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ABSTRACT 

DNA repair plays a critical role in maintaining the integrity of the genome and the 

dysregulation of key DNA repair genes has been implicated in the development, progression 

and chemotherapeutic resistance of different cancer types. Consequently, many studies have 

made attempts to identify and quantify the expression of various DNA repair genes and their 

products in different cancers. It is on a similar note that this research was conceived, to 

evaluate the expression patterns of the base excision repair genes Neil1, Neil2, Neil3, Ogg1, 

and Nthl1, the nucleotide excision repair gene Ercc1 and the mismatch repair gene Mlh1 in 

colorectal cancer (CRC) tumours and matched normal colon tissue. The project was then 

extended to analyse a further sixteen colon samples that focused on Neil3, Nthl1 and Ercc1, 

that encode DNA repair proteins that have been implicated in chemotherapy resitance 

mechanisms. To learn more about mechanisms of genotoxic agent resistance, Neil3 and 

Ercc1 were analysed at the transcriptome and proteome level in DAOY medulloblastoma 

cells and cisplatin – resistant DAOY cells. Additionally, attempts were made to generate 

mesothelioma-derived cancer stem cells and preliminary gene expression analyses were 

undertaken on human embryonic stem cells. Thus, RNA was extracted, complementary 

DNA synthesized, and RT-PCR performed. Gene expression levels were determined by 

quantitative PCR using the Sybr green method and analysed using the comparative Ct 

method and glyceraldehyde 3-phosphate dehydrogenase (Gapdh) as the standard. Of the 

matched samples investigated, 75% showed increased expression of one or more of the DNA 

repair genes analysed, however, there was no clear pattern of expression and a wide range 

of expression levels observed for individual genes in both normal and tumour tissues. For 

example, the gene encoding the DNA glycosylase Nthl1 was the most frequently highly 

expressed in both normal and tumour samples with about 75% showing high expression of 

the Nthl1 gene with expression levels ranging from 3.3 to over 1400-fold higher than Gapdh. 

DAOY cells were grown in cisplatin and gene expression of Neil3 and Ercc1 analysed in 

the resulting cisplatin - resistant cells. Results indicated that the expression of both these 

genes may be increased in the resistant cell line and that NEIL3 protein was also increased. 

Cancer stem cells were derived from parental mesothelioma cells but were still too small a 

fraction of the cell population to be analysed by these methods. The expression of Gapdh, 

Neil3 and Ercc1 was determined in a series of preliminary experiments on human embryonic 

stem cells. 
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1.1. General introduction 

In a multicellular organism, the constituent cells undergo cell division as a reproductive 

mechanism, resulting in the formation of well organised and collaborative entities known as 

tissues. These cells are subject to a strictly regulated form of collaboration, characterized by 

selflessness and apparently devoid of competition. Hence, at any point in time, each cell is 

either, resting, growing, differentiating, dividing, or dying, as needed; and for the benefit of 

the other cells that made up the organism. Thus, a form of social control network oversees 

cellular behaviours, including cell-to-cell communication, such as relay, receipt and 

interpretation of sets of intracellular, as well as extracellular signals in an elaborate manner 

(Tlsty and Coussens, 2006). Disregard to the sense of community or any attempt to evade 

the cell cycle system that controls the timing of cell division by a cell, or group of cells, 

could pose serious problems for the organism. Additionally, molecular disturbances such as 

genetic mutations, may selectively confer undue advantage on a given cell or group of cells 

that may result in the cells growing more rapidly, differentiating and dividing more rapidly 

and evading death signals (Hanahan & Weinberg, 2000). Consequently, the selectively 

advantaged cells may become the progenitor of a vigorously growing mutant clone, 

initiating selfishness and encouraging competition. Through repeated mutations, the mutant 

clones could engage in serious competition, and natural selection could usher in dangerous 

cell population, and subsequent tumour development. This is known as the mutator 

phenotype and is probably the main theory of cancer development (Loeb, 2001). 

From the foregoing, cancers could be defined as heterogeneous multicellular assemblages, 

made up of cells of different origins, interacting with each other and the extracellular signals 

in complex fashions that encourage the dysfunction of cell cycle control. Essentially, cancer 

is a disease that arises from the disruption of cellular and genetic functions. Although, cancer 

development is a multistep process, it ultimately results from changes in the genome, in 

which intrinsic cellular functions including apoptosis, cell differentiation, metabolism, cell 

cycle check-point control and cell adhesion; immunological response, as well as status of 

the vasculature are affected (Hanahan & Weinberg, 2011). In fact, reports from human 

cancer studies and animal models have clearly demonstrated that during the process of 

tumorigenesis, a range of genetic changes take place, each conferring a given type a 
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specialized competitive advantage, resulting in the successive and progressive change of 

normal human cells into cancer cells (Loeb, 2001). The heterogeneous nature of cancer 

accounts for the prevalence of many different types, each displaying different combinations 

of characteristic cellular and genetic changes. Even within a single type of cancer, 

heterogeneity and tumour subsets that are uniquely defined can be identified (De Sousa et 

al., 2013).  

The increasing incidence of cancers is alarming, and cancer has become one of the major 

factors responsible for disease-related deaths globally (Kanavos, 2006). This high death rate 

could be attributed to the inherent abilities of cancer cells to resist chemotherapy, metastatic 

ability and high degree of immortality with concomitant recurrence capacity. Current 

treatments include conventional therapies such as surgery, radiotherapy and chemotherapy 

(Banerjee et al., 2017; Huang et al., 2017). In the past decade, immuno-gene therapy has 

been introduced as the fourth treatment modality, due to its robustness and promises (Parney 

& Chang, 2003). Unfortunately, irrespective of the availability of these variety of options 

for the treatment of cancer, it is still daunting to define an effective treatment regimen to 

cure patients especially those whose cancers have metastized to distant organs. This can be 

linked to resistance to therapy and relapse associated with most cancers (Zahreddine & 

Borden, 2013).  

Nevertheless, studies that target the discovery of molecular pathways that promote tumour 

growth have improved our understanding of this disease and has revolutionized the way 

cancer cells can be targeted (Sinicrope et al., 2016). Today, several mechanisms that 

contribute to the development of cancer have been elucidated, indicating a difference in the 

dynamics and characteristics of normal cells compared to cancer cells (Hanahan & 

Weinberg, 2011; Turkson, 2017). Whereas normal tissues maintain tissue integrity and 

function by balancing the signals that are involved in cell growth and cell division, cancer 

cells exhibit both dysregulated proliferative signalling and replicative immortality, thus 

giving them a growth and survival advantage (Hanahan and Weinberg, 2000, 2011). Unlike 

cells under normal physiological conditions, cancer cells employ several mechanisms to 

achieve uncontrolled proliferation and DNA replication, most of which involve a subset of 

the regulatory instructions transmitted by an activated receptor acting as an oncogene 

(Vogelstein & Kinzler, 2014). Cancer cells up-regulate growth factor ligands and stimulate 

normal cells to release factors that can support cancer growth, up-regulate receptor proteins 
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that render cells hyperresponsive to growth factor ligands and structurally alter receptor 

molecules that facilitate ligand-independent cell division (Cheng et al., 2008). 

In the last decades, evaluation of several human tumours has implicated somatic and 

germline mutations as additional downstream pathways by which cancer cells sustain 

immortality (Stratton et al., 2009; Davies and Samuels, 2010). To contribute to the global 

quest to conquer cancer, this PhD project sought to investigate the expression patterns of 

selected DNA repair genes in different cancer types, including colorectal cancer (CRC) and 

medulloblastoma. However, the thesis begins with a brief review of DNA damage, some of 

which is pre-mutagenic and therefore thought to be a prerequisite for carcinogenesis. This 

is followed by a review of DNA repair mechanisms that are found in mammalian cells. Many 

of the proteins involved in DNA repair are tumour suppressor genes and individuals lacking 

particular DNA repair functions are often more cancer prone. Next, a synopsis of each of 

the cancer types employed in this research is presented, followed by an introduction to stem 

cells. While preliminary experiments presented here were carried out on human embryonic 

stem (ES) cells, the concept of cancer stem cells is the focus of much research to find more 

effective treatments (Dawood et al., 2014). 

1.2. DNA Damage 

DNA is the active molecule of an organism and serves as a repository of genetic information. 

Since DNA plays a major role in replication and transcription, its integrity and stability at 

any time is a prerequisite for evolutionary fitness and for the health of the individual 

organism.  An individual cell can receive up to one million DNA alterations daily. Some of 

these changes are spontaneous, such as the loss of a purine base from the double-stranded 

DNA molecule (depurination) and deamination, where the amino group is lost from cytosine 

and adenine (see Pierce, 2017 for review). However, other DNA damage results from 

exposure to endogenous and environmental genotoxic agents that can cause a multitude of 

chemical alterations to the DNA molecule. Thus, the resultant effect on the DNA molecule 

can range from many different forms of DNA base damage, bulky adducts attached to bases, 

single- and double-strand breaks and intra-strand and inter-strand DNA cross-links. Some 

of these DNA lesions will be pre-mutagenic, leading to permanent changes in the genomic 

DNA sequence, while others will be toxic and cause cell death at the next round of DNA 

replication due to collapse of the replication fork (Friedberg et al., 2005). 
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While the inherent lability of the DNA molecule can be beneficial, such as in the process of 

natural selection in evolution, it can also be deleterious to the cell and organism, resulting 

in altered pathology. Thus, deleterious DNA changes can cause genomic instability and 

challenge the stability and integrity of the organism (Pierce, 2017). 

Several endogenous and exogenous agents responsible for insults on DNA have been 

described. The most common exogenous or environmental DNA-damaging agents are 

ultraviolet (UV) radiation, chemical agents and chemotherapeutic drugs. Some of these will 

result in disease conditions such as cancer. For instance, it is well known that skin cancers 

are the result of exposure to UV light (Seebode et al., 2016) and lung cancer is largely a 

consequence of cigarette smoke inhalation (Doll and Bradford-Hill, 1950). Related to this, 

it has also been reported that colon epithelial cells are also prone to exogenous mutagens, 

many resulting from normal metabolism of ingested material (Greenman et al., 2007). 

Apart from the afore-mentioned exogenous sources of DNA damage, cellular DNA is also 

under constant attack from endogenous agents such as reactive oxygen species (ROS) 

produced as a consequence of normal aerobic metabolism or resulting from inflammatory 

cytokines that leads to a state of oxidative stress (Federico et al., 2007). However, another 

source of DNA damage comes from the replicative DNA polymerases. During DNA 

replication, the enzyme DNA polymerase adds a nucleotide to the strand of the DNA (Pierce, 

2017). However, the DNA polymerase can add incorrect nucleotides during DNA 

replication and although the main replicative DNA polymerases have a 3ʹ - 5ʹ "proofreading" 

exonunclease activity and can recognize and correct many of these errors, inefficient 

corrections could lead to mutations that can in turn result in disease conditions such as cancer 

(Pierce, 2017). 

As mentioned, endogenous agents such as ROS play an important role in reactions resulting 

in DNA damage (Durand & Storz, 2017).  The key ROS that are of importance include the 

superoxide radical (O2
−), hydrogen peroxide (H2O2) and the hydroxyl radical, (•OH) 

(Beckman & Ames, 1997; Hazra et al., 2007). Although, the physiological role of ROS in 

cells is evident in the maintenance of homoeostasis (Hancock et al., 2001), damage to 

cellular macromolecules such as lipids, protein, and DNA may ensue when cellular 

production overwhelms its antioxidant capacity (Friedberg et al., 2005). Such elevated ROS 

levels leads to increased levels of DNA damage, causing mutations and ultimately genetic 

instability and pathological conditions. It has been reported that several cancer types 

http://www.nature.com/scitable/definition/dna-polymerase-1
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including, pancreatic (Vaquero et al., 2004) prostate (Kumar et al., 2008) breast (Hecht et 

al., 2016) and colon (Acharya et al., 2010) show an increased level of ROS. Besides its role 

in cancer, ROS has been implicated in several human diseases including the ageing process, 

cardiovascular disease, diabetes, sterility, autoimmune diseases and neurological diseases 

(Sedelnikova et al., 2010). The mechanism of action of ROS is by induction of several 

covalent modifications to DNA including in single base lesions, DNA strand breaks, intra- 

and inter-strand cross-links. 

An example of oxidative DNA damage caused by ROS is 8-oxo-7,8-dihydroguanine (8-

oxoG), which although not toxic, is highly mutagenic (Suzuki & Kamiya, 2016). 8-oxoG is 

known to mismatch with adenine and by so doing results in ‘GC’ to ‘TA’ transversions. 

Several independent reports have confirmed the involvement of this mis-pairing in somatic 

mutations in lung, CRC, breast, gastric, and ovarian cancer (Fortini et al., 2003). Besides 

causing mutation, ROS is involved in activating transcription factors such as NF-kB, 

activator protein-1 (AP-1) and hypoxia inducible factor-1 (HIF-1α), whose role in cancer 

cell growth and survival, angiogenesis, invasion, and metastasis have been well established 

(Gupta et al., 2012). 

 

1.3. DNA Repair Mechanisms 

As mentioned earlier, cells are constantly under attack by agents known to generate genomic 

instability, resulting in structural damage to the DNA molecule (Fortini et al., 2003). 

Mechanistically, living organisms have evolved a plethora of molecular mechanisms to 

detect and repair the various types of damage that can occur to DNA, irrespective of the 

source. This they do by employing one of five distinct DNA repair mechanisms that play a 

critical role in maintaining the integrity of the genome (Friedberg et al., 2005). This, 

however, does not occur in isolation but is linked to cell cycle regulation; before the 

replication of DNA and the eventual division of the cell can take place, cell cycle 

checkpoint mechanisms ensure that a cell's DNA is intact. Therefore, if DNA is damaged, 

the cell has the ability to stop the cell cycle in G1, remove the lesion and restore the original 

base sequence, before passing through the cell cycle restriction point and commencing DNA 

replication, thus maintaining genetic stability (Pierce, 2017). Five DNA repair mechanisms 

have been described (Friedberg et al., 2005) and these are: (i) mismatch repair (MMR), (ii) 
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base excision repair (BER), (iii) nucleotide excision repair (NER), (iv) Non-homologous 

end-joining (NHEJ) and, (v) homologous recombination repair (HRR). Recently, Abbotts et 

al., (2014) reported that loss or truncation of the efficiency of one or more of the DNA repair 

pathways can accelerate the accumulation of additional mutations by up to 1000-fold 

(Abbotts et al., 2014). Thus, unrepaired DNA damage is the major source of potentially 

mutagenic lesions that drive carcinogenesis (Friedberg et al., 2005).  

Loss of any one of these pathways can result in serious consequences for the organism. For 

example, individuals lacking NER are hypersensitive to sunlight and exhibit either 

accelerated ageing or cancer predisposition (Friedberg et al., 2005). Similarly, several 

inherited colorectal cancer (CRC) syndromes are associated with genetic defects in both 

MMR and BER (Weren et al., 2015). On the other hand, high expression of DNA repair 

proteins in cancer cells can confer resistance to certain chemotherapeutic agents used in 

cancer treatment, such as the platinum-based compounds and alkylating agents.Thus, it has 

been reported that the excision repair cross-complementation group 1 (Ercc1) gene is 

upregulated in colon cancer cells treated with oxaliplatin, and that the small interfering RNA 

(siRNA) knockdown of Ercc1 in these cells sensitises them to the chemotherapeutic effects 

of oxaliplatin (Seethram et al., 2010). The BER DNA glycosylase NEIL3 is also highly 

expressed in most cancer cell lines and metastatic melanoma compared to normal tissue 

cells, where its expression is generally restricted to rapidly dividing cells in the thymus and 

testes (Section 1.3.2; Kauffmann et al., 2008; Hildrestrand et al., 2009). As more 

biochemical information becomes available on the activity of this enzyme (Martin et al., 

2017; Albelazi et al., 2019), it is of increasing interest to determine the levels of expression 

of Neil3 in tumour samples and the likely effect this may have on conferring resistance to 

genotoxic chemotherapeutic agents. 

The next three sections review in more detail the mechanisms of MMR, BER and NER. As 

the double-strand break rejoing pathways (NHEJ and HRR) are outwith the aims of the 

project, these are not covered in the following sections. 

 

 

 



7 
 

1.3.1. Mismatch Repair 

DNA mismatch repair proteins function by recognizing base mismatches and other lesions 

(e.g. nucleotide insertion or deletion) that result from DNA polymerase slippage during 

DNA replication (Lodish, 2004). As a result, it is sometimes called, post-replication repair 

and if it fails, the errors induced during DNA replication are fixed in the genome (mutation). 

As mentioned previously, during DNA replication the enzyme DNA polymerase adds a 

nucleotide to the growing strand of DNA at the replication fork. MMR is involved in the 

post-replicative repair of the errors made by DNA polymerases that have escaped 

proofreading (Umar & Kunkel, 1996). The MMR system will recognise base-base 

mismatches, insertions or deletions occurring in the double-stranded DNA (Harfe & Jinks-

Robertson, 2000). Following this recognition, MMR proteins then initiate the process of 

resection and specifically degrade the affected region of the newly synthesised strand. A 

DNA polymerase will then correctly resynthesise the daughter strand of the DNA in a 

template dependent manner (Lodish, 2004). 

Several genes are important in the normal function of MMR including, in human cells: MutS 

homolog 2 and 6 (Msh2 and Msh6), MutL homolog 1 and 3 (Mlh1 and Mlh3) and post-

meiotic segregation increased 1 and 2 (Pms1 and Pms2: Harfe & Jinks-Robertson, 2000). A 

mutation in any of these genes can result in microsatellite instability (MSI) and predisposes 

the individual to certain cancers, including colorectal and ovarian cancers (Abbotts et al., 

2014). 

Thus, germline mutations in Mlh1, Msh2 or Pms2, or even deletions in the epithelial cell 

adhesion molecule (Epcam) gene that cause allele-specific Msh2 inactivation has been 

linked to hereditary nonpolyposis colorectal cancers (HNPCC; Lynch syndrome) that results 

in early onset CRC. It has been reported that inactivating mutations in any of the MMR 

genes can be found in up to 70% of HNPCC and that, of these, over 90% occur in the hMsh2 

or hMlh1 genes and display a high level microsatellite instability (MSI-H) phenotype 

(Wheeler et al., 2000). 

The second major mutation of MMR genes found in human cells are the somatic mutations 

occurring because of promoter methylation of Mlh1. Often this methylation can be seen in 

the context of CpG island methylator phenotype (CIMP). In sporadic cancer, hyper-

methylation of the promoter region is the cause of Mlh1 inactivation especially in CRC with 

MSI-H (Haydon and Jass, 2002). First-degree relatives of CRC patients with hyper-

http://www.nature.com/scitable/definition/dna-polymerase-1
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methylation of the promoter region are at a higher risk (up to 60%) of developing CRC. In 

order to reverse Mlh1-methylation in colon cancer, the group of Fujita and colleagues (2007) 

demonstrated that the de-methylating agent 5-aza-2ʹ-deoxycytidine (5-aza-dC) can induce 

Mlh1 expression and sensitise cancer cells to 5-fluorouracil (Fujita et al., 2007). 

Consequently, the expression profile of Mlh1 will be analysed in the course of this project, 

particularly in solid colon cancer tumour tissues, with the view to ascertaining the expression 

pattern at the transcriptional level. 

 

1.3.2. Base Excision Repair 

Amongst the DNA repair mechanisms, BER is the most versatile repair mechanism and is 

involved in repairing the majority of DNA damage arising from both endogenous and 

exogenous sources (Svilar et al., 2011). These include single-strand breaks (SSB), 

depurination and deamination, alkylation and oxidation derived base damage. DNA base 

damage resulting from exposure to environmental factors, ROS as well as alkylation-

induced damage especially those from alkylating agents including chemotherapy and 

radiotherapy are also repaired by BER (Maynard et al., 2009; Whitaker et al., 2017). The 

broad functionality of BER results mainly from a group of enzymes called DNA 

glycosylases that recognise and excise a plethora of chemically modified bases from DNA 

(Mullins et al., 2019). Thus, DNA glycosylases recognize and initiate BER by removing an 

overlapping subset of damaged bases, leaving an abasic site that is further processed by 

short-patch BER or long-patch BER that uses different proteins to complete the repair 

process (Whitaker et al., 2017). Additionally, poly (ADP-ribose) polymerase 1 (PARP-1) 

and PARP-2 are known to facilitate BER by binding to DNA ends at SSBs and synthesizing 

poly (ADP-ribose) polymers on acceptor proteins and the DNA itself (Dantzer et al., 1999; 

Talhaoui et al., 2016). The poly(ADP-ribose) destabilizes the nucleosome structure allowing 

BER proteins access to the damage site. The role of BER in protecting the colorectal tissue 

against oxidative DNA damage, caused by high levels of oxygen radicals either generated 

by bacteria or dietary carcinogens cannot be overemphasized. Steps involved in BER are 

described in Figure 1.1. 

DNA glycosylases are important enzymes in BER (Mullins et al., 2019). These enzymes 

have been well studied and eleven different proteins have been identified in mammalian 

cells (Jacobs & Schär, 2012). These eleven enzymes can be subdivided into four structurally 
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distincy superfamilies, (i) the uracil DNA glycosylases (UDG), (ii) the helix-hairpin-helix 

DNA glycosylases (HhH), (iii) the alkylpurine DNA glycosylases (APNG or MPG) and, (iv) 

the endonuclease VIII – like DNA glycosylases (NEIL). These enzymes can be further 

divided into two classes, depending on whether they are monofunctional (UDG and 

APNG/MPG), or bi-functional (HhH and NEIL) (Jacobs & Schär, 2012). The 

monofunctional DNA glycosylases (UDG and APNG/MPG) have only DNA glycosylase 

activity, catalysing the breakage of the glycosylic bond between the deoxyribose sugar and 

the damaged base, while bifunctional DNA glycosylases also have an associated 

apurinic/apyrimidinic (AP) lyase activity (Jacobs & Schär, 2012). The five bifunctional 

DNA glycosylases in mammalian cells, 8-oxoguanine DNA glycosylase (Ogg1), 

endonuclease III homolog (Nthl1), and the three endonuclease VIII paralogs (NEIL1, NEIL2 

and NEIL3) all recognise and excise oxidised bases from either double-stranded or single-

stranded DNA (Jacobs & Schär, 2012). 

 

Figure 1.1. A current model for BER in mammalian cells. (Elder, unpublished). 

 

The DNA glycosylases NEIL1, NEIL2 and NEIL3 are mammalian homologs of the 

Escherichia coli Nei protein and have been shown to excise oxidised purine and pyrimidine 

bases from both single- and double-stranded DNA (Liu et al., 2013; Albelazi et al., 2019). 
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Amongst these enzymes, NEIL3 is the largest, uniquely containing a long C-terminal region 

ending with tandem GRF-zinc finger domains (Albelazi et al., 2019). Both NEIL1 and 

NEIL3 are reported to be cell cycle regulated, with expression peaking in S-phase and S/G2-

phase respectively, while NEIL2 is constitutively expressed throughout the different stages 

of cell cycle (Neurauter et al., 2012; Hazra & Mitra, 2006; Chakraborty et al., 2015). Thus, 

while evidence from biochemical studies and knockout mice support the idea of an 

involvement of NEIL2 in transcription-coupled BER (Chakraborty et al., 2015), recent 

biochemical evidence reinforces previous reports supporting the involvement of Neil1 and 

NEIL3 at the replication fork (Albelazi et al., 2019; Neurauter et al., 2012). Furthermore, 

NEIL3 also shows a unique restricted expression pattern in normal cells, being expressed 

only in highly dividing cells such as those in the developing brain, the thymus and testes 

(Hildrestrand et al., 2009; Morland et al., 2002). However, high levels of NEIL3 have been 

observed in metastatic melanoma (Kauffmann et al., 2008) and in cancer cells generally 

(Hildrestrand et al., 2009; Duweb, 2015). Recently, it was demonstrated that abnormal 

expression of the Neil DNA glycosylase genes is associated with somatic mutation in several 

human cancers (Shinmura et al., 2016). 

An ongoing study in our laboratory reported that Neil3 is highly expressed in the CRC cell 

line HCT116. However, following siRNA treatment, this expression can be substantially 

reduced. Further knockdown of Neil3 can sensitize tumour cells to oxaliplatin treatment 

(Taylor et al., 2015). These results reveal a potentially novel activity for Neil3 and indicate 

that it could be a major resistance mechanism to certain chemotherapeutic DNA damaging 

agents in solid tumours. Consequently, it is one of the objectives of this thesis, to investigate 

the expression profiles of Neil3 gene in solid tumours derived from different colorectal 

cancer patients. 

Besides the DNA glycosylases, mutations in the BER genes are associated with several 

cancer types. Moreover, the observation that mutations in the gene coding for MUTYH, a 

DNA glycosylase that releases adenine base paired with 8-oxoG predispose to CRC has 

provided strong evidence that dysregulation of the BER pathway contributes to disease 

susceptibility (Hazra et al., 2007). Furthermore, a report by Weren et al. (2015) showed that 

a germline homozygous mutation in the Nthl1 gene that codes for a DNA glycosylase that 

removes oxidized pyrimidines causes adenomatous polyposis and therefore, predisposes to 

colorectal cancer (Weren et al., 2015). More recently, Grolleman et al., (2019) have reported 

that biallelic germline mutations in the Nthl1 gene predispose carriers to tumours at multiple 
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sites, again reinforcing the importance of unrepaired oxidative base damage in 

carcinogenesis and of the DNA glycosylases and BER in maintaining genetic integrity. 

 

1.3.3. Nucleotide Excision Repair. 

Mammalian nucleotide excision repair (NER) is a constitutive DNA repair mechanism and 

its impairment can result in several disease conditions including cancer and premature 

ageing (Marteijn et al., 2014). It is usually involved in the repair of DNA lesions usually 

bulky adducts that destroy the normal double-helical conformation of duplex DNA, 

irrespective of whether the insult is induced by endogenous or exogenous agents (Friedberg 

et al., 2005). Bulky adducts are products of different DNA damaging agents including UV 

radiation and chemicals including alkylating agents. It has been extensively documented that 

exposing DNA to UV radiation typically results in cyclobutane pyrimidine dimers (CPD) 

and pyrimidine-(6,4)-pyrimidone products (6-4PP) that are known to be helix distorting 

lesions (Rastogi et al., 2010). When DNA is exposed to chemicals or alkylating agents such 

as polycyclic aromatic hydrocarbons that are common in cigarette smoke or charcoaled 

meat, bulky adducts can also be formed (Melis et al., 2013). When bulky alterations happen, 

it typically arrests polymerase progression during DNA replication and transcription 

resulting in a damaged replication fork or stalled transcription bubble (Gillet and Scharer, 

2006). Our understanding of the cellular mechanisms of NER and its relationship with 

several cellular processes during DNA repair process indicates that NER employs four 

mechanisms to repair damaged DNA: (i) NER recognizes the extent and location of the 

damage, (ii) Upon this recognition, NER incises both ends of the damaged strand and 

removes an oligonucleotide containing the damaged nucleotides, (iii) This is followed by 

the synthesis of a new DNA strand to fill the gap and restore the DNA duplex that is devoid 

of damage, and (iv) ligation by DNA ligase to seal the nick at the end of the newly 

synthesized DNA strand (Pierce, 2017). Functionally, NER can be divided into two related 

pathways; global genome repair (GG-NER) and transcription-coupled repair (TC-NER). 

These pathways are known to occur in a divergent manner but can proceed along the same 

part when they have recognized the damage on the DNA (Melis et al., 2013). They both 

involve complex mechanisms to initiate the repair response, adopting several reaction-

reversal steps before incision (Luijsterburg et al., 2010). Such a process is necessary to avoid 

undesirable and irreversible DNA modification and to ensure re-start of transcription. 
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GC-NER and TC-NER function in a coordinated manner, involving about thirty proteins, to 

achieve efficient DNA repair (Figure 1.2). The first step in GG-NER is to scan the entire 

genome for helix distortions; this is done through the recruitment of several damage sensor 

proteins (Pierce, 2017). In damage caused by UV radiation, recruitment of xeroderma 

pigmentosum group C protein (XPC) results in a complex with the human homolog of yeast 

RAD23 (XPC–RAD23B) and centrin 2 (CETN2) (Masutani et al., 1994). The principal role 

of XPC-RAD23B-CETN2 complex is to probe for distorting lesions and to recognize the 

structural damage in DNA by the activities of the ultraviolet (UV) radiation DNA damage 

binding protein complex (UV-DDB). Following recognition of this structural damage, XPC 

will bind to strand opposite to the lesion resulting in the dissociation of RAD23B (Schärer, 

2007). 
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Figure 1.2. A representation of nucleotide excision repair (de Laat et al., 1999) 

 

In contrast to GG-NER where damage is recognized directly, recognition of damage in TC-

NER takes an indirect approach. During transcription elongation, the stalling of RNA 

polymerase II is an indication that there is a lesion in the DNA. When this happens, NER 

recruits several proteins to remove the lesions. These include UV-stimulated scaffold protein 

A and ubiquitin-specific-processing protease 7 (Schwertman et al., 2012) and Cockayne 

syndrome complementation group A (CSA) and B (CSB). The purpose of recruitment of 

these proteins is to promote DNA repair as well as restart of the transcription elongation 

process. While CSA is implicated in the elongation process itself, CSB is known for its role 
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in the displacement of the stalled RNA polymerase via a transient interaction (Kamiuchi et 

al., 2002). Upon stalling at a lesion, it has been documented that the affinity of CSB for 

RNA polymerase II increases, leading to the formation of CSA-CSB complex. The formed 

complex is then involved in the reversal of the translocation (backtracking) of RNA 

polymerase II, thus rendering the DNA lesion accessible for repair. After this step, the GG-

NER and the TC-NER converge to continue the repair process of the damaged DNA (Figure 

1.2; de Laat et al., 1999). 

The dissociation of RAD23B in the GG-NER mechanism and the backtracking step in the 

TC-NER mechanism will trigger the deployment of the transcription factor II H (TFIIH) 

complex, that is known to have helicase activities. The presence of two TFIIH basal helicase 

subunits including XPB and XPD results in the opening of the DNA duplex site where 

damage has occurred. However, if XPD fails to detect any damage, the DNA repair process 

can be aborted. This is because the major role of XPD is for damage verification. If there is 

successful verification of damage by XPD, the helicase activities will proceed successfully. 

This process will result in a bubble formation, allowing the engagement of XPA and RPA 

(replication protein A), as well as the assembly of the complexes necessary to initiate 

incision (Compe & Egly, 2012). 

The XPF-ERCC1 complex is a structure activated endonuclease that incises the DNA strand 

on the 5ʹ side of the helix distorting lesion. Similarly, XPG performs a similar function 3ʹ to 

the lesion (Figure 1.2). This step leaves a single strand gap of 22-30 nucleotides and it has 

been suggested that this step is necessary in triggering, a DNA damage signalling reaction 

(Marteijn  et al., 2014).  

In cancer, several studies have shown that the ERCC1-XPF complex is responsible for 

conferring resistance to platinum based drugs (Seetharam et al., 2010; Baba et al., 2012) and 

in particular it has been demonstrated that the over expression of the Ercc1 gene is associated 

with oxaliplatin resistance in metastatic colon cancer (Choueiri et al., 2015). Thus, it has 

been shown that its knock down by siRNA-mediated gene silencing can sensitize the CRC 

cell lines to oxaliplatin, thereby implicating the role of Ercc1 in conferring resistance to this 

crosslinking agent (Seetharam et al., 2010). 

It is based on the above premise that this PhD thesis seeks to profile the expression of Ercc1 

in different solid tumours derived from CRC with a view to establishing the expression 

pattern in tumour versus normal colon tissue. 
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1.4. Colorectal Cancer 

Colorectal cancer (CRC) or colorectal adenocarcinoma is one of the most predominant 

malignant neoplasms and it contributes significantly to cancer-related deaths worldwide 

(Ferlay et al., 2015). In 2014, the number of newly diagnosed patients in the United States 

alone reached nearly 140,000, ranking this disease in second place as a cause of death due 

to cancer in adults (Siegel et al., 2014). Worldwide, it occupies third place and second place 

respectively, as the leading cause of deaths relating to cancer in men and women (Ferlay et 

al., 2015). Although 55% of the cases are found across the industrialized world, Australia 

and New Zealand record the highest rates of CRC with Africa showing the lowest rates (Ries 

et al., 2017). The discrepancy in the documented incidences and death rate can be attributed 

to poor diagnosis or improper data registry (Ferlay et al., 2015). Diagnosis of CRC at the 

stage when it has not metastized to distant organ usually signals a good prognosis and about 

50% of patients have a 5-year survival. However, patients at the metastatic stage have only 

12% survival rate at 5 years (Ferlay et al., 2015). CRC may be asymptomatic for several 

years and the American Cancer Society has recently recommended screening from 45 years 

of age (Mannucci et al., 2019). Detecting blood in the stool and unexplained weight loss 

have previously been reported to be the only symptoms warranting further exploration for 

polyps and CRC (Adelstein et al., 2011).  

While there is no single, distinct cause of CRC, several risk factors leading to its 

development have been described (Kupfer & Ellis, 2017). This neoplasm is sporadic with 

the majority caused by diet, lifestyle, age and only about 15% to 35% linked to hereditary 

factors (Burt, 2007; Mishra & Hall, 2012). Evidence shows that patients with history of 

genetic instability have a greater chance of getting the disease and such patients are 

especially likely to show germline mutations relative to the patients that have spontaneous 

CRC (Gallagher et al., 2010). 

Based on their origin, CRC has been traditionally categorized into two biological subgroups, 

namely a minority (15%) that show microsatellite instability (MSI), which is primarily 

predominant at the right colon and known to be frequently linked to the CpG island 

methylator phenotype (CIMP; Popat et al., 2005). Additionally, predictive and prognostic 

information indicate that they exhibit hyper-mutation including mutation at both the KRAS 

and BRAF oncogenes. On the other hand, the second group comprising 85% of patients is 

made up of a subgroup considered to be microsatellite stable but chromosomally unstable 



16 
 

(Marisa et al., 2013; Roepman et al., 2014). It is worthwhile to mention that the above 

classifications are largely based on gene expression profiling; thus, might solely focus on 

single mutations or epigenetic alterations. Therefore, with the advances in genomic 

technology, scientists are now focussing on whole exome and genome sequencing to cover 

a wide range of genome analysis. This technique can sequence the entire human coding 

DNA looking at both the coding and non-coding regions. This will help to provide additional 

information on all the alterations that might have occurred at a single nucleotide including 

copy number and structural variants. Recently, screening with high-throughput gene 

expression profiling including next generation sequencing or expression arrays (microarray) 

has demonstrated that some CRC types overlap with the above-mentioned groups and cannot 

be established only by single mutations or epigenetic profiling (Sinicrope et al., 2016). 

The development of CRC is seen to be a multistep process that involves the development of 

benign polyps that have the capability to evolve into carcinoma in situ by the accumulation 

of somatic mutations (Shussman and Wexner, 2014). Factors such as age, diet, lifestyle, and 

family history are associated with the development of polyps and CRC (Rasool et al., 2013). 

Even though there is a good correlation between polyps and CRC development, three 

different subtypes of polyps have been described, distinguished on the basis of histology, 

such as tubular/villous adenoma, hyperplastic polyps and sessile/traditional serrated 

adenomas (Kalimuthu et al., 2016). Similarly, there is a suggested correlation between the 

risk of cancer development with the number and size of previously developed polyps 

(Shussman & Wexner, 2014). This means that multiple colonic polyp development with 

malignant potential will amount to an increased lifetime risk of developing CRC. 

 

1.4.1. Genetic Predisposition to Colorectal Cancer 

Knowledge of the genetics that defines cancer development is critically important in the 

discovery and development of corresponding therapies for the treatment of any particular 

cancer. In recent years, cancer research scientists have fully become aware to the reality that 

genetic mutation is one of the hallmarks of cancer development including CRC (Hanahan 

and Weinberg, 2000; 2011; Loeb, 2001). Like other cancers, CRC is heterogenous in nature 

and genome sequencing has identified 24 genes that are predominantly subject to mutation 

including APC, TP53, SMAD4, PIK3CA, and KRAS (Cancer Genome Atlas Network, 2012). 

The overall classification of CRC is categorised into three important tumour subtypes 
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including hyper-mutated, non-mutated and CIMP subtypes (Rodriguez-Salas et al., 2017). 

The hyper-mutated tumours have been reported to account for up to 16% of all CRC 

(Dienstmann et al., 2017). While only one-quarter display somatic mismatch repair (MMR) 

gene and DNA polymerase  alterations, three-quarters of them show high-frequency MSI 

(MSI-H) (Cancer Genome Atlas Network., 2012). Mutations in the germline account for 2 - 

5% of CRC and may be as a result of autosomal dominant syndrome (Gatalica et al., 2017). 

The most prevalent and most studied is termed hereditary non-polyposis colorectal cancer 

(HNPCC) or Lynch syndrome (Lynch et al., 2015). When compared to the age of the 

patients, evidence shows that most patients with sporadic CRC are older patients, while 

patients with Lynch syndrome and other genetic predispositions are usually younger (Mauri 

et al., 2019). This can be due to loss of Mlh1 expression, the increase of which is directly 

proportional with age (Kakar et al., 2003). Moreover, sporadic colorectal tumours are also 

characterized by high BRAF (V600E) mutation with loss of MLH1 and PMS2 proteins 

(Kakar et al., 2003).  

Furthermore, microsatellite instability (MSI) positive CRC can be found at the proximal 

bowel exhibiting poor differentiation. This can be due to the presence of dense lymphocytic 

infiltration, suggesting strong anti-tumoural immune responses. Moreover, this is an 

indicative of positive prognosis (Nosho et al., 2010). On the other hand, the non-mutated 

subtype accounts for 84% of CRC; with the majority characterised by many somatic copy 

number changes and aneuploidy; exhibiting genetic alterations at the KRAS and PIK3CA 

genes. This subtype is also known to possess loss of heterozygosity of several tumour-

suppressor genes including APC and TP53 (Cancer Genome Atlas Network, 2012).  

The third subtype as mentioned above is the CIMP characterised predominantly by DNA 

methylation of CPG islands (Hawkins et al., 2002; Weisenberger et al., 2006). This results 

in gene silencing and the subtype exhibits deficient MMR, resulting in MSI-H. Moreover, 

CRC with an MMR/MS-IH phenotype is said to result in a higher proportion of sporadic 

tumours, accounting for up to two-thirds, while the remaining one-third are linked to a 

germline mutation in the MMR genes including Mlh1, Msh2, Msh6 and Pms2 (Buchanan et 

al., 2014). Furthermore, evidence has shown that BRAF/V600E mutations can be another 

consequence of the MMR/MS-IH phenotype as well as CIMP. Thus, MSI-H is suggested to 

be caused by aberrant hyper-methylation that inactivates, principally, Mlh1 (Domingo et al., 

2004). 
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Additionally, two recessive cancer - predisposing genes MUTYH and Nthl1 that both code 

for proteins that act in base excision repair (BER) have been confirmed to be associated with 

increased polyposis and adenomatous polyposis with a high risk of CRC respectively 

(Weren et al., 2018). Indeed, carriers of biallelic mutations in Nthl1 have been shown to 

have an increaseed risk of other cancer types, including breast cancer (Kuiper & 

Hoogerbrugge, 2015). 

 

1.4.2. Colorectal Cancer Treatment and Oxaliplatin 

 

  

 

 

 

Systemic chemotherapy has been used to control cancer and alleviate its related symptoms 

at the metastatic stage. For metastatic CRC, it has been reported that a combination of the 

antimetabolite fluoropyrimidines (intravenous 5-fluorouracil and oral capecitabine), the 

DNA topoisomerase I inhibitor, irinotecan and the genotoxic platinum – based agent 

oxaliplatin (FOLFOXIRI) showed an improved survival of these patients (Leal, 2017). 

However, achieving complete remission at this stage is still daunting, as resistance 

accounting for nearly 30-50% is still a major obstacle (O’Connell et al., 2008). 

Oxaliplatin (Figure 1.3B) is a third-generation platinum – based alkylating agent forming 

primarily N-alkylation products at the N7 of guanine. Similar to cisplatin (cis-

diamminedichloroplatinum (II); Figure 1.3A), this leads to both intra- and inter-strand cross 

links (ICLs) in the DNA molecule, effectively disrupting DNA replication and transcription 

and leading to cell death. For cisplatin, the high extracellular chloride ion concentration 

maintains the molecule in an inactive state and only when it is transported inside the cell, 

where the chloride ion concentration is 5 to 30 times lower, are the chloride groups displaced 

by water molecules to create an effective alkylating agent. The most prevalent products are 

1,2-d(GpG) intrastrand crosslinks that make up 90% of the DNA adducts, 1,2-d(ApG) 

intrastrand crosslinks and ICLs. In the cell, the activated cisplatin has a half-life of around 

two hours, while the protecting chelating ligands of oxaliplatin give this agent a much longer 

A B 

Figure 1.3. Molecular structures of (A) cisplatin and (B) oxaliplatin. 
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half-life, with solutions of oxaliplatin and the related carboplatin being stable in water for a 

period of weeks to months (Johnstone et al., 2016). 

The repair of cisplatin – induced intrastrand crosslinks is thought to be completed by NER 

and the resistance to DNA repair, and therefore the cytotoxic effectiveness of this agent, is 

due to the bending of the DNA at the adduct and the resulting binding of the DNA by high-

mobility group box proteins that have a great affinity for cisplatin modified DNA and thus 

shield the lesion from the NER proteins (Awuah et al., 2017). In CRC, increased expression 

of Ercc1, which encodes one half of the ERCC1/XPF lesion specific endonuclease, has been 

correlated with oxaliplatin resistance (Galluzzi et al., 2012). However, mouse cells lacking 

the BER DNA glycosylase NEIL3 also showed resistance to cisplatin (Rolseth et al., 2013). 

Further evidence of a role for DNA glycosylases in ICL repair came from biochemical 

studies by Couvé and colleagues (2009), which indicated that NEIL1 could excise psoralen 

– induced ICLs from DNA and more recent work has shown that both NEIL1 and NEIL3 

can resolve psoralen - induced ICLs in three- and four-stranded DNA structures (Martin et 

al., 2017) and also that NEIL3 can release ICLs at DNA replication forks (Semlow et al., 

2016). Therefore, as NEIL3 has been reported to be highly expressed in cancer cells and 

metastatic tumours (Kauffmann et al., 2008; Hildrestrand et al., 2009) and recent work from 

my laboratory at the University of Salford had also indicated a role of NEIL3 in the 

resistance to oxaliplatin (Taylor et al., 2015), it was important to determine the levels of 

NEIL3 in the CRC tissues and cell lines analysed in this work. 

 

1.4.3. Colorectal Cancer Treatment and Development of Targeted Therapy 

The use of conventional therapies for cancer patients is long standing, with the treatment 

modalities recording substantial improvements over the years. Patients with CRC can 

benefit from radiotherapy, surgery, chemotherapy or a mixture of surgery and 

chemotherapeutic agents depending on the stage of the disease (Mishra et al., 2013). Surgery 

has been successful when diagnosis and therapeutic interventions happen at the initial stages 

with the tumour displaying adequate surgical margins and no invasive characteristics. 

Although, there are no curative options for most metastatic CRC, Kopetz and colleagues 

(2009) reported that an improvement in the median overall survival can be realised through 

surgical resection of both primary CRC and metastases (Kopetz et al., 2009). 
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Due to the shortcoming of conventional therapies, scientists are focusing on targeting 

metastatic CRC at the molecular level. Cancers including CRC can be characterized based 

on the biomarkers they present. This means that profiling tumours can be a watershed event 

in optimizing therapy to suit an individual patient’s need. The key is in identifying reliable 

biomarkers by performing baseline assessment of tumour gene expression and/or immune 

profile for the best chance of therapeutic success. With the recent innovations in molecular 

testing techniques that allow for high throughput genomic analysis, patients can be selected 

for targeted therapy based on their tumour biology and dispositions (Ohhara et al., 2016). 

So far, techniques involving next generation sequencing and even a much newer technology 

for detecting a mutation in circulating tumour DNA have been described (Perakis et al., 

2017). Since these technologies can detect somatic modifications and mutations such as 

insertions/deletions, copy number variation and rearrangement and base substitutions, 

molecular intervention strategies can be tailored to target the key molecules involved in CRC 

proliferation, envasion and metastasis (Diaz & Bardelli, 2014; Sinicrope et al., 2016). By 

implication, targeted therapy directed against the wrong mutation or given to a patient with 

tumour of unrelated characteristics will not benefit the patient.  

Several biomarkers for CRC including KRAS, NRAS, BRAF mutation, DNA mismatch repair 

(MMR), MSI, and CpG island hypermethylation have been evaluated (Sinicrope et al., 

2016). Consequent upon reports emanating from such findings, treatment modalities such 

as the use of small molecule inhibitors, antibodies (Baudino, 2015), immunotherapy (Lynch 

& Murphy, 2016) and RNA-based technologies such as siRNA or small hairpin RNA 

(Seetharam et al., 2010) have been evaluated. Although some of these techniques are still at 

the preclinical stage, the majority have made their way to the clinic, recording some 

promising outcomes. 

Recent reports show that better patient survival can be achieved by recombinant humanized 

monoclonal IgG antibody targeting either the EGFR or VEGF pathway. The result of the 

clinical trial using the above antibodies as summarized by Ohhara et al., (2016) indicated 

that one anti VEGF antibody; bevacizumab, and two EGFR targeting antibodies; cetuximab 

and panitumumab resulted in significant anti-CRC metastatic control in combination with 

cytotoxic therapy (Ohhara et al., 2016). The clinical trial report showed that they can be 

used in first line, second line or even in salvage settings to enhance overall patient survival 

beyond 40 months from the period of initial diagnosis (Van Cutsem et al., 2011; Heinemann 

et al., 2014). However, this treatment is not suitable for everyone as only those in a healthy 
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state can benefit from it due to inherent toxicity associated with chemotherapy. Additionally, 

patients that have KRAS/NRAS mutations are not subject to this therapy as this mutation lies 

downstream of EGFR. In such instance, mutation at the KRAS/NRAS triggers the 

transcription of the ligand for EGFR; transforming growth factor-alpha (TGF-α). This will 

in turn create an autocrine signaling loop that contributes to tumoural resistance to anti-

EGFR monoclonal antibodies (mAbs) including cetuximab and panitumuab (Lièvre et al., 

2006). 

Immunotherapy for the treatment of cancer has come a long way and has been accepted as 

the fourth treatment modality besides surgery, chemotherapy and radiotherapy. This 

treatment modality is currently approved for many solid tumours due to its efficacy in 

controlling cancer with minimal overall toxicity. The functions of immune cells in the 

development and progression of tumour has been well documented (Hanahan & Weinberg, 

2011) indicating that several cancer types show phenotypic immune cell characteristics. It 

has been demonstrated that CRC with MSI can be characterized by the presence of a 

particular immunogenic phenotype. It was further established that this subtype has 

increasing lymphocytic infiltration which can possibly be due to the creation of tumour-

specific neo-antigens during accumulation of mutations (Schwitalle et al., 2008). When 

primary tumour tissues from patients were further characterized an increasing presence of 

Th1 transcription factors was recorded. This is translated to the presence of activated 

cytotoxic CD8T cells, Th1 cells producing high levels of IFN-y as well as T-BET expressing 

T cells (Llosa et al., 2015). The presence of immune cell infiltration in the CRC is indicative 

of a positive prognosis. However, the immune microenvironment of CRC is composed of 

immune checkpoints that are cytotoxic to activated T cells. In a similar vein, the presence 

of apoptotic cell death ligands, such as programmed cell death ligand 1 (PD-L1), 

programmed cell death 1 (PD-1), T lymphocyte associated antigen 4 (CTLA4), lymphocyte 

activation gene 3 (LAG3) and indoleamine 2, 3-dioxygenses (IDO) have been shown to be 

the hallmark characteristic of several cancers including CRC (Llosa et al., 2015). 

Targeting immune checkpoints has been the major focus of immunotherapy. The 

engagement PD-L1 on the surface of the tumour cells with PD-1 present on the immune 

cells including T cells, B-cells and natural killer cells produces inhibitory signals that result 

in T cell exhaustion and energy (Llosa et al., 2015). Inhibition of this pathway resulted 

tumour regression and reversal of T cell exhaustion in majority of cancer types including 

melanoma, non-small lung cancer and renal carcinoma.  This is a pointer to the fact that the 
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mechanism of tumour regression using this strategy lies in activation of tumour infiltration 

lymphocyte around the tumour border. Recently, Brahmer and colleagues (2009) showed in 

their phase II clinical trial that, blocking PD1/PD-L1 interaction in CRC patients with MDX-

1106 resulted in complete response for a period more than 21 months (Sui et al., 2015). 

Looking at the individual treatment modalities, one can see their strengths and weaknesses. 

Since long-term clinical benefit to more patients is the ultimate goal, future cancer therapy 

is likely to focus on combinatorial approaches involving targeted inhibitors, 

immunotherapy, chemotherapy, surgery, radiation as well as novel therapies to achieve 

success. 

 

1.5. Medulloblastoma 

Medulloblastoma is a malignant, embryonal, heterogeneous, and highly aggressive tumour 

of the central nervous system with a preferential manifestation in children and a marked 

metastatic tendency via the cerebrospinal fluid (CSF) (Louis et al., 2007; Gibson et al., 2010; 

Robinson et al., 2012; Gajjar and Robinson, 2014). The development of medulloblastoma is 

mostly sporadic, originating from the interior fossa because of aberrant cerebellar 

development (Marino, 2005). In very rare cases, medulloblastoma has been reported to be 

associated with heritable disorders like LiFraumeni, Turcot or Gorlin syndrome (Parsons et 

al., 2011; Johansson et al., 2016). More than 70% of reported cases of medulloblastoma 

occur in patients under the age of 15 years, with the incidence peak being 3 to 6 years (Peris-

Bonet et al., 2006). However, medulloblastoma is much less frequent in adults, accounting 

for less than 3% of primary tumours of the central nervous system (Smoll and Drummond, 

2012).  

From a US registry analysis obtained from the Surveillance, Epidemiology, and End-

Results (SEER) database, it was found that medulloblastoma incidence was 1.5 cases per 

million in the general population, and children were reported to show over 10 times more 

likelihood of developing the disease than adults (Rutkowski et al., 2010; Smoll and 

Drummond, 2012). For the period 2000 to 2007, the European annual incidence rate 

reported 6.8 per million children within the age range of 0 – 14 years, with highest rates 

recorded in Southern and Central Europe (Massimino et al., 2016). In males, the occurrence 

was sign more relative to females; and the prevalence rate per annum was reported to be 
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higher in children that are not more than 9 years of age, indicating a frequency of less than 

8 in every million. On the other hand, 6 persons per million was reported in infants, an 

indication of a reduction in the rate of incidence, whereas, in children whose age range is 

between 10 to 14 years, the incidence rate was reportedly lowest, represented by 4 persons 

in every million (Peris-Bonet et al., 2006). In the case of individuals that were above the 

age of 14 years but not more than 19 years of age, higher incidence rate was reported at an 

annual frequency of 2.33 persons per million; with incidence rate declining beyond 19 

years of age up to the age of 40 years, depicting an alignment with the embryonal origin of 

medulloblastoma (Giordana et al., 1999). Between 1978 and 1997, the incidence of 

medulloblastoma was on the rise, with a record 1.3% increase during this period (Peris-

Bonet et al., 2006). In parts of North-America, the occurrence of medulloblastoma was 

reported to be 5.07 per million children aged 0 to 19 years (Kohler et al., 2011). 

Comparatively, from 1114 diagnosis of brain tumours at the Egyptian Children’s Cancer 

Hospital from 2007 to 2013, medulloblastoma represented 23.2% of the overall number of 

diagnosed cases; this shows an agreement with the reported cases of medulloblastoma in 

North America and Europe (Ezzat et al., 2016). 

Children diagnosed with medulloblastoma in Europe, between the years 2000 – 2007, 

showed 81% survival for 1 year, 63% for 3 years and 56% survival was reported for 5 

years. Essentially, worst prognosis was found among infants, where 5-year survival was 

reported to be 33%, but for children aged 1 to 4 years, a relatively improved survival of 

47%; whereas, marked prognosis was reported for children aged 5 to 14 years of age, at 

survival rate of 67% (Kohler et al., 2011). From year 1999 and 2007, survival of patients 

with medulloblastoma remained stable (Gatta et al., 2009), while in the nineties, survival 

significantly improved and the possibility of the patients dying dropped by 30% (Gatta et 

al., 2014).  

For children aged above 5 years, the standard of care requires surgical resection, irradiation 

of the craniospinal region, and CT that have amounted to an enhanced general survival rate, 

which accounted for approximately 70–75% in clinical setting (Lannering et al., 2012). 

The variation in the results reported across European countries are indicative of the fact 

that there are challenges in harnessing of effective treatment and/or reach effectively, 

timely and accurately consistent diagnosis. In Northern Europe, an improved 5-year 
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survival rate at 64% was reported, while it was relatively lowest in countries within Eastern 

Europe at 53% (Gatta et al., 2014). 

Because the highest incidence of medulloblastoma occurs during childhood; it is rational 

to assert that certain factors operating at very early stage of life might play a key role in 

determining the disease development (Massimino et al., 2016). Birth weight is frequently 

suggested as an easy but rough indicator of medulloblastoma prenatal exposures. On this 

note, Harder et al. (2008) systematically reviewed the relationships between patients’ birth 

weights and the localisation of primary brain tumours of specific histological features. 

Interestingly, they observed that high birth weight was significantly associated with 

increased risk of medulloblastoma. Similarly, other studies have made attempts to 

speculate on a possible aetiology that is considered infectious. For instance, a study 

conducted in England, investigated a variety of perinatal factors and their respective 

impacts on brain tumours in children (Fear et al., 2001). The researchers observed that 

children whose mothers had a documented case of viral infection during pregnancy had 

over 11 times increased risk of development of malignant tumours of the central nervous 

system (CNS) (Fear et al., 2001). However, this finding was not supported by recently and 

widely updated reviews (Johnson et al., 2014, Crump et al., 2015). In a large population-

based control-case study, Harding et al. (2009) evaluated the profile of day care and social 

contacts in the first year of life, alongside other indicators of infectious exposure. The 

authors reported elevated risk of medulloblastoma development in children that have had 

no social contact with other infants in the first year of life. However, they interestingly 

noted that analysis of other related hallmarks of infectious exposure such as joint use of 

bedroom, domestic exposure to school-age children, and sequence of birth; failed to concur 

with the proposition of a protective effect of infectious exposure (Harding et al., 2009). 

Diet is another player in medulloblastoma and other tumours of the nervous system, and its 

implications as risk factor and a positive factor, have been reported in multiple studies. The 

hypothesis that maternal dietary intake of N-nitroso compounds (NOC) and NOC 

precursors in the course of pregnancy increases the risk of brain tumour development in 

offspring, is known to be one of the most comprehensively investigated hypotheses 

(Dietrich et al., 2005; Massimino et al., 2016). Based on this premise, a large international 

collaborative case-control study on childhood brain tumours was conducted to ascertain the 

relationships between histology-specific risk and consumption of specific food groups 
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during pregnancy (Pogoda et al., 2009). The researchers observed that cured meats, 

eggs/dairy, and oil products were the main foods regularly linked with increased risk; 

whereas, foods that are mostly associated with lowered risk were fresh fish, yellow-orange 

vegetables, and grains (Pogoda et al., 2009). 

Another risk factor that has been under serious investigation is the maternal occupational 

exposure. Li et al. (2009), while studying the causal relationship between maternal 

occupational exposure and the incidence of childhood brain tumours, evaluated the 

implications of extremely low frequency magnetic fields (ELF-MF) just prior to and during 

pregnancy. They reported a seriously elevated risk for astroglial tumours and for the entire 

childhood brain tumours investigated (Li et al., 2009). Similarly, several epidemiological 

studies have investigated the correlation between parental exposure to pesticide and 

childhood brain tumours, and many of the research outcomes were suggestive of 

affirmative correlation (Massimino et al., 2016). It was based on this rationale that Shim et 

al., (2009), conducted a population- based case-control study to evaluate that association 

between the occurrence of brain cancer in children and parental exposure to pesticides in 

occupational and residential settings. They reported negligible relationship with 

medulloblastoma for any of the pesticide subtype or the sources exposure investigated 

(Shim et al., 2009). Additionally, Rosso et al., (2008), evaluated the relationship between 

the hobbies of fathers and medulloblastoma; and they observed an increased risk of 

medulloblastoma development in children whose fathers’ hobbies are linked to household 

use of chemicals, particularly pesticides. When parental occupation was considered, 

Cordier et al., (1997), reported an increased risk of PNET with parental exposure to 

polycyclic aromatic hydrocarbons and high maternal exposure to solvent during the five-

year period before birth. In another vein, certain genetic abnormalities such as Gorlin, 

Turcot, and Li-Fraumeni syndromes have been reported as cancer-predisposition 

syndromes that are known to be defining risk factors of medulloblastoma (Villani et al., 

2012). 
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1.5.1. Histology and Pathobiology of Medulloblastoma 

To date, the actual cellular origin of medulloblastoma remains subject to debate (Gibson et 

al., 2010). Several reports have shown that the origin of medulloblastoma could be from two 

different embryonal cell groups: cells from the ventricular zone, which differentiate into 

various cells of the cerebellum; and cells from the external germinal layer (EGL), which 

differentiate into cerebella granule cells (Kuzan-Fischer et al., 2018). These cell groups are 

related to different molecular subtypes of medulloblastoma and it has been established that 

ventricular zone cells give rise to the wingless (WNT) subtype, whereas sonic hedgehog 

(SHH) medulloblastoma is produced from the EGL cells (Fan and Eberhart, 2008; Rusert et 

al., 2014; Kuzan-Fischer et al., 2018). In the subsequent sections, these molecular subtypes 

will be reviewed in a more elaborate manner.  

The 2007 WHO classification of tumours of the central nervous system recognises five 

major variants of medulloblastoma, including the classic medulloblastoma, 

desmoplastic/nodular, medulloblastoma with extensive nodularity (MBEN), anaplastic and 

large cell (Giangaspero et al., 2007; Massimino et al., 2016; Kuzan-Fischer et al., 2018). 

From these five forms, large-cell medulloblastoma as well as anaplastic variant of the 

disease have significant overlapping characteristics; consequently, several studies have 

attempted to group them into large cell/anaplastic (LC/A) medulloblastoma (Gilbertson and 

Ellison, 2008). The incidence rate of the combined LC/A type of medulloblastoma has been 

reported to oscillate between 10% and 22%; whereas, anaplastic medulloblastoma is 

established only in event of severe and diffuse anaplasia, comprising up to 50% of reported 

cases (Giangaspero et al., 2007). Nodular/desmoplastic medulloblastoma constitute about 

7%, while MBEN comprises up to 3% of the entire reported cases of the disease, while 

classic subtype of medulloblastoma make up the remaining (Gilbertson and Ellison, 2008; 

Massimino et al., 2016). 

Histologically, the classic subtype of medulloblastoma is made up of tightly packed cells 

with characteristic oval, round, or carrot-shaped hyperchromatic nuclei encircled by 

minimal cytoplasm (Massimino et al., 2013). The Desmoplastic/nodular form of 

medulloblastoma is known to have nodular, reticulin-free zones, which are neuronal 

maturation zones. It is characterised by a small nuclear cytoplasmic ratio, a fibrillary matrix, 

and homogenous cells with a neurocytic appearance (Eberhart et al., 2002a). The densely-

packed cells at very active mitotic state surround the constituent nodules, which results in 



27 
 

the production of a dense intercellular reticulin-positive network of fibres (McManamy et 

al., 2007). 

Medulloblastoma with extensive nodularity (MBEN) is known to be predominant in infants 

and it has characteristic better prognosis (Eberhart et al., 2002a); and it is distinct from the 

closely-related nodular/desmoplastic subtype by possessing an expansive lobular 

conformation because of the unusual elongation of the reticulin-free zones and enriched with 

neuropil-like tissue (McManamy et al., 2003). Such zones are filled with small cells that 

have characteristic spherical nuclei that bear close semblance to the cells of a central 

neurocytoma and exhibit a streaming pattern; coupled with the marked reduction of the 

internodular component in some areas (McManamy et al., 2007). Structurally, the large cell 

medulloblastoma is made up of monomorphic cells with large, round, vesicular nuclei, 

prominent nucleoli and variably abundant eosinophilic cytoplasm. Groups of these large 

cells tend to combine with morphologically different cells with characteristic nuclear 

polymorphism and nuclear conformation; this morphological variant has been termed 

anaplastic (Massimino et al., 2016). Large cell and anaplastic histological forms of 

medulloblastoma have been reported to show considerable cytological overlap and many 

studies have attempted to describe the histological alternation between non-anaplastic to 

anaplastic subtypes over time. However, some studies have reported alternated transition 

intra-tumour, as deduced from the presence of varying degrees of cytological atypia or 

anaplasia in any given tumour (Eberhart et al., 2002a; Massimino et al., 2016). 

Clinically, different reports have significantly shown good prognosis for the 

nodular/desmoplastic medulloblastoma at least in certain age groups as well as risk groups, 

particularly in children at younger age (Rutkowski et al., 2005; McManamy et al., 2007). 

Additionally, classic form of medulloblastoma has been reported to show significantly better 

prognostic outcome relative to the LC/A histological variant (Massimino et al., 2013). 

 

1.5.2. Molecular Subgroups of Medulloblastoma 

Increased understanding of the molecular characteristics of medulloblastoma and the advent 

of molecular diagnostics have resulted in the classification of the disease into distinctive 

subgroups (Kool et al., 2012). From the currently established global understanding, there 

are four distinct subgroups of tumours of the medulla, including WNT (wingless), SHH 
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(sonic hedgehog), Group 3 medulloblastoma, and Group 4 medulloblastoma (Taylor et al., 

2012), as represented in Table 1.1. These four molecular subgroups of medulloblastoma 

were isolated using series of genomics and molecular studies They are known and identified 

by properly defined genetic, molecular, clinical, histopathological, and prognostic features 

(Northcott et al., 2012; Ramaswamy et al., 2014; Schneider et al., 2105; Ramaswamy and 

Taylor, 2017; Kuzan-Fischer et al., 2018). From recent research findings derived from 

genetic, transcriptional and epigenetic data, it has been suggested the need to further 

categorise medulloblastoma into subtypes based on molecularly characteristics and such 

sub-classification is most likely to have positive impact on patient stratification in future 

clinical trials (Northcott et al., 2017; Schwalbe et al., 2017; Cavalli et al., 2017). 

 

Table 1.1. Molecular Subgroups of Medolloblastoma. 

 WNT SHH GROUP 3 GROUP 4 

Age Group Children 

& Adults 

Infants, Children & 

Adults 

Infants & 

Children 

Infants, Children 

& Adults 

Metastasis Rarely 

M+ 

Uncommonly M+ Very frequently 

M+ 

Frequently M+ 

Prognosis Very 

good 

Infants good, others 

intermediate 

Poor Intermediate 

Genetics CTNNB

1 

mutation 

PTCH1/EMO/SUFU 

mutation / 

GL12 amplification / 

MYCN 

amplification 

MYC 

amplification 

CDK6 

amplification 

Gene 

Expression 

WNT 

signallin

g 

MYC+ 

SHH signalling 

MYCN+ 

Photoreceptor / 

GABAergic 

MYCN+++ 

Neuronal/Gluta

matergic 

minimal 

MYC/MYCN 
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1.5.2.1. WNT (Wingless) Medulloblastoma  

This is the least prevalent medulloblastoma molecular subgroup, constituting approximately 

11% of the total reported incidences of medulloblastoma (Kool et al., 2012). Though, 

wingless form of medulloblastoma has been reported to occur at all ages, children are 

predominantly affected, with the highest frequency of occurrence recorded in children of 10 

to 12 years (Taylor et al., 2012). Unlike other molecular subgroups of medulloblastoma, 

WNT forms have been reported to have a female preponderance, based on gender ratio. 

Typically, WNT tumours are known to occur in the mid region of the brain, affecting the IV 

ventricle and extending to the brain stem (Gajjar and Robinson, 2014). 

Based on their histological features, most WNT forms of medulloblastoma belong to the 

classic histological subgroup; although, instances of wingless medulloblastoma with LC/A 

histology have been rarely reported (Gajjar and Robinson, 2014). IHC expression of 

DKK1, Filamin-A, YAP-1, and beta-catenin, particularly the nuclear +/− cytoplasmic 

expression, have been demonstrated as a very reliable method for the identification of 

medulloblastoma that have characteristic wingless pathway (Ellison et al., 2011). On a 

positive note, WNT medulloblastoma show much lower metastatic diffusion than other 

molecular subgroups and they have best prognosis, with reported survival rates of about 

95-100% (Salaroli et al., 2015). The reason behind the characteristic improved survival 

rates associated with WNT is still unknown, though, it has been attributed to its increased 

susceptibility to radiation therapy (Gajjar and Robinson, 2014; Salaroli et al., 2015). 

More than 75% of tumours in the WNT molecular subgroup of medulloblastoma habour 

an exon 3 mutation, and in particular a point mutation of the CTNNB1 gene, which encodes 

beta-catenin (Gilbertson, 2004), resulting in the increased excitation of the wingless 

pathway through beta-catenin resistant to breakdown and resulting in nuclear localisation 

of the gene products (proteins) with elevated transcription of genes such as cyclin D1 and 

MYC, that are concerned with cellular proliferation (Massimino et al., 2016; Kuzan-

Fischer et al., 2018). Cytogenetically, WNT pathway tumours have been reported to show 

a characteristic monosomy 6 in more than 79% of patients (Shih et al., 2014). Besides 

monosomy 6, the genomic composition of WNT medulloblastoma is comparatively silent 

and only associated with scarce chromosomal deletion and/or insertion across the genome 

(Gilbertson, 2004). However, in addition to monosomy 6, other genetic alterations such as 

copy number variation (CNV) and/or single nucleotide variants (SNV) include mutations 
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in the gene that promotes cellular proliferation through the increased activating capacity of 

beta-catenin, SMARCB4, p53 gene alteration, tetraploidy, and MLL2 alterations 

(Northcott et al., 2012; Jones et al., 2012). In a clinical trial that assessed medulloblastoma 

patients with characteristic WNT molecular features, Clifford et al. (2015) revealed new 

insights into the clinical features and further demonstrated that relapses occur at higher 

frequency in patients of 16 years at diagnosis. This report agrees with the earlier reports 

from a series of retrospective studies, in which bimodal distribution of age and very poor 

prognosis were demonstrated in adults with WNT medulloblastoma relative to children 

(Korshunov et al., 2010; Kool et al., 2012; Clifford et al., 2015). 

 

1.5.2.2.  Sonic Hedgehog Medulloblastoma  

In normal cerebellar physiology and development, the sonic hedgehog (SHH) pathway plays 

a significant role, where it is responsible for the initiation of the rapid growth of primordial 

cells of the neuron, and its proliferation in the growing cerebellum and other brain tissues 

alike (Massimino et al., 2016). The formation and growth of the external germinal layer 

from the cells of the granule and precursor cells is facilitated by the SHH ligand 

(McManamy et al., 2007). Additionally, paracrine signalling emanating from SHH or the 

activation resulting from PTCH1 mutations leads to the breakdown of some molecular 

regulators, especially the serpentine G-protein coupled receptor SMO from PTCH, and its 

subsequent translocation into the apical section of the cilium, releasing GLI2 from its 

original repressor called suppressor of fused homolog (Archer et al., 2012). From thence, 

the GLI2 localises to the nucleus, where it modulates genes that are responsible for the 

excessive growth of the granule cell precursor cells of the cerebellum, resulting in tumour 

development (Jones et al., 2012; Archer et al., 2012).  

The SHH molecular subgroup of medulloblastoma has been reported to account for 

approximately 30% of all reported cases of medulloblastoma (Taylor et al., 2012). Relative 

to age, its localisation is bimodal, occurring more frequently in children of less than 3 years 

of age and adults of 16 years of age and above; and less frequently reported in patients who 

are 3 years to 16 years old (Gibson et al., 2010). The gender ratio has been shown to be 1:1, 

though incidence rate has been shown to be slightly higher in males (Gajjar and Robinson, 

2014). The SHH subgroup of medulloblastoma predominantly occurs in the hemispheric 

region of the cerebellum; however, some tumours of the SHH pathway have been reported 
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to originate in the mid vermis (Jones et al., 2012). Histologically, SHH medulloblastoma 

have characteristic nodular cum desmoplastic form with MBEN being exclusively added 

into this group; though, there have been reports other forms of SHH medulloblastoma which 

are known to be either of classic or LC/A histology (Ellison et al., 2011). Molecular 

biomarkers like GAB1, SFRP, and GLI1 protein have been reported as the key hallmarks 

for the identification of SHH medulloblastoma using tumour IHC expression for such 

molecular features; but diagnosis of the disease at metastatic stage rarely occurs (Ellison et 

al., 2011; Taylor et al., 2012).  

SHH medulloblastoma has characteristic PTCH1 mutations and approximately 36–54% 

cases of SHH medulloblastoma have been reported to show PTCH1 mutations (Kool et al., 

2014). The characterisation of somatic mutations of PTCH1 in patients devoid of Gorlin 

syndrome has deepened the already established correlation between medulloblastoma and 

sonic hedgehog signalling, including molecular alterations in SUFU and SMO, elevated 

expression of SHH, GLI2, and increased expression of MYCN genes (Massimino et al., 

2016). Previous reports have associated the expression of MYC or MYCN with histological 

features that are large-cell/anaplastic and poor prognostic features of medulloblastoma. 

Similarly, tumours with characteristic MYC or MYCN over-expression and tumours 

harbouring 6q insertion make up subgroups of medulloblastoma which are especially 

characterised by poor prognosis (Eberhart et al., 2002b). Kool et al., (2014) observed that 

mutations affecting PTCH1 gene occurred at an approximate percentage frequency of 36% 

in infants, 42% in children, and 54% in adults. In their work, which was a large-scale 

genomic study of sonic hedgehog subgroup of medulloblastoma, they further observed that 

SUFU mutations were characteristically predominant in infant medulloblastoma patients, 

and SMO mutations were more frequent in adult medulloblastoma patients (Kool et al., 

2014). 

The SHH subgroup of medulloblastoma has a broader molecular heterogeneity in older 

children, where they show increased expression of MYCN and GLI2 genes; TP53 mutations 

predominant in cancers of older children with sonic hedgehog medulloblastoma have also 

been reported (Zhukova et al., 2013). Similarly, over 50% of such children were reported to 

have Li- Fraumeni syndrome and mutations of genes in germline cells that conferred SHH 

medulloblastoma in individuals with very poor prognosis (Jones et al., 2012). They also 

reported tetraploidy in about 29% of investigated samples and it was associated with p53 

mutations. In the same vein, alterations affecting copy number such as the increased 
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expression of protein phosphatase, PIK3C2G, IRS2, YAP-1, and PIK3C2B coupled with the 

deletion of PTEN which are localised on chromosome 10q23.31 and mutations in other 

related genes, was reported by Northcott et al. (2012b).  

At the point of diagnosis, patients within the SHH molecular subgroup of medulloblastoma 

rarely show a disseminated tumour because they are tenable to immediate prognostic 

propensity, with overall survival of over 75% across a 5-year period, particularly when 

standard therapy is employed in the treatment (Taylor et al., 2012). Although, in a relatively 

recent study, Min et al. (2013) reported that a complete deletion of chromosome 14, 

increased expression of GLI2, loss of q10, MYCN upregulation, anaplastic and metastatic 

medulloblastoma at the diagnostic stage identify, have aided the characterisation of further 

subgroups in sonic hedgehog medulloblastoma patients, worsening their prognostic 

propensities. 

 

1.5.2.3.  Group 3 Molecular Subgroup of Medulloblastoma 

This molecular subgroup of medulloblastoma is roughly responsible for 25-28% of the entire 

diagnosed cases of medulloblastoma and it is predominantly found in children, 

characteristically affecting more males, increased frequency of metastasis at the point of 

diagnosis and high incidence of LC/A histology (Northcott et al., 2012). In children, 

medulloblastoma Group 3 has not been shown to be a defining factor and the molecular 

pathogenesis of the disease remains largely unknown. However, some scientists have 

identified expression for NPR3 (Natriuretic Peptide Receptor 3) as a confirmatory feature 

of Group 3 medulloblastoma, however, the validity of this biomarker is in doubt (Taylor et 

al., 2012). 

Almost all cases of Group 3 medulloblastoma have aberrant MYC expression, sometimes 

associated with high-level expression (Northcott et al., 2012). Group 3 medulloblastoma 

also shows characteristic genomic instability with frequent gains due to the insertion at 

chromosomes 1q, 7q, and 17q along with loss of 10q, 11, 16, and 17p (Northcott et al., 

2012). At an early stage in the development of Group 3 medulloblastoma there is a 

significant occurrence of tetraploidy in up to 54% of all cases of the disease (Jones et al., 

2102). When there are no p53 mutations, chromothripsis is a frequent event in Group 3 

medulloblastoma, resulting in aberrant chromosomal rearrangement or fusions due to 
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inefficient DNA repair. Similarly, TGF-β signalling appears to be increased because of 

dysregulation of the genes that are implicated in this signalling pathway and association with 

downstream target genes including OTX-2 (Northcott et al., 2012).  

Amongst all the four molecular subgroups of medulloblastoma, Group 3 is known to be 

associated with the worst prognosis, with less than 50% survival and no survivor exceeding 

10 years of follow-up in evaluation of retrospective studies (Kool et al., 2012; Massimino 

et al., 2016). This agrees with the findings of the study conducted by Shih et al. (2014) that 

revealed that the existence of i17q, MYC upregulation, and the presence of metastatic 

medulloblastoma that are responsible for poor prognosis of Group 3 medulloblastoma, and 

patients without these markers show a relatively better survival. 

 

1.5.2.4. Group 4 Molecular Subgroup of Medulloblastoma  

Group 4 medulloblastoma has been reported to be the most predominant subtype, 

constituting approximately 35% of all diagnosed medulloblastoma. Group 4 

medulloblastoma affects patients of all age groups, with male predominance, but it is rarer 

in infants (Kool et al., 2012; Northcott et al., 2012). Although, Group 4 medulloblastoma is 

the commonest of all the molecular subtypes, its molecular pathogenesis is poorly 

understood (Kuzan-Fischer et al., 2018). Histologically, most of the Group 4 

medulloblastoma have characteristic classic histology; however, some instances of LC/A 

have been reported (Massimino et al., 2016). Group 4 medulloblastoma have been linked 

with KCNA1 as its IHC marker but no other report has validated such claim (Ellison et al., 

2011). 

Group 4 medulloblastoma patients have been reported to have a moderate prognosis with 

standard cytotoxicity regimen. Shih et al. (2014) observed that excellent prognostic 

features are on subset of patients with Group 4 medulloblastoma following the loss of 

chromosome 11 and the presence of i17q, regardless of the attainment of metastatic stage 

by the disease at the point of diagnosis. Like Group 3 tumours, Group 4 medulloblastoma 

is characterised by tetraploidy in at least 40% of cases, as an initial transformation (Jones 

et al., 2012). In over 80% cases of medulloblastoma, the occurrence of isochromosome 17q 

has been reported in addition to 17p deletion, and MYCN and CDK6 genes are reported to 

be commonly amplified (Skowron et al., 2015). Female patients of Group 4 
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medulloblastoma predominantly lose one copy of the X chromosome, implying that one or 

more tumour suppressor genes might be present on this chromosome (Jones et al., 2012). 

Also, in Group 4 medulloblastoma, neural stem cells are kept undifferentiated state due to 

the excessive amplification of EZH2 (enhancer of Zeste homologue 2) and mutations 

affecting chromatin-remodelling genes such as KDM6A, which codes for a H3K27 

methylase and located on chromosome Xp11.3., ZYMYM3, and CHD7; thus, sustaining 

tumorigenesis (Massimino et al., 2016). In Table 1.2, a synopsis of the key genomic and 

clinical features of the four molecular subgroups of medulloblastoma is given.  

 

Table 1.2. A synopsis of the key genomic and clinical features of the medulloblastoma 

molecular subgroups. 
 

WNT SHH GROUP 3 GROUP 4 

Histological 

Feature 

Classic, Rarely 

LCA 

Desmoplastic, 

Classic, LCA 

Classic, LCA Classic, LCA 

Rate of 

Metastasis 

Low Low High High 

Prognostic 

State 

Excellent Intermediate Poor Intermediate 

Alterations 

Somatic 

Copy 

Number 

– MYCN (12%) 

GLI2 (8%) 

MYC (17%) 

PVT1 (12%) 

OTX2 (8%) 

SNCAIP (10%) 

MYCN (6%) 

CDK6 (5%) 

Single-

Nucleotide 

Variants 

CTNNB1 (91%) 

DDX3X (50%) 

SMARCA4 (26%) 

MLL2 (13%) 

TPS3 (13%) 

TERT (60%) 

PTCH1 (46%) 

SUFU (24%) 

MLL2 (16%) 

SMQ (14%) 

TP53 (13%) 

SMARCA4 (11%) 

MLL2 (4%) 

KDM6A (13%) 

MLL (5%) 

Broad 

Events 

6 Loss 3q Gain 

 

9q, 10q, 14q 

Loss 

1q, 7, 17q, 18q 

Gain 

 

8, 10q, 11, 16p, 

17p Loss 

7, 17q, 18q Gain 

 

8,11p, X Loss 

Expression WNT Signaling SHH Signaling MYC/Retinal 

Signature 

Neuronal 

Signature 

Recurrence – Local Metastatic Metastatic 

Adapted from: (Massimino et al., 2016). 
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1.5.3. Risk-Based Classification of Medulloblastoma Patients 

Medulloblastoma patients are traditionally categorized into two key risk strata, namely, the 

average risk and the high risk medulloblastoma patients. This classification is based on three 

clinical factors, which includes the patients’ age during diagnosis, whether there is 

leptomeningeal dissemination or not, and extent of residual tumour post-resection (Kuzan-

Fischer et al., 2018). Patients are classified as average risk if they are older than 3 years of 

age at the point of diagnosis, with residual tumour size less than 1.5 cm2, in addition to 

negative results for macroscopic metastasis on imaging scans as well as CSF analysis for 

microscopic tumour cells (Massimino et al., 2016; Kuzan-Fischer et al., 2018). High risk 

medulloblastoma patients are characterised by the presence of metastasis and/or a 

postoperative tumour size greater than 1.5 cm2. Medulloblastoma patients that are infants 

below the age of 3 years are generally referred to as high risk patients (Northcott et al., 

2011). 

At the 2015 meeting held in Heidelberg, a new medulloblastoma patient risk classification 

protocol premised on the molecular and prognostic features of the disease was suggested for 

patients of medulloblastoma that are within the age range of 3 and 17 years (Ramaswamy et 

al., 2016a, b). This proposed reclassification protocol is made up of four risk groups, mainly 

defined by outcome; and considers the heterogeneous nature of the disease and detailed 

information of the molecular subgroup (Kuzan-Fischer et al., 2018). Based on survival 

outcome, the protocol considers as very high risk if the patients’ survival is less than 50%, 

high risk patients show 50-75% survival, standard risk patients have survival outcome of 

75-90%, and low risk patients have over 90% survival outcome (Ramaswamy et al., 2016b). 

The protocol also opined that individuals suffering from metastatic group 3 

medulloblastoma and patients that have sonic hedgehog tumours with characteristic p53 

mutations, show appalling prognosis and are to be accorded the class of very high risk 

(Ramaswamy et al., 2016a; Kuzan-Fischer et al., 2018). Medulloblastoma patients are also 

considered high risk if they are diagnosed with metastatic or MYCN amplified SHH tumour; 

same is applicable to group 4 medulloblastoma patients with leptomeningeal dissemination 

(Ramaswamy et al., 2016b). On the other hand, medulloblastoma patients are considered 

standard risk if they have unamplified MYCN, unmutated p53 SHH medulloblastoma, group 

3 medulloblastoma with unamplified MYCN, and group 4 tumours devoid of chromosome 

11 loss, as shown in Table 1.3 (Ramaswamy et al., 2016b; Kuzan-Fischer et al., 2018). 
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Importantly, the recently proposed patient risk classification gives room for the assessment 

of treatment reduction for patients whose outcomes are favourable and facilitates the 

possibility of identifying as well as testing recent rationale for target-specific therapies in 

medulloblastoma patients within the range of high risk to very high-risk categories 

(Ramaswamy et al., 2016b; Kuzan-Fischer et al., 2018). 

 

Table 1.3. Medulloblastoma patient risk stratification using molecular and survival 

outcome as criteria. 

 Low risk 

(>90% 

survival) 

Standard risk 

(survival rate 

of 75-90%) 

High risk (survival 

of 50-75%) 

Very high risk 

(survival = 

<50%) 

WNT Non-metastatic    

SHH  Non-metastatic 

AND 

TP53WT 

AND 

No MYCN 

amplification 

Metastatic 

AND 

TP53 WT 

OR 

Non-metastatic 

AND 

MYCN 

amplification 

TP53 mutation 

Group 

3 

 Non-metastatic 

AND 

No MYC 

amplification  

 Metastatic 

AND 

MYC 

amplification 

Group 

4 

Non-metastatic 

AND 

Chromosome 11 

loss 

Non-metastatic 

AND 

No 

chromosome 

11 loss 

Metastatic  

Adapted from: Kuzan-Fischer et al. (2018). 
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1.5.4. Current Medulloblastoma Therapies 

Currently, the treatment protocols for medulloblastoma patients are mostly hinged on the 

conventional risk categorisation and patient’s age at the point diagnosis (Ramaswamy and 

Taylor, 2017). Irrespective of the risk group, patients are firstly subjected to tumour 

resection during diagnosis (Kuzan-Fischer et al., 2017). Recently, Thompson et al., (2016) 

conducted a re-evaluation of the prognostic value of the extent of medulloblastoma 

resection, taking the different subgroups into consideration. Their findings revealed that 

regardless of molecular subgroup, gross total resection has no benefit subtotal resection in 

overall survival for patients, but for patients that were subjected to near-total in lieu of gross-

total resection, no overall survival or progression-free survival advantage was recorded 

(Thompson et al., 2016). Consequently, it is rational to suggest that maximal removal by 

surgery stands as the benchmark of care for patients of medulloblastoma. Additionally, there 

were no obvious practical benefits of surgical resection of minimal residual 

medulloblastoma that embodies an increased risk of morbidity neurologically (Thompson et 

al., 2016; Kuzan-Fischer et al., 2018). 

Though, cut-off age varies from one clinical trial to another, Lafay-Cousin et al. (2016) 

reported that patients designated as average risk patients between the age of 3 to 5 years are 

exposed to the irradiation of craniospinal region at the of 23.4 Gy boosted with an additional 

dose of 55 Gy to the tumour microenvironment in the posterior fossa followed by a 

chemotherapeutic regimen that is characteristically cytotoxic. For individuals at the “high 

risk” category, Holgado et al., (2017) suggested craniospinal irradiation of 36-39 Gy dosage, 

boosted with a further dose of 55 Gy to the bed of the tumour, supported with cytotoxic 

chemotherapeutic regimen. In this case, cisplatin/carboplatin-vincristine-cyclophosphamide 

combination regimens constitute the typical chemotherapeutic intervention (Kuzan-Fischer 

et al., 2018).  

Due to the debilitating side effects of craniospinal radiation on the neuro-cognitive ability 

of developing nervous system, infant patients of medulloblastoma that are not up to the age 

of 3 to 5 years are now treated through approaches devoid of irradiation (Grill et al., 2005; 

Cohen et al., 2015; Holgado et al., 2017). For such non-radiation medulloblastoma therapies 

targeting infants within the age group of 3-5 years, a variety of chemotherapy regimens have 

been under intense research, including etoposide, cisplatin, vincristine, and 

cyclophosphamide, and a further administration of autologous hematopoietic cell rescue and 
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methotrexate administered intravenously and intraventricularly, cyclophosphamide, 

cisplatin analogue (carboplatin), and vincristine (Rutkowski et al., 2005; Cohen et al., 2017; 

Kuzan-Fischer et al., 2018). Unfortunately, for patients in this age group that are diagnosed 

with non-desmoplastic histology and macroscopic metastatic medulloblastoma, survival 

rates and general outcomes have been abysmally poor (Ramaswamy and Taylor, 2017). 

 

1.5.5. Biologically-Informed Medulloblastoma Treatment Strategies: Targeted 

Therapies 

Because of the current knowledge of the fact that medulloblastoma is an aggregation of 

highly heterogenous tumours, molecularly stratified clinical trials have been executed, with 

focal interest in molecular subgroups of the disease and a defined knowledge of patient risk 

stratum (Ramaswamy et al., 2016 a; b; Northcott et al., 2012b). Owing to the advanced 

understanding of major molecular and genetic changes within various medulloblastoma 

subgroups and histological subtypes, researchers have continued to strive to develop novel 

targeted therapies specific to molecular pathways and risk-adapted treatment protocols that 

are patient-specific and suitable to a patient’s tumour (Triscott et al., 2013; Gajjar et al., 

2014; Holgado et al., 2017; Ramaswamy and Taylor, 2017). Recent research efforts are 

geared towards many scientific trials to develop and experiment and establish small 

molecular inhibitors, immunotherapies and other therapies that are based on antibodies, with 

potentials of taking advantage of the molecular vulnerabilities of different molecular 

subgroups as well as histological subtypes of medulloblastoma (Faria et al., 2015; Badodi 

et al., 2017; Holgado et al., 2017). 

For low risk, non-metastatic WNT medulloblastoma, de-escalation of first-line treatment is 

one of the key strategies that are introduced in majority of active clinical trials (Holgado et 

al., 2017). These clinical trials are designed with the intent of craniospinal irradiation 

reduction or elimination and implement reduced dosage of chemotherapeutic regimes 

(Ramaswamy and Taylor, 2017). Owing to the excellent overall patients’ survival that have 

reported for this class of medulloblastoma, these clinical pre-clinical studies are primarily 

aimed at reducing deaths emanating from side effects of treatments in patients with survival 

outcomes that are biologically favourable (Ramaswamy et al., 2011; Henrich et al., 2014; 

Ramaswamy et al., 2016b). 
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For more than a decade now, action-specific molecular targeted therapies against SHH 

medulloblastoma have been under serious investigation; hence, the activation of Hedgehog 

signalling pathway in medulloblastoma has been identified and established in many 

preclinical studies and the efficacy of inhibitors of hedgehog pathways in medulloblastoma 

has been proven in different in vitro studies (Berman et al., 2002; Taipale et al., 2002; 

Robinson et al., 2015). Some of the first action-specific therapies to advance to first stage 

trials in individuals suffering from medulloblastoma were the competitive antagonists of the 

smoothened receptor, vismodegib and sonidegib (Robinson et al., 2015). Interestingly, 

whether paediatric or adult, all medulloblastoma patients treated with vismodegib recorded 

an improvement in the survival of patients with persistent sonic hedgehog type of 

medulloblastoma, though in other molecular subgroups of medulloblastoma, the survival 

outcomes were dismal (MacDonald et al., 2014; Robinson et al., 2015). One of the major 

determinants of response to SMO (smoothened) inhibition is the defined localisation of 

hedgehog cascade modifications downstream of SMO, such as SUFU mutations, which 

negatively regulates hedgehog signalling and the amplification GLI group zinc finger 2 

(GLI2) or MYCN upregulation, that result in the conferment of resistance to SMO inhibitors 

(Pambid et al., 2014; Kool et al., 2014). Based on these molecular premises, a single therapy 

involving the use of smoothened inhibition has been reportedly linked to the isolation of 

therapy-resistant sub-clones through SMO inhibition mutations or increased expression of 

alternative proteins that are associated with survival (Buonamici et al., 2010; Massimino et 

al., 2016); hence, indicative of the possibility that SMO inhibitors cannot achieve durable 

treatment response independently, but will require the company of additional agents to 

function and guarantee better treatment response (Yauch et al., 2009). Similarly, alternative 

molecular agents that target downstream components of the hedgehog signalling pathway 

have been reported to be made up of the trioxide of arsenic and itraconazole, GLI 

transcription factor inhibitors, that could show effectiveness in a small group of hedgehog-

activated medulloblastoma patients that is not determined by SHH-PTCH1-SMO (Kim et 

al., 2013; Rusert et al., 2014). 

Furthermore, other molecular pathways that may proffer targetable vulnerabilities within the 

SHH subgroup have been identified and established through a series of preclinical studies 

(Mille et al., 2014; Faria et al., 2015). For instance, the significance of the PI3K pathway in 

SHH medulloblastoma metastasis was demonstrated in a genomic analysis of mouse model 

of SHH medulloblastoma, in which tumour populations at the stage of metastasis were 
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enriched for clones through the addition of the PI3K pathway (Wu et al., 2012). Mutations 

affecting TP53 are frequently reported in SHH medulloblastoma subtypes; hence, molecular 

therapies targeting such pathway could provide a reasonable alternative to irradiation and 

help overcome radiation resistance associated with these mutations (Tabori et al., 2010; 

Zhukova et al., 2014). 

For group 3 and group 4 molecular subgroups of medulloblastoma, there are no current 

specific targeted therapies in existing clinical trials (Kuzan-Fischer et al., 2018). However, 

Holgado et al. (2017), while attempting to produce a tailored medulloblastoma therapy 

through genomics and evaluating one molecular subgroup at a time; designed a trial 

containing a treatment regimen for patients that have progressed to metastasis during the 

time of diagnosis, incomplete removal and amplification of MYC or MYCN, that were 

referred to as high risk patients (Holgado et al., 2017). Although patients with Group 3 

medulloblastoma molecular subgroup have been shown to have worst prognosis, no current 

clinical trials are known to be investigating targeted therapies in Group 3 and Group 4 

medulloblastoma patients (Faria et al., 2015). It is therefore, important that such studies are 

prioritised. 

Group 3 and Group 4 molecular subgroups of medulloblastoma have been shown to 

demonstrate high degree of heterogeneity as per activated signalling pathways, with the 

overexpression of MYC being the most predominant cytogenetic marker in Group 3 tumours 

(Venkataraman et al., 2014; Pei et al., 2016). Treatment via the combined use of PI3K and 

molecular inhibitors have shown promising results when preclinical agents in Group 3 

MYC-driven medulloblastoma are targeted (Alimova et al., 2012; Dubuc et al., 2013; 

Hovestadt et al., 2014; MacDonald et al., 2014). 

 

1.5.6. Metastatic Medulloblastoma 

Typically, medulloblastoma metastasis involves tumour cell movement to the 

leptomeninges, and the spread and establishment of the disease within the leptomeningeal 

area constitute the most formidable treatment challenge confronting clinicians (Kuzan-

Fischer et al., 2018). Across all molecular subgroups of medulloblastoma, the incidence of 

metastatic tumours at diagnosis has been reported to be approximately 40%, although the 

frequency of metastasis varies across different subgroups at the point of diagnosis (Wu et 
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al., 2012; Zapotocky et al., 2017). In the non-wingless subgroup of medulloblastoma, 

tumour metastasis during the period of diagnosis is an indicator of bad prognostic feature 

(Ramaswamy et al., 2016b). 

 

Owing to the widely-reported treatment failure that have pervaded the clinical setting of 

relapsed metastatic medulloblastoma, the current key focus of investigation is treatment of 

metastatic compartment (Ramaswamy and Taylor, 2017). Significantly, medulloblastoma 

has been demonstrated to undergo notable clonal selection and evolution during 

tumorigenesis; by implication, tumour cells from metastatic compartment are have 

characteristic genetic and epigenetic changes that are uncommon in the primary tumour cells 

(Wang et al., 2015). This assertion is based on reports from genomic analysis via integrated 

profiling approach such as copy number variation, DNA methylation, and exon sequencing 

analysis of corresponding tumour samples derived from human medulloblastoma at primary 

and metastatic phases; in addition to reports obtained from a murine transposon-driven a 

model of SHH medulloblastoma, where unified transposon insertion locations were shown 

to be glaringly different between the primary and metastatic tumours (Wu et al., 2012). It is 

therefore, rationale to suggest that molecular pathways determine the survival of metastatic 

medulloblastoma cells in the metastatic microenvironment or compartment, and such cells 

are invariably different from the cells of the primary tumours and specialised targeted 

treatment will be likely required to achieve an improved survival outcome. Currently, the 

molecular mechanisms that underlie medulloblastoma metastasis is still poorly understood; 

consequently, preclinical studies that are aimed at identifying such mechanisms, whereas 

future trials are needed to establish the defining genetic and molecular profiles of 

medulloblastoma; and analysis of the metastatic tumour microenvironment via tissue biopsy 

to establish the presence of possible therapeutic target that could help optimize 

medulloblastoma patients selection for further experimental therapies. It is also important to 

delve into the implications of DNA damage repair genes in the development of different 

molecular subgroups of medulloblastoma; given the universal report of frequent mutations 

in of key cancer-critical genes, especially the tumour suppressor TP53 gene in most of the 

medulloblastoma subgroups. This is where this PhD is likely to contribute in improving our 

understanding of the molecular characteristics of medulloblastoma and consequent 

development of possible molecular targeted therapies. 
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1.6. Mesothelioma 

Mesothelioma is a rare but prolifically aggressive, asbestos-related cancer that develops on 

the linings (known as the mesothelium) that cover many internal organs such as the lungs, 

heart and abdomen (Kondola et al., 2016). It is often referred to as a cryptic neoplasm owing 

to its characteristic ability to maintain a prolonged period of latency following contact with 

asbestos, remaining asymptomatic and undetected in the body for up to 40 years in some 

cases (Frank, 2012). It originates from the surfaces of mesothelium tissues in the pleural 

region; though, it is not exclusive to the pleural mesothelium, as it can emerge in the tunica 

vaginalis as well as the peritoneal (Teta et al., 2008). In the US, Surveillance Epidemiology 

and End Results (SEER) registry data indicated that the number of reported new cases of 

mesothelioma per annum is approximately 3,300, compared to about 200,000 lung cancer 

incidences (Frank, 2012). 

The risk of mesothelioma development increases with increased exposure to asbestos and 

disease symptoms could take about 20 years and sometimes, up to 50 years to appear 

following contact with asbestos. Currently, patients suffering from mesothelioma show a 

characteristic poor life expectance, because it has no known cure at present. However, the 

disease stage, histological subtype and the tumour location are the most significant 

determinants the survival patient. Additionally, the overall health of the patient, age and 

whether that cancer has assumed metastatic state, are also of critical prognostic significance 

(Frank, 2012). 

 

1.6.1. Histology and Prognostic Features of Mesothelioma 

Mesothelioma is categorized based on location or cell type. Dependent of the location where 

a tumour first develops, mesothelioma is subdivided into four primary types, namely: pleural 

(lungs), peritoneal (abdomen), pericardial (heart), and testicular (testis) mesothelioma (Teta 

et al., 2008). 

Pleural mesothelioma is the type of cancer that develops in the tissue surfaces of the linings 

the lungs, known as the pleura. It is the most predominant form of mesothelioma, accounting 

for over 80% of reported new cases. Pleural mesothelioma is difficult to diagnose because 

it shows no or very minimal symptoms in the early stages (Kondola et al., 2016). However, 
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at later stages, symptoms tend to worsen significantly; hence, pleural mesothelioma 

prognosis is very poor, with most patients surviving less than 17 months following the 

appearance of initial noticeable symptoms (Barreiro and Katzman, 2006; Kondola et al., 

2016). 

Peritoneal mesothelioma is the form of mesothelioma in which the tumour develops in the 

thin layer of tissues lining the abdomen, the abdominal mesothelium. Because of the 

proximity between the abdominal lining and vital abdominal organs, peritoneal 

mesothelioma frequently spreads to such organs as liver, spleen and bowel. It is 

characterized by severe pain in the abdominal as the most predominant symptom, in addition 

to discomfort associated with abdominal effusion (fluid buildup) (Raza et al., 2014). 

Although, peritoneal mesothelioma has poor prognosis, the use of hyperthermic 

intraperitoneal chemotherapy (HIPEC) in recent years, has somewhat impacted positively 

on prognosis. In this case, outcomes are patient-specific but survivorship, is dependent on 

the patient’s situation and particular diagnostic factors (Barreiro and Katzman, 2006).  

Pericardial mesothelioma is the type of mesothelioma that originates from the tissues lining 

the heart cavity, the pericardium. Pericardial mesothelioma is very rare, accounting for less 

than 1% of the total reported cases of mesothelioma. As the disease progresses, it limits the 

rate of oxygen supply to the heart, resulting in further degeneration of patient’s health. The 

symptoms of pericardial mesothelioma resemble those of heart attack, including severe chest 

pain and breathing difficulty. In most cases, pericardial mesothelioma remains undiagnosed 

until autopsy is carried out (Sardar et al., 2012).  

Testicular mesothelioma is the rarest form of mesothelioma affecting the linings of the 

testicles. Only fewer than 100 cases of testicular mesothelioma have been diagnosed across 

the globe; hence, the mechanisms of development and the course of treatment are poorly 

understood (Frank, 2012). 

Currently, the only effective way to confirm mesothelioma diagnosis is by the analysis of 

cell types in the tissue samples obtained via biopsy. Such histological examination provides 

insight into which types of cell and subset of cells constitute mesothelioma. Consequently, 

mesothelioma is categorized into three forms based on the type of constituent cells, namely: 

epithelioid, sarcomatoid, and biphasic mesothelioma (Frank, 2012).  

Epithelioid mesothelioma is the commonest cell type prevalent in mesothelioma, accounting 
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for over 75% of all diagnosed cases. It is easily distinguishable under high magnification, 

especially with reference to its elongated pattern of shape. Epithelioid mesothelioma is 

mostly predominant in lung cancer and has the best prognosis of all mesothelioma cell types 

(Husain et al., 2009). 

Sarcomatoid mesothelioma cells originate from supportive tissue structures such as bones 

and muscles, accounting for less than 10% of all diagnosed cases of mesothelioma. They 

present the worst prognosis among all the cell types and are usually very difficult to treat. 

Histologically, they appear elongated and spindle-like and arranged in haphazard fashion 

(Wu et al., 2013).  

Biphasic mesothelioma is a mixture of both epithelioid and sarcomatoid cell types, 

coexisting as a single tumour tissue. It constitutes about 40% of all reported cases of 

mesothelioma. In this type of mesothelioma, the constituent cell types are differentiated, and 

by implication, the epithelioid cell types exist in separate area from the sarcomatoid cells. 

Biphasic mesothelioma has better prognosis than sarcomatoid mesothelioma and poorer 

prognosis relative to epithelioid mesothelioma (Husain et al., 2009). 

 

1.6.2. Molecular Pathogenesis of Malignant Mesothelioma 

As reviewed in the preceding sections, malignant mesothelioma is a rare but aggressive 

cancer that essentially develops in the superficial parts of serosal cells of the pleural region, 

peritoneum, and sometimes the surface linings of the pericardium and the tunica vaginalis 

of the testis (Tsao et al., 2009). About 80% of the entire reported cases of malignant 

mesothelioma originated from the pleura and are referred to as pleural mesothelioma or 

malignant pleural mesothelioma (MPM). Malignant mesothelioma development occurs 

latently in patients, and due to the ineffectiveness of radiological tools in detecting the 

disease at early stages, mesothelioma is mostly diagnosed at advanced stage; and biomarkers 

for early stage diagnosis are yet to be established (Sekido, 2013). In malignant 

mesothelioma, the structural localisation and features of the body cavities in which the 

disease originated from, aid the spread and invasion of neighbouring cavities by malignant 

cells (Tsao et al., 2009). 

Histologically, three major subtypes of malignant mesothelioma have been characterized, 

namely, epithelioid, sarcomatoid and biphasic; with rare histological variants also included 
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in this disease entity (Husain et al., 2009). Due to its characteristic unresponsiveness to 

conventional therapy and concomitant poor prognostic features, as indicated by a paltry 9 to 

12 months median survival of patients after diagnosis and considering its recalcitrance to 

recent advances in chemotherapeutic regimens combining cisplatin and pemetrexed 

(Vogelzang et al., 2003), it is therefore, urgent to undertake more studies to understand the 

molecular pathogenesis of mesothelioma. Although, some new molecular target drugs 

against the disease have been developed and occasionally demonstrated stabilization of 

malignant mesothelioma, such treatment modalities have failed to advance to the stage they 

could be recommended as an optimal/standard treatment regimen (Jakobsen et al., 2011). 

Because malignant mesothelioma is a relatively uncommon, research to expose its molecular 

pathogenesis and understand the genetic and epigenetic alterations that aid malignant 

mesothelioma development has lagged relative to other common cancer types (Jean et al., 

2012). In recent times, research findings from global genetic and epigenetic evaluations are 

facilitating the delineation of basic molecular abnormalities of this rare, but extremely 

aggressive cancer. Recently, several reviews of mesothelioma have made attempts to 

describe the myriads of genetic, epigenetic and signalling pathway modifications (Jean et 

al., 2012; Sekido, 2013). Considering the foregoing review, this PhD thesis investigated the 

expression of several DNA repair genes from different DNA repair pathways such as Neil1, 

Neil2, Neil3, (BER), Ercc1, (nucleotide excision repair, NER) and Mlh1 (MMR) in cell lines 

derived from malignant mesothelioma and further, attempted to compare gene expression 

levels in these cells with cancer stem cells derived from the cell line. 

 

1.6.3. Asbestos-Induced Molecular and Genetic Damage  

Exposure to asbestos has been shown to be the major cause of malignant mesothelioma and 

more than 80% of individuals that have this cancer have reportedly had contact with asbestos 

at one point in their lifetime (Pass et al., 2004). Asbestos represents a group of six mineral 

fibres, categorised into two subcategories, (a) a collection of fibres that are rod-like, known 

as the amphiboles, with five constituent members, namely, brown asbestos also called 

amosite, blue asbestos also known as crocidolite, tremolite, actinolite, and anthophyllite and, 

(b) the serpentine subcategory, made up of white asbestos, which is also known as chrysotile, 

as the only member of the category (Baumann et al., 2013). The correlation between the 

asbestos of the amphibole category and the tumorigenesis of malignant mesothelioma has 
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been extensively documented; particularly the blue asbestos, which has been severally 

reported to be the type of asbestos with the highest carcinogenic propensity (Mossman et 

al., 1990). An asbestos-like mineral known as erionite has also been implicated as a major 

cause of malignant mesothelioma (Sekido, 2013). 

After the inhalation of asbestos fibres deep into the lungs and their subsequent penetration 

into the pleural space, the interaction between the asbestos fibres with the cells of the 

mesothelium and inflammatory cells results in the initiation of prolonged cascade and 

repeated of tissue damage, tissue inflammation and repair, and the eventual development of 

malignant mesothelioma in a yet to be established mechanism (Liu et al., 2000; Pass et al., 

2004). It is still unknown why parietal pleura is the initial site of development of asbestos-

induced malignant mesothelioma, rather than the visceral pleura. Relative to other cell types, 

cells of the human mesothelium show very high susceptibility to asbestos toxicity; hence, 

there is a paradoxical question of how asbestos leads to the development of malignant 

mesothelioma given that the exposure of human cells derived from the mesothelium to 

asbestos is expected to lead to the death of the cells (Liu et al., 2000; Sekido, 2013). 

Many possible mechanisms that define the involvement of asbestos fibres in the 

development of malignant mesothelioma have been suggested (Toyokuni, 2009; Heintz et 

al., 2010). As represented in Figure 1.1, there are four proposed routes by which asbestos 

fibres initiate molecular and cytological destructions of cells of the mesothelium and severe 

inflammation that characterize malignant mesothelioma, namely: 

(i) Generation of reactive oxygen species: DNA damage including DNA strand 

breaks are caused by reactive oxygen species (ROS) emanating from the asbestos 

fibres and their exposed surfaces. Macrophages, while attempting to defend the 

organism phagocytose the asbestos fibres, however, they are unable to digest 

them, resulting in further production of abundant ROS (Toyokuni, 2009; Sekido, 

2013). 

(ii) Engulfment of asbestos fibres by mesothelial cells: the uptake of asbestos 

fibres by the cells of the mesothelium can result in its physical interference with 

the process of mitosis through the disruption of the mitotic spindles. 

Chromosomal structural aberrations and mesothelial aneuploidy could result 

from the entanglement of the asbestos fibres with mitotic spindles or 
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chromosomes (Toyokuni, 2009). 

(iii) Uptake of chemicals and binding of proteins by asbestos fibres: a variety of 

chemicals and proteins are adsorbed by the asbestos fibres to the extensive 

surface of asbestos leading to the accumulation of hazardous molecules including 

those capable of causing neoplasm of the mesothelium. Additionally, some 

important proteins have high affinity for asbestos fibres and when such proteins 

are deficient, mesothelial cells may be negatively affected (Toyokuni, 2009). 

(iv) Release of cytokines and growth factors: mesothelial cells and macrophages 

exposed to asbestos release myriads of cytokines and growth factors such as 

tumour necrosis factor-α (TNFα), interleukin-1β (IL-1β), transforming growth 

factor-β (TGFβ), and platelet-derived growth factor (PDGF), which induce 

inflammation and promote tumour development and cellular proliferation (As 

reviewed by Sekido, 2013). For instance, it has been demonstrated that TNFα 

activates nuclear factor-кB (NF-кB), resulting in mesothelial cell survival and 

inhibition of asbestos-induced cytotoxicity (Yang et al., 2006). It has also been 

shown that following the exposure of mesothelial cells to asbestos, they release 

high-mobility group box 1 protein and then, undergo necrosis, promoting 

inflammatory response (Yang et al., 2010). From the foregoing models of 

asbestos-induced pathogenesis of mesothelioma, it is rational to suggest that the 

aberrantly activated molecular signalling network among mesothelial cells, 

inflammatory cells, fibroblasts and other stromal cells that were exposed to 

asbestos, may result in a congregation of mutant clones of mesothelial cells, 

which harbour DNA damage and aneuploidy, and aggregate as cancer cells, 

forming a tumour microenvironment of mesothelioma as shown in Figure 1.4 

(Sekido, 2013) 
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Figure 1.4. A schematic representation of the molecular mechanisms underlying the 

process of tumour development due to asbestos fibres. High-mobility group box 1 

(HMGB1) protein; reactive oxygen species (ROS); transforming growth factor-β 

(TGF-β), and vascular endothelial growth factor (VEGF) (Sekido, 2013). 

 

Asbestos-induced DNA damage in cells of the mesothelium or DNA damage emanating 

from other factors must be correctly and timely repaired to ensure that DNA integrity in 

the cells is maintained. Base excision repair (BER), NER, MMR and homologous 

recombination and non-homologous end-joining (for the repair of double strand breaks) 

have been reported as the key DNA damage repair mechanisms in mammalian cells 

(Toumpanakis et al., 2011). Each of these DNA repair routes have been variously shown 

to be significantly overexpressed in malignant mesothelioma, and most prominent of them 

are genes related to the repair of double-strand breaks (Røe et al., 2010). Similarly, genetic 

polymorphisms in genes that encode BER proteins such as X-ray cross complementing 

group 1 (XRCC1) have been reported to be overexpressed in malignant mesothelioma (Røe 
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et al., 2010). It is therefore, rational to hypothesize that the increased expression of some 

genes involved in DNA repair and their products could be responsible for the observed 

resistance of mesothelioma to chemotherapy and radiotherapy; hence, the focus of this 

research. In later sections of this chapter, a detailed review of DNA repair genes and their 

implications in cancer development and therapy will be presented. 

Besides the asbestos-dependent molecular pathogenesis of malignant mesothelioma 

reviewed above and the models of mesothelioma development represented in Figure 1.4, 

there are several other molecular events and signalling pathways that determine the 

development of malignant tumours. These asbestos-independent molecular pathogenetic 

pathways of malignant mesothelioma are predicated on DNA damage affecting the proto-

oncogenes and tumour suppressor genes, resulting in their activation and inactivation 

respectively. The next sections will attempt to review the molecular pathogenesis of 

malignant mesothelioma on the basis of oncogenic activation and tumour suppressor gene 

inactivation. 

 

1.6.4. Activation of Oncogenic Cascades 

In malignant cells of most cancer types, there is a characteristic activation of receptor 

tyrosine kinases (RTK) (Baselga, 2006). Activation of RTKs results in the concomitant 

overexpression of two major oncogene-dependent cell signalling pathways, the 

phosphoinositide-3 kinase (PI3K)-AKT pathway and Raf-MEK-extracellular signal-

regulated kinase, which are known to regulate the growth, proliferation and survival of 

malignant cells (Sekido, 2013). The RTK oncogenes such as epidermal growth factor 

receptor (EGFR) and MET have been shown to be constitutively and simultaneously 

activated in many cultured malignant mesothelioma cells (Brevet et al., 2011). There have 

also been reports of other receptors of RTK such as AXL, which were suggested to be 

associated with more malignant phenotypes of mesothelioma (Laurie et al., 2011). 

In a similar vein, the activation of the mammalian target of rapamycin (mTOR) signalling 

pathway has been reported to significantly contribute to the pathogenesis of many cancer 

types, including malignant mesothelioma (Hartman et al., 2010). In a related event, 

Varghese et al. (2011) demonstrated that the upregulation of PI3K and mTOR signalling 

pathways in patients with malignant peritoneal mesothelioma resulted in shortened survival. 
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In addition to the pathways of mitogen-activated protein kinase (MAPK) and PI3K-AKT, 

reports have also indicated the aberrant activation and overexpression of the signal 

transducer and activator of transcription 1 (STAT1) in malignant mesothelioma using a 

phosphotyrosine proteomic screen (Menges et al., 2010). Besides the frequent activation of 

STAT1, the Src group of kinases have as well, been suggested to be required in the 

development of malignant mesothelioma (Menges et al., 2010). 

 

1.6.5. Inactivation of Tumour Suppressor Genes 

In human malignant mesothelioma, three major tumour suppressor genes, including the 

cyclin-dependent kinase inhibitor 2A (CDKN2A), neurofibromatosis type 2 (NF2), and 

BRCA1-associated protein-1 (BAP1) genes, are frequently altered, resulting in their 

inactivation and the aberrant expression of their respective gene product and concomitant 

dysfunctional substrate interaction; culminating in cancer cell proliferation, survival and 

resistance to therapy. In this section, the attendant implications of the inactivation of these 

key tumour suppressor genes will be reviewed, with emphasis on the type of mutation events 

that produce the DNA damage. 

(i) The cyclin-dependent kinase inhibitor 2A/alternative reading frame genes: 

In malignant mesothelioma, the CDKN2A gene is known to be prone to mutation 

and has been reported as the most frequently mutated and inactivated tumour 

suppressor gene (Foulkes et al., 1997; Guo et al., 2015). The gene is localised on 

chromosome 9p21.3 and encodes two proteins, p16INK4a and p14ARF. Cell 

cycle fate is determined by p16INK4a through the combined pathways of cyclin-

dependent retinoblastoma protein and cyclin-dependent kinase 4 (CDK4). On the 

other hand, p14ARF modulates the Tp53 pathway by inactivating MDM2 that in 

turn, controls p53 function (Musti et al., 2006). Hence, when CDKN2A is deleted 

in a homozygous fashion, two main tumour-suppressing pathways of 

retinoblastoma and p53 are deactivated in malignant mesothelioma cells. Over 

the past decade, several reports have shown that the analysis of malignant 

mesothelioma tissues or cell lines via fluorescent in situ hybridization (FISH) 

revealed that more than 70% of the analysed samples showed uniform loss of the 

CDKN2A locus (Chiosea et al., 2008; Matsumoto et al., 2013; Wu et al., 2013). 

Based on histological sub-categorization, malignant mesothelioma that belongs 
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to the epithelioid type showed approximately 70% of CDKN2A homozygous 

deletions, while sarcomatoid malignant mesothelioma cases displayed 

approximately 100% homozygous deletion of the CDKN2A gene (Matsumoto et 

al., 2013). 

(ii) Neurofibromatosis type 2 inactivation: the NF2 gene encodes moesin-ezrin-

radixin-like protein (Merlin), a tumour suppressor protein, belonging to the band 

4.1 family of cytoskeletal linker proteins (Bianchi et al., 1995). Tumorigenesis 

of the nervous system such as bilateral vestibular schwannomas at the eighth 

cranial nerve, spinal schwannomas and meningiomas, are a defining 

characteristic of NF2 cancer syndrome; and bi-allelic mutations of NF2 are also 

reported to occur frequently in sporadic cases of these tumours (Thurneysen et 

al., 2009). In malignant mesothelioma, the NF2 gene has been variously reported 

to be the key tumour suppressor gene most affected by the loss of the 

chromosomal locus 22q12 (Bianchi et al., 1995), with 40 – 50% of malignant 

mesothelioma cases shown to be harboring an inactivation mutation (Murakami 

et al., 2011). The tumour suppression role of Merlin has been reported to be 

modulated by the E3 ubiquitin ligase CRL4 (DCAF1) in a study that employed 

malignant mesothelioma cells and immortalized mesothelial cells (Li et al., 

2010). 

(iii) Deactivation of BRCA1-associated protein-1 (BAP1): The BAP1 gene has 

been shown to be a very important tumour suppressor gene in malignant 

mesothelioma, where 23% of 53 cases were shown to have somatic mutationsin 

BAP1 (Bott et al., 2011). Similarly, a study conducted by Yoshikawa et al. 

(2012), using malignant mesothelioma patients of Japanese origin, showed that 

BAP1 is frequently mutated. BAP1 is localized to chromosome 3p21.1, where it 

is responsible for the production of a nuclear ubiquitin C-terminal hydrolase, 

which is a member of the deubiquitinating enzymes. The substrate specificity of 

BAP1 is characteristically broad and it is known for its affinity for several 

substrates including the host cell factor 1 transcriptional scaffolding subunit, 

which is an N -acetyl-glucosamine transferase that is O-linked, human orthologs 

of additional sex combs (ASXL1/ASXL2), and fork-head transcription factors 

(FOXK1/FOXK2). BAP1 has been reported to have a role in a variety of cellular 
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processes such as, cell growth control, response to DNA damage, chromatin 

dynamics, and modulation of the cell cycle (Eletr & Wilkinson, 2011). 

Additionally, it has also been reported that BAP1 is involved in modulating 

polycomb target proteins in malignant mesothelioma tissues (Murali et al., 2013). 

Interestingly, two families with phylogenetic history of high incidence of 

mesothelioma were shown to have germline mutations of the BAP1 gene and 

some carriers of BAP1 gene mutations in the two families developed other types 

of cancer (Testa et al., 2011). 

 

1.6.6. Chemotherapeutic Treatment of Mesothelioma 

Over many years, research has strived to establish the best chemotherapeutic treatment 

regimen for mesothelioma, however, the results have been disappointing, partly due to the 

ability of mesothelioma to resist chemotherapy and the non-availability of effective 

chemotherapeutic agents with minimal cytotoxicity (Frank, 2012). Single anticancer agents 

such as antimetabolites, anthracyclines, and platinum-based agents have been studied but 

only show an approximate response rate of 10% (Su, 2009). Oncologists and scientists were 

previously concerned that chemotherapeutic treatment of mesothelioma failed to produce 

better patient outcome relative to the lone implementation of best supportive care (BSC). 

Consequently, the UK Medical Research Council (MRC) tried to develop the key 

advantages of chemotherapeutic use, when compared to supportive care in a clinical trial 

in individuals suffering from mesothelioma, who were not previously treated (Muers et al., 

2008). The research design employed was a three-arm design and participants were 

randomized to best supportive care with the inclusion or exclusion of one out of two 

chemotherapeutic regimens: vinorelbine as a single agent or a combination regimen 

comprising mitomycin, vinblastine, and cisplatin. Upon combination and comparison, the 

results of the two arms of chemotherapy relative to BSC alone, showed median survival 

for patients at 8.5 months and 7.6 months respectively; which showed statistical 

insignificance. Further statistical exploration of the two chemotherapy arms independently 

showed that patients treated with vinorelbine had a median survival of 9.4 months, but 

patients in the MVP arm had no significant survival advantage (Muers et al., 2008; Frank, 

2012).  

As a monotherapy, vinorelbine was further tested in a second-line or salvage setting, in 
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which 63 patients with relapsed or refractory mesothelioma were given the drug weekly. 

The results produced 16% rate of susceptibility and 9.6 months median survival rate 

(Stebbing et al., 2009). However, a combination therapy regimen of vinorelbine and 

cisplatin as first-line of treatment in patients with non-resectable malignant pleural 

mesothelioma, achieved a 30% response rate, median survival rate of 16.8 months and 

median period of progression of 7.2 months (Sørensen et al., 2008). 

In 23 patients with untreated cases of malignant pleural mesothelioma, the use of 

gemcitabine monotherapy achieved a 31% rate of response and improved symptoms were 

recorded in over 40% of the participants, (Bischoff et al., 1998). However, the sample size 

employed by the researchers was too small and the patients in the trial were all at the early-

stage of the disease and promising epithelial histology (Frank, 2012). In other clinical trials, 

where gemcitabine was used as a monotherapy, the response rates were disappointing, 

ranging from 0 to 7% and median survival of 4.7 months to 8 months (Kindler et al., 2001). 

Interestingly, clinical trials employing a combination therapy regimen of gemcitabine and 

cisplatin or carboplatin resulted in response rates of 12% to 48% and median time to 

progression of 6 months to 9 months (Jackman, 2009). 

Berghmans et al. (2002) reported that cisplatin was the potent monotherapy to which, un-

resectable malignant pleural mesothelioma is susceptible; hence, serves as a standard 

chemotherapy for the disease. The reliability and potency of cisplatin as a single therapy 

has made it the backbone of most doublet regimens, over the years. On this note, Vogelzang 

et al. (2003) reported that the dual therapy of cisplatin and pemetrexed is considered the 

optimal treatment option and opined that it should be regarded as a standard first-line 

chemotherapy for the treatment of unresectable mesothelioma that has assumed 

malignancy; and indeed, it has become a treatment benchmark which is recommended as 

the combination therapy regimen to resectable mesothelioma (Frank, 2012). 

Regardless of the improvement recorded with the use of cisplatin and pemetrexed 

combination therapy regimen against mesothelioma; the treatment of the disease, like most 

cancer types, is still gravely challenged by chemotherapeutic resistance. Consequently, 

approximately 67% of the investigated patients failed to demonstrate positive response to 

the cisplatin - pemetrexed combined therapy approach, and majority of the subjects will 

progress after first-line therapy and usually die no later than one year after diagnosis (Green 

et al., 2007). On this note, scientists have been gearing efforts towards finding and 
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developing better chemotherapeutic regimen by exploiting the activities of molecular 

markers that promote mesothelioma response to cisplatin-pemetrexed combination therapy 

(Castagneto et al., 2007). 

Interestingly, one of the genes that formed the focus of this PhD work, the excision repair 

cross-complementing 1 (Ercc1) gene, has been variously shown to enhance cisplatin 

activity against different cancer types. For instance, Ercc1, which is primarily known for 

the repair of helix-distorting DNA adducts, has been shown to also repair DNA strand 

damage caused by cisplatin and the expression of Ercc1 gene correlates with favourable 

prognosis in ovarian cancer and non-small cell lung cancer patients treated with 

chemotherapeutic regimen containing cisplatin (Simon et al., 2005). Zucali and colleagues 

(2011) in a similar vein, reported that there is a positive interrelationship between the 

upregulation of thymidine synthetase (TS) protein and prolonged progression-free survival, 

and mesothelioma patients’ overall survival, in a carboplatin-pemetrexed treatment 

regimen. 

 

1.6.7. New Approaches to Mesothelioma Treatment: Targeted Therapy 

Like most cancer types, successful treatment of patients with malignant mesothelioma 

remains a challenge, due to the usual chemotherapeutic resistance that bedevils most 

cancers. In addition to its characteristic resistance to therapy, mesothelioma treatment is 

further hampered by its inherent latency and consequent late diagnosis and poor prognosis. 

Currently, treatment approaches are: chemotherapy, and multimodal treatment including 

surgical resection combined with chemotherapy and/or radiotherapy, photodynamic therapy 

(PDT), and hyperthermic perfusion of the pleura followed by resection (Zervos et al., 2008; 

Bononi et al., 2015). These treatment regimens may positively affect the patient’s quality of 

life; however, only modest effects have been recorded with same treatment modalities in 

improving overall survival. Increased understanding of the molecular pathogenesis and 

characteristics of mesothelioma, and the rationale behind investigating novel targeted 

approaches have resulted in development of novel potential therapeutic strategies aimed at 

exploiting the molecular features of mesothelioma to produce action-specificity; hence, the 

name targeted therapy. In the recent past, the identification and characterization of many 

different forms of mutation, a variety of enzymatic catalases, myriads of growth factors, and 

glycoproteins that contribute to the inherent refractory and poor prognostic features of 
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malignant mesothelioma led to the development of targeted therapies including (i) molecular 

therapies, (ii) immunotherapy, (iii) targeting asbestos-induced inflammation (Bononi et al., 

2015). However, for the purpose of this thesis, only molecular therapies will be reviewed. 

 

1.6.7.1. Molecular Therapies 

Few years ago, it was reported that malignant mesothelioma are polyclonal tumours, formed 

by the aggregation of different independent subclones, which may account for a high degree 

of cellular heterogeneity within the tumour microenvironment and contribute to the 

development of chemo-resistant subpopulations in various in vitro experiments conducted 

(Comertpay et al., 2014). The characteristic heterogeneity of cell subpopulation in malignant 

mesothelioma highlights the importance of simultaneously attacking several different 

molecular targets to obliterate the different clones, given that each clone may be defined by 

distinct set of molecular alterations (Bononi et al., 2015). 

From the foregoing review, the importance of BAP1 gene as a major tumour suppressor 

gene, its physiological role in biological processes, as well as its importance in the molecular 

pathogenesis of malignant mesothelioma cannot be overemphasized. It is therefore, not 

surprising that BAP1 gene and its gene products are of key interest in the quest of researchers 

to develop molecular-based target therapies that are action-specific. For instance, it has been 

reported that the somatic loss of BAP1 is associated to a slightly longer survival (Arzt et al., 

2014). This finding is probably rationalized by the fact that most somatic mutations are 

frequently detected in epithelioid malignant mesothelioma, which have a better prognosis 

than sarcomatoid and biphasic malignant mesothelioma (Farzin et al., 2015). When 

malignant mesothelioma occurs in a setting of germline BAP1 gene mutations, their 

prognosis is markedly better with survival of over 5 – 10 years (Baumann et al., 2015). 

However, it is surprising that germline BAP1 mutations promotes malignant mesothelioma 

on one hand, while they are on the other hand, reported to reduce the disease aggressiveness. 

The mechanistic underpinnings of this dual role of double-edged sword activity are yet to 

be elucidated.   

BAP1 functions as a tumour suppressor have been ascribed to (i) BAP1 deubiquitination of 

histone H2A, leading to transcriptional activation of genes that regulate cell growth 

(Scheuermann et al., 2010); (ii) BAP1 functions as a transcriptional coregulator by 
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interaction to host cell factor-1 (HCF1), Ying Yang 1 (YY1), and E2F1, to induce 

transcription of genes involved in cell cycle regulation (Yu et al., 2010); and (iii) BAP1 

contribution to DNA repair (Ismail et al., 2014; Yu et al., 2014), as depicted in Figure 1.5. 

Owing to the implication of BAP1 in chromatin re-modelling and its inherent ability to 

deubiquitinate H2A, it is very likely that BAP1 mutations promote cellular sensitivity to 

epigenetic modulators. The epigenetic regulation of tumour suppressor genes via chromatin 

condensation and de-condensation has been reported to be of mechanistic significance in the 

development of mesothelioma and most cancers (Bononi et al., 2015). For instance, the 

homeostasis of the acetylated and deacetylated forms of histone proteins is regulated by 

histone acetyltransferases (HATs) and histone deacetylases (HDACs). Acetylation is 

increased by HATs, facilitating greater accessibility of chromatin for gene expression. On 

the other hand, HDACs inhibitors alter the wrapping of DNA strands around histones, 

modifying the access of transcription factors and affecting the expression of different genes 

(Landreville et al., 2012). 

The therapeutic effect of four different HDAC inhibitors, valproic acid, trichostatin A, LBH-

589, and suberoylanilide hydroxamic acid (vorinostat), has been investigated using primary 

UVM cells and in UVM cell lines. Interestingly, these compounds were shown to reverse 

H2A hyper-ubiquitination due to BAP1 loss, and initiated differentiation, cell cycle exit, a 

shift to a differentiated, melanocytic gene expression profile in cultured UVM cells. 

However, valproic acid inhibited UVM tumour growth in vivo (Landreville et al., 2012). In 

various In vitro experiments to understand the role of HDAC inhibition in malignant 

mesothelioma, increased apoptosis was predominantly reported in malignant mesothelioma 

cell lines following treatment with HDAC inhibitors alone or in combination with 

chemotherapy (Neuzil et al., 2004; Bolden et al., 2006; Symanowski et al., 2009). 

Germline mutations resulting in the loss of BAP1 has been shown to alter the sensitivity of 

malignant pleural mesothelioma cells to HDAC inhibitors through the regulation of HDAC2 

transcription. However, established malignant mesothelioma cell lines with low endogenous 

HDAC2 were found to be resistant to HDAC inhibition (Sacco et al., 2015). These reports 

are indicative of the fact that HDAC inhibitors might be effective in the adjuvant therapy of 

patients with BAP1 mutated malignant mesothelioma.   

Vorinostat is approved by the FDA for the treatment of cutaneous T-cell lymphoma. In a 
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Phase I clinical trial using patients with advanced malignant pleural mesothelioma, 30% of 

patients that received vorinostat had a stabilization of their disease lasting more than 4 

months (Kelly et al., 2005). However, negative results have been reported in phase II and 

phase III clinical trials of vorinostat and belinostat respectively, in patients with advanced 

pre-treated malignant pleural mesothelioma (Ramalingam et al., 2009; Krug et al., 2015) as 

shown in Figure 1.5. 

 

Figure 1.5. Schematic representation of the key molecular and genetic alterations 

involved in the development of malignant mesothelioma and possible strategies for 

therapeutic intervention (Bononi et al., 2015). 

 

Besides BAP1, the role of NF2 gene, another tumour suppressor gene, in the pathogenesis 

of malignant mesothelioma was originally reported by data showing that asbestos-

treated NF2+/− mice exhibit a significantly accelerated malignant mesothelioma tumour 

formation relative to wild-type littermates (Altomare et al., 2005). Merlin, which is the gene 
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product encoded by NF2 gene, interacts with multiple substrates thereby, modulating 

multiple signal transduction cascades including mTOR, focal adhesion kinase (FAK) and 

Hippo signalling pathways (Bianchi et al., 1995) as shown in Figure 1.5. 

Cellular proliferation is mediated by merlin through the inhibition of mTOR, in an AKT-

independent manner (Ladanyi et al., 2012). Loss of merlin has been shown to result in the 

activation of mTOR signalling in malignant mesothelioma cells; hence, in merlin silenced 

tumours, mitogenic signalling is highly upregulated and cellular proliferation is markedly 

increased. Expectedly, merlin-negative malignant mesothelioma cells were shown to be 

more sensitive to the mTOR inhibitor rapamycin, relative to merlin-positive cells (Lopez-

Lago et al., 2009). Owing to this significant observation, mTOR has been identified as a 

therapeutic target in the large fraction of malignant mesotheliomas that carry NF2 mutations 

and provided the rationale for the further study of mTOR inhibitors as possible molecular 

target therapy in malignant mesothelioma. However, it was unfortunate that the oral form of 

mTOR inhibitor known as everolimus, when tested in a phase II clinical trial as second- and 

third-line of treatment in unselected pre-treated malignant pleural mesothelioma patients, 

showed limited clinical activity. 

It is imperative to note that mTOR inhibition alone results in compensatory upregulation of 

PI3K, consequently permitting the restoration of the downstream AKT signalling 

(Carracedo et al., 2008). To address this mechanism of mTOR resistance, GDC-0980, a 

potent and selective oral dual inhibitor of class I PI3K and mTOR were tested. GDC-0980 

demonstrated broad activity in various xenograft cancer models, including malignant pleural 

mesothelioma (Kanteti et al., 2014), but pulmonary toxicity of this class of agents limits 

their application in a clinical setting. Other molecular alterations that are targeted for 

therapeutic use against malignant mesothelioma include cyclin-dependent kinase inhibitor 

2A (CDKN2A) / alternative reading frame (ARF) and neurofibromatosis type 2 (NF2), 

VEGF, etc.  

From the forgoing review, it is evident that scientists are more interested in the molecular 

alterations that bring about the development of malignant mesothelioma, without recourse 

to the implication of correctional events that physiologically repair these alterations. 

Consequently, this PhD thesis places emphasis on the involvement of DNA repair genes and 

their products in the treatment of malignant mesothelioma; with the view to providing 

insights into the possible therapeutic significance. 
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1.7. Stem Cells 

Embryonic stem (ES) cells are obtained from the inner cell mass of an embryo, typically 

during the developmental stage known as a blastocyst (Ramalho-Santos and Willenbring, 

2007). They are characterised by two distinguishing features: pluripotency, which is the 

capacity of embryonic stem cells to generate all the other cell types that constitute the 

histology of adult organisms (Kim and Orkin, 2011; Takahashi and Yamanaka, 2015); and 

self-renewal ability, which defines the ability of embryonic stem cells to retain its cellular 

characteristics whilst maintaining a proliferative state (Choumerianou et al., 2008). The 

realisation of the full potential of ES cells in basic biology, biomedicine and regenerative 

medicine is critically dependent on understanding these two keys defining characteristics 

(Kim and Orkin, 2011). Additionally, the applicability of ES cells in regenerative medicine 

and related fields of science is further determined by knowledge of the molecular and 

genetic underpinnings of ES cells (Roeder and Radtke, 2009). 

For the past two decades, research has been ongoing to decipher the molecular 

characteristic of ES cells and enhance their usefulness to mankind. Consequently, a group 

of transcription factors, including the homeodomain protein Oct4, Sox2, and Nanog (Tai 

and Ying, 2013), were identified and demonstrated in different studies, as major regulatory 

factors responsible for the control of the pluripotent feature of embryonic stem cells (Mitsui 

et al., 2003; Chambers et al., 2003; Avilion et al., 2003). This cadre of regulatory 

transcription factors are known as ES cell core factors (Kim and Orkin, 2011). The 

relevance of transcriptional regulatory mechanisms to cell fate control and pluripotency 

(Graf et al., 2009) cannot be overemphasised. Interestingly, Yamanaka and Takahashi 

(2015) reported that the introduction of the transcription factors Oct4, Sox2, Klf4, and Myc 

(Tan et al., 2013), into somatic cells can result in the reprogramming of the somatic cells 

into ES cell-like cells known as induced pluripotent stem (iPS) cells (Yamanaka and 

Takahashi, 2006; Takahashi et al., 2007; Wernig et al., 2007; Yu et al., 2007; Park et al., 

2008a). 

Owing to the attendant advancements in high-throughput technologies over the past 

decade, enormous databases of proteomic and genomic information have been assembled 

through such technologies like gene expression profiling, microarrays or sequencing 
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(Hawkins et al., 2010), the study of the interactions between and within proteins, the use 

of affinity purification and mass spectrometry for the identification of members of protein 

complexes (Gavin et al., 2011), and the  downregulation of genes by RNA interference 

(Dykxhoorn and Lieberman, 2005). These new tools have been employed in the dissection 

of pluripotency and self-renewal control in embryonic stem cells (MacArthur et al., 2009; 

Roeder and Radtke, 2009) and further deepened the comprehensibility of our understanding 

of cell states at system level (Marks et al., 2012). 

Delineation of the cells that sustain cancer has been a very critical goal in the context of 

cancer biology. Consequently, researchers have proposed that upon transplantation, a small 

population of cells have characteristic ability of re-initiation of tumour formation; and 

responsible for maintenance of the tumours and their resistance to anticancer therapies 

(Kim and Orkin, 2011). These tumour-initiating cells otherwise known as cancer stem cells 

might originate from progenitor cells or adult stem cells or from somatic cells 

dedifferentiation (Reya et al., 2001; Boroviak et al., 2014). Scientists have proposed the 

hypothesis that ES cells and cancer cells share commonalities relating to the regulation of 

gene expression, which has likely implications and linkage to the embryonic state of 

tumour initiating cells prevalent in tumour microenvironment (Kim et al., 2010). 

Additionally, evidence deduced from research works that employed somatic cell 

reprogramming has further underscored key similarities between tumour cell and induced-

pluripotent stem cells. Pluripotency acquisition during reprogramming, typically represents 

a reversal of differentiation suggested for certain cancer types (Daley, 2008; Papatsenko et 

al., 2015). Several researchers have made concerted efforts to explain the inherent 

characteristic of cancer stem cells to renew self, and as a result, specific expression 

signatures of embryonic stem cells have been defined, which have also been analysed in 

diverse cancers (Wong et al., 2008; Somervaille et al., 2009; Schoenhals et al., 2009; 

Mizuno et al., 2010; Shats et al., 2011; Radzisheuskaya and Silva, 2014).  

In the experimental segments of this PhD, the expression profiles of some key DNA repair 

genes in ES cells are investigated with the views to gain insights into the shared similarities 

between ES cells and tumour initiating cells and contributing to the repository of 

information about the molecular definition of the stem cell like state of tumour initiating 

cells. Based on this rationale, this part of the Introduction will attempt to critically review 

the molecular signatures and gene regulations in ES cells, with emphasis on transcriptional 

factors, regulation of somatic cell reprogramming, and the activities of different genes 
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encoding DNA repair proteins within the different DNA repair mechanisms. These will be 

aimed at gaining more insights into the molecular and cellular similarities between 

embryonic stem cells and cancer cell and furthering our understating of the role of acquired 

self-renewal ability of cancer cells in development of drug resistance capabilities by tumour 

cells. 

 

1.7.1. Molecular Signatures and Genomic Regulations in Embryonic Stem Cells 

To understand the molecular signature of embryonic stem cells, it is important to present a 

synopsis of the key modulators of the self-renewal and pluripotent characteristics of 

embryonic stem cells, and the acquisition of pluripotent features during somatic cell 

reprogramming. Consequently, Table 1.4 captures these key modulators of pluripotency in 

stem cells, their physiological relevance, and the molecular techniques employed in the 

methods of their investigation (Kim and Orkin, 2011). 

 

Table 1.4. Presentation of the genomic studies of self-renewal and pluripotency 

characteristics of embryonic stem cells. 

Regulators Function Methods Reference(s) 

Core factors 
   

Oct4 

(Pou5f1) 

ES cell core 

factor 

ChIP, MS Loh et al., 2006; Kim et al., 2008; van 

den Berg et al 2010; Pardo et al., 2010; 

Radzisheuskaya and Silva, 2014; Dunn 

et al., 2014; Xu et al., 2014. 

Sox2 ES cell core 

factor 

ChIP, MS Chen et al., 2008; Kim et al., 2008; 

Lopez-Bertoni et al., 2014; Wu et al., 

2014. 

Nanog ES cell core 

factor 

ChIP, MS Loh et al., 2006; Chen et al., 2008; Kim 

et al., 2008; Costa et al., 2013; Do et al., 

2013; Gingold et al., 2014. 

Tcf3 (Tcf7l1) Wnt signalling ChIP Cole et al., 2008; Martello et al., 2012 

Klf4 LIF signalling ChIP Chen et al., 2008; Kim et al., 2008 

Stat3 LIF signalling ChIP Chen et al., 2008; van Oosten et al., 

2012 

Dax1 (Nr0b1) Negative 

regulation of 

transcription 

ChIP, MS Wang et al., 2006; Kim et al., 2008 
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Sall4 Self-renewal and 

pluripotency 

ChIP, MS Wang et al., 2006; Yang et al., 2008; 

Lim et al., 2008; Rao et al., 2010 

Polycomb-

related factors 

   

Ezh2 PRC2, repressor ChIP, MS Shen et al., 2009; Peng et al., 2009 

Jarid2 Fine-tuning of 

PRC2 

ChIP, MS Shen et al., 2009; Peng et al., 2009 

Mtf2 Polycomb-like 

protein 

ChIP, MS Shen et al., 2009 

Suz12 PRC2, repressor ChIP, MS Boyer et al., 2006; Lee et al., 2006; 

Shen et al., 2009; Peng et al., 2009. 

Eed PRC2, repressor ChIP Boyer et al., 2006; Lee et al., 2006. 

Rnf2 PRC1, repressor ChIP Boyer et al., 2006. 

Phc1 PRC1, repressor ChIP Boyer et al., 2006. 

Myc-related 

factors 

   

Myc Proliferation ChIP, MS Chen et al., 2008; Kim et al., 2010. 

Max Myc-

interACTINg 

ChIP, MS Kim et al., 2010. 

Zfx Self-renewal ChIP Chen et al., 2008. 

Trrap Histone 

acetylation 

RNAi Fazzio et al., 2008. 

Tip60 (Kat5) Histone 

acetylation 

ChIP, MS, 

RNAi 

Fazzio et al., 2008; Kim et al., 2010. 

Ep400 Histone 

acetylation 

MS, RNAi Fazzio et al., 2008. 

Dmap1 Histone 

acetylation 

ChIP, MS, 

RNAi 

Fazzio et al., 2008; Kim et al., 2010. 

E2F1 Regulator of cell 

cycle 

ChIP Chen et al., 2008. 

E2F4 Transcription 

activator 

ChIP, MS Kim et al., 2010. 

Cnot3 General 

transcription 

regulator 

ChIP, 

RNAi 

Hu et al., 2009. 

Trim28 

(Tif1b) 

Transcription co-

activator 

ChIP, 

RNAi 

Hu et al., 2009 

LIF = leukaemia inhibitory factor. 

Adapted from: (Kim and Orkin, 2011; Morgani et al., 2017). 
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1.7.2. Core Transcriptional Regulators in Embryonic Stem Cells  

The availability cytokines in conjunction with many other factors regulate pluripotency and 

self-renewal characteristics of embryonic stem cells in the cell culture environment (Morey 

et al., 2015). An aggregation of regulatory networks called the pluripotency gene regulatory 

network (PGRN) is responsible for maintaining ES cell pluripotency (Morgani et al., 2017); 

and pluripotency is believed to exists in many different states, dependent on the stage of the 

progenitor cells (Davidson et al., 2015). 

Pluripotency exists transiently in mouse embryo, from the onset of cleavage cycles until late 

stages of blastocyst (Boroviak et al., 2014). This is contrary to the human embryonic stem 

cells cultivated in vitro, where differentiation requires that the cells become non-pluripotent, 

whereas conversion of somatic cells to induced-pluripotent cells needs reversal to 

pluripotent state (Takahashi and Yamanaka, 2015). Embryonic stem cells and induced-

pluripotent cells are likely to be subject to the same basic PGRN network; hence, controlling 

reprogramming and differentiation is dependent on the knowledge of the various network of 

genes that transcriptionally regulate cell fate transition and lineage determination (Morgani 

et al., 2017).   

Genome-wide studies have in recent years, expanded the list of regulatory factors in the 

embryonic stem cell pluripotency network (Marks et al., 2012). For instance, reconstructed 

networks of transcriptional regulators that demonstrated many similar features were 

independently produced by Dunn et al. (2014) and Xu et al. (2014). Multiple positive 

correlations between the differently reconstructed transcriptional networks were identified 

when the two constructs were merged as shown in Figure 1.6.  
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Figure 1.6. A comparative representation of published regulatory networks for 

embryonic stem cells, showing pluripotency network reconstructions with respect to 

published reports (A & B) and a combination of both networks to reveal areas of 

negative and positive interactions (C; Papatsenko et al., 2018). 

 

Although, intracellular signalling cascades may intersect and diverge, activation and 

regulation of specific transcription are typically affected by an inherent effector protein of 

each pathway, originating from the nucleus (Itoh et al., 2014; Lakatos et al., 2014). Hence, 

besides the set of core transcriptional factors represented in Figure 1.6, the next of 

transcriptional factors are represented by regulatory factors like Stat3, Smads, β-catenin, 

and ERK, which are correspondingly effectors of LIF, BMP, WNT and FGF signalling 

routes (Tai and Ying, 2013; Itoh et al., 2014; Lakatos et al., 2014), as shown in Figure 1.7. 

Essentially, regulatory signals originating the effectors are relayed to several downstream 

receptors, inclusive of pluripotency network, which is made up of transcription factors like 

Oct4, Sox2, Nanog, Esrrb, Tbx3, and c-Myc (Boyer et al., 2006). These core transcription 

factors are responsible for processing inputs from signalling systems and deciding the self-

renewal and differentiation propensities of embryonic stem cells (Dunn et al., 2014; Xu et 

al., 2014). 
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Figure 1.7. A representation of the organization of pluripotency gene regulatory 

networks in hierarchical fashion. showing signalling pathways (green coloured), the 

mediators of signalling pathway (yellow colouration), constituents of the 

transcriptional pluripotency networks (in red shades), and lowest levels of the 

pluripotency network (shown in violet shades) (Papatsenko et al., 2018). 

  

Scientists are of the view that transcription factors constituted by CPN represent a third 

hierarchical level, downstream of the signalling modulators like Stat3, Smads, etc., and in 

the embryo several key pluripotency transcription factors are expressed maternally (Zuccotti 

et al., 2011). These set of maternally expressed genes are involved in the regulation of 

arrangement of the inner mass of the cells and epiblast and are critically important in further 

embryonic development (Le Bin et al., 2014; Radzisheuskaya and Silva, 2014). The 

upregulation of a simple combination of these embryonic stem cell transcriptional core 

factors in vitro has been shown to possess the capability of inducing the reprogramming of 

somatic cells to induced pluripotent stem cells (Takahashi and Yamanaka, 2006). It has been 

reported that cells re-enter pluripotency state and pluripotency network is re-established 

during this process (Buganim et al., 2012; Takahashi and Yamanaka, 2015). Many of the 

pluripotent transcription core factors within the CPN are likely to serve as targets of the key 

signalling effectors either directly or indirectly (Babaie et al., 2007). For instance, a core 
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pluripotency factor Nanog is targeted by Tfcp2l1, which on the other hand, is targeted by 

Stat3 that emanates from the leukaemia inhibitory factor (LIF) signalling; this is in addition 

to Nanog which is targeted by Tcf3 repressor, downstream of β-catenin that is part of the 

WNT signalling (Ye et al., 2013). In fact, various studies have shown that thousands of 

genes within the genome of embryonic stem cells is targeted by the core pluripotency factors 

(Ivanova et al., 2006; Chen et al., 2008; Ye et al., 2013). 

 

1.7.3. Regulation of Somatic Cell Reprogramming 

In the initial report where Yamanaka and colleagues (2006) demonstrated somatic cell 

reprogramming, terminally differentiated cells represented by mouse fibroblasts, were 

changed to stem-cell-like cells with pluripotent features via four key pluripotent modulators, 

comprising two core ES cell transcriptional factors, Klf4 and Myc, and Oct4 and Sox2 

(Yamanaka and Takahashi, 2006; Takahashi et al., 2007). The eventual success recorded in 

the reprogramming of human fibroblasts to pluripotent-stem-cell-like cells (Takahashi et al., 

2007; Yu et al., 2007; Park et al., 2008a), in addition to the production of pluripotent-stem-

cell-like cell lines that are disease-specific with cells derived from genetic disorder patients, 

gives an avenue for in vitro investigations of various diseases in humans (Dimos et al., 2008; 

Park et al., 2008b). Interestingly, as demonstrated by the initial studies conducted by 

Yamanaka and Takahashi (2006), the four modulators of reprogramming show elevated 

expression in ES cells; and reprogramming modulators have been variously suggested to 

play distinctive roles in the initiation and development of different cancer types 

(Werbowetski-Ogilvie and Bhatia, 2008; Daley, 2008). Drawing inference from these 

interesting observations, it is rational to hypothesize that there might be common 

denominators between in the pathways of reprogramming of somatic cells, regulation of 

pluripotent characteristics in embryonic stem cells, and transformation of the cells 

(Werbowetski-Ogilvie and Bhatia, 2008). 

Another important regulatory factor in embryonic stem cells, which have also been 

implicated to have essential roles in early development are the polycomb-group (PcG) 

proteins. Following their initial discovery in Drosophila melanogaster, PcG proteins have 

been shown to contribute to repression of crucial developmental or lineage-specific 

regulators through the generation of a repressive histone mark (Margueron and Reinberg, 

2011). In both mouse and human embryonic stem cells, interrogating PcG-repressive protein 
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complex (PRC)1 and PRC2 targets by ChiP revealed that several commonly repressed genes 

are linked to PRC proteins, including lineage-specific transcription factors (Boyer et al., 

2006; Lee et al., 2006). These studies demonstrated that PRC proteins are responsible for 

the maintenance of the undifferentiated state of embryonic stem cells through the repression 

of critically relevant genes that are involved in the regulation of embryonic development. 

Similarly, in some studies where RNA immunoprecipitation and sequencing were 

employed, non-coding RNA molecules interactions with the PRC complexes has been 

shown to be involved in the regulation of target genes (Zhao et al., 2010); and PRC proteins 

have also been reported to play roles in the somatic cell reprogramming process (Pereira et 

al., 2010; Zhang et al., 2011). 

One of the most frequently reported oncogenes is the activation of Myc, which has been 

reported in over 70% cases of human cancers (Nilsson and Cleveland, 2003). Myc has been 

implicated in numerous cellular physiological processes and has been shown to be involved 

in myriad of important biochemical pathways, of which the regulation of self-renewal 

capability in embryonic stem cells is inclusive (Meyer and Penn, 2008). In embryonic stem 

cells, interrogation of the targets of Myc demonstrated that the role of Myc in the 

maintenance of the pluripotency of embryonic stem cells is independent of and totally 

different from that of the core factors (Kim et al., 2008; Chen et al., 2008). Relative to the 

core factors of embryonic stem cells, Myc has many more chromatin targets, and genes 

targeted by Myc are enriched in pathways that are involved in protein synthesis and cellular 

metabolic processes (Chen et al., 2008). In contrast, the target genes of the core factors of 

embryonic stem cells are implicated in transcription and developmental processes (Kim et 

al., 2008; Chen et al., 2008). In somatic cell reprogramming, the role of Myc is considered 

dispensable (Wernig et al., 2008; Nakagawa et al., 2008); however, the effectiveness and 

speed of reprogramming by Myc are indicative of the possibility of its involvement in 

providing a favourable the reprogramming process with the conducive atmosphere via the 

regulation of chromosome structural alterations (Knoepfler et al., 2006; Knoepfler, 2008; 

Gaspar-Maia et al., 2011). In ES cells, proteins that interact with Myc and their target 

substrates have been identified; where the Myc network has been revealed to be different 

from the ES cell key survival network or the PRC network (Kim et al., 2010). Notably, 

histone acetyltransferase (HAT) complex proteins, which is known to interact with Myc in 

embryonic stem cells (Fazzio et al 2008; Kim et al., 2010), have been reported to play critical 
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role in the definition of embryonic stem cell identity, control its pluripotent characteristic 

and somatic cell reprogramming (Fazzio et al., 2008). 

 

1.7.4. Embryonic Stem Cell Signatures in Cancer 

Because of the commonalities in the characteristics embryonic stem cells and tumour cells, 

researchers were compelled to investigate the gene whose products are responsible for the 

regulation of these common denominators (Reya et al., 2001). From the foregoing review, 

it is a common knowledge that one of the key factors that has been shown to aid the 

reprogramming of somatic cells, Myc, a known oncogene, and p53 pathways deactivation, 

which has also been demonstrated as a predominant characteristic of numerous cancers, 

facilitates the efficiency of the reprogramming process (Yamanaka and Takahashi, 2006; 

Hanna et al., 2009; Krizhanovsky and Lowe, 2009; Utika et al., 2009). From these findings, 

the evidence is further glaring that unifying pathways could serve both in the acquisition of 

pluripotent characteristic and in the process of tumour development. Consequent upon the 

above premise, it is safe to propose that understanding of the pluripotent characteristic of 

embryonic stem cells and somatic cell reprogramming could deepen our knowledge of the 

important shared characteristics of ES cells and cancer cells. This therefore, rationalizes the 

fact that many ES cell -specific gene sets that have been reported in the investigations of the 

pluripotent stem cells could serve as important analytic instruments for the analysis of the 

expression patterns genes in various tumours; hence a key part of the objectives of this PhD 

is to analyse the expression patterns of DNA damage repair genes in embryonic stem cells 

as well as in tumours of the colon, central nervous system and mesothelium. On this note, 

the DNA repair genes of the key DNA repair pathways that are prevalent in ES cells are 

reviewed in the following section. 

1.7.5. DNA Repair in Embryonic Stem Cells 

The survival, self-renewal and pluripotent potential of both ES cells and adult stem cells 

could be limited by endogenous DNA damage due to oxidative metabolism and 

environmental pollution, and all DNA alterations inclusive of base and backbone 

modifications, single strand break, and double strand break (Frosina, 2010). In ES cells, 

maintenance of genomic stability must be stringent and tightly controlled as any genetic 

alterations affecting the progenitor cells will compromise the functionality and genomic 

stability of the entire cell lineages (Frosina, 2010). Consistent with this assertion, it has been 



69 
 

shown that mitotic recombination rate and the frequency of mutations are remarkably less 

in embryonic stem cells than in adult somatic cells (Hong et al., 2007). Additionally, it has 

been shown that mechanisms of mutagenesis also differ in ES cells relative to adult somatic 

cells. Although, the majority of mutations result in loss of heterozygosity (LOH) in ES cells 

as well as mouse embryonic fibroblasts, LOH in ES cells is initiated via chromosomal 

nondisjunction, whereas in mouse embryonic fibroblasts, it occurs through mitotic 

recombination (Tichy and Stambrook, 2008). Similarly, evaluation of spontaneous mutation 

at hprt, an X-linked locus, revealed that it is latent in ES cells (<10) and ~10 in mouse 

embryonic fibroblasts. Consequently, several mechanistic approaches must be executed to 

ensure the robust repression and reversal of spontaneous mutagenesis in embryonic stem 

cells and DNA repair is likely one of them (Maynard et al., 2008; Tichy and Stambrook, 

2008; Frosina, 2009). Furthermore, irrespective of the characteristic finite replicative 

potentials of embryonic stem cells, studies employing murine genetic models have expressly 

indicated that DNA repair is critically important to the life span and the capability of 

embryonic stem cells to respond to stress (Warren and Rossi, 2009).  

In the research conducted by Maynard and colleagues (2008) using single-cell gel 

electrophoresis (SCGE), human embryonic stem cells were observed to have more efficient 

repair of different types of DNA damage than human primary fibroblasts (Maynard et al., 

2008). Similarly, Maynard and colleagues (2008) further reported that the transcriptional 

levels of majority of DNA repair genes, inclusive of those involved in BER and inter-strand 

crosslink repair, were highly upregulated in ES cells relative to human somatic cells 

(Maynard et al., 2008). In agreement with the above findings, the expression of antioxidant 

and DNA repair genes was markedly reduced, and increased DNA damage was recorded 

during spontaneous differentiation of two human ES cell lines (Saretzki et al., 2008). 

In ES cells, replicating chromatin has been shown to be highly vulnerable to strand breaks 

(Banáth et al., 2009). In mammalian cells, including ES cells, two pathways repair double-

strand breaks; non-homologous end joining (NHEJ), which is the key repair pathway and 

homology-directed repair (HDR), which functionally replaces NHEJ in the presence of a 

sister chromatid (Friedberg et al., 2005). During the differentiation of murine ES cells, the 

expression of genes involved in double-strand break repair, such as Rad51 has been reported 

to diminish (Saretzki et al., 2004; Saretzki et al., 2008; Tichy and Stambrook, 2008). 

Regardless of the overexpression of O6-methylguanine-DNA-methyltransferase, murine ES 

cells have been shown to be characterised by a higher apoptotic frequency relative to 
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differentiated cells following N-methyl-N-nitro-N-nitrosoguanidine treatment (Roos et al., 

2007). This is because in ES cells, there is an elevated expression level of the MMR proteins, 

MSH2 and MSH6, that triggers fruitless cycles of O6-methylguanine repair/replication 

(Casorelli et al., 2008). Several reports are consistent with the suggestion that the high 

apoptotic response of murine ES cells may be partly responsible for the reduction of the 

mutational load in these cells (Roos et al., 2007; van der Wees et al., 2007). Therefore, from 

available reports and research evidence, it has been shown that ES cells are characterised by 

elevated DNA repair capacity relative to their differentiated derivatives (Frosina, 2010).  

Bracker and colleagues (2006) investigated the differences in the capabilities of DNA repair 

and the level of the gene products during the hematopoietic stem cell maturation process; 

and they observed that the removal of DNA adducts, the repair of strand breaks and the 

resistance to DNA-reactive drugs were noticeably higher in stem (CD34+ 38−) than in 

mature (CD34−) or progenitor (CD34+ 38+) cells isolated from umbilical cord from the 

same individual (Bracker et al., 2006). It is therefore, rational to assert that sluggishly 

dividing stem cells are likely to be under the protection of extensive DNA repair while more 

differentiated and less valuable cells, in the event of damage, could be removed via apoptosis 

(Frosina, 2010). 

Transcription-coupled NER (TC-NER), has a preference for the repair of the transcribed 

strand of active genes relative the strand that is not transcribed, thereby providing cells with 

a mechanism for repairing DNA damage during, and restarting transcription (Hanawalt and 

Spivak, 2008). Like BER and double-strand break repair, NER genes are under-expressed 

in the majority of human cells that are in the process of differentiation, as reported in the 

monocytic primordial cells during their differentiation to macrophages or neural stem cells 

transformation to neurons (Nouspikel and Hanawalt, 2000; Hsu et al., 2007; Nouspikel, 

2007). During cellular differentiation, authentication of NER occurs due to the non-

ubiquitination of proteins involved in NER, which on the other hand is associated with the 

disparities in phosphorylation of the ubiquitin-activating enzyme (E1) (Nouspikel, 2007). 

To make sure that genes that are active are protected from damage and proficiently repaired 

in the event of any damage, cells are characteristically endowed with a specialised 

mechanism called differentiation-associated repair (DAR), in addition to transcription-

coupled repair (Frosina, 2010). Because of the activities of DAR in differentiated cells, DAR 

could be regarded as a subcategory of GG-NER, with emphasis on the differentiated cells 
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chromatin loci within which transcription takes place (Nouspikel et al., 2006; Nouspikel, 

2007). 

Expression of the 8-oxoguanine DNA glycosylase (Ogg1) gene, one of the genes that formed 

the key focus of this PhD, has been reported to show a characteristic overexpression in 

regions of the neonatal mouse brain containing multiple neural stem cells (Hildrestrand et 

al., 2007). Interestingly, it has been shown that the expression level and activity of Ogg1 are 

elevated in neural stem/primordial cells from new-born mice and fades as the animal grows 

to adulthood and following initiation of cellular differentiation (Hildrestrand et al., 2007; 

Frosina, 2010). It is therefore, safe to assert that elevated expression of Ogg1 and other BER 

proteins may be responsible for the protection of neural stem/progenitor cells from oxidative 

DNA damage (Hildrestrand et al., 2007). Another DNA glycosylase gene, Nei endonuclease 

VIII-like 3 (Neil3), another key gene of interest in thisproject, has also been demonstrated 

to be highly elevated in brain regions harbouring stem cell populations (Rolseth et al., 2008; 

Hildrestrand et al., 2009). 

1.8. Research Aims 

Cancer development involves the complex mechanisms of DNA damage, particularly 

damage that results in the loss of function of tumour suppressor genes and gain of function 

by proto-oncogenes. In this instance, the inability of DNA repair genes to immediately code 

for corrective proteins to restore damaged DNA, probably because of mutation, results in 

development of mutant cell clones (Loeb, 2001). Accordingly, many genes have been 

identified that encode proteins that are directly or indirectly involved in the repair of 

damaged DNA and attempts have been made to classify them into major repair pathways as 

previously reviewed. Additionally, some of the genes that are responsible for the repair of 

damaged DNA have been further implicated in tumour development and drug resistance in 

different cancer types. For instance, high levels of Ercc1 expression have been reported to 

result in CRC resistance to oxaliplatin (Baba et al., 2012; Choueiri et al., 2015). Similarly, 

high levels of Neil3 have been found in metastatic melanoma tumours and various cancer 

cell lines and may also be a resistance factor against cancer chemotherapy (Seetharam et al., 

2010; Elder, pers. commun.). 

 

Though mammalian cells adopt several mechanisms to proofread DNA sequences and 

ensure error-free DNA replication before cell division, impairment in the functions of genes 
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responsible for the repair of DNA damage and correction of replication-associated errors 

could amount to the accumulation of errors with concomitant genetic instability and 

consequent development of aberrant cellular clones (Loeb, 2001). These aberrations may 

occur because of exposure to extrinsic factors such as exposure to carcinogens or mutagens 

and/or intrinsic factors such as endogenously produced ROS (Stratton et al., 2009). Owing 

to the enormity of significance attached to an error-free replication and the vital roles of 

DNA repair genes in ensuring that normal cellular physiology is not compromised, many 

studies have made attempts to identify, characterize and establish various DNA repair genes 

and their products in different cancer types. It is on a similar note, that this research was 

conceived, with the view to mapping the expression patterns of different genes that have 

characteristically been associated with different forms of DNA repair in different cancer 

types including colorectal cancer, medulloblastoma and mesothelioma with a focus on the 

BER DNA glycosylase NEIL3, the NER endonuclease ERCC1 and the mismatch repair 

gene MLH1 (MutL-homolog 1). This will be done with a view to gain insight into the 

involvement of these genes and their products in cancer development and understanding the 

causal relationships between their expression and cancer resistance to chemotherapy. 

 

1.9. Research Objectives 

To achieve the above aims, this research will key into the following objectives: 

1. Extraction of RNA from colon cancer tissues and, where available, matched normal 

colon tissue.  

2. Quantify the expression levels of Neil1, Neil2, Neil3, Ercc11, Nthl1 and Mlh1 in 

colorectal cancer tissues relative to normal colon tissues using quantitative PCR. 

3. Quantify the expression levels of Neil1, Neil2, Neil3, Ercc1 and Mlh1 in 

medulloblastoma cell lines using quantitative PCR. 

4. Extraction of RNA from human embryonic stem cell lines and RT-PCR of DNA 

repair genes of interest. 

5. To determine the growth response of medulloblastoma cell lines following genotoxic 

insult. 
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2.0. MATERIALS AND METHODS 

2.1. Materials 

The RNeasy Fibrous Tissue Mini kit and QuantiNova Reverse Transcription kit were 

obtained from Qiagen Ltd, UK. The ISOLATE II RNA Mini Kit, SensiFast SYBR LO-ROX 

kit and MyTaq RedMix were obtained from Bioline UK. Cisplatin, oxalipatin & tert-butyl 

hydroperoxide were obtained from Sigma-Aldrich. The Aldefluor kit was from Stem Cell 

Technology and the SuperSignal West Femto Maximum Sensitivity Substrate and TRIzol 

RNA isolation Reagent were from ThermoFisher Scientific. Tris base, ammonium persulfate 

and sodium dodecyl sulfate were from Fisher Scientific. 

 

Table 2.1. Agarose Gel Electrophoresis Buffers 

 

 

 

 

 

Material Description 

Tris-Borate-EDTA 

(TBE) 

5x TBE was prepared by dissolving 54 g of Tris base, 27.5 g 

of boric acid and 20 ml of 0.5 M EDTA pH8.0 in 1 L of dH2O. 

The 5x TBE stock solutions was diluted 10-fold to 0.5 x prior 

to use. 

Agarose Gel 

Electrophoresis 

Loading Buffer 

4 g of sucrose, 25 mg of bromophenol blue (0.25% w/v), and 

2.4 ml of 0.5 M EDTA pH 8.0 was mixed and made up to 10 

ml with dH2O. 

DNA Size Marker 2 µl of Hyperladder 1kb or Hyperladder 100 bp (Bioline UK) 

was made up to 10 µl with dH2O 

GelRed  4 μl of GelRed (Biotium) was added to 100 ml of agarose gel 

solution at approximately 50ºC. 
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Table 2.2. Reagents used in Protein Analysis. 

Reagent Description 

Acrylamide  Acrylamide (30% acrylamide, 0.8% bis) obtained 

ready for use (Bio-Rad Laboratories Ltd). 

Ammonium Persulfate (APS)  A 10% (w/v) stock solution of APS was prepared 

by dissolving 1 g of APS in 10 ml dH2O. Aliquots 

were stored at -20°C. 

Tetramethylethylenediamine 

(TEMED) 

TEMED was obtained from Sigma-Aldrich. 

 

 

 

3x SDS-PAGE Loading Buffer 

 

The stock was prepared by mixing, 2.4 ml of 1 M 

Tris-HCl pH6.8, 3 ml 20% (w/v) SDS, 3 ml, 

100% (v/v) glycerol, 1.6 l 2-mercaptoethanol 

and 6 mg bromophenol blue and the final volume 

adjusted to 10 ml with dH2O and stored at 4°C. 

 

 

10x SDS-PAGE Running Buffer 

The 10x stock was prepared by mixing 30.2 g Tris 

base, 10 g of SDS and 144 g of glycine in about 

900 ml of dH2O. The pH was adjusted to pH8.3 if 

required and the volume adjusted to 1 L with 

dH2O. The 10x stock was diluted to 1x buffer just 

before use. 

 

 

10x Western Blot Transfer Buffer 

(WTB) 

 

10x western blot transfer buffer (WTB) was 

prepared by dissolving 144 g glycine and 30.2 g 

Tris base and the final volume made up to 1 L with 

dH2O. A 1x working buffer was prepared by 

adding 100 ml of 10x WTB to 200 ml of methanol 

and made up to 1 L with dH2O and stored at 4°C. 

10x Phosphate Buffered Saline 

(PBS) 

10x PBS was prepared by adding 80 g NaCl, 2 g 

KCl, 7.62 g Na2HPO4 and 0.77 g KH2PO4 to 800 

ml of dH2O. Once fully dissolved, the pH was 

adjusted to pH7.4 with concentrated HCl and the 

total volume made up to 1 L with dH2O. 
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2.1.1. Tissue Samples Collection and Designation  

Frozen human colon tumour and matched normal colon tissues were kindly provided by Dr. 

Andrew Povey, University of Manchester. The tissues were designated as N for normal 

colon tissues and corresponding colon cancer tissues represented by T. In addition, sixteen 

colon tissue samples were collected from the Biobank at the Central Manchester University 

Hospital NHS Foundation Trust and stored at -80oC until used. 

2.2. Methods  

2.2.1. Tissue Preparation and RNA Extraction 

Prior to the start of the RNA extraction, the work environment was cleaned with 70% ethanol 

and DEPC (diethyl pyrocarbonate) water to inactivate RNase enzymes. All equipment and 

plasticware were disinfected in 3% (w/v) Virkon solution before disposal or re-use. 

RNA extraction was carried out from colon cancer and matched normal colon tissue samples 

using the RNeasy Fibrous Tissue Mini kit (Qiagen), following the manufacturer’s 

instructions. Briefly, 30 mg of frozen colon cancer tissue or corresponding normal colon 

tissue was transferred to 300 µl Buffer RLT, disrupted and homogenized using a Tissue 

Lyser (Qiagen). The supernatant was transferred into a sterile 1.5 ml Eppendorf tube for 

RNA isolation.  Subsequently, 590 µl of RNase-free water and 10 µl of proteinase K was 

added, mixed, incubate at 550C for 10 min and centrifuged at 10,000 xg for 3 min. The 

PBS-Tween-20 

 

PBS-Tween-20 contained 100 ml of 10x PBS and 

1 ml of Tween-20 made up to 1 L with dH2O. 

Blocking buffer Blocking buffer was prepared using 5% (w/v) non-

fat milk in PBS-Tween-20. 

Antibody dilution buffer The antibody dilution buffer contained 2.5% (w/v) 

non-fat milk in 1x PBS-Tween-20 

Protein molecular weight (MW) 

Standards  

5 l of PageRuler Plus Prestained Protein Ladder 

(Thermo Scientific) was added to a lane of each 

SDS-PAGE gel. 

RIPA buffer 50 mM Tris-HCl pH8.0, 150 mM sodium chloride, 

1% igepal CA-630 (NP-40), 0.5% sodium 

deoxycholate, 0.1% SDS. 



76 
 

supernatant was transferred to a new tube and 0.5 volumes of 100% ethanol was added and 

mixed, followed by the transfer of 700 µl of the sample to RNeasy Mini column in a 2ml 

collection tube and its centrifugation for 15 s at 8000 xg. The flow-through was discarded 

and the step was repeated until complete lysate was produced. Then, 350 µl of Buffer RW1 

was added to RNeasy column and centrifuged for 15 s at 8000 xg, and the flow-through was 

discarded. 10 µl of DNase stock solution was mixed with 70 µl Buffer RDD and this was 

added to the RNeasy membrane, and incubated for 15 min at 250C. 350 µl of Buffer RW1 

was added to the RNeasy column and centrifuged for 15 s at 8000 xg and the flow-through 

discarded. Then, 500 µl of Buffer RPE was added to the RNeasy column and centrifuged 

for 15 s at 8000 xg and discarded the flow-through. Another 500 µl of Buffer RPE was added 

to the RNeasy column and centrifuged for 2 min at 8,000 xg. The RNeasy column was placed 

in new 2 ml tube and centrifuged at 8,000 xg for 1 min. Finally, the RNA was eluted by 

placing the RNeasy column in a new 1.5 ml tube and 30 µl of RNase-free water was added 

directly onto the centre of the column followed by centrifugation at 8,000 xg for 1 min. 

 

2.2.2. RNA Extraction from Tissue Using Trizol Reagent 

Fifty milligrams of frozen tissue were homogenized in liquid nitrogen using RNase free 

mortar and pestle until ground into a fine powder. An RNase - free spatula was used to 

transfer the powder to 1 ml of Trizol solution in a 2 ml Eppendorf tube. The mixture was 

vortexed thoroughly and 20% chloroform (200 µl) was added. The mixture was vortexed for 

30 s and incubated at room temperature for 2 min, then centrifuged at 12,000 xg for 15 min 

at 4oC. The clear phase was transferred to a new tube and 200 µl of isopropanol was added 

to precipitate the RNA.  The mixture was vortexed for 30 s and incubated at room 

temperature for 10 min followed by centrifugation at 12,000 xg for 10 min. The supernatant 

was removed by inverting the tubes and the tubes left to dry on absorbent paper. The RNA 

pellet was washed with 1 ml of 75% ethanol and vortex for 30 s and centrifuged at 7,500 xg 

for 5 min at 4oC.  Then, the supernatant was discarded, and the pellet was re-suspended in 

50 µl of RNase-free water and stored at -20oC until required. 
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2.2.3. Determination of the Concentration of RNA 

After purification, the RNA concentration of each sample was determined using a Nanodrop 

2000 spectrophotometer (Thermo Scientific). RNA analysis was carried out by first using 1 

µl of the elution buffer to blank the Nanodrop, after which 1 µl of the RNA sample was 

pipetted onto the pedestal on the Nanodrop and then the concentration measured at 260 nm. 

 

2.2.4. Agarose Gel Electrophoresis of the RNA Product 

The integrity of the extracted RNA was assessed using 1% agarose gel electrophoresis. The 

agarose gel was prepared by mixing 0.5 g of agarose powder with 50 ml of 0.5x TBE (Tris-

borate-EDTA) in a 250 ml Duran bottle and then heating the mixture in a microwave oven 

for 2-3 minutes, until the agarose powder had completely dissolved. Once the agarose had 

cooled sufficiently to be held by hand, 2 µl of GelRed (Biotium) was added and the contents 

poured into a gel tray containing a gel comb to create wells. Subsequently, 10µl of each 

RNA sample was loaded into each well along with 10 µl Hyperladder 1kb DNA ladder 

(prepared by mixing 1 µl Hyperladder 1 kb and 2 µl loading buffer in 7 µl dH2O). The gel 

was subjected to electrophoresis at 100V for 70 min. The bands were imaged and recorded 

by UV-trans illumination and GeneSnap software (Syngene, Geneflow Ltd). 

 

2.2.5. Complementary DNA (cDNA) Synthesis by Reverse Transcription  

The extracted RNA was reverse transcribed into complementary DNA (cDNA) using the 

QuantiNova Reverse Transcription kit (Qiagen) according to the manufacturer’s guidelines. 

Thus, 2 µl of genomic DNA (gDNA) removal mix was mixed with 3 µl of RNA (1.0 ng), 1 

µl internal control RNA and 9 µl RNase-free water to make a final volume of 15 µl and 

incubated at 45°C for 2 min, then placed immediately on ice. The reaction mixture for 

reverse-transcription was prepared by mixing 1 µl Reverse Transcription Enzyme with 4 µl 

Reverse Transcription mix and the 15 µl entire genomic DNA elimination reaction mixture, 

to make a final volume of 20 µl. This was incubated at 25°C for 3 min followed by further 

incubation at 45°C for 10 min. The reverse transcriptase enzyme was inactivated by 

incubating at 85°C for 5 min. The cDNA obtained was amplified by the target gene primers 

using the polymerase chain reaction (PCR) as described in Section 2.2.6. 
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2.2.6. Primer Design 

The primers used to assess the expression of the target DNA repair genes were designed 

using National Centre for Biotechnology Information software (NCBI/Primer BLAST). The 

primer pairs were picked from different exons of the genes. The primers were purchased 

from Eurofins Genomics and reconstituted following the manufacturer’s instructions to 100 

µM with 10 mM Tris-HCl pH8.0 and 1 mM EDTA (TE) buffer and stored at -20°C. The 

forward and reverse primers for the different target genes are tabulated in Table 2.3. 

 

Table 2.3. qPCR Gene Specific Primers. 

Target Gene DNA Sequence Tm (°C) GC-Content 

(%) 

PCR 

product (bp) 

Gapdh 1014 GGTGGTCTCCTCTGACT

TCAACA 

61.8 52.2  

127 

Gapdh 1140 GTTGCTGTAGCCAAATT

CGTTGT 

60.5 43.5 

Ercc1 884S CAAAACGGACAGTCAG

ACCCT  

 59.8 52.4  

146 

Ercc1 1029AS TCAAGAAGGGCTCGTG

CAG  

58.8 57.9 

Neil1 1071S@@ AGAAGATAAGGACCAA

GCTGC 

 57.9 47.6  

212 

Neil1 

1283AS@@ 

GATCCCCCTGGAACCA

GATG 

 61.4 60.0 

Neil1 

1079S 

AGGACCAAGCTGCAGAAT
CC 

60.0 55.0  

125 

Neil1 

1203AS 

GCTCGAAAGGCAGCAAAG
TC 

60.1 55.0 

Mlh1 2276S# AGGAGTCGACCCTCTCA

GG  

61.0 63.2  

66 

Mlh1 2342AS# GTCCACTTCCAGGAGTT

TGG 

59.4 55.0 

Neil2 

631S 

GAAGCTTCCCCGTAGA

AGAGG  

61.8 57.1  

122 

Neil2 

773AS 

TGTAGCTTCTTACTGCT

GCCC 

59.8 52.4 
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Neil2 1291S## GCCTTAGAAGCTCTAGG

CCA  

59.4 55.0  

 

145 Neil2 

1436AS## 

GCACTCAGGACTGAAC

CGAG 

60.2 54.0 

Neil3 1651S CGCCTCTGCATTGTCCG

AGT  

62.3 62.3  

 

147 
Neil3 1798AS TGGAACGCTTGCCATGG

TTG  

61.8 61.8 

Nthl1 679S@ GATGGCACACCTGGCT

ATG 

58.8 57.9  

 

165 
Nthl1 844AS@ CCACAGCTCCCTAGGCA

G 

60.5 66.7 

Ogg1 1020S AGCAGCTACGAGAGTC

CTCA 

59.4 55.0  

137 

Ogg1 1156AS CATATGGACATCCACG

GGCA 

59.4 55.0 

 

@@ Obtained from Shinmura et al., (2004); @Obtained from Goto et al., (2009); #Obtained 

from Jensen et al., (2013); ## Obtained from Mandal et al., (2012). 

 

2.2.7. Amplification of Genes of Interest in Colon Cancer and Normal Colon Tissues 

by Reverse Transcription PCR (RT-PCR). 

Following the conversion of the RNA extracted from the colon tumours and corresponding 

colon tissues to complementary DNA (cDNA) by the reverse transcription reaction, the 

sequences of the target genes were amplified by PCR. The primers were prepared by diluting 

1 µl of 100 µM stock with 9 µl of TE buffer. The cDNA sample was mixed with 2x MyTaq 

RedMix (Bioline UK), forward primer, reverse primer and the total reaction was made up to 

25 µl by adding dH2O (Table 2.4). Denaturation, annealing and extension were run for 30 

cycles. Table 2.5 shows the conditions of the PCR reaction. 
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 Table 2.4. Composition of the PCR reaction mixture. 

Reagent Volume 

Template cDNA (1.0 ng) 1 µl 

2x MyTaq RedMix 12.5 µl 

10 µM Forward primer 0.5 µl 

10 µM Reverse primer 0.5 µl 

dH2O 10.5 µl 

Total 25 µl 

  

Table 2.5. PCR Reaction Conditions. 

PCR conditions Temperature Time 

Pre-denaturation 95°C 1 min 

Denaturation 95°C 10 s 

Annealing 60°C 10 s 

Extension 72°C 10 s 

Final extension 72°C 5 min 

Final Hold 4°C Hold 

 

Upon the completion of the PCR reaction, 5 µl from each PCR reaction was mixed with 2 

µl of gel loading buffer and 3 µl of dH2O, then 10 µl was loaded on a 2% agarose gel 

(prepared by mixing 2.0 g agarose with 100 ml 0.5x TBE and 4 µl of GelRed) along with 

10 µl Hyperladder 100bp DNA marker (prepared by mixing 1 µl Hyperladder 100bp, 2 µl 

loading buffer and 7 µl dH2O). The gel was subjected to electrophoresis at 100V for 70 min. 

The bands were imaged and recorded as previously described in Section 2.2.3. 

 

2.2.8. Amplification of Genes of Interest in the Biobank Tumour Samples by RT-PCR 

Following the conversion of the RNA extracted from the various colon tumours to cDNA, 

the DNA sequences of the target genes were amplified by PCR. The primers were prepared 

by diluting 1 µl with 9 µl TE buffer and the cDNA sample was mixed with OneTaq Hot 

30 cycles 
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Start DNA Polymerase (New England Biolabs) and the total reaction was made up to 25 µl 

by adding nuclease free water as indicated in Table 2.6. Denaturation, annealing and 

extension were run for 35 cycles (Table 2.7). 

 

Table 2.6. One Taq PCR reaction mixture. 

Reagent Volume 

5x OneTaq Standard Reaction Buffer 5 µl 

10 mM dNTPs 0.5 µl  

10 µM Forward Primer 0.5 µl 

10 µM Reverse Primer 0.5 µl 

One Taq Hot Start DNA Polymerase 0.125 µl 

Template DNA (< 1,000 ng) Variable 

Nuclease-free water to 25 µl 

 

 

Table 2.7. PCR Reaction conditions for OneTaq Hot Start Reactions. 

PCR conditions Temperature  Time 

Pre-denaturation 94°C 1 min 

Denaturation 94°C 15 s 

Annealing 60°C 15 s 

Extension 68°C 30 s 

Final extension 68°C 5 min 

Final Hold 4°C Hold 

 

2.2.9. Quantitative PCR (qPCR) 

Quantitative real time PCR (qPCR) was carried out to quantify the expression of the target 

genes on cDNA from colon cancer tissue samples using the SensiFast SYBR Lo-ROX Kit 

(Bioline UK), following the manufacturer’s instructions. The reference gene for 

normalization was glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and melting 

curves were used to confirm the specificity of the PCR primers as well as purity of products. 

35 cycles 
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Accordingly, 5 µl of cDNA from the reverse transcription reaction (20 µl) was added to 45 

µl of TE buffer to obtain a final volume of 50 µl and then a standard curve was obtained 

by a 10-fold serial dilution which was made as follows: 100%, 10%, 1%, 0.1% and 0% 

cDNA by the following steps:  

10%: 8 µl from 100% of cDNA sample was added to 72 µl of RNase-free water. 

1%:   8 µl from 10% of cDNA sample was added to 72 µl of RNase-free water. 

0.1%: 8 µl from 1% of cDNA sample was added to 72 µl of RNase-free water. 

0.01%:   8 µl from 0.1% of cDNA sample was added to 72 µl of RNase-free water.  

 

Subsequently, triplicate aliquots of 5 µl cDNA template were added to the wells of a 96–

well reaction plate as shown in Table 2.8. The PCR primers were prepared by diluting 1 µl 

(100 pmol) with 9 µl TE buffer to give a final concentration of 10 µM. For each PCR 

reaction mix, 18.5 µl of forward primer, 18.5 µl of reverse primer, 230 µl 2x SensiFast 

SYBR Lo-ROX (containing SYBR Green l dye and dNTPs) and 78 µl RNase-free water 

were mixed in a 1.5 ml micro-centrifuge tube and then 15 µl was distributed in each well 

as shown in Table 2.8. Negative control wells had the following: forward primer, reverse 

primer, 2x SensiFast SYBR Lo-ROX and RNase-free water. The qPCR reactions were 

prepared in a 96-well plate and the wells were loaded as shown in Table 2.9. Two-step 

cycling was used for the PCR reaction and the conditions are given in Table 2.10. Melting 

curve from 72oC to 90oC, reading every 1°C, hold at 30 s. 

 

 

 

Table 2.8. Loading of the 10-fold serially diluted cDNA in triplicate in a 96-well plate. 

100% 10% 1% 0.1% 0.01% 

A1 - A12 C1-C12 D1- D12 E1- E12 F1 –F12 

B1 –B12     
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Table 2.9. Sample Loading Pattern for qPCR in a 96-well plate. 

Primer Sample Standard Negative 

Control 

Gapdh A1, A2, A3 B1, B2, B3, C1, C2, C3, D1, D2, 

D3, E1, E2, E3, F1, F2, F3. 

G1, G2, G3. 

Neil1 A4, A5, A6 B4, B5, B6, C4, C5, C6, D4, D5, 

D6, E4, E5, E6, F4, F5, F6. 

G4, G5, G6. 

Neil2 A7, A8, A9 B7, B8, B9, C7, C8, C9, D7, D8, 

D9, E7, E8, E9, F7, F8, F9. 

G7, G8, G9. 

Neil3 A10, A11, A12 B10, B11, B12, C10, C11, C12, 

D10, D11, D12, E10, E11, E12, 

F10, F11, F12. 

G10, G11, 

G12. 

 

 

Table 2.10. qPCR conditions 

Cycles Temperature Time PCR phase 

1 95°C 2 min Denaturation 

40 95°C 5 s Denaturation 

40 60°C 30 s Annealing/ Extension 

 

 

Analysis of the results was conducted through MJ Opticon Monitor Version 3.1 software 

and the relative expression of the target gene in each cell line was calculated by 

normalization of its mRNA quantitative values with the values of Gapdh using the 2(-Delta 

Delta C(T)) method (Livak and Schmittgen, 2001). 

By plotting fluorescence against the cycle number, an amplification plot that represents the 

accumulation of product over the duration of the PCR reaction was generated. Gapdh was 

used as a reference gene and it is assumed that its expression level is constant in the cells 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schmittgen%20TD%5BAuthor%5D&cauthor=true&cauthor_uid=11846609
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from tumour and normal tissues. Each run of qPCR has a standard curve that was generated 

through serial dilution of cDNA. 

2.3. Cell Culture 

2.3.1. Cells 

The medulloblastoma (DAOY) cell lines, including the cisplatin-resistant subtype and the 

conventional medulloblastoma cells were kind gifts from Dr Gianpiero Di Leva, University 

of Salford. The Mero25 mesothelioma cell line was kindly supplied by Professor Luciano 

Mutti, University of Salford. The human embryonic stem (hES) cell pellets were kindly 

supplied by Professor Daniel Brison, Central Manchester University Hospitals NHS 

Foundation Trust, Manchester, UK and were stored at -80˚C until required. 

 

2.3.2. Cell Culture Methods 

The medulloblastoma and mesothelioma cell lines were grown at early passage and working 

stocks were aliquoted in vials and stored in 10% (v/v) dimethyl sulfoxide (DMSO), 90% 

FBS at -80˚C or in liquid nitrogen for short-term storage. For each experiment, the 

medulloblastoma (DAOY) cell lines were routinely cultured in RPMI1640 with 0.2 mM L-

glutamine (Invitrogen), supplemented with 10% heat-inactivated foetal bovine serum (FBS) 

(Invitrogen, UK) and 1% penicillin-streptomycin (Complete medium; Invitrogen, UK) until 

70-80% confluent. Similarly, the mesothelioma (MERO-25) cells were cultured in 

Dulbecco’s modified eagle medium (DMEM) with 0.2 mM L-glutamine, supplemented with 

10% heat-inactivated FBS and 1% penicillin-streptomycin (Complete medium;) until 70-

80% confluent. 

Cells were split 1:10-1:15 when confluency of 70%-80% was reached. The cells were 

washed with phosphate buffered saline (PBS) and then incubated for up to five minutes at 

37°C with 5 ml of 1x trypsin-EDTA (Invitrogen). Once most cells had detached from the 

flask, the trypsin-EDTA was quenched by the addition of double the volume of complete 

cell culture medium. Cells were collected and then pelleted by centrifugation for 3 min at 

1200 rpm. Cells were then re-suspended in medium and seeded in T75 flasks for further 

experiments. 

 



85 
 

2.3.3. Cell Seeding Conditions 

Unless otherwise stated, all experiments were performed in triplicate. Cells from flasks that 

were 70-80% confluent and were seeded in either 96-, 12- or 6-well plates or 10 cm petri 

dishes or T25 flasks, depending on the experiment. The cells were pelleted (as described in 

Section 2.3.2) and re-suspended in fresh medium. To accurately establish the number of 

cells per millilitre, the cells were counted using a haemocytometer and plated at the 

appropriate density depending on cell type, the plate used and the experiment, as detailed 

throughout the corresponding Sections. 

 

2.3.4. Cell Viability Assays (MTT Assay) 

The genotoxic agents, oxaliplatin, cisplatin and tert-butyl hydroperoxide were employed in 

this project to induce DNA damage and to assess cell viability in relation to the gene 

expression of selected DNA repair genes. Normal and cisplatin-resistant DAOY 

medulloblastoma cells were grown in RPMI1640 medium supplemented with 2 mM L-

glutamine, 10% FBS and 1% penicillin-streptomycin. The cells were maintained at 37°C in 

a humidified incubator with an atmosphere of 95% air and 5% CO2. Cell viability was 

determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 

Cells were cultured overnight in 96-well plates (2 x 103/well) containing 100 µl complete 

medium prior to incubation with 100 µl of complete medium containing various 

concentrations of either oxaliplatin, cisplatin or tert-butyl hydroperoxide (0.78 µM - 100 

µM) in each well and incubated for 72 h at 37°C in a humidified atmosphere and 5% CO2. 

Once incubation was complete, 40 µl of MTT (3 mg/ml) reagent was added into each well 

using a multi-channel pipette and incubated for 3 h at 370C. (Then purple formazan crystals 

were observed in the wells). The medium was aspirated carefully from each well and 200 µl 

of DMSO was added to each well using a multi-channel pipette and mixed thoroughly until 

the crystals dissolved fully. The plate was read at 540 nm and 690 nm using the multi-scan 

Ascent plate reader (Thermo Scientific) and analysed. 
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2.3.5. Gene Expression Analysis in Cell Lines 

RNA extraction was carried out from the stored pellets of the normal & cisplatin-resistant 

DAOY cells, Mero25 and human embryonic stem cell lines using the Isolate II RNA Mini 

kit following the manufacturer’s instructions. Cell pellets were thawed on ice for 5 min. 

Three hundred and fifty microlitres of lysis buffer was added to 3.5 µl of 2-mercaptoethanol 

and mixed on a vortex in 1.5 ml tubes, then added to the cell pellets. The lysate was 

transferred to an Isolate II filter (violet) which was then placed in a 2 ml collection tube and 

centrifuged at 11,000 xg for 1 min. The flow-through was transferred to a 1.5 ml 

microcentrifuge tube, and then 350 µl of 70% ethanol was added and mixed by pipetting up 

and down 5 times. It was transferred to a 2 ml collection tube which was placed in an Isolate 

II RNA mini column (blue) and centrifuged at 11,000 xg for 30 s. After that, the column was 

put in a new 2 ml collection tube and the silica membrane was desalted by adding 350 µl of 

membrane desalting buffer and centrifuging at 11,000 xg for 1 min before the membrane 

was dried through centrifugation at 11,000 xg for 1 min. 

The DNase I reaction mixture was prepared by adding 10 µl of reconstituted DNase I to 90 

µl of reaction buffer for DNase I and mixed by gently flicking the tube. Genomic DNA was 

digested by adding 95 µl DNase I reaction mixture directly on the centre of the silica 

membrane and incubating at room temperature for 15 min. The silica membrane was then 

washed several times, first by adding 200 µl of wash buffer RWI, followed by centrifugation 

at 11,000 xg for 30 s, and then the column was placed into a new collection tube (2 ml). The 

second wash was carried out by adding 600 µl wash buffer RW2, then it was centrifuged at 

11,000 xg for 30 s, the flow- through was discarded and the column was placed back into 

the collection tube. The third wash was carried out by adding 250 µl wash buffer RW2 

followed by centrifugation at 11,000 xg for 2 min, the flow-through discarded and the 

column placed into a nuclease free 1.5 ml collection tube. Finally, the RNA was eluted by 

adding 60 µl of RNase-free water directly onto the centre of the silica membrane and 

incubated for 1 min at room temperature followed by centrifugation at 11,000 xg for 1 min. 

Following the successful extraction, the RNA concentration was measured, and RNA quality 

was assessed, cDNA was synthesised, RT-PCR and qPCR were conducted as previously 

described in Sections 2.2.7 and 2.2.8.  
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2.3.6. Preparation of cancer stem cells. 

2-hydroxyethyl methacrylate (polyHEMA) was prepared by adding 12 g into 1 L of 98% 

(v/v) ethanol and mixed on a magnetic stirrer at 45-50°C for about 8 h to dissolve complete 

dissolution. After this, 1.5 ml of this solution was added into each well of a 6-well tissue 

culture plate and incubated in an oven at 55°C for 5 days. Before seeding of the cells, the 

coated plate, without the lid, was placed in a sterile cabinet under a UV light for 10 – 15 

min. Two millilitres of freshly grown Mero25 mesothelioma cells was mixed with 4 ml of 

cancer stem cell medium (DMEM/F-12) in a 15 ml tube and centrifuged at 1,250 rpm for 5 

min. The supernatant was discarded, and 2 ml of cancer stem cell medium was added to 

resuspend the cells. A sterile syringe with a 25G needle was used to pipette the cells up and 

down once to make a single cell suspension. Then, 5000 cells were seeded in 2 ml of 

DMEM/F-12 medium in each well of the 6-well plate and incubated for 5 days at 37°C in a 

humidified incubator with an atmosphere of 95% air and 5% CO2. Thereafter, the cells were 

harvested for flow cytometry analysis and RNA extraction. 

 

2.3.7. Flow Cytometry Analysis of Cancer Stem Cells Derived from Mesothelioma 

Cell Line Mero-25. 

Cancer stem cells (CSC) were confirmed by flow cytometry analysis of viable cells using 

an Aldefluor kit (Stem Cell Technologies). Cancer stem cells derived from the mesothelioma 

cell line Mero-25 were grown to 80% confluence in DMEM/F-12 medium All the cells were 

transferred to a 1.5 ml tube and centrifuged at 1300 xg for 5 min. The supernatant was 

discarded and 100 µl of 1x trypsin-EDTA was added and incubated for one minute. Two 

hundered microlitres of DMEM/F12 medium was added, pipetted up and down and the cells 

centrifuged at 1200 xg for 5 min, after which the supernatant was discarded. Following this, 

400 µl of DMEM/F12 medium was added, pipetted up and down with a syringe to separate 

the cells.  Then, a “test” and a “control” tube for each sample to be tested were labelled and 

400 µl of the cell suspension was placed into each of the sample tube (test). Five microlitres 

of Aldefluor DEAB reagent was added to the control tube and recapped immediately. 5 µl 

of the activated Aldefluor reagent was added into the tube containing 400 µl of cell 

suspension.  200 µl of the mixture was immediately added to the DEAB tube (control). The 

test and control sample were incubated for 60 min at 37°C. After incubation, all of the tubes 

were centrifuged for 5 min at 250 xg and the supernatant was discarded. The cell pellet was 
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re-suspended in 0.5 ml of Aldefluor Assay Buffer and kept on ice. The cells were analysed 

for viable cancer stem cells following mixing with Adefluor. Analysis of derived cancer 

stem cells was carried out using a FACSCalibur flow cytometer (BD Biosciences). 

 

2.4. Protein Analysis 

2.4.1. Protein extraction and Separation by SDS-PAGE 

Medulloblastoma DAOY cells (Normal & cisplatin-resistant) were grown in T25 flasks up 

to 80% confluence, as previously described in Section 2.3.2. Each cell line was lysed directly 

in flasks with ice-cold RIPA buffer containing 50 mM Tris-HCl pH8.0, 150 mM sodium 

chloride, 1% igepal CA-630 (NP-40), 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulfate (SDS); and protease inhibitor cocktail (Invitrogen, UK). Protein concentrations were 

determined using the Bradford method (Bradford, 1976), and lysates were snap-frozen in 

liquid nitrogen before storage at -80oC. Cell lysates were thawed on ice and mixed at the 

ratio of 1:1 with Laemmli buffer containing 4% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v) 

2-mercaptoethanol, 0.004% (w/v) bromophenol blue, and 0.125 M Tris-HCl pH6.8. The 

mixtures containing 15 µg, 30 µg or 60 µg of total protein were heated for 5 min at 95oC 

before separating the proteins through a 10% SDS-polyacrylamide gel (see Table 2.11) at a 

constant voltage of 80V for 30 min, then at 120V for 1 h.  

Table 2.11. Composition of SDS-polyacrylamide gels. 

Percentage gels 10% 5% 

 Resolving Stacking 

dH2O 10.94 ml 6.73 ml 

30% acrylamide 9.33 ml 1.67 ml 

1.5 M Tris-HCl (pH 8.8) 7 ml - 

0.5 M  

Tris-HCl (pH 6.8) 

- 1.25 ml 

0.2 M EDTA 280 µl 100 µl 

10% SDS 280 µl 100 µl 

10% APS 157 µl 157 µl 

TEMED 17 µl 17 µl 
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2.4.2. Western blotting  

Following separation by SDS-PAGE, the proteins were transferred onto PVDF membranes 

at constant current of 400 mA for two hours, using ice-cold 1x western transfer buffer 

(WTB). The membranes were subsequently blocked for 1 h in blocking buffer (5% non-fat 

milk in PBS-Tween-20). This was followed by overnight incubation at 4oC with primary 

antibody specific for the target protein under investigation in 2.5% non-fat milk in PBS-

Tween-20 at the dilution indicated in the manufacturer’s data sheet. The blots were then 

washed three times with 0.1% PBS-Tween for ten-minute intervals, before further 

incubation with secondary antibody - horseradish peroxidase (HRP) conjugate inantibody 

dilution buffer for 1 h at room temperature, at the dilution specified in the manufacturer’s 

data sheet. Afterwards, the blots were washed three times for 10 min with PBS-Tween-20. 

Finally, the membrane was washed in PBS for 5 min to remove excess Tween-20 and placed 

on a paper towel to drain off excess liquid. Then, the chemiluminescence substrate reagent 

(SuperSignal West Femto Maximum Sensitivity Substrate, Thermos Scientific) was 

prepared with 500 l of each femto reagent and poured over the membrane. Finally, the 

membrane was incubated on a shaker for 1 – 2 min at room temperature and the protein 

bands were viewed on a G-box image analyser (Syngene). 
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RESULTS 

3.1. Preliminary experiments 

To ensure that the RNA extraction procedures and RT-PCR reactions were robust and 

working as expected, preliminary experiments were carried out on two cancer cell lines, 

HCT116, a human colorectal carcinoma cell line and Mero25, a mesothelioma - derived cell 

line. Figure 3.1 shows that the two bands of 28S and 18S rRNA were obtained from both 

cell lines using the Bioline ISOLATE II RNA mini kit. 

 

Figure 3.1 Agarose gel electrophoresis of RNA extracted from HCT116 and Mero25 

Lane H: Hyperladder 1kb; lanes 1, 2 µl; lane 2, 5 µl; lane 3, 7 µl; lane 4, 2 µl; lane 5, 5 

µl; lane 6, 7 µl. 

 

Following this, the PCR primer pairs obtained for each target gene (Table 2.3) were tested 

on cDNA prepared from the two RNA samples. The results are presented in Figure 3.2 - 

Figure 3.3.  
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HCT116 Mero25 
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Figure 3.2 Agarose gel electrophoresis of RT-PCR products of Gapdh, Ercc1, Ogg1, 

Nthl1 and Mlh1 genes for HCT116 and Mero-25 cell lines. 

Lane 1, Gapdh; lane 2, Ercc1 (884S); lane 3, Ercc1 (994S); lane 4, Ogg1 (1020S); lane 5, 

Ogg1 (1258S); lane 6, Nthl1 (349S); lane 7, Nthl1 (679S); lane 8, Mlh1 (1814S); lane 9, 

Mlh1 (2276S); lane 10, Ercc1 (884S); lane 11, Gapdh; lane 12, Ercc1 (994S); lane 13, 

Ogg1 (1020S); lane 14, Ogg1 (1258S); lane 15, Nthl1 (349S); lane 16, Nthl1 (679S); lane 

17, Mlh1 (1814S); lane 18,  Mlh1 (2276). H represents Hyperladder 100bp. 

 

The results of the RT-PCR reactions shown in Figure 3.2 indicate that the majority of gene 

specific primer pairs amplified the target section of cDNA uniquely, resulting in a single 

band in each lane. However, there were exceptions and no PCR product were obtained 

from primer pairs 994S for Ercc1 (lanes 3 and 12), 349S for Nthl1 (lanes 6 and 15) or 

1814S for Mlh1 (lanes 8 and 17) in cDNA prepared from either cell line. Thus, where more 

than one set of primers for a particular gene was used, the primer pair showing the more 

robust activity was chosen. 

Figure 3.3 shows a similar result for the three Neil genes, although this time there is a 

marked difference in expression levels between the two cell lines, with the exception of 

Gapdh (lanes 1 and 7) and Neil3 (lanes 6 and 12) using this qualitative method. 

HCT11
6

Mero-
25

HCT116 Mero25 
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Figure 3.3 Agarose gel electrophoresis of RT-PCR products of Gapdh, Neil1, Neil2 

and Neil3 for HCT116 and Mero-25 cells. 

Lanes 1 – 6, HCT116 and lanes 7-13, Mero-25. Lane 1, Gapdh; lane 2, Neil1 (1079S); lane 

3, Neil1 (1071S); lane 4, Neil2 (631S); lane 5, Neil2 (1291S); lane 6, Neil3 (1651S); lane7, 

Gapdh; lane 8, Neil1 (1079S); lane 9, Neil1 (1071S); lane 10, Neil2 (631S); lane 11, Neil2 

(1291S); lane 12, Neil3 (1651S); lane 13, Neil2 (631S). H: Hyperladder 100 bp. 

 

Following these preliminary experiments to gain experience in working with RNA and to 

confirm the specificity and suitability of the PCR primers, the project could now focus on 

the expression of the selected DNA repair genes in CRC tumour samples (Section 3.2), the 

change in expression of a subset of these genes in response to cisplatin treatment in 

medulloblastoma cells (Section 3.4) and an analysis of gene expression in putative cancer 

stem cells derived from a mesothelioma cell line (Section 3.5) and in human ES cells 

(Section 3.6). 

 

 

 

 

HCT116 Mero-25 
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3.1.1. Colon tissue samples 

In this project, colon tissue samples were obtained from two sources. The first twelve 

samples included matched control tissue (Table 3.1) and were obtained from the laboratory 

of Dr Andrew Povey (University of Manchester, UK), where they had been kept in long-

term storage at -80°C. Despite many attempts and change of protocols the total RNA 

obtained from these samples rarely produced the characteristic double rRNA bands that had 

been expected, indicating that the rRNA, and by inference, the mRNA may have been 

degraded (Figure 3.4). While RT-PCR results were still obtained for these samples and a 

control gene (Gapdh) consistently produced similar results across all samples, it was decided 

to obtain fresh samples from the biobank at the Central Manchester University Hospital NHS 

Foundation Trust and these are listed in Table 3.2. These samples also had the benefit of 

having some basic patient information that may have been useful. However, again, despite 

all efforts to avoid RNA degradation, the two rRNA bands were rarely observed in the total 

RNA samples extracted from these tumour samples (Figure 3.5). The analysis of the gene 

expression of selected DNA repair genes from these samples is described in the following 

sections. 

           Table 3.1 Nomenclature of matched tumour and normal colon samples 

Sample 

Number 

 

Colon Tumour 

Samples 

Matched Normal 

Colon Tissue 

Samples 

Designation 

1 2T 1N Pair 1 

2 4T 3N Pair 2 

3 6T 5N Pair 3 

4 8T 7N Pair 4 

5 10T 10N Pair 5 

6 11T 11N Pair 6 

7 12T 12N Pair 7 

8 13T 13N Pair 8 

9 33T 33N Pair 9 

10 34T 34N Pair 10 

11 35T 35N Pair 11 

12 36T 36N Pair 12 

 



94 
 

 

Table 3.2 Description of the sixteen biobank colon tissue samples 

Sample 

Number 

 

Tissue ID Tissue Sample 

Site 

Gender Age Tissue 

Status 

1 1538 Colon Male 72 Normal 

2 1545 Colon Female 63 Normal 

3 1573 Colon Female 70 Normal 

4 1573T Colon Female 70 Tumour 

5 1580 Not Specified Male 69 Normal 

6 1581 Not Specified Female 62 Normal 

7 1581T Not Specified Female 62 Tumour 

8 1597 Caecum Male 54 Normal 

9 1597T Caecum Male 54 Tumour 

10 1604 Colon Female 79 Normal 

11 1604T Colon Female 79 Tumour 

12 1610 Caecum Male 59 Tumour 

13 1620 Colon Male 65 Tumour 

14 1626 Colon Female 73 Tumour 

15 1627 Colon Male 64 Tumour 

16 1630 Colon Male 64 Tumour 

 

3.1.1.1. Assessment of Yield and Integrity of RNA Extracted from Samples. 

To establish the quality of the RNA purified from the different colon cancer tissue samples 

and their corresponding normal colon tissues, agarose gel electrophoresis was conducted. 

For total RNA extracted from human cells, it was expected that the gels should show two 

distinct bands representing 18S and 28S rRNA. However, as can be seen in Figure 3.4, the 

extracted RNA was often degraded and the rRNA bands were not observed, thus Figure 

3.4 typifies the banding patterns of RNA extracted from the colon cancer and normal colon 

tissues, with the thickness of the bands serving as indicators of RNA yield. A DNA ladder 

was included in all gels solely to confirm that the electrophoresis had occurred correctly. 
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Figure 3.4 Agarose gel electrophoresis of RNA extracted from different colon tumour 

tissue samples and matched normal colon tissue.  

Lane H, Hyperladder 1kb; lane 1N, normal colon tissue from sample 1N; lane 2T, colon 

tumour tissue from sample 2T; lane 3N, normal colon tissue from sample 3N; lane 4T, 

colon tumour tissue from sample 4T; lane 5N, normal colon tissue from sample 5N; lane 

6T colon tumour tissue from sample 6T.  

 

Following many unsuccessful attempts to reduce RNA degradation, sixteen tissue samples 

were obtained from a biobank as described in Section 3.1.1. The source of these sixteen 

samples and available patient information is given in Table 3.2. 
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Figure 3.5. Agarose gel electrophoresis of RNA extracted from the 16 colon tissue 

samples obtained from the biobank (see Table 3.2 for full details). 

A: Lane H,  Hyperladder 1kb; lane 1, Sample 1538; lane 2, Sample 1545; lane 3, Sample 

1604T; lane 4, Sample 1610. B: Lane H, Hyperladder 1kb; lane 1, Sample 1573; lane 2, 

Sample 1573T; lane 3, Sample 1581; lane 4, Sample 1620. C: Lane H, Hyperladder 1kb; 

lane 1, Sample 1580; lane 2, Sample 1581T; lane 3, Sample 1597; lane 4, Sample 1626; lane 

5, Sample 1627; lane 6, Sample 1630. D: Lane H, Hyperladder 1kb; lane 1, Sample 1597T; 

lane 2, Sample 1604. 

 

The results presented in Figure 3.5 again indicate ribosomal RNA degradation in the 

majority of samples, only lane 2 in Figure 3.5A  (sample 1545) and lane 2 in Figure 3.5D 

(sample 1604) showing the expected 28S and 18S rRNA bands. However, there is no 

evidence of a high molecular band in any of the samples that would indicate genomic DNA 

contamination and therefore the DNase step in the RNA extraction procedure appears to 

A 

D C 

B 
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have been successful. As shown in subsequent sections, the lack of intact rRNA did not 

prevent the amplification of specific mRNA sequences from any of the samples, although it 

is acknowledged that there is no way of knowing the effect of the observed rRNA 

degradation on the mRNA component and it is assumed that if degradation occurred, it 

affected all mRNA molecules equally. 

 

3.2. Reverse Transcripion-PCR 

3.2.1. Primer Specificity 

RT-PCR was carried out on cDNA from tissue samples using specific primers of the target 

genes. To confirm the primer specificity and ensure that genes of interest only were 

amplified, agarose gel electrophoresis of the RT-PCR products was conducted, with 

particular attention given to ensuring a unique product of the correct size was obtained. Thus, 

Figure 3.6 is a representative gel from the matched tissue samples listed in Table 3.1, while 

Figure 3.7 to Figure 3.13 show the results for the different genes analysed from each of the 

RNA samples from the different CRC tissue samples listed in Table 3.2. 

 

 

Figure 3.6. Agarose gel electrophoresis of RT-PCR products corresponding to Gapdh 

and Neil3 from tissue samples 10N and 10T. 

Lane H, Hyperladder 100bp; lane 1, Gapdh from sample 10N; lane 2, Neil3 from sample 

10N; lane 3, Gapdh from sample 10T; lane 4, Neil3 from sample 10T.  
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Figure 3.6 shows that a single band of the expected size was obtained when PCR primers 

specific for Gapdh (127 bp) and Neil3 (147 bp) were used. There appears to be little 

observable difference between the RNA sample extracted for the normal tissue (lanes 2 and 

3) and the RNA extracted from the CRC sample (lanes 3 and 4) and for these tissues, and 

in the semi-quantitative nature of the assay, Neil3 expression was less than that of Gapdh. 

 

 

Figure 3.7. Agarose gel electrophoresis of RT-PCR products of tissue samples 1597T 

and 1604. 

Lane H, Hyperladder 100 bp; lanes 1 & 4, Gapdh (127 bp); lanes 2 & 5, Neil3 (147 bp); 

lanes 3 & 6, Ercc1 (146 bp).  

Figure 3.7 is the first of seven gels showing the RT-PCR results from the sixteen biobank 

tissue samples listed in Table 3.2. Sample 1597T was obtained from the tumour of a 54 

year-old male, while 1604 was from a 79 year-old female. The results of the PCR from 

each sample look quite different, with all bands with the exception of Neil3 much stronger 

in 1604. It is worth noting that the Gapdh band is much stronger in 1604 and, if 

reproducible, will have a bearing on the qPCR results, where the amount of PCR product 

was compared with that of Gapdh. However, all reactions again show just a single band of 

the correct size indicating that the PCR primers can be used for qPCR. 
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Figure 3.8. Agarose gel electrophoresis of RT-PCR products of tissue samples 1538 & 

1545 for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

 

Lane H, Hyperladder 100 bp; lanes 1 & 6, Gapdh); lanes 2 & 7, Neil1; lanes 3 & 8, Neil3; 

lanes 4 & 9, Ercc1; lanes 5 & 10, Nthl1. 

In Figure 3.8, cDNA prepared from RNA extracted from samples 1538 and 1545 were 

subjected to RT-PCR for Neil1 (212 bp), Neil3 (147 bp), Ercc1 (146 bp) and Nthl1 (165 bp) 

in addition to Gapdh (127 bp). Sample 1538 was obtained from a 72 year-old male and 

sample 1545 from a 63 year-old female. Again a single band was obtained from each 

sample where the PCR produced a band and only the reactions for Neil1 failed to yield a 

product in either sample (Figure 3.8, lanes 2 and 7). Again, the intensity of the band for 

Gapdh varies between the samples (lanes 1 and 6). Only Neil3 is at a similar intensity in 

both samples (lanes 3 and 8). Ercc1 appears more highly expressed in sample 1545 (lanes 

4 and 9) and Nthl1 is also more pronounced in 1545 (lanes 5 and 10). 
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Figure 3.9. Agarose gel electrophoresis of RT-PCR products of tissue samples 1604T 

& 1610 for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

Lane H, Hyperladder 100 bp; lanes 1 & 6, Gapdh; lanes 2 & 7, Neil1; lanes 3 & 8, Neil3; 

lanes 4 & 9, Ercc1; lanes 5 & 10, Nthl1. 

 

In Figure 3.9, cDNA prepared from RNA extracted from samples 1604T and 1610 were 

subjected to RT-PCR for Neil1, Neil3, Ercc1 and Nthl1 in addition to Gapdh. Sample 1604T 

was obtained from a 79 year-old female and sample 1610 from a 59 year-old male. The 

results are similar to those presented in Figure 3.8 in that no band was obtained for Neil1 

(lanes 2 and 7) and that the intensity of the band for Gapdh is different between the two 

samples (lanes 1 and 6). Neil3 is again present as a high intensity band in both samples and 

while Ercc1 is only faintly visible in 1604T, it is more intense in 1610. However, no band 

was obtained for Nthl1 from either tumour sample (lanes 5 and 10). 
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Figure 3.10. Agarose gel electrophoresis of RT-PCR products of tissue samples 1573 

& 1573T for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

 

Lane H, Hyperladder 100 bp; lanes 1 & 6, Gapdh; lanes 2 & 7, Neil1; lanes 3 & 8, Neil3; 

lanes 4 & 9, Ercc1; lanes 5 & 10, Nthl1. 

 

In Figure 3.10, cDNA prepared from RNA extracted from samples 1573 and 1573T were 

subjected to RT-PCR for Neil1, Neil3, Ercc1 and Nthl1 in addition to Gapdh. Sample 1573 

was obtained from the colon of a 70 year-old female and sample 1573T also from the colon 

of a 70 year-old female. The results again indicate high expression levels of Neil3 (lanes 3 

and 8) and similar levels of expression of the control gene, Gapdh (lanes 1 and 6). While 

Neil1 is again absent in sample 1573 (lane 2), a band is observed for Neil1 in sample 1573T 

(lane 7). Conversely, Ercc1 expression is observed in sample 1573 (lane 5) but not in 1573T 

(lane 10). Expression of Nthl1 was not observed in either sample (lanes 5 and 10). 

1573 1573T 
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Figure 3.11. Agarose gel electrophoresis of RT-PCR products of tissue samples 1581 

and 1620 for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

 

Lane H, Hyperladder 100 bp; lanes 1 & 6, Gapdh; lanes 2 & 7, Neil1; lanes 3 & 8, Neil 3; 

lane 4 & 9, Ercc1; lanes 5 & 10, Nthl1. 

  

In Figure 3.11, cDNA prepared from RNA extracted from samples 1581 and 1620 were 

subjected to RT-PCR for Neil1, Neil3, Ercc1 and Nthl1 in addition to Gapdh. Sample 1581 

was obtained from a 62 year-old female and sample 1620 from the colon of a 65 year-old 

male. In both these samples, Gapdh is an intense band, indicating that there was nothing in 

the PCR mixture inhibiting the reaction (lanes 1 and 6). However, the only other intense 

band observed is that for Nthl1 in 1620 (lane 9). Neil3 is again present in both samples but 

the bands are much reduced in intensity with respect to Gapdh as seen previously (lanes 3 

and 8). No bands for Neil1 or Nthl1 were observed in either sample. 



103 
 

 

Figure 3.12. Agarose gel electrophoresis of RT-PCR products of tissue samples 1580, 

1581T & 1597 for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

 

Lane H, Hyperladder 100 bp; lanes 1, 6 & 11, Gapdh; lanes 2, 7 & 12, Neil1; lanes 3, 8 & 

13, Neil3; lanes 4, 9 & 14, Ercc1; lanes 5, 10 & 15, Nthl1. 

 

In Figure 3.12, cDNA prepared from RNA extracted from samples 1580, 1581T and 1597 

were subjected to RT-PCR for Neil1, Neil3, Ercc1 and Nthl1 in addition to Gapdh. Sample 

1580 was obtained from a 69 year-old male, sample 1581T from a 62 year-old female and 

sample 1597 from the caecum of a 54 year-old male. The results are strikingly similar for 

all three samples: Gapdh, Neil3 and Ercc1 PCR products all show a similar pattern of 

intensity while no bands arre observed for Neil1 or Nthl1. 
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Figure 3.13. Agarose gel electrophoresis of RT-PCR products of tissue samples 1626, 

1627 & 1630 for Gapdh, Neil1, Neil3, Ercc1 and Nthl1. 

 

Lane H, Hyperladder 100bp; lanes 1, 6 & 11, Gapdh; lanes 2, 7 & 12, Neil1; lanes 3, 8 & 

13, Neil3; lanes 4, 9 & 14, Ercc1; lanes 5, 10 & 15, Nthl1. 

In Figure 3.13, cDNA prepared from RNA extracted from samples 1626, 1627 and 1630 

were subjected to RT-PCR for Neil1, Neil3, Ercc1 and Nthl1 in addition to Gapdh. Sample 

1626 was obtained from the colon of a 73 year-old female, sample 1627 from a 64 year-

old male and sample 1630 from the colon of a 64 year-old male. As in Figure 3.13, the 

pattern of bands is similar across all the tumour samples with Gapdh, Neil3 and Ercc1 

expressed in all three tumour samples. A faint band for Neil1 is observed in sample 1630 

(lane 12), but Nthl1 is absent from all tumour samples (lanes 5, 10, 15). 

 

3.2.2. Quantitative PCR 

Quantitative PCR (qPCR) is one of the most powerful technologies in molecular biology. 

It is a fluorescent based technique used to measure the level of the mRNA of target genes 

with the aid of fluorescent dye such as SYBR Green 1. By plotting fluorescence against the 

cycle number, an amplification plot that represents the accumulation of product over the 

duration of the PCR reaction was generated. Appropriate normalization is required in qPCR 

to sort out experimental errors that may arise from extraction of RNA and generation of 
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cDNA. Gapdh was used as a reference gene, as it is assumed that its expression level is 

constant in cells. Each run of qPCR has a standard curve that was generated through serial 

dilution of the cDNA. The melting curves are indicators of the purity and specificity of 

primers for target genes as shown in Figure 3.14 to Figure 3.17. 

 

Figure 3.14. Analysis of Gapdh expression in tissue sample 10T. 

 

In Figure 3.14A, each coloured line represents a single PCR reaction of a 10-fold serial 

dilution of the cDNA. The threshold cycle (Ct) was set on the graph at a point where the 

Ct and the log quantity became linear. In this example, the sample reaches the Ct value at 

22 cycles (Figure 3.14A). The linear regression curve (the standard curve for use with 

Gapdh) represents the relation between the Ct cycle and the log quantity and r2 showing a 
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value of 0.768 (Figure 3.14B). The melting curve with a single peak shows that a single 

product is amplified (Figure 3.14C).  

 

Figure 3.15. Analysis of Neil3 expression in tissue sample 10T. 

 

Figure 3.15A, each coloured line represents a single PCR reaction of a 10-fold serial 

dilution of the cDNA. The threshold cycle (Ct) was set on the graph at a point where the 

Ct and the log quantity became linear. In this example, the sample reaches the Ct value at 

26 cycles (Figure 3.15A). The linear regression curve (the standard curve for use with 

Gapdh) represents the relation between the Ct cycle and the log quantity and r2 showing a 

value of 0.645 (Figure 3.15B). The melting curve with a single peak indicatess that a single 
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product is amplified (Figure 3.15C). 

 

 

 

Figure 3.16. Analysis of Ercc1 expression in tissue sample 13N. 

 

In Figure 3.16A each coloured line represents a single PCR reaction of a 10-fold serial 

dilution of the cDNA.The threshold cycle (Ct) was set on the graph at a point where the Ct 

and the log quantity became linear. In this example, the sample reaches the Ct value at 26 

cycles (Figure 3.16A). The linear regression curve (the standard curve for use with Gapdh) 

represents the relation between the Ct cycle and the log quantity and r2 showing a value of 

0.834 (Figure 3.16B). The melting curve with a single peak shows that a single product is 

amplified (Figure 3.16C). 



108 
 

 

 

Figure 3.17. Analysis of Mlh1 expression in tissue sample 34T. 

 

In Figure 3.17A each coloured line represents a single PCR reaction of a 10-fold serial 

dilution of the cDNA. The threshold cycle (Ct) was set on the graph at a point where the 

Ct and the log quantity became linear. In this example, the sample reaches the Ct value at 

26 cycles (Figure 3.17B). The linear regression curve (the standard curve for use with 

Gapdh) represents the relation between the Ct cycle and the log quantity and r2 showing a 

value of 0.921 (Figure 3.17B). The melting curve with a single peak indicates that a single 

product is amplified (Figure 3.17C). 
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3.2.2.1.  Analysis of the Expression Patterns of Selected DNA Repair Genes in 

Different Colon Cancer Tissues Relative to Normal Colon Tissue. 

Following the RT-PCR experiments detailed in Figure 3.6 to Figure 3.13, which confirmed 

that one band of the correct length was obtained for each primer pair, and the control 

experiments detailed in Figure 3.14 to Figure 3.17, qPCR was carried out, firstly to compare 

gene expression between CRC tumour and matched normal colon tissue (Figure 3.18 to 

Figure 3.19; Table 3.3) and then to compare expression of the selected DNA repair genes 

against that of the control Gapdh (Figure 3.20 to Figure 3.26; Table 3.5). Initially, the 

expression patterns of seven different DNA repair genes, Neil1, Neil2, Neil3, Ogg1, Nthl1, 

Ercc1 and Mlh1 were quantified with Gapdh employed as the housekeeping gene (control; 

Figure 3.18), however, this was reduced due to practical considerations to just three CRC 

relevant target genes from three different DNA repair pathways, BER, NER and MMR: 

Neil3, Ercc1 and Mlh1 (Figure 3.19).  

Results are presented as bar graphs and summarized in two tables, where the fold difference 

in expression is clearly assigned. As the range of fold-increase in gene expression varied 

widely, and in order to show the results in a meaningful way, the y-axis range has also been 

varied between graphs, as it was not possible to show all results using just one axis (Figure 

3.20 to Figure 3.22). Furthermore, the results obtained for the sixteen CRC samples are also 

shown based on the target gene of interest in order to give a better visual appreciation of the 

spread of results obtained (Figure 3.23 to Figure 3.26). 
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Figure 3.18. Gene expression levels of six DNA repair genes in colon tumour tissue 

compared to matched normal tissue 

 

Figure 3.18 shows the gene expression of the DNA glycosylase genes, Neil1, Neil2, Neil3, 

Ogg1 and Nthl1 and the NER gene Ercc1 in colon tumour samples when compared with 

matched normal colon tissue. Overall, there is no clear pattern of expression in the different 

tumour samples, with different genes being most highly expressed in each of the four paired 

samples. For example, in tissue sample pair 1, the expression of Ogg1 was the only gene to 

be induced in the tumour sample with a 14-fold increase. In the other tumour samples 

increased expression of one or more genes was more modest. In tissue pair 2, the expression 

of Neil3 and Ogg1 were induced 2.3- and 3.3-fold respectively, while in tissue pair 3, Neil2 

(4.3-fold) and Ercc1 (3.3-fold) were induced in the tumour sample. In tissue pair 4, Neil2 

(4.3-fold) and Nthl1 (3.0-fold) expression was induced, with Neil1 and Ogg1 just below the 

2.0-fold induction level. 

Following analysis of these results it was decided to focus on the expression of Ercc1, which 

is thought to be a contributing factor in the resistance of colon tumours to oxaliplatin 
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(Sheetharam et al., 2010) and Neil3, as there is increasing evidence from our laboratory and 

others that it too may be involved in the repair of ICLs and therefore resistance to oxaliplatin 

treatment (Martin et al., 2017; Semlow et al., 2016). Finally, the expression of the MMR 

gene Mlh1 was also studied because a lack of MMR and Mlh1 in particular, is often 

associated with CRC (Kheirelseid et al., 2013). 
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Figure 3.19 Gene expression levels of three DNA repair genes in colon tumour tissue 

compared to matched normal tissue 

 

Similar to the results obtained in Figure 3.18, Figure 3.19 shows no clear pattern of gene 

expression in the eight tissue pairs analysed. Neil3 was induced in only two of the sample 

pairs (Pair 11, 8.8-fold; Pair 12 2.7-fold), while expression of Ercc1 was induced in four 

of the eight samples, ranging from 2.1-fold (Pair 12) to 4.3-fold (Pair 9). Mlh1 also showed 

highly variable expression levels with an induction of 27.8-fold observed in Pair 11. None 

of the genes analysed were induced in tissue pairs 8 and 10. 

As no obvious pattern was emerging form these samples, it was decided to obtain fresh 

samples from a biobank in Manchester. For this study, the expression of genes encoding 

proteins likely to be involved in the repair of ICLs (Neil, Neil3, and Ercc1) was studied, 

along with Nthl1, which encodes a DNA glycosylase, the lack of which is known to be a 

risk factor in early onset CRC (Weren et al., 2018). 

 

 

 

 

 

0

5

10

15

20

25

30

Neil3 Ercc1 Mlh1Fo
ld

 C
h

an
ge

 G
e

n
e

 E
xp

re
ss

io
n

Gene Name

Tissue Sample Pair 11

0.0

1.0

2.0

3.0

4.0

5.0

Neil3 Ercc1 Mlh1Fo
ld

 C
h

an
ge

 G
e

n
e

 E
xp

re
ss

io
n

Gene Name

Tissue Sample Pair 12



113 
 

Table 3.3. Summary of the expression patterns of selected DNA repair genes in colon 

tumours versus matched normal colon tissue. 

Samples ≤ 1-fold 1-2 fold 2-10 fold ≥ 10-fold 

Pair 1 Neil1, Neil2, Neil3, Ercc1 & 

Nthl1 

  Ogg1 

Pair 2 Neil1, Neil 2, Ercc1 & Nthl1  Neil3 & Ogg1  

Pair 3 Neil1, Neil3, Ogg1 & Nthl1  Neil2 & Ercc1  

Pair 4 Neil3 & Ercc1 Neil1 & 

Ogg1 

Neil2 & Nthl1  

Pair 5 Neil3 & Mlh1  Ercc1  

Pair 6 Neil3 & Ercc1  Mlh1  

Pair 7 Neil3, Ercc1 & Mlh1    

Pair 8 Neil3, Ercc1 & Mlh1    

Pair 9 Neil3 & Mlh1  Ercc1  

Pair 10 Neil3, Ercc1 & Mlh1    

Pair 11   Neil3 & Ercc1 Mlh1 

Pair 12 Mlh1  Neil3 & Ercc1  
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3.2.3.  Analysis of the Expression Patterns of DNA Repair Genes in Different Colon 

Tumour Samples Relative to Gapdh. 

   

   

Figure 3.20. Gene expression levels of four DNA repair genes in biobank colon 

tumour tissue compared to normal colon tissue samples 

 

Table 3.4. Summary of the expression patterns of four selected DNA repair genes in 

colon tumours versus matched normal colon tissue (Biobank samples). 

Samples ≤ 1-fold 1-2 fold 2-10 fold ≥ 10 fold 

Pair 1573 Neil1, Neil3 & 

Nthl1 

  Ercc1 

Pair 1581 Neil3 Neil1 Ercc1 Nthl1 

Pair 1597 Neil1 & Nthl1 Neil3 Ercc1  

Pair 1604 Neil1, Neil3, 

Ercc1 & Nthl1 

   

 

Figure 3.20 and Table 3.4 shows the expression of the DNA repair genes, Neil1, Neil3, Ercc1 

and Nthl1 in colon tumour samples when compared with matched normal colon tissues. It 

should be noted that tissue sample pair 1581 exhibited abnormally high levels of Nthl1 (a 

3436-fold increase) that masks the behaviour of the other genes tested. The results show that 
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the expression of Neil1 did not change substantially between normal and tumour samples, 

with the highest fold difference occurring in tissue pair 1581 (1.3 fold). Similarly, the change 

in Neil3 expression was less than 2-fold in all tissue pairs (0.03 fold in pair 1581). However, 

higher levels of Ercc1 were observed in three out of the four tissue pairs, with a 3.4-fold 

increase being observed for pair 1581, compared with 15.8-fold for 1573 and 4.4-fold for 

pair 1597. With the exception of pair 1581, the expression of Nthl1 did not change 

substantially in the tumour samples. As no obvious pattern is evident, and the scale of fold 

change also differs markedly between samples, Figure 3.23 to Figure 3.26 present the data 

by gene and also where necessary using different scales on the y-axis to present the data 

more clearly. 

   

 

Figure 3.21. Gene expression levels of four DNA repair genes in biobank normal 

colon tissue samples. 

 

In Figure 3.21, three normal colon tissues were examined for the expression of the DNA 

repair genes. Neil1, Neil3, Ercc1 and Nthl1 in comparison with Gapdh. The results show 

that most of the genes were not highly expressed in comparison with Gapdh in the three 
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normal colon tissue samples. The exception was sample 1580 that showed high expression 

of Nthl1 (28-fold). Low level of Ercc1 was also observed in majority of the samples, the 

exception being sample 1580, where expression was 6-fold greater than that of Gapdh. 
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Figure 3.22. Gene expression levels of four DNA repair genes in biobank  colon 

tumour tissue samples. 
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In Figure 3.22, five colon tumour tissues were examined for the expression of the DNA 

repair genes, Neil1, Neil3, Ercc1 and Nthl1 in comparison with Gapdh. The results show 

that, similar to the normal tissue samples, most of the genes were not highly expressed 

relative to Gapdh in most of the five colon tumour samples. The exception is Nthl1, which 

was highly expressed (more than 4-fold) in four out of the five tumour samples and 

abnormally highly expressed in sample 1630. 

 

 

 

 

Figure 3.23. Gene expression levels of Neil1 in sixteen colon tissue samples. 

  Normal tissue samples are shown in blue and tumour samples in red. 

In Figure 3.23, the sixteen colon tissue samples were examined for the comparative 

expression of the DNA repair gene Neil1. In this instance, all of the samples showed higher 

expression levels of Neil1 when compared with Gapdh. However, the range of gene 
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expression varied from 0.0006-fold in sample 1620 (tumour) to 6.2-fold in sample 1573 

(normal). 

 

 

 

Figure 3.24. Gene expression levels of Neil3 in sixteen colon tissue samples. 

  Normal tissue samples are shown in blue and tumour samples in red. 

Figure 3.24 is a representation of the expression of Neil3 DNA repair gene for the sixteen 

colon tissue samples following qPCR analysis. Evidently, the expression of Neil3 gene were 

very low in virtually all the samples except samples 1573 (normal), 1581 (normal) and 1630 

(tumour; 4.3-fold, 36.4-fold and 29.1-fold respectively) which showed high expression of 

Neil3 relative to Gapdh. Clearly there seems to be no substantial increase in the gene 

expression of Neil3 in the colon tumour samples compared with the normal colon tissue. 
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Figure 3.25. Gene expression levels of Ercc1 in sixteen colon tissue samples. 

  Normal tissue samples are shown in blue and tumour samples in red. 

 

The gene expression of Ercc1 was assessed in the sixteen colon tissue samples and is shown 

in Figure 3.25A & B. In all samples, the expression of Ercc1 was higher than that of Gapdh, 

however Figure 3.25A indicates that in ten of the samples the level of expression was less 

than 1-fold greater than Gapdh, and in two others (1597T and 1604), just over one-fold 

greater than Gapdh. On the other hand, Figure 3.25B shows that three samples showed 

relatively high (3 – 6-fold) levels of Ercc1 expression, while one (1573T) had abnormally 

high levels of expression (84-fold). Interestingly, the matched normal colon tissue sample 

of the latter, 1573, had a high expression basal level of Ercc1 (5.3-fold over Gapdh) 
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indicating that expression levels of Nthl1 in this patient were elevated compared with the 

majority of patient samples. 

 

 

Figure 3.26. Gene expression levels of Nthl1 in sixteen colon tissue samples. 

  Normal tissue samples are shown in blue and tumour samples in red. 

 

In Figure 3.26, sixteen colon tissue samples were examined for the comparative expression 

of the DNA damage repair gene, Nthl1. Again, gene expression of Nthl1 is very 

heterogeneous across samples and, with the exception of 1630 (tumour), higher expression 

levels are observed in both normal and tumour samples. 

 

The gene expression data for the sixteen colon tissue samples is summarized in Table 3.5. 

From Table 3.5 it can be seen that the expression of Nthl1 is most frequently highly 

expressed in cells of the colon, but that this can occur in normal cells as well as tumour cells. 
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Similarly, Ercc1 was moderately highly expressed (>2 fold) in four tissue samples, but this 

was split 50:50 between normal and tumour samples. Thus overall, the data in Table 3.5 

does not indicate any increased expression of any of the four DNA repair genes tested in a 

tumour – specific manner. 

Table 3.5 Summary of the expression patterns of DNA repair genes for the sixteen 

colon tissue samples obtained from the biobank. Figures represent fold difference to 

the expression of Gapdh. 

Sample 

No. 

Status ≤1-fold 1-2 fold  2-10 fold ≥ 10 fold 

1538 Normal Neil1, 

Neil3 & 

Ercc1 

   Nthl1 

1545 Normal Neil1, 

Neil3 & 

Ercc1 

Nthl1    

1573 Normal    Neil1, Neil3 

& Ercc1 

Nthl1 

1580 Normal Neil3 Neil1  Ercc1 Nthl1 

1581 Normal Neil1, 

Ercc1 & 

Nthl1 

   Neil3 

1597 Normal Neil1, 

Neil3 & 

Ercc1 

   Nthl1 

1604 Normal Neil1 & 

Neil3 

Ercc1  Nthl1  

1573T Tumour Neil3 Neil1   Ercc1 & 

Nthl1 

1581T Tumour Neil1 & 

Neil3 

  Ercc1 Nthl1 

1597T Tumour Neil1 & 

Neil3 

Ercc1  Nthl1  

1604T Tumour Neil1, 

Neil3 & 

Ercc1 

Nthl1    

1610 Tumour Neil1, 

Neil3 & 

Ercc1 

   Nthl1 

1620 Tumour Neil1, 

Neil3, 

Ercc1 & 

Nthl1 

    

1626 Tumour Neil3 & 

Ercc1 

  Neil1 Nthl1 
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1627 Tumour Neil1, 

Neil3 & 

Ercc1 

  Nthl1  

1630 Tumour Neil1 & 

Ercc1 

   Neil3 & 

Nthl1   

 

3.3. Medulloblastoma: DAOY Normal and Cisplatin-Resistant Cell Lines. 

Medulloblastoma SHH group DAOY cells were grown in cisplatin as described in 

Section 2.3.2 and the surviving resistant cells used in the following experiments and 

compared with the parental cells. 

 

3.4. Cell Viability Assay on Medulloblastoma cell lines. 

To check that the surviving cells were in fact more resistant to cisplatin than the parental 

cell line, MTT assays were carried out to determine the IC50 values of each cell line for 

cisplatin, oxaliplatin and tert-butyl hydroperoxide, a chemical that induces ROS and 

therefore oxidative DNA damage in the cells. Figure 3.27 shows that the cisplatin-treated 

cells were more resistant to the genotoxic effects of cisplatin, with an IC50 value of 11.6 

µM compared with 3.8 µM for the parental cells (Table 3.6). The result of the MTT assay 

with oxaliplatin was not clear cut and no difference between the cell lines was observed ( 

Figure 3.28). Lastly, the cells were treated with an agent known to induce oxidative stress 

within cells. As NEIL3 has DNA glycosylase activity and is known to be active on oxidized 

pyrimidines (Albelazi et al., 2019), it was thought that if NEIL3 was induced in response 

to cisplatin, the cells may also be more resistant to tert-butyl hydroperoxide, an agent 

known to induce oxidative DNA damage in mammalian cells (Duweb, 2015). Figure 3.29 

shows that this hypothesis was correct and that the cisplatin – resistant cells were also more 

resistant to this oxidizing agent (4.9 and 3.9 µM respectively), giving circumstantial 

evidence at least, that the process of repairing cisplatin lesions in DNA also requires 

proteins involved in removing oxidised (base) damage from DNA. 
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Figure 3.27. Growth response of DAOY normal and cisplatin - resistant cell lines to 

cisplatin. 

 

 

Figure 3.28. Growth response of DAOY normal and cisplatin - resistant cell lines to 

oxaliplatin. 

 

In Figures 3.27 and 3.28, the orange line represents the normal, and the blue line the 

cisplatin - resistant DAOY cell line. 
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Figure 3.29. Growth response of DAOY normal and cisplatin - resistant cell lines to 

tert-butyl hydroperoxide. 

 

The orange line represents the normal, and the blue line the cisplatin - resistant DAOY cell 

line. 

 

Table 3.6. IC50 concentrations for three genotoxic agents used to treat the DAOY cell 

lines. 

Drug Normal (µM) Cisplatin - resistant  

(µM) 

oxaliplatin 25.74 27.34 

cisplatin 3.78 11.61 

tert-butyl hydroperoxide 3.97 4.93 

 

3.4.1. Assessment of Yield and Integrity of RNA Extracted from Medulloblastoma 

DAOY normal and cisplatin - resistant cell lines. 

RNA extraction was performed to assess the yield and integrity of RNA extracted from 

DAOY medulloblastoma cell (normal) & cisplatin-resistant DAOY cells. The aim was to 

establish the quality of the RNA purified from the cell lines. The RNA was extracted and 

separated by agarose gel electrophoresis producing two distinct bands of rRNA (Figure 
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3.30). This confirmed the presence of the intact ribosomal RNA bands (28S &18S) for total 

RNA extracted from the cells which indicated that the mRNA was most likely intact in the 

samples. 

                    

                    

Figure 3.30. Agarose gel electrophoresis of RNA extracted from DAOY 

medulloblastoma cells (Normal & cisplatin - resistant). 

 

Lane H, Hyperladder 1kb; lanes 1 - 4, RNA from DAOY cells; lanes 5 & 6, RNA from 

cisplatin - resistant DAOY cells. 

 

3.4.2. Confirmation of Target Product and Primer Specificity. 

RT-PCR was carried out on cDNA from the two medulloblastoma cell lines using specific 

primers for the target genes. To confirm the primer specificity and ensure that genes of 

interest were amplified, agarose gel electrophoresis of the RT-PCR products was conducted, 

with particular attention to the band size and to ensure only a single product was obtained 

(Figure 3.31). 
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Figure 3.31. Agarose gel electrophoresis of RT-PCR products for Gapdh, Neil3 and 

Ercc1 from DAOY normal and cisplatin-resistant cells. 

 

Lane H, Hyperladder 100 bp; G represents Gapdh (127 bp); N3 represents Neil3 (147 

bp); ER represents Ercc1 (146 bp). 

 

Figure 3.31 shows the PCR products for Gapdh, Neil3 and Ercc1 from four different RNA 

samples from DAOY cells and two different samples of RNA from cisplatin – resistant 

DAOY cells. Clearly, both cell lines express all three genes with inter-sample variation 

evident between the different RNA samples. However, as only one band of the correct size 

was obtained for each sample, the primer pairs and cDNA samples could now be assessed 

by qPCR.  
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3.4.3. Expression pattern of selected DNA repair genes in medulloblastoma DAOY 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 shows the fold increase in the expression of Neil1, Neil3 and Ercc1 in the 

cisplatin –resistant DAOY cell lines. As the experiment was only performed once and the 

raw data shows a high level of variability, it was decided to present the data in two froms. 

In Figure 3.32A, the means were taken from all three replicates, the -Ct values obtained, 

and the fold change calculated. This clearly shows a more than 14-fold increase in Ercc1 

expression and only about a 2-fold increase in Neil3. However, when the outlying data was 

removed, and the means calculated from the remaining, consistent, figures, the results were 
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Figure 3.32. Increased gene expression levels of Neil1, Neil3 and Ercc1 in cisplatin 

resistant DAOY cell lines. (A) and (B) are representations of the same data, with 

outlyers removed in (B). 
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substantially different (Figure 3.32B). Now, the increase in gene expression for Ercc1 and 

Neil3 is similar, with both showing about a 4-fold increase over that in the control cells. 

However, in both scenarios, the expression of Neil1 is largely unaffected by the chronic 

cisplatin treatment (Figure 3.32). 

Of course, to be confident in the result, the qPCR experiment would have to be repeated, 

however, the results presented in Figure 3.32B do more reflect the western blot results shown 

below (Figure 3.33 and Figure 3.34), where NEIL3 protein does seem to be increased in the 

cisplatin – resistant cells. 

 

3.4.4. Protein Analyses 

Following separation by SDS-PAGE, the proteins were transferred onto PVDF membranes 

and probed with specific antibodies (Figure 3.33 and Figure 3.34). Figure 3.33 shows a 

western blot that has been probed with antibodies specific for NEIL3 and β-actin, as the 

loading control. It is clear that the amount of NEIL3 is greater in the protein samples 

extracted from the cisplatin treated DAOY cells. This correlates with induction of Neil3 gene 

expression observed in Figure 3.32B. However, an induction of ERCC1 was not observed 

by western blot (Figure 3.34) unlike the gene expression levels observed in Figure 3.32. Due 

to time constraints, these experiments were only performed once, and would need to be 

repeated to obtain a definitive answer.          
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Figure 3.33. Western blot analysis of NEIL3 and β-actin in DAOY normal (DAOY N) 

and cisplatin - resistant (DAOY R) cell lines. 

 

 

             

Figure 3.34. Western blot analysis of ERCC1 in DAOY normal and cisplatin - 

resistant (DAOY R) cell lines. 
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3.5. Mesothelioma 

3.5.1. Assessment of Integrity of RNA Extracted from Mesothelioma Cells. 

The Mero25 cell line was cultured as described in Section 2.3.2 and total RNA extracted 

using the Bioline Isolate II kit as described in Section 2.3.5. Figure 3.35 shows that the two 

rRNA bands were consistently obtained from both the Mero25 and putative Mero25 – 

derived cancer stem cells. 

 

Figure 3.35. Agarose gel electrophoresis of RNA extracted from Mero25 cells. 

 

H, Hyperladder (1kb); M25, Mero25 mesothelioma cell line; CS1, cancer stem cell pellet 

1; CS2, cancer stem cell pellet 2; CS3, cancer stem cell pellet 3. 

 

3.5.2. RT-PCR from Mero25 – derived RNA. 

Following first-strand synthesis, the cDNA was subjected to RT-PCR to detect Gapdh, 

Neil3 and Ercc1 gene expression in the Mero25 cells. Figure 3.36 shows that all three genes 

were detected in these cells, with Gapdh showing the highest level of expression (lane 1). 

Following this, RT-PCR was also carried out on cDNA prepared from RNA extracted from 

the putative Mero25 – derived cancer stem cells. Figure 3.37 shows that a very similar 

patteren of gene expression for these three genes was obtained from three independent cell 

pellets of these cells. Mlh1 was also tested for and the cell lines proved to be positive for 

expression of this MMR gene (Figure 3.37, lanes 4, 8 and 12). 
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Figure 3.36. RT-PCR of Gapdh, Neil3, and Ercc1 from Mero25 mesothelioma cells. 

Lane H, Hyperladder 1kb; lane 1, Gapdh, lane 2, Neil3, lane 3 Ercc1. 

 

Figure 3.37. RT-PCR of putative cancer stem cells from Mero25 mesothelioma cells. 

 

Lane H, Hyperladder 1kb; lanes 1, 5, 9, Gapdh, lanes 2, 6, 10, Neil3; lanes 3, 7, 11, 

Ercc1; lanes 4, 8, 12, Mlh1. 
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As the RT-PCR results showed little or no difference in the gene expression of the target 

genes between the parental Mero25 cells and the Mero25 – derived cancer stem cells, it was 

decided to analyse the putative cancer stem cells for their ‘stem cellness’ based on the 

expression of aldehyde dehydrogenase, a well known cancer stem cell marker (Tomita et 

al., 2016). Using a commercial kit and flow cytometry, the results shown in Figure 3.38 

indicate that while cancer stem cells were produced as described in Section 2.3.7, they still 

made up less than 10% (7.4%) of the cell population being analysed. As it was beyond the 

scope of the project to improve the yield of stem cells in the population, or to attempt to 

purify the aldehyde dehydrogenase – expressing cells from the cell population, it was 

decided not to proceed further with this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38. Flow cytometry analysis of (A) Mero25 and (B) Mero25 - derived cancer 

stem cells. 

 Cells expressing aldehyde dehydrogenase are delimited and shown in blue. 

A 

B 
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3.6. Human Embryonic Stem Cells  

3.6.1. Assessment of RNA Integrity 

An RNA extraction experiment was performed to assess the yield and integrity of RNA 

extracted from human ES cells. The aim was to establish the quality of the RNA purified 

from the cell. The RNA was extracted and analysed by agarose gel electrophoresis. The 

results shown in Figure 3.39 reveal that all extractions produced two distinct bands 

confirming the presence of intact ribosomal RNA (28S and 18S) in the total RNA extracted 

from the cells and indicating that the mRNA component is most likely intact in the samples. 

                

 

Figure 3.39. Agarose gel electrophoresis of RNA extracted from human ES cells. 

 

Lane H, Hyperladder 1kb; lanes 1a - 3b contain RNA purified from three different 

human ES cell pellets, with each sample in duplicate (a and b). 

 

3.6.2. Reverse-transcription PCR. 

RT-PCR was carried out on cDNA prepared from human ES cells using specific primers for 

the target genes. To confirm the primer specificity and ensure that genes of interest were 

amplified, agarose gel electrophoresis of the RT-PCR products was conducted. Five separate 

ES cell pellets were processed and the RT-PCR results for Gapdh, Neil3 and Ercc1 are 

shown in Figure 3.40. The results are extremely consistent and indicate that all three genes 

are expressed by human ES cells. 
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It had been hoped to extend this work to human oocytes as little is known about the DNA 

repair capacity of of these female germ cells (Stringer et al., 2018) and it is becoming 

increasingly important to determine the ability of germ cells to maintain genetic integrity 

and mainitaing fertility as the use of in vitro fertilization continues to rise (IVF more 

popular…., 2019). However, as this was essentially outwith the scope of the project, it was 

decided to focus on the other cancer – related topics described earlier. 

 

          

Figure 3.40. Agarose gel electrophoresis of RT-PCR products of Gapdh, Neil3 and 

Ercc1 from human ES cells. 

 

Lane H, Hyperladder 100 bp; lanes 1, 4, 7, 10 & 13 Gapdh; lanes 2, 5, 8, 11 & 14 Neil3; 

lanes 3, 6, 9, 12 & 15, Ercc1. 

 

 

  

H 
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4.1.  DISCUSSION 

The molecular mechanisms of cancer development, progression, metastasis and resistance 

to therapy revolve around genetic instability. Consequently, sustained DNA damage 

affecting key genes coding for proliferation supporting proteins (oncogenes), anti-

proliferative proteins (tumour suppressor genes) and DNA repair proteins, could enhance 

the acquisition of immortal characteristics leading to tumour development and subsequently 

facilitate chemotherapeutic resistance. Essentially, damage to the DNA molecule that results 

in the loss of function of tumour suppressor genes and the gain of function by proto-

oncogenes is exacerbated by the ablation or dysregulation of DNA repair genes that code 

for proteins to restore the damaged DNA. Ultimately, this results in the development of 

mutant cell clones and the subsequent acquisition of the various hallmarks of cancer 

(Hanahan & Weinberg, 2000; Loeb, 2001). Accordingly, many genes have been identified 

that encode proteins that are directly or indirectly involved in the repair of damaged DNA 

and they have been classified into the major repair pathways previously reviewed (Section 

1.3). Additionally, some of the genes that are responsible for the repair of damaged DNA 

have been further implicated in tumour development and drug resistance in different cancer 

types. For instance, high levels of Ercc1 expression have been reported to result in poor 

survival of CRC patients receiving a combination of oxaliplatin and 5-fluorouracil (Shirota 

et al., 2001). Similarly, high levels of Neil3 have been found in melanoma tumour and 

various cancer cell lines and may also be a resistance factor against oxaliplatin 

chemotherapy (Shinmura et al., 2016; Taylor et al., 2015). 

 

Thus, the primary objective of this project was to determine the gene expression levels of 

specific DNA repair genes in colon cancer tissues. Initially, the focus was on a set of CRC 

tissue and matched normal colon tissue samples that had been stored for some years at -80°C 

at the University of Manchester. However, it soon became clear that despite employing 

several different methods to extract and purify the RNA and the addition of RNase inhibitors 

to the buffers, it was not possible to obtain non-degraded RNA from these samples, as 

determined by the presence of the 28S and 18S rRNA bands (Figure 3.4). The question then 

was, was the RNA already degraded in the frozen tissue samples, either through length of 

storage at -80°C, or inappropriate handling and length of time to freezing at the time of 
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surgery? A further problem with these samples was the lack of information on the patients 

and site of the tumour. Had the results of the gene expression analyses between the tumour 

and normal samples been significantly and reproducibly different, the analysis of the 

samples would still have been worthwhile, but with no clear pattern emerging, a full analysis 

of the data was not possible. 

For these reasons, it was decided to obtain fresh tumour samples from a biobank at a hospital 

in Manchester. These samples had the benefit of not being stored for an extended period 

before RNA extraction and came with some basic patient information (Table 3.2). However, 

these samples were also refractory to RNA extraction and few of the samples showed intact 

28S and 18S rRNA (Figure 3.5A - Figure 3.5D). This was in marked contrast to the RNA 

extraction from cells, where the ribosomal RNA bands were routinely seen following RNA 

extraction (Figure 3.1). Therefore, either much greater care is needed at the point of 

collection at surgery, with rapid snap-freezing of the samples along with the use of reagents 

such as RNase AWAY (Sigma-Aldrich) to pre-treat plasticware and/or more modifications 

need to be made to the RNA extraction procedure in the investigating laboratory. 

In the majority of CRC tissue samples, gene expression levels of the BER DNA glycosylase 

genes Neil1, Neil3, Nthl1, and Ercc1 one part of the XPF/ERCC1 lesion specific 

endonuclease in NER were analysed. These particular DNA repair genes were chosen for 

the following reasons: (i) Neil3 gene expression has been found to be increased in cancer 

cells and in certain metastatic tumours, (ii) Ercc1 expression has been shown to be increased 

following oxaliplatin treatment, a clinically relevant agent used to treat CRC, and (iii) 

ERCC1 and NER are involved in the repair of platinum-based drug – induced DNA damage. 

A lack of NEIL3 has been shown to sensitize mouse cells to the related agent cisplatin 

(Rolseth et al., 2013) and recent reports from two independent laboratories indicate that 

NEIL3 (and NEIL1) can repair ICLs in DNA (Semlow et al., 2016; Martin et al., 2017). As 

the tissue samples were from patients who had not been exposed to oxaliplatin, it was hoped 

that the expression levels of these genes would give some indication of the likely success of 

oxaliplatin treatment with the chance that more than one subset of tumours could be 

identified, albeit with a small number of samples. Nthl1 was also included because high 

expression has also been linked to cisplatin resistance (Guay et al., 2008) and deletion 

mutations lead to a CRC prone syndrome (Weren et al., 2015). 
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Analysis of the results from the matched tissue samples given in Table 3.3 show that most 

of the tumour tissues did not show high increases (< 1-fold increase) in any of the DNA 

repair genes tested. However, there were exceptions and Ercc1 was moderately increased in 

five out of the twelve tissue pairs tested and Neil3 in three. In one tissue pair, Ogg1 was 

highly expressed in the tumour sample (one of three samples tested) and the MMR gene 

Mlh1 in another (one of eight samples tested). Thus, there is no clear pattern of gene 

expression of the target genes and instead the results indicate the heterogeneous nature of 

different tumours and the random nature of mutation accumulation (Loeb, 2001). 

For the sixteen biobank tissue samples, expression of the target genes was based on the 

expression of the housekeeping gene Gapdh (Table 3.5). These tissues were categorized into 

three groups. (i) Four colon tumour tissues with corresponding matched normal colon tissue 

samples (sample pairs 1573, 1581, 1597 and 1604), (ii) Three normal colon tissue samples 

(samples 1538, 1545 and 1580) and, (iii) Five colon tumour samples with no matched 

controls (samples 1610, 1620, 1626, 1627 and 1630). Therefore, it must be assumed that the 

expression of Gapdh was constant between the different tumour samples. Accepting this, 

Table 3.5 and Figure 3.20 – Figure 3.26 again indicate a wide range of gene expression of 

the different DNA repair genes. However, Nthl1 stands out, as it is highly expressed (>10-

fold) in both normal (four out of seven samples) and tumour tissue (five out of nine samples; 

Table 3.5) and moderately expressed (2 – 10-fold) in tumour sample 1627. In contrast, Ercc1 

is highly expressed in only one tumour sample pair (1573) and moderately expressed in 

sample pairs 1581 and 1604 and sample 1580, while Neil3 is highly expressed only in sample 

1630. The expression of Neil1, which has also been shown to resolve ICLs in DNA was also 

analysed in these samples but was the least highly expressed of the four target genes and its 

expression was not substantially increased (>2-fold) in the match paired tumour samples 

analysed (Table 3.3 and Table 3.4). 

These results again indicate the heterogenous nature of CRC with no obvious pattern of gene 

expression emerging. However, the exceptionally high level of Ercc1 expression observed 

in sample pair 1573 (Table 3.4) and perhaps the high level of Neil3 in sample 1630 (Table 

3.5) would suggest a poor response to oxaliplatin treatment. There does not appear to be any 

correlation with site of tumour, or sex and age of patient. However, from another 

perspective, the predominant over-expression of the Nthl1 and to a lesser extent  Neil3 may 

not be unconnected to high levels of ROS, which has been reported to potentiate mutation 

and accumulation of genetic instability in different cancer types including, pancreatic 
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(Vaquero et al., 2004), prostate (Kumar et al., 2008), breast (Hecht et al., 2016) and colon 

(Acharya et al., 2010). 

While the RT-PCR and qPCR results show the expected results, it must be remembered that 

most of the RNA samples appeared degraded, with the exception of samples 1581T and 

1604 (Figure 3.5A and Figure 3.5D), both of which show high Nthl1 expression (Table 3.5). 

Thus, this perhaps does give credence to the overall results and that while overall the mRNA 

pool may be reduced by degradation, the ratio of individual mRNA species has not been 

altered. Therefore, basing the expression levels on an internal control, Gapdh, should give a 

true reflection of the relative amounts of each target gene in the mRNA pool. Going forward, 

it would be interesting to compare the expression of these genes before and after treatment 

with oxaliplatin and to extend the gene expression studies to proteomics and determine the 

level of protein by western blotting. 

The experiments on medulloblastoma cells that had acquired resistance to cisplatin further 

indicated that NEIL3 is involved in the repair of cisplatin and oxidative lesions in DNA 

(Section 3.4). Although the cisplatin – treated cells were indeed more resistant to cisplatin 

and an ROS inducing agent (Figure 3.27& Figure 3.29), it was nevertheless surprising that 

a similar resistance was not observed after treatment with oxaliplatin ( 

Figure 3.28). Good quality RNA was obtained from both DAOY cell lines (Figure 3.30) and 

reproducible results obtained from RT-PCR (Figure 3.31). Unfortunately, however, the data 

obtained from the qPCR experiment for the normal DAOY cells in particular was not of the 

expected quality and there was no time to repeat the experiment as required. Therefore, two 

possible outcomes are given in this thesis (Figure 3.32). In Figure 3.32A, all the triplicates 

were used to calculate a mean and the -Ct values plotted, using Gapdh as the control. 

However, in Figure 3.32B, obvious outliers were removed from the data set before 

calculating the -Ct values. From both calculations, Ercc1 gene expression is induced 

following cisplatin treatment, however, Figure 3.32B shows that Neil3 gene expression is 

also increased following cisplatin treatment. While the experiment would need to be 

repeated to determine which of these outcomes is correct, Figure 3.33 does show an increase 

in NEIL3 protein in the cisplatin – resistant cells. While this could be the result of an increase 

in the stability of the protein, it is likely that even if this is correct, it occurs in conjunction 

with increased gene expression, suggesting that the result shown in Figure 3.32B is likely to 

be correct. However, rather surprisingly, no similar increase in ERCC1 protein was observed 
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in these experiments (Figure 3.32) and therefore this set of experiments needs to be repeated 

to obtain reproducible data. 

Cancer stem cells (CSC) are a slow growing sub-population of a tumour that are intrinsically 

resistant to conventional chemotherapy regimen (Pattabiraman and Weinberg, 2014). Like 

ES cells, CSC are characterized by a capability of self-renewal, i.e. one of the daughter cells 

remains a stem cell. While resistance to radiotherapy and chemotherapy appears to be related 

to the induction of an epithelial-mesenchymal transition that leads to chemoresistance, a 

lower proliferation rate and higher quiescence and an increase in anti-apoptotic signalling 

(Pattabiraman and Weinberg, 2014), in the context of this project, it was thought worthwhile 

to study the gene expression of the DNA repair genes of interest. For these experiments it 

was decided to use a cell line derived from a mesothelioma patient as the model, as these 

were being studied by another group at the University of Salford. 

However, when the initial results of the RT-PCR experiments showed no difference between 

the parental Mero25 cells and the putative CSC population (Figure 3.36 & Figure 3.37), it 

was decided to check the percentage of the latter cell population that showed CSC 

characteristics. This was achieved using a commercial kit to analyse the amount of aldehyde 

dehydrogenase, a well-known CSC marker, in the cell population (Figure 3.38). The results 

indicated that the CSC population was only a minor fraction (7.4%) of the total cell 

population. Therefore, to obtain useful data from this set of experiments would take much 

longer than the time available to obtain the correct conditions to achieve a cell population 

predominantly made up of CSC and this particular project was not taken further. 

As part of a larger project studying the underlying causes of infertility, human ES cells were 

obtained as the first step to studying gene expression of DNA repair genes in human. 

oocytes. As with CSC, ES cells have an unlimited proliferation potential and exhibit a rapid 

cell cycle, due to a shortened G1 phase compared to differentiated cells (Jang et al., 2017). 

Due to their rapid proliferation and role in carrying the genetic information to the next 

generation, it would be assumed that these cells had a generally high expression of DNA 

repair genes to correct DNA damage quickly along with an efficient DNA damage response 

network to remove genetically vulnerable cells from the population. Figure 3.40 shows that 

the expression of Neil3 and Ercc1 was observed in human ES cells. Had time allowed, this 

work would have been extended to study the expression of a larger panel of DNA repair 

genes. However, the ultimate aim of the work was to compare the expression of DNA repair 
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genes in different populations of oocytes, some known to be fertile and some infertile and 

to see if DNA repair capacity could be a useful biomarker of female fertility with regard to 

IVF treatment. 

 

4.2. CONCLUSIONS 

From the results presented in this report, there is no clear pattern of gene expression of the 

target genes and instead the results indicate both the apparent varied basal expression levels 

in normal colon tissue of the DNA repair genes analysed and the heterogeneous nature of 

different tumours, presumably due to the random nature of mutation accumulation (Loeb, 

2001). However, it would still be most interesting to compare the expression of these genes 

before and after treatment with oxaliplatin. If initial results were promising, a whole 

transcriptome approach using RNA-seq would be appropriate, to determine global changes 

in gene expression occurring following chemotherapy. Suitable target genes could then be 

chosen, and the analysis extended to proteomics to determine the level of specific proteins 

by western blotting. 

There is need for the future research to focus on the relationship between the DNA repair 

genes and stage of tumour development. Furthermore, there is a need to analyze the 

expression patterns of DNA repair genes in other tumour types and their characterization as 

a common feature in different cancer types for potential use as biomarkers for cancer 

diagnosis.  
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APPENDIX 

 cDNA of genes showing sites of PCR primers 

1. NEIL1 gene qPCR primers (NM_001256552.1) 

                                                                                                         PCR product size 

                                                                                                                   212bp  

Primers from published work: Shinmura et al., (2004). 

 

RT 1071 S:  AGA AGA TAA GGA CCA AGC TGC  

 

RT 1283 AS: GAT CCC CCT GGA ACC AGA TG  

 

        1 cctttagtgg ctgcagtggc gacgagcgga acggagtgcg ggttcccggg gagggggcgt 

       61 gcaggatcgg gttgtggggg gtgcgctgta gggctaagga gaagatgagc tttggggggc 

      121 cctgaggagg aggggagtca ggattaaccg aggacagggt cgcagcgggg gcatggggag 

      181 gacgggcccg agagcgccgc tcctccccaa aactaggatt tggagcctca cgttctcccg 

      241 caaaacgagc cctgtgggtg ccaggccagg ggcggctccc aggtgtggag ggggcaaggt 

      301 acgggcgtct gccgtcgcta agtgccccct tccacttaag gcacaccttc gcctccgatt 

      361 ccgaaccgcc cggggacaga ggcaagtggc aaagcaggga gggcggagga ctctgccacc 

      421 ctccctcagg atgcctgagg gccccgagct gcacctggcc agccagtttg tgaatgaggc 

      481 ctgcagggcg ctggtgttcg gcggctgcgt ggagaagtcc tctgtcagcc gcaaccctga 

      541 ggtgcccttt gagagcagtg cctaccgcat ctcagcttca gcccgcggca aggagctgcg 

      601 cctgatactg agccctctgc ctggggccca gccccaacag gagccactgg ccctggtctt 

      661 ccgcttcggc atgtccggct cttttcagct ggtgccccgc gaggagctgc cacgccatgc 

      721 ccacctgcgc ttttacacgg ccccgcctgg cccccggctc gccctatgtt tcgtggacat 

      781 ccgccggttc ggccgctggg accttggggg aaagtggcag ccgggccgcg ggccctgtgt 

      841 cttgcaggag taccagcagt tcagggagaa tgtgctacga aacctagcgg ataaggcctt 

      901 tgaccggccc atctgcgagg ccctcctgga ccagaggttc ttcaatggca ttggcaacta 

      961 tctgcgggca gagatcctgt accggctgaa gatccccccc tttgagaagg cccgctcggt 

     1021 cctggaggcc ctgcagcagc acaggccgag cccggagctg accctgagcc agaagataag 

     1081 gaccaagctg cagaatccag acctgctgga gctatgtcac tcagtgccca aggaagtggt 

     1141 ccagttgggg ggcaaaggct acgggtcaga gagcggggag gaggactttg ctgcctttcg 

     1201 agcctggctg cgctgctatg gcatgccagg catgagctcc ctgcaggacc ggcatggccg 
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     1261 taccatctgg ttccaggggg atcctggacc gttggcaccc aaagggcgca agtcccgcaa 

     1321 aaagaaatcc aaggccacac agctgagtcc tgaggacaga gtggaggacg ctttgcctcc 

     1381 aagcaaggcc ccttccagga cacgaagggc aaagagagac cttcctaaga ggactgcaac 

     1441 ccagcggcct gaggggacca gcctccagca ggacccagaa gctcccacag tgcccaagaa 

     1501 ggggaggagg aaggggcgac aggcagcctc tggccactgc agaccccgga aggtcaaggc 

     1561 tgacatccca tccttggaac cagaggggac ctcagcctct tagcaggagg ctctccttgc 

     1621 ttgcactcac cctttcttat tgtcttgccc tgcatctggg ggtctgaatt tttgggagca 

     1681 ggcaatatct gaaggtgcaa acaggcccta cggctgttcc ctgcacaact ctcatggttt 

     1741 taattgtacc ccatcttcca catctttaaa gctcatgtga aaaatgctgc atttttaata 

     1801 aactgataca tttgaacttc 

 

2. human NEIL2 

                                                                                                    PCR product size 

                                                                                                            145bp 

Primers from published work: Mandal et al., (2012) 

1291 S: GCCTTAGAAGCTCTAGGCCA 

1436 AS: GCACTCAGGACTGAACCGAG 

 

1 ggggcgtcccctaaggggacggaggccgcatgggccgccgagccgggaaatctccgcccc 

       61 cagctggagcggctgtgcgggctgcgtagcggtgctgggtcgggccgacgtgccacccac 

      121 ccggagccggtgagtgcagccgcccgccctccggtagatctgcggcctggcggagaagtc 

      181 gggaggggacaggaagggagggcgggccccgggccctcctccgtctcagccgcctgcgga 

      241 ggtgctgcccacgcctggaggcccccactgaccctcagacccgcgtctgcgcccctctcc 

      301 ccgcaccccgaggcagagttgggaaagcagtggtcttagaccccccacctcgggcactcg 

      361 gaagagaacggcggagacaacccctcctcttccctggctggcgcagcgccagcctcgagc 

      421 tcctcggtagcccccgggcagggagggccggagggtgggcgcggcatcttcagcgactct 

      481 tcgaagtcccttccgcgtctcatctttcaaggctgttgcagaggcggcttgcttcccacc 

      541 tgtccatctccataaaaatccctaaacgaaacatgcccacgtgtccggagattttcagga 

      601 cttggtgcatttcagatgaaggcttttccagaagcttccccgtagaagaggatcaggcat 

      661 ccaactggttaagggatgccagaagggccgttggtgaggaaatttcaccatttggtctcc 

      721 ccctttgtgggtcagcaggtggtcaagacagggggcagcagtaagaagctacagcccgcc 
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      781 agcctgcagtctctgtggctccaggacacccaggtccatggaaagaaattattccttaga 

      841 tttgatctagatgaagaaatggggccccctggcagcagcccaacaccagagcctccacaa 

      901 aaagaagtgcagaaggaaggggctgcggacccaaagcaggtcggggagcccagcgggcag 

      961 aagacccttgatggatcctcacggtctgcagagctcgtcccccagggcgaggatgattct 

     1021 gagtatttggagagagacgcccctgcaggagatgctgggaggtggctgcgtgtcagcttt 

     1081 ggtttgtttggcagcgtttgggtgaacgatttctccagagccaagaaagccaacaagagg 

     1141 ggggactggagggacccttccccgaggttggtcctgcactttggtggtggtggcttcctg 

     1201 gcattttataattgtcagttgtcttggagctcttccccagtggtcacacccacctgtgac 

     1261 atcctgtctgagaagttccatcgaggacaagccttagaagctctaggccaggctcagcct 

     1321 gtctgctatacactgctggaccagagatacttctcagggctagggaacatcattaagaat 

     1381 gaagccttgtacagagctgggatccatcccctttctctcggttcagtcctgagtgcctcg 

     1441 cgtcgggaggtcctggtggatcacgtggtggagttcagtacagcctggctgcagggcaag 

     1501 ttccaaggcagaccgcagcacacacaggtctaccagaaagaacagtgccctgctggccac 

     1561 caggtcatgaaggaggcgtttgggcccgaagatgggttacagaggctcacctggtggtgc 

     1621 ccgcagtgccagccccagttgtcagaggagccagagcagtgccagttctcctaaggagct 

     1681 ggtggtgctcctcacggaaccttgccgcttggggaacctgacgtctaagtgtccagaaag 

     1741 gaggatgtgggcagggacggggtacagaggatagtgtgggtcagaggtgccagtagtata 

     1801 atattcgtctccctggagttatgttgaaggcagagttttcatagggttagatttttttta 

     1861 tccttttctagttcagttaattcatcctgttgaattgcaccatcgtgaaagatgggaaaa 

     1921 atcgtgatgatgggtaaggggaaaacttcccggaaggcaatggggcaaggaaaaagaaag 

     1981 cctatgggaaatggctgtgctcccaacatagctttgcagatgatgtgggttttttttttt 

     2041 tttttggttgtttgttttgagagagagtcttgctctgtctccctggctagggtgtggtgg 

     2101 tgtgatcttggctcacggcagccttgccctccctggctcaagcagtcttcatctcagcct 

     2161 ccagagtagctgggactacaggcatgtgatatgatgctcggctgatttttgtttactttt 

     2221 tagagagatggggtcttgccatatttgccaggctggtttgaactcctacaactcaagcat 

     2281 tcctcccaccttggtctcccaaaatgttgggaccacgggtgtgagccaccgcgcccagct 

     2341 agctcctgtgttttgtttttgttttgtaactttggttgatgttaaggccctccattttgg 

     2401 aaagcaggaaaacaggatttttttttttttatcttgttccctggaggatccagggatgag 

     2461 gatagagtggcctgagagcagtgcttggattcagcctcctgctgggtccttctgctggat 

     2521 acaggcaccaagaggcggtcgtggagcagggagctgcgccttcctggggtgcccggtggt 

     2581 gtgtagagaaaagctgcttgtttactccttaagtcaatgtattggtgactgttgatttgt 

     2641 tgaacaattcaggaatcaagggctgtggagaaactccctcatgttgttggcaacaggtga 

2701aacctagagcggtgacatgaaaataaagctcactgttactcgc 
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3. ERCC1 gene qPCR primers (NM_001983.3) 

                                                                                    PCR product size 

 

ERCC1:  884S: CAAAACGGACAGTCAGACCCT      146 

bp 

ERCC1: 1029AS:  TCAAGAAGGGCTCGTGCAG 

Primers from published work:  Seetharam et al., (2010). 

 

1 ccggaagtgc tgcgagccct gggccacgct ggccgtgctg gcagtgggcc gcctcgatcc 

       61 ctctgcagtc tttcccttga ggctccaaga ccagcaggtg aggcctcgcg gcgctgaaac 

      121 cgtgaggccc ggaccacagg ctccagatgg accctgggaa ggacaaagag ggggtgcccc 

      181 agccctcagg gccgccagca aggaagaaat ttgtgatacc cctcgacgag gatgaggtcc 

      241 ctcctggagt ggccaagccc ttattccgat ctacacagag ccttcccact gtggacacct 

      301 cggcccaggc ggcccctcag acctacgccg aatatgccat ctcacagcct ctggaagggg 

      361 ctggggccac gtgccccaca gggtcagagc ccctggcagg agagacgccc aaccaggccc 

      421 tgaaacccgg ggcaaaatcc aacagcatca ttgtgagccc tcggcagagg ggcaatcccg 

      481 tactgaagtt cgtgcgcaat gtgccctggg aatttggcga cgtaattccc gactatgtgc 

      541 tgggccagag cacctgtgcc ctgttcctca gcctccgcta ccacaacctg cacccagact 

      601 acatccatgg gcggctgcag agcctgggga agaacttcgc cttgcgggtc ctgcttgtcc 

      661 aggtggatgt gaaagatccc cagcaggccc tcaaggagct ggctaagatg tgtatcctgg 

      721 ccgactgcac attgatcctc gcctggagcc ccgaggaagc tgggcggtac ctggagacct 

      781 acaaggccta tgagcagaaa ccagcggacc tcctgatgga gaagctagag caggacttcg 

      841 tctcccgggt gactgaatgt ctgaccaccg tgaagtcagt caacaaaacg gacagtcaga 

      901 ccctcctgac cacatttggatctctggaac agctcatcgc cgcatcaaga gaagatctgg 

      961 ccttatgccc aggcctgggc cctcagaaag cccggaggct gtttgatgtc ctgcacgagc 

     1021 ccttcttgaa agtaccctga tgaccccagc tgccaaggaa acccccagtg taataataaa 

     1081 tcgtcctccc aggccaggct cctgctggct gcgctggtgc agtctctggg gagggattct 

     1141 gggggtgtca ccttctggtg gcccaggtgg gcaccttcag ctttctttag ttcctcagtt 

     1201 tcccgggggc agactacaca ggctgctgct gctgctgctt ccgcttcttg tcccggcctg 

     1261 tgggagcctc ctccccagac tctgaattca gtggcggccc tggcatctcc tcttggggca 

     1321 ctgtctctgg catccggctt tcctgactct gcttcttcct cttcttggtg gatcccggag 

     1381 ttgccctggc ttcaggctgt ccctcccctg gcagttcagg ctctagtggc tgaattggct 

     1441 cagtcactgt gtgacctctc tctttcttct tcttcttctt cttggtggat gtgggagctg 
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     1501 cctgaggctc aaggtcatcc ggcagctcag gccccaccac ctctgtctct ggctccactg 

     1561 tggcatcttg ctgtttttct ttcttcgtct tctttttggg agctgccaga gctgcctggg 

     1621 cctgaggctt cgctccttct ggctgttgag gcgccatggt cccccctggg gactccagag 

     1681 gcttcatctc cggctccact ggctccatcg cctccgtccc tggctccatc attgccatct 

     1741 gtcccttttc ttttttcctc ttcttcgtag ggggcagagg gatggcttcc tccagtggct 

     1801 ccaccttcac ctgtggctga gactcaactg tcaccccctc ctctggctcc atcccttccg 

     1861 tccccttttg cctctttctc tttttggtcg gggacaggac tgtgtcttct agaggctcag 

     1921 tgttaatctg ttcctgcttc actgtcttgt cttctggctc gaaggtttct ttccctttgg 

     1981 gcttcttcct cttcttggtg gtggacggga acagcactcc cagaggctcc agtgtctcca 

     2041 ctgtgggctc tgtccccaca ggccctgctg cctctggttc tttcagctgc tgattttttt 

     2101 tcttcttctt cttccgcaca tccatttctg gcgaccccaa agccatgtcc acctccaggg 

     2161 ccccgtgccc attcactgcc tcctgagtga ctggggcctc tgtcacctgc atctcctttt 

     2221 tcttcttccc tgaggtgagc aggttggggg ccaaggctga cctaggccct gtgactggtg 

     2281 ggttgccccc aaaggcacag aaccgaggcc tcaggccagg agggatctgt ggtgggggac 

     2341 ttgctgggat gggctgcaga gggctccctg acagggattg ctggggaccc tcaaggatcc 

     2401 ttagggtgcc ctggggggct gaggcacagg tgagtccacc tcctgcctcc gttgaggggg 

     2461 ccagcagggt cgcttctcca gcttggggac agctgctgag gactcgatag cggtgccgct 

     2521 tgcctgccaa tttgcccttg acgatctggg agccagagag aggcacatgc cgcccattga 

     2581 agctacagag agaaacaggg agggcagagg cttaagtgga acaggagagg gaaggttttt 

     2641 tgattttttt tttgtttttt tttgagagag tcttgctctg ttgcctaggc tggagtgcag 

     2701 tggcatgatc tcggctcact gcaatgtcca cctcctgggt tcaagcgatt ctcctgcctc 

     2761 agcctctcaa gtagctggga ttacaggcac ctgccaccac gcccagccaa tttttgtatt 

     2821 tttagtagag acaatttcac tatgttggcc aggctggtct tgaactcctg acctcaagtg 

     2881 atctgctcgc ctcggcctcc caaaggatgg gattacaggc accagccact gcgcctggct 

     2941 ggcctctggt ttttaataaa acatgactag agtgactcca tcttaaagtg agtagctagg 

     3001 cacttacaag gttcatgctt atggcctgaa aataaccaca tcccaggctg accaccaatt 

     3061 ataattacag aatatttatg gccatacaga acatgttcca ccaagcctgc agaatgtcca 

     3121 aatgtcctaa gaatgcagcc cccattactt aaatataaca taaatgagca agcttaggtt 

     3181 gcaggattaa tggtcgtgga taacaccaat agcccctacc tttagtgagc ttatctgcac 

     3241 actccaagtt taactatagt tccttatagt ttcttataag tagaaatact aacaaagggc 

     3301 tgtgggtttc tccccctgct ttctgaggac actctctct gtaaaggagt agtttccaat 

     3361 aaacttgttt ctttcactgt gcaaaaaaaa aaaaaaaaaa 
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4. NTH1 gene qPCR primers (NM_002528.5)                                                                                  

 

                                                                                            PCR product size 

                                                                                            165 bp 

Primers from published work: Goto et al., (2009). 

 

RT        679 S: GATGGCACACCTGGCTATG 

RT        844AS:  CCACAGCTCCCTAGGCAG 

 

1 ggccgcatgg gccgccggga tgtgtagtcc gcaggagtcc ggcatgaccg ccttgagcgc 

       61 gaggatgctg acccggagcc ggagcctggg acccggggct gggccgcggg ggtgtaggga 

      121 ggagcccggg cctctccgga gaagagaggc tgcagcagaa gcgaggaaaa gccacagccc 

      181 cgtgaagcgt ccgcggaaag cacagagact gcgtgtggcc tatgagggct cggacagtga 

      241 gaaaggtgag ggggctgagc ccctcaaggt gccagtctgg gagccccagg actggcagca 

      301 acagctggtc aacatccgtg ccatgaggaa caaaaaggat gcacctgtgg accatctggg 

      361 gactgagcac tgctatgact ccagtgcccc cccaaaggta cgcaggtacc aggtgctgct 

      421 gtcactgatg ctctccagcc aaaccaaaga ccaggtgacg gcgggcgcca tgcagcgact 

      481 gcgggcgcgg ggcctgacgg tggacagcat cctgcagaca gatgatgcca cgctgggcaa 

      541 gctcatctac cccgtcggtt tctggaggag caaggtgaaa tacatcaagc agaccagcgc 

      601 catcctgcag cagcactacg gtggggacat cccagcctct gtggccgagc tggtggcgct 

      661 gccgggtgtt gggcccaaga tggcacacct ggctatggct gtggcctggg gcactgtgtc 

      721 aggcattgca gtggacacgc atgtgcacag aatcgccaac aggctgaggt ggaccaagaa 

      781 ggcaaccaag tccccagagg agacccgcgc cgccctggag gagtggctgc ctagggagct 

      841 gtggcacgag atcaatggac tcttggtggg cttcggccag cagacctgtc tgcctgtgca 

      901 ccctcgctgc cacgcctgcc tcaaccaagc cctctgcccg gccgcccagg gtctctgatg 

      961 gccgcatggc tctggccgag gtgccgctgt ggccaccgtc tgtgaagtgg ctttacgctt 

     1021 caggaagcca cgcctgttga ataaagcttt ggtgtgtttg cagatgg 

 

5. MLH1 gene qPCR primers (NM_000249) 

                    PCR product size 

                                                                                                              66 bp 

Primers from published work: Jensen et al., (2013). 
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RT 2276 S: AGGAGTCGACCCTCTCAGG  

RT 2342 AS: GTCCACTTCCAGGAGTTTGG 

 

1 gaagagaccc agcaacccac agagttgaga aatttgactg gcattcaagc tgtccaatca 

       61 atagctgccg ctgaagggtg gggctggatg gcgtaagcta cagctgaagg aagaacgtga 

      121 gcacgaggca ctgaggtgat tggctgaagg cacttccgtt gagcatctag acgtttcctt 

      181 ggctcttctg gcgccaaaat gtcgttcgtg gcaggggtta ttcggcggct ggacgagaca 

      241 gtggtgaacc gcatcgcggc gggggaagtt atccagcggc cagctaatgc tatcaaagag 

      301 atgattgaga actgtttaga tgcaaaatcc acaagtattc aagtgattgt taaagaggga 

      361 ggcctgaagt tgattcagat ccaagacaat ggcaccggga tcaggaaaga agatctggat 

      421 attgtatgtg aaaggttcac tactagtaaa ctgcagtcct ttgaggattt agccagtatt 

      481 tctacctatg gctttcgagg tgaggctttg gccagcataa gccatgtggc tcatgttact 

      541 attacaacga aaacagctga tggaaagtgt gcatacagag caagttactc agatggaaaa 

      601 ctgaaagccc ctcctaaacc atgtgctggc aatcaaggga cccagatcac gtggaggac 

      661 cttttttaca acatagccac gaggagaaaa gctttaaaaa atccaagtga agaatatggg 

      721 aaaattttgg aagttgttgg caggtattca gtacacaatg caggcattag tttctcagtt 

      781 aaaaaacaag gagagacagt agctgatgtt aggacactac ccaatgcctc aaccgtggac 

      841 aatattcgct ccatctttgg aaatgctgtt agtcgagaac tgatagaaat tggatgtgag 

      901 gataaaaccc tagccttcaa aatgaatggt tacatatcca atgcaaacta ctcagtgaag 

      961 aagtgcatct tcttactctt catcaaccat cgtctggtag aatcaacttc cttgagaaaa 

     1021 gccatagaaa cagtgtatgc agcctatttg cccaaaaaca cacacccatt cctgtacctc 

     1081 agtttagaaa tcagtcccca gaatgtggat gttaatgtgc accccacaaa gcatgaagtt 

     1141 cacttcctgc acgaggagag catcctggag cgggtgcagc agcacatcga gagcaagctc 

     1201 ctgggctcca attcctccag gatgtacttc acccagactt tgctaccagg acttgctggc 

     1261 ccctctgggg agatggttaa atccacaaca agtctgacct cgtcttctac ttctggaagt 

     1321 agtgataagg tctatgccca ccagatggtt cgtacagatt cccgggaaca gaagcttgat 

     1381 gcatttctgc agcctctgag caaacccctg tccagtcagc cccaggccat tgtcacagag 

     1441 gataagacag atatttctag tggcagggct aggcagcaag atgaggagat gcttgaactc 

     1501 ccagcccctg ctgaagtggc tgccaaaaat cagagcttgg agggggatac aacaaagggg 

     1561 acttcagaaa tgtcagagaa gagaggacct acttccagca accccagaaa gagacatcgg 

     1621 gaagattctg atgtggaaat ggtggaagat gattcccgaa aggaaatgac tgcagcttgt 

     1681 accccccgga gaaggatcat taacctcact agtgttttga gtctccagga agaaattaat 

     1741 gagcagggac atgaggttct ccgggagatg ttgcataacc actccttcgt gggctgtgtg 
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     1801 aatcctcagt gggccttggc acagcatcaa accaagttat accttctcaa caccaccaag 

     1861 cttagtgaag aactgttcta ccagatactc atttatgatt ttgccaattt tggtgttctc 

     1921 aggttatcgg agccagcacc gctctttgac cttgccatgc ttgccttaga tagtccagag 

     1981 agtggctgga cagaggaaga tggtcccaaa gaaggacttg ctgaatacat tgttgagttt 

     2041 ctgaagaaga aggctgagat gcttgcagac tatttctctt tggaaattga tgaggaaggg 

     2101 aacctgattg gattacccct tctgattgac aactatgtgc cccctttgga gggactgcct 

     2161 atcttcattc ttcgactagc cactgaggtg aattgggacg aagaaaagga atgttttgaa 

     2221 agcctcagta aagaatgcgc tatgttctat tccatccgga agcagtacat atctgaggag 

     2281 tcgaccctct caggccagca gagtgaagtg cctggctcca ttccaaactc ctggaagtgg 

     2341 actgtggaac acattgtcta taaagccttg cgctcacaca ttctgcctcc taaacatttc 

     2401 acagaagatg gaaatatcct gcagcttgct aacctgcctg atctatacaa agtctttgag 

     2461 aggtgttaaa tatggttatt tatgcactgt gggatgtgtt cttctttctc tgtattccga 

     2521 tacaaagtgt tgtatcaaag tgtgatatac aaagtgtacc aacataagtg ttggtagcac 

     2581 ttaagactta tacttgcctt ctgatagtat tcctttatac acagtggatt gattataaat 

     2641 aaatagatgt gtcttaacat aa 

 

6. OGG1 gene qPCR primers (NM_002542) 

                                                                                                   PCR product size 

RT   1020 S:       AGCAGCTACGAGAGTCCTCA                  137 bp 

 

RT    1156 AS:   CATATGGACATCCACGGGCA   

 

Primers from published work: Santos et al., (2014). 

1 ctacttccgg tggtgctgtg gtctgcccct ggagaaccca gaagaacaca gctgtgcgcg 

       61 cccacaggct ctgggggcgg gagaagataa gtcgcaagga gggggcggga cctacacctc 

      121 aggaaagccg gagaattggg gcacgaagcg gggctttgat gacccgcaaa gggcgaggca 

      181 tgcaggaggt ggaggaatta agtgaaacag ggaaggttgt taaacagcac cgtgtgggcg 

      241 aggccttaag ggtcgtggtc cttgtctggg cggggtcttt gggcgtcgac gaggcctggt 

      301 tctgggtagg cggggctact acggggcggt gcctgctgtg gaaatgcctg cccgcgcgct 

      361 tctgcccagg cgcatggggc atcgtactct agcctccact cctgccctgt gggcctccat 

      421 cccgtgccct cgctctgagc tgcgcctgga cctggttctg ccttctggac aatctttccg 

481 gtggagggag caaagtcctg cacactggag tggtgtacta gcggatcaag tatggacact 

      541 gactcagact gaggagcagc tccactgcac tgtgtaccga ggagacaaga gccaggctag 

      601 caggcccaca ccagacgagc tggaggccgt gcgcaagtac ttccagctag atgttaccct 
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      661 ggctcaactg tatcaccact ggggttccgt ggactcccac ttccaagagg tggctcagaa 

      721 attccaaggt gtgcgactgc tgcgacaaga ccccatcgaa tgccttttct cttttatctg 

      781 ttcctccaac aacaacatcg cccgcatcac tggcatggtg gagcggctgt gccaggcttt 

      841 tggacctcgg ctcatccagc ttgatgatgt cacctaccat ggcttcccca gcctgcaggc 

      901 cctggctggg ccagaggtgg aggctcatct caggaagctg ggcctgggct atcgtgcccg 

      961 ttacgtgagt gccagtgccc gagccatcct ggaagaacag ggcgggctag cctggctgca 

     1021 gcagctacga gagtcctcat atgaggaggc ccacaaggcc ctctgcatcc tgcctggagt 

     1081 gggcaccaaggtggctgact gcatctgcct gatggcccta gacaagcccc aggctgtgcc 

     1141 cgtggatgtc catatgtggc acattgccca acgtgactac agctggcacc ctaccacgtc 

     1201 ccaggcgaag ggaccgagcc cccagaccaa caaggaactg ggaaactttt tccggagcct 

     1261 gtggggacct tatgctggct gggcccaagc ggtgctgttc agtgccgacc tgcgccaatc 

     1321 ccgccatgct caggagccac cagcaaagcg cagaaagggt tccaaagggc cggaaggcta 

     1381 gatggggcac cctggacaaa gaaattcccc aagcaccttc ccctccattc cccacttctc 

     1441 tctccccatc cccacccagt ctcatgttgg ggaggggcct ccctgtgact acctcaaagg 

     1501 ccaggcaccc ccaaatcaag cagtcagttt gcacaacaag atggggtggg ggatattgag 

     1561 ggagacagcg ctaaggatgg ttttatcttc cctttattac aagaaggaac aataaaatag 

     1621 aaacatttgt atggaaaaaa aaaaaaaaaa aa 

 

 

 

 

 

 

 

 

 

 

 


