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V. Abstract 

Summary: Studies suggest passive dynamic ankle foot orthoses (PD AFO) are 

effective at improving gait and patient reported outcomes measures (PROM) in 

personnel who have undergone limb salvage due to blast trauma. Studies using 

PD AFOs have included able bodied and personnel with variable clinical 

presentations. This study examines if PD AFO use improves gait and PROMs in 

personnel injured by the same blast mechanism with similar unilateral deck slap 

blast injuries.  

Introduction: Rehabilitation outcomes following limb salvage are reported as 

substandard, with personnel frequently demonstrating poor functional and 

psychosocial outcomes. There has been a call for advancements in orthotics to 

support limb salvage patients eager to preserve their lower limb, yet function at 

high levels of mobility. PD AFOs are used to improve clinical outcomes. Studies 

have shown that when combined with exercise rehabilitation PD AFOs can 

decrease biomechanical pain, improve physical activity and enable return to 

work in high functioning adults.  

Method: The study consisted of 12 individuals who had sustained “deck slap” 

injuries caused by high energy blast trauma. Kinematic, kinetic and temporal 

spatial parameters were measured walking with and without their PD AFO at a 

self-selected speed. Participants completed the Lower Extremity Functional 

Scale (LEFS) and the Foot and Ankle Outcome Score (FAOS) pre and post PD 

AFO provision. The mean and standard deviation was calculated for each test 

measure and statistical analysis was conducted using R version 3.5.3. 

Results: Use of a PD AFO significantly improved each participant’s mean 

PROM score and user’s propulsive capability. Participant’s gait profile score 

(GPS) also improved when using the PD AFO. 

Conclusion: This study suggests that unilateral PD AFO use can improve gait 

parameters and PROMs in injured personnel who have sustained unilateral 

blast trauma.  
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Chapter 1: Introduction 

British military operations in Afghanistan and Iraq resulted in many personnel 

suffering severe injury or loss of life1. Improvements in personal protection, 

enhanced prehospital care, and rapid aero evacuation to medical facilities 

capable of providing optimised resuscitation and limb salvage surgery have 

resulted in an unprecedented number of personnel surviving battlefield injuries2. 

These advancements have enabled limbs that would have, at one time, required 

immediate amputation, to now be deemed salvageable3. The injured limb(s) have 

often suffered multiple severe fractures, widespread vascular injuries and 

peripheral nerve damage requiring extensive, and sometimes multiple surgical 

reconstructions and re-vascularisation. Although the salvaged limb appears 

intact, its’ function capability can be severely compromised4.  

A difficult question that emerges from such advancements is: Does salvaging the 

limb achieve the best outcome for the injured patient? The decision to amputate 

or attempt salvage of injured limbs is a subject of much debate5-8. This decision 

often emerges in the presence of high-energy lower extremity trauma, such as 

battlefield injuries caused by improvised explosive devices (IED)5, as the injuries 

sustained are clinically complex2. The debate predominantly centres on pain 

management and function.  

As a result of their injuries, individuals with lower limb trauma are often 

predisposed to living a sedentary lifestyle, further increasing the development of 

obesity and increasing the risk of type 2 diabetes mellitus and cardiovascular 

disease9. Regular physical activity and/or structured exercise is now widely 

established as an important strategy in improving mental health, preventing 

obesity and chronic diseases such as type 2 diabetes mellitus and developing 

cardiovascular disease in the general population10-12. Recent findings from the 

multi-centre European Prospective Investigation into Cancer and Nutrition 

(EPIC) study suggest that inactivity is in fact the single largest contributor to 

mortality rather than obesity13. This is clinically very important because the 

consequences of chronic pain and reduced physical function after lower-limb 
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trauma may predispose an individual to live a more sedentary lifestyle, 

regardless of their pre-injury activity levels. 

Individuals who experience high energy lower extremity trauma and undergo 

limb salvage frequently demonstrate poor functional and psychosocial 

outcomes6; 8; 14-17 with ongoing pain being a determining factor in the short to 

long term. Amputation, however, presents significant long-term health concerns, 

as post-traumatic lower limb amputees have been shown to have an increased 

morbidity and mortality from cardiovascular disease18; 19. Poor limb salvage 

outcomes over the past decade have led to an increase in the number of injured 

personnel seeking elective amputation on average 18 months after initial limb 

salvage surgery20. Personnel with deck-slap blast injuries, for example, are at a 

higher risk of amputation20. Deck-slap is a military colloquial term for a pattern 

of fractures seen to the calcaneus, talus and distal end of tibia, due to an 

explosion from an IED underneath a military vehicle2. The explosion beneath 

the armoured vehicle creates powerful shockwaves which cause the floor of the 

vehicle to rapidly deflect, transmitting high upward forces. Personnel tend to be 

sitting at the moment of impact21 and therefore the force generated from these 

shockwaves is transferred to the incumbents lower limbs causing extensive 

damage to bones, soft tissues and blood vessels within the foot and ankle.  

Anecdotally there has been a call for advancements in technology from medics 

and injured personnel to support lower-limb salvage patients eager to preserve 

their lower limb(s) yet function at high levels of mobility. Empirically, at the 

Defence Medical Rehabilitation Centre (DMRC) Headley Court, the use of 

“conventional” orthoses, such as custom functional foot orthoses, stock ankle 

braces and thermoplastic custom Ankle Foot Orthoses (AFO) of various 

designs, were not having a positive impact on reducing the elective amputation 

rates in this patient group. On account of this, orthotists who treat injured US 

and UK military personnel began utilising a specifically designed passive 

dynamic ankle foot orthosis5 (PD AFO) (Figure 1-1) manufactured from 

advanced composites to try and achieve this advancement. Studies22; 23 have 

suggested that when combined with exercise rehabilitation, injured personnel 
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using this PD AFO demonstrate improved functional outcomes and reduced 

elective amputation rates24. 

 

Figure 1-1 Example of the PD AFO (Source: Blatchford private clinic website25) 

In a recent US systematic review5 of 487 PD AFO users, it was suggested that 

PD AFO provision combined with exercise rehabilitation enabled return to work, 

recreation and physical activity, and decreased pain in high functioning patients. 

In an 8-week integrated PD AFO and rehabilitation study 22 to improve function 

and pain outcomes, 41 of 50 users initially considering amputation favoured a 

limb salvage management plan utilising the PD AFO instead and, importantly, 

this was sustained for 2 years follow-up. After 8 weeks use of a PD AFO the 

participants appeared to have improved outcomes in all physical performance 

and PROMs. No study to date, however, has compared PD AFOs to other 

custom made AFO designs. The UK and US PD AFOs used by military 

personnel are of the same design, as the US military provided training to the 

DMRC Headley Court clinical team. The only difference is the fabrication 
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method, and this is described later in this thesis. Only this PD AFO design 

(Figure 1-1) is discussed in this thesis.  

1.1 Rationale for the study 

The use of PD AFOs at Defence Medical Rehabilitation Centre (DMRC) 

Headley Court has grown organically since 2014, as the clinical need for a high 

activity AFO was necessary to assist the young limb salvage population 

emerging at this time. Improving the functional capability of this injured cohort 

served in persuading both personnel and medics that elective amputation was 

not the only option for severely injured limb salvage patients to lead an active 

lifestyle without significant pain.  

1.2 The study objectives 

The objective of this study was to evaluate how injured participants, who 

sustained deck-slap injuries (calcaneal, talus and distal end of tibia complex 

fractures) whilst serving in Afghanistan, walked both with and without their 

prescribed PD AFO. Participants walking with the PD AFO were also compared 

to a military specific able-bodied control group. A further objective was to 

evaluate the participants’ validated patient reported outcome measures 

(PROMs) used to measure quality of life pre and post provision of a PD AFO 

and associated rehabilitation. 

1.3 Structure of the thesis 

This thesis is set out in five chapters in addition to this chapter. 

Chapter 2 will review the existing literature related to conflict injuries, in 

particular deck-slap injuries caused by IED blast trauma. It will discuss limb 

salvage, and review the literature surrounding the clinical outcomes of both 

salvage and amputation. It will progress onto discuss orthotic intervention for 

deck slap injuries to improve clinical outcomes, with a focus on PD AFO design 

used to treat this participant group.  
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The method of data collection and biomechanical analysis will be described in 

Chapter 3, whilst Chapter 4 will present the three-dimensional (3D) gait analysis 

and PROMs results. Chapter 5 will discuss these results focused around 4 

hypotheses and present a summary of the study highlighting limitations and 

suggestions for future research considerations in this area. Chapter 6 provides 

all appendices and references.  
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Chapter 2: Literature review 

This literature review begins by discussing combat injuries in recent conflicts 

and considers the factors that have led to a rise in complex limb salvage within 

the military. The review explores the true complexity of blast trauma and why 

the clinical need for advanced orthoses capable of allowing users a higher level 

of activity has grown. It will discuss conventional orthotic solutions for the 

traumatically injured limb and present the background underpinning how the 

use of passive dynamic ankle foot orthoses (PD AFO) within the injured military 

community has strived to improve pain and functional outcomes. PD AFOs 

provide a potential solution for injured personnel to engage in a more active 

lifestyle and ultimately avoid elective amputation where possible.  

2.1 Combat injuries spanning the 20th and 21st century 

Since World War 1 (WW1), explosive weapons and fragmentation devices have 

accounted for over 70% of all deaths and injuries to combatants in conflict26. 

Survivability from battlefield injuries has increased from 70% in World War 2 

(WW2) to 89% more recently in Iraq26. This has been attributed to a number of 

factors including improved body armour that protects the torso, along with 

modern medical resuscitative strategies and shorter casualty evacuation 

times27. Therefore, a greater number of critically injured casualties are surviving 

to reach field hospitals within war zones27. 

The conflict in Afghanistan started in 2001 as a counter insurgency operation, 

which continued as such throughout the conflict28. In contrast, UK operations in 

Iraq started in 2003 as conventional warfare against a well organised army, but 

evolved into counter insurgency measures against irregular forces29. This shift 

from conventional to asymmetric warfare and insurgency changed the weapons 

used by those forces opposing the coalition, and the types of wounds British 

personnel sustained30. However, despite the significant differences in the type 

of conflicts and weapons used, the pattern of wounding to the body remains 

largely unchanged29. Typically, head and neck injuries account for one fifth of all 

injuries sustained, and unprotected extremities account for 68% of all injuries, a 
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percentage consistent with battlefield injuries sustained since world war 229. 

Injuries to the torso, however, do appear to have decreased following the 

introduction of combat armour in the 1970s29.  

Specific data on all injuries sustained by UK personnel in Afghanistan 

(Operation Herrick) has been published by the Ministry of Defence (MOD)31 . In 

total 7,800 individuals were admitted into the UK’s field hospital in Afghanistan 

between April 2006 and November 2014. Of all admissions 4220 were the result 

of injures (50% battle injuries and 50% not related to conflict) and 3,347 of 

natural causes. The patients were a mix of personnel and Afghanistan civilians. 

The report states that, of the 10,371 injuries treated at the hospital, 44% were to 

the extremities, with 27% respectively to the lower limb. The number of injuries 

to the lower extremities is less than previously documented in the literature1; 29 

and this may be due to the fact the hospital data also involved the local civilian 

population.  

It has been reported that, of the lower limb injuries sustained, one third were 

fractures, with 82% reported as open fractures3; 26. Mortality from isolated 

combat extremity injuries was 10%3. Therefore, these lower limb blast injuries 

are not typically life threatening to personnel but are a source of on-going 

morbidity.  

 

Counter insurgency combat in Iraq and Afghanistan was plagued by the 

insurgents’ signature weapons, the improvised explosive device (IED) and anti-

vehicle mine (AVM) 1-7, which caused 60% of all injuries sustained1.   

This thesis focuses on the effects of IEDs and AVMs used against military 

vehicles, as this was the mechanism of injury of all participants within this study. 

The United Nations defines an IED as a bomb fabricated in an improvised 

manner incorporating destructive, lethal, noxious, pyrotechnic, or incendiary 

chemicals32. IEDs are triggered by a variety of means such as remote control, 
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infrared or magnetic triggers, trip wires or pressure-sensitive plates as shown in 

(Figure 2-1).  

Explosions that occur in an enclosed space, such as inside an armoured, 

vehicle are associated with a higher incidence of primary blast lung injury and 

burns33. This environment is more likely to lead to severe injuries when 

compared to open air explosions34. Explosions to personnel whilst in a enclosed 

space cause the highest number of severe injuries and casualties requiring 

surgical intervention35. Furthermore, the incidence of lower limb injury in 

enclosed spaces is 81% compared with 52% in open spaces33. Standing 

passengers within armed vehicles suffer more severe foot and ankle injuries, 

higher amputation rates and poorer return to work rates than seated 

passengers28 

 

Figure 2-1 IED triggered by vehicle upon pressure plate33 

2.2 Blast injury classification 

IEDs have a significant demoralising effect on our nation’s service personnel as 

they are a source of inflicting life changing injuries on personnel and causing 

devastating damage to much needed military equipment36. The blast injury 

wounds they cause are classified according to the mechanism by which they 

are produced, and their effect on the skeletal system26.  

Primary blast injuries are caused by the pressure waves from the explosive 

which pass through the victim30. This leads to cellular disruption, soft tissue 

destruction and bone micro fractures26. 

Secondary blast injuries are caused by projectiles, and can be subdivided into 

primary and secondary fragmentation26. Primary fragmentation is from the IED 

Detonation shock 

wave 

Pressure plate 

Booster charge 

Main explosive 
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weapon itself, such as metal nails that were placed within it. Secondary 

fragmentation, however, is generated from the environment, such as rocks or 

automobile parts 20; 26; 30. Secondary fragmentation increases the risk of 

infection, both short and long term, as the environmental fragments can 

contaminate the wound3; 26; 30; 37; 38.  

Tertiary blast injuries occur as a result of the bodily displacement of the 

occupant or impact against a solid structure26. Tertiary blast effects cause the 

most significant injuries in an under vehicle IED/AVM explosion, accounting for 

96% of all injuries 20; 33. The injuries sustained are very similar to those seen 

ordinarily in civilian blunt trauma. Severe axial loading of the lower limbs from 

underfloor explosions2; 20; 26; 30; 33; 39, or being thrown by the explosion and 

landing on the feet, typically result in calcaneal fractures26. 

 

A fracture, as defined by the Oxford dictionary, is a crack or break in a hard 

object or material, typically a bone40. Fractures of the bone can be categorised 

as displaced, non-displaced, open or closed41. Displaced and non-displaced 

fractures refer to the way in which the bone breaks. In a displaced fracture, the 

bone snaps into two or more parts and moves, so that the two ends are not 

aligned41. In a non-displaced fracture, the bone cracks either part or all of the 

way through, but does not move and maintains its correct alignment41. A closed 

fracture is when the bone breaks, but there is no puncture or open wound to the 

skin41. An open fracture is one in which the bone breaks through the skin, even 

though it may recede back into the wound and not be visible through the skin41. 

If the bone is in many pieces, it is called a comminuted fracture41, which is 

complex to treat and is the most common type seen in blast trauma2; 3; 26; 39.  

The Gustilo-Anderson open fracture classification system is the most commonly 

used classification system for open fractures3; 38.  It was created by Ramon 

Gustilo and Anderson in 197642. Gustilo et al.43 subsequently modified their 

classification system into its current form in 1984, as seen in (Table 2-1). 
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Table 2-1 The modified Gustilo-Anderson classification41 

I A fracture with a clean laceration <1cm in length, caused by low velocity trauma and minimal 
contamination. 

II A fracture with a laceration > 1cm in length lacking any severe soft tissue damage or 
devitalised tissue. 

IIIA A fracture with extensive soft tissue loss. Adequate coverage of fracture by soft tissue despite 
extensive cutaneous laceration or flaps, or high energy trauma regardless of the size of the 
wound. 

IIIB More extensive injury and contamination of the soft tissue, periosteal stripping, and soft tissue 
gaps present with exposed bone, will likely require either local soft tissue flap or free flap for 
coverage. 

IIIC Any open fracture with an arterial injury requiring repair regardless of degree of soft tissue 
disruption.  

 

The Gustilo-Anderson classification system provides a framework, guides 

treatment and facilitates communication regarding fractures44. IIIB and IIIC 

classifications are the most severe open fractures and are commonly 

associated with blast trauma 2; 3. 

2.3 IED blast injuries: the scale of lower extremity 
injuries 

In Iraq and Afghanistan, IEDs were the leading cause of death among all 

nations’ troops operating in this region from 2001-201421.  

The US joint theatre trauma registry has recorded all injuries to coalition forces 

sustained during these conflicts and it estimates 29,941 injuries have occurred 

to 10,989 personnel in total (excluding fatalities). Specifically highlighting foot 

and ankle injuries, the report outlines that there were 298 dislocations, 701 

crush injuries, 1089 open wounds and 336 partial foot amputations30. 

Disappointingly, this study does not discuss the number of fractures sustained.   

Owens et al.7 describe battle injuries sustained by US military personnel by 

evaluating a cohort of battle injuries from October 2001-January 2005 in both 

Iraq and Afghanistan. IED blast injuries were the most prevalent mechanism of 

injury, representing 36%, followed by gunshot wounds at 16% 7; 30. Extremity 

injuries to at least one limb accounted for 82% of all injuries, 22% of which 

damaged the foot and ankle complex. Of these foot and ankle injuries 
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sustained, 76% were open fractures 7; 30, the Gustilo-Anderson classification of 

these fractures was not reported. This study clearly highlights the particular risk 

IEDs present to the foot and ankle complex of all military forces operating in 

counter insurgency style conflict.  

IED injuries are not only reserved to military personnel; civilians also sustain 

injury in warfare and at the hands of terrorist activity. Frykberg et al.45 report that 

out of 220 terrorist incidents from across the world, 85% of 3357 casualties 

required surgery from soft tissue extremity injuries, with or without fractures.  

Similarly, the risks to the foot and ankle remain high, as civilians are twice as 

likely to injure their lower limbs in a landmine blast compared to any other part 

of the body36; 46. Whilst this research study is very much military focussed, the 

same injury patterns can be seen in a general population and therefore the 

results of the study may be translatable to civilian rehabilitation.  

 

Hindfoot and ankle fractures pose a challenge to orthopaedic surgeons, as 

fractures caused by high energy transfer are complex, and although seen in 

civilian trauma they are not observed as frequently47. Modern day sophisticated 

IED’s have led to increased numbers of calcaneal fractures that are 

substantially more comminuted, open and with significant soft-tissue injury 39. 

Over the 11 years of conflict in Iraq and Afghanistan, 114 UK personnel 

sustained 134 hindfoot injuries47. The calcaneus was the most frequently injured 

bone and occurred in isolation in 48% of cases (Table 2-2). The Gustilo-

Anderson classification was not published in this study. 
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Table 2-2 Injury pattern by bone47. Personnel with isolated fractures of the tibial plafond, tarsals and 
metatarsals were not included in this analysis. 

Fracture 
Total number of British 

personnel (%) 
Number of fractures that 

were isolated (%) 

Calcaneus 116 (87) 64 (48) 

Talus 38 (28) 11 (8) 

Coexisting tibial plafond 33 (25) - 

Coexisting tarsal 61 (46) - 

Coexisting metatarsal 53 (40) - 

 IED blast trauma: calcaneal fractures 

McKay’s cadaveric modelling of blast injuries found that the calcaneus tends to 

fracture first with an underfoot compressive load48. Yoganandan et al.49 

concluded that loads at approximately 8 times body weight (greater than 6.2kN) 

were sufficient to cause intra-articular calcaneal fractures in 50% of clinical 

cases49. Calcaneal alignment, as one third of the foot tripod, is critical to 

maintain appropriate length, width, and height to allow for near normal shoe 

wear and gait50.  

From March 2003 to August 2010, 583 US military personnel sustained a 

calcaneal fracture during both the Afghanistan and Iraq conflict38. Of those 

injured 102 sustained an open fracture, 45% of which had a Gustilo and 

Anderson classification of IIB or IIC with the type of fracture unspecified. Of the 

open fractures sustained 65% occurred whilst inside a military vehicle38. The 

most commonly associated fracture after the calcaneus was the talus, occurring 

in 48%, and the tibia in 43% of personnel. A quarter of those injured had 

bilateral fracture patterns.  

This hindfoot (typically calcaneal) fracture pattern caused by under vehicle IED 

blasts is colloquially referred to within the military as a deck-slap injury39. 

Recent conflicts in Iraq and Afghanistan have seen a resurgence of deck-slap 

injuries to the foot, which have not been described on such a large scale since 

WW239. Therefore, understanding this mechanism of injury and the consequent 

injury patterns is vital to understanding the clinical complexities surrounding the 

clinical treatment of these personnel.   
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2.4 History of deck-slap injuries 

Military surgeons first described “deck-slap” injuries during WW2, as the use of 

highly explosive mines increased dramatically throughout this period, both at 

sea and during ground combat39. For the first time in history, multiple combatant 

nations possessed large fleets of steel ships and submarines39 and, equally, the 

weaponry to disable these large structures. Below deck explosions caused 

force to be transmitted across rigid steel decks into the lower extremities of the 

sailors above39; 51. 

Keating in 1944 quoted, “the deck rose suddenly beneath the feet of those 

injured, and the force transmitted upwards through the skeleton produced a 

series of injuries including fractures of the os calcis, tibia and knee. 

Compression fractures of the lumbar and thoracic vertebral bodies sometimes 

occur”52.  

A British Surgeon, Brigadier General Rowley Bristow, during WW2 noted, 

“Fractures of the os calcis are more common than in peacetime. They are 

produced by landmines, by a bomb which goes off between decks, and have 

occurred also in men who slide down the side of a sinking ship and hit their 

heels against the projecting bilge on the hull”53.  

Barr et al.54 confirmed these findings in the US, concluding that 30% of US 

naval casualties from mine attacks during the Normandy invasions sustained a 

fractured calcaneus2.  

 

In recent conflicts the deflection of the military vehicle floor caused by an IED 

explosion mirrors that of the maritime deck deflection reported in WW22. As the 

consequential injury is similar, hindfoot fractures sustained in this manner are 

referred to as deck-slap injuries.  

Ramasamy et al.2 reported on 40 deck-slap calcaneal fractures sustained by 

British personnel between January 2006 and December 2008. He found that 

83% had subtalar joint compromise, 68% calcaneocuboid joint injuries and 63% 
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of personnel had injuries to both joints2. Of the injured in this UK study, 52.5% 

suffered a midfoot injury and 27.5% a forefoot injury at the same time as the 

calcaneal fracture2. Only 10% had a calcaneal fracture in isolation2. Additionally, 

the tibia was also fractured in 67.5% of British personnel, demonstrating that 

deck-slap injury patterns span multiple bones and joint articulations; therefore 

they are of particular concern2. In this study 58% had an open fracture 

documented as either IIIB or IIIC, with the IIC fractures faring worst, with 91.7% 

necessitating immediate amputation. 

 Associated spinal fractures 

In the UK, between January 2006 and December 2008, 30% of personnel 

sustained a spinal fracture following deck-slap injury2. The incidence of spinal 

injury is similar to the 21% reported in people who have fallen greater than two 

storeys from a building55. Therefore, patients who clinically present with deck-

slap injuries have an increased risk of spinal fractures, which further 

complicates their rehabilitation and recovery. Of the 12 participants in this study 

2 suffered a spinal fracture following deckslap injury.  

2.5 Deck-slap: anatomy of the foot 

Deck-slap injuries most commonly injure the hindfoot and the distal end of the 

tibia 2; 20; 30. Injuries to the calcaneus are associated with the highest 

complication rate 56; 57.  

The functional transverse subdivisions of the normal pedal skeleton are divided, 

based on functional and clinical criteria as follows58. 

• Hindfoot (calcaneus and talus) 

• Midfoot (cuboid, navicular, three cuneiforms and five metatarsals) 

• Forefoot (proximal, middle and distal phalanges)  

Blast injuries are not easy to predict, and often all transverse subdivisions of the 

foot are injured. This thesis will predominantly discuss the functional hindfoot in 

relation to deck-slap injuries.         
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When the calcaneus and talus are disrupted following a blast injury (Figure 2-2), 

the shape of the hindfoot bones are severely distorted and compromised. Bony 

outgrowth and fragmentation often occur with healing (Figures 2-3, 2-4). As the 

calcaneus and talus are integral to weight bearing, damage to these bones 

causes significant immediate disability. The talus has only a limited area of 

penetrable bone available for vascular perforation. This feature, combined with 

small nutrient vessels, variations in intraosseous anastomoses and a lack of 

collateral circulation, predispose the talus to osteonecrosis when its vascular 

supply is disturbed50. This is particularly problematic after fracture or dislocation 

due to impact50.  

 

Figure 2-2 Left: X-ray of a highly comminuted calcaneal fracture following IED deck-slap blast. Right: X-ray 
of a normal hindfoot2 

Function is severely compromised when a blast displaces hindfoot skeletal 

anatomy, as the calcaneus and talus are integral to both the subtalar and 

talocrural joints59; 60.  

 

Ordinarily the talocrural and subtalar joints are the pivot between the calcaneus 

and the tibia, which share a mechanical coupling relationship via the talus. 

Therefore, movements of the calcaneus can contribute to movement of the tibia, 

for example inversion of the calcaneus by 20o results in external tibial rotation of 

the tibia by 10o during closed chain movement61.  

Traditionally the subtalar joint was described as an individual torque absorber, 

and the ankle as a hinge which only delivers sagittal motion62. However, the 

Calcaneus 
Calcaneus 
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work of Lundgren et al.63 has since shown that the talocrural and subtalar joints 

work together in tandem to provide frontal and transverse motion in the foot, 

demonstrating a complex coupling relationship63. 

Damage, therefore, to any of the bones that form these important joints will 

most certainly affect the functional capability of the lower limb, in particular 

dorsiflexion/plantarflexion of the ankle joint and inversion/eversion of the 

subtalar joint.  Intra articular bone loss from the calcaneus resulting from blast 

injuries frequently require subtalar joint fusion50. It can prove very difficult 

restoring the talocalcaneal relationship following a calcaneal mal union. 

Therefore, patients with a displaced calcaneal fracture may derive better long-

term results from subtalar joint fusion64. Although reliable rates have not been 

published, the prevalence of patients subsequently undergoing a subtalar 

arthrodesis post severe calcaneal fracture is reported as high 65-67. 

 
 

Figure 2-3 Comminuted fractured calcaneus, caused 
by primary and secondary blast mechanism26. 

Figure 2-4 Complex lower limb injury of 29 
bones following IED blast26 

 

Often the most significant muscle group disrupted as a result of a deck-slap 

injury is the Triceps Surae, as it inserts into the calcaneus through the Achilles 

tendon2. Damage to the structure of the calcaneus affects the ability of the 

Triceps Surae to provide active ankle plantarflexion, knee flexion and controlled 

Bony outgrowth, a result 

of severe axial loading 

Bones fragmented, all foot 

and ankle joint margins 

unclear 
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shank inclination in gait60; 68. The deep fascia of the foot forms the plantar 

aponeurosis that extends from the calcaneus bone to the phalanges of the 

toes60. The plantar fascia provides shock absorption and supports the 

longitudinal arch, as well as enclosing the flexor tendons of the foot60; 68. 

Significant disruption to the calcaneus can damage the fibrous tissues of the 

plantar fascia. All structures (plantar aponeurosis, long/short plantar ligament 

and spring ligament) that support the medial longitudinal arch insert into the 

calcaneus69. Additionally, the short plantar ligament attaches directly to the 

calcaneus60; 68, therefore the lateral arch can also be disrupted as a direct result 

of deck-slap blast trauma.  

The plantaris, extensor/flexor digitorum brevis, abductor hallucis/digiti minimi, 

quadratus plantae and perineal retinaculum muscles can also be disrupted, as 

they too insert into the calcaneus and primarily control movement of the toes 

and prevent peroneal subluxation68. 

Disruption to bone, nerves and soft tissue within the foot and ankle has a 

profound effect on gait. In understanding gait, the convention described by 

Perry et al.70, ensures a consistent approach is undertaken.  

 Normal gait 

Human locomotion involves smooth advancement of the human body through 

space with the least mechanical and physiological energy expenditure71; 72. It is 

the mechanism by which the human body is transported using coordinated and 

complex systematic and symmetric actions71. Human locomotion is typified by 

several events which occur in a rhythmic and repetitive pattern73.  

The gait cycle (GC) is the period of time between any two identical events in the 

walking cycle. Any identical event could be selected as the start of the GC 

because the various events follow each other repeatedly and smoothly. In most 

text, the preferred start and end point of each GC is initial contact70; 73. The 

stance phase, on average, accounts for 62% of the gait cycle at normal walking 

speed74 
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Each GC is divided into two phases70, 

1. Stance Phase - The period of which the foot is in contact with the ground 

2. Swing Phase - The period of which the foot is off the ground and 

travelling in a forward motion. 

Perry further divides the GC according to three functional tasks; weight 

acceptance, single limb support and limb advancement.  These are further 

divided into 8 gait events as shown in (Figure 2-5). 

 

Figure 2-5 Classification of a normal gait cycle as classified by Perry et al70 

Although almost all books on clinical gait analysis advocate Perry’s sub-division 

of the GC75; 76, there are some problems associated with it. For example, initial 

contact is clearly an instant and not a phase, and using the terminology mid 

stance is misleading as this event does not occur in the middle of stance77. 

Despite its’ limitations, this thesis will use this widely understood terminology 

whilst discussing all gait events. 

 

Injured personnel typically display an antalgic gait pattern with a lack of pre 

swing push off and propulsion in gait as a result of deck-slap injuries5; 78. As the 

primary ankle dorsiflexors, such as tibialis anterior, originate proximally on the 

tibia and insert into the first metatarsal and the first cuneiform, they are less 

likely to be damaged as part of a deck-slap injury. Typically deck slap fractures 

are focally at the hind foot2. Anecdotally deck slap injured personnel walk with 

reduced speed and a shortened stride length on the injured side. The injured 
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limb spends more time in swing phase than stance phase to put as little weight 

through the injured limb as possible. The injured foot and ankle joint appear 

stiff, and lower limb muscle weakness is evident due to deconditioning. Often 

increased knee flexion is visible throughout stance phase with a lack of pre 

swing hip extension, and reduced motion in the torso and upper limbs as the 

patient braces before each step. 

The precise cause of the lack of push off and propulsion seen in those with 

deck slap injuries is difficult to truly ascertain. Increasingly experts have 

concluded that much of what was thought to be understood about propulsion is 

oversimplified or simply incorrect79. Ankle propulsion in gait has always 

conventionally been discussed as an event that starts at pre-swing and is 

primarily due to triceps surae activity However Chen et al.80 disagrees with this 

theory. Chen attributes more importance to the events which occur during 

loading response80. During loading response, the heel lever forces the foot to 

the floor and the shank is pulled forward from a reclined position to a vertical 

position. This motion appears to be propulsive. 

Baker81 has concluded that when focusing on just the limb in order to 

categorically answer this question, it would require some form of induced 

acceleration analysis to ascertain what muscles are acting to accelerate the 

segments. Until such times this can be determined, all that can be exemplified 

is that during the transition from stance to swing the limb is both 

pushed forwards by the action of the plantar flexors pushing the plantar foot 

against the ground and pulled forwards at the thigh by the hip flexors81.   

The triceps surae supports the body while it translates over the ankle joint, 

restraining it from falling82.  Damage therefore grossly affects lower limb stability 

and alignment; during single support on the injured side as, if weak, the knee 

and hip will adopt an increased flexed position. Honeine et al.82 have shown 

triceps surae is not solely responsible for the generation of propulsion in gait 

directly. However, it seems plausible that damage to the triceps surae could 

compromise gait propulsion as, indirectly, triceps surae activity controls step 

length and walking speed82, factors which affect propulsion. 
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Additionally, damage to the medial longitudinal arch reduces stability in the foot 

during toe off, and does not enable the foot to engage any propulsive force 

generated throughout stance69. Damage to the articular joint surfaces of the 

subtalar and talocrural joints could lead to both a reduced range of 

plantarflexion and dorsiflexion in the ankle joint, and inversion/eversion in the 

subtalar joint20. This could have a profound effect on the position of the ground 

reaction force (GRF) throughout the gait cycle, leading to instability and 

inappropriate gait timing and inefficiency83.  

Deck slap injuries fall under a category of injuries that contribute to “limb 

salvage”. Limb salvage is defined as the returning of a limb to a state of 

reasonable functionality after severe trauma that might otherwise result in 

amputation84.  

 

Acute management of the injured limb is undertaken to preserve and salvage 

bones, muscles, nerves, blood vessels and skin (Table 2-3)3; 85. Quick 

evacuation to hospital, application of a well-fitting tourniquet quickly and early, 

aggressive wound debridement and irrigation are the cornerstone of any effort 

to salvage a severe open extremity wound86.  

Table 2-3 Cornerstones of limb salvage surgery3 

Debridement 
Removes all non-viable tissue, and is essential in allowing the open wound to heal with 
reduced risk of infection50. 

Soft tissue 
injury 

The magnitude of soft tissue injury present dictates if limb salvage is possible, and is 
more significant in determining this compared to bony injury or loss50. 

Blood flow 

Restoring blood flow is the initial primary concern in theatre. The arterial tree must be 
repaired or reconstructed promptly to ensure appropriate revascularisation of the injury 
site85. Failure to perform prompt repair leads to almost inevitable future amputation.3; 85; 

87 

Bone 

All dysvascular and non-articular bone is removed before the wound is closed50.  Once 
closed surgery to reconstruct and realign bones begins, as the area can tolerate the 
inflammatory response associated with surgery87.  

Diaphyseal loss to bone is salvaged using several techniques such as bone grafting, 
tissue transfer, and limb lengthening.  

Osseous loss, or loss of articular surfaces is more complex and often leads to 
distraction osteogenesis or fusion50. External fixation has been the treatment of choice 
by most surgeons in the management of open fractures37. The external fixator provides 
control of axial length, rotational and coronal alignment of the distal tibia, ankle and 
hindfoot30. 3; 85; 87 
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Plantar soft tissue wounds to the foot are known to be a negative outcome 

predictor for limb salvage88, tissue coverage is rarely sensate and is often not 

cosmetically appealing85. Skin grafts often change the shape of the foot and, as 

a result, shoe and orthosis fitting can be problematic. Muscles damaged by the 

blast cannot be replaced, and although surgeons can replace bulk and 

coverage or perform tendon transfers, it may not be possible to restore muscle 

function to pre-injury levels85. Repair, reconstruction and grafting of damaged 

nerves are possible; however the results are varied and rarely restore pre-injury 

function85.  

 

Infection is always a risk of any surgery including limb salvage. However open 

fractures are associated with a higher incidence of infection; in particular those 

caused by IED blasts2; 3; 21.  

Deep tissue infection is reported in 10-39% of all combat open calcaneal 

fractures38 in particular, with military wounds being more likely to be 

contaminated compared to civilian wounds, despite antibiotic use37. Quick 

administration of antibiotics has a significant beneficial influence on the 

incidence of infection89. Collective reports confirm that most military blast 

wounds are heavily contaminated with 3-4 different species of bacteria as 

compared with only one species found in most civilian wounds42; 90; 91. The rate 

of infection in the salvaged limb with specific deck-slap injuries is 42%, with 

studies reporting osteomyelitis in 13% of deck slap open fractures2. This leads 

to personnel experiencing foot and ankle pain, swelling and tenderness, which 

makes rehabilitation difficult.  

The natural history of open calcaneal fractures often includes infection and 

amputation38. The overall amputation rate for combat casualties following an 

open hindfoot fracture is 42%38, with civilian studies reporting between 7.1% 

and 22%92. Dickens et al.38 in the US report that 18% of amputations due to 

blast trauma were performed immediately at the field hospital with 15.4% 

performed within 24 hours, and 27% between 24 hours to 12 weeks post injury. 
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Ramasamy et al.20 in the UK report on amputation rates due to deck slap 

injuries. Of the personnel in the study 45% had an amputation post injury and 

61% of those limbs amputated were considered unsalvageable and were 

amputated at the field hospital in Afghanistan. A delayed amputation for chronic 

pain (mean, 19.5 months post injury) was required for 10% of the personnel in 

the study. 

2.6 Financial implications of trauma 

Major trauma is a serious public health problem; it is the leading cause of death 

in all groups under 45 years of age and a significant cause of short and long-

term morbidity93. The National Audit Office (NAO) estimate that there are at 

least 20,000 cases of major trauma each year in England resulting in 5,400 

deaths and many others resulting in permanent disabilities requiring long-term 

care93. 

The NAO estimate that trauma costs the National Health Service (NHS) 

between £0.3 and £0.4 billion a year in immediate treatment93. This does not 

include the cost of any subsequent hospital treatments, rehabilitation, home 

care support, or informal carers. In addition, the NAO estimate that the annual 

lost economic output as a result of major trauma is between £3.3 billion and 

£3.7 billion94.  

The cost of limb salvage to the UK military has not been published. However, 

Edwards et al.95 estimates that the 40-year cost of the UK Afghanistan lower 

limb amputee cohort is £288 million. This figure estimates the cost of trauma 

care, rehabilitation and prostheses. Financially, the cost of trauma care and 

ongoing rehabilitation, and equipment for injured personnel from the Iraq and 

Afghanistan conflicts is significantly high and will be for generations.  

 

The most recent cost/benefit analysis demonstrates equal 2 year costs between 

limb salvage and amputation96. However, a 3 fold differential exists for the 

lifetime cost of the amputee group due to the ongoing cost of prosthetic 
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componentry96. Chung et al.97 in the US reports that the economic cost over 40 

years of lower limb amputation is thought to be $350,465 compared to $133,704 

for limb salvage surgery97. This is expected to increase as prosthetic limbs 

continue to technologically advance87 95. 

Economically, therefore, amputation has been shown to be the more costly 

solution long term for any treating health care service96. The decision to salvage 

or to amputate a limb is complex and multi-faceted and will be discussed in 

more detail later in this thesis. 

2.7 Limb salvage rehabilitation 

The British Society of Rehabilitation Medicine defines rehabilitation as the 

process of assessment, treatment and management with ongoing evaluation, by 

which the individual (and their family/carers) are supported to achieve their 

maximum potential for physical, cognitive, social and psychological function, 

participation in society, and quality of living98. Rehabilitation of the limb salvage 

patient is a series of treatments designed to facilitate the process of recovery 

from injury, to as optimal a condition as possible. Without such input, patients 

are unlikely to return to their maximum levels of function, which has significant 

implications for them, their formal and informal carers, and society as a whole99.  

 

Basic principles of physically rehabilitating a salvaged limb begin with as early 

mobilisation as possible3, in line with standard treatment protocols at DMRC 

Headley Court. Often the complexity of the injury requires the patient to be non-

weight bearing for a considerable period of time, commonly between 6-12 

weeks100. During this period of non-weight bearing, the injured patients’ 

physiotherapist is concerned with maintaining joint mobility, muscle strength 

and conditioning, sitting balance and training transfers as well as treatments 

with non-weight-bearing conditions, such as hydrotherapy (dependant on 

wound healing)101.  
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The occupational therapist advises on bed posture, mattress types, aids for 

independent daily self-care, wheelchair-dependency training and meaningful 

activities that can be performed while wheelchair dependant101. The 

interdisciplinary team also pay close attention to wound and scar management 

to promote healing, in addition to psychological support.  

Occasionally following injury or surgery, nerves can be disrupted which can lead 

to the skin becoming hypersensitive to touch. This is treated in therapy with 

desensitisation102 to re-educate the skin to tolerate both texture and pressure. 

Nerve damage can also lead to the foot being insensate69, therefore the patient 

could also be at risk of developing pressure sores as a result. As part of 

rehabilitation, the patient is educated to self-manage this as much as possible 

under the watchful eyes of the clinical team. Preventative strategies, such as 

using pressure relieving mattresses, are utilised when needed. More proximal 

joints, that may be minimally affected by the original injury, will require early 

range of motion exercises to prevent contractures through disuse and 

development of frozen joints3.  Cardiovascular exercise can also be undertaken 

whilst non-weight bearing by utilising static hand bikes or weights. This 

improves blood flow, which in turn improves the flow of oxygen and the release 

of cortisone, which is thought to improve wound healing103.  

 

Typically, after 6-12 weeks, the patient will begin partial or touch weight bearing, 

as sanctioned by their orthopaedic surgeon, dependant on healing. This can be 

referred to as the second stage of physical rehabilitation101. The patient is 

advised to only allow reduced weight through the injured side, and this is self-

managed by the patient using bilateral crutches. During this period the patient 

can begin using equipment like the anti-gravity treadmill104. This treadmill allows 

for mobilisation without crutches and promotes natural gait patterning which 

aids the re-education of gait post injury105. Once the orthopaedic surgeon 

deems the injury healed (typically after 12 weeks post injury) the patient may 

progress to full weight bearing100.  At this time, they begin working on more 

functional physical rehabilitation (Figure 2-6). This also includes negotiating 
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stairs and uneven terrain. Occupational therapy becomes more vocationally 

driven101.  

 

Figure 2-6 Patients undergoing group rehabilitation (Source: Image taken by MDT team at DMRC Headley 
Court) 

 

The last phase of physical rehabilitation involves working on high activity tasks, 

if deemed clinically appropriate, such as returning to sports (Figure 2-7). A 

programme based on plyometric techniques106 is undertaken to achieve this. 

Patients who have undergone limb salvage require the same running 

rehabilitation as amputees to maximise their potential and avoid further injury. 



 

26 
 

 

Figure 2-7 Example of study participant running as part of rehabilitation at DMRC Headley Court. (Source: 
Daily Express 14th Feb 2016107) 

In a civilian setting rehabilitation services do differ nationally, and often 

amputees receive greater access and therapy time in comparison to the limb 

salvage patient14; 108; 109. The NHS Clinical Advisory Group recommend that 

improving rehabilitation should specifically be given more priority, and 

rehabilitation is one of the biggest considerations informing trauma care 

pathway redesign98; 110.   

2.8 Limb salvage vs. amputation: the dilemma 

One of the most difficult challenges that both medics and patients with severe 

lower extremity injury face is the decision on whether to amputate or to 

attempt/continue with limb salvage. At the centre of the decision is the patient, 

and the focus should be on that individual’s expected functional outcome, and 

ability to return to employment and family life as soon as possible. This debate 

has generated much controversy in the literature with studies supporting 

advantages of both approaches6; 85; 109; 111. Many scoring systems have been 

developed to try to assist surgeons with this complex decision-making process, 

through predicting the likelihood of salvage success.  
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Scoring systems have been developed retrospectively by analysing large 

databases to try to identify factors that might predict the need for an amputation 

(Table 2-4). Each scoring system has a critical score that, once reached, 

indicates that the patient would be best served with a primary amputation. A 

summary of 5 limb salvage scoring systems that have been developed are 

found below. 

Table 2-4 Limb salvage scoring systems 

1985 
Mangled Extremity Syndrome 
Index (MESI)112 

First reported scoring system 

Never widely used as deemed too complex and 
includes the upper limb3 

1987 Predictive Salvage Index (PSI)113 

Determined limb survival was related to warm 
ischemia time, the level of arterial injury and the 
muscle and bone injury 

Definitions of each grade were not given, thus it has 
never been widely used3 

1990 
Mangled Extremity Severity Score 
(MESS)114 

Determined that patients with sciatic or posterior tibial 
nerve disruption were most likely to require amputation 

Is the most commonly used in clinical practice 115 

1991 Limb Salvage Index (LSI)116 

Concluded a Gustilo IIIC injury with a nerve injury is an 
absolute indication for amputation 

Not utilised in clinical practice as requires very detailed 
documentation and examination, which makes it 
practically difficult in a busy clinical setting 

1994 
Nerve, ischemia, soft tissue, 
skeletal, shock and age (NISSA) 
score117 

The authors included nerve injury, but separated out 
the skeletal and soft tissue components of the MESS 

It has been reported that these modifications improved 
the sensitivity of this score from 63% to 81%. 

This score is used in clinical practice. 

 

The Lower Extremity Assessment Project (LEAP) conducted the largest study to 

date, evaluating the 5-limb salvage scoring systems prospectively across 556 

injured limbs. It concluded that a low score on each was predictive of limb 

salvage. However, a high score did not necessarily predict the need for 

amputation using any of the scoring systems8.  

No scoring system has produced repeatable, reliable results when used to 

analyse retrospective patient cohorts118; 119. Therefore, at this time there is no 

scoring system that can be applied with confidence to determine if it is best to 

amputate or salvage severely injured limbs to gain the best clinical outcome. 
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These scoring systems do, however, give medics a thought process which can 

aid in the decision-making process, and provide a common language to report 

and communicate complex clinical information. 

2.9  Introduction to limb salvage clinical outcomes  

Functional and physical outcomes are poor for patients who have suffered 

traumatic injury to the lower limb and have undergone salvage reconstruction6; 

16; 20; 120. Limb salvage in the early stages of rehabilitation places a greater 

burden on the patient due to prolonged stays in hospitals, greater numbers of 

surgical procedures and a delay to initial rehabilitation compared to 

amputation121. The clinical outcomes that limb salvage patients experience are 

important to understand, as the most common reason for desiring a late 

amputation is on-going pain and dissatisfaction with the function of the salvaged 

limb122.  

When comparing clinical outcomes in both civilian and military populations, 

most studies have compared patients’ functional, psychosocial and pain 

outcomes, as well as their ability to return to employment post injury. Surgeons 

clinically would define a poor clinical outcome28 as: 

1. Persistent chronic infection (osteomyelitis or wound infection) 12 

months after injury 

2. Delayed fracture healing more than 12 months after injury 

3. Symptomatic post traumatic osteoarthritis123 

4. The need for an amputation  

There have only been a very small number of long-term studies evaluating the 

clinical outcomes of limb salvage patients in comparison to amputees6; 8. 

 

The LEAP study was a multi-centre study of severe lower extremity trauma in 

the US civilian population between 1994 -1997. Functional outcomes were 

gathered at 2- and 7-year follow-ups for 601 patients. The LEAP Group found 
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no difference in functional or psychosocial outcomes at 2 years in 95% of 

patients who sustained high energy lower limb trauma treated with either limb 

salvage or amputation120. These outcomes persisted for at least 7 years post 

injury124 and at both follow ups functional and psychosocial outcomes were 

rated as poor. 

The LEAP study group also found that high pain intensity, sleep and rest 

dysfunction, elevated levels of depression and anxiety at 3 months post 

discharge were strong predictors of chronic pain at 7 years125. Chronic pain may 

partially explain the poor functional outcomes and low return to work rates81, 82 

as well as high levels of anxiety and depression6 previously reported in this 

population. The civilian return to work rate is 40% at a mean 76 months post 

injury92. 

In 2009 Potter et al.65 investigated the long-term functional outcomes after 

operative treatment for intra-articular fractures of the calcaneus in civilian 

trauma. Validated functional questionnaires were completed by 73 patients on 

average 12.8 years after injury. The group were split into those who were 

injured from a fall and those who were injured in a road traffic accident (RTA). 

The group injured in an RTA had less favourable outcome scores compared to 

those injured in a fall65. However, the height of the fall was not documented, 

therefore it cannot be determined if this group sustained less energy transfer at 

the point of impact and thus the disparity in the results65.  

 

The Military Extremity Trauma Amputation/Limb Salvage study (METALS)6 was 

published in 2013 by the US military. It is the largest published study which 

reports on the outcomes of amputation versus limb salvage within military 

cohorts. This observational study presents the clinical outcomes of 324 

personnel injured whilst serving in Iraq and Afghanistan on average 38.6 

months (range, 6.8 to 69.7 months) post injury.  

Overall, all participants reported moderate to high levels of disability, except for 

upper limb and hand function. The injured personnel scored significantly poorer 
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than population norms in the Short Musculoskeletal Function Assessment 

(SMFA) used to determine overall function. Both unilateral and bilateral 

amputees were deemed to have greater functional ability compared to unilateral 

limb salvage patients, although the differences were not always significant6.  

Amputees were 2.6 times more likely to engage in higher activity pursuits 

compared to limb salvage patients (Table 2-5), with only 38% of all personnel in 

the METALS study engaged in any kind of sports and recreational activity6. The 

barriers to this for limb salvage patients are not described in this study. Pain 

continues to interfere with 20% of all patients’ daily activities, with the unilateral 

limb salvage group experiencing the highest level of daily pain6 (Table 2-5).  

Melcer et al.14 similarly found that post injury amputees and limb salvage 

patients attend pain clinic appointments equivalently. However, as rehabilitation 

progresses, amputees typically attend pain clinics less often than limb salvage 

patients. Both studies appear to suggest on average the rate of pain 

experienced is higher in the limb salvage group6; 14.   

Table 2-5 METALS study clinical outcomes: Paffenbarger Physical Activity Questionnaire, The Revised 
Center for Epidemiologic Studies Depression Scale, Chronic Pain Grade Scale6 

 All 
Patients 

Unilateral 
Amputation 

Unilateral 
Salvage 

Bilateral 
Amputation 

Amputation 
and Salvage 

Bilateral 
Salvage 

Number of 
participants 

324 113 126 39 30 16 

Engaged in 
vigorous sports or 
recreational 
activities % 

38 45.1 26.2 48.7 50 31.2 

Depressive 
symptoms % 

38.3 40.7 43.6 25.6 23.3 37.5 

Working/on active 
duty % 

43.7 43.4 48 30.8 36.7 56.2 

With pain 
interfering with 
daily activity % 

19.9 17.1 27 10.3 16.7 12.5 

 

The METALS study6 reports that neither the amputation level nor the timing of 

amputation was significantly associated with the outcomes in the amputee 

group. This contradicts other studies 38 14; 122 which suggest delayed amputation 
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in the limb salvage patient leads to significantly more revision surgeries, 

prolonged infections, increased pain and higher rates of psychological 

diagnoses. 

Whilst amputees and limb salvage patients appear to suffer from depression 

equally, amputees are significantly more likely to screen for post-traumatic 

stress syndrome (PTSD) comparatively6. Those who had delayed amputation 

and limb salvage have similar rates of PTSD and reported substance abuse, but 

the incidence of this significantly reduces in those amputated immediately post 

injury14. This would suggest delaying amputation has a significant effect on an 

individual’s mental health.  

A meta-analysis conducted by Busse and the orthopaedic trauma working 

group17 state that generally if at 2 years post injury a limb salvage patient has 

not returned to work, the likelihood that they will is less than 50%17. These 

return to work rates are similar to those in the METALS study6. Although not 

statistically significant, METALS found limb salvage patients more likely to 

return to work compared to amputees. No study has presented the return to 

work rates linked to amputation level or defined the complex injuries of the limb 

salvage patient for comparison. 

 

The UK military outcomes from blast trauma are as similarly poor as the US 

studies2; 20; 28. Ramasamy et al.20 presented the outcomes of IED foot and ankle 

blast injuries in the UK between 2006-200820 (Figure 2-8). Nearly 3 years post 

injury, 74% of injured limbs had clinical symptoms requiring on going 

rehabilitation, surgical intervention and analgesia. 

Poor clinical outcomes have been reported in 75% of patients with deck-slap 

injuries 3 years following injury2. Functional measures (such as the chronic pain 

grade scale) used in these studies are global in nature. Given that a substantial 

proportion of the patients in this study had bilateral injuries, the use of global 

scores makes it difficult to directly compare the limb salvage and amputee 

populations, unlike the US publications20.  
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Figure 2-8 Flowchart depicting the outcomes of UK foot and ankle blast injuries20 

In the same study, Ramasamy reported that only 14% of personnel who 

sustained a foot and ankle injury due to blast trauma were able to return to pre-

injury occupational roles, which falls to 5% in those personnel with deck-slap 

injuries2. It is likely that the reduced return to work rates reported within the 

military are related not only to the severity of the injuries sustained, but also to 

the higher occupational demands placed upon active service personnel 

compared to civilians.  

Ladlow et al.15 found similar results to the METALS group: unilateral amputees 

have a functional advantage over limb salvage patients and delaying 

amputation has no bearing on functional ability15. However, Ladlow et al.15 

contradict Melcer et al.14 as this UK study found mental health outcomes were 

comparable with general population norms15.  

In conclusion, the larger military studies conclude that, on average, three years 

post injury those treated with amputation appear to have better functional 

outcomes than those treated with limb salvage6; 14; 15. This contradicts the LEAP 

civilian study which concluded that the functional outcomes of amputees and 

limb salvage patients are the same at two years post injury120. The research 
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therefore suggests that the clinical and functional outcomes experienced by the 

limb salvage patients are sub-standard, particularly in military personnel injured 

by blast mechanisms. The evidence has therefore promoted elective 

amputation as a very credible option for patients with injuries similar to the 

participants in this study.  

These poor limb salvage outcomes have anecdotally led to a call for 

advancements in orthotics to support lower-limb salvage patients eager to 

preserve their lower limb, yet function at high levels of mobility.  

2.10 Orthotic treatment in the limb salvage patient 

 

Orthotics is a specialty within the medical field concerned with the design, 

manufacture and application of externally applied devices onto the body69; 126. 

They are formally termed orthoses, but sometimes called splints or braces to lay 

people. 

An orthosis is defined by the International Standards Organisation (ISO) as ‘an 

externally applied device used to modify the structural and functional 

characteristics of the neuromuscular and skeletal system’127.  

The orthotist is the healthcare professional responsible for the design and 

provision of orthoses126.  

When traumatic blast injuries are sustained to the foot and ankle, the normal 

function of the skeletal and neuromuscular systems are disrupted. Orthoses can 

assist to improve pain, function and prevent further deformity to these systems 

post injury, to improve the injured patient’s quality of life69. Fractures and 

dislocations resulting from blast trauma can be difficult to treat due to the 

involvement of osseous, soft tissue, vascular and nerve structures3; 30.  

It is important to recognise that many variations of injury can occur in blast 

trauma, therefore each patient must be thoroughly assessed as to their 

individual joint motion, sensation, strength and functional deficits128 globally. It is 
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also important to understand that these injuries can cause long term 

morphological changes, so the need to review and reassess patients regularly 

is crucial and best practice129.   

 

Morphological changes are often present post hindfoot fracture and orthoses 

can often assist as shown in (Table 2-6). The morphological change to the 

structure of the foot after trauma is often linked to body impairments, which 

influence function. Orthoses can be used to improve these functional deficits as 

a result of body impairments as outlined in (Table 2-7). 
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Table 2-6 Typical morphological changes seen in hindfoot blast trauma 

Morphological Changes Why this occurs Problems this may present Possible orthotic solution 

Calcaneal Spur Due to displacement of bone a 
single piece of sharp bone maybe 
present on the calcaneus130. 

This can be associated with pain if on the 
plantar surface, as it is directly loaded or 
rubs on footwear if posterior130; 131.  

Possible entrapment of the nerve to 
abductor digiti minimi causing heel pain131 

Functional foot orthoses (FFO) 130; 132; 133 to 
redistribute planar pressure. 

Silicone heel pads to provide cushioning.130; 134 

Incongruity of the subtalar joint 62% of all calcaneal fractures 
produce distortion in the subtalar 
joint as the articular surface is most 
likely compromised130.  

The blast injury can displace the 
subtalar joint.  A varus deflection 
typically occurs in deck-slap injuries 
as most injuries are sustained 
whilst sitting20 The hindfoot is 
therefore typically resting in a varus 
position at the point of impact130 

Post-traumatic arthritis of the subtalar 
joint135 leading to pain and discomfort. 

Reduced hindfoot shock absorbency- as 
subtalar joint range of motion into 
pronation maybe compromised69 

Compliance on uneven terrain, lack of 
subtalar joint pronation leads to a lack of 
flexibility within the midtarsal joint to 
accommodate for uneven terrain69. 

Excessive subtalar joint pronation, as a 
result of the talus shifting laterally69 

Propulsion, If the subtalar joint is 
restricted the coupling motion between the 
midtarsal joint is affected. The subtalar 
joint may not be able to supinate and 
subsequent locking of the midtarsal joint 
to generate a rigid lever for propulsion in 
terminal stance59; 69; 136. 

FFO’s to improve shock absorbency using 
shock absorbing materials69; 130. 

FFO’s to control velocity of pronation and 
redistribute planar pressure69. 

A semi flexible FFO can be used to reduce 
excessive over pronation69; 130 

FFO’s allow normal plantarflexion of the first 
ray, stabilising the forefoot and improving the 
foot’s ability to propel69; 130.  

A lateral forefoot wedge can also assist the 
transfer of weight onto the medial forefoot128 in 
terminal stance for 3rd rocker. 
Immobilisation of the subtalar and midtarsal 
joint can help to reduce pain if arthritic. This 
can be achieved using an Ankle Foot Orthosis 
(AFO)69; 137. 

A rocker sole with a compensating heel 
elevator can be used69 in combination with a 
carbon fibre Morton’s extension plate138 . This 
can help to facilitate late stance push off if 
FFO’s are not effective in improving the 
midtarsal joints ability to provide a rigid forefoot 
lever for propulsion when subtalar supination is 
compromised.  
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Morphological Changes Why this occurs Problems this may present Possible orthotic solution 

Reduced height of the foot or 
leg. 

Displacement of bone as well as 
the addition of metalwork post-
surgical procedures, can lead to the 
foot or the limb being longer or 
shorter than before130; 139. 

Pelvic obliquity, low back pain, 
imbalance140 and possible split size 
footwear. 

Provide a shoe raise internally or externally to 
address the leg length discrepancy69; 140.  

Possible provision of a toe filler insole and 
rocker sole130 if the foot length difference is 
significant to optimise shoe fitting and ensure 
3rd rocker happens at the correct pivot point 
within the footwear. 

Widening or narrowing of the 
calcaneus 

The blast injury has displaced the 
bone possibly changing the width of 
the hindfoot 

If a significant change it can be difficult to 
wear traditional footwear130 

Provide custom or modular orthopaedic 
footwear to fit the abnormally shaped 
hindfoot130. 

Lowering the heel quarter of the shoe as the 
malleoli maybe in a different position130 

 
 

  



 

37 
 

Table 2-7 Typical body impairments seen in hindfoot blast trauma130 

Body impairment Why this has occurred Orthotic solution Effect on gait (anecdotally) 

Impaired muscle balance Positional changes of muscle 
attachments due to distortion of 
bone130. This may cause the 
Lengthening of tendons which results 
in weakening of contractile forces 
required for optimal muscle function130; 

141.  Additionally, poor proprioceptive 
control of actions by antagonistic 
contraction maybe seen, the most 
significant being the triceps surae130.  

Muscle shortenings due to direct 
trauma, adhesions, scarring or bedrest 
ankle inactivity post trauma142 could 
also lead to muscle imbalance.  

AFO that provides either a dorsal stop 
or significant resistance to dorsiflexion 
thus ensuring control of gait 
kinematics. Ensuring hip extension 
occurs at terminal stance in the 
absence of strong plantar flexor 
power143-145.  

AFO That controls the limb in swing 
phase and prevents drop foot69. 

AFO with the ankle angle set to the 
length of the gastrocnemius with the 
knee extended and foot dorsiflexed. 
Shank to vertical angle at mid stance is 
typically 10-12°to achieve 2nd-3rd 
rockers in gait.144; 146; 147. The final 
position is fine tuned in clinic by an 
orthotist. 

Orthosis which provides energy return 
from terminal stance to pre swing to 
facilitate plantarflexion power, a 
dynamic AFO148; 149. 

An orthosis which prevents excessive 
ankle and knee flexion (if appropriate), 
as this does not allow the triceps surae 
to contract and assist with what power 
remains, as its tendon is not under 
tension144. 

Resting AFO that resists excessive 
plantarflexion to reduce the risk of 
muscle contractures, particularly the 
soleus and gastrocnemius150. 

Lengthening of tendons in triceps 
surae leads to an increased shank 
inclination during mid stance with 
resultant increased ankle dorsiflexion. 
This creates a lack of an extension 
moment at the knee and the hip in mid 
stance through terminal stance83.  

Shortening of the tendons in triceps 
surae can prevent initial contact being 
with the heel and the ankle maybe in a 
fixed equinus position83 making the 
injured limb effectively longer. This can 
lead to ground clearance difficulties in 
swing phase with increased flexion 
seen in the hip and or knee to 
compensate.  As ankle dorsiflexor 
range is restricted there may be 
increased motion through the midfoot 
(midfoot break).  
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Body impairment Why this has occurred Orthotic solution Effect on gait (anecdotally) 

Impaired muscular function around the 
hindfoot 

Incongruity of the subtalar joint and 
widening of the calcaneus can impinge 
on the peroneal tendons130. The 
peroneals are the dynamic lateral 
stabilisers of the ankle151. Pain upon 
tensing these tendons can lead to 
instability of the hindfoot151 as well as 
structural damage. 

FFO with lateral posting to increase the 
subtalar valgus moment. This 
encourages hindfoot supination to 
relieve pressure on the peroneal 
tendons and help improve stability128; 

130; 152; 153.  

Kinesiology taping to improve ankle 
stability154 

Orthopaedic footwear can also be 
considered to restore ankle stability if 
very unstable130. 

Antalgic gait often presents with 
reduced single support time on the 
injured side with associated shortening 
of stride length and general gait 
asymmetry.  

Weakening of the subtalar plate The subtalar plate acts as the long arm 
of a lever during push off in terminal 
stance, as during re-supination with 
tensing of the plantar aponeurosis, the 
individual bony links of the plate 
become interlocked, preventing 
bending forces130. The resultant force 
in the subtalar joint upon interlocking 
causes pain, by acting on incongruent 
joint surfaces130.  

The subtalar plate may not be able to 
interlock as it’s subjected to bending 
forces at its weakest point, the 
midtarsal joint130.  

Stiffening of the shoe and addition of a 
rocker sole helps to reduce strain on 
the midtarsal joint69; 130.  

Firm FFO’s can also be used to 
support the midtarsal joint in terminal 
stance to counteract the bending 
forces upon it69; 130.   

Weakening of the subtalar plate 
causes a reduced efficiency of push 
off130 and potential to develop a mid-
foot break to enable push off in 
terminal stance.  
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Many structural changes occur to the foot and ankle following blast trauma, and 

a detailed patient assessment focusing on lower limb muscle power and joint 

range of motion is important to determine which orthotic treatment may be 

beneficial to improve pain and biomechanical function. There is no published 

research that outlines typical muscle power, joint ranges of motion or gait 

kinetics and kinematics in patients who have undergone limb salvage, and this 

thesis is the start of this documentation.  

 Orthoses used in blast trauma 

There have been limited publications on the use of orthoses in lower limb foot 

and ankle trauma rehabilitation.  Only 2 civilian papers known to the author 

have been published that discuss possible orthotic treatment of the hindfoot 

post high-energy traumatic injury128; 130. Prior to conflicts in Iraq and Afghanistan 

there is no literature regarding the orthotic treatment of the foot and ankle due 

to blast trauma. The only orthosis mentioned in the literature, which has claimed 

to successfully treat patients who have sustained foot and ankle blast injuries, is 

the Intrepid Dynamic Exoskeletal Orthosis (IDEOTM) (Figure 2-9). Over 20 

papers5; 22; 24; 122; 155-170 have been published either by, or in connection to, the 

US military on the effectiveness of this orthotic design between 2009 and 2018.  

2.11 Intrepid dynamic exoskeletal orthosis (IDEOTM) 

The IDEO™ (Figure 2-9) is best described as a custom made, Passive-

Dynamic Ankle Foot Orthosis (PD AFO) 4; 22; 156; 159; 161; 169; 171-173. A PD AFO 

provides users with a dynamic response173, i.e. a force that produces motion 

which is not powered or providing mechanical assistance. It provides energy 

return using an energy storing composite strut158; 171; 173 coupled with 

appropriate AFO trim lines and manufacturing material. PD AFOs, like all AFOs, 

are commonly prescribed to manipulate the GRF and normalise gait kinematics.  
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Figure 2-9 IDEOTM 174 

The IDEO™ was developed by the prosthetic department at the Centre for the 

Intrepid (CFI), Brook Army Medical Centre, San Antonio, Texas, USA, and in 

2009 first appeared in the literature171. The IDEO™ was developed to address 

impairments created by lower limb blast trauma, such as diminished 

plantarflexion and propulsive force, decreased weight acceptance and 

compromised joint stability5; 22; 171. The overriding goal was to enable limb 

salvage patients to lead a more active lifestyle and, where appropriate, be able 

to take part in higher levels of activity without resultant pain171 . 

 

The CFI began treating limb salvage patients from Iraq and Afghanistan in 

2008; previously the service had only provided prostheses. Individuals 

transferring into the CFI were typically prescribed non-custom plastic AFOs or 

prefabricated carbon fibre AFOs, which were not deemed functionally adequate 

by patients and therapy staff171. At this time, lower limb stock orthoses were not 

designed for variable sports and recreation, often a primary rehabilitation goal 

when treating a young military population22; 156.  

Plastic stock AFOs do not provide adequate strength when high training loads 

are applied during high activity175 and prefabricated carbon AFOs cannot be 

used whilst squatting and offer limited triplanar foot and ankle control176. 

Energy storing 

composite struts 
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Therefore, there was a growing clinical need for a custom AFO design that 

offered injured personnel the ability to be more active, and by doing so reduce 

the elective amputation rates within the limb salvage community that were ever 

growing22; 24.  

Other than stock plastic AFOs and prefabricated carbon fibre AFOs as 

published159, it is unknown if the US military utilised any form of custom AFO 

before embarking on IDEO™ development. It is therefore unknown how a 

custom AFO of any design or material would perform against the IDEO™ as 

this, to date, has never been published. 

As the clinical success of this orthotic design became clear through further US 

publications22; 156; 159, evidence was growing that the IDEO™ design was 

appearing to provide limb salvage patients with an orthosis capable of enabling 

users to be more functional159. For this reason, DMRC Headley Court in the UK 

began investigating this design to treat its similarly injured limb salvage 

population.  

2.12  UK PD AFO: British off-loading brace (BOB) 

The orthotic service at DMRC Headley Court began supplying an identically 

designed PD AFO to the IDEO™ in 2013 post training from the US military 

rehabilitation team. The IDEOTM is a trademarked name and so the UK version 

of this orthotic design within DMRC Headley Court was colloquially named the 

British Off-loading Brace (BOB)177.  

Throughout this thesis the term PD AFO will be used to define the orthosis used 

at DMRC Headley Court and by the participants in this study, not BOB. A PD 

AFO is the more technically correct name for such an orthosis. 

Blatchford is the prosthetic and orthotic service contractor to the Ministry of 

Defence (MOD), and in 2013 it did not have the capability to manufacture the 

PD AFO internally, and so from 2013-2016 the PD AFO was manufactured by 

Orthotic Composites Ltd. Blatchford developed this capability in November 

2016, and so from that date to the present day the PD AFO has been 
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manufactured by Blatchford following the same manufacture process utilising 

the same composite materials.  

Blatchford has since released this style of PD AFO to the wider UK orthotics 

market (civilian) under the product name Momentum®. The Momentum® 

(Figure 2-10) has been available since 2016 within both the private sector and 

the NHS, although adoption within the NHS anecdotally has been limited due to 

cost.  

At the time of writing, the Momentum® costs the NHS £1,825 to purchase and 

£3,800 + VAT in the private sector, inclusive of clinical time. IDEO™ costs to 

the US military are not published. However, anecdotally Hanger in the US 

market provide the same style PD AFO, marketed as the Exosym™, at an 

approximate cost of $10,000. This includes the orthosis and a week of 

residential rehabilitation with a physiotherapist. 

 

Figure 2-10 Momentum® PD AFO (Source: Blatchford private clinic website)25 

Since 2014, 74 personnel have been supplied a PD AFO of this design at 

DMRC Headley Court and 11 of these personnel went on to have an elective 

amputation within 18 months of using the orthosis. Of the 11 patients, 8 chose 

elective amputation post use of the PD AFO and the other 3 patients clinically 

were advised to have an amputation, due to recurrent deep infection that was 

not responding to antibiotic treatment.  
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The US military have provided clinical training to orthotists for the use of the 

IDEO™, but only to US military centres and global military allies such as the 

UK. Therefore, the design and clinical use of the IDEO™ and DMRC Headley 

Court’s PD AFO are known by the researcher to be the same.  

There is, however, 1 key difference between the UK’s PD AFO and the IDEO™, 

and this is how the orthosis is manufactured23.  

 

The US military favour a composite infusion manufacturing technique, also 

referred to as wet lamination178. This involves laying up dry weaved carbon 

fibre, aralon and aramid onto a dry plaster of Paris positive cast. At room 

temperature, hardener is added by hand to acrylic resin. This resin mixture, 

referred to as “the matrix”179, is then poured into the lamination and manually 

threaded through the composite fibres evenly whilst a vacuum is applied. The 

resin undergoes an exothermic reaction and sets to form the finished orthosis. 

This type of manufacture is relatively cheap and quick to fabricate, producing 

strong orthoses. However, the manufactured product can often be heavy, as the 

resin to carbon ratio is high179.  

The process is reliant on manual steps, so there is little control of variables. 

However, in practice, repeatable and quality results are achieved because the 

technicians manufacturing are highly skilled and experienced in lamination. This 

method is standard practice globally for the manufacturing of carbon fibre 

prosthetic sockets69; 179 (Figure 2-11). 
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Figure 2-11 Prosthetic socket lamination (Source: Picture taken by thesis author in prosthetics department, 
DMRC Headley Court) 

The UK PD AFO is manufactured using composite materials (aramid and 

carbon fibre), which are machine pre-impregnated with resin, colloquially 

referred to as “pre preg”. This reduces and standardises the resin (matrix) 

content within the orthosis, which leads to a lighter and thinner orthosis without 

compromising on strength179-182. The composite fibres are laid up onto a 

positive cast over a very thin layer of plastic (Figure 2-12). Anecdotally this 

protects the composite from the moisture in the cast. The volume of composite 

fibre layers is dependent on the weight and activity level of the patient.  

 

Figure 2-12 Unidirectional carbon fibre being applied onto a PD AFO (Source: picture taken by thesis 
author at Blatchford manufacturing facility in Sheffield) 
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Additionally, pre-preg orthoses are cured in a vacuum assisted oven at a 

controlled temperature. The manufacturing process is therefore less reliant on 

manual intervention, ensuring fewer variables occur and a high-quality product 

is achieved consistently. A negative consequence of this method is that it 

cannot be adjusted once the final orthosis is complete, as the resin content is 

very low179, unlike orthoses manufactured using wet lamination with a higher 

resin content that can be heated a little, if required, to allow the shape to be 

adjusted179. Pre-preg manufacturing is more expensive and takes longer, 

however it produces lighter, stronger and thinner orthoses180; 181, and for these 

reasons is the manufacturing technique favoured by DMRC Headley Court 

presently for all PD AFO designs.  

2.13 IDEO™ / PD AFO design 

This thesis will now discuss each component of the IDEO™ (PD AFO) design 

and outline its importance in relation to function.  

 

The proximal ground reaction cuff at the knee is designed to redistribute and 

deflect pressure away from the painful foot and ankle area, and transfer this 

load to tolerant areas around the knee, such as the patella tendon and the 

medial tibia flare183. This strategy effectively reduces axial loading of the ankle 

and foot during stance phase69.  

The IDEO™, therefore, behaves similarly to a conventional ground reaction 

ankle foot orthosis (GRAFO) in that the knee section increases the proximal 

lever arm, and helps to control tibial progression through mid-stance, as it acts 

as a dorsal stop (dorsiflexion limiter)184. An orthosis that limits the degree of 

dorsiflexion can control the tibia and increase stance limb stability in terminal 

stance. Like a GRAFO, it transfers the ground reaction force though a solid 

ankle to the anterior tibial cuff, creating a mechanical plantarflexion moment at 

the ankle. This supports the internal plantarflexion moment that could be 

reduced, for example, secondary to weak plantarflexor muscles. The 
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plantarflexion moment results in an external knee extension moment through 

the mid and terminal phases of stance. This occurs as the tibia is limited from 

excessive inclination. Knee flexion is therefore limited, and the ground reaction 

is able to fall in front of the knee, creating an external knee extensor moment 

thereby restoring the plantarflexion-knee extension couple185; 186. This design 

provides maximum resistance to dorsiflexion, as recommended by Lehmann et 

al187 for stance phase stability. 

The anterior knee cuff is set in approximately 10° of knee flexion to load some 

of the users’ body weight onto the anterior shell at the medial tibial flare and 

patellar tendon bar areas during stance phase69. The design features of the 

knee section are found below (Table 2-8). 

Table 2-8 Knee design features 

Design Feature Importance 

Total surface bearing on the proximal anterior tibia 
area of the limb, below the knee.  

To redistribute pressure around this area, careful 
not to create areas of discomfort due to high 
pressure on bony prominences69. 

Patellar tendon notch To increase load in this pressure tolerant area69 

Flared distally on the proximal tibial area To reduce high forces along the tibial shaft 

Dropped trim line around medial and lateral 
hamstring tendons posteriorly 

To improve comfort when the knee is flexed69.  

Rivet opening/ strap closure Ensures strong fixation of the anterior shell  

Manufactured with carbon fibre twill and 
unidirectional fibres 

Provides a rigid, strong, yet lightweight orthosis179; 

182; 188; 189. 

 

The proximal knee cuff and the rigid foot and ankle section are attached by two 

dynamic composite struts (clever bonesTM). The clever bones™ are available in 

four strengths and are distributed by Ossur as a dynamic prosthetic pylon 

system, typically for geriatric amputees. Clever bonesTM have, therefore, been 

adapted for use in a PD AFO and not originally designed for this purpose.  

 

The clever bones™ are trimmed to size and laminated directly into the IDEOTM. 

This thesis will focus on the use of clever bones within PD AFO design. Other 

commercially available struts such as the carbon ankle seven (Ottobock), 
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posterior dynamic element (Fabtech) and the dynamic strut AFO (Coyote 

Design) will not be discussed. The use of posterior struts in a PD AFO is 

reported to enhance transition through midstance, releasing energy in the form 

of spring assistance between terminal stance and pre swing190. The strut is 

thought to provide an internal plantarflexion moment to supplement insufficient 

plantar flexor strength165 between terminal stance and pre swing. The design 

features of the posterior strut are shown below (Table 2-9) 

Table 2-9 Clever bone™ design features 

Design Feature Importance 

Carbon fibre with a 
polyurethane core. 

Carbon fibre is a composite material that provides energy return182. The 
posterior struts are compressed and deflect from initial contact through 
to terminal stance. They claim to return the stored energy to the user at 
pre swing which helps to facilitate increased push off159; 182. The 
polyurethane core gives the strut further flexibility.  

Round shape Anecdotally provides some torque compliance compared to a flat strut 
design171 

Two struts  Improves strength. 

Laminated into the foot and 
knee sections 

Anecdotally creates a stronger fixation and reduces the risk of 
breakages compared to modular struts that utilise metal bolts and 
mounting plates.  

 

In the literature there has been some experimentation with the IDEO™ posterior 

struts.  The Littig strut, which originates from a dynamic hip disarticulation 

system, has been compared to Clever Bones™. The clinical team at the CFI 

report an increased energy return, torsional dynamics and general 

responsiveness using Clever BonesTM rather than the Littig strut system171. 

There are no other struts in the literature that have been tested against Clever 

Bones™ in IDEO™ design. 

 

The design features of the rigid ankle and foot section are outlined below (Table 

2-10). 
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Table 2-10 Ankle and foot design features 

Design feature Importance 

Rigid in all areas, including the full-
length forefoot. 

The inherent rigidity of an AFO has shown to play an essential 
role in determining its biomechanical function, and needs to be 
optimal to positively influence gait191; 192. The rigidity (lack of 
material deformation) allows force to transmit through the foot 
section and up into the posterior struts of the AFO when loaded.  

The rigidity in the ankle and full length footplate enables the 
external dorsiflexion moment  between mid-stance and terminal 
stance  to be resisted, which influences the position of the GRF 
in relation to the knee and hip joints193.  

The full length footplate maximises the foot lever length, shifting 
the GRF as far anterior to the knee as possible during terminal 
stance for stability193.  

It provides maximum triplanar control to the foot and ankle, 
stabilising the foot and ankle joints, reducing excessive 
movement69. Empirically this can reduce pain when joint 
integrity is compromised137. 

Forefoot rocker- Either designed into 
the plantar surface of the PD AFO 
footplate or added to the 
participant’s footwear 

As the forefoot section of the AFO is rigid a rocker is necessary 
to enable the user to use the third rocker during walking69.  

Trim lines on the apex or distal to the 
metatarsophalangeal joints  

Serves to help strengthen the forefoot and reduce the risk of 
breakages. This area of the orthosis is subjected to high stress 
during high activity69. 

Trim lines at the malleoli can sweep 
behind the apex.  

The material is strong enough to trim behind the malleoli and 
avoid pressure on bony prominences without deformation of the 
material182. 

Medial and lateral supramalleolar 
trim line extensions 

Provide enhanced ankle stability when carrying out more 
complex functional activity as the varus and valgus control 
areas have a greater surface area in contact with the limb.  

Manufactured with advanced 
composite materials, carbon twill, 
unidirectional and aramid. 

Provide a rigid, strong yet lightweight orthosis to optimise 
performance179; 180; 182; 189. 

Aramid in the foot plate provides the orthosis with impact 
resistance to tolerate peak forces for high activity189.  

 

The foot and ankle section is typically fixed in a plantarflexed ankle angle 

alignment. Therefore a heel elevator made from urethane foam is placed under 

the heel158; 159 to accommodate for this position, aligning the plantar surface of 

the PD AFO to a 90 degree angle to the shank, ensuring the heel remains in 

contact with the floor when weight bearing.  

 

The heel elevator (Figure 2-13) is made from a polyurethane rubber158. 

Anecdotally, polyurethane heel elevators are more durable than conventionally 
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used high density ethylene vinyl acetate (EVA) heel elevators, and do not 

bottom out as readily. Polyurethane is, however, slightly heavier194.   

The heel elevator’s height is fine-tuned in combination with the patient’s 

footwear pitch, in line with tuning principals to be discussed in 2.15.4. The heel 

elevator is thought to provide shock absorbency159 at initial contact through 

loading response, if made by the heel, which aims to decrease impact on the 

joints of the injured limb. The cushioned heel strives to accommodate for the 

lack of subtalar joint pronation whilst in the PD AFO. Facilitating load 

acceptance provides a more fluid transition from initial contact to loading 

response as the tibia advances over the foot towards mid stance.  

 

Figure 2-13 Example of a polyurethane heel elevator (Source: picture taken by author in orthotic 
department at DMRC Headley Court) 

 

The ankle angle of an AFO can be described as the angle of the foot relative to 

the shank in the sagittal plane of the AFO. This angle is measured as the angle 

between the line of the lateral border of the foot (base of 5th metatarsal head to 

the base of the heel) and the line of the shank. It is described in degrees of 

dorsi-flexion or plantar flexion, with plantigrade describing a neutral position193. 

The foot and ankle section of the IDEO™ is typically set with the ankle angle in 

plantarflexion159, the exact angle of which is patient specific and not included in 

any IDEO™ published literature. A plantarflexed ankle position increases the 

degree of strut deflection and associated energy return from midstance through 

to pre swing159. It also reduces the risk of tibio talar impingement171 and 

accommodates for possible shortening of the Achilles tendon post injury due to 

both trauma and/or a sedentary lifestyle. Setting the ankle in a plantarflexed 
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position allows for improved forefoot loading during agility and running 

activities159. Whilst empirically plantarflexing the foot 5-10° does appear to 

provide the best fixed position for high functional activities on the injured side, it 

does require the contralateral side to also be raised at the heel to ensure a leg 

length discrepancy is not introduced. This could lead to shortening of the 

Achilles tendon if used long term195, although there are no long-term studies to 

determine this. The desired ankle angle is always captured in the negative cast 

by the orthotist. 

2.14 Casting for a PD AFO  

There is no published research on specific casting methods for the IDEO™, 

therefore casting information is based on the researcher’s experience and 

training received by the US military team responsible for the IDEO™. 

 

The orthotist determines the ankle position and pitch of the foot within the PD 

AFO individually for each patient by assessing the following factors in (Table 2-

11) to make this clinical judgement. 

Table 2-11 Determinants for selecting PD AFO ankle angle 

Ankle angle 
determinants 

Importance 

Pain Does a particular ankle position relieve discomfort? Increased ankle dorsiflexion 
can cause anterior ankle impingement pain in patients with a compromised 
talocrural joint196 post trauma. Anecdotally it is more likely a plantarflexed ankle 
position will reduce pain in those with previous hindfoot trauma. 

Range of motion Joint restrictions will limit the ankle angle options available for casting 

Calf muscle length The PD AFO must accommodate both gastrocnemius and soleus length as 
described by Owen et al.144 and Eddison et al.197. Setting the angle of the ankle in 
the PD AFO without regard to the tri-jointed requirements of the gastrocnemius 
can result in insufficient length being available to allow knee and hip extension 
during the Gait Cycle198. In addition, an overstretched gastrocnemius in terminal 
stance will reduce the possibility of optimum force production in the calf 
complex198. If the correct length of the musculotendinous unit is not 
accommodated for within the PD AFO, bony foot deformities caused by enforced 
supination or pronation within the PD AFO can occur144. The lever arm ratio 
between the ankle and the knee at 40% of the Gait Cycle is 2:3, so small 
changes in the ankle angle are amplified at the knee198. Both gastrocnemius and 
soleus length should be routinely monitored in clinic.  
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Ankle angle 
determinants 

Importance 

Function Higher levels of activity such as running may benefit biomechanically from a more 
plantar flexed ankle angle in the orthosis to improve forward progression from 
terminal stance to pre swing199 similar to the theory behind prosthetic running 
blade alignment (Figure 2-14). This allows the blade to compress and return the 
energy in a force vector that propels the runner forward at a desired speed199. 
However, an increased plantarflexion angle can make standard footwear fitting 
difficult and introduce a leg length imbalance that must be considered 

 

 

Figure 2-14 Example of prosthetic running blade bench alignment199 (Source: Ossur) 
 

 Determining forefoot flexibility 

Optimally the forefoot of the PD AFO will incorporate a roll over shape with 

extension of the toes165; 171. This allows for a solid metatarsal contact that 

increases proprioception, ensures isolated bending of the posterior struts200 and 

facilitates the third rocker of gait from mid stance to terminal stance159. The 

orthotist determines 1st ray range of motion and the tightness of the plantar 

fascia to ensure the forefoot can accommodate this position comfortably.  

A rocker sole is added to the participant’s footwear if a reduced ROM in the 1st 

ray or tight plantar fascia is identified, as in all solid AFO design201. This allows 

for the user to advance through the third rocker of gait. 
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Patients are cast using a casting jig (Figure 2-15) to enable the orthotist to set 

the appropriate ankle angle and pitch of the foot within the negative cast. The 

use of a casting jig is the AFO casting method taught by Ottobock 

Healthcare202.  

 

Figure 2-15 The PD AFO casting jig (Source: Picture of a non-injured foot taken by thesis author at DMRC 
Headley Court) 

A forefoot wedge is positioned from the metatarsal heads forward (Figure 2-15) 

to create the forefoot rollover shape. A flexible plastic is positioned over the heel 

raises and forefoot wedge on the casting jig to create a smooth surface for 

casting upon.  

Arm rails can be used to stabilise the patient, and a block placed under the non-

injured limb to account for the leg length inequality the casting jig introduces. 

Patients are asked to stand fully upright and look forward, with the injured limb 

positioned ahead (Figure 2-16). The aim is to cast with the knee in 2-5° flexion 

(as discussed in 2.13.1) and this is achieved by asking the patient to keep their 

“knee soft” during casting. Anecdotally this casting position ensures best 

alignment of the PD AFO, as it allows for optimal positioning of the patient’s 

centre of gravity as shown in (Figure 2-16) compared to standing with their 

limbs side by side203.  It also ensures that the calf and, in turn, the posterior 

struts are not reclined. Empirically, casting is undertaken fully weight bearing if 

the joints of the foot and ankle present as stiff in nature. The stiffness of the 

ankle is determined in the physical examination. While open chain the orthotist 
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moves the ankle through its possible passive ROM, both with the knee flexed 

and extended to determine the true range of motion of the ankle joint in the 

sagittal plane. The subtalar and midtarsal joints where held in a neutral 

alignment by the orthotist during testing, and the angulation measured using a 

goniometer and recorded in the participants clinical records.  

If full mobility is available in the foot and ankle joints and on full weight bearing 

excess midfoot pronation is evident, casting is undertaken semi weight bearing, 

if not the patient is cast standing. 

 

Figure 2-16 Optimal casting position (Fior & Gentz poster204) 

The hindfoot/forefoot alignment is corrected where possible by the orthotist in 

casting. Pressure is applied to the cast in line with the control systems shown in 

(Figure 2-17). If a fixed deformity is present, appropriate medial/lateral posting 

is added to the orthosis intrinsically69. In the transverse plane the foot and ankle 

section relative to the knee cuff is cast externally rotated. This correlates with 

the patient’s natural external tibial torsion and toe out. The normal range of tibial 

torsion in adults is approximately 20° external69. 

2.15 Orthotic design control systems 

Ankle-foot orthoses (AFOs) are commonly prescribed in an attempt to 

manipulate the GRF and normalise kinetics and kinematics. There are 4 distinct 
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control systems incorporated into the IDEO™ design, as with all conventional 

solid ankle AFOs as shown below (Figure 2-17).  

 

 

Figure 2-17 The four force systems utilised in Solid Ankle Foot Orthosis design69 

 

 Use of a class I compression sock 

All users of PD AFOs are provided with a below knee class I compression 

sock171 (Figure 2-18). The sock provides an interface which stabilises the soft 

tissues between the PD AFO and the patient’s limb171. Ankle motion is 

important in maintaining good lower limb venous return205 and to ensure the 

ankle is fixated in the PD AFO, a compression sock is applied to improve 
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venous return and reduce the risk of swelling within the orthosis that could 

affect fit206.  

 

Figure 2-18 Compression sock (Source: picture taken by thesis author at DMRC Headley Court) 

 

All UK PD AFO users have a diagnostic fitting. Diagnostic PD AFOs (Figure 2-

19) are manufactured in ThermoLyn® clear207.  The transparency of this 

thermoplastic permits verification of the fit and prevents skin discolouration on 

the residual limb207. The thermoplastic has a minor shrinkage of 1% and is a 

trusted material to provide a reliable diagnostic fit207. 

The diagnostic PD AFO is used both statically and dynamically between parallel 

bars. Empirically the material is brittle, so caution must be used when testing 

dynamically. The diagnostic fit stage is necessary to identify any ill-fitting areas 

of the brace prior to completion, as once cured composite orthoses offer limited 

adjustment179. 
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Figure 2-19 Example of a diagnostic PD AFO (Source: Picture taken by thesis author at DMRC Headley 
Court) 

 

The term biomechanical optimisation is used to encompass the whole process 

of designing, aligning and tuning an ankle foot orthosis and footwear 

combination (AFO-FC)208. It is imperative that all AFOs are aligned and tuned to 

optimise the ground reaction force (GRF) during gait146. AFO-FC tuning appears 

to optimise gait in the paediatric cerebral palsy population, and from these 

studies193; 209-211 It can be deduced that during mid stance an element of shank 

inclination is required during healthy walking. There are no studies specifically 

which investigate tuning of AFOs in the management of limb salvage patients 

who utilise composite PD AFOs, as studies to date have focussed on the 

neurologically impaired, utilising thermoplastic AFOs193; 197; 209; 211-214.  

 

Tuning an AFO-FC is widely recognised as an essential aspect of clinical 

practice215. AFO-FC tuning can be defined as the process whereby fine 

adjustments are made to the design of an AFO-FC to optimise its’ performance 

during a particular activity211. It involves the manipulation of the shank to vertical 

angle (SVA) by the addition of heel elevators to the users’ footwear and in some 

cases, the addition of other modifications, including rockers, flares and SACH 

(solid ankle cushioned heel) heels to optimise the entry and exit from mid-

stance, and influence the GRF in the sagittal plane211. 
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The shank angle to floor measure of an AFO-FC is the prime determinant of gait 

rather than the ankle angle of the AFO144; 146; 208. The SVA is described as 

inclined if the shank is inclined forward from the vertical and reclined if the 

shank is reclined backward from the vertical. It is described in degrees from the 

vertical, vertical being 0 degrees, and is measured statically in relaxed stance. 

Although the shank to vertical angle is determined statically, Eddison et al.214 

has shown this correlates to the dynamic measurement during gait. 

A shank to vertical angle of 10-12° inclined has been shown to be central to the 

production of stability in stance, both in normal and pathological gait144. This is 

the position that brings the centre of the knee joint directly over the middle of 

the foot at mid stance, which aids the AFO user’s ability to progress into a 

typical position during terminal stance144. It also facilitates ballistic movement of 

the thigh, pelvis and trunk144. Soleus restrains the forward movement of the 

shank and momentum carries the thigh, pelvis and trunk forward to extend the 

knee144. Furthermore, this position facilitates appropriate GRF alignment to the 

knee and hip, converting external moments from flexion to extension at the 

knee and hip which creates stability213.  

Therefore, bench aligning a patient’s AFO-FC with a shank to vertical angle of 

10-12° (as measured with a goniometer) is an optimum position to start AFO 

fitting in clinic144. Gait should then be observed dynamically using the AFO-FC 

and ideally instrumented gait analysis193 or a video vector system used to 

determine the true position of the GRF in stance. Particular attention should be 

paid to the GRF position in single support to ensure it is anterior to the knee, 

which generates an external knee extension moment83. Alteration of the shank 

to floor angle by just a few degrees can influence the alignment of the GRF to 

the joints in standing and gait considerably146.  

Issuing a sub-optimal AFO-FC to a patient may have an immediate pernicious 

effect on function and in the longer term it may contribute to deterioration193. PD 

AFOs should therefore always be tuned in line with best practice guidelines215. 
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2.16 Biomechanics of gait using the IDEO™ 

IDEOTM users adopt various gait adaptations to utilise this orthosis 

successfully165; 200 78, anecdotally the most commonly observed stance and 

swing phase gait deviations using a PD AFO are listed below. They are typically 

seen on initial use and, with tailored rehabilitation, typically improve over 

time216. 

• Full knee extension and medial rotation of the foot on initial contact with 

the heel 

• Inconsistent step length 

• Rapid progression through initial contact and loading response  

• Decreased load acceptance through toes in terminal stance 

• Poor trunk control/proximal weakness, resulting in sway and forward 

inclination of the trunk through stance phase  

• Decreased propulsion in pre swing through initial swing 

The restriction of ankle joint range within the IDEO™ leads to deficits, such as 

reduced plantarflexion, dorsiflexion and ankle power generation170; 217. To 

overcome these deficiencies in mechanical power and the limitations of ankle 

motion, other joints, such as the hip, may compensate by increasing the 

acceleration of the hip flexors during the transition from stance to swing phase 

to maintain a steady walking speed78.  

When used in able bodied participants, Arch et al.165 has shown that a PD AFO 

creates a compensatory premature increase in the internal plantarflexion 

moment165, typically occurring between 20 and 70% of stance. However, this 

study utilises the PD AFO without footwear and previous work by Owen et al.208 

describe the importance of the AFO and footwear combination in relation to 

kinematic and kinetic gait analysis outcomes. Furthermore, the shank to vertical 

angle of the PD AFOs was set at 0° to the bench, therefore at mid stance the 

PD AFO would have been reclined rather than inclined as described in 2.15.4. 

The sagittal plane alignment of the PD AFO may have impacted on the 

premature increase in the internal plantarflexion moment reported.  
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The sagittal plane alignment of any AFO is crucial and has a significant effect 

on lower limb joint kinematics and kinetics166; 168; 200 A plantar flexed alignment 

may reduce the demand on the knee and ankle extensors, which suggests a 

greater reliance on a PD AFO166; 200. Brown et al. 166 studied the sagittal plane 

alignment of the IDEO™ and concluded that 75% of participants preferred their 

IDEO™ ankle angle in a more plantar flexed ankle position than initially 

prescribed by their orthotist. It was suggested that the reduced demand on 

these key muscle groups was a possible factor as to why this preference 

occurred166. It would seem logical to suggest pain may also have been a factor, 

although this was not specifically mentioned in the study.   

 

The biomechanical effects of changing the stiffness of the energy storing struts 

in the IDEOTM have been investigated in 4 separate studies4; 168; 172; 173. 

Advanced additive manufacturing techniques, such as selective laser sintering, 

has enabled researchers to manufacture energy storing struts in a very precise 

and controlled manner for testing168. 

Harper et al.168 tested 3 struts on a group of IDEO™ users; the patient’s 

prescribed strut, a strut 20% firmer and a strut 20% less firm. They found that 

the range of motion within the ankle joint increased when using a more 

compliant strut whilst walking on flat terrain. This suggests that if pain is caused 

by ankle joint motion the use of a firmer strut should be considered by the 

orthotist to limit ankle movement.  

Electromyography (EMG) data has shown an increase in medial gastrocnemius 

activity when a more compliant strut is utilised168. Furthermore a strut with a 

lower bending axis also increases gastrocnemius recruitment170. This indicates 

that when less support is offered by an orthosis, and a strut with a bending axis 

closer to the patient’s anatomical ankle joint is employed, the triceps surae is 

more active in late stance168; 170 within the PD AFO. This is beneficial as it 

retains activity in the triceps surae in gait and reduces the risk of atrophy and 
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oedema218.  A similar non-military study reporting on triceps surae activity within 

an AFO found similar results219. No significant change was seen in the ankle or 

hip moments or work during walking on flat terrain4; 168; 170. However, there was 

an increase in knee flexion, when using the most compliant strut4; 168. Ranz et 

al.170 hypothesised that the kinematic and kinematics of gait would change if the 

bending axis of the posterior struts was located closer to the anatomical ankle 

axis. However, on investigation this hypothesis was rejected, and this suggests 

the bending axis of the struts may not be as clinically important as first thought.  

During running, strut stiffness does not influence joint angles, moments or 

powers in unilateral IDEOTM users173. When walking uphill compared to flat 

terrain, hip power generation increases during late stance when using the 

IDEOTM172 and it is likely that the increase is due to a compensatory strategy 

because of reduced ankle and knee power generation whilst using the IDEOTM 

172. Furthermore, it seems likely that the fixed ankle position and greater control 

and manipulation of the GR whilst walking uphill played a role in this result.   

There are limited studies that observe hip strategies whilst walking uphill in an 

AFO. However, there has been one such study which also demonstrates 

increased hip power generation when using a homoplastic AFO utilising a 

composite posterior strut, compared to a conventional homoplastic posterior 

leaf spring AFO220. Limb salvage patients readily adapt and compensate to 

different dynamic strut stiffness when walking and running173 and the change in 

strut compliance appears to have no effect on the metabolic cost of walking4.   

Overall results would appear to suggest that varying strut stiffness does not 

consistently achieve different results. Strut stiffness is not as clinically significant 

as originally thought4; 168; 172; 173 and patient preference should dictate the choice 

of strut5. This, in clinical practice, is challenging, as the Clever Bones™ are 

laminated into the PD AFO and therefore cannot be changed without fully 

remaking the entire PD AFO. The testing of multiple struts is therefore not 

practical using clever bones™ as the cost of multiple orthoses prohibits this.   
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The urethane foam heel elevator strives to accommodate for the fixed 

plantarflexed ankle position, enabling initial contact to be with the heel158. It 

allows a degree of compression which helps to provide some shock absorbency 

upon loading response and smooths the transition from initial contact to early 

mid stance in early stance158; 171. While the heel elevator is not attached to the 

IDEOTM, it is an integral part of the system (Figure 2-20). The height and 

material of the heel elevator has a direct effect on the loading of the foot as well 

as gait kinematics.  

  

Figure 2-20 Heel elevator position inside the shoe under the PD AFO158 

Ikeda et al.158 reported that IDEO™ users prefer a heel elevator at a height that 

produces an internal ankle dorsiflexion (loading response) and external knee 

extension (terminal stance) moment closest in time to the gait cycle of able-

bodied individuals. Ikeda et al.158 also report that 2cm was found to be the 

optimal height of the heel elevator. No specific ankle angle was published in this 

study, so it is difficult to understand why 2cm was found to be optimal. The 

height of the heel elevator required is determined by the PD AFO ankle angle in 

line with fine tuning AFO principals144; 146; 147, the footwear pitch, and any 

existing leg length discrepancies that require accommodation. 
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2.17 Amputation rates in patients who have been 
prescribed an IDEO™  

The severity of lower limb injuries at the hands of blast trauma precludes to a 

late amputation rate post limb salvage of approximately 10-15%7; 221. Hill et al.24 

retrospectively examined historical clinical records of 624 service personnel 

provided with an IDEO™ at the CFI between 2009-20145. The referring injury 

categories for the participants are shown below (Table 2-12). 

Table 2-12 Referring Injury Diagnosis Categories, IDEO™, CFI 2009-201424 

Injury type Description 
Percentage of 
participants % 

Ankle Pilon fractures, fusions, post traumatic osteoarthritis 25 

Tibia Fractures, excludes pilon fractures 17.5 

Nerve injury 
below the knee 

Functional deficit below the knee 16.4 

Hindfoot Fusions, post traumatic osteoarthritis 14.2 

Soft Tissue Compartment syndrome, Achilles tendon injuries, 
quadriceps injuries 

5.9 

Midfoot/Forefoot Foot pain, forefoot/midfoot post traumatic osteoarthritis, toe 
amputation 

3.8 

Other Osteomyelitis, late effects of fracture, nerve injury above 
knee 

17.4 

 

Of the 624 participants in this study, 20% went on to have an amputation after 

referral for IDEO™ provision, 84% of which were within the 12 months following 

provision5; 24.  

Personnel with midfoot/forefoot injuries, soft tissue injuries and hindfoot injuries 

experienced the highest proportions of amputation post IDEO™ use5; 24. Those 

with a compromised ankle joint and nerve injuries below the knee demonstrated 

the lowest amputation rate at the CFI5; 24(Figure 2-21). Nearly 58% of the 

injuries were at, or could influence, the functionality of the ankle joint5; 24 
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Figure 2-21 Proportion of amputations by referring injury category24 

In a prospective observational study of IDEO™ users who completed a 

residential rehabilitation programme at the CFI, 60% had considered 

amputation prior to embarking on the programme22. The most common reasons 

given by personnel for this were the inability to run and jump (88%), mechanical 

pain (86%) and weakness (68%). At the end of the 8-week programme following 

treatment, the number of participants considering amputation fell to 18%22. 

Unfortunately, it is unknown if the participants continued with IDEO™ use long 

term, as no follow up study was completed.  

 

There are no gait analysis studies in the literature that compare the gait of 

IDEO™ or PD AFO users to limb salvage gait without any orthosis. This thesis 

is the first to present such an analysis.  

In addition, there are no publications that compare the gait of any PD AFO user 

without their orthosis against other styles of AFO, custom or prefabricated. 

There are, however, 2 studies that have looked at the gate of IDEO™ users vs 

unilateral trans-tibial amputees78; 217.  
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Esposito et al.222 found 2 notable variances when examining the gait of IDEO™ 

users versus unilateral trans-tibial amputees wearing energy storing prosthetic 

feet. Amputees exhibited reduced knee flexor and extensor internal moment 

and power generation78; 223, whilst IDEO™ users exhibited reduced ankle power 

generation and ankle ROM78. The lack of ankle power generation around the 

ankle in IDEO™ users78  is largely due to the limited ability to deform the 

orthosis. 

Mangan et al.217 reports that amputees utilising energy storing prosthetic feet 

present with a more dynamic gait compared to IDEO™ users with stride 

parameters and ankle mechanics more equally matched to the able bodied. 

Limb salvage personnel exhibit a slower cadence and reduced stance time 

compared to amputees217. The study, however, does not make clear how long 

each participant had been using their IDEO™ or prosthesis, or how much 

rehabilitation they had received prior to testing. It would have been useful to 

understand if the participants were established users, as this would have helped 

strengthen the results.    

2.18 Comparison of functional outcomes of the IDEO™ 
compared to other AFO’s 

The IDEOTM has only been tested functionally against two styles of 

prefabricated AFO, a Blue Rocker (Figure 2-22), and a thermoplastic Posterior 

Leaf Spring (PLS) (Figure 2-23). Both are commonly used prefabricated 

AFOs159. They are, however, very different from an IDEO™. 
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Figure 2-22 Bluerocker® (Source: Allard)224 

 

Figure 2-23 Posterior Leaf Spring (PLS) (Source: 
Chaneco)225 

The PLS is thermoplastic and therefore has different material characteristics164. 

It has no anterior knee cuff attached, a flexible forefoot, and is designed to warp 

at the ankle due to the trim lines allowing some ankle ROM, particularly 

dorsiflexion. This allows for significantly less control over the GR relative to the 

limb.  

The Bluerocker® is made from composite materials and, as the anterior knee 

and foot plate offer some rigidity, this design does offer improved ground 

reaction force control compared to the PLS. However, the Bluerocker® does not 

have a posterior strut designed to deflect and provide energy return, so again it 

behaves differently in comparison to the IDEO™164. 

In the 2012 study by Patzkowski et al.159, 18 personnel conducted physical 

function tests such as the 40-yard dash, 4 square step test and sit to stand test. 

All functional measures improved when wearing the IDEOTM compared to the 

other AFOs. All patients reported that the IDEO™ was the most comfortable 

orthosis tested, although this is not surprising as the IDEOTM is a custom-made 

orthosis. Custom made AFOs are individually shaped to the user and are often 

padded, whereas stock orthoses are typically manufactured to a more generic 

lower limb shape and come in a small number of sizes. Therefore, when both 

are compared against one another in a population group with complex lower 

limb trauma injuries, you would expect the custom made AFOs to be more 

comfortable as the geometry of the foot is less likely to be a standard shape that 



 

66 
 

conforms to the use of stock AFO products. The participant’s footwear within 

this study was not specified.  

As the orthoses tested against the IDEO™ are so inherently different from a 

biomechanical perspective, no conclusion from this study can be drawn to 

determine the effectiveness of the IDEOTM design on functional performance 

against other AFOs.  In addition, this study makes no reference to any of the 

orthoses sagittal plane alignments or footwear, and as studies have shown this 

has a significant effect on functional effectiveness144; 158; 166. The study, 

however, does highlight the significant improvement in patient outcomes within 

the CFI clinical service since the IDEOTM was implemented, compared to the 

use of stock orthoses previous utilised159.   

 

No journal paper published from 2009-2018 has outlined any specific 

disadvantages of the IDEO™ other than reduced power generation and range 

of motion around the ankle78.  

Anecdotally the IDEO™ presents users with the same disadvantages as more 

commonly used AFOs. Finding footwear large enough to accommodate the 

orthosis is a common difficulty, with patients typically being advised to find wide 

and deep sport trainers with as large a heel pitch as possible to help reduce the 

height of the heel elevator required to appropriately fine tune the IDEO™144. 

Some tasks can be more difficult as users have reduced sensation on the 

plantar surface of the foot, like driving a car. Many remove their orthoses before 

such tasks, which can be time consuming and frustrating. Patients often report 

AFOs in general to be bulky and uncosmetic226. 

A further disadvantage is that all AFOs that restrict and immobilise ankle range 

of motion may increase a risk of disuse atrophy in lower limb musculature218, 

and therefore the use of the IDEO™ could expedite muscle atrophy in lower 

limb musculature below the knee. This is important as, empirically, patients with 

deck-slap injuries often present with functional muscle power in their injured 

limb (greater than 3 on the Oxford scale227). 



 

67 
 

While there are no published breakage rates for any AFOs available, it would 

seem plausible that the IDEO™ would be at risk of breakage as some patients 

use it for repetitive high activity. Although the use of carbon fibre provides a 

lightweight orthotic solution it doesn’t lend itself to easy adjustment, and this can 

lead to increased remakes and a shorter lifespan of the orthosis if the patient’s 

limb changes volume over time.  

Composite custom PD AFOs, such as the Momentum®, are not commonly used 

within orthotic services in the UK, resulting in only a small number of clinicians 

and technicians experienced in applying and manufacturing them. Accessibility 

to expertise is therefore problematic for user’s dependant on patient’s 

geography. The Momentum® PD AFO is not readily available in the NHS due to 

cost, and a lack of clinical expertise and confidence applying it. It is 

predominantly supplied within the MOD and the private market in the UK. 

Training courses at DMRC Headley Court have been run for NHS clinicians with 

the goal of sharing PD AFO knowledge and improving the capability of NHS 

services to support personnel upon discharge from HM Armed forces.  

2.19 Rehabilitation using the IDEOTM 

Injured service personnel are a unique clinical population who are accustomed 

to being incredibly physically fit and being able to participate in a large variety of 

highly demanding athletic and recreational activities. Once injured, many 

personnel will intensively focus on returning to their previous combat duties, and 

it is therefore vitally important that rehabilitation be tailored to maximise the 

personnel’s potential success.  

The US military provide the IDEOTM to clinically appropriate personnel alongside 

a specific “return to run programme”22; 159; 171 based on sports medicine. This is 

a two-week intensive course which focuses on key components of rehabilitation, 

strength, agility and speed159. Initially participants work on strength and power 

with an emphasis on functional patterns. Strengthening begins in bilateral 

stance and progresses to lunging or split squat patterns. Eccentric 

strengthening is considered vitally important in building sufficient strength for 
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deceleration while running or playing sports171. Strength can be tested using 

isokinetic testing equipment. It has been reported that post IDEOTM provision 

and subsequent rehabilitation knee extensor strength can improve by up to 

300%171. Knee extensor strength is believed to improve due to the ability to 

recruit proximal muscles, as the distal section of the limb is stabilised in the 

IDEOTM172. Additionally, the improvement in strength may be attributable to the 

training effect and the increased use of the limb, as the user is more able in the 

IDEOTM171.  

Agility and plyometric training is also initiated during the programme, allowing 

personnel to become comfortable loading the injured limb, and to work linearly 

in all 3 planes of motion to develop the multidirectional movement patterns that 

the IDEOTM allows171. Advanced plyometric work is undertaken utilising jumps, 

hops, and bounds171 to allow the user to feel and harness the energy return 

from the IDEO™.  

Recent evidence in uninjured participants suggest that strengthening and 

plyometric training may have a correlation to an improved running economy228; 

229. Personnel are taught to run with a forefoot strike posture when using the 

IDEOTM171. Due to the ankle typically being fixed in a plantarflexed position, it is 

thought that a forefoot strike patterning improves the energy return from the 

orthosis during high activity. Enabling this requires good knee control to reduce 

the risk of excessive knee hyperextension.  

Recent evidence also suggests runners that make initial contact with their 

forefoot may have a lower impact transient compared to those who make initial 

contact with their heel230 and therefore potentially decrease the impact stress 

that the injured limb is exposed to. Running biomechanics in the IDEO™ have 

not been investigated in detail, and the long-term potential consequences to 

musculoskeletal health are unclear. 
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The return to run programme has been shown to improve physical performance, 

pain, and patient reported outcomes5. In 2012, 84 US personnel took part in a 

study22 which tested participants without the IDEOTM before induction into an 8-

week rehabilitation programme. They were tested again at week 4 without the 

IDEOTM, as the first 4 weeks of the programme are without the orthosis while it 

is being manufactured. The participant was then provided with an IDEOTM and 

tested again after 4 weeks of rehabilitation using the IDEO at week 8. The short 

musculoskeletal function assessment231 (SMFA), the veterans rand 12 health 

survey232 (VR-12), and the visual analogue pain scale233 (VAS) were used as 

patient reported outcome questionnaires. All patient outcome scores improved 

between 23-35% by week 822.  

The following functional tests were used in this study: 

• The 4-square step test  

• Timed 12 stair ascent 

• Self-selected walking velocity 

• 20 metre shuttle run 

No significant improvement was recorded from week 0-4 for all functional tests 

without the IDEOTM. However, during weeks 4-8 significant improvements were 

seen post supply of the IDEOTM.  As no significant improvements were seen 

during weeks 0-4, it implies that the impact of the IDEOTM was the key driver 

that improved the participant’s outcomes (Figure 2-24). As there is no IDEOTM 

group who were supplied the orthosis only, without participating in the 2-week 

rehabilitation programme, there is no way of accurately measuring how 

successful the programme is in improving results in this study. However, Blair et 

al.156 demonstrated the benefit of the IDEO™ when supplied alongside a 

rehabilitation programme compared to those who only received the IDEO™156. 

Since the 84 participants presented with a wide range of physical impairments, 

it is difficult to draw conclusions from this study regarding predictive success of 

the IDEO™ with a particular injury profile.  



 

70 
 

Sheean et al.167 examined a subset of the 84 participants, 12 who had an ankle 

joint fusion and possibly a subtalar joint fusion (exact number not specified), 

and 11 patients who underwent subtalar joint fusion only. The subtalar joint only 

group demonstrated significant improvements with the IDEO™ in both patient 

reported and physical performance outcomes whereas the ankle fusion group 

saw significant improvement in the physical performance measures, but not the 

patient reported outcomes167.  Patient reported pain scores were generally 

improved with IDEO™ use, with pain reduced by 23-35%22.  

 

Figure 2-24 Mean Physical Functional Measures at week 0, 4 and 6 (Bedigrew et al) 22 

A) Time for the 4 square step test (effect size 4.5 seconds, 41%); (B) Time for the timed stair ascent (effect 
size 3.2 seconds, 40%); (C) Speed for the self-selected walking velocity (effect size 0.3 m/s, 24%); and (D) 

Speed for the 20-m shuttle run (effect size 1.6 m/s, 165%). 

 

Ladlow et al.23 published the first and only study to evaluate the medium-term 

(mean 34±11 months) effect of a PD AFO on functional and psychosocial 

outcomes in the UK. Retrospective levels of mobility, activities of daily living 

(ADL), anxiety, depression and pain were evaluated in a heterogeneous group 

of 23 injured UK servicemen after PD AFO provision. This data was then 

compared to limb salvage military data gathered prior to PD AFO availability15.  
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Before PD AFO availability, 74% of limb salvage patients could walk with or 

without walking aids and 4% could run independently15. Post provision of the 

PD AFO and rehabilitation this increased to 91% and 57% respectively23. PD 

AFO users were also able to walk greater distances over a 6-minute walk test 

and these distances were in keeping with the able bodied23. This study 

suggests that most PD AFO users plateaued in function with the orthosis after 

the 2nd admission i.e. after 6 weeks of residential rehabilitation using the 

orthosis23. PD AFO users reported improvement and, importantly, no 

deterioration in their pain status, alongside unchanged levels of ‘none to 

minimal’ depression and anxiety23. There was a twofold increase in the number 

of personnel reporting ‘no pain’ without the PD AFO at follow-up (13%–31%). 

Those who received MDT rehabilitation after PD AFO provision were better able 

to ‘control their pain’ when wearing and not wearing their brace compared with 

patients who did not receive residential rehabilitation after PD AFO fitting23. The 

group of PD AFO users were comparable to below knee military amputees 

regarding function, quality of life and pain status23. When compared to previous 

limb salvage personnel who did not utilise a PD AFO, a significant improvement 

to function, quality of life and pain status was reported15; 23.  

Direct comparisons of the limb salvage group to previous literature is difficult 

due to the vast range of surgical procedures encompassed within the term 

“salvage” and the limited number of studies in this patient population using an 

PD AFO23; 78. Even though the sample size is small and there is a lack of control 

group, the results from this first UK study are encouraging.  

 

The IDEO™ was first introduced to increase function, return to duty rates, and 

reduce elective amputation rates following lower extremity trauma and limb 

salvage5. Moderate evidence4; 22; 156; 159; 167-169; 171; 172; 234-236 from 12 studies 

support 4 empirical evidence statements in personnel under 40 years of age, 

injured with high-energy lower extremity trauma, potentially confounded by post-

traumatic ankle osteoarthritis, using an IDEO™, and participating in residential 

rehabilitation following limb salvage surgery5. 
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Empirical evidence statements5 

1. May allow return to active duty for a limited population of high functioning 

users156; 167; 169; 171; 235; 236 

2. May allow return to exercise, recreation and physical activity, and 

decreased pain for a limited population of high functioning users22; 159; 169; 

171; 235; 236 

3. Results in improved agility, power and speed, compared with no-brace or 

conventional off the shelf bracing alternatives159 

4. IDEO strut stiffness should be considered with respect to patient 

preference only168; 172; 234 

While research available on PD AFO designs such as the IDEO™ is 

encouraging, there are large gaps in the literature. Most published research 

uses small sample sizes that exhibit selection bias. The participant injury groups 

are often very mixed clinically, as is the inevitable nature of reporting on lower 

limb trauma. This vast variation makes it difficult to draw any conclusion from 

the data.  

PD AFOs such as the IDEO™ have not been tested compared to other custom-

made orthotic designs. Only comparisons have been made to off the shelf 

orthoses159 whose material and function are very different biomechanically to 

composite PD AFOs. There is no published baseline gait analysis data on blast 

injury limb salvage patients, only data utilising PD AFOs or prostheses.  

Additionally, there are no long-term studies that look at the implications of 

partaking in high activity sport post limb salvage. PD AFOs were ultimately 

prescribed within the military to provide severely injured personnel with an 

alternative to amputation that would allow them to lead the active lifestyle they 

desire. Had the PD AFO not been provided, many would have opted for elective 

amputation both in the UK and the USA. However, the long-term effects of 

using a PD AFO on joint health are unknown. Therefore, one cannot say with 

certainty this was a better long-term clinical solution for this patient group. 
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Previous studies have examined the gait of PD AFO users, but this study is 

novel as it presents the functional gait differences in individuals with and without 

a PD AFO. By presenting the gait analysis and PROM’s results, this thesis will 

strive to answer the following research question and hypotheses: 

Research Question: Does a PD AFO improve gait and functional outcomes of 

injured military personnel who have undergone unilateral limb salvage? 

Hypothesis 1: PD AFO use will improve the patient reported outcomes of 

injured military personal that have undergone unilateral limb salvage. 

Hypothesis 2: PD AFO use will improve participants propulsion through 

midstance and terminal stance of gait in both the injured and uninjured limb. 

Hypothesis 3: PD AFO use will improve participants stability through stance 

phase of gait.  

Hypothesis 4:  PD AFO use will improve the gait profile score of both the 
injured and uninjured limb.  
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Chapter 3: Methodology  

3.1 Chapter overview 

This chapter outlines the retrospective study design, from provision of the PD 

AFO following the typical Headley Court pathway, and the process that was 

implemented to compare the kinematics, kinetics and temporal spatial 

parameters of gait in participants when walking with and without a PD AFO. 

Furthermore, the chapter outlines the approach used to gather patient reported 

outcome measures (PROMs) before and after provision of the PD AFO. 

The recruitment strategy of the study is described, and a detailed description of 

the orthosis is presented. 

The procedures undertaken to estimate the motion between the body segments 

and calculate the desired biomechanical outcomes are described, and the 

parameters used to answer the hypotheses presented. 

Finally, the statistical techniques employed to determine any statistical 

significance or effect in the biomechanical data and PROMs are presented. 

 

All participants attended the orthotic clinic at DMRC Headley Court and were 

fitted with a PD AFO between 2014 and 2016.  In accordance with standard 

clinic practice at DMRC Headley Court, all participants were invited to answer 

PROM questionnaires (Appendix A and B) pre and post-provision of the PD 

AFO. 

Participants also attended the onsite gait laboratory for gait analysis post supply 

of their orthosis. All gait analysis sessions were undertaken by both the 

researcher/orthotist and the local Higher Scientific Officer (HSO) who managed 

the clinical sessions in the gait laboratory. This process was in line with the 

department’s standard clinical delivery for all PD AFO users. Kinematic, kinetic 

and temporal spatial data were collected both during walking with and without 

the PD AFO. In both test conditions the participants were shod.   
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A patient is referred for fitting of a PD AFO by the consultant-led 

interdisciplinary team (IDT). The patient is assessed by an orthotist and if 

deemed clinically appropriate a PD AFO is offered as a form of treatment to 

reduce pain and/or improve biomechanical function. The local clinical criteria for 

provision of a PD AFO are outlined in Table 3.1. 

Table 3-1 Inclusion and exclusion criteria for provision of PD AFO at DMRC Headley Court 

Inclusion criteria Exclusion criteria 

Patient exhibits biomechanical pain to the 
foot/ankle, that is not responding well to standard 
rehabilitation treatment protocols. 

Planned surgery. 

Plateau in functional ability post rehabilitation 
input, and level of function is deemed suboptimal. 

Open wounds or poor skin quality in the area of 
the orthosis. 

Sufficient hip, knee and trunk control to have 
controlled use of the PD AFO, and benefit from the 
energy returning properties. 

History of recurrent ulceration. 

Patient has a nerve injury presenting with 
weakness (less than 3 Oxford scale) in the plantar 
flexor muscles. 

Significant oedema that can’t be managed 
successfully with medication or clinical 
compression hosiery.  

Patient has the desire to take part in high level 
activities such as running, and the patient’s 
physiotherapist and rehabilitation consultant are 
satisfied that the patients has adequate hip and 
knee control as well as no medical reasons why 
the patient can’t peruse such endeavours. 

Severe knee cruciate ligament insufficiency, as 
PD AFO’s design encourages a greater knee 
extension moment69.  

 

If after physical assessment the patient consents to treatment, the individual is 

cast and a custom-made PD AFO manufactured for them.  

At the assessment the patient is asked to complete 2 validated PROMs 

questionnaires, the foot and ankle outcome score (FAOS) (Appendix A) and the 

lower extremity functional scale (LEFS) (Appendix B).  

The PD AFO is supplied to the patient typically 6 weeks after the initial 

assessment/casting appointment in line with manufacturers’ lead times. It is 

common that the PD AFO requires fine adjustment to improve comfort and fit 

with use, and this takes place within the first 3 weeks of fitting.  
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All PD AFO users attend the gait laboratory, ideally at the end of their second 

admission post-supply to collect kinematic, kinetic and temporal spatial gait 

data. This, on average, is 8-9 weeks post supply of the PD AFO (Figure 3-1), as 

this is when a plateau in functional improvement using a PD AFO is typically 

seen23.  

The PD AFO 3D gait analysis session was the only time the participants in this 

study visited the gait laboratory.  

Data were collected both shod with and without the PD AFO and used to 

measure changes in the patients’ gait. The data are also used clinically to check 

the PD AFO alignment and help highlight any potential areas in gait that could 

benefit from re-education or improved muscle control work in therapy.  

Whilst it is appreciated that a 3D gait analysis appointment shortly after 

provision of the PD AFO may be more beneficial for fine tuning purposes, the 

overall goal of gathering data is to measure the changes in gait and therefore it 

is deemed more appropriate to allow the PD AFO user time to suitably adapt to 

the orthosis. Having 2 gait analysis sessions was deemed to be too difficult to 

achieve for every PD AFO user due to staff and gait laboratory resources. 

The patient and their treating clinical team are invited to a feedback session 

post data collection with the HSO within 3 weeks. This ensures that the patient 

is not only engaged with the process but values the gait analysis clinical session 

undertaken.  

3.2 An overview of the PD AFO rehabilitation pathway 

Admission to DMRC Headley Court is typically for 3 weeks of residential 

rehabilitation followed by 3 weeks leave at home before the next admission 

block (Figure 3-1). During admission each patient follows their own 

personalised timetable. The timetable is split into hourly slots from 08.00-16.00 

and each treating professional books an hour slot with the patient as required.  
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The IDT team consists of; rehabilitation consultants, physiotherapists 

occupational therapists, prosthetists/orthotists, exercise and rehabilitation 

instructors, social workers, mental health practitioners, podiatrists and nursing 

staff.  

As the patient progresses with rehabilitation the gaps between each 3-week 

admission block increases. The admission block requirements are planned by 

the patient’s rehabilitation consultant. On average, patients who have sustained 

a complex trauma are treated at DMRC Headley Court for 2-5 years prior to 

discharge from HM Armed Forces. All medical care thereafter is conducted in a 

civilian setting, most commonly in NHS hospitals.  

While the service aims for 3D gait analysis to be undertaken around 8-9 weeks 

post provision of the PD AFO, the timing of the gait laboratory session is 

determined by several factors such as: 

• Patient availability at DMRC Headley Court 

• Laboratory availability 

• Researcher/orthotist and physiotherapist agreement that the patient has 

made enough progress utilising their PD AFO, and that the patient’s gait 

patterning using the PD AFO has plateaued. The patient must attend 

residential rehabilitation for at least 3 weeks before 3D gait analysis will 

be considered  
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Figure 3-1 Patient journey to PD AFO provision and associated rehabilitation structure 

3.3 Study inclusion/exclusion criteria 

Inclusion criteria 

• Sustained a complex hindfoot fracture in Afghanistan due to the 

detonation of an improvised explosive device (IED). The calcaneus must 

have been fractured and diagnosed by x ray 

• Participant was referred to orthotics for a PD AFO and had sustained a 

unilateral injury.   

• Participant was referred in response to rehabilitation plateauing due to 

ongoing biomechanical pain in the foot and ankle 

• Orthopaedic consultant was not planning any further surgery currently  

• Participant was capable of walking without walking aids for at least 10 

minutes continuously, both with and without the PD AFO. Doing so did 

Patient referred 
to orthotics 
department

•Current DMRC 
patient referred 
from IDT team

•Patient referred 
by military 
regional 
rehabilitation 
teams

•Patient will be 
assessed in 
DMRC 
consultant 
outpatient clinic 
and referred 
directly to 
orthotics

Orthotic 
assessment

•Casting for PD 
AFO within two 
weeks of initial 
referral either 
whilst an 
inpatient or as 
an outpatient.

•FAOS &LEFS 
questionnaire 
taken at casting 
appointment.
(pre supply)

PD AFO 
delivery

•PD AFO 
provision at the 
start of the 
admission.

•Review weekly 
or as a drop in 
to continually 
improve 
comfort and 
function whilst 
on admission.

PD AFO 
monitoring

•Review in 
orthotics weekly

•Gait lab data 
taken on the last 
week of this 
third admission 
if patient 
deemed ready 

•FAOS & LEFS 
questionnaire 
taken 
(post supply)

Residential 

rehabilitation  

(3 weeks) 

Home 

(3 weeks) 

Residential 

rehabilitation  

(3 weeks) 

Residential 

rehabilitation  

(3 weeks) 

Home 

(3 weeks) 
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not cause severe onset of pain which would have been harmful to the 

individual 

• Compliant with rehabilitation 

Exclusion criteria 

• Known history of neurological condition including brain or spinal cord 

injury 

• Known history of peripheral nerve injury 

• Participant sustained other lower limb traumatic injuries that are still 

causing pain or deformity 

• Diagnosed lower limb or trunk musculoskeletal degeneration prior to 

traumatic injury 

3.4 Ethical approval and data management 

It is necessary to obtain ethical approval to comply with the “declaration of 

Helsinki and committee for proprietary medicinal products note for guidance on 

good clinical practice for trials of medicinal products”237. Ethical approval was 

sought and gained from both Salford University (Appendix E) and the Ministry of 

Defence research ethics committee (MODREC) (Appendix F). Ethical approval 

was sought to use retrospective data that had been collected as part of the 

clinical orthotics service offering. MODREC was approved on 20/03/2016 

reference number: 690/MODREC/15, and Salford ethics approved on 

29/11/2016 reference number: HSCR16-69. The MODREC application was for 

a larger project of which my MRes was a small part. Therefore, there is 8 

months gap between each application.  

Once consent was provided, participants were given a unique participant 

identification code.  All stored data uses this code only and does not contain 

personal details. The code is specific to this study with no other identifying data. 

A list linking participant identification codes to participant names is securely 

maintained on “DII” which is the Ministry of Defence secure defence intranet. It 

is password protected. 
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All data from the LEFS/FAOS questionnaires have been entered onto a 

Microsoft Excel spread sheet, which is stored within the DII research 

department folder. This is also password protected. Paper records of the 

LEFS/FAOS and consent forms for each participant are stored in the 

participant’s clinical records, as it forms part of their clinical care. Files are kept 

in a secure building, in a locked cabinet in line with local policies.  

In accordance with current MOD policy and UK trials regulations guidelines, 

consent forms and all other paper and electronic records will be securely stored 

in the research archive on the Academic Department of Military Rehabilitation 

(ADMR) for 15 years. Arrangements for confidential destruction of other 

material will be made after 5-years according to the ADMR policy. 

3.5 Recruitment of participants   

Participants were invited to take part in this study if they met the 

inclusion/exclusion criteria above. Out of the 46 personnel fitted with a PD AFO 

at Headley Court, 12 personnel were identified as the only suitable participants 

Due to the nature of blast trauma very few patients had isolated injuries of a 

unilateral nature at the foot and ankle, and many patients presented with lower 

limb nerve damage, traumatic brain injury and bilateral lower limb injuries.   

The 12 users who met the inclusion criteria were written to and invited to 

consent for their data to be used within this study (Figure 3-2). It was made 

clear within the consent form (Appendix C) that allowing use of their data was 

entirely voluntary. Participants’ clinical treatment or care would not be affected, 

should they not wish their data to be used for this purpose. All 12 participants 

were provided with a participant information sheet (Appendix D) in the same 

letter and invited to ask questions. All participants were informed that they could 

retract consent at any time without explanation and this would not affect their 

clinical care at DMRC Headley Court. All 12 participants who were invited to 

participate consented to be part of this study and no participants withdrew 

during the study.  
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Figure 3-2 Recruitment process 

3.6 Testing of orthotic intervention 

 

All 12 participants in this study were assessed and cast by the 

researcher/orthotist and the ankle angle selected was determined as outlined in 

2.14.1. All 12 participants had an ankle angle fixed in the PD AFO of between 5-

10° plantar flexed (Table 3-2).  

Table 3-2 Ankle angle of each participant’s PD AFO 

Participant 
Plantarflexion 
angle of PD 

AFO as cast (°) 
Reason for set ankle angle 

AP02 10 Tightness in calf musculature and position deemed least painful on 
weight bearing. 

AP03 8 Tightness in calf musculature 

AP06 5 Position deemed least painful on weight bearing. 

All participants supplied with a PD AFO compared against inclusion/exclusion 
criteria

A total of 12 participants identified as meeting all criteria

All 12 participants sent

•Cover letter outlining the overall purpose of the study

•Consent form with pre-paid envelope enclosed. (Appendix C)

•Participant information sheet (Appendix D) providing detail on the study and 
why they had been selected. 

•Contact details provided should the participant have further questions.

Participants were not followed up. If consent form was not returned this 
represented non-participation in this study. All participants returned thier 

consent form.
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AP07 5 Tightness in calf musculature and position deemed least painful on 
weight bearing. 

AP08 8 Tightness in calf musculature and position deemed least painful on 
weight bearing. 

AP09 8 Position deemed least painful on weight bearing. 

AP10 10 Position deemed least painful on weight bearing. 

AP11 5 Position deemed least painful on weight bearing. 

AP12 5 Position deemed least painful on weight bearing. 

AP17 12 Tightness in calf musculature 

AP19 8 Tightness in calf musculature and position deemed least painful on 
weight bearing. 

AP20 5 Position deemed least painful on weight bearing. 

 

The ankle angle was always set into the negative cast and never rectified into 

the positive cast thereafter. Empirically, rectifying the desired ankle angle into 

the positive cast inevitably changes the overall shape and depth of the foot 

within the orthosis. Ultimately if the positive cast is adjusted in this way the fit of 

the PD AFO is more likely to be suboptimum, as it introduces a greater degree 

of potential human error into the manufacture process. While this has not been 

verified in a clinical study it is widely considered good clinical practice within the 

orthotics industry.  

All participants’ PD AFO had a neutral hindfoot to forefoot alignment as 

captured in the cast, no intrinsic posting was utilised by the researcher/orthotist 

due to fixed varus or valgus deformities69.   

 

Cling film and stockinet were wrapped around the injured limb to protect the 

skin from casting materials. A cutting strip was positioned lateral to the knee, 

sweeping down the front of the anterior tibia and ankle. This allows for good 

shaping around the anterior knee section, necessary to identify the patella 

tendon location (Figure 3-3).   

The following bony prominences were marked with indelible pencil; margins of 

the 1st metatarsophalangeal joint, margins of the base of the 5th metatarsal, 

margins of the medial and lateral malleoli, margins of the fibular head, margins 
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of the patella and either side of the patella tendon distal to the patella, margins 

of the medial and lateral tibial flares, and clinically appropriate areas for that 

individual patient, such as specific areas of scar tissue or location of metalwork 

superficial to the surface of the skin. 

 
Figure 3-3 Study participant demonstrating the PD AFO casting set up (Source: Picture taken by thesis 

author at DMRC Headley Cout) 

 

All 12 participants were cast using Cellacast Xtrsa® (Ottobock), a fibreglass 

fabric bandage impregnated with polyurethane resin. This material was 

favoured as it anecdotally creates a stronger cast that is less likely to deform in 

transit to the manufacturer’s laboratory, and it is less messy in clinic compared 

to conventional plaster of paris.   

The researcher/orthotist always wrapped from above the knee downwards, as 

with limited time until the bandage sets the orthotist required greater time to 

ensure that the cast had an optimum foot position. Controlling the foot and 

ankle is technically and physically more challenging within the casting 

environment compared to shaping around the knee, as there are many joints 
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which require control. Therefore, starting the cast at the knee and working 

downwards is easier in practice. Once the knee section was wrapped it was 

shaped, and the patella tendon identified in the cast by the researcher’s 

thumbs. The wrap was extended downwards around the foot, and the limb 

positioned into the identified favourable position (ankle angle and width of 

standing base) identified as optimum pre-casting, as described in 2.14.2. All 

participants were cast standing as described in 2.14.2. No participants 

presented with a flexible pes planus foot type empirically, unsuitable for this 

casting technique.  

Once the fibreglass bandage had cured, the cast was removed using an 

oscillating saw. The researcher checked each cast’s alignment in the coronal, 

sagittal and transverse planes to ensure it was satisfactory. The cast was then 

sealed ready for transit to the manufacturer, along with measurements and 

specification information.  

 

The following measures were taken from the participant’s limb and sent with the 

negative cast to the manufacturer (Figure 3-4). These were taken with a 

calibrated tape measure and callipers. 

 
Figure 3-4 PD AFO Manufacturing measures (Source: Blatchford Momentum® clinicians ordering form- 

internal document) 
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3.8 Specification of AFO 

 

The researcher/orthotist provided the manufacturer with the weight, height and 

activity level of the patient. The researcher/orthotist uses an adapted version of 

the Medicare functional classification level238 (MFCL) (Table 3-3) to define the 

patients activity level. This information dictates what strength of posterior strut is 

selected and the number of composite layers in the foot and ankle section of the 

PD AFO, as discussed in 2.13.3. All participants in this study were either 

defined as K-level 3 or K-level 4. 

Table 3-3 Medicare Functional Classification Level (MFCL) Definitions238 

K-level 0 
Does not have the ability or potential to ambulate or transfer safely with or without 
assistance, and a prosthesis/orthosis does not enhance quality of life or mobility 

K-level 1 
Has the ability or potential to use a prosthesis/orthosis for transfers or ambulation on 
level surfaces at a fixed cadence. Typical of the limited and unlimited household 
ambulator. 

K-level 2 
Has the ability or potential for ambulation with the ability to traverse low-level 
environmental barriers such as curbs, stairs, or uneven surfaces. Typical of the limited 
community ambulator. 

K-level 3 

Has the ability or potential for ambulation with variable cadence. Typical of the 
community ambulator who can traverse most environmental barriers and may have 
vocational, therapeutic, or exercise activity that demands prosthetic/orthotic use beyond 
simple locomotion. 

K-level 4 
Has the ability or potential for prosthetic/orthotic ambulation that exceeds basic 
ambulation skills, exhibiting high impact, stress, or energy levels. Typical of the 
prosthetic/orthotic demands of the child, active adult, or athlete. 

 

The criteria used for strut selection was provided to DMRC Headley Court by 

the Centre for the Intrepid (CFI). It has not been scientifically tested or verified 

but has been adopted as best practice until such times it has been tested (Table 

3-4). Large struts were used in 7 participants PD AFOs and medium struts used 

in the 5 remaining participants.  
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Table 3-4 Strut selection chart (Source: Clinical team at the CFI) 

Patient weight Walking only  Walking and running  

<55kg Small Medium 

55kg-85kg Medium Large 

85kg-100kg Large Extra Large 

>100kg Extra Large Extra Large (consider triple strut) 

 

The length of each PD AFO is depended on the height of the patient and their 

clinical requirements. For each of the 12 participants their PD AFO measured 

as follows +/- 2cm (Table 3-5).  

Table 3-5 Dimensions of the participants PD AFO 

PD AFO section Length of section 

Length of strut exposure 20cm 

Depth of anterior knee cuff 12cm 

Depth of posterior knee cuff 10cm 

Height of lateral and medial supra malleolar section (from floor to distal tip of) 18cm 

Depth of Heel cup 12cm 

 

The manufacturer filled the negative cast with plaster of paris and the following 

rectification was carried out to the positive cast as standard (Table 3-6): 

Table 3-6 Standard cast rectification 

Cast removal Cast build up 

Patella tendon- 12mm Distal end of tibia- 8mm 

Medial and lateral flares of the tibia- 5mm Medial and lateral malleoli- 3mm 

Take 5mm off calf bulk soft tissue Navicular- 3mm 

 Fibular head- 4mm 

 Return curve on the posterior calf 
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In this study 10 PD AFOs were manufactured by Orthotic Composites Ltd and 2 

by Chas A Blatchford and Sons Ltd. All 12 PD AFOs worn by the participants 

were manufactured as described in 2.12.1. All were finished with 6mm Poron® 

padding on the anterior knee cuff and 3mm Poron® padding on the malleoli, 

navicular and footplate areas. Each had a gloss finish on the outer composite 

layer to allow for easier donning of footwear. All used a rivet to hold the anterior 

knee section in place and a velcro® strap to close the knee section into 

position. No ankle or toe straps were used.  

3.9 Fitting of the participant’s PD AFO 

All participants had a diagnostic fitting 2 weeks after casting, followed 6 weeks 

later with the final supply of their composite PD AFO. This was in line with the 

manufacturers’ lead times. The process of fitting the participants’ diagnostic and 

definitive PD AFO was the same.  

 

Firstly, the class I compression sock, as described in 2.15.1.1, was donned by 

the participant, and the PD AFO applied whilst sitting. Final trim lines were 

marked, and any immediate areas of sub-optimal fit noted. The 

researcher/orthotist trimmed the PD AFO to fit into the participant’s footwear 

and adjusted the orthosis as required to optimise initial fit.  

 

The PD AFO was then bench aligned following principals discussed in 2.15.4. A 

heel elevator, as discussed in 2.13.4, was positioned inside the shoe under the 

heel of the PD AFO to bring the shank to vertical angle to 10-12°193 (Figure 3-5). 

This was measured by the researcher/orthotist using a goniometer to deem the 

optimum position to start dynamic testing193. The heel elevator, therefore, was 

at a variable height for each participant, as the height of the elevator was 

dependant on the ankle angle of the PD AFO, the pitch of the participant’s 
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footwear (heel-sole differential193) and any prior true leg length discrepancies 

already identified on assessment.  

 

Figure 3-5 Optimal PD AFO bench alignment (10-12° shank to vertical193) (Source: picture taken by thesis 
author at DMRC Headley Court) 

All participants used their own sports trainers with a standard pitch of between 

10-15mm; footwear was not standardised. This study had no budget to 

purchase footwear for each participant to make footwear provision consistent; 

therefore, patients used their own trainers. No adaptations were made to any of 

the participants’ trainers. A heel elevator was made for the participant’s sound 

side at the height required to ensure the pelvis was level when standing wearing 

the PD AFO and footwear combination on the injured side. 

 

Leg length was determined using two methods: 

• Standing - The researcher/orthotist located both the participant’s anterior 

superior iliac spines (ASIS) and posterior superior iliac spines (PSIS) on 

the pelvis and assessed visually if these were level239, making sure that 

the knees were not flexed. Blocks of 5mm were used, if needed, to 

determine any shortening present. This was carried out with the PD AFO 

in situ, with the participant wearing their trainers and appropriate heel 

elevators bilaterally. 
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• Supine - The researcher/orthotist measured both limbs with a calibrated 

tape measure from the ASIS to the apex of the medial malleoli240 

ensuring that the knee was neither flexed or hyperextended. 

Dynamic fitting did not start until the lengths of the patient’s limbs were deemed 

equal with the PD AFO, footwear and appropriate heel elevators in situ.  

 

The participant was initially invited to walk between parallel bars and feedback 

on the comfort of the PD AFO. Any necessary adjustments that were required to 

improve the fit and comfort of the PD AFO were undertaken by the 

researcher/orthotist. 

The participant was encouraged, if possible, to roll over through the PD AFO 

and load both limbs equally, opening their stride length gradually. Empirically, to 

benefit from the spring-like characteristics of the PD AFO, the participant must 

load the PD AFO sufficiently.  

Both the researcher/orthotist and the participant’s physiotherapist observed the 

participant’s gait visually, focusing on the functional tasks of gait, such as 

weight acceptance, single limb support and swing limb advancement in both the 

coronal and sagittal plane239. The participant’s foot, knee and hip positions were 

noted, and any gait deviations evident were discussed to identify if they were 

caused by the PD AFOs alignment, or if caused by other factors such as poor 

muscle control, for example. The participant’s gait was also recorded on the 

physiotherapy department’s Apple iPad™. This enabled the clinical team to 

watch the participant’s gait in slow motion and allow for retrospective visual 

analysis.  

Fine tuning193 was carried out at the fitting appointment and at subsequent 

review appointments within the orthotics department to optimise PD AFO 

function using video vector.  
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Advice was provided verbally to participants on the care and wear of their PD 

AFO, as well as a department written information leaflet.  

3.10 Instrumentation 

 

Measurements were made with an optoelectronic motion capture system 

(Vicon, Oxford, UK) with 10 T-Series Vicon cameras and 4 strain gauge force 

plates (AMTI, Watertown, MA, USA) embedded within a 10m walkway. 

Kinematic data were collected at 120Hz and ground reaction forces at 1200Hz. 

Standard video was captured in both the sagittal and coronal planes as an 

assurance measure to support or verify any anomalies in the captured 3D 

kinematic data if required. 

 

The purpose of calibration is to minimise any measurement uncertainty by 

ensuring the accuracy of the gait analysis equipment prior to testing. The 

system calibration incorporates data derived from the force plates and data 

generated from the camera measurement system. Both the calibrated force 

plates and camera system provide an accurate measurement of the motion data 

of tracking markers and ground reaction forces (GRF). The camera system was 

calibrated using an Active Wand (Vicon). The L-frame on the Active Wand 

contains 4 markers: 2 markers are attached to form the X-axis and another 2 

markers determine the Y-axis (Figure 3-6). 

 
 

Figure 3-6 Active Wand used to calibrate the T- Series Vicon camera system (Source :Vicon)241 
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To calibrate, the Active Wand was placed at the original corner of force plate 1, 

with the X and Y axis aligned with the 2 sides of the force plates. The Active 

Wand’s reference structure determined the laboratory coordinate system. In this 

study the X-axis was set as anterior-posterior, the Y-axis was set along a 

medial-lateral direction and the Z-axis was the vertical axis. The Active Wand 

was waved by the researcher inside the measurement volume, (between all the 

cameras), in all 3 directions. This procedure ensures that all the data capture 

space will be calibrated with the Active Wand and provides the system with 

accurate distances. The camera system signals when each camera is correctly 

calibrated, and the Active Wand is weaved until all 10 cameras are confirmed to 

be calibrated. The gait analysis lab at DMRC Headley Court is pictured below 

(Figure 3-7).  

 

Figure 3-7 The gait laboratory at DMRC Headley Court (Source: picture taken by thesis author at DMRC 
Headley Court) 

 

In the laboratory 4 force plates were used to capture 1 full gait cycle, capturing 

at a frequency of 1200Hz with a threshold for detection of 10N. All force plates 

were level with the laboratory floor, aligned in the same direction as one 

another, and had a medial-lateral offset between adjacent plates to allow for 

lateral sway and step width. The gait laboratory was calibrated according to 

manufacturers guidelines. 
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Calibrating the force plates is important, as any errors in the parameter settings 

of the force plates can lead to incorrect values of joint kinetics. To ensure 

accuracy of the force plate measurements and their settings in the laboratory 

coordinate system (the exact position and orientation), a CalTester device242 

(which consists of a rod with 2 conical tips, five wands with retroreflective 

markers, a force application bar and a base plate) was used. The CalTester test 

procedure that was undertaken is described below in (Figure 3-8). 

 

Figure 3-8 CalTester test procedure 

Once the Caltester data collected were processed in CalTesterPlus (Visual 3D) 

software, the results were compared to a threshold that was in line with the 

University of Salford’s lab standards: 

1. A GRF orientation error of 1% 

2. A 3mm location error of the X, Y and Z COP, in line with Salford 

universities lab standards   

Place the base plate on the force plate and zero the force plate.

Place the CalTester rod in the centre of base plate's divot and press down firmly on the bar over the top of 

the rod with a load of at least 100N. Keep the CalTester rod aligned vertically and motionless during the 

trial. Hold for at least 1 second.

Move the upper portion of the rod from vertical to 30 degrees forwards and backwards within the sagittal 

plane for over 3 seconds.

Repeat this test on all other force plates.
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If the results fell above these thresholds, the Vicon system and force plates 

were re-calibrated and the Caltester test was repeated until the results were 

satisfactory.  

3.11 Participant preparation  

 

On arrival to the gait laboratory the participant was requested to change into 

shorts. The following anthropometric measurements were taken following 

written informed consent for the 3D gait analysis session (Table 3-7). 

Table 3-7 Anthropometric measures 

Measurement Method Unit recorded 

Height Stadiometer cm 

Mass Medical grade scales kg 

Bilateral leg length Measure taken from ASIS to the apex of the medial 
malleoli using a calibrated tape measure, with the 
participant lying supine on a flat plinth.  

cm 

Bilateral knee joint width Callipers cm 

Shoulder offset Callipers cm 

 

All anthropometric measures were recorded into the participant’s medical 

records and stored in line with local MOD policy.  

 

To track the movement of the participant’s body during walking, the motion 

capture system detects the position of several 14mm retro-reflective markers 

that are attached to both the participant’s skin and the PD AFO using double 

sided sticky tape.  

The markers were placed onto specific locations of the participant’s body (Table 

3-8), and this allowed for the system to approximate the location of the 

participant’s anatomical landmarks and, more specifically, the underlying bony 

anatomy.  
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In this study, the placement of the lower limb reflective markers was based 

upon previous studies of amputee gait (Protocol: 272/PPE/11) conducted at 

DMRC Headley Court246; 247. This lower limb marker set is the standard model 

used at Salford University and was selected so that a direct comparison 

between the walking ability of below knee amputees, and the individuals who 

had lower limb salvage surgery (who wear a PD AFO) could be made in the 

future. All participants in this study had the same markers applied using the 

same model.  

The system uses this information to define a virtual model and it tracks the 

movement of the pelvis, thigh, shank and foot segments during walking. The 

infrared light from each camera’s light emitting diodes (LED) reflects off the 

markers to obtain the 2-dimensional (2D) co-ordinates of the markers on the 

participant’s body. Data from the system’s calibration procedure identify the 

locations of the cameras relative to a laboratory-fixed co-ordinate frame243. This 

was used to combine all the cameras’ 2D co-ordinates to obtain the markers’ 

3D co-ordinates.  

 

The process of using markers attached to skin can result in inaccuracies due to 

movement of the skin under the marker whilst the patient is moving. To 

minimise skin movement whilst testing, a method known as the Calibrated 

Anatomical Systems Technique (CAST) was developed127; 244. Cappozzo et 

al.127; 245 describes that markers over fleshy areas of the body experience more 

skin movement compared to markers over bony prominences. However, the 

bony prominence markers are necessary to define the ends of human segments 

and joints in order to approximate the location of underlying bones. Markers 

over fleshy areas are referred to as ‘technical markers’ and define a technical 

co-ordinate frame. The markers over bony prominences are referred to as 

‘anatomical markers’ and define an anatomical co-ordinate frame. Assuming 

body segments are rigid, the spatial relationship can be determined between an 

anatomical frame and a technical frame on the same body segment during a 
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static trial. The CAST protocol was used in this study to minimise the effect of 

soft tissue artefact leading to marker displacement errors.  

 

Each participant had 39 technical, and 32 anatomical markers placed on the 

landmarks outlined in (Table 3-8). Clusters of 3 or 4 markers on a rigid plate 

(Figure 3-9) were used as part of the technical marker set, instead of individual 

markers, as an additional means of reducing skin-movement (CAST protocol), 

therefore reducing inaccuracies. Although the gathering of full body data was in 

line with standard clinical service delivery, this study will only discuss the lower 

limb data gathered. 

All the markers were applied with double-sided medical tape whilst the 

participant was standing, to reduce the risk of the markers on the skin moving 

relative to the bone as the participant transcends from sitting or lying to 

standing77. All participants were asked to inform the researcher should this be 

too uncomfortable, and they were informed they could sit down at any time, as a 

seat was made available. All participants felt they were able to do this, and no 

participant asked to sit down during positioning of the markers. 
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Table 3-8 Marker set locations 

Marker Type Segment Right Left Placement Markers 

Anatomical Head Mastoid Process 

Occipital Protuberance 

Mastoid Process Placed on a band 
that was wrapped 
around the 
participants head 

3 

Shoulder Distal tip of the acromion 
process  

Distal tip of the acromion process   2 

Elbow Medial Humeral Epicondyle  
Lateral Humeral Epicondyle  

Medial Humeral Epicondyle  
Lateral Humeral Epicondyle  

 4 

Wrist 
Hand 

Medial Styloid Process  

Lateral Styloid Process 

2nd Metacarpelphalangeal Joint  

Medial Styloid Process  

Lateral Styloid Process  
2nd Metacarpelphalangal Joint 

 6 

Pelvis Anterior Superior Iliac Spine 
Posterior Superior Iliac Spine 

Anterior Superior Iliac Spine 
Posterior Superior Iliac Spine 

 4 

Thorax Clavicle (sternal end) 
Xiphoid Process 
T2 
T10 

Clavicle (sternal end)  5 

Knee Medial Femoral Epicondyle  

Lateral Femoral Epicondyle  

Medial Femoral Epicondyle  

Lateral Femoral Epicondyle  

 4 

Ankle Medial Malleolus 

Lateral Malleolus 

Medial Malleolus 

Lateral Malleolus 

 4 

Foot Posterior Calcaneus  

Lateral Calcaneus 1st, 2nd & 5th 
Metatarsal Head 

Posterior Calcaneus Lateral 
Calcaneus 1st, 2nd & 5th Metatarsal 
Head 

Placed over the 
participant’s 
footwear. The heads 
of the metatarsals felt 
through the 
participants trainers. 

10 
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Marker Type Segment Right Left Placement Markers 

Technical Forearm Mid Forearm Cluster (x3) Mid Forearm Cluster (x3) Placed centrally on 
the outer aspect of 
the forearm 

6 

Arm Mid Upper Arm Cluster (x3) Mid Upper Arm Cluster (x3 Placed centrally on 
the outer aspect of 
the forearm 

6 

Thorax Back Marker  Tracker to determine 
participants direction 
of travel 

1 

Thigh Mid Thigh Anterior Cluster (x3) 
Mid Thigh Posterior 

Mid Thigh Anterior Cluster (x3) 
Mid Thigh Posterior 

Posterior marker 
placed centrally on 
the thigh 

8 

Shank Tibial Cluster (x4) Tibial Cluster (x4) Positioned laterally 
on the lower third of 
the calf 

8 



 

98 
 

 

Figure 3-9 Examples of the thigh and tibial clusters (Source: Picture taken by thesis author at DMRC 
Headley Court) 

On the limb wearing the PD AFO, markers were attached onto the orthosis that 

overlay the required bony landmarks. This included the medial and lateral 

malleoli and the medial and lateral femoral condyles. The distances from the 

bony landmarks to the PD AFO were not recorded and not always equal. 

However, this was not considered to be problematic as Vicon finds the centre 

point of these markers. 

3.12 Motion analysis data collection 

 

Two conditions were tested.  

1. The participant walking while wearing their PD AFO in their own trainers, 

with a rubber heel elevator as prescribed inside both trainers 
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2. The participant walking without their PD AFO, with the same trainers. No 

heel elevators were inside the footwear unless a diagnosed leg length 

discrepancy was present. This was therefore addressed with adequate 

heel elevators prior to testing 

On the injured limb the trainer was on average 1-2 sizes larger than the 

participant’s regular shoe size to accommodate for the PD AFO comfortably. 

Participants had split sized trainers. When walking without the orthosis no 

allowance was made for the slightly larger shoe on the injured side, the shoe 

was secured to the foot tightly. All participants tested wore their PD AFO daily 

and walked to the testing session in their PD AFO; therefore, testing always 

began with the PD AFO in situ. 

 

Following placement of all markers to the orthosis and body (Figure 3-10), a 

static standing trial was recorded to calculate the location of joint centres. The 

participant was then instructed to walk at a comfortable self-selected speed up 

and down the gait laboratory for 5 minutes to acclimatise to the test condition. 

The participant was invited to practise walk several times along the gait lab to 

define an appropriate starting point for them individually at each end. Starting 

from an optimum position improved the participant’s ability to step on each of 

the force plates consistently without adopting an unnatural gait pattern and 

targeting the force plates. The participant was not instructed to strike a 

particular point on the force plate. 
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Figure 3-10 Participant ready to begin the first testing condition (Source: Picture taken by thesis author at 
DMRC Headley Court) 

Chairs were placed at either end of the gait laboratory so, if required, the 

participant could rest between trials for 2 minutes. However, no participant 

required the use of the chairs to rest during testing. Once ready to record, the 

participant walked up and down the clinic room at a self-selected speed until 10 

suitable walking trials were collected for both the right and the left leg. A 

suitable trial was defined as clear force plate contact (with 1 foot only) 

throughout the gait cycle. The participant’s foot was required to strike the force 

plate completely (contain initial contact through to toe off) to qualify as a 

successful walking trial. 

Once testing was underway, if any anatomical markers fell off they were not 

repositioned. Had a tracking marker fallen off this would have been repositioned 

during testing and a new static trial captured. During data capture, if a foot was 

not completely inside the force plate perimeter the trial was discarded, due to 

resultant errors in the recorded GR force data.  

The participant had a rest on a chair between each test condition. The PD AFO 

was removed, and their trainer re-donned on the injured side. Markers on the 
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injured lower limb were repositioned matching the contralateral side, and any 

markers that had either fallen off previously or appeared loose were reattached 

securely. The participant was given 5 minutes to acclimatise to this test 

condition. Once again, a static trial was collected and, once ready, the 

participant walked up and down the clinic room across the force plates at a self-

selected speed until 10 walking trials for both the right and the left leg were 

collected. The procedures for both test conditions were the same. 

All markers were then removed, and the participant was invited to ask any 

questions and asked about any pain experienced during the session. All 

participants reported discomfort during walking without their PD AFO, however, 

this was not any greater than the discomfort experienced normally when the PD 

AFO was not used. The participant was then thanked for their time and they left 

the gait analysis laboratory wearing their PD AFO.  

 

After data collection, the passive reflective markers were labelled and then 

automatically digitised in Vicon Nexus. Gaps less than 10 frames in trajectory 

were filled using a polynomial interpolation cubic spline. After labelling, all 

digitalised data was exported to C3D files. The exported C3D files from Vicon 

Nexus were streamed and further processed in Visual3D™ (C-Motion, 

Rochelle, USA, V6) software for data modelling, filtering and analysis. 

3.13 Motion analysis data analysis 

 

A model specific to the height and mass of each participant was created and 

labelled which contained pelvis, thigh, shank and a rigid foot segment. Gait 

events were determined from force plates with initial contact marking the start 

and end of the gait cycle.  
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In the Visual3D software, the coda pelvis model was used to build the pelvis 

segment that was determined by both the ASIS and PSIS (Figure 3-11). 

 
 

Figure 3-11 The creation of Visual3D pelvis248 

The hip joint centre was determined mathematically by the software using the 

positions of the ASIS and PSIS markers, and a regression equation proposed 

by Bell et al.249. The joint centre of the knee was determined to be the midpoint 

of the distance between the medial and lateral epicondyles of the femur. The 

joint centre of the ankle was determined to be the midpoint of the distance from 

the medial to lateral malleolus. Then the left thigh segment was created by 

using the left hip centre, and the left medial and lateral femoral epicondyles. 

The four tracking markers were used to track the segment, but not to define it. 

The right thigh segment was also built in the same way. The tibia was defined 

by the medial and lateral epicondyle markers, and the malleoli markers. The 

tibial cluster tracked the segment in space. Similarly, both foot segments were 

built by projecting the midpoint of the medial and lateral malleoli, in addition to 

the midpoint of the 1st and 5th metatarsal head markers projected onto the 

floor. These were tracked by all the markers on the foot.  

 

The biomechanical model was a modified cast version. The inertial parameters 

for each segment were based upon the recommendations from De Leva et 
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al.250. A local co-ordinate system was defined for each segment and an X-Y-Z 

cardan sequence applied. This described sagittal plane motion around an x 

axis, coronal plane motion around the y axis and transverse plane around the z 

axis. This model was used to calculate how the joints were moving (joint 

kinematics), the relationship between ground reaction forces measured from 

force plates and joint movement (joint moment).  

Joint kinematics were calculated for the pelvis, hip, knee and ankle joints using 

inverse kinematics, as termed by Lu and O’Connor in 1999251. The use of 

inverse kinematics produces a linked segment rigid body model252 and an 

optimisation technique was used to fit this model to the measured marker 

positions, generally using some weighted least-squares fit cost function252.  

Utilising this method allowed for specific constraints to be applied at the joints of 

the virtual model so to limit rotation and or translation. The pelvis in this study 

permitted six degrees of freedom, but only sagittal, coronal and transverse 

plane rotation was permitted at all other joints This was the method chosen as it 

is the same method that was used to gather the normative data presented as 

control in this study, and has been used in previous studies at DMRC Headley 

Court246. Although inverse kinematic models have not been subject to the same 

rigorous validation as conventional gait models (CGM)252, they do provide a 

predictive approach to modelling soft tissue artefact and are compatible with 

advanced musculoskeletal modelling techniques. 

This study did not utilise the CGM as this utilises wand markers, which have 

been shown to be less effective at accounting for soft tissue artefact253. Wand 

markers used have been shown to be inaccurate around the hip252; 254; 255. 

Additionally, the CGM foot model does not provide a comprehensive picture of 

the foot’s complex motion in gait 252. Although CGMs in a clinical setting are 

quicker and easier to use, providing clinically meaningful information in a well 

validated and standardised way252, this study adopted inverse kinematics as 

this was how the normative data was processed at DMRC Headley Court by the 

HSO246; 247 prior to this study and allowed for comparison.  
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Joint angles were calculated using the cardan sequence X-Y-Z (X represents 

flexion/extension; Y represents abduction/adduction and Z represents 

internal/external rotation) according to the relative position between the labelled 

segments. 

All moments in this study, were calculated as internal moments and normalised 

to body mass and reported in Nm/kg. Mathematically, the external moments are 

equal and opposite to the internal moment, which can be calculated with inverse 

dynamics256.  

Power generated at joints of the lower limb were also calculated at specific time 

points during the gait cycle and reported in Watts/kg. Power can either be 

generated through concentric muscle activity, or absorbed through eccentric 

muscle activity or elongation of soft tissue257. Power graphs can, however, be 

affected by joints above and below, due to the action of bi/tri articular 

muscles258. 

Temporal and spatial parameters were calculated within Visual 3D. All data was 

normalised to represent 0-100% of the gait cycle and exported as an ASCII file 

for extraction of specific parameters. Microsoft excel was used to process the 

data and create the gait graphs within this thesis.  

 

Empirically, patients who have experienced deck-slap injuries walk with an 

antalgic gait pattern, as described in 2.5.3. The functional capability of the 

uninjured limb can be impaired as a result, as injured personnel increase their 

reliance on the sound limb for support in a similar way to unilateral amputees259-

261. No study has looked directly at the rates of low back pain in custom AFO 

users. However, studies on amputees have shown that this asymmetry of 

loading has been linked to several associated comorbidities, including the 

prevalence of lower back pain262; 263 and osteoarthritis262; 263. Hence, it is 
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important to understand how both the injured and uninjured limb behave with 

and without PD AFO use, and how this compares to normative data.  

In order to answer the gait element of the research question and subsequent 

hypotheses, parameters of gait were selected which best enable this and are 

presented (Table 3.9).  

Table 3-9 Researcher’s selected gait parameters to answer hypothesis 2-4 

Hypotheses Measures Relevance 

Hypothesis 2: Propulsion Temporal spatial: walking speed, 
step length and cadence 

Ankle kinematics- sagittal plane 

Ankle moments- sagittal plane 

Hip moments- sagittal plane 

Hip power- sagittal plane 

Ankle powers 

Anterior-posterior GRF 

Lack of pre swing propulsion is a 
common gait deficiency prevalent 
in blast trauma limb salvage5; 159; 

171; 173. PD AFO's are believed to 
improve propulsion5. These 
measures will help investigate if 
these claims are substantiated for 
this group of participants. 

Hypothesis 3: Stability Vertical GRF 

Temporal spatial: stride length, 
width, double support time, stance 
time and % gait cycle when toe off 
occurred 

Hip kinematics- sagittal plane 

Foot progression angle 

Knee kinematics- sagittal plane 

Knee moments- sagittal plane 

AFO’s are often prescribed to 
improve gait stability by controlling 
the GRF69; 144. The GRF, 
kinematic and temporal spatial 
measures selected will strive to 
determine if a PD AFO affects 
participants stability.  

 

Hypothesis 4: Gait profile 
score (GPS)/Movement 
analysis profile (MAP)  

 

 

GPS/MAPS 

Hip kinematics - coronal and 
transverse plane 

Pelvis kinematics - sagittal, coronal 
and transverse plane 

Lower limb kinematics is important 
as any potential 
stiffness/restriction or excessive 
range of motion can have a 
detrimental effect on gait. It can 
be a determinant of inefficient 
walking and can increase energy 
expenditure264. It may cause 
abnormal loading of the limbs 
which could contribute to the 
development of low back pain or 
lower limb osteoarthritis265. 
Kinematic data is used to form the 
MAPS which in turn allows the 
overall gait of participants to be 
compared266. 

 

 Presentation of gait data 

All gait parameters selected facilitate data comparison and allow for clinical 

interpretation245; 267; 268. All parameters are presented in tables within the results 
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section of this thesis. Graphs showing the following results are presented in the 

results section (Tables 3-10), kinematic (joint angle), kinetic (moment) gait, 

ankle power and the vertical and anterior-posterior GRF. 

Table 3-10 Joint angle and moment gait graphs present in this thesis 

 Sagittal Plane Coronal Pane Transverse Plane 
 

Kinematics Kinetics Kinematics Kinetics Kinematics Kinetics 

Pelvic ✓ 
 

✓ 
 

✓ 
 

Hip ✓ ✓ ✓ 
 

✓ 
 

Knee ✓ ✓ 
    

Ankle ✓ ✓ 
    

Foot 
    

✓ 
 

 

Although specific peak parameters are useful to compare between groups, they 

can be limiting as they only represent specific points within a gait cycle. The use 

of gait graphs allows for differences to be seen across the entire gait cycle for 

each test condition. Data for each lower limb joint were plotted in a graphical 

format, as demonstrated in (Figure 3-12). 

 

Figure 3-12 Example of gait graph in this study 

Each test condition is shown in the gait graph. The red line is shod without the 

PD AFO and the blue line is while wearing the PD AFO. The standard deviation 
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for each is plotted in a dotted line. This data is plotted against control data246; 

247, shown as a grey band. It is presented as 1 standard deviation (SD) above 

and below the mean of the control data for each joint. The vertical line 

represents the % of the gait cycle where toe off occurred for both test conditions 

and for the control group.  

Control data were taken from a study undertaken at DMRC Headley Court246 

conducted by the same HSO who assisted in this study’s data collection. The 

data includes only able-bodied military personnel who had been asymptomatic 

regarding pain in their lower limbs for at least 6 months prior to testing. All were 

without previous major joint, soft tissue surgery or neurological conditions and 

therefore might be considered a match for the pre-injury status of this study’s 

participants246; 247.  

Statistical parametric mapping was not used in this study to examine changes 

throughout the whole gait cycle. Rather, peak variables of gait were selected to 

answer the hypotheses, as deemed more appropriate measures by the 

researcher in measuring the effect of the PD AFO on specific parameters.  

 

Each participant was invited to complete 2 standardised and specific functional 

outcome questionnaires pre and post fitting of the PD AFO. These 

questionnaires were the Lower Extremity Functional Scale (LEFS) and the Foot 

and Ankle Outcome Score (FAOS). These questionnaires are routinely used at 

DMRC Headley Court and deemed a useful tool for identifying pain and 

functional ability269-271. These questionnaires are considered to not cause 

distress or upset to the participant.  

 

The LEFS asks the participant about how they cope with activities of daily living 

(ADL). This includes balance (non-vestibular), coordination, functional mobility, 

life participation, occupational performance, quality of life (QoL), range of 

motion and strength. The participant grades each question from 1-5. A score of 
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1 represents extreme difficulty conducting this activity, and a score of 5 

represents no difficulty at all. The maximum score is 80, which would indicate a 

very high level of function and the minimum detectable change for the LEFS is 9 

points. The scores pre and post fitting of the PD AFO were compared. The 

LEFS appears to detect meaningful change better than the well documented 

SP-36 physical function subscale, often reported in the literature269. The LEFS 

is a reliable and validated patient reported outcome measure269; 272; 273 and it 

takes approximately 5 minutes to complete.    

 

The FAOS assesses a participant’s perception about how their foot and ankle 

injury is affecting their quality of life. It includes questions on pain, symptoms, 

ADL, function in sports and recreational activity and how the participant has 

managed these in the last week. It requires participants to score each question 

between 0 and 4. A score of 0 indicates extremely bad symptoms, and a score 

of 4 indicates no symptoms. It is a reliable and validated patient reported 

outcome measure274-277 and takes approximately 10 minutes to complete.  

This questionnaire provides a combined score, as well as the ability to evaluate 

each subsection. This is a globally validated275; 276; 278; 279 patient reported 

outcome measure that has a subsection related specifically to sport and 

recreation in relation to the ankle. The ability to return to sport post injury is 

greatly important to predominantly young male military personnel treated at 

DMRC Headley Court, and therefore it was important to gather outcomes in 

relation to this specifically.  

 

The process used to gather PROMs for all participants in this study was 

identical and follows standard treatment protocols at DMRC Headley Court 

(Figure 3-13).  
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Figure 3-13 Patient reported outcomes questionnaire process 

3.14 Statistical Testing 

Statistical analysis was conducted using R version 3.5.3, a free software 

environment for statistical computing and graphics. Specific parameters were 

extracted, as described above, for each participant and both test conditions 

compared. The mean and standard deviation was calculated across all ten 

walking trials per limb for each participant in both test conditions. For 

comparison, all participants’ data was first checked for normal distribution using 

Shapiro-Wilk tests. The data were then tested for homogeneity of variance 

using either F-tests (for normally distributed data) or Fligner-Killeen tests (for 

non-normal data). When the data was normally distributed and presented 

homogeneity of variance, statistically significant differences between the shod 

and PD AFO test conditions were identified with paired t-tests or unpaired t-

tests between the injured limb wearing the PD AFO and controls. Paired t-tests 

were used for the PROM responses. For non-normal data, statistically 

significant differences were identified using either Wilcoxon tests (for data with 

equal variances) or Kruskal-Wallis tests (for data with unequal variances). 

Statistical significance was defined as p<0.05. 

On assessment pre PD AFO both questionnaires were administered to 
participants by the treating orthotist.

Questionnaires were scored and entered anonymously into a spreadsheet 
using participants specific unique identification numbers by the orthotist on 

the day the participant was cast for thier PD AFO.

Participants issued PD AFO 6 weeks later, and make use of it for 
approximately 8-9 weeks both in DMRC Headley Court and at home.

Participants given the same questionnaires to fill in again post supply of PD 
AFO by the orthotist on the same day as the gait analysis session. This is on 

average 8-9 weeks post PD AFO provision.

Questionnaires were scored and entered anonymously into a spreadsheet 
using participant specific unique identification numbers by the orthotist on 
the same day as filled in by the participant. Statistical analysis was carried 

out on the results at a later date.



 

110 
 

In addition, effect size calculations were performed to evaluate Cohen’s d280.  A 

meaningful change was defined as a medium effect size or higher. A d value of 

0.5 was defined as a medium effect size280, 0.8 was a large effect size280, 1.2 

was a very large effect size281. 
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Chapter 4: Results 

4.1 Chapter overview 

This chapter begins by outlining the demographics of each participant. It then 

goes on to discuss specific gait data (highlighted in 3.13.5) systematically in 

relation to the following hypotheses.  

Research Question: Does a PD AFO improve gait and functional outcomes of 

injured military personnel who have undergone unilateral limb salvage? 

Hypothesis 1: PD AFO use will improve the patient reported outcomes of 

injured military personnel that have undergone unilateral limb salvage. 

Hypothesis 2: PD AFO use will improve a participant’s propulsion through 

midstance and terminal stance of gait in both the injured and uninjured limb. 

Hypothesis 3: PD AFO use will improve a participant’s stability during the 

stance phase of gait.  

Hypothesis 4:  PD AFO use will improve the gait profile score of both the 
injured and uninjured limb.  

Hypothesis 1 and 2 were chosen for this study as they are key claims in the 

literature surrounding PD AFOs and therefore warrant exploration. Hypothesis 3 

was chosen as it is a common goal in lower limb orthotic treatment, and 

hypothesis 4 may help to understand the overall function of PD AFOs in gait. 

The temporal and spatial parameters are the mean data of each test condition 

for all 12 participants. The primary and secondary kinematic and kinetic gait 

parameters presented are based on the mean of the 10 walking trials conducted 

for 9 participants for both test conditions. The kinetic and kinematic data for 3 of 

the participants had to be withdrawn from the study during the analysis phase 

as the data were compromised. There were errors with some markers and data 

capture on the force plates for these 3 participants. The results section of this 

thesis was written after the researcher left her position at DMRC Headley Court 

as the hospital had relocated to the Midlands, and therefore was unable to 
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retrieve this data from the VICON software installed in the gait lab on site. The 

kinematic and kinetic data for AP12, 17 and 19 was therefore discarded for 

presentation in the results. As the compromise related to marker placement it 

was deemed satisfactory to include the temporal spatial data for these 

participants. 

Tables of the temporal and spatial parameters, kinematic and kinetic data are 

presented alongside all standard deviations, range of the mean value, as well 

as all corresponding p-values and d-values available. In addition to providing 

data in tabular form, gait graphs for kinematics and kinetics are also presented 

as described in 3.13.6.  

Control data was available for kinematic and kinetic parameters as complete in 

this thesis. However, no control ground reaction force data was made available 

to the researcher, and only a small number of temporal spatial parameters were 

available to use.  

The chapter also presents the results of the PROMs used in this study for all 12 

participants.  

4.2 Participant demographics 

The demographics of the 12 participants are detailed in (Table 4-1). All 

participants were male with an average age of 32±8 years when the PD AFO 

was initially supplied. They had an average height of 185cm and weight of 95kg. 

Only 3 participants had a full range of motion (20° dorsiflexion to 50° 

plantarflexion)68 available at the ankle joint on assessment by the researcher 

(measured visually using a goniometer). All other participants had some degree 

of restriction at the ankle joint when tested passively. All participants sustained 

IED blast trauma (deck slap) with a calcaneal fracture. Only 1 participant had a 

calcaneal fracture in isolation; all other participants fractured more than 1 lower 

limb bone, as shown in (Table 4-1).  

In this study 9 participants sustained an open fracture, 7 of which were 

classified by Gustilo-Anderson as IIIC, the most severe. The 3 closed fractures 
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were classified as IIIA.  Post trauma joint fusion had been performed on 4 

participants on the injured side. On average the clinical gait analysis session 

took place 16±10 weeks post provision of the PD AFO. It was noted that 4 

participants waited more than 20 weeks until the gait analysis session was 

undertaken. Patient availability at DMRC Headley Court was the reason for 3 of 

the participants waiting more than 20 weeks, and for 1 participant it took 41 

weeks, as he required hospitalisation for a reason unrelated to his lower limb, 

and subsequently took longer to rehabilitate with the PD AFO. 
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Table 4-1 Participant demographics 

 Height 
(cm) 

Weight 
(Kg) 

Age when 
PD AFO 
supplied 
(Years) 

Ankle 
ROM (DF-

PF°) 

Fracture 
location(s) 

Open or 
Closed 

Fracture(s) 

Gustilo-
Anderson 

classification 

Surgical 
fusion post 

injury 

Time 
between PD 

AFO 
provision 
and gait 
analysis 
(Weeks) 

AP02 183 101 28 5DF-25PF Calcaneus, 
medial 

malleolus 

Open IIIC None 12 

AP03 187 99 36 3DF-25PF Calcaneus, 
distal end of 
tibia, talus 

Open IIIB None 9 

AP06 177 79 28 10DF-
30PF 

Calcaneus, 
cuboid, base of 
5th metatarsal 

Closed IIIA None 9 

AP07 184 87 42 5DF-30PF Calcaneus, 
distal end of 
tibia, talus 

Open IIIC None 10 

AP08 189 93 45 5DF-25PF Calcaneus, 
distal end of 
tibia, talus 

Open IIIC Subtalar joint 11 

AP09 185 75 27 Full Calcaneus Closed IIIA None 10 

AP10 191 84 34 Full Calcaneus, 
cuboid 

Closed IIIB Triple 
arthrodesis 

20 

AP11 181 112 30 Full Calcaneus, C6, 
T7 

Open IIIB None 22 

AP12 178 78 23 5DF-30PF Calcaneus, 
lisfranc, distal 
end of tibia, 

fibula 

Open IIIC None 11 
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 Height 
(cm) 

Weight 
(Kg) 

Age when 
PD AFO 
supplied 
(Years) 

Ankle 
ROM (DF-

PF°) 

Fracture 
location(s) 

Open or 
Closed 

Fracture(s) 

Gustilo-
Anderson 

classification 

Surgical 
fusion post 

injury 

Time 
between PD 

AFO 
provision 
and gait 
analysis 
(Weeks) 

AP17 193 115 23 3DF-25PF Calcaneus, 
distal end of 
tibia, talus, 

fibula, base of 
5th metatarsal 

Open IIIC Subtalar joint 41 

AP19 184 113 43 3DF-25PF Calcaneus, 
cuboid, distal 
end of tibia 

Open IIIC Subtalar joint 9 

AP20 189 100 28 10DF-
30PF 

Calcaneus, 
cuboid, base of 
5th metatarsal 

Open IIIC None 24 

Mean±SD 
Range 

185±5 
177 to193 

95±14 
75 to 115 

32±8 
23 to 45 

- - Open 9 
Closed 3 

IIIA 3 IIIC 7 
IIIB 2 IIIB 3 

Fusion- 4 
No fusion to 8 

16±10 
9 to 41 
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4.3 Patient Reported Outcome Measures (PROM) 
results to answer hypothesis 1 

 

There was a significant change demonstrated in the participants’ mean pre and 

post LEFS score (p=<0.001) with a very large effect size (1.51) (Figure 4-1). 

The mean LEFS score pre provision of the PD AFO was 38 (SD=15) and the 

mean LEFS score post provision of the PD AFO was 54 (SD=10). The minimal 

clinically important difference (MCID) for the change in the LEFS score is 9 

(Appendix B), which was achieved post provision of the PD AFO in 10 of the 12 

participants (Table 4-2). The mean change in LEFS score was 19 (SD= 12). 

The coefficient of variation for the change score was 0.63. 

 

Figure 4-1 Mean (LEFS) scores pre and post provision of a PD AFO. Error bars show standard deviation, 
(N=12) 

0 10 20 30 40 50 60 70

LEFS Post PD AFO

LEFS Pre PD AFO

Mean score

Lower Extremity Functional Scale (LEFS) 
Results
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Table 4-2 A comparison of the LEFS scores and the minimal clinically important difference.  

Inclusive of SD, range and p value. Score =80, higher scores represent higher levels of function. (N=12) 

 AP02 AP03 AP06 AP07 AP08 AP09 AP10 AP11 AP12 AP17 AP19 AP20 
Mean±SD 

Range 
 p value 

Cohens d 

LEFS score 
Pre provision 
of PD AFO 

36 46 41 20 28 48 24 70 35 15 16 36 38±15 
15 to 70 

 
0.001 
1.51 

LEFS score 
Post 
provision of 
PD AFO 

51 52 59 43 54 60 71 69 58 45 34 50 54±10 
34 to 71 

 

LEFS (MCID) 
( >9 = 
Significant) 

15 6 18 23 26 12 47 -1 23 30 18 14 19±12 
-1 to 47 
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All subsections of the FAOS (symptoms, pain, ADL, QOL, and sports and 

recreation) demonstrated a significant change between the pre and post PD 

AFO scores as a cohort (p<0.01) (Figure 4-2). This was also reflected in the 

effect size, as the sports and recreation subsection demonstrated a very large 

effect size (2.04) and all other subsections demonstrate a large effect size 

(between 0.8-1.2) (Table 4-3). In this study 11 participants reported an 

improvement to their symptoms post supply of the PD AFO and 1 participant 

(AP03) reported their symptoms did not change. Improvement to pain post 

supply of the PD AFO was reported in 10 participants and 1 participant (AP20) 

reported that their pain did not change. A participant AP11 reported that use of 

the PD AFO made pain worse. Additionally, 11 participants reported an 

improvement in carrying out activities of daily living, 1 participant (AP11) 

reported the PD AFO made carrying out activities of daily living more difficult. 

Improvements to quality of life were reported in 9 participants post supply of the 

PD AFO. The remaining 2 participants (AP03 and AP19) reported that use of 

the PD AFO did not change their quality of life and 1 participant (AP11) reported 

use of the PD AFO declined their quality of life. All 12 participants reported that 

their ability to engage in sports and recreation improved post use of the PD 

AFO; this represented the largest score differential (30) between the pre and 

post mean scores. 
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Figure 4-2 Mean (FAOS) scores for each sub section of the questionnaire pre and post provision of a PD 
AFO Error bars show standard deviation. (N=12) 
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Table 4-3 A comparison of the FAOS pre and post subsection scores and the subsequent changes for all participants, inclusive of SD, range and p value. (N=12) 

FAOS sub sections AP02 AP03 AP06 AP07 AP08 AP09 AP10 AP11 AP12 AP17 AP19 AP20 
Mean Score±SD 

Range 

p values 
Cohens d 

 

Symptoms Pre Score 14 46 32 43 50 39 21 54 36 57 18 21 37±15 
14 to 64 

0.01 
0.98 

Symptoms Post Score 39 46 43 54 61 57 75 64 46 64 25 29 50±14 
25 to 75 

Symptoms change 25 0 11 11 11 18 54 10 10 7 7 8 14±14 
0 to 54 

 

Pain pre score 47 69 47 50 53 64 36 83 50 28 22 75 52±18 
22 to 83 

0.00 
1.05 

Pain post score 67 78 72 64 67 78 81 75 64 44 36 75 67±13 
36 to 81 

Pain change 19 8 25 14 14 14 44 -8 14 17 14 0 15±13 
-8 to 44 

 

ADL pre score 44 84 68 66 57 88 54 99 74 41 37 74 65±19 
37 to 99 

0.00 
1.01 

ADL post score 72 85 75 75 79 90 99 97 87 54 60 82 80±13 
54 to 99 

ADL change 28 1 7 9 22 1 44 -1 13 13 24 9 14±13 
-1 to 44 

 

QOL pre score 13 63 19 19 19 38 6 75 50 0 0 25 27±23 
0 to 75 

0.01 
0.97 

QOL post score 31 63 63 31 31 56 56 69 56 19 0 38 43±20 
0 to 69 

QOL change 19 0 44 13 13 19 50 -6 6 19 0 13 16±17 
-6 to 50 

 

Sports & recreation pre score 10 35 25 25 20 55 15 45 25 20 0 35 26±14 
0 to 55 

0.00 
2.04 
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FAOS sub sections AP02 AP03 AP06 AP07 AP08 AP09 AP10 AP11 AP12 AP17 AP19 AP20 
Mean Score±SD 

Range 

p values 
Cohens d 

 

Sports and recreation post score 45 70 40 45 70 70 80 85 60 30 20 50 55±19 
20 to 85 

Sports and recreation change 35 35 15 20 50 15 65 40 35 10 20 15 30±17 
10 to 65 
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4.4 Parameters to investigate hypothesis 2: propulsion 
in gait  

 

The temporal and spatial data showed an increased walking speed of the 

participants when the PD AFO was worn on the injured limb (Table 4-4). 

However, this did not show a significant (>0.05) difference (p= 0.10) when 

compared to shod alone but does show a large effect size (0.84). When the PD 

AFO was worn, cadence increased and was closer to control data. However, 

this did not show a significant difference (p=0.25) but does demonstrate a very 

large effect size (1.24). The participants’ stride length increased when wearing 

the PD AFO and this did show a significant increase (p =0.03) and a large effect 

size (1.17). The participants using the PD AFO walked faster and had a longer 

stride length compared to controls. 

Table 4-4 A comparison of the mean temporal and spatial parameters: walking speed and cadence of 
participants with and without a PD AFO compared to available control data. 

Parameter 

Without PD AFO With PD AFO Control Group271 

Mean ± SD Mean ± SD Mean 

Range Range Range 

Self-Selected Walking 
Speed 
(meters per second) 

1.17±0.34 1.40±0.18 1·29 

0.71 to 1.81 1.20 to 1.81 1·25 to 1·33 

p value 0.1 N/A* 

Cohen’s d 0.84 N/A* 

Cadence 
(steps per second) 

94±15.21 109±13.45 106 

75 to 117 90 to 137 101 to 110 

p value 0.25 N/A* 

Cohen’s d 1.24 N/A* 

Stride length 
(meters) 

1.36±0.22 1.56±0.11 N/A* 

0.99 to 1.78 1.35 to 1.78 N/A* 

p value 0.03 N/A* 

Cohen’s d 1.17 N/A* 

 
*This data was unavailable 
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Use of the PD AFO significantly increased the anterior-posterior ground reaction 

force peak at pre swing (propulsive force) (AP2). (p=0.004) and (p=0.02) 

respectively, and both the uninjured and injured limb demonstrated a very large 

effect size (1.87) and (1.45 respectfully) (Table 4-5). The anterior-posterior peak 

at loading response (AP1) also increased in both the uninjured and injured limb 

when the PD AFO was worn. However, this was not deemed a significant 

change (p=0.11) and (p=0.28) respectfully. This is also referred to as the 

braking force, which corresponds to the deceleration period of the support 

phase. Whilst this didn’t demonstrate a significant change, a medium effect size 

(0.61) is shown in the injured limb and a large effect size in the uninjured limb 

(0.91). 

  

 

Figure 4-3 Anterior-posterior ground reaction during the two testing conditions for both the injured and 
uninjured limb. 
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Table 4-5 A comparison of the mean, SD, and range of the anterior-posterior ground reaction for the two 
test conditions (both the injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range 

AP1  
(* body weight) 

-0.14±0.05 -0.18±0.06 -0.11±0.06 -0.12±0.04 

-0.25 to -0.10 -0.28 to -0.14 -0.19 to -0.03 -0.22 to -0.07 

p value 0.11 0.28 

Cohen’s d 0.91 0.61 

AP2 
(* body weight) 

0.15±0.03 0.19±0.02 0.09±0.04 0.14±0.03 

0.12 to 0.19 0.17 to 0.24 0.04 to 0.15 0.11 to 0.19 

p value 0.004 0.02 

Cohen’s d 1.87 1.45 

 

The ankle joint power demonstrated a significant change in both the maximum 

power absorption between mid-stance and terminal stance (p=0.001) (Table 4-

6), and the maximum power generation at pre swing (p=0.009) between the 

injured limb whilst wearing the PD AFO and the control group. The ankle power 

generation and absorption of the control group though gait was significantly 

greater than the injured limb whilst wearing a PD AFO. Whilst not demonstrating 

a significant change (p=0.80), the maximum ankle power absorption did slightly 

increase in the injured limb whilst participants wore the PD AFO. The uninjured 

limb’s ankle power absorption was also very similar for both test conditions. The 

maximum power generation at pre swing increased on the uninjured limb whilst 

wearing the PD AFO and demonstrated a large effect size (0.92). However, this 

decreased on the injured limb whilst wearing the PD AFO (p=0.43) and showed 

a medium effect size (0.54).  
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Figure 4-4 Ankle power during the two testing conditions for both the injured and uninjured limb. 

Table 4-6 A comparison of the mean, SD, and range of ankle power for the two test conditions (both the 
injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb Control 

Without 
PD AFO 

With PD 
AFO 

Without 
PD AFO 

With PD 
AFO 

Jarvis et 
al246 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Range Range Range Range Range 

A1 maximum power absorption: 
mid-stance-terminal stance 
(15-40%GC) (Watts/Kg) 

-0.81±0.50 -0.93±0.41 -0.02±0.55 -0.05±0.47 -1.30± 
0.53 

-1.63 to -
0.48 

-1.71 to -
0.64 

-1.39 to -
0.15 

-1.74 to -
0.39 

-1.62 to 
0.58 

p value 0.96 0.80 0.001* 

Cohen’s d 0.04 0.16 3.32 

A2 maximum power generation: pre 
swing  
(50-60%GC) (Watts/Kg) 

1.86±1.09 2.65±0.64 0.34±0.31 0.21±0.15 3.21± 0.69 

0.48 to 
3.33 

1.97 to 
3.84 

0.06 to 
0.79 

0.04 to 
0.42 

2.26 to 
4.34 

p value 0.20 0.43 0.009* 

Cohen’s d 0.92 0.54 2.84 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

 

The sagittal plane external ankle moment showed a significant difference 

(p=0.03 and p= 0.02) respectively in both the dorsiflexing and plantarflexing 

moment on the injured limb between the 2 test conditions (Table 4-7). The peak 

dorsiflexing and plantarflexing moments on the injured limb for both test 
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conditions demonstrated a very large effect (1.21) and (1.32) respectfully. There 

was a significant difference (p=0.04) in the plantarflexing moment on the 

uninjured limb between the 2 test conditions, with a large effect size (1.06). The 

dorsiflexing moment for the uninjured limb for each test condition did not 

demonstrate a significant change (p=0.17). Whilst the value of the dorsiflexing 

moment increased by 0.05Nm/kg it was not a significant difference. There was 

no significant difference between the sagittal plane moments of the injured limb 

using the PD AFO compared to control.  

  
 

 
Figure 4-5 Sagittal plane external ankle moment during the two testing conditions for both the injured and 

uninjured limb. 
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Table 4-7 A comparison of the mean, SD, and range of sagittal plane ankle moments for the two test 
conditions (both the injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb Control 

Without PD AFO 
With PD 

AFO 
Without 
PD AFO 

With PD 
AFO 

Jarvis et 
al235 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Peak dorsiflexing 
moment in loading 
response (Nm/kg) 

-0.29±0.11 -0.34±0.10 -0.21±0.1 -0.36±0.15 -0.25 ±0.1 

-0.55 to -0.20 -0.54 to -
0.23 

-0.33 to -
0.15 

-0.56 to -
0.07 

-0.41 to -
0.22 

p value 0.17 0.03 0.11* 

Cohen’s d 0.42 1.21 0.89 

Peak plantarflexing 
moment in late stance 
(Nm/kg) 

1.38±0.24 1.57±0.09 1.02±0.48 1.53±0.24 1.61 ±0.33 

0.86 to 1.60 1.42 to 
1.70 

0.02 to 
1.48 

1.11 to 
1.87 

1.29 to 
1.78 

p value 0.04 0.02 0.64* 

Cohen’s d 1.06 1.32 0.24 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

 

The sagittal plane ankle kinematics on both the injured and uninjured limb 

demonstrated a plantar flexed position upon initial contact for both test 

conditions (Figure 4-6). The control group’s ankle angle at initial contact in the 

sagittal plane is slightly dorsiflexed (1.8°). When participants wear the PD AFO, 

the uninjured limb’s initial contact angle is closer to plantigrade and controls. 

The injured limb, at initial contact when using the PD AFO, remains in an 

increased plantar flexed position (-6.4°). The changes in the ankle at initial 

contact for all test conditions are not significant (>0.05) (Table 4-8) but do 

demonstrate a medium effect size on the injured limb (0.78). The participants’ 

peak ankle dorsiflexion angle in gait remained similar for both test conditions on 

the uninjured limb. A significant change (p=0.001) is shown in the injured limb’s 

peak dorsiflexion angle comparing both test conditions. When using the PD 

AFO, the ankle remains in a plantar flexed position throughout the GC in the 

sagittal plane. In late stance the peak ankle angle of plantarflexion increased in 

the uninjured limb when the PD AFO was worn. This was not deemed 

significant (p=0.08) but demonstrated a large effect size (0.89). The injured 

limb’s peak plantarflexion angle in late stance was very similar for both test 
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conditions and did not show a significant change (p=0.80). The sagittal plane 

range of motion in the ankle through the GC did show a significant change for 

both test conditions in both the uninjured and injured limb (p=0.05) and 

(p=<0.001) respectfully. The uninjured limb’s mean range of motion in the ankle 

joint increased by 3° when the PD AFO was worn on the injured limb and 

compared more comparatively to control. The injured limb’s ankle range of 

motion decreased by 7.6° when using the PD AFO. When the PD AFO was 

worn on the injured limb, the uninjured limb demonstrated an improvement in 

the timing of peak plantarflexion at pre swing. 

  
 

 
Figure 4-6 Sagittal plane ankle motions during the two testing conditions for both the injured and uninjured 

limb. 
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Table 4-8 A comparison of the mean, SD, and range of sagittal plane ankle motion for the two test 
conditions for both the injured and uninjured limb, compared to available control data. 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

 

The sagittal plane hip moments showed a significant difference (p=0.01) and 

very large effect size (1.51) between the peak extending moment of the 

uninjured limb with and without the PD AFO (Table 4-9). The hip extending 

moments increased in the uninjured and injured limbs when participants used 

their PD AFO, and this was comparable with controls. The injured limb did not 

show a significant change (p=0.07) but did demonstrate a large effect size 

(0.91). The peak hip flexing moment of the uninjured and injured limb increased 

when using the PD AFO. This demonstrated a significant difference (p=0.04) on 

the injured limb and no significant difference on the uninjured limb (p=0.06). 

Parameter 

Un-injured limb Injured Limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Angle at Initial 
contact (°) 
(dorsiflexion +ve) 

-2.12±3.09 -0.75±2.64 -2.58±6.06 -6.40±3.43 1.8 ±2.6 

-7.13 to 1.74 -5.43 to 2.74 -10.21 to 
10.00 

-12.09 to -2.30 1.2 to 6.5 

p value 0.35 0.12 0.10* 

Cohen’s d 0.48 0.78 0.96 

Peak dorsiflexion 
(°) 

8.8±3.8 8.2±3.1 6.8±4.5 -0.7±3.9 10.1 ±2.8 

3.1 to14.1 2.1 to 12.0 1.0 to 12.1 -8.2 to 3.9 6.2 to 15.6 

p value 0.72 0.001 <0.001* 

Cohen’s d 0.18 1.84 3.19 

Peak 
plantarflexion in 
pre swing (°) 
(50-60%GC)   

-10.7±3.3 -14.4±4.7 -3.6±7.2 -8.35±4.0 -10.7 ±2.2 

-16 to -7.5 -24.5 to -9.6 -14.7 to -1.6 -14.4 to -3.2 -13.7 to -6.4 

p value 0.08 0.8 0.09* 

Cohen’s d 0.89 0.33 0.89 

Range of motion 
through full gait 
cycle (°) 

19.6±3.0 22.6±3.0 15.2±2.3 7.6±2.7 20.7 ±3.1 

12.4 to 21.9 16.8 to 26.6 12.1 to 19.1 4.9 to 13.1 16.5 to 26.2 

p value 0.05 <0.001 <0.001* 

Cohen’s d 1.0 2.36 4.93 
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Both the uninjured and injured limb demonstrates a large effect size, (0.95) and 

(1.05) respectively. An increase in the hip flexing moment was also seen in the 

uninjured limb when the PD AFO was worn. However, this was not deemed 

significant (p=0.06). There was a medium effect size shown between the peak 

hip flexing and extending moments of the injured limb (0.62) and (0.57) 

respectively whilst wearing the PD AFO compared to controls. 

  
 

 
Figure 4-7 Sagittal plane external hip moments during the two testing conditions for both the injured and 

uninjured limb. 

Table 4-9 A comparison of the mean, SD, and range of sagittal plane hip moments for the two test 
conditions (both the injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb Control 

Without PD 
AFO 

With PD 
AFO 

Without PD 
AFO 

With PD 
AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Peak extending moment 
(Nm/kg) 

-0.83±0.29 -1.18±0.16 -0.83±0.19 -0.97±0.12 -0.99 ±0.34 

-1.26 to -
0.49 

-1.41 to -
0.90 

-1.11 to -
0.54 

-1.25 to -
0.84 

-1.33 to 0.70 

p value 0.01 0.07 0.23* 

Cohen’s d 1.51 0.91 0.57 

Peak flexing moment 
(Nm/kg) 

0.73±0.50 1.14±0.30 0.69±0.35 0.99±0.33 1.08 ±0.42 

0.36 to 1.73 0.91 to 1.87 0.37 to 1.42 0.75 to 1.62 0.48 to 1.45 

p value 0.06 0.04 0.17* 

Cohen’s d 0.95 1.05 0.62 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 
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The maximum hip power generation during loading response increased on both 

the injured and uninjured limb when the PD AFO was worn. Whilst both 

increased, neither was statistically significant (p=0.09) (p=0.54) respectively 

(Table 4-10). However, the change on the injured limb did represent a large 

effect size (1.07). When wearing the PD AFO, both the injured and uninjured 

limbs generated greater power at loading response than able-bodied controls. 

The injured limb generates 40% more power and the uninjured limb 34% more 

power compared to controls. 

The maximum hip power absorption at midstance increased on the uninjured 

limb and decreased on the injured limb when the PD AFO was worn. Neither 

was statistically significant (p=0.29) (p=0.70). This represented a medium effect 

size (0.69) on the uninjured limb and a small effect size on the injured limb 

(0.40). There was a statistically significant difference between injured limb using 

the PD AFO and controls (p=<0.001).   

The maximum power generation during pre-swing and initial swing increased on 

both the injured and uninjured limb when the wearing the PD AFO. Whilst this 

increase was not statistically different, the effect size on the uninjured limb was 

very large (1.22). When utilising the PD AFO, the peak maximum power 

generation during pre-swing and initial swing on the uninjured limb was still 33% 

lower than able-bodied controls and 40% lower than controls on the injured 

side.  
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Figure 4-8 Hip powers during the two testing conditions for both the injured and uninjured limb. 

Table 4-10 A comparison of the mean, SD, and range of hip moments for the two test conditions (both the 
injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb Control 

Without 
PD AFO 

With PD 
AFO 

Without 
PD AFO 

With PD 
AFO 

Jarvis et 
al235 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Range Range Range Range Range 

H1 maximum power generation 
during loading response:  

(0-10%GC) (Watts/Kg) 

0.53±0.36 0.76±0.38 0.49±0.28 0.83±0.33 0.50±0.30 

Range 0.5 to 1.10 0.31 to 
1.30 

0.10 to 
1.04 

0.37 to 
1.40 

0.10 to 
1.44 

p value 0.54 0.09 0.40 

Cohen’s d 0.02 1.07 0.51 

H2 maximum power absorption 
during midstance: 

(10-30%GC) (Watts/Kg) 

-
0.68±0.42 

-0.79±0.39 -0.75±0.30 -0.60±0.33 -0.8 ±0.30 

Range -1.40 to -
0.21 

-1.47 to -
0.21 

-1.33 to -
0.45 

-1.29 to -
0.09 

-1.65 to -
0.14 

p value 0.29 0.7 <0.001* 

Cohen’s d 0.69 0.48 2.74 

H3 maximum power generation 
during pre-swing and initial swing 

(50-70%GC) (Watts/Kg) 

0.82±0.18 0.90±0.19 0.65±0.17 0.73±0.23 1.2±0.50 

Range 0.12 to 
1.90 

0.04 to 
2.29 

0.07 to 
1.61 

0.02 to 
1.66 

0.06 to 
1.95 



 

133 
 

Parameter 

Un-Injured Limb Injured Limb Control 

Without 
PD AFO 

With PD 
AFO 

Without 
PD AFO 

With PD 
AFO 

Jarvis et 
al235 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Mean ± 
SD 

Range Range Range Range Range 

p value 0.09 0.91 0.25 

Cohen’s d 1.22 0.07 0.71 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

4.5 Parameters to investigate hypothesis 3: stability in 
gait 

 

The temporal and spatial data showed no difference in stride width for each test 

condition (Table 4-11). Double support time is reduced when the PD AFO is 

worn, but this reduction did not demonstrate a significant change (p=0.25) but 

does show a medium effect size (0.57).  

Table 4-11 A comparison of the mean temporal and spatial parameters: stride length, stride width, double 
support time of participants with and without a PD AFO compared to available control data. 

Parameter 

Without PD 
AFO 

With PD AFO Control Group Jarvis et al282 

Mean ± SD Mean ± SD Mean 

Range Range Range 

Stride Width 
(meters) 

0.14±0.02 0.14±0.02 0·12 

0.10 to 0.17 0.10 to 0.16 0·11 to 0·13 

p value 0.16 N/A* 

Cohen’s d 0.35 N/A* 

Double Support Time 
(Seconds) 

0.32±0.15 0.26±0.05 N/A* 

0.18 to 0.47 0.19 to 0.37 N/A* 

p value 0.25 N/A* 

Cohen’s d 0.57 N/A* 

 
*This data was unavailable 

 

The step length on both the injured and uninjured limb increased when using a 

PD AFO. This did not show a significant difference, (p=0.06) (p=0.14) 
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respectively but showed a large effect size on the injured limb (0.84) and a very 

large effect size on the uninjured limb (1.24) (Table 4-12). The step length when 

wearing the PD AFO was closer to the control group compared to without the 

PD AFO. Stance time decreased when participants used the PD AFO. This did 

not show a significant change but demonstrated a medium effect size on the 

uninjured limb (0.69) and a large effect size on the injured limb (0.95). The 

swing time increased when the PD AFO was worn, but again this did not show a 

significant change, nor a meaningful change in the effect size. Toe off occurred 

sooner in the gait cycle for both the injured and uninjured limb when wearing the 

PD AFO. The injured limb showed a significant change (p=0.03) in the timing 

that toe off occurred between test conditions, 62.2% (shod) and 57.7% (PD 

AFO) respectively, and this demonstrated a large effect size (1.13). 

Table 4-12 A comparison of the mean temporal and spatial parameters: step length, stance length, swing 
time and % gait cycle toe off occurs of participants with and without a PD AFO compared to available 

control data. 

Parameter 

Un-injured Limb Injured Limb 
Control 
Group 

Without PD 
AFO 

With PD 
AFO 

Without PD 
AFO 

With PD 
AFO 

Jarvis et 
al282 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean 

Range Range Range Range Range 

Step Length 

(meters)  

0.66±0.13 0.78±0.05 0.69±0.12 0.77±0.09 0.74 

0.42 to 0.87 0.71 to 0.87 0.56 to 0.90 0.68 to 0.92 0.70 to 0.78 

p value 0.06 0.14 N/A* 

Cohen’s d 1.24 0.84 N/A* 

Stance Time 
(seconds) 

0.81±0.15 0.73±0.07 0.76±0.15 0.65±0.05 N/A* 

0.61 to 1.04 0.62 to 0.84 0.54 to 0.99 0.55 to 0.72 N/A* 

p value 0.45 0.09 N/A* 

Cohen’s d 0.69 0.95 N/A* 

Swing Time 
(seconds)  

0.40±0.07 0.40±0.04 0.46±0.08 0.48±0.05 N/A* 

0.31 to 0.55 0.33 to 0.44 0.38 to 0.62 0.43 to 0.58  N/A* 

p value 0.83 0.5 N/A* 

Cohen’s d 0.10 0.33 N/A* 
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Parameter 

Un-injured Limb Injured Limb 
Control 
Group 

Without PD 
AFO 

With PD 
AFO 

Without PD 
AFO 

With PD 
AFO 

Jarvis et 
al282 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean 

Range Range Range Range Range 

% Gait cycle at point 
of toe off 

66.6±4.08 64.6±3.35 62.2±4.73 57.7±3.02 N/A* 

60.4 to 70.9 61.8 to 72.0 55.2 to 72.1 50.5 to 60 N/A* 

p value 0.30 0.03 N/A* 

Cohen’s d 0.54 1.13 N/A* 

 
*This data was unavailable 

 

The use of the PD AFO significantly increased the 2 peaks of the vertical 

ground reaction force (p=0.04), (p=0.01) and (p=0.03) respectively, in both the 

uninjured and injured limbs (Table 4-13). Use of the PD AFO also decreased 

the trough of the vertical ground reaction force for both the uninjured and the 

injured limb. The decrease of the trough was significant on the injured limb 

(p=0.03) and demonstrated a very large effect size (1.23).  

  

 

Figure 4-9 Vertical ground reaction during the two testing conditions for both the injured and uninjured 
limb. 
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Table 4-13 A comparison of the mean, SD, and range of the vertical ground reaction force for the two test 
conditions (both the injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range 

FZ1  
(* body weight) 

1.15±0.17 1.27±0.10 1.06±0.09 1.16±0.14 

0.98 to 1.45 1.03 to 1.49 0.94 to 1.19 1.00 to 1.44 

p value 0.04 0.04 

Cohen’s d 1.23 1.10 

FZ2 
(* body weight) 

0.76±0.10 0.85±0.08 0.75±0.08 0.82±0.10 

0.71 to 0.95 0.61 to 0.87 0.74 to 0.93 0.59 to 0.91 

p value 0.06 0.03 

Cohen’s d 1.09 1.23 

FZ3 
(* body weight) 

1.05±0.06 1.13±0.04 0.91±0.11 1.06±0.11 

1.00 to 1.11 1.06 to 1.21 0.72 to 1.06 0.83 to 1.19 

p value 0.01 0.03 

Cohen’s d 1.53 1.29 

 

The sagittal plane hip kinematics demonstrated a significant change (p=0.03) in 

the injured limbs range of motion comparing both test conditions (Table 4-14). 

Both the injured and uninjured limbs range of motion in the hip increased when 

the PD AFO was worn, and this increase was more comparable to controls. For 

both conditions, both limbs at initial contact were in a flexed position at the hip 

joint. Wearing the PD AFO slightly increased the flexion angle at initial contact 

bilaterally, but this was not deemed significant (p=0.54 and p=0.17). Conversely 

the injured limb does demonstrate a medium effect size change in the initial 

contact angle (0.64). The peak extension angle of the hip in the GC decreased 

slightly on the injured limb when wearing the PD AFO but increased on the 

uninjured limb for the same test condition.  
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Figure 4-10 Sagittal plane hip motion during the two testing conditions for both the injured and uninjured 

limb. 

Table 4-14 A comparison of the mean, SD, and range of sagittal plane hip motion for the two test 
conditions (injured and uninjured limb), compared to available control data. 

Parameter 

Un-injured limb Injured limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Flexion angle 
at initial contact 
(°)   

25.25±6.02 27.00±5.84 23.62±6.79 28.00±6.17 26.4 ±5.7 

16.28 to 34.50 20.28 to 34.93 11.85 to 31.06 20.34 to 35.60 21.3 to 38.9 

p value 0.54 0.17 0.90* 

Cohen’s d 0.29 0.64 0.26 

Peak extension 
(°) 

14.0±6.3 15.5±4.7 13.0±5.5 12.8±6.6 14.1 ±6.7 

5.7 to 25.8 8.3 to 21.2 6.3 to 18.1 1.7 to 23 4.3 to 28.4 

p value 0.54 0.92 0.68* 

Cohen’s d 0.29 0.05 0.20 

Range of 
motion through 
full gait cycle 
(°) 

44.1±5.9 46.8±3.7 40.6±2.9 44.5±3.8 -44.2 ± 2.6 

36.2 to 49.2 39.6 to 52.1 35.4 to 44.0 37.9 to 49.3 -49.7 to -
39.5 

p value 0.27 0.03 0.86* 

Cohen’s d 0.54 1.16 0.09 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 
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The foot kinematics in the transverse plane demonstrated that there were no 

significant differences (p=0.92) (shod) and (p=0.93) (PD AFO) respectively in 

the foot progression angle between the 2 test conditions, nor was there a 

meaningful effect size change (Table 4-15). The foot remained in an externally 

rotated position throughout stance. Additionally, there was no significant 

difference between the injured limb wearing the PD AFO and controls (p=0.78). 

  
 

 
Figure 4-11 Transverse plane foot progression during the two testing conditions for both the injured and 

uninjured limb. 

Table 4-15 A comparison of the mean, SD, and range of foot progression angle for the two test conditions 
for both the injured and uninjured limb, compared to available control data. 

Parameter 

Un-injured limb Injured limb Control 

Without PD 

AFO 
With PD AFO 

Without PD 

AFO 

With PD 

AFO 

Jarvis et 

al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Average external 

foot progression (°) 

22.4±10.4 20.0±8.75 25.6±9.8 22.3±9.5 16.4±5.2 

3.7 to 34.5 6.3 to 33.6 9.3 to 41.1 7.2 to 40.8 12.8 to 25.3 

p value 0.92 0.93 0.78* 

Cohen’s d 0.40 0.05 0.13 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 
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The sagittal plane knee moments did not show any significant differences 

(p=<0.05) for each test condition (Table 4-16). Whilst the sagittal plane knee 

flexing moments increased in both the uninjured and injured limb when 

participants were wearing the PD AFO, this did not represent a significant 

difference (p= 0.23 and p=0.35) respectively. However, a medium effect size is 

shown in the peak knee flexing moment of the uninjured limb (0.62). 

Furthermore, the knee flexing moment on both the uninjured and injured limb 

was greater than the control group both with and without use of the PD AFO. 

Use of the PD AFO increased the knee extending moments compared to 

without the PD AFO. Whilst this showed no significant difference, the uninjured 

limb demonstrated a medium effect size (0.71). 

  
 

 
Figure 4-12 Sagittal plane knee external moment during the two testing conditions for both the injured and 

uninjured limb. 

Table 4-16 A comparison of the mean, SD, and range of sagittal plane knee moments for the two test 
conditions (both the injured and uninjured limb), compared to available control data. 

Parameter 

Un-Injured Limb Injured Limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Peak Flexing 
Moment 
(Nm/kg) 

0.48±0.33 0.71±0.40 0.42±0.28 0.54±0.21 0.38 ±0.17 

0.06 to 1.06 0.39 to 1.47 0.11 to 0.94 0.30 to 0.96 0.11 to 0.62 
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Parameter 

Un-Injured Limb Injured Limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

p value 0.23 0.35 0.25* 

Cohen’s d 0.62 0.46 0.59 

Peak Extending 
Moment 
(Nm/kg) 

-0.27±0.25 -0.42±0.15 -0.26±0.21 -0.32±0.24 -0.61 ±0.22 

-0.64 to 0.02 -0.61 to -0.20 -0.50 to 0.13 -0.58 to 0.17 -0.81 to -
0.22 

p value 0.15 0.58 0.71* 

Cohen’s d 0.71 0.28 0.19 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

 

The knee kinematics in the sagittal plane demonstrated that there were no 

significant (p=<0.05) changes in the peak flexion angles or initial contact angles 

for each test condition (Table 4-17). On initial contact, the uninjured and injured 

limb like controls were in slight extension without wearing the PD AFO. When 

participants were wearing the PD AFO, the uninjured limb remained in slight 

extension upon initial contact, but the injured limb using the PD AFO was in 

slight flexion (3.3°). The peak knee flexion angle, both in early stance and 

swing, increased in the uninjured and injured limb when the PD AFO was worn, 

and both were more similar to able-bodied controls compared to without the PD 

AFO. Whilst no significant changes were shown, there was a large effect size 

demonstrated in the uninjured limb ankle at initial contact between both test 

conditions (0.89). Additionally, both the uninjured and the injured limb 

demonstrated a medium effect size change in the peak flexion angle in swing 

(0.58) and (0.71) respectively.  
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Figure 4-13 Sagittal plane knee motion during the two testing conditions for both the injured and uninjured 

limb. 

Table 4-17 A comparison of the mean, SD, and range of sagittal plane knee motion for the two test 
conditions for both the injured and uninjured limb, compared to available control data. 

Parameter 

Un-injured limb Injured limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Angle at initial 
contact (°) 
(Flexion +ve) 

-3.05±6.1 -2.68±4.9 -0.72±5.0 3.30±8.4 -1.4 ±6.0 

-15.71 to 4.35 -9.31 to 5.38 -5.19 to 10.82 -5.25 to 20.35 -12.0 to -9.1 

p value 0.89 0.34 0.13* 

Cohen’s d 0.07 0.58 0.65 

Peak flexion 
early stance (°) 
(0-20%) 

15.47±7.9 19.59±6.1 13.54±6.9 18.90±8.0 17.9 ±5.9 

3.70 to 24.53 12.91 to 27.8) 6.18 to 27.76 7.63 to 33.06 7.8 to 29.2 

p value 0.23 0.15 0.76* 

Cohen’s d 0.58 0.71 0.15 

Peak flexion in 
swing (°) 

64.4±5.0 66.7±3.7 60.2±8.1 65.1±3.5 67 ±2.6 

54.7 to 70.1 60.4 to 71.3 43.2 to 71.2 58.6 to 71.5 62.7 to 70.6 

p value 0.3 0.08 0.19* 

Cohen’s d 0.58 0.71 0.15 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 



 

142 
 

4.6 GPS, MAPS and hip/pelvic kinematics to answer 
hypothesis 4 

 

The coronal plane hip kinematics showed a significant change (p=0.03) in the 

injured limbs peak adduction angle comparing both test conditions. The peak 

adduction angle on the injured limb increased by 3.2° when using the PD AFO 

and demonstrated a large effect size (1.16) (Table 4-18). The uninjured limb 

only increased slightly (1.3°) for the same test condition and was not deemed a 

significant change (p=0.75). The peak hip abduction angle increased on the 

uninjured limb when the PD AFO was worn by 2.2° but decreased in the injured 

limb by 0.5° for the same test condition. Neither was considered significant 

changes (p= 0.24 and p=0.79), respectively, but a medium effect size (0.79) 

was shown on the injured limb.   

The transverse plane hip kinematics demonstrated no significant differences 

(<0.05) for each test condition. A medium effect size (0.63) was demonstrated 

in the peak internal rotation of the uninjured limb between both test conditions. 

When participants walked without the PD AFO both the injured and uninjured 

limbs remained in external rotation throughout the GC. When participants wore 

the PD AFO, the injured limb remained in external rotation throughout the GC, 

but the uninjured limb exhibited a peak internal rotation angle of 1.2° during 

terminal stance.  
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Figure 4-14 Coronal plane hip motion during the two testing conditions for both the injured and uninjured 
limb. 

 

  

 

Figure 4-15 Transverse plane hip motion during the two testing conditions for both the injured and 
uninjured limb. 
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Table 4-18 A comparison of the mean, SD, and range of coronal and transverse plane hip motion for the 
two test conditions (injured and uninjured limb), compared to available control data. 

Parameter 

Un-injured limb Injured limb Control 

Without PD 
AFO 

With PD AFO 
Without PD 

AFO 
With PD AFO Jarvis et al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Peak adduction 
(°) 

6.8±5.1 8.1±3.5 5.7±2.1 8.9±3.8 11.1 ±2.5 

2.5 to 16.1 3.4 to 15.2 2.9 to 9.6 2.0 to 12.9 6.9 to 14.6 

p value 0.75 0.03 0.78* 

Cohen’s d 0.15 1.16 0.26 

Peak abduction 
(°) 

-8.0±2.1 -10.2±3.8 -7.3±5.9 -6.8±3.2 -8.6 ±2.5 

-12.0 to -5.5 -17.4 to -4.4 -18.3 to -1.0 -12.7 to -2.9 -12.4 to -4.4 

p value 0.24 0.79 0.90* 

Cohen’s d 0.58 0.13 0.06 

Peak internal 
rotation (°) 
(Internal +ve) 

-0.3±5.9 1.2±4.9 -1.8±6.6 -1.4±7.8 1.5 ± 3.7 

-6.6 to 7.8 -3.8 to 9.4 -2.9 to 11.7 -9.9 to 15.1 -4.7 to 8.6 

p value 0.95 0.81 0.89* 

Cohen’s d 0.63 0.25 0.07 

Peak external 
rotation (°) 

-8.6±6.9 -6.1±5.5 -12.1±7.4 -10.6±8.9 -10.7 ± 3.8 

-21.9 to -2.0 -18.3 to -3.0 -24.5 to 0.5 -29.6 to 2.6 -17.5 to -3.9 

p value 0.20 0.60 0.42* 

Cohen’s d 0.03 0.12 0.39 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 

 

The sagittal plane pelvic kinematics demonstrated a significant difference 

(p=0.02) in the range of pelvic tilt, when comparing the injured limb wearing the 

PD AFO (7.7°) and the control group (8.9°) (Table 4-19). The injured limb’s 

range of pelvic tilt remained the same for both test conditions (7.7°). The 

uninjured limb’s range of pelvic tilt increased when wearing the PD AFO from 

5.9° to 6.5° respectively, however this was not deemed significant (p=0.33). The 

pelvis on the uninjured and injured limb for both test conditions remained 

anteriorly tilted throughout the GC. 

The coronal plane pelvic kinematics did not show any significant differences 

(p=<0.05) for both test conditions. The maximum upwards, downwards and 
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range of pelvic obliquity increased in both the uninjured and injured limbs when 

the PD AFO was worn; this was comparable to controls.  

The transverse plane pelvic kinematics did not show any significant differences 

(p=<0.05) for both test conditions. However, a large effect size (0.85) was 

demonstrated on the range of pelvic rotation utilised by the uninjured limb 

between both test conditions. The uninjured and injured limb demonstrated a 

greater range of pelvic rotation when the participants wore the PD AFO. This 

increased by 0.4° on the uninjured limb and 1.6° on the injured limb. Both the 

injured and uninjured limbs in both test conditions demonstrated a greater range 

of pelvic rotation compared to controls. With and without use of the PD AFO, 

the internal rotation of the pelvis on the uninjured limb remained the same. The 

injured limb’s internal rotation of the pelvis only increased by 0.2° when the PD 

AFO was used, but this demonstrated a medium effect size (0.62) and all 

angles were similar to controls.  

  

 

Figure 4-16 Sagittal plane pelvic motion during the two testing conditions for both the injured and 
uninjured limb 

. 
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Figure 4-17 Coronal plane pelvic motion during the two testing conditions for both the injured and 
uninjured limb. 

  

 

Figure 4-18 Transverse plane pelvic motion during the two testing conditions for both the injured and 
uninjured limb. 
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Table 4-19 A comparison of the mean, SD, and range of sagittal, coronal and transverse plane pelvic 
motion for the two test conditions (injured and uninjured limb), compared to available control data. 

Parameter 

Un-injured limb Injured limb Control 

Without PD 
AFO 

With PD 
AFO 

Without PD 
AFO 

With PD 
AFO 

Jarvis et 
al246 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Maximum anterior tilt 
(°) 

6.1±3.6 7.3±3.2 7.0±2.9 7.5±3.7 6.2 ±3.1 

2.2 to 7.4 3.8 to 7.9 3.7 to 6.7 2.4 to 7.6 5.5 to 8.6 

p value 0.56 0.49 0.94* 

Cohen’s d 0.40 0.29 0.64 

Range of 
anterior/posterior tilt (°) 

5.9±1.4 6.5±1.0 7.7±3.0 7.7±3.0 8.9 ± 4.2 

2.6 to 8.3 5.1 to 7.7 5.0 to 14.9 4.9 to 14.7 3.9 to 15.1 

p value 0.33 0.89 0.02* 

Cohen’s d 0.47 0.01 1.18 

Max pelvic obliquity 
(pelvis up) (°) 

6.4±3.5 7.0±2.0 5.4±1.9 7.4±3.0 7.8 ± 4.5 

1.6 to 11.1 5.0 to 11.4 3.0 to 8.5 2.7 to 13.0 5.3 to 11.1 

p value 0.64 0.13 0.67* 

Cohen’s d 0.22 0.76 0.20 

Max pelvic obliquity 
(pelvis down) (°) 

5.5±1.9 7.0±2.8 6.2±3.7 6.8±1.6 6.3 ± 1.8 

3.0 to 8.6 2.3 to 11.5 1.0 to 13.0 4.6 to 9.5 2.9 to 8.6 

p value 0.22 0.71 0.57* 

Cohen’s d 0.60 0.18 0.31 

Range of pelvic 
up/down tilt (°) 

11.7±4.6 14.0±4.2 11.7±4.7 14.1±3.0 12.1 ± 4.1 

8.0 to 19.7 9.6 to 22.9 6.9 to 20.3 9.5 to 19.6 9.3 to 16.3 

P value 0.33 0.21 1.0* 

Cohen’s d 0.47 0.62 0.00 

Maximum internal 
rotation (°) 

4.3±2.3 4.3±3.3 3.9±2.8 4.1±3.4 4.2 ± 2.6 

2.8 to 8.7 1.8 to 12.4 1.4 to 6.3 2.5 to 13.0 0.2 to 7.8 

Cohen’s d 0.04 0.60 0.87 

Range of pelvic rotation 
(°) 

10.6±3.7 11.0±4.8 10.9±3.4 12.5±5.3 9.2 ± 2.7 

6.3 to 16.0 4.8 to 20.5 6.3 to 16.3 6.1 to 20.8 5.9 to 14.2 

p value 0.85 0.47 0.16 

Cohen’s d 0.04 0.60 0.87 

 
*The p value in the control column relates to the injured limb wearing the PD AFO vs control (able bodied) 
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4.7 Gait profile score (GPS) and movement analysis 
profile (MAP) 

Use of the PD AFO improved the GPS score for both the uninjured and injured 

limb, although this did not demonstrate a significant difference (p=0.42) 

(p=0.98), nor a meaningful change in the effect size (Table 4-20). No significant 

differences were shown in the mean injured and uninjured GPS scores for each 

of the gait parameters, shown. Use of the PD AFO increased the pelvic tilt, 

pelvic rotation, and hip flexion/extension GPS scores in both the injured and 

uninjured limb (Table 4-21). Use of the PD AFO decreased the pelvic obliquity, 

hip adduction/adduction, hip rotation and foot progression GPS scores in both 

the injured and uninjured limb. Use of the PD AFO decreased the knee 

flexion/extension and ankle dorsiflexion/plantar flexion GPS scores on the 

uninjured limb but increased the GPS score on the injured limb. A large effect 

size (0.8-1.2) was shown on the injured limb’s hip adduction/abduction, hip 

rotation and knee flexion/extension GPS score, (0.93) (0.93) and (0.86) 

respectively. The largest effect size in the GPS score for the uninjured limb was 

hip rotation (0.91). The controls’ GPS score for each of the gait parameters was 

less than the injured limb, both with and without use of the PD AFO, and less 

than the uninjured limb with and without the PD AFO for all parameters except 

pelvic tilt. The GPS score for controls’ pelvic tilt (3.7) was greater than the 

uninjured limb, both with and without the PD AFO (3.46) and (3.05) respectively. 

There was a significant difference (p=0.01) and a very large effect size (1.33) 

between the overall GPS score of the controls (3.9) and the participants, when 

using the PD AFO (6.28). 
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Table 4-20 A comparison of the mean, SD, and range of the overall gait profile scores (GPS) of the 
uninjured and injured limb during gait with and without use of the PD AFO. 

Parameter 

Without PD AFO With PD AFO Control 

Mean ± SD Mean ± SD Mean ± SD 

Range Range Range 

GPS uninjured limb 6.18±2.5 5.99±1.8 N/A* 

3.4 to 11.8 4.0 to 8.7 N/A* 

p value 0.42 N/A* 

Cohen’s d 0.39 N/A* 

GPS injured limb 6.21±3.3 5.31±1.7 N/A* 

3.3 to 10.4 3.6 to 9.1 N/A* 

p value 0.98 N/A* 

Cohen’s d 0.01 N/A* 

GPS overall 6.61±2.1 6.28±2.1 3.9±1.2 

4.1 to 10.2 3.7 to 10.0 2.0 to 6.3 

p value 0.74 0.01 

Cohen’s d 0.16 1.33 

 
*This data was unavailable 

Table 4-21 A comparison of the mean, SD, and range of the gait variability scores (GVS) of the uninjured 
and injured limb during gait with and without use of the PD AFO for 9 kinematic gait parameters. 

Parameter 

Uninjured Injured Control 

Without PD 
AFO 

With PD 
AFO 

Without 
PDAFO 

With PD 
AFO 

Jarvis et 
al247 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

Pelvic anterior/posterior tilt 3.05±2.1 3.46±1.7 2.88±1.5 3.96±1.7 3.7±2.6 

0.9 to 6.6 1.3 to 6.7 1.2 to 6 1.0 to 6.7 0.9 to 8.7 

p value 0.13 0.56 0.79 

Cohen’s d 0.21 0.67 0.12 

Pelvic obliquity (up/down tilt) 2.52±0.8 2.15±0.9 2.84±0.7 2.23±0.9 1.5±0.6 

1.5 to 4.1 1.2 to 3.6 1.8 to 4 1.2 to 3.7 0.6 to 2.5 

p value 0.37 0.12 0.07 

Cohen’s d 0.44 0.77 0.93 

Pelvic internal/external 
rotation 

2.80±0.7 2.95±1.0 2.83±1.1 3.08±0.9 2.0±0.7 

2.0 to 3.9 1.7 to 4.4 1.7 to 4.7 1.1 to 4.1 0.7 to 3.3 

p value 0.71 0.60 0.02 

Cohen’s d 0.18 0.25 1.25 

Hip flexion/extension 5.63±1.9 5.89±4.0 5.47±3.1 6.28±2.9 4.8±3.4 
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Parameter 

Uninjured Injured Control 

Without PD 
AFO 

With PD 
AFO 

Without 
PDAFO 

With PD 
AFO 

Jarvis et 
al247 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

Range Range Range Range Range 

3.0 to 8.8 2.8 to 15.6 1.4 to 10.7 2.1 to 11.8 1.4 to 11.4 

p value 0.49 0.58 0.33 

Cohen’s d 0.08 0.27 0.46 

Hip adduction/abduction 3.71±1.2 3.74±1.2 4.65±1.3 3.36±1.5 2.4±0.8 

1.7 to 4.7 1.3 to 5.0 2.8 to 6.8 2.2 to 7.0 1.3 to 3.5 

p value 0.96 0.07 0.09 

Cohen’s d 0.02 0.93 0.88 

Hip internal/external rotation 6.09±2.4 5.96±2.6 8.20±7.3 7.56±5.0 4.6±2.2 

2.9 to 9.6 2.6 to 9.2 2.3 to 26.2 2.8 to 17.5 1.4 to 6.9 

p value 0.91 0.93 0.17 

Cohen’s d 0.05 0.10 0.79 

Knee flexion/extension 9.14±4.5 6.08±3.9 7.33±3.6 7.66±6.2 4.1±2.1 

3.4 to 15.9 3.3 to 14.8 3.3 to 12.1 2.9 to 21.4 2.4 to 8.9 

p value 0.08 0.86 0.05 

Cohen’s d 0.72 0.06 0.78 

Ankle 
dorsiflexion/plantarflexion 

3.99±1.0 3.49±1.3 5.33±2.8 6.33±3.0 2.2±0.9 

2.5 to 5.3 2.1 to 6.7 2.2 to 12.3 3.4 to 11.9 1.2 to 3.7 

p value 0.38 0.49 0.00 

Cohen’s d 0.43 0.42 2.00 

Foot progression 
internal/external 

9.06±5.5 7.60±4.6 7.93±4.5 7.21±5.1 4.6±2.6 

2.7 to 16.5 2.2 to 15.2 2.8 to 15.6 2.2 to 16.4 1.4 to 9.2 

p value 0.55 0.93 0.40 

Cohen’s d 0.29 0.15 0.66 
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Figure 4-19 Gait profile score and movement analysis profile in the injured and uninjured limb without the 
PD AFO during gait 

 

Figure 4-20 Gait profile score and movement analysis profile in the injured and uninjured limb with the PD 
AFO during gait 
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Chapter 5: Discussion 

5.1 Introduction to discussion 

The aim of this thesis was to investigate if a PD AFO improved gait and 

functional outcomes when worn by injured personnel who sustained unilateral 

deck slap injuries during the Afghanistan conflict. Improvement was defined 

using both PROM and biomechanical outcomes to test 4 hypotheses. 

Hypothesis 1: PD AFO use will improve the patient reported outcomes of 

participants. 

Hypothesis 2: PD AFO use will improve participants propulsion through 

terminal stance of gait in both the injured and uninjured limb. 

Hypothesis 3: PD AFO use will improve the participants stability through the 

stance phase of gait.  

Hypothesis 4:  PD AFO use will improve the gait profile score of both the 
injured and uninjured limb.  

All prior studies using this style of PD AFO have been conducted on military 

personnel of a similar age and predominantly injured due to high-energy blast 

trauma sustained in Afghanistan. Therefore, prior PD AFO studies have 

included participants similar to this study’s cohort. This is the first study, to the 

author’s knowledge, that presents gait parameters of participants with deck slap 

injuries specifically. Prior work has grouped participants together that present 

with a wider profile of lower limb injuries caused by various mechanisms. 

This study builds on an important limitation of prior gait studies using PD AFOs, 

as it presents the study cohort without use of a PD AFO, which is novel. The 

hypotheses set out in chapter 2 (and listed above) will now be examined. 

5.2 Hypothesis 1: PD AFO use will improve the patient 
reported outcomes of participants 

Overall, the mean patient reported outcome measures (PROM) scores for both 

the foot and ankle outcome score (FAOS) and the lower extremity functional 
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scale (LEFS) improved when the PD AFO was worn, and both represented a 

significant difference with an extra-large effect size. However, in this study 1 

participant (AP11) consistently reported lower scores when wearing the PD 

AFO across both the LEFS and all sections of the FAOS, apart from the ability 

to engage in sports and recreation (Table 4-3). It may be of interest to note that 

participant AP11, alongside AP08, AP17 and AP19, all went on to have elective 

amputation within 18 months of being provided with the PD AFO. AP08 cited a 

lack of functional capability as his main driver in seeking elective amputation 

and this is reflected in his poor activities of daily living (ADL) and quality of life 

(QoL) scores. AP17 and AP19 cited both pain and reduced function as the main 

reasons for amputation, and whilst the PD AFO improved scores in this area the 

scores remained low, as seen in (Table 4-3). AP11 also cited pain and function 

as the main reasons for amputation, although AP11’s FAOS scores suggest his 

pain and functional levels were not as significantly impacted by his injuries, 

compared to the other participants. For example, in the cohort, AP11 scored the 

least level of pain pre-PD AFO fitting. It seems clear from the results, PD AFO 

use did not improve pain and function for AP11, as both areas scored worse 

after use of the orthosis. It must also be noted that the PROM results are only 2 

snap shots of participants’ opinions on 2 separate days. Use of the PD AFO 

anecdotally increased participants’ ability to be more active, and therefore the 

post PD AFO results were taken during a period of greater physical activity, 

which could have itself created some compensatory increased musculoskeletal 

pain. Consequently, these results cannot accurately predict which participants 

would have gone on to elective amputation, as this decision is made over an 

18-month period. The PROMS merely provide an indication of participants’ 

opinions on a given day before and after PD AFO treatment. 

When looking at the PROMs results alongside the participant demographics, 

AP11, AP17 and AP19 all weighed greater than 110kg and were the three 

heaviest participants in the cohort. Heavier individuals exert greater forces 

through the lower limb when mobilising283. Therefore, maintaining a lighter body 

weight would be advantageous to PD AFO users in reducing the load going 

through the damaged structures of the foot, both when the PD AFO is in situ 

and when walking shod. It has been shown that even with the firmness of the 
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carbon fibre footplate, plantar pressures do reduce on the injured limb when PD 

AFOs are worn, particularly in the forefoot284.  

However, it stands to reason that this increased stature may have contributed to 

these participants’ on-going foot and ankle discomfort due to the increased 

loading of the foot, although this alone does not account for why wearing the PD 

AFO exacerbated AP11’s pain.  All 4 of these participants had a Gustilo-

Anderson classification fracture IIIC, with a restricted range of motion (ROM) in 

their ankle joint. AP11 had the greatest restriction to ROM and was the only 

participant to also have sustained spinal fractures. As the PD AFO restricts foot 

and ankle movement, the restriction in a participant’s ROM does not directly 

affect an individual’s functional capability in the PD AFO, nor does it present a 

reason as to why AP11 found using the PD AFO more painful in gait.  

AP11’s spinal fractures were fully healed before he began using a PD AFO, and 

the participant did not report any back pain or discomfort with the PD AFO 

rubbing. While AP08, AP17 and AP19 all had post injury subtalar joint fusion, 

prior studies on similarly aged military users, who have sustained trauma have 

suggest, that PD AFO users who have undergone subtalar fusion often report 

favourable outcomes post PD AFO use167.  

Further to this, Ikeda et al. also report improvement in PROMs gathered from 

personnel with prior fusions285. Therefore, the presence of fusion alone does not 

allude to why these participants did not continue with PD AFO beyond 18 

months. AP11 and AP17 were delayed in undergoing rehabilitation for both 

clinical complications and personal reasons. The benefits of rehabilitation 

alongside PD AFO provision are well documented22; 23; 157; 171. 

As discussed previously, the reasons as to why elective amputation is sought 

by an individual is complex. The underlying reason for participant AP11 

choosing amputation over continued PD AFO use is not fully understood (as it is 

personal to AP11). However, it would seem apparent that the functional 

capability of the orthosis and its ability to reduce pain was suboptimum for this 

participant. This also applies to the other participants who sought elective 

amputation within 18 months of use. The US military report an amputation rate 
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of 20% in all of its IDEO™ users within 12 months of provision24. Anecdotally 

the UK military amputation rate for all PD AFO users is not dissimilar at 

approximately 15%. In this study the amputation rate was higher at 33%. Deck 

slap injuries are some of the most complex blast injuries to the foot and ankle to 

treat2 and this amputation rate is reflective of the complexity of this study 

cohort’s injury profile.  

Following prescription and provision of a PD AFO, all mean subsection scores 

of the FAOS (symptoms, pain, activities of daily living, quality of life, and sports 

and recreation) improved by 35%, 29%, 23%, 59%, and 112% respectively. No 

prior PD AFO study has used the FAOS as a PROM, but other patient reported 

outcome measures, for example, the short musculoskeletal function 

assessment (SMFA), veterans rand 12 and the visual analogue scale, have 

been reported on users of the IDEO™ and all are in agreement that PD AFO 

use improved outcomes22. The FAOS was found to be the second most 

commonly used foot and ankle PROM in orthopaedic practice in a 2017 

systematic review286. The FAOS has been used in a limited number of studies 

utilising orthoses but, as the orthoses in question were prefabricated287; 288, they 

are not comparable with this study. The FAOS has not been used in prior PD 

AFO published research. The FAOS was selected for use in this study as it had 

a detailed sports and recreation sub section. As discussed previously, many 

personnel rate the ability to engage in sport as crucial to their recovery post 

injury and therefore the FAOS allowed for this information to be captured and 

compared. The other PROMs used in prior PD AFO studies do not capture this 

so readily.  

A minimal clinically important difference (MCID) is defined as the smallest 

difference in score from the domain of interest based on patients’ perception as 

being beneficial286. Practically, this means the smallest change in a treatment 

outcome that an individual patient would identify as important, and which would 

indicate a change in the patient's management. It provides a threshold value 

that has become the most important psychometric parameter for interpreting 

change over time286. As the MCID is affected by the patient population and only 

one study has been conducted on the FAOS on a patient cohort with mixed 
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ankle and hind-foot complications286, the MCID suggested (pain 25.3, 

symptoms 11.2, ADL 20.0, Sports 36.8, QOL 32.7) has not been used for 

comparison in this study.    

The most important subsections of the FAOS for this studies cohort relate to 

pain and the ability to engage in high activity. These areas have been presented 

in IDEO™ literature. It is well documented that deck slap injuries are associated 

with increased pain20; 33, and this study reports an average improvement of 28% 

in FAOS pain scores post provision of the PD AFO. This agrees with Ladlow et 

al.23 who report a twofold increase in the number of personnel reporting ‘no 

pain’ (13%–31%) after utilising a PD AFO at follow-up (mean 34±11 months). 

Ladlow el al. also report that, by the second admission of residential 

rehabilitation at DMRC Headley Court (on average 9 weeks post provision), all 

PD AFO users were able to ‘control their pain’, and there was an incremental 

increase in the number of personnel reporting ‘no pain’ symptoms at all (6%–

38%)23. This result is comparable to a previous study of below knee amputees15 

and is twofold greater than previously reported pain levels in the limb salvage 

population prior to PD AFO availability15. There are no long-term studies on the 

clinical outcomes of PD AFO users.  This study by Ladlow et al.23 is the longest 

period in which clinical outcomes were gathered by PD AFO users.  

While many US journals have discussed the IDEO™ and its positive impact on 

pain management in limb salvage patients, there have only been 2 US studies 

that have used a PROM to measure this22; 285. Ikeda et al.285 reported on the 

PROMs of 99 IDEO™ users, 54 of which were personnel with previous 

fractures, and therefore more comparable with this studies population. They 

used a numerical pain scale (0-10) and found, post IDEO™ provision, the 

personnel’s pain decreased by 71% in the fracture population, which is greater 

than the minimal clinically important difference of 1 point or 15% for chronic 

musculoskeletal pain289. The evidence, therefore, strongly suggests that the use 

of PD AFOs can reduce pain in the foot and ankle complex of those who have 

undergone complex limb salvage. 

In a young military population, the ability to engage in sports and recreational 

activity is important, as physical fitness is an important part of military life. 
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Through injury, if this ability is taken away, it can be detrimental to a person’s 

sense of self and often elective amputation is sought consequently 236. In this 

study the FAOS sports subsection scores improved by a factor of 1.1 when the 

PD AFO was worn. This was a significant change and represented a very large 

effect size. This subsection of the FAOS asks about a participant’s ability to 

squat, jump, kneel, run and twist/pivot on the injured limb. These results agree 

with the published literature that reports a 24-166% improvement in physical 

performance when comparing personnel pre shod and post IDEO™ provision. 

Post PD AFO provision personnel were able to engage in exercise, recreation 

and physical activity which otherwise wasn’t possible22; 159; 171; 236. Studies on 

personnel who underwent limb salvage prior to the clinical availability of PD 

AFOs confirm this level of activity was not reported before PD AFOs were 

utilised15. 

It seems plausible that using a dynamic yet supportive composite AFO, which 

could provide pain relief and ankle stability, coupled with timely and appropriate 

rehabilitation, could contribute to the apparent success of PD AFOs in enabling 

personnel with limb salvage injures to be more functional. It has been shown 

that entering rehabilitation too late, or not at all, reduces the magnitude of effect 

to both physical performance and perceptive measures22. Therefore, this 

suggests rehabilitation alongside provision is highly important in being able to 

achieve high levels of function when using PD AFOs.  

The LEFS has previously been used in a broad range of lower limb research, 

including participants with ankle fractures290 and osteoarthritis291. When 

participants in this study wore their PD AFO, the mean LEFS score improved by 

42%. This was statistically significant and represented a very large effect size.  

Ikeda et al.285 reported on IDEO™ users LEFS scores. The group examined a 

diverse cohort of participants, 11 of whom were personnel who had previously 

sustained fractures to the foot and ankle and were therefore most comparable 

to this study. Of the personnel who sustained fractures, an improvement of 

129% in the LEFS score was reported post supply of the IDEO™, which was 

statistically significant. This implies that the cohort in Ikeda et al.’s study were 

functionally more able than this study cohort, shod prior to PD AFO supply. Both 
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studies agree that PD AFO use significantly improves LEFS scores, and 

therefore functionality.  

In summary, direct comparisons between the PROM findings of this study and 

those from the IDEO™ studies must be made with caution due to different 

rehabilitation approaches between the UK and US military rehabilitation teams, 

clinical presentations unique to each patient and the measurement tools 

utilised; however, collectively both militaries report significant improvements in 

injured personnel’s pain22; 285, general functionality /quality of life285 and the 

ability to engage in sport post PD AFO utilisation short term22; 23; 236; 285. This 

study further supports these findings.  

Hypothesis 1: Supports the hypothesis that PD AFO use will improve the 

patient reported outcomes of participants. 

5.3 Hypothesis 2: PD AFO use will improve participant 
propulsion through terminal stance of gait in both the 
injured and uninjured limb. 

The strategy used to generate power for forward propulsion in walking and 

running has been highlighted as a marker of successful gait292. Propulsion in 

this hypothesis is defined as the ability to aid the body’s forward 

momentum/progression and not just the ability of the muscles that act on the 

ankle to generate active power. Literature suggests that PD AFOs improve the 

ability of users to generate propulsion in terminal stance 159; 236. Increased 

walking speed293, cadence and step length294 are all considered signs of a more 

propulsive gait pattern. The mean increased walking speed, cadence and step 

length presented in this study post PD AFO use (Table 4-4) is consistent with 

IDEO™ users in the literature159; 161. 

Ground reaction forces are important biomechanical measures to analyse, as 

they reflect the motion of the body’s centre of mass (COM). Studies suggest the 

anterior-posterior ground reaction force component (A-P GR) may represent an 

appropriate method for measuring the coordinated task of forward propulsion of 

the limb during walking295; 296. In this study, the A-P GR mean peak at pre swing 

is significantly increased on both the injured and uninjured limb when wearing 



 

159 
 

the PD AFO (Table 4-5), with the mean peak values and shape of the graphs 

presented being similar to those of IDEO™ users and able bodied controls4; 78; 

172. As an increase in walking speed and step length295 can be associated with 

an increase in the peak AP GR values at pre swing, it is difficult to accurately 

ascertain how much of the propulsive acceleration seen in (Figure 4-3) is due to 

the use of a PD AFO and not just the effect of speed. 

 Schwartz et al.297 studied the effect of speed on gait and concluded that both 

the peak braking force and the peak propulsive force increase at higher walking 

speeds297. This finding is in agreement with Sun et al.298, who suggested there 

is a consistent correlation between GR propulsive forces and walking speed. 

Sun et al.298 tested participants walking at 3 speeds, with only 1 being faster 

than self-selected walking speed. Schwartz et al.297 tested 5 walking speeds, 2 

of which were faster than self-selected walking speed. Furthermore Sun et al.298 

tested adult males, whereas Schwartz et al.297 tested children aged 4-17. As 

Schwartz tested more variations in walking speeds and a greater number of 

participants (although children), it seems more likely that any trends would be 

easier to determine from this work. For this reason, this study has used the 

work of Schwartz et al.297 as its’ basis for determining the impact of speed on 

gait variables. The mean walking speed of the participants in this study 

correspond with the “free and fast” speeds of the Schwartz297 study. Therefore, 

the A-P propulsive force in this study is likely to have been impacted by the 

change in mean participants speed. Although the mean walking speed 

increased by 0.23m/s (20%) using the PD AFO, this was not deemed a 

statistically significant change. The mean peak braking GR and mean peak 

propulsive GR on the uninjured limb appear to increase symmetrically with and 

without the PD AFO (Figure 4-3). However, the injured limb does not 

demonstrate such a symmetrical increase in the mean braking A-P GR peaks 

with and without use of the PD AFO. This non-uniform increase in the peaks 

suggests the PD AFO may be having an influence on the A-P GR. The mean 

peak propulsive GR on the injured limb increases 25% more than the uninjured 

limb at the same speed.  This is to be expected, as the injured limb has a lower 

baseline value when shod compared to the uninjured limb, leading to a higher 

percentage increase for the same change in GR. 



 

160 
 

It must also be noted the generation of propulsion is multifaceted and that all 

factors that could influence this cannot be explored in this thesis. One such 

factor is the possible contribution of the Achilles tendon within the PD AFO. 

Studies have shown that the tendon is loaded when walking in an AFO (stock 

product)299. However, it is unclear if the tendon is actively contributing to 

propulsion whilst in a rigid composite PD AFO around the ankle, where the 

movement/deflection is happening in posteriorly mounted composite struts 

attached to the PD AFO. The increase in the self-selected mean walking speed, 

for example, is reflective of the drawbacks of applying statistics to small 

participant samples. The results show a 20% increase in self-selected walking 

speed when the PD AFO is worn, yet this is not deemed a significant change 

but represents a large effect size. For this reason, caution must be applied 

when analysing the significance of the gait analysis data using p value in 

isolation. This is always true when testing a small sample size. 

The mean peak ankle dorsiflexor moment increased significantly (Figure 4-5) in 

both the uninjured limb 0.19 Nm/kg (14%) and the injured limb 0.51 Nm/kg 

(50%) when using the PD AFO. The mean ankle power generation on the 

injured limb significantly decreased by 0.13 Watts/Kg (38%) whilst wearing the 

PD AFO (Figure 4-4), suggesting the power was absorbed by the orthosis. 

Previous work in this area has failed to reach a definitive conclusion. Some 

studies suggest that increasing walking speed by increasing stride length does 

not result in a linear increase in the peak ankle dorsiflexing moment at pre 

swing300; 301.  This is contradictory to prior work examining the change in kinetics 

with walking speed, which suggests walking speed does influence ankle kinetics 

linearly298. Furthermore, stride length has been shown to be the most important 

factor when looking at changes in moments in the sagittal plane, rather than 

walking speed alone302. Ardestani et al.302 have shown that increasing cadence 

to increase overall walking speed has little effect on resultant joint moments, but 

increasing stride length in order to increase speed has a significant effect302. 

The 50% increase in mean ankle dorsiflexor moment on the injured limb when 

using the PD AFO is expected, as the injured limb has a lower baseline value 

when shod compared to the uninjured limb, leading to a higher percentage 
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increase for the same change in GR. It could be proposed that participants 

achieve this due to the influence of the PD AFO assisting the limb in its’ 

capability to behave more propulsively, and not just as a result of the change in 

the participants mean walking speed, which is not statistically significant. 

There is much contention in the literature regarding how best to manage the 

speed-mediated effects with respect to joint moments303. Classically, studies 

have used instrumented treadmills, or asked participants to walk at a pre-

determined speed as well as a self-selected walking speed to control for this 

variable. However, this can often lead to altered gait patterns, which do not 

reflect participants normal gait304. Although the increase in walking speed within 

this study was not significant, it may still be influencing the results. It was the 

researcher’s preference to allow participants to self-select their own walking 

speed to ensure the gait patterns presented were representative of how the 

participants walked on a flat surface in everyday life, and the limitations of this 

are discussed further in chapter 6.  

By design, the PD AFO limits the ankle’s range of motion in the sagittal plane. 

Previous literature on thermoplastic AFOs suggest that significant plantarflexor 

strength is required to deform AFOs and generate propulsion305. A theory is that 

restriction to ankle ROM provided by AFOs diminishes plantarflexor output and 

the generation of forward propulsion301 by restricting ankle plantarflexion. This 

study contradicts this as, although the mean power generated around the 

injured limbs ankle is diminished by use of a solid ankle AFO design (like prior 

studies301; 305), the study participants in PD AFOs were still able to generate 

increased propulsion in gait, shown in the A-P GR graph (Figure 4-3).  

In addition to the ankle, the hip has a significant role in generating propulsion. 

The participants’ mean peak hip extension moment increased marginally by 

0.14 Nm/kg (17%), and the mean hip power generated during pre-swing 

increased by 0.3 Nm/kg (12%) on the injured limb whilst wearing the PD AFO. 

This was not statistically significant and represents a lesser increase in the 

mean hip extension moment compared to the uninjured limb when the PD AFO 

was worn, which increased by 0.32 Nm/kg (42%). Both the injured and the 

uninjured limb had the same mean hip extension moment of 0.83 Nm/kg without 
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use of the PD AFO and so, unlike other results, they can be directly compared 

having started at the same value. Studies show that an increase in walking 

speed does influence and increase moments around the hip in the sagittal 

plane298; 300; 302. Furthermore, it is consistent with simulation analysis showing 

that the bilateral hamstrings contribute to forward propulsion in early and mid-

stance in healthy walkers306; 307 and that the sound limb’s rectus femoris and 

biarticular hamstrings contribute to forward propulsion post-stroke to recoup for 

the lack of plantarflexor output308. Previous studies have shown that amputees 

use similar hip strategies to compensate for reduced ankle propulsion309. The 

study participants’ mean hip power generation in late stance, mean hip 

extension moment and mean peak extension only increased by 12%, 17% and 

2% respectively, which suggests that the PD AFO was potentially able to 

provide greater assistance with ankle propulsion than previous reported 

studies308; 309 that do not utilise composite orthoses or posterior strut design. 

The hip was not required to overcompensate for a lack of propulsion on the 

injured side when the PD AFO was utilised by the participants. In summary, 

unlike thermoplastic AFOs301, composite PD AFOs appear to provide improved 

dorsiflexor moments during late stance that supplement plantarflexor strength200 

and aid propulsion4; 78; 172.  

Often, studies neglect to discuss or focus on the impact that using an orthosis 

unilaterally has on the sound contralateral limb and its’ ability to generate both 

propulsive and breaking forces. Morgenroth et al.310 found in trans tibial 

amputees that increased push off on the prosthetic side reduced contralateral 

knee adduction moments and the loading impulse. It is suggested that gait 

abnormalities, in particular gait asymmetry, can cause excess mechanical 

loading on the intact knee and hip, which may increase the risk of developing 

osteoarthritis 262; 311; 312. It can be concluded that when the PD AFO was worn, 

gait abnormalities on the sound limb reduced and the limb performed closer to 

able-bodied controls. This is reflected in the GPS (Table 4-20) that shows the 

uninjured limbs’ overall GPS improved by 3% when the PD AFO was worn. This 

implies that it is possible that the risk of developing osteoarthritis may reduce 

slightly with PD AFO use in the unilaterally injured and, overall, lower limb joint 

health may improve as a result of PD AFO use. However, to conclude, this 
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would warrant further investigation around the degree of gait asymmetry, which 

is outside the scope of this thesis.   

In summary, the evidence in prior studies and the results of this study agree 

and suggest that PD AFOs do increase a user’s ability to generate propulsion in 

late stance.  

Hypothesis 2: Hypothesis supports that PD AFO use will improve 

participants’ propulsion through terminal stance of gait in both the injured 

and uninjured limb. 

5.4 Hypothesis 3: PD AFO use will improve participant 
stability through stance phase of gait. 

The original 6 determinants of gait were defined by Saunders et al.72 in 1953 

and have since been deemed by some to be too simplistic or even incorrect, 

and have led to much debate on their relevance clinically within the gait analysis 

community313. Why we walk the way we do is complex and, in 2009, Richard 

Baker suggested that the following determinants may be more appropriate and 

clinically meaningful in determining successful gait313: 

• One’s ability to support bodyweight against gravity 

• One’s ability to achieve toe clearance and adequate step length 

• One’s ability to achieve a smooth transition from one stride to the next 

while preserving the momentum of the passenger unit 

• One’s ability to conserve energy 

Measuring these determinants is complex and requires not only gait analysis 

data but a full clinical assessment as well as comprehensive electromyography 

(EMG) results. This study examined some of the gait variables that contribute to 

gait stability, but it is acknowledged that the amount of data required to discuss 

this in full is vast, and beyond the scope of this thesis.  

In walking, these determinants can conflict with one another as, in order to 

generate forward momentum, it is necessary to displace the COM to a position 

in front of the centre of pressure (COP). Moving the COM to a position that is 
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not directly above the base of support places the body in a potentially unstable 

position314.  

As described in section 2.5, blast trauma can significantly disrupt and damage 

the anatomy of the foot and ankle, and this in turn can have a detrimental effect 

on an individual’s stability in gait. Trauma can cause sensation loss, which can 

result in reduced proprioceptive feedback and lead to gait instability315. This is in 

addition to muscle and tendon damage, which can make muscle innervation 

reduced or mistimed, leading once again to compromised lower limb stability.  

A lack of lower limb stability may increase the risk of trips and falls, causing 

secondary injury and possibly lead to the development of a “fear of falling”. This 

fear can subsequently cause an individual to limit their activity, which can 

reduce mobility, further muscle weakness and increased risk of future falls316.  

Literature around stability predominately discusses geriatrics who are more 

likely to walk slowly, have a shorter stride length, a wider base of support and 

spend a greater proportion of the gait cycle in double-leg support317. 

Paradoxically these same gait alterations are believed to increase stability 

during walking318; 319. Research on measuring general gait stability is confined 

to studies of the able bodied, elderly, toddlers and those with vestibular 

deficiency. Therefore, caution must be applied when comparing to young 

personnel who have sustained unilateral foot and ankle trauma. Studies have 

also shown there to be a link between the influence of fear and motor 

behaviour320. Maki et al.317 suggests that gait parameter changes are stabilising 

fear-related adaptations, rather than direct risk factors that increase the 

likelihood of falling. Therefore, it is suggested that an individual’s emotional 

state can also influence stability and the factors of influence are not solely 

biomechanical.  

Previous studies have shown that temporal spatial parameters can improve with 

AFO use187; 321; 322. In this study, the mean participant’s double support time 

reduced by 0.06s (19%) when the PD AFO was worn, and the mean step length 

increased by 0.08m (12%) with a large effect size on the injured limb and 0.12m 

(18%) with a very large effect size on the uninjured limb. This did not, however, 
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represent a significant result.  This agrees with Haight et al.172 who report 

similar reductions in double support time and increase in step length with 

IDEO™ users. As the participants walked faster with a greater step length, 

spent less time in double support and had a unchanged mean stride width, it 

suggests the participants made fewer stabilizing fear-related adaptations when 

wearing the PD AFO317, and use of the orthosis improved participants ability to 

walk.  However, this doesn’t provide a true reflection of stability in gait, as 

studies322-325 show that variability of parameters (in particular stride length) is a 

better indicator of gait performance stability. To accurately determine this, each 

participant would need to be examined individually and not as a cohort, as the 

variability between subject is likely to mask the effects of the PD AFO. 

Investigating each individual participant is outside the scope of this thesis and is 

recommended for future work.  

The vertical GR component represents a summation of forces from all 

segments of the body during locomotion, and can provide a representation of 

COM control326. Since postural stability is defined as the body's ability to 

maintain its’ COM within its base of support327, the vertical GR may provide 

information about an individual’s postural control during walking, and the 

individual’s ability to support their own body weight. Indeed, studies that have 

investigated vertical GR during walking suggest that the second peak force at 

push-off decreases in magnitude328 and in variability329 in people assumed to be 

less stable during locomotion. Instability during walking may, therefore, manifest 

as increased displacement of the body's COM within a constantly changing 

base of support and a reduced second vertical peak in the vertical GR. In this 

study use of the PD AFO improved the shape of the vertical GR graphs for both 

the uninjured and injured limb, with more defined twin peaks (Figure 4-9). The 

injured limb with PD AFO use improved the mean timing of the twin peaks, in 

that they have greater symmetry with the twin peak timings of the uninjured 

limb. Stansfield et al.330 concluded that in normal gait the second vertical peak 

of the vertical GF should be a minimum of 110% of body weight. It has been 

suggested that failing to meet this assumes an individual is having difficulty in 

supporting their body weight in late stance, which in turn suggests a level of gait 

instability328. In this study, with PD AFO use, the mean uninjured limb in late 
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stance supports 113% of body weight, which is an 8% improvement compared 

to gait without use of the PD AFO on the uninjured limb. The injured limb, 

however, in push off supports 91% of body weight without use of the PD AFO, 

and this improves to 106% of body weight when the PD AFO is worn. This 

implies that use of a PD AFO improves the mean injured and uninjured limbs’ 

ability to support body weight at late stance. It helps to prepare the body for 

weight transfer to the leading limb and improves stability accordingly.  

 

The effect of walking speed on the vertical GR must also be considered. 

Schwartz et al.297 investigated the impact of five speeds on the vertical GR of 83 

participants and found that at slow and normal walking speeds, the vertical GR 

displays a characteristic "double-hump" shape, with 2 peaks of approximately 

the same magnitude. As walking speed becomes faster, while both peaks 

increase, its’ influence on the 'weight acceptance' peak is more pronounced 

than it is on the 'push off' peak297. The participants mean walking speed in this 

study corresponds with the “free and fast” speeds reported in the study by 

Schwartz et al.297. Therefore, the significant changes seen in the second peak 

of the mean vertical GR (FZ3) (Table 4-9) on both the injured and uninjured limb 

are greater than would be expected if they were purely due to a change in 

speed. This strongly implies that the result is not due to the 20% increase in 

walking speed but is a result of the PD AFO allowing participants to support 

their body weight more effectively and, in turn, improve their gait stability. 

 

The foot progression angle (FPA) is affected by femoral anteversion, 

tibiofemoral torsion, the position of all lower limb joints, including the pelvis and 

the shape of the foot. It is an indicator of the rotational malalignment of the 

lower extremity331; 332. The FPA or “toe-out angle” is defined by the orientation of 

the longitudinal axis of the foot in the transverse plane with respect to the 

direction of progression during gait333. Established normative values for FPA 

magnitude range from 5-9⁰ in older and younger healthy adults334, and an 

accepted criterion for excessive external FPA (‘toe-out angle’) is a FPA greater 

than 10±5⁰. Previous studies show that an excessive internal or external foot 

progression angle not only results in various muscular and skeletal problems335; 
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336, but can also affect stability and the risk of falls314, as described by Bozbas et 

al.314. 

Study participants presented bilaterally with a FPA suggestive of an excessive 

external toe out angle, with the injured foot exhibiting a greater toe out angle 

(25.6°±9.8) compared to the uninjured limb (22.4°±10.4) when shod. This is 

likely a compensation to increase participants’ base of support to, in turn, 

improve stability. Use of the PD AFO appeared to reduce mean out-toeing in 

the uninjured limb by 2.4° (11%) and the injured limb by 3.3° (13%), which 

brought the angulation value closer to normative values334, although neither 

reduction was considered statistically significant. Between test conditions, the 

following markers on the injured limb are repositioned as part of removing the 

PD AFO for the shod test condition: 

1. The medial and lateral malleolus and the shank tibial cluster are all 

repositioned.  

2. The markers on the participants’ trainers remained in situ. On account of 

this there is a higher probability of resulting errors due to reduced 

reproducibility.  

Locating bony landmarks on the medial and lateral malleoli through a composite 

PD AFO is difficult to accurately repeat and, although the same researcher 

moved the markers during each participant’s session, the FPA results could be 

misleading and inaccurate.   

The FPA has not been reported in previous PD AFO studies. However, a study 

that examined those who had sustained distal tibial fractures concluded that 

post trauma, individuals are more likely to walk with an increased FPA on the 

injured side337, and while the evidence is limited and paediatric in focus, it does 

concur with this study that fractures to the foot and ankle can potentially 

predispose individuals to an increased external toe out angle.  

Very few studies have reported on changes to the FPA with AFO use. Danino et 

al.338 noted that unilateral AFO use did not appear to change the FPA, but 

bilateral AFO use did reduce participants toe out angle. In contrast, Kim et al.339 

noted AFO use increased the external toe out angle. While both studies 
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disagree with this study, and are worthy to note, the studies are examining AFO 

use in those with cerebral palsy338 and stroke339. As the FPA can be influenced 

by spasticity around the hip, for example, caution is applied when comparing 

studies where participants present with pathologies that affect the central 

nervous system. Furthermore, none of these studies discuss the sagittal plane 

alignment of the AFOs. If the AFOs utilised are not suitably aligned to provide 

forward inclination of the shank, as discussed in 2.16.3, then the participant 

may have to externally rotate their foot during mid-stance to terminal stance to 

enable transition to pre-swing if the participants Achilles tendon is tight and they 

lack adequate ankle range of motion into dorsiflexion144. This adaptation is 

commonly described as a midfoot break, and participants have to gain 

dorsiflexion through their midfoot to transition to pre-swing with an externally 

rotated foot340.  Often, crucial sagittal plane alignment details and specific 

design properties of AFOs are not present in the literature341 and this makes it 

very difficult to verify the kinematic results in the literature, as they are 

interdependent on one another. On account of this, little is known about how PD 

AFO use truly affects the FPA. This study suggests that PD AFO use in 

unilateral deckslap injuries reduces the FPA and this, in turn, suggests 

improved stability314 for this cohort. Although as the marker placement at the 

ankle between test conditions could introduce reproducibility errors as 

discussed, this conclusion must be taken with caution.   

Hip extension commonly peaks at 10° around 50% of the gait cycle at terminal 

stance while the knee is approximately 5° flexed and the shank and thigh are 

inclined144. This position of the limb with the quasi stiffness of the ankle permits 

maximum hip extension with the GR alignment anterior to the knee and 

posterior to the hip, which helps to create stabilising knee and hip extension 

moments144. Such stability of the stance leg in terminal stance facilitates what 

Owen et al.144 describes as the “Big V” of terminal stance. Achieving the “Big V” 

position produces stretching and strengthening in particular of the hamstrings, 

hip flexors and gastrocnemius144. Therefore, hip extension capability is crucial 

to the creation of the “Big V” and therefore stability in stance.  
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PD AFO users in this study demonstrated a reduced mean peak hip extension 

angle on the injured limb during stance compared to controls, and this finding is 

supported by other studies of IDEO™ users4; 78; 168; 172. This result is 

unexpected, as walking speed and stride length increased with PD AFO use 

and, therefore, it would have been expected ordinarily that hip extension would 

increase linearly, as described by Schwartz et al.297. As no prior PD AFO study 

exists that examines the gait of users prior to PD AFO utilisation, there are no 

prior studies for comparison to examine the impact of PD AFOs on hip 

extension. This study suggests unilateral PD AFO use does not greatly 

influence the mean peak hip extension angle of participants in terminal stance, 

as both the changes to the injured and uninjured limb were no greater than 1.5° 

even with an increase in walking speed when the PD AFO was worn. While 

using the PD AFO, the mean knee angle on the injured limb remains flexed at 

around 40% of the gait cycle when then knee should be extending. The results 

(Figure 4-13) show that the mean knee angle remains flexed throughout the gait 

cycle on the injured limb when wearing the PD AFO. This compromises the 

creation of the “Big V” and in turn makes it difficult for the injured limb to reach a 

greater angle of hip extension. Haight et al.172 is the only study that reports on 

knee extension in IDEO™ users and found that the posterior strut stiffness had 

a significant effect on knee kinematics. The more compliant the posterior strut 

the greater the knee flexion in gait, with a reduction in the peak knee extension 

angle in stance172. The IDEO™ users exhibited greater knee extension in 

terminal stance than this study presents and were closer to able bodied 

controls172; 247. It is possible that the PD AFO posterior struts used in this study 

were more compliant than those presented by Haight el al172., but without 

having each participant’s weight, height, lower limb muscle power status and 

original IDEO™ prescription, this cannot be ascertained or compared.  

Moreover, it is possible that there were participants in this study who were 

wearing a PD AFO/footwear combination with too great a shank-to-vertical 

angle (greater than 12°) on the day of testing, as the footwear worn to the gait 

analysis testing could have been different to the footwear used during the initial 

PD AFO fitting with the orthotist. This sagittal plane alignment would prevent the 

knee from reaching full extension at pre swing.  
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This rationale is also suggested in the kinematic sagittal plane ankle results, 

which shows mean toe off on the injured limb occurs earlier when the PD AFO 

is worn. Toe off typically occurs around 62% of the gait cycle342 and, when 

using the PD AFO, the cohort’s injured limb appeared to reach toe off sooner at 

57.7%. This can be a sign of “drop off”, as is the increased knee flexion 

described when the PD AFO is worn. Toe off also occurs early in the gait cycle 

at faster walking speeds297, so this may be influencing the result. On 

examination, AP08 and AP02 exhibited excessive knee flexion in terminal 

stance when wearing the PD AFO, with both participants’ knees remaining 

between 15-20° flexed. Consequently, AP08 had the earliest toe off at 50% of 

the gait cycle and AP02 was also early at 59%, but these participants did not 

present with the fastest walking speed.  

A participant’s muscle strength and ability to activate the gluteus maximus 

muscle must also be considered. During initial contact, the gluteus maximus 

contributes to hip extension and controls the rate of hip flexion343. Ineffective 

functioning can compromise hip stability and gait. A change in the muscle firing 

patterns in gluteus maximus has direct implications for rehabilitation of lower 

limb dysfunction344. An antalgic gait pattern like the participants in this study 

may lead to muscle inhibition or atrophy and, if the activation of gluteus 

maximus is delayed, pelvic stability may become compromised344. Jonkers et 

al.345 concluded that when the gluteus maximus isn’t functioning, hip extension 

initiation is prevented and a prolonged stance phase knee flexion in gait is 

witnessed. A lack of gluteal activation is often reported post lower limb 

trauma344, and this dysfunction in gluteal activation may be contributing to the 

lack of hip extension344, as seen in this study.  

This study suggests that use of a PD AFO appears to reduce the ability to gain 

adequate knee extension in terminal stance to create stance phase stability on 

the injured side and, therefore, the limb is deemed less stable. This is not 

supported by the literature, and on closer examination as results presented in 

this study are the mean of all 9 participants the results have been affected 

particularly by AP02 and AP08’s excessive knee flexion in gait. What cannot be 
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determined is whether weakness in proximal musculature such as the gluteals 

also played a role in this result, as EMG data were not recorded for participants.  

In conclusion, the vertical GF suggests a PD AFO provides increased stability 

and all other parameters investigated either suggest a lack of stability when 

using the PD AFO or are inconclusive.   

Hypothesis 3: Hypothesis rejected: support the alternative hypothesis that 

PD AFO use will improve participants' base of support. 

5.5 Hypothesis 4: PD AFO use will reduce the gait 
profile score of both the injured and uninjured limb 

The Gait Profile Score (GPS) is a single index measure in degrees that 

summarises the overall deviation of kinematic gait data relative to normative 

data266. It simplifies complex kinematic gait data by providing clinicians with a 

very general measure to compare kinematic gait features Comprehensive 

indices, such as the GPS that express a shift towards normality, as the effect of 

wearing an orthosis are regarded as effective by the International Classification 

of Functioning, Disability and Health framework in providing evidence of the 

efficiency of orthotic intervention346. 

The GPS can be subdivided to provide gait variable scores (GVS) of nine key 

component kinematic gait variables, which are presented as a Movement 

Analysis Profile (MAP)266. It was selected for use in this study, as it is unrelated 

to an individual’s specific pathological state. It also has the advantage of 

subdividing into GVS and MAP, which are not present in other summary 

measures such as the Gillette Gait Index (GGI)347 and the Gait Deviation Index 

(GDI)348. The GGI has further limitations in that the 16 parameters used to 

calculate it are a mix of gait variables and temporal-spatial parameters, with no 

clear rationale as to why they are specifically used77. The results produced also 

appear to be sensitive to the choice of control data utilised349. The GDI was 

developed to address the limitations in the GGI and has successfully been 

applied to patients with a range of different conditions and pathologies77. There 

is a very strong linear correlation between the GDI and the GPS (r=0.995)77, 
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and the GPS was selected for this study as the MAP visualisation makes the 

interpretation of the results easier.  

The GPS provides clinicians with a score for each limb, as well as an overall 

score combining the hip, knee and ankle variables from both limbs, and the 

pelvic variables from one. A typical GPS for the control population is 5.3°±1.4. 

In this study, when participants wore the PD AFO, the overall GPS reduced on 

both the uninjured and injured limb by 0.19° and 0.9°, respectively. The MCID 

reported for the GPS is 1.6°350, so whilst the change in the GPS overall 

represents a reduction, and therefore suggests gait kinematics improved with 

PD AFO use, this did not demonstrate a “clinically important difference” as the 

reduction angle was less than 1.6°350. Discretion must be applied when using 

this MCID value within the context of this study, as the 1.6° was evaluated for 

children with cerebral palsy and therefore a completely different clinical 

presentation to this study population.  

Anecdotally in clinic, the gait patterns of children with cerebral palsy are vastly 

more varied than those with unilateral deck slap injures to the foot and ankle. 

Therefore, it is suggested that the MCID for participants in this study would be 

less than 1.6°. When comparing the injured limb using the PD AFO to controls, 

there was a significant difference in the GPS overall with a very large effect 

size. The GPS of the injured limb was less affected by the PD AFO than the 

GPS overall. This likely reflects the compensation mechanisms on the 

contralateral side during walking with the PD AFO, and has also been reported 

in previous studies presenting unilateral foot and ankle pathology, such as 

clubfoot351. P values and Cohen’s d were only calculated for the injured limb 

wearing the PD AFO vs controls, which is consistent with the rest of the data 

within this thesis. The uninjured limb vs control was not explored.  

Before the GPS can be evaluated, the effect of varying walking speeds on the 

results must be considered. Walking at different speeds has been shown to 

affect gait patterns of healthy individuals297, as well as those with conditions 

such as Parkinson’s disease352 that cause individuals to walk more slowly than 

healthy controls. As the GPS could be influenced by either the participants 

physical condition or their walking speed (or both), possibly this may hinder the 
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ability of the GPS to quantify the exact effect of a disorder or intervention on the 

gait pattern. In this study, the walking speed of the participants when shod is 

different to the control group who walk faster by 0.12 m/s (10%). The 

participants walked faster with the PD AFO compared to the control group by 

0.11m/s (8%).  Fukuchi et al343 studied the effect of speed on the GPS and 

concluded that gait speed significantly affects the GPS. They compared the gait 

data of participants who had previously had a stroke, and walked very slowly, to 

the standard GPS with normative data from a standard (and quicker) 

speed.  The authors then compared the same participant data to predicted 

normative data with matched speeds, called the GPSv.  Up to 1⁰ of difference 

was found between the GPS results and GPSv results, showing that a 

mismatch between patient walking speeds and the normative data for the GPS 

can influence the results by up to 1⁰ attributable to speed alone. Considering the 

minimal clinically significant difference for the GPS is 1.6°340, if the patient group 

are also walking at a different speed to the control group then the MCID may be 

as high as 2.6°. 

If this is the case, then it is possible that the GPS is not sensitive enough to 

detect variations in the unilateral foot and ankle blast trauma population 

presented in this thesis. As discussed previously, the GPS can be broken down 

to provide the GVS, based on nine kinematic variables and this in turn forms a 

MAP, which visualises the magnitude of the deviation of those nine variables 

across the gait cycle. The MAPs for each test condition in this study are 

presented in (Figure 4.19 and 4.20) and are more useful for identifying 

individual impairments that make up the GVS and are, therefore, a useful 

rehabilitative tool.  

Use of a PD AFO improved the participants’ sagittal plane ankle 

dorsiflexion/plantarflexion GVS on the uninjured limb by 0.5° (12.5%). This did 

not demonstrate a significant difference and the effect size was small. Schwartz 

et al.297 has shown an increase in gait speed does produce an exponential 

increased in the peak plantarflexion angle at pre swing. Therefore, the changes 

in the GVS may be linked to the increase in walking speed. When the PD AFO 

was worn, the uninjured limbs’ timing of push off improved and was closer to 
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control. Possibly when walking shod, the participants were delaying push off, 

spending longer on the uninjured limb for both stability and to reduce 

discomfort.  

The injured limb demonstrated a reduced GVS score when the PD AFO was 

worn, declining by 1° (19%). This did not represent a statistically significant 

change with a small effect size. It should be noted that the GPS examines 101 

data points for every stride, therefore the negative kinematic effect of the PD 

AFO on the ankle (limiting ROM) will be present at all 101 data points, which 

leads inevitably to the GPS at the ankle presenting very negatively. A very large 

effect size and a statistically significant change was found between the sagittal 

plane ankle dorsiflexion/plantarflexion GVS on the injured limb using the PD 

AFO compared to control 4.1° (65%) (Table 4-21). As described above with the 

uninjured limb, speed will be affecting the dorsiflexion/plantarflexion GVS. The 

results suggest that use of a PD AFO (whilst not significant) does negatively 

affect the sagittal kinematics of the ankle on the limb wearing the PD AFO. This 

is in line with expectations, as the PD AFO significantly restricts ankle motion as 

part of its design, as discussed in 2.13.3 and, therefore, would be expected to 

negatively affect this GPS.  

There has been little use of the GPS/MAP in the literature on participants 

without a neurological condition, and no studies have been presented on AFO 

users without a neurological condition. This has made comparison to the limb 

salvage cohort in this study challenging. The only study available on GVS in 

participants with orthopaedic lower limb impairments is a study by Manousaki et 

al.351, who reported on children with unilateral idiopathic congenital talipes 

equinovarus (CTEV). This study reported the CTEV foot to have a sagittal plane 

ankle dorsiflexion/plantarflexion GVS of 6.5±3.2351. With only 1 study for 

comparison on children with potentially very different skeletal anatomy, the only 

conclusion that can be made is that the CTEV foot behaves like a “normal” foot, 

as the GPS score is within normal limits (5.3°±1.4)77. Possibly the GPS is not 

sensitive enough to pick up gait impairments in the unilateral CTEV patient.   

Removing the sagittal plane ankle dorsiflexion/plantarflexion GVS from the MAP 

improves the overall GPS by 0.18° (4%). Therefore, the effect of this variable on 
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the participants overall gait whilst shod is low. However, when using the PD 

AFO, participants had a 0.29° (7%) improvement in the overall GPS when the 

sagittal plane ankle dorsiflexion/plantarflexion GVS was removed, but this still 

did not result in a MCID as the change remained less than 1.6°. As a PD AFO 

restricts both plantarflexion and dorsiflexion at the ankle, it was expected that 

the GVS on the injured limb would represent the largest score change 

comparing both test conditions, as shown in studies on participants with 

unilateral clubfoot351. However, the largest change on the injured limb was in 

the coronal plane adduction/abduction of the hip with a score differential of 1.29, 

and this was unexpected.  

The coronal plane hip adduction/abduction GVS on the injured limb improved by 

1.29° (28%) when the PD AFO was worn. Schwartz et al.297 reports that walking 

speed changes have a direct effect on the coronal plane hip peak 

adduction/abduction angles in gait. Therefore, while a GVS improvement is 

seen, these results must be viewed with caution due to the effect of speed. The 

result suggests there was less vertical displacement of the femur relative to the 

pelvis on the injured limb when wearing the PD AFO, and this is much closer to 

control. When shod, the injured limb is more abducted, and this could be due to 

the pelvis being higher on the uninjured side. Participants demonstrated 

increased knee flexion on the injured limb when shod (Figure 4-13), which 

would create a limb that is effectively shorter, and this could account for this 

result. This shod walking pattern is likely compensating for pain or is to help 

with ground clearance. PD AFO users are required to use a heel elevator under 

the PD AFO, as described in 2.13.4. The result suggests the heel elevator set 

up for the cohort whilst using the PD AFO did not introduce any obvious leg 

length discrepancies, and this set up contributed to the improvement seen in the 

hip adduction/abduction GVS score on the injured side.  

The uninjured limb worsened marginally by 0.03° (1%) when the PD AFO was 

worn, and appears to be more abducted at push off, but it is difficult to ascertain 

why (Figure 4-14). As discussed, speed does affect hip adduction/abduction 

kinematics with both peak adduction at early midstance and peak abduction at 

pre swing increasing linearly297. On the uninjured limb the peak adduction angle 
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only increased by 1%, and therefore the increase in speed is not reflected in 

this peak. PD AFO users typically wear a heel elevator under the uninjured limb 

to ensure no leg length discrepancy is introduced as a result. Consequently, this 

practice could increase the risk of leg length discrepancies being introduced by 

either inaccuracies in the clinician’s estimations of the required heel elevators, 

participants leaving heel elevators in the uninjured shoe accidently when not 

wearing the PD AFO or participants forgetting to don the prescribed heel 

elevators when the PD AFO is worn. It has already been suggested that it is 

possible that some of the participants could have been using different footwear 

or heel elevator combinations provided when the PD AFO was first supplied, 

and this would, in turn, affect the coronal plane hip adduction/abduction GVS. 

However, there is no clear evidence of this in the hip adduction/abduction 

kinematics results.  

The coronal plane pelvic up/down tilt GVS improved on both the uninjured and 

injured limb by 0.37° (15%) and 0.61° (21%) respectively when the PD AFO is 

worn. However, neither represented a significant change. Schwartz et al297 

showed that increased walking speed does affect pelvic coronal plane 

kinematics297. This result could also be influenced by the ability of the hip 

abductors and the gluteal musculature to stabilise the pelvis68. This result is 

directly linked to the adduction/abduction of the hip, as it is measured from the 

same point (the horizontal line of the pelvis), which has already been discussed. 

The transverse plane pelvic internal/external GVS for both the uninjured and 

injured limb worsened when participants used the PD AFO by 0.15° (5%) and 

0.25° (9%) respectively, although neither represent a significant change. The 

injured limb wearing the PD AFO compared to control represented a significant 

change. Possibly the increase in pelvic rotation compared to control is due to 

the pelvis compensating rotationally for the lack of foot and ankle compliance on 

the injured side whilst the PD AFO is worn. Additionally, once again, walking 

speed has been shown to affect transverse plane pelvic kinematics297 and, 

therefore, the transverse plane pelvic internal/external GVS results must be 

viewed with discretion. The transverse plane hip internal/external GVS 

improved when the PD AFO was worn by 0.13° (2%) on the uninjured limb and 
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0.64° (8%) on the injured limb, but these were not statistically significant. 

Schwartz has shown that speed does influence the transverse plane hip 

kinematics, in particular the peak external rotation at pre swing297, but only at 

higher speeds. At lesser speeds, whilst the peak angles increase, they do not 

increase exponentially297. The participants’ change in walking speed when the 

PD AFO is worn may, therefore, be influencing the transverse plane hip 

internal/external GVS results.  

The sagittal plane pelvic anterior/posterior tilt GVS score worsened on the 

uninjured limb by 0.41° (13%), and 1.08° (38%) on the injured limb when the PD 

AFO was worn. Walking speed has also been shown to increase pelvic anterior 

tilt, in particular at higher walking speeds297. As the PD AFO restricts ankle 

ROM in the sagittal plane, possibly the pelvis is overcompensating by 

increasing the anterior tilt of the pelvis. The PD AFO holds the ankle in a fixed 

plantarflexed alignment, with both the injured and uninjured limb utilising heel 

elevators to compensate for this (Figure 2-20). Use of heel elevators shifts the 

COM anteriorly and this, in turn, typically causes individuals to have an 

increased anteriorly tilted pelvis with an increased lumbar lordosis to 

compensate for this shift in the individual’s weight line for stability353. It is 

possible the use of heel wedges contributed to this result, as well as the effect 

of walking speed.  

The sagittal plane hip flexion/extension GVS worsened on the uninjured limb by 

0.26° (5%) and 1.08° (15%) on the injured limb when the PD AFO was worn, 

although neither represented a significant difference. This GVS is directly linked 

to the position of the pelvis, as the degree of hip flexion and extension is 

measured off the pelvis. Schwartz et al.297 showed that increasing walking 

speed increases the peak hip flexion and extension angles in gait and, 

therefore, the change in GVS in this study is highly likely to have been 

influenced by this change in speed between the test conditions.  

The sagittal plane knee flexion/extension GVS score improved on the uninjured 

limb by 3.06° (34%) and worsened on the injured limb by 0.33° (4%) when the 

PD AFO was worn, but neither represented a significant change. Once again, 

the participants’ increased walking speed whilst using the PD AFO would have 
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impacted on this result297. The improvement on the uninjured limb is more than 

anticipated and represents a medium effect size. It is likely as a result of the 

increased ankle power seen in (Figure 4-4) while the increase in power distally 

is driving the increased knee flexion. 

The transverse plane foot progression GVS improved by 1.46° (16%) on the 

uninjured limb and 0.72° (9%) on the injured limb. Schwartz et al.297 reported 

that increased walking speed only affects the foot progression angle around the 

time of toe off, and not at any other time in the gait cycle. Therefore, the 

increase seen in walking speed is having only a small effect on this GVS result. 

PD AFO use does appear to reduce the external rotation of the foot in gait 

(Figure 4-11), bringing the angulation closer to able-bodied control. However, as 

discussed previously, the markers around the ankle are repositioned on the 

brace during testing and this could lead to greater placement error of the 

markers as a result.  

This study’s results are partially in agreement with previous literature in patients 

with Ehlers–Danlos syndrome354; 355, which reports that pelvic tilt and foot 

progression angle show no significant change354 and significant differences are 

only seen in the ankle joint kinematics355. However, most literature in this 

area356-358 presents participants with conditions of the central nervous system 

and therefore present with spasticity acting upon the joint kinematic results. It 

would not be clinically appropriate to compare any of these studies to this study, 

as isolated foot and ankle trauma is not comparable to such neuro 

presentations. Also, the studies that use participants with Ehlers-Danlos 

syndrome are not utilising AFOs and are affected by a systemic condition that 

presents global body disability again, this is not directly comparable clinically to 

the participants in this study.  

The most comparable study found which utilised the GPS/MAP was a study on 

children with CTEV351. This study agrees that their largest deviant GVS variable 

was in the ankle plantar/dorsiflexion angle. However, they also report the foot 

progression angle as significantly deviated too. Our study found the foot 

progression angle changes in GVS were not significant and showed only a 
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medium effect size. This CTEV study did not perform any statistical analysis for 

the GVS and, therefore, again comparisons are difficult.  

In summary as the GPS can provide a global estimation of gait deviation, which 

may be related to pathology, it has the potential to be a valuable complement to 

a more detailed analysis of kinematics. However, in this study as patients’ 

walking speed was not controlled, and walking speed clearly affects the 

kinematic results of the lower leg297, it has been difficult to draw definitive 

conclusions from these results. It is also questionable whether the GPS is 

sensitive enough to see meaningful change in those with only a unilateral foot 

and ankle condition. This coupled with a relatively small number of study 

participants has made it difficult to show any statistically meaningful change in 

the GPS for the study cohort.  

Hypothesis 4:  Hypotheses supports that PD AFO use reduces the gait 

profile score of both the injured and uninjured limb. 

5.6 Scope and boundaries of the study 

The scope of the investigation was to examine the gait of personnel who had 

similar injuries sustained by the same mechanism of trauma, walking on flat 

indoor terrain with and without a specifically designed PD AFO. This is novel, as 

prior PD AFO studies that have examined clinical outcomes have recruited 

participants with a wide range of clinical presentations, making it difficult to draw 

conclusions from the data in order to influence clinical practice.  This study 

presents the gait of PD AFO users without use of the orthosis shod, and this 

aspect of the study is particularly different from previous work. This research is 

not intended to clarify or propose prescription criteria or treatment algorithms for 

PD AFOs. No other orthoses were tested, only this 1 PD AFO design; therefore, 

this study is not intended to present PD AFOs as the only clinical solution that 

could be utilised for this injured patient group.  

5.7 Limitations 

A limitation of this study is that the researchers and participants could not be 

blinded to the treatment used, as only one orthosis (PD AFO) was tested. The 
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results of the PROMS could, therefore, be affected by the placebo effect. 

Collection and interpretation of the PROMS data was completed without the 

knowledge of the gait analysis results, and the researcher (although offered) did 

not have to provide any assistance or explanation to participants when 

answering the PROMS questions. The biomechanical data was collected using 

fully automated measuring tools. Therefore, researcher bias was low.  

The footwear used by participants was not standardised. The data were 

originally collected as part of our standard clinical service and it was appropriate 

at the time to capture participants in their own footwear. All participants were 

using similar lace up sports trainers, but the pitch and heel cushion properties, 

for example, may have varied slightly between participants, and this has not 

been accounted for. When required, participants wore split size footwear to 

accommodate the PD AFO and the effect of this has also not been considered.  

Whilst the ankle angle of the PD AFO was documented, the exact shank to 

vertical angle (SVA) prior to gait analysis testing was not recorded, and this was 

an error by the researcher. The researcher assumed that participants would 

attend the gait clinic wearing the PD AFO in the same footwear and using the 

same heel elevators prescribed when the orthosis was initially supplied. The 

researcher did not verify this prior to gait analysis testing. As the SVA influences 

sagittal plane kinematics it would have been useful to have this data to further 

understand the study’s results. Additionally, only 1 orthotist was involved with 

the provision and fine-tuning of each participant’s PD AFO. Therefore, the 

findings of this study are limited to 1 clinician’s clinical practice. The treating 

orthotist/researcher is an experienced clinician working as a state registered 

orthotist for 15 years. 

A further limitation to this study is the lack of documentation around the knee 

and hip muscle powers of each participant, and the lack of electromyography 

(EMG) data to verify muscle function. This would have been helpful to 

understand if muscle weakness, due to a more sedentary lifestyle post-trauma, 

contributed to any of the results seen in this study.  
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This study examined participants walking in a gait laboratory, which is not a 

“real world” environment. Participants walking speed was not controlled. 

However, the researcher did not want to introduce any abnormal gait 

compensations by trying to restrict injured personnel’s speed. It was more 

clinically appropriate to allow individuals to walk at a speed they felt comfortable 

with, as their lower limb injures were extensive.  

The sample size in this study was small (n=12) as the inclusion criteria were 

strict and the UK population of PD AFO users within the military is small. US 

military outcome studies do contain larger sample sizes and range from n=10 to 

n=146 as they have greater numbers of PD AFO users within their service. 

They also recruit participants with a wide range of injuries; for example they 

include those with deckslap fractures alongside those with peripheral nerve 

injuries. It was important to keep the inclusion criteria strict in this study to 

ensure participants compared were as similar as possible regarding their lower 

limb injury profile, which is difficult in the trauma injured population. 

Furthermore, this study only looked at a male military cohort who had access to 

extensive rehabilitation. This study is generalised to this demographic and 

caution must be applied when comparing to a civilian population.  

5.8 Future works 

Future studies should further look to examine gait of PD AFO users and, 

importantly, include comparisons to other custom made composite AFOs that 

are made to the same cast and fine-tuned appropriately. Previously, PD AFOs 

have only been compared functionally to prefabricated AFOs of differing 

materials and trim lines. A dose response study should also be undertaken, 

whereby small changes are made systematically to the PD AFO design and 

tested to determine the mechanism of action of each change.  

Future work should also include the addition of strain gauges to the posterior 

struts of PD AFOs to determine how much the struts deflect and the effect of 

this on gait. Electromyography of the lower limb should also be performed 

during gait to understand how use of PD AFOs improves the ability of the limb 
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to generate forward momentum. Statistical parametric mapping could also be 

used to further examine gait patterns in more detail.  

There is also a need to further understand the effects of rehabilitation on the 

quality of gait and clinical outcomes achieved. No studies have gathered gait 

analysis at time points along PD AFO user’s rehabilitation journey to understand 

if a “training effect” is present, which would support the need for orthotic PD 

AFO users to have tailored physiotherapy as part of any intervention. In 

addition, there are no long-term studies of PD AFO users, as this specific PD 

AFO design has only been used in the US since 2009 and the UK since 2014. 

5.9 Conclusion 

The aim of this thesis was to explore the use of a specifically designed PD AFO 

that utilises a posteriorly mounted pair of composite struts in UK military 

personnel who had sustained unilateral complex hindfoot trauma. The literature 

review identified that no prior work had reported gait analysis of PD AFO users 

shod alone, and studies reporting clinical outcomes were often presenting 

personnel with a diverse range of injuries together. It was hypothesised that the 

PD AFO would improve participant clinical outcome, and this would be 

demonstrated through improvements in participants’ PROM scores and 

selected gait variables, as well as their GPS. 

It is apparent from the results in this thesis that PD AFOs use can improve pain, 

quality of life and the ability to engage in a more active lifestyle. Using a PD 

AFO can aid the body’s ability to generate forward progression and rely less on 

hip compensations to achieve this forward momentum. This research supports 

evidence that suggests that PD AFOs can improve gait and clinical outcomes in 

patents with unilateral hindfoot fractures with ongoing biomechanical pain that is 

not responding to conventional rehabilitative interventions.  
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Chapter 6: References and Appendices  

6.1 Appendix A FAOS questionnaire 
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6.2 Appendix B LEFS 
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6.3 Appendix C Participant consent form 

CONSENT FORM FOR PARTICIPANTS IN RESEARCH STUDIES 

Title of Study: The effectiveness of a PD AFO in limb salvage patients as a treatment 

option.  

Ministry of Defence Research Ethics Committee Reference: 690MoDREC15 

 The nature aims and risks of the research have been explained to me. I have read and 
understood the Information for Participants (v3 04/10/2016) and understand what is 
expected of me. All my questions have been answered fully to my satisfaction. 
 

 I understand that if I decide at any time during the research that I no longer wish to 
participate in this project, I can notify the researchers involved and be withdrawn from 
it immediately without having to give a reason. I also understand that I may be 
withdrawn from it at any time, and that in neither case will this be held against me in 
subsequent dealings with the Ministry of Defence. 
 

 I consent to the processing of my personal information for the purposes of this 
research study.  I understand that such information will be treated as strictly 
confidential and handled in accordance with the provisions of the Data Protection Act 
1998. 
 

 I agree to volunteer as a participant for the study described in the information sheet 
and give full consent. 
 

 This consent is specific to the study described in the Information for Participants 
attached and shall not be taken to imply my consent to participate in any subsequent 
study or deviation from that detailed here. 
 

 I understand that in the event of my sustaining injury, illness or death as a direct result 
of participating as a volunteer in Ministry of Defence research, I or my dependants 
may enter a claim with the Ministry of Defence for compensation under the provisions 
of the no-fault compensation scheme, details of which are attached. 
 

 I agree to be contacted by the researchers of this investigation if they request the use 
of my data towards other studies in addition to this study. 
 

Participant’s Statement: 

I  ________________________________________________________________ 

agree that the research project named above has been explained to me to my satisfaction 

and I agree to take part in the study. I have read both the notes written above and the 
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Participant Information Sheet about the project and understand what the research study 

involves.  

Signed Date       

Witness Name  

  Signature 

Investigator’s Statement: 

I  _________________________________________________________________ 

confirm that I have carefully explained the nature, demands and any foreseeable risks (where 

applicable) of the proposed research to the Participant. 

 

Signed Date       

 

AUTHORISING SIGNATURES 

The information supplied above is to the best of my knowledge and belief accurate. I clearly 

understand my obligations and the rights of research participants, particularly concerning 

recruitment of participants and obtaining valid consent. 

Signature of Chief Investigator  

…………………………………………………… Date       

Name and contact details of Independent Medical Officer (if appropriate):  

      

Name and contact details of Chief Investigator:  
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6.4 Appendix D Participant information sheet 

This participant information sheet is to be provided to all patients who we are requesting to 

use their gait analysis and outcome data for my MSc (Res). 

PARTICIPANT INFORMATION SHEET 

Study title 

The effectiveness of a Passive Dynamic Ankle Foot Orthosis (PD AFO) in limb salvage 

patients as a treatment option.  

Invitation to take part 

You were fitted with a PD AFO whilst on rehabilitation at DMRC Headley Court. As you are 

aware it is normal practise at DMRC Headley Court to undergo gait analysis and fill in 

outcome surveys during your clinical treatment when supplied with a PD AFO. During your 

rehabilitation you consented to us gathering this data from you. We would like to use the 

data captured during your time at DMRC Headley Court towards a study evaluating the PD 

AFO and its effectiveness for those with similar injuries to yourself. You should only consent 

for the use of your data towards this study if you want to; choosing not to take part will not 

disadvantage you in any way. Before you decide whether you want to let us use your data 

for this research study, it is important for you to understand why the research is being done. 

Please take time to read the following information carefully and discuss it with others if you 

wish. Ask us if there is anything that is not clear or if you would like more information. If you 

would like to take part, please let us know if you have been involved in any other study 

during the last year. 

What is the purpose of the research? 

The overall aim of this research study is to determine how useful the PD AFO is to you and 

how your walking ability did or did not improve when you were wearing the PD AFO. This 

will help us to determine its use in treating complex lower limb injures.  

Who is doing this research? 

The research is being undertaken by Mrs Nicole Bennett 
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Why have I been invited to take part? 

You have been asked if we can use your data as you are a patient aged between 18-50 years 

old who has a lower limb injury. As part of your rehabilitation at DMRC Headley Court you 

have been prescribed and fitted with a PDAFO by the multidisciplinary team. You are 

currently receiving on-going or have received rehabilitation at DMRC Headley Court and 

have consented to undergoing gait analysis and completing outcome measures as part of 

your clinical care.  

Do I have to take part? 

No, you do not have any obligation to allow us to use your data and neither your medical 

care nor employment will be affected by such a decision. 

What will I be asked to do? 

As we already have the data you are not required to do anything further. We just wish your 

consent to use the gait analysis data of you walking with and without your BOB as well as 

the LEFS and FAOS outcome surveys which were taken before, and we provided you with a 

BOB. If you would like a copy of these to refresh your memory which questionnaires, they 

were then please contact us. We may like to contact you in the future to ask to use your 

data towards additional research projects. If you are happy with this, please consent to this 

on the consent form as stated. 

What is the device or procedure that is being tested? 

The device that is being tested is a PD AFO which is a custom Ankle Foot Orthoses (AFO) 

made from composite materials. 

What are the benefits of taking part? 

The benefit of allowing us to use your data is that your data will help us evaluate a brace 

that we currently prescribe to personnel with complex lower limb injuries. If we can 

understand more about the impact it has on personnel’s lives and the difference in your 

gait, we will be better informed about how best to provide it. As clinicians we will be better 

placed to prescribe evidence-based treatments and to share this information with NHS 

teams for supporting veterans and civilians alike.  
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What are the possible disadvantages and risks of taking part? 

There are no disadvantages to allowing us to use your data. 

Can I withdraw from the research and what will happen if I don't want to carry on? 

You may at any time withdraw the use of your data without giving a reason. If you ever 

require any further explanation, please do not hesitate to ask. 

Are there any expenses and payments which I will get? 

No. There are no payments. All data collection has already taken place when you were an in-

patient at DMRC Headley Court. 

Will my taking part or not taking part affect my Service career or medical care? 

No 

Whom do I contact if I have any questions or a complaint? 

Anish Kurien, Research and Innovation Manager, University of Salford 

Contactable via Tel: 0161 295 7012 /2280 or email address a.kurien@salford.ac.uk 

What happens if I suffer any harm? 

You will suffer no harm as we only wish to use your data that we already have as part of 

your clinical treatment whilst at DMRC Headley Court. 

What will happen to any samples I give? 

You will not be required to give any samples. 

Will my records be kept confidential? 

Any data will remain confidential as to your identity: if it can be specifically identified with 

you, your permission will be sought in writing before it will be published. Other material, 

which cannot be identified with you, will be published or presented at meetings with the aim 

of benefiting others. You may ask Mrs Nicole Bennett or Dr Hannah Jarvis for copies of all 

papers, reports, transcripts, summaries and other published or presented material. All 

information will be subject to the current conditions of the Data Protection Act 1998. 
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Experimental records, including paper records and computer files, will be held for a 

minimum of 15 years in conditions appropriate for the storage of personal information. You 

have right of access to your records at any time 

Who is organising and funding the research? 

The research study is being organised by the University of Salford and ADMR at DMRC 

Headley Court.   

Who has reviewed the study? 

This study has been reviewed and given favourable opinion by the Ministry of Defence 

Research Ethics Committee (MoDREC). Ethics has also been approved from the University of 

Salford.  

Further information and contact details. 

Name and contact details of Local Investigators: Mrs Nicole Bennett, Prosthetics and Orthotics 

department, DMRC Headley Court, Epsom, Surrey, KT18 6JW. Tel: 07590713780 

Compliance with the Declaration of Helsinki. 

This study complies, and always will comply, with the Declaration of Helsinki1as adopted at 

the 64th WMA General Assembly at Fortaleza, Brazil in October 2013. 
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6.5 Appendix E Ethics approval: Ministry of Defence 
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6.6 Appendix F Ethics approval: University of Salford 
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