand 2 is being the most cost-effective due to 

the lack of efficiency in comparison to other hands described above. 

2.2.12. Comments 

Scientific hands are mostly task-specific rather than commercial general-purpose hands. 

Hence, desired performance is obtained regardless of price, weight, dimensions, etc. 

Improvements that were made by scientific hands, problem solution ideas and a novel 

approach lead to better commercial products in the future. It was also noted that scientific 

hands typically represent prototypes and are rarely produced with quantities higher than 1. 

However, developers of the Shadow Hand have made their product available for research 

groups and universities, but the public access is highly limited due to the price, which is only 

affordable by large organizations/corporations. 

2.3. Summary 

The commercially available hands have been compared purpose-wise and reasonable price to 

quality ratio was observed. Unfortunately, not all the manufacturers provide full 

characteristics of their product and not all of commercially available hand could be discussed. 

More detailed research and comparison of commercial hands characteristics may be 

performed in future work.  
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There exist a huge number of scientific robotic hands as this is the main research ground for 

all further development of commercial products. With the range of hands with different 

properties including type of actuation, material of tendons or other driving mechanism 

presence, robotic hand scientific research remains the main drive for robotic industry 

development.  

It is important to highlight that in recent research articles and conferences, new generation of 

robotic manipulators was introduced. While metamorphic mechanisms are considered as 

advancement in solid solutions, soft robotics is now becoming a key research interest for 

many developers. There is no unified theory yet as this field of study is still new, but it can be 

predicted that in the nearest future commercial soft robotics products will appear on the 

market.    
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Chapter 3  

Robotic Hand Design 

 

 

3.1 Introduction 

Design is an irreplaceable part of engineering project. It is a complex process which combines 

certain sequence of tasks, where some parts are constantly repeated for design improvement 

purposes. Design is a fundamental part of engineering, without which accomplishment of 

required task could not be achieved. The final result of design is a set of specifications from 

which the final product can be built.51 

Design is a process in which variety of factors must be considered: environment in which the 

final product will operate, existing standards and requirements for the designed product, target 

audience, etc. Therefore, the purpose of the designing process is to find the optimal 

interception between the physical properties, environment requirements and ease of 

application.52 Design complexity is also affected by the fact if the product is modernised or 

invented at first place. However, regardless of the initial task, design procedure can be divided 

into several parts to simplify the task.  

Mechanical design involves variety of mathematical calculations prior to the production of the 

designed product. As obtained results can prove design mistakes, changes to specifications are 

made constantly throughout the design period and after the first tests of the built product.52 In 

help comes programming software, which simplifies introduction of changes to the final 

results. Most of the design engineering software nowadays are connected between each other 

so that the designer can interconvert new mathematical calculations to the change of 

specifications in a least time-consuming way.   

This leads to one of the design criteria obedience.52 It is essential for the design to be slightly 

adjustable even in the latter stages of development. Other standards, which design must obey 

are cost-efficiency, reliability, safety and marketability. Therefore, design must produce the 
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product with both efficiency in terms of fulfilling the required function and at the same time 

cost reasonable of money to produce for the company to make profit in long-term perspective.  

Design is not purely technical and scientific process, as creativity of designer and their ability 

to gather and separate certain information about the final product simplify the core of all the 

design projects – identification of the need. Design is an iterative process, where at every step 

new information about the product is gained and hence the design may change. Some of the 

issues might be found at the mathematical calculation stage, some at simulation stage and 

some can only be identified when the product is built. It is vital to understand that mechanical 

design, in particular, combines all mechanical engineering disciplines, and therefore requires 

the designer to have certain level of engineering literacy. 

This chapter gives a description of what is the mechanism behind the achievement of various 

hand postures. Design complexity and possible areas of manipulator application are 

discussed. Furthermore, grasping of different shape objects is introduced to demonstrate 

capabilities and evaluate downsides of the design. Conclusions of this chapter will make a 

ground to the overall structure simplification and future work. 

3.2 Design Overview 

 

Figure 3.1. The principal dimensions. 
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Figure 3.2. Schematics of the palm. 

In general, structure of the mechanism can be split into several sections (figure 3.2):  

➢ The supporting unit that is meant to be attached to the robotic arm. The unit is 

carrying the robotic hand and wrist actuator. 

➢ The lower section of the palm (link 5), which stores its two actuators. As the whole 

palm spherical mechanism has only 2 DOF, the other links have only actuators for the 

fingers. 

➢ The upper section of the palm (link 4), which is carrying the middle and the ring 

fingers, as well as their DC motors. It is actuated with a DC motor. 

➢ The ring finger’s palm section (link 3), which is a passive link, containing a DC 

motor. 

➢ The thumb’s palm section (link 2) – passive link with a DC motor inside. 

➢ The small crank (link 1), which is actuated through a double universal joint. 

➢ Individual fingers. Index, middle and ring fingers have a similar structure. Thumb’s 

lower part has a unique design due to the four-bar actuation mechanism. 

Principal dimensions make it possible to compare this anthropomorphic manipulator with the 

human hand. Of course, the idea of implementing actuators inside the palm is not novel – it is 

found in most of the commercial prosthetic hands with rigid palm. However, the same 

approach applied to the metamorphic palm leads to significant impact.  
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As it is seen on the figure 3.1., the overall height of the robotic hand with its attachment 

module is 326.15 mm.  Thickness is 24 mm maximum, excluding the attachment module. 

Length of the 3 phalanges is 112.29 mm, increasing to 175.78 mm with the DC motor and 

gearbox. Inner breadth is 60 mm. 

According to the anthropometric survey53, length of the natural hand varies from 158.9 mm to 

205.0 mm and from 172.8 mm to 219.0 mm for women and men respectively. Hand’s breadth 

differs from 80.7 mm to 100.4 mm for men, but for women is about 10 mm less on average.  

Hence, it is not likely that the proposed manipulator would be able to fit into the commercial 

prosthetics category. Although addition of the fifth finger would make the manipulator more 

attractive, the robotic hand is still beyond the expected dimensions for prosthetics. 

Nevertheless, it can be suitable for minority of people that prefer to show to the public that 

they have an artificial and non-standard limb. In this case, larger proportions of the robotic 

hand outline its uniqueness. As for the industrial applications like meat deboning40, developed 

manipulator would perfectly fit – the gear transmission is superior than the tendon principle in 

terms of accuracy and durability, while oversized and irregular shape does not have a 

significant impact on the operation and task fulfilment.  

The tendon principle requires actuators to be stored outside of the manipulator – this factor 

greatly optimizes the shape and proportions, but meanwhile complex mechanisms with many 

DOFs will have all actuators stored inside the forearm. This may not be convenient in cases 

when the forearm is required to be small or available space is mostly occupied by other 

electronics like sensors and controllers.   

Since the proposed robotic hand has only 4 fingers, it is important to understand how 

exclusion of fingers influences the grip performance of the hand. In relatively recent research 

of the grip strength54, 100 hands in total (variously aged women and men) were analysed. It 

was found that the exclusion of both ring and small fingers relates with 54% decrease in grip 

strength. In particular, little finger contribution was 33%, whereas ring finger – only 21%. 

Although all five fingers contribute to grasping abilities of the human hand, their strength 

contribution is uneven and with enough power supported to 4 fingers, the robotic hand is 

capable of successfully securing most of the grips/pinches and producing demanded 

operations without severe limitations of the fifth finger absence. 
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Figure 3.3. Lower part of the palm, i.e. fixed link 5. 

 

Figure 3.4. Double universal joint transmits the motion. 

The palm, which is represented by the five-bar spherical linkage, can be controlled by 2 DC 

motors. In order to have as much unconstrained motion of linkages as possible, the inner area 

of the palm is left empty. Hence, space limitations obliged one of the palm’s DC motors to 

transfer its motion through 2 universal joints. The total angle of motion transfer is 156 

degrees. The bearings are securely blocked with the highlighted retaining rings. The lower 

section of the palm, link 5, has circular cavities for DC motors to be fitted in. It can also be 

seen on the figures 3.3 and 3.4 that the attachments to the palm provide fixation of actuators 

and cover from external interferences. The ones that have to hold an actuator are meant to be 

made out of aluminium or steel, whereas the others that act as a cover are intended to be made 

out of plastics to avoid manufacturing complications (difficult to reproduce shape) and not 

necessary weight. 

 

It is beneficial for the hand closure strategy to have a gear transmission, because the grasping 

and handling of the object becomes secure and reliable. Unfortunately, non-compliance is 

considered as a disadvantage when the human interaction takes place. For example, although 

the Bebionic Hand does not have a tendon motion transfer, but is intended for interaction with 
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humans, – it has some compliance. When impact takes place, linkages that connect linear 

actuators with fingers are folding and therefore allow fingers to freely move backwards to 

certain extent. This is something to think about if the proposed manipulator would be required 

to be adapted for prosthetics applications. 

 

Steel bevel gears that are used in the palm and fingers have a 10.7 mm diameter and offer 1:1 

transmission. Although the overall size and teeth dimensions are modest, nevertheless, the 

gears are capable of withstanding torque up to the 3.9 N.m according to their specification. 

Higher transmission ratio to increase the torque is not available due to strict space limitations.  

 

Figure 3.5. Structure of the finger. 

       

Figure 3.6. Structure of the finger. 

The articulated fingers have 2 DOFs each and are represented by 3 types of phalanges, i.e. 

distal phalanges (the upper), middle phalanges and proximal phalanges (the lower). The upper 

phalange is rigid. The middle and lower phalanges are assembled from three separate parts 

each. The complexity of the lower phalange is the highest among the other phalanges due to 

the following requirement - actuator storing and sealing, while the overall phalange structure's 

stress resistance is not significantly influenced. Both middle and lower phalanges have 
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additional material support from the side walls in order to reduce the load from the screws 

when decompression takes place.  

 

Figures 3.5 and 3.6 help to understand how the finger was assembled. It can be seen that the 

bearings are covered only for four joints. Circular protrusions of the middle phalange in the 

lower section act as shafts. Other parts that are placed on shafts have set screws where 

possible to provide additional fixation. The role of the small DC motor is to force the middle 

and the upper phalanges to acquire certain posture, before the final torque from the finger's 

main actuator (which is located inside the palm’s link for each finger) is applied. In terms of 

joints, rivet joints may be suggested as a cost-effective alternative, if the maintenance is not 

expected in the nearest future of manipulator service. This is also a way how to reduce 

manufacturing complexity of the middle phalange. 

 

 

Figure 3.7. Thumb and lower area of the hand. 

 

Figure 3.8. Four-bar mechanism of the thumb. 

Figure 3.7 illustrates that the palm’s crank is turned 180 deg. Neither link 1 or link 2 is not 

interfering with the attachment module or link 5. Cavities left in the parts are necessary for the 

cables that would go from the motors to the control unit to provide data from hall sensors.  
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Four-bar mechanism is used inside all fingers and is also actuating the thumb. It was already 

proven by Bebiobic Hand that this principle is efficient, convenient and reliable way of 

motion transfer. Belt transmission would have been harder to implement when available space 

is very limited. Especially with the fact that belts are installed on pulleys. However, it may be 

considered as an option inside the arm as gears are more expensive.  

Specifications of DC motors: 

• DC motors inside the finger: Faulhaber 1512_012 SR, reduction 324:1, max. 50 mNm. 

• DC motors in the palm links: Maxon EC 20 flat A (351100) with planetary gearhead 

GP 22 C (143989), reduction 157:1, max. 1.9 N.m. 

• Servo motor is included for reference purposes. It can be of any size, depending on the 

application and size affordability of the attachment module. CAD model is based on 

the Hitec servo motors. 

3.3 Grasping Capabilities 

Object grasping is the most important test of the anthropomorphic manipulator. It is the 

easiest way to assess if the proposed robotic hand has enough performance to meet the 

requirements. This process outlines design flaws that have to be eliminated and advantages 

that should be advertised.  

Most difficulties with grasping arise when the hand has to have more than two contact points 

with a small object. While the commercial hands are able to provide these two contact points, 

necessity of the third contact may become a problem. As the literature review states, two-split 

and triple-split hands are not very common – the rigid palm is a suitable way to provide small 

size of the hand and yet sufficient grasping power. Unfortunately, this approach has obvious 

limitations. The thumb is the only finger that is circulating in front of other fingers. In natural 

hand, it might be noted that the basements of thumb, index and little fingers are able to turn 

inside the inner area of the palm. Described kinematic versatility allows the natural hand to 

make unachievable postures from the solid link robotics point of view. In spite of this, the 

metamorphic palm mechanism of the developed manipulator grants the robotic hand unique 

and unprecedented flexibility. 
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Figure 3.9. Holding a medium-sized ball. 

 

Figure 3.10. Holding a medium-sized ball. 

 

Figure 3.11. Holding a small ball. 

The reason why the ball can be considered as an object of advanced shape is the fact that it 

has no planes. If it is assumed that the ball’s surface is slippery, it is highly unlikely that the 

ball would be grasped with only two contact points. When the ball is relatively large as in 

figures 3.9 and 3.10, it takes no additional effort to hold it. Figure 3.10 shows secure grasp - 

the index finger is able to support the middle and ring fingers. Figure 3.11 clearly indicates 
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the possibility of providing at least three contact points. Popular commercial hands have a 

special movable platform for the thumb in order to provide various hand posture support. 

However, the metamorphic anthropomorphic robotic hand is capable of rotating the basement 

of index finger in addition to the thumb’s. Moreover, with only 1 DOF in commercial hands, 

the fingers are forced to bend all three phalanges altogether. 2 DOFs of the proposed 

manipulator give extra workspace and posture variety. 

  

Figure 3.12. Holding a small cube and a coin. 

  

Figure 3.13. Holding a key. 

A coin and a key (figures 3.12 and 3.13) are typical items that are used on daily basis. 

Grasping a coin can be sometimes challenging even for the human hand. Robotic hands use 

pinch technique to handle different small things, including needles too. 
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Figure 3.14. Pencil handling 1. 

 

 

Figure 3.15. Pencil handling 2. 

Since the advancement of technology, with the invention of computers, the habits of humans 

have changed. A large amount of time is now spent using hand-held portable devices, such as: 

laptops, mobile phones and tablets. Hands and fingertips are required to adapt to the new 

circumstances - to grasp and grip smaller objects. 

Pencils (figures 3.14 and 3.15) and pens used to be objects with higher frequency of 

utilization in comparison to any others. Nowadays all documents are maintained 

electronically, however people continue to apply manual signatures, write notes and draw 

sketches or paintings. The typical handling strategy of the pencil represents control provided 

by index finger and thumb, as well as support of other fingers from beneath.  
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Figure 3.16. Holding a bar. 

A bar is often encountered in buses and stairs. The same closure pattern is applied to any bags 

that should be carried. As seen from the figure 3.16, the robotic hand is able to successfully 

hold a bar.  

   

Figure 3.17. Holding a mug 1. 

 

Figure 3.18. Holding a mug 2. 

Objects like mug have a handle to ease the manipulation process. Handle is supposed to 

provide comfort and support, but as for the robotic manipulators, the problem is that they are 
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obliged to maneuver the mechanical links around the handle to grip and lift the mug. It can be 

observed on the figures 3.17 and 3.18 that thumb also plays a key role in securing the stable 

grasp. Thumb prevents the mug from deviating down. Ring finger can be used as an 

additional support underneath the mug. 

Another aspect of the object manipulation is friction. It is necessary to note that the steel or 

aluminium materials on their own are not improving grasping. There are situations when 

slippery objects should be handled. Absence of high friction does not affect the function, but 

it might influence the performance. There are a lot of cover materials with high friction 

coefficient that can be (or should be if there is such demand) applied to the fingertips and 

other parts, so therefore it is inconsequential to address it in more detail. 

f 

3.4 Summary 

Overall, design is a complex interdisciplinary part of engineering, which is mainly based on 

decision-making. Then, the decisions are modified with every new information obtained in 

order to optimize the final product. There is no completely final point of the design as it is 

extremely flexible and hence, should be easily adjustable for further needs of the research or 

consumer. Design starts with a specific idea and set of requirements that can be achieved in a 

variety of ways, which are only limited by the chosen approach. And this is what makes 

design a fundamental unit of the progress.  

Although the developed robotic hand might be of a limited value to prosthetics, there is a 

limitless demand in the industrial applications. Provided evidence of the robotic hand’s grasp 

potential shows that the manipulator is capable of being used in operations involving objects 

of intricate shapes or procedures that require complex postures. 

Structure of the proposed hand and actuating mechanisms have some areas that can be 

improved. Rivet joints should be considered as a cost-effective alternative to bearings and 

their sealings. For some sections of the design, like outer four-bar linkage driving the thumb, 

they are a must. Also, in case of the manipulator adaptation to prosthetics use, it is necessary 

to address a way how make the mechanisms compliant. On the other hand, the manipulator is 

an advanced mechanism that can be successfully used in industrial applications. 
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Chapter 4 

Kinematics 

 

 

4.1. Introduction 

Forward kinematics represents a set of transformation matrices that leads to the end effector 

of manipulator. Obtained result shows position and orientation of the end effector.55, 56 

Inverse kinematics is a mathematical technique which finds the joint properties based on the 

desired end-effector (or fingertip) position. The IK approach is rather complicated as there 

exist various joint position combinations at which desired fingertip position is achieved. The 

presence of more than one suitable combinations comes from the fact that transformation 

matrix (0Tn) is composed from trigonometric functions of joint variables.5 Which by 

definition have infinite number of solutions.  In order to suit a particular case, several 

analytical and numerical methods for solving inverse kinematics problems are known. These 

include such approaches as decoupling technique, inverse transformation technique and 

iterative method. 

In this chapter, method of obtaining kinematics equations is described. 

Although sections containing equations of accelerations are mostly reviewed in dynamics 

chapter of books, for convenience purposes and better information representation, they will 

remain in kinematics chapter. 

4.2. Preliminary Theory 

4.2.1. Orientation and Translation.  Position in Space57 

Before the kinematics can be considered, it is necessary to define a coordinate system to show 

the way how results will be presented. Although there are various options available, in this 

work, everything is based on the Cartesian coordinate system.   

The first step in obtaining kinematics of mechanisms is establishment of the reference frame. 

The frame itself gives description of where the point is located and how it is oriented. It is 
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also vital for the further kinematic equations to be based on correct reference point, because 

sometimes later on there might be a requirement to attach new system of coordinates to the 

existing one in order to present motion in global coordinates. Hence, reference frame 

coordinates have to be carefully chosen. 

When the reference frame is determined, transformation matrix is used to move from point to 

point (usually, from one joint to another joint) through the kinematic chain to the end point, 

which is whether fingertip, finite link or some gripper’s part. Transformation matrix consists 

of two elements: 3 x 3 set of vectors that are describing an orientation and 3 x 1 position 

vector. Consider transformation matrix T that represents a homogeneous transform: 

𝑇𝐵
𝐴 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

    

𝑝𝑥

𝑝𝑦

𝑝𝑧

0   0   0      1 

]  (4.1) 

where ‘r’ and ‘p’ stand for coordinates of orientation vectors and position vector accordingly. 

The row [0 0 0 1] can be thought of as a convention that is related to the position vector 

representation. In other words, that vector could be 3 x 1 or 4 x 1 if multiplied by 3 x 3 or 4 x 

4 matrix. As rotation matrix is defined to be orthogonal(squared), zeros take place. There are 

cases when the last row is not [0 0 0 1] - for example, scaling operations.  

Separation of the T matrix elements is also an option. In this way, rotation matrix, R, and 

position vector, P, equally substitute the transformation matrix T and now route to the end 

point may represent specific number of rotations and translations instead of 4x4 

transformations. That form of notation is more applicable to computer calculations. 

Form of rotation matrix depends on the axis around which motion is occurred. Therefore, 

rotation matrices are specified: 

𝑅(𝜉𝑛, 𝑥𝑛) = [

1 0 0
0 cos(𝜉𝑛) − sin(𝜉𝑛)

0 𝑠𝑖𝑛(𝜉𝑛) 𝑐𝑜𝑠(𝜉𝑛)
    

0
0
0

0     0               0       1

]   (4.2) 

𝑅(𝜑𝑛, 𝑦𝑛) = [

cos(𝜑𝑛) 0 sin(𝜑𝑛)
0 1 0

− sin(𝜑𝑛) 0 cos(𝜑𝑛)
    

0
0
0

         0         0       0      1

] (4.3) 
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𝑅(𝜃𝑛, 𝑧𝑛) = [

cos(𝜃𝑛) − sin(𝜃𝑛) 0

sin(𝜃𝑛) cos(𝜃𝑛) 0
0 0 1

    
0
0
0 

       0                  0        0 1

]     (4.4) 

General form of rotation matrix, R = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0
𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1

𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1

]    (4.5) 

 

Scheme 4.1 illustrates how the transformation of point A to point B represents both 

translation and change of orientation with respect to the reference frame. Coordinate systems 

are always attached to the points in kinematic loops regardless of the point quantity, so that 

consequences of movement are taken into account.  

 

Scheme 4.1. Position Transformation 

Denavit-Hartenberg parameters are often used to give a general characteristics of the 

mechanism. Based on the principle shown in scheme 4.1, it is possible to move from joint to 

joint, from link to link and correctly assign values. This is a geometric approach leading to a 

better understanding of the mechanism. The following principle variables are present on the 

scheme 4.2: 𝑎𝑖−1 – the distance between neighbour joints; 𝜃𝑖 – the angle that describes 

deflection of the 𝑙𝑖𝑛𝑘𝑖 with respect to the  𝑙𝑖𝑛𝑘𝑖−1; 𝑑𝑖 – the distance between joints measured 

about the axis �̂�𝑖 which is perpendicular to the 𝑎𝑖−1; 𝛼𝑖−1 – the angle that represents the 

difference between neighbour joints axis of rotation. 
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Scheme 4.2. DH approach58 

4.2.2. Alternative Methods of Transformation in Space. Screw Theory Fundamentals 

Although it was already mentioned that global coordinates are defined as Cartesian, other 

ways of representation within defined coordinate system can still be used without 

contradiction in some areas as a necessity in order to solve specific problems that occur 

during derivation of equations. That said, principal concepts59,60 of the screw theory are 

introduced. 

While in Cartesian coordinates rigid body in space has 6 DOF, a simple line would have just 4 

DOF – rotation about itself and translation in its own direction do not change the line. If the 

line in space is defined by direction, ‘l’, and a point that it crosses, ‘p’, the Pl�̈�cker 

coordinates61 (or special case of Grassmann coordinates) of that line will have 2 components 

– vector ‘l’ and the moment vector ‘m’, which is equal to the ‘p’ and ‘𝑙’ vector cross product. 

Therefore, line ‘L’ consists of six dimensions (𝑙,𝑚) and can be noted as a screw. Scheme 4.3 

illustrates this concept: 
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Scheme 4.3. Alternative coordinate system 

Common notation for the screw is $, (S;S0). When ‘S’ is a unit vector, moment vector ‘S0’  

will define the magnitude of vector ‘p’.  

When a screw has assembled velocity in it, it is called a twist (scheme 4.4):  

⍵$ = ⍵(𝑆; 𝑆0) = (⍵𝑆;⍵𝑆0) = (⍵; 𝑣0) (4.6) 

where ‘S’ is a unit vector, ‘⍵’ and ‘𝑣0’ are angular velocity and linear velocity (or tangent 

linear velocity) of the point,’p’, that is coincident with the origin.  

 

Scheme 4.4. Twist motion (‘ri’ is vector ‘p’ in scheme 4.3)62 

In case the origin is crossed by the rotational axis,  

⍵$ = (⍵; 0)        (4.7) 
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Otherwise, if sliding/prismatic kinematic pair is present, then translation has the following 

representation, 

𝑣$ = (0; 𝑣)                 (4.8)    

For combined motion, i.e. rotation and translation, 

⍵𝑖(𝑆𝑖; 𝑆𝑖+1
𝑖 ) = (⍵𝑖𝑆𝑖; ⍵𝑖𝑆𝑖+1

𝑖 + ℎ⍵𝑖𝑆𝑖 ) (4.9) 

where ‘ℎ’ denotes the pitch. 

The pitch itself could be found by equation 4.10, 

ℎ = 
𝑆𝑖 . 𝑆𝑖+1

𝑖

𝑆𝑖 . 𝑆𝑖
 = 

⍵𝑖 .  𝑣

⍵𝑖 . ⍵𝑖
    (4.10) 

Likewise, the force and torque vectors also could be integrated into a screw representing a 

wrench, 

𝑓$ = (𝑓𝑆; 𝑓𝑆0) = (𝑓; 𝐶0)   (4.11) 

where ′𝐶0′ is force moment 𝑓 about the origin, i.e. 𝐶0 = 𝑓. 𝑝 × 𝑆0. Moment will not be present 

when force 𝑓 will cross the origin, so therefore (𝑓; 0). 

Important properties of screw theory that have high relevance to the spherical palm63:  

1) If the origin is crossed by the line, the Pl�̈�cker coordinates of that line are (S;0). 

2) System of screws for the open chain serial linkages: twist of the end joint equals sum 

of all joint twists,   Tend=T1+T2+Tn-1+Tn    (4.12) 

3) System of screws for the closed chain serial linkages: sum of all twists for all joints in 

the loop equals zero,    T1+T2+Tn-1+Tn=0   (4.13) 

4) Particular joint twist in the closed loop can be expressed by summation or subtraction 

of other joint twists in the loop. 

5) Acceleration analysis64 of the closed chain serial linkages: 

 �̇�1$2
1 + �̇�2$2

1 + �̇�𝑛$𝑛
𝑛−1 + 𝐿𝑛 = 0  (4.14) 

where 𝐿𝑛 represents the simplified derivation of grouped Lie products. 

The Lie screw of acceleration, 𝐿𝑛 = [𝜔1$1     𝜔2$2 + 𝜔3$3+. . . 𝜔𝑛$𝑛]… 

…+[𝜔2$2      𝜔3$3 + 𝜔4$4+. . . 𝜔𝑛$𝑛]… 

…+[𝜔𝑛−1$𝑛−1     𝜔𝑛$𝑛].                    (4.15) 

6) The product of two screws is dictated by the Lie algebra65: 



 
54 

 

 [$1     $2] = [
$̂1 × $̂2

$̂1 × $0(2) − $̂2 × $0(1)

]                 (4.16) 

4.2.3. Velocities and Accelerations66 

Regarding velocities and accelerations, 

𝜈 
𝑖+1

𝑖+1 = 𝑅𝑖
𝑖+1 ( 𝜈 

𝑖
𝑖 + 𝜔 

𝑖
𝑖 × 𝑃 

𝑖
𝑖+1)                                                      (4.17) 

�̇� 
𝑖+1

𝑖+1 = 𝑅𝑖
𝑖+1 ( �̇� 

𝑖
𝑖 × 𝑃 

𝑖
𝑖+1 + 𝜔 

𝑖
𝑖 × ( 𝜔 

𝑖
𝑖 × 𝑃 

𝑖
𝑖+1) + �̇� 

𝑖
𝑖)                                        (4.18) 

�̇� 
𝑖+1

𝐶𝑖+1
= �̇� 

𝑖+1
𝑖+1 × 𝑃 

𝑖+1
𝐶𝑖+1

+ 𝜔 
𝑖+1

𝑖+1 × ( 𝜔 
𝑖+1

𝑖+1 × 𝑃 
𝑖+1

𝐶𝑖+1
) + �̇� 

𝑖+1
𝑖+1)     (4.19) 

𝜔 
𝑖+1

𝑖+1 = 𝑅𝑖
𝑖+1 𝜔 

𝑖
𝑖 + �̇�𝑖+1 𝑍 

𝑖+1
𝑖+1                                                                            (4.20) 

�̇� 
𝑖+1

𝑖+1 = 𝑅𝑖
𝑖+1 �̇� 

𝑖
𝑖 + 𝑅𝑖

𝑖+1 𝜔 
𝑖

𝑖 × �̇�𝑖+1 𝑍 
𝑖+1

𝑖+1 + �̈�𝑖+1 𝑍 
𝑖+1

𝑖+1                                     (4.21) 

 

4.2.4. Jacobian of the Manipulator and Inverse Jacobian66 

In general, the Jacobian is a matrix that consists of partial derivatives of the joint functions. It 

is mainly used to relate joint velocities and end-effector linear and angular velocity. After 

mentioned in previous section velocities are propagated through the kinematic chain, it is then 

possible to extract �̇� out of the final matrix. Therefore, Jacobian is obtained: 

(
𝜐
𝜔

) = 𝐽(𝜃)�̇�  (4.22) 

Nevertheless, it is often required for the Jacobian to be inverted. That allows to set velocities 

of the final part in the kinematic structure as an input and automatically program joint 

velocities using basic algorithm. 

�̇� = 𝐽−1(𝜃) (
𝜐
𝜔

) (4.23) 

Complexity of the inverting procedure depends on whether matrix is squared or non-squared. 

Inverse of the squared matrices is straightforward in terms of accuracy, but with non-squared 

matrices accuracy may be the problem. Non-squared matrices are inverted using pseudo-

inverse technique. After that, in order to reduce deviations in calculations, Newton-Raphson 

method is used.67 This approach is very useful but computational resources demanding since 

forward velocity and acceleration determination should be implemented in it. Moreover, 

considerable number of iterations should take place until desirable result would be acceptable. 

Newton-Raphson method is described in the next section. 
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As for accelerations, they are computed in the following manner68: 

(
�̇�
�̇�

) = 𝐽(𝜃)�̈� + 𝐽(̇𝜃)�̇� (4.24) 

�̈� = 𝐽−1 ((
�̇�
�̇�

) − 𝐽(̇𝜃)�̇�)         (4.25) 

4.2.5. Four-bar Linkages Used in the Robotic Hand 

Four-bar linkages are often used in robotics and provide reliable transmission ratio and 

durability. Schemes 4.5 and 4.6 show typical crank-rocker mechanism that drives the thumb. 

 

Scheme 4.5. Four-bar linkage (standard quadrants) 1 

 

Scheme 4.6. Four-bar linkage (standard quadrants) 2 

Position equations: 

𝐵𝐷 = √𝐿1
2 + 𝐿2

2 − 2𝐿1𝐿2 cos𝜃2  (4.26) 

𝛾 = cos−1 (
𝐿3
2+𝐿4

2−𝐵𝐷2

2𝐿3𝐿4
)   (4.27) 

𝜃3 = 2 tan−1 (
−𝐿2 sin𝜃2+𝐿4 sin𝛾

𝐿1+𝐿3−𝐿2 cos𝜃2−𝐿4 cos𝛾
) (4.28) 

𝜃4 = 2 tan−1 (
𝐿2 sin𝜃2−𝐿3 sin𝛾

𝐿2 cos𝜃2+𝐿4−𝐿1−𝐿3 cos𝛾
) (4.29) 

Velocity equations are: 

𝜔3 = −𝜔2 (
𝐿2 sin(𝜃4−𝜃2)

𝐿3 sin𝛾
)  (4.30) 
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𝜔4 = −𝜔2 (
𝐿2 sin(𝜃3−𝜃2)

𝐿4 sin𝛾
)  (4.31) 

Acceleration equations: 

𝛼3 =
𝛼2𝐿2 sin(𝜃2−𝜃4)+𝜔2

2𝐿2 cos(𝜃2−𝜃4)−𝜔4
2𝐿4+𝜔3

2𝐿3 cos(𝜃4−𝜃3)

𝐿3 sin(𝜃4−𝜃3)
 (4.32) 

 

𝛼4 =
𝛼2𝐿2 sin(𝜃2−𝜃3)+𝜔2

2𝐿2 cos(𝜃2−𝜃3)−𝜔3
2𝐿4 cos(𝜃4−𝜃3)+𝜔3

2𝐿3

𝐿3 sin(𝜃4−𝜃3)
 (4.33) 

 

Figure 4.1. Four-bar linkage (non-standard quadrants) 1 

Figure 4.1 illustrates that inside the robotic finger also the crank-rocker type of four-bar 

linkage is used. CD link operates in the opposite quadrant of the standard mechanism, scheme 

4.8 shows that the link is assembled below in comparison to scheme 4.6. 

 

Scheme 4.7. Four-bar linkage (non-standard quadrants) 2 
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Scheme 4.8. Four-bar linkage (non-standard quadrants) 3 

Changes made to the mechanism design should be indicated in the position equations. Hence, 

equations 4.28 and 4.29 are revised to include functioning of the CD link in a different 

quadrant: 

𝜃3 = 2 tan−1 (
−𝐿2 sin𝜃2−𝐿4 sin 𝛾

𝐿1+𝐿3−𝐿2 cos𝜃2−𝐿4 cos𝛾
)  (4.34) 

𝜃4 = 2 tan−1 (
𝐿2 sin𝜃2+𝐿3 sin 𝛾

𝐿2 cos 𝜃2+𝐿4−𝐿1−𝐿3 cos𝛾
)  (4.35) 

 

4.3. Inverse Kinematics Techniques 

In this section, brief description of each IK method is given and main advantages and 

disadvantages are discussed. 

4.3.1. Decoupling Technique 

Decoupling method is applied for a six DOF manipulator with a spherical wrist. Decoupling 

method divides the kinematic problem into two independent parts: inverse orientation and 

inverse position kinematics. This further affects the forward kinematics transformation 

matrix, splitting it to a translation and rotation matrices product.  The translation matrix is 

then responsible for calculating the position, whereas rotation part describes the orientation of 

the wrist.5 Decoupling technique is only applied to manipulators with spherical wrist as in that 

case the translation matrix only contains the first three joint variables, as the final three joints 

movement will not affect the position of wrist centre.6 Therefore, it is possible to equal wrist 

position vector with the joint variable parameters from transformation matrix to obtain three 

equations for joint variables. Those can then be solved to find the solutions for first three joint 

parameters. Once joint position parameters are determined, orientation parameters can be 

calculated.  
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The decoupling method greatly simplifies the non-complicated inverse kinematic problem. 

However, the main disadvantage of this technique is that with the more complex robotic 

manipulator configuration, complicated trigonometric equations arise and hence may not 

always be solved. In which case, another approach should be applied for solving the inverse 

kinematics problem.  

4.3.2. Iterative Technique 

Iterative technique applies Newton-Raphson method for solving the inverse kinematics 

problem. With this approach, the joint variables are found by substituting initial guess values 

for joint parameters into forward kinematics. The guess values are further changed according 

to modified Newton-Raphson approximation (equation 4.36) and the substitution process is 

repeated until the difference between qn+1 and qn is less or equal to the required tolerance.  

𝑞𝑛+1 = 𝑞𝑛 + 𝐽−1𝛿𝑇   (4.36) 

The δT value is the difference between the goal end effector position and the one obtained 

with the guess values. This value can also be referred to as an error and should be reduced.  

The main disadvantage of the iterative technique is that it refers to the forward kinematics in 

order to solve the inverse problem, which leads to more time and actions required to solve the 

problem as many iterations can be required to achieve the desired position. However, such 

method has no application limitations and also eliminates the problem of solving complicated 

trigonometric equations that arise when decoupling or inverse transformation techniques are 

applied.  

For inverse kinematics, singularities should be found in order to avoid problems. Once 

Jacobian is obtained, conditions when |𝐽| = 0 or |𝐽𝐽𝑇 | = has to be determined.   



 
59 

 

  

4.4. Combined Forward Kinematics 

4.4.1. Angles of the Passive Joints 

In order to find how passive joints change their values with respect to the input of active 

joints, it is necessary to obtain their axis positions. Initially, fixed axis is chosen from which 

rotations will take place. For the coordinates of the passive joints to be defined, they are 

multiplied by the unit vector. It is important to point out that angular dimensions between axis 

of the joints remain constant during motion of the mechanism. Thus, constraints 𝐶𝐻
𝑇𝐶𝐺, 𝐶𝐻

𝑇𝐶𝑄 

can be applied and system of equations in vector form is gained. Then, obtained relationship 

has to be integrated to 𝐶𝐻
𝑇𝐶𝐻 = 1, where third row, representing ‘z’ axis, is studied and 

general equation of the form  𝐴𝑧𝐻
2 + 𝐵𝑧𝐻 + 𝐶 = 0 is found. After that, solution for 𝑧𝐻 is 

determined and hence passive angles 𝜃2, 𝜃3 and 𝜃4 could be solved by ‘z’ axis inspection of 

different routes to CH and CQ positions – dependency on the active angles 𝜃1 and 𝜃5 is 

therefore established.69 

To obtain coordinates of passive connection ‘G’ in the global coordinate frame, the following 

multiplication procedure is followed: 

CG = [

𝑥𝐺

𝑦𝐺

𝑧𝐺

] = 𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝒖  (4.37) 

To show direction of the ‘z’ axis (which is very specific for each joint), unit vector ‘u’ is 

introduced, u = [
0
0
1
] 

For the convenience of calculation process presentation, multiplication of two rotation 

matrices and column unit vector u is shown in two stages below. First, rotation matrices are 

multiplied to give the following: 

𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1) = [
𝑐𝜃1 −𝑠𝜃1 0
𝑠𝜃1 𝑐𝜃1 0
0 0 1

] [
𝑐(−25°) 0 𝑠(−25°)

0 1 0
−𝑠(−25°) 0 𝑐(−25°)

] => 

[
𝑐𝜃1 −𝑠𝜃1 0
𝑠𝜃1 𝑐𝜃1 0
0 0 1

] [
𝑐(−25°) 0 𝑠(−25°)

0 1 0
−𝑠(−25°) 0 𝑐(−25°)

] =  [

𝑐𝜃1𝑐(−25°) −𝑠𝜃1 𝑐𝜃1𝑠(−25°)
𝑠𝜃1𝑐(−25°) 𝑐𝜃1 𝑠𝜃1𝑠(−25°)
−𝑠(−25°) 0 𝑐(−25°)

] (4.38) 

This matrix from equation 4.38 is then multiplied by u to get the final coordinates for passive 

connection “G”, 
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𝐶𝐺 =  [

𝑐𝜃1𝑐(−25°) −𝑠𝜃1 𝑐𝜃1𝑠(−25°)

𝑠𝜃1𝑐(−25°) 𝑐𝜃1 𝑠𝜃1𝑠(−25°)
−𝑠(−25°) 0 𝑐(−25°)

] [
0
0
1
] = [

𝑐𝜃1𝑠(−25°)

𝑠𝜃1𝑠(−25°)
𝑐(−25°)

]  (4.39) 

Similar procedure is followed to obtain position of passive joint ‘H’ in the global coordinate 

frame, 

CH = [

𝑥𝐻

𝑦𝐻

𝑧𝐻

] = 𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2)𝒖   (4.40) 

𝐶𝐻 = [

𝑐𝜃1𝑐(−25°) −𝑠𝜃1 𝑐𝜃1𝑠(−25°)
𝑠𝜃1𝑐(−25°) 𝑐𝜃1 𝑠𝜃1𝑠(−25°)
−𝑠(−25°) 0 𝑐(−25°)

]𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2)𝒖   (4.41) 

Two new rotation matrices 𝑅(𝑧2, 𝜃2) and 𝑅(𝑦2, −𝛼2) are again calculated separately to give:  

𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2) = [
𝑐𝜃2 −𝑠𝜃2 0
𝑠𝜃2 𝑐𝜃2 0
0 0 1

] [
𝑐(−40°) 0 𝑠(−40°)

0 1 0
−𝑠(−40°) 0 𝑐(−40°)

] =

[

𝑐𝜃2𝑐(−40°) −𝑠𝜃2 𝑐𝜃2𝑠(−40°)

𝑠𝜃2𝑐(−40°) 𝑐𝜃2 𝑠𝜃2𝑠(−40°)

−𝑠(−40°) 0 𝑐(−40°)
]   (4.42) 

It is possible to divide the multiplication of several matrices into smaller fragments as matrix 

multiplication is associative, and hence (AB)C=A(BC). This property allows to successfully 

split the equation and make the final multiplication easier. Obtained matrices are then 

substituted into equation 4.41 and the coordinates for passive joint ‘H’ are obtained: 

𝐶𝐻 = [

𝑐𝜃1𝑐(−25°) −𝑠𝜃1 𝑐𝜃1𝑠(−25°)

𝑠𝜃1𝑐(−25°) 𝑐𝜃1 𝑠𝜃1𝑠(−25°)

−𝑠(−25°) 0 𝑐(−25°)
] [

𝑐𝜃2𝑐(−40°) −𝑠𝜃2 𝑐𝜃2𝑠(−40°)

𝑠𝜃2𝑐(−40°) 𝑐𝜃2 𝑠𝜃2𝑠(−40°)

−𝑠(−40°) 0 𝑐(−40°)
] [

0
0
1
] = 

[

𝑐𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°) − 𝑠𝜃1𝑠𝜃2𝑠(−40°) + 𝑐𝜃1𝑠(−25°)𝑐(−40°)

𝑠𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°) + 𝑐𝜃1𝑠𝜃2𝑠(−40°) + 𝑠𝜃1𝑠(−25°)𝑐(−40°)

−𝑠(−25°)𝑐𝜃2𝑠(−40°) + 𝑐(−25°)𝑐(−40°)
] (4.43) 

Described procedure is repeated to obtain the global coordinates of passive connection ‘Q’, 

which is defined by equation 4.44 below: 

CQ = [

𝑥𝑄

𝑦𝑄

𝑧𝑄

] = 𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝛼4)𝑢   (4.44) 
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Given that α5 is 113° and α4 is 112°, rotation matrices can be substituted in. As stated earlier, 

matrix multiplication is associative and therefore can be done in reversed steps to simplify the 

calculation: 

[
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [
𝑐𝜃5 −𝑠𝜃5 0
𝑠𝜃5 𝑐𝜃5 0
0 0 1

] [
𝑐(112°) 0 𝑠(112°)

0 1 0
−𝑠(112°) 0 𝑐(112°)

] [
0
0
1
] = 

[
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [
𝑐𝜃5 −𝑠𝜃5 0
𝑠𝜃5 𝑐𝜃5 0
0 0 1

] [
𝑠(112°)

0
𝑐(112°)

] = 

[
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [

𝑐𝜃5𝑠(112°)
𝑠𝜃5𝑠(112°)

𝑐(112°)
] = 

[

𝑐(113°)𝑐𝜃5𝑠(112°) + 𝑠(113°)𝑐(112°)
𝑠𝜃5𝑠(112°)

−𝑠(113°)𝑐𝜃5𝑠(112°) + 𝑐(113°)𝑐(112°)
]   (4.45)  

Once the coordinates for passive joints G, H and Q are obtained, geometric constraints must 

be identified. First, the dot product of the vectors representing position of each passive 

connection axis should be calculated. Since connection H is a binder for joints G and Q, it is 

chosen as a reference point for constraint application. 

The dot product of CH
T and CG was calculated manually, in order to show the calculation 

process and the use of the main trigonometric identity (sin2a + cos2a = 1). 

𝐶𝐻
𝑇𝐶𝐺  = [

𝑐𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°) − 𝑠𝜃1𝑠𝜃2𝑠(−40°) + 𝑐𝜃1𝑠(−25°)𝑐(−40°)

𝑠𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°) + 𝑐𝜃1𝑠𝜃2𝑠(−40°) + 𝑠𝜃1𝑠(−25°)𝑐(−40°)

−𝑠(−25°)𝑐𝜃2𝑠(−40°) + 𝑐(−25°)𝑐(−40°)
]

𝑇

∙ [

𝑐𝜃1𝑠(−25°))

𝑠𝜃1𝑠(−25°)

𝑐(−25°)
] => 

𝑪𝑯
𝑻 𝑪𝑮 = 𝑐2𝜃1𝑠(−25°)𝑐(−25°)𝑐𝜃2𝑠(−40°) − 𝑐𝜃1𝑠(−25°)𝑠𝜃1𝑠𝜃2𝑠(−40°) +

𝑐2𝜃1𝑠
2(−25°)𝑐(−40°) + 𝑠2𝜃1𝑠(−25°)𝑐(−25°)𝑐𝜃2𝑠(−40°) +

𝑠𝜃1𝑠(−25°)𝑐𝜃1𝑠𝜃2𝑠(−40°) + 𝑠2𝜃1𝑠
2(−25°)𝑐(−40°) − 𝑐(−25°)𝑠(−25°)𝑐𝜃2𝑠(−40°) +

𝑐2(−25°)𝑐(−40°) = 𝑠(−25°)𝑐(−25°)𝑐𝜃2𝑠(−40°)(𝑐2𝜃1 + 𝑠2𝜃1) +

𝑠2(−25°)𝑐(−40°)(𝑐2𝜃1 + 𝑠2𝜃1) − 𝑐𝜃1𝑠(−25°)𝑠𝜃1𝑠𝜃2𝑠(−40°) +

𝑠𝜃1𝑠(−25°)𝑐𝜃1𝑠𝜃2𝑠(−40°) − 𝑐(−25°)𝑠(−25°)𝑐𝜃2𝑠(−40°) + 𝑐2(−25°)𝑐(−40°) =

 𝑠(−25°)𝑐(−25°)𝑐𝜃2𝑠(−40°) + 𝑠2(−25°)𝑐(−40°) − 𝑐𝜃1𝑠(−25°)𝑠𝜃1𝑠𝜃2𝑠(−40°) +

𝑠𝜃1𝑠(−25°)𝑐𝜃1𝑠𝜃2𝑠(−40°) − 𝑐(−25°)𝑠(−25°)𝑐𝜃2𝑠(−40°) + 𝑐2(−25°)𝑐(−40°) =

𝑐(−40°)(𝑠2(−25°) + 𝑐2(−25°)) =  𝒄(−𝟒𝟎°) 
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Appling another trigonometric identity, which states that cos(-a) = cos(a): 

𝐶𝐻
𝑇𝐶𝐺 = cos 40° =  cos 𝛼2 (4.46) 

Similar procedure was attempted for CH
T and CQ dot product calculation, however, due to 

absence of the sine and cosine squared after multiplication, the clear simplified solution could 

not be obtained. Therefore, it was necessary to make essential changes in CH matrix. 

According to the mechanism of the palm, it is possible to consider connection ‘H’ from the 

other side, i.e. from L perspective. The way in which joint ‘H’ is described does not affect the 

mathematical meaning, however, makes the multiplication result dramatically clearer for 

presentation. 

Describing the CH from the other side, gives the following equation for CH: 

CH = [

𝑥𝐻

𝑦𝐻

𝑧𝐻

] = 𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝛼4)𝑅(𝑧4, 𝜃4)𝑅(𝑦3, 𝛼3)𝑢      (4.47) 

Given that α5 is 113°, α4 is 112° and α3 is 70°, rotation matrices can be introduced and 

stepwise matrix multiplication can take place. For presentation convenience purposes, the 

R(y3, α3) multiplication with unit vector u was omitted and only final matrix ([
𝑠(70°)

0
𝑐(70°)

]) was 

shown in the step-wise calculation. As earlier, the property of associative multiplication is 

used and hence the calculation is done starting from the end of the equation. The exact 

process is shown below for reference: 

CH  =

[
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [
𝑐𝜃5 −𝑠𝜃5 0
𝑠𝜃5 𝑐𝜃5 0
0 0 1

] [
𝑐(112°) 0 𝑠(112°)

0 1 0
−𝑠(112°) 0 𝑐(112°)

] [
𝑐𝜃4 −𝑠𝜃4 0
𝑠𝜃4 𝑐𝜃4 0
0 0 1

] [
𝑠(70°)

0
𝑐(70°)

] = 

= [
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [
𝑐𝜃5 −𝑠𝜃5 0
𝑠𝜃5 𝑐𝜃5 0
0 0 1

] [
𝑐(112°) 0 𝑠(112°)

0 1 0
−𝑠(112°) 0 𝑐(112°)

] [

𝑐𝜃4𝑠(70°)
𝑠𝜃4𝑠(70°)

𝑐(70°)
] = 

= [
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [
𝑐𝜃5 −𝑠𝜃5 0
𝑠𝜃5 𝑐𝜃5 0
0 0 1

] [

𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑠(112°)𝑐(70°)
𝑠𝜃4𝑠(70°)

−𝑠(112°)𝑐𝜃4𝑠(70°) + 𝑐(112°)𝑐(70°)
] = 

= [
𝑐(113°) 0 𝑠(113°)

0 1 0
−𝑠(113°) 0 𝑐(113°)

] [

𝑐𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑐𝜃5𝑠(112°)𝑐(70°) − 𝑠𝜃5𝑠𝜃4𝑠(70°)

𝑠𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑠𝜃5𝑠(112°)𝑐(70°) + 𝑐𝜃5𝑠𝜃4𝑠(70°)

−𝑠(112°)𝑐𝜃4𝑠(70°) + 𝑐(112°)𝑐(70°)
] 
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Therefore, CH position coordinates from L perspective is obtained: 

[

𝑐(113°)𝑐𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑐(113°)𝑐𝜃5𝑠(112°)𝑐(70°) − 𝑐(113°)𝑠𝜃5𝑠𝜃4𝑠(70°) − 𝑠(113°)𝑠(112°)𝑐𝜃4𝑠(70°) + 𝑠(113°)𝑐(112°)𝑐(70°)

𝑠𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑠𝜃5𝑠(112°)𝑐(70°) + 𝑐𝜃5𝑠𝜃4𝑠(70°)

−𝑠(113°)𝑐𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) − 𝑠(113°)𝑐𝜃5𝑠(112°)𝑐(70°) + 𝑠(113°)𝑠𝜃5𝑠𝜃4𝑠(70°) − 𝑐(113°)𝑠(112°)𝑐𝜃4𝑠(70°) + 𝑐(113°)𝑐(112°)𝑐(70°)
]

(4.48) 

Once the new set of coordinates for connection H is obtained, it’s transpose can be multiplied 

with CQ shown in equation 4.45. For the clear presentation of results, the factors CH
T and CQ 

were omitted. The final fully simplified expression for dot product of these two joints is given 

below: 

𝐶𝐻
𝑇𝐶𝑄 = cos 70° = cos 𝛼3   (4.49) 

Following the same procedure for CH
T and CH with any of CH matrices from either equation 

4.43 or 4.48, the product of transpose and actual matrix gives 1. Therefore: 

𝐶𝐻
𝑇𝐶𝐻 = 1   (4.50) 

Once all the answers are obtained, constraints could be set in a general form: 

[
𝑥𝐺 𝑦𝐺 𝑧𝐺

𝑥𝑄 𝑦𝑄 𝑧𝑄
] [

𝑥𝐻

𝑦𝐻

𝑧𝐻

] = [
𝑐𝛼2

𝑐𝛼3
]    (4.51) 

Multiplying the given matrices and rearranging the equation 4.51 in order to make it suitable 

for further solution: 

[
𝑥𝐺𝑥𝐻 + 𝑦𝐺𝑦𝐻 + 𝑧𝐺𝑧𝐻

𝑥𝑄𝑥𝐻 + 𝑦𝑄𝑦𝐻 + 𝑧𝑄𝑧𝐻
] = [

𝑐𝛼2

𝑐𝛼3
]             

[
𝑥𝐺𝑥𝐻 + 𝑦𝐺𝑦𝐻

𝑥𝑄𝑥𝐻 + 𝑦𝑄𝑦𝐻
] = [

𝑐𝛼2 − 𝑧𝐺𝑧𝐻

𝑐𝛼3 − 𝑧𝑄𝑧𝐻
]    (4.52) 

Equation 4.52 has the required form to solve the above system of linear equations. Cramer’s 

rule can be used efficiently in determination of single variable without the need of solving the 

whole system. According to Cramer’s rule: 

𝑥 =
𝐷𝑥

𝐷
; 𝑦 =

𝐷𝑦

𝐷
; 𝑧 =

𝐷𝑧

𝐷
    (4.53) 

Where D is the coefficient matrix’s determinant and Dx, Dy and Dz is the D matrix with 

answer column in place of x, y and z respectively.  

In terms of coefficients for XH and YH: 𝐷 = |
𝑥𝐺 𝑦𝐺

𝑥𝑄 𝑦𝑄
| and therefore: 
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𝐷 = 𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺     (4.54) 

Inserting answer column in x and y columns to find Dx and Dy respectively:   

 𝐷𝑥 = |
𝑐𝛼2 − 𝑧𝐺𝑧𝐻 𝑦𝐺

𝑐𝛼3 − 𝑧𝑄𝑧𝐻 𝑦𝑄
| = 𝑐𝛼2𝑦𝑄 − 𝑧𝐺𝑧𝐻𝑦𝑄 − 𝑐𝛼3𝑦𝐺 + 𝑧𝑄𝑧𝐻𝑦𝐺 

𝐷𝑦 = |
𝑥𝐺 𝑐𝛼2 − 𝑧𝐺𝑧𝐻

𝑥𝑄 𝑐𝛼3 − 𝑧𝑄𝑧𝐻
| = 𝑐𝛼3𝑥𝐺 − 𝑧𝑄𝑧𝐻𝑥𝐺 − 𝑐𝛼2𝑥𝑄 + 𝑧𝐺𝑧𝐻𝑥𝑄 

Then X and Y are given as:  

𝑥𝐻 =
𝐷𝑥

𝐷
=

𝑐𝛼2𝑦𝑄 − 𝑧𝐺𝑧𝐻𝑦𝑄 − 𝑐𝛼3𝑦𝐺 + 𝑧𝑄𝑧𝐻𝑦𝐺

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
= 

𝑐𝛼2𝑦𝑄 − 𝑐𝛼3𝑦𝐺

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
+

(𝑧𝑄𝑦𝐺 − 𝑧𝐺𝑦𝑄)

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
𝑧𝐻 

𝑦𝐻 =
𝐷𝑦

𝐷
=

𝑐𝛼3𝑥𝐺 − 𝑧𝑄𝑧𝐻𝑥𝐺 − 𝑐𝛼2𝑥𝑄 + 𝑧𝐺𝑧𝐻𝑥𝑄

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
= 

𝑐𝛼3𝑥𝐺 − 𝑐𝛼2𝑥𝑄

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
+

(𝑧𝐺𝑥𝑄 − 𝑧𝑄𝑥𝐺)

𝑥𝐺𝑦𝑄 − 𝑥𝑄𝑦𝐺
𝑧𝐻 

This can be written in terms of ZH as: 

𝑥𝐻 = 𝑊 + 𝐼𝑧𝐻      (4.55) 

𝑦𝐻 = 𝑉 + 𝑁𝑧𝐻     (4.56) 

Where, 𝑊 =
𝑐𝛼2𝑦𝑄−𝑐𝛼3𝑦𝐺

𝑥𝐺𝑦𝑄−𝑥𝑄𝑦𝐺
; 𝐼 =

(𝑧𝑄𝑦𝐺−𝑧𝐺𝑦𝑄)

𝑥𝐺𝑦𝑄−𝑥𝑄𝑦𝐺
; 𝑉 =

𝑐𝛼3𝑥𝐺−𝑐𝛼2𝑥𝑄

𝑥𝐺𝑦𝑄−𝑥𝑄𝑦𝐺
 and 𝑁 =

(𝑧𝐺𝑥𝑄−𝑧𝑄𝑥𝐺)

𝑥𝐺𝑦𝑄−𝑥𝑄𝑦𝐺
. 

Substituting Equations 4.55 and 4.56 into equation 4.50, gives: 

[𝑥𝐻 𝑦𝐻 𝑧𝐻] [

𝑥𝐻

𝑦𝐻

𝑧𝐻

] = 1 (Eq. 4.50 general form) 

[𝑊 + 𝐼𝑧𝐻  𝑉 + 𝑁𝑧𝐻 𝑧𝐻] [
𝑊 + 𝐼𝑧𝐻

𝑉 + 𝑁𝑧𝐻

𝑧𝐻

] = (𝑊 + 𝐼𝑧𝐻)2 + (𝑉 + 𝑁𝑧𝐻)2 + 𝑧𝐻
2 = 1 

= 𝑊2 + 2𝑊𝐼𝑧𝐻 + 𝐼2𝑧𝐻
2 + 𝑉2 + 2𝑉𝑁𝑧𝐻 + 𝑁2𝑧𝐻

2 + 𝑧𝐻
2 − 1 = 0 

Above can be written as a generalized quadratic equation form for 𝑧𝐻: 

𝐴𝑧𝐻
2 + 𝐵𝑧𝐻 + 𝐶 = 0     (4.57) 

Where, 𝐴 = 𝐼2 + 𝑁2 + 1; 𝐵 = 2𝑊𝐼 + 2𝑉𝑁 and 𝐶 = 𝑊2 + 𝑉2 − 1. 

Equation 4.57 can now be solved for 𝑧𝐻 to give: 

𝑧𝐻 =
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
      (4.58) 
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Now, when 𝑧𝐻 value is determined, it is possible to obtain the unknown angles (𝜃2, 𝜃3, 𝜃4). 

In order to define 𝜃2, equation 4.58 is compared with Z component of equation 4.43: 

𝑧𝐻 = −𝑠(−25°)𝑐𝜃2𝑠(−40°) + 𝑐(−25°)𝑐(−40°) 

𝑧𝐻 − 𝑐(−25°)𝑐(−40°) = −𝑠(−25°)𝑐𝜃2𝑠(−40°) 

𝑐(−25°)𝑐(−40°)

𝑠(−25°)𝑠(−40°)
−

𝑧𝐻

𝑠(−25°)𝑠(−40°)
= 𝑐𝜃2 

𝑐𝜃2 = cot(−25°) cot(−40°) −
𝑧𝐻

𝑠(−25°)𝑠(−40°)
 

𝜃2 = cos−1 (cot(−25°) cot(−40°) −
𝑧𝐻

𝑠(−25°)𝑠(−40°)
)     (4.59) 

In order to define 𝜃4, equation 4.58 is compared to Z component of equation 4.48. 

𝑧𝐻 = −𝑠(113°)𝑐𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) − 𝑠(113°)𝑐𝜃5𝑠(112°)𝑐(70°)

+ 𝑠(113°)𝑠𝜃5𝑠𝜃4𝑠(70°) − 𝑐(113°)𝑠(112°)𝑐𝜃4𝑠(70°)

+ 𝑐(113°)𝑐(112°)𝑐(70°) 

𝑠(113°)𝑐𝜃5𝑐(112°)𝑐𝜃4𝑠(70°) + 𝑐(113°)𝑠(112°)𝑐𝜃4𝑠(70°) − 𝑠(113°)𝑠𝜃5𝑠𝜃4𝑠(70°)

= 𝑐(113°)𝑐(112°)𝑐(70°) − 𝑠(113°)𝑐𝜃5𝑠(112°)𝑐(70°) − 𝑧𝐻 

This then can be written as:  

𝐴𝑐𝜃4 + 𝐵𝑠𝜃4 = 𝐶     (4.60) 

Where, 𝐴 = 𝑠(113°)𝑐𝜃5𝑐(112°)𝑠(70°) + 𝑐(113°)𝑠(112°)𝑠(70°); 𝐵 = −𝑠(113°)𝑠𝜃5𝑠(70°)  

and 𝐶 = 𝑐(113°)𝑐(112°)𝑐(70°) − 𝑠(113°)𝑐𝜃5𝑠(112°)𝑐(70°) − 𝑧𝐻 

Once the general form of trigonometric equation is obtained, 𝜃4 can be calculated.  

𝐴𝑐𝜃4 + 𝐵𝑠𝜃4 = 𝐶 

𝐴𝑐𝜃4 = 𝐶 − 𝐵𝑠𝜃4 

Applying that 𝑠𝑖𝑛2𝛼 + 𝑐𝑜𝑠2𝛼 = 1 and therefore, 𝑠𝑖𝑛2 =  1 − 𝑐𝑜𝑠2,

𝑤ℎ𝑖𝑐ℎ 𝑔𝑖𝑣𝑒𝑠 𝑠𝑖𝑛𝛼 √1 − 𝑐𝑜𝑠2𝛼: 

𝐴𝑐𝜃4 − 𝐶 = −𝐵√1 − 𝑐2𝜃4 

Taking square of the equation above and rearranging:  
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(𝐴𝑐𝜃4 − 𝐶)2 = (−𝐵√1 − 𝑐2𝜃4)
2 

𝐴2𝑐2𝜃4 − 2𝐴𝐶𝑐𝜃4 + 𝐶2 = 𝐵2(1 − 𝑐2𝜃4) 

𝐴2𝑐2𝜃4 − 2𝐴𝐶𝑐𝜃4 + 𝐶2 = 𝐵2 − 𝐵2𝑐2𝜃4 

𝐴2𝑐2𝜃4 + 𝐵2𝑐2𝜃4 − 2𝐴𝐶𝑐𝜃4 = 𝐵2 − 𝐶2 

(𝐴2 + 𝐵2)𝑐2𝜃4 − (2𝐴𝐶)𝑐𝜃4 + (𝐶2 − 𝐵2) = 0    (4.61) 

The equation is now in usual quadratic equation form with coefficients in green. Combining 

equation 4.61 with general quadratic equation solutions (𝑥 =
−𝑏∓√𝑏2−4𝑎𝑐

2𝑎
): 

𝑐𝜃4 =
2𝐴𝐶 ∓ √(−2𝐴𝐶)2 − 4(𝐴2 + 𝐵2)(𝐶2 − 𝐵2)

2(𝐴2 + 𝐵2)
 

𝑐𝜃4 =
2𝐴𝐶 ∓ √4𝐴2𝐶2 − 4𝐴2𝐶2 + 4𝐴2𝐵2 − 4𝐵2𝐶2 + 4𝐵4

2(𝐴2 + 𝐵2)
 

𝑐𝜃4 =
2𝐴𝐶 ∓ √4(𝐴2𝐵2 − 𝐵2𝐶2 + 𝐵4)

2(𝐴2 + 𝐵2)
 

𝑐𝜃4 =
2𝐴𝐶 ∓ √4𝐵2(𝐴2 − 𝐶2 + 𝐵2)

2(𝐴2 + 𝐵2)
  

𝑐𝜃4 =
2𝐴𝐶 ∓ 2𝐵√(𝐴2 − 𝐶2 + 𝐵2)

2(𝐴2 + 𝐵2)
 

𝑐𝜃4 =
𝐴𝐶 ∓ 𝐵√(𝐴2 − 𝐶2 + 𝐵2)

(𝐴2 + 𝐵2)
 

Now, 𝜃4 can be found taking inverse of cosine: 

𝜃4 = cos−1 (
𝐴𝐶∓𝐵√(𝐴2−𝐶2+𝐵2)

(𝐴2+𝐵2)
)    (4.62) 

In order to obtain the equations for θ3, it is necessary to describe position coordinates of 

passive joint ‘Q’ from L-perspective: 

CQ = [

𝑥𝑄

𝑦𝑄

𝑧𝑄

] = 𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2)𝑅(𝑧3, 𝜃3)𝑅(𝑦3, −𝛼3)𝑢    (4.63) 

Following the same procedure as earlier in determining CQ, named rotation matrices are 

introduces and multiplied to give the final result to last two factors: 
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[

𝑐𝜃1𝑐(−25°) −𝑠𝜃1 𝑐𝜃1𝑠(−25°)
𝑠𝜃1𝑐(−25°) 𝑐𝜃1 𝑠𝜃1𝑠(−25°)
−𝑠(−25°) 0 𝑐(−25°)

] [

𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) + 𝑐𝜃2𝑠(−40°)𝑐(−70°) − 𝑠𝜃2𝑠𝜃3𝑠(−70°)

𝑠𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) + 𝑠𝜃2𝑠(−40°)𝑐(−70°) + 𝑐𝜃2𝑠𝜃3𝑠(−70°)

−𝑠(−40°)𝑐𝜃3𝑠(−70°) + 𝑐(−40°)𝑐(−70°)
] 

(4.64) 

As it is not possible to clearly show the matrix in full due to space limitations, the final 

coefficients of the CQ matrix are given below: 

𝑥𝑄 = 𝑐𝜃1𝑐(−25°)𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) + 𝑐𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°)

− 𝑐𝜃1𝑐(−25°)𝑠𝜃2𝑠𝜃3𝑠(−70°) − 𝑠𝜃1𝑠𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°)

− 𝑠𝜃1𝑠𝜃2𝑠(−40°)𝑐(−70°) − 𝑠𝜃1𝑐𝜃2𝑠𝜃3𝑠(−70°)

− 𝑐𝜃1𝑠(−25°)𝑠(−40°)𝑐𝜃3𝑠(−70°) + 𝑐𝜃1𝑠(−25°)𝑐(−40°)𝑐(−70°) 

𝑦𝑄 =  𝑠𝜃1𝑐(−25°)𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) + 𝑠𝜃1𝑐(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°)

− 𝑠𝜃1𝑐(−25°)𝑠𝜃2𝑠𝜃3𝑠(−70°) + 𝑐𝜃1𝑠𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°)

+ 𝑐𝜃1𝑠𝜃2𝑠(−40°)𝑐(−70°) + 𝑐𝜃1𝑐𝜃2𝑠𝜃3𝑠(−70°)

− 𝑠𝜃1𝑠(−25°)𝑠(−40°)𝑐𝜃3𝑠(−70°) + 𝑠𝜃1𝑠(−25°)𝑐(−40°)𝑐(−70°) 

𝑧𝑄 = −𝑠(−25°)𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) − 𝑠(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°) +

𝑠(−25°)𝑠𝜃2𝑠𝜃3𝑠(−70°) − 𝑐(−25°)𝑠(−40°)𝑐𝜃3𝑠(−70°) + 𝑐(−25°)𝑐(−40°)𝑐(−70°) 

Since mathematically the original CQ matrix (from R-perspective) and CQ matrix from L-

perspective (equation 4.52) are similar, the following equality can be set: 

𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2)𝑅(𝑧3, 𝜃3)𝑅(𝑦3, −𝛼3)𝑢 =

𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝛼4)𝑢    (4.65) 

According to equation 4.53, coefficients of matrices from equations 4.45 and 4.64 can be 

compared.  

From the ZQ perspective: 

−𝑠(−25°)𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) − 𝑠(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°) +

𝑠(−25°)𝑠𝜃2𝑠𝜃3𝑠(−70°) − 𝑐(−25°)𝑠(−40°)𝑐𝜃3𝑠(−70°) + 𝑐(−25°)𝑐(−40°)𝑐(−70°) =

−𝑠(113°)𝑐𝜃5𝑠(112°) + 𝑐(113°)𝑐(112°) => 

− 𝑠(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°) + 𝑐(−25°)𝑐(−40°)𝑐(−70°) + 𝑠(113°)𝑐𝜃5𝑠(112°) −

𝑐(113°)𝑐(112°) =  𝑠(−25°)𝑐𝜃2𝑐(−40°)𝑐𝜃3𝑠(−70°) + 𝑐(−25°)𝑠(−40°)𝑐𝜃3𝑠(−70°) −

𝑠(−25°)𝑠𝜃2𝑠𝜃3𝑠(−70°) => 
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𝑐𝜃3(𝑠(−25°)𝑐𝜃2𝑐(−40°)𝑠(−70°) + 𝑐(−25°)𝑠(−40°)𝑠(−70°)) +

𝑠𝜃3(−𝑠(−25°)𝑠𝜃2𝑠(−70°)) = 𝑐(−25°)𝑐(−40°)𝑐(−70°) − 𝑐(113°)𝑐(112°) +

𝑠(113°)𝑐𝜃5𝑠(112°) − 𝑠(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°)  

This gives: 

𝐴′𝑐𝜃3 + 𝐵′𝑠𝜃3 = 𝐶′    (4.66) 

𝐴′ = 𝑠(−25°)𝑐𝜃2𝑐(−40°)𝑠(−70°) + 𝑐(−25°)𝑠(−40°)𝑠(−70°); 𝐵′ =

 −𝑠(−25°)𝑠𝜃2𝑠(−70°); 𝐶′ = 𝑐(−25°)𝑐(−40°)𝑐(−70°) − 𝑐(113°)𝑐(112°) +

𝑠(113°)𝑐𝜃5𝑠(112°) −  𝑠(−25°)𝑐𝜃2𝑠(−40°)𝑐(−70°) 

As equation 4.66 is identical to equation 4.60, it’s solution must be exactly the same once 

appropriate coefficients are inserted and notation is changed. This means that: 

𝑐𝜃3 =
𝐴′𝐶′∓𝐵′√(𝐴′2−𝐶′2+𝐵′2)

(𝐴′2+𝐵′2)
     (4.67) 

Now, 𝜃3 can be found taking inverse of cosine: 

𝜃3 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐴′𝐶′∓𝐵′√(𝐴′2−𝐶′2+𝐵′2)

(𝐴′2+𝐵′2)
)   (4.68) 
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4.4.2. Further Kinematics. Transformations to the Fingertips. 

 

Scheme 4.9. Combined Kinematics 

𝑦𝐷𝑖
 (𝑖 = 3, 4) is directed along 𝑧𝐷𝑖

× 𝑧4.  𝑦𝐷2
 is directed along 𝑧𝐷2

× 𝑧3.              

𝑦𝐷1
 is directed along 𝑧𝐷1

× 𝑧2. 

In terms of fingers, each finger’s local coordinate (𝐸𝑖with 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖) frame is set at the 

revolute joint located in the basement of the finger. 𝑥𝑖 axis is directed along the 𝐸𝑖𝐷𝑖, but 𝑥𝑖  is 

pointing to the same direction as the lower joint of each finger. 

For 𝑖 = 2, 3, 4, angle between 𝑧𝐷𝑖
and 𝑥𝑖 is ∆𝑖 and distance between 𝐷𝑖 and 𝐸𝑖 is 𝑆𝑖. The thumb 

(𝑖 = 1) has ∆1 for angle between 𝑂𝐷1 and pulley axis is 𝑊. 𝑆1 stands for distance between 𝐷1 

and 𝐸1. Angle between z axis of these points is given as 𝛹.  

Considering given geometric positioning and dependence, it is now possible to arrange a 

general relationship in terms of global coordinate frame located in the centre of the palm.  

For the thumb (i=1), it is necessary to consider two joints, including actuated joint. First, 

rotation of the ‘𝑧1’ axis occurs and then its displacement around ‘y’ axis leads to the second 

connection. According to the right hand rule, displacement will be classified as negative. 

After that, rotation of (‘𝑧2’ axis)  the second connection occurs. Next displacement should 
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lead to the attachment point of the finger, ‘𝜑1’ is introduced as the angle between the second 

connection and the attachment point. Therefore, 

𝑅(𝑧01, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝜑1)    (4.69) 

For the index finger (i=2), previous order is repeated, but displacement from the second joint 

is now translated to the third joint, not thumb. After rotation of the third connection is 

considered, translation to the index finger occurs. Therefore, 

𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝛼2) 𝑅(𝑧3, 𝜃3) 𝑅(𝑦3, −𝜑2
′ )  (4.70) 

where: 𝜑2
′  – angle between the third joint and attachment point of the index finger. 

 

From the other motor prospective, only two joints (not 3) should be considered, i.e. four and 

five (and then final displacement to the attachment point from connection four is done). This 

order is shorter by one rotation matrix. Since the second actuated joint is located in different 

direction, translation from the starting point is followed by rotation of the actuated joint. 

Order of the sequence is changed. In addition, displacement angles around ‘y’ axis are now 

positive. Therefore, 

𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝛼4) 𝑅(𝑧4, 𝜃4) 𝑅(𝑦3, 𝜑2)   (4.71) 

For the fingers 3 and 4 (i=3 and 4), after displacement to the fifth connection is shown and 

rotation of that connection taken into account, final displacement for each finger separately 

could be done: 

𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝜑𝑖)   (4.72) 

 

The following ‘condition bracket’ shows sequences of reaching attachment point of each 

finger through rotation matrices: 

𝑅𝑂𝐷𝑖
= {

𝑅(𝑧1, 𝜃1)𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2)𝑅(𝑦2, −𝜑1)                   𝑖𝑓 𝑖 = 1

𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝛼4) 𝑅(𝑧4, 𝜃4)𝑅(𝑦3, 𝜑2)       𝑖𝑓 𝑖 = 2

𝑅(𝑦5, 𝛼5)𝑅(𝑧5, 𝜃5)𝑅(𝑦4, 𝜑𝑖)                               𝑖𝑓 𝑖 = 3 𝑎𝑛𝑑 4

  (4.73) 

To represent attachment point in global coordinates, transformation matrix is constructed: 

𝑇𝑂𝐷𝑖
= [

𝑅𝑂𝐷𝑖
𝑅𝑂𝐷𝑖

휀′

0 0 0 1
], (i = 1,2,3,4) 

where: 휀′ = [0, 0, 𝐿]𝑇 and 𝑅𝑂𝐷𝑖
휀′ gives position vector of point 𝐷𝑖 in  the global coordinates. 

The ‘L’ represents the radius to the attachment point. It is not equal to the radius of the virtual 
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sphere, because attachment points are not allocated in the symmetrical manner. Some points 

are located closer to the centre of the palm, some are shifted away and are greater than the 

radius of the virtual sphere.  

In order to translate local coordinate frame of the finger’s lower joint to the global coordinate 

frame, the following transformation matrix is formed: 

𝑇𝑂𝐸𝑖
= 𝑇𝑂𝐷𝑖

𝑇𝐷𝐸𝑖
= [

𝑅𝑂𝐸𝑖
𝑃𝑂𝐸𝑖

0 0 0 1
]  (4.74) 

Then, in order to reach each fingertip and make coordinates global: 

𝑇𝑂_𝑓𝑖𝑛𝑔𝑒𝑟𝑡𝑖𝑝 = 𝑇𝑂𝐸𝑖
𝑇𝐸𝑖_𝑓𝑖𝑛𝑔𝑒𝑟𝑡𝑖𝑝   (4.75) 

Therefore, overall orientations and translations for each finger are as follows: 

4.4.2.1. For the thumb (theta 2 can have two variations) 

 

Round brackets are used in order to indicate that the several matrices represent one particular 

transformation. In the following order: 

𝑇6
0 = 𝑇 𝑇 𝑇 𝑇4

3 𝑇5
4

3
2

2
1 𝑇6

5
1
0 = [

𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0
𝑠𝑖𝑛𝜃1

0
0

𝑐𝑜𝑠𝜃1

0
0

0
1
0

     

0
0
0
1

] ∗ 𝐴1(𝐵1𝐶1)(𝐷1𝐸1)𝐹1𝐺1 (4.76) 

Where: 𝐴1 = [

cos(−25) 0 sin(−25)
0

−sin(−25)
0

1
0
0

0
cos(−25)

0

     

0
0
0
1

] [

𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0
𝑠𝑖𝑛𝜃2

0
0

𝑐𝑜𝑠𝜃2

0
0

0
1
0

     

0
0
0
1

] 

𝐵1 = [

cos(−17) 0 sin(−17)
0

− sin(−17)
0

1
0

0

0
cos(−17)

0

     

0

0
0

1

] [

1 0 0
0
0

0

1
0

0

0
1

0

     

0

0
45

1

] [

cos(34) 0 sin(34)
0

− sin(34)
0

1
0

0

0
cos(34)

0

     

0

0
0

1

] 

𝐶1 = [

cos (0,0019𝜃2
6  +  0,1256𝜃6  −  0,7287) −sin (0,0019𝜃2

6  +  0,1256𝜃6  −  0,7287) 0

sin (0,0019𝜃2
6  +  0,1256𝜃6  −  0,7287)

0

0

𝑐𝑜𝑠(0,0019𝜃2
6  +  0,1256𝜃6  −  0,7287)

0

0

0
1

0

     

0

0
0

1

] 

𝐷1 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−59.05
0
0
1

] [

1 0 0
0
0
0

cos(−72)

sin(−72)
0

− sin(−72)

cos(−72)
0

     

0
0
0
1

] 

𝐸1 = [

cos(−0,0063𝜃2
7  +  1,8006𝜃7  −  0,7794) − sin(−0,0063𝜃2

7  +  1,8006𝜃7  −  0,7794) 0

sin(−0,0063𝜃2
7  +  1,8006𝜃7  −  0,7794)

0

0

cos(−0,0063𝜃2
7  +  1,8006𝜃7  −  0,7794)

0

0

0
1

0

     

0

0
0

1

] 
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𝐹1 = [

cos(0,0034𝜃2
7  +  1,3417𝜃7  +  0,5973) − sin(0,0034𝜃2

7  +  1,3417𝜃7  +  0,5973) 0

sin(0,0034𝜃2
7  +  1,3417𝜃7  +  0,5973)

0

0

cos(0,0034𝜃2
7  +  1,3417𝜃7  +  0,5973)

0

0

0
1

0

     

−31.50

0
0

1

] 

𝐺1 = [

1 0 0
0
0

0

1
0

0

0
1

0

    

−27.45

0
0

1

] 

4.4.2.2. For the index finger (theta 4 can have four variations) 

 

𝑇6
0 = 𝑇 𝑇 𝑇 𝑇4

3 𝑇5
4

3
2

2
1 𝑇6

5
1
0 = 𝐴2𝐵2(𝐶2𝐷2)𝐸2𝐹2𝐺2 (4.77) 

Where: 𝐴2 = [

cos(113) 0 sin(113)
0

− sin(113)
0

1
0
0

0
cos(113)

0

     

0
0
0
1

] [

𝑐𝑜𝑠𝜃5 −𝑠𝑖𝑛𝜃5 0
𝑠𝑖𝑛𝜃5

0
0

𝑐𝑜𝑠𝜃5

0
0

0
1
0

     

0
0
0
1

] 

𝐵2 = [

cos(112) 0 sin(112)
0

− sin(112)
0

1
0
0

0
cos(112)

0

     

0
0
0
1

] [

𝑐𝑜𝑠𝜃4 −𝑠𝑖𝑛𝜃4 0
𝑠𝑖𝑛𝜃4

0
0

𝑐𝑜𝑠𝜃4

0
0

0
1
0

     

0
0
0
1

] 

𝐶2 = [

cos(46) 0 sin(46)
0

− sin(46)
0

1
0

0

0

cos(46)
0

     

0

0
0

1

] [

1 0 0
0
0

0

1
0

0

0
1

0

     

0

0
31.75

1

] [

cos(−148.67 − 180) 0 sin(−148.67 − 180)
0

− sin(−148.67 − 180)
0

1
0

0

0

cos(−148.67 − 180)
0

     

0

0
0

1

] 

𝐷2 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−70
0
0
1

] [

𝑐𝑜𝑠𝜃8 −𝑠𝑖𝑛𝜃8 0
𝑠𝑖𝑛𝜃8

0
0

𝑐𝑜𝑠𝜃8

0
0

0
1
0

     

0
0
0
1

] 

𝐸2 = [

𝑐𝑜𝑠(−0,0063𝜃2
9  +  1,8006𝜃9  −  0,7794) −𝑠𝑖𝑛(−0,0063𝜃2

9  +  1,8006𝜃9  −  0,7794) 0

𝑠𝑖𝑛(−0,0063𝜃2
9  +  1,8006𝜃9  −  0,7794)

0

0

𝑐𝑜𝑠(−0,0063𝜃2
9  +  1,8006𝜃9  −  0,7794)

0

0

0
1

0

     

−47.45

0
0

1

] 

𝐹2 [

𝑐𝑜𝑠(0,0034𝜃2
9  +  1,3417𝜃9  +  0,5973) −𝑠𝑖𝑛(0,0034𝜃2

9  +  1,3417𝜃9  +  0,5973) 0

sin(0,0034𝜃2
9  +  1,3417𝜃9  +  0,5973)

0

0

cos(0,0034𝜃2
9  +  1,3417𝜃9  +  0,5973)

0

0

0
1

0

     

−31.50

0
0

1

] 

𝐺2 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−27.45
0
0
1

] 
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4.4.2.3. For the middle finger 

 

𝑇5
0 = 𝑇 𝑇 𝑇 𝑇4

3 𝑇5
4

3
2

2
1

1
0 = 𝐴3(𝐵3𝐶3)𝐷3𝐸3𝐹3 (4.78) 

Where: 𝐴3 = [

cos(113) 0 sin(113)
0

− sin(113)
0

1
0
0

0
cos(113)

0

     

0
0
0
1

] [

𝑐𝑜𝑠𝜃5 −𝑠𝑖𝑛𝜃5 0
𝑠𝑖𝑛𝜃5

0
0

𝑐𝑜𝑠𝜃5

0
0

0
1
0

     

0
0
0
1

] 

𝐵3 = [

cos(70) 0 sin(70)
0

− sin(70)
0

1
0

0

0

cos(70)
0

     

0

0
0

1

] [

1 0 0
0
0

0

1
0

0

0
1

0

     

0

0
20.5

1

] [

cos(−60.67 − 180) 0 sin(−60.67 − 180)
0

− sin(−60.67 − 180)
0

1
0

0

0

cos(−60.67 − 180)
0

     

0

0
0

1

] 

𝐶3 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−70
0
0
1

] [

𝑐𝑜𝑠𝜃10 −𝑠𝑖𝑛𝜃10 0
𝑠𝑖𝑛𝜃10

0
0

𝑐𝑜𝑠𝜃10

0
0

0
1
0

     

0
0
0
1

] 

𝐷3 = [

𝑐𝑜𝑠(−0,0063𝜃2
11  +  1,8006𝜃11  −  0,7794) −𝑠𝑖𝑛(−0,0063𝜃2

11  +  1,8006𝜃11  −  0,7794) 0

𝑠𝑖𝑛(−0,0063𝜃2
11  +  1,8006𝜃11  −  0,7794)

0

0

𝑐𝑜𝑠(−0,0063𝜃2
11  +  1,8006𝜃11  −  0,7794)

0

0

0
1

0

     

−47.45

0
0

1

] 

𝐸3 = [

𝑐𝑜𝑠(0,0034𝜃2
11  +  1,3417𝜃11  +  0,5973) −𝑠𝑖𝑛(0,0034𝜃2

11  +  1,3417𝜃11  +  0,5973) 0

sin(0,0034𝜃2
11  +  1,3417𝜃11  +  0,5973)

0

0

cos(0,0034𝜃2
11  +  1,3417𝜃11  +  0,5973)

0

0

0
1

0

     

−31.50

0
0

1

] 

𝐹3 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−27.45
0
0
1

] 

4.4.2.4. For the ring finger 

𝑇5
0 = 𝑇 𝑇 𝑇 𝑇4

3 𝑇5
4

3
2

2
1

1
0 = 𝐴4(𝐵4𝐶4)𝐷4𝐸4𝐹4 (4.79) 

Where: 𝐴4 = [

cos(113) 0 sin(113)
0

− sin(113)
0

1
0

0

0

cos(113)
0

     

0

0
0

1

] [

𝑐𝑜𝑠𝜃5 −𝑠𝑖𝑛𝜃5 0

𝑠𝑖𝑛𝜃5

0

0

𝑐𝑜𝑠𝜃5

0

0

0
1

0

     

0

0
0

1

] 

𝐵4 = [

cos(20) 0 sin(20)
0

− sin(20)
0

1
0

0

0

cos(20)
0

     

0

0
0

1

] [

1 0 0
0
0

0

1
0

0

0
1

0

     

0

0
38.5

1

] [

cos(−190.67) 0 sin(−190.67)
0

− sin(−190.67)
0

1
0

0

0

cos(−190.67)
0

     

0

0
0

1

] 

𝐶4 = [

1 0 0
0
0

0

1
0

0

0
1

0

     

−70

0
0

1

] [

𝑐𝑜𝑠𝜃12 −𝑠𝑖𝑛𝜃12 0

𝑠𝑖𝑛𝜃12

0

0

𝑐𝑜𝑠𝜃12

0

0

0
1

0

     

0

0
0

1

] 
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𝐷4 = [

𝑐𝑜𝑠(−0,0063𝜃2
13  +  1,8006𝜃13  −  0,7794) −𝑠𝑖𝑛(−0,0063𝜃2

13  +  1,8006𝜃13  −  0,7794) 0

𝑠𝑖𝑛(−0,0063𝜃2
13  +  1,8006𝜃13  −  0,7794)

0
0

𝑐𝑜𝑠(−0,0063𝜃2
13  +  1,8006𝜃13  −  0,7794)

0
0

0
1
0

     

−47.45
0
0
1

] 

𝐸4 = [

cos(0,0034𝜃2
13  +  1,3417𝜃13  +  0,5973) − sin(0,0034𝜃2

13  +  1,3417𝜃13  +  0,5973) 0

sin(0,0034𝜃2
13  +  1,3417𝜃13  +  0,5973)

0

0

cos(0,0034𝜃2
13  +  1,3417𝜃13  +  0,5973)

0

0

0
1

0

     

−31.50

0
0

1

] 

𝐹4 = [

1 0 0
0
0
0

1
0
0

0
1
0

     

−27.45
0
0
1

] 

4.5. Velocities and Accelerations 

4.5.1. Velocities and Accelerations of the Passive Joints in the Palm 

When positions of the passive joints were determined, their differentiation was done. 

Unfortunately, first and second differentiation for velocities and accelerations yields too 

complex outcome that is hard to process for the simulation software. Hence, different way for 

velocity and acceleration determination should be used. 

Using equation 4.13, it is possible to produce loop equations of the palm for velocities and 

accelerations in terms of screw theory. 

Since screws are crossing the origin, their moment part is 0. Therefore, screws of joints M, G, 

H, Q and L are formed with reference to the frame O-xyz that is set to be global. Notation of 

joints’ axis positions (unit axis) remains the same as in the previous section (position 

analysis). For each joint, screws are: 

$𝑴 = (С𝑴
𝑻 ; 𝟎 𝟎 𝟎), $𝑮 = (𝑪𝑮

𝑻; 𝟎 𝟎 𝟎), $𝑯 = (𝑪𝑯
𝑻 ; 𝟎 𝟎 𝟎), $𝑸 = (𝑪𝑸

𝑻 ; 𝟎 𝟎 𝟎), $𝑳 = (𝑪𝑳
𝑻; 𝟎 𝟎 𝟎) 

(4.80) 

where $𝑴’s first part is joint’s axis considered as reference and: 

 𝑪𝑴 = [
𝟎
𝟎
𝟏
], 𝑪𝑳 = 𝑹(𝒚𝟓, 𝜶𝟓). [

𝟎
𝟎
𝟏
] (4.81) 

Systems of twists for a closed loop serial mechanism, using 4.82: 

$𝑴𝜽�̇� + $𝑮𝜽�̇� + $𝑯𝜽�̇� + $𝑸𝜽�̇� + $𝑳𝜽�̇� = 𝟎  (4.82) 

Considering that twist of link 3 can be expressed by 2 different routes, taking twists about link 3, 

$𝑴𝜽�̇� + $𝑳𝜽�̇� = $𝑮𝜽�̇� + $𝑯𝜽�̇� + $𝑸𝜽�̇� 
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[$𝑴 $𝑳] [
𝜽�̇�

𝜽�̇�

] = [$𝑮 $𝑯 $𝑸] [

𝜽�̇�

𝜽�̇�

𝜽�̇�

] 

[$𝑮 $𝑯 $𝑸]−𝟏[$𝑴 $𝑳] [
𝜽�̇�

𝜽�̇�

] = [

𝜽�̇�

𝜽�̇�

𝜽�̇�

]  (4.83) 

Moment parts of screws are 0, therefore equation above takes the following form, 

[[

𝑐𝜃1𝑠(−25°)
𝑠𝜃1𝑠(−25°)

𝑐(−25°)
] С𝐻 [

𝑐(113°)𝑐𝜃5𝑠(112°) + 𝑠(113°)𝑐(112°)
𝑠𝜃5𝑠(112°)

−𝑠(113°)𝑐𝜃5𝑠(112°) + 𝑐(113°)𝑐(112°)
]]

−1

. [[
0
0
1
] [

𝑠𝛼5

0
𝑐𝛼5

]] . [
𝜃1̇

𝜃5̇

] = [

𝜃2̇

𝜃3̇

𝜃4̇

] 

Systems of screws carrying accelerations for a closed loop serial mechanism, using: 

$𝑴�̈�𝟏 + $𝑮�̈�𝟐 + $𝑯�̈�𝟑 + $𝑸�̈�𝟒 + $𝑳�̈�𝟓 + 𝑳𝟔 = 𝟎 

𝑳𝟔 = [�̇�𝟏$𝟏    �̇�𝟐$𝟐 + �̇�𝟑$𝟑 + �̇�𝟒$𝟒 + �̇�𝟓$𝟓] + [�̇�𝟐$𝟐     �̇�𝟑$𝟑 + �̇�𝟒$𝟒 + �̇�𝟓$𝟓] +

[�̇�𝟑$𝟑     �̇�𝟒$𝟒 + �̇�𝟓$𝟓] + [�̇�𝟒$𝟒 + �̇�𝟓$𝟓]  (4.84) 

After inspecting equation 4.84, it is possible to see that, 

$𝑮𝜽�̇� + $𝑯𝜽�̇� + $𝑸𝜽�̇� + $𝑳𝜽�̇� = −$𝑴𝜽�̇� 

Therefore,                     [𝝎𝟏$𝟏    𝝎𝟐$𝟐 + 𝝎𝟑$𝟑 + 𝝎𝟒$𝟒 + 𝝎𝟓$𝟓] = [𝝎𝟏$𝟏     − 𝝎𝟏$𝟏] = 𝟎 

𝑳𝟔 = [�̇�𝟐$𝟐     �̇�𝟑$𝟑 + �̇�𝟒$𝟒 + �̇�𝟓$𝟓] + [�̇�𝟑$𝟑     �̇�𝟒$𝟒 + �̇�𝟓$𝟓] + [�̇�𝟒$𝟒 + �̇�𝟓$𝟓] 

In order to obtain accelerations of passive joints, acceleration of link 3 is expressed through 

two different routes: 

$𝑴�̈�𝟏 + $𝑳�̈�𝟓 + 𝑳𝒓𝟏 = $𝑮�̈�𝟐 + $𝑯�̈�𝟑 + $𝑸�̈�𝟒 + 𝑳𝒓𝟐  (4.85) 

where 𝑳𝒓𝟏 = [$𝑴�̇�𝟓     $𝑳�̇�𝟏], 𝑳𝒓𝟐 = [$𝑮�̇�𝟐    $𝑯�̇�𝟑 + $𝑸�̇�𝟒 ] + [$𝑯�̇�𝟑     $𝑸�̇�𝟒] 

Then, accelerations are taken out and accelerations of passive joints are expressed in terms of 

active joints, 

[$𝑴 $𝑳] [
�̈�𝟏

�̈�𝟓

] + 𝑳𝒓𝟏 = [$𝑮 $𝑯 $𝑸] [

�̈�𝟐

�̈�𝟑

�̈�𝟒

] + 𝑳𝒓𝟐 
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[$𝑴 $𝑳] [
�̈�𝟏

�̈�𝟓

] + [$𝑴�̇�𝟓     $𝑳�̇�𝟏] = [$𝑮 $𝑯 $𝑸] [

�̈�𝟐

�̈�𝟑

�̈�𝟒

] + [$𝑮�̇�𝟐    $𝑯�̇�𝟑 + $𝑸�̇�𝟒 ] + [$𝑯�̇�𝟑     $𝑸�̇�𝟒] 

Lie product of screws: 

[$𝑴 $𝑳] [
�̈�𝟏

�̈�𝟓

] + [$𝑴�̇�𝟓 × $𝑳�̇�𝟏

𝟎
] = [$𝑮 $𝑯 $𝑸] [

�̈�𝟐

�̈�𝟑

�̈�𝟒

] + [
$𝑮�̇�𝟐 × ($𝑯�̇�𝟑 + $𝑸�̇�𝟒)

𝟎
] + [

$𝑯�̇�𝟑 × $𝑸�̇�𝟒

𝟎
] (2.72) 

As moment parts are zero, equation is reformed to give 4.86: 

[𝑪𝑮 𝑪𝑯 𝑪𝑸]−𝟏 ([𝑪𝑴 𝑪𝑳] [
�̈�𝟏

�̈�𝟓

] + [𝑪𝑴�̇�𝟓 × 𝑪𝑳�̇�𝟏] − [𝑪𝑮�̇�𝟐 × (𝑪𝑯�̇�𝟑 + 𝑪𝑸�̇�𝟒)] − [𝑪𝑯�̇�𝟑 × 𝑪𝑸�̇�𝟒]) = [

�̈�𝟐

�̈�𝟑

�̈�𝟒

] 

(4.86) 

4.5.2. Thumb Velocities and Accelerations 

For the numerical results regarding transmission ratios for angles, velocities and accelerations, 

they are present in the end of this chapter. 

Using velocity and acceleration formulae, the following equations for thumb are constructed. 

𝜔 
1

1 = 𝑅0
1 𝜔 

0
0 + �̇�1 𝑍 

1
1 = [0 0 𝜃1̇]

𝑇   (4.87) 

Angular velocity, 𝜃1̇, is known since it is caused by the DC motor. 

�̇� 
1

1 = 𝑅0
1 �̇� 

0
0 + 𝑅0

1 𝜔 
0

0 × �̇�1 𝑍 
1

1 + �̈�1 𝑍 
1

1 = �̈�1 𝑍 
1

1         (4.88) 

𝑉 
1

1 𝑎𝑛𝑑 �̇� 
1

1 = [
0
0
0
], because the joint is stationary. 

𝜔 
2

2 = 𝑅1
2 𝜔 

1
1 + �̇�2 ∗ 𝑍 

2
2 = (𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2))

𝑇
. 𝜔 
1

1 + [0 0 𝜃2̇]
𝑇 =

([
𝑐𝑜𝑠𝛼1 0 −𝑠𝑖𝑛𝛼1

0 1 0
𝑠𝑖𝑛𝛼1 0 𝑐𝑜𝑠𝛼1

] [
𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0
𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 0

0 0 1

])

𝑇

[
0
0
𝜃1̇

] + [
0
0
𝜃2̇

] =

([
𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃2 −𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃2 −𝑠𝑖𝑛𝛼1

𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 0
𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝛼1

])

𝑇

[
0
0
𝜃1̇

] + [
0
0
𝜃2̇

] =

[
𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2

−𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2

−𝑠𝑖𝑛𝛼1 0 𝑐𝑜𝑠𝛼1

] [
0
0
𝜃1̇

] + [
0
0
𝜃2̇

] = [

𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2𝜃1̇

−𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2𝜃1̇

𝑐𝑜𝑠𝛼1𝜃1̇ + 𝜃2̇

]  (4.89) 
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�̇� 
2

2 = 𝑅1
2 �̇� 

1
1 + 𝑅1

2 𝜔 
1

1 × �̇�2 𝑍 
2

2 + �̈�2 𝑍 
2

2 = [

𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2

−𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2

−𝑠𝑖𝑛𝛼1 0 𝑐𝑜𝑠𝛼1

] [
0
0
�̈�1

] +

([
𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2

−𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2

−𝑠𝑖𝑛𝛼1 0 𝑐𝑜𝑠𝛼1

] [
0
0
𝜃1̇

]) × [
0
0
𝜃2̇

] + [
0
0
�̈�2

]   (4.90) 

𝑉 
2

2 = 𝑅1
2 ( 𝜈 

1
1 + 𝜔 

1
1 × 𝑃 

1
2) = (𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2))

𝑇
([

0
0
𝜃1̇

] × (𝑅(𝑦1, −𝛼1)𝑅(𝑧2, 𝜃2) [

𝑎1

0
𝑎2

])) 

(4.91) 

where 𝒂𝟏 and 𝒂𝟐 is distance from O to the joint. 

�̇� 
2

2 = 𝑅1
2 ( �̇� 

1
1 × 𝑃 

1
2 + 𝜔 

1
1 × ( 𝜔 

1
1 × 𝑃 

1
2) + �̇� 

1
1)   =

[
𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2 𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝜃2

−𝑐𝑜𝑠𝛼1𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝛼1𝑠𝑖𝑛𝜃2

−𝑠𝑖𝑛𝛼1 0 𝑐𝑜𝑠𝛼1

]*( �̇� 
1

1 × 𝑃 
1

2 + [
0
0
𝜃1̇

] × ( 𝜔 
1

1 × 𝑃 
1

2) + 0) 

 (4.92) 

The rest of equations are presented in general form for convenience of presentation:
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𝜔 
3

3 = 𝑅2
3 𝜔 

2
2 + �̇�6 ∗ 𝑟𝑎𝑡𝑖𝑜1 ∗ 𝑍 

6
6        (4.93) 

      �̇� 
3

3 = 𝑅2
3 �̇� 

2
2 + 𝑅2

3 𝜔 
2

2 × (𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡_�̇�6) ∗ 𝑍 
6

6 + 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡_�̈�6 ∗ 𝑍 
6

6      (4.94) 

𝑉 
3

3 = 𝑅2
3 ( 𝜈 

2
2 + 𝜔 

2
2 × 𝑃 

2
3)        (4.95) 

�̇� 
3

3 = 𝑅2
3 ( �̇� 

2
2 × 𝑃 

2
3 + 𝜔 

2
2 × ( 𝜔 

2
2 × 𝑃 

2
3) + �̇� 

2
2)     (4.96) 

𝜔 
4

4 = 𝑅3
4 𝜔 

3
3 + �̇�7 ∗ 𝑍 

7
7        (4.97) 

�̇� 
4

4 = 𝑅3
4 �̇� 

3
3 + 𝑅3

4 𝜔 
3

3 × �̇�7 𝑍 
7

7 + �̈�7 𝑍 
7

7       (4.98) 

𝑉 
4

4 = 𝑅3
4 ( 𝜈 

3
3 + 𝜔 

3
3 × 𝑃 

3
4)        (4.99) 

�̇� 
4

4 = 𝑅3
4 ( �̇� 

3
3 × 𝑃 

3
4 + 𝜔 

3
3 × ( 𝜔 

3
3 × 𝑃 

3
4) + �̇� 

3
3)     (4.100) 

𝜔 
5

5 = 𝑅4
5 𝜔 

4
4 + �̇�7 ∗ 𝑟𝑎𝑡𝑖𝑜2 ∗ 𝑍 

8
8        (4.101) 

    �̇� 
5

5 = 𝑅4
5 �̇� 

4
4 + 𝑅4

5 𝜔 
4

4 × 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡_�̇�7 ∗ 𝑍 
8

8 + 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡_�̈�7 ∗ 𝑟𝑎𝑡𝑖𝑜2 ∗ 𝑍 
8

8 (4.102) 

𝑉 
5

5 = 𝑅4
5 ( 𝜈 

4
4 + 𝜔 

4
4 × 𝑃 

4
5)        (4.103) 

�̇� 
5

5 = 𝑅4
5 ( �̇� 

4
4 × 𝑃 

4
5 + 𝜔 

4
4 × ( 𝜔 

4
4 × 𝑃 

4
5) + �̇� 

4
4)      (4.104) 

𝜔 
6

6 = 𝜔 
5

5         (4.105) 

�̇� 
6

6 = �̇� 
5

5        (4.106) 

𝑉 
6

6 = 𝑅5
6 ( 𝜈 

5
5 + 𝜔 

5
5 × 𝑃 

5
6)         (4.107) 

�̇� 
6

6 = 𝑅5
6 ( 𝜔 

5
5 × 𝑃 

5
6 + 𝜔 

5
5 × ( 𝜔 

5
5 × 𝑃 

5
6) + �̇� 

5
5)     (4.108) 

Please note that equations 4.93 and 4.94, as well as equations 4.101 and 4.102, have ratios and 

vel/accel dependences that are related to the four-bar linkage presence – outer and inner 

respectively. These values can be obtained using equations 4.26 – 4.35 or using 

SimMechanics simulation of the mechanism CAD model. 

Analogically, using mentioned equations, it is possible to find velocities and accelerations of 

other fingertips. Jacobian of the finger is defined. For obtaining required local angles, 

velocities and accelerations from given vectors, inverse Jacobian technique is used. 



 
79 

 

[
𝜈 

6
6

𝜔 
6

6

] = 𝐽(𝜃)�̇� 
6 =

[
 
 
 
 
 
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31

𝑏41

𝑏51

𝑏61

𝑏32

𝑏42

𝑏52

𝑏62

𝑏33

𝑏43

𝑏53

𝑏63

     

𝑏14

𝑏24

𝑏34

𝑏44

𝑏54

𝑏64

   

]
 
 
 
 
 

[
 
 
 
 
�̇�1

�̇�2

�̇�6

�̇�7]
 
 
 
 

     (4.109) 

[
 
 
 
 
�̇�1

�̇�2

�̇�6

�̇�7]
 
 
 
 

= 𝐽−1(𝜃) [
𝜈 

6
6

𝜔 
6

6

] 
6 =

[
 
 
 
 
 
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31

𝑏41

𝑏51

𝑏61

𝑏32

𝑏42

𝑏52

𝑏62

𝑏33

𝑏43

𝑏53

𝑏63

     

𝑏14

𝑏24

𝑏34

𝑏44

𝑏54

𝑏64

   

]
 
 
 
 
 
−1

[
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4.6. Simulation Results 

 

Figure 4.2. Workspace of theta 3 joint (palm) in degrees. 

 

Figure 4.3. Workspace of theta 4 joint (palm) in degrees. 

Once the kinematics of the palm’s structure was studied, the principal joints are assessed. 

Figures 4.2 and 4.3 show how theta 3 and theta 4 joint angles are dependent on the actuated 

by DC motors joint angles theta 1 and theta 5. Configuration of the joints can be retrieved 

from the figure 3.2.  

Figure 4.2 indicates that the theta 3 has impressive amount of various configurations. It is also 

possible to recognize the position areas (common for both figures) – the upper part of the plot 

is related to 0 degrees −> 180 degrees, whereas the bottom part is related to 180 degrees −>  

360 degrees. On the other hand, figure 4.3 shows that the theta 4 joint has limited position 

variation.  
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It is very important to mention that flexibility of the theta 3 joint is beneficial for the thumb 

module to achieve greater number of grasping patterns. However, limitations of the theta 4 

joint save index finger from unwanted interaction/overlap with other fingers and excessive 

motion that is hard to control. 

Further figures 4.4. to 4.8. are based on SimMechanics (module of the MatLab) simulation. 

The same results can be obtained by application of equations 4.26 to 4.35. 

 

Figure 4.4. Dependence of the Thumb position and DC motor input. 

 

Figure 4.5. Dependence of the actuator and middle phalange. 
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Figure 4.6. Dependence of the middle phalange and upper phalange joint. 

 

Figure 4.7. Omega and Gamma dot relationship. 

y = 0.0034x2 + 1.3417x + 0.5973
R² = 0.9999

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

M
id

d
le

 p
h

al
an

ge
 a

n
d

 u
p

p
er

 p
h

al
an

ge
 

jo
in

t,
 d

eg
re

es

DC motor input, degrees

Dependence for joint 2 

Output/input Poly. (Output/input)

y = 1.7202x - 0.0403
R² = 1

-20

0

20

40

60

80

100

120

140

160

-20 0 20 40 60 80 100

Omega2 vs Gamma dot



 
83 

 

 

Figure 4.8. Relationship of Alpha2 and Gamma double dot 

Figures 4.7 and 4.8 highlight important relationship establishment that is vital for the analysis 

of the four-bar mechanism inside the fingers. Since the actuated link on the scheme 4.8 is BC 

and gamma is an input angle, obtained relationships solve the problem of calculating 

velocities and accelerations for the specified motion. 

 

Figure 4.9. Ring and Middle fingers angular velocity 
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Figure 4.10. Index finger angular velocity 

 

 

Figure 4.11. Thumb angular velocity 
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Figure 4.12. Thumb linear velocity 

 

Figure 4.13. Index finger linear velocity 
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Figure 4.14. Ring and Middle fingers linear velocities 

Figures 4.9 to 4.14 are based on the constructed kinematic model and show linear and angular 

velocity of the fingertips. Specified rapid motion (figure 6.1) is set to occur during 2 seconds 

for all joints, while 10 N act on each fingertip simultaneously. 

4.7. Summary 

Kinematic analysis of the proposed robotic hand was completed, equations were successfully 

obtained and applied to inverse dynamics. It is essential to mention that depending on 

orientation of the frame, movement can occur with positive or negative sign. As ‘z’ axis is 

rotated around ‘y’ axis, polynomial equations of angles are sensitive to that.  
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Chapter 5 

Dynamics 

 

 

5.1. Introduction 

Dynamic model gives an in-depth description of mechanical system. Purpose of the dynamic 

modelling is to find relationship between motion and forces that are causing it. Moreover, the 

model gives possibility to simulate various scenarios, when external forces are applied to 

particular places of mechanical system, and to find corresponding force-torque response of the 

joints. 

There are two common strategies that are considered as a dynamic problem solution. 

Application of dynamic analysis to manipulators could be direct or inverse. Direct dynamics 

deals with prediction of speed, acceleration and force of the fingertips achieved by the torque 

applied at joints, whereas inverse dynamics requires a set of conditions for the fingertip 

motion and force generation as an input and calculates torque in the joints that is expected for 

the stated task. Each method provides specific benefits and hence is suitable for different 

objectives. Direct dynamics is a useful approach for computer simulations and study of the 

system’s workspace and behavior under certain operational circumstances. After that, it is 

then possible to produce predicted control for general-purpose automated activity. However, 

some mechanical systems do require real-time control for the following reasons: 1) risk for 

bearings and actuators to face critical load and be damaged during operation (in case there is a 

chance of extra load conditions and appropriate control loop is responsible for decision-

making); 2) optimal efficiency during task execution with significant accuracy assured at high 

speeds or smooth slow motion; 3) real-time functioning and performance feedback during 

assignment of various objectives. Consequently, inverse dynamics model is chosen. Also, 

controller based on inverse dynamics model is superior to the controller using just inverse 

kinematics, because inertia of manipulator is considered.70 
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In this chapter, Newton-Euler dynamics is presented. Inverse dynamics numerical simulations 

are produced. Results are discussed and the corresponding conclusions are made. 

5.2. Inertia 

Inertia of any body could be understood as a property to resist changes of the object’s 

condition – regardless of whether it is a motion state or rest state. Geometry and mass are 

factors that define moment of inertia. For basic shapes moment of inertia was already 

calculated, but for complex structures it is necessary to use computer program like 

SolidWorks or AutoCAD.  

For further calculations and overall correctness, it is necessary to make an assumption that all 

DC motors will have furtherly mentioned moment of inertia. In reality, DC motors have some 

cavities inside and are not ideally solid objects. This is neglected to reduce the theoretical 

complexity. Certain inertial impact is approximated as it is not possible to obtain a detailed 

geometry of the DC motor, because the 3D CAD model provided by manufacturer represents 

continuous structure without consideration of inner element composition. Hence, scheme 5.1 

illustrates the actuator’s moment of inertia (applies to gearhead as well).  

 

Scheme 5.1. Moment of Inertia of the cylinder71 

 

Scheme 5.1 shows equal distribution of the mass density through the body, therefore, it is 

enough to calculate principal axis. 

For all fingers, except thumb, mass of inner DC motor is added to the lower link’s mass. 

Distance between centres of mass is within less than 1 mm range and is neglected. For palm 

links, everything remains as it is shown on schematics, except link 3 – actuator’s mass is 

included in the link. Inertias of all objects and distances are calculated with measuring tool of 

the SolidWorks software. Actuator’s inertias are also taken into account by the software and 

included in the general inertia matrix for each link. 
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When necessary parameters of all present rigid bodies are defined, the next step is to assess 

which forces and moments each link is withstanding. 

5.3. Recursive Newton-Euler Dynamics of the Robotic Hand Mechanism 

Advantage of the Newton-Euler set of equations is that accumulated torques and forces at 

joints are found with respect to the applied force. Hence, not only DC motors can be correctly 

selected after result analysis, but also bearings. This approach analyzes each link in the 

mechanical system separately in order to solve appearing torques and forces step by step. 

Scheme 5.2 shows how the Newton-Euler principle works, 

 

Scheme 5.2. Newton-Euler principle 

The following fundamental equations are involved in the process: 

∑𝐅 = 𝐦𝐚              (5.1) 

∑𝐌 = 𝚰𝛂              (5.2) 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵) (5.3) 

It is obligatory to understand that equation 5.1 is only true for the planar motion. Therefore, 

equations 5.2 and 5.3, denoted as Newton’s and Euler’s equation respectively, will be used for 

equation derivation, because proposed mechanical system performs non-planar 3D motion. It 

is now possible to identify derivation procedure. For scheme that represents free body 

diagram of the system’s arbitrary link, solution follows: 

𝑓𝑖 − 𝑅𝑖+1
𝑖 𝑓𝑖+1 + 𝑚𝑖( 𝑅−1

𝑖
0 𝑔𝑖) = m𝑖a𝑠𝑖

                              (5.4) 

𝜏𝑖 − 𝑅𝑖+1
𝑖 𝜏𝑖+1 + 𝑓𝑖 × 𝐿𝑖, 𝑠𝑖

− 𝑅𝑖+1
𝑖 𝑓𝑖+1 × 𝐿𝑖+1, 𝑠𝑖

= ( 𝑅.𝑖
0 𝛪𝑖. 𝑅𝑇

𝑖
0 ). ⍵̇𝑖 + ⍵𝑖 × (( 𝑅.𝑖

0 𝛪𝑖. 𝑅𝑇
𝑖
0 ). ⍵𝑖)     (5.5) 

Involved vectors are described accordingly, 

 𝒇𝒊 − constraint force from link i-1 

 𝑹𝒊+𝟏
𝒊 𝒇𝒊+𝟏 − transformation of the neighbouring constraint force from link i+1   
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 𝒎𝒊 − mass of link i 

 𝑹−𝟏
𝒊
𝟎 𝒈𝒊 − gravitational influence in link i presented in global coordinates 

 𝐚𝒔𝒊
− linear acceleration of the link i centre of mass, 𝒔𝒊 

 𝝉𝒊 − torque applied by link i-1 

 𝑹𝒊+𝟏
𝒊 𝝉𝒊+𝟏 − torque applied by link i+1 is presented in link i coordinates 

 𝑳𝒊, 𝒔𝒊
−distance from joint i-1 to the link i centre of mass, 𝒔𝒊 

 𝑳𝒊+𝟏, 𝒔𝒊
− distance from joint i+1 to the link i centre of mass, 𝒔𝒊 

 𝑹.𝒊
𝟎 𝜤𝒊. 𝑹𝑻

𝒊
𝟎 − link i moment of Inertia presented in global coordinates 

 ⍵̇𝒊 − angular acceleration of link i (same quantity for the 𝒔𝒊) 

 ⍵𝒊 − angular velocity of link i (same quantity for the 𝒔𝒊) 

Please note that for all further schematics mentioned assignment principle of expression terms 

remains the same. For better illustration purposes, free body diagrams will be simplified. 

5.3.1. Forces and moments in the fingers 

Principal abbreviations used: 

𝑚𝑑.𝑙. − mass of the driving link 

𝑚𝑢.𝑝ℎ. − mass of the upper phalange 

𝑚𝑚.𝑝ℎ. − mass of the middle phalange 

𝑚𝑙.𝑝ℎ. − mass of the lower phalange 

𝐹𝑢.𝑝ℎ.𝑏1 and 𝐹𝑢.𝑝ℎ.𝑏2 − forces at upper phalange bearing 1 and 2 

𝑚𝑖.𝑚. − mass of the inner motor 

𝑚𝑜.𝑚. − mass of the outer motor 

Hence, for fingers 2, 3 and 4 (index, middle and ring), links are analyzed one by one starting 

from the fingertip. Consider scheme 5.3, 
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Scheme 5.3. Upper part of the finger 

Free body diagram shows what forces should be considered when external force is applied.  

Lower phalange with 2 upper joints, as well as driving link, middle and upper phalanges with 

corresponding joints can be observed in scheme 5.3. This complex problem could be split into 

several parts. It is important to note that middle and upper phalanges both rely on the driving 

link. First, using lever principle, tau 9 and 10 are obtained. They are then assigned to the 

driving link and middle phalange correspondingly. Since there is only one actuator that 

provides torque, 𝝉𝟕, all moments are eventually calculated about the joint where that actuator 

is located. For the upper phalange, scheme 5.4 is constructed, 

 

Scheme 5.4. Upper phalange 

Applying equations 5.1 and 5.3, 

∑𝐅 = 𝐦𝐚   => (𝐅𝐮.𝐩𝐡.𝐛𝟏 + 𝐅𝐮.𝐩𝐡.𝐛𝟐) + 𝒎𝒖.𝒑𝒉.( 𝑹−𝟏.𝒖.𝒑𝒉.
𝟎 𝒈) − 𝑹−𝟏

𝒖.𝒑𝒉.
𝟎 . 𝐅𝐝𝐞𝐬𝐢𝐫𝐞𝐝

= 𝒎𝒖.𝒑𝒉.𝒂𝒔𝟖 
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(𝐅𝐭𝐨𝐭𝐚𝐥_𝟏) = 𝑹−𝟏
𝒖.𝒑𝒉.

𝟎 . 𝐅𝐝𝐞𝐬𝐢𝐫𝐞𝐝 − 𝒎𝒖.𝒑𝒉.( 𝑹−𝟏.𝒖.𝒑𝒉.
𝟎 𝒈) + 𝒎𝒖.𝒑𝒉.𝒂𝒔𝟖    (5.6) 

Lever principle allows to predict amount of force at particular place if distance is known: 

(𝟏 − (
𝑳𝟏𝟑

𝑳𝟏𝟑+𝒃
)) 𝐅𝐭𝐨𝐭𝐚𝐥 = 𝐅𝐮.𝐩𝐡.𝐛𝟏  (5.7) 

((
𝑳𝟏𝟑

𝑳𝟏𝟑+𝒃
)) 𝐅𝐭𝐨𝐭𝐚𝐥 = 𝐅𝐮.𝐩𝐡.𝐛𝟐   (5.8) 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵) =>  (𝝉𝟗 + 𝝉𝟏𝟎) − 𝑹−𝟏.𝒖.𝒑𝒉.
𝟎 𝑴𝒅𝒆𝒔𝒊𝒓𝒆𝒅 + (𝐅𝐮.𝐩𝐡.𝐛𝟏 × (𝑳𝟏𝟑 + 𝒃)) +

(𝐅𝐮.𝐩𝐡.𝐛𝟐 × 𝑳𝟏𝟑) − ( 𝑹−𝟏.𝒖.𝒑𝒉.
𝟎 𝑭𝒅𝒆𝒔𝒊𝒓𝒆𝒅 × 𝑳𝟏𝟒) = ( 𝑹.𝒖.𝒑𝒉.

𝟎 𝜤𝒖.𝒑𝒉.. 𝑹𝑻
𝒖.𝒑𝒉.

𝟎 ). ⍵̇𝒖.𝒑𝒉. +

⍵𝒖.𝒑𝒉. × (( 𝑹.𝒖.𝒑𝒉.
𝟎 𝜤𝒖.𝒑𝒉.. 𝑹𝑻

𝒖.𝒑𝒉.
𝟎 ). ⍵𝒖.𝒑𝒉.)  

 

𝝉𝒕𝒐𝒕𝒂𝒍_𝟏 = 𝑹−𝟏.𝒖.𝒑𝒉.
𝟎 𝑴𝒅𝒆𝒔𝒊𝒓𝒆𝒅 + ( 𝑹−𝟏.𝒖.𝒑𝒉.

𝟎 𝑭𝒅𝒆𝒔𝒊𝒓𝒆𝒅 × 𝑳𝟏𝟒) − (𝐅𝐮.𝐩𝐡.𝐛𝟏 × (𝑳𝟏𝟑 + 𝒃)) −

(𝐅𝐮.𝐩𝐡.𝐛𝟐 × 𝑳𝟏𝟑) + ( 𝑹.𝒖.𝒑𝒉.
𝟎 𝜤𝒖.𝒑𝒉.. 𝑹𝑻

𝒖.𝒑𝒉.
𝟎 ). ⍵̇𝒖.𝒑𝒉. + ⍵𝒖.𝒑𝒉. × (( 𝑹.𝒖.𝒑𝒉.

𝟎 𝜤𝒖.𝒑𝒉.. 𝑹𝑻
𝒖.𝒑𝒉.

𝟎 ). ⍵𝒖.𝒑𝒉.)

  

In derived equations, external load and gravity were transformed to the reviewed link’s frame. 

Therefore, they are now considered in global coordinates. As for 𝑴𝒅𝒆𝒔𝒊𝒓𝒆𝒅 torque, it is equal 

to zero, because the fingertip does not represent a joint. 

Lever principle is used again for torques: 

(𝟏 −
𝑳𝟏𝟑

𝑳𝟏𝟑+𝒃
) 𝝉𝒕𝒐𝒕𝒂𝒍 = 𝝉𝟗 (5.9) 

(
𝑳𝟏𝟑

𝑳𝟏𝟑+𝒃
) 𝝉𝒕𝒐𝒕𝒂𝒍 = 𝝉𝟏𝟎  (5.10) 

 

Scheme 5.5. Middle phalange 

For the middle phalange, 

∑𝐅 = 𝐦𝐚   => 𝐅𝐥.𝐩𝐡.𝐛𝟐 − 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝑭𝒖.𝒑𝒉.𝒃𝟐 + 𝐦𝐦.𝐩𝐡.( 𝑹−𝟏.𝒎.𝒑𝒉.
𝟎 𝐠) = 𝒎𝒎.𝒑𝒉.𝒂𝒔𝟔 
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𝐅𝐥.𝐩𝐡.𝐛𝟐 = 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝑭𝒖.𝒑𝒉.𝒃𝟐 − 𝐦𝐦.𝐩𝐡.( 𝑹−𝟏.𝒎.𝒑𝒉.
𝟎 𝐠) + 𝒎𝒎.𝒑𝒉.𝒂𝒔𝟔   (5.11) 

 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟖− 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝝉𝟏𝟎 + (𝐅𝐥.𝐩𝐡.𝐛𝟐 × 𝑳𝟏𝟏) − ( 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝑭𝒖.𝒑𝒉.𝒃𝟐 × 𝑳𝟏𝟐) =

( 𝑹.𝒎.𝒑𝒉.
𝟎 𝜤𝒎.𝒑𝒉.. 𝑹𝑻

𝒎.𝒑𝒉.
𝟎 ). ⍵̇𝒎.𝒑𝒉. + ⍵𝒎.𝒑𝒉. × (( 𝑹.𝒎.𝒑𝒉.

𝟎 𝜤𝒎.𝒑𝒉.. 𝑹𝑻
𝒎.𝒑𝒉.

𝟎 ). ⍵𝒎.𝒑𝒉.)  (5.12) 

 

𝝉𝟖 = 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝝉𝟏𝟎 + ( 𝑹.𝒖.𝒑𝒉.
𝒎.𝒑𝒉.

𝑭𝒖.𝒑𝒉.𝒃𝟐 × 𝑳𝟏𝟐) − (𝐅𝐥.𝐩𝐡.𝐛𝟐 × 𝑳𝟏𝟏) +

( 𝑹.𝒎.𝒑𝒉.
𝟎 𝜤𝒎.𝒑𝒉.. 𝑹𝑻

𝒎.𝒑𝒉.
𝟎 ). ⍵̇𝒎.𝒑𝒉. + ⍵𝒎.𝒑𝒉. × (( 𝑹.𝒎.𝒑𝒉.

𝟎 𝜤𝒎.𝒑𝒉.. 𝑹𝑻
𝒎.𝒑𝒉.

𝟎 ). ⍵𝒎.𝒑𝒉.)  (5.13) 

 

Now, when 𝝉𝟖 is calculated, it is possible obtain its influence on the actuator: 

𝝉𝟕𝒑𝒉.
= 𝑹.𝒎.𝒑𝒉.

𝒍.𝒑𝒉.
𝝉𝟖 + ( 𝑹.𝒎.𝒑𝒉.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟐 × 𝒅)   (5.14) 

 

Scheme 5.6. Driving link 

∑𝐅 = 𝐦𝐚   => 𝐅𝐥.𝐩𝐡.𝐛𝟏 − 𝑹.𝒖.𝒑𝒉.
𝒅.𝒍. 𝑭𝒖.𝒑𝒉.𝒃𝟏 + 𝐦𝐝.𝐥.( 𝑹−𝟏

𝒅.𝒍.
𝟎 . 𝐠) = 𝒎𝒅.𝒍.𝒂𝒔𝟕 

 

𝐅𝐥.𝐩𝐡.𝐛𝟏 = 𝑹.𝒖.𝒑𝒉.
𝒅.𝒍. 𝑭𝒖.𝒑𝒉.𝒃𝟏 − 𝐦𝐝.𝐥.( 𝑹−𝟏

𝒅.𝒍.
𝟎 . 𝐠) + 𝒎𝒅.𝒍.𝒂𝒔𝟕          (5.15) 

 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟕𝒅.𝒍.
− 𝑹.𝒖.𝒑𝒉.

𝒅.𝒍. 𝝉𝟗 + (𝑭𝒍.𝒑𝒉.𝒃𝟏 × 𝑳𝟗) − ( 𝑹.𝒖.𝒑𝒉.
𝒅.𝒍. 𝑭𝒖.𝒑𝒉.𝒃𝟏 × 𝑳𝟏𝟎) =

( 𝑹.𝒅.𝒍.
𝟎 𝜤𝒅.𝒍.. 𝑹𝑻

𝒅.𝒍.
𝟎 ). ⍵̇𝒅.𝒍. + ⍵𝒅.𝒍. × (( 𝑹.𝒅.𝒍.

𝟎 𝜤𝒅.𝒍.. 𝑹𝑻
𝒅.𝒍.

𝟎 ). ⍵𝒅.𝒍.) (5.16) 

 

𝝉𝟕𝒅.𝒍.
= 𝑹.𝒖.𝒑𝒉.

𝒅.𝒍. 𝝉𝟗 + ( 𝑹.𝒖.𝒑𝒉.
𝒅.𝒍. 𝑭𝒖.𝒑𝒉.𝒃𝟏 × 𝑳𝟏𝟎) − (𝑭𝒍.𝒑𝒉.𝒃𝟏 × 𝑳𝟗) + ( 𝑹.𝒅.𝒍.

𝟎 𝜤𝒅.𝒍.. 𝑹𝑻
𝒅.𝒍.

𝟎 ). ⍵̇𝒅.𝒍. +

⍵𝒅.𝒍. × (( 𝑹.𝒅.𝒍.
𝟎 𝜤𝒅.𝒍.. 𝑹𝑻

𝒅.𝒍.
𝟎 ). ⍵𝒅.𝒍.)     (5.17) 

 

Finally, 𝝉𝟕 is found: 

𝝉𝟕 = 𝝉𝟕𝒑𝒉.
+ 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝝉𝟕𝒅.𝒍.

  (5.18) 
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For general case, scheme 5.7 and 5.8, there is only one last joint left in the finger. All 

accumulated up to this moment torques and forces should be applied to the last joint, so that 

𝝉𝟔 is obtained. It can be noted that the lower phalange is carrying a DC motor. Therefore, its 

inertial contribution also has to be included into the link’s moment of inertia. 

 

Scheme 5.7. General case 

 

Scheme 5.8. Lower phalange 

Since moment occurring at bearing 2 was previously included as a load for actuator that is 

located at bearing 1, in the next sum of moments calculation, it is not present. From scheme 

5.7, it is evident that 𝝉𝟕 operates the four-bar linkage and this mechanism requires separate 

analysis. However, force at bearing 2 should be still considered for the overall lower link’s 

sum of forces.  
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For the lower phalange: 

∑𝐅 = 𝐦𝐚 => 𝐅𝐥.𝐩𝐡.𝐛𝟎
− 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝐅𝒍.𝒑𝒉.𝒃𝟏

− 𝑹.𝒎.𝒑𝒉.
𝒍.𝒑𝒉.

𝑭𝒍.𝒑𝒉.𝒃𝟐 + 𝐦𝐥.𝐩𝐡.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝐠)

+ 𝐦𝒊.𝒎.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝒈) = 𝐦𝒍.𝒑𝒉.𝐚𝒔𝟔 

 

𝐅𝐥.𝐩𝐡.𝐛𝟎
= 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝐅𝒍.𝒑𝒉.𝒃𝟏

+ 𝑹.𝒎.𝒑𝒉.
𝒍.𝒑𝒉.

𝑭𝒍.𝒑𝒉.𝒃𝟐 − 𝐦𝐥.𝐩𝐡.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝐠) − 𝐦𝒊.𝒎.( 𝑹−𝟏.𝒍.𝒑𝒉

𝟎 𝒈) +

𝐦𝒍.𝒑𝒉.𝐚𝒔𝟔                                   (5.19) 

 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟔 − 𝝉𝟕 + (𝑭𝒍.𝒑𝒉.𝒃𝟎
× 𝑳𝒂) − ( 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟏

× 𝑳𝒃) − 𝑴𝒊.𝒎. =

( 𝑹.𝒍.𝒑𝒉.
𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻

𝒍.𝒑𝒉.
𝟎 ). ⍵̇𝒍.𝒑𝒉. + ⍵𝒍.𝒑𝒉. × (( 𝑹.𝒍.𝒑𝒉.

𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻
𝒍.𝒑𝒉.

𝟎 ). ⍵𝒍.𝒑𝒉.)  (5.20) 

In the sum of moments equation 5.20, 𝝉𝟕 does not require transformation, because it consists 

of two already transformed to the lower phalange torques.  

In addition,  𝑴𝒊.𝒎. = 𝐦𝒊.𝒎.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝒈) × 𝑫𝒂              (5.21) 

Therefore, torque 6 is obtained: 

𝝉𝟔 = 𝝉𝟕 − (𝑭𝒍.𝒑𝒉.𝒃𝟎
× 𝑳𝒂) + ( 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟏

× 𝑳𝒃) + 𝑴𝒊.𝒎. + ( 𝑹.𝒍.𝒑𝒉.
𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻

𝒍.𝒑𝒉.
𝟎 ). ⍵̇𝒍.𝒑𝒉. +

⍵𝒍.𝒑𝒉. × (( 𝑹.𝒍.𝒑𝒉.
𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻

𝒍.𝒑𝒉.
𝟎 ). ⍵𝒍.𝒑𝒉.)       (5.22) 

It is also necessary to consider special case of the finger’s structure – thumb. It has another 

four-bar linkage that is placed outside the thumb and drives it. Four-bar linkage allows the DC 

motor not to contradict with bearings and rotary parts, so it is shifted away from direct 

actuation. Scheme 5.9 presents the case: 

 

Scheme 5.9. Special Case of the Lower Phalange. 
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Generated load at the lower phalange of the thumb is assigned to the four-bar linkage and 

bearing 0, so that 𝝉𝟔 with 𝝉𝟔.𝟏(𝟏) are found. Thumb has no actuator located at bearing 0 – joint 

is passive, hence required torque, 𝝉𝑻𝒐𝒕𝒂𝒍_𝟐, is added to the driving linkage.  

 

Scheme 5.10. Special Case of the Lower Phalange. 

Equations are reworked to satisfy changes to the scheme, 

∑𝐅 = 𝐦𝐚 => 𝐅𝐥.𝐩𝐡.𝐛𝟎
+ 𝐅𝐡_𝐫.𝐩. − 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝐅𝒍.𝒑𝒉.𝒃𝟏

− 𝑹.𝒎.𝒑𝒉.
𝒍.𝒑𝒉.

𝑭𝒍.𝒑𝒉.𝒃𝟐 + 𝐦𝐥.𝐩𝐡.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝐠)

+ 𝐦𝒊.𝒎.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝒈) = 𝐦𝒍.𝒑𝒉.𝐚𝒔𝟔 

 

𝐅𝐓𝐨𝐭𝐚𝐥_𝟐 = 𝑹.𝒅.𝒍.
𝒍.𝒑𝒉.

𝐅𝒍.𝒑𝒉.𝒃𝟏
+ 𝑹.𝒎.𝒑𝒉.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟐 − 𝐦𝐥.𝐩𝐡.( 𝑹−𝟏.𝒍.𝒑𝒉

𝟎 𝐠) − 𝐦𝒊.𝒎.( 𝑹−𝟏.𝒍.𝒑𝒉
𝟎 𝒈) +

𝐦𝒍.𝒑𝒉.𝐚𝒔𝟔        (5.23) 

 

Using lever principle again, 

𝐅𝐥.𝐩𝐡.𝐛𝟎
= (𝟏 −

𝑳𝒂−𝒘

𝑳𝒂
) 𝐅𝐓𝐨𝐭𝐚𝐥_𝟐  (5.24) 

𝐅𝐡_𝐫.𝐩. = (
𝑳𝒂−𝒘

𝑳𝒂
) 𝐅𝐓𝐨𝐭𝐚𝐥_𝟐  (5.25) 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟔 + 𝝉𝟔.𝟏(𝟏) − 𝝉𝟕 + (𝑭𝒍.𝒑𝒉.𝒃𝟎
× 𝑳𝒂) − ( 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟏

× 𝑳𝒃) −

 𝑴𝒊.𝒎. = ( 𝑹.𝒍.𝒑𝒉.
𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻

𝒍.𝒑𝒉.
𝟎 ). ⍵̇𝒍.𝒑𝒉. + ⍵𝒍.𝒑𝒉. × (( 𝑹.𝒍.𝒑𝒉.

𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻
𝒍.𝒑𝒉.

𝟎 ). ⍵𝒍.𝒑𝒉.) (5.26) 

 

𝝉𝑻𝒐𝒕𝒂𝒍_𝟐 = 𝝉𝟕 − (𝑭𝒍.𝒑𝒉.𝒃𝟎
× 𝑳𝒂) + ( 𝑹.𝒅.𝒍.

𝒍.𝒑𝒉.
𝑭𝒍.𝒑𝒉.𝒃𝟏

× 𝑳𝒃) + 𝑴𝒊.𝒎. +

( 𝑹.𝒍.𝒑𝒉.
𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻

𝒍.𝒑𝒉.
𝟎 ). ⍵̇𝒍.𝒑𝒉. + ⍵𝒍.𝒑𝒉. × (( 𝑹.𝒍.𝒑𝒉.

𝟎 𝜤𝒍.𝒑𝒉.. 𝑹𝑻
𝒍.𝒑𝒉.

𝟎 ). ⍵𝒍.𝒑𝒉.) (5.27) 

 

𝝉𝟔 = (𝟏 −
𝑳𝒂−𝒘

𝑳𝒂
) 𝝉𝑻𝒐𝒕𝒂𝒍_𝟐 (5.28) 

𝝉𝟔.𝟏(𝟏) = (
𝑳𝒂−𝒘

𝑳𝒂
) 𝝉𝑻𝒐𝒕𝒂𝒍_𝟐 (5.29) 
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It is now possible to figure out what load actuator is taking, 𝝉𝟔.𝟑. As thumb’s lowest joint is 

passive (if active, then 𝝉𝟔.𝟏(𝟏) should be considered), torque that is required for it is passed to 

the linkage: 

𝝉𝟔.𝟏 = 𝝉𝑻𝒐𝒕𝒂𝒍_𝟐   (5.30) 

 

Scheme 5.11. Situation in link h 

∑𝐅 = 𝐦𝐚   => 𝐅𝐡_𝐥.𝐩. − 𝑹.𝒍.𝒑𝒉.
𝒍𝒊𝒏𝒌𝒉 𝑭𝒉_𝒓.𝒑. + 𝐦𝐥𝐢𝐧𝐤𝒉

( 𝑹−𝟏.𝒍𝒊𝒏𝒌𝒉

𝟎 𝐠) = 𝒎𝒍𝒊𝒏𝒌𝒉
𝒂𝒔𝟓.𝟐 

 

𝐅𝐡_𝐥.𝐩. = 𝑹.𝒍.𝒑𝒉.
𝒍𝒊𝒏𝒌𝒉 𝑭𝒉_𝒓.𝒑 − 𝐦𝐥𝐢𝐧𝐤𝒉

( 𝑹−𝟏.𝒍𝒊𝒏𝒌𝒉

𝟎 𝐠) + 𝒎𝒍𝒊𝒏𝒌𝒉
𝒂𝒔𝟓.𝟐   (5.31) 

 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟔.𝟐− 𝑹.𝒍.𝒑𝒉.
𝒍𝒊𝒏𝒌𝒉 𝝉𝟔.𝟏 + (𝐅𝐡_𝐥.𝐩. ×

𝒉

𝟐
) − ( 𝑹.𝒍.𝒑𝒉.

𝒍𝒊𝒏𝒌𝒉 𝑭𝒉_𝒓.𝒑 ×
𝒉

𝟐
) =

( 𝑹.𝒍𝒊𝒏𝒌𝒉

𝟎 𝜤𝒍𝒊𝒏𝒌𝒉
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒉

𝟎 ). ⍵̇𝒍𝒊𝒏𝒌𝒉
+ ⍵𝒍𝒊𝒏𝒌𝒉

× (( 𝑹.𝒍𝒊𝒏𝒌𝒉

𝟎 𝜤𝒍𝒊𝒏𝒌𝒉
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒉

𝟎 ). ⍵𝒍𝒊𝒏𝒌𝒉
) (5.32) 

 

𝝉𝟔.𝟐 = 𝑹.𝒍.𝒑𝒉.
𝒍𝒊𝒏𝒌𝒉 𝝉𝟔.𝟏 − (𝐅𝐡_𝐥.𝐩. ×

𝒉

𝟐
) + ( 𝑹.𝒍.𝒑𝒉.

𝒍𝒊𝒏𝒌𝒉 𝑭𝒉_𝒓.𝒑 ×
𝒉

𝟐
) + ( 𝑹.𝒍𝒊𝒏𝒌𝒉

𝟎 𝜤𝒍𝒊𝒏𝒌𝒉
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒉

𝟎 ). ⍵̇𝒍𝒊𝒏𝒌𝒉
+

⍵𝒍𝒊𝒏𝒌𝒉
× (( 𝑹.𝒍𝒊𝒏𝒌𝒉

𝟎 𝜤𝒍𝒊𝒏𝒌𝒉
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒉

𝟎 ). ⍵𝒍𝒊𝒏𝒌𝒉
)     (5.33) 

 

Scheme 5.12. Situation in link p 

∑𝐅 = 𝐦𝐚   => 𝐅𝐨.𝐦. − 𝑹.
𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝑭𝒉_𝒍.𝒑. + 𝐦𝐥𝐢𝐧𝐤𝒑
( 𝑹−𝟏.𝒍𝒊𝒏𝒌𝒑

𝟎 𝐠) = 𝒎𝒍𝒊𝒏𝒌𝒑
𝒂𝒔𝟓.𝟏 

𝐅𝐨.𝐦. = 𝑹.
𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝑭𝒉_𝒍.𝒑. − 𝐦𝐥𝐢𝐧𝐤𝒑
( 𝑹−𝟏.𝒍𝒊𝒏𝒌𝒑

𝟎 𝐠) + 𝒎𝒍𝒊𝒏𝒌𝒑
𝒂𝒔𝟓.𝟏   (5.34) 
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∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟔.𝟑− 𝑹.
𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝝉𝟔.𝟐 + (𝑭𝒐.𝒎. ×
𝒑

𝟐
) − ( 𝑹.

𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝑭𝒉_𝒍.𝒑. ×
𝒑

𝟐
) =

( 𝑹.𝒍𝒊𝒏𝒌𝒑

𝟎 𝜤𝒍𝒊𝒏𝒌𝒑
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒑

𝟎 ) . ⍵̇𝒍𝒊𝒏𝒌𝒑
+ ⍵𝒍𝒊𝒏𝒌𝒑

× (( 𝑹.𝒍𝒊𝒏𝒌𝒑

𝟎 𝜤𝒍𝒊𝒏𝒌𝒑
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒑

𝟎 ) . ⍵𝒍𝒊𝒏𝒌𝒑
)  (5.35) 

 

𝝉𝟔.𝟑 = 𝑹.
𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝝉𝟔.𝟐 − (𝑭𝒐.𝒎. ×
𝒑

𝟐
) + ( 𝑹.

𝒍𝒊𝒏𝒌𝒉

𝒍𝒊𝒏𝒌𝒑 𝑭𝒉_𝒍.𝒑. ×
𝒑

𝟐
) + ( 𝑹.𝒍𝒊𝒏𝒌𝒑

𝟎 𝜤𝒍𝒊𝒏𝒌𝒑
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒑

𝟎 ) . ⍵̇𝒍𝒊𝒏𝒌𝒑
+

⍵𝒍𝒊𝒏𝒌𝒑
× (( 𝑹.𝒍𝒊𝒏𝒌𝒑

𝟎 𝜤𝒍𝒊𝒏𝒌𝒑
. 𝑹𝑻
𝒍𝒊𝒏𝒌𝒑

𝟎 ) . ⍵𝒍𝒊𝒏𝒌𝒑
)     (5.36) 

5.3.2. Behavior of passive links 

After solution for the fingers’ torques and forces is obtained, it is necessary to assign these 

values to the actuators located in the palm. Structure of the palm has two passive links 

(carrying thumb and index finger) that apply load to the left and right parts, where driven 

links are located. In order to define amount of load taken by particular side, passive links’ 

common centre of mass is found using SolidWorks software. Hence, load distribution is 

calculated according to how far away is passive links’ common centre of mass from the 

symmetry axis of active links’ edge joints. When common centre of mass lies on the 

symmetry axis, it is assumed that the overall load from passive links is transferred equally, i.e. 

50% to the left active link and 50% to the right active link. From figures 5.1 and 5.2, it is 

possible to approximate force-torque distribution changes according to particular 

configuration of the mechanism. 

 

 

Figure 5.1. Centre of mass when fingers are flat 
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Figure 5.1 illustrates that at flat finger position common centre of mass is shifted to the right 

active link’s side for 20.06 mm or for ≈34% of the distance between actuated links. It is now 

possible to obtain ratio to approximate load taken by active links. Therefore, in these 

conditions, right active link will take 66% of the overall torque and force accumulated by 

passive links, whereas left active link will take only 34%.   

 

Figure 5.2. Centre of mass when index finger and thumb are bent 

Figure 5.2 highlights that when both index finger and thumb are bent, active links in the palm 

are almost equally loaded. Insignificant deviation will be neglected, so at maximum bending 

active links take 50% of the load each.  

Figures 9.2 to 9.5 in appendix show that different configurations have relatively small impact 

on the centre of mass location change – hence, major influence was noted and considered. 

For numerical simulation, the following basic assumption will be used: torque and force 

influence on the right active link will increase from 50% to 66% depending on the phalange 

flexion amplitude. 

 

5.3.3. Calculations for torque 1 and 𝑭𝑩𝟎𝟏 

When position of the passive links’ common centre of mass is taken into account, now forces 

and torques can be calculated for the left and right actuated joints accordingly. 

For the left actuator, scheme 5.13 is considered first. 
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Scheme 5.13. Free body diagram of the link 3 

It is possible to observe forces and moments acting on link 3. 𝐅𝐁𝟐𝟑 𝐚𝐧𝐝 𝐅𝐁𝟑𝟒 stand for pulling 

forces of the left link and right link in respect to the reviewed one respectively. Resultant 

vectors of these forces are strictly defined by position of the neighboring elements. Also, 

𝐋𝟓 𝒂𝒏𝒅 𝐋𝟔 are position vectors from the bearing’s center to the link’s center of mass. Force 

𝐅𝟐 is cause by the index finger that is connected to the link; consequently, moment 𝑴𝟐  arises 

from the finger as well. This particular link is actuated by external DC motor, so −𝑴𝑜.𝑚.2 is 

taken into account. Distances, D, are indicating interval between centers of mass. 𝑺𝟏 stands 

for link’s center of mass. All moments are taken about link’s center of mass. It will be 

necessary to note that analysed problem is not a planar case, hence outcome final equations 

are related to each axis – x, y and z.  

∑F = ma   =>  FB23  −  R𝑙𝑖𝑛𝑘4
𝑙𝑖𝑛𝑘3 . FB34 + m3( R𝑙𝑖𝑛𝑘3

0 −1. g) + R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . F2 + 𝑚𝑜.𝑚.2( R𝑙𝑖𝑛𝑘3

0 −1. g) 

= 𝑚3𝑎𝑠3          

 (5.36) 

To apply load of the passive links with appropriate proportion, they are disconnected from the 

closed chain, i.e. 

R𝑙𝑖𝑛𝑘4
𝑙𝑖𝑛𝑘3 . FB34 = 0;  R𝑙𝑖𝑛𝑘4

𝑙𝑖𝑛𝑘3 . 𝜏4 = 0         

(5.37) 

 

FB23 = −m3( R𝑙𝑖𝑛𝑘3
0 −1. g) − R𝑖.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘3 . F2 − 𝑚𝑜.𝑚.2( R𝑙𝑖𝑛𝑘3
0 −1. g) + 𝑚3𝑎𝑠3     

(5.38.1) 
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∑M = 𝛪⍵̇ + ⍵ × (𝛪⍵)    =>  𝜏3− R𝑙𝑖𝑛𝑘4
𝑙𝑖𝑛𝑘3 . 𝜏4 + (𝐹𝐵23

× 𝐿5) − ( R𝑙𝑖𝑛𝑘4
𝑙𝑖𝑛𝑘3 . 𝐹𝐵34

× 𝐿6) −

  R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . 𝑀2 − 𝑀𝑜.𝑚.2  = ( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3
. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ). ⍵̇𝑙𝑖𝑛𝑘3
+ ⍵𝑙𝑖𝑛𝑘3

×

(( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3
. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ). ⍵𝑙𝑖𝑛𝑘3
)       (5.38.2) 

 

𝜏3  = R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . 𝑀2 − (𝐹𝐵23

× 𝐿5) + 𝑀𝑜.𝑚.2 + ( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3
. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ). ⍵̇𝑙𝑖𝑛𝑘3
+ ⍵𝑙𝑖𝑛𝑘3

×

(( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3
. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ). ⍵𝑙𝑖𝑛𝑘3
)       

 (5.39) 

 

Scheme 5.14. Free body diagram of the link 2 

Scheme 5.14 shows link with the thumb force acting on it. This link is unique as thumb is 

attached at two points, applying 𝐅𝟏 and 𝐅𝟏.𝟏 due to implemented four-bar linkage.  

∑F = ma => FB12  −  R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . FB23 + m2( R𝑙𝑖𝑛𝑘2

0 −1. g) + R𝑡.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘2 . F1 + R𝑜.𝑑𝑟.𝑙

𝑙𝑖𝑛𝑘2 . F1.1 +

𝑚𝑜.𝑚.1( R𝑙𝑖𝑛𝑘2
0 −1. g) = 𝑚2𝑎𝑠2          

 

FB12 = R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . FB23 − m2( R𝑙𝑖𝑛𝑘2

0 −1. g) − R𝑡.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘2 . F1 − R𝑜.𝑑𝑟.𝑙

𝑙𝑖𝑛𝑘2 . F1.1 − 𝑚𝑜.𝑚.1( R𝑙𝑖𝑛𝑘2
0 −1. g) +

𝑚2𝑎𝑠2           

 (5.40) 

 

∑M = 𝛪⍵̇ + ⍵ × (𝛪⍵) =>  𝜏2− R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . 𝜏3 + (𝐹𝐵12

× 𝐿3) − ( R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . 𝐹𝐵23

× 𝐿4) −

  R𝑡.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘2 . 𝑀1 −  R𝑜.𝑑𝑟.𝑙

𝑙𝑖𝑛𝑘2 . 𝑀1.1 + 𝑀𝑜.𝑚.1  = ( 𝑅.𝑙𝑖𝑛𝑘2
0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇

𝑙𝑖𝑛𝑘2
0 ). ⍵̇𝑙𝑖𝑛𝑘2 + ⍵𝑙𝑖𝑛𝑘2 ×

(( 𝑅.𝑙𝑖𝑛𝑘2
0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇

𝑙𝑖𝑛𝑘2
0 ).⍵𝑙𝑖𝑛𝑘2)         (5.41) 
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𝜏2 = R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . 𝜏3 − (𝐹𝐵12

× 𝐿3) + ( R𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘2 . 𝐹𝐵23

× 𝐿4) + R𝑡.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘2 . 𝑀1 + R𝑜.𝑑𝑟.𝑙

𝑙𝑖𝑛𝑘2 . 𝑀1.1 − 𝑀𝑜.𝑚.1 +

( 𝑅.𝑙𝑖𝑛𝑘2
0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇

𝑙𝑖𝑛𝑘2
0 ). ⍵̇𝑙𝑖𝑛𝑘2 + ⍵𝑙𝑖𝑛𝑘2 × (( 𝑅.𝑙𝑖𝑛𝑘2

0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇
𝑙𝑖𝑛𝑘2

0 ).⍵𝑙𝑖𝑛𝑘2)    (5.42) 

 

 

Scheme 5.15. Free body diagram of the link 1 

On Scheme 5.15, crank is schematically represented. It is actuated by the second DC motor 

located within the ‘stationary’ fifth link. There are no fingers on this link; it serves as a rotary 

motion translator. 

 

∑𝐅 = 𝐦𝐚   => 𝐅𝐁𝟎𝟏  − 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝐅𝐁𝟏𝟐 + 𝐦𝟏( 𝐑𝒍𝒊𝒏𝒌𝟏

𝟎 −𝟏. 𝐠) = 𝒎𝟏𝒂𝒔𝟏 

𝐅𝐁𝟎𝟏 = 𝒓𝒂𝒕𝒊𝒐𝟑 ∗ ( 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝐅𝐁𝟏𝟐 − 𝐦𝟏( 𝐑𝒍𝒊𝒏𝒌𝟏

𝟎 −𝟏. 𝐠) + 𝒎𝟏𝒂𝒔𝟏)               (5.43) 

 

∑𝐌 = 𝜤⍵̇ + ⍵ × (𝜤⍵)    =>  𝝉𝟏− 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝝉𝟐 + (𝑭𝑩𝟎𝟏

× 𝑳𝟏) − ( 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝑭𝑩𝟏𝟐

× 𝑳𝟐) =

( 𝑹.𝒍𝒊𝒏𝒌𝟏
𝟎 𝜤𝒍𝒊𝒏𝒌𝟏. 𝑹𝑻

𝒍𝒊𝒏𝒌𝟏
𝟎 ). ⍵̇𝒍𝒊𝒏𝒌𝟏 + ⍵𝒍𝒊𝒏𝒌𝟏 × (( 𝑹.𝒍𝒊𝒏𝒌𝟏

𝟎 𝜤𝒍𝒊𝒏𝒌𝟏. 𝑹𝑻
𝒍𝒊𝒏𝒌𝟏

𝟎 ). ⍵𝒍𝒊𝒏𝒌𝟏)            (5.44) 

 

𝝉𝟏 = 𝒓𝒂𝒕𝒊𝒐𝟑 ∗ ( 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝝉𝟐 − (𝑭𝑩𝟎𝟏

× 𝑳𝟏) + ( 𝐑𝒍𝒊𝒏𝒌𝟐
𝒍𝒊𝒏𝒌𝟏 . 𝑭𝑩𝟏𝟐

× 𝑳𝟐) +

( 𝑹.𝒍𝒊𝒏𝒌𝟏
𝟎 𝜤𝒍𝒊𝒏𝒌𝟏. 𝑹𝑻

𝒍𝒊𝒏𝒌𝟏
𝟎 ). ⍵̇𝒍𝒊𝒏𝒌𝟏 + ⍵𝒍𝒊𝒏𝒌𝟏 × (( 𝑹.𝒍𝒊𝒏𝒌𝟏

𝟎 𝜤𝒍𝒊𝒏𝒌𝟏. 𝑹𝑻
𝒍𝒊𝒏𝒌𝟏

𝟎 ). ⍵𝒍𝒊𝒏𝒌𝟏))            (5.45) 

 

5.3.4. Calculations for torque 5 and 𝑭𝑩𝟒𝟎 

Scheme 5.14 will be used again, but now the closed loop is disconnected from the left side, 

i.e. FB12 = 0 . 

 

− FB23 + m2( R𝑙𝑖𝑛𝑘2
0 −1. g) + R𝑡.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘2 . F1 + R𝑜.𝑑𝑟.𝑙
𝑙𝑖𝑛𝑘2 . F1.1 + 𝑚𝑜.𝑚.1( R𝑙𝑖𝑛𝑘2

0 −1. g) = 𝑚2𝑎𝑠2 

FB23 = m2( R𝑙𝑖𝑛𝑘2
0 −1. g) + R𝑡.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘2 . F1 + R𝑜.𝑑𝑟.𝑙
𝑙𝑖𝑛𝑘2 . F1.1 + 𝑚𝑜.𝑚.1( R𝑙𝑖𝑛𝑘2

0 −1. g) − 𝑚2𝑎𝑠2        (5.46) 
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−𝜏3 − (𝐹𝐵23
× 𝐿4) −  R𝑡.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘2 . 𝑀1 −  R𝑜.𝑑𝑟.𝑙
𝑙𝑖𝑛𝑘2 . 𝑀1.1 + 𝑀𝑜.𝑚.1 = ( 𝑅.𝑙𝑖𝑛𝑘2

0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇
𝑙𝑖𝑛𝑘2

0 ). ⍵̇𝑙𝑖𝑛𝑘2 +

⍵𝑙𝑖𝑛𝑘2 × (( 𝑅.𝑙𝑖𝑛𝑘2
0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇

𝑙𝑖𝑛𝑘2
0 ).⍵𝑙𝑖𝑛𝑘2)        

 

𝜏3 = −(𝐹𝐵23
× 𝐿4) − R𝑡.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘2 . 𝑀1 − R𝑜.𝑑𝑟.𝑙
𝑙𝑖𝑛𝑘2 . 𝑀1.1 + 𝑀𝑜.𝑚.1 − ( 𝑅.𝑙𝑖𝑛𝑘2

0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇
𝑙𝑖𝑛𝑘2

0 ). ⍵̇𝑙𝑖𝑛𝑘2 −

⍵𝑙𝑖𝑛𝑘2 × (( 𝑅.𝑙𝑖𝑛𝑘2
0 𝛪𝑙𝑖𝑛𝑘2. 𝑅𝑇

𝑙𝑖𝑛𝑘2
0 ).⍵𝑙𝑖𝑛𝑘2)      (5.47) 

 

Inspecting scheme 5.13 and moving to the right, 

 

R.𝑙𝑖𝑛𝑘2
𝑙𝑖𝑛𝑘3 FB23  −  FB34 + m3( R𝑙𝑖𝑛𝑘3

0 −1. g) + R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . F2 + 𝑚𝑜.𝑚.2( R𝑙𝑖𝑛𝑘3

0 −1. g) = 𝑚3𝑎𝑠3 

FB34 = R.𝑙𝑖𝑛𝑘2
𝑙𝑖𝑛𝑘3 FB23  +  m3( R𝑙𝑖𝑛𝑘3

0 −1. g) + R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . F2 + 𝑚𝑜.𝑚.2( R𝑙𝑖𝑛𝑘3

0 −1. g) − 𝑚3𝑎𝑠3      (5.48) 

 

R.𝑙𝑖𝑛𝑘2
𝑙𝑖𝑛𝑘3 𝜏3−𝜏4 + ( R.𝑙𝑖𝑛𝑘2

𝑙𝑖𝑛𝑘3 𝐹𝐵23
× 𝐿5) − (𝐹𝐵34

× 𝐿6) −  R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . 𝑀2 − 𝑀𝑜.𝑚.2  =

( 𝑅.𝑙𝑖𝑛𝑘3
0 𝛪𝑙𝑖𝑛𝑘3. 𝑅𝑇

𝑙𝑖𝑛𝑘3
0 ). ⍵̇𝑙𝑖𝑛𝑘3 + ⍵𝑙𝑖𝑛𝑘3 × (( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ).⍵𝑙𝑖𝑛𝑘3)            (5.49) 

 

𝜏4 = R.𝑙𝑖𝑛𝑘2
𝑙𝑖𝑛𝑘3 𝜏3 + ( R.𝑙𝑖𝑛𝑘2

𝑙𝑖𝑛𝑘3 𝐹𝐵23
× 𝐿5) − (𝐹𝐵34

× 𝐿6) −  R𝑖.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘3 . 𝑀2 − 𝑀𝑜.𝑚.2 −

( 𝑅.𝑙𝑖𝑛𝑘3
0 𝛪𝑙𝑖𝑛𝑘3. 𝑅𝑇

𝑙𝑖𝑛𝑘3
0 ). ⍵̇𝑙𝑖𝑛𝑘3 − ⍵𝑙𝑖𝑛𝑘3 × (( 𝑅.𝑙𝑖𝑛𝑘3

0 𝛪𝑙𝑖𝑛𝑘3. 𝑅𝑇
𝑙𝑖𝑛𝑘3

0 ).⍵𝑙𝑖𝑛𝑘3) (5.50) 

 

Scheme 5.16. Free body diagram of the link 4 

Now, scheme 5.16 is used to show situation in link 4. This link carries middle and ring fingers 

that are located on both sides of the link’s centre of mass.  

R.𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘4 FB34  −  FB40 + m4( R𝑙𝑖𝑛𝑘4

0 −1. g) + R𝑚.𝑓..𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘4 . F3 + R𝑟.𝑓..𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘4 . F4 +

𝑚𝑜.𝑚.3( R𝑙𝑖𝑛𝑘4
0 −1. g) + 𝑚𝑜.𝑚.4( R𝑙𝑖𝑛𝑘4

0 −1. g) = 𝑚4𝑎𝑠4    (5.51) 
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FB40 = 𝑟𝑎𝑡𝑖𝑜4 ∗ ( R.𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘4 FB34 + m4( R𝑙𝑖𝑛𝑘4

0 −1. g) + R𝑚.𝑓.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘4 . F3 + R𝑟.𝑓.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘4 . F4 +

𝑚𝑜.𝑚.3( R𝑙𝑖𝑛𝑘4
0 −1. g) + 𝑚𝑜.𝑚.4( R𝑙𝑖𝑛𝑘4

0 −1. g) − 𝑚4𝑎𝑠4)    (5.52) 

 

R.𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘4 𝜏4−𝜏5 + ( R.𝑙𝑖𝑛𝑘3

𝑙𝑖𝑛𝑘4 𝐹𝐵34 × 𝐿7) − (𝐹𝐵40 × 𝐿8) + R𝑚.𝑓.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘4 . 𝑀3 − R𝑟.𝑓.𝑙.𝑝ℎ.

𝑙𝑖𝑛𝑘4 . M4 − 𝑀𝑜.𝑚.4 +

𝑀𝑜.𝑚.3 = ( 𝑅.𝑙𝑖𝑛𝑘4
0 𝛪𝑙𝑖𝑛𝑘4. 𝑅𝑇

𝑙𝑖𝑛𝑘4
0 ). ⍵̇𝑙𝑖𝑛𝑘4 + ⍵𝑙𝑖𝑛𝑘4 × (( 𝑅.𝑙𝑖𝑛𝑘4

0 𝛪𝑙𝑖𝑛𝑘4. 𝑅𝑇
𝑙𝑖𝑛𝑘4

0 ).⍵𝑙𝑖𝑛𝑘4)    (5.53) 

 

𝜏5 = 𝑟𝑎𝑡𝑖𝑜4 ∗ ( R.𝑙𝑖𝑛𝑘3
𝑙𝑖𝑛𝑘4 𝜏4 + ( R.𝑙𝑖𝑛𝑘3

𝑙𝑖𝑛𝑘4 𝐹𝐵34 × 𝐿7) − (𝐹𝐵40 × 𝐿8) + R𝑚.𝑓.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘4 . 𝑀3 −

R𝑟.𝑓.𝑙.𝑝ℎ.
𝑙𝑖𝑛𝑘4 . M4 − 𝑀𝑜.𝑚.4 + 𝑀𝑜.𝑚.3 − ( 𝑅.𝑙𝑖𝑛𝑘4

0 𝛪𝑙𝑖𝑛𝑘4. 𝑅𝑇
𝑙𝑖𝑛𝑘4

0 ). ⍵̇𝑙𝑖𝑛𝑘4 − ⍵𝑙𝑖𝑛𝑘4 ×

(( 𝑅.𝑙𝑖𝑛𝑘4
0 𝛪𝑙𝑖𝑛𝑘4. 𝑅𝑇

𝑙𝑖𝑛𝑘4
0 ).⍵𝑙𝑖𝑛𝑘4))       (5.54) 

 

Scheme 5.17. Vector projections 

Although all calculations are processed in computer, scheme 5.17 will be used to explain 

cross product outcomes for each of the axis. For moment equations in non-planar space, when 

𝑭𝑳𝒆𝒇𝒕𝑳𝒊𝒏𝒌 × 𝑳𝑳𝒆𝒇𝒕 𝒂𝒏𝒅  𝑭𝑹𝒊𝒈𝒉𝒕𝑳𝒊𝒏𝒌 × 𝑳𝑹𝒓𝒊𝒈𝒉𝒕, vector product formula is used: 

 

𝒄𝒙 = 𝒂𝒚𝒃𝒛 − 𝒂𝒛𝒃𝒚 

𝒄𝒚 = 𝒂𝒛𝒃𝒙 − 𝒂𝒙𝒃𝒛 

𝒄𝒛 = 𝒂𝒙𝒃𝒚 − 𝒂𝒚𝒃𝒙 

It is now possible to produce resultant vector equations (specifically, moment): 
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𝑻𝒆𝒓𝒎𝒔 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒕𝒐 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 𝒍𝒊𝒏𝒌′𝒔 𝒊𝒏𝒇𝒍𝒖𝒆𝒏𝒄𝒆, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒍𝒊𝒏𝒌 𝒊

+ 𝟏:   
𝒙
𝒚
𝒛

{

𝐅𝐑𝐋𝐲
. 𝐋𝐑𝐳 − 𝐅𝐑𝐋𝐳

. 𝐋𝐑𝐲

 𝐅𝐑𝐋𝐳
. 𝐋𝐑𝐱 − 𝐅𝐑𝐋𝐱

. 𝐋𝐑𝐳

𝐅𝐑𝐋𝐱
. 𝐋𝐑𝐲 − 𝐅𝐑𝐋𝐲

. 𝐋𝐑𝐱

 

𝑻𝒆𝒓𝒎𝒔 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒕𝒐 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 𝒍𝒊𝒏𝒌′𝒔 𝒊𝒏𝒇𝒍𝒖𝒆𝒏𝒄𝒆, 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒍𝒊𝒏𝒌 𝒊:   
𝒙
𝒚
𝒛

{

𝐅𝐋𝐋𝐲
. 𝐋𝐋𝐳  −  𝐅𝐋𝐋𝐳

. 𝐋𝐋𝐲

𝐅𝐋𝐋𝐳
. 𝐋𝐋𝐱 − 𝐅𝐋𝐋𝐱

. 𝐋𝐋𝐳

𝐅𝐋𝐋𝐱
. 𝐋𝐋𝐲  − 𝐅𝐋𝐋𝐲

. 𝐋𝐋𝐱

 
 
 
 

5.3.5. Simulation results 

When flexion occurs, i.e. theta 5 is negative and theta 1 is positive, spherical triangle is 

assembled below. Grasping happens when link’s inertias are helping motion, i.e. the hand is 

upside down. Material is set to be aluminium, however some vital parts are set to be from 

carbon steel. These include link 1 of the palm’s mechanism, driving links in the fingers and 2 

small links that are part of the thumb’s outer actuation system. 

 

Figure 5.3. Load taken by palm’s DC motors 
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Figure 5.3. Load taken by fingers’ DC motors 

Figures 5.4 and 5.5 prove that 2-second rapid motion is very demanding in terms of required 

torque. However, it is still possible to follow the same route, but with longer time – that will 

reduce torque requirement accordingly and will make realistic conditions for motor operation. 

It is necessary to say that backward motion will require even higher torque due to inertias 

acting in the opposite direction. Results are based on conditions when all fingertips meet 

simultaneous 10 N force resistance and motion is determined by path planning instructions.  

5.4. Summary 

Obtained results are expected and final comment on the performance can be made. Proposed 

design is limited in terms of power grasp and also rapid motion under considerable stress is 

not possible. However, operation under simultaneous 10N-fingertip load with moderate speed 

is attainable. In addition, the robotic hand was pushed to its limits in terms of chosen 

actuator’s torque affordability and according to the results, the metamorphic anthropomorphic 

robotic hand with integrated motors shows reasonable performance. Considering the fact that 

controlled hand’s structure is complicated, this is compensated by grasping capabilities and 

acceptable force generation. Without force acting on each fingertip, i.e. while the object is not 

yet carried, the proposed hand is able to be dexterous and obtain the posture within short 

period of time. Then, when the force is applied to the object and its inertia is included to the 

manipulator, stable smooth motion (and slow if the object is heavy) is recommended to avoid 

high torque demands. 
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Chapter 6 

Control 

 

 

6.1. Introduction 

Control engineering allows mathematical description of the system variables to achieve the 

desired motion for continuously operating mechanism. It is an indispensable method for 

analysing kinematic and dynamic behaviour of the mechanism (robot) and relating it to the 

desired motion by introducing appropriate controller. For example, forces acting on the 

mechanism required to achieve the desired robot configuration in a minimum time can be 

found based on the control model. Such implementation of control theory allows modelling of 

corrective controller which acts differently with respect to an error signal, optimizing the 

system to make the desired process possible. 

In this chapter, control techniques and route planning are discussed for further implementation 

into the controller.  

6.2. Path Planning 

Path planning – is a branch of control science, that describes the trajectory of manipulator 

motion through obstacles in the set time profile. Path planning defines the curve followed by 

end-effector between initial and terminate positions, rotational motion between two 

orientations and the time-dependence function of coordinate variation. Path planning is a 

challenging problem in robotics, especially when dealing with robot’s design for dynamic 

environments. Changing environment introduces the need of automatic obstacle avoidance 

feature, which complicates the path planning process.  

Path planning process consists of two tasks: determination of geometric path and avoiding the 

excessive time, energy and jerk. Several approaches dedicated to minimization of each of the 

parameters alone, depending on the goal set for each robot. 
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Time is the first criteria for judging system’s performance as it is directly proportional to the 

productivity of the system. Minimization of the execution time is especially important in 

automated robotics. 

Although there are various methods available for path planning, i.e. cubic path, non-

polynomial path, Cartesian path, rotation path (rotation matrices), polynomial method is 

widely used and acknowledged for its simplicity and efficiency. It provides enough control 

for variety of tasks and also path can be split into segments and checkpoints set. 

A seven-degree polynomial has maintenance of jerk parameters in comparison to the five-

degree polynomial, which represents a simplified version without jerk consideration and 

hence is faster in terms of computation time if huge calculation sequences should be 

performed. However, for precision actuation a seven-degree polynomial must be used to set 

particular conditions of the start and end points of the described route that are meant to have 

no jerk. In addition, when requirements for route checkpoints are being assessed, for some 

points admitted amount of jerk may take place if task requires so. 

Consider a seven-degree polynomial’s final form, 

𝜃(𝑡) = 𝑘0 + 𝑘1𝑡 + 𝑘2𝑡
2 + 𝑘3𝑡

3 + 𝑘4𝑡
4 + 𝑘5𝑡

5 + 𝑘6𝑡
6 + 𝑘7𝑡

7  (6.1) 

where ‘k’ – constant coefficient. 

A general seven-degree polynomial can be presented by the following matrices, containing 

start motion and end motion parameters: 

[
 
 
 
 
 
 
 
 1 𝑡𝑠 𝑡𝑠

2

0 1 2𝑡𝑠
0
0
1
0
0
0

0
0
𝑡𝑒
1
0
0

2
0
𝑡𝑒
2

2𝑡𝑒
2
0

     

𝑡𝑠
3 𝑡𝑠

4

3𝑡𝑠
2 4𝑡𝑠

3

6𝑡𝑠
6
𝑡𝑒
3

3𝑡𝑒
2

6𝑡𝑒
6

12𝑡𝑠
2

24𝑡𝑠
𝑡𝑒
4

4𝑡𝑒
3

12𝑡𝑒
2

24𝑡𝑒

     

𝑡𝑠
5 𝑡𝑠

6

5𝑡𝑠
4 6𝑡𝑠

5

20𝑡𝑠
3

60𝑡𝑠
2

𝑡𝑒
5

5𝑡𝑒
4

20𝑡𝑒
3

60𝑡𝑒
2

30𝑡𝑠
4

120𝑡𝑠
3

𝑡𝑒
6

6𝑡𝑒
5

30𝑡𝑒
4

120𝑡𝑒
3

     

𝑡𝑠
7

7𝑡𝑠
6

42𝑡𝑠
5

210𝑡𝑠
4

𝑡𝑒
7

7𝑡𝑒
6

42𝑡𝑒
5

210𝑡𝑒
4]
 
 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
𝑘0

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

𝑘6

𝑘7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝜃(𝑡𝑠)

�̇�(𝑡𝑠)

�̈�(𝑡𝑠)

𝜃(𝑡𝑠)
𝜃(𝑡𝑒)

�̇�(𝑡𝑒)

�̈�(𝑡𝑒)

𝜃(𝑡𝑒)]
 
 
 
 
 
 
 
 
 

   (6.2) 

 Coefficients are therefore found: 
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[
 
 
 
 
 
 
 
𝑘0

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

𝑘6

𝑘7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 1 𝑡𝑠 𝑡𝑠

2

0 1 2𝑡𝑠
0
0
1
0
0
0

0
0
𝑡𝑒
1
0
0

2
0
𝑡𝑒
2

2𝑡𝑒
2
0

     

𝑡𝑠
3 𝑡𝑠

4

3𝑡𝑠
2 4𝑡𝑠

3

6𝑡𝑠
6
𝑡𝑒
3

3𝑡𝑒
2

6𝑡𝑒
6

12𝑡𝑠
2

24𝑡𝑠
𝑡𝑒
4

4𝑡𝑒
3

12𝑡𝑒
2

24𝑡𝑒

     

𝑡𝑠
5 𝑡𝑠

6

5𝑡𝑠
4 6𝑡𝑠

5

20𝑡𝑠
3

60𝑡𝑠
2

𝑡𝑒
5

5𝑡𝑒
4

20𝑡𝑒
3

60𝑡𝑒
2

30𝑡𝑠
4

120𝑡𝑠
3

𝑡𝑒
6

6𝑡𝑒
5

30𝑡𝑒
4

120𝑡𝑒
3

     

𝑡𝑠
7

7𝑡𝑠
6

42𝑡𝑠
5

210𝑡𝑠
4

𝑡𝑒
7

7𝑡𝑒
6

42𝑡𝑒
5

210𝑡𝑒
4]
 
 
 
 
 
 
 
 
−1

.

[
 
 
 
 
 
 
 
 
 
𝜃(𝑡𝑠)

�̇�(𝑡𝑠)

�̈�(𝑡𝑠)

𝜃(𝑡𝑠)
𝜃(𝑡𝑒)

�̇�(𝑡𝑒)

�̈�(𝑡𝑒)

𝜃(𝑡𝑒)]
 
 
 
 
 
 
 
 
 

   (6.3) 

For all actuators the following simulation requirements will be set: 

𝛾(0) = 0  �̇�(0) = 0  �̈�(0) = 0  𝛾(0) = 0 

𝛾(2) = 78.5  �̇�(2) = 0  �̈�(2) = 0  𝛾(2) = 0 

where 𝛾 is an input from figure 6.1 below. 

Therefore, 

[
 
 
 
 
 
 
 
1 0 0
0 1 0
0
0
1
0
0
0

0
0
2
1
0
0

2
0
4
4
2
0

     

0 0
0 0
0
6
8
12
12
6

0
0
16
32
48
48

     

0 0
0 0
0
0
32
80
160
240

0
0
64
192
480
960

     

0
0
0
0

128
448
1344
3360]

 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
𝑘0

𝑘1

𝑘2

𝑘3

𝑘4

𝑘5

𝑘6

𝑘7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0
0
0
0

78.5
0
0
0 ]

 
 
 
 
 
 
 

     (6.4) 

The final polynomial is:    𝛾(𝑡) = 171.719𝑡4 − 206.062𝑡5 + 85.8594𝑡6 − 12.2656𝑡7   (6.5) 

 

Figure 6.1. Conditions for set motion 

Figure 6.1 shows that no jerk takes place and therefore motion is smooth and accurate.   
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The studied example shows implementation of higher order polynomial functions for 

satisfaction of set boundary conditions. One of the main advantages for using single high 

degree polynomial function is the smoothness of produced path, which takes into account 

many conditions (i.e. n-degree polynomial considers n+1 conditions, including constraints on 

accelerations and sometimes jerk).68 On the other hand, single function can be split into few 

lower degree polynomials with their own boundary conditions. The results from all segments 

are then combined to produce the path. The main disadvantage of the split-path planning is 

that produced trajectory is absence of a single continuous differentiable function, which 

results in not a continuous velocity and acceleration, hence, jumps in accelerations are 

possible and the main requirement for path smoothness (continuous acceleration) is not met.68 

The main disadvantage of high degree polynomial employment is the mathematical 

complexity. Despite that smoothness of the path is important for reduction of motor wear, the 

difference in effectiveness may not be strongly noticeable and hence the time- and cost-

consuming computing could be eliminated by using the piecewise approach.72 

6.3. Collision Avoidance and Checkpoint Trajectory73 

Assessment of workspace can be executed using various techniques. One of the most 

convenient methods is to upload CAD models of the robotic arm and its nearby environment 

to the specialized for these purposes software. Although this process can be resource 

demanding, another approach would involve specific treatment of the operation area when it 

is split into free and reserved (for obstacles) sectors and constraints are assigned to each 

robotic arm joint. 

The free space is determined as 𝐶𝑓𝑟𝑒𝑒 and the obstacle space is considered as 𝐶𝑜𝑏𝑠𝑡. 

𝐶 = 𝐶𝑓𝑟𝑒𝑒 ∪ 𝐶𝑜𝑏𝑠𝑡 (6.6) 

If distance, d, is defined by configuration ‘k’ and obstacle ‘O’, then the following 

circumstances are taken into account: 

𝑑(𝑘, 𝑂) = 0    , when the contact is present (6.7) 

𝑑(𝑘, 𝑂) > 0    , when there is no contact (6.8) 

𝑑(𝑘, 𝑂) < 0    , when manipulator is intersecting with an obstacle (6.9) 

Required data can be obtained from sensorial hardware or algorithms utilising real-time vision 

analysis. In addition, common approach is to represent robotic arm and obstacles as spheres of 

radiuses 𝑍𝑖 (centre at 𝑧𝑖(𝑘)) and 𝑂𝑗(centre at 𝑜𝑗) respectively. Quality of measurements 
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depends on the amount of spheres involved in the mesh construction. Hence, distance is 

found: 

𝑑(𝑘, 𝑂) = min
𝑖,𝑗

 ‖𝑧𝑖(𝑘) − 𝑜𝑗‖ − 𝑍𝑖 − 𝑂𝑗 (6.10) 

Once the environment is studied and free space allocated, a set of checkpoints can be 

therefore selected in order to achieve the final destination of motion through the safe route. 

Also, it is important to have a time control for optimisation or task purposes. 

6.4. Closed-Loop Feedback Control 

When inverse dynamics is determined, there are several ways to control desired motion. 

Linear and non-linear methods. Linear method is appropriate and may be used in case if 

acceleration is constant, therefore it would be enough velocity and position errors to stabilize 

system’s performance. Disturbances always occur due to external factors, modelling 

inaccuracies, etc. Hence, control unit has to take that into account. 

Proportional-derivative control offers optimisation when this unit is subtracted from dynamics 

equation. Consider equation 6.11: 

𝑄 = −𝑘𝐷�̇� − 𝑘𝑃𝑒 (6.11) 

𝑒 = 𝑞𝑎 − 𝑞𝑑  (6.12) 

�̇� = �̇�𝑎 − �̇�𝑑  (6.13) 

where 𝑞𝑎 and �̇�𝑎 stand for actual values, but �̇�𝑎 and �̇�𝑑 stand for desired values. 

If acceleration takes places, PD control cannot ensure stability of the system. For this 

adjustment, results from open-loop of inverse dynamics are used as a feedback for continuous 

comparison: 

𝑄 = 𝐷(𝑞)𝑞�̈� + 𝐻(𝑞, �̇�) + 𝐺(𝑞) + 𝐷(𝑞)(−𝑘𝐷�̇� − 𝑘𝑃𝑒) (6.14) 

𝑄 = 𝐷(𝑞)(𝑞�̈� − 𝑘𝐷�̇� − 𝑘𝑃𝑒) + 𝐻(𝑞, �̇�) + 𝐺(𝑞)  (6.15) 

Further manipulations decrease overall equation to error equation: 

�̈� + 𝑘𝐷�̇� + 𝑘𝑃𝑒 = 0  (6.16) 

Now, finally, solution is obtained: 

𝑒 = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡  (6.17) 
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𝜆1,2 = −𝑘𝐷 ± √𝑘2
𝐷 − 4𝑘𝑃   (6.18) 

In terms of stability, while eigenvalues of matrix A have real parts and are negative, the 

system is asymptotically stable. 

 [
0 𝐼

−𝑘𝑃 −𝑘𝐷
] [

𝑒
�̇�
] = [𝐴] [

𝑒
�̇�
]    (6.19) 

Closed-loop control algorithms have several advantages over open-loop control. As shown 

above, the control commands in closed-loop control algorithms are adjusted based on the 

calculated error, summarised in equation 6.6. Application of new commands changes the 

dynamic equations of the system and the process is repeated constantly to control the 

following of designed path.68 The open-loop control algorithms do not consider any possible 

error and expect a robot to follow the path only by computing the motion equations. It is, 

however, a much simpler approach and the open-loop control system is more cost-effective 

and easier to construct.  

6.5. Summary 

Control engineering has a vital role in any robot successful and safe functioning. First of the 

issues addressed in the chapter was path planning: while there exist several methods for path 

establishment, polynomial approach is considered the most convenient due to sufficient 

accuracy of the results, prospective to jerk elimination with production of a smooth path with 

continuous velocity and acceleration. While the high order polynomial function provides the 

smoothest path, it may be cost-inefficient and the piecewise approach may be preferred. 

However, choice of path planning approach must be performed by consideration of several 

factors: the number of conditions to be met, the length of the path, presence of obstacles or 

geometric constrains. 

Closed-loop feedback control was also reviewed in the chapter as it is a reliable control 

system with high level of accuracy.74 However, despite the strong advantage, as closed-loop 

system considers external errors, it is also an expensive complex system for construction. 

Stability of the closed-loop system is harder to achieve due to the sensitivity of the feedback 

mechanism. Open-loop control system lacks the accuracy due to the absence of error 

consideration, but is simple, more stable and easier to construct and maintain. While both of 

the control systems are widely used, it is important to take into account the target environment 

for robot employment. 
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Chapter 7 

Finite Element Analysis of Vulnerable Parts 

 

 

7.1. Introduction 

Finite element analysis is often used to inspect behavior of mechanical systems and parts 

under various stress conditions. It is reliable and cost-effective method to determine 

drawbacks of design or just to verify expectations – prototyping for analysis becomes less 

essential and time can be saved at earlier stages of the manipulator development. 

In this chapter, changes to the thumb design are assessed. Simulation results are briefly 

discussed. Thumb is stressed in conditions within which it is expected to perform. 

Suggestions for design improvements are made. 

7.2. Simulations 

In general, thumb with its base are made from aluminium in order to reduce load on the 

actuators. In the model, aluminium alloy 1060 is considered. It has a 27574200 𝑁/𝑚2 yield 

strength. As for driving link in the fingers, driving link of the palm (link 1) and thumb’s outer 

linkage small links – they are made out of simple carbon steel, 220594000 𝑁/𝑚2. 
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Figure 7.1. Finger is subjected to 10 N 

Figure 7.1 illustrates that when thumb’s fingertip is subjected to 10 N force, no deformation 

of material occurs – parts withstand the stress and remain on the same position. It is necessary 

to mention that despite other fingers have their joint’s ‘z’ axis being parallel, thumb’s lower 

joint is turned for 72 degrees from middle and upper joints. Hence, force is applied from the 

side and torque required for motion is less. This fact is beneficial for small links that drive the 

finger as they cannot withstand high torques.    
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Figure 7.2. Stress at lower joint during 10 N 

It is possible to observe on figure 7.2 maximum stress of 21365742 𝑁/𝑚2. As lower phalange 

was modeled to be made from aluminium, this stress is near to the critical. Therefore, it may 

be considered that 10 N at fingertip is maximum force that should be applied to the thumb. 

Right part of the bottom joint is at higher load than the left part – this is caused by the 

difference of joint’s ‘z’ axis orientation and is expected result.  

 

Figure 7.3. 700 N.mm applied to the joint driven by outer linkage 
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Figure 7.4. Stressed outer linkage 

It is necessary to obtain limits for the force that is perpendicular to the bottom joint. From that 

perspective, less force will be required to cause critical stress. Figure 7.3 shows that 700 

N.mm (about 7 N at the edge of the finger) at joint driven by small links of the outer linkage 

is almost enough for the deformation to occur. For better results, diameter of the joint can be 

increased, leading to the overall outer linkage proportional growth. From the figures 7.3 and 

7.4, it is clear that outer linkage does not bend as well under mentioned stress. 
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Figure 7.5. Stress during 10 N application 

 

Figure 7.6. Middle phalange and lower phalange joint 

Figure 7.5 clearly indicates that the weakest point of the upper part of the thumb is lower 

phalange and middle phalange common joint. It has shafts that are part of the side plates. 
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However, insertion of separate steel shafts will lead to disrupted silhouette. Greater 

performance is not required for the thumb since it not ready to withstand greater force than 10 

N. Shifted upper phalange causes unequal torque and force distribution along the finger, 

which is seen from simulation results.  

 

Figure 7.7. Outer linkage is stressed for perpendicular to the bottom joint 10 N at the 

fingertip 
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Figure 7.8. Failure of the outer linkage 

Figures 7.7 and 7.8 show that driving link fails under 10 N applied to the fingertip when force 

orientation is perpendicular to the bottom joint. As it was expected, overstepping force limits 

that were set leads to the mechanism failure.   
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Figure 7.9. 10 N are applied vertically to the thumb’s base 

The smallest link in the palm raised appropriate concerns regarding its durability and stress 

resistance at initial stage of designing. In particular, figure 7.9 shows joint’s response to 

vertically applied 10 N to the base of the thumb. It can be seen that performance is acceptable, 

considering that the metamorphic robotic hand is intended for precision grasping. 

Furthermore, when manipulating objects, the hand operates with its fingers looking down – 

this means that inertial impact of other parts of the hand will not influence the joint during, for 

example, secure power grasp procedure. 

7.3. Summary 

After major tests were performed, it is now necessary to clarify how the hand can be used. It 

is understandable that this design cannot be intended for heavy duty job where significant 

stress impact takes place, but the proposed robotic hand is able to withstand stress of 10 N at 

each fingertip simultaneously. This conclusion is important and defines force constrains. As 

chosen actuators are capable of producing 10 N force at each fingertip, this result is satisfying 

for many applications within the industrial sector.  
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For reliability increase, the following steps can be reviewed: change of material with higher 

properties and higher yield withstanding, outer linkage proportions increase. As an 

alternative, mechanism of the thumb actuation may be revised and different transmission 

method chosen. Inclusion of pin joints instead of bearing usage can improve the situation. It 

was also noted that the stress is distributed in fingers unequally, so therefore it is highly 

advised that the driving crank in the mechanism would be located in the center of the shaft, 

not on the side. 
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Chapter 8 

Conclusions and Future Work 

 

 

Designs of scientific robotic hands continue to develop, bringing new ideas and inspiration to 

robotics field. Identified tendencies of the subject study show that recently there were huge 

improvements made in terms of design. Soft robotics is very prospective area; it has attracted 

attention of many scientists that work today on bringing exceptional inventions. While soft 

robotics evolves, there is still continuous interest in solid designs with high number of DOFs. 

Implementation of metamorphism in solid designs is prospective and unique opportunity. 

Current level of actuator technologies does not allow to build efficient metamorphic solid 

mechanical systems with optimized size and complicated small parts, although this is a 

subject to changes and future will bring endless relevance to metamorphism in robotics. 

As for prosthetic robotic hands that are available to public, due to the high prices of 

commercial products, more and more popular become low-cost designs or completely open-

source models of the robotic hands that can be 3D printed. This trend may influence pricing of 

existing brand robotic hands and change demand/supply balance in recent future. 

Conducted research has fully described properties of the proposed robotic hand, its 

weaknesses and overall performance. It is not possible to say that inclusion of motors into the 

palm is completely advantageous – there are certain disadvantages. While motion 

transmission using gears and linkages is better for accurate manipulations, the mechanical 

system becomes more vulnerable in terms of structure, weight, shape. Also, it loses 

compliance.  

All in all, proposed design is great for small force operation and when shape of the 

manipulator is not essential. Metamorphism allows to produce advanced postures and hence 

objects of complicated shape can be manipulated. Kinematic analysis, numerical simulations 

and object grasping tests have discovered true nature and benefits of the robotic hand. 
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The proposed manipulator is able to withstand force of 10 N at each fingertip simultaneously 

and is considerably resistant to stress, so therefore suitable for industrial applications. 

However, certain elements of the design can be changed – rivet joints are suggested to replace 

bearings. If requirements for the manipulator are less strict in terms of force generation, it is 

advised that the actuators are changed for smaller ones to reduce the overall shape of the 

manipulator. Linear actuators with partially compliant linkages may be considered to replace 

gears in case if human interaction is required. The most problematic area of the design is 

determined to be thumb section. Hence, if the robotic hand is required to be adapted for 

prosthetics, integrated DC motor into the palm to control thumb should be removed due to 

inappropriate contribution to the shape of the hand. Nevertheless, designed hand perfectly 

suits industrial needs and aesthetics is not a necessity in this area. As an additional 

improvement, it is suggested that the thumb’s outer linkage can be revised for better results 

and general level of design complexity should be decreased for manufacturing purposes.  

As a general conclusion, developed manipulator can contribute to both industrial and 

prosthetics sectors, and its unique structure can serve as a ground for further advancements of 

robotics. 

Overall, future work would involve preparing the developed hand to both markets, industrial 

and prosthetic. As for the second one, significant changes are implied. It would be wise to 

contact manufacturing companies and provide detailed schematics of the design to receive an 

approximate quote. Received suggestions should be reviewed and integrated if necessary. 

Strategy of adapting the developed manipulator for prosthetics: 1) using 1 DOF fingers (no 

DC motor inside the finger), 2) using shorter gearbox (sacrifice the power and improve 

control of the hand as reduction will decrease) or linear actuators with compliant linkages, 3) 

thumb would have to be operated by a tendon approach as nothing else is unfortunately 

applicable. Prosthetics demands high standards of anthropomorphism. 

In the end, obtained information from the conducted research would be used as a 

supplementary material at prototype testing stage. Once prosthetic and industrial versions of 

the hand are assembled, it is highly recommended that test bench would be used for final tests 

and design improvements. It is important to see if the robotic hands are able to provide 

claimed performance and correspond to international standards accepted within the field. 
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Ortopädie-Technik, 4/11, 2011, pp. 249-255. 

12. Vincent Systems, ‘Vincent evolution 2’, [website], 2018, 

http://vincentsystems.de/en/prosthetics/vincent-evolution-2/ (Accessed 21st May 2018) 

13. Ottobockus., ‘Fascinated. With Michelangelo – Perfect use of precision technology’, 

Ottobock SE & Co., Duderstadt, 2014. 

14. Butterfass, J., Grebenstein, M., Liu, H. and Hirzinger, G., ‘DLR-Hand II: next generation 

of a dextrous robot hand’, IEEE International Conference on Robotics and Automation, 1, 

2001, pp. 109-114. 

15. Butterfass, J. et al., ‘Design and experiences with DLR hand II’, Proceedings World 

Automation Congress 2004, Seville, 2004, pp. 105-110. 

http://www.touchbionics.com/news-events/news/i-limb-hand-wins-prosthetic-product-innovation-award
http://www.touchbionics.com/news-events/news/i-limb-hand-wins-prosthetic-product-innovation-award
http://www.touchbionics.com/about/history
http://vincentsystems.de/en/prosthetics/vincent-evolution-2/


 
125 

 

16. Leidner, D. and Dietrich, A., ‘Rollin’ Justin’, DLR Institute of Robotics and 

Mechatronics, 2016. 

17. Butterfass, J., ‘Hand II’, DLR Institute of Robotics and Mechatronics, 2003. 

18. Liu, H. et al., ‘The Modular Multisensory DLR-HIT-Hand: Hardware and Software 

Architecture’, IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, 2008, pp. 461-

469. 

19. Liu, H. et al., ‘Multisensory Five-Finger Dexterous Hand: The DLR/HIT Hand II’, 

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3692-

3697. 

20. Meusel, P., ‘DLR-HIT Hand II’, DLR Institute of Robotics and Mechatronics, 2014. 

21. Townsend, W., ‘The BarrettHand grasper – programmably flexible part handling and 

assembly’, Industrial Robot: An International Journal, vol. 27 no. 3, 2000, pp. 181-188  

22. Stevens, P., ‘The Expanding Options of Partial Hand Prostheses’, The O&P Edge, April 

2015, https://opedge.com/Articles/ViewArticle/2015-04_03 (Accessed 21st May 2018) 

23. Advanced Arm Dynamics, ‘Finger and Partial Hand Options’, [website], 2018, 

http://armdynamics.com/pages/unique-partial-hand-options (Accessed 21st May 2018) 

24. Robotiq, ‘Adaptive Grippers’, [website], 2018, http://robotiq.com/products/adaptive-

robot-gripper/ (Accessed 21st May 2018) 

25.  Parra, L., ‘The DEKA Arm’, BME 281 First Presentation, 2015.  

26.  Hruska, J., ‘FDA approves the Deka arm, the first commercial mind-controlled prosthetic 

arm’, ExtremeTech, 12 May 2014, https://www.extremetech.com/extreme/182202-fda-

approves-the-deka-arm-the-first-commercial-mind-controlled-prosthetic-arm (Accessed 

21st May 2018) 

27.  Xu, Z. and Todorov, E., ‘Design of a Highly Biomimetic Anthropomorphic Robotic Hand 

towards Artificial Limb Regeneration’, IEEE International Conference on Robotics and 

Automation (ICRA), 2016.  

28. Ackerman, E., ‘This Is the Most Amazing Biomimetic Anthropomorphic Robot Hand 

We've Ever Seen’, IEEE Spectrum, 18 February 2016, 

http://spectrum.ieee.org/automaton/robotics/medical-robots/biomimetic-anthropomorphic-

robot-hand (Accessed 21st May 2018) 

29. Friedl, W., ‘David’s Hand’, DLR Institute of Robotics and Mechatronics, 2015. 

30. Guizzo, E., ‘Building a Super Robust Robot Hand’, IEEE Spectrum, 25 January 2011, 

http://spectrum.ieee.org/automaton/robotics/humanoids/dlr-super-robust-robot-hand 

(Accessed 21st May 2018) 

https://opedge.com/Articles/ViewArticle/2015-04_03
http://armdynamics.com/pages/unique-partial-hand-options
http://robotiq.com/products/adaptive-robot-gripper/
http://robotiq.com/products/adaptive-robot-gripper/
https://www.extremetech.com/extreme/182202-fda-approves-the-deka-arm-the-first-commercial-mind-controlled-prosthetic-arm
https://www.extremetech.com/extreme/182202-fda-approves-the-deka-arm-the-first-commercial-mind-controlled-prosthetic-arm
http://spectrum.ieee.org/automaton/robotics/medical-robots/biomimetic-anthropomorphic-robot-hand
http://spectrum.ieee.org/automaton/robotics/medical-robots/biomimetic-anthropomorphic-robot-hand
http://spectrum.ieee.org/automaton/robotics/humanoids/dlr-super-robust-robot-hand


 
126 

 

31. Grebenstein et al., ‘The DLR Hand Arm System’, IEEE International Conference on 

Robotics and Automation (ICRA), Shanghai, China, 2011, pp. 3175-3182. 

32. Elumotion, ‘EH 2 – Elumotion Hand 2’, [website], 

http://www.elumotion.com/index.php/portfolio/project-title-1(Accessed 21st May 2018) 

33. SHUNK, ‘Servo-electric 5-finger Gripping Hand SVH’, [website], http://www.schunk-

modular-robotics.com/en/home/products/servo-electric-5-finger-gripping-hand-svh.html 

(Accessed 21st May 2018) 

34. King’s College London, ‘Multifingered Robotic Hand Lab’, [website], 

http://nms.kcl.ac.uk/core/?page_id=2309 (Accessed 21st May 2018). 

35. Dai, J. S., Wang, D. and Cui, L., ‘Orientation and Workspace Analysis of the 

Multifingered Metamorphic Hand—Metahand’, IEEE Transactions on Robotics, vol. 25, 

no. 4, 2009, pp. 942-947. 

36. Palli G. et al., ‘Development of robotic hands: The UB hand evolution’, IEEE/RSJ 

International Conference on Intelligent Robots and Systems, Vilamoura, 2012, pp. 5456-

5457.  

37. Homberg, B. S. et al., ‘Haptic Identification of Objects using a Modular Soft Robotic 

Gripper’, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 

2015, pp. 1698-1705. 

38. Diemel, R. and Brock, O., ‘A Novel Type of Compliant, Underactuated Robotic Hand for 

Dexterous Grasping’, The International Journal of Robotics Research, vol. 35, no. 1-3, 

2015, pp. 161-185.  

39. Diemel, R. and Brock, O., ‘A Novel Type of Compliant, Underactuated Robotic Hand for 

Dexterous Grasping’, The International Journal of Robotics Research, vol. 35, no. 1-3, 

2015, pp. 161-185. 

40. Wei, G. et al., ‘DEXDEB - application of DEXtrous robotic hands for DEBoning 

operation’, Springer Tracts in Advanced Robotics, 2014, pp. 217-235. 

41. Lovchik, S. C. and Diftler, M. A., ‘The Robonaut hand: a dexterous robot hand for space’ 

Proceedings 1999 IEEE International Conference on Robotics and Automation, vol. 2, 

1999, pp. 907-912. 

42. Bridgwater, L. B. et al., ‘The Robonaut 2 Hand – Designed To Do Work With Tools’, 

2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 2012, 

pp. 3425-3430. 

http://www.elumotion.com/index.php/portfolio/project-title-1
http://www.schunk-modular-robotics.com/en/home/products/servo-electric-5-finger-gripping-hand-svh.html
http://www.schunk-modular-robotics.com/en/home/products/servo-electric-5-finger-gripping-hand-svh.html
http://nms.kcl.ac.uk/core/?page_id=2309


 
127 

 

43. Melchiorri, C. et al., ‘Development of the UB Hand IV: Overview of Design Solutions 

and Enabling Technologies’, IEEE Robotics & Automation Magazine, vol. 20, no. 3, 

2013, pp. 72-81. 

44. SSSA, ‘D5.20: First robot hand development’, CogLaboration, 2012. 

45. Cipriani, C., Controzzi, M. and Carrozza, M. C., ‘The SmartHand transradial prosthesis’, 

Journal of NeuroEngineering and Rehabilitation, vol.8, 2011, doi: 10.1186/1743-0003-8-

29.  

46. Shadow Robot Company, ‘Shadow Dexterous Hand E1 Series’, Shadow Dexterous Hand 

Technical Specification, 2013. 

47. Buckley, D., ‘Hand research’, [website], 2012, 

http://www.davidbuckley.net/RS/HandResearch.htm#shadow (Accessed 21st May 2018) 

48. Reichel, M., ‘Transformation of Shadow Dextrous Hand and Shadow Finger Test Unit 

from Prototype to Product for Intelligent Manipulation and Grasping’, International 

Conference on Intelligent Manipulation and Grasping, 2004. 

49. Quote with tech. specs and pricing issued in August 2009. Ref.Number:P-DH-200908 

50. Sivakumar, K. and Priyanka Ch., ‘Grasping Objects Using Shadow Dexterous Hand with 

Tactile Feedback’, IJIRSET, vol. 4, no. 5, 2015, pp. 3108-3116. 

51. Shigley, J. E. and Mischke, C. R., Standard Handbook of Machine Design, 2nd edn., New 

York, McGraw-Hill, 1996. 

52. Budynas, R. G. and Nisbett, K. J., Shigley’s Mechanical Engineering Design, 10th edn., 

New York, McGraw-Hill Education, 2015. 

53. Gordon, C. C. et. al., 1988 Anthropometric Survey of U.S. Personnel: Summary Statistics 

Interim Report, Anthropology Research Project, Inc., Ohio, 1989. 

54. Methot, J., Chinchalkar, S. J. and Richards, R. S., ‘Contribution of the ulnar digits to grip 

strength’, The Canadian Journal of Plastic Surgery, vol.18, e10-e14, 2010. 

55. Siciliano, B. et al., Robotics: Modelling, Planning and Control, London, Springer-Verlag 

London Ltd, 2010.  

56. Craig, J., Introduction to robotics: Mechanics and control, 3rd edn., New Jersey, 

Pearson/Prentice Hall, 2004. 

57. Siciliano, B. et al., Robotics: Modelling, Planning and Control, London, Springer-Verlag 

London Ltd, 2010.  

58. Craig, J., Introduction to robotics: Mechanics and control, 3rd edn., New Jersey, 

Pearson/Prentice Hall, 2004, p. 68. 

http://www.davidbuckley.net/RS/HandResearch.htm#shadow


 
128 

 

59. Gallardo-Alvarado, J., ‘Kinematics by means of screw theory’, Multibody System 

Dynamics, vol.14, no. 3-4, pp. 345-366. 

60. Huang, Z. et al., Theory of Parallel Mechanisms, 2013. 

61. Jia, Y-B., ‘Problem Solving Techniques for Applied Computer Science’, Com S 477/577, 

Iowa State University, 2017. 

62. Huang, Z. et al., Theory of Parallel Mechanisms, 2013. 

63. Kumar, V., ‘Background, Twists in Kinematics and Wrenches in Statics’, ASME DETC 

1998, 1998.  

64. J.Gallardo-Alvarado, Kinematic Analysis of Parallel Manipulators by Algebraic Screw 

Theory, Springer International Publishing, Switzerland, 2006.  

65. Gallardo-Alvarado, J., ‘Kinematics by means of screw theory’, Multibody System 

Dynamics, vol.14, no. 3-4, p. 349. 

66. Craig, J., Introduction to robotics: Mechanics and control, 3rd edn., New Jersey, 

Pearson/Prentice Hall, 2004, pp. 173-176. 

67. Meredith, M. and Maddock, S., Real-Time Inverse Kinematics: The Return of the 

Jacobian, 2004. 

68. Jazar, R. N., Theory of Applied Robotics, 2nd edn., Springer Science & Business Media, 

London, 2010.  

69. McCarthy, J. M. and Soh, G. S., Geometric Design of Linkages, Springer Science & 

Business Media, London, 2011. 

70. Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John 

Wiley & Sons, New Jersey, 1999. 

71. Howard, D., BEng Dynamics handout, University of Salford, UK, 2015. 

72. Zhu, H., ‘Motion Trajectory Planning and Simulation of 6- DOF Manipulator Arm 

Robot’, Academic Journal of Manufacturing Engineering, vol. 15(3), 2013. 

73. Lynch, K.M. and Park, F. C., Modern Robotics. Mechanics, Planning, and Control, 

Cambridge, Cambridge University Press, 2017. 

74. Bakshi, U. A. and Bakshi V. U., Principles of Control Systems, Pune, Technical 

Publications Pune TM, 2009. 

 

  



 
129 

 

Appendix 

Version 2 (Different method with the same result). Part of Kinematics position derivation: 

𝐴 cos 𝑥 + 𝐵 sin 𝑥 = 𝐶 

𝐴 cos 𝑥 + 𝐵√1 − cos2 𝑥 = 𝐶 →  ^2 

𝐴2 cos2 𝑥 + 2𝐴𝐵 cos 𝑥 sin 𝑥 + 𝐵2 − 𝐵2 cos2 𝑥 = 𝐶2  → ∶ cos2 𝑥  

𝐴2 +
2𝐴𝐵 sin 𝑥

cos 𝑥
+

𝐵2

cos2 𝑥
− 𝐵2 =

С2

cos2 𝑥
 

𝐴2 − 𝐵2 + 2𝐴𝐵 tan 𝑥 =
С2

cos2 𝑥
−

𝐵2

cos2 𝑥
 

𝐴2 − 𝐵2 + 2𝐴𝐵 tan 𝑥 = (С2 − 𝐵2)
1

cos2 𝑥
 

𝐴2 − 𝐵2 + 2𝐴𝐵 tan 𝑥 = (С2 − 𝐵2)(1 + tan2 𝑥) 

𝐴2 − 𝐵2 + 2𝐴𝐵 tan 𝑥 = С2 + С2 tan2 𝑥 − 𝐵2 − 𝐵2 tan2 𝑥 

𝐴2 + 2𝐴𝐵 tan 𝑥 = С2 + С2 tan2 𝑥 − 𝐵2 tan2 𝑥 

С2 tan2 𝑥 − 𝐵2 tan2 𝑥 − 2𝐴𝐵 tan 𝑥 + 𝐶2 − 𝐴2 = 0 

(С2 − 𝐵2) tan2 𝑥 − (2𝐴𝐵) tan 𝑥 + (𝐶2 − 𝐴2) = 0 

𝐿𝑒𝑡 𝐴′ = С2 − 𝐵2,  𝐵′ = −2𝐴𝐵,  𝐶′ = 𝐶2 − 𝐴2 

𝐴′ tan2 𝑥 + 𝐵′ tan 𝑥 + 𝐶′ = 0 

tan1.2 𝑥 =
−𝐵′ ± √𝐵′2 − 4𝐴′𝐶′

2𝐴′
 

tan1.2 𝑥 =
2𝐴𝐵 ± √4𝐴2𝐵2 − 4(𝐶2 − 𝐵2)(𝐶2 − 𝐴2)

2(𝐶2 − 𝐵2)
 

tan1.2 𝑥 =
2𝐴𝐵 ± √4𝐴2𝐵2 − 4𝐶4 + 4𝐶2𝐴2 − 4𝐴2𝐵2 + 4𝐵2𝐶2

2(𝐶2 − 𝐵2)
 

tan1.2 𝑥 =
2𝐴𝐵 ± √4𝐶2(𝐶2 + 𝐴2 + 𝐵2)

2(𝐶2 − 𝐵2)
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tan1.2 𝑥 =
2𝐴𝐵 ± 2𝐶√𝐶2 + 𝐴2 + 𝐵2

2(𝐶2 − 𝐵2)
 

𝑥1,2 = tan−1(
𝐴𝐵 ± 𝐶√𝐶2 + 𝐴2 + 𝐵2

(𝐶2 − 𝐵2)
)  

 

Figure 9.1. Fingertips can be tracked. Pink for thumb, green for index finger, blue and red for 

middle and ring fingers respectively 

 

Figure 9.2. Theta 3 is 19.19 deg 
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Figure 9.3. Theta 3 is -21.34 deg 

 

Figure 9.4. Only index is bent 
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Figure 9.5. Only thumb is bent 

 

 

 

 

 

 

 

 

 


