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Abstract 

The rapid urbanisation and industrialisation, due to technological advancement, led to severe 

environmental pollution.  The environmental pollution in the last few decades resulted in an 

adverse impact on the environment causing massive accumulation of wastewater. Wastewater 

is one of the closest sources of environmental problems, at the same time water scarcity is 

becoming alarming due to its high demand as the global population is increasing. Hence, the 

application for managing available water resources becomes crucial. The ever-increasing 

demand for water brings the need for wastewater treatment as an alternative source of water. 

Constructed Wetlands (CW) have gained broader research attention due to their environmental 

and safety benefits for wastewater treatment. In this study, over three years of monitoring 

performance data from 03rd December 2014 to 28th March 2018 (thirty-nine months) of the 

vertical flow vertical wetlands system, receiving and treating domestic wastewater, were 

collected and utilised to assess and investigate the treatment performance efficiency of the 

Vertical Flow Constructed Wetland Systems (VFCWs) for removing pollutants from 

wastewater. Different laboratory-scale vertical-flow constructed wetlands filters filled with 

gravel and planted with common reed were built to remove removal from wastewater. The 

overall evaluation of the system treatment performance was calculated using percentage 

removal efficiency. The results were recorded it was observed that all vertical flow constructed 

wetland filters had recorded high removal performance for the water quality parameters, 

irrespective of filter set-up and operation. The system was discovered to be very useful in 

pollutants removal (water quality parameters) with significant efficiency.  

  

However, the high cost of analysis laboratory tests, time-consuming parameters couple with 

uncertainties associated with an analysis of water quality variables, lead to the development of 

two data mining technique models Multiple Linear Regressions (MLR) and Multilayer 

Perceptron (MLP). To predict the wastewater treatment performance of CW by predicting 

selected output water quality parameters these include Chemical Oxygen Demand (COD), 

Biological Oxygen Demand (BOD), orthophosphate phosphorous (PO4-P), ammonium 

nitrogen (NH4-N) and suspended solids (SS) with respect to other known input parameters that 

will provide comfortable, reliable and cost-effective methods. Correlation analysis was 

conducted to select the most highly correlated input parameters to be used for the model 
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development (prediction of output parameter). The monitoring dataset of all the parameters 

used was divided into training dataset to build prediction models (MLR and MLP) and testing 

dataset to validate the models constructed. In this current work, 70% of the whole data was 

used as a training dataset while the remaining 30% of the data set was used as a testing dataset. 

The prediction models built were evaluated and compared using two model evaluation criteria: 

graphical model evaluation (scatter plot and hydrograph) and numerical model error evaluation 

criteria using five model evaluation criteria, these include: Root Mean Square Error (RMSE), 

regression coefficient (r), Relative Absolute Error (RAE), mean absolute error (MAE) and root 

relative squared error (RRSE). The results obtained indicated that the predicted values of output 

parameters were in good agreement and relationship with their respective measured 

parameters. Thus, this showed that the two models built yielded satisfactory predictions and 

both models had performed reasonably well in predicting output variables concentrations 

accurately given the value of input dependent variable.  

Furthermore, the comparison between the model's outcomes showed that MLP model 

prediction performance was discovered to be better than the MLR model in a majority of water 

quality parameters. Both models built could be effectively used as a tool for predicting removal 

of water quality parameters efficiency of vertical flow constructed wetlands treating domestic 

wastewater and in predicting constructed wetland performance in wastewater treatment process 

in term of pollutants removal. The results demonstrated the potentiality of vertical flow 

constructed wetlands to treat domestic wastewater and remove pollutants for future reuse.  
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Chapter 1: Introduction 

1.1  Overview  

This section provides an overview of the chapter. Section 1.2 explained the background of 

the study, section 1.3 highlight the research motivation, while the problem of this research 

was described in section 1.4. The research questions were defined in section 1.5 while 

section 1.6 explained the justification, aim and objectives, and lastly, the research outline 

has been described in section 1.7.  

1.2 Background of the study 

An increase in the global population has led to rapid growth of urbanisations and industries. 

As a result, water has been increasing in other hand water supplying is decreasing due to 

water scarcity (Almuktar & Scholz, 2016).  The three main natural sources of water globally 

are rainfall; groundwater and surface water but the main ground and surface water are 

dependent on rainfall and appear to be virtually unlimited for their access.  

The access to clean, tidy and safe water is becoming critical challenges globally; as a result 

the contemporary society confronting growing imbalance between freshwater availability 

and consumption (Zhang et al., 2014).  One of the most persistent problems affecting human 

health in developing countries is insufficient access to tidy and hygienic water. Research 

revealed that water problems are expected to keep deteriorating in many years to come 

(Zhang et al., 2014) 

The on-going current scarcity of water worldwide as a result of drought and the need of 

water in large cities and in the rural areas for agricultural uses and other requirements have 

made wastewater treatment and recycling an essential element of source of water in the 

sustainable management of water resources (Rousseau, et al, 2008). Advances in the 

constructed wetlands created an enabling environment to collect and record huge volumes 

of data from analysis and optimisation of water treatment processes, with implication for a 

wide range of research fields, such as irrigation, animal rearing, husbandry and human 

consumptions (Greenway, 2004). This data has become an essential part of decisions 

making in the area of re-use of treated wastewater and their environmental implications.   

Wastewater treatment and reusing have been continuously practised worldwide for many 

reasons which include: To increase the availability of water, battling drought and shortages 

of water, and aid in environmental and public health protection (Fountoulakis, et al., 2016). 
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The needs for re-use of wastewater in some countries more especially the arid lands are due 

to an increase of human population and food consumptions, couple with environmental 

concern in more industrialised countries (Zhang et al., 2014).  Therefore, according to (Al-

Isawi, et al., 2015), application of constructed wetlands (CWs) in wastewater treatment is 

important due to their very low energy usage, easily accessible, simplicity and low cost of 

operation. CWs are used widely as an alternative means of water pollution control.  

Constructed wetlands are based on applications of natural processes involving greenery, 

soils, and microbial organism to treat wastewater (Ouyang, et al,. 2011). They are 

engineered systems to mimic the natural wetland used globally to treat wastewater 

emanated from various sources (Gikas & Tsihrintzis, 2014,   Vymazal, 2014). There are 

two major classes of Constructed Wetlands namely: Surface Flow Constructed Wetlands 

(SFCWs) and Sub-Surface Flow Constructed Wetlands (SSFCW) (Kadlec & Wallace, 

2008; Scholz, 2006;  Vymazal, 2014b; Vymazal & Kröpfelová, 2011; Wu et al., 2015).  

The SFCW have been used for wastewater treatment for many decades, where water flows 

above a gravel medium and planted with macrophytes and has an exposed water surface 

which is different from subsurface flow constructed wetland (SSFCW) that has no clear 

water surface. As a result of water movement direction in the treatment systems (Vymazal, 

2002b; Vymazal & Kröpfelová, 2011; Wu et al., 2014). In SSFCWs wastewater flows 

horizontally or vertically through the substrate which supports the growth of plants, and 

based on the flow direction, it can be subdivided into Horizontal Flow Constructed Wetland 

Systems (HFCWs) and Vertical Flow Constructed Wetland Systems (VFWs). Generally, 

the substrate in HFCWs is flooded with water, unlike the substrate in VFCWs that is 

holding back and drained the water as water intermittently feed into the systems 

(Stefanakis, et al, 2014; Vymazal, 2014b) which supports the growth of different plants. 

VFCWs has been used for wastewater treatment (Kumar, et al, 2018). In comparison with 

horizontal-flow and demonstrated to be successful in removing  pollutants from wastewater 

pressure removal efficiency specifically for Nitrogen, the flow of  water through the gravel 

and the plant root downward to the bottom of the system (Rawaa 2016; Chen et al., 2008; 

Cooper, 1999; Gikas & Tsihrintzis, 2012) 

Various research studies revealed that vertical flow constructed wetland systems are 

capable in attaining a high pollutant removal through of oxygen transfer  (Fan, et al, 2013; 

Li, et al, 2015; Prochaska, et al, 2007). In vertical-flow constructed wetland systems 
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wastewater poured into them and then permeates through the wetland body by gravity as 

reported by many study researches like Kumar et al., (2018); Miklas Scholz (2016);  Paing 

& Voisin, (2005); Aboulroos, & Kamel, (2016). As wastewater get into the gravel and pass 

through, air enters the gravel holes (Sani & Scholz, 2013; Stefanakis et al., 2014). 

Eventually, the substrate may become so clogged that lead untreated wastewater to pass 

through the system (Babatunde, 2010; Hua et al., 2014). 

However, there are associated problems in dealing with wastewater treatment data due to 

large volumes of data involved. These problems may include measurement errors, missing 

values, false correlation, scalability, and storage bottleneck. Various researchers have 

employed and presented several data analysis techniques and models of constructed 

wetlands including data mining techniques. 

1.3 Data Mining 

For many decades, data mining has been used as one of the instruments for the data analysis 

and management knowledge, as many parts have been adjusted of data mining approach to 

resolving their problems (Mohamed et al, 2016). It has recently created awareness in the 

research industry and society in general, due to enormous obtainability of big data and the 

necessity for transforming such data into useful knowledge and information (Kaur, et al, 

2015). Data mining, sometimes referred to as Knowledge Discovery in Databases (KDD), 

especially is the area of determining new and potentially valuable information from 

enormous databases using one or more data software (Kaur et al., 2015;  Arockiam et al., 

2010). Data mining techniques become generally used in everyday activities to discover 

knowledge and have been applied and used for numerous research areas, applications and 

various purposes worldwide such as in healthcare industry  (Gomathi & Priyaa, 2017), in 

education areas (Mohamed, et al, 2015; Thakar, 2015), in a crime and fraud detection 

(Bhowmik, 2008; Muslim & Herowati, 2018). Data mining is also applicable to advertising 

and marketing (B, G, & K.M, 2013; Saini, et al, 2014), in loan assessment (Scholar, 2015; 

Surve et al., 2016), in weather forecasting , in hydrology (Liang & Liang, 2001; Spate, et 

al, 2006) and in predicting constructed wetland systems performance  (Lee & Scholz, 2006). 

In a research study of Weiss & Indurkhya, (1998), they described data mining as a tool that 

permits exploration for significant and valued information by data miners, in huge amount 

of data from different perspectives, to detect patterns and create relationships, and to resolve 

problems using data analysis and summarizing it into useful information, for the purpose 

of future trends description and prediction. In simple words, data mining refers to a process 
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that is used to remove usable data from a broader set of raw data. It implies analysing data 

patterns in large batches of data using one or more software which is collected and 

accumulated in usual places, like databases and data warehouses, for effective data analysis. 

Data mining algorithms, enabling research studies and other information requirements for 

determining and making knowledge usable in the proper prediction of future events based 

on the understanding of past events. It can also be regarded as one of the statistical method  

(Paramasivam et al, 2014),  and consider as information technology that developed and 

branches into sub-processes comprising of data collection, database creation and 

management, data analysis and lastly data interpretation  (Han, et al, 2011). 

The primary aims of data mining are to detect valid, original, and understandable 

correlations and patterns in datasets (Chung & Gray, 1999). Data mining is a process of 

analysing data from different views and summarising it into valuable knowledge, it also 

performs a significant part in prediction and helps in data cleaning (Periasamy, 2017). Data 

mining process comprises of six main phases: data selection, unwanted data filtration, 

assessing filtered data, programming, data mining and final report formation (Lei-da Chen 

& Frolick, 2000).  Collection of monitoring data from the experiment and laboratory 

analysis is conducted and selected; it is filtered to remove outlier or inappropriate data. The 

second phase an essential element of the process is normalisation of data to reduce idleness 

and to generate a reliable dataset. The third phase is the additional information possessions 

that can be combined into the present data. The fourth phase comprises programming where 

the transformation of data occurs into arrangements appropriate for data mining. The fifth 

phase is the actual discovery stage. It is the primary process of applying intelligent 

approaches to detect and determine patterns in data. The six and last phase is appropriate 

reports generation. The knowledge that was mined is offered through visualisation 

techniques, and knowledge demonstration techniques with the goal of conclusions 

generation or attempt in prediction as contained in Figure 1.1 symbolise data mining 

process. 

 

Data Selection Data Filtration
Assessing 
Filtered

Programming Data Mining
Report 

Generation
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Figure 1.1: Data mining process 

In a constructed wetland, data mining techniques can be used and apply to predict its 

performance in treating wastewater by predicting water quality parameters removal. All 

data mining techniques can be applied to discover, monitor and extract valuable knowledge 

from large unstructured dataset and turn it into a particular benefit for future use. Data 

mining techniques can easily be used with monitoring data from the experiment for 

evaluating and predicting water quality variables to help in upgrading treatment 

performance efficiency of the constructed wetland system and to enhancing system design 

and operation. Data mining techniques include the following: clustering, association 

mining, and classification (Periasamy, 2017). 

Over the last twenty years, numerical models were established to mimic differing purposes 

occurring in constructed wetlands with differing goals ranging from biochemical and 

geochemical processes, clogging, and hydraulic behaviour. Many researchers have studied 

and work on different data mining techniques that have been used to assess and predict the 

quality of waters due to their accuracy in the predictive performance of various areas like 

in hydrology (Xu Liang & Yao Liang, 2001). Also in the constructed wetland (Gikas, et al, 

2011; Li et al., 2018) and water resource management (Bertholdo, da Silva, et al, 2014; 

Mohan & Ramsundram, 2013). Numerical models are also used in the prediction of water 

quality parameters  (Singh, 2017).  

Data mining techniques are also applied in the hospital (Aghajani & Kargari, 2016; 

Hachesu, et al, 2013; Paramasivam et al., 2014; Srinivas, et al, 2010), in agriculture 

requirement (Khan et al., 2012;  Fetanat, Mortazavifar, & Zarshenas, 2015; Jaganathan, 

Vinothini, & Backialakshmi, 2014; Majumdar, Naraseeyappa, & Ankalaki, 2017). There 

are also reported cases of data mining application in computing, in predicting student record 

and performance (Shaleena & Paul, 2015; Yassein, et al., 2017), also in the building 

(Alencar, Carvalho, Koenders, et al, 2017). Another area in which data mining was applied 

is business performance prediction (Huang & Lin, 2014; Linoff & Berry, 2011) which lead 

to appropriate decisions. Many data mining techniques like Clustering, Regression analysis, 

Classification, Artificial Neural Networks, Association Rules, Decision Trees, Fuzzy logic, 

K-Nearest Neighbour method etc., are applied and used for discovering useful information 

from databases.  

Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) is one of the popular and 

approach of data mining techniques. An Artificial Neural network (ANN) involves many 
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connected processing elements, comprising several input nodes and a weighted sum of 

interconnections. The structure of Multi-Layer Perceptron (MLP) includes nodes which are 

in an input layer, a hidden layer(s), and one output layer. To represent the human brain’s 

ability to process in parallel, the notion was stimulated biologically and learn from 

experience, and to be highly connective and modifiable. The brain also functions through 

supervised learning, or the capability to train itself presently and learn from past 

experiences. The mind is capable to both of feeding connections forward, near sensory 

input, and feed relationships backwards near sensory input. In the study research of 

Tomenko, Ahmed, & Popov, (2007), they confirmed that ANN could be applied as 

alternative methods when the constructed wetland systems parameters cannot be adequately 

defined in terms of direct and clear mathematical models. 

MLP are widely used to predict pollutants removal performance in vertical flow constructed 

wetland. Some successful and practical applications of artificial neural network technique 

in constructed wetland include in pollutant removal prediction (Schmid & Koskiaho, 2006; 

Li et al., 2015; Ozengin et al., 2016;  Lyu et al., 2018) and in water quality parameters 

prediction (Emamgholizadeh et al, 2014; Zare Abyaneh, 2014; Maier & Dandy, 1996). 

Another widely used data mining techniques in constructed wetland is Multiple Linear 

Regressions (MLR). MLR models are used to design an optimal equation for predicting the 

value of an output dependent parameter from two or more input independent parameters 

(Tomenko et al., 2007). Some practical applications of multiple linear regressions in 

constructed wetland include prediction of water quality parameters (Emamgholizadeh et 

al., 2014; Zare Abyaneh, 2014) and evaluation and prediction of removal performance of 

different pollutants (Nalcaci etal., 2011;  Zou et al., 2012;  W.-B. Chen & Liu, 2015). MLR 

models are used in this research to predict the wastewater treatment performance of 

constructed wetland by determining the relationship between one output parameter given 

many inputs parameters that influence the outcome of the output parameter. 

However, it has been reported that MLR has been applied to help in detecting fraud (Gopal, 

1999; Perantalu & Bhargavkiran, 2017), it also use in solving health care system delivery 

related problem (Chao et al., 2008; Cruz et al, 2008; Kumar et al., 2014;  Scholar, 2017). 

MLR models are also applied in science and engineering (Akan, et al., 2015; Madden, 

Wilson, Dong et al, 2004; Salleh et al, 2017), in predicting banking performance (Bakar & 

Tahir, 2009; Jilkova & Stranska, 2017), in predicting population growth (Jain & Mishra, 

2015; Qu et al., 2011), in agricultural products estimation (Garcia-Paredes et al., 2000; 
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Sellam & Poovammal, 2016). It also used in predicting student academic performance 

(Oyerinde & Chia, 2017; Yang et al., 2018).  

In this study, different laboratory-scale vertical-flow constructed wetlands filled with gravel 

and planted with common reed were built and operated, to assess wastewater treatment 

performances and their relationship.  Data mining techniques were also applied to evaluate 

and predict wastewater treatment performance effectively of vertical-flow constructed 

wetland systems. These include the prediction of the wastewater treatment performance by 

estimating various water quality parameters using data mining techniques Multilayer 

perceptron (MLP) and Multiple linear regression (MLR), these parameters are used as 

criteria for assessing and predicting the treatment performance of the system. 

1.4 The Motivation of the Research 

In an effort to solve water scarcity associated problems, Constructed Wetlands technology 

are employed to treat wastewater. These Wetland systems restored and maintain the 

chemical, physical, and biological integrity of the water for human, animal and plant re-

use.  However, these Constructed wetland systems involve dealing with large volume of 

data acquired over a long period, therefore dealing with large size of data come with some 

challenges of inconsistency and missing values, which can lead to misleading treatment 

evaluation of the constructed wetland system performance. Hence the need for modelling 

and most of the previously concerted attempt of modelling vertical-flow constructed 

wetlands processes regarding the prediction of wastewater treatment performance shows a 

greater success. However, the reported literatures are lacking in the area of quality data of 

complete matured constructed wetland treatment systems and prediction model of long-

term treatment performance. thus, the need for the research.  

In this present investigation, both experimental and data mining techniques are utilised, and 

new methodological framework is proposed to predict wastewater treatment performance 

of a range of long-term experimental monitoring dataset of constructed wetland system by 

predicting water quality parameters. The data mining techniques used in this study research 

are MLR and MLP designed using R-Language and WEKA respectively. 

1.5 Research problem 

Urbanisation and industrialisation due to population growth led to an increase in water 

consumption for human and agricultural use. Also in arid areas and another part of the 
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world hit by drought, the source of clean water is limited. These associated water problems 

have made wastewater treatment and recycling a significant source of clean water, for 

irrigation and other agricultural and human needs. Natural and Constructed Wetland system 

have been used for wastewater treatment (Ouyang et al., 2011). Though there has been 

reported literature on the treatment performance of the Vertival-Flow Constructed Wetland 

systems (VFCWs), still there are needs to have long-term data so as to evaluate treatment 

performance effectively. Despite the several articles published on wetlands in the past, there 

is an essential gap in the literature concerning research on the long-term treatment 

performance and prediction of the constructed wetland systems using data mining 

techniques. However, because of the complexity or heterogeneity of wastewaters and the 

lack of quality data of complete constructed wetland treatment systems, many designs of 

constructed wetland fail to deliver accurate long-term wastewater treatment performance 

and prediction by constructed wetland systems. 

1.6 Justifications, Aim and Objectives 

1.6.1 Justification 

Most of the previous works on wastewater treatment efficiency performance of the 

constructed wetland focussed on evaluating the general performance of the short-term 

monitoring data (Bojcevska, 2004; Kantawanichkul & Wannasri, 2013; Kurniadie, 2011; 

Mavioso & Galvão, 2013; Mustafa, 2013; Mwangi, et al, 2012; Raude et al., 2018; Sehar 

et al., 2016; Toromanovic et al., 2017; Zidan et al., 2015). And also some evaluate treatment 

performance of the constructed wetland in a long-term period of data (Kayranli et al., 

2010a; Jan Vymazal, 2010a, 2014b).  

Majority of previous study research works have made an intensive effort to explore the use 

of modelling data mining technique to predict short-term wastewater treatment 

performance of constructed wetland by predicting missing incomplete water quality 

parameter in question as output parameter given other water quality parameters as input 

parameters (Bustillo-Lecompte et al., 2016; Galvão et al., 2010; Gholizadeh et al., 2015; 

Manu & Thalla, 2017; Raude et al., 2018; Ribeiro & Matos, 2007; Wietlisbach et al., 2016). 

However only a few focus on long-term treatment performance of constructed wetland 

(Akratos et al., 2008a; Dzakpasu, Scholz et al., 2016; Hamada et al., 2018; W. Li et al., 

2014).  
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This present work particularly provides the modelling community with statistically 

validated long-term data interpretation for the wastewater treatment. This long-term data 

will allow accurate modelling for prediction of the individual water quality parameters, and 

wetland managers with insight into long-term and seasonal performance of the system, 

allowing them to revise wetland management plans accordingly. The thesis highlights the 

gaps in the knowledge for the current state of the art for simulating wetland pollutant 

dynamics and suggests mechanisms for increasing the scope of such modelling approaches 

in the proper design and operation of the CW systems. The research gap is lack of 

appropriate information (data) on long-term wastewater treatment performance. The 

investigation into wastewater treatment performance by the constructed wetland systems, 

which was discovered to be very effective in removing pollutants, which could be used to 

evaluate wastewater treatment performance for possible future re-use. Prediction models 

are designed to increase the understanding and addressing the governing biological and 

chemical degradation processes happening in the “black box” constructed a wetland and 

can provide insight in which wastewater is treated and therefore increase the system 

operational understanding and the existing design criteria.  

A comprehensive and multi-disciplinary approach was used to understand and differentiate 

the proposed framework and prediction model of treatment performance of vertical-flow 

constructed wetlands for the removal of pollutants effectively. 

1.6.2 Aim 

This work is aimsed to investigate the performance of vertical flow constructed wetland in 

treating urban wastewater. And to design and apply data mining techniques using Multi-

layer perceptron (MLP) and Multiple linear regressions (MLR) to predicts wastewater 

treatment performance of  vertical-flow constructed wetlands. 

1.6.3 objectives 

The following objectives are designed, to achieve the set aims. These includes:  

i. To analyse different water quality parameters, present in the wastewater inflow and 

treated water outflow of the vertical-flow constructed wetlands systems; 

ii. To evaluate the wastewater pollutants removal performance for different filters of 

the system.  
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iii. To determine missing and hidden information from data and deal with it without 

affecting the consistency and accuracy of the data.  

iv. To design a model with the existing data using data mining techniques that will 

predict the treatment performance of wastewater by vertical flow constructed 

wetland system using:  

✓ Multi Linear regression (MLR); and 

✓ Multilayer Perceptron (MLP) 

1.7 Research Contribution  

The study research employed the use of data mining techniques to match identify missing 

values identified during performance monitoring of vertical flow constructed wetland 

system. The system contributed in monitoring, investigating and evaluating performance 

10 different experimental vertical flow constructed wetlands filters for the treatment of 

urban wastewater in different season of the year for more than three (3) years (thirty-nine 

months). The research also contributed in predicting wastewater treatment performance of 

the constructed wetland systems Also, these experimental data for the VFCWs were used 

to develop a model applying data mining techniques. The model developed predict the 

performance (by predicting water quality parameters removal) of vertical flow constructed 

wetland systems given other readily available water quality parameters (input parameters) 

using data mining techniques models.  

1.8 The Scope of the Research 

The study of the vertical flow constructed wetland system was conducted in operation for 

all the seasons of the year, from December 2014 to March 2018. The boundary condition, 

upon which the experiment was conducted includes climatic conditions, wastewater 

composition, porous filter material, and plant species (Guenter Langergraber, 2011). 

Because of the irregularity of natural systems, the outcomes and recommendations of the 

vertical flow constructed wetland system study concern only to similar conditions. 

1.9 Research Outline  

This research reviewed the existing information on wetlands and constructed wetlands 

applied for treatment of urban wastewater. The study investigated treatment performances 

of different filters of the experimental vertical-flow constructed wetlands for pollutants 

removal from wastewater. The thesis is structured into different chapters as follows:  
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a. Chapter 1 describes the background, justification, aims and objectives of the 

research work. 

b. Chapter 2 discussed the literature review on treatment performance of different 

types of pollutants in different constructed wetland systems from earlier conducted 

researches. With much emphasis on constructed wetlands, specify the role of 

primary wetlands. This chapter also discussed literature on prediction modelling for 

VFCW performance in contaminants removal. 

c. Chapter 3: The chapter discussed the materials and method used, the experimental 

set-up and operation methods applied for the study. The chapter explains the design 

of the experimental filter, and aggregate compositions as well as their physical 

arrangement. It also includes the sampling in the greenhouse; water quality 

parameters analysed in the laboratory. Furthermore, the chapter describes the 

framework used in designing the prediction model on how to predict particular 

water parameters given other parameters. 

d. Chapter 4: The chapter discusses discusses the seasonal variations in the 

performance efficiency of the wetland systems of different filters. Furthermore, 

general evaluation of the wastewater treatment performance of the constructed 

wetland systems on water quality is also described.   

 

e. Chapter 5 discussed the prediction model built, evaluate their accuracy in predicting 

water quality parameters removal and the compared the prediction performance 

between the two models built. 

f. Chapter seven discussed the conclusion of the research study and the 

recommendation for further research 
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Chapter 2: Literature Review 

2.1 Overview 

The chapter, discusses extensively, various relevant literature related to the constructed 

wetlands, showing the hydrology, components, types and removal mechanisms of 

pollutants. It also describes the historical development of wetlands, the mechanisms of 

wetlands, design and operational control of constructed wetlands on performance in 

wetlands experimental and modelling of different configurations of a constructed wetland. 

Applications of data mining techniques in predicting the wastewater treatment performance 

of experimental vertical flow constructed wetland ware also reviewed and discussed. 

2.2 Natural Wetlands 

As the name suggests, wetlands are flooded water-rich areas which are either permanently 

or seasonally with water. Natural wetlands are one of the vital natural resources in the 

world, which enhance the quality of water through natural processes. These natural 

processes include sedimentation, nutrient conversions, microbial and plant uptake of a large 

number of nutrients and range of different toxic materials (Knox, et al., 2008). 

Wetland is an ecosystem where the surface of the land area can be fully or partially covered 

and saturated with water, either seasonally or permanently, such that it takes on the 

characteristics of a distinct ecosystem (Zhang, et al., 2010). It can also be described as land 

areas fronts of swamp, fenland, peatland or water which could be characterises as natural 

or man-made, permanent or temporary, with water that is straming or static, fresh, brackish 

or salt, including zones of marine water, the deepness of which at low tide does not surpass 

six (6) meters (Nwankwoala, 2012). Wetland covers 10%  size of the world entire total land 

mass area and has economic value to the living community (Pan et al., 2011.,  Economic, 

2004). Historically, natural wetlands have been used as convenient sewage and wastewater 

disposal sites. This led to many wetlands, such as marshes, being saturated with nutrients 

and experiencing severe environmental degradation. It occurs naturally on every continent 

except Antarctica, examples of wetland are salt, fresh or somewhere in between consisting 

of marshes or swamps; saturated land, Marshes develop along the edges of rivers, ocean 

and lakes, the delta at the mouth of a river, low-lying areas that frequently flood. The source 

of its water is mainly from point sources of water and in some cases and nonpoint sources 

of water pollution, including stormwater runoff, domestic wastewater, agricultural 
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wastewater, and mine drainage (Zhang et al., 2010). Natural Wetlands improve physical, 

chemical, and biological procedures of water quality (Gopal, 1999), it performs a 

significant part in the control of flood and erosion and enhances water quality thereby 

decreasing the soluble pollutants levels in runoff and overflow water.  

Natural wetlands are commonly known as biological filters and biologically diverse 

ecosystem that protects water resources such as estuaries, lakes and groundwater 

(Brzezinska & Kalwasin, 2012). Wetland has been in existence for many decades in some 

parts of the world, including Europe and USA, which helps in expediting, the removal of 

water quality parameters, as well as in the treatment of wastewater. However, the processes 

were not understood by the researchers of the wetland system in the early 1960s (Rustum, 

et al., 2008a). Natural Wetlands are one of the vital natural resources in the world generally 

a wetland is an ecosystem where water is at or covering the surface of the ground for all or 

part of the year. Wetland is water saturated landscapes that include an area roughly about 

8.6 x 106 km2 which equivalent to 6.4 per cent for the world’s land surface (Gorham, 1996).  

2.2.1 Main functions of wetlands 

In general, wetland has value as attested to be of great use to human and animal (Greeson, 

et al., 1979). The main function of natural wetlands can be outlined to the 

following: water quality, water supply and storage, flood control, erosion control, wildlife 

support, recreation, culture, and commercial benefits. Other includes windbreak, 

wastewater treatment, food and energy resource, recreation and tourism, scientific research 

and education.  

Wetlands are among the most productive ecosystems in the world, comparable to rain 

forests and coral reefs; Wetlands play an integral role in the ecology of the watershed, 

Scientists now know that atmospheric maintenance may be an additional wetlands function. 

They also provide surprising environmental services. Wetland provides habitat for 

important species, significant links in the cycling nutrients and the global storage of carbon, 

buffering against contaminants and other packages. 

2.3 Constructed Wetland systems (CWs) 

2.3.1 History of CWs 

The German scientist, Kathe Seidel conducted the first experiments on the possibility of 

wastewater treatment with wetland plants in 1952 at the Max Planck Institute in Germany 
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(S C Reed, 1991). A significant increase in the number of CWs took place in the 1990s as 

the application expanded to treat different kinds of wastewater such as industrial 

wastewater and stormwater. Constructed Wetland in contrast to natural wetlands is systems 

that are engineered or man-made wetland designed, built and operated to provide 

wastewater treatment and to mimic and utilise the function of natural wetlands process 

involving wetland vegetation, soil and any other microbial grouping to help in treating 

wastewater for human desired and needs. With progressively attaining acceptance globally, 

Constructed Wetland is nowadays used for treatments of many types of wastewater; these 

include industrial and agricultural wastewater, stormwater runoff and landfill leachate (Jan 

Vymazal, 2005). CWs is created mainly for wastewater treatment for contaminants 

removal. The use of constructed wetlands for wastewater treatment is becoming more and 

more popular in many parts of the world and is an environmentally friendly means of 

treating wastewater. Today subsurface flow CWs are quite common in many developed 

countries such as Germany, UK, France, Denmark, Austria, Poland and Italy. Constructed 

wetlands are appropriate for developing countries, but are still regarded as new technology 

(Sayadi, Kargar, Doosti, & Salehi, 2012). Constructed wetlands (CWs) have been proven 

a cost-effective wastewater treatment system, which uses the interactions of new plants and 

microorganisms in the pollutants removal (Mimis & Gaganis, 2007). 

For over two decades the use of constructed wetlands has become acceptable which are 

specifically designed for the treatments of wastewater in urban, industrial, agricultural and 

municipal (Greenway, 2004). This has further attracted its usage, considering the need for 

low-cost water treatment systems and its simplicity in construction. 

Constructed wetlands (CWs) produce a natural way for easy, simple, low-cost, and reliable 

wastewater treatment. Understanding the general operation of CW is hard, due to a large 

number of physical, chemical, and biological procedures happen in parallel and affect each 

other. As a result, CWs have seen as “black boxes” where wastewater enters and treated 

water leaves the CW system, this is due to lack of proper understanding of internal 

operation taking place  (Gao, et al., 2014). 

Constructed wetlands (CWs) are used globally, as an alternative and efficient means of 

water and environmental pollution control and economical choice for the treatment of 

contaminated wastewaters (Campbell, 2008). Its application ranges from treatment and 

recycling of different type of water streams including treated wastewater for irrigation 

(Greenway, 2004). These needs arose due to the scarcity of water in arid countries (Scholz 
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& Lee, 2005). The Method of Constructed wetlands was also applied for assessing water 

quality and performance of wastewater treatment operations (Sundaravadivel & 

Vigneswaran, 2001). According to Al-Isawi et al., (2015) constructed wetland provide a 

collection of physical, biological and chemical processes to facilitate the removal, 

recycling, transformation or immobilisation of sediment and nutrients (Rousseau et al., 

2008). Petroleum producing countries use constructed wetlands to restore the water streams 

that have been contaminated with oil and harmful contaminant (Wu et al., 2011). They are 

made of different configuration. Therefore, constructed wetlands are employed due to their 

low energy condition, accessibility, environmentally friendly, mechanical simplicity and 

low cost of operation. They are also recently applied successfully to treat domestic 

wastewater (Zhang et al., 2014). Constructed wetland models are currently recognised as a 

useful management tool, which increases the understanding of simultaneous chemical, 

biological and physical processes involved in the wastewater treatment (Al-Isawi et al., 

2015) and improves the wetland design. Even though there are several reported 

experimental data and system modelling for performance prediction, there are fewer on 

data mining techniques applied for the prediction of treatment performance in wastewater, 

hence the needs for the research. 

Constructed wetlands (CWs) are ‘‘engineered systems, designed artificial and constructed 

to imitate the natural wetland vegetation’s natural functions, aggregates and their microbial 

populations in order to treat pollutants in surface water, groundwater or waste streams”  

(Scholz & Lee, 2005) by taking the advantage of physical, chemical and biological 

processes which are all similar to processes occurring in natural treatment wetlands (Miklas 

Scholz, 2016). Constructed wetlands (CWs) are the system to provide a natural technique 

for inexpensive, simple, and long-lasting wastewater treatment and to improve the quality 

of water polluted. Most constructed wetlands around the world have now become primary 

sources that are used to treat municipal and domestic wastewater. In addition to that, 

treatment of many types of agricultural and industrial wastewater, landfill leachate, storm 

water runoffs are also common. In spite of the doubt of the many civil engineers and water 

authority, constructed wetlands have become an appropriate solution for wastewater 

treatment and have been accepted all over the world (Choudhary et al., 2011). 

Nowadays, the used of constructed wetlands as an alternative to treat domestic wastewater 

is been studied and is prevalent worldwide which help in reducing pollution and contribute 

to the improvement of water quality (Vymazal, 2011,  J. Vymazal, 2013, Chang, et al., 
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2012, Sharma et al., 2014,  Idzwana & Idris, 2015). The problem associated with 

constructed wetlands has been studied (Bird et al, 2002,   Obarska-pempkowiak, et al., 

2013). Moreover, It has been projected that if proper measures are not taken, some 

developing countries will face a severe water shortage by the year 2050, constructed 

wetlands as an alternative of source water were not common in developing countries, due 

to lack of knowledge of their essential part in control of environmental contaminations. 

Though a little study researches have been published recently in Nigeria (Alagbe, 2016,  

Oginni & Isiorho, 2014) and Morocco (Bouchaib et al., 2012). South Africa (Ms et al, 

2013). However, no practical knowledge for proceeding the research technology on a 

geographical basis (Scholz, 2007). Consequently, the understanding of the potential for the 

use of the constructed wetland technology with regard to water contaminants control and 

environmental protection necessitate to be spread and fully understood for proper treatment 

performance (Chang et al., 2012,   Dzakpasu et al, 2010,  Choudhary et al., 2011). 

Constructed wetland technology and application in wastewater treatment has been into full 

operation since the late 1960s, and the exploration of its research keeps increasing in other 

developing countries such as Brazil (Kleiber et al, 2008)  and Malaysia (Asmaliza et al., 

2011,  Idzwana & Idris, 2015). 

Constructed wetland systems were reported to have a a considerable ability for the 

treatment of wastewater under a wide range of conditions (Knight et al., 2000, United States 

EPA, 2000, Vymazal, 2002). Many constructed wetlands show high removal efficiencies 

(i.e. >80%) for biochemical oxygen demand (BOD) and suspended solids (SS) 

(e.g. Newman et al., 2000, United States EPA, 2000, Cerezo et al., 2001, Vymazal, 2002), 

but removal efficiency of nitrogen (N) and phosphorus (P) has been inconsistent and is 

often low (United States EPA, 2000). The US EPAs design manual (United States EPA, 

2000) stresses that constructed wetlands cannot remove significant quantities of Nitrogen 

or Phosphorous, and bases its design procedure on BOD and SS. 

2.3.2 Classification of constructed wetlands 

Constructed wetlands are classified based on the characteristics of the plants used in the 

system and the flow pattern. Based on macrophyte plants in the system, which are aquatic 

plants that grow in or near water. There are  

1. Floating macrophyte-based system (i.e. Lemna app, Eichornia crassipes) 

2. Rooted emergent macrophyte-based system (i.ephragmites australis, Tipha spp) 

https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib25
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib40
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib29
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib6
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib40
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
https://www.sciencedirect.com/science/article/pii/S0925857405002326#bib38
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They are emergent, submerged or floating in water, example common reed plant 

(Phragmites australis) used in this study research.  

Constructed wetlands are classified according to the water flow regime and water level on 

the bed which is one of the two free water surface flow (FWSF CWs) or subsurface flow 

(SSF CWs) and according to the type of macrophyte plant as well as flow of water direction 

in the constructed wetlands (Vymazal, 2014b, Vymazal, 2008,  Khalil, 2017). Subsurface 

flow CWs are designed to keep the water level totally below the surface of the filter bed 

(Abdelhakeem et al., 2016).  

However, based on the direction of the flow of inflow water, constructed wetlands are also 

classified as vertical and horizontal constructed wetland system. Vertical and horizontal 

constructed wetlands may be combined as a single entity with each other to form hybrid 

systems to achieve higher pollutants removal efficiency (Vymazal, 2014b). In a related 

studied it was discovered that constructed wetland are categorised according to their aim 

and objective as constructed wetlands for wastewater treatment, for habitat creation and the 

environment and flood control (J. Vymazal, 2014b,  Khalil, 2017,  Beef & Ad, 2017). They 

are emergent, submerged or floating in water, example common reed plant (Phragmites 

australis) used in the present study. Figure 2.1 shows the classification of the constructed 

wetland systems. 
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Figure 2.1: Classification of Constructed Wetlands: (Vymazal & Kröpfelová, 2011) 

The gravel or coarse sand used in subsurface flow CWs contributes to the treatment 

processes by providing a surface for microbial growth and by supporting adsorption and 

filtration processes (Hoffman et al., 2011). This results in lower area demand and higher 

treatment performance per area for subsurface flow CWs, compared to FWS CWs. 

Subsurface flow CWs are the predominant wetland type in Europe. 

2.3.2.1 Free water surface-flow constructed wetlands (FWSF-CWs) 

FWSF-CWs function in a similar way like a natural wetland (Vymazal, 2014b,  Rousseau 

et al., 2008,  Wu et al, 2014). The constructed wetland pond is shallow and closed to prevent 

wastewater from leaking to the sinkhole. The substrate of the wetland is soil that covers up 

its thickness to 40 cm height thereby permitting the creation of wetland plants (Wang et al., 

2017). The constructed wetland systems are submerged by water from the top down and 

flow horizontally on to the top of the porous wetland media, growing a depth of water 

column of around 20 to 40 cm or up to 80 cm (Jan Vymazal, 2014b). The wastewater 

penetrates through the porous media or evaporated to the atmosphere due to high 

temperature as shown in Figure 2.2. 
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Figure 2.2: Schematic illustration of free water surface-flow constructed wetlands (FWSF 

CWs) with emergent macrophytes 

The inflow wastewater in FWSF-CWs flows directly through the wetland bed going down 

to get contact with the soil, gravel and wetland plants, then directing removal of biological, 

chemical and physical water quality parameters processes to take place. These processes 

cause the reduction of many wastewater pollutants (Khalil, 2017,  Wang et al., 2017,  Li & 

Zheng, 2018). 

Regarding wastewater treatment, FWSF CWs ware discovered to be very good for 

Suspended solid removal, nitrogen, biochemical oxygen demand (BOD5), phosphorous, 

and other pollutants such as heavy metals (Li & Zheng, 2018). The use and application of 

FWSF-CWs have been described to be prevalent in North America (Kadlec & Wallace, 

2008) and applied entirely for treatment of domestic wastewater. Different types of 

macrophytes can be planted in the systems such as emergent, free-floating, floating-leaved, 

bottom rooted or submersed macrophytes. Moreover, despite their advantages as cost-

effective and simple to operate, the FWS-CWs require a large area of land and the water is 

possibly open to human contact (International Water Association [IWA] Specialist Group, 

2000). Moreover, their nearly standing water strengthens the possibility of mosquito 

breeding. 

2.3.2.2 Subsurface-Flow Constructed Wetlands (SSFCW) 

As Subsurface Flow Constructed Wetland Systems (SSFCW) is a comparatively new 

technology, the operational conditions that affect the performance of constructed wetland 

are poorly defined presently (Abdelhakeem et al., 2016). Subsurface flow constructed 
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wetland systems are dependable treatment system with very high treatment efficiencies for 

the organic matter, pathogens and nutrient removal. In SSFCW, wastewater surface is 

commonly below the surface of media matrix. Media material is an important factor to 

ensure a sufficient hydraulic conductivity (Sayadi et al., 2012). Subsurface flow CWs is 

divided further into vertical flow constructed wetland systems and horizontal flow 

constructed wetland system and divided depending on the direction of water flow through 

the porous medium (sand or gravel).   

SSFCWs are known with other names as vegetated gravel-bed, planted soil filters, 

vegetated submerged beds, gravel bed hydroponic filters and red bed treatment system. 

Subsurface flow constructed wetland systems is a sink that is filled with filter material 

(substrate) mostly sand or gravel and planted with vegetation that withstands flooded 

condition.  Wastewater is poured into the system sink and courses through gravel or sand 

and is released out of the sink through construction that controls the deepness of the 

wastewater in the constructed wetland. The substrate used in subsurface flow constructed 

wetland systems help in the treatment processes by giving a surface microbial growth and 

supporting wetland plant the absorption and filtration processes. This effect in lower area 

demand and higher treatment per area for SSFCWs, in comparison with FWSCWs. 

SSFCWs are more appropriate in a warm climate due to biological decomposition rates 

decrease with decreasing temperature; they also freeze in a cold climate. Furthermore, the 

oxygen transfer from the atmosphere decreases as soon as ice covers open water surface, 

thereby decreasing the oxygen-dependent treatment process (US EPA 2000). 

The performance of constructed wetland is usually assessed base on the removal efficiency 

and the rate of pollutant removal. Removal of pollutants in SSFCWS is a complex process 

that depends on a variety of mechanism which includes physical, biological and chemical 

processes (Vymazal, 2014b, Abdelhakeem et al., 2016). Many features involved in the 

options select between FWSFCWs and SSFCW, these include size, cost, functionality, 

another option include strength, health and nuisance matters and additional benefits 

(Kadlec, 2009). The advantages and disadvantages of FWSFCWs and SSFCW are 

presented in Table 2.1.  

Table 2.1: Advantages and Disadvantages of Free water surface-flow constructed 

wetlands (FWSFCWs) and subsurface flow constructed wetland systems (SSFCW) 

 FWSFCWs SSFCW 
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Advantages 

Lower installation and operating costs Greater assimilation rate, 

less land required 

Good integration into the landscape No visible surface flow 

More secondary benefits (such as wildlife 

habitat), but contamination exposure 

concern 

More cold tolerant 

Shorter development period to reach full 

performance 

Reduction in odour and 

insect problems 

Disadvantages Less cold tolerant  

Moreland required 

Not attractive to wildlife, 

more isolated from humans 

 

2.3.2.2.1 Type of subsurface flow constructed wetlands (SSFCW) 

There are three (3) types of subsurface flow constructed wetland (SSFCW) viz.: 

i. Vertical-flow Constructed wetland (VFCW) 

ii. Horizontal-flow Constructed Wetland (HFCW) 

iii. Hybrid Constructed Wetland (HCW)  

iv. the downflow (intermittent loading) systems  

2.3.2.2.1.1 Vertical flow constructed wetlands (VFCW) 

Vertical flow constructed wetlands for wastewater treatment represent a relatively new and 

still growing technology. They were initially established by Seidel in 1965 as a middle stage 

after an aerobic and anaerobic septic tank before HFCW (Vymazal et al., 2006). At an early 

stage of the Constructed Wetland systems (CW) technology, the focus was only given on 

the other CW types, since VFCWs usually keep the higher cost of operation. Typically, the 

media in VFCW experiences immersion and desaturation cycles as the water is being 

nourished intermittently into the systems, and flow vertically down to the bottom 

(Choudhary et al., 2011; Tsihrintzis, 2017), which makes the systems powerful and 

effective in accomplishing a high rate of oxygen transfer (Abdelhakeem et al., 2016). The 

wastewater is applied and surges the wetland surface at first and after that permeates 

through the wetland body by gravity (Scholz & Lee, 2005). As the wastewater percolates, 

air enters the substrate pores (Al-Isawi et al., 2015) enhancing the aeration and the 
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microbial activity. VF systems perform well in organic matter (BOD5 and COD), 

suspended solids and limited Phosphorus removal (Brix & Arias, 2005; Prochaska et al., 

2007), because of the inadequate contact time between the wastewater and the substrate. In 

addition to that, they can achieve a satisfactory level of nitrification (Sheet, 2003). The 

vertical-flow constructed wetland system designed and described in the guiding principle 

will fulfil the treatment phases which require 95% removal of BOD5 and 90% nitrification, 

but will not remove sufficient phosphorus to fulfil the demand of 90% removal of 

Phosphorous based on the past research (Brix & Arias, 2005). Vertical flow constructed 

wetlands are effective in the high reducing percentage of water quality parameter as long 

as the inflow of the parameter exceeds the natural level at which the VFCW operates 

(Scholz & Lee, 2005). Vertical flow Constructed Wetlands have been used in a wide range 

of situations recently, as a sustainable and economical substitute for the treatment of 

polluted wastewaters (Abdelhakeem et al., 2016). The significant difference between a 

vertical and horizontal constructed wetland is not only the water flow direction but also the 

aerobic conditions. 

A vertical flow constructed wetland (VFCW) is a planted bed column used as a treatment 

facility for secondary or tertiary wastewater (municipal or industrial wastewater, 

greywater) treatment to produce an inflow of high quality that drains vertically down 

through the filter layer and collected at drainage pipe located at the bottom of the filter. The 

pre-treated wastewater is put onto the top surface of the VFCW filter using mechanical 

dosing system until it reaches the drainage system connected to an outlet manhole (Sharma 

et al., 2014,  Al-isawi et al., 2015). The wastewater treatment involves a combination of the 

physical, chemical and biological process. These include filtration, adsorption 

precipitation, nitrification, decomposition etc. The treated water by the well-constructed 

functioning system vertical flow constructed wetland can be reused for irrigation, 

groundwater discharge and agriculture. Vertical flow constructed wetland are particularly 

efficient in the removal of suspended solid, organic material and for nitrification while it is 

less capable in de-nitrification (Al-isawi et al., 2015, Chang et al., 2012, Gikas, et al., 2007). 

It has been proved to be capable of removing a variety of pollutant present in wastewater, 

namely, organic matter (BOD5 and chemical oxygen demand - COD), suspended solids, 

nitrogen, phosphorus, heavy metals, pathogenic microorganisms, and micro-organic 

compounds. Figure 2.3 shows the vertical flow constructed wetland. 
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Figure 2.3: Typical illustration of vertical-flow constructed wetlands 

Seidel in 1965 established the vertical flow constructed wetland systems, in Germany when 

they have implanted in-between HSF-CWs and a septic tank (Jan Vymazal et al., 2006; Jan 

Vymazal & Kröpfelová, 2011). The application of the HSF-CWs became relevant gradually 

when people acknowledged the non-fulfilment of HSF systems to oxidise ammonia-

nitrogen effectively from wastewater inflow because of limited oxygen in their substrate 

bed (Stefanakis et al., 2014; Vymazal, 2005, 2014a). Usually, when inflow wastewater is 

being fed intermittently into the systems it pass through porous media underfilling and 

draining cycles and drain at the valve  (Nivala et al., 2013; Stefanakis et al., 2014; Vymazal 

& Kröpfelová, 2008a) which makes the systems capable in attaining a high rate of oxygen 

transfer (Paul Cooper, 1999; Huang et al., 2015; Morris et al., 2011; Nivala et al., 2013; 

Stefanakis et al., 2014; Vymazal & Kröpfelová, 2011). According to Frazer-Williams, 

(2010), Huang et al., (2015), in their respective research they reassured that wastewater is 

poured and floods the surface of the wetland firstly and then permeates through the wetland 

body by gravity (Figure 2.3). As the wastewater enters through the wetland filters, air 

penetrates the gravel (Fan, et al., 2013; Song et al., 2015; Vymazal et al., 2006), thereby 

improving the aeration and the microbial activity. VFCW systems, are discovered to be 

very effective in wastewater treatment as conducted and indicated by many studies 

research. In the research study of Prochaska et al., (2007), Lu et al., (2016) and Wu et al., 

(2015), they demonstrated that VFCW systems perform considerably well in the treatment 

of biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, suspended 

solids and little phosphorus due to insufficient associations of the wastewater and the filter 
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media. Moreover, in the research of Tietz et al, (2007) Vymazal et al., (2006), Gikas & 

Tsihrintzis, (2012) they all demonstrated that the VFCW systems could also attain an 

acceptable level of nitrification. However, some study researches stated them as poor 

denitrifies (Scholz & Hedmark, 2010; Vymazal, 2005; Vymazal & Kröpfelová, 2011). 

Many studies revealed that VFCW systems with intermittent loading schemes with some 

modifications could denitrify perfectly (Carlos et al., 2005; Fan, et al., 2013; Gross et al, 

2007; Weedon, 2003, 2010). VFCWs are wastewater treatment system with macrophytes 

rooted in gravel (substrate); it also differs considerably from the horizontal-flow 

constructed wetland in term of feeding method. Water flow directly, and filling media 

(Figure 2.3) inflow wastewater is usually applied discontinuously on the surface through 

several mechanisms, infiltrates and percolate with ideal plug-flow over the support plant 

root. The new batch of sewage is poured to the filters only all the water percolate and bed 

free of water and leave to rest for stipulated time (resting time). This enables the diffusion 

of oxygen from the air into the bed 

Vertical flow constructed wetland (VFCWs) are mainly applied to the treatment of urban 

and domestic wastewater due to their evolution in nitrification ability, treatment of other 

kinds of sewage is also applicable, commonly those with high concentration of ammonium 

nitrogen, such as leachate, landfill, dairy wastewater, and food processing wastewater to 

mention but few (Robert H Kadlec & Wallace, 2008). VFCWs are mostly used in the United 

Kingdom and other Europe countries like Denmark, Australia France and Germany, it is 

also used in the United States. The continuing increase in VFCWs application was due to 

the comprehension that HFCWs constitutes relatively low oxygen transfer capacity (OTC) 

for the secondary treatment demand, which respectively reduces ammonium nitrogen 

(NH4-N) oxidising capacity (Cooper, 1999). 

Reviews made in the journals and publications disclose that the use of vertical flow 

constructed wetland study treating domestic water will be helpful for monitoring the water 

quality in the environment predicting the treatment performance of constructed wetland. 

These discoveries were the critical guide behind this thesis. The literature review found that 

CWs have the potential to be valued for wastewater treatment in the UK and many EU 

countries 

2.3.3 The advantage of Constructed Wetland for wastewater treatment 

The advantages of constructed wetland in wastewater treatment include the following: 
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1. It is in the expensive way of treating wastewater, which uses the local resources 

available, that the system that encourages, its biological treatment system is more 

environmentally friendly. 

2. The system can be created at a lower cost than other treatment options, with a 

low-technology method where no new or complex technological tools are needed.  

3. The system can tolerate both more significant and small volumes of water and 

varying contaminated levels; these include municipal and domestic wastewater 

urban storm runoff agricultural wastewater, industrial effluent and polluted 

surface water in rivers and lakes. 

4. The constructed wetland system could be used to clean polluted rivers and any 

other bodies of water. 

5. The primary purpose constructed a wetland to treat various kind of wastewater 

(municipal, industrials and stormwater). 

6. It can serve as a wildlife sanctuary and provide a habitat for wetland animals, and 

it can also be pleasing and serves as an alternative destination for tourist and local 

urban dwellers. Can also as use public attraction sanctuary for visitors to explore 

its environmental and educational possibilities. 

7. The system also offers research, training ground and nature studies for the young 

scientist in this new research and education setting.  

8. Constructed wetlands are used to improve the quality of water polluted from the 

point and nonpoint sources of water pollution, including stormwater runoff, 

domestic wastewater, agricultural wastewater, and mine drainage 

9. Constructed wetlands are also being used to treat petroleum refinery wastes, 

compost and landfill leachates 

10. It is a treatment option that provides ecological benefits 

11. They are constructed using local materials with minimum ‘external costs’ and are 

sustainable over a long lifetime (>50 years). 

12. They reduce odours produced, due to factors such as shallow surface flow and 

dense plant cover 

13. The captured nutrients can be recycled for land management, and the treated 

water can be reused. 

2.3.4 The disadvantage of Constructed wetland for waste water treatment 

1. Not clear maintenance knowledge  

2. Risk of the existence of insects (particularly in those of the surface flow) or rodents 
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3. If the removal of suspended solids in the primary pre-treatment is not active, 

clogging may arise (particularly in horizontal surface flow constructed wetland ) 

4. The design surface area is more significant than in conventional system (especially 

free flow), (typically 1-2% of farm area) although lower than in the case of the pond 

(especially those of surface flow). 

5. Few control factors during operation  

6.  The construction and establishment of vegetation may be weather dependent 

7. If deep areas of water are included, there is a potential water hazard 

8. If inadequately designed, constructed or managed, they may pose a threat to surface 

and ground waters 

9. Their performance is not consistent throughout the year 

10.  They required competent skills for design, site analysis and characterisation, and 

construction, planning permission and discharge licences 

11. Its establishment need a large area of land  

12. It can effect by highly toxic materials on its action 

13. Pre-treatment is essential for medium and high concentrated contaminants. Regular 

cleaning is also necessary.  

2.3.5 Application of Constructed wetlands 

Constructed wetlands are used for the treatment of domestic and municipal wastewater of 

both secondary and tertiary phases. Although CW is generally used for wastewater 

treatment, the application of CW has expanded considerably to another form of sewage 

these include industrial wastewater, wastewater from agricultural activities, runoff, 

abattoir, refinery (Wu et al., 2015) 

CWs are designed to remove contaminants from wastewater like suspended solids, BOD, 

COD DO, EC, nutrients and pH. Other pollutants that are also removed but that are not 

commonly targeted when designing municipal wastewater treatment systems are heavy 

metals, surfactants, pharmaceuticals and personal care products (PPCPs) as well as other 

emerging pollutants. 

2.4 Basic design, operation and Maintenance of VFCWs 

To design a Vertical Flow Constructed Wetland (VFCW) system, The most common 

composition of VFCWs setup involves permeable substrate bed of either rock (gravel) or 

sand with size increment with depth (Jan Vymazal & Kröpfelová, 2011). The bed 
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arrangement is from top to bottom with depth between 45 cm and 120 cm, and the incline 

of the base of the bed of 1–2% that encourages natural movement, drainage, and collection 

of the treated water effluent drainage. The bottom of the system is covered by a 

geomembrane or made of reinforced concrete. Common reed (Phragmites australis) are 

most commonly used plant and are planted at the top of the bed. After designing the system 

before starting the operation, seeking knowledge and advice from experts is recommended.  

Vertical flow constructed wetlands have been reported to treat a variety of wastewaters 

effectively with high-performance (Scholz et al., 2010; Dzakpasu et al., 2010; Kayranli et 

al., 2010). The vertical flow constructed wetland is designed and constructed as a shallow 

excavation or as above ground. The design and size of the wetland are dependent on 

hydraulic and organic loads. Each filter has an impermeable liner and an outflow collection 

system. Structurally, there is a layer of gravel for drainage (10 mm and 20mm), Phragmites 

australis (reed), Typha sp. (cattails) is a common plant option. As a result of good oxygen 

transfer, vertical flow wetlands can nitrify, but denitrification is low. Bohórquez, Paredes, 

& Arias, (2017) in their study research they examined and evaluated the effect of different 

design and operational parameters to find the optimum of vertical-flow constructed 

wetlands treating domestic wastewater under tropical conditions. Ten filters arrangements 

units were investigated to compare between the substrate used (small and large gravel). 

The different loading rate applied, did not display any essential statistical differences in the 

removal of the tested pollutants. Initial results were discovered in the elimination of the 

pathogen, where the fine sand as the substrate is suitable. Frazer-Williams, (2010) also 

evaluate the effect of wetland design criteria area sizing, and operation parameters 

(hydraulic and inflow loading) for the removal of pollutant (organics, solids, nutrients and 

coliforms) in both subsurface and surface flow systems. Results showed that even though 

high removal performance of contaminants was attained for most wetlands, residual 

concentrations for BOD are regularly higher than those forecast based on the 95 percentile 

first-order Kickuth design equation. Also, correlation results indicate that hydraulic and 

pollutant loading impacted strongly wetland performance for organic matter (BOD, COD) 

removal. In all cases, removal of pollutants decreases typically as the hydraulic loading rate 

also increases. Correlation between Hydraulic loading and nutrient removal was not 

discovered. Overall, it can be resolved that organic removal can be modelled better 

compared to a nutrient in constructed wetlands. Since the critical design parameters do not 
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primarily influence the removal of solids and coliforms, it is expected that they will fit into 

any design model developed 

Some study researches like Stefanakis & Tsihrintzis, (2012b) and Zhi & Ji, (2014) indicated 

that during the experimental setting-up phase of the constructed wetlands, outflow water 

quality parameters like chemical oxygen demand (COD) are discovered to be relatively 

unstable when the wetland is maturing. 

Furthermore, an extended hydraulic retention time impacts in higher removal performance 

efficiencies for ammonia-nitrogen, irrespective of plant maturity. Long resting times 

generally certifies biodegradation and nitrification. However,  Stefanakis et al., (2014) 

reported that the biodegradation of organic matter in VFCWs depends on the inside of the 

organic matter and the retention time applied during treatment of wastewater by the system. 

Therefore, they summarised that readily biodegradable organics are oxidised quickly, due 

to high oxygenation in the wetland media bed while the disorderly ones are partially 

degraded caused by inadequate contact time. Moreover, the organic matter decomposition 

was mostly happening in the top 10– 20 cm due to the accessibility of high oxygen and 

microbe population density in the upper wetland gravel bed (Kadlec & Wallace, 2008; 

Stefanakis & Tsihrintzis, 2012b; Tietz et al., 2007). 

In the work of Stefanakis & Tsihrintzis, (2012a) they studied and investigated the removal 

performance of  organic matter pollutants (BOD5 and COD)  and recorded to be above 78% 

removal and that of nitrogen  (TKN and NH4- N)  was recorded to be 58% removal and 

37% for phosphorus removal (total phosphorus [TP] and orthophosphate phosphorus (PO4-

P). The research also recognised the system performance due to the enhanced aeration in 

the porous media bed.  

Kayranli et al., (2010) and Rousseau et al., (2008) indicated that pollutants removal 

performance by constructed wetlands is linked to the hydraulic loading rate and contact 

time; i.e. if the hydraulic loading rate is high and contact time is low, highly contaminated 

wastewater leaves the wetland quickly, which results in a corresponding relative decrease 

of the treatment efficiency due to inadequate time for biodegradation processes. (G D; 

Gikas & Tsihrintzis, 2014) Pointed out that water quality outflow parameters such as 

chemical oxygen demand (COD) are relatively unstable during the experimental setting-up 

phase when the wetland matures. Furthermore, a long contact time results in higher removal 

efficiencies for ammonia-nitrogen, regardless of plant maturity. Nitrification and 
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biodegradation, in general, can be promoted by relatively long resting times (artificially 

induced drying and aeration times). 

Constructing VFCW system is relatively cheap where land is inexpensive, the system can 

also be conducted and maintained by unskilled labour. VFCWs are generally considered as 

a systems that simple to construct and operate, though accurate and accepted CW facility 

design is not simple as expected, as it is comparatively new and emerging technology, As 

a result there no recognised setup that is universally accepted by the researchers. Individual 

experience by the researchers and scientist is typically a key factor. Moreover, there are 

common key design consideration and regulations and that are applied during the process 

like metrological topographical and operational parameter (A. Stefanakis et al., 2014). 

These include the following: 

1. Information Topographic to select installation site which is the most suitable  

2. Climate condition of the area where the system will be fixed 

3. Availability of the necessary land 

4. Current and future wastewater flow and volume 

5. Any legal limit that applies in the area of the effluent quality desired treatment 

performance 

6. Total cost 

7. Possibility and need for outflow reuse choice 

8. A close by water body outflow receiver 

During the first growing season, it is important to remove weeds that can compete with the 

planted wetland vegetation. Collection pipes should be removed and cleaned twice a year, 

to eliminate sludge and biofilm that may block the passages. Clogging is a common 

problem of VFCWs, Gradually; the gravel will become clogged by solids and bacterial film 

accumulation. Resting time interval may restore the hydraulic conductivity of the filters. If 

this does not help, the accumulated solids have to be eliminated, and clogged portions of 

the filter solid changed. Maintenance activities should concentrate to make sure that 

primary treatment is active at decreasing the solids concentration in the wastewater before 

it pours into the wetland filters. Maintenance should also make sure that trees and weeds 

do not germinate in the area as their roots can damage the liner. 
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2.4.1 Horizontal flow constructed wetland 

Horizontal subsurface flow constructed wetlands (SSF CWs) are treatment systems in 

which wastewater is feed in at the inlet and flows slowly across the porous medium under 

the surface of the bed, roots and rhizomes of the emergent planted vegetation in a more or 

less horizontal path until it reaches the outlet zone (Figure 2.4). During the passage, the 

wastewater will enter into the contact network of aerobic, anoxic and anaerobic zones. The 

aerobic zones are found nearby the root and rhizomes that leak oxygen into the surface 

(Shuib et al, 2011, Vymazal, 2008). Figure 2.4 shows the horizantal subsurface-flow 

constructed wetland systems. 

 

Figure 2.4:  Schematic illustration of horizontal subsurface-flow constructed wetlands 

The reactor is mostly anaerobic, with the physical, chemical and biological mechanism, 

bacterial reduction and oxidation, filtration, settling and chemical settling. Inflow 

wastewater flows underground with ideal plug-flow where it is collected before leaving, 

through a level control arrangement at the outlet (Shuib et al., 2011). Passing through 

porous media support, (Normally, the media in HFCWs is permanently flooded with water) 

and contacting the biofilm formed over the support and plant roots hydraulic retention times  

(HRT) differ from a few several days, depending on the objectives and management.  The 

removal of contaminants occurs because of complex physical, chemical and microbial 

interactions (Zidan et al., 2015). Through this passage, the wastewater will meet a network 

of aerobic, anoxic and anaerobic zones. The aerobic zones normally occur around roots and 
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rhizomes that leak oxygen into the substrate (Zidan et al., 2015). HFCWs consists of an 

inlet pipe, an outlet pipe with water level control, a clay synthetic (HDPE or PVC) linear, 

filter media, emergent vegetation: the most common macrophytes are Phragmites australis 

(common reeds), but Typa spp (cattail) and Scirpus spp (bulrush) are also used. 

The sizing of the HFCWs systems depends on many parameters that should be examined 

during the preliminary feasibility evaluation. After defining the treatment goal and the most 

appropriate treatment scheme, the sizing procedure may be performed using the well-

known and scientifically approved method. Area requirement and determine based on 

design equation such as the various commonly used first-order kinetic equation (Lijuan Cui 

et al., 2016) for the removal of pollutants and the Darcy law for the hydraulic aspects 

(Ghimire et al, 2012).  

2.4.2 Hybrid constructed wetland 

Hybrid constructed wetland combined both vertical and horizontal flow constructed a 

wetland to achieve higher treatment effect (higher removal efficiency) especially for 

nitrogen removal and to treat complex agricultural and industrial wastewaters treated in the 

constructed wetland (Jan Vymazal, 2013).   In these systems, VFCW and HFCW are 

combined to enhance each other for proper wastewater treatment. It is also called a mixed 

system (Sheet, 2003). Hybrid constructed wetlands are the different types of CWs that 

combined on various arrangements to form a combined system to get adequate treatment 

performance of wastewater. Hybrid CWs are used to achieve higher efficiency wastewater 

treatment rather than single CW, particularly in the removal of nutrients components 

(Sayadi et al., 2012). Some of the water quality parameters (Total nitrogen) cannot attain 

high removal by single stage CWs (vertical or horizontal), due to their incapability to 

produce aerobic and anaerobic condition. In this regard, Combination of various types of 

CWs may be combined to control the advantages of single stage systems. A German, called 

Dr Käthe Seidel  first introduced hybrid constructed wetlands in the early1960s due to high 

demand of eliminating ammonia nitrogen and any other nitrogen-related compound from 

wastewater, as such is was discovered that Hybrid was able to provide such requirement 

(Vymazal, 2013,  Vymazal & Kröpfelová, 2011, Vymazal, 2011).  

Presently, hybrid constructed wetlands are applied and used worldwide due to their 

capability of ammonia, nitrate and total nitrogen removal from various types of wastewaters 

(Bouchaib et al., 2012;   Sayadi et al., 2012;  Jan Vymazal, 2013;   Kadlec et al., 2017). 



32 

 

Moreover, they are also applied to treat a different type of wastewaters including wine 

producer wastewaters (Varga, Ruiz, & Soto, 2013) they are also applied to treat 

pharmaceuticals and personal care products (PPCPs)  (Reyes-contreras, Matamoros, Ruiz, 

Soto, & Bayona, 2011). Hybrid constructed wetlands are also applied and used to treat oil 

field produced water (Alley et al., 2013), hybrid constructed wetlands are also applied to 

treat grey water under adjustable and stress conditions (Comino et al, 2013), and hybrid 

constructed wetlands are also used to treat industrial effluents (Jan Vymazal, 2014b). In the 

research of Jan Vymazal, (2013), hybrid constructed wetlands are classified into: VF-HF 

systems, multistage VF-HF systems, VF hybrid systems, and hybrid-constructed wetlands 

with FWSFCW systems. Nevertheless, in his research, he discovered that VF-HF hybrid 

systems are slightly more active in the treatment of Ammonia than other types of hybrid 

constructed systems. Figure 2.5 represents diagram of the hybrid constructed wetland 

systems. 

 

Figure 2.5:  Schematic illustration of hybrid constructed wetlands 

2.4.3 The advantage of Vertical flow constructed Wetland over others 

1. High rate removal of carbonaceous oxygen demand, suspended solids, nutrients 

coliform bacteria and pathogens, thus better outflow quality 

2. It has good oxygen transfer capacity (aeration) which result in good nitrification 

3. It restricts clogging to very minimal in comparison with a horizontal subsurface 

flow Constructed Wetland because it was built with a porous material and 

wastewater circulate. 
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4. It requires less total space area than a Horizontal Flow Constructed Wetland. 

5. It has very low construction, maintenance, and operation costs. 

6. It does not require specialised personnel for the operation as it is straightforward to 

operate. 

7. It does not have the problem of a mosquito of the Free-Water Surface Constructed 

Wetland. 

8. It offers better treatment performance of wastewater. 

9. It is a dependable treatment system of wastewater 

2.4.4 The disadvantage of Vertical flow constructed Wetland 

1. Needs more regular maintenance than another type of constructed wetland 

2. Some of  parts and materials may not be available locally 

3. Needs design and construction by an expert, mostly, the feeding system 

4. It requires long start-up time to work at the complete capability 

5. A constant source of electricity may be required 

2.5 Component of Constructed Wetland  

To understand the treatment processes, it is essential to know about the parts of the 

constructed wetland system because all the processes occur within each or several 

components of the system. Constructed wetlands have three different of major components: 

a fixed component, a water component and an atmospheric component (Breen, 1990; 

Qasaimeh et al, 2015). The fixed component includes the wetland substrate, wetland 

vegetation, water component comprises the wastewater inflow, treated outflow, wetland 

filters, and the related pollutants. The atmospheric constituent regulates the gases 

movement in and out of the wetland filters  (Wallace & Knight, 2006). 

2.5.1 Macrophytes  

In the wetland ecosystems and aquatic, Microphytes (wetland vegetation) are critical and 

major components of constructed wetland systems (Scholz et al., 2007;   Scholz & 

Hedmark, 2010;   Vymazal, 2013  Rejmankova, 2016; Kadlec et al., 2017) including 

constructed systems and, undoubtedly due to its presence, the systems are referred to as 

green technology (Abou-Elela, 2017). They are sometimes called a hydrophytes plant 

(Cronk & Fennessy, 2016). A macrophyte is an aquatic plant that always grows in or near 

water and is emergent, sub-mergent, or floating, which includes helophytes.  Although 

http://akvopedia.org/wiki/Free-Water_Surface_Constructed_Wetland
http://akvopedia.org/wiki/Free-Water_Surface_Constructed_Wetland
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these emergent plants are one of the main components of the wetland environment, cleaning 

or treatment of wastewater is directed by the unification of many processes, which include 

chemical, physical and biological processes between the macrophytes, substrate and the 

association of wetland microorganisms. Normally, Macrophytes are used as a plant species 

in the treatment of the constructed wetlands (Brix, 2014;  Cronk & Fennessy, 2016;   Abou-

Elela, 2017). Their classifications include: cattail (Typha spp), common reed (Phragmites 

spp), rush (Juncus spp) and bulrush (Scirpus spp). Besides, the macrophytes utilise their 

tissue to ingest toxins and supply the microorganisms with an ideal developing or growing 

condition and environment (Vymazal, 2002a).  

The roots of the macrophyte dissolve organic matter, strengthen the surface of the beds in 

the constructed wetland. They also, provide a good condition for physical filtration, and 

prevent vertical flow system from clogging by forming openings for the water to permeate 

within the substrate. It also shields against frost in the course of water growth, generates 

appropriate possibility for bacteria growth, absorbs nutrients and provides oxygen to the 

water (B. Lee & Scholz, 2006). The growth of macrophyte does not affect the increase in 

hydraulic conductivity of the substrate in soil based surface flow constructed wetland (Brix, 

2014). Figure 2.6 shows a picture of common reeds (Phragmites australis) plants cluster. 
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Figure 2.6: Cluster of common reed plants (Phragmites australis) 

Globally Phragmites australis (Cav.) Trin. Ex Steud. (Figure 2.6) has been accepted as 

wetland plant species as indicted by previous studies (Miklas Scholz, 2006;   J. A. N. 

Vymazal, 2011;  Jan Vymazal, 2014b; IWA Specialist Group, 2000; Scholz, 2006; 

Vymazal, 2011c, 2014). While they are widely used throughout Europe and Northern 

America as part of the treatment wetlands, the function of macrophytes plus the influence 

of many types of wetland plant on the treatment wetland is still not understood (Miklas 

Scholz, 2006).  

Past investigations revealed a substantial contribution of macrophytes to pollutants 

removal. For instance, the percentage decrease of about 89% in BOD and COD was 

reported to be more prominent in plant than control systems that have a percentage 

reduction of about 85%  (Akratos & Tsihrintzis, 2006). It was also discovered that that 

macrophyte, e.g. common reed plants (Phragmites australis) are capable of removing large 

quantities of organic and inorganic substances from polluted water (R. H K Al-Isawi et al., 

2015; Chu, Wong, & Zhang, 2006). The percentage reduction of BOD and TSS to be greatly 

minor in control systems (46%) and (63%) than in open systems (88–90%) and (70–75%) 

respectively for SSF wetlands (Karathanasis, Potter, & Coyne, 2003). Removal of 

polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzene sulfonates (LASs) from 

domestic wastewater in pilot constructed wetlands and a gravel filter in Greece were also 

examined (Antonopoulos, Papamichail, & Mitsiou, 2001; Mimis & Gaganis, 2007). The 

authors discovered that the vegetated filter listed 79.2% and 55.5% removal efficiency of 

PAHs and LASs respectively in comparison with 73.3% and 40.9% for the gravel filter 

(Fountoulakis, Terzakis, Kalogerakis, & Manios, 2009). Recently, in their review, high 

removal efficiency has been detected in planted wetlands treating pharmaceuticals 

including caffeine, naproxen, diclofenac and ibuprofen compared unplanted ones (Paola 

Verlicchi & Zambello, 2014). 

Moreover, in a research conducted by Hijosa-valsero et al., (2011) to evaluate the 

antibiotics removal from urban wastewater by constructed wetland optimisation. They 

stated that their improved SF systems revealed higher removal of clarithromycin and 

trimethoprim in comparison with vegetated ones. However, in various studies, it was shown 

that there was no significant contribution of macrophytes about pollutants reduction in 

planted and unplanted wetland systems. In the research of  Miklas Scholz, (2006), he 

discovered that (BOD) removal efficiency of constructed wetlands essentially the same 

regardless of developing periods of the wetland plants, in related research Donze, (2014) 
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observed irrelevant removal efficiencies in their systems planted with duckweed, reed and 

algae.  

2.5.2 Substrate 

The substrate is the porous media used in constructed wetland building. The media is also 

called aggregates or wetland media. These wetland media include rock or gravel, organic 

materials (such as compost), soil and sand. Several studies ( Wang & Zhang, 2012; Dordio 

& Carvalho, 2013; Meng et al., 2014)  exposed that soil is the major components of the 

wetlands that support the growth of macrophytes and microorganisms biofilm in 

constructed wetlands. Likewise, the hydraulic mechanism of the wetland system depends 

on the type and origin of the soil. In addition to pollutants adsorption by substrate media in 

constructed wetlands, the substrate displays an essential part in giving an atmosphere 

favourable for wetland plants growth and microbial activity on wastewater contaminants 

(Dordio & Carvalho, 2013;  Ge, Wang, & Zheng, 2015). Nevertheless, the porous media 

size should not be considerable because, big size media does not provide enough surface 

area for the formation of biofilm (Meng et al., 2014). Brix, (2014) also discovered that 

media that is small-sized-grain, like organic soil, give a surface area for the growth of 

biofilm whereas narrow pore diameters media lead to media pore blockage. The depth of a 

substrate in constructed wetlands (CWs) has a significant effect on the construction 

investment and the purification performance of CWs. The substrate cannot only provide 

carriers for the growth of plants and microbes, but it also removes pollutants directly by its 

sedimentation, filtration, and adsorption.  

Selection of the porous filter media has been proposed by Meng et al., (2014) due to its 

importance regarding hydraulic loading rate in SSFCWs. The reason behind the selection 

methods of the media was to avoid clogging of the media pores, which may cause a problem 

and can affect the overall performance of the system. The clogging associated problem of 

the system results from in appropriate media porosity selection for the organic loading 

application equivalent. The filtration media used for constructed wetlands depend upon the 

objectives that should be achieved. Constructed wetlands have been planned and built with 

substrates extending from fine surface soil to fieldstone.  

A coarse-grained material with high water hydraulic conductivity will stop the filter from 

getting clogged, and close-grained material will be more effective in decreasing suspended 

solids and turbidity (Table 2.2). Substrate media in wetlands are considered as hydric while 
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they are saturated or inundated with water. For saturated conditions, the water displaces the 

air in the substrate pore spaces, and the microbes use the dissolved oxygen. The oxygen 

used by microbes in the wetlands media is bigger than what will be reverted over diffusion. 

Hence the wetland media become anoxic. Furthermore, the substrate media became 

anaerobic in flooded conditions (Scholz, 2006) and mixture of sand and gravel is suggested 

to enhance hydraulic conditions and pollutants removal (Kadlec et al., 2017). 

Nevertheless, previous studies recommended that biofilm growth were supported by 

smaller-sized media as such is better than large-sized porous media, which did not support 

proper growth of the biofilm. Hence, the ability to achieved higher biodegradation by 

microbes (Dordio & Carvalho, 2013;  Meng et al., 2014), while substrates with fine pores 

lead to clogging of the porous media (Brix & Arias, 2005;   Wallace & Knight, 2006). 

Aggregates gravel in the wetland systems make SS settling easy and give a surface area for 

the biofilms to grow and decompose dissoluble pollutants. Multiple layers of gravel are 

prepared with a corresponding increase in size of the gravel from top most layer to the 

bottom layer. Straight arrangement of aggregates is a major factors for clogging formation 

in the system (Langergraber et al, 2003). Therefore, Sun, Zhao, & Allen, (2007) proposed 

an anti-sized reed bed system, that was extra functional than a conventional mono-sized 

reed bed concerning the removal of numerous critical contaminants from a high strength 

piggery wastewater.  

Recently study research was carried out by Song et al., (2015) which clarified that clogging 

can be reduced employing an increasing sized packing of the media strategy and high COD, 

ammonia and nitrogen removal obtained in their evaluated vertical-flow constructed 

wetland systems. Various studies were also carried out to assess the possibility of increasing 

the capacity of adsorption by different substrates of filter media. For instance, many 

publications assured that substrates like rice husk and organic mulch had enhanced removal 

of total nitrogen due to the content of organic carbon (Tee et al, 2012;   Saeed & Sun, 2013) 

this also as revised by  Meng et al., (2014).  Table 2.2 is the media classification and 

properties of substrate 

 

Table 2.2: Media classification and properties for the substrate 

Media type Effective gravel size Porosity Hydraulic Conductivity 
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(mm) (ƞ) (ks, ms-1) 

Coarse sand 2 0.32 1.2 X 10-2 

Gravelly sand 8 0.35 5.8 X 10-2 

Fine gravel 16 0.38 8.7 X 10-2 

Medium 

gravel 

32 0.40 11.6 X 10-2 

Coarse rock 128 0.45 115.7 X 10-2 

 

Nevertheless, there have been conflicting opinions concerning the task of expensive filter 

media in the constructed wetlands treatment process. In the study research of Miklas 

Scholz, (2002) they observed that the use of expensive adsorption media, like granular 

activated carbon, to improve filtration of constructed wetlands performance did not increase 

adsorption capacity of the media. Additionally, in joint research of Stefanakis & Tsihrintzis, 

(2012), they did not find any significant improvement in the performance evaluation of 

their systems, when zeolite and bauxite substrates were used and in their study of a 

constructed wetland. 

2.5.3 Microorganisms 

It was uncovered by the past investigation that communities of several microbial happen in 

both oxygen consuming and anaerobic zones of wetlands, comprising the different structure 

of different microorganisms (Stottmeister et al., 2003;  Faulwetter et al., 2009). The organic 

pollutants removal in wetlands results from the interaction of biological, physical and 

chemical processes occurring in the system and also the transformation of nitrogen and 

phosphorus in wastewater. The microbial community in the wetlands are responsible for 

the contaminants reduction. The microbial activity in constructed wetlands performs a vital 

role in the wastewater treatment as a result of the microscopic size of the microorganisms 

which allows them to meet and feed the contaminants using their enzymes directly (Truu 

et al., 2009). Moreover, micro-organisms that recover succeed and have the ability to have 

metabolic activity in wetland systems partake in the removal of pollutants. The capability 
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of constructed wetlands to eliminate contaminants depend on the activity of the 

microorganisms, nature of the wetland media and the plant species in the wetland system. 

Micro-organisms attain disintegration and decomposition of organic matter during 

wastwater treatment under aerobic and anaerobic conditions.  Kadlec & Wallace, (2008) 

and  Meng et al., (2014) in their respective studies, stated that, organic matter bio-

degradation is commonly associated to certain classification of bacteria, specifically 

protozoa and fungi including basidiomycetes and yeasts. The microorganisms can also 

embrace to transformations in the wastewater brought to them and grow rapidly in 

favourable presence environment and sufficient nutrients. However, Truu et al., (2009) in 

their effort observed that many microorganisms become dormant for their growth and 

survival in wetlands when the favourable condition is not sustainable. Furthermore, they 

can stay dormant for numerous years providing the favourable conditions are not 

sustainable.  

Conversion of various organic and inorganic compound or materials that are unsafe to any 

application specifically agricultural and human use, were converted to be used safely by 

the activities of microorganisms in the wetlands system. They influences the physical, 

chemical and biological processes by changing oxidation/reduction reactions of the wetland 

media which help in the nutrients recovering (Truu et al., 2009;   Ji et al., 2013;   Wang et 

al., 2015).  Moreover, the chemicals biodegradation complexity varies mostly, subject to 

the microbes involved (Meng et al., 2014). For example, β-Proteobacteria and γ-

Proteobacteria involved actively in nitrogen removal (Faulwetter et al., 2009) for oxidation 

of ammonia. These, β-Proteobacteria and γ-Proteobacteria are some classes of bacterial 

groups. Moreover, other bacterial groups such as Enterobacter and Micrococcus are 

denitrification agents (Meng et al., 2014), and planctomycete-like bacteria Candidatus 

Brocadia anammoxidans are agents for oxidation of anaerobic ammonium. 

Microorganisms that reside in water naturally, roots or substrate, of wetland macrophytes 

ingest organic substances or nutrients thus decreasing, breaking down or completely 

eradicating a wide range of pollutants in the wastewater. Roles of wetlands are considerably 

managed by microbes and their metabolism (Faulwetter et al., 2009;  Truu et al., 2009;   

Meng et al., 2014). The alliance of microbes in constructed wetlands involves internal and 

external microorganisms  (Truu et al., 2009). Internal micro-organisms are categorised by 

some qualities as follows: metabolic activity capability, grow and live in wetland systems 

and involve in pollutants treatment. While external micro-organisms such as pathogens in 
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the inflowing wastewater have no critical part to partake in the wetland environment, as the 

foreign micro-organism does not survive because the wetland environment is opposed to 

non-indigenous micro-organisms (Jan Vymazal, 2005). Figure 2.7 below shows the 

constituents that affect micro-organic relationships and functions in constructed wetlands. 

 

Figure 2.7:  Constituents that affect micro-organisms relationships and functions in 

constructed wetlands. Adopted from (Truu et al., 2009) 

2.5.4 Hydrology 

Hydrology is the most significant and essential for the formation and persistence of 

wetlands with the occurrence, characteristics and movement of wetland’s inflow and 

outflow. It helps to the anaerobic condition. Hydrology in the wetland dealt with the 

intermittent saturation of a substrate media and serves as the approach and area where 

general biogeochemical operations occur (Morandeira & Kandus, 2015; Scholz, 2010). 

The hydraulic retention time (HRT) in wastewater treatment plant is a measure at an 

average length of time holding the wastewater in a filter for treatment before discharging. 

It is also known as hydraulic residence time. The operations help the growth of typical 

wetland media that provides a suitable environment for a predominant macrophyte society 
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appropriate to the current in saturated media (Mitsch & Gosselink, 2000; Mueller et al., 

2003).  

Therefore, hydrology is defined by two variables in wetlands namely, hydro period and 

depth of flooding (Cole et al., 1997). The hydro period is the time at which the soil is 

flooded or saturated, expressed in percentage, and is influenced by many natural factors 

like geology, groundwater, topography, subsurface soil features, and weather conditions. 

In a natural wetland, the depth of flooding differs between +2 m and –1 m corresponds to 

the ground surface, with an average of approximately +1 m. These two variables highly 

affect the characteristics (oxygen concentration, pH, nutrients, plants, etc.) and stability of 

the wetlands (Scholz, 2006, 2010; Scholz & Lee, 2005). 

Hydraulic retention time (HRT), refers to the average period of time wastewater stays in 

the wetland. It is an essential variable in designing and evaluating treatment performance 

of wetland treatment systems (Ghosh & Gopal, 2010; Kadlec, 2016). More so, it is required 

in determining the performance efficiency of settling solids, biochemical processes, and 

plant uptake (Ghosh & Gopal, 2010; Kadlec & Knight, 1996b; Stefanakis et al., 2014). 

Subsurface flow constructed wetland systems (SSFCW). The wetland hydrology is critical 

in wastewater treatment processes because it determines the duration of water-biota 

interactions, and the transport of waterborne substances to the sites of biological and 

physical activity (Kadlec & Wallace, 2008). The more water stays in the wetland filters, 

the better is the possibility of sedimentation, adsorption, biotic processing and retention of 

nutrients (Johnson et al., 2016).  

2.6 Constructed wetlands on treatment performance: Design and operational 

impact 

The pollutant treatment performance efficiency by constructed wetlands is  a function of 

the Hydraulic Loading Rate (HLR) and Hydraulic Retention Time (HRT), specifically 

when the hydraulic loading rate is high and the retention time is low. It was discovered that 

very polluted wastewater rapidly passes through the wetland, which results in a 

corresponding relative decrease of the treatment efficiency by the constructed wetland 

because of  inadequate time for biodegradation processes to take place. 

The different loading rate applied, did not display any important statistical differences in 

the removal of the tested pollutants. Initial results were discovered in the removal of the 

pathogen, where the find sand as the substrate is good. Frazer-Williams, (2010) also 
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evaluate the effect of wetland design criteria area sizing, and operation parameters 

(hydraulic and inflow loading) for the removal of pollutant (organics, solids, nutrients and 

coliforms) in both subsurface and surface flow systems. Results showed that even though 

high removal performance of pollutants was attained for most wetlands, residual 

concentrations for BOD are frequently higher than those predicted based on the 95 

percentile first-order Kickuth design equation. Also, correlation results indicate that 

hydraulic and pollutant loading impacted strongly wetland performance for organic matter 

(BOD, COD) removal. In all cases, removal of pollutants decreases normally as hydraulic 

loading rate also increases. Correlation between Hydraulic loading and nutrient removal 

was not discovered. Overall, it can be resolved that organic removal can be modelled better 

compared to a nutrient in constructed wetlands. Since the removal of solids and coliforms 

are not primarily influenced by the key design parameters, it is expected that they will fit 

into any design model developed. 

Some study researches like Stefanakis & Tsihrintzis, (2012b) and Zhi & Ji, (2014) indicated 

that during the experimental setting-up phase of the constructed wetlands, outflow water 

quality parameters like COD are discovered to be relatively unstable when the wetland is 

maturing. Furthermore, an extended hydraulic retention time effects on performance 

efficiencies for ammonia-nitrogen removal, regardless of plant maturity. Long resting times 

generally certifies biodegradation and nitrification. However, Stefanakis et al., (2014) 

reported organic matter biodegradation in VFCWs depends on the internal of the organic 

matter and contact time used during treatment of wastewater by the system. Therefore, their 

researche summarised that readily biodegradable organics are quickly oxidised due to high 

oxygenation in the wetland media bed while the disorderly ones are partially degraded 

caused by inadequate contact time. Moreover, the organic matter decomposition was 

mostly happening in the top 10– 20 cm due to the accessibility of high oxygen and microbe 

population density in the upper wetland gravel bed (Kadlec & Wallace, 2008; Stefanakis & 

Tsihrintzis, 2012b; Tietz et al., 2007).  

In the research study of Stefanakis & Tsihrintzis, (2012a) they investigated the removal 

performance of  organic matter pollutants (BOD and COD)  and recorded to be above 78% 

removal and that of nitrogen  (TKN and NH4- N)  was recorded to be 58% removal and 

37% for phosphorus removal (total phosphorus [TP] and ortho-phosphate phosphorus 

[PO4-P]). The research also recognised the system performance due to the enhanced 

aeration in the porous media bed.  
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It was  indicated by Kayranli et al., (2010) and  Rousseau et al., (2008) that pollutants 

removal performance by constructed wetlands is linked to the hydraulic loading rate and 

contact time; i.e. if the hydraulic loading rate is high and contact time is low, highly 

contaminated wastewater leaves the wetland quickly, which results in a corresponding 

relative decrease of the treatment efficiency due to inadequate time for biodegradation 

processes. (G D; Gikas & Tsihrintzis, 2014) Pointed out that water quality outflow 

parameters such as chemical oxygen demand (COD) are relatively unstable during the 

experimental setting-up phase when the wetland matures. Furthermore, a long contact time 

results in higher removal efficiencies for ammonia-nitrogen, regardless of plant maturity. 

Nitrification and biodegradation, in general, can be promoted by relatively long resting 

times (artificially induced drying and aeration times). 

2.7 Wastewater  

Wastewater is a combination of water and a huge number of chemicals (organic and 

inorganic chemical) and heavy metal that can be formed from domestic, industrial and 

commercial activities (Rezania et al., 2015). Wastewater is water that has been previously 

used and polluted, that contains waste products. Furthermore, it also comprises of 

stormwater, groundwater and surface water (Dixit, Dixit, & Goswami, 2011).  Because of 

the chemical access into the wastewater, it must be treated before the final disposal into the 

environment. Several processes of physical-chemical and biological were established for 

wastewater treatment, among the processes biological process was discovered to be more 

compelling for the treatment of wastewater, phytoremediation is part of the branches of 

biological process for the treatment of wastewater (Roongtanakiat et al., 2007).  Wastewater 

is approximately 99% water; only 1% is a mixture of suspended and dissolved organic 

solids, detergent, and cleaning chemicals. 

In the study research of Avelin et al, (2014), they reiterated that wastewater as a compound 

combination of organic and inorganic materials also known as sewage, which can be 

divided into domestic, industrial, and municipal wastewater, The plant in which wastewater 

is treated view for the main part of the energy-demanding methods associated with water. 

The energy that is consumed in the aeration processes is of a significant amount, where 

oxygen is provided for a biological system such as an activated sludge treatment. 

Wastewaters from the household, hospital, and industries (organic, chemicals, industry and 

refining industry) consist of practice water, water to cool the machines when heated, surface 

water runoff, and hygienic sewage water (Speight, 2005; Speight & Arjoon, 2012). 
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Wastewaters consist of water in which solids exist as settle particles at the bottom, spread 

as a mixture, which is materials that do not settle freely, dissolved state nature of solid. The 

wastewater mixture will comprise huge numbers of microscopic organisms, usually 

bacteria capable of ingesting the organic component (carbohydrates, fats and proteins) of 

the mixture and bringing about fast changes in the wastewater. As the origin of wastewater 

as well as the inputs are greatly variable and since there is also an active microbial 

component, the configuration of all wastewaters is regularly varying. Before entering a 

wastewater treatment plant, it is called raw sewage (Krishna et al, 2017). 

Water pollutants represent one of the considerable environmental problems. This makes it 

essential to take necessary actions for water resources management. Water bodies have 

many uses such as municipal use, agricultural use, industrial use, fisheries and recreational 

use. The term quality must be considered relative to the intended use. To set a standard for 

desire quality of a water body, it is essential to identify the uses of water of that particular 

water body.  Water quality standards are the basic of water quality control programme, 

directed by certain authorize agency. A water quality standard is the one that protects and 

maintain the water quality of water necessary to meet its requirement such as swimming, 

recreation, public water supply and aquatic lives if present. Water quality standard consist 

of four basic elements: 

a. Designated use of the water body 

b. To protect designated used by limiting chemical constituents that may be present 

in the water body 

c. An anti-degradation policy to maintain and protect existing uses and high-quality 

waters 

d. General policy addressing implementation issues  

Water quality criteria are statement broadly defining the safety margin for the physical, 

chemical and biological characteristics and constituents of water. Water standard are 

prescribed by authorize agency considering the type of use, quality of criteria and other 

features such as practical attainability, causes, local condition, public needs, etc. Water 

quality standard is prepared to base on criteria like health all unknown sample data is 

compared to such substandard. Drinking water has to have a high standard, whereas water 

for use by the animal can have a lower standard. Every country has their water standard 

relevant to that region. World Health Organisation (WHO) has mapped out globally suitable 



45 

 

health base quality standard. UK Government has set up water quality control standard and 

designed suitable restoration programme for the various water body. 

Wastewater is contaminated water that can no longer be used or re-used by people or 

manufacturing process (Brix & Arias, 2005). It refers to any water that has been adversely 

affected in quality by anthropogenic influence (Choudhary et al., 2011). Wastewater 

formed by the combination of industrial, domestic, commercial or agricultural activities, 

surface runoff or stormwater, and from sewer inflow or infiltration (Sheet, 2003). However, 

according to Miklas Scholz & Lee, (2005), they described wastewater as the one that 

consists of pollutants which are normally structured in an environmental pattern. 

Wastewater is treated to remove substances which pollution when discharges to rivers, lake 

and sea and this lead to course. Wastewater is passed through a series of sequential faces 

these are called pre-treatment where the pollutant is removed from the wastewater 

treatment. The qualities and quantities of wastewater are analysed and determined by many 

features. 

2.7.1 Problem of wastewater  

Water Pollution of sources can cause diseases to increase, such as e-coli, diarrhoea and 

hepatitis. It also affects people's immediate environments and leads to water-related 

illnesses. To minimise wastewater and pollutant emissions, a constructive method is 

underlined to design wastewater recycling so that the treated water can be reused for 

irrigation, agricultural, park and golf course and to a maximum extent in the same plant 

(Sayadi et al., 2012). Domestic wastewater is known as one of the major sources of COD, 

TDS, TSS, BOD5, metals, salts, indicator organisms like e-coli, diarrhoea, hepatitis colour, 

nutrients (Sayadi et al., 2012).. 

2.7.2 Wastewater treatment 

Wastewater treatment is associated with the standards set for the treated outflow quality, 

which consists of processes such as a combination of biological, chemical and physical 

treatment processes (Su et al., 2015). Wastewater treatment processes are planned to attain 

enhancement in the quality of the wastewater. Raw wastewater is a combination of solid 

and liquid, to treat wastewater, this consists of two main steps: primary wastewater 

treatment and secondary wastewater treatment (Tansel, 2008). In the primary treatment 

phase, mechanical process of treatment in considered which involve larger contaminant, 
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solids are removed from wastewater by allowing it to settle while in Secondary treatment 

further treat the wastewater through extra procedures that involve a big biological 

procedure for supplementary removal of the remaining suspended and dissolved solids. 

Secondary treatment removes up to 85% of the remaining organic material through a 

biological process of cultivating and adding sewage microorganisms to the wastewater and 

through bio filtration, aeration, oxidation ponds and the interaction of waste.Treatment of 

wastewater is the process of eliminating pollutants from wastewater. This includes 

physical, chemical, and biological procedures to eradicate organic, inorganic and biological 

contaminants. The key purpose of wastewater treatment is to make water appropriate for 

the end-users need (Potgieter, 2010). The chief aim of wastewater treatment is to eradicate 

as much as of the suspended solids and other organic matters as possible before the 

remaining water called effluent and returned to the to the water cycle with minimum impact 

on the environment (Aguilar, Tadiosa, & Tondo, 2014). The usual configuration of 

wastewater (after pre-treatment) which are treated in CWs comprises suspended solids, 

organic matter (BOD and COD), and nutrients (especially nitrogen and phosphorus) and 

some trace heavy metals, as shown in Table 2.3. 

Suitable wastewater treatment and removal are critical for public health protection. The 

wastewater treatment procedures help to attain water quality objectives and to reduce water 

pollution control. When purified the treated water will be suitable for future reuse (Siracusa 

& La Rosa, 2006) The development of advanced wastewater treatment technologies is 

essential to meeting the regulatory requirements for water quality 

Table 2.3: Concentration pollutants in the normal untreated domestic wastewater 

Parameter Unit Concentration 

  
 

Weak Medium Strong 

BOD mg/l 110 220 400 

COD mg/l 250 500 1,000 

TP mg/l 4 80 15 

TN mg/l 20 40 85 

TDS mg/l 250 500 850 
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TSS mg/l 100 220 350 

TS mg/l 350 750 1,200 

Total Coliform No/100mL 106 ~ 

106 

107 

~108 

107 

~109 

 

Abbreviations: TS, total solid; TDS, total dissolved solids; TSS, total suspended solids; 

BOD, biochemical oxygen demands; COD, chemical oxygen demands; TN, total nitrogen; 

TP, total phosphorous. 

2.8 Water Quality Parameters 

Water Quality variables, parameters or indicators refer to the parameters used for the 

analysis by the scientist to specify the presence of harmful pollutants. Water quality is a 

term used to describe the situation of water; this includes chemical, physical, and biological 

features of the water. Is good to ascertain the quality of water before use for various 

intended purposes, such as potable water, agricultural, industrial, etc. generally regarding 

suitability for a particular or designated use, there many expect of water pollution and their 

many variables that determine water quality for a given used. The quality of water is defined 

regarding its physical, chemical, and biological parameters (Al-Rekabi & Al-Ghanimy, 

2015). Water features, such as dissolved oxygen, pH, nutrients, and temperature, are known 

as parameters or indicators. Parameters can be physical, chemical or biological. Water 

quality has the greatest contribution to temporal variation in the source of water such as 

sea, river, lake, and ocean as well as wastewater. The term quality must be considered 

relative to the internal use; there are many expect of water pollution and properties that 

determine water quality for a given use. Example water for domestic use should free from 

all type of suspended and dissolve impurities and microorganism. Water quality is an issue 

that relates to the chemical composition of water for particular use and societal needs and 

treated waste water samples were analysed using contaminant indicating parameters 

(Kushwah et al, 2011). Modelling water quality parameters is a very important 

characteristic in the analysis of any water systems management. Prediction of water quality 

parameters is essential for proper management of the wastewater so that sufficient measure 

can be taken to keep contaminants within accepted limits used to identify cost-effective 

pollution control strategies 
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The three important properties that control the quality of water include physical, biological 

and chemical properties; they have a varied impact across different uses of water in 

different sectors. Any physical, chemical or biological properties that affect the quality of 

water is said to be a water quality variable or parameter. Table 2.4 represents the properties 

of water quality parameters. 

Table 2.4: Properties of water quality parameters 

Physical Properties Biological Properties Chemical 

Dissolve and suspended 

solid in the water bodies 

Micro-organism, cellular 

and microscopic bacteria 

These include solubility, 

chemical reactivity and 

temperature etc. and all 

those that play a role in the 

chemical quality of water 

Plants, leaves and degraded 

organic material become 

part of the suspended matter 

They contaminate both 

ground and surface water 

and cause various water-

borne diseases like 

diarrhoea, cholera, typhoid 

etc. 

Ions like nitrate, 

hydroxides, chlorides that 

are completely soluble in 

water and dissolve solid 

A High level of acidity or 

toxic alkalinity elements 

and carcinogens etc. 

 

 Physical properties of water quality include temperature and turbidity, Chemical 

characteristics involve parameters such as pH and dissolved oxygen. Biological indicators 

of water quality include algae and Biochemical demand. Researchers and analysts 

determine water quality by testing for specific chemicals. Most often, the type of water 

being tested determines what parameters are important to a particular situation. Water 

quality testing is an important part of environmental monitoring. When water quality is 

poor, it affects not only aquatic life but the entire ecosystem surrounding will be affected 

as well (Wu et al., 2015). Water quality is measured by using some combination of water 

quality parameters. As there are many different uses of water, it is not likely to come up 

with a particular definition of water quality (Uality et al., 2000) Wastewater quality 

parameters are laboratory test procedures to assess the appropriateness of wastewater for 

re-use or disposal. Tests selected, and desired test results differ with the intended use or 

discharge position. Tests conducted and measured are physical, chemical, and biological 

features of the wastewater (Sanchez, Weiland, & Travieso, 1994). Whenever the quality of 

water is studied, water quality parameters will look into. Therefore, water quality standard 
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is assigned according to the goals of the aquatic system by assigning its uses managing to 

protect those uses and creating requirement such as anti-degradation policies to protect 

them from various pollutants. Set by each state water quality standards regulate how clean 

a water body should be, state designates water bodies for specific uses base on their goal 

and expectations for their waters typically designated use include the following: 

1. Protection and propagation of  fish, shellfish and wildlife 

2. Recreation purpose 

3. Public water supply 

4. Agricultural, Industrial, Navigational and other purposes 

2.8.1 Biological Oxygen Demand 

The Biological Oxygen Demand (BOD5) according to Kotti, Sylaios, & Tsihrintzis (2013) 

is the amount of oxygen consumed by bacteria in the decomposition of organic material 

and removal of organic matter measured as BOD5 is always required to a level 90 or 95% 

is the regulation treatment class of BOD5. BOD is a prime indicator for quality of both 

waste and surface glasses of water it also includes the oxygen required for the oxidation of 

various chemical in the water, such as sulphides, ferrous iron and ammonia (Kotti et al., 

2013a). BOD is a measure of organic pollution to both waste and surface water. Biological 

oxygen demand is said to be an indicator of the quantum of pollution load, BOD5 is a 

measure of how much-dissolved oxygen is consumed a greater amount of dissolve oxygen 

shall consumed, similarly in low value of BOD indicates relatively pure water. It is 

estimated that for drinking water the BOD should be in the range of 0.75 to 1.5 ppm. High 

BOD5 is an indication of poor water quality. For this tree plantation project, any discharge 

of waste into the waterways would affect the water quality and thus users downstream 

(Uality et al., 2000).  It was documented that vertical flow beds are very effective in 

removing BOD5.  and they do nitrify at high loading rates even during cold winters. 

Biochemical oxygen demand (BOD5) is one of the main factors for checking organic 

pollution present in water and evaluating the bio treatability of wastewater (Kushwah et al., 

2011). Furthermore, BOD5 is also used for treatment plant of wastewater discharge 

consents and other purposes of water pollution control, however, the traditional bioassay 

process for estimating the BOD5 comprises for 5 days for the incubation period of the 

wastewater sample.  (Rustum et al., 2008a). This is to say the standard BOD analysis 

usually takes 5 days minimum (BOD5), but alternatives are sometime used. The 

conventional method of testing BOD5 was stated by the American Public Health 
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Association Standard Methods Committee, it includes the 5-day biochemical oxygen 

demand (BOD5) test, this method has been commonly used as the normal method for long 

period to determining the concentration of biodegradable organics present in wastewater 

(Karia & Christian, 2013). However, this method is said to be time-consuming (5 days of 

incubation period) which needs skill and experience to achieve reproducible and accurate 

results. As a result of its time consuming, researchers embarking to conducted and 

developed alternative approaches for real-time or on-line BOD monitoring (Seop et al., 

2004). 

It is the extensive measure of the strength of the organic matter in wastewater. BOD 

measure biodegradable organic matter and is the standard test for testing the oxygen-

demanding strength of wastewater, however, it a measure of the amount of amount of 

oxygen that bacteria will consume while decomposing organic matter under aerobic 

conditions in 5 days at 20o C. The higher the amount of the organic matter in wastewater 

the higher the BOD value. Although there exist various methods for BOD measurement, 

the principle is the same for all of them. A volume of water sample in a recipient where the 

changes in the oxygen contents are measured before and after incubation at 20oC for a 

certain time which indicates BOD5 is a measure of how much-dissolved oxygen is 

consumed by aerobic bacteria in 5 days at 20oC temperature. If the sample is expected to 

have a low content of microorganism, an inoculum should be added. 

Moreover, an extra nutrient solution may be added to ensure that the growth of the 

microorganism is not limited. BOD values are increases over time as the organic matter is 

progressively biodegraded. However, after five days the majority of the organic matter 

contained in the sample has already been degraded. For that, reason BOD5, which measured 

after 5 days of incubation is the most widely used method. High BOD means that there is a 

little amount of oxygen to support life that indicates organic pollution and poor water 

quality (Kushwah et al., 2011). 

The equation below describes the biochemical process behind the BOD test  

    Organic matter + microorg + O2 + nutrientes     →         CO2 + H2O + microorg  

 2.1 

 

BOD is expressed milligram per litre (mg/l) 
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Contamination of water by any specific chemical cannot be measured by BOD; it is a 

measure of contamination caused by the totality of those compounds which can oxidise in 

the presence of the microorganism. A large number of the organic and inorganic compound 

are resistant to microbial oxidation. These, therefore, do not add to the BOD because they 

are not fit for drinking purposes. The usual value of BOD5 present in domestic wastewater 

ranges from 100 to 300 mg/L (Abdalla & Hammam, 2014). 

2.8.2 pH 

pH is a parameter used in the measurement of a solution's acidity or alkalinity; it is a 

measure of how much acidic and base a waste substance is, and it is a measure of the 

balance between positive hydrogen ion (H+) and negative hydroxide ion (OH-). These ions 

are either missing electron as in the case of hydrogen ion, or they have an extra electron as 

in the case of hydroxide ion. In water, small numbers of water molecules (H2O) will break 

apart or disassociate into hydrogen ions (H+) and hydroxide ions (OH-). pH is a measure of 

how acidic or alkaline the water is, the term pH comes from the French: "puissance 

d'Hydrogène" that means strength of the hydrogen in the water. It is defined as the negative 

log of the hydrogen ion concentration. pH is a determined value based on a defined scale, 

similar to temperature. pH of water is not a physical parameter that can be measured as a 

concentration or in quantity and is on a standard scale for pH from 0 to 14. Both domestic 

and industrial wastewater treatment bacteria operate efficiently at a pH range of 6.8 to 7.2, 

but when the range of pH drops below 6.0 or rises above 8.5, activity drops off dramatically.  

The pH scale is arranged and written in the logarithmic form and goes from 0 to 14. For 

each whole number increase (i.e. 1 to 2) the hydrogen ion concentration decreases tenfold, 

and the water becomes less acidic (i.e. pH 2 is ten times increase more acidic than pH 3). 

The value of pH depends on many stages of water treatment and water supply these include 

acid-base, neutralization, coagulation, sedimentation, corrosion control (Sarda & Sadgir, 

2015). When the value pH decreases, water tends to become more acidic but when water 

becomes more basic, the pH increases as well.  pH meter is calibrated potentiometrically 

with electrode system using standard buffers having assigned values. pH may be measured 

accurately using a pH meter and electrodes. If the pH of water is equal to seven, the water 

is in its natural form. If the pH of water is less than 7 the water has acidic properties, and 

the pH of water is greater than 7 the water has base properties (Collins & Gillies, 2014). 
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                             pH = - log([H+])       2.2 

The pH meter was calibrated before use and checked after each sampling event  

2.8.3 Nitrate Nitrogen 

Nitrate Nitrogen (NO3- N) is formed in contaminated water when dissolved bacteria use 

oxygen to oxidise ammonium. Nitrate is said to be mobile and can leak into lakes, streams, 

and estuaries from groundwater enriched by an animal or human wastes or commercial 

fertilisers. When the amount of dissolved nitrate in water increases, this cause water quality 

problem. Dissolve Nitrate in water is important for plant to grow but excess nitrates can 

cause too much growth of algae and aquatic plants, which can reduce the amount of doing 

available in the water, nitrates are caused by bacteria, animal and human wastes, too much 

content of nitrates will cause phytoplankton (algae) and macrophyte (aquatic plant) 

happening (Kushwah et al., 2011). This is mostly due to the usage of fertilisers. Nitrogen 

(N2) is naturally abundant on earth; it consists of 80% of air (Heidtke & Sonzogni, 1986). 

Most plants cannot use this as this form. However, blue-green algae and legumes can 

convert N2 gas into nitrate (NO3) ammonia found in soil being turned into nitrates (NO3-), 

which are inorganic forms of nitrogen that plants can use. Nitrogen can be used by plants 

because plants and animals (all living organisms) need nitrogen which is a chemical 

element used in forming proteins, proteins construct the structure of organisms and produce 

life-sustaining functions, comprising reproduction, development and growth. Plants use 

nitrate so as to form protein, and animals that eat plants also use organic nitrogen to build 

protein (Ouyang et al., 2011).  It was documented that vertical flow beds are very effective 

in nitrification at high loading rates even during cold winters (Brix & Arias, 2005).  

Order of decreasing oxidation state: 

 

Nitrate-Nitrite → Ammonia → Organic Nitrogen    2.3 

2.8.4 Phosphorous  

Phosphorus in small quantities is essential for plant growth and metabolic reactions in 

animals and plants, but phosphate in large quantity can cause too much algae blooms. It is 

the nutrient in shortest supply in some of the fresh waters, with even small amounts causing 

significant plant growth and having a large effect on the aquatic ecosystem. Phosphorus is 

an essential requirement for biological growth. An excess of phosphorus can have 
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secondary effects by triggering eutrophication within a wetland and leading to algal blooms 

and other water quality problems. Phosphorus removal in wetlands is based on the 

phosphorous cycle and can involve some processes (Hafner & Jewell, 2006a). 

Phosphorus is commonly known as the limiting nutrient for plant growth, which means it 

is in a relatively small supply relative to nitrogen (Schreiber, 1988). Phosphorus usually 

occurs in nature as phosphate, which is a phosphorous atom combined with four oxygen 

atoms, or PO4-3. Phosphate that is bound to plant or animal tissue is known as organic 

phosphate Phosphate that is not associated with organic material is known as inorganic 

phosphate. Both forms (organic and inorganic) are found and present in aquatic systems 

and may be dissolved form in suspended or water. Inorganic phosphate is also referred to 

as orthophosphate (PO4) or reactive phosphorous. It is the form most readily available to 

plants, and thus may be the most useful indicator of immediate potential problems with 

excessive algae growth and aquatic plant. Total phosphorus (TP) is a measure of 

phosphorus in all its form. 

Phosphates are found in detergents, fertilisers, rocks and soil. Phosphate can rise 

temperature, decrease DO, decrease the amount of sunlight getting through the water and 

indicate pollution. An ideal measurement of phosphates is 0.01 mg/L. Phosphates do not 

pretence health or human risk unless when it is concentrations is very high (The 

Environmental & Protection Agency, 2001). PO4-P is used to determine the quantity of 

phosphorus is a sample and is considers the phosphorus in the compound only 

PO4-P is generally used in the wastewater treatment plant reporting unit while in Boiler 

water analysis as PO4–3 is indicated to be used because trisodium phosphate (TSP) is fed 

in boiler and orthophosphate value is essential here. Total phosphorus (TP) is a measure 

of phosphorus in all its form. Total phosphorous is the measure used in most regulatory 

guidelines 

2.8.5 Forms of Phosphorus 

In water or wastewater, the overall forms of phosphorus (TP) is determined by analytical 

means made around whether Phosphorous is in dissolved or particulate form for whether 

or not the P is molybdate (Mo) reactive (J. Murphy & Riley, 1962). 

Conversely base on the research study of Murphy, (2007), it was discovered that 

phosphorus in natural waters is usually found in the form of phosphates (P04
-3). 

Phosphates can be in the form of inorganic (including orthophosphates and 

polyphosphates) or a form of organic (originally- bound phosphates). Animals can utilise 

any of organic or inorganic phosphate 
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2.8.5.1 Organic Phosphate 

This is the phosphate that is certain to plant or animal tissue and is formed mainly by the 

biological process; it involves a phosphate molecule related with a carbon-based molecule 

(Paraskova, 2014). They donate to sewage body waste and food residue and may be 

formed orthophosphates in biological treatment processes by getting waste biota. Organic 

phosphate may take place because of the breakdown of the inorganic pesticides that 

encompass phosphates, and they may be occurring in solution as a loose fragment or 

aquatic organism bodies. Phosphate that is not associated with organic material is 

inorganic. 

2.8.5.2 Inorganic Phosphate  

Inorganic phosphate is phosphate that is not related to the organic material. 

Orthophosphate and polyphosphates are the types of inorganic phosphates. In the research 

study of Murphy, (2007), it was discovered that orthophosphate is denoted to as “reactive 

phosphorus” and it is the most steady kind of phosphates that plant required. 

Orthophosphate is said to yield by natural process and is discovered in sewage; it is also 

called metaphosphates or condensed phosphates, they are a robust condensing agent for 

some metal ions. Polyphosphates are used for treating boiler waters and in detergent. In 

water, polyphosphates are unstable and will finally convert to orthophosphates. 

Orthophosphate plus phosphorous can easily turn to orthophosphate upon oxidative 

digestion. For constructed wetland treating wastewater, the key input of phosphorus is 

found from wastewater itself.  

2.8.6 Chemical Oxygen Demand (COD) 

The chemical oxygen demand known as COD is the amount of total quantity of oxygen 

required to oxidise the organic matter (chemical substances via chemical processes) in 

water or wastewater under a specific condition of an oxidising agent, temperature and time, 

in other words, to oxidise all organic material into carbon dioxide and water. COD use to 

monitor wastewater in various places from inflow to outflow of the treatment plant to 

measure in a safe and controlled manner (Kolb et al., 2017). It is used as a quantity of the 

oxygen equivalent of the organic matter content of sample water that is susceptible to 

oxidation by a strong chemical oxidant. For samples from a specific source, COD can be 

related empirically to BOD, organic carbon, or organic matter. The test is useful for 

monitoring and control after correlation has been established (Choudhary et al., 2011). 

COD is also an indicator of organics in the water, usually used in conjunction with BOD 

(Talib & Amat, 2012). High organic inputs activate deoxygenation. If excess organics are 

introduced to the system, there is potential for complete depletion of dissolved oxygen. 

Without dissolved oxygen (DO), the entire aquatic community is threatened. The only 
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organisms present will be air-breathing insects and anaerobic bacteria (Brix & Arias, 2005).  

COD unit is expressed in milligram per litre (mg/l) which indicates the mass oxygen 

consumed per liter solution. COD value is about 2.5-time BOD value. COD measures the 

amount of oxygen consumed for oxidation of total organic matter, it is the empiric 

laboratory essay, which measures the amount organic matter (biodegradable and non-

biodegradable), contained in a water sample. Thus, it is measured in milligram of oxygen 

per litre (mg/l) or (mgo2/l). COD does not differentiate between biologically available and 

inert organic matter. However, it is a measure of total quantity required to oxidise all 

organic material into carbon dioxide and water, in this way. The COD values of a water 

sample can be typically related to its BOD values, in a more less constant ratio COD values 

are always greater than BOD values. However, COD measurements can be made in a few 

hours while BOD measurements take at least five days since the COD test can be performed 

rapidly. It’s often used as a rough approximation of the water’s BOD, even though the COD 

test measures some additional organic matter such as additional organic matter such as 

cellulose which is not normally oxidised by biological action (Abba & Elkiran, 2017). 

There exist different methods to measure COD. In all of them, a fixed volume with the 

known excess amount of oxidants is added to the water sample being analyzed. The basis 

for the COD test nearly all organic compounds can be fully oxidized to carbon dioxide with 

a strong oxidizing agent under a condition at high temperature. After a digestion step, the 

concentration of the organic digestion substances in the sample is calculated from the 

titrimetric spectrophotometric determination of the remaining oxidant. COD values are 

usually higher than BOD5 values, and the ratio between them will differ depending on the 

type and wastewater features of the.  

2.8.7 Why is COD important? 

Chemical Oxygen Demand is one of the vital water quality parameters; it offers help to 

assess the effect of discharged wastewater will have on the receiving environment and 

ecosystem (Sanchez et al., 1994). If COD levels are high, it means there is a higher amount 

of oxidizable organic material present in the sample, which will reduce dissolved oxygen 

(DO) levels. A reduction in DO can lead to anaerobic conditions, which is deleterious to 

higher aquatic life forms. The COD test is often used as an alternate to BOD due to the 

shorter length of testing time (Sanchez et al., 1994). 
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2.8.8 Turbidity 

The measurement of turbidity is one of the key tests of water quality. Turbidity is a measure 

of the cloudiness of sample water. Cloudiness is formed by suspended solids (mostly soil 

particles present in water sample) and plankton (microscopic plants and animals) that are 

suspended in the water column (Uality et al., 2000). Turbidity may be due to organic and 

inorganic ingredients. Organic particulates may harbour microorganisms. Thus, turbid 

conditions may increase the possibility for waterborne disease. 

Nonetheless, inorganic constituents have no notable health effects (Brix & Arias, 2005). 

Suspended sediment, Algae and organic matter particles can haze the water that makes it 

more turbid. Water with high turbidity has high temperature and provides shelter and food 

for the pathogen. Turbidity is a measure of how clear the water is. A good measurement is 

between 0 and 15 JTU (Jackson turbidity units) the common unit of turbidity is NTU 

(Nephelometric Turbidity Unit) which is then used in this research NTU or JTU these units 

are interchangeable in practice, and the two units are roughly equal. It is suggested that, for 

water to be disinfected, the turbidity should be constantly less than 5 NTU or JTU. Less 

than 5 NTU value of turbidity indicates Clarity of sample can indicate contamination which 

is the acceptable limit. Lack of clarity in a water sample usually shows that bacteria may 

be present (The Environmental & Protection Agency, 2001). Regardless of whether 

readings are in NTU, FNU or any other SI units, it is vital to remind that a turbid meter’s 

optical design will affect turbidity readings.  

Turbidity can be measured using either an electronic turbidity meter or a turbidity tube. 

Turbidity can be caused by: 

➢ Chemical precipitates 

➢ Bacteria and other germs;  

➢ Silt, sand and mud; 

2.8.9 Temperature 

Temperature is a measure of kinetic energy of an object (how fast its particles are moving). 

Water temperature is one of the serious parameters that is used to assess our river/stream 

for aquatic environment health. Many organisms in water, mostly fish, are sensitive to 

temperature changes in the river water (Uality et al., 2000). Temperature is a widely 

fluctuating abiotic factor that can vary both diurnally and seasonally. Temperature exerts a 
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strong influence on the rate of chemical and biological processes in wetlands, including 

BOD decomposition, nitrification and denitrification (Brix & Arias, 2005).  Water with 

high temperature will always have a low amount of Dissolve oxygen, but the higher the 

temperature, the less DO because gas particles escape from the surface of the water. High 

temperature can increase wetland plant growth, which is good, but when there is too much 

plant growth, it causes a decrease in DO when plant die. There are numbers of factors that 

affect the temperature of water, the colour of water impact the temperature because darker 

colour water will absorb more heat, how deep the water typically has an impact because 

deeper water is often colder it takes more heat to warm up these deep water. The time of 

year also has an impact on the temperature of water because naturally, the water tends to 

be warmer in the summer months and colder in the winter months. The amount of water 

also has an impact on the temperature because more water takes longer to heat up and to 

cool down. Another factor that impact temperature is the temperature of water inputs known 

as effluents which are liquid waste that is dumped into the water system some example of 

the effluent that can increase the temperature of the water includes waste water from 

factories or even runoff water from the building. The temperature of water influences 

different stages of animal life in different ways, as it is one of the most important aspects 

of aquatic life survival (Sarda & Sadgir, 2015). Understanding temperature requires 

understanding energy as well. The temperature of a substance will change depending upon 

the rates of energy gain and energy loss. 

2.8.10 Suspended Solid 

These are particles floating in the water, with low wetland water velocities and appropriate 

composition of influent solids, suspended solids will settle from the water column within 

the wetland. Sediment suspension not only releases pollutants from the sediments, but it 

also increases the turbidity and reduces light penetration (Uality et al., 2000). The physical 

processes responsible for removing suspended solids include sedimentation, filtration, 

adsorption onto Biofilm and flocculation/precipitation. Wetland plants increase the area of 

substrate available for development of the Biofilm. The surface area of the plant stems also 

traps fine materials within its rough structure. It was documented that vertical flow beds 

are very effective in removing suspended solids (Brix & Arias, 2005). Suspended solid can 

also raise water temperature, which reduces the DO. The traditional standard for SS 

removal from secondary wastewater is 30 mg/l Water with a low amount of suspended 

solids is important to many waters uses. Although the amount of total suspended solid is 
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important for recreational uses, the degree of importance depends on the activity. A total 

suspended solid is measured as the dry weight of particulates. Both organic and inorganic 

materials contribute to total suspended solids (Uality et al., 2000).  

2.8.11 Ammonium Nitrogen 

Ammonia is existed naturally both in surface and in wastewater. Its concentration is 

generally low in ground waters because it adsorbs in soil particles and clays and is not 

leached readily from soils. Ammonia nitrogen (NH3-N) is one of the most poisonous and 

usual classes of nitrogen, and It was discovered recently that pollution of ammonia nitrogen 

in waterways had become one of the main tasks of the environment (Azreen et al., 2017). 

NH3-N establishes normally in industrial and domestic wastewater or decomposed from 

organic nitrogen compounds in the wastewater. When Ammonia levels exceed the 

recommended boundaries, will result in depletion of dissolved oxygen, eutrophication and 

may harm aquatic life (Uğurlu & Karaoğlu, 2011). Although the ammonia molecule is a 

nutrient required for life, excess ammonia may accumulate in the organism and cause 

alteration of metabolism or increases in body pH. It is an indicator of pollution from the 

excessive usage of ammonia-rich (Uality et al., 2000). Ammonia concentration in water 

varies from less than 10µg in some natural surface and ground waters to more than 30 mg/L 

in some wastewaters. The wastewater that has high ammonia nitrogen contents would deter 

the natural nitrification process, make water hypoxia, result in poisoning of fish, ability to 

reduce water purification, and lastly pollute water environment (Luo et al., 2015). 

2.8.12 Dissolve Oxygen (DO) 

Dissolve oxygen (DO) is the amount of volume dissolve oxygen present in the wastewater 

and is part of the indicator to determine and evaluate the efficiency of the treatment process 

and indicate whether the water meets the standard (Uality et al., 2000). This is an important 

water quality indicator as it’s one of the best indicators that determine the water of quality. 

It is used to determine ecological status, productivity and health of any given water (Sarda 

& Sadgir, 2015). Dissolve oxygen is oxygen that is dissolved in water and is great indicator 

of how healthy a body of the water system is. It is invisible to our naked eye and is what 

makes aquatic life possible (Haider & Ali, 2016). Dissolved oxygen can get into the water 

two ways, through atmospheric oxygen mixing into a stream in turbulent areas through 

diffusion into the air, or a waste product by the release of oxygen from aquatic plants during 

photosynthesis and through aeration of tumbling water. All microorganisms and aquatic 
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animals need to dissolve oxygen to survive which makes aquatic life possible. According 

to Imfeld et al., (2009). Oxygen can be transported to wetlands together with the inflow 

water, from the atmosphere and via plant tissues into the water filter. Dissolve oxygen (DO) 

concentration is one of the main parameters that determine the performance of constructed 

wetland in wastewater treatment, it is a significant since most of the degradation processes 

(carbon degradation, nitrification) need aerobic condition and therefore adequate supply of 

oxygen is of great importance. Actual air supply significantly increases the treatment 

performance of constructed wetland particularly the removal of nitrogen  (Kimwaga, 2015).  

It is an important parameter in assessing water quality because of its influence on the 

organisms living within a body of water. Most aquatic organisms need oxygen to survive 

and grow. The amount of dissolve oxygen in a body of water indicates the quality of water 

and is controlled by temperature because Dissolve oxygen is greatly affected by 

temperature of the water. Cold water contains more dissolved oxygen than warm water, as 

organism die and decompose; the bacteria use up the DO in the water.  Water must have an 

adequate amount of dissolve oxygen to support life; clean water condition should have 

dissolved oxygen concentration at a range of 7.4 to 9.0 ppm (parts-per-million) depending 

on the temperature.  It has been discovered that DO can go through water in three (3) ways 

1. Through the process called diffusion at the surface of the water 

2. Though aeration (Manmade or because of water movement) 

3. In photosynthesis as a waste product  

Need for Dissolve Oxygen 

1. To evaluate raw water quality 

2. Biological changes determination by aerobic or anaerobic organisms 

3. To investigate pollution 

4. D.O. is the basis of the BOD test to assess any possible contamination of wastes 

5. A significant factor in corrosion 

6. All aerobic biological treatment processes of wastewater 

Each type of aquatic animal requires a different amount of dissolved oxygen, as the 

temperature of the water increases the amount of dissolved oxygen that the water can hold 

physically decreases. As the temperature of the water increases, it can physically hold less 

and less dissolved oxygen, while as the temperature of the water decreases, it can keep more 

and more dissolved oxygen as shown in Figure 2.8. 
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Figure 2.8: oxygen solubility of water at various temperatures 

The oxygen dissolves by diffusion from the surrounding air; aeration of water that has 

collapsed over falls and rapids; and as a waste product of photosynthesis. A formula is 

presented below. 

Photosynthesis (in the presence of light and chlorophyll) 

 

The amount of dissolved oxygen is controlled by water when the amount of dissolved 

oxygen reduces in the water the eutrophication starts. Sufficient Dissolve oxygen is a total 

necessity for good water quality and is crucial for aquatic life. Department of Natural 

Resources (DNR) who is environmentalist have set up a minimum value of 5 mg/l as a 

minimum for dissolved oxygen concentration (Kusiak et al, 2010).The measurement of 

Dissolved Oxygen (DO) content is also ascertaining to be one of the essentials in water 

management. At levels around 5 mg/l of dissolved oxygen, irrigation water is typically 

considered marginally acceptable for plant health. Most greenhouse crops, however, will 

perform better with higher levels. Levels of 8 mg/l or higher are generally considered to be 

good for greenhouse production and much higher levels, as high as 30 mg/l or more, are 

achievable and can be beneficial. If DO levels are below 4 mg/l, the water is hypoxic and 

becomes very detrimental, possibly fatal, to plants and animals. If there’s a severe lack of 
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DO, below around 0.5 mg/l, the water is anoxic. No plants or animals can survive in anoxic 

conditions. Usually, a less dissolve oxygen concentration is an indication of high biological 

activity in the water (being bad for hygiene). 

2.8.13 Electrical conductivity (EC) 

EC is the ability of a material to conduct an electrical current, measured in micro Siemens 

per centimeter (mS/cm) or Millisiemens/meter (mS/m). It is an indirect measure of the 

presence of inorganic dissolved solids. Measurements electrical conductivity are commonly 

used to discover the amount of salinity in a clean and waste waters (Vepraskas, 2002). 

Conductivity depends on the presence of ions (Cations and anions) in water such as 

chloride, nitrate, potassium, sulphate, iron, phosphate, magnesium, calcium, aluminium and 

sodium that gives water its ability to conduct electricity (Tiwari, 2015). Salinity and total 

dissolved solids (TDS) are used to calculate the EC contents in water, which helps to 

indicate the water’s purity, the purer the water, the lower the electrical conductivities. EC 

meter is the name of the device for measuring the electrical conductivity of the water. 

Conductivity often is used to estimate the amount of total dissolved solids (TDS) rather 

than measuring each dissolved constituent separately (Uality et al., 2000). Solids were 

initiated in a dissolved form naturally. Salts that dissolve in water disintegrate into charged 

ions positive ions and negative ions. When the value of electrical conductivity is high, it is 

due to the existence of dissolved salts of cations such as calcium, magnesium and sulphate 

in higher concentration in the rains (Sarda & Sadgir, 2015). Conductivity refers to the 

ability of water to conduct electrical current, and the dissolved ions in the water are called 

conductors.  

Conductivity will vary with water source: groundwater, water removes from agricultural 

fields, municipal wastewater, and rainfall. Therefore, conductivity can indicate 

groundwater seepage or a sewage leak. High quality deionised, pure, dechlorinate water is 

not a good conductor of electricity. Usual drinking water has conductivity in the range of 

about 5–50 mS/m at 25 °C. The electrical conductivity of the water can be measured rapidly 

and cheaply, using portable meters. Micro Siemens/centimetre (μS/cm) or Milli 

Siemens/mete (mS/m). 

2.8.13.1 Factors affecting the electrical conductivity of water 

The electrical conductivity of the water solidly depends on the temperature of water: the 

higher the temperature, the higher the electrical conductivity in any given water sample. 

http://www.endmemo.com/sconvert/millisiemens_meter.php
https://www.aquaread.com/need-help/what-are-you-measuring/salinity/
https://www.aquaread.com/need-help/what-are-you-measuring/tds/
https://www.aquaread.com/need-help/what-are-you-measuring/tds/
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The electrical conductivity of water increases by 2-3% for an increase of 1 degree Celsius 

of water temperature. Many EC meters nowadays automatically standardise the readings to 

25oC temperature. 

2.8.14 Oxidation/reduction potential (ORP) 

ORP stands for oxidation-reduction potential is usually measured to discover the oxidising 

or reducing potential of a water sample. ORP determines the degree of the cleanliness of 

the water & its ability to break down contaminants”. It has a range of –2,000 to + 2,000 and 

units are in “mV” (millivolts). (Vepraskas, 2002). It indicates possible 

contamination, especially by water and industrial wastewater (Goncharuk et al, 

2010). Redox potential is an electrical measurement that indicates the inclination of a soil 

solution to transfer electrons to or from a reference electrode. From this measurement, it 

can be concluded if the soil is aerobic, anaerobic and whether chemical compounds such as 

Fe oxides or nitrate have been chemically dropped or are existing in their oxidised forms. 

In well-oxidised water, if oxygen concentrations remain above 1 mg/l, the ORP value will 

be highly positive (above 300–500 mV). In lowered environments, like in the deep water 

of stratified lakes or the sediment of eutrophic lakes, the ORP value will be little (below 

100 mV or even negative). Microbial-mediated redox processes can reduce the value of 

OPR to a low negative level of −300 mV. It was reported in the research study of Inniss, 

(2003), that The ORP could be used to categorise the condition of water; aerobic, anoxic, 

or anaerobic responsible on the concentration range of ORP values. Redox potential is a 

voltage differential is commonly between a platinum electrode and a saturated calomel 

electrode as a reference both are in contact with the soil solution. The redox potential is 

used to describe an overall reducing or oxidising capacity in the water. ORP is measured in 

volts (V), or millivolts (mV), relative to a standard hydrogen electrode   

The value of ORP in determining the content of environmental water is critically improved 

if the scientist has some information or history of the site. ORP data can typically become 

more useful if used as an indicator over time and with other common parameters to help 

develop a complete picture of the water quality parameters being tested. 

Many significant biochemical processes are oxidation or reduction reactions the oxidation 

of ammonia to nitrate is executed when the ORP concentration occurs between the ranges 

+100 to +350 mV, while the reduction of nitrate to nitrogen happens during the ORP ranges 
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+10 to – 50 mV (e.g. ammonia > nitrite > nitrate > nitrogen) (Al-Samawi & Al-Hussaini, 

2016). 

ORP is very significant in several drinking glasses of water and wastewater procedures and 

applications. Measurements of ORP are used to regulate disinfection with chlorine or 

chlorine dioxide in swimming pools, cooling towers, portable water supplies and other 

water applications analysis.  

2.9 Contaminants in Wastewater 

Using of Unprocessed or inappropriately treated wastewater effluent sample can lead to 

negative impacts and affect environmental and human health. Effects of wastewater 

pollution include oxygen depletion, the impairment to fish and wildlife communities, and 

contamination to drinking water sources. Wastewater can contain a wide range of 

contaminants, including a variety of pharmaceuticals and hormones, pesticides, toxic trace 

elements and metals, total suspended solids (TSS), microorganisms, organic matter, and 

excess nutrients. Wastewater contains contaminants, depending on what it used for. It often 

contains contaminants  

2.10 Treated wastewater for future re-use  

The treated outflow of urban wastewater was confirmed to be reused for limited or 

unlimited irrigation of crops (e.g. willow, chilly), a subject on the quality of the treated 

water (Reed, 1991). Other applications are watering of gardens, playgrounds, toilet 

flushing, golf courses, public parks (Bouwer et al., 1993). Outflow water can be reused for 

flushing toilets, for cleaning purposes (roads) as cooling water (cars) and as a source of 

water supply for natural wetlands (common reeds) or nature reserve areas (game reserve). 

2.11 Pollutant removal mechanism in constructed wetland 

The two major mechanisms at work in most constructed wetlands system are liquid and 

solid separations and component degradations and transformations. The reason for 

constructed wetlands is to eradicate pollutants from wastewater. These pollutants if are not 

treated properly, pose health threats to a wider public, aquatic organisms, and the 

environment in general. Different type of pollutants were treated and removed by wetland 

systems, these include BOD5, COD suspended solids, turbidity, electrical conductivity, 

redox potential, dissolve oxygen, pathogens, nitrogen, pesticides, heavy metals, phosphorus, 

oestrogenic compounds, in varying quantities (Chen et al., 2008; Saeed & Sun, 2012; 
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Sheoran & Sheoran, 2006; Tang & Huang, 2007; Verma & Suthar, 2018; Vymazal, 2002b). 

There are inclusive displays of physical, chemical and biological mechanisms that modify 

and allocate contaminants in the various abiotic and biotic components of wetland systems. 

When wastewater passes through the wetland, this enables the velocity of wastewater to 

drastically reduced because of the porous media, thereby higher percentage of suspended 

solids in wastewater sediment and settle, as numerous different procedures take place 

simultaneously in the constructed wetland system to decrease the level of pollutants of 

wastewater (Sudarsan et al., 2017; Sudarsan et al., 2017). Nutrients increase plant biomass 

production whilst the growth, dieback and decomposition of plant biomass create internal 

storage compartments. Removal of pollutants occurs through different processes such as 

sedimentation, filtration, microbial degradation, plant uptake, and adsorption (Kadlec et al., 

2017; Norton, 2003; Sudarsan et al., 2017; Yeh et al., 2006). 

2.11.1 Physical removal processes 

Physical pollutants removal processes of constructed wetlands are regularly used in primary 

treatment of traditional wastewater treatment systems (Norton, 2003). Physical processes 

performed an important role in the decrease of both dissolved and solid pollutants. Water 

that flows down in wetlands filters passes gradually due to resistance from plant matter and 

a uniform sheet flow of water. The plants in the wetland help catch sediment but less than 

sediment that settles from lower velocity (Norton, 2014). This low flow allows particles to 

settle out and this is also helped by bedded movements in most wetlands (DeBusk, 1999). 

The key physical pollutant removal processes from constructed wetland systems are 

diffusion, gravitational settling, and volatilisation. Gravitational settling is an important 

process that is responsible for suspended solids removal (Sudarsan et al., 2017). The 

diffusion process enables oxygen transfer from the atmosphere into the wetland filter 

resulting in a thin layer of nearly-saturated Dissolve Oxygen at the top of each constructed 

wetland filter. Volatilisation take place when compounds with important vapour pressures 

change to the gaseous state and leave the wetland filter (Wallace & Knight, 2006). The 

processes are no different from in wetlands.  

2.11.2 Chemical removal processes 

Chemical removal processes performed an important role in the removal (absorption) and 

desorption of phosphorus and dissolved metals from sediment particles (Reddy & 

D’angelo, 1997). The major chemical removal mechanisms are adsorption, ultraviolet (UV) 
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radiation and chemical precipitation. The gather plant detritus is the substrate of wetland 

and during adsorption, the pollutant is adsorbed by porous media (substrate). If the 

absorption material (gravel) for organic compounds can be microbial degraded, then the 

absorption sites can be enhanced. If the material cannot be microbially degraded, like 

phosphorus then the absorption sites will finally become saturated and removed across this 

apparatus will terminate functioning (Norton, 2014). The radiation of the Ultra violet that 

pass through the wetland filter from sunlight, affects the molecules chemically. For instance, 

the viability of pathogens is affected. The process of chemical precipitation takes place 

when reactions within the wetland filters result in the formation of insoluble compounds 

such as Calcium carbonate, copper (I) chloride, and lead sulphide. Metals like iron, zinc, 

lead and copper are removed by hydroxide or sulphide precipitation within the constructed 

wetland system (Wallace & Knight, 2006).  

2.11.3 Biological removal processes 

One of the most significant tools for pollutant removal in wetlands is done by biological 

means. The main and most popular method this is done is by plant uptake (DeBusk, 1999). 

Wetlands house a wide variety of microorganisms such as bacteria, fungi and algae. These 

organisms are responsible for the breakdown and consumption of different pollutants in 

particular organic matter and nutrients. 

There are six major biological reactions involved in the performance of constructed 

wetlands, including photosynthesis, respiration, fermentation, nitrification, denitrification 

and microbial phosphorus removal.  Photosynthesis is performed by wetland plants and 

algae, with the process adding carbon and oxygen to the wetland. Both carbon and oxygen 

help in nitrification process. Oxygen is transferred to plants through direct uptake to their 

roots, where it permits to the root zones (rhizosphere), thereby removing inorganic nutrients 

and heavy metals. Respiration is the oxidation of organic carbon, and all living organisms 

accomplished it for their survival, heading to the carbon dioxide and water formation. In 

the constructed wetland, the usual microorganisms found are bacteria, fungi, algae and 

protozoa. The maintenance of optimal conditions in the system is required for the proper 

functioning of wetland organisms (Garcia et al., 2010). Fermentation occurred in the 

absence of oxygen to decompose of organic carbon, producing energy-rich compounds (e.g. 

alcohol, volatile fatty acids, and methane). This process is regularly assumed by microbial 

activity. Removing of Nitrogen by nitrification/denitrification is the processes intervene by 

microorganisms. For Nitrogen removal, the use of physical process of volatilization is very 
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important. Plants take up the dissolved nutrients and other pollutants from the water, using 

them to yield additional plant biomass. The nutrients and pollutants then travel through the 

plant body to underground storage organs when the plants senesce, being deposited in the 

bottom sediments through litter and peat accretion when the plants die (Ávila et al., 2014; 

Wallace & Knight, 2006). 

Wetlands microorganisms, including algae, fungi and bacteria, eliminate soluble organic 

matter, clot colloidal material, stabilize organic matter, and convert organic matter into 

various gases and new cell tissue (Garcia et al., 2010). Many of the microorganisms are the 

same as those occurring in conventional wastewater treatment systems. Different types of 

organisms, however, have specific tolerances and requirements for dissolved oxygen, 

temperature ranges and nutrients. 

2.12 Mechanisms of suspended solids removal 

Most of the suspended solids present in the inflow wastewater are eliminated by free-

surface constructed wetlands through settling, sedimentation, adsorption, microbial 

degradation and filtration in constructed wetland systems, as plants and gravel block the 

flow of the inflow and reduces flow velocities (Norton, 2014). Wastewater inflow that 

applied to constructed wetlands comprises suspended solids particles; they may be organic 

or inorganic of different compositions and sizes. Wetlands have the mechanically capability 

to remove suspended solids from wastewater. In a constructed wetland, several study 

research affirm the removal of suspended solids and particles matter are highly achieved 

with accuracy (Garcia et al., 2010; Greenway, 2004; Hua, et al, 2014; Robert et al., 2017).  

Moreover, the primary removal means in eliminating pollutant physically, involve settling 

and sedimentation. These processes attain effective suspended solids and particulate matter 

removal (Abou-elela, Golinielli, Abou-taleb, & Hellal, 2013; R H Kadlec & Knight, 1996b; 

Robert H Kadlec & Wallace, 2008).  

To eradicate suspended solids in surface flow constructed wetlands, the major mechanical 

means have been discovered Kadlec, 2009;  Kadlec & Wallace, 2008) for 

flocculation/sedimentation and filtration. The sedimentation of suspended solid depends on 

discontinuation flow of inflow that afterwards results in settling down of the solids part by 

use of force of gravity. Additionally, in the study research of  Sundaravadivel & 

Vigneswaran, (2001), they discovered that suspended solid integrate and follow many 

pollutants in the wastewater such as pathogens, organic matter, nutrients and heavy metals, 
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this aids in removing suspended solids. Commonly, wastewater treatment by constructed 

wetlands was described to reduce total suspended solids efficiently by about 80 to 90 

percent (Parena, 2000; Van Nieuwenhuijzen & Van der Graaf, 2011). Moreover, many 

research studies recently have shown higher percentage removal performance rate recorded 

to be greater than 90% in their constructed wetland systems (Abou-elela et al., 2013; 

Georgios D Gikas & Tsihrintzis, 2012; Song et al., 2015;  Wallace & Knight, 2006). 

However, In collective research of  Manios, Stentiford, & Millner, (2003) sated that the 

decrease of suspended solid in vertical-flow wetlands relies on structures of the filter media, 

and hydraulic load rate, microorganisms. Vertical-flow constructed wetlands are very 

effective for the removal of suspended solid Gikas & Tsihrintzis, 2012; Sharma et al., 2014; 

X. Song et al., 2015). Because of the large surface area porous media, the gravity drives the 

settlement of suspended solids, constrict, and follow to media and macrophyte surfaces. 

Moreover, it was reported by Manios et al., (2003) that the key problem related to the 

sedimentation and filtration of suspended solids of the inflow wastewater is the possibility 

of blockage by pores media as the wastewater infiltrates through thereby generating 

clogging with comparable low hydraulic conductivity, causing loss of  water at the inlet of 

the constructed wetland.  

2.13 Mechanisms of organic matter removal 

Removing of organic matter in CW happens by physicochemical and biological procedures. 

Sedimentation, filtration and sorption are the main physicochemical processes while 

microbial metabolism mimic to the biological one. Removal of organic matter (BOD and 

COD) in constructed wetlands was achieved rapidly through expansion and gravity settling 

of coarse organic matter in the pore openings of the substrate media as noted by Sherwood 

C Reed, (1993) while BOD removal in constructed wetlands was mostly either through 

aerobic or aerobic microbial degradation and sedimentation or filtration processes. The 

upper reaches of the wetland filter, aerobic conditions tend to prevail while anaerobic 

conditions will occur in the plant or detritus layer at the base of wetland filter. However, 

some studies specified that organic matter removal in constructed wetlands is primarily 

through aerobic, anaerobic, filtration, adsorption, and microbial metabolism (Z. Song et al., 

2006; A. Stefanakis et al., 2014) which can be evaluated by COD and BOD change in 

concentrations in the constructed wetlands. Aa result, organic carbon is degraded to carbon 

dioxide by aerobic respiration (Equation 2) or by fermentation Kadlec, 2000; Randerson, 
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2006). During the most predominant anaerobic conditions, the fermentative bacteria 

generate as main product fatty acids, such as acetic acid (Garcia et al., 2010). 

(CH2O) + O2               CO2 + H2O     2.4 

In addition, the removal of soluble organic substances is achieved by the growth of 

microorganisms on the porous media, observed on the rhizomes and roots of the 

macrophytes (Z. Song et al., 2006). The constructed wetlands function is mainly dependent 

on organic matter growth, dissipation and cycling. In constructed wetlands, organic matter 

growth supplies energy to microorganisms for denitrification by giving a source of long-

term carbon and bearable source of nutrients. However, the accumulated organic matter 

may lead to media clogging by obstructing wastewater penetration through the pores media 

(substrate) thus, reducing the hydraulic retention time of the wastewater and nutrient 

removal capacity (Nguyen, 2000). Generally, Constructed wetlands deliver a high removal 

BOD and COD (Abou-elela et al., 2013;Gikas & Tsihrintzis, 2012; Paing & Voisin, 2005; 

Scholz, 2010). According to Noyes & Stiles, (2001) in their research titled “Nature and 

transformation of dissolve organic matter in treatment wetland” they reported that 

biochemical transformations are essential mechanisms in the degradation of organic matter 

in wetlands, thereby improving quality of water. The transformation could responsible for 

organic substances removal because of mineralization or gasification and the formation of 

organic matter via synthesis of fresh biomass. However, it was observed by  DeBusk, 

(1999) that the carbon content in the organic matter (45 to 50%), serves as a source of 

energy to various microorganisms. This organic carbon is transformed into carbon dioxide 

in the root zone by the macrophysics that provides the oxygen essentially for the 

conversion. Moreover, organic matter can also be removed through adsorption/absorption 

processes. Additionally, Parena, (2000) stated that the ratio and strength of adsorption by 

constructed wetland depend on the surface porous media, macrophytes, litter and organic 

matter properties. 

2.14 Mechanisms of nutrients removal 

Nutrients removal in CW is similar to organic matter, it is done by a mixture of biological 

and physicochemical processes, such as microbial decomposition, volatilization, 

adsorption, chemical precipitation and plant uptake. Nitrogen and phosphorus elimination 

from any form of wastewater has been evolving and become an concern globally concern 

because these compounds cause eutrophication in natural water (Yamashita & Yamamoto-

ikemoto, 2014). Treating and removing them is very vital issues due to their health effects 
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in the environment. Receiving water courses become eutrophic when they receive large 

amounts of nitrogen and phosphorus nutrients subsequently promoting enormous plant 

growth that leads to the depletion of oxygen in the water environment. Primarily composed 

of a combination of nitrification and aerobic denitrification is usually considered to 

accomplish nitrogen treatment. Nitrogen is removed by growth of large wetland plants but, 

since most freshwater macrophytes have their roots in the soil or gravel, they remove little 

nitrogen from surface water. The main drawback with an uptake-for-growth system is the 

need to remove and dispose of the very large amount of biomass that will fill up the marsh 

or, worse, recycle organic nitrogen and ammonium back into the system when 

decomposition occurs in winter.  

2.15 Nitrogen removal by constructed wetlands 

Nitrogen is a serious concern in wastewater because of its role in eutrophication and toxicity 

to water aquatic life. Many biological and physiochemical processes in wetlands are mainly 

important in the changes of nitrogen into varying useful biologically forms. Moreover, 

plants that need nitrogen for their growth play an active role in removing it from the 

wastewater by plant uptake. CW systems have a number of ways to remove nutrients and 

have been used for wastewater and groundwater nutrients treatment in many applications 

(R H Kadlec & Knight, 1996b; Jan Vymazal, 2007). The economic and best  way of 

removing total nitrogen in constructed wetlands is usually found to be bigger than 50% and 

is mainly by microbial aerobic nitrification and aerobic denitrification (Brix, 2014; C. Lee 

& Fletcher, 2009). The appropriate levels of nitrogen forms in constructed wetlands as 

contain in  research reported by R H Kadlec & Knight, (1996) are observed to be as follows 

nitrate-nitrogen is approximately zero, ammonium nitrogen is approximately zero in 

summer, while is non-zero in winter, and organic nitrogen is approximately 1.5 mg/l.  

Nitrite is not chemically stable in most wetlands and is commonly discover to be very low 

in concentrations.  (Table 2.3 and Figure 2.8). The potential mechanisms for removal of 

nitrogen in wetland systems are plant uptake, volatilization of ammonia, and denitrification 

(C. Lee & Fletcher, 2009).  Ammonia is oxidized to nitrate during nitrification process. 

This oxidation of ammonia to nitrate, reduces nitrate to gaseous nitrogen by the 

denitrification process. Nitrogen removal is inadequate without adequate active aeration, 

for aerobic biological degradation which is due to lack of available oxygen used, in some 

of the constructed wetland systems (Fan et al., 2013; Scholz, 2010; Song et al., 2015; 

Vymazal, 2014b). However, some research studies reported when removing nitrogen from 
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the wastewater in constructed wetlands there are  processes to be conducted comprised 

these include nitrification, fixation, , ammonia nitrate ammonification, ammonia 

volatilization ammonification, denitrification, organic nitrogen burial, anaerobic 

ammonium oxidation (anammox), plant and microbial uptake and ammonia (Choudhary et 

al., 2011; Vymazal, 2007). These are the main nitrogen tools some of which happen in 

different types of constructed wetlands. The following will go into more detail on these 

mechanisms and in which types of wetlands the mechanisms are present (Vymazal, 2007). 

Change of organic nitrogen to ammonia in wetlands, for instance, leads to an increase in 

the quantity of the ammonia as a result of the ammonification process (Itokawa, Hanaki, & 

Matsuo, 2001). Furthermore, it was observed in the study research of Vymazal, (2007), that 

nitrogen removal processes generally depend on the type of constructed wetlands, for 

instance removal of total nitrogen was recorded to be in small quantities in a single stage 

constructed wetland except in a wide treatment surface area. As a result, combined type of 

constructed wetland systems like hybrid constructed wetlands should be an alternative for 

complete total nitrogen removal (Cervantes, David, & Gómez, 2001; Jan Vymazal, 2013; 

Jan Vymazal & Kröpfelová, 2011). However, in many constructed wetlands, the main 

nitrogen removal process is the combination of nitrification and denitrification (Scholz, 

2010). Nitrogen removal in constructed wetland takes place by the processes called 

nitrification and denitrification, which occurs in nitrogen removal in N2 gas form (Khanijo, 

2002). 

The denitrification/nitrification mechanisms require both aerobic and anaerobic 

environments. However, water quality variables like dissolved oxygen, temperature and 

pH, affect nitrifying bacteria performance (IWA Specialist Group, 2000). On the other 

hand, the enzyme needed for denitrification may be blocked in the presence of dissolved 

oxygen. Nitrification/denitrification can therefore happen concurrently only both aerobic 

and anaerobic soil zones (Paul Cooper, 1999). It was reported by (Neralla, Weaver, Lesikar, 

& Persyn, 2000; Vymazal, 2007) that nitrification rate to be higher in vertical–flow 

constructed wetlands than  the horizontal–flow constructed wetlands system due to the good 

aeration of the soil through regular bed draining, in which is naturally anoxic. It was 

reported by many study researches (Cervantes et al., 2001; Itokawa et al., 2001; Vymazal, 

2005, 2013; Vymazal & Kröpfelová, 2011), intermittent loading that was planned is a 

possible preference to guarantee long flowing distance and supply the organic substances 

necessary for denitrification to achieve high removal of nitrogen. 
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The required oxygen for nitrification is removed directly from the atmosphere through the 

water or sediment surface, or by leakage from plant roots. Oxygenation is commonly the 

limiting stage for the removal of nitrogen, and hence removal of nitrogen can be influenced 

by the wetland design and the type and wastewater composition (Brix, 1994) In the 

collaborative research of study of Wittgren & Tobiason, (1995), they demonstrated that 

deficiency of oxygen was uncertain to limit nitrification in a free-surface wetland. Instead, 

they maintain that suboptimal hydraulic loading conditions, a lack of suitable surfaces for 

ion exchange of NH4+ and for the attachment of nitrifies, and phosphorus deficiency were 

considered potentially important factors in limiting nitrification. 

2.16 Phosphorus removal by constructed wetlands 

The ability of wetland systems to remove phosphorus has been conducted in many study 

researches globally, like in the United States (Kadlec & Knight, 1996b; Kadlec, 2016), the 

United Kingdom (Heal et al., 2001; Kadlec, 2005), Australia (Mann & Bavor, 1993; Shan 

et al, 2011), Denmark (C A Arias, Del Bubba, & Brix, 2001; Brix, Arias, & Del Bubba, 

2001). Others include Norway (Robert H Kadlec, 2005; Zhu, Jenssen, Maehlum, & 

Krogstad, 1997), the Czech Republic (Vymazal, 2001; Vymazal, 2004), Sweden (Hamisi, 

2017) and the Netherlands (Schreijer et al, 1997). Also in African countries like Uganda 

(Kyamb, 2005) and in Nigeria (Sudarsan et al., 2015) there are reported cases of the ability 

of wetland system to remove phosphorous. Moreover, constructed wetlands were 

discovered to be unable to eliminate phosphorus effectively from wastewater in the long-

term (Gao et al., 2014; Kadlec & Knight, 1996b; Mann & Bavor, 1993). According to Drizo 

et al, (1999) in their research finding, they discovered to remove phosphorus there is for 

full capacity needed is likely to be about 2-5 years.  

Phosphorus originates as phosphate in both organic and inorganic forms in treating different 

wastewaters in constructed wetlands (Choudhary et al., 2011; Vymazal, 2007). However, 

due to its bioavailability, macrophytes and algae utilize orthophosphate phosphorus 

straightforward. Additionally, Jan Vymazal, (2007) reported that phosphorous may serve 

as a medium between the two forms of phosphorus cycling in wetlands. Therefore, 

phosphorus removal in wetlands system is by sediment retention, adsorption, desorption, 

fragmentation, plant or microbial uptake, mineralization and leaching (Vymazal, 2007). 

However, Gikas & Tsihrintzis (2012) argue that the porous media adsorption and microbial 

ingestion were used mainly to remove phosphorous.  
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To determine the point at which Phosphorus be stored or removed by any type of 

constructed wetland. For instance, in the study research of (Vymazal, 2001), it was stated 

that soil media in vertical-flow constructed wetlands adsorbs phosphorus, but the capacity 

of the absorption depends on the media type. While in natural wetlands, the adsorption is 

by the emergent floating macrophytes, but dead macrophytes was harvested and returned 

back to the wetland, these resulted in the phosphorus removal to be maximised in the 

wetland. Phosphorus removal in VFCW occur through the processes as follows: sorption 

to porous media, absorption of biofilm and digestion of macrophyte (Lantzke et al., 1999). 

and the removal quantity by the processes as follows: media larger than wetland vegetation, 

larger than macrophytes, larger than biofilm, while macrophyte (70%) bigger than media, 

(20%) greater than biofilm, having (10%). Additionally, in the research study of Lantzke et 

al., (1999) it was stated that harvesting of wetland plant removed additional phosphorus 

ranging 10–20%. 

2.17 Heavy metals removal mechanisms in constructed wetlands 

Some metals that are essential in very small quantities for growth of plant and animal. These 

include selenium, copper, and zinc. When they are in higher concentrations, they are found 

to be toxic. However, at low concentrations, some metals can be toxic, these include lead 

cadmium, and mercury that are normally found in industrial wastewater (Norton, 2014). 

The contact of heavy metals into the environment is greatest concern because of their severe 

consequences on food, animal and human health. Heavy metals removal in constructed 

wetlands is achieved generally by plant uptake and by plant direct adsorption.  Removal of 

heavy metals in constructed wetlands occur through several processes, these include 

physical, chemical, and biological processes. All processes are dependent on each other, 

making it to be a complex one. 

It was discovered that little quantities of heavy metal may be detected in urban and 

municipal wastewaters (Vymazal, 2005). In the study research of Thullen, Sartoris, & 

Nelson, (2005), they reported that the key heavy metals related with wastewater which was 

formed by mines and industries include mercury, chromium, iron, cadmium,  zinc,  copper 

and lead. These heavy metals are eliminated from constructed wetland system by different 

methods including: filtration, adsorption and sedimentation, cation and anion exchange, 

and co precipitation, and metal sulphides, photo degradation, phyto accumulation, 

biodegradation, microbial activity uptake into plant material and precipitation by 

geochemical processes (Stottmeister, Wießner, Kuschk, Kappelmeyer, Kästner, et al., 
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2003;   P Verlicchi, Galletti, Al Aukidy, & Ranieri, 2010;  Núñez et al, 2011) demonstrated 

that heavy metals removal rates by constructed wetland have been recorded to be close to 

100 %.  It was reported by Sheoran & Sheoran, (2006) that demonstrated other heavy metal 

removal rates by a CW, to be the range between 75-99 % cadmium, 76 %,  67 % for zinc,  

silver and 26 % lead, while BOD, COD, and TSS were eliminated at a rate range 75 and 80 

%. Metals were confirmed to collect in the shoots, rhizomes, leaves, with roots and lateral 

roots having the maximum content, while the minimum concentrations were establish 

within the shoots (Zachritz et al, 1996). 

Furthermore, the metals are possibility to meet at the top-most layer (litter and sediment) 

or near the valve depending on the constructed wetlands system configurations (vertical or 

horizontal flow) irrespective of the removal means (Cheng et al., 2002; Scholz & Xu, 2002). 

However, in the study research report of  Sheoran & Sheoran, (2006) and Guittonny-

Philippe et al., (2014), they both confirmed that the entire heavy metal removal process rely 

on each other making the process very compound. Several heavy metals in constructed 

wetlands were removed from the wastewater through porous media interaction, after which 

the macrophytes work as an enhancing system Heavy metals are dangerous mechanisms in 

different type of wastewater including agricultural and industrial wastewaters. 

Metals removal in constructed wetlands happens by plant uptake, soil adsorption, and 

precipitation. The ability of plants to uptake metals depends on the type of plant and type 

of metal. There are some types of plants which are capable of storing large amounts of 

metals in plant biomass and in its roots (DeBusk, 1999). However, in slow water, metal 

particles heavier than water will settle down. Moreover, it was found that the physical 

sedimentation process is the major pathway of removal of heavy metal in both natural and 

constructed wetlands. 

In the constructed wetland system, removal of heavy metal is mostly by chemical 

precipitation, ion exchange and absorption by plants etc. According to some researchers, 

they believed that, zinc rate removal can reach up to 96% and the removal of iron, 

chromium and magnesium is also high when the hydraulic retention time is between 22-

34h in the surface flow wetland (Qin & Chen, 2016). 

2.18 Mechanisms of other contaminants removal 

The usual water quality pollutants that were commonly used to analyse quality of 

wastewater treated in constructed wetlands, includes COD, BOD, SS, turbidity, dissolve 
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oxygen, nitrogen compounds, petroleum hydrocarbons, and heavy metals. Others were 

trace elements, personal care products, pharmaceuticals, pesticides, herbicides, phenols, 

endocrine disruptive chemicals (EDCs) or linear alkylbenzensulfonates (LASs), and 

polychlorinated biphenyls (PCBs). All these were also treated by different types of 

constructed wetlands (Olujimi et al., 2010; Tijani et al., 2013; Yao et al., 2014). In 

constructed wetland systems, trapping of sediments refers to a physical removal mechanism 

of solids and organic particles in the wastewater. When the wastewater permeates through 

the wetland gravel media, the particles settle on the media bed or plant roots because of the 

slow water movement affected by the gravels and broadsheet flow enhancing the 

sedimentation process afterward (DeBusk, 1999; Gikas & Tsihrintzis, 2012; Paing et al., 

2015). In the research of Imfeld et al., (2009) and Leppich et al., (1999), they reported that 

one of the removal pathway for chlorobenzenes and fuel in wastewater is sedimentation 

process.  Removal of pollutants include two groups of persistent organic pollutants: 

polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in landfill 

leachate (LL) treated in three constructed wetland systems (CWs) (Wojciechowska, 2013). 

Removal of persistent organic pollutants from landfill leachates treated in three constructed 

wetland systems. PCBs (Campanella et al, 2002), effectiveness of the CW in pesticides 

removal (Budd, O’Geen, Goh, Bondarenko, & Gan, 2009). Removal of inorganic pollutants 

derived from motor way suspended on solids have also been treated with constructed 

wetlands through sedimentation and filtration as removal mechanisms among other 

processes.(Hares & Ward, 2004) However, there are some pollutants that requires to be 

treated by other mechanisms after treating with constructed wetlands. For instance, in the 

collaborative research of Türker, Vymazal, & Türe, (2014), they described that 

sedimentation enhances plant uptake to eliminate boron in constructed wetlands under 

suitable environmental conditions. Also, in a research studies of Türker et al., (2013) and 

Türker et al., (2014) they achieved 40% and 32% and removal efficiency of boron in their 

wetland systems through plant uptake and sedimentation procedures respectively. 

Organic pollutants like herbicides and phenols were described to be treated in wetlands 

through the adsorption process as a chemical removal pathway ( Zhang et al., 2014). 

Equally, Vymazal & Kröpfelová, (2008) conducted 28 months study research in Czech 

Republic to investigate removal of inorganic pollutants in horizontal flow wetlands, It was 

discovered that 34 trace elements were mostly removed through the adsorption process. In 

a collaborative research effort of García et al., (2005), they discovered that pharmaceuticals 

such as carbamazepine are treated through sorption of the particles to the gravel media from 
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the water phase and therefore gather in the sediments of the constructed wetlands. 

Moreover, in study research of (García et al., 2005), a pilot vertical subsurface-flow 

constructed wetland (VFCW) were used to evaluate removal performance of 13 

pharmaceuticals and personal care products (PPCPs) together with BOD5, TSS, and 

ammonium and compared with those got by a sand filter. On the origin of the observed 

removals, the studied were grouped in connection to PPCPs elimination performance into 

first: those that are very efficiently removed greater than 95% removal rate was recorded 

in one of the systems like caffeine, salicylic acid, methyl dihydrojasmonate, CA-ibuprofen, 

hydrocinnamic acid, oxybenzone, ibuprofen, OH-ibuprofen; secondly: those that are 

moderately removed, with removal rate between 70 - 90% in the two systems like naproxen, 

diclofenac, galaxolide, and tonalide; and lastly: those that are removed poorly, with 

elimination rates of less than 30% like carbamazepine. 

In the study research of Stein et al., (2005) and Polprasert et al., (1996) they evaluated 

constructed wetlands treated in treating acetone and phenol removal and attributed the high 

removal because they were treated through volatilization and phytovolatilization 

respectively. Furthermore, lower chlorinated benzenes (Keefe et al., 2004) and chlorinated 

ethenes (Bankston et al., 2003) were reported to be treated through the volatilization and 

phytovolatilization elimination processes in constructed wetland systems. 

During treatment of wastewater, the important mechanisms involves in removing biological 

pollutants in constructed wetlands system includes plant uptake, phytodegradation, and 

phytoaccumulation. Chu et al., (2006) evaluated the accumulation, distribution, and 

transformation of DDT (dichlorodiphenyltrichloroethane) and PCBs by Phragmites 

australis and Oryza sativa L plants and found that plant uptake and accumulation were the 

main removal pathways for the removal of pollutants. Additionally, treatment of nutrients 

of agricultural significance, however unsafe to plants when in excess, with constructed 

wetlands has been reported (Gross et al., 2007; Kröpfelová et al., 2009; Lizama et al., 2011) 

and has accomplished significant removal. For example, Türker et al. (2013a) measured the 

capacity of macrophytes for boron elimination from wastewater in their wetland systems in 

Turkey and concluded that Typha latifolia and Phragmites australis consumed a lot of boron 

in their roots which later transferred to leaves and stems of the wetland plants (Rees et al., 

2011). It was concluded that phytoaccumulation was the key removal mechanism. Pathogen 

performance removal efficiencies have been reported by many authors to performed up to 

about 99.99% removal rate employing a number of different constructed wetland designs 
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(Weber & Legge, 2008). Nevertheless, by virtue of nearer inspection it can be observed 

that the reported efficiencies of individual wetland systems may differ, when comparing 

CWs of a similar design. Constructed wetland design tends to be based largely on rule of 

thumb sizing, as the specific mechanisms and essential variables involved in pathogen 

removal are only unsure comprehended. 

Overall, all type of constructed wetlands, have been confirmed to treat different types of 

pollutants in wastewater in different parts of the world with high efficiency (Vymazal, 

2014b)  

Figure 2.9 shows the removing process occurring in a wetland. 

 

Figure 2.9: Removal processes occurring in a wetland. Source: ITRC (2003) 

2.19 Important values of natural and constructed wetlands 

Natural wetlands are very important basis for sustainable development, besides the 

biodiversity and landscape functions, they can be widely used for the treatment of 

wastewater and energy or production of material  (Greeson et al., 1979; Wohlgemuth & 

Hershner, 1993). 

Wetlands are important features in the landscape that provide numerous beneficial services 

for people and for fish and wildlife. Some of these services, or functions, include protecting 

and improving water quality, providing fish and wildlife habitats, storing floodwaters and 

maintaining surface water flow during dry periods. These valuable functions are the result 

of the unique natural characteristics of wetlands. Many research studies have evaluated the 
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good of natural and constructed wetlands, in terms of their capability to treat wastewater  

for the improvement of water quality or additional services (Ghermandi et al., 2010).  

Natural wetlands, have been in existence since the history of human beginning time, 

constructed wetlands ecological engineering emerged from mimicking the natural wetlands 

(Council, 1996). The natural wetland values are many and play a key role in the history of 

humanity including the prime civilizations like Egypt and Mesopotamia who used to live 

near the wetland territories that provided them with numerous economic opportunities and 

essential resources. However, despite all these several benefits and the historical impact of 

these wetlands, it was during the last 5 decades, that humans recognised their various 

positive influences (A. Stefanakis et al., 2014; Jan Vymazal, 2014a). Wetlands as a water 

body fuse assortment of creatures and plant species. Besides, they offer help to the lives of 

these plants and creatures living in the environment and supply numerous indispensable 

biological system benefits that aid human improvement, for example, arrangement of fuel, 

sustenance, water, wood, surge control direction, water quality and supply, living space like 

biodiversity, and social administrations, for example, amusement and tasteful enhancement 

(Sukhdev, 2008). Other values include reduction of carbon dioxide in the atmosphere, with 

subsequent effects on global warming, supporting the food chain indirectly by fish 

production and other related edible water animals (Stefanakis et al., 2014), reduction of 

flood, regulation of small and large-climatic changes, pollutants degradation and control of 

erosion (Ming, et al, 2007). Due to wetlands good qualities, such as control of water 

pollution, some wetland scientists have called them “Earth’s kidneys” as they provide 

similar functions with kidney, absorbing waste such as nitrogen and phosphorous. They 

also sieve and recollect the pollutants passing through them before they reach the receiving 

water courses  (Cui et al.,2012; Palma et al., 2004; Scholz & Lee, 2005). Furthermore, they 

are also referred to as biological supermarkets (Chen & Lu, 2003; Mitsch & Gosselink, 

2000) because they give large quantities of food, this draw many animal species, and they 

are also among the natural environments with high natural production on Earth.  

Classification of Wetland comprises the grouping of wetlands by specified characteristics. 

For over two decades, combined efforts were made by wetland scientists to understand, 

wetlands and wetland values and to classify and summarize values of wetlands. For 

instance, in the research of  Cui et al., (2012), they classified the values of wetlands 

ecosystems as follows:  
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➢ Hydrological and hydraulic values which comprise control of flood and erosion, 

recharge of ground water aquifers, and flood plain hydrodynamics and bank 

stabilization 

➢ The nature conservation values of wetlands  is very high  

➢ Effects of climatic including protecting global warming, carbon fixation and CO2 

balance, and micro-climatic effects;  

➢ Aquaculture development and integrated systems, fishing and rice cultivation; and 

➢ Many living organism depend on natural wetlands for their survival (human being 

and wildlife. 

➢ Meeting sustainable water management objectives cost effectively 

➢ The functions of biodiversity may include wild life enhancement, breeding ground 

for water fowl, and vegetation and animal conservation among others.  

➢ Wetlands provide multiple benefits to cities and rural communities and Mining 

activities.  

In the study research of Millennium Ecosystem Assessment MEA, (2005), Ghermandi et 

al., (2010), Cui et al., (2012). They describe the values of the wetlands as groundwater 

aquifers enhancement, control and management of flood incidents, retaining of sediments 

and other materials, carbon dioxide reduction, storage and heat release, solar radiation 

reduction and relevant support to food chains. However, in the research study of  A. 

Stefanakis et al., (2014), they noted that the wetlands values can be classified as ecological, 

sociocultural, and economical as contained in Figure 2.10. Additionally, they recommended 

that the overall general wetlands values would be based on the combination of these. Values 

of wetland have been shortlisted as follows: ecological, socio-cultural and economical ones, 

which include biodiversity, irrigation, fishery, livestock, water supply, water quality 

reclamation and flood reduction. Others are culture, climate improvement, recreation, 

scientific value, CO2 emission protection, prey value, and educational value. Other values 

as mentioned include timber provision, source of hydroelectric power supply, salt 

provision, provision of sand, ant corrosiveness, warm restoration and transportation (MEA, 

2005; Schuyt & BRander, 2004).    

There have been an intensive reported investigation to evaluate the values of wetlands on 

economic scale or bases. For example, Costanza et al., (1997) assed the value of the world’s 

wetland in term of economic parameters and predicated that their aggregate valuation 

utilizing American dollars came up to an aggregate sum of US$ 14.9 trillion. Also, Schuyt 
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& BRander, (2004) reported in terms of economic and monetary value of the global 

wetlands to be US$ 70 billion yearly based  on the estimated Ramsar Convention wetland 

region of 12.8 million km2 including qualities, for example, biodiversity, logical, natural, 

sociocultural, and other imperative ones. The creators likewise figured the financial esteem 

given by US beach front wetlands in securing storm occasions in fiscal terms to be US$ 

23.2 billion every year and a decrease from US$ 3– 8 billion to US$ 1.5 billion if another 

wastewater treatment plant were to be built to supply the equivalent measure of free water 

supply given by the characteristic wetland existing repositories.  

Human society recognised that the estimated values of wetlands, including flood 

management and control and wastewater treatment capacity, has made them become 

increasingly recognized (Stefanakis et al., 2014; Vymazal, 2014b). Today, wetlands are 

recognized capable of removing various types of contaminants these include inorganics, 

organics, trace elements metals, etc. This acknowledgment encouraged the research on 

artificial constructed wetlands to discover different technological applications of wetland 

potentials. The major idea behind these constructions wetlands is to replace the various 

wetland processes in a more advantageous way to people and wildlife under controlled 

environmental such as flood prevention and water quality improvement. 

Concerning constructed wetlands, some scientist researchers also tried to assess their values 

as previously done for natural wetlands (Knight et al., 2001). in their assessment of 

subsurface-flow constructed wetlands as a habitat for humans and wild life, they discovered 

that the wetland systems (constructed and natural) provide habitat for wildlife and diversity, 

provide recreational activities, such as birdwatching, water storage, and aesthetic 

enhancement in urban or rural environments. Whereas many research studies revealed that 

both natural and constructed wetlands have similar ecological values (Campbell, Cole, & 

Brooks, 2002). In the study research of Ghermandi et al, (2010), in their effort, they stated 

that constructed wetlands have more values than the natural wetland. Figure 10 is the 

categories of Important values of wetlands. 
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Figure 2.10 : Important values of wetlands which was adapted from (Stefanakis et al., 

2014)  

2.20 Selection of vertical-flow over horizontal-flow constructed wetland 

The used of Vertical-flow and horizontal-flow constructed wetlands as an alternative means 

of wastewater treatment from different sources is increasingly gaining momentum 

worldwide (Abou-Elela, 2017; Abou-elela et al., 2013; Jan Vymazal, 2014b; S. Wu et al., 

2015; Yalcuk & Ugurlu, 2009a). This is due to their low cost of operation, treatment 

enhancement, easy maintenance and their simplicity to operate (Schulz, 2006, 2010). 

Moreover, some study research has projected that vertical flow constructed wetlands 

performed better than horizontal flow constructed wetlands in removing some water quality 

parameters. For example, some study researches explained that, draining of the substrate 

bed in VFCWs affirms BOD reduction and ammonia nitrogen removal efficiently and gives 

excellent conditions for nitrification unlike in horizontal flow constructed wetland systems 

(G D; Gikas & Tsihrintzis, 2014; J Vymazal, 2008; Jan Vymazal, 2005, 2014a; Paing et al., 

2015). According to study researches of  Brix & Arias, (2005) and Prochaska, Zouboulis, 

& Eskridge, (2007), they specified that vertical-flow constructed wetlands systems perform 

reasonably for the particle removal in wastewater, and for the removal chemical and 

biochemical oxygen demand (COD and BOD). However, some researchers itemised them 

as poor nitrite and nitrate remover  (Vymazal, 2005), recently many research studies 

revealed that VFCW systems with irregular loading rate can remove nitrate or nitrite with 

some modification. For example, Brix & Arias, (2005)  and Gross, Shmueli, Ronen, & 

Raveh, (2007)  described percentage removal performance efficiency between the ranges 
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of 50% and 69% for total nitrogen (TN) and more than 90% for COD and BOD5 after 

outflow recirculation. Moreover, Weedon, (2003) in their effort to access two years 

treatment performance of vertical flow constructed wetlands, they discovered that their 

systems successfully denitrified and treated and removed higher percentage of SS, BOD5, 

and NH4-N from pre-settled urban wastewater up to 90% of after 10 years of operation in 

the UK after recirculation at usual loading rates. The writer of the research reiterate that the 

system was improved using sand as the major filter media, wastewater was intermittently 

fed and the aeration time used was the interval between the wastewater application regimes, 

indicating that the systems capability of attaining high treatment performance (Stefanakis 

et al., 2014). Furthermore, wetland systems were assessed in China as reported in a study 

research by (Shen et al., 2015) to improve nitrate removal using starch blends as solid 

carbon source, the system recorded high percentage of denitrification with 98% removal 

efficiency of nitrate. However, in the study research of  C. Li, Wu, & Dong, (2015), 

percentage removal of  organic matter and ammonia-nitrogen by constructed wetland were 

recorded to be 95% without any alteration. The treatment performance efficiency in 

VFCWs can be impacted by many operational features, of which inflow COD/N ratios 

always play a vital part (Li et al., 2015).  

Vertical flow constructed wetland systems (VFCWs) are the state of the art technologies 

used for the control pollutants in wastewater, and interest in them is increasing rapidly 

worldwide, probably due to the lower area demand advantage compared to Horizontal-flow 

constructed wetland systems HFCWs (Abou-elela et al., 2013; Paing et al., 2015; Stefanakis 

et al., 2014;  Wu, et al., 2015). Clearly, there is huge variety in the design characteristics of 

vertical flow constructed wetlands particularly regarding the quality of wastewater which 

need be treated per square meter, it directly affect the surface area demand, as it decreases 

pollutant load.  VFCWs need 1 to 2 square metres per person equivalent (m2/pe) because 

values lower than 3 m2/pe decreases the system’s surface area in contrast horizontal flow 

that needs about 5 to 10 m2/pe. Several countries, including UK are investigating with (1-

2) m2/pe, for the VF reed bed system VFCWs systems and use this equivalent of unit area 

per person (P Cooper, 2005; Weedon, 2010). Other countries include Belgium with 3.8 

m2/pe France with 2.0 2.5 m2/pe (Molle et al., 2006; Paing & Voisin, 2005) Germany with 

1.6 m2/pe (Olsson, 2011), Greece with 1–1.5 m2/pe (Stefanakis & Tsihrintzis, 2012b) and 

also Greece with 3 m2/pe (Gikas & Tsihrintzis, 2012), and Spain with 1.0 – 3.2 m2/pe 

(Puigagut et al., 2007)  Denmark with 3.2 m2/pe (Brix & Arias, 2005) all these were 

reported in a study reported by Stefanakis et al., (2014). In comparisons to HFCWs, 
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VFCWs shows a better removal efficiency of other water pollutants including organic and 

inorganic other than traditional ones like BOD, COD, SS, etc. In study research of Verma 

& Suthar, (2018) the conducted a comparative study  to evaluate treatment performance 

between horizontal and vertical surface flow constructed wetland system in removing 

heavy metals (Fe, Cr and Ni) and other water quality parameters from dairy wastewater 

using multivariate principal component analysis. It was discovered that VFCWs performed 

better in removing heavy metal and other water quality parameters than HFCWs. 

 In another study of Yalcuk & Ugurlu, (2009b) VFCWs and HFCWs were compared in 

treating landfill leachate in Turkey, in term of their removal efficiency. They found that 

vertical-flow systems performed better in heavy metals removal including Cr, Cu, Zn, Pb, 

and Ni present in the leachate as compared to horizontal flow systems. Moreover, in the 

study of Konnerup, Trang, & Brix, (2011) to evaluate the potentiality of HFCW and VFCW 

systems in enhancing the water quality of the degraded river in Vietnam, a tropical country 

due to pollution from aquaculture practices which lead to the eutrophication of the receiving 

water courses. It was concluded the by the researchers that the vertical-flow constructed 

wetland systems have a higher possibility to repair the fishpond outflow with minimal 

negative impact in environmental than horizontal-flow wetland systems. Similarly, in a 

collective research studies of Canga et al, (2011) to investigate and compare nitrogen 

removal rates of different constructed wetlands system in Boku University, Vienna after 

operation of 4 years. They reported that VFCWs systems were better in removing nitrogen 

than the HFCWs.  

Recently, some publications on municipal wastewater treatment studies also suggested that 

vertical-flow constructed wetland systems should be preferred regarding water quality 

improvement over horizontal-flow constructed wetland systems. For example, Pandey et 

al., (2013) compared the performance of the two systems in municipal wastewater treatment 

in Nepal, to evaluate their treatment performance efficiency. They indicated that vertical-

flow systems performed better when compared with horizontal-flow ones after a 7-month 

of operational study. Moreover, in 3 years long-term study research of (Abou-elela et al., 

2013), in their collective research they observed that vertical flow constructed wetland 

systems were the preferred option in comparison with  horizontal-flow constructed wetland 

systems because, in the research, VFCWs were proved to be more successful in wastewater 

contaminants removing treated in the municipal sewage than the latter. 



83 

 

2.21 Modelling of Wetland Data 

Accordingly, multiple efforts have been dedicated to the modelling of CW processes, 

ranging from simple rule of thumb and regression equations to the well-known first-order 

k-C* models, KSOM models (Rustum, Adeloye, & Scholz, 2008b), Fuzzy logic models 

(Kotti et al., 2013b), Artificial Neural Networks models (Latif K, 2010). In the research 

study of Rustum et al., (2008a), they presented a methodology which when examined, 

focused and designed the used on KSOM model for the prediction of the concentration of 

BOD5 in domestic wastewater, which they got at three-wastewater treatment plant 

Scotland. The model built, after testing and validation work perfectly in predicting the 

BOD5. However, other parameters are still required to be modeled. 

Numerical models describe the biochemical transformation and degradation processes 

taking place in CWs, hey are promising tools to better understand CW functioning. 

Modelling technique in wetland systems is a prediction tool, used to manage, improve and 

properly predict treatment performance of constructed wetlands alongside saving cost, time 

and to produce better water quality results. Prediction of wetland performance using 

different modelling techniques to mine and get the needed information in any given dataset 

and filter out the noise and unwanted data is currently gaining attraction in the field of water 

quality improvement by constructed wetlands (L Kalin & Isik, 2010) as a result of increase 

in the growing interest in the use of constructed wetlands for wastewater treatment coupled 

with meeting the strict water quality standards, which are costly and time consuming, but 

necessitated by regulatory bodies (Dzakpasu et al, 2015). 

Numerical models are designed to describe the most common processes taking place within 

CWs, and to use the model to make it clear on the internal operation in the systems in the 

long period. (Langergraber, 2011). Numerical modelling of constructed wetlands (CWs) is 

increasingly gaining interest recently. Purposely because of the need to increase 

understanding in the dynamics and operation of the complexity in CW system by using 

mechanistic or process-based models that describe transformation and degradation 

processes in detail. As these mechanistic models are complex and therefore rather difficult 

to use, on the other hand, simplified models for CW design is needed (Langergraber et al., 

2009). Predictive model can act as an efficient platform to test these new configurations, 

and to compare them with the traditional ones, thus, reducing the required efforts for 

experimental studies and evaluations. In the past, only simple models were developed, 

ranging from regressions (black box stochastic models) to deterministic models based on 
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first-order or Monod-type equations (Diederik et al, 2004). Simple models aim to offer 

basic tools for the design of CWs, but they provide only a limited understanding of the 

system: optimisation of the facility and insight into the treatment process are not main 

objectives for this class of models. The mechanistic approach for modelling CWs has been 

adopted only recently since it requires a significant effort for numerical implementation.   

For decades, constructed wetland (CW) models have been considered a promising tool to 

increase understanding of the simultaneous physicochemical and biological processes 

involved in the treatment of wastewater with this technology. 

Most of the concerted efforts on the previous modelling work on the wetlands performance 

focused on wetland processes varying from simple models to complex ones  (Meyer et al., 

2015; Diederik P.L. Rousseau et al., 2004). Numerical modelling is also used to predict 

wetland complex processes by applying Artificial Neural Network (ANNs) (Chen et al., 

2008; Meyer et al., 2015), and recently employing Adaptive Neuro-fuzzy Inference 

Systems (ANFIS) (Dzakpasu et al., 2015). 

Recently, research has shown that the field of data mining had developed significantly, and 

currently continues to receive rising academic observation because of the massive 

developments in the technology of hardware and software (Allahyari et al., 2017). 

Nowadays, data mining is considered applicable to major human needs, and to play a major 

role in our daily activities. Such activities include retail, fraud detection, marketing, 

banking and finance, shopping, telecommunication, manufacturing, health care, weather 

forecast and aerospace. Government agencies utilise data mining tools and techniques to 

take out information concerning historical data. Because of these technological needs and 

their relevance in society, the ability to generate, gather, collect manage data for proper use 

has rapidly increased (Han et al., 2011). 

2.21.1 Data 

Data are said to be the backbone of knowledge discovery and data mining; it is a set of 

standards of qualitative or quantitative variables; restated, pieces of data are individual 

pieces of information. Data refers to representation unstructured facts of an input and output 

information collected from observations or recordings about events, objects or people by a 

detecting device or organ that includes both useful and irrelevant or redundant information 

and must be processed to be meaningful. Data is measured, collected, reported, and 

analysed for a specific purpose, to create information suitable for making decisions as a 
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result of which data can be pictured with the used of graphs or images codes. However, 

there are certain restriction encounters when handling a large set of data. Thus, it is 

important to understand some of the key problem related with the dataset. The problems 

include measured error, standard error and missing values etc. (Han et al., 2013)  

The data for this study were collected from the monitoring water samples (inflow 

wastewater and outflow treated water) the vertical flow constructed experimental wetland 

analysis in the laboratory. In overall, the dataset included 11 water quality parameters that 

were used for over three years. Figure 2.11 below shows the presentation of a processed 

data 

 

Figure 2.11: Diagramatical presentation of a processed data 

                      

2.21.2 The standard error of measurement 

The standard error of measurement is associated with test reliability which indicates the 

dispersion of the measurement errors when trying to estimate the true value of experimental 

measurement from their observed values (Brown, 1999). The standard error of 

measurement can be calculated from the relationship in equation 2.1 below. 

SEM = S√1 − rxx         2.1 

Where: SEM is the standard error of measurement, S is the standard deviation of the test, 

rxx is the reliability of the test. 

2.21.3 Missing value, Outliers and Errors  

To ensure proper modelling, the dataset is filtered for errors, outliers, and invalid data 

entries to ensure the accuracy of the dataset. Various industrial, practical, survey and 

research dataset, nowadays in existence, contain missing values. There are numerous 

reasons for missing values in a given datasets, ranging from miss entry during manual data 

entry procedures, equipment errors and incorrect measurements (Kaiser, 2014). The 

missing value commonly appears as empty cells within a table or spreadsheet or as NULL 
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values in a database while other flat-file formats use a different symbol to represent the 

missing value. Missing values is an inevitable and common problem in a given large set of 

data (Steinberg, 2012) and are predicted in most of the informational sources used. 

However, missing values problem in data found in almost all the surveys, practical and 

designed experiments. Analyzing dataset by evading or disregarding cases of missing 

values may lead to appropriate results (Kaiser, 2014). The efficiency in data loss, as well 

as complications in handling and analyzing data and bias due to differences between 

missing and complete data, are major problems associated with missing values. 

2.22 Data Mining 

People nowadays make use of data mining in order to gain knowledge, not just prediction 

alone but to gained knowledge from the prepared data which sound like a proper idea if one 

can fight to do it (Witten et al, 2011). Data Mining is a process of analytic designed to 

ascertain data (usually large amounts of data) in search of consistent patterns and systematic 

relationships between variables, and then to confirm the findings by applying the detected 

patterns to new subsets of data. Data Mining (DM) refers to the software and computational 

process of discovering patterns in large datasets involving methods at the intersection of 

artificial intelligence, machine learning, statistics, Predictive analytics, and database 

systems.  

Data mining according to (Abbas) 2015 refers to the extraction of hidden predictive 

information (data) from any large databases. Data mining is particularly concerned with 

extraction of data to make it useful information. The experimental dataset is thoroughly 

prepared either by humans or by collecting some data in a semi-automated way. It also 

helps in extracting a very valuable knowledge from data, based on which decision can be 

made in order to improve performance, sell, accuracy of medical diagnosis, processing and 

analysis of information etc. Data Mining is said to be a sustainable techniques viable to 

extract very essential knowledge from the data and is all about explaining the past and 

predicting the future by means of data analysis (Witten et al., 2011). This is about taking 

the raw data and transformed it into more useful and meaningful information to use the 

intelligent method to mine patterns or knowledge (Witten et al., 2011). The software and 

computational process are needed for the discovering patterns in large datasets involving 

methods at the intersection of artificial intelligence, machine learning, statistics, Predictive 

analytics, and database systems (Folorunso & Ogunde, 2004). There is no magic in data 
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mining but rather a massive collection of different means of techniques to be used and 

straightforward machine-learning algorithm. There is no single universal best method; data 

mining is experimental science there is need to find out what works best in any given 

problem. Many data mining techniques make mining work very easy by using a different 

method with huge amount of data. Care must be taken when using data mining techniques 

for the good of the work in analysing data, in order to get an accurate result and perfect 

prediction. Data mining can examine any type of data and information flow (Weiping & 

Wang, 2013).  

2.22.1 Data Mining Techniques 

In recent years, the application of data mining for the prediction in hydrology and in 

constructed wetland and in wastewater management have gained growing attention (Spate 

et al., 2002; Sudarsan et al, 2018; Wang et al., 2013; Liang & Liang, 2001). Generally, the 

most used data mining techniques include association rule mining, sequential pattern 

mining, clustering, correlation analysis, genetic algorithm, decision tree analysis, logistic 

regression, rough set approach, Bayesian networks, statistical analysis and neural 

networking. In this study research, the literature review focuses on selected data mining 

techniques that are used in the report. 

Statistical analysis is the accurate technique of data mining design according to statistics 

and probability theory. For instance, regression analysis and factor analysis, through the 

modelling of objects, find a conclusion. Usually divided into the following phases: 

analytical data description to nature, researching group of data relationship, model building, 

data and relationship summary of basis group, model validity explanation, and finally 

prediction for the future development. Multiple linear regressions used in this study 

research is also part of the data mining technique. 

2.22.2 Data mining techniques used in the research 

The following are the data mining techniques used in this research to predict the 

performance of vertical-flow constructed wetland treating domestic wastewater. 

1. Artificial neural network (ANN) 

2. Multiple linear regression (MLR) 
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2.22.2.1 Artificial neural network (ANN) 

Over the past decade, Artificial Neural Network (ANN) research has found its way into the 

areas of hydrology, ecology, medical and other biological fields. The American Society of 

Civil Engineers wrote a report to investigate the usage of ANNs in hydrologic applications, 

and found it being used for such purposes as rainfall-runoff modelling, stream flow 

forecasting, groundwater modelling, precipitation prediction, and water quality issues.  

Neural network models are attractive to decision makers because of their established 

methodology, long history of application, availability of software and deep-rooted 

acceptance among practitioners and academicians alike. Models of ANN are very strong 

ones that use the non-linear activation function, where the weights of the parameters are 

emphasized but not the weights function themselves. Nevertheless, large datasets are also 

needed. Discovering both approaches can affirm main findings and based on application 

yield an appropriate model. Many researchers showed that the ANN model gives better 

performance compared to the other model in forecasting water quality. Applications of 

ANN in the areas of water engineering, ecological sciences, and environmental sciences 

have been reported since the beginning of the 1990s. A computing system invented of a 

highly interconnected set of simple information processing nodes, similar to the enormous 

network of neurons, called units. The neuron collects inputs from both a single and multiple 

sources and produces output from the output layer in accordance with a programmed non-

linear function (Sarkar & Pandey, 2015). Artificial neural networks (ANNs) have shown 

the ability to learn the history of the model data and apprehend non-linear static or dynamic 

behaviour among many input variables to determine one or more output variables based on 

a given dataset (Rene & Saidutta, 2008).  The applications of neural networks have 

increased rapidly in the field of water quality management (Wen & Lee, 1998). 

The advantages of ANN are as follows: easy to use, rapid prototyping, high accuracy 

performance, little assumptions, it need of expert knowledge is reduced, non-linearity, 

multi-dimensionality and simple interpretation  (Iovine, 1998; Werner & Obach, 2001) 

2.22.2.2 Types of Artificial Neural Network  

The following are types of artificial neural network, these include: 

1. Feed forward artificial neural network 

2. Radial basis function neural network 

3. Kohenem self-organising neural network  

4. Recurrent neural network (RNN) 
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5. Convolutional neural network 

6. Modular neural network 

Feed forward Artificial Neural Network This neural network is one of the simplest forms of 

ANN, where the data or the input travels in one direction. The data passes through the input 

nodes and exit on the output node. Feed-forward neural networks are the typically come 

across the type of artificial neural networks that used to several diverse areas (Sazli, 2006) 

Feed-forward neural networks fall into two classes depending on the number of the layer. 

The term feed forward describes how this neural network processes input. A perceptron is 

always feed forward, each layer except output one contains arcs or connections to the next 

layer, all the arrows are going in the direction of the output not backwards. The table 2.5 

shows the classes of feed forward Neural Networks. 

 

Table 2.5: Classes of Feedforward Neural Networks 

Parameter Types Description 

Based on the number of 

hidden layers 

Single layer, 

Multi-Layer 

Single-Layer - Having one hidden 

layer. E.g. , Single Perceptron 

Multi-layer – Having more than one 

hidden layers. Eg. Multilayer 

Perceptron 

2.23 Data mining in Water Quality Parameters 

Application of data-mining techniques to develop models for the prediction water quality 

parameters has been an on-going area of research for more than a decade and is still growing 

technology. The water quality variables selected for this research include dissolved oxygen, 

salinity, temperature and chlorophyll-a. This study recommends using the trained neural 

network in conducting data mining for different locations (Palani et al., 2009). 

In the study research of  Liao et al., (2015), they reiterate the use of two-stage data mining 

technique is employed in discovering chemical components of plants. Findings from this 

research indicate the possibility of utilising data mining in discovering new chemical 

compounds that may be present in water. Although the water quality parameters that are 

relevant to the irrigation purpose have been documented in the literature, however, such 
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technique could lead to new findings especially in the seasonal area interruption where 

experimental data could not be gathered. 

 Kotti et al., (2013) in their joint research, they successfully applied CBR to predict BOD5 

and SS in accessing treatment performance efficiency of wastewater by the constructed 

wetland. The result of the study revealed better treatment performance for constructed 

wetlands, and they suggested for a room of improvement by applying optimisation 

techniques to control the variance of the input variable. 

It was reported in the research study of Kotti et al., (2013a) in their effort, the proposed a 

methodology to assess and model the prediction of the organic matter (BOD5) removal 

performance in free water surface (FWS) constructed wetland, the model was developed 

based on fuzzy-logic model which was validated using 2 year period experimental data in 

five different CW filters. Model predictions showed good agreement with experimental 

data and are a satisfactory tool for studying FWs CWs. The models are said to have been 

expanded to integrate newer datasets to continuously improving their efficiency 

performance to predict adequately CW organic matter (BOD5) removal. 

In their study Liao et al., (2015), they reiterate the use of two-stage data mining technique 

is employed in discovering chemical components of plants. Findings from this research 

indicate the possibility of utilising data mining in discovering new chemical compounds 

that may be present in water. Although the water quality parameters that are relevant to the 

irrigation purpose have been documented in the literature, however, such technology could 

lead to new findings especially in the seasonal area interruption where experimental data 

could not be gathered. 

Reviews made in the journals and publications disclose that the use of data mining 

techniques are applicable in modelling and predicting the treatment performance of 

constructed wetland by predicting water quality parameters using other input water quality 

parameters. These discoveries were the key guide behind this thesis.  

2.24 Previous studies on MLP-ANN predicting treatment performance of CW 

According to Muttil & Chau, (2006) the continuous need in utilising computing in solving 

complex problems has provided the use of numerical models, mathematical and statistical 

models down to techniques based on Artificial intelligent in solving flow and water quality 

in coastal areas can be applied to effectively predict the system’s future outputs from the 
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known given values of input. However, emphasis on the accuracy has been highly 

dependent on the algorithmic procedures. This study reviewed the current state of the art in 

the utilisation of Artificial Intelligence (IA) including artificial neural network, genetic 

algorithm, knowledge-based systems and fussy inference system. 

Findings from this research indicate the potential of integrating the IA methods with the 

numerical simulation in order to relieve the burden of uncertainty while relying on the 

algorithm especially in water quality parameters application.  

Similarly, Lee et al., (2015) in their research when dealing with uncertain data, during 

mining has been explored from a single-item to a more complex databases, although 

traditional mining techniques could not generate important of each of the single item 

recovered from the real situation, this study employs the use of importance of the single 

items recovered base on its weight rating. Evidence from this study experiment indicates 

the efficiency and scalability of the state-of-the-art models. The benefits that could be 

shared from this study include classifying the water quality parameters based on their 

priority and then assign such priority to the variables including finding its value base on the 

relevance in water quality assessment (Liao et al., 2015). 

 

In the research study of City, (2009) they researched utilised the suitability of artificial 

neural network (ANN) in conducting Dissolved Oxygen(DO) and Biochemical Oxygen 

Demand (BOD) along with Indian coastal areas. Moreover, in an attempt to ensure proper 

environmental conservation through monitoring of water quality parameters remotely and 

using data mining, an integrated algorithm (Doña et al., 2015). 

(Hafner & Jewell, 2006b) In their effort to improve on the model designed to predict the 

removal efficiency of Nitrogen (N) and Phosphorous (P), modelled a system that will 

predict N and P removal by detritus in a constructed wetland. The nutrient retention time, 

mass of organic material remaining, decomposers parameter in both aerobic and anaerobic 

waste treatment system are the model parameters. The results obtained for N and P removal 

with the net productivity of the model over the period shows a linear relation  

According to Rustum et al., (2008a), in their effort to develop a methodology using a 

kohenem self-organising map (KSOM) based software for the rapid prediction of BOD5 

concentration in wastewater using data obtained at three wastewater treatment plant in 



92 

 

Scotland which previously designed by some researchers recorded to be a partial success, 

they tried to solve the problem BOD5 unavailability for real-time decision making and 

process control by developing more rapid biosensors. The method plays a significant role 

for timely intervention and cost saving during problem diagnosis in wastewater treatment 

process and when tested the model showed that it is adequately comprehensive to predict 

the BOD5 (Rustum et al., 2008a). 

In the study research of Island et al., (1993), they demonstrated that most of the water and 

environmental regulatory bodies rely upon the use of computer simulation to effectively 

and efficiently understand, formulate and utilises data source from water quality for 

regulatory and decision making. There are several factors that are overlooked, among which 

is model uncertainty. V et al., (1993) in their collective research they employed Monte 

Carlo simulation techniques and predicted error associated with models designed in 

different dimensions, which includes spatial, temporal and mechanistic. However, there is 

little or no more literature in the use of data mining technique to predict the removal 

efficiency of water quality parameters using constructed vertical wetland system  

Kotti et al., (2013) predicted water quality parameters in an ungauged basin, using an 

Artificial Neural Networks Model. They found that availability of data from several 

watersheds in an area with relatively similar physiographic properties determined the 

prediction impact of the input parameters (LULC percentage, temperature and flow 

discharge) on the water quality parameters. This shows that having data of water quality 

parameters of many different system, predictions can have made for a new or old system 

having the same configurations and operating conditions with the existing data sources. It 

is, therefore, intended to apply the data mining techniques to predict the existing 

constructed vertical wetland system (Kalin & Isik, 2010). The study was also conducted by 

Areerachakul, (2013) using Artificial Neural Network (ANN) which aimed to model and 

estimate chemical oxygen demand (COD) on data from 11 sampling sites. The data were 

obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan 

Administration, during 2007-2011. The twelve other parameters of water quality ware used 

as the input of the models to predict COD. These water quality indices affect the COD. The 

experimental results indicate that the ANN model provides a high correlation coefficient, 

recorded as (R=0.89) and root mean square error recorded as (RMSE= 15.16).  

In the research study of  Tomenko et al., (2007), they make comparison between multiple 

regression analysis (MRA) and two artificial neural network (ANNs): multi-layer 
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perceptron (MLP) and radial basis function network (RBFN), in term of their accuracy and 

efficiency when applied to predict BOD concentration at the effluent and intermediate point 

of SSF wetland. The data used in this research study were acquired from many hydraulic 

and BOD loading of pilot units located in India which involving 91 pattern tool in predicting 

constructed wetland performance. MLP and RBFN are found to be the most accurate in 

predicting the result indicating strong potential modelling of wastewater treatment 

processes   

Civelekoglu et al., (2007) in their research study conducted, they developed three 

independent ANFIS models for the prediction of CODeff,NH4+–Neff, and TNefffor. A full-

scale wastewater treatment plant (WWTP) treating process waste, in their effort they 

showed the overall results which indicated that the simulated effluent COD,NH4+–N and 

TN concentrations well fit measured concentrations, which was also supported by the 

relatively low RMSE and APE and very high R values. Such very good prediction 

performances of ANFIS models for all the three effluent parameters are particularly 

important considering the high level of complexity in biological processes, the large 

quantity of variable information spread in the dataset and the wide concentration ranges. 

Thus, the ANFIS modelling approach may provide an alternative generic framework for 

the modelling of various biological or other treatment processes. Furthermore, the ANFIS 

modelling approach may have application potential for performance prediction and control 

of treatment processes in treatment plants.  

In a research study of  Hamed et al, (2004) Artificial neural networks (ANN) models were 

developed to predict the performance of a wastewater treatment plant (WWTP) based on 

past information. The data used in this work were obtained from a major conventional 

treatment plant in the Greater Cairo district, Egypt. 10 months data from the plant 

laboratory of daily records of biochemical oxygen demand (BOD) and suspended solids 

(SS) concentrations through various stages of the treatment process over were obtained. 

Two ANN-based models for prediction of BOD and SS concentrations in plant effluent are 

presented. The appropriate architecture of the neural network models was determined 

through several steps of training and testing of the models. The ANN-based models were 

discovered to deliver an effective and vigorous tool in predicting WWTP performance. 

It was discovered in a collaborative work of Mjalli et al., (2007), they highlighted that a 

dependable model for any wastewater treatment plant is essential in order to provide a tool 

for predicting its performance and to form a basis for controlling the operation of the 
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process. In their work, an artificial neural network (ANN) black-box modelling approach 

was used to obtain the information data, based on a real wastewater plant and then used the 

data as a process model. The study indicates that the ANNs are capable of capturing the 

plant operation features accurately. A computer model is developed that incorporates the 

trained ANN plant model. The developed program is implemented and validated using plan 

scale data obtained from the Doha West wastewater treatment plant (WWTP). It is used as 

a tool for valuable performance assessment for plant operators and decision makers. The 

ANN model provided accurate predictions of the effluent stream of biological oxygen 

demand (BOD), chemical oxygen demand (COD) and total suspended solids (TSS) when 

using COD as an input in the crude supply stream. It was discovered that the ANN 

predictions based on three crude supply inputs together, namely BOD, COD and TSS, 

resulted in better ANN predictions when using only one crude supply input. 

2.25 Previous studies on MLR on predicting water quality parameters  

Multilayer perceptron artificial neural networks (MLP-ANNs) are flexible and data mining 

tools from neuro-informatics that have achieved well in some hydrologic applications to 

date and constructed wetlands. They are very active when they are applied to complex 

processes that their details of are not fully understood (Schmid & Koskiaho, 2006). 

Obaid et al., (2015), used MLR analysis methods to model BOD and TSS parameters of 

municipal wastewater during the festival and rainy days for 34 year period. Their results 

indicated that TSS concentration was increased by 26-46 mg/l while BOD concentration 

was improved by 9-19 mg/l for an increase of rainfall by 1 mm during festival periods. The 

result also demonstrated that BOD concentration increases by 4-17 mg/l for individual rise 

for a population of 10, 0000. 

In a research study of Gikas et al., (2011), they developed a simple model based on stepwise 

multiple linear regression (SMLR) analysis to predict the performance of 32-month 

wastewater treatment of VFCW by predicting water quality parameters. The results of the 

model indicated that the predictions and measured values were highly correlated with each 

other which symbolise the accuracy of the model built. 

Multiple linear regression models as empirical techniques were used to model urban 

stormwater quality which analysed 5 different constituents such as chemical oxygen 

demand, lead, suspended solids, total nitrogen, and total phosphorus as influenced by many 

interrelated processes. MLR were compared with artificial neural networks model. The 
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result indicated that multiple linear regression models were more accurate for predicting 

urban stormwater quality than ANN models (May & Sivakumar, 2008).  

A detailed technique of multiple linear regressions (MLR) was prepared as an advance tool 

for surface water modelling and forecasting in an attempt to assess and determine the 

contributions of sources affecting the water quality. Using collective dataset of more than 

five years (2003 to 2007) in Klang River, Selangor. Nine principle components were found 

responsible for the data structure provisionally named as soil erosion, anthropogenic input, 

surface runoff, fecal waste, detergent, urban domestic waste, industrial effluent, fertilizer 

waste and residential waste clarifies 72% of the total variance for all the datasets. The result 

showed that the use of principal component analysis PCA as inputs improved the MLR 

model prediction by reducing their complexity and eliminating data collinearity where R2 

value in this study is 0.75 and the model indicates that 75% variability of WQI explained 

by the five independent variables used in the model.  It will be used to improve the water 

quality and then aids to decrease the time of sampling and cost for reagent used before 

analyses (Eregno, 2013). 

Regression Models is developed to determining and predict the fate of BOD5 during a 

biological treatment method in Polluted Rivers that has been acknowledged as the best and 

technologically effective technology to treat contaminated urban rivers and streams. The 

results indicate high R2 relationships between measured and predicted values. The accuracy 

of the Prediction models was also evaluated and disclosed errors in the range of ± 26% ~ ± 

37%. These errors seem acceptable according to former work on measurements of BOD5 

and predicting. The results also indicate credible application for prediction and 

management of biological treatment projects and reproduce for wastewater treatment 

systems (Kabo-Bath et al., 2012). 

In the research study of Schmid & Koskiaho, (2006), various different networks of the 

MLP-ANNs were developed to test their accuracy in predicting near-bottom concentrations 

of dissolved oxygen regime in Finnish free water surface constructed wetland ponds at 

Hovi, Finland, which discovered to be a complex process, governed by a considerable 

number of hydrologic, hydrodynamic, and ecological controls which operate at a wide 

range of spatiotemporal scales. The study reports on the results from a study conducted 

found the application proved to be successful, and in particular, it was observed that MLPs 

were able to “learn” the mechanism of convective oxygen transport quite well. The MLR 
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ANN was also used to determine the relative influence of flow rate and wind shear on near 

bottom oxygen saturation. 

In need to study the water quality of the River Krishna in detail, in order to estimate the 

level of pollution present in the river and also main sources of pollution. Zheng et al., 

(2014), multiple regression models were to predict dissolved solids (DO) concentration of 

River Krishna, and its tributaries drain three important states of South India, using land use 

data of the basin, which is accounted for significant variation in concentrations for the 

majority of (DO). Before model development, Correlation studies conducted to explain the 

relationships, between dissolved solids (DO) concentration and land use of the basins, 

which are used to develop the model. It was discovered in the result that the predicted 

concentrations of DO by the model are in good agreement with the measured DO value. 

This symbolised multiple regression models predicted DO concentration with high 

accuracy  

In the study research of Zheng et al., (2014), they employed two type of models (first order 

plug flow and multiple regression) to predict system performance, The result indicated that 

multiple regression models were found to provide slightly better predictions of outflow 

nitrogenous pollutant in the tertiary stage treated wastewater concentration than first-order 

plug flow models. However, they further concluded that the performance of CWs could 

hardly be accurately predicted by using simple models because the conversion of pollutants 

in CWs was complex and a lot of other issues may directly or indirectly distress the process 

It was reported in the research study of (Babatunde et al., 2011), that multiple linear 

regression models (MLR) had been effectively used to evaluate and predict the performance 

of final outflow concentrations of a pilot field-scale constructed wetlands system (CWs) 

treating animal farm wastewater. The outflow water quality parameters to be predicted 

include BOD5, COD, NH3-N, and TP. The author discovered that multiple regression 

analyses (MRA) predicted results more accurate than the k-C* model acceptable; however, 

some errors were encountered as both models were unable to predict the final outflow of 

NO3-N. 

Seven years of performance data from a free surface flow constructed wetland system 

receiving agricultural runoff were used to determine treatment performance and to develop 

regression and wetland design models. Removal rates by the wetland were 21–43.6% for 

5-day biochemical oxygen demand (BOD5), 49.0–58.1% for total phosphorus (TP), 24.1–
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46.0% for total nitrogen (TN), and 57.6–77.8% for total suspended solids (TSS). First-order 

area-based rate constant (k 20) values for BOD5 were 15.48 m/year in the early stage of 

observation and decreased to 12.00 m/year for the stable period. Similar results were found 

for TP, for which k 20 values were 18.72 m/year in the early stage and 14.92 m/year for the 

stable period. For TN, k 20 values in the early stage (21.32 m/year) were slightly lower 

than those for the stable period (38.02 m/year). Finally, TSS had values of 132.4 and 172.6 

m/year in the early and stable periods, respectively. The low k 20 for BOD5 was not crucial 

for nonpoint source pollution control in the constructed wetland because these kinds of 

wetlands mainly focus on nitrogen and phosphorus retention. The wetland area and outlet 

concentration could be approximately predicted using the first-order kinetic model, but the 

maturity and hydraulic loading rate should be considered for more accurate prediction.  

A methodology for characterising groundwater quality of watersheds using hydrochemical 

data that mingle multiple linear regression and structural equation modelling is presented. 

This work aims to analyse hydro-chemical data in order to explore the compositional of 

phreatic aquifer groundwater samples and the origin of water mineralization, using 

mathematical method and modelling, in Maknassy Basin, central Tunisia. The principal 

component analysis is used to determine the sources of variation between parameters. These 

components show that the variations within the dataset are related to variation in sulphuric 

acid and bicarbonate, sodium and chloride, calcium and magnesium which are derived from 

the water-rock interaction. Thus, an equation is explored for the sampled ground water. 

Using Amos software, the structural equation modelling allows, to test in the simultaneous 

analysis the entire system of variables (sodium, magnesium, sulphate, bicarbonate, 

chloride, calcium), in order to determine the extent to which it is consistent with the data. 

For this purpose, it should investigate simultaneously the interactions between the different 

components of ground water and their relationship with total dissolved solids. The 

integrated result provides a method to characterise groundwater quality using statistical 

analyses and modelling of hydrochemical data in Maknassy basin to explain the 

groundwater chemistry origin. 

2.26 Previous studies on integrated approach predicting treatment performance of 

CW 

Many authors have carried out comparison studies between Multi linear regression (MLR) 

and Multi-layer perceptron artificial neural networks MLP ANNs. It has been reported in 

the literature that multiple linear regression and neural network models have become 
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competing for wastewater treatment performance prediction model building procedures  

(Smith & Mason, 1997). 

In the research study of Zare Abyaneh, (2014), the efficiency of multivariate linear 

regression (MLR) and artificial neural network (ANN) models were examined in the effort 

to predict two major water quality parameters (COD and BOD) in a wastewater treatment 

plant. Performance of the ANN models was assessed using two criteria: coefficient of 

correlation (r), root mean square error (RMSE) and bias values. The predicted values of 

BOD and COD by the model were in close agreement with their respective observed values. 

Results indicated that the ANN performance model was better than the MLR model. They 

also discovered that the ANN model could be engaged successfully in estimating the BOD 

and COD in the inlet of wastewater biochemical treatment plants. Moreover, their 

sensitivity analysis results showed that pH parameter has more influence on BOD and COD 

predicting to another parameter. In addition, both designed models (MLR and ANN) have 

predicted BOD and COD better, but BOD prediction is better than that of COD. 

In the research study of Tomenko et al., (2007) they make comparison between Multiple 

regression analysis (MRA) and two artificial neural networks (ANN) – multilayer 

perceptron (MLP) and radial basis function network (RBF) in terms of their accuracy and 

efficiency in predicting biochemical oxygen demand (BOD) concentration at effluent and 

intermediate points of subsurface flow constructed treatment wetlands (CTW). The data 

used in this study research were obtained from many hydraulic and BOD loading units 

situated in India which encompass 91 patterns. MRA and ANN models were found to 

provide an efficient and robust tool in predicting the performance of constructed wetland. 

MLP and RBF generated the most accurate results signifying strong possibility for 

modelling for treatment processes of wastewater. 

In the research study of Akratos et al, (2008b), they offered a model, used in the design of 

horizontal subsurface flow HSF constructed wetlands. This model was developed from 

experimental data of five pilot-scale CW units, used in combination with artificial neural 

networks (ANN). The CWs were operated for a two-year period under four different 

hydraulic residence times (HRT). To select parameters entering the neural network 

properly, a principal component analysis (PCA) was performed first. From the PCA and 

model results, the main parameters affecting BOD elimination are discovered to be porous 

media porosity, wastewater, temperature and hydraulic retention time (contact time), 

meteorological ones are set of other parameters that were included. Two artificial neural 
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networks (ANNs) were examined: the first included only the three main parameters selected 

from the PCA, and the second included, and meteorological parameters too. BOD removal 

was predicted by the first ANN which was satisfactory and the second one inspected 

recorded better predictions. From the predictions of the ANNs, a hyperbolic design 

equation was produced to predict removal BOD, which sums zero and first order kinetics. 

The ANNs results and of the design equation model were compared to available data from 

the literature, and recorded satisfactory correlation. COD removal was discovered to be 

correlated strongly to BOD removal. An equation for COD removal prediction was also 

generated. 

It was reported in study research of Yalcuk, (2013) that artificial neural network was 

developed to represent phenol removal in vertical and horizontal constructed wetland. The 

aim was to design a pilot scale horizontal-flow (planted and unplanted) and three vertical-

flow (planted and unplanted) rector structured with PVC. In this reactor system two wetland 

plants were used, this include Typhalatifolia and Cyperusalternatifolius and different 

porous media bed (sand, zeolite, thin zeolite, and pebble). A feedforward network was used 

and fed with two subsets of operational data. The training procedure for effluent phenol 

concentration from different wetland was recorded to be successful: measured and 

calculated concentration was found to be of perfect match. 

The collective research of Akratos et al, (2009), they investigated that if nitrogen removal 

can be predicted using artificial neural networks (ANNs) in horizontal flow constructed 

wetlands (HFCWs). Development of ANN was based on experimental data from five pilot-

scale CW units. The proper selection of the components entering the ANN was achieved 

using principal component analysis (PCA), which identified the main factors affecting total 

nitrogen removal, i.e., gravel porosity, wastewater temperature and contact time. Two 

neural networks were investigated: the first included only the three factors selected from 

the PCA, and the second involved also meteorological parameters (i.e., barometric pressure, 

wind speed, rainfall, humidity, solar radiation). The first model could predict TN removal 

rather satisfactorily (R2 = 0.53), and the second model recorded better prediction with 

R2 = 0.69. From the application of the ANNs, a design equation was obtained for the 

prediction removal of TN, resulting in predictions comparable to those of the ANNs 

(R2 = 0.47). 

Artificial neural networks model is designed as an equation to predict phosphorus removal 

in horizontal subsurface flow constructed wetland (CWs). Experimental data from five 
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pilot-scale CWs was analysed, which had many set-ups base on size and origin of the gravel 

media and vegetation type, and functioned repetitively for the period of more than 2 years 

under four different hydraulic retention times (HRTs) for 6, 8, 14 and 20 days and many 

temperature choices. To select components entering the neural network properly, a 

principal component analysis (PCA) was executed first, which discovered the main factors 

affecting phosphorus removal this include porous media porosity, HRT and wastewater 

temperature. Two neural networks were examined: the first included only those above three 

main factors; the second included, also, the month, substrate aluminium content and 

meteorological parameters (barometric pressure, rainfall, wind speed, solar radiation and 

humidity). The first model recorded success on for the removal prediction and the second 

recorded even better removal predictions. According to the predictions of the neural 

networks model, a hyperbolic design equation was developed to predict phosphorus 

removal. Modelling results were validated against available data from the literature and 

indicated an acceptable correlation (Akratos et al, 2009a). 

Abba et al, (2017) In there study, they developed multilinear regression (MLR), artificial 

neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques to 

predict the Dissolve oxygen concentration at downstream of Agra city, using monthly 

monitoring input data which are dissolve oxygen (DO), pH, biological oxygen demand 

(BOD) and water temperature (WT) at three different places viz,. The performance of the 

three models was evaluated using determination coefficient (DC), and root mean square 

error (RMSE), the result of the output DO indicate that both ANN and ANFIS can be used 

in modelling DO concentration in Agra city, it was also discovered that, ANN model is 

slightly better than ANFIS and also indicates a substantial supremacy to MLR. 

Many previous study research studies in the literature have revealed and confirmed the use 

of MLR and MLP approaches have been used to design suitable as an important tool and 

model have successfully predicted many water quality parameters of domestic wastewater 

from different areas, and they depen d on different other input water quality parameters for 

the model prediction. They can also apply to wastewater from different sectors. It was also 

revealed from the previous literature reviews that water quality parameters study would be 

helpful for monitoring and prediction of the treatment performance of constructed wetland. 

But there is a research gap in predicting the treatment performance of matured constructed 

wetland in treating urban wastewater, to understand the internal processes that contribute 

to the reduction of pollutants. This study tried to fill the gap of predicting the performance 
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of vertical flow constructed in treating urban wastewater of long monitoring data using 

Multilayer perceptron artificial neural network and multiple linear regression models. In 

the present study, MLP-ANN and MLR were used to evaluate the relative effects of various 

pollution sources on some selected water quality parameters. This will help the researchers 

to find the site-specific model approach. Table 2.6 is the summary of some literature 

reviewed sighted in the work.  
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Table 2.6: Summary of some of the literature cited 

Author & Year System/Parameter Finding Limitation 

Abba & Elkiran (2017) MLR, ANN and 

ANFIS/DO, pH, BOD 

and WT 

Performance criteria were 

determined and ANFIS 

was of higher accuracy 

than the other prediction 

methods 

Restricted to DO, 

pH, BOD and WT 

Sudarsan et al., (2018) CWs and Fuzzy 

Inference System 

(FIS)/BOD and COD 

Typha sp contained 

wetland cell showed 

greater efficiency in 

removal of parameters 

such as COD and BOD 

than Phragmites sp. 

wetland cell 

Petrochemical 

wastewater 

W. Li et al., (2018) TF-CWs and BP 

artificial neural 

network/TN, TP, NH4
+-

N, and NO3
--N 

Predicted and actual values 

were in good agreement 

BP artificial 

neural network 

and limited water 

quality 

parameters 

Kurniadie (2011) CWs Using Phragmites 

Karka/COD, BOD5, 

NO3-N, NO2-N, NH4-

N, total-N, PO4-P, total 

coliform bacteria, pH, 

O2 and settle able solids 

The overall results show 

that all the effluent 

concentration from 

constructed wetlands 

except BOD5 were still 

low and fall considerably 

short of Indonesian 

effluent standards for 

irrigation water. 

Farm house 

wastewater 

Sudarsan et al., (2017)  CWs using Typha 

latifolia and Phragmites 

australis/BOD and COD 

Typha latifolia was more 

effective than Phragmites 

australis for BOD removal 

BOD and COD 

removal 

comparism 
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while interms of COD they 

have the same efficiency. 

between the two 

plants 

 

 

Table 2.6: Cont. 

Ozengin, N., Elmaci, 

A., Yonar (2016) 

SSFCW (Phragmites 

australis (Cav.) Trin. 

Ex. Steudel), LECA 

(light expanded clay 

aggregate) and 

artificial neural 

network (ANN)/All the 

parameters 

The investigations shows 

that the adopted 

Levenberg–Marquardt 

back-propagation 

algorithm yields 

satisfactory estimates 

with acceptably low MSE 

values.  

The constructed wetland 

planted with P. australis 

and with LECA as a 

support matrix may be a 

good option to encourage 

and promote the 

prevention of 

environmental pollution. 

SSFCW 

Al-isawi et al., (2015) TF_VFCWs/All the 

WQ parameters 

The wetlands system 

shows a good performance 

regarding total petroleum 

hydrocarbon (TPH) 

removal. 

One-off spill of 

diesel 

Sani & Scholz (2013) VFCWs/COD Small aggregate diameter, 

a short contact time, a long 

resting time and a low 

COD inflow concentration 

Compares the 

performance 

efficiency based 

on design and 
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were most beneficial in 

reducing SS accumulation 

within the wetland filters. 

 

operational 

parameter  

 

 

 

Table 2.6: Cont. 

Kotti et al., (2013a) FWS CWs and Fuzzy 

Inference System 

(FIS)/Organic matter 

removal 

The removal 

performance prediction 

model, based 

on fuzzy logic showed 

good agreement with the 

experimental data. The 

BOD removal predictions 

correlated well with 

independent 

experimental 

observations, leading to 

the conclusion that the 

proposed models are 

satisfactory tools for 

studying FWS CWs. 

FWS CWs and 

restricted to 

BOD only 

Chang et al., (2012) Integrated vertical-flow 

constructed wetlands 

(IVCWs) 

Mean removal efficiencies 

of 61.4% and 51.6% for 

COD and TP, respectively, 

were achieved at a loading 

rate of 250 mm/d.  
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DO was a dependence 

factor for the eliminations 

of organic matter and NH4 

+ N, and it could be 

employed to predict 

removal rates of COD and 

TN.  

Nitrification was the 

limited step for TN 

removal due to the 

insufficient DO 

concentration. 

 

2.27 Software used in the research 

The following software was used in the course of the research and findings, namely: - 

1. Weka 

2. R language Software 

WEKA stand for Waikato Environment for Knowledge Analysis which is a common 

collection of machine learning software written in Java, developed at the University of 

Waikato, New Zealand. It came about via the understand need for a unified workbench that 

would allow researchers, educationist, scientists, data miners and Project managers simple 

entry to state-of-the-art techniques in machine learning. It is a free software that that is 

easily accessible and written in Java (GNU Public License), it can also be run on any 

application platform like Windows, Linux and Mac. 

 

Weka is free software available under the GNU General Public License. The Weka 

workbench contains a collection of visualisation tools and algorithms for data analysis and 

predictive modelling, together with graphical user interfaces for easy access to this 

functionality. Weka tool contains many packages which include Filters, Classifiers, 

Clusters, Associations, and Attribute Selection. The Visualization tool in WEKA allows 
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datasets and the predictions of Classifiers in a pictorial form. WEKA is a collection of 

machine learning algorithms for solving real-world data mining problems. It is written in 

Java and runs on almost any platform. The algorithms can either be applied directly to a 

dataset or called from own Java code. In Weka, datasets should be formatted to the ARFF 

format. Two-thirds of the data are allocated to the training set, and the remaining one third 

is allocated to the test set. The training set help in building the model, and it is used for 

classification. For estimating classifier accuracy, k-fold cross-validation is used. Training 

and testing are performed k-times. The accuracy estimate is the overall number of correct 

classifications from the k iterations divided by the total number of samples in the initial 

data. 

The supported data formats in WEKA software are ARFF, CSV, C4.5 and binary. 

Alternatively, you could also import from URL or an SQL database. After loading the data, 

pre-processing filters could be used for adding/removing, attributes, discretisation, 

Sampling, randomising etc.  

2.27.1 WEKA  

weka workbench is a collection of state-of-the-art machine learning algorithms and pre-

processing data tools. It was designed so that existing methods can try out quickly on new 

datasets in flexible ways. It provides extensive support for the whole process of 

experimental data mining, including preparing the input data, evaluating learning schemes 

statistically, and visualizing the input data and the result of learning 

One way of using Weka is to apply a learning method to a dataset and analyse its output to 

learn more about the data. Another is to use learned models to generate predictions on new 

instances. A third is to apply several different learners and compare their performance in 

order to choose one for prediction. (Witten et al., 2016). 

2.27.2 R language  

R language is a system for statistical calculation and visuals. It offers a 

programming language, high-level graphics, boundaries to other languages and debugging  

services (Team, 2000). R is a programming language and free software environment for 

powerful statistical computation analysis and graphical visualization sustained by the R 

Foundation for Statistical Calculating. The R language is generally used among data 
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scientists business leaders and data miners and statisticians for design statistical software 

and analysis data  (Field et al., 2012).  

R is a programming language and interactive environment for the analysis of data and 

statistical calculating. The development of R was directed by the principles of exploratory 

data analysis, with the driving goal to make it easy to ask and answer questions of data. It 

was discovered that R language has an estimated two million user’s world wide 

R language is commonly used as a complete programming language that offers a situation 

in which statistical analysis can be performed and produce graphical representation. It 

(Dalgaard, 2002). R can be regarded as a programming language that has a large pre-

defined purposes library that can be used to accomplish many tasks. Statistical data analysis 

is the main basis of these pre-defined purposes, as such these regarded R to be used simply 

as a standard statistical technique toolbox. R acts as an alternative to usual statistical 

packages like SPSS, SAS, and Stata, it is also a compatible, open-source language and 

computing environment for Windows, Macintosh, UNIX, and Linux computers. R is 

renowned for its capabilities to visualize data. Officially, R version 1.0.0 was released on 

February 29, 2000 but the project began 7 years it was officially made available to the 

public. R is a statistical analysis made available free to the public through the Internet under 

the General Public License (GPL) (Verzani, 2014). It has three main supports. First, it is 

accessible and available free online for all the operating systems, including Windows, 

Macintosh, and Linux. Second, it self-consciously implements a ‘‘best practices’’ approach 

to the analysis of data, and third, it has powerful graphics abilities that allow for 

instrumental data and model visual representations (Healy, 2005). Multiple linear 

regression used in this study research was developed using R language  

2.28 Chapter Summary 

The chapter describes and explains the natural wetlands and modern progress of constructed 

wetland systems and their type and presents the early concepts of the wetland’s technology 

in treating domestic wastewater. It also explains the discussion on wetland composition, 

removal mechanisms and numerical modelling. Furthermore, the chapter clarifies the 

significant of wetlands to human beings, animal and the environment in general, vertical-

flow constructed wetland systems preference over horizontal-flow constructed wetland 

systems were highlighted. 
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More so, the chapter discussed data mining techniques used in this study to predict 

treatment performance the performance of the wetlands system as well as the prediction of 

key water quality parameters as regards to the performance. Specific methods for water 

quality and wetland hydrology monitoring and analysis were emphasised. And finally, the 

tools used for the evaluation and prediction of treatment performance of vertical flow 

constructed wetland in this study have been introduced. 
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Chapter 3: Methodology 

3.1 Over view   

This chapter describes the research design and the theoretical framework of the research, 

which includes the methodological approaches, experimental and numerical modelling 

used for the present research study. This research was divided into three stages as depicted 

in Figure 2.12. The first stage (STAGE I) section provides the descriptions of the 

equipment, materials and procedures for vertical flow constructed wetland systems. The 

experiment was conducted in two phase viz a viz: The first phase of the investigation was 

the laboratory analysis (G19, Cockroft Building) of the wastewater for water quality 

parameters and treatment of the wastewater sample using 10 different filters of VFCWs in 

the greenhouse (242, Newton Building). While the second phase was the collection of the 

treated wastewater sample and laboratory analysis of the 11 different water quality 

parameters of the treated water sample involved, the second stage (STAGE II) consists of 

the treatment performance assessment and evaluation for the VFCWs system. The final 

stage (STAGE III) consists of the prediction model which was designed and employed to 

predict the performance. The research stages run from 3rd December 2014 to 28th February 

2018.  

  



 

 



 

 



 

Figure 3.1: Schematic representation of the methodological approach in this work 
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3.2 STAGE I: Experimental  

3.2.1 Experimental set-up for VFCWs   

The vertical-flow constructed wetland system (VFCWs) is located in a greenhouse, 

second floor, Newton Building of The University of Salford, Greater Manchester, UK. 

Ten (10) different laboratory-scale vertical-flow constructed wetlands filters were 

designed and built from Pyrex tubes 19.5 cm wide (an inner diameter of the Filter) and 

length of 120 cm (height of the Filter). Each filter was filled with pea gravel (porous 

media) up to 60 cm depth (Filter 1 and 2 were filled with 10 mm size gravel while the 

remaining filters were filled with 20 mm size gravel). Moreover, each filter was 

engrained with Phragmites australis (Cav.) Trin. ex Steud. (Common Reed) as a 

substrate.  Aqua Medic Titan chillers machine (Aquacadabra, Barnehurst Road, 

Bexleyheath, UK) were used to maintain the temperature of the system to natural 

below-ground part, of the natural wetland systems at about 12°C. This temperature 

mimics the upper earth layer temperature where the root system of the wetland plants 

of a real treatment system would be. Figure 3.2 shows the components parts of the 

VFCWs.  

The experimental set-up comprises two filters (Filter 5 and 6) that serve as controls 

receiving only clean dechlorinated water. The system was constructed to investigate 

and evaluate the performance of different filters of the constructed wetland system in 

treating domestic wastewater for the removal of pollutants, regarding aggregate size, 

hydraulic and contaminant loading rate, contact time, resting time and the nature of 

wastewater.  The wastewater fed to the constructed wetland was a pre-treated mixture 

of urban and agricultural runoff one. Dead macrophyte plant materials were harvested 

in each winter and returned to the tallying wetland filters when they were completely 

dried by depositing it on top of the litter zone, thereby serve as organic matter or 

manure when they decompose in the filters. The main outlet valve was located at the 

bottom of each constructed wetland system. The experimental setup for the VFCWs 

has been in operation since 26th June 2011 to date. The different gravel sizes used for 

the constructed are shown in Figure 2.14, while, Table 3.1 indicates an overview of the 

statistical experimental setup used to test the impact of four variables.  
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Figure 3.2: Laboratory Set-up of the Vertical-flow Constructed Wetland  

Note: that the above set up includes two filters in the middle (filter 5 and 6) that are not 

in operation. They serve as controls receiving clean de-chlorinated water.  

  

 

                              (a)                            (b)  

Figure 3.3: Gravels used for the construction of the VFCWs systems: (a) 10mm pea 

gravel used for filters 3 to 10 and (b) 20 mm pea gravels used for filters 1and 2 

3.2.2 Experimental procedures of VFCWs  

Vertical-flow constructed wetlands are a potentially valuable tool for removing 

pollutants from wastewater. The pre-treated urban wastewater (free from large 

particles) used for the inflow water was acquired from the Davyhulme Sewage works, 
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a treatment plant located in Manchester, operated by the United Utilities water 

company. Fresh wastewater was collected regularly and was stored and aerated by 

standard aquarium air pumps in a cold room (Peel building, University of Salford) 

before use. The quality of wastewater was highly variable, which constitutes domestic 

wastewater and a small volume of industrial wastewater and small volume from surface 

water runoff.   

When the wastewater influent sample is ready after the settlement, the concentration 

of the water quality parameters in the inflow was measured, before pouring (feeding or 

loading) the sample into the different filters of the constructed wetland system. The 

inflow wastewater sample loading is intermittent. This intermittent loading pattern is 

perhaps the most usual operational mode used, especially in Europe like the UK (Sani, 

Scholz, & Bouillon, 2013a). The water flows vertically down by gravity through the 

porous media (gravel) until it reaches the drainage system on the bottom connected to 

an outlet manhole (where it is collected in a drainage pipe). As the treated water was 

draining from constructed wetland filter, air from the atmosphere pass in the wetland 

system and fill the vacuum space of the gravel replacing the drain water. Thereby 

enhancing aeration through the gravel and stimulated microbial actions (Miklas 

Scholz, 2006). When the treated water is completely drained, resting time is introduced 

to completely re-established aerobic condition in the gravel.   The treatment process is 

a biological and physical process combined and is characterised by intermittent loading 

intervals (72 hours and 48 hours) depending on the filters, after which the inflow 

samples will then remove from different filters (harvest) for water quality analysis in 

the laboratory. Figure 3.4 shows diagram representation and the process flow of the 

constructed vertical wetland, which includes the downflow, litter zone, pea gravel 

positions and the control valves from the influent to effluent.  

Chemical Oxygen Demand (COD) was used as the benchmark to differentiate between 

low and high loads (Table 3.1). An inflow target for the COD is about 283 mg/L 

(usually between 122 and 620 mg/L) was set for wetlands with a high loading rate as 

in filters 7 and 8 because they received a full dose of wastewater (6.5 litres). The 

remaining Filters 1, 2, 3, 4, 9 and 10 received wastewater diluted with de-chlorinated 

tap water (50% wastewater and 50% tap water). The target inflow COD for these filters 

is approximately 139 mg/L (usually between 43 and 350 mg/L) (Al-Isawi et al., 2015). 
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All wetland filters received 6.5 L of inflow during the feeding mode, which was 

different between several filters. The designed and operational variables of the ten (10) 

filters used (Vertical flow constructed wetlands) is described in Table 3.1 below 6.5 

litres of inflow (influent) of pre-treated wastewater was feed into the filters, and there 

was the difference in concentration of the feeds among the filters.  

 

Figure 3.4: Constructed wetland filter in the greenhouse 

Table 3.1 indicates an overview of the experimental set-up used in the current study to 

test the impact of variables. Filters 1 and 2 compared to Filters 3 and 4 test the influence 

of a larger aggregate diameter. Filters 7 and 8 compare to Filters 3 and 4, which 

examine the impact rate of a higher loading between them. However, to test the impact 

of lower contact time, filter 9 is compared with Filters 3 and 4. Finally, to examine the 

impact of lower resting time filter 9 compared with filter 10. Undiluted wastewater 

(full dose) was introduced to wetlands with a high loading rate (Filters 7 and 8). The 

remaining Filters 1 to 4 and Filters 9 and 10 received wastewater diluted with de-

chlorinated tap water. All wetland filters received 6.5 l, of inflow wastewater during 

the feeding mode (Table 3.1). Furthermore, all filters except 9 and 10 have a replica 

(R. H K Al-Isawi et al., 2015).  
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Table 3.1: Experimental set-up used in the study  

  

Design and operational 

variable  

  

Unit  

                        Filters     

1 and 2  3 and 4  5 and 6  7 and 8  9  10  

Aggregate Diameter  mm  20  10  10  10  10  10  

Contact Time  h  72  72  72  72  36  36  

Resting time  h  48  48  48  48  48  24  

Chemical  Oxygen  

Demand  

mg/l  145.6  145.6  2.1  292.1  145.6  145.6  

Note: The yearly treatment volumes of wastewater: Filters 1 to 8, 470 l/ an (except 5 

and 6, which receive tap water); Filter 9, 624 l/a; Filter 8, 858 l/a. Filters 2, 4 and 8 are 

replicated for the most common operational scenarios. Likewise, COD was used as the 

criterion to differentiate between low and high loads (Table 3.1). An inflow target COD 

of about 273 mg/l (usually between 122 and 620 mg/l) was set for wetlands with a high 

loading rate (Filters 7 and 8). The remaining Filters 1, 2, 3, 4, 9 and 10 received 

wastewater diluted with de-chlorinated tap water. The target inflow COD for these 

filters was approximately 139 mg/l (usually between 43 and 350 mg/L).  

3.2.3 Design, Mode of operation and maintenance of VFCWs  

The mode of operation of VFCW systems was first designed and developed in the early 

1950s by Käthe Seidel in Germany, for wastewater treatment. The CWs experiments 

were conducted and applied successively for the treatment of wastewater in the late 

1960s to early 1970s (G D; Gikas & Tsihrintzis, 2014; Jan Vymazal, 2014a; Jan 

Vymazal & Kröpfelová, 2011; H. Wu, Zhang, Hao, et al., 2015). High removal 

performance in VFCW system, depends on a number of measures for the design and 

operation, which include variables like selection of plant and substrate (gravel), feeding 
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of inflow wastewater or hydraulic loading rate (HLR), contact time or hydraulic 

retention time (HRT), and dosing mode (feeding). These variables are vital in VFCW 

system to achieve the long-lasting treatment performance by the system (Trang, 

Konnerup, Schierup, Chiem, & Brix, 2010; Tsihrintzis, 2017). Phragmites australis 

(common reed) used in this study research is one of the most common plant options 

used in constructed wetland especially in Europe.   

Amount of wastewater-fed depend on the design and size of the constructed wetland. 

The pre-treatment phase has been demonstrated to be a critical and essential component 

in the design of a VFCW system. Therefore, inflow wastewater should be well settled 

in a primary stage before feeding into constructed wetland filters, aimed at reducing 

the concentration of solids, organic matter and large particles in the wastewater. As a 

result, the threat of gravel clogging by solids accumulation is minimised. The 

wastewater used in this research is pretreated (secondary wastewater) and free from 

sludge, which was gotten from Manchester treatment plant. However, removal of 

pollutants in wastewater by constructed wetland is always achieved by operating the 

system‘s feeding conditions and by selecting the suitable type of wetland plant (Robert 

H Kadlec & Wallace, 2008; Jan Vymazal, 2007).   

The wastewater was load into the system (VFCWs) manually after the preparation and 

measurement of the desired amount (6.5 litres) into each different filter irrespective of 

the ratio content of inflow. Raw wastewater (full dose) and diluted (half dose) with tap 

water were used to feed the system depending on the wetland filter as presented in 

Table 3.1. The application of the inflow water is intermittent, as a batch through the 

surface of the filter.  The inflow flows from the top of the constructed wetland systems 

(see Figure 3.3) and then gradually, percolates vertically downward through the gravel 

layers. It then distributed over the surface of the CW filter and stay in the system for 

treatment (Figure 3.4) and drained to the bottom of the system. The treated wastewater 

was then collected in a drainage pipe network (Figure 3.4) after attaining the contact 

time. The contact and resting time is different among the filters and is described in 

Table 3.1. After the full drainage of the water, a resting period was then allowed for 

the system to restore applied. The resting time was to allows air to refill the wetland 

systems, leading to improvements in more circulation of air (aeration) within the bed, 

and oxidation of the accumulated organic solids, to prevent clogging of the bed (Robert 
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H Kadlec & Wallace, 2008; Jan Vymazal, 2007; Jan Vymazal et al., 2006). Which will 

help in increasing the lifecycle cost of CW and achieving higher performance of 

pollutants removal, the bed aeration will be improved, and the microbial activities 

reproduced (Paul Cooper, 1999; Jan Vymazal, 2007). The treatment technology 

generally relies on processes similar to those used extensively in gravel ―filter beds‖, 

enhanced by the extensive rhizomatous root system of the common reed plants 

(Phragmites australis) which can transfer limited quantities of oxygen into the 

surrounding media, to make bacterial communities more active.  

 

                   Outflow Valve 

Figure 3.5: Schematic diagram of a constructed wetland filter  

Drainage pipes should be cleaned occasionally to remove sludge and some 

microorganism that might block the passage and valve. The concentration of solids in 

Valve  1 

Valve  2 

Valve  3 

Valve  4 

Valve  5 

Valve  6 

Valve  7 

Valve  8 

Litter zone 

Inflow water  

http://ecompendium.sswm.info/glossary/3#term451324
http://ecompendium.sswm.info/glossary/3#term451324
http://ecompendium.sswm.info/glossary/3#term451324
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the wastewater should be reduced to bearest minimum before loading into the system 

to ensure the effectiveness of the primary treatment and avoid clogging. Also, the 

weeds growing were avoided by removing it as it starts germinating in the area that it 

can compete with the planted wetland vegetation, as their roots can affect the growth 

of the wetland plant leading to lower performance treatment. Routine obstruction 

observations and water quality sampling, monitoring and analysis were carried out by 

guidelines in the standard laboratories and base on the specification of American Public 

Health Association APHA (2005), to monitor the treatment performance and clogging 

unless stated otherwise.  

 

Figure 3.6: Schematic Diagram of treatment of process of VFCW 

3.3 Stage II: Treatment Performance Analysis  

3.3.1 Experimental Apparatus used for water quality parameters analysis  

The combined water quality analysis was conducted from December 2014 to February 

2018 (39 months), with a sampling rate at least five times per week for different water 

http://ecompendium.sswm.info/glossary/3#term451314
http://ecompendium.sswm.info/glossary/3#term451314
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quality parameters. Determination of the physical, biological and chemical parameters 

of the quality of a wastewater sample was performed base on standard APHA 

(Federation & Association, 2005). The treatment of wastewater in constructed wetland 

systems is based on physical, biological and chemical methods taking place in the soil, 

gravel and water environment using common reed as wetland plants (Bcef & Ad, 

2017).   

Throughout the period of the experiment and operational system, Water samples were 

collected regularly from the wastewater inflow and the treated outflow of each 

treatment filter of vertical flow constructed wetland systems. Samples were taken 

carefully using containers and taken directly to the laboratory for immediate analysis 

of water quality parameters. Analysis of water quality parameters in the laboratory is 

conducted by the procedures and specification outlined in the Standard Methods for 

the Examination of Water and Wastewater of American Public Health Association 

(APHA) (Federation & Association, 2005). The parameters that were analyse in the 

laboratory include: Turbidity (TBD), Suspended Solid (SS), Temperature (T), 

Dissolved Oxygen (DO), Electrical Conductivity (EC), Oxidation-Reduction Potential 

(ORP), pH, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), 

Nitrate-Nitrogen (NO3-N), Ammonia-Nitrogen (NH4-N), and Orthophosphate-

Phosphorus (PO4-P).   

The portable spectrophotometer DR 2800 Hach Lange ((Figure 3.5 (g)) and more can 

be found in www.hach.com) was used for standard analysis of different water quality 

parameters; this includes nitrate-nitrogen (NO3-N), ammonia-nitrogen (NH4-N), 

chemical oxygen demand (COD), orthophosphate-phosphorus (PO4-P) and suspended 

solids (SS).  A spectrophotometer is  a machine for measuring the intensity of light and 

is used to measure and detect light absorption illumination and light intensity, it also 

runs analytical method automatically, as the machine has a barcode to read any test 

that is being run when the tube was inserted into the photometer. All the remaining 

water quality parameters were analysed and measured using standard laboratory 

method and procedure, to get accurate results.  

Moreover, for more reliable results, samples were analysed as soon as possible.  
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3.3.1.1 COD Measurement  

COD is measured using spectrophotometer needed for the standard calibration curve 

by measuring the concentration of dichromate and their absorbance. It involves heating 

the samples in the laboratory to estimate the COD contents. Inflow wastewater and 

treated outflow sample are prepared, tested, analysed aimed at measuring the amount 

of organic matter present. The required volume of sample is added into the test tube 

and digested as it has pre-measured reagent present, containing sulphuric acid and 

potassium dichromate in the presence of a silver sulphate catalyst under closed reflux 

conditions. Each test tube was labelled according to their respective samples (Filters), 

and deionised water test tube for calibration. The calibration test tube was required 

using LCK 314 (15-150) mg/l, while if the test tube used is LCL 400 (0-1000) mg/l, it 

does not require a calibration test tube.   

The samples were mixed thoroughly before use; this will digest the sample and course 

colour change, test tube was inserted fume cabinet (Figure 3.5a), place the test tubes 

into a reactor and set time to 150o C temperature and time approximately 2 hours, the 

test tubes are removed and allowed to cool in a crate (Figure 3.5i). Before analysing 

the sample using photometer, the system was calibrated using the calibration test tube. 

The sample was then inserted in a spectrophotometer (Figure 3.5 c) and read bottom 

was pressing to display the reading of COD in mg/L. The displayed values were then 

recorded. The test tubes were wiped and clean before inserting into the photometer. 

The process was repeated for another test tube of the filters, and make sure the 

photometer has a fitting for the test tubes sizes select the correct COD program for the 

of absorbance specific COD range. COD values were recorded, as this model is a direct 

reading user-friendly photometer pre-programmed for Palin test-tube water tests.   

3.3.1.2 BOD Measurement  

Although there exist many methods for BOD measurement, the principle for all of them 

is the same. If the sample is expected to have a low content of microorganism, an 

inoculum should be added. Also, an extra nutrient solution is added to ensure that the 

growth of the microorganism is not limited. BOD value increase over time as the 

organic matter is progressively biodegraded. However, after five days most of the 

organic matter contained in the sample has already been degraded, for that reason, 

BOD5 that is measured after five days of incubation is the most widely used method. 



129 

 

The oxidation of the water sample present in the water sample can also contribute to 

the consumption of oxygen nitrification could interfere in the measurement of BOD 

leading to an overestimation of its value, to prevent this the use of an inhibitor is 

required.   

To determine BOD values in the laboratory for all wetland filters, treated wastewater 

sample by the constructed wetland was collected 300ml of the sample for inflow and 

100ml for outflow is prepared and poured in a respirometric bottle (Figure 3i) sealed 

with a manometer. Each BOD bottle is then placed into an incubator (Figure 3.2h) at 

20°C temperature in constant tension in a dark condition for five days, after which all 

bottle was removed, and the values were recorded and stored. A monomeric 

measurement device, supplied by the Wissenschaftlich-Technische Werkstätten 

(WTW), Weilheim, Germany is an instrument used to measure the declining pressure 

inside the bottle caused by oxygen consumption and to measure the effect of water 

sample on a beam of light. Sodium hydroxide (NaOH) is added to absorb the carbon 

dioxide produced in the process, which might interfere in the pressure measurement, 

firstly magnet stirrer is introduced in the bottle so that when they are placed in the 

magnetised tray, they stay stressed continuously. To determine the quantity number of 

sample in the bottle, for that purpose estimation is made of the expected BOD range of 

the sample.  The exact volume required was measured using burette, which was then 

introduced into the bottles. Three drops of nitrification inhibitor were then added for 

the inflow sample while seven drops for the outflow samples. The nest is to put Sodium 

hydroxide (NaOH) into the plastic enclosure located within the monomeric cap. The 

bottles are firmly close with a monomeric lid to guarantee airtight environment inside; 

monomeric caps should be reset to zero to start measuring again. If the value is out of 

range, no results will be displayed. Once the values are noted down, to get the final 

BOD5 value, the following equation is used.  

 BOD5(mgo2
-L) = value x-Factor            2.2  

Where the term factor appearing in the formula corresponding to the figure obtained 

from the standard table for the specific sample volume, multiply the factor with the 

value of monomeric cap displayed after which all the values were recorded and stored.  
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                  (g)               (h)  

              (i)  

       

              (j)             (k)                       (l)  

Figure 3.7: Apparatus used in the laboratory for analysis  

3.3.1.3 Nutrient Measurement  

Nutrients measurements were conducted in order to evaluate the quality of the water 

sample. Measurements of the nutrients were conducted employing colourimetry 

methods using a Palin test tube with product code LCK 339 for nitrate, LCK 303 for 

ammonia and LCK 049 for other-phosphate phosphorus. A water sample was added 

into the Palin test tube, and Nitrate was reduced to nitrite by cadmium and determined 

as an azo dye at 540 nm (using a Perstorp Analytical EnviroFlow 3000 flow injection 

analyser) following diazotisation with sulfanilamide and subsequent coupling with N-

1-naphthyl ethylenediamine dihydrochloride. The mixture of the sample with the 

reagent was then shaken well to allow reaction take place. The sample was then 

allowed to equilibrate and settled at room temperature before placing it into the 

spectrophotometer for measuring the nutrients content.   
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Ammonia-nitrogen and ortho-phosphate-phosphorous were determined by automated 

precision colourimetry in all water samples from reaction with hypochlorite and 

salicylate ions in solution in the presence of sodium nitro-sopentacyanoferrate 

(nitroprusside), and reaction with acidic molybdate to form a phosphor-molybdenum 

blue complex, respectively. The coloured complexes formed were measured 

spectrometrically by a photometer, which automatically detects any nutrient to be 

measured.  

3.3.1.4 Dissolve Oxygen (DO) Measurement   

Dissolved oxygen is one of the most important parameters that determine water quality 

because it indirectly points out if there is pollution in the water (Jorge G. Ibanez; 

Margarita Hernandez-Esparza; Carmen Doria-Serrano; Mono Mohan Singh, 2013).  

Dissolved oxygen (DO) is a measure of the number of free oxygen molecules in water. 

The concentration of DO is a significant indicator of the health of an aquatic ecosystem 

as oxygen is vital for almost all forms of life. Dissolve oxygen is measured in 

milligrams per litre (mg/l). A dissolved oxygen meter (DO meter) in 3.2k is used to 

determine the DO in a water sample. The DO meter can measure dissolved oxygen in 

water in the range of 0 – 50 mg/l.  

3.3.1.5 Turbidity Measurement  

Turbidity is the quantity of cloudiness in a given sample of water which is an 

expression of the suspension in the sample. Turbidity in water is caused by suspended 

matter such as clay, mud, silt, finely divided organic compound and chemical 

precipitates. Turbidity is analysed and measured in the laboratory using an infrared 

instrument called Turbi-check, Turbidity Meter as shown in Figure 3.2e, (Lovibond 

Water Testing, Tintometer Group, available at www.lovibond.com), the machine is 

designed to allow fast, precise on-site testing and is suitable for regulatory monitoring 

and process control. Some treatment systems, such as sediments, coagulators and 

gravel pre-filters are designed to remove turbidity.  It is very accurate and stable 

instrument for measurement of turbidity up to 1000 NTU; it is very accurate for 

measuring very low turbidity values (less than 5 NTU).  Turbidity is measured in 

nephelometric turbidity units (NTU) or Formazin turbidity units (FTU), depending on 

the method and equipment used.  2.32.7 pH Measurement  

http://www.lovibond.com/
http://www.lovibond.com/
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pH is a measure of H+ concentration in a given water sample. The pH value varies 

between o to 14 with, with 7 as a value of neutral water. pH value is an indirect measure 

of acidity and alkalinity present in water. The values less than 7 indicate present of 

alkalinity, whereas values higher than 7 indicate the presence of acidity in water 

(Jurgen Schleicher, 2007). The commonly employed method to measure the pH value 

of water in the laboratory is an electrometric method. Where a pH metre is used, pH 

meter comprises of a potential meter, temperature compensating device and pH 

electrode. They should be appropriately connected to the potential meter. The pH meter 

is calibrated using pH buffers solution of known-values (4, 7, and 9) by inserting the 

electrode in the buffers one after the other from pH of 4 to 9 until the instrument is 

correctly calibrated. The water sample is then poured in the beaker, and the electrode 

is inserted to measure its pH value (Figure 3.2d). At the measuring electrode, hydrogen 

ions create a potential that depends on the pH value of the sample (Jurgen Schleicher, 

2007). The pH value is taken and recorded. pH value has no unit  

3.3.1.6 Suspended Solid (SS) Measurement   

Suspended solids refer to small solid particles, which remain in suspension in water 

that does not dissolve and separable using filtration. It is used as one of the indicators 

of water quality; SS is analysed and measured in the laboratory using a 

spectrophotometer Hach DR 2800 which has a suspended solid method in it. It sends 

a concentrated light beam through the water sample.  

Before starting the SS measurement, the instrument has to be calibrated with the 

standard solution. Bootle needs to be clean by rinsing with distilled water; the water 

sample is put into a bottle, and insert into the sample holder of the spectrophotometer 

for the SS analysis as shown in the Figure 3.2c. Reading is taken and recorded. The 

unit of SS is mg/l.  

3.3.1.7 Oxidation Redox potential (ORP) Measurements  

ORP is measured to determine the oxidising or reducing potential of a water sample. 

ORP is determined by measuring the potential of a chemically-inert (platinum) 

electrode which is immersed in the solution. The sensing electrode potential is read 

relative to the reference electrode of the pH probe, and the value is presented in 

millivolts (mV). Redox potential (ORP) can be analyzed and measured using 
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potentiometer with Oxidation reduction potential (ORP) electrode (Weight & 

Chandler, 2010), also known as redox potential instruments as shown in Figure 3.2b, 

redox potential measurements are used to monitor chemical reactions (Schüring, 

Schulz, Fischer, Böttcher, & Duijnisveld, 2013). The instrument measured the ability 

of a solution to act an oxidising agent and to measure ion activity.  

3.3.1.8 Temperature Measurement (T)  

Temperature is an important parameter when evaluating the quality of water, 

temperature effects numerous other water quality parameters and can change the 

physical and chemical properties of water. In this respect, the temperature of the water 

should be considered when analysing pH, DO, EC ORP  

Temperature is a measure of the internal thermal energy state of a substance. It 

represents how much vibrational energy exists in the molecules of a liquid or solid, or 

the translational energy (speed of movement) of molecules in a gas. There are various 

temperature scales for measuring temperature. The one used by scientists is the Kelvin 

scale. The thermometer is an instrument used to measure temperature in this study, 

which is placed in and outside the greenhouse.  

3.3.1.9 Electrical conductivity (EC) Measurement  

This parameter is one of the parameters used to evaluate the quality of water; 

procedures can also be used to monitor in the treatment of wastewater that causes 

changes in the concentration of total salt and therefore changes the conductivity 

(Levlin, 2010). The electrical conductivity is used an indication of how contaminant or 

pure the sample is. Consequently, measuring the conductivity of water can specify the 

concentration of electrolytes. Electrical conductivity is measured with continuous 

measurement device called electrical conductivity meter know an EC meter (Figure 

3.2f) by measuring the conductance of the water sample. The measurement is conducted 

by dipping the electrode of the metre in a given sample to measure a quantitative 

reading of the amount of the conductivity that is taking place in the sample. Electrical 

Conductivity (EC) is measured in Siemens per meter or micro Siemens per centimetre 

(µS/cm) or micro Siemens per metre (µS/m)  
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3.3.2 Experimental Data Parameters  

An experimental investigation has been carried out, and the data generated were 

collected by monitoring the influent and effluent concentrations of 11 water quality 

parameters. The parameters or variables include Turbidity, Suspended Solids (SS), 

Dissolve oxygen (DO), Ammonium Nitrogen (NH4-N), pH, and Electrical 

conductivity. Others include oxidationreduction potential (OPR), chemical oxygen 

demand (COD), biological oxygen demand (BOD), orthophosphate phosphorus (PO4-

P), Nitrate (NO4-N) and Temperature. The recorded data of the variables were 

collected and recorded for the assessment of the system. The input variables were 

selected based on their goodness of correlation with the target output variables (Meyer 

et al., 2015). Usually, target output variables (variables to be predicted) are compared 

with cost-effective and more accessible to measure input variable for easier prediction 

(Zare Abyaneh, 2014). Name of the water quality parameters used and their chemical 

formula, units and their respective ranges are presented Table 3.2.  

3.3.3 Data analysis  

The process of inspecting and applying formal statistical procedure, to describes and 

evaluates data for analysis and support decision-making to achieve research aims and 

objectives of discovering useful information. The data generated from the analysis is 

recorded in a Microsoft Excel sheet is used for the general data storage, missing values 

were filled in using the simple statistical technique, including mean estimates and 

linear regression models while outliers and error values from the experiment were 

filtered and removed to enhance the quality of raw data. After data collection, data 

were subjected to a normality test before validation and subsequent analysis. Because 

of high variability, the data were not normally distributed even after transformations, 

and as a result, easy statistical tools that will fit the abnormally distributed data such 

as non-parametric tools were sought and applied. The non-parametric Mann-Whitney 

U-test was computed using IBM SPSS Statistics Version 20 and used to compare the 

medians of two (unmatched) samples since virtually all sample data (even after data 

transformation) were not normally distributed.  
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Table 3.2: Ranges of parameters used for the experiment 

Parameters  Chemical  

Formula  

Unit  Good  water  

quality  

Poor  water  

quality  

Biological Oxygen  

Demand  

BOD  Mg/l  1 to 10  13 to 100  

Ortho-phosphate Phosp  PO4-P  Mg/ l  0.01   0.02 to 0.05  

Ammonium Nitrogen  NH4-N  Mg/ l   0 – 0.5  1 - 6  

Nitrate Nitrogen  NO3
-N  Mg/ l  0.01 ≤ 10  0 to 0.06  

Oxidation reduction 

potential  

ORP  mV         -50 to +50  +75 to +250   

Electrical conductivity  EC  µS/cm  150 to 500  0 to 50  

Dissolve Oxygen  DO  Mg/ l  5 to 11  0 to 4  

Suspended Solid  SS  Mg/ l  0 - 19  20-40  

Chemical oxygen  

Demand  

COD  Mg/ l  0 - 3  10 - 30  

Turbidity  TBD  NTU  0 ≤ 5  5 and above  

pH  pH  no  6.5 to 8.5  1 to 5  
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Temperature  T  o C,  K  9 to 25    

  

3.3.4 The removal rate of water quality parameters  

The treatment of wastewater using vertical flow constructed a wetland to remove 

pollutants is modelled employing probability to predict the total removal and 

performance efficiency. This process occurs in the natural wastewater treatment 

system.  Assuming that hydrological phenomena such as rainfall, percolation and 

evaporation are negligible and that the inflow and outflow rates are equal, the 

behaviour of a wastewater treatment system based on Common reed can be represented 

by the global mass balance equations for each of the components of the system. The 

system considers the inflow concentration (CI) and outflow concentration (CP) of the 

water quality parameters. The input concentration of the water quality parameters has 

a direct proportion with the output concentration. Therefore, this relation can be 

express as:  

                 2.3  

Where CI and CP is the input and output concentration of ith components water quality 

parameters respectively. The K is the constant of proportionality defined as:  

                 2.4  

The total removal of the ith components which is the change in concentration divided 

by the input concentration is given as:  

                 2.5  

Where R is the total removal of the west from the wastewater sample. The total removal 

of water quality which is the amount of waste removed from the wastewater using 

constructed vertical wetland. For example, it can be used to calculate how much BOD 

was removed in the primary clarifier.  This concept can be applied to the removal of 
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total suspended solids (TSS) and ammonia (nitrification). Combining equation (2) and 

(3) yield the following equation:  

                2.6  

Therefore, considering the boundary conditions of , and  and 

then equation (4) transformed into:  

               2.7  

Equation (5) is called percentage removal efficiency (removal rate) formula is used to 

calculate the differential change in concentration between inflow water and outflow 

treated water is also as First order kinetics removal model. To calculate how many 

amounts of the contaminant was removed in wastewater. Removal efficiencies formula 

are often used in this study research to evaluate the performance of pollutants removal 

in wastewater by vertical flow constructed wetland (VFCW) of every water quality 

parameter excluding DO, because the concentration of dissolved oxygen in outflow is 

greater than that of inflow  

Thus the % removal efficiency is given as:  

               2.8  

Where E is the efficiency  

Treatment performance is continuously evaluated a, d comparisons concentration of 

pollutants between inflow wastewater and outflow treated water indicated clear 

improvements (see Table 4.2)  

3.4 Stage III: Model Development and Evaluation  

3.4.1 Vertical flow Constructed wetland modelling using data mining technique  

The discussion focuses on the ability of designed models (multiple linear regression 

and multilayer perceptron artificial neural network) to predict the removal of water 

quality parameters (output) given other available water quality parameters as inputs 
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and understanding their gained and correlation to each other beyond the laboratory 

experiment and design impacts on the predicted values fate.  

3.4.1.1 The Methodological Framework  

Before the data is used for further analysis, data preparation was carried out. The 

existing or available data from the database are used, and the data exists in a 

spreadsheet (excel file), and the data were transformed into useful information which 

was used for the general data analysis. The source of our data is primary (source 

collected from the researcher). The data are selected from the existing raw data to have 

useful information, which must be processed correctly. If data has not been carefully 

screened and analysed, this can produce misleading results. The next step in data 

analysis processes is to prepare data for further analysis. Data for five years of 

referenced parameters have been obtained from the experiment. The idea behind the 

framework is to help in analysing the data and structure it into mining form.  

 

Figure 3.8: Methodological framework diagram 

3.4.2 Model development and Evaluation  

3.4.2.1 Correlation Analysis   

Before developing a prediction model, correlation analysis was conducted to ensure 

that the variables are relevant to include in the model development. The selection of an 

appropriate set of input variables from all possible input variables in hydrological 

modelling is essential for obtaining accurate and efficient prediction model, mainly 

when it involves modelling of the dataset (Panagoulia, Tsekouras, & Kousiouris, 
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2017). Correlation analysis is used to have a good idea on which input variables are 

relevant to select for an accurate and straightforward output prediction model. The 

essential and highly correlated parameter is the one to be considered and remove the 

unnecessary ones before model development (Abba & Elkiran, 2017). Input and output 

variables were selected from the parameters used in the vertical flow constructed 

wetlands system in the present research. The correlation between the output variable 

(dependent) and input variables (independents) was then determined.  

The highly correlated input parameters were used as an independent variable in the 

development of the prediction model for accuracy on the predicted variable (output) 

which is the dependent parameter. Therefore, using many independent input 

parameters to construct multiple linear regression (MLR) may results in overfitting if 

the variables are not correlated. Hence, choosing the best and highly correlated input 

parameters for the model, yield better results. However, input variables may likely 

correlate each other, and this phenomenon is called Multicollinearity. Due to 

multicollinearity and overfitting, conducting correlation analysis is needed between 

input and output parameters before model development. The accuracy of the prediction 

model‘s outcome depends on how good output dependent parameter is correlated with 

the independent input parameters.  

Variable selection is made using common sense knowledge of correlating variables in 

addition to checking correlation using statistical analysis such as using correlation 

matrix analysis, to check for statistically significant variables (p-value < 0.01). Starting 

with correlation analysis, one can determine the number of input variables for MLR or 

ANN models. Scaling or normalising of input variables is often done to reduce 

unintended influencing of the weights occurring due to the different magnitudes of 

input variables used, for example, TP (in the range of hundreds) versus TSS (in the 

range of 10 thousand).  

Water quality parameters are predicted base on the highly correlated they are with their 

corresponding input parameters. Before getting into the model prediction development, 

data ware inspected and checks to eliminate outlier values, determine their validity, 

missing values ware also checked. The monitoring dataset of all the parameters used 

was generated, and the correlation is determined.   
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3.4.2.2 Model development  

This thesis employs the use of data mining technique to develop the predictive model 

that will estimate the future treatment performance of vertical flow constructed 

wetlands systems (VFCWs), the techniques used include multiple linear regression 

(MLR) Multilayer Perceptron. Development of a predictive model that will help to 

achieve the target goal requires a suitable data from which the model can learn, and 

predicting a target output based on given input, needs a suitable data comprising past 

input-output parameters.  

The model development provides a framework in which the process can be interpreted 

and understood. This involves the definition of predictive model objectives. Before 

developing a prediction model, it will ensure some common data requirements and 

practical considerations of which input variables are relevant and suitable to include in 

the model development. The model development framework comprises the following 

stages.  

3.4.2.3 Data Pre-processing  

As far as the data mining process is a concern, in the estimate data pre-processing 

consumes a large part of the project which spends up to 70% of the entire processing 

time. Rough data is highly susceptible to noise, missing values and inconsistency. The 

quality of data affects the data mining result. To improve the quality of data and that 

of the mining result accordingly, row data is pre-processed to enhance the effectiveness 

and easy in the mining process. The four significant tasks in data pre-processing 

include data cleaning, integration, transformation and reduction. Data cleaning routines 

can be used to fill missing values, smooth noisy data, identify outliers and correct data 

inconsistencies. Data integration combine data from multiple sources to form a 

coherent data store. Data transformation routine confirm the data into an appropriate 

form for mining. Data reduction technique has been helpful in analysing the 

compressed representation of the dataset without compromising the integrity of the 

original data and yet producing the quality knowledge. In the real world data is always 

redundant, missing, uncertain and inconsistent data, data mining cannot be 

implemented before pre-processing (Pyle, Cerra, Wade, & Breyer, 1999).   
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Figure 3.9: Four significant tasks of data pre-processing 

3.4.2.4 Preparing the Input  

Preparing input parameters for data mining search usually, consume the majority of the 

work done in the whole data mining process. Consequently, adequate and relevant 

input parameters are needed, to adequately identify the significant relationship between 

the input parameters and output predicted parameter (Mas & Ahlfeld, 2007). Quality 

of data mining results decisively depends on the quality of input data. The collected 

and prepared data is presented in a spreadsheet.  

3.4.2.5 Data Collection  

To start the work on data mining issues and to determine what data to collect, it is 

mandatory too, first of all, bring together all the data into a set of instances. Because 

of the complexity to choose the suitable data of the data, it must be assembled, 

integrated and cleaned up considered the representation and quality of data is first and 

foremost before running an analysis (Pyle et al., 1999).  

3.4.2.6 Data Analysis  

The collected data need to be inspected, cleaned and transformed from noise and 

unrelated data for the purpose of discovering useful information, it is expected that the 

programme will generate a large body of quantitative experimental data that will be 

analysed by appropriate methodologies and summarising the computational tool and 

techniques in data analysis (Witten et al., 2011). After data collection, data were 

subjected to a normality test before validation and subsequent analysis. Microsoft 

Excel was used for the data analysis. Before modelling, the data is checked for errors, 

outliers, missing values and invalid data entries to ensure proper usability for modelling  

  

Data Pre - 
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Data Cleaning   Data Intergration   
Data  
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3.4.3 Modelling    

This is where modelling algorithm is applied to processed data. Once it is confirmed 

that the data is suitable and ready for modelling. It requires selecting a data mining 

algorithm and identifying relevant aspects of a situation in the real world and turning 

the parameters using different types of models for different aims (Witten et al., 2011). 

This is a process of translating real-life situations into a mathematical model. The 

modelling tool is going to automate the entire process of modelling data for discovering 

useful information, suggesting conclusions, and supporting decision-making (Pyle et 

al., 1999). The data is partition into two parts for the training and testing process by 

considering70% of the data as a training set, and the remaining 30% of the data as a 

testing set, which are common divisional percentages in the data-driven model. The 

output of the model is entirely determined by the parameter values and the initial 

conditions.  

3.4.4 Implementation  

For the entire data of the experiment in question, if the final results are not 

implemented, it is impossible for any project to be successful. On the other hand, 

mining preparation, surveying, and modelling—traditionally takes most of the time in 

any project. However, after the importance of implementing the result, the two most 

significant contributors to success are solving an appropriate problem and preparing 

the data. While implementing the result is of the first importance to success, it is almost 

invariably outside the scope of the data exploration project itself. As such, 

implementation usually requires organisational or procedural changes inside an 

organisation, which is well outside the scope of this discussion.  
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Figure 3.10: Framework for VFCW Implementation 
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3.4.4.1 Data Partitioning  

Using all the dataset for training to generate a predictive model and evaluate the 

performance of the model with the same training data used is not possible, the accuracy 

of the model results will be incorrect. However, there is no guarantee how good the 

model will perform when it applied with a new dataset. However, Evaluating the 

performance of the model with the entire data used as training data as the same testing 

data is not suitable in data mining because it can easily produce predictive models that 

are overfitted. To build confidence for the model build, there is a need to test the model 

build. MLR and MLP models are considered to be data dependent during their 

development, especially when they subjected to the new dataset in the coming future. 

Using part of the data to generate a predictive model and holding the remaining to test 

the model build provide the ability of how well the model will predict when using 

testing data in a controlled environment (the dataset that the model never seen before). 

Data partitioning is a significant part of assessing the performance of data mining 

technique models, the entire history dataset is divided into two different parts randomly 

using R language using a random split command,  major part of the data (70%) is used 

for training while the remaining smaller portion of the data (30%) is used as testing 

dataset, which is the is important aspect in developing and evaluating data mining 

techniques models. Both training and testing datasets came from a similar data source 

(figure 3.3) It is significant to have an appropriate portion of training and testing dataset 

to achieve a model generalisation performance to new data. The ultimate target is to 

achieve high model accuracy  

 

Figure 3.11: Partition of complete monitoring dataset 

3.4.4.2 Training dataset  

The dataset used for training purpose is called the training dataset. The training 

dataset is the data use to is build data mining model. The role of training dataset is to 

provide a data in which the predictive model is constructed. The models were built a 

History  Data   Training Data   Testing Data   

100 %   70 %   30 %   
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base on the training dataset. The high the training dataset (70%) the better the 

prediction model performs. the quality and quantity of the training data has to do with 

the success of the data  

3.4.4.3 Testing dataset  

The dataset used to test the model is called testing dataset. After the model has 

been processed by using the training set (the training is completed). Testing dataset is 

then uncovered to model, the model built is tested by making predictions against the 

test dataset. Training dataset advises a model on how it should work and make its 

prediction. Because the data in the testing set already comprises known values for the 

attribute to be predicted, it is very simple to verify if the model's predictions are correct. 

Before applying the model built for predictions, there is a need to evaluate the 

predictive performance of the models‘ quality and accuracy. To assess the quality of 

the models (MLR and MLP) predictions, this has been with data the models have not 

seen before  

3.4.5 Building multiple linear regression Model (MLR)  

Multiple linear regression (MLR) models are suitable statistical tools used to estimate 

complex relationships involving prediction parameters (Baffi, Martin, & Morris, 

1999). The multiple linear regression model used in this study was designed using R-

language for the prediction of real values of water quality parameters. This model is 

used to simulate the behaviour of water quality parameters used for investigating and 

modelling the relationship between input and output variables applicable for predicting 

the performance of vertical flow constructed wetlands water quality, due to its 

simplicity, and best fits. Output, independent or target variable estimation can also be 

performed using a multiple linear regression model (MLR) in R-language, which 

explain the relationship between the input and output parameters  

3.4.6 Building a multilayer perceptron (MLR) Model  

The multilayer perceptron is a branch of the artificial neural network, was the tool used 

to build a prediction model. It is a three-layer network consist of the input layer, a 

hidden layer and output layer the model used in this research is designed and built 

using machine learning software WEKA, which is also a robust data mining tool for 
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resolving data mining problems by taking out and analysing useful information from the 

database.  It comprises a group of graphical representation and numbers for data analysis 

and development of prediction models.   

A perceptron consists of weight (including bias), the summation processor and an 

activation function. However, a perceptron takes a weighted sum of inputs and output 

as following  

• If the weighted sum is larger than the adjustable threshold, then the 

output is one otherwise the output is zero as contained in the equations below   

 W1X1 + W2X2 +…..   +WnXn > ϴ          2.9  

 W1X1 + W2X2 +…..   +WnXn   ϴ          2.10  

• The input and connection weights sum are typically real values   

The input values are presented to the perceptron, and if the predicted output is the same 

as the desired output, then the performance is considered satisfactory, and no changes 

to weight are needed. However, if the predicted output does not match the actual output 

of the instances, the weights need to be changed to reduce the error  

  W  *d*X                2.11  

 D = predicted output – actual measured output      2.12  

X   input data, ƞ   learning rate  

Perceptron can only use in linearly separable data, if the data in nonlinear separable, 

the perceptron will not work. A multilayer perceptron is used to handle nonlinearly 

separable data; it has the same structure of single layer perceptron with one or more 

hidden layer. Inputs and weights are used to work out the activation function for any 

node as learned before (i.e. weighted sum and transfer function). This is achieved for 

the hidden layer as it has direct links to the actual input layer, the output is used from 

the hidden layer nodes to work out the activation function for an output node (they are 

the input to the output layer nodes). Sigmoid is used as a non-linear separable function; 

it is also used because it is differentiable.   
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When the main available data attributes and other necessary information are collected 

and stored to develop a database. The data is arranged base on the format and structures 

that are needed. Also, to load data into WEKA, the dataset is transformed into an ARFF 

file (Attribute-Relation File Format) format to process in WEKA. An ARFF file is an 

ASCII text file that describes a list of instances sharing a set of attributes, ARFF is the 

format that WEKA software understands and prepared. The type of data fed to the 

system can then be defined, then supply the data itself. In the file, column and what 

each column contains are also described.  

After processing the ARFF file in WEKA, the list of all characteristics, statistics and 

other factors can be visualised as shown in the figure. ARFF format is essentially the 

same as comma-separated values (CSV) format used in the R language. The already 

prepared data can be analysed in Weka using different data mining techniques like 

multilayer perceptron artificial neural network (MLP-ANN).  

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list 

of instances sharing a set of attributes. The Machine Learning Project developed ARFF 

files uses by WEKA data mining tool.  
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Figure 3.12: Display of WEKA platform 

3.4.7 Model Evaluation Criteria  

After the model is built, specific evaluation performance about the prediction model 

parameters is useful used to evaluate the predictive accuracy of the model and error 

(Ruby & David, 2015). The performance of the models built were evaluated based on 

two model evaluation performance methods these include graphical visualisation 

evaluation (using scatter plots and hydrographs) and numerical model evaluation using 

five different error measures which are a very significant step to understanding the 

strengths and weaknesses of the model built (Steyerberg et al., 2010). Several measures 

of goodness of fit were used to evaluate the predictive performance and quality of a 

model (Khadr & Elshemy, 2016). The five statistical error measures criteria to interpret 

the results include Root Mean Square Error (RMSE), correlation coefficient (r), 

Relative Absolute Error (RAE), Mean Absolute Error (MAE) and Root Relative 

Squared Error (RRSE).  

3.4.7.1 Graphical Model Evaluation   

To predict the performance of constructed wetland by predicting water Thus, it seems 

that plotting the data and showing the dispersion of the values is essential. Graphical 

representation model evaluation is a process of visualising the relationships between 

measured and predicted values. Assessing model performance through graphical 

evaluation, scatter plot and hydrograph play a vital role.  The use of scatter plots of 

predicted and measured (or vice versa) values is one of the most common alternatives 

to evaluate the performance of prediction models and is still the most commonly used 

method.  

3.4.7.2 Root Mean Square Error (RMSE)  

Root Mean Square Error (RMSE) is the most typically used evaluation measures to 

manipulate mathematically and used in model valuation (Chai & Draxler, 2014,  

Witten, Frank, & Hall, 2011) to measure the difference between predicted values by a 

model and the actual measured values, which is choose in many iterative prediction 

and performance (Emamgholizadeh et al., 2014). RMSE is expressed as follows:  
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           2.13  

Where av is an actual value, pv is the predicted value, and n is some instances   

3.4.8 Correlation Coefficient (r)  

Correlation Coefficient (r) is a measured number that describes statistical relationship 

between two or more continuous variables (Mukaka, 2012) example is how much 

actual value and predicted value are linearly related to each other. The correlation 

coefficient values range is from -1 to +1.  A correlation value of 0 means no 

relationship exists, a correlation of 1 means there is a very strong positive linear 

relationship, a correlation of −1 it shows there is a negative linear relationship and if a 

correlation value is larger than 1 or smaller than -1, a mistake has occurred when 

calculation. When RMSE and MAE values are low, this indicates satisfied fitness 

among data (Sharifi, Delirhasannia, Nourani, Sadraddini, & Ghorbani, 2009).  

 r            2.14  

Where N is the total number of parameters used,  is the sum of the product of 

parameters used,  is the sum of the input independent parameters,  is the sum of 

the output dependent parameters, = sum of squared input parameters,  = sum 

of squared output parameters.  

3.4.9 Mean Absolute Error (MAE)  

Mean Absolute Error (MAE) is one of the most straightforward measure criteria used 

to evaluate model prediction performance accuracy and is the absolute value of the 

difference between the predicted value and the actual value (Cimbala, 2011). It 

compares between models whose errors are measured in the same units. MAE indicates 

how large an error is expected on average from the prediction. It is similar in magnitude 

to Root Mean Square Error (RMSE) but slightly smaller. MAE is the mean of all 

absolute errors and measures the closeness of predictions to the similar observation 

(Sharifi et al., 2009). The formula is express as:  

 MAE  ni 1 pv n-av               2.15  

http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence
http://en.wikipedia.org/wiki/Correlation_and_dependence
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 MAE  n n
i 1 ei               2.16  

Where pv is a predicted value, av is actual measured value, ei is the absolute error and 

n is number of instances  

3.4.10 Relative absolute error (RAE)  

Relative absolute error (RAE) is the total absolute error with a similar type of 

normalisation and is the magnitude of the difference between the exact value and the 

prediction value (Witten et al., 2011).  

The Relative absolute error is given by:  

∑ni 1 pv-av  

 RAE                2.17  

-av  

  

3.4.11 Root relative squared error (RRSE)  

Root relative squared error (RRSE) is relative to what it would have been if a simple 

predictor had been used. Relative squared error takes the total squared error and 

normalises it by dividing by the total squared error of the default independent input 

variables (Witten et al., 2011).   

Therefore, lower values of RRSE are better but larger values higher than 100% indicate 

a system is doing worse instead of predicting the mean.   

Mathematically, the Root Relative Squared Error (RRSE) of an individual program 

was evaluated by the equation:  

∑n pv- 

 RRSE              2.18  

Where pv is a predicted value by the individual program, av is actual value and    ̅is  

√ av  i 1 
∑   n 
i - 1 a   - av  
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3.4.12 Limitations of the experimental research  

The vertical flow constructed wetlands required expert participation in its design and 

construction; the system requires regular maintenance, and constant electricity is also 

needed for the water circulation along the system, the temperature will be increased 

when required to maintain the higher temperature in heating cycle and to decrease the 

temperature for the cooling mode. Not all part of the system is locally available, 

example Titan 350 aqua Medic machine.   

The vertical flow constructed wetlands monitored and evaluated in this experimental 

research are located the greenhouse under the enabling environments that are semi-

controlled by a human being (researchers), which is incomparable with natural 

wetlands in reality. Moreover, however, the research results and finding can serve as a 

prototype to be used in the design and construction in further research finding and 

improving new wetlands system to be operated in different climates condition. 

Furthermore, considering natural wetlands employ large area of land and natural 

energy inputs in abundance (sunlight) for its uses, which serves as an avenue for 

various types of microorganisms to reside, the constructed wetland set-up used in this 

study could not represent the actual requirement of the enormous land area involved in 

the natural field.  
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3.5 Chapter summary  

This chapter explains the vertical flow constructed wetland systems experimental set-

up used for the research, which includes design and mode operation. It also explains 

how the treatment performance of the constructed wetland is conducted and evaluated 

by using the removal rate formula. It also describes the method employed to develop 

and design two data mining predictive model to predict the wastewater treatment 

performance of vertical flow constructed wetland system (VFCWs) by predicting water 

quality parameters used in the study. 
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Chapter 4: Assessment of General Treatment Performance of the system  

4.1 Introduction  

This chapter summarises and explains the overall wastewater treatment performance 

often (10) different filters of vertical-flow constructed wetlands system. It also 

summaries results and discussion of the critical water quality parameters and their 

statistical differences for the period of the study, these include influent and effluent 

water quality, based on the methods described in Chapter 3.   

4.2 Inflow water qualities  

Study on water quality was conducted in order to determine the water quality of the 

inflow concentration. The investigations were also performed using water samples, 

which were collected on a weekly basis from December 2014 to March 2018. The raw 

sample of the collected wastewater quality was examined and tabulated in this section. 

The resulting tabulation was then interpreted and analyses.  

The average mean Inflow 1 concentrations of water quality parameters in the 

wastewater sample were monitored and measured for more than three (3) years of 

operation. The inflow sample was investigated and analysed and then compare with 

treated outflow sample to check the performance of the constructed wetlands and the 

quality of the water sample. The composition of the wastewater inflow usually varied 

throughout the experiment. Inflow values fluctuated across for all the water quality 

parameters. Moreover, the source of the water comes mainly from the household, food 

stalls, laundry services and groundwater run up.  

Table 4.1 shows the overall mean inflow concentrations of the water quality variable 

for the wetland Filters 1 to 4 and Filter 9 and 10. The inflow for these filters was 

composed of 50% wastewater and 50% de-chlorinated tap water for the four (4) 

experimental period. The wastewater quality was variable during the collection period 

and was contained most of the domestic wastewater (wastewater mixed surface water 

runoff and minimum percentage of the industrial wastewater constituent) dilute with 

clean dechlorinated water. COD was used as a criterion to differentiate between low 

and high loads of the inflow concentration. An inflow COD of about 105 mg/l (usually 

between a range of 43 and 120 mg/l) was set for wetlands with a low loading rate base 
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on this research finding (Filters 1, 2, 3, 9 and 10). The remaining Filters 7 and 8 

received raw wastewater without dilution.  

Table 4.1: Overall mean inflow 1 water quality of the raw domestic wastewater dilute 

with clean dechlorinated tap water (50% wastewater + 50% fresh water) from 03/12/14 

to 28/03/18  

  Inflow 1     

Parameter  Unit   Number  Mean  Maximum  Minimum  SD  

Chemical oxygen demand   mg/l  210  155.79  196.8  84.8  25.46  

Biological oxygen demand  mg/l  212  88.35  108  32  12.371  

Ortho-phosphate-phosphorus  mg/l  205  9.01  15.3  5.76  1.54  

Nitrate-nitrogen  mg/l  199  1.12  1.99  0.54  0.2651  

Ammonia-nitrogen  mg/l  214  7.75  9.94  5.02  1033  

Suspended solid   mg/l  221  13.59  17  5  1.351  

Turbidity   NTU  223  15.77  19  10.4  2,445  

Electrical conductivity  mS/m  222  682  987  270  113.16  

  

Table 4.2 shows the overall mean inflow 2 concentrations of the water quality variable 

for the wetland filters 7 and 8. These filters were loaded with raw domestic wastewater 

without dilution for the experimental period from 03/12/14 to 28/03/18.  

Generally, the recorded data of the water quality parameters as observed shows a 

relatively high variability. This variability indicates the use of high concentration of 

real urban wastewater (Sani et al., 2013; Al-Isawi et al., 2015; Rawaa H K Al-Isawi, 

Scholz, & Al-Faraj, 2016).   Out of the eleven water quality parameters used in this 

research, COD was used as a criterion to differentiate between low and high loads of 

the inflow concentration. An inflow COD of about 232 mg/l (usually between a range 

of 122 and 620 mg/l) was set for wetlands with a high loading rate (Filters 7 and 8). 
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The remaining Filters 1 to 4 and Filters 9 and 10 received wastewater diluted with de-

chlorinated tap water.  

Table 4.2 and 4.3 indicated the yearly mean inflow of water quality parameters 

concentration before feeding into the different filters of the wetland systems. It also 

includes yearly minimum and maximum values as well as standard deviation values 

for the eight different water quality parameters used in the study. The composition of 

the wastewater varied over time and the range of pollutant concentration in the inflow 

wastewater to the CWs were BOD (62 – 195 mg/l), COD (140 – 312 mg/l) , PO4-P 

(5.5 – 28.60 mg/l), NO3-N (0.86 – 2.98 mg/l),  NH4-N (7.79 – 24.76 mg/l), suspended 

solid SS (13 – 38 mg/l), turbidity (12.12 – 36.5NTU), electrical conductivity (EC) 

(710- 1252 mS/m). It was discovered that the characteristics of the source wastewater 

did not change over time as wastewater is pre-treated from wastewater treatment plant: 

base on the water quality monitoring data, this show how the inflow concentration is 

in its state of pollution. High concentration of different water quality parameters was 

observed in the flow, which suggests the water quality control, and hence management 

of the inflow becomes an issue of great concern.  

Table 4.2: Overall mean inflow 2 water quality of the raw domestic wastewater 

without dilution (100% wastewater) from 03/12/14 to 28/03/18  

  Inflow 2     

Parameter  Unit   Number  Mean  Maximum  Minimum  SD  

Chemical  oxygen 

demand   

mg/l  210  265  313  54  36.968  

Biological  oxygen 

demand  

mg/l  212  154  193  52  29.935  

Ortho-

phosphatephosphorus  

mg/l  205  17.13  44.4  2.89  4.596  

Nitrate-nitrogen  mg/l  199  1.895  2.98  0.864  0.418  

Ammonia-nitrogen  mg/l  214  15.81  18.94  6.1  2.331  
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Turbidity  mg/l  221  23.97  36.5  12.12  2.578  

Suspended solid  NTU  223  25.34  38  13  3.099  

Electrical conductivity  mS/m  222  980.28  1252  588  86.67  

  

Table 4.3 showed the statistics of the overall inflow 1 after dilution for the four 

experimental periods during these investigations. Each of the water quality for the 

inflow 1 was statistical analyses and presented in the table according to each of the 

stage or periods, because of the variability nature of the water quality parameters in the 

sample.  

  

  

Table 4.3: Overall mean inflow water quality parameters of the raw domestic 

wastewater mixed with dechlorinated tap water (after dilution) starting from 03/12/14 

to 28/03/18  

Inflow 1  

The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  Mean  Maximum  Minimum  SD  

COD  mg/l  49  158.5  192  106.3  19.396  

BOD  mg/l  46  89.33  102  58  8.937  

PO4-P  mg/l  52  8.41  9.89  6.3  0.796  

NO3-N  mg/l  44  1.24  1.88  0.81  0.279  

NH4-N  mg/l  46  7.83  9.94  6.23  0.922  

SS  mg/l  58  12.71  18  5  2.067  
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TBD  NTU  58  12.71  14.9  8.05  1.779  

EC  mS/m  58  651.28  835  270  97.243  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l  54  152.23  186.8  88.3  22.72  

BOD  mg/l  56  89.31  104  56  12.483  

PO4-P  mg/l  59  8.87  11.6  5.76  0.979  

NO3-N  mg/l  60  1.15  1.91  0.823  0.253  

NH4-N  mg/l  60  0.872  9.7  5.19  1.0734  

SS  mg/l  68  13.7  17  10  1.333  

TBD  NTU  67  13.63  14.98  8.4  1.253  

EC  mS/m  69  717.76  896  514  106.74  

The third stage of the experiment 26/09/2016 to 25/09/2017  

COD  mg/l  65  153.6  189.8  84.8  29.76  

BOD  mg/l  64  83.34  108  32  14.232  

PO4-P  mg/l  64  9.542  15.3  5.76  1.735  

NO3-N  mg/l  65  1.017  1.99  0.54  0.213  

NH4-N  mg/l  68  7.941  9.746  5.23  0.919  

SS  mg/l  70  13.971  16  9  0.963  

TBD  NTU  70  13.379  15.17  10.45  1.138  

EC  mS/m  70  711.909  987  532  102.632  
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Table 4.3: Cont.  

The fourth stage of the experiment 26/09/2017 to 28/03/2018  

COD  mg/l  29  158.036  196.8  80.6  31.197  

BOD  mg/l  30  88.324  100  45  10.565  

PO4-P  mg/l  31  10.279  14.7  7.3  1.867  

NO3-N  mg/l  30  1.065  1.621  0.761  1.065  

NH4-N  mg/l  33  7.795  9.4  5.23  1.101  

SS  mg/l  35  14.059  16  9  1.413  

TBD  NTU  35  12.55  14.77  9.39  1.474  

EC  mS/m  35  606.54  789  334  106.34  

  

Table 4.4 showed the statistics of the overall inflow 2 water for the four experimental 

periods during these investigations. Each of the water quality for the inflow 2 was 

statistical analyses and presented in the table according to each of the stage or periods, 

because of the variability nature of the parameters in the sample. This inflow was used 

for Filter 7 and 8, which is highly variable and was comprised mainly of domestic 

wastewater and surface water runoff, the component of industrial wastewater was 

minimal. The wastewater was in its raw state without dilution. 
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Table 4.4: Mean inflow 2 water quality parameters of the raw domestic wastewater 

(without dilution) starting from 03/12/14 to 28/03/18  

   Inflow 2    

Parameter  Unit  Number  Mean  Maximum  Minimum  SD  

COD  mg/l    276  312  268  11.639  

BOD  mg/l    165.28  194  124  18.485  

PO4-P  mg/l    18.1  44.8  11.3  4.595  

NO3-N  mg/l    1.703  2.949  1.065  0.3643  

NH4-N  mg/l    16.52  22.87  12.76  2.2692  

SS  mg/l    25.7  28  21  2.9615  

TBD  NTU    23.49  36.5  12.12  4.003  

EC  mS/m    974.441  1252  710  73.944  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l    270.99  313  178.5  21.4811  

BOD  mg/l    161.36  196  124  17.129  

PO4-P  mg/l    15.4  26.78  7.52  3.341  

NO3-N  mg/l    1.9532  2.954  0.864  0.3977  

NH4-N  mg/l    16.13  24.7  12.5  2.4368  

SS  mg/l    25.38  38  14  3.2789  

TBD  NTU    23.633  26.7  13.64  1.9749  

EC  mS/m    970.143  2204  780  67.2943  

The third stage of the experiment 26/09/2016 to 25/09/2017  
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COD  mg/l  65  260.274  311.8  145.6  36.551  

BOD  mg/l  64  141.61  188  63.6  25.85  

PO4-P  mg/l  64  17.015  28.9  2.89  4.1657  

NO3-N  mg/l  65  1.0169  2.98  0.98  0.4027  

NH4-N  mg/l  68  15.135  24.76  7.79  2.467  

SS  mg/l  70  25.2609  31  16  2.791  

TBD  NTU  70  24.642  27.7  20.43  1.535  

EC  mS/m  70  980.603  1183  588  107.52  

The fourth stage of the experiment 26/09/2017 to 28/03/2018  

COD  mg/l  29  254.243  306.8  136.6  47.628  

BOD  mg/l  30  140.09  168  62  20.095  

PO4-P  mg/l  31  19.492  28.65  14.43  3.758  

NO3-N  mg/l  30  2.159  2.98  1.32  0.4307  

NH4-N  mg/l  33  14.81  18.93  12.67  1.4024  

SS  mg/l  35  24.824  32  13  3.267  

TBD  NTU  35  24.175  28.43  21.6  1.571  

EC  mS/m  35  1021.34  1192  830  81.23  

  

Note above features are for filter 7 and filter 8 only which received a full dose of inflow 

sample (wastewater only). The remaining six filters received wastewater mixed with 

water  

(half dose wastewater and half dose de-chlorinated tap water). The undiluted influent 

concentrations for COD, BOD, ammonia nitrogen, nitrate-nitrogen, Ortho-
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phosphatephosphorus, SS, DO and turbidity were 256 mg/l, 138 mg/l, 23 mg/l, 14 mg/l, 

16 mg/l, 21 mg/l, 8.5 mg/l, 20 NTU respectively.  

4.3 Pollutants removal and water quality improvement  

4.3.1 Comparison of outflow water qualities  

Vertical flow constructed wetland wastewater treatment performance was calculated 

and evaluated by yearly and seasonal performance and temperature effect using, 

removal rate also known as modified first-order kinetic model or KC* model. It is 

designed base on first order equation and was first introduced by Kadlec & Knight, 

(1996), which was tested and broadly applied to be efficient, and a robust model for 

evaluating wastewater treatment performance of a constructed wetland. Many 

contaminants concentration reduce drastically in the wastewater inflow when they pass 

through the constructed wetland (Robert H Kadlec, 2000).  

Three years and four months (40 months) of performance data from a vertical flow 

constructed wetland system receiving urban wastewater were used to determine 

treatment performance. The built wetland performance was evaluated by yearly and 

seasonal performance and temperature effect using first order-order based model as 

contained in equation 3 (Robert H Kadlec, 2000; Robert H Kadlec & Wallace, 2008). 

The performance of the constructed wetland stabilised, and a significant reduction in 

pollutant concentration of the outflow treated water was obtained when compared with 

the pollutant concentration of inflow wastewater. Also, a considerable increase of 

dissolved oxygen was obtained.  

4.3.2 Assessment of organic matter Parameters removal (COD and BOD)  

Constructed wetland system is proved to be removing several pollutants including 

organic matter. Biological matter parameters (COD and BOD) are the parameters used 

to assess and analyse organic matter concentration present in wastewater. Moreover, 

they are the two most popular parameters used to identify the wastewater composition 

(Abdalla & Hammam, 2014). Organic matter removal mechanism in constructed 

wetlands include deposition, aerobic, anaerobic, adsorption, filtration, and microbial 

metabolism (Hamzah & Jailani, 2002; Stefanakis, Akratos, Gikas, & Tsihrintzis, 

2009).  BOD and COD function in a similar way, they both measure the organic matter 
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level in wastewater. However, COD is more common, measuring all the organic 

matters that are oxidised chemically. BOD precisely aims biodegradable compounds. 

According to many research literatures, confirm that constructed wetland systems are 

effective in removing BOD, COD from wastewater these include urban, industrial and 

agricultural wastewater, landfill leachate, acid mine water and urban storm runoff.   In 

this study, the overall assessment of wastewater treatment performance of water quality 

parameters is also shown in Table 4.2 these include the organic matter parameters 

(COD and BOD) and other water quality parameters.  

4.3.2.1 Biological Oxygen Demand (BOD) removal  

BOD is a numerical measurement of the amount of oxygen consumed by 

microorganisms to oxidise of organic matter, and it comprises nitrogenous and 

carbonaceous oxidation (Mazumder, 2013). The BOD is oxygen-consuming is 

considered as significant pollutants in wastewater. The supply of oxygen is, therefore, 

a recommendable matter regarding constructed wetlands, particularly in the treatment 

of strong wastewaters. BOD removal is calculated and evaluated by a first-order model, 

relatively, the according to average removal results, a significant reduction in BOD 

concentration of the effluent wastewater was obtained. BOD was used to evaluate 

organic matter concentration in constructed wetlands used in the present research.  

Many research studies indicated that constructed wetlands are very useful in 

eliminating BOD, after some pre-treatment, to achieve outflow quality (Kadlec & 

Knight, 1996). The result shows that all filters performed relatively well in term of 

COD and BOD removal as depicted in Figure 4.1. This can be explained by the fact 

that, the biological activity necessary for microbial degradation takes time to develop 

and as such, the treatment efficiency can be expected to improve after microbial 

adjustment as confirmed by (Zidan et al. 2015; Sani et al., 2013; R. H K Al-Isawi et 

al., 2015).   The BOD removal performance efficiencies generally improved over time. 

This improvement can be attributed to the development of mature biomass adjusted to 

the environmental boundary conditions of the constructed wetland system (L. Zhang 

et al., 2010). BOD removal in the constructed wetland is typically considered to be 

more of a microbial mediated process specifically executed by attached aerobic and 

anaerobic bacteria.  
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It was discovered that BOD removal efficiency was greater than 60 % in almost all the 

season of the year (Table 4.6), but during the summer season, it recorded higher than 

that. The BOD5 which was considered as significant pollutants in wastewater reduced 

significantly in  

VFCW. This reduction indicates that the wetlands were able to considerably reduce the 

level of BOD in the raw wastewater outflow. The outflow concentration of BOD 

pollutant was directly connected to the inflow pollutant load concentration. The plot 

(Figure 4.1) shows that the changes in the inflow and outflow concentration for the 

BOD during the experimental process was very high symbolising the ability of a 

constructed wetland to remove BOD from wastewater.   

The reason for the excellent performance observed in the current study by the wetland 

system might be connected to the ongoing capability of the microorganism to 

biodegrade the organic matter particles which accumulated over time in different filters 

of the system. However, to the intermittent aeration that might have enhanced the 

biodegradation of the pollutants and averting aggregation of the organic particles in the 

substrate media, subsequently leading to within bed clogging abatement of the wetland 

systems.  This phenomenon has been backed and confirmed by  Al-Isawi et al., (2015) 

in their dedicated research. However, the litter zone formed on top of each filter which 

was due to both the high strength and SS load of the wastewater, but mainly due to the 

dead and dry macrophyte plant material. The harvested (trim) macrophyte plant 

material in the winter season and later returned to the corresponding wetland when they 

are completely dry filters as confirmed by Sani et al., (2013) and Scholz & Lee, (2005).  

Because of the previous presence of diesel (period of petroleum hydrocarbon 

contamination) into the inflow of filters 1, 3, 5 and 7, there was a sharp decrease in 

overall pollutant removal performance observed. The plant (common reed) died, which 

were attributed to the presence of hydrocarbon contamination. New common reed plant 

was re-planted for those filters on Monday 12th September 2016 base on the result 

analysis conduct in the laboratory. It was observed that within the first three months 

the treatment performance of new the plants was recorded very low (start-up time). 

After that, the performance was found to be very significant in pollutant removal than 

the first three (3) months before they adopt, become mature and continue treating the 
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wastewater properly like the remaining filter that was not previously by the artificial 

contribution of hydrocarbon.  

Removal efficiency for BOD generally improved over time (Tables 4.5). This 

enhancement can be credited to the mature biomass growth modified to the 

environmental boundary conditions of the constructed wetland system. The overall 

performance of mean BOD removal for Filters 7 and 8 (both designed to received high 

pollutant loading rate) were recorded to be greater mean BOD removal for filters 3 and 

4 (both designed to accepted low pollutants loading rate). The statistically significant 

difference between them was indicated as revealed in Table 4.14, which summarises 

an evaluation of the statistically significant differences among outflow water quality 

parameters of different constructed filters using the non-parametric Mann-Whitney U-

test. Filters 3 and 4 were compared with Filter 9 provides an understanding of the 

consequence of contact time on the wastewater treatment performance by the 

constructed wetland. The overall removal performance efficiency of the parameters by 

the wetland filters was irrespective of the aggregate size was slightly different. The 

Filters 1 to 4 mean removals of BOD were also related, demonstrating that the size of 

the gravel (porous media) may not change (Al-Isawi et al., 2015; Al-isawi et al., 2015; 

Almuktar, Scholz, Al-Isawi, & Sani, 2015; Sani et al., 2013a) and the performance 

efficiency of the vertical flow constructed wetland of each filter. As can be seen in 

table 4.3, the removal of pollutants performance efficiency of vertical flow constructed 

wetland indicated a good result, with all or many water quality parameters used in the 

research, which showed a considerable decrease of pollutants. The treatment 

performance efficiency of wastewater by constructed wetland has improved, from 

results of BOD5 and COD and other water quality parameters in Table 4.6 in 

comparison with UK water quality standard.  

Water quality data for all wetland influents and effluents for the monitoring period 

from December 2014 to March 2018 are tabulated and summarised in Tables 4.5. The 

overall removal performance of water quality parameter concentration was generally 

higher than 60% except for the second stage of the experimental period, where 32% 

are recorded due to the presence of hydrocarbon contamination. Table 4.14 is the 

summary of the overall assessment and statistically significant differences between 

inflow and outflow water quality parameters of different filters had improved the 
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wastewater quality significantly. This indicates that after treatment it was removed 

entirely to be microbiologically safe for human consumption. The high value of BOD 

indicates a decrease in DO level because oxygen is consumed by aerobic bacteria that 

make the aquatic life survival difficult.  

Table 4.5: Comparison of outflow water quality for experimental phases of filter 1 

from 03/12/2014 to 28/03/2018  

Filter 1  

The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  MI  MO  RE (%)  Maximum  Minimum  SD  

COD  mg/l  57  158.505  49.511  68.764  74.000  21.500  15.475  

BOD  mg/l  57  89.328  35.242  60.547  58.000  12.000  13.749  

PO4-P  mg/l  56  8.409  4.457  47.005  7.500  1.930  1.458  

NO3-N  mg/l  57  1.240  0.457  63.143  0.921  0.011  0.177  

NH4-N  mg/l  57  7.832  4.252  45.712  8.750  1.010  1.744  

SS  mg/l  57  12.684  3.386  73.306  9.000  0.000  2.641  

TBD  NTU  57  12.706  3.433  72.979  8.200  0.850  1.663  

EC  mS/m  57  651.276  314.246  51.749  504.000  120.000  125.212  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l  70  150.817  115.351  23.516  189.600  28.500  47.927  

BOD  mg/l  70  90.058  60.347  32.991  94.000  22.000  21.624  

PO4-P  mg/l  71  8.883  6.092  31.425  9.310  2.580  1.996  

NO3-N  mg/l  70  1.149  0.756  34.217  1.433  0.294  0.285  

NH4-N  mg/l  70  7.766  5.556  28.454  8.230  2.620  1.540  
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SS  mg/l  69  13.700  6.580  51.973  11.000  0.000  2.287  

TBD  NTU  69  13.626  5.931  56.476  14.060  1.640  3.153  

EC  mS/m  70  717.757  442.800  38.308  690.000  195.000  136.937  

The third stage of the experiment 26/09/2016 to 25/09/2017  

COD  mg/l  71  153.613  67.697  55.930  477.000  16.600  55.537  

BOD  mg/l  70  83.324  44.610  46.462  88.000  12.000  20.083  

PO4-P  mg/l  69  9.309  6.031  35.216  9.780  2.010  1.710  

NO3-N  mg/l  70  1.017  0.580  43.012  0.987  0.101  0.261  

NH4-N  mg/l  70  7.940  5.078  36.048  8.140  1.050  1.899  

SS  mg/l  69  13.971  6.116  56.224  15.000  0.000  3.512  

TBD  NTU  70  13.379  5.293  60.440  12.040  0.950  3.116  

EC  mS/m  71  711.909  413.225  41.955  791.000  104.000  164.426  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  157.288  55.123  64.954  79.800  32.700  14.575  

BOD  mg/l  36  88.086  32.000  63.672  48.000  20.000  8.165  

PO4-P  mg/l  32  10.039  4.097  59.195  6.860  2.060  1.391  

NO3-N  mg/l  35  1.064  0.547  48.618  0.796  0.304  0.139  

NH4-N  mg/l  37  7.795  4.299  44.845  7.120  2.070  1.392  

SS  mg/l  35  14.059  4.114  70.735  9.000  1.000  1.953  

TBD  NTU  36  12.778  4.109  67.839  7.060  1.940  1.310  

EC  mS/m  35  619.676  354.143  42.850  589.000  190.000  120.226  
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The traditional UK standard measurement for BOD removal from pre-treated 

wastewater is 20 mg/l and 25 mg/l for sensitive and less sensitive (e.g., many coastal 

discharges) areas, respectively (Royal Commission on Sewage Disposal, 1915).   

 

Figure 4.1: Overall variation in BOD for inflow and outflow 

4.3.2.2 Chemical oxygen demand (COD) removal  

COD is a measure of oxygen requirement of a sample that is needed to oxidise soluble 

and organic matter particles in wastewater by the strong chemical oxidant. Similar to 

BOD, COD was also used to evaluate the concentration of organic matter in 

constructed wetlands. The wastewater organic contaminants commonly measured as 

regards to COD, BOD (Devi & Dahiya, 2006). The COD removal is determined by the 

amalgamation of physical and microbial mechanisms (Darajeh et al., 2016). The high 

removal percentages for COD recorded in the research is due to sedimentation of 

suspended solids and decomposition processes.   

The result shows that all filters demonstrated relatively good COD removal (excluding 

the time close to the start-up and period of petroleum hydrocarbon contamination) as 

depicted in Figure 4.2. This can be explained by the fact that, close to the start-up 

period, the biological activity necessary for microbial degradation takes time to 
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develop and as such, the treatment efficiency can be expected to improve after 

microbial acclimatisation.  

The wastewater treatment performance results of VFCWs regarding removal of 

significant pollutants from urban wastewater is presented in Table 4.2-4.8  

Which is the basic statistics of the water quality variable measured during the 

monitoring period December 2014 to March 2018 in vertical flow constructed wetland 

treating domestic wastewater. As can be seen in the tables 4.1, 4.2, 4.3 and 4.4 1, the 

standard deviations (SD) of all the parameters measured is relatively normal. SD values 

of the parameters are higher or lower in comparison with other studies. The study 

conducted by Abyaneh H.Z RSD concentration of COD is 0.35, and that of BOD is 

0.28. Such differences may be attributed to climate change, concentration difference 

of the sample as well water quality of the region (Zare Abyaneh, 2014).  

To compare the effect of different operational conditions on the performance of the 

wetland, the removal efficiency and mass removal rate were calculated and are 

provided in the tables. The constructed wetland performs exceptionally well in treating 

domestic wastewater. The constructed wetland can handle raw domestic wastewater 

without any dilution  

The outcomes of BOD and COD removal of this research study was confirmed with 

other findings of the previous research study. In research study of Stefanakis & 

Tsihrintzis, (2009), they studied the effect of various design parameters of constructed 

wetland such as Several types of porous media materials (carbonate material, material 

from river bed, zeolite and bauxite), two vegetation types (common reeds and cattails) 

and three total thicknesses of the porous media were used in 10 constructed wetlands. 

After one year of monitoring treatment performance of wetland systems, the result 

obtained indicated that removal Organic matter pollutants were recorded in all units, 

as it reached on the mean average of 71,1 % and 66,9 % for BOD and COD, 

respectively. It was discovered in the research study of (Vymazal, 2010), that high 

removals performance of organics matter load was recorded in all filters of constructed 

wetlands this is due to the aerobic microbial degradation processes.  
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In many previous research COD values are always measured and recorded to be higher 

than BOD5 values, and the ratio between them will differ subject to the features of the 

wastewater.  

This ratio is used generally as an indicator of biodegradation ability (Hill, 2003).  

Table 4.6:  Comparison of outflow water quality for experimental phases of filter 2 

from 03/12/2014 to 28/03/2018  

 Filter 2   

 First stage of the experiment 03/12/2014 to 25/09/2015   

Parameter  Unit  Number  MI  MO  RE (%)  Maximum  Minimum  SD  

COD  mg/l  57  158.505  49.989  68.462  76.500  22.700  14.717  

BOD  mg/l  57  89.328  34.865  60.970  55.000  12.000  13.423  

PO4-P  mg/l  56  8.409  4.529  46.141  7.650  1.980  1.435  

NO3-N  mg/l  57  1.240  0.432  65.181  0.779  0.022  0.193  

NH4-N  mg/l  57  7.832  4.320  44.848  8.480  1.030  1.881  

SS  mg/l  57  12.684  4.281  66.252  9.000  0.000  2.469  

TBD  NTU  57  12.706  3.490  72.532  7.510  0.870  1.671  

EC  mS/m  57  651.276  308.018  52.706  508.000  115.000  123.861  

 The second stage of the experiment 26/09/2015 to 25/09/2016   

COD  mg/l  70  150.817  45.821  69.618  72.700  14.900  16.995  

BOD  mg/l  70  90.058  33.986  62.262  52.000  12.000  10.963  

PO4-P  mg/l  71  8.883  4.329  51.264  7.980  1.840  1.443  

NO3-N  mg/l  70  1.149  0.448  60.987  1.231  0.120  0.255  

NH4-N  mg/l  70  7.766  4.284  44.844  7.410  1.010  1.658  
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SS  mg/l  69  13.700  4.449  67.524  9.000  0.000  2.350  

TBD  NTU  69  13.626  3.279  75.937  5.890  0.790  1.338  

EC  mS/m  70  717.757  302.186  57.899  528.000  109.000  110.071  

 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  71  153.613  48.014  68.743  88.600  17.600  16.309  

BOD  mg/l  70  83.324  32.443  61.064  52.000  14.000  10.004  

PO4-P  mg/l  69  9.309  4.785  48.599  6.850  2.090  1.129  

NO3-N  mg/l  70  1.017  0.439  56.879  0.768  0.119  0.185  

NH4-N  mg/l  70  7.940  3.906  50.807  7.470  1.010  1.743  

SS  mg/l  69  13.971  4.420  68.361  9.000  0.000  2.428  

TBD  NTU  70  13.379  3.184  76.201  5.520  0.790  1.290  

EC  mS/m  71  711.909  289.000  59.405  511.000  110.000  115.421  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  157.288  55.451  64.745  88.600  34.800  15.043  

BOD  mg/l  36  88.086  32.583  63.010  52.000  20.000  9.323  

PO4-P  mg/l  32  10.039  4.243  57.741  6.890  2.090  1.374  

NO3-N  mg/l  35  1.064  0.529  50.328  0.770  0.242  0.188  

NH4-N  mg/l  37  7.795  4.204  46.072  6.460  1.210  1.345  

SS  mg/l  35  14.059  3.600  74.393  9.000  1.000  1.808  

TBD  NTU  36  12.778  3.889  69.563  5.920  1.940  1.277  

EC  mS/m  35  619.676  325.086  47.539  516.000  171.000  116.825  

SD: Standard deviation, RSD: relative standard deviation, RE: removal efficiency  
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Table 4.7: Comparison of outflow water quality for experimental phases of filter 3 

from 03/12/2014 to 28/03/2018  

 Filter 3  

 The first stage of the experiment 03/12/2014 to 25/09/2015   

Parameter  Unit  Number  MI  MO  RE (%)  Maximum  Minimum  SD  

COD  mg/l  57  158.505  51.600  67.446  76.700  25.000  14.957  

BOD  mg/l  57  89.328  35.316  60.465  58.000  12.000  12.311  

PO4-P  mg/l  55  8.409  4.534  46.085  8.780  1.670  1.891  

NO3-N  mg/l  57  1.240  0.434  64.972  0.838  0.144  0.173  

NH4-N  mg/l  56  7.832  4.298  45.124  7.440  1.020  1.768  

SS  mg/l  57  12.684  4.333  65.837  9.000  1.000  2.219  

TBD  NTU  57  12.706  3.357  73.580  5.420  0.750  1.350  

EC  mS/m  57  651.276  313.842  51.811  499.000  111.000  124.929  

 The second stage of the experiment 26/09/2015 to 25/09/2016   

COD  mg/l  70  150.817  107.874  58.474  164.000  29.100  42.383  

BOD  mg/l  70  90.058  56.343  47.437  90.000  20.000  23.485  

PO4-P  mg/l  71  8.883  5.909  33.483  9.950  2.460  2.133  

NO3-N  mg/l  70  1.149  0.707  38.510  1.346  0.211  0.258  

NH4-N  mg/l  70  7.766  5.554  48.491  8.770  2.250  1.660  

SS  mg/l  69  13.700  7.290  76.789  14.000  2.000  2.543  

TBD  NTU  69  13.626  5.728  57.961  12.130  1.990  2.665  

EC  mS/m  70  717.757  449.386  37.390  670.000  211.000  131.299  
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 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  71  153.613  60.313  60.737  108.900  18.700  25.099  

BOD  mg/l  70  83.324  32.814  60.618  80.000  12.000  14.826  

PO4-P  mg/l  69  9.309  6.201  33.390  8.930  2.330  1.259  

NO3-N  mg/l  70  1.017  0.541  46.822  0.983  0.110  0.255  

NH4-N  mg/l  70  7.940  5.025  57.720  8.640  1.010  2.177  

SS  mg/l  69  13.971  6.029  86.846  16.000  0.000  3.226  

TBD  NTU  70  13.379  5.226  60.940  9.890  0.780  2.987  

EC  mS/m  71  711.909  411.944  42.135  2558.000  109.000  237.839  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  157.288  51.914  66.994  74.700  28.900  13.156  

BOD  mg/l  36  88.086  26.083  70.389  44.000  17.000  5.997  

PO4-P  mg/l  32  10.039  4.843  51.765  8.840  2.260  1.425  

NO3-N  mg/l  35  1.064  0.377  64.569  0.717  0.218  0.136  

NH4-N  mg/l  37  7.795  3.204  58.891  6.110  1.510  1.321  

SS  mg/l  35  14.059  3.257  76.832  9.000  0.000  1.872  

TBD  NTU  36  12.778  3.910  69.400  7.320  1.840  1.252  

EC  mS/m  35  619.676  377.286  39.116  533.000  189.000  109.825  
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Table 4.8: Comparison of outflow water quality for experimental phases of filter 4 

from 03/12/2014 to 28/03/2018  

Filter 4  

The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  MI  MO  PR (%)  Maximum  Minimum  SD  

COD  mg/l  57  158.505  72.302  54.385  741.900  24.000  113.454  

BOD  mg/l  57  89.328  35.018  60.799  54.000  14.000  12.415  

PO4-P  mg/l  57  8.409  4.534  46.084  8.340  1.870  1.710  

NO3-N  mg/l  57  1.240  0.454  63.360  0.890  0.043  0.184  

NH4-N  mg/l  57  7.832  4.558  41.806  6.980  1.110  1.574  

SS  mg/l  57  12.684  4.298  66.113  9.000  1.000  2.302  

TBD  NTU  57  12.706  3.392  73.307  5.580  0.890  1.404  

EC  mS/m  57  651.276  303.982  53.325  531.000  111.000  143.341  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l  70  150.817  47.603  68.437  78.500  18.900  15.549  

BOD  mg/l  70  90.058  33.571  62.722  54.000  14.000  10.980  

PO4-P  mg/l  71  8.883  4.106  53.783  7.290  1.300  1.583  

NO3-N  mg/l  70  1.149  0.401  65.111  0.752  0.110  0.184  

NH4-N  mg/l  69  7.766  4.085  47.403  6.870  1.010  1.488  

SS  mg/l  69  13.700  4.449  67.524  8.000  0.000  2.411  

TBD  NTU  69  13.626  3.442  74.741  5.370  0.790  1.106  

EC  mS/m  70  717.757  301.486  57.996  508.000  108.000  114.868  
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The third stage of the experiment 26/09/2016 to 25/09/2017  

COD  mg/l  71  153.613  47.335  69.185  69.500  19.500  14.682  

BOD  mg/l  70  83.324  33.800  59.435  52.000  12.000  10.371  

PO4-P  mg/l  69  9.309  4.554  51.076  7.730  1.970  1.399  

NO3-N  mg/l  70  1.017  0.408  59.881  0.654  0.113  0.165  

NH4-N  mg/l  70  7.940  4.243  46.563  7.050  1.120  1.569  

SS  mg/l  69  13.971  4.029  71.162  8.000  1.000  2.092  

TBD  NTU  70  13.379  3.229  75.863  5.780  0.820  1.435  

EC  mS/m  71  711.909  298.169  58.117  463.000  102.000  110.651  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  157.288  52.154  66.842  81.500  30.500  13.870  

BOD  mg/l  36  88.086  30.425  65.460  54.000  20.000  8.255  

PO4-P  mg/l  32  10.039  4.575  54.429  7.090  1.640  1.337  

NO3-N  mg/l  35  1.064  0.401  62.371  0.649  0.152  0.145  

NH4-N  mg/l  37  7.795  4.600  40.982  7.280  1.650  1.513  

SS  mg/l  35  14.059  3.057  78.255  8.000  1.000  1.912  

TBD  NTU  36  12.778  3.839  69.954  5.780  1.490  1.264  

EC  mS/m  35  619.676  368.457  40.540  533.000  186.000  110.927  
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Table 4.9: Comparison of outflow water quality for experimental phases of filter 9 

from 03/12/2014 to 28/03/2018  

Filter 9  

The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  MI  MO  RE (%)  Maximum  Minimum  SD  

COD  mg/l  73  158.505  74.504  52.996  756.000  15.800  132.444  

BOD  mg/l  72  89.328  58.000  35.070  58.000  12.000  12.644  

PO4-P  mg/l  78  8.409  4.567  45.690  6.980  1.650  1.437  

NO3-N  mg/l  72  1.240  0.452  63.536  0.782  0.102  0.186  

NH4-N  mg/l  73  7.832  4.103  47.608  6.980  1.030  1.698  

SS  mg/l  73  12.684  4.438  65.009  8.000  0.000  2.526  

TBD  NTU  74  12.706  3.389  73.329  5.640  0.720  1.417  

EC  mS/m  73  651.276  307.534  52.780  498.000  104.000  124.841  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l  90  150.817  48.478  67.857  80.500  18.500  15.017  

BOD  mg/l  91  90.058  62.000  31.155  62.000  12.000  12.776  

PO4-P  mg/l  88  8.883  4.713  46.951  7.210  2.110  1.149  

NO3-N  mg/l  89  1.149  0.434  62.210  0.773  0.119  0.168  

NH4-N  mg/l  91  7.766  4.106  47.128  7.760  1.070  1.592  

SS  mg/l  89  13.700  4.404  67.850  9.000  0.000  2.316  

TBD  NTU  91  13.626  3.159  76.814  5.620  0.230  1.387  

EC  mS/m  88  717.757  304.739  57.543  519.000  102.000  121.247  
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Table 4.9: Cont. 

 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  89  153.613  54.052  64.813  79.100  37.400  10.290  

BOD  mg/l  88  83.324  62.000  25.592  62.000  12.000  11.496  

PO4-P  mg/l  88  9.309  4.575  50.850  7.070  1.970  1.345  

NO3-N  mg/l  87  1.017  0.428  57.958  0.760  0.048  0.146  

NH4-N  mg/l  90  7.940  4.003  49.584  6.890  1.030  1.635  

SS  mg/l  90  13.971  4.456  68.109  8.000  0.000  2.237  

TBD  NTU  90  13.379  3.196  76.115  5.680  0.810  1.317  

EC  mS/m  88  711.909  289.091  59.392  512.000  101.000  121.275  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  44  157.288  54.895  65.099  79.100  38.500  13.759  

BOD  mg/l  42  88.086  54.000  38.696  54.000  16.000  10.218  

PO4-P  mg/l  41  10.039  3.756  62.591  6.670  1.180  1.559  

NO3-N  mg/l  44  1.064  0.492  53.799  0.837  0.274  0.137  

NH4-N  mg/l  44  7.795  4.511  42.131  7.281  2.220  1.618  

SS  mg/l  44  14.059  4.636  67.022  9.000  1.000  2.365  

TBD  NTU  44  12.778  3.770  70.497  5.680  1.950  1.264  

EC  mS/m  42  619.676  345.286  44.280  522.000  193.000  128.476  
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Table 4.10: Comparison of outflow water quality for experimental phases of filter 1 

from 03/12/2014 to 28/03/2018  

 Filter 10  

 The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  MI  MO  PR (%)  Maximum  Minimum  SD  

COD  mg/l  91  158.505  50.457  68.167  366.000  14.000  37.853  

BOD  mg/l  88  89.328  55.000  38.429  55.000  12.000  12.201  

PO4-P  mg/l  86  8.409  4.890  41.850  6.910  1.870  1.403  

NO3-N  mg/l  93  1.240  0.439  64.562  0.736  0.051  0.181  

NH4-N  mg/l  93  7.832  4.238  45.895  6.980  1.020  1.764  

SS  mg/l  95  12.684  4.421  65.145  8.000  0.000  2.610  

TBD  NTU  96  12.706  3.369  73.487  5.650  0.860  1.276  

EC  mS/m  92  651.276  326.370  49.888  497.000  106.000  122.895  

 The second stage of the experiment 26/09/2015 to 25/09/2016   

COD  mg/l  113  150.817  48.002  68.172  76.000  18.900  15.034  

BOD  mg/l  108  90.058  60.000  33.376  60.000  10.000  12.402  

PO4-P  mg/l  113  8.883  4.961  44.159  7.020  2.180  1.194  

NO3-N  mg/l  107  1.149  0.443  61.436  0.791  0.093  0.190  

NH4-N  mg/l  117  7.766  4.255  45.210  7.960  1.090  1.746  

SS  mg/l  119  13.700  4.294  68.656  9.000  0.000  2.454  

TBD  NTU  114  13.626  3.135  76.995  5.670  0.450  1.299  

EC  mS/m  113  717.757  314.407  56.196  522.000  102.000  124.370  
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 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  105  153.613  53.944  64.883  80.500  4.300  11.418  

BOD  mg/l  112  83.324  64.000  23.191  64.000  12.000  11.511  

PO4-P  mg/l  109  9.309  6.315  32.166  75.620  2.520  6.741  

NO3-N  mg/l  116  1.017  0.413  59.409  0.796  0.087  0.192  

NH4-N  mg/l  114  7.940  4.115  48.169  7.120  1.320  1.565  

SS  mg/l  117  13.971  4.376  68.678  8.000  0.000  2.279  

TBD  NTU  116  13.379  3.297  75.356  5.830  0.760  1.321  

EC  mS/m  114  711.909  302.974  57.442  515.000  103.000  124.984  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  51  157.288  54.898  65.097  79.400  35.500  13.946  

BOD  mg/l  52  88.086  60.000  31.885  60.000  16.000  11.716  

PO4-P  mg/l  49  10.039  6.221  38.032  8.540  3.720  1.325  

NO3-N  mg/l  55  1.064  0.539  49.405  1.502  0.263  0.208  

NH4-N  mg/l  58  7.795  4.708  39.598  7.470  1.590  1.751  

SS  mg/l  59  14.059  4.000  71.548  9.000  1.000  2.270  

TBD  NTU  57  12.778  3.922  69.309  5.890  1.600  1.355  

EC  mS/m  54  619.676  371.037  40.124  526.000  191.000  122.607  
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Table 4.11: Comparison of outflow water quality for experimental phases of filter 7 

starting from 03/12/2014 to 28/03/2018 

 Filter 7   

 The first stage of the experiment 03/12/2014 to 25/09/2015   

Parameter  Unit  Number  MI  MO  RE (%)  Maximum  Minimum  SD  

COD  mg/l  57  275.634  47.646  82.714  92.000  22.400  18.664  

BOD  mg/l  57  165.281  44.421  73.124  70.000  14.000  15.441  

PO4-P  mg/l  56  18.100  5.613  68.988  8.980  1.630  1.693  

NO3-N  mg/l  57  1.703  0.437  74.348  0.789  0.111  0.164  

NH4-N  mg/l  56  16.516  4.340  73.723  6.750  1.080  1.704  

SS  mg/l  57  25.702  4.526  82.389  8.000  0.000  2.500  

TBD  NTU  57  23.492  3.329  85.831  5.600  0.760  1.325  

EC  mS/m  57  974.441  316.895  67.479  527.000  104.000  131.370  

 The second stage of the experiment 26/09/2015 to 25/09/2016   

COD  mg/l  70  270.991  164.117  39.438  264.000  2.000  88.987  

BOD  mg/l  70  161.364  43.314  73.157  68.000  16.000  13.206  

PO4-P  mg/l  71  15.472  7.048  54.446  14.960  1.530  2.903  

NO3-N  mg/l  71  1.953  0.871  55.421  2.299  0.091  0.698  

NH4-N  mg/l  70  16.134  6.853  57.522  14.870  1.670  3.023  

SS  mg/l  69  25.386  9.261  63.519  21.000  1.000  5.495  

TBD  NTU  69  23.633  9.157  61.253  19.990  2.130  6.030  

EC  mS/m  70  970.143  515.186  46.896  952.000  192.000  189.425  
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 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  71  260.274  61.307  76.445  207.300  18.900  33.953  

BOD  mg/l  70  141.606  41.171  70.925  70.000  12.000  13.899  

PO4-P  mg/l  69  16.838  7.898  53.094  15.330  0.040  2.904  

NO3-N  mg/l  70  1.908  0.674  64.689  2.573  0.066  0.454  

NH4-N  mg/l  70  15.135  6.001  60.351  15.610  1.080  3.371  

SS  mg/l  69  25.261  8.130  67.814  19.000  0.000  5.376  

TBD  NTU  70  24.642  6.964  71.741  19.290  0.790  6.390  

EC  mS/m  71  980.603  463.634  52.720  851.000  102.000  217.567  

  

  

  

Table 4.11: Cont.  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  254.203  57.763  77.277  84.800  36.600  16.787  

BOD  mg/l  36  140.086  45.333  67.639  64.000  22.000  10.975  

PO4-P  mg/l  32  17.491  10.014  42.748  14.770  2.780  2.877  

NO3-N  mg/l  35  2.159  0.509  76.405  0.789  0.245  0.183  

NH4-N  mg/l  37  14.810  4.591  69.001  7.080  2.570  1.328  

SS  mg/l  35  24.824  5.543  77.671  9.000  3.000  2.234  

TBD  NTU  36  24.309  3.308  86.393  12.380  1.590  1.844  

EC  mS/m  35  1021.343  373.686  63.412  557.000  192.000  121.141  



182 

 

  

Table 4.12: Comparison of outflow water quality for experimental phases of filter 8 

from 03/12/2014 to 28/03/2018  

Filter 8  

The first stage of the experiment 03/12/2014 to 25/09/2015  

Parameter  Unit  Number  MI  MO  PR  

(%)  

Maximum  Minimum  SD  

COD  mg/l  57  275.634  47.314  82.835  79.600  19.000  15.808  

BOD  mg/l  57  165.281  45.105  72.710  68.000  16.000  14.598  

PO4-P  mg/l  56  18.100  5.672  68.665  8.650  1.380  1.688  

NO3-N  mg/l  57  1.703  0.447  73.740  0.770  0.114  0.198  

NH4-N  mg/l  57  16.516  4.780  71.061  25.200  1.190  3.166  

SS  mg/l  57  25.702  4.596  82.116  8.000  0.000  2.427  

TBD  NTU  57  23.492  3.736  84.097  18.090  0.860  2.433  

EC  mS/m  57  974.441  303.263  68.878  510.000  101.000  124.362  

The second stage of the experiment 26/09/2015 to 25/09/2016  

COD  mg/l  70  270.991  53.863  80.124  545.900  20.100  61.109  

BOD  mg/l  70  161.364  43.171  73.246  70.000  12.000  14.245  

PO4-P  mg/l  71  15.472  6.794  56.092  14.970  1.640  3.110  

NO3-N  mg/l  71  1.953  0.363  81.401  0.954  0.116  0.164  

NH4-N  mg/l  70  16.134  4.126  74.428  6.910  1.090  1.603  

SS  mg/l  69  25.386  4.348  82.873  8.000  0.000  2.289  
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TBD  NTU  69  23.633  3.967  83.214  52.440  1.090  5.987  

EC  mS/m  70  970.143  303.157  68.751  497.000  104.000  117.633  

  

Table 4.12: Cont.  

 The third stage of the experiment 26/09/2016 to 25/09/2017   

COD  mg/l  71  260.274  52.210  79.940  567.100  19.500  64.216  

BOD  mg/l  70  141.606  42.600  69.916  72.000  12.000  14.911  

PO4-P  mg/l  69  16.838  7.874  53.236  15.110  2.560  2.796  

NO3-N  mg/l  70  1.908  0.432  77.370  0.784  0.087  0.184  

NH4-N  mg/l  70  15.135  4.362  71.179  7.440  1.030  1.634  

SS  mg/l  69  25.261  4.696  81.411  9.000  0.000  2.538  

TBD  NTU  70  24.642  3.078  87.509  5.350  0.740  1.161  

EC  mS/m  71  980.603  307.169  68.675  558.000  102.000  120.316  

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

COD  mg/l  35  254.203  72.677  71.410  643.500  32.000  99.030  

BOD  mg/l  36  140.086  46.694  66.667  67.000  18.000  11.460  

PO4-P  mg/l  32  17.491  10.669  39.005  14.060  7.010  2.277  

NO3-N  mg/l  35  2.159  0.547  74.679  0.784  0.278  0.173  

NH4-N  mg/l  37  14.810  4.760  67.861  7.440  2.450  1.584  

SS  mg/l  35  24.824  5.829  76.520  9.000  2.000  2.236  

TBD  NTU  36  24.309  3.661  84.938  5.910  2.010  1.131  

EC  mS/m  35  1021.343  373.943  63.387  558.000  189.000  121.040  
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The above table for the overall mean outflow and inflow values and standard deviation 

show variation in the influent and effluent concentrations of the constructed vertical 

wetlands and this indicated the flowing treatment rate that the constructed vertical 

wetlands had a high capacity to remove pollutants. The vertical constructed wetlands 

generally had similar ranges of removal efficiency, with the following values: 54.19 – 

84.82% for COD, 63.09 – 75.5% for BOD5, 56.69 – 83.09% for NH4-N, 56.66 – 

86.86% for PO4-P, 42.01 – 50.18% for NO3N, 40.91 – 79.31% for SS, 39.87 – 63.98% 

for DO, 33.89 – 54.80% for EC and 33.89 –  

54.80% for Turbidity. Performance of the vertical constructed wetland system for 

filters 1 – 4, 7 and 8, 9 and 10 were generally recorded high removal efficiency 

performance.  

The traditional UK standard for BOD removal from secondary wastewater is not more 

than 20 mg/l and 25 mg/l for sensitive and less sensitive (e.g., many coastal discharges) 

areas, respectively (Royal Commission on Sewage Disposal, 1915). Depending on 

receiving water or type of industry under consideration but the range will exceed 

60mg/l.  

Table 4.13: Comparison of outflow water quality and air temperature for the control 

filters 

 Filter 5 (Control A)   

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

Paramete 

r  

Unit  Numbe 

r  

M 

I  

MO  PR  Maximum  Minimum  SD  

COD  mg/l  35    63.286  n/a  96.500  51.500  11.583  

BOD  mg/l  36    26.056  n/a  35.200  8.000  7.334  

PO4-P  mg/l  32    5.418  n/a  8.780  2.380  2.237  
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NO3-N  mg/l  35    0.325  n/a  0.576  0.030  0.159  

NH4-N  mg/l  37    2.530  n/a  6.720  -0.036  1.891  

SS  mg/l  35    5.000  n/a  9.000  2.000  2.070  

TBD  NTU  36    3.765  n/a  5.860  1.300  1.191  

EC  mS/ 

m  

35    473.466  n/a  596.000  342.000  66.740  

AT     C                        

 FILTER 6  (Control B)   

 Fourth stage of the experiment 26/09/2017 to 28/03/2018   

Parameter  Unit  Number  MI  MO  PR  Maximum  Minimum  SD  

COD  mg/l  35    60.009  n/a  95.000  52.400  11.469  

BOD  mg/l  36    26.967  n/a  48.000  8.000  8.816  

PO4-P  mg/l  31    5.058  n/a  8.870  1.170  1.889  

NO3-N  mg/l  32    0.440  n/a  0.762  0.025  0.183  

NH4-N  mg/l  37    2.380  n/a  6.830  -0.047  2.073  

SS  mg/l  35    2.829  n/a  4.000  2.000  0.774  

TBD  NTU  36    3.583  n/a  5.340  2.310  1.030  

EC  mS/ 

m  

35    440.666  n/a  565.000  229.000  105.158  

AT     C   304     16.3762    34  3  7.092182  

 

4   

AT air temperature     C degree Celsius    
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The wastewater treatment process in a vertical flow constructed wetland of this 

research improved the water quality by water quality standard. The possible reason for 

this excellent performance observed in the current study could be attributed to gradual 

microorganism‘s ability to biodegrade the accumulated organic matter particles 

overtime in addition to the intermittent aeration that might have enhanced the 

biodegradation of the pollutants and averting aggregation of the organic particles in the 

substrate media.  Constructed wetlands systems influent and effluent variation of COD 

concentrations are shown in figure 4.1  

The COD test measures requirement of oxygen by organic and inorganic compounds, 

it clearly indicates that presence of these compounds also decreases the DO level in 

river water.  

 

Figure 4.2: Overall variation for COD inflow and outflow 

Figure 4.4 is the concentration of chemical oxygen demand (COD) in the wastewater 

inflow and the corresponding values of treated water outflow of VFCWs throughout 

the monitoring experiment.  
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4.3.3 Evaluation of nutrients Parameters  

The processes that affect removal and retention of nitrogen during wastewater 

treatment in constructed wetlands (CWs) are manifold and include NH3 volatilization, 

nitrification, denitrification, nitrogen fixation, plant and microbial uptake, 

mineralization (ammonification), nitrate reduction to ammonium (nitrate-

ammonification), anaerobic ammonia oxidation (ANAMMOX), fragmentation, 

sorption, desorption, burial, and leaching.  

Nutrient removal is one of the main factors in determining and maintaining how clean 

or contaminant the wastewater is as human interventions and increase in population 

growth and demand of clean water impose the need for domestic wastewater treatment 

as an alternative source of water globally (Jariwala, Syed, & Pandya, 2017). Nitrogen 

and phosphorus are crucial elements for micro-organism’s growth used in the treatment 

of wastewater; consequently, during the treatment process, a considerable level of a 

nutrient is removed.   

Nutrients removal in constructed wetlands is commanding, due to their health and 

environmental repercussions. Receiving watercourses by the plants become eutrophic 

when they receive large amounts of these nutrients subsequently promoting enormous 

plant growth that leads to the depletion of oxygen in the receiving water environment 

the decay of which kills animal life by depriving it of oxygen. Nitrogen removal in 

constructed wetlands is primarily by microbial nitrification and denitrification (Jan 

Vymazal, 2014a) (Fan, Liang, et al., 2013).  

Constructed Wetlands are capable of eliminating nitrogen and phosphorus in 

wastewater via a mixture of the process. These include physical, chemical, and 

biological processes. These natural processes occur in the system consists of: 

adsorb/absorb, transform, sequester, and remove the nutrients and other chemicals as 

wastewater pass slowly down the constructed wetland. Nitrogen compounds used in 

this research study include ammonia nitrogen (NH4N), nitrate nitrogen (NO3-N) and 

orthophosphate phosphorus (PO4-P) proved to be capable of effectively removing 

nutrients from wastewater.  
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This study research, Tables 4.2, 4.3, 4.4 and 4.5 comparisons of the overall mean 

nutrients outflow and percentage removal of the nutrient compound water quality 

parameters conducted were tabulated in different experimental phases, while Table 4.6 

summarizes an assessment of the statistically significant differences between outflow 

water quality variables of different filters using the non-parametric Mann-Whitney U-

test.  

4.4 Ammonia-nitrogen  

Ammonium nitrogen is one of the nitrogen family compound and nutrient parameters 

found in wastewater, that when in surplus can cause water eutrophication (Liikanen & 

Martikainen, 2003). The removal of ammonium nitrogen from wastewater has been of 

substantial worry for many years (T. Zhang, Ding, Ren, & Xiong, 2009). The 

ammonium ion (NH4+) is a significant member of nitrogen-containing compounds that 

perform as nutrients for aquatic plants and algae. In surface water, most of the 

ammonia, NH3, is originate in the form of ammonium ion, NH4+. This will help 

approximate the concentration of all of the nitrogen in the ammonia and ammonium 

combined form, commonly called ammonia nitrogen, by measuring only the 

concentration of the ammonium ions. Ammonium nitrogen NH4-N in moderate 

municipal wastewaters vary depending on the concentration within the range of 1250 

mg/l representing low and high to concentrated wastewater respectively (Henze, 

Harremoes, la Cour Jansen, & Arvin, 2001).  

Wastewater containing ammonium nitrogen causes a severe pollution problem to 

people and can be harmful to human and animal health. Removal of nitrogen from 

wastewater can be realised by biological or physicochemical procedures (Capodaglio, 

Hlavínek, & Raboni, 2015).  

The wastewater containing ammonia nitrogen would inhibit the natural nitrification, 

cause water hypoxia, result in fish poisoning, decrease the water purification capacity, 

and finally do great harm to the water environment. Ammonia is said to oxidise largely 

to nitrate in the process of nitrification, (Cola, 2009). By the oxidation of ammonia to 

nitrate, nitrate is reduced to the gaseous form of nitrogen by the process called 

denitrification. However, the removal is inadequate without active and passive 
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aeration, this due to insufficient oxygen readily for aerobic biodegradation (Scholz et 

al., 2010; H. Wu et al., 2015;  Vymazal, 2014).    

The process of removing ammonia in constructed wetlands is difficult as it involves a 

sequence of chemical, physical and biological reactions within the wetland media. 

However, previous journals have confirmed that high aeration which promotes the 

build-up of ammonia-oxidizing bacteria leads to high ammonia nitrification (Fan, 

Liang, Zhang, & Zhang, 2013; H. Wu et al., 2013).  

 In this research work, evaluation of the overall nutrients outflow of all filters of the 

wetland of water quality in different experimental phases is shown in table 4.2, 4.3, 

4.4, 4.5. The total removal rates of ammonia-nitrogen (NH4-N) were relatively high in 

comparison (figure 4.6) with other parameters, partially due to temperatures usually 

being above 15°C in the greenhouse-controlled environment during the warm seasons 

and aeration (Fan, Liang, et al., 2013). It was observed removal efficiencies of some 

of the filters of wetland system were low if undiluted wastewater was used (filter 1, 

2,3,4,9 and 10). However, aggregate size, resting time and contact time were not that 

significant for the overall removal of ammonia nitrogen. Previous study research 

reported high removal of ammonium nitrogen by constructed wetland such as in a study 

of Yongzhen, Shouyou, Shuying, & Lu, (2007) stated that nitrification/denitrification 

process, can remove about 95% of NH4 –N level in domestic wastewater (Purwono, 

Hibbaan, & Budihardjo, 2017).  
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Figure 4.3: Net variations for ammonia-nitrogen of inflow and outflow relationship 

Denitrification in wetlands has been described in many publications and positively 

correlated with organic carbon supply from macrophytes and temperature (Miklas 

Scholz et al., 2010).  Though the concentration of nitrate-nitrogen present in the inflow 

was recorded to be relatively low (Table 4.1), the outflow concentrations of nitrate 

nitrogen were relatively high for all filters (Tables 4.2, 4.3, 4.4 and 4.5). Only Filters 

3, 4, 7, 8, 9 and 10 had favorable removal efficiencies (though very small). In contrast, 

other filters functioned as sources for nitrate-nitrogen in the first experimental phase. 

In the second and third preliminary phases, however, Filters 1, 2, 7, 8 and Filters 1, 2, 

3, 4, 7 and 8 had low favorable removal efficiencies respectively. However, the outflow 

concentration of other filters served as a source for nitrate-nitrogen. However, the 

necessary conditions for denitrification to take place were not directly observed within 

the entire pilot constructed wetlands, because this can lead to high damage to the 

system (Sani et al., 2013b).  

A typical standard by UK regulations (UK Government, 1994) was not set for ammonia 

nitrogen that would relate to the treatment system used in this experiment. However, a 

practical guideline threshold value concerning secondary wastewater treatment in this 

experiment would be 20 mg/l (Sani et al., 2013b) as shown in figure 4.3. In comparison, 
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a common standard set by environment agencies for the second nitrogen variable, 

nitrate-nitrogen, concerning the secondary treatment of wastewater is 50 mg/l (Sani et 

al., 2013). All filters were obedient with rules and standard.  

General performance of constructed wetland filters concerning the nutrients parameters 

indicates that all the nutrients were relatively removed from all filters.  The overall 

removal efficiency was relatively excellent (Table 4.6).   

4.5 Orthophosphate phosphorus Removal   

A phosphate is a form of phosphorus that is found in wastewater and is one of the most 

significant parameters that is used mainly to determine how pollutant the wastewater 

is, usually called orthophosphate phosphorus (PO4-P). Phosphorus or phosphate 

analysis is an essential measurement in the monitoring and control of inflow 

wastewater treatment. The removal of phosphate in constructed wetlands is achieved 

by biological transformation and physical-chemical separation (Mazumder, 2013). In 

a research study of Kadlec & Knight, (1996), it was indicated that PO4-P removal is 

mostly by plant uptake through the root and adsorption on the gravel (porous media).  

Orthophosphates phosphorous is among the common forms of phosphorous found in 

wastewater presented for biological metabolism without additional breakdown.  

However, the effectiveness of constructed wetlands to remove Orthophosphate 

phosphorus contaminants by the constructed wetland system were recorded to cover 

between 49 and 45%, 49 and 50%, 42 and 45%, 45% and 50% for filters 1 and 2, 3 and 

4, 7 and 8, 9 as well as 10 respectively. Regardless of the loading rate in the experiment 

(Table 4.6), resting time and aggregate size of the gravel were not crucial parameters 

regarding overall Orthophosphate-phosphorus removal. This can be explained by the 

fact that phosphorus is always present in the form of a particulate, and does not dissolve 

well in filters that are not yet saturated by phosphorus or other compounds competing 

for adsorption sites (Miklas Scholz et al., 2010).   
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Figure 4.4: Net variations for ortho-phosphate phosphorous of inflow and outflow 

concentration  

Phosphorus removal mechanisms in vertical flow constructed wetland constructed 

wetland systems were designed to contain plant as reported by Jan Vymazal, (2011b) 

and Jan Vymazal, (2013) in their respective research study. Moreover, microbial 

uptake and accretions in porous media of the constructed wetland (Gikas & Tsihrintzis, 

2012), retention by system gravel and precipitation in different wetland filters (Gikas, 

Akratos, & Tsihrintzis, 2007).  Also, many types of research have shown that 

phosphorus is one of the most difficult pollutants to remove by constructed wetlands 

(Fia, Vilas Boas, Campos, Fia, & Souza, 2014; Vera, Araya, Andrés, Sáez, & Vidal, 

2014).    

Phosphorus removal mechanisms in vertical flow constructed wetlands system have 

been designated to contain plant and microbial uptake and accretions in constructed 

wetland filters (Sharma et al., 2014) retention by gravel and precipitation in water 

filters (G D Gikas et al., 2007). Moreover, numerous research publication has revealed 

that phosphorus is one of the hardest water quality parameters to be removed in 

wastewater by constructed wetlands  (Fia et al., 2014; Pant, Reddy, & Lemon, 2001; 

Vera et al., 2014).  
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All filters of the constructed wetland performed insufficiently regarding phosphorus 

removal in comparison to other key water quality parameters such as COD and 

ammonia-nitrogen. Findings confirmed by several studies (Smith, Joye, & Howarth, 

2006; Sani et al., 2013)  indicating that constructed wetlands were not efficient in 

removing phosphate in north Europe and Atlantics countries, especially during winter 

season.  

Removal mechanisms of phosphorus in constructed wetland systems have been 

reported to include plant uptake (Vymazal, 2011c, 2013a), microbial uptake and 

accretions in wetland media (Gikas & Tsihrintis, 2012), retention by wetland substrate 

and precipitation in the water column (Gikas et al., 2007). Furthermore, several 

publications have shown that phosphorus is one of the most difficult pollutants to 

remove by constructed wetlands (Pant, Reddy, & Lemon, 2001; Fia et al., 2014; Vera 

et al., 2014).  

Phosphorus particles are linked to suspended solids in constructed wetlands and are 

reported to be removed because of wastewater adsorption, settlement, and microbial. 

However, the increase of these suspended solids through the adhesion of biofilms due 

to microorganism growth contributes (Hua, Zeng, Zhao, Cheng, & Chen, 2014; W. 

Zhang, Qu, Li, Wang, & Wu, 2012)  as a result of that limiting the effectiveness and 

productivity of the constructed wetland systems. In this research, the overall wetland 

performance in removing the phosphorus good in all filters of the wetland (Tables 4.2, 

4.3, 4.4, 4.5 and 4.6). This has been established in a respective work of Almuktar et 

al., (2015), who recorded high performance efficiency in phosphorus removal in their 

constructed wetland systems. They credited better performance achieved by the system 

to the microbial activity and high aeration that endorsed the high phosphorus 

biodegradation. Also, hydraulic conductivity, porosity and both high strength and SS 

load of the wastewater, among others. And dead macrophyte plant material that was 

harvested in winter and returned to the corresponding wetland filters.   

These results of the nutrient removal were also achieved in other study researches.   

IStefanakis & Tsihrintzis, (2009) discovered that, after one year of monitoring 

operation of the constructed wetland systems the result obtained indicated that removal 

nutrients pollutants were recorded in all units, as removal of nitrogen recorded 
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satisfactory removal and 42.2% for ammonium nitrogen (NH4-N) removal, ortho-

phosphate retention rates recorded about 36.9% and 37.9%, respectively. In the 

research study of   

4.5.1.1 Comparison of particles  

Suspended solids are the minor solid particles that continue in suspension in 

wastewater. It is one of the parameters that contribute to the worsening the quality of 

water, and it is abbreviated as SS. The number of suspended solids indicates how 

cloudy the wastewater is. The SS removal also leads in a sharp decrease of organic 

load content in wastewater, generally demonstrated as biochemical oxygen demand 

(BOD) or chemical oxygen demand (COD) (Jover-Smet, Martín-Pascual, & Trapote, 

2017). Previous research of well-designed constructed wetland have recorded high 

efficiency of suspended solid removal performance from wastewater (Dębska et al., 

2015; Manios et al., 2003; Torrens Armengol, 2016). The suspended solid present in 

wastewater, possibly contain many pollutants like nutrient and organic compound 

family and trace of heavy metal that may be found in particulate form (Jiang, 2015).  

Several studies confirmed that solids and particulate matter removal are achieved 

(Kadlec & Knight, Green et al., 1997; Leonard, 2000; ITRC, 2003; Garcia et al., 2010; 

Hua et al., 2013) via settling and sedimentation, adsorption, and microbial degradation 

in wetland systems.  

Previous Studies reported that sedimentation, filtration, aggregation and surface 

adhesion are the primary removal mechanisms for large suspended solids from 

wastewater before feeding into the constructed wetland for treatment (Vymazal, 2014; 

Jan Vymazal & Kröpfelová, 2008). Some studies at the past confirmed that solids and 

particulate matter removal are achieved through settling and sedimentation, adsorption, 

and microbial degradation in constructed wetland systems (Garcia et al., 2010; R H 

Kadlec & Knight, 1996a; Zou et al., 2012).   

The overall performance efficiencies for Suspended Solid SS removal were recorded 

to be adequately high for all the filters of the wetland (table 4.2 too). A loading rate is 

higher with a significant p-value of 0.05 had impacted negatively on the general 

treatment performance of the system, finding discovered that suspended solids 

collected in the top part of the filters. As a resulting deposit of dry litter layer creation 
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for years of the treatment operation and monitoring. This is confirmed by the study 

research of Scholz, (2010) and Sani et al., (2013c). The presence of different porous 

media gravel sizes in the wetland filters did not seem to have any impact on solids 

holding. During the early periods of treatment operation and monitoring.  

The overall performance efficiencies for SS removal were recorded to be high for all 

the filter of the system (Tables 4.2, 4.3, 4.4 and 4.5). A higher loading rate had a 

significantly (P 0.05) negative impact on the overall treatment performance before 

petroleum hydrocarbon contamination (Table 4.6). Suspended solids accumulated in 

the top part of the filters as a result of litter layer formation two years later, confirming 

findings by Hua et al. (2010), Scholz (2010) and Sani et al. (2013b). The presence of 

different aggregates did not seem to have an influence on solids retention, at least in 

the early stages of operation.  

It was reported in a research study of Vymazal et al., (1998), that suspended solids are 

mostly eliminated by physical processes like filtration and sedimentation. Filtration 

takes place by the particles influence the roots and stems of the plants and porous media 

particles in Constructed wetland systems. The effect of the feeding mode on the 

removal of suspended solids may be explained by its impact on the sedimentation rate 

of the suspended particles. In the batch mode of feeding the wetland system is filled 

with wastewater for a determined period and subsequently drained entirely before the 

next batch of effluent is applied.  

Overall, all constructed wetland filters 1 to 8 were 8, 12, 4, 7, 14, 10, 9 and 13 times 

noncompliant with the regulation, respectively. More recently, the regulations (UK 

Government, 1994) have reset SS value of 35 mg/l. Filters 1 to 8 were 5, 9, 4, 7, 11, 

10, 8 and 8 times noncompliant, respectively (Figure 4.5). Moreover, authorities try to 

respect the more rigid traditional guideline.  

The UK standard for SS removal from secondary wastewater (treated water from 

constructed wetland) set 30 mg/l (Royal Commission on Sewage Disposal, 1915). 

Figure 4.5 is diagram representation that depicted a net variation of suspended solids 

of inflow and outflow concentration during the operation period in different vertical-

flow constructed wetlands filters.   
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Figure 4.5: Net variations of Suspended Solid of inflow and outflow concentration 

during the operation period  

Figure 4.4 is the concentration of suspended solids in the wastewater inflow and the 

corresponding values of treated water outflow of VFCWs throughout the monitoring 

experiment  

4.6 Evaluation of Dissolve oxygen (DO) Parameters  

The assessment of dissolve oxygen was evaluated graphically by the plot of the monthly mean 

inflow and outflow. A significant increase of dissolved oxygen was observed in the plot 

(i.e. concentration of dissolve of outflow is higher than of inflow). The constant low 

concentration of dissolved oxygen is observed in inflow wastewater whereas in outflow 

treated water the concentration of dissolved oxygen is recorded to higher. This an 

indication of wastewater treatment improvement performance by constructed wetland 

as dissolved oxygen concentration increased. It was also noticed that the preliminary 

unpleasant odour of the raw wastewater was no more perceptible, and the colour of the 

outflow treated water is clearer than the inflow wastewater. Figure 4.6 is the seasonal 

mean inflow and outflow of the dissolved oxygen concentration for the complete 

monitoring period of the research timeframe  



197 

 

 

  

Figure 4.6: Trend of dissolve oxygen for inflow and outflow concentration during the 

monitoring period  

Figure 4.4 is the concentration of dissolved oxygen in the wastewater inflow and the 

corresponding values of treated water outflow of VFCWs throughout the monitoring 

experiment. It was observed that from the figure 4.7 that dissolve oxygen has 

significantly increased from inflow to outflow, as can be seen the amount dissolve 

oxygen in both inflow 1 and inflow 2 samples were low, however treatment of the 

wastewater (inflow 1 and 2) improved the content of DO in all the filters of the CW. 

The results recommend the vital role of oxygen guiding the treatment processes as well 

as the possibility of constructed wetlands for wastewater treatment. This an indication 

that the DO significantly improves the treatment performance of constructed wetland 

by effectively treat pollutant concentration as DO is an essential parameter since most 

important degradation processes need aerobic situation, and therefore sufficient 

oxygen supply is of high importance. Dissolve oxygen increase could be credited to 

the nature of constructed wetland that provides adequate aeration and longer contact 

time for the reduction of organic matter parameter. This is the reason that VFCWs are 

suggested a system to treat highly polluted wastewater with little amount dissolve 

oxygen (Villar et al., 2012). Oxygen plays an important role in achieving nitrification;  
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Table 4.14: Overview of the statistically significant differences between outflow water 

quality variables of different wetland filters using the non-parametric Mann-Whitney 

U-test  

(03/12/14-28/03/18)  

Parameter  Unit  Statistics  Aggregate  

Diametera  

Contact  

Timeb  

Resting  

Timec  

CODd  

First to third experimental phase (03/12/2014 – 25/09/2017)  

COD  mg/l  P-value  0.185  0.000  0.825  <0.000  

h  0  1  0  1  

BOD  mg/l  P-value  0.000  0.000  0.003  <0.000  

h  1  1  1  1  

PO4-P  mg/l  P-value  0.088  0.000  0.000  <0.000  

h  1  1  1  1  

NO3-N  mg/l  P-value  0.198  0.000  0.948  <0.000  

h  0  1  0  1  

NH4-N  mg/l  P-value  0.412  0.000  0.266  <0.000  

h  0  1  0  1  

SS  mg/l  P-value  0.465  0.040  0.461  <0.000  

h  0  1  0  1  

TBD  NTU  P-value  0.833  0.000  0.867  <0.000  

h  0  1  0  1  

Parameter  Unit  Statistics  Aggregate  Contact Timef  Resting  CODh  
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Diametere  Timeg  

Fourth experimental phase (26/09/2017 – 28/03/2018)  

COD  mg/l  P-value  0.706  0.156  0.926  0.200  

h  0  0  0  0  

BOD  mg/l  P-value  0.000  0.019  0.455  0.532  

h  1  1  0  0  

PO4-P  mg/l  P-value  0.003  0.000  0.017  0.001  

h  1  1  1  0  

NO3-N  mg/l  P-value  0.001  0.000  0.369  0.049  

h  1  1  0  0  

NH4-N  mg/l  P-value  0.261  0.000  0.472  0.230  

h  0  1  0  0  

SS  mg/l  P-value  0.029  0.006  0.162  0.321  

  h  1  1  0  0  

TBD  NTU  P-value  0.604  0.921  0.485  0.221  

h  0  0  0  0  

Parameter  Unit  Statistics  Aggregate  

Diameteri  

Contact Timej  Resting  

Timek  

CODl  

Fourth experimental phase (26/09/2017 – 28/03/2018)  

COD  mg/l  P-value  0.174  0.090  0.926  0.231  

h  0  0  0  0  
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BOD  mg/l  P-value  0.048  0.004  0.623  0.129  

h  0  1  0  0  

PO4-P  mg/l  P-value  0.004  0.001  0.010  0.121  

h  0  1  1  0  

NO3-N  mg/l  P-value  0.044  0.007  0.369  0.896  

h  1  1  0  0  

NH4-N  mg/l  P-value  0.126  0.423  0.472  0.638  

h  0  0  0  0  

SS  mg/l  P-value  0.123  0.001  0.205  0.937  

h  0  1  0  0  

TBD  NTU  P-value  0.858  0.751  0.458  0.321  

h  0  0  0  0  

4.7 Evaluation of pH Parameters on the treatment performance of VFCWs  

pH is the measurement of the strength of acidity or alkalinity and quantifies the 

concentration of hydrogen ion in water. The Nature of inflow wastewater samples is always 

continuous change between acidic and alkaline. The range of pH value recorded in this 

study research of inflow wastewater was 7.28, and after wastewater treatment, it 

became 6.9 on the average as can be seen from figure 4.4 which shows the neutral 

nature of wastewater.  
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Figure 4.7: Trend of pH for inflow and outflow concentration during the monitoring 

period  

In the research study of Tchobanoglous, Burton, & Stensel, (2003) observed that the 

ideal range value of pH for the heterotrophic bacteria growth is between 6.5 and 7.5 

while in the research study of Von Sperling, (2007) showed that the most appropriate 

pH value range is between 7 and 8 for all bacteria decomposition and organic carbon, 

nitrogen and phosphorus removal. pH value above 8, the removal of nutrient is still 

possible, but the removal rate of the nutrient can be very different from the ideal one.   

The recorded mean pH values were found to be between the ranges of 7 to 8 which 

shows that the wastewater and treated water samples are slightly alkaline. The values 

are within the maximum permissible pH value limit and in compliance with the 

recommendation range of pH values as prescribed by WHO  

According to Kadlec et al., (2000) indicated that the idle pH range needed for 

ammonification is (6.5 – 8.5), nitrification by ammonium-oxidizing bacteria (AOB) 

and nitrite-oxidizing bacteria (NOB)  at the pH value range of 7.6 – 8.6, denitrification 

by anaerobic oxidizing bacteria  at the range 7-8 and phosphorus removal    



202 

 

4.8 Evaluation of oxidation-reduction potential (ORP) Parameters   

Oxidation-reduction potentials or redox conditions can be used as an indirect 

measurement of the anaerobic and aerobic conditions frequent in the wastewater 

treatment by constructed wetland system systems. Oxidation-reduction processes can 

be related to content of oxygen, which characterized by the loss (oxidation) or gain 

(reduction) of electrons. But, as it is not the only element that can amend it, some other 

considerations have to be made, like aerobic bacteria presence (Dušek, Picek, & 

Číţková, 2008) Oxidation-reduction conditions are also crucial for the capacity of 

constructed wetlands to retain inorganic phosphorus (Bezbaruah & Zhang, 2004).  

Detailed analyses and measurements reporting of ORP would permit better 

characterisation and understanding of the physicochemical and biological 

interdependence of wastewater treatment method.  

 

Date (day)  

Figure 4.8: Graphical representation of ORP for inflow and outflow concentration 

during the monitoring period  

As can be seen Generally, ORP values were observed to be negative in the constructed 

wetland indicating the reducing conditions. ORP values were observed to differ 

between -49 mV and –21 mV for inflow 1 while -81 mV and -35 mV for inflow 2. 

Likewise, for the outflow filters the range of ORP values are between -36 and -8. It 
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was observed that ORP decreased with increasing organic pollutant loading. This 

variation values of ORP validates that it is affected by the created oxygen by the 

macrophyte during the wastewater treatment process.  This phenomenon could be 

explained by the fact that more oxygen would be consumed by biological oxidation of 

excess organic matter removal (Fei et al., 2016)  

ORP values lower than −100 mV shows decrease in sulphates content and organic 

substances (fermentation). However, to make it standard, all ORP values recorded are 

described with regards to the standard hydrogen electrode (Eh) (Guido-Zárate, Buitrón, 

Mijaylova-Nacheva, & Duránde-Bazúa, 2007). The measurement of redox potential 

has widely been used to characterise oxidation-reduction conditions of wetland soils 

(Michael J Vepraskas, Richardson, Vepraskas, & Craft, 2000). The biological 

reduction of nitrate, denitrification, is an vital water purification process that 

transforms nitrate into nitrogen gas. This process is highly active in constructed 

wetlands for swine wastewater treatment (Hunt et al., 2003).  

Anaerobic and aerobic environments can be distinguished by the ORP in a Constructed 

wetland system. Generally, an ORP value greater than 100 mV is considered as an 

aerobic environment, whereas an amount less than − 100 mV indicates an anaerobic 

condition (Ong,  

Uchiyama, Inadama, Ishida, & Yamagiwa, 2010) So, an ORP range from − 100 to 100 

mV can be considered an anoxic environment. The aerobic and anoxic/anaerobic 

regions in CW bed would influence the activity of microbes in the biodegradation of 

organic matter, nitrification, and denitrification (Liu et al., 2018). Evaluation of 

Electrical conductivity Parameters   

4.9 Overall wastewater Treatment Performance of vertical flow constructed 

wetland system  

The levels of each parameter in the wastewater influent and the resultant treated water 

outflow throughout the experiment were averaged. To compare the effect of the 

treatment performance of the constructed wetland, the removal efficiency was 

calculated and are provided in the tables.  
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Because of the diesel that was poured into filters 1, 3, 5 and 7 the common reed plants 

that were planted on these filters were gradually diminishing and finally dead, new 

common reed plant were re-planted on Monday 12th September 2016 base on the result 

analysis conduct in the laboratory, it was observed that within the first three months 

the treatment performance of new plants was recorded very low (start-up time), after 

that it was recorded to be a bit higher than the first 3 months before they adopt, become 

mature and continue treating the wastewater properly.  

Table 4.15: Overall water quality parameters for all the wetland filters from 3rd 

December to  

28th March 2018  

 Overall Performance    

 From 03/12/2014 to 28/03/2018    

Parameter  Unit  Number  MO  RE (%)   Maximum  Minimum  SD  

 Inflow 1    

COD  mg/l  231.000  154.547  N/A  196.800  80.600  25.853  

BOD  mg/l  233.000  87.528  N/A  108.000  32.000  11.472  

PO4-P  mg/l  225.000  9.051  N/A  15.300  5.760  1.337  

NO3-N  mg/l  232.000  1.119  N/A  1.990  0.540  0.259  

NH4-N  mg/l  231.000  7.840  N/A  9.940  5.190  0.999  

SS  mg/l  230.000  13.583  N/A  18.000  5.000  1.569  

TBD  NTU  231.000  13.200  N/A  15.170  8.050  1.482  

EC  mS/m  231.000  684.882  N/A  987.000  270.000  114.128  

 Filter 1    

COD  mg/l  233.000  75.676  51.034  477.000  16.600  49.434  

BOD  mg/l  233.000  45.098  48.476  94.000  12.000  20.938  
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PO4-P  mg/l  228.000  5.392  40.432  9.780  1.930  1.909  

NO3-N  mg/l  232.000  0.598  46.581  1.433  0.011  0.262  

NH4-N  mg/l  234.000  4.897  37.540  8.750  1.010  1.770  

SS  mg/l  230.000  5.274  61.172  15.000  0.000  3.064  

TBD  NTU  232.000  4.842  63.317  14.060  0.850  2.796  

EC  mS/m  233.000  389.021  43.199  791.000  104.000  157.585  

 Filter 2    

COD  mg/l  233.000  48.956  68.323  88.600  14.900  16.267  

BOD  mg/l  233.000  33.521  61.703  55.000  12.000  11.166  

PO4-P  mg/l  228.000  4.504  50.237  7.980  1.840  1.360  

NO3-N  mg/l  232.000  0.453  59.479  1.231  0.022  0.213  

NH4-N  mg/l  234.000  4.167  46.851  8.480  1.010  1.706  

SS  mg/l  230.000  4.270  68.566  9.000  0.000  2.349  

 

TBD  NTU  232.000  3.397  74.265  7.510  0.790  1.425  

EC  mS/m  233.000  303.034  55.754  528.000  109.000  118.229  

  Filter 3     

COD  mg/l  233.000  71.209  53.924  164.000  18.700  37.449  

BOD  mg/l  233.000  39.455  54.923  90.000  12.000  20.128  

PO4-P  mg/l  227.000  5.514  39.078  9.950  1.670  1.883  

NO3-N  mg/l  232.000  0.540  51.743  1.346  0.110  0.255  
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NH4-N  mg/l  233.000  4.720  39.796  8.770  1.010  1.981  

SS  mg/l  230.000  5.565  59.027  16.000  0.000  2.993  

TBD  NTU  232.000  4.712  64.302  12.130  0.750  2.536  

EC  mS/m  233.000  393.987  42.474  2558.000  109.000  205.629  

  Filter 4     

COD  mg/l  233.000  54.247  64.899  741.900  18.900  58.518  

BOD  mg/l  233.000  33.508  61.718  54.000  12.000  10.900  

PO4-P  mg/l  229.000  4.413  51.244  8.340  1.300  1.545  

NO3-N  mg/l  232.000  0.416  62.813  0.890  0.043  0.174  

NH4-N  mg/l  233.000  4.330  44.770  7.280  1.010  1.552  

SS  mg/l  230.000  4.074  70.006  9.000  0.000  2.267  

TBD  NTU  232.000  3.427  74.036  5.780  0.790  1.325  

EC  mS/m  233.000  311.146  54.569  533.000  102.000  121.933  

  Filter 9     

COD  mg/l  296.000  57.526  62.777  756.000  15.800  67.493  

BOD  mg/l  293.000  35.102  59.896  62.000  12.000  12.035  

PO4-P  mg/l  295.000  4.500  50.281  7.210  1.180  1.382  

NO3-N  mg/l  292.000  0.445  60.201  0.837  0.048  0.163  

NH4-N  mg/l  298.000  4.134  47.267  7.760  1.030  1.643  

SS  mg/l  296.000  4.463  67.143  9.000  0.000  2.355  

TBD  NTU  299.000  3.317  74.871  5.680  0.230  1.372  
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EC  mS/m  291.000  306.560  55.239  522.000  101.000  124.340  

  Filter 10     

COD  mg/l  360.000  51.333  66.785  366.000  4.300  22.499  

BOD  mg/l  360.000  34.839  60.197  64.000  10.000  11.983  

 

PO4-P  mg/l  357.000  5.530  38.903  75.620  1.870  3.936  

NO3-N  mg/l  371.000  0.447  60.064  1.502  0.051  0.195  

NH4-N  mg/l  382.000  4.278  45.432  7.960  1.020  1.710  

SS  mg/l  390.000  4.305  68.304  9.000  0.000  2.419  

TBD  NTU  383.000  3.360  74.547  5.890  0.450  1.332  

EC  mS/m  373.000  322.062  52.976  526.000  102.000  125.973  

Inflow 2  

COD  mg/l  230.000  266.492  N/A  313.000  136.600  32.380  

BOD  mg/l  233.000  153.105  N/A  196.000  62.000  23.633  

PO4-P  mg/l  223.000  16.829  N/A  44.800  6.300  4.088  

NO3-N  mg/l  234.000  1.907  N/A  2.980  0.864  0.421  

NH4-N  mg/l  228.000  15.743  N/A  24.760  7.790  2.378  

SS  mg/l  230.000  25.343  N/A  38.000  13.000  3.072  

TBD  NTU  228.000  24.001  N/A  36.500  12.120  2.551  

EC  mS/m  232.000  982.026  N/A  1252.000  588.000  86.208  

Filter 7  
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COD  mg/l  233.000  88.320  66.858  264.000  2.000  73.152  

BOD  mg/l  233.000  43.253  71.749  70.000  12.000  13.772  

PO4-P  mg/l  228.000  7.369  56.211  15.330  0.040  2.983  

NO3-N  mg/l  233.000  0.651  65.862  2.573  0.066  0.501  

NH4-N  mg/l  233.000  5.634  64.213  15.610  1.080  2.864  

SS  mg/l  230.000  7.183  71.659  21.000  0.000  4.874  

TBD  NTU  232.000  6.156  74.353  19.990  0.760  5.495  

EC  mS/m  233.000  429.712  56.242  952.000  102.000  201.990  

Filter 8  

COD  mg/l  233.000  54.583  79.518  643.500  19.000  63.061  

BOD  mg/l  233.000  44.017  71.250  72.000  12.000  14.227  

PO4-P  mg/l  228.000  7.389  56.094  15.110  1.380  3.037  

NO3-N  mg/l  233.000  0.432  77.354  0.954  0.087  0.190  

NH4-N  mg/l  234.000  4.456  71.696  25.200  1.030  2.117  

SS  mg/l  230.000  4.739  81.300  9.000  0.000  2.441  

TBD  NTU  232.000  3.595  85.023  52.440  0.740  3.584  

EC  mS/m  233.000  315.039  67.920  558.000  101.000  123.929  
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4.10 Chapter Summary  

This chapter discussed the overall treatment performance of vertical flow constructed 

wetland. These include quality of inflow wastewater, comparison of the outflow water 

quality parameters, which contains organic matter parameters (COD and BOD), 

nutrients parameters, (PO4-P, NH4-N) and particles parameters (Suspended Solid). 

Overall, high removal rate was achieved for most of the parameters throughout the 

monitoring process for water quality enhancement. Thus, the removal rate of the 

system operation indicated that wetlands system was relatively effective with high 

efficiency in treating and removing pollutants from wastewater.  The results 

demonstrated the potential of vertical flow constructed wetlands to clean treated 

domestic wastewater for irrigation, other agricultural and human purposes.  
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Chapter 5: Water Quality Parameters Prediction Using Data Mining 

Techniques  

5.1 Overview  

The data mining technique model to predict wastewater treatment performance of 

VFCWs were discussed in this chapter. The model was build using relevant and highly 

correlated input parameters obtained in various combinations, using correlation 

analysis. It also explained and outlines how the entire experimental dataset was 

partition into training data to build the data mining models and testing data to test the 

model build.  

Additionally the chapter presented and discusses the designed and developed two data 

mining predictive models namely: Multiple Linear Regression (MLR) and Multilayer 

Perceptron (MLP) that were employed in this study to predict the performance of 

vertical flow constructed wetland systems (VFCWs) treating domestic wastewater, by 

predicting output dependent parameter based on the given values of input dependent 

variable. R language was employed to construct multiple linear regressions (MLR) 

while WEKA was used to develop the multilayer perceptron model. However, the 

criteria used to evaluate and compare the models prediction performance are also 

presented and discussed in this chapter.  

5.2 Correlation  

One of the requirements listed in this chapter is to choose the suitable input parameters 

required to develop water quality prediction with absolute accuracy. To achieve good 

prediction model, prior to model development correlation analysis is employed. 

Correlation measured the strength and direction of the linear and multiple 

dependencies. It measure the relationship between two or more variables (Pianosi et 

al., 2016). Correlation analysis result can be supplied to the model under construction 

to make predictions about the parameters under study, the aim was to determine the 

most suitable input parameters to be used for the model development to get accurate 

model. In this study out of all the 11 water quality parameters used for the experiment 

only five parameters are selected to use and considered for the prediction model 

development, these include COD, BOD, PO4-P, NH4-N and SS. For the COD dataset 

of filter 2 is chosen and used (as Filter 1 and 2 are replicated, having the same design, 
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mode of operation contact time and resting time), for BOD dataset of filter 3 is used 

(as Filter 3 and 4 are replicated),  for PO4-P filter 9 dataset is used for NH4-N filter 10 

dataset is used (Filter 9 and 10 are not replicated) for the SS, filter 8 dataset is used (as 

filter 7 and 8 are replicated, as such they are all considered for the model development)  

filters 1, 3 and 8 are replicated (have the same design, mode of operation contact time 

and resting) while filters 5 and 6 are served as control receiving only clean 

dechlorinated tap water, therefore they are left out for the model development. Prior to 

model development correlation analysis was conducted investigate to the relationship 

between each of COD, BOD, PO4-P, NH4-N and SS as output parameters to be 

predicted by the model with other water quality as input parameters. This was done to 

give a greater understanding and select suitable input parameters to be used for MLR 

and MLP model‘s development. The input parameters were selected based on their 

relative importance in assessing water quality and the possibility of being able to 

predict final outflow concentration from data obtained in real time, or from other 

parameters that are inexpensive, simple and/or faster to analyse in the laboratory. In 

this study research two type of correlation analyses are employed namely: graphical 

and numerical correlation analysis. SPSS software has been applied to determine the 

statistical correlation between variables while scatter plot was used in R language for 

the graphical correlation analysis.  

5.2.1 Numerical correlation analysis  

Is a numerical analysis that measures the strength and direction of a linear relationship 

between numerical variables and displays the result numerically, it numerical values 

vary from 1 through -1 values  

The correlation coefficient (R) between the output variable (dependent) and input 

variables (independents) for different filters of constructed wetland ware calculated as 

shown. Table 5.1 – 5.5 summarises the finding from numerical correlation analysis by 

SPSS software comparing input variables and output target variable. The input 

parameters are selected based on their goodness with their corresponding output 

variables. Some of the correlations were weak while others are strongly correlated. 

Therefore, significant input variables were selected base on their highly correlated and 

with their corresponding output parameters. Understanding the relationship between 
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the output parameter (under investigation) and input parameters is required to achieve 

a more practical and accurate model. 

5.2.2 Correlation analysis of COD and its corresponding input parameters  

Correlation analysis was conducted between COD as an output parameter, and all the 

water quality parameters used in the experiment as inputs. The result of the correlation 

analysis is presented in Table 5.1, and data obtained from Filter 2 is used for this 

purpose. As shown in Table 5.1, the correlation analysis indicated a high correlation 

between BOD, PO4-P, NO3N, SS, turbidity, electrical conductivity and temperature 

as input parameters and COD as an output parameter. However, DO, and pH shows no 

correlation tendency with COD. Therefore, the highly correlated parameters show a 

significant trend to be used as a variable for COD prediction. Thus, their deployment 

in the model development. And it's corresponding input parameters.  The correlation 

analysis of the parameters was used as a tool for the parameters interaction among the 

water quality parameters and hence their influence on COD concentration prediction.  

Table 5.1: Correlation analysis between COD as an output variable and other water 

quality parameters as input parameters  

 Filter 2   

Input Parameter  Output Parameters  Correlation Values  

  BOD  0.68646  

  PO4-P  0.62410  

  NH4-N  0.57630  

  NO3-N  0.63136  

  SS  0.54149  

COD  DO  0.01440  

  TBD  0.55272  

  pH  -0.12113  
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  EC  0.58959  

  TEMP  0.57577  

  

5.2.3 Correlation analysis of BOD and its corresponding input parameters  

Table 5.2 shows the correlation analysis results obtained between all the water quality 

parameters used in the present study and BOD. Filter 3 and 4 have the same design 

criteria (aggregate size, mode of operation, contact time and resting time). Therefore, 

data obtained from Filter 4 was used for the correlation analysis between BOD and the 

water quality parameters.   

The correlation analysis results obtained show that the input parameters including: 

COD, PO4-P, NH4-N, NO3-N, SS, TBD and EC are found to holds significant positive 

correlation with BOD.  However, DO and pH shows negative correlation with BOD 

and hence insignificant variables for BOD model development. These parameters with 

higher positive correlation values was used for the BOD prediction model using both 

MLR and MLP. To see the parameter interaction among the water quality parameters, 

correlation analysis was employed and the one that shows high positive correlation 

values with BOD was used for the BOD concentration prediction model.   

Table 4.2: Correlation analysis between BOD as output variable and other input water 

quality parameters  

 Filter 4   

Input Parameter  Output Parameters  Correlation Values  

  COD  0.79646  

  PO4-P  0.73620  

  NH4-N  0.76387  

  NO3-N  0.78618  
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BOD  SS  0.74142  

  DO  -0.07296  

  TBD  0.73343  

  pH  -0.09664  

  EC  0.77851  

  TEMP  0.60793  

5.2.4 Correlation analysis of NH4-N and its corresponding input parameters  

The correlation analysis between NH4-N as output parameters and water quality 

parameters used in the current work is shown in Table 5.3. Water quality parameters 

data obtained from Filter 9 was used for NH4-N correlation. All water quality 

parameters in the present work were used as input parameters while NH4-N was used 

as an output parameter. To develop the model that will predict the NH4-N accurately 

a highly correlated water quality parameter with NH4-N is needed.   

From the correlation analysis results as shown in Table 5.3, the input parameters 

including COD, BOD, PO4-P, SS, TBD and EC shows a significant and positive 

correlation with the output parameter NH4-N. The remaining parameters including 

NO3-N, DO, EC, pH and Temp shows an insignificant correlation with the output 

parameter NH4-N. Therefore, COD, BOD, PO4-P, SS, TBD and EC were used in 

predicting NH4-N concentration employing the two data mining techniques adopted in 

the present investigation.  

Table 5.2: Correlation analysis NH4-N as an input variable and other water quality 

parameters as an output variable  

 Filter 9  

Input Parameter  Output Parameters  Correlation Values  

  COD  0.79812  

  BOD  0.83269  
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  PO4-P  0.68065  

  NO3-N  0.03536  

NH4-N  SS  0.86246  

  TBD  0.88325  

  pH  0.01902  

  EC  0.79226  

  DO  0.12014  

  TEMP  0.15652  

5.2.5 Correlation analysis of PO4-P and its corresponding input parameters  

Table 5.4 shows the correlation analysis results obtained between PO4-P as an output 

parameter and all the water quality parameters used in the current investigation as 

inputs variables. The VFCWs data obtained from Filter 10 was used for the PO4-P 

parameter interaction with the water quality parameters.  

The results obtained for the PO4-P correlation analysis shows that the input variables 

COD, BOD, NH4-N, SS, TBD and EC were highly correlated with the output variable 

PO4-P, while NO3-N, pH, DO and Temp shows a weaker correlation with PO4-P.  

Thus, the highly correlated variables were employed in the model development for 

PO4-P prediction using MLR and MLP.  

Table 5.3: Correlation values for PO4-P as input variable and other water quality 

parameters as output variable  

 Filter 10   

Input Parameter  Output Parameters  Correlation Values  

  

  

COD  0.62048  

BOD  0.50708  

PO4-P  NO3-N  0.08563  
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NH4-N  0.69876  

SS  0.54019  

TBD  0.74125  

pH  0.01717  

EC  0.51358  

DO  0.12860  

TEMP  0.14300  

5.2.6 Correlation analysis of SS and its corresponding input parameters  

Table 5.5 shows the correlation analysis results obtained between SS and the water 

quality parameters used in the present work. The SS was used as an output variable 

while the input variables consists of all the water quality parameters considered in the 

current research. Filter 7 and 8 are similar in design parameters and operational 

variables, and therefore, filter 8 data was used for the SS correlation with other water 

quality parameters.   

The results of the correlation analysis of SS as an output parameter with other input 

water quality parameters are presented in Table 5.5, indicated that BOD, NO3-N, PO4-

P NH4-N, TBD and EC has higher positive correlation and very significant with SS as 

an output variable. COD and DO shows a weaker correlation while pH and Temp 

shows a negative correlation, thus term as insignificant input variable with SS. The 

highly significant and positive input variables were used in the model development for 

SS prediction using the data mining techniques employed for conducting the present 

investigation. 
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Table 5.4: Correlation values for SS as output variable and other water quality 

parameters as output variable  

 FILTER 8   

Input Parameter  Output Parameters  Correlation Values  

  

  

  

  

SS  

COD  0.18467  

BOD  0.78655  

NO3-N  0.65254  

PO4-P  0.60677  

NH4-N  0.53187  

TBD  0.75379  

pH  -0.00382  

 EC  0.78852  

DO  0.06424  

  TEMP  -0.16053  

  

The correlation analysis results as summarises in Table 5.1 – 5.5 were obtained from 

SPSS by comparing input variables with output variable as targeted parameter. The 

input parameters that are highly correlated with the corresponding output variable are 

selected for the prediction model. Also, input parameters that shows weaker or 

insignificant correlation with the output or targeted parameter were discarded or not 

included in the model development.  

5.3 Graphical correlation analysis  

After calculating the numerical correlation analysis between the output and input 

variables, representing such relationship (correlation) pictorially, graphical correlation 

methods are employed. To describe in a step-by-step procedure graphically, scatter plot 

is used, visual summaries of the correlation data. To confirm the result of the numerical 
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correlation analysis conducted in Figure 5.1 to 5.5, graphical correlation analysis is 

depicted and presented using scatter plot to pictorially represent such relationship to 

reaffirm the result obtained. The aim of the graphical representation is to graphically 

support and back up the already obtained results of the correlation analysis that can be 

used to predict the output variable by establishing the relationship with the input 

variable. Scatter plot is used for the graphical analysis usually drawn to obtain a 

correlation, scatterplot depicts the strength, direction, relationship between two 

parameters are linear or curved, and supports the interpretation of the correlation (Fu 

& Wang, 2012). The value of output parameter appears on the y axis of the plot while 

the values of input parameters appear on the x axis. Each value of the data appears as 

a point on the graph.  

To plot graphical representation of all parameters used in the COD prediction data 

(Filter 2 data). For the complete picture of all parameter‘s relationships, rather than just 

a single one, pairwise scatterplot in R language is employed.  The output of the 

preceding function is pictured below; the plot run on an entire of the variable the 

interest is to visualize all the scatterplots at once, to diagnose the various relationships 

present in the entire COD dataset and produce a matrix of scatter plots. Figure 5.1 is 

the pairwise matrix scatter plot, which visualise the relationship between all the 

parameters of the COD dataset in one single image. It was observed according to the 

visual representation that some of the parameters are correlated to each other.  
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Figure 5.1: matrix scatterplot for all the variables in COD dataset  

However, the matrix scatter plot did not depict graphical correlation relationship 

between them clearly for proper illustration. Hence, the need of individual graphical 

correlation as contain in Figure 5.2 to 5.6  

 

     a      b  

 

     c      d  
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     e      f  

Figure 5.2: Graphical correlation between BOD and corresponding correlated input 

parameters  

  

    

    a      b  

   c      d  

 

   e         f  

Figure 5.3: Graphical correlations between COD and its corresponding correlated 

input parameters 

From Figure 5.2 and 5.3 are graphical correlation analysis for the BOD and COD 

output parameter and their respective input parameters respectively to check the picture 

of the relationship between them before embarking on real analysis. From the plots it 

was discovered that the scatter plot reaffirms the result of the numerical correlation 
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already calculated.  However, Figure 5.3 and 54 are the graphical correlation analysis 

for NH4-N and PO4-P output parameters and their respective highly correlated input 

parameters. As can be seen from the graphs, that they indicated NH4-N was in good 

agreement with COD, BOD,  

PO4-P, SS, TBD and EC this is confirm by numerical correlation in table 5.3. However, 

as can be seen from the scatter plot that PO4-P as an output parameter it was discovered 

to be highly correlated with BOD, COD, NH4-N, SS, TBD and EC and this confirm 

the result of numerical correlation analysis in Table 5.3. The plot indicates that the 

procedure is making progress with the linear model and is likely to achieve a good 

model.  

However, as can be seen from the scatter plot in Figure 5.3 that PO4-P as an output 

parameter is discovered to display positive high correlation with BOD, COD, NH4-N, 

SS, TBD and EC and this confirm the result of numerical correlation analysis obtained 

in table 5.3. Let start by plotting two variables (BOD and COD). The relationship 

between COD and BOD is depicting below.  

Scatter plots of the output variable against their respective individual input variables. 

Figure  

Fig. 5.3 above suggests that NH4-N is linearly related with its corresponding input 

variables.  

  

 

    a       b  
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c      d  

    e       f 

Figure 5.4: Graphical correlations between PO4-P and its corresponding correlated 

input parameters  

 

 

    a       b  

 

c      d 

    e      f 



223 

 

Figure 5.5: Graphical correlations between NH4-N and its corresponding correlated 

input parameters 

Figure 5.6 is the scatter plot graphical correlation analysis representation for suspended 

solid (SS) as output parameters and their respective highly correlated input parameters. 

As can be seen from the graphs, that SS is visually indicated to be in good agreement 

and linearly related with BOD, NO3-N, NH4-N, PO4-P, TBD and EC as an input water 

quality parameters and this confirm the values obtained from numerical correlation in 

Table 5.5 which showed positive and significant correlation between them and 

suggested a linear increasing relationship between output parameters and input 

parameters. The scatter plot of all the out parameters in Figure 5.1 to 5.5 indicated good 

correlation with their respective input parameters this is sign of likely to achieve a good 

model. The assumptions of linearity and constant variance do seem to hold on the 

above scatter plots. When highly correlated input parameters are used for the model 

development tendency for the values of output parameters to increase or decrease as 

the values of the input parameters increase or decrease  

Having selected the highly correlated input parameters for their respective output 

model development, next step is to develop the models namely MLR and MLP.  

  

 

    a      b  

 

    c        d  
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    e        f  

Figure 5.6: Graphical correlations between suspend solid (SS) and its corresponding 

highly correlated input parameters 

5.4 The building of Data mining models  

The models were developed and validated based on the quantitative data collected 

during monitoring performance of the experiment for over three years (forty months) 

that were used in this research study obtained from 3rd December 2014 to 28th March 

2018. Two different data mining models were employed to carry out the task; these 

include multiple linear regression developed using R language and Multilayer 

Perceptron (MLP) constructed using WEKA data mining tool.    

5.4.1 Building Multiple linear regression Model (MLR)  

Multiple linear regression used in thesis was developed using R language. However, 

the function used in building a regression model in R language is lm () function, which 

takes in two, main argument, they are Data and Formula (regression equation). After 

building the models and establishing a highly significant relationship between output 

and input variables in a formula form. The regression equations can be used to predict 

the pollutant concentration (water quality parameters) present in wastewater or treated 

water base on the given known input values.  

5.4.1.1 Building multiple linear regression (MLR) for COD   

To model, the COD output parameter, highly correlated input dependent parameter is 

used for the model development. It was discovered from correlation analysis that seven 

input parameters were recorded to have a positive and strong correlation with COD, 

these include parameters BOD, PO4-P, NO3-N, SS, turbidity, electrical conductivity 

and temperature. Hence, they will be used to develop COD prediction model. The 

multiple linear regression equations are presented in equation 5.1.  
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COD = bo + b1BOD + b2NO3-N + b3PO4-P + b4SS +b5TBD + b6EC + b7TEMP                

5.1  

The regression equation in equation 1 will be used to find a line that best fits the COD 

data test and find a line that minimises the distance from all the data points to that line. 

COD is the output parameter to be predicted while the highly correlated input 

parameters were used to develop the prediction model  

 ̂ = bo + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7                                                                   

5.2  

Where  ̂  = COD, X1 = BOD, X2 = NO3-N, X3 = PO4-P, X4 = SS, X5=Turbidity, X6 = 

EC and X7 = TEMP, X1 to X7 are the input parameters, while bo to b7 are coefficient  

The model is defined using lm () function in R, to estimate regression coefficient for a 

multiple linear regression equation. Having execute the lm () function, next is to use 

summary function is used to get the summary of the model performance  

Since there are seven independent parameters from X1 to X7, seven regression 

coefficients are expected b1 to b7 plus Y intercept bo, making eight estimates of 

regression coefficients, they will converge together in a regression equation. The 

regression model summary of predicting for a whole data is:  
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Figure 5.7: Generated multiple regression summary for the whole dataset of COD 

used in the study using R language 

From the above summary of the R language for the prediction of COD, the eight 

different coefficient regression estimates from equation 5.2 have values as calculated 

where bo = 11.516, b1 = 0.7539, b2 = 3.2619, b3 = 30.3921, b4 = -0.3284, b5 = -

1.6476, b6 = 0.0076, and b7 = 1.6840, the coefficients are substituted with the actual 

values, therefore the multiple linear regression equation model to predict COD 

concentration in R language will be as;  

COD = -11.5162 + 0.7539BOD + 3.262PO4-P + 30.392NO3-N + (-0.3284SS) + (- 

1.6476TBD) + 0.0076EC + 1.6840TEMP  5.3  

To get the legitimate COD prediction in the R model that was created in equation 5.3, 

the prediction function command is used. After feeding the data frame of highly 

correlated input parameters, the COD prediction result for whole data generated by 

multiple linear regression models was generated as presented in table 5.6 as  
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Table 5.5: Measure and prediction table of entire COD data  

S/N  Actual  

COD  

Predicted  

COD  

Error  S/N  Actual  

COD  

Predicted  

COD  

Error  S/N  Actual  

COD  

Predicted  

COD  

Error  

1  40.2  41.67  -1.47  28  54.6  61.10  -6.50  55  32.00  31.38  0.62  

2  48.5  41.31  7.19  29  69.6  62.50  7.10  56  33.80  37.37  -3.57  

3  40  46.80  -6.80  30  48.6  63.33  -14.73  57  35.20  40.82  -5.62  

4  41.4  39.21  2.19  31  61.6  61.33  0.27  58  41.20  50.79  -9.59  

5  54.7  66.78  -12.08  32  56.6  56.83  -0.23  59  55.60  56.32  -0.72  

6  67  65.61  1.39  33  55.6  54.73  0.87  60  42.60  54.27  -11.67  

7  72.3  67.23  5.07  34  52  62.60  -10.60  61  42.90  52.11  -9.21  

8  68.8  70.50  -1.70  35  56  60.20  -4.20  62  42.00  50.01  -8.01  

9  65  69.25  -4.25  36  64.2  63.58  0.62  63  39.00  42.06  -3.06  

10  73.8  67.80  6.00  37  66.7  61.45  5.25  64  44.80  51.10  -6.30  

11  60  69.42  -9.42  38  58.2  54.95  3.25  65  49.80  49.94  -0.14  
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12  74  78.15  -4.15  39  50.8  46.84  3.96  66  42.80  34.48  8.32  

13  65  65.87  -0.87  40  50.5  44.16  6.34  67  42.20  46.66  -4.46  

14  65  74.82  -9.82  41  36.5  18.76  17.74  68  57.20  56.15  1.05  

15  66  78.00  -12.00  42  34  38.11  -4.11  69  49.00  51.04  -2.04  

16  64.6  75.40  -10.80  43  26.2  34.04  -7.84  70  47.00  51.40  -4.40  

17  75  72.17  2.83  44  35  40.95  -5.95  71  46.50  49.11  -2.61  

18  73  82.10  -9.10  45  24  31.86  -7.86  72  40.40  44.44  -4.04  

19  74  69.34  4.66  46  34.4  27.94  6.46  73  43.20  40.19  3.01  

20  64.6  66.80  -2.20  47  35.5  33.44  2.06  74  98.00  93.32  4.68  

21  64  63.10  0.90  48  34  37.26  -3.26  75  84.30  81.32  2.98  

22  56.6  57.48  -0.88  49  35  26.63  8.37  76  103.00  98.11  4.89  

23  57  58.76  -1.76  50  31.8  27.95  3.85  77  94.60  88.36  6.24  
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24  56.2  64.33  -8.13  51  28.89  31.45  -2.56  78  122.00  117.89  4.11  

25  55.6  62.12  -6.52  52  29.9  27.93  1.97  79  104.00  94.89  9.11  

26  50.5  55.30  -4.80  53  31.2  33.83  -2.63  80  103.12  96.09  7.03  

27  60.8  69.66  -8.86  54  27  26.28  0.72  81  122.20  112.31  9.89  

S/N  Actual  

COD  

Predicted  

COD  

Error  S/N  Actual  

COD  

Predicted  

COD  

Error  S/N  Actual`1  

COD  

Predicted  

COD  

Error  

82  126.80  117.25  9.55  109  127.7  118.86  8.84  136  109.2  106.78  2.421  

83  137.40  128.63  8.77  110  124  112.48  11.52  137  102.8  106.88  -4.078  

84  116.00  109.75  6.25  111  122  109.88  12.12  138  126.5  119.33  7.170  

85  123.20  121.71  1.49  112  126  110.92  15.08  139  96.6  120.43  -23.833  

86  126.30  98.74  27.56  113  126.5  112.95  13.55  140  84  120.67  -36.674  

87  100.40  89.37  11.03  114  135.8  118.93  16.87  141  96.5  117.82  -21.323  

88  123.00  111.68  11.32  115  139.6  145.07  -5.47  142  71.8  121.87  -50.068  

89  122.00  107.75  14.25  116  124.5  113.47  11.03  143  109.6  104.71  4.888  



230  

  

  

 

90  118.50  105.17  13.33  117  122.7  109.64  13.06  144  92.8  103.62  -10.824  

91  122.00  115.43  6.57  118  139.6  123.17  16.43  145  91.8  106.24  -14.439  

92  138.50  123.06  15.44  119  125.6  106.89  18.71  146  74.7  104.85  -30.147  

93  113.00  99.77  13.23  120  133.6  118.07  15.53  147  66  104.59  -38.594  

94  113.20  109.73  3.47  121  117.7  113.30  4.40  148  92.7  116.77  -24.066  

95  128.00  105.11  22.89  122  122.7  112.80  9.90  149  79.6  102.64  -23.036  

96  116.30  112.81  3.49  123  112.6  122.64  -10.04  150  99.6  100.61  -1.014  

97  121.20  113.64  7.56  124  129.6  139.95  -10.35  151  109.6  103.12  6.478  

98  135.60  127.36  8.24  125  139.6  138.85  0.75  152  87.7  84.96  2.744  

99  111.00  110.76  0.24  126  86.7  120.98  -34.28  153  72.4  72.58  -0.183  

100  117.30  114.92  2.38  127  132.7  121.88  10.82  154  82.7  81.36  1.344  
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101  122.00  123.70  -1.70  128  97.6  133.62  -36.02  155  89.6  84.44  5.160  

102  135.80  122.97  12.83  129  106.5  98.76  7.74  156  99.6  85.32  14.278  

103  129.60  99.22  30.38  130  96.5  101.74  -5.24  157  89.6  85.73  3.869  

104  113.00  106.38  6.62  131  96.5  128.29  -31.79  158  89.8  82.80  7.002  

105  112.70  104.51  8.19  132  99.8  106.97  -7.17  159  82.7  85.58  -2.879  

106  113.60  120.85  -7.25  133  112.7  114.65  -1.95  160  77.6  78.28  -0.681  

107  114.90  125.91  -11.01  134  107.6  103.96  3.64  161  71.8  76.30  -4.501  

108  139.70  123.69  16.01  135  121.8  115.43  6.37  162  77.7  77.09  0.613  

S/N  Actual  Predicted  Error  S/N  Actual  Predicted  Error  S/N  Actual  Predicted  Error  

 COD  COD    COD  COD    COD  COD   

163  69.6  64.07  5.53  190  29.7  38.75  -9.05  217  64.7  50.42  14.28  

164  72  74.97  -2.97  191  30.6  35.44  -4.84  218  72.7  48.70  24.00  

165  75.8  73.09  2.71  192  27.6  38.64  -11.04  219  69.6  48.08  21.52  
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166  59.6  64.38  -4.78  193  35.1  36.73  -1.63  220  69.6  53.11  16.49  

167  67.5  73.37  -5.87  194  34.5  35.68  -1.18  221  69.6  60.96  8.64  

168  72.7  73.04  -0.34  195  32.5  34.91  -2.41  222  79.8  68.56  11.24  

169  64.5  70.03  -5.53  196  30.8  28.79  2.01  223  77.6  72.11  5.49  

170  72.9  73.14  -0.24  197  29.7  29.01  0.69  224  62.7  61.33  1.37  

171  69.7  67.62  2.08  198  35.98  37.43  -1.45  225  58.4  67.89  -9.49  

172  72.7  70.69  2.01  199  37.8  43.20  -5.40  226  72.7  69.18  3.52  

173  69.6  69.60  0.00  200  52.7  51.30  1.40  227  69.6  71.10  -1.50  

174  70.8  71.22  -0.42  201  42.8  42.79  0.01  228  69.6  66.41  3.19  

175  79  75.57  3.43  202  42.5  44.55  -2.05  229  69.6  79.08  -9.48  

176  60.5  66.17  -5.67  203  42.6  44.72  -2.12  230  69.8  66.85  2.95  

177  60  61.90  -1.90  204  44  42.34  1.66  231  62.7  64.68  -1.98  
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178  69.6  77.43  -7.83  205  36.5  35.92  0.58  232  67.8  70.36  -2.56  

179  61  61.13  -0.13  206  38.5  38.78  -0.28  233  67.7  68.68  -0.98  

180  62.7  58.58  4.12  207  36.5  44.43  -7.93  234  84.68  57.79  26.89  

181  59.6  51.61  7.99  208  42.8  41.46  1.34              

182  53.6  58.22  -4.62  209  44.8  41.39  3.41              

183  49.6  50.09  -0.49  210  42.7  43.98  -1.28              

184  47.7  50.64  -2.94  211  42.8  46.32  -3.52              

185  41.9  44.76  -2.86  212  37.6  47.25  -9.65              

186  36.6  33.66  2.94  213  39.6  48.15  -8.55              

187  29.6  33.84  -4.24  214  44.6  49.31  -4.71              

188  20.6  33.72  -13.12  215  42.6  51.49  -8.89              

189  56.7  48.97  7.73  216  62.7  40.24  22.46              
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The COD data from constructed wetland system were 234 data points, which were later divided 

randomly into two parts consisting of 161 data points (70%) of the total data points as training 

data and 73 data points (30%) of the entire data points as testing data which was presented in 

the table.   

Table 5.6:  

Data partition   Relative size  Number of entries  

Entire data  100%  244  

Training data  70%  161  

Testing data  30%  73  

  

5.5 Data partitioning for model development   

To achieve a good prediction model, the monitoring dataset is split randomly into two parts 

training and testing dataset, 70% of the data were used as training set data while the remaining 

30% of data were used as testing set.  

5.5.1 Training dataset   

Training dataset is used to train (build) the prediction model. During model training, particular 

structures are selected out from the training dataset. These structures are then merged into the 

model built. The multiple linear regression model summary generated in R language for the 

training dataset of COD is presented in figure 5.10  
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Figure 5.8: generated multiple regression summary for the training dataset of COD by R 

language  

The multiple regression equation for the training dataset of COD is presented in equation 5.3 

below   

COD = -9.0848 + 0.6033BOD + 3.9151PO4-P + 32.484NO3-N + 0.1187SS + (-1.553TBD) +  

0.0004EC + 1.5855TEMP                               5.3  

5.5.2 Testing dataset  

Once the training stage is completed, testing dataset will introduce to the model built. the less 

the test data (30%) the more accurate the error estimate of the model will be.  The model is test 

using training dataset, and check how modes built are doing, because testing data were not seen 

by the model built. If the results of the prediction model are as expected, then it is discovered 

that the model is built enough to make correct prediction. The multiple regression model 

summaries for the testing dataset of COD is presented in figure 5.7  
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Figure 5.9: Generated multiple regression summary for the testing dataset of COD by R 

language  

COD = -13.661 + 0.9263BOD + 3.237PO4-P + 24.556NO3-N + (-2.364SS) + (-0.425TBD) + 

0.02226EC + 1.599TEMP                   5 

The measured values by the laboratory analysis and the predicted values of COD by the 

multiple linear regression model are presented in table 5.8 and 5.9 for training and testing 

dataset respectively. 
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Table 5.7: Measure and prediction table for COD training dataset of MLR 

S/N  Measured 

COD (Y)   

Predicted 

COD (Ῡ)  

Error 

(Y- Ῡ)   

S/N.  Measured 

COD (Y)  

 Predicted  

COD (Ῡ)  

Error (Y- 

Ῡ)   

S/N  Measured 

COD (Y)   

Predicted 

COD (Ῡ)  

Error (Y- Ῡ )  

1  40.20  42.05  -1.85  79  104.00  93.66  10.34  158  89.80  82.67  7.13  

2  48.50  41.55  6.95  80  103.12  94.90  8.22  159  82.70  86.36  -3.66  

3  40.00  47.86  -7.86  82  126.80  117.75  9.05  160  77.60  77.86  -0.26  

4  41.40  38.66  2.74  83  137.40  129.84  7.56  161  71.80  76.52  -4.72  

5  64.70  66.34  -1.64  86  136.30  99.29  37.01  164  72.00  77.10  -5.10  

6  67.00  64.81  2.19  87  100.40  89.62  10.78  165  75.80  73.79  2.01  

7  72.30  66.27  6.03  88  123.00  112.28  10.72  166  59.60  64.72  -5.12  

8  68.80  70.57  -1.77  90  118.50  105.52  12.98  167  60.50  73.94  -13.44  

9  65.00  68.74  -3.74  91  122.00  116.77  5.23  168  72.70  72.28  0.42  

12  74.00  78.01  -4.01  92  138.50  124.84  13.66  169  64.50  71.28  -6.78  

13  65.00  65.63  -0.63  93  113.00  102.35  10.65  170  72.90  73.81  -0.91  

16  64.60  74.97  -10.37  94  113.20  112.94  0.26  171  69.70  67.18  2.52  
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17  75.00  72.00  3.00  96  116.30  115.89  0.41  173  69.60  70.12  -0.52  

18  73.00  82.70  -9.70  98  135.60  128.55  7.05  174  70.80  71.16  -0.36  

19  74.00  70.56  3.44  101  122.00  125.48  -3.48  175  79.00  75.20  3.80  

21  64.00  63.23  0.77  102  135.80  126.23  9.57  176  60.50  66.72  -6.22  

22  56.60  57.38  -0.78  103  129.60  96.81  32.79  178  62.68  79.04  -16.36  

24  56.20  65.11  -8.91  104  113.00  105.08  7.92  179  61.00  61.99  -0.99  

25  55.60  63.43  -7.83  105  112.70  104.70  8.00  181  57.90  53.16  4.74  

28  54.60  61.80  -7.20  106  113.60  120.81  -7.21  184  47.70  52.40  -4.70  

31  46.60  61.23  -14.63  107  118.90  125.40  -6.50  185  41.90  46.01  -4.11  

32  56.60  56.90  -0.30  108  139.70  122.35  17.35  187  29.60  34.51  -4.91  

33  55.60  54.77  0.83  109  127.70  117.94  9.76  188  32.60  33.74  -1.14  

34  52.00  63.09  -11.09  113  126.50  112.36  14.14  190  38.70  39.58  -0.88  

37  66.70  61.27  5.43  116  124.50  110.62  13.88  192  39.60  38.87  0.73  

38  58.20  55.99  2.21  118  139.60  121.75  17.85  194  36.50  36.30  0.20  
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39  50.80  47.55  3.25  120  133.60  117.67  15.93  195  37.50  35.05  2.45  

40  50.50  45.09  5.41  121  117.70  110.31  7.39  199  39.80  43.22  -3.42  

41  36.50  18.23  18.27  123  136.60  122.89  13.71  200  39.75  50.83  -11.08  

43  26.20  35.21  -9.01  124  149.60  140.64  8.96  201  42.80  42.59  0.21  

44  35.00  42.33  -7.33  125  139.60  138.89  0.71  203  42.60  44.31  -1.71  

45  24.00  32.55  -8.55  126  86.70  119.68  -32.98  204  44.00  43.02  0.98  

46  34.40  28.64  5.76  127  132.70  121.44  11.26  205  36.50  35.67  0.83  

47  35.50  33.88  1.62  128  97.60  133.44  -35.84  207  36.50  44.47  -7.97  

48  34.00  38.22  -4.22  129  106.50  96.95  9.55  208  42.80  41.29  1.51  

49  35.00  26.85  8.15  130  96.50  97.91  -1.41  209  44.80  42.27  2.53  

50  31.80  27.82  3.98  131  96.50  127.38  -30.88  210  42.70  44.34  -1.64  

51  22.00  31.62  -9.62  133  112.70  112.30  0.40  211  42.80  46.78  -3.98  

52  29.90  28.54  1.36  135  117.80  114.32  3.48  212  37.60  47.02  -9.42  

54  27.00  26.10  0.90  136  100.20  105.89  -5.69  213  39.60  47.76  -8.16  
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55  32.00  32.08  -0.08  137  102.80  105.89  -3.09  214  44.60  48.07  -3.47  

57  35.20  41.79  -6.59  138  126.50  118.68  7.82  216  62.70  38.22  24.48  

61  42.90  53.05  -10.15  139  96.60  119.29  -22.69  217  64.70  48.84  15.86  

62  42.00  49.80  -7.80  141  96.50  116.18  -19.68  220  69.60  52.15  17.45  

65  49.80  49.65  0.15  142  71.80  121.59  -49.79  221  69.60  59.88  9.72  

66  42.80  35.09  7.71  144  92.80  103.34  -10.54  222  79.80  68.30  11.50  

67  42.20  47.06  -4.86  145  91.80  105.57  -13.77  224  62.70  59.86  2.84  

70  47.00  51.72  -4.72  147  66.00  102.81  -36.81  225  68.40  67.70  0.70  

71  46.50  49.17  -2.67  150  99.60  99.74  -0.14  226  72.70  69.39  3.31  

73  43.20  39.16  4.04  151  109.60  104.23  5.37  227  69.60  71.11  -1.51  

74  98.00  93.86  4.14  152  87.70  85.80  1.90  230  69.80  71.01  -1.21  

76  103.00  98.30  4.70  153  72.40  71.35  1.05  231  62.70  64.28  -1.58  

77  94.60  89.18  5.42  154  82.70  81.03  1.67  232  67.80  70.93  -3.13  

78  101.00  119.31  -18.31  156  99.60  85.71  13.89  234  69.68  67.13  2.55  
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Table 5.8: Measured and predicted values for COD testing data of MLR  

S/N  Measured 

COD (Y)   

Predicte 

d COD  

(Ῡ)  

Error (Y- 

Ῡ)   

S/N  Measure 

d 

 CO

D  

(Y)  

Predicte 

d 

 CO

D  

(Ῡ)  

Error (Y- 

Ῡ)   

S/N  Measured 

COD (Y)   

Predicted 

COD (Ῡ)  

Error Ῡ   Y-  

10  73.80  67.71  6.09  81  122.20  109.81  12.39  157  89.60  85.74  3.86   

11  60.00  68.24  -8.24  84  116.00  107.91  8.09  162  77.70  76.96  0.74   

14  65.00  74.05  -9.05  85  133.20  118.49  14.71  163  49.60  62.74  -13.14   

15  66.00  79.22  -13.22  89  122.00  107.41  14.59  172  72.70  70.03  2.67   

20  64.60  65.92  -1.32  95  128.00  105.59  22.41  177  64.00  61.82  2.18   

23  57.00  55.63  1.37  97  121.20  113.02  8.18  180  62.70  58.23  4.47   

26  50.50  54.51  -4.01  99  114.00  111.32  2.68  182  53.60  57.61  -4.01   

27  60.80  68.58  -7.78  100  117.30  114.12  3.18  183  49.60  50.83  -1.23   
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29  69.60  59.70  9.90  110  124.00  115.00  9.00  186  36.60  32.45  4.15   

30  48.60  60.89  -12.29  111  122.00  113.18  8.82  189  40.70  47.05  -6.35   

35  46.00  56.49  -10.49  112  126.00  113.23  12.77  191  34.60  34.93  -0.33   

36  64.20  61.25  2.95  114  135.80  121.68  14.12  193  35.10  36.09  -0.99   

42  34.00  35.46  -1.46  115  139.60  146.99  -7.39  196  38.80  27.73  11.07   

53  31.20  31.87  -0.67  117  122.70  112.78  9.92  197  32.70  28.95  3.75   

56  33.80  36.10  -2.30  119  125.60  110.35  15.25  198  36.00  36.08  -0.08   

58  41.20  49.40  -8.20  122  113.70  117.56  -3.86  202  42.50  42.76  -0.26   

59  55.60  54.41  1.19  132  99.80  110.72  -10.92  206  38.50  37.17  1.33   

60  42.60  52.09  -9.49  134  107.60  105.46  2.14  215  42.60  50.02  -7.42   

63  39.00  40.96  -1.96  140  84.00  121.79  -37.79  218  72.70  48.46  24.24   

64  44.80  50.67  -5.87  143  109.60  106.04  3.56  219  69.60  47.32  22.28   

68  57.20  55.30  1.90  146  72.70  104.65  -31.95  223  67.60  66.89  0.71   

69  49.00  50.22  -1.22  148  92.70  117.22  -24.52  228  69.60  64.91  4.69   
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72  40.40  43.10  -2.70  149  79.60  103.09  -23.49  229  69.60  77.98  -8.38   

75  84.30  79.56  4.74  155  89.60  84.55  5.05  233  67.70  66.47  1.23   
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The multiple linear regression equation for the testing dataset for the prediction of COD is 

presented in equation 5.4.   

COD = -13.6604 + 0.92626BOD + 3.237PO4-P + 24.556NO3-N --2.3639SS -0.425SS + 

0.0222EC + 1.599TEMP                  5.5  

All generated multiple linear regression summaries by R language and measured and predicted 

table in the whole dataset, training and testing dataset of all the remaining output parameters 

are presented in the appendix section of this thesis.  

5.5.3 Multiple linear regression for BOD   

The coefficients are substituted with the actual values. Therefore, the multiple linear regression 

equation models for the whole dataset to predict BOD concentration given other highly 

correlated input parameters in R language is generated in equation 5.6 as;  

BOD = 5.5013 +0.497 COD + (-1.454PO4-P) + 0.04684 NH4-N + 0.563SS + 0.813TBD + 

0.631EC + (-0.389TEMP).    5.6  

The complete BOD dataset from constructed wetland system dataset were 234 data points, 

which were divided randomly into two parts consisting of 161 data points which are 70% of 

the dataset as training dataset and 30% of data as testing dataset consisting of 73 data point as 

contained in the table   

Table 5.9: Partition of BOD dataset  

Data partition  Relative size  Number of entries  

Entire data  100%  234  

Training data  70%  161  

Testing data  30%  73  

  

The model is processed by putting 70% training dataset by predicting training test data. 

Therefore, the multiple linear regression equation models for the training dataset of BOD 

concentration given other highly correlated known input parameters values in R language is 

generated in equation 5.6 as  
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BOD = 7.505 +0.216 COD + 0.491PO4-P + 1.274NH4-N + 1.125SS + 0.404TBD + 0.02751EC 

+ (-0.627TEMP)        5.6  

After getting the prediction result from the training dataset, the model build is tested by 

predicting BOD against the test set. Because the testing dataset already contains known values 

for the output parameters to predict, to check whether the model's predictions are accurate and 

correct or not. The multiple regression equation for the testing dataset of the output BOD is 

presented in equation 5.7 below   

BOD = 12.669 +0.216 COD + 1.906PO4-P + 0.278NH4-N + (- 0.0257SS + 1.351TBD + (-

0.00281EC + (-0.426TEMP) 5.6  

5.5.4 Multiple linear regression for PO4-P  

The multiple linear regressions for the R language prediction model are generated for the whole 

dataset of PO4-P. Therefore, the multiple linear regression equation models for the whole 

dataset to predict PO4-P concentration given other highly correlated input parameters in R 

language is generated in equation 5.7 as:  

PO4-P = 7.419 + (-0.833COD) + (-0.478BOD) + 1.087NH4-N + 1.359SS + 2.396TBD + 

0.026EC             5.7  

For proper prediction of the output PO4-P, the overall data is then split randomly using R 

language into two different subsets training, and testing dataset 70% with 201 data point and 

30% with 105 data point respectively as contained in Table 5.8. The training set part of the  

PO4-P dataset is used to build up a model, and testing is used to test the model   
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Table 5.10: Partition of the PO4-P dataset  

Data partition  Relative size  Number of entries  

Entire data  100%  306  

Training data  70%  201  

Testing data  30%  105  

      

  

The multiple linear regression equation models for the training dataset to predict PO4-P 

concentration given other highly correlated input parameters in R language is generated in 

equation 5.8 as  

  

PO4-P = 4.6445 + 0.126COD + 0.051BOD + 1.021NH4-N + 1.041SS + 1.973TBD + 0.029EC 

 5.7  

  

The testing dataset of the whole data is used to validate the model built using training dataset.  

The multiple linear regression equation models for the testing dataset to predict PO4-P 

concentration given other highly correlated input parameters in R language is generated in 

equation 5.9 as  

  

PO4-P = -0.982 + (- 1.175COD) + (- 0.869BOD) + (-0.021NH4-N) + 3.523SS + 0.136TBD + 

0.0424EC  5.9  

5.5.5  Multiple linear regression for Ammonium nitrogen (NH4-N)  

The multiple linear regression equation model for the whole dataset to predict NH4-N 

concentration given other highly correlated input parameters in R language is generated in 

equation 5.10 as follows;  
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NH4-N = 0.876+ 0.0035BOD + 1.687COD + 0.172PO4-P + 0.099SS + 0.534TBD + 0.0014EC               

5.10  

To properly create and evaluate NH4-N prediction model the overall data is split into 70% training 

and 30% testing data randomly as contain in Table 5.9.  

Table 5.11: Partition of the NH4-N dataset  

Data partition  Relative size  Number of entries  

Entire data  100%  293  

Training data  70%  202  

Testing data  30%  91  

  

The multiple linear regression equation models for the training dataset to predict NH4-N 

concentration given other highly correlated input parameters in is generated R language as 

presented in equation 5.11 as follows:  

NH4-N = -0.217 + 0.0157BOD + 0.0296COD + 0.122PO4-P + 0.149SS + 0.265TBD + 

0.0088EC   5.11  

The multiple linear regression equation models for the testing dataset to validate the NH4-N 

prediction built and compare the result of training dataset model given is generated R language 

as presented in equation 5.11 as follows:  

NH4-N = 0.828 + 1.713BOD + 0.762COD + 0.0079PO4-P + 0.142SS + 0.0532TBD + 

0.8085EC         5.11  

5.5.6 Multiple liner regression for suspended solid (SS)  

To predict SS concentration of the whole dataset using multiple linear regression models in R 

language, the overall dataset has 294 data points the generated regression equation for the 

prediction of SS is presented in equation 5.12   
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SS = -1.185+ 0.0568BOD + (-0.0114NO3-N) + (-0.032PO4-P) + 0.049NH4-N + 0.513TBD + 

0.005EC  5.12  

  

To ascertain the performance of the linear regression model for the prediction of SS from 

overall datasets used. The dataset is divided randomly into two different dataset training, and 

testing dataset using R language, the allocation of data is 70% and 30% for training and testing 

dataset respectively Table 5.  

Table 5.12: Partition of SS dataset  

Data partition  Relative size  Number of entries  

Entire data  100%  263  

Training data  70%  192  

Testing data  30%  71  

  

The training parts a dataset is used to train the model, the model itself was created by learning 

from the training set part, while in another hand test the model from an unseen testing dataset. 

The detailed structures are selected out from the training set.  These structures are then 

integrated into the model, which should be able to learn from these structures. The total data 

point of training dataset is 192 entries. The multiple linear regression equation models for the 

training dataset to predict SS concentration given other highly correlated input parameters in 

is generated R language as presented in equation 5.13 as follows  

 SS = 186.024 + 0.083BOD + (-2.573NO3-N) + 118.396PO4-P + (-1.772NH4-N + (-

24.285TBD) + 0.278EC         5.13  

To assess and test the how well the regression model performs in predicting SS on the training 

dataset, testing dataset is used (dataset the model has not seen before).   

The total data point of training dataset are 71 entries the multiple linear regression equation 

models for the testing dataset to validate the SS prediction built and compare the result of 
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training dataset model given is generated in R language as presented in equation 5.14 as 

follows:  

SS = 104.713 + 0.143BOD + (-2.672NO3-N) + 51.511PO4-P + 8.854NH4-N + (16.285TBD) 

+ 0.375EC  5.14  

5.6 Building a multilayer perceptron (MLR) Model  

In this study research, multilayer perceptron (MLP) was build using WEKA data mining tool. 

The software only accepts and understand data that is arrange in ARFF file format before it 

processed.  The type of data fed to the system can then be defined, then supply the data itself.  

In the file, column and what each column contains are also described.  

5.6.1 Construction of the Multilayer perceptron for COD   

It was discovered from correlation analysis that seven input parameters were recorded to have 

a positive and strong correlation with COD, these include BOD, PO4-P, NO3-N, SS, TBD, EC 

and Temp. Hence, they will be used to develop the multilayer perceptron model for the 

prediction of COD. The model clearly indicates how these inputs are used to generated COD 

output prediction, how the feedforward algorithms work, where the incoming input get to 

multiply by weights and sum together and successfully generate an output from hidden layer 

each neuron computes its net input as weighted sum of its input and pass through activation 

function to get output. Its assume all neuron use the same activation function the output of the 

neuron in the output layer are the final output of the networks and build a simple multiple layer 

perceptron prediction models, that all the pieces of the artificial neural network.  
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Table 5.13: Measured and predicted data for COD training data of MLP  

S/N  Measured 

COD (Y)   

Predicted 

COD (Ῡ)  

Error      (Y- 

Ῡ)   

S/N  Measured 

COD (Y)  

 Predicted  

COD (Ῡ)  

Error (Y- 

Ῡ)   

S/N  Measured 

COD (Y)   

 Predicted  

COD (Ῡ)  

Error Y- Ῡ  

1  40.20  42.43  -2.23  79  104.00  99.14  4.86  157  89.60  87.68  1.92  

2  48.50  48.82  -0.32  80  103.12  102.08  1.04  158  89.80  86.10  3.70  

3  40.00  42.68  -2.68  81  122.20  119.01  3.19  159  82.70  85.78  -3.08  

4  41.40  38.23  3.17  82  126.80  125.20  1.60  160  77.60  77.48  0.12  

5  64.70  70.53  -5.83  83  137.40  139.11  -1.71  161  71.80  75.77  -3.97  

6  67.00  64.55  2.45  84  116.00  115.32  0.68  162  77.70  77.43  0.27  

7  72.30  74.99  -2.69  85  133.20  130.08  3.12  163  49.60  61.95  -12.35  

8  68.80  65.98  2.82  86  136.30  134.49  1.81  164  72.00  75.41  -3.41  

9  65.00  65.29  -0.29  87  100.40  102.77  -2.37  165  75.80  72.16  3.64  

10  73.80  76.76  -2.96  88  123.00  124.98  -1.98  166  59.60  62.38  -2.78  

11  60.00  61.46  -1.46  89  122.00  120.68  1.32  167  60.50  73.31  -12.81  

12  74.00  76.87  -2.87  90  118.50  115.03  3.47  168  72.70  71.08  1.62  
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13  65.00  65.53  -0.53  91  122.00  120.67  1.33  169  64.50  68.31  -3.81  

14  65.00  67.38  -2.38  92  138.50  132.87  5.63  170  72.90  71.48  1.42  

15  66.00  72.45  -6.45  93  113.00  111.62  1.38  171  69.70  66.64  3.06  

16  64.60  73.77  -9.17  94  113.20  114.68  -1.48  172  72.70  70.78  1.92  

17  75.00  78.22  -3.22  95  128.00  129.46  -1.46  173  69.60  68.84  0.76  

18  73.00  75.45  -2.45  96  116.30  117.26  -0.96  174  70.80  68.57  2.23  

19  74.00  77.79  -3.79  97  121.20  117.99  3.21  175  79.00  75.68  3.32  

20  64.60  63.47  1.13  98  135.60  136.78  -1.18  176  60.50  64.68  -4.18  

21  64.00  61.45  2.55  99  114.00  109.02  4.98  177  64.00  59.46  4.54  

22  56.60  56.18  0.42  100  117.30  112.14  5.16  178  62.68  56.28  4.72  

23  57.00  56.74  0.26  101  122.00  125.39  -3.39  179  61.00  62.49  -1.49  

24  56.20  60.24  -4.04  102  135.80  130.22  5.58  180  62.70  56.85  5.15  

 

25  55.60  59.97  -4.37  103  129.60  123.59  6.01  181  57.90  50.02  7.88  
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26  50.50  51.65  -1.15  104  113.00  111.16  1.84  182  53.60  55.92  -2.32  

27  60.80  63.51  -2.71  105  112.70  115.44  -2.74  183  49.60  45.82  3.78  

28  54.60  58.67  -4.07  106  113.60  111.54  2.06  184  47.70  46.69  1.01  

29  69.60  63.48  6.12  107  118.90  115.05  5.85  185  41.90  40.83  1.07  

30  48.60  51.98  -3.38  108  139.70  134.73  4.97  186  36.60  38.96  -2.36  

31  46.60  60.22  -13.62  109  127.70  128.22  -0.52  187  29.60  27.95  1.65  

32  56.60  55.82  0.78  110  124.00  123.00  1.00  188  32.60  29.12  3.48  

33  55.60  54.30  1.30  111  122.00  120.15  1.85  189  40.70  37.44  3.26  

34  52.00  58.00  -6.00  112  126.00  123.06  2.94  190  38.70  35.40  3.30  

35  46.00  53.08  -7.08  113  126.50  124.42  2.08  191  34.60  30.19  5.41  

36  64.20  68.80  -4.60  114  135.80  131.22  4.58  192  39.60  36.37  3.27  

37  66.70  65.84  0.86  115  139.60  136.23  3.37  193  35.10  30.65  4.45  

38  58.20  57.00  1.20  116  124.50  122.55  1.95  194  36.50  29.98  -3.48  

39  50.80  46.76  4.04  117  122.70  119.36  3.34  195  37.50  33.04  4.46  
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40  50.50  45.41  5.09  118  139.60  134.99  4.61  196  38.80  35.11  3.69  

41  36.50  39.09  -2.59  119  125.60  122.13  3.47  197  32.70  29.55  3.15  

42  34.00  33.61  0.39  120  133.60  133.75  -0.15  198  36.00  34.10  1.90  

43  26.20  27.91  -1.71  121  117.70  112.12  5.58  199  39.80  37.99  1.81  

44  35.00  36.87  -1.87  122  113.70  113.11  0.59  200  39.75  35.40  4.34  

45  24.00  24.48  -0.48  123  136.60  132.75  3.85  201  42.80  37.28  5.52  

46  34.40  29.89  4.51  124  149.60  152.93  -3.33  202  42.50  41.37  1.13  

47  35.50  36.18  -0.68  125  139.60  135.50  4.10  203  42.60  45.61  -3.01  

48  34.00  31.98  2.02  126  86.70  83.37  3.33  204  44.00  38.13  5.87  

49  35.00  32.19  2.81  127  132.70  128.42  4.28  205  36.50  33.34  3.16  

50  31.80  30.72  1.08  128  97.60  94.17  3.43  206  38.50  34.85  3.65  

51  22.00  26.93  -4.93  129  106.50  107.55  -1.05  207  36.50  42.15  -5.65  

52  29.90  22.38  7.52  130  96.50  93.24  3.26  208  42.80  37.59  5.21  

53  31.20  29.56  1.64  131  96.50  99.05  -2.55  209  44.80  39.19  5.61  
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54  27.00  28.04  -1.04  132  99.80  102.12  -2.32  210  42.70  38.20  4.50  

55  32.00  34.58  -2.58  133  112.70  118.68  -5.98  211  42.80  44.70  -1.90  

56  33.80  33.82  -0.02  134  107.60  109.27  -1.67  212  37.60  43.76  -6.16  

57  35.20  38.64  -3.44  135  117.80  120.06  -2.26  213  39.60  43.87  -4.27  

58  41.20  46.97  -5.77  136  100.20  105.50  -5.30  214  44.60  46.99  -2.39  

59  55.60  52.40  3.20  137  102.80  109.48  -6.68  215  42.60  47.91  -5.31  

60  42.60  50.28  -7.68  138  126.50  127.03  -0.53  216  62.70  61.06  1.64  

61  42.90  47.38  -4.48  139  96.60  97.73  -1.13  217  64.70  65.72  -1.02  

62  42.00  46.67  -4.67  140  84.00  85.84  -1.84  218  72.70  73.59  -0.89  

63  39.00  35.57  3.43  141  96.50  90.00  6.50  219  69.60  63.49  6.11  

64  44.80  47.70  -2.90  142  71.80  71.59  0.21  220  69.60  68.13  1.47  

65  49.80  51.39  -1.59  143  109.60  114.60  -5.00  221  69.60  67.82  1.78  

66  42.80  39.81  2.99  144  92.80  90.69  2.11  222  79.80  76.85  2.95  

67  42.20  42.93  -0.73  145  91.80  82.17  9.63  223  67.60  74.01  -6.41  
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68  57.20  54.68  2.52  146  72.70  72.78  -0.08  224  62.70  57.87  4.83  

69  49.00  47.36  1.64  147  66.00  68.08  -2.08  225  68.40  65.03  3.37  

70  47.00  48.46  -1.46  148  92.70  96.63  -3.93  226  72.70  68.14  4.56  

71  46.50  48.42  -1.92  149  79.60  79.77  -0.17  227  69.60  72.24  -2.64  

72  40.40  38.60  1.80  150  99.60  102.74  -3.14  228  69.60  64.47  5.13  

73  43.20  45.27  -2.07  151  109.60  109.74  -0.14  229  69.60  65.82  3.78  

74  98.00  100.14  -2.14  152  87.70  88.95  -1.25  230  69.80  71.08  -1.28  

75  84.30  81.84  2.46  153  72.40  69.41  2.99  231  62.70  61.56  1.14  

76  103.00  100.38  2.62  154  82.70  81.12  1.58  232  67.80  66.51  1.29  

77  94.60  91.36  3.24  155  89.60  85.37  4.23  233  67.70  68.28  -0.58  

78  101.00  97.16  3.84  156  99.60  96.43  3.17  234  69.68  65.09  4.59  
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Table 5.14: Measured and predicted values for COD testing data of MLP  

  COD TRAINING DATA    

S/N  Actual COD  Predicted COD  error  S/N  Actual COD  Predicted COD  error  S/N  Actual COD  Predicted COD  error  

1  40.2  40.7  -0.47  42  34  31.29  2.71  87  100.4  90.2  10.16  

2  48.5  36.4  12.06  43  26.2  26.19  0.01  88  123  125.9  -2.86  

3  40  39.2  0.77  44  35  27.48  7.52  89  122  102.7  19.26  

5  54.7  60.1  -5.36  45  24  22.39  1.61  90  118.5  110.9  7.60  

7  72.3  64.2  8.10  47  35.5  29.56  5.94  91  122  123.3  -1.30  

8  68.8  69.0  -0.22  48  34  31.43  2.57  92  138.5  133.8  4.69  

9  65  69.1  -4.11  52  29.9  23.15  6.75  94  113.2  111.7  1.50  

10  73.8  65.8  8.01  53  31.2  32.14  -0.94  95  128  118.5  9.45  

11  60  62.8  -2.85  54  27  27.31  -0.31  96  116.3  117.8  -1.52  

12  74  77.6  -3.60  55  32  29.84  2.17  97  121.2  112.7  8.54  

14  65  67.9  -2.90  58  41.2  42.20  -1.00  98  135.6  135.2  0.40  
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15  66  77.8  -11.84  59  55.6  47.05  8.55  99  111  102.3  8.68  

16  64.6  70.4  -5.83  60  42.6  45.84  -3.24  100  117.3  98.2  19.06  

19  74  61.2  12.77  61  42.9  43.68  -0.78  101  122  110.6  11.39  

21  64  55.7  8.29  62  42  45.00  -3.00  102  135.8  133.0  2.82  

23  57  53.3  3.73  63  39  39.15  -0.15  103  129.6  96.2  33.42  
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129  106.5  95.98  10.52  168  72.7  70.10  2.60  205  36.5  31.82  4.68  

130  96.5  97.39  -0.89  169  64.5  60.80  3.70  206  38.5  33.54  4.96  

131  96.5  108.63  -12.13  170  72.9  67.76  5.14  210  42.7  40.13  2.57  

133  112.7  98.80  13.90  171  69.7  62.82  6.88  211  42.8  36.82  5.98  

134  107.6  94.42  13.18  172  72.7  64.79  7.91  214  44.6  47.03  -2.43  

136  109.2  99.09  10.11  173  69.6  65.12  4.48  215  42.6  51.68  -9.08  

138  126.5  102.94  23.56  174  70.8  64.26  6.54  216  62.7  52.03  10.67  

139  96.6  105.46  -8.86  176  60.5  60.57  -0.07  217  64.7  55.63  9.07  

140  84  104.90  -20.90  177  60  56.31  3.69  219  69.6  54.79  14.81  

141  96.5  109.49  -12.99  181  59.6  48.79  10.81  220  69.6  63.85  5.75  

142  71.8  101.31  -29.51  182  53.6  48.63  4.97  221  69.6  61.48  8.12  

143  109.6  97.35  12.25  183  49.6  48.47  1.13  222  79.8  68.88  10.92  

145  91.8  96.87  -5.07  184  47.7  44.30  3.40  223  77.6  64.41  13.20  
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146  74.7  97.01  -22.31  186  36.6  31.65  4.95  227  69.6  61.76  7.84  

147  66  97.33  -31.33  187  29.6  29.94  -0.34  229  69.6  71.69  -2.09  

148  92.7  100.27  -7.57  189  56.7  43.54  13.16  231  62.7  63.83  -1.13  

149  79.6  97.95  -18.35  190  29.7  30.71  -1.01  232  67.8  61.67  6.13  

151  109.6  95.00  14.60  191  30.6  30.52  0.08  233  67.7  65.77  1.93  

153  72.4  76.54  -4.14  192  27.6  35.19  -7.59  234  84.68  63.03  21.65  

155  89.6  87.98  1.62  193  35.1  24.46  10.64              

158  89.8  82.80  7.00  194  34.5  23.97  10.53              

159  82.7  78.80  3.90  195  32.5  28.62  3.88              
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The input node is fully connected to every node of the hidden layer, and every node of the 

hidden layer is connected to every node of the output layer.  And the data feed forward to output, 

each hidden node neuron in hidden layer does something called weighted sum, it takes the input 

and multiply by the weight and that to the other input and multiply by the weight. At the 

completion of the weighted sum, the result passes through activation function before it gets to 

send out to the next connection. The Multilayer perceptron network used to generate COD 

prediction is shown in figure 5. Seven different inputs enter in the system, the input data 

feedforward and the output come out.   

  

Figure 5.10: MLP generated network model for output COD and its corresponding correlated 

input parameters  

As can be seen, the MLP has seven inputs and one output. The set of inputs (X1 to X7) combine 

with their corresponding weights (weighted sum) W1 to W7 or strength of their own plus a bias 

or error to produce better predictive output. Sometimes the output is either zero or one 

depending on the weighted sum of the set of inputs that means the inputs are needed to pass to 

a function called a sigmoid function or a logistic curve, that will produce either one or zero 

based on a certain threshold. Neurons are fully connected using the connection, and they send 

a signal to the next neuron. the weighted sum generated from the multilayer perceptron in Figure 

5.10 above is   
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The function represents by the above network can be written as   

Y1 =   +   )  

Y2 =   +   )  

Y3 =   +   )  

 Y4 =   +    )  

Where Y1 to Y4 are the sub COD value before final summation, f1 to f4 are the activation of 

the respective neuron, X1 = BOD, X2 = PO4-P, X3 = NO3-N, X4 = SS, X5 = TBD, X6 = EC, X7 

= TEMP, and W11 to W57 are the weight of the connector of the respective input, and h1 to h2 

are the hidden layers   

COD  

Therefore, COD = Y1 + Y2 + Y3 + Y4  

This how the multilayer perceptron network is represented to predict the output COD   
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5.6.2 Construction of the Multilayer perceptron for BOD   

Multilayer Perceptron is used to build BOD predictive models from a set of highly correlated 

input data to predict output parameter these include COD, PO4-P, NO3-N, NH4-N, turbidity 

electrical conductivity and temperature. 70% of the data is used to train the network which help 

the network to learn appropriately and the remaining data set was used to test the model build. 

The generated MLP network for the estimation of BOD output parameter is presented in figure 

5.11, as can be seen from the figure the perceptron produces single output base on seven 

different input layers, four hidden layers by forming a linear mixture by means of input weights. 

The signal flow travels from the input layers through the hidden layers and finally to the output 

layer  

  

Figure 5.11: MLP generated network model for output BOD and its corresponding correlated 

input parameters 

The input-output generated matrix equation from network for both training and testing data set 

of BOD in Figure 5.11 

Y1 f1(CODW11+ PO4-PW12+ NO3-NW13+ NH4-NW14+ TBDW15+ ECW16+ TEMPW17)  

Y2 f2(CODW21+ PO4-PW22+ NO3-NW23+ NH4-NW24+ TBDW25+ ECW26+ TEMPW27)

   

(CODW31+ PO4-PW32+ NO3-NW33+ NH4-NW34+ TBDW35+ ECW36+ TEMPW  
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Y4 f4(CODW41+ PO4-PW42+ NO3-NW43+ NH4-NW44+ TBDW45+ ECW46+ TEMPW47) 

Therefore, Y1 + Y2 + Y3 + Y4 = BOD   

Where f is an activation function w is a corresponding weight of the input  

5.6.3 Construction of the Multilayer perceptron for NH4-N  

Multilayer Perceptron is used to build NH4-N predictive models from a set of highly correlated 

input data to predict output parameter these include COD, BOD, PO4-P, SS turbidity and 

electrical conductivity (EC). The network consists of six different inputs and 3 hidden layer and 

one single output as contain in figure 5.10  

  

Figure 5.12: MLP generated network model for output NH4-N and its corresponding 

correlated input parameters 

The input-output generated matrix equation from network for both training and testing of NH4-

N data in Figure 5.12  

  

Y1 f1(CODW11+ BODW12+ PO4-PW13+ SSW14+ TBDW15+ ECW16) 

NH4-N [Y2 f2(CODW21+ BODW22+  PO4-PW23+ SSW24+ TBDW25+ ECW26)]  

Y3 f3(CODW31+ BODW32+ PO4-PW33+   W34+ TBDW35+ ECW36) 

Y4 f4(CODW41+ BODW42+ PO4-PW43+ SSW44+ TBDW45+ ECW46) 
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Therefore, Y1 + Y2 + Y3 + Y4 = NH4-N  

5.6.4 Construction of the Multilayer perceptron for PO4-P  

Multilayer Perceptron is employed to build NH4-N models from a set of highly correlated input 

data aimed at predicting NH4-N output parameter; the highly correlated input parameters 

include COD, BOD, NH4-N, SS, turbidity, and electrical conductivity. All the six different 

inputs parameters are connected to all the 3 hidden layer of the network with processing neurons 

and all 3 hidden layers are connected to one single output as contain in Figure 5.13.  

  

Figure 5.13: MLP generated network model for output PO4-P and its corresponding correlated 

input parameters  

The input-output generated matrix equation from network for training and testing PO4-P dataset 

in equation  

  

Y1 f1(CODW11+ BODW12+ NH4-NW13+ SSW14+ TBDW15+ ECW16)  

Y2 f2(CODW21+ BODW22+  NH4-NW23+ SSW24+ TBDW25+ ECW26)            5.4  PO4-P  

 Y3 f3(CODW31+ BODW32+ NH4-NW33+ W34+ TBDW35+ ECW36)  

Y4 f4(CODW41+ BODW42+ NH4-NW43+ SSW44+ TBDW45+ ECW46)  

Therefore, Y1 + Y2 + Y3 + Y4 = PO4-P   



266 

 

5.6.5 Construction of the Multilayer perceptron for Suspended solid (SS)  

 It is a network with six different highly correlated input water quality parameters, three hidden 

layers with processing neurons and one single output parameters (SS) as shown in Figure 5.14.  

  

Figure 5.14: MLP generated network model for output SS and its corresponding with 

correlated input parameters  

The MLP generated equation to predict output SS parameter given other know highly correlated 

input for both training and testing data set is presented in equation   

Y1 f1(BODW11+ NO3-NW12+ PO4-PW13+ SSW14+ TBDW15+ ECW16) 

    [Y2 f2(BODW21+ NO3-NW22+  PO4-PW23+ SSW24+ TBDW25+ ECW26)] Y3 f3(BODW31+ 

NO3-NW32+ PO4-PW33+   W34+ TBDW35+ ECW36) 

Y4 f4(BODW41+ NO3-NW42+ PO4-PW43+ SSW44+ TBDW45+ ECW46) 

Therefore, Y1 + Y2 + Y3 + Y4 =SS  

All predicted values are generated, and the results are compared with the actual measure values 

to compare and evaluate the performance of the prediction model  

5.7 Model evaluation performance   

Model Evaluation is an integral part of the process of choosing a good model in the data 

predictive model process. It helps to find the best model among many models build that will 

predict output parameter accurately in question in a given data set it also indicates how good 
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the chosen model will work in the future. After the model is built, specific evaluation 

performance about the prediction model parameters is useful in measuring prediction model 

accuracy and model error. Several measures of goodness of fit were used to evaluate the 

prediction performance of the regression model (Khadr & Elshemy, 2016). The performance of 

the models built was evaluated based on two model evaluation performance methods. These 

methods include graphical visualisation evaluation (using scatter plots and hydrographs) and 

numerical model evaluation using error measures criteria, the measures that were used to 

compare the output values of the model, these include root mean square (RMSE), regression 

coefficient (r), mean average error (MAE), relate absolute error (RAE) and root relative squared 

error (RRSE)  

5.7.1 Graphical Model Evaluation   

To predict the performance of constructed wetland by predicting water Thus, it seems that 

plotting the data and showing the dispersion of the values is important  

Graphical representation model evaluation is a process of visualising the relationships between 

measured and predicted values. Assessing model performance through graphical evaluation, 

scatter plot and hydrograph play a vital role.  The use of scatter plots of predicted and measured 

(or vice versa) values is one of the most common alternatives to evaluate the performance of 

prediction models and is still the most commonly used method.  

To graphically evaluate the prediction performance of the MLP and MLR models built, actual 

and predicted values are compared graphically to visualise the difference between them Figs. 4 

and 5 are the structures of scatter plot and hydrograph of MLP model, that ware depicted 

between actual and predicted values of BOD and COD concentrations both in training and 

testing dataset phases, respectively. From the MLP model structures as shown on a scatter 

graph, the closer the points of measured and predicted values merge in a straight line the solid 

and accurate the linear relationship is between actual and predicted values built by the model, 

likewise hygrograph the closer the measure and predicted curves values are in agreement the 

accurate the model is  

5.7.1.1 Graphical evaluation of BOD and COD model   

To graphically evaluate COD build by MLR and MLP model, scatter plots and hydrograph were 

employed for this task. Figure 5.15 are the scatter plots and hydrograph between predicted 
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values of COD concentration by MLR model versus measured values for training, testing and 

complete COD data set. As can be seen from It was from Figure 5.15a that the measure and 

predicted were correlated linearly merged in a straight line. Likewise, in Figure 5.15b 

hydrograph the measure and predicted COD value curves are in close agreement with each 

other. COD testing data is used to test the model build, as seen from the scatter plot and 

hydrograph Figure 5.15 c, and d respectively, that the model predicted COD with high accuracy. 

Since the MLR model recorded great success, the entire COD data is used for prediction, and 

the model is evaluated graphically as contain in figure 5.15e for scatter plot and 5.15f for 

hydrograph, it was observed that the measured and predicted values of COD are linearly fitted 

to each other on straight line in scatter plot. However, in hydrograph the measured and predicted 

value curves were in close agreement with each other. This confirms that the MLR model 

performed considerably well in predicting COD concentration for the entire COD dataset. 

Hence the accuracy of the MLR model build in predicting COD  

concentration was achieved.  
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Figure 5.15: MLR model: (a) scatter plot of COD concentration between quantified and 

predicted values in Training data (b) Hydrograph of COD concentration between actual and 

predicted values in training data (c) Scatter plot of COD concentration between measured and 

predicted value in testing data (d) Hydrograph of COD concentration between actual and 

predicted values in testing data set. (e) Scatter plot of COD concentration for the whole data set 

(f) Hydrograph of COD concentration for the whole data set 

Meanwhile, Figure 5.16 are the designed MLP model structure for the comparison between 

measured and predicted COD concentration, in training, testing and whole dataset, which 

depicted in the form of scatter plot and hydrograph. Looking at the scatterplots of the MLP 

model as shown in Figure 5.16 a and c indicated that the points of measured and predicted of 

COD values concentration are linearly fitted to each other in both training and testing 

respectively. The result is confirmed in hydrographs in Figure 5.16 b and d that the lines 

between measured and predicted values of COD are in close agreement to one another in both 

training and testing dataset. This also confirms that the MLP model predicts COD correctly. 

However, in figure 5.16 e and f are the scatter plot and hydrograph between measured and 

predicted values of COD concentration respectively, as can be seen, that the two graphs 

indicated that both measured and predicted values points are close together to the line of perfect 

match and in close agreement between each other. This is an indication that the predicted values 

fit well to the actual values. Hence MLP model predict COD with reasonable accuracy.  
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Figure 5.16  MLP model: (a) scatter plot of COD concentration between quantified and 

predicted values (b) Hydrograph of COD concentration between actual and predicted values (c) 

Scatter plot of COD concentration between measured and predicted value (d) Hydrograph of 

COD concentration between actual and predicted values. (e) Scatter plot of COD concentration 

for the whole data set (f) Hydrograph of COD concentration for the whole data set. 
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Figure 5.17 scatter plot and hydrograph of measured and predicted BOD concentration value of 

the MLR model. Figure 5.17 a and c are the scatter plot of training and testing dataset 

respectively. It was observed that the value points merged in a straight line and also Figure 5.17 

b and d are scatter plots and hydrographs of training and testing data of BOD concentration, 

which indicated that measured and predicted values trend curves were closely together. This 

trend symbolises the accuracy of the MLR model in predicting BOD concentrations. However, 

Figure 5.17 e is the scatter plot and f is the hydrograph of measured and predicted values of 

BOD concentration of the whole BOD dataset respectively. It was observed that the measured 

and predicted values points of BOD join closer together in a straight line of scatter plot and also 

curves of hydrograph are closely together between, this symbolise the accuracy of the MLR 

models in predicting BOD concentrations. 
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 (c)  Measured BOD (mg/l)    

 

Figure 5.17: MLR model (a) scatter plot of BOD concentration between quantified and 

predicted values in Training data; (b) Hydrograph of BOD concentration between actual and 

predicted values in training data; (c) Scatter plot of BOD concentration between measured and 

predicted value in testing data; (d) Hydrograph of BOD concentration between actual and 

predicted values in testing dataset;  (e) Scatter plot of BOD concentration for the whole data 

set; and (f) Hydrograph of BOD concentration for the whole data set. 

Meanwhile, Figure 5.18 are the graphical evaluation of designed MLP model structure between 

measured and predicted BOD concentration, in training and testing dataset, which depicted in 

the form of scatter plot and hydrograph. Looking at the scatterplots shown in Figure 5.18 a and 

c which indicated that the points of measured and predicted BOD values concentration are 

linearly fitted to each other in both training and testing data set respectively. This is also reaffirm 

in hydrograph in figure 5.18 b and d that the line curves of predicted values of BOD 

concentration are closely followed the measure values and in close agreement to one another in 

both training and testing dataset respectively. This also confirms that the MLP model predicts 

BOD correctly.   
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(c)  Measured BOD (mg/l)    (d) 

 Data points   90 100 (f)  
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Figure 5.18: MLP model: (a) scatter plot of BOD concentration between quantified and 

predicted values (b) Hydrograph of BOD concentration between actual and predicted values (c) 

Scatter plot of BOD concentration between measured and predicted value (d) Hydrograph of 

BOD concentration between actual and predicted values. (e) Scatter plot of BOD concentration 

for the whole data set (f) Hydrograph of BOD concentration for the whole data set  

However, in Figure 5.19 e and f are the scatter plot and hydrograph between measured and 

predicted values of BOD concentration of the whole dataset respectively, as can be seen. that 

the scatter plot indicated that both measured and predicted values are correlated and in close 

agreement between each other in hydrograph. This confirm that the MLP model predict COD 

values concentration accurately.  

However, in graphical comparison between two models built MLR and MLP for prediction of 

organic matter parameters (BOD and COD).  It was observed from all the scatter plots that, 

predicted values data points of BOD and COD in MLP model are closer in a straight line to 

their corresponding BOD and COD measured values in both training and testing data set than 

MLR model. This was confirmed in hydrograph that the predicted values curves of BOD and 

COD are more closely followed the measure values curves beside few instances that deviation 

occur. Comparably MLP model predicted both COD and BOD better than MLR as contain in 

the Figures.   
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5.7.1.2 Graphical evaluation of PO4-P and NH4-N model  

MLR and MLP models were built to predict PO4-P and NH4-N concentration, however, to 

graphically evaluate the performance of the two models built, scatter plots and hydrographs are 

employed to visualise and evaluate the relationship between measured and predicted values and 

figure out the best between   

Figure 5.19 presented the scatter plot and hydrograph between measured and predicted PO4P 

values of MLR model. Figure 5.19 a and c are the scatter plots of training and testing dataset 

respectively. It was observed that the data points of predicted and measured values merged 

closer together in straight line. likewise Figure 5.19 b and d are hydrographs of training and 

testing data of PO4-P which indicated that predicted values closely follow the trend of measured 

PO4-P values and this signifies the accuracy of the MLR model in predicting water PO4-P 

concentrations in both training and testing data set. However, Figure 5.19 e is the scatter plot 

and 5.19 f is the hydrograph of measured and predicted values of PO4-P concentration of the 

entire dataset. It was observed that the measured and predicted value points of PO4-P in a scatter 

plot are linearly correlated in a straight line, it was also indicated that the measured and 

predicted values are closely together between in hydrograph, this confirms the accuracy of the 

MLR model for the prediction of PO4-P concentrations.  
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Figure 5.19: MLR model: (a) scatter plot of SS concentration between quantified and predicted 

values in Training data (b) Hydrograph of PO4-P concentration between actual and predicted 

values in training data (c) Scatter plot of PO4-P concentration between measured and predicted 

value in testing data (d) Hydrograph of PO4-P concentration between actual and predicted 

values in testing data set. (e) Scatter plot of PO4-P concentration for the whole data set (f) 

Hydrograph of PO4-P concentration for the whole data set. 

Furthermore, the MLP model is employed to predict the concentration of PO4-P, to evaluate its 

performance graphically scatter plot and hydrograph are used as depicted in Figure 5.20, which 

demonstrate the graphical evaluation of MLP prediction model using scatter plot and 

hydrograph. As can be seen from the scatter plot in 5.20 a and 5.20 c, that depicted the measured 

and predicted values of PO4-P in both training and testing dataset were observed to be in good 

linear correlation between them Also measured and predicted PO4-P concentration in Figure b 

and d is the hydrograph of training and testing data respectively of the MLP model, it was 

discovered that their trend follows closely to each. This is an indication that the MLP model 

was able to predict PO4-P concentration correctly, due to the effectiveness of the MLP built. 

MLP model is employed to predict the entire PO4-P data set; the graphical model evaluation 

revealed that the measured and predicted values PO4-P in scatter plot and hydrograph as 

depicted in Figure e and f respectively are correlated and in close agreement with each other.  
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Figure 5.20: MLP model: (a) scatter plot of PO4-P concentration between quantified and 

predicted values (b) Hydrograph of PO4-P concentration between actual and predicted values 

(c) Scatter plot of BOD concentration between measured and predicted value (d) Hydrograph 

of PO4-P concentration between actual and predicted values. (e) Scatter plot of PO4-P 

concentration for the whole data set (f) Hydrograph of PO4-P concentration for the whole data 

set  

However, to graphically evaluate the performance of the MLR model for the prediction of NH4-

N concentrations scatter plot and hydrograph were used as depicted in Figure 5.21 for both 

training and testing NH4-N dataset. According to the Figures 5.21 a and b for the scatter plot 

of training and testing NH4-N data respectively, it was discovered that there exists a better 

linear correlation relationship between measured and predicted values of NH4-N concentration. 

However, measured and predicted values curves in hydrograph followed closely to each other 

in both training and testing data set. This confirms that MLR model predicted NH4-N parameter 

concentration with reasonable accuracy. Likewise, Figure 5.21 e and f are the graphical 

evaluation of the MLR model to predict NH4-N for the entire data in scatter plot and hydrograph 
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respectively, which showed measures and predicted data points are in close agreement between 

each other.    
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Figure 5.21: MLR model: (a) scatter plot of NH4-N concentration between quantified and 

predicted values in Training data (b) Hydrograph of NH4-N concentration between actual and 

predicted values in training data (c) Scatter plot of NH4-N concentration between measured and 

predicted value in testing data (d) Hydrograph of NH4-N concentration between actual and 

predicted values in testing data set. (e) Scatter plot of NH4-N concentration for the whole data 

set (f) Hydrograph of NH4-N concentration for the whole data set  

To graphically evaluate the performance of the MLP model for the prediction of NH4-N 

concentration, measured versus the predicted values were depicted for both training and testing 
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dataset and also for the whole dataset in Figure 5.22. It was discovered in scatter plot in Figure 

5.22 a and b for both in training and testing dataset that the measure and predicted values are 

linearly correlated to each other in a straight line; this was confirmed in hydrograph Figure 5.20 

b and d for the of training and testing NH4-N data respectively that the trend lines of measured 

values curves are in close agreement with predicted values. However, figure 5.22 e and f are 

the scatter plot and hydrograph between measured and predicted NH4-N concentration of 

training and testing data of entire data respectively. It was discovered that the measured and 

predicted data points are in close agreement with each other. This signifies that the MLP model 

predicted NH4-N concentration perfectly in training and testing of NH4-N data set.   
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Figure 5.22: MLP model: (a) scatter plot of NH4-N concentration between quantified and 

predicted values (b) Hydrograph of NH4-N concentration between actual and predicted values 

(c) Scatter plot of NH4-N concentration between measured and predicted value (d) Hydrograph 

of NH4-N concentration between actual and predicted values. (e) Scatter plot of NH4-N 

concentration for the whole data set (f) Hydrograph of NH4-N concentration for the whole data 

set. 

To compare the graphical evaluation performance of MLP and MLR in PO4-P and NH4-N 

concentrations prediction, scatter plot and hydrograph form are used as shown in Figures 5.18 

to 5.21. As can be seen clearly from the graphs that the relationship between measured and 

predicted values of both PO4-P and NH4-N in scatter plot are closer together in a straight line 

and in Figure 5.18/19 a, and c for PO4-P for training and 5.20/21 a and c for NH4-N testing 

data set. The result is confirmed in hydrograph as presented in Figure 5.18/19 b, and d for PO4-

P for training and 5.20/21 b and d for NH4-N testing data set which indicated the predicted 

value curves closely follow the measured values curves in both training and testing data set. 

These confirmed both MLR and MLP predict PO4-P and NH4-N with considerable accuracy. 

Thus, MLP had predicted both PO4-P and NH4-N better than MLR. However as can be 

visualised in the Figures 5.18 to 5.21 that measure and predicted values of PO4-P and NH4-N 

are more linearly correlated in straight line and in close agreement with each other in   MLP 

than in MLR. Hence predicts MLP predicted both PO4-P and NH4-N better than MLR.  

5.7.1.3 Graphical evaluation of SS  

To graphically evaluate the performance of the MLR model for the prediction of SS 

concentration, measured versus the measured values were depicted for both training and testing 

SS data set and also for the SS complete dataset as one entity in Figure 5.23. It was discovered 

in scatter plot in Figure 5.23 a and c for both training and testing SS dataset respectively that 

the measure and predicted values are linearly correlated together; this was confirmed in Figure 

5.23 b and d in the hydrograph of training and testing data respectively that the trend lines of 

measured values are very close to the predicted values. Likewise, figure 5.23 e and f are the 

graphical evaluation of the MLR model of the entire data for scatter plot and hydrograph 

respectively, which indicated that MLR estimated SS in whole data set perfectly.  Hence all the 

graphical evaluation of MLR model in training and testing data set as well whole dataset 

visualised strong relationship and in close agreement between measured and their 

corresponding predicted values, and this confirms the accuracy of the MLR model built.  
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Figure 5.23: MLR model: (a) scatter plot of SS concentration between quantified and predicted 

values (b) Hydrograph of SS concentration between actual and predicted values (c) Scatter plot 

of SS concentration between measured and predicted value (d) Hydrograph of SS concentration 

between actual and predicted values. (e) Scatter plot of SS concentration for the whole data set 

(f) Hydrograph of SS concentration for the whole data set  

To graphically evaluate the performance of the MLP model for the prediction of SS 

concentration values Figure 5.24 depicted the result of scatter plot and hydrograph between 

measured and predicted values were depicted for both training and testing SS data set and also 

for the whole data set. It was discovered that all the scatter points in Figure 5.21 a and c for 

training and testing data respectively are close together and merge to the line of the perfect 

match, this symbolise the accuracy of the model. In addition, it was confirmed by hydrographs 
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in Figure 5.21 b and d of the training, and testing SS dataset respectively that predicted value 

curves of SS followed measured SS value curves closely. This is an indication that MLP model 

predicted SS value concentration better. However, figure e is scatter plot and f is hydrograph of 

complete SS data set. It was observed that measured and predicted SS values are merge together 

in straight line and also in close agreement to each other.  
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Figure 5.24: MLP model: (a) scatter plot of SS concentration between quantified and predicted 

values in Training data (b) Hydrograph of SS concentration between actual and predicted values 

in training data (c) Scatter plot of SS concentration between measured and predicted value in 

0 

5 

10 

15 

1 31 61 91 121 151 181 211 241 

Actual SS Predicted  SS 



282 

 

testing data (d) Hydrograph of SS concentration between actual and predicted values in testing 

data set. (e) Scatter plot of SS concentration for the whole data set (f) Hydrograph of SS 

concentration for the whole data set  

Comparison between two data mining models MLP and MLP showed that the measure and 

predicted value curves of SS concentration in MLP model both in training and testing SS data 

set are closer in agreement in hydrograph Figure 5.22b and d than hydrograph in MLR figure  

5.21b and d. This indicated that MLP predicted SS concentration better than MLR.  

5.8 Numerical Model Evaluation  

To ascertain and confirm the result obtained from model graphical evaluation performance, 

numerical model evaluation criteria were applied which is the important part of the model 

development process. This summarises and evaluates the performance of MLP and MLR 

prediction models build numerically. The numerical model evaluation is done by comparing 

predicted values by the model with the measured values obtained from constructed wetland 

experimental analysis. These analyses include regression coefficient (r), root mean square error 

(RMSE), mean absolute error (MAE), relative absolute error (RAE), and root relative squared 

error (RRSE).  

5.8.1 Numerical Evaluation of COD and BOD  

To ascertain the already obtained result of the graphical evaluation of COD and BOD, numerical 

evaluation is used. As can be seen clearly from Table 5.15, indicates the performance 

assessment criteria of the MLR model in reference to training and testing of COD and BOD. 

The values of r, RMSE, MAE, RAE and RRSE were calculated both in training and in testing 

datasets. The result revealed that the values of r, RMSE, MAE, RAE and RRSE for COD in 

training stage were 0.8817, 15.394, 11.789, 42.25 and 40.44 respectively and that of the testing 

stage were 0.8744, 13.63, 10.94, 42.66 and 45.72 respectively. Likewise, the values of r, RMSE, 

MAE, RAE and RRSE for BOD in training stage were 0.8948, 9.82, 6.68, 40.504, 40.64 

respectively and that of the testing stage were 0.8993, 10.695, 8.271, 40.82 and 47.72 

respectively. According, the result indicated that the error values of BOD in training and testing 

of MLR model are lower than that of COD values, and the values of r of BOD for MLR model 

is higher than that of COD values. Thus, the calculated result obtained indicated that the MLR 

model predicts both BOD and COD with high accuracy but predicted BOD slightly better than 

COD.  
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Table 5.15: Multiple linear regression (MLR) model performance evaluation criteria for 

computation of chemical oxygen demand (COD) output parameter  

  MLR     

Variable   Data Partition    r  RMSE   MAE  RAE (%)  RRSE (%)  

  

COD  

Training  0.8817  15.39  11.79  42.25  40.44  

Testing   0.8744  13.63  10.94  42.66  45.72  

Whole  0.8618  5.20  11.63  42.26  46.55  

  

BOD  

   

Training  0.8948  9.82  6.68  40.50  40.64  

Testing   0.8993  10.70  8.21  40.82  39.72  

Whole  0.8856  9.57  7.18  41.15  42.38  

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error.  

However, Table 5.17 presented five numerical model evaluation performance criteria of the 

MLP model build. According to the result from the table indicated that the values of r, RMSE, 

MAE, RAE and RRSE for COD in training stage were 0.9567, 10.621, 7.9713, 28.44 and 32.45 

respectively, that of the testing stage the values of COD were 0.9740, 9.138, 7.230, 28.211 and 

29.53 respectively. However, the values of r, RMSE, MAE, RAE and RRSE for BOD of MLP 

model in training data were 0.9594, 8.271, 6.717, 40.13, and 40.45, and the values of for testing 

data of BOD were recorded for r, RMSE, MAE, RAE and RRSE as  

0.9810, 9.02, 6.204, 42.95, and 39.18. The calculated results indicated that the model showed 

error values are low (lower error estimates) both in training and testing dataset which is a sign 

that the model predicts both BOD and COD values accurately. Base on the result presented it 

was indicated that the error values of BOD values in training and testing are lower than that of 

COD values in MLP model, and the value of r of BOD is higher than that of COD values. Thus, 

the calculated result obtained indicated that the MLP model predicts both BOD and COD with 

high accuracy, but predicted BOD slightly better than COD.  
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Table 5.16: Multilayer perceptron (MLP) model performance evaluation criteria for 

computation of chemical oxygen demand (COD) output parameter  

 MLP     

Variable   Data Partition    r  RMSE  MAE  RAE (%)  RRSE (%)  

COD  Training  0.9567  10.621  7.971  28.44  32.45  

COD  Testing   0.974  9.138  7.23  28.21  29.53  

COD  Whole  0.9585  10.192  7.684  28.02  31.37  

BOD  Training  0.9594  8.271  6.717  40.13  40.91  

BOD  Testing   0.981  9.017  6.204  42.95  39.18  

BOD  Whole  0.9696  6.685  5.286  26.04  27.45  

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error  

To compare the performance of MLR and MLP models for the prediction of chemical oxygen 

demand (COD) and biological oxygen demand (BOD), it clearly indicated that multilayer 

perceptron (MLP) model has slightly higher prediction accuracy than MLP and also it has high 

r-value and slightly less error value than multiple linear regression (MLR) as shown in Figs. 

5.25 and 5.26. Figure 5.25 compares BOD values predicted of by MLR and MLP models for 

both training datasets in a, and testing datasets in b.  
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Figure 5.25: Comparison between predicted values of chemical oxygen demand (COD) by 

multilayer perceptron (MLP) and multiple linear regression (MLR) models for the (a) training 

data set, and (b) testing dataset  

  

  

 

Figure 5.26: Comparison between predicted values of biochemical oxygen demand (BOD) by 

multilayer perceptron (MLP) and multiple linear regression (MLR) models for the (a) training 

data set, and (b) testing  

Figure 5.26 compares predicted values of COD in MLR and MLP models of training and testing 

data, it was discovered that the predicted values curves of both COD and BOD in MLR and 

MLP are in close relationship agreement with each other. Therefore, the overall result presented 

exposes that MLR and MLP models were accurate in predicting both BOD and COD, but it was 

discovered that multilayer perpeptron (MLP) outperformed its corresponding multiple linear 

regression (MLP) slightly better in predicting COD and BOD.,. The prediction result of MLR 

and MLP of this research study were also recorded acceptable accuracy and considered as best. 

This result was confirmed by other research result which clearly indicate that MLP model 

performed better in prediction of water quality parameters in comparison with other prediction 

model ((Emamgholizadeh et al., 2014; Memarian & Balasundram, 2012; Abyaneh, 2014;  

Tomenko et al., 2007)  

However, in many research studies, multiple linear regression (MLR) models performed 

prediction better than other prediction models (Babatunde, Zhao, O‘neill, & O‘sullivan, 2008; 

Georgios et al., 2011; May & Sivakumar, 2008; Obaid et al., 2015).  
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5.8.2 Numerical Evaluation of PO4-P and NH4-N  

As can be observed, Table 5.18 indicates the performance assessment criteria of the MLR model 

for training and testing of PO4-P and NH4-N. The values of r, RMSE, MAE, RAE, and RRSE 

were obtained both in training and in testing data sets. The result indicated that the values of r, 

RMSE, MAE, RAE and RRSE for PO4-P in training stage were 0.6247, 1.178,  

0.9508, 42.88 and 48.04 respectively and that of testing stage were 0.7199, 1.059, 0.8353, 39.94 

and 49.41 respectively. Likewise, the values of r, RMSE, MAE, RAE and RRSE for NH4-N in 

training stage of MLP model were 0.8846, 0.7649, 0.6178, 43.42, 46.64 respectively and testing 

stage were obtained to be 0.889, 0.792, 0.6112, 39.62 and 35.79 for r, RMSE, MAE, RAE and 

RRSE respectively. Base on the result obtained, it was indicated that the error values of NH4-

N in training and testing are lower than that of PO4-P values in MLP model, and the value of r 

of NH4-N is higher than that of PO4-P values. Thus, the calculated result obtained indicated 

that MLP model predict both NH4-N and PO4-P with high accuracy, but the model predicted 

NH4-N slightly better than PO4-P.  

Table 5.17: Multiple linear regression (MLR) model performance evaluation criteria for 

computation of E phosphorous (PO4-P) output parameter  

   MLR     

Variable   Data Partition    r  RMSE   MAE  RAE (%)  RRSE (%)  

PO4-P  Training  0.6247  1.178  0.9508  42.88  48.08  

  Testing   0.7199  1.059  0.8353  39.94  49.41  

   Whole  0.6544  1.145  0.9144  40.71  45.52  

NH4-N  Training  0.8846  0.7649  0.6178  38.42  46.64  

  Testing   0.889  0.792  0.6112  36.62  35.79  

   Whole  0.8854  0.777  0.6159  39.04  36.48  

              

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error  
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Table 5.18: Multiple linear regression (MLR) model performance evaluation criteria for the 

determination of orthophosphate phosphorous (PO4-P) and ammonium nitrogen (NH4-N) 

output parameters  

   MLP     

Variable   Data Partition    r  RMSE   MAE  RAE (%)  RRSE (%)  

  

PO4-P  

   

Training  0.7686  0.9874  0.8117  62.22  65.43  

Testing   0.8265  0.8726  0.6834  51.49  57.19  

Whole  0.7609  1.147  0.9339  51.2  55.08  

  

NH4-N  

   

Training  0.9365  0.6121  0.4984  35.07  37.32  

Testing   0.9536  0.612  0.4849  31.43  35.444  

Whole  0.9391  0.5756  0.4631  31.61  34.44  

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error  

To compare the performance of MLR and MLP models for the prediction of suspended solid 

(SS), it clearly indicated that multilayer perceptron (MLP) recorded high r-value and low error 

values than multiple linear regression (MLR) as shown in figs. 5.25 and 5.26 compare PO4-P 

and NH4-N values predicted of by MLR and MLP models for both training datasets in and 

testing datasets of a and b respectively.  

It was discovered that the predicted values curves of both PO4-P and NH4-N in MLR and MLP 

are in close relationship agreement with each other. Therefore, the overall result presented 

exposes that MLR and MLP models were accurate in predicting both BOD and COD, but it was 

discovered that multilayer perpeptron (MLP) outperformed its corresponding multiple linear 

regression (MLP) slightly better in predicting PO4-P and NH4-N. However, ss can be seen from 

the two figures (5.25 and 5.26) among the two nutrient parameters predicted, MLP model 

predicted NH4-N better than PO4-P in both training and testing dataset.  
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Figure 5.27: Comparison between predicted values of orthophosphate phosphorous  (PO4-P) by 

multilayer perceptron (MLP) and multiple linear regression (MLR) models for the (a) training 

data set, and (b) testing dataset.  

  

 

Figure 5.28: Comparison between predicted values ammonium nitrogen (NH4-N) by multilayer 

perceptron (MLP) and multiple linear regressions (MLR) models for the (a) training data set, 

and (b) testing dataset  

  

5.8.3 Model Numerical Evaluation of SS  

As can be seen clearly in Table 5.21 presented the values of five models statistical evaluation 

criteria that were calculated and recorded for SS dataset. The model evaluation criteria for SS 

training data set of MLR were recorded 0.7922, 1.446, 1.085, 52.16, and 61.03 for r, RMSE, 

MAE, MAE and RRSE respectively, and that of SS testing dataset was recorded as 0.7504, 

1.637, 1.164, 54.06, and 66.15 for r, RMSE, MAE, MAE and RRSE respectively. According to 

the result, it was discovered that the MLR model predicts SS concentration in treated 

wastewater is considerable accuracy in both training and testing data of SS.   
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Figure 5.29: Multilayer perceptron (MLR) model performance evaluation criteria for the 

prediction of suspended solids (SS) output parameter  

  MLR     

Variable  Data Partition  r  RMSE  MAE  RAE (%)  RRSE (%)  

SS  Training  0.7922  1.446  1.085  52.16  61.03  

SS  Testing   0.7504  1.637  1.164  54.06  66.15  

SS  Whole  0.7688  1.537  1.13  53.57  63.95  

                     

              

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error  

However, as can be observed from Table 5.21, that the MLP model evaluation criteria for SS 

training data set were presented and recorded to be 0.8925, 1.3874, 1.1068, 53.2, and 58.55 for 

r, RMSE, MAE, MAE and RRSE respectively, and that of testing dataset was recorded to be 

0.8769, 1.2521, 1.1063, 45.78, and 49.16 for r, RMSE, MAE, MAE and RRSE respectively, 

based on the result provided, it was discovered that MLP model predict SS concentration with 

acceptable accuracy in both training an testing data set this is an indication that multilayer 

perceptron (MLP) is suitable for predicting SS concentration.  

Table 5.19: Multilayer perceptron (MLP) model performance evaluation criteria for the 

prediction of the suspended solids output parameter  

  MLP     

Variable  Data Partition  r  RMSE  MAE  RAE (%)  RRSE (%)  

SS  Training  0.7922  1.4463  1.085  52.16  61.03  

SS  Testing   0.7504  1.134  1.164  54.06  66.15  

SS  Whole  0.7688  1.537  1.13  53.58  63.95  

r, (Pearson) correlation coefficient; RMSE, root mean square error; MAE, mean absolute error; 

RAE, relative absolute error; RRSE, root relative squared error  
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Figure 5.30: Comparison between predicted values of biochemical oxygen demand (BOD) by 

multilayer perceptron (MLP) and multiple linear regression (MLR) models for the (a) training 

data set, and (b) testing data set. 

To compare the performance of MLR and MLP models for the prediction of suspended solid 

(SS), it indicated that multilayer perceptron (MLP) recorded high r-values 0.8925 and 0.8769 

in training and testing dataset respectively against MLR with 0.7922 and 0.7504 r values in 

training and testing data respectively. However, MLP has lower error values than multiple linear 

regression (MLR) in both training and testing data set as shown in the table. 5.20 and 5.21. This 

an indication that MLP predicts SS better than MLR. It was discovered that the predicted values 

curves of both SS in MLP were in close and good agreement with each other than MLR 

Therefore, the overall result presented exposes that MLR and MLP models were accurate in  SS 

prediction, but it was discovered that multilayer perceptron (MLP) outperformed its 

corresponding multiple linear regression (MLP) slightly better in predicting SS. Figure 5.26 

compares the predicted values of SS in MLR and MLP models of training and testing data. 

Therefore, the overall result presented reveals that MLR and MLP models were accurate in 

predicting SS. Thus, it was discovered that multilayer perceptron model (MLP) outperformed 

its corresponding multiple linear regression model (MLP)  
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5.9 Chapter Summary  

In this research study, two data mining prediction models namely: multiple linear regression 

(MLR) and multilayer perceptron (MLR) were developed and designed to predict wastewater 

treatment performance of vertical flow constructed wetland by predicting unknown water 

quality parameters given other known water quality parameters of wastewater concentration. 

Input parameters correlating well with outputs were used by the two different for the model 

development. The performance of these models was studied and evaluated using graphical and 

numerical model evaluation criteria by comparing predicted values and measured values. It was 

discovered that the predicted values of both MLR and MLP models for all the selected output 

parameters used (COD, BOD, PO4-P, NH4-N and SS) were in close and perfect agreement with 

their corresponding measured values both in training and testing dataset. This is an indication 

that the two models had performed reasonably well in predicting pollutants concentration, and 

they could be used to predict wetland removal performance. This will help in reducing future 

high cost and time for the laboratory analysis of water quality parameters. In a comparison of 

two models built, it was discovered that the MLP model predicts all the selected output 

parameters better than the MLR model.  
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Chapter 6: Conclusion and Recommendation  

6.1 Conclusion  

In this thesis, experimental monitoring of vertical flow constructed wetland systems treating 

domestic wastewater has been designed, set up and operated for the period of over three years 

(thirty-nine months), to investigate and evaluate the performance of different wetland filters 

treating wastewater. The investigations covered experimental procedures in the green house, 

laboratory analysis of the wastewater (inflow) and treated water (outflow) conducted for the 

eleven different water quality parameters. The monitoring data were collected treatment 

performance of the constructed wetland system were evaluated. The results were revealed, it 

was discovered that, all constructed wetland filters (filters 5 and 6 excluded) have shown 

relatively high removal performance for the water quality parameters irrespective of filters set-

up and operation. Hence, vertical flow constructed wetland system (VFCWs) can be considered 

as effective, efficient, economic, environmentally friendly and sustainable systems for 

wastewater treatment.  

However, even though VFCWs have been identify as a promising, robust and reliable tool for 

wastewater treatment, the great challenges and uncertainty experienced during the course of the 

monitoring experiment and analysis is lack of complete information and inconsistency of the 

water quality parameters data used hinder effective treatment evaluation of the system, this is 

due to high cost of measurement, laboratory tests and sampling uncertainties of machineries 

used, time consuming for the analysis  To properly evaluate the wastewater treatment 

performance by the constructed wetland, the monitoring data for all the water quality parameters 

need to be complete and free from missing values, accurate, consistent and up to date so as not 

to get bias and misleading result. The aim to fill this gap triggered the use of two data mining 

techniques models namely: multiple liner regression (MLR) and multilayer perceptron (MLP) 

to predict performance of vertical flow constructed wetland system water quality parameters in 

a view to evaluate treatment performance of vertical flow constructed wetland effectively.   

The data mining predictive models investigated and evaluated (comparison between measured 

and predicted values) using graphical and numerical model evaluation criteria, it was discovered 

from the result that, the two models built were able to predict some selected water quality 

parameters (COD, BOD, PO4-P, NH4-N and SS) with reasonable accuracy, this indicated 

effectiveness of the model built. In comparison between two models built, it was discovered 
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that MLP model outperform MLR model in predicting all the water quality parameter. The 

models build could be used as reliable models to treatment performance by predict all water 

quality parameters, provided that correlation exists between input parameters without any 

restriction. The models can be used to predict overall treatment performance, monthly yearly 

and any season of the year. Comparison between MLP and MLR, it was discovered that MLP 

have highest correlation coefficient values (r) and least error values (RMSE, MAE, RAE, 

RRSE) in all the water parameters predicted this is indication that MLP had performed better 

than MLR. In addition, it is not the use of many input parameters that lead to better and 

improvement of data mining predictive models but the selection of highly correlated ones.   

6.2 Recommendations for future work   

The findings have significant suggestions for the future operation, monitoring and management 

of vertical flow constructed wetlands for wastewater treatment. While this study has 

demonstrated effectiveness of vertical flow constructed wetlands in pollutants removal, 

however there is an observable need to carry out further studies. Some important future research 

borderlines are as follows  

i. More research is needed to better understand how to improve the processes 

responsible for the treatment and removal of water quality parameters to achieve 

highest percentage removal efficiency of pollutants in wastewater.   

ii. Determining the role of wetland plants in constructed wetland is very important.   

iii. Future experiment work should include investigating the suitability of treated 

water by constructed wetland to irrigate the edible plant   

iv. Moreover, research under controlled laboratory conditions or field scale should 

be initiated to discover more about the microbial removal processes responsible for 

ammonia-nitrogen, nitrate-nitrogen orthophosphate phosphorous, as this research study 

recorded low removal efficiency percentage in nutrient parameter.  

v. Although this research has demonstrated the potentiality of CWs to treat 

wastewater for pollutants the removal without clogging, there is need to investigate and 

redesign the way of preventing possibility of clogging in the future  
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Regarding the importance of this type of study research for the development of data mining 

techniques models to predict wastewater treatment performance of Vertical flow constructed 

wetland system (VFCWs) by predicting water quality parameters, the following ideas are 

suggested as future research  

  

i. In the future studies, same MLP and MLR models framework can be applied to 

another type of constructed wetland for comparison between prediction results obtained 

and make conclusion about them  

ii. The modelling study can be extended for the other water quality parameters  

  

iii. Employing more prediction models, to make better and wider comparison 

among prediction model, could lead to choosing more accurate model among them   

iv. The framework of this research need to be readjusted to expand the scope of the 

prediction models to include some features of CW to enhance prediction performance 

like plant, porous media contact and resting time mode of operation etc  
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