
A Heterogeneous Approach to Agile Tailoring

Abdallah M. Salameh

UNIVERSITY OF SALFORD

SCHOOL OF COMPUTING, SCIENCE & ENGINEERING

AUGUST 19, 2020

This document is toward the degree of Doctor of Philosophy

Abstract

Self-organisation is recognised as one of the fundamental principles of Agile software
development since the introduction of the Agile Manifesto. In large-scale agile, self-
organising teams must cooperate to produce a software product jointly. Previous research
has identified barriers to self-organising autonomous teams in large-scale agile, such as
lack of guidelines for how teams should be organised, and other challenges related to
building autonomous teams and aligning them. The Spotify model is an example of a
very large-scale agile approach, which is driven by creating loosely coupled, yet tightly
aligned squads. However, there is a conflicting trade-off between squads autonomy and
alignment. Too much alignment might hinder squad autonomy, but without alignment,
the squads are autonomous but are not effective.

This research aims to (1) explore how Agile practitioners, from a FinTech organisation,
resolve the conflicting trade-offs between squads autonomy and alignment, and (2) de-
velop and evaluate new architectural governance practices, in a FinTech organisation
tailoring the Spotify model. To address these aims, a qualitative research design was
utilised. This research comprises two parts, a longitudinal embedded case study and an
intervention embedded case study, which were conducted in a FinTech organisation (i.e.,
FinTechOrg).

The longitudinal embedded case study lasted over 21 months, during which 225 cere-
monies were observed, 14 semi-structured open-ended interviews were conducted, and
data were collected from different sorts of artefacts. The collected data were analysed
using an approach informed by the Grounded Theory method.

The analysis identified influential factors on different aspects of Spotify Tailoring, which
contribute to resolving the conflicting trade-offs between squads autonomy and align-
ment. These aspects are (1) establishing and building autonomous squads, (2) aligning
autonomous squads, and (3) performing B2B product development by tailoring the
Spotify model. The first contribution is identifying factors influencing establishing and
building autonomous squads. The second contribution is identifying factors influencing
aligning autonomous squads. The third contribution is identifying the impact of product

ii

development on Spotify tailoring as well as factors influencing Spotify Tailoring for
B2B product development. Each identified factor is supported by a set of practices and
attributes, which can aid Agile practitioners in improving squad autonomy, aligning
autonomous squads, or facilitating the conduct of B2B product development.

The fourth contribution is identifying a novel approach to Agile tailoring, called Heteroge-

neous Tailoring. Three key features characterise this approach. Firstly, each autonomous
squad is empowered to select and tailor its development method. Secondly, each squad
is aligned with other squads and to common product development goals and objectives.
Thirdly, the product steering committee draws the strategy of squads’ missions and aligns
the product backlog among autonomous squads. This novel approach to Agile tailoring
has improved the creativity for some squads and increased the productivity for others, as
reported by the practitioners of FinTechOrg.

The Spotify model and the revealed Heterogeneous Tailoring approach do not provide
practices or guidelines for governing Agile architecture across autonomous squads.
Thus, an embedded case study intervention was conducted to contribute to facilitating
Agile architecture governance. In this intervention, a novel approach to architectural
governance was developed and evaluated in FinTechOrg, which is considered the last
contribution. This approach incorporates a structural change and an architecture change
management process. The intervention lasted 3 months, during which 32 ceremonies were
observed and 8 semi-structured open-ended interviews were conducted. The collected
data was analysed using an approach informed by the Grounded Theory method.

Based on the results of the intervention, the Heterogeneous Tailoring approach was
adapted to accommodate the novel approach to architectural governance. This adaptation
has impacted the key features of the Heterogeneous Tailoring approach. Establishing
autonomous squads was impacted by the introduced structural change. The alignment of
autonomous squads was impacted by governing Agile architecture. Product development
was impacted by the needs for planning architecture based user stories. Also, the adapta-
tion of the Heterogeneous Tailoring approach revealed a new key feature, called Release
Strategy, which is concerned with the continuous delivery of architecture enablers.

iii

Acknowledgement

“O’ Lord! Increase me in knowledge” – Holy Quran (20:114)

I am indebted to my supervisor, Dr Julian M. Bass, for supporting me through the ups
and downs of this long journey, challenging me, and for drawing out the best in me.
Without your continuous help and support, this research would not be possible.

My deepest gratitude goes to my parents for their endless love, support and continuous
encouragement; my dear brothers, Iyad, Tariq, Habeeb, Ahmad, Hatem, and Mahmoud,
for being always there when I need you; my lovely wife, Hind, for being my pillar of
strength and best friend; my sons, Habeeb, Yones, Sulieman, for being my source of
inspiration; and parents-in-law for the delicious food.

My sincere regard goes to all of those who supported me in any respect during this
journey. I do not mention you all here, but I hold you in high esteem.

v

Contents

Terms and Definitions . 1

1 Introduction 2

1.1 Introduction . 2

1.2 Research Problem and Motivation . 3

1.3 Research Aims, Objectives, and Questions 4

1.3.1 Aims . 4

1.3.2 Objectives . 4

1.3.3 Questions . 4

1.4 Research Design . 5

1.5 List of Publications . 6

1.6 Thesis Structure . 7

2 Literature review 10

2.1 Introduction . 10

2.2 Agile Software Development . 10

vi

CONTENTS vii

2.3 Agile Methods . 11

2.3.1 Lean . 11

2.3.2 Scrum . 12

2.3.3 The Spotify Model . 13

2.4 Agile Architecture . 16

2.5 Agile Tailoring . 19

2.5.1 Tailoring Approaches . 20

2.5.2 Tailoring Criteria . 24

2.6 Large-scale Agile . 26

2.6.1 Autonomous Teams . 27

2.6.2 Inter-team Coordination . 29

2.7 Summary . 31

3 Research Design 32

3.1 Introduction . 32

3.2 Components Involved in a Research Approach 33

3.3 The Employed Research Approach . 34

3.3.1 Aims and Objectives . 34

3.3.2 Philosophical Worldview . 35

3.3.3 Research Design . 36

3.3.4 Research Methods . 37

CONTENTS viii

3.3.5 Role of the Researcher . 37

3.4 Longitudinal Embedded Case Study 38

3.4.1 Research Setting . 40

3.4.2 Data Collection . 41

3.4.3 Data Analysis . 43

3.5 Intervention Embedded Case Study (Action Research) 48

3.5.1 Diagnosing the Problem and the Underlying Causes 49

3.5.2 Action Planning . 50

3.5.3 Action Taking . 50

3.5.4 Evaluating . 50

3.5.5 Learning . 51

3.6 Summary . 51

4 Spotify Tailoring for Establishing and Building Autonomous Squads 53

4.1 Introduction . 53

4.2 Influential Factors on Establishing and Building Autonomous Squads . 54

4.2.1 Employing Adaptive Structure 55

4.2.2 Identifying and Allocating Squad or Mission Based Strategy . . 57

4.2.3 Employing Squad or Mission Based Agile Method Tailoring . . 59

4.3 Summary . 63

5 Spotify Tailoring for Aligning Autonomous Squads 64

CONTENTS ix

5.1 Introduction . 64

5.2 Spotify Tailoring for Aligning Autonomous Squads – Practices and
Attributes . 65

5.3 Influential Factors on Aligning Spotify Squads 67

5.3.1 Collective Code Ownership 70

5.3.2 Collective Decision-Making 73

5.3.3 Knowledge Sharing . 74

5.3.4 Inter-team Coordination . 76

5.3.5 Mission-Based Planning . 78

5.3.6 Release/Delivery Strategy . 79

5.4 Summary . 81

6 Spotify Tailoring for B2B Product Development 82

6.1 Introduction . 82

6.2 The impact of product development on squads autonomy and alignment 83

6.3 Spotify Tailoring for B2B Product Development – Practices and Attributes 84

6.4 Influential Factors on B2B Product Development 86

6.4.1 Project Visibility for the Customers 89

6.4.2 The Interactions within B2B Product Development 90

6.4.3 Building Successful B2B Relationships 93

6.4.4 Satisfying customers by responding at different velocities . . . 95

6.5 Summary . 96

CONTENTS x

7 Heterogeneous Tailoring Approach 98

7.1 Introduction . 98

7.2 Characteristics of the Heterogeneous Tailoring Approach 100

7.3 Benefits of the Heterogeneous Tailoring Approach 102

7.4 Challenges to the Heterogeneous Tailoring Approach 103

7.5 Summary . 105

8 Spotify Tailoring for Architectural Governance 106

8.1 Introduction . 106

8.2 An Approach to Architectural Governance 107

8.2.1 Organisational Structural Change 107

8.2.2 Architecture Change Management Process 112

8.3 Benefits and Challenges of the Architectural Governance Approach . . 118

8.3.1 Benefits . 118

8.3.2 Challenges . 120

8.4 Adapting the Heterogeneous Tailoring Approach for Architectural Gov-
ernance . 121

8.5 Summary . 124

9 Discussion 126

9.1 Research Questions & Answers . 126

9.2 Discussing the Results . 129

CONTENTS xi

9.2.1 Resolving the Conflicting Trade-off Between Squads Autonomy
and Alignment . 130

9.2.2 Heterogeneous Tailoring Approach 132

9.2.3 An Architectural Governance Approach 135

9.3 Limitations . 137

9.4 Summary . 139

10 Conclusion 141

10.1 Introduction . 141

10.2 Summary of the Thesis . 142

10.3 Contributions . 146

10.4 Reflection . 147

10.5 Future work . 149

References 151

Appendix 163

A Approved Ethical Application and Documents 164

A.1 Ethical Approval Form . 164

A.2 Consent for Participation in Research 166

B Interview Guide 167

B.1 Longitudinal Embedded Case Study 167

CONTENTS xii

B.2 Intervention Embedded Case Study . 170

List of Tables

2.1 The identified tailoring criteria categories, description, and examples . . 25

3.1 The distribution of interviewee’s roles - longitudinal embedded case study 43

3.2 The distribution of interviewee’s roles - Intervention embedded case study 51

5.1 Already existing practices and attributes in the Spotify model, from a
squad alignment perspective . 66

5.2 Adapted Spotify practices and attributes by FinTechOrg, from a squad
alignment perspective . 67

5.3 New practices and attributes introduced by FinTechOrg, from a squad
alignment perspective . 67

5.4 Spotify Tailoring for aligning autonomous squads 68

6.1 Already existing practices and attributes in the Spotify model, from a
B2B perspective . 85

6.2 Adapted Spotify practices and attributes by FinTechOrg, from a B2B
perspective . 85

6.3 New practices and attributes introduced by FinTechOrg, from a B2B
perspective . 86

6.4 Influential factors on B2B product development 87

xiii

LIST OF TABLES xiv

9.1 Software method tailoring approaches 134

List of Figures

1.1 The connections between the research questions, contributions, and
conducted research papers . 9

3.1 Creswell’s framework for research [25] 33

3.2 Research methodology process. Adapted from [49] 45

3.3 A model illustrates the levels of abstraction using the Grounded Theory 46

3.4 The action research cycles. Adapted from [108] 49

4.1 Autonomous squads . 54

4.2 Emergence of the categories that facilitate establishing and building
autonomous squads, which are dapted from [98]. The categories are in
bold, the concepts are in italic, and the codes are in plain text 55

4.3 Two dimensional structure . 56

4.4 The nature of squads missions . 60

4.5 Squad or mission based tailoring . 61

5.1 Aligning autonomous squads . 65

xv

LIST OF FIGURES xvi

5.2 Emergence of the influential factors on aligning Spotify squads, which
are dapted from [93, 94]. The categories are in bold, the concepts are in
italic, and the codes are in plain text 69

5.3 Product-line lifecycle [93] . 72

5.4 The nature of squads missions . 79

6.1 B2B product development . 83

6.2 Emergence of the influential factors on Spotify Tailoring, from a B2B
product development perspective, which is adapted from [95]. The
categories are in bold, the concepts are in italic, and the codes are in
plain text . 88

7.1 A Heterogeneous Tailoring approach [98] 99

7.2 The Heterogeneous Tailoring Approach 101

8.1 Structural change for architectural governance, which is adapted from [96]108

8.2 Change management process for architectural governance – part 1.
Adapted from [96, 97] . 113

8.2 Change management process for architectural governance – part 2.
Adapted from [96, 97] . 114

8.3 Adapting the Heterogeneous Tailoring approach for architecture gover-
nance. Adapted from [96] . 122

Terms and Definitions

• The Spotify Model: This is Spotify’s agile approach, which was initially introduced
by Kniberg and Ivarsson [58] and described in detail in [57, 56].

• Spotify Tailoring: The tailoring of the Spotify model.

• FinTechOrg: A FinTech organisation, which is a subject of this research study.

• FinTech’s Spotify model: The Agile approach adapted in FinTechOrg, which has
tailored the Spotify model, and explored in this research study.

• Large-scale agile: Agile software development efforts that involve a large number
of actors, less than 100 members, and distributed over 2 up to 9 teams.

• Very Large-scale agile: Agile software development efforts that involve a large
number of actors, more than 100 members, and distributed over more than 9 teams.

• Spotify communities: A Spotify community is an agile unit with a commonality
such as norms, values, customs, or mission. Community members share a sense of
place situated in a given organisation. A community also draws communication
among its members. The Spotify model introduces multiple communities, namely:
Squad, Chapter, Guild, and Tripe.

• Squad: An autonomous team that has an identified mission. A squad does not have
a formally appointed Squad Leader but has a specific appointed Product Owner.

• Tripe: A collection of Squads that are designed to be smaller than 100 people and
aims to minimise dependencies that can slow or obstruct a squad.

• Chapter: A group of people located within a Tripe, which have similar skills and
working within the same competency area.

• Guild: A group of people who are wide-reaching within the organisation and have
a desire to share knowledge, tools, code, and practice across the whole organisation.
While Chapters are always located within a Tribe, a Guild contains members that
are distributed across the whole organisation.

1

Chapter 1

Introduction

1.1 Introduction

Organisations usually tailor Agile methods to fit project-specific requirements as well as
organisations’ values, strategies, and culture [17, 24]. Bearing in mind that organisations
have different cultures and contexts, even two projects within the same organisation can
be different. What can be applied successfully for a specific project, can be inapplicable
for another project, which has a different scope, domain, customers, etc., within the same
organisation.

Two main approaches to Agile tailoring have been identified by previous research [17, 24,
35]: Contingency Factors and Method Engineering. The Method Engineering approach
utilises meta-method processes to create new customised Agile methods [24]. These new
methods are based on selected practices and processes from well-known Agile methods
to be applied on a specific context. The Contingency Factors approach selects multiple
Agile methods to be available to the organisation [35]. Then, an Agile method selection
is performed based on project scope, domain, context, and culture.

The Spotify company, which was founded in Sweden in 2006, has a music streaming
service. This service has benefited from substantial growth and had a total of 217

2

CHAPTER 1. INTRODUCTION 3

million monthly active users worldwide in April 2019 [88]. The Spotify company has
developed its own Agile culture, by tailoring Lean and Scrum, to facilitate software
development for hundreds of developers across 3 cities [58]. The Spotify model is an
example of a very large-scale agile tailoring, which is driven by creating autonomous
teams (i.e., squads) [57, 58]. This model employs numerous autonomous squads to
promote sustainable creative development.

1.2 Research Problem and Motivation

Large-scale projects are challenging because several teams need to work together to
release a single product [23, 26, 79]. Self-organisation does directly influence teams’
effectiveness since the authority of decision making is moved to the operational level,
which increases the speed and accuracy of problem-solving [76]. However, these au-
tonomous teams should have common objectives and be able to organise themselves to
overcome encountered challenges [48, 55]. Since self-organisation is recognised as a
hallmark of Agile software development over the last decade, large-scale organisations
started emphasising the necessity of employing autonomous teams to utilise effective
development [50, 76]. The Spotify model is an example of large-scale Agile tailoring,
which is driven by creating loosely coupled (i.e., autonomous), yet tightly aligned squads
(i.e., teams) [56, 57, 58].

This research study was motivated by my identification of conflicting trade-offs between
squads autonomy and alignment in the Spotify model. Hence, the research problem is
presented in how agile practitioners can resolve and balance the conflicting trade-offs
between squads autonomy and alignment. The Spotify model initiates the creation of
autonomous yet aligned squads by utilising an adaptive organisational structure [57, 58].
However, this model does not provide guidelines for balancing squads autonomy and
alignment. The Spotify model does not provide guidelines for: (1) establishing and
building autonomous squads, (2) aligning autonomous squads, (3) performing product
development in other contexts. Also, this research study identified a lack of research
into the Agile tailoring approach used in the Spotify model. Moreover, there is a lack of

CHAPTER 1. INTRODUCTION 4

approaches to architectural governance using the Spotify model. Indeed, there is a lack
of scientific research on the Spotify model across multiple projects, organisations, and
cultures.

1.3 Research Aims, Objectives, and Questions

1.3.1 Aims

The aims of this research are to (1) explore how Agile practitioners, from a FinTech
organisation, resolve the conflicting trade-offs between squads autonomy and alignment,
and (2) develop and evaluate new architectural governance practices, in a FinTech
organisation tailoring the Spotify model.

1.3.2 Objectives

To achieve these research aims, the following research objectives were developed:

• Objective 1: Describe approaches used, in a FinTech organisation, to achieve and
sustain squad autonomy in practice.

• Objective 2: Classify the Agile tailoring approach used in the FinTech’s Spotify
model.

• Objective 3: Tailor the FinTech’s Spotify model for architectural governance.

1.3.3 Questions

These research objectives were designed to answer the following research questions:

CHAPTER 1. INTRODUCTION 5

• RQ1: How do Agile practitioners, from a FinTech organisation, describe ap-
proaches to the balance between squad alignment and autonomy?

– RQ1.1: How do Agile practitioners, from a FinTech organisation, establish
and build squad autonomy?

– RQ1.2: How do Agile practitioners, from a FinTech organisation, achieve
and sustain the alignment of autonomous squads?

– RQ1.3: How do Agile practitioners, from a FinTech organisation, tailor the
Spotify model for B2B product development?

• RQ2: What is the approach taken to Agile tailoring, when using the Spotify
model?

RQ3: What new architectural governance practices can be introduced for loosely
coupled yet cooperating squads?

1.4 Research Design

To fulfil the aims and objectives of this research study, a qualitative design was employed.
This qualitative research design comprises two parts: a longitudinal embedded case study
and an intervention embedded case study.

A longitudinal embedded case study was conducted to explore Spotify Tailoring in a
multinational FinTech organisation. This longitudinal embedded case study lasted over
21 months, during which 225 ceremonies were observed, and 14 semi-structured open-
ended interviews were conducted. The collected data were analysed using an approach
informed by the Grounded Theory.

The analysis of this longitudinal embedded case study revealed a novel approach to Agile
tailoring, called Heterogeneous Tailoring. Three key features characterise this approach.
Firstly, each autonomous squad is empowered to select and tailor its development method.
Secondly, each squad is aligned with other squads and to common product development

CHAPTER 1. INTRODUCTION 6

goals and objectives. Thirdly, product steering committee draws the strategy of squads’
missions and aligns the product backlog among autonomous squads. However, two main
challenges to the Heterogeneous Tailoring approach were identified by this research.
Firstly, it is difficult to measure the overall code quality, performance, and productivity
for different squads. Secondly, aligning and governing architectural decisions across
autonomous squads requires new practices.

To overcome the second challenge, this research developed a novel approach to Agile
architecture governance. Then, an intervention embedded case study was conducted to
evaluate the developed approach. This intervention lasted over 3 months, during which 32
ceremonies were observed, and 8 semi-structured open-ended interviews were conducted.
The collected data was analysed using an approach informed by the Grounded Theory
method.

1.5 List of Publications

The following research papers were conducted throughout this research. Fig. 1.1 illus-
trates how the research questions correspond to the contributions mentioned above as
well as the following peer-reviewed research papers.

• Spotify Tailoring for Promoting Effectiveness in Cross-Functional Autonomous
Squads. In Agile Processes in Software Engineering and Extreme Programming -
Autonomous Teams Workshop (XP, A-Teams). [94].

• Influential Factors on Aligning Spotify Squads in Mission-Critical and Offshore
Projects - a Longitudinal Embedded Case Study. In Product-Focused Software
Process Improvement (PROFES). Received Best Full Research Paper Award.
[93].

• Spotify Tailoring for B2B Product Development. In Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). [95].

• Heterogeneous Tailoring Approach Using the Spotify Model. In Proceedings of
the Evaluation and Assessment on Software Engineering (EASE). [98].

CHAPTER 1. INTRODUCTION 7

• Spotify Tailoring for Architectural Governance. In Agile Processes in Software
Engineering and Extreme Programming - Autonomous Teams Workshop (XP,
A-Teams). [97].

• An Architectural Governance Approach by Tailoring the Spotify Model. AI &
Society: Journal of Knowledge, Culture and Communication. Special issue on
team autonomy in digital transformations. [96].

• A Safety-centric Change Management Framework by Tailoring Agile and V-Model
Processes. In International System Safety Conference (ISSC). [99].

1.6 Thesis Structure

This thesis consists of the following chapters:

Chapter 1 Introduction: Describes the research problem and motivations behind this
research study, the research aims, objectives, and questions, the employed research
design, the contributions of this study, and the structure of this thesis.

Chapter 2 Literature Review: Presents an overview of related literature. In keeping
with the research design and employed methods (described in Chapter 3), a minor
literature review was conducted upfront. Also, a detailed literature review is presented to
position the research findings and discussion.

Chapter 3 Research Design: Presents the research approach (philosophical worldview,
design, methods) employed in this study. This chapter presents the research methods used
in data collection and analysis. Also, this chapter describes the conducted longitudinal
and intervention embedded case studies.

Chapter 4 Spotify Tailoring for Establishing and Building Autonomous Squads:
Identifies influential factors on establishing and building autonomous squads.

Chapter 5 Spotify Tailoring for Aligning Autonomous Squads: Identifies influential
factors on aligning autonomous squads by investigating Spotify Tailoring.

CHAPTER 1. INTRODUCTION 8

Chapter 6 Spotify Tailoring for B2B Product Development: Identifies two main
aspects related to product development using the Spotify model. Firstly, The impact
of product development on squads autonomy and alignment was identified. Secondly,
performing B2B product development by tailoring the Spotify model was identified.

Chapter 7 A Heterogeneous Tailoring Approach to Agile Tailoring: Reveals a novel
approach to Agile tailoring (i.e., Heterogeneous Tailoring).

Chapter 8 Spotify Tailoring for Architectural Governance: Presents an evaluates
an approach to architectural governance. Also, this chapter adapts the Heterogeneous
Tailoring approach, which is presented in Chapter 7, to conform with the evaluated
approach to architectural governance.

Chapter 9 Discussion: Analyses and interprets presented findings in Chapters 4-8 based
on related literature, which is presented in Chapter 2. Also, this chapter analyses the
limitations of the study.

Chapter 10 Conclusion: Describes and summarises the contributions of this thesis.

CHAPTER 1. INTRODUCTION 9

[93]

[94]

RQ1.3. How do agile practitioners,
from a FinTech organisation, tailor the
Spotify model for B2B product
development?

Contribution 2.2 (Chapter 5):
Influential factors on aligning Spotify
squads were identified

Contribution 4 (Chapter 7): A novel
approach to agile tailoring was revealed -
“Heterogeneous Tailoring approach”

(All papers take part of this contribution)

Contribution 1 (Chapter 4):
Influential factors on establishing and
building autonomous squads were
identified

Contribution 2.1 (Chapter 5): Spotify
Tailoring, from a squad alignment
perspective, was revealed by identifying
new, modified and previously introduced
practices to the Spotify model

[98]

RQ1.1. How do agile practitioners,
from a FinTech organisation, establish
and build squad autonomy?

RQ2. What is the approach taken to
agile tailoring, when using the Spotify
model?

RQ3. What new architectural
governance practices can be introduced
for loosely coupled yet cooperating
squads?

[97]
Contribution 5.1 (Chapter 8): An
approach to architectural governance was
developed and evaluated by adapting
FinTech’s Spotify model

Contribution 5.2 (Chapter 8): The
Heterogeneous Tailoring approach was
adapted to accommodate the evaluated
approach to architectural governance

[96]

Research Question Contribution Research paper

RQ1. How do agile practitioners, from
a FinTech organisation, describe
approaches to the balance between
squad alignment and autonomy?

RQ1.2. How do agile practitioners,
from a FinTech organisation, achieve
and sustain the alignment of
autonomous squads?

[95]

Contribution 3.2 (Chapter 6): Spotify
Tailoring, from a B2B perspective, was
revealed by identifying new, modified and
previously introduced practices to the
Spotify model

Contribution 3.3 (Chapter 6): The
influential factors on Spotify Tailoring for
B2B product development were identified

Contribution 3.1 (Chapter 6): The
impact of product development on
squads autonomy and alignment was
identified

Aligning autonomous squads

Performing B2B product development

Figure 1.1: The connections between the research questions, contributions, and conducted
research papers

Chapter 2

Literature review

2.1 Introduction

This chapter presents an overview of Agile software development and Agile method
tailoring. This is followed by presenting large-scale agile context and some related Agile
methods to the research findings. Then, literature related to the research findings and
Agile architecture is presented.

2.2 Agile Software Development

Since the formulation of the Agile Manifesto, several iterative and incremental software
engineering approaches have been emerged and hence fall under the umbrella of Agile
software development [37]. These software engineering approaches advocate the philos-
ophy captured in the Agile Manifesto. Some well-known examples of Agile software
development approaches include Scrum, eXtreme Programming (XP), Crystal, Feature
Driven Development (FDD), Dynamic Software Development Method (DSDM), and
Adaptive Software Development (ASD). These approaches have some common shared

10

CHAPTER 2. LITERATURE REVIEW 11

techniques such as iterative and incremental software development, communication,
collaboration, coordination, acceptance of the uncertainty and welcoming change in
requirements even at late stages of the project [111]. However, each Agile approach has
its specific techniques, strengths and weaknesses [111].

Agile development methods are people-centred. They advocate an empowered and
collaborative way of working that is very different from the traditional approaches to
project management – such as the Waterfall and V-Model. Transforming organisations
from traditional to Agile methods does not require only employing Agile practices
but also readjusting the culture of organisations. Previous research [43] has identified
7 elements of Agile culture, which are employed in an Agile Culture Matrix. These
elements are unleashed purpose and meaningful results, Agile leadership, well-being and
fulfilment, collaborative communities and distributed authority, trust and transformation,
adaptability to change, and innovative learning and personal mastery.

2.3 Agile Methods

This section presents some well-known Agile methods related to this research such as
Lean, Scrum, and the Spotify Model.

2.3.1 Lean

Lean Software Development is a management philosophy that is a translation of lean
manufacturing principles and practices to the software development domain [60, 117].
Lean Software Development has three pillars, (1) perfection of the product (maximising
customer value), (2) perfection of the process (eliminating waste) and (3) perfection of
the individuals (respecting people). Also, Lean has five principles, (1) identify value,
(2) map the value stream, (3) create flow, (4) establish pull, and (5) seek perfection [75].
The applicability of Lean has been studied, and challenges are reported [75].

Because of the promising benefits that Lean affords, revised frameworks have been

CHAPTER 2. LITERATURE REVIEW 12

proposed to employ Lean software development in large-scale contexts. For example,
Kuusela and Koivuluoma [63] introduced a transformation framework, which includes
three cycles: Strategic alignment cycle, organisational and business alignment cycle,
and Lean implementation cycle. Another well-known example is the Lean Startup [14],
which is introduced by Eric Ries [44]. Lean Startup emphasises the perfection of the
product by developing what the customers want in a world filled with uncertainty, that
is depicted in Minimum Viable Product (MVP). Lean Startup movement has adopted
customer-centric software product development that is inspired by Lean principles.

2.3.2 Scrum

Scrum is an iterative and incremental Agile project management approach. This Agile
framework consists of three components, including roles, ceremonies, and artefacts [102].
Also, Scrum comprises a range of common practices [85]. Scrum process includes 3
distinct roles: Scrum team, Scrum Master, and Product Owner (PO) [102]. Previous
research [8] identified 9 roles for PO teams that are used to scale Agile methods to
large projects. These roles are Groom, Prioritiser, Release Master, Technical Architect,
Governor, Communicator, Traveler, Intermediary and Risk Assessor. Also, previous
research [10] identified performed activities by POs as part of a product-owner team to
manage scale, distance, and governance.

Some well-known ceremonies in Scrum include Daily Scrum Meeting, Daily Scrum
of Scrums Meeting, Sprint Review Meeting, and Sprint Planning Meeting [102]. Also,
Scrum provides 3 artefacts: Product Backlog, Sprint Backlog, and Burn-down Chart [102].
Paasivaara et al. [85] have identified 7 Scrum practices, which are typically used in global
development, namely: Backlog, Sprint Planning, Sprint, Daily Scrum, Scrum-of-Scrums,
Sprint Review (or Demo), and Retrospective.

Scrum-of-Scrums is a technique to scale scrum up to large-scale agile, where multiple
teams work on the same project [66]. This technique is considered as an approach
for coordinating multiple teams. In Scrum-of-Scrums, an ambassador from each team
participates in Daily Scrum meeting. Each team decides which team member should
be an ambassador to solve the inter-team dependency issues. Scrum-of-Scrums follow

CHAPTER 2. LITERATURE REVIEW 13

an Agenda in which ambassadors report completions, next steps and impediments on
behalf of the teams they represent. Resolution of impediments focuses on the challenges
of coordination between the teams, such as interfaces between teams and negotiating
responsibility boundaries. This technique facilitates cross-team synchronisation by
facilitating inter-team collaboration and coordination, which in turn enhances teams
productivity.

2.3.3 The Spotify Model

Spotify Organisation Structure: The Spotify model has been developed to facilitate
the development of music streaming service in a very-large-scale organisation. Spotify
organisation has hundreds of developers spread over more than 30 teams and across 3
cities [57, 58]. The Spotify organisation utilises an adaptive structure, which is based on
a matrix of two dimensions (vertical and horizontal) that is weighted towards delivery
and creativity [58, 57, 69]. The vertical dimension, which is the primary one, represents
the physical location of cross-functional teams where they spend most of their time.
The horizontal dimension is depicted in the knowledge sharing that would facilitate,
support and remove the encountered impediments by the squads through the utilisation
of Chapters and Guilds. Hence, while the vertical dimension represents the “What”, the
horizontal dimension represents the “How”. While the entrepreneur (vertical) dimension
tends to speed up the process, the professor (horizontal) dimension tends to slow down
the process trying to build things properly. The overall structure of Spotify organisation
consists mainly of Squads, Chapters and Guilds.

In the Spotify model, each squad is autonomous and has a long-term mission, which is
based on the product strategy and a short-term mission that is quarterly renegotiated [57,
69]. Squad autonomy represents the ability of squads for making decisions on their own
so that the company can scale without being held back by dependencies and coordination
problems. The Squads are encouraged to implement Lean Startup principles such as the
MVP where a feature is not finished until the impact is analysed [58, 69]. A squad does
not have a formally appointed Squad Leader [57, 58]. The Squad Leader is responsible
for communicating what problem needs to be solved and why. Hence, it is Squads’ job to
collaborate to find the best solution [56, 69]. A Squad has access to an Agile Coach; who

CHAPTER 2. LITERATURE REVIEW 14

is in charge of helping squads to progress and improve their ways of working to achieve
their goals [57, 69]. Also, a squad does not have a manager but rather a product owner
who is responsible for prioritising the work [58, 69]. However, the Product Owner will
not be involved in how to solve the problem. On the other hand, it is the responsibility of
the Product Owners as whole to collaborate to maintain a high-level roadmap that shows
where the organisation is heading [58, 69]. Moreover, maintaining a matching product
backlog for each squad is also their responsibility [58, 69].

A Tribe is a collection of squads that are designed to be smaller than 100 people and
aims to minimise dependencies that can slow or obstruct a squad. In order to promote
collaboration between squads, they should be co-located. A tribe leader is responsible
for providing the best possible habitat for all squads within the tribe [57, 58, 69]. A
gathering is arranged regularly to show what squads have worked on, delivered and
achieved so that others can learn from them [57, 58, 69].

Within the same tribe, there are small groups of people, called Chapters, that have similar
skills and working within the same competency area. For example, a front-end engineer
Chapter or quality assurance Chapter. People within a Chapter meet regularly to help in
identifying and solving the problems, which can encounter other squads, quickly. Each
Chapter has a leader who is responsible about communicating what problems need to
be solved and why. A Chapter leader is considered as the line manager and works in
a Squad as other members within the same Chapter. Chapters are considered the glue
that sticks the company together without sacrificing too much autonomy [57, 58, 69].
While Chapters are always located within a Tribe, there are groups of people who are
wide-reaching with a desire to share knowledge, tools, code, and practice across the
whole organisation. These groups are called Guilds in Spotify [58, 116].

Previous research has identified 4 patterns for knowledge sharing by cultivating Spotify
guilds [106]. These patterns are (1) Book clubs, which focus on learning rather than
doing – utilising activities such as lunch and learn seminars, invited guests, and discussing
better ways of working, (2) Open source societies, which concentrate on maintaining,
improving, and setting the future strategy for specific components, (3) Support lines,
which is responsible for onboarding new engineers, answering technical questions,

CHAPTER 2. LITERATURE REVIEW 15

and facilitating solution discussions, and (4) Standardisation committees, which align
practices across the company through establishing concrete artefacts such as coding
standards or recommended tools.

Spotify Organisation Culture: The structure of Spotify organisation is designed to
promote Agile development culture. In this culture, alignment of squads enables squad
autonomy. Kniberg [57, 58] says: “The stronger alignment we have, the more autonomy

we can afford to grant... One consequence of having autonomous squads is having a very

little standardisation”. Hence, employing autonomous squads that are aligned increases
motivation, quality and also fast releases. Each Squad has the autonomy to decide what to
build, how to build it, and how to work together while building it by having the required
support from Agile coaches. However, squads should be aligned to a product strategy.
Thus; squads should be autonomous, but do not sub-optimise [57, 69].

Spotify engineering culture values cross-pollination more than standardisation [57, 58].
For example, if a specific tool gets used by many squads, that tool becomes a path of
less resistance and others will tend to choose the same tool and thus became a default
standard between all squads. Also, alignment over the product level is adopted because
of the realisation of a very-large-scale organisation size where hundreds of developers
are employed [58, 69]. However, In the Spotify culture, squads do share products instead
of owning them.

Spotify aims to minimise handoff to scale out without having dependencies and coordina-
tion processes between squads [56, 69]. However, there will always be dependencies with
multiple squads in place. Therefore, Spotify culture adopts some continuous discussions
to find ways to eliminate problematic dependencies which often lead to reprioritisation,
reorganisation, architectural changes or technical solutions [58, 69]. In Scrum-of-scrums,
a synchronisation meeting is continuously conducted between ambassadors to report
completions, next steps and impediments on behalf of the teams they represent [86].
However, in Spotify, a synchronisation meeting is allowed only on demand to coordinate
between the involved squads where dependencies are existing [58, 69]. Hence, Spo-
tify tries to minimise handoff and waiting to scale without having dependencies and
coordination.

CHAPTER 2. LITERATURE REVIEW 16

A fail-friendly environment is employed in the Spotify organisation to utilise a fast failure
recovery strategy, which aims to speed up the learning process through capturing failures
and eliminating them in future [56, 69]. In this fail-friendly environment, squads share
encountered obstacles and failures through shared Fail Walls. In addition, a Postmortem
Documentation process is performed at the end of each project by identifying what
went successful or unsuccessful in mitigating future risks [56, 58, 69]. Thereby, the
Spotify organisation improves the employed processes and the product itself by capturing
learning lessons that can be used to avoid encountered problems in future.

The release strategy in the Spotify model is based on enabling decoupled releases by
having a decoupled architecture [56, 69]. This strategy simplifies the release process and
encourages squads to provide frequent small independent releases [69]. Thus, each client
application or module has its release train that departs at a regular schedule [57, 69].
The squads are encouraged to release unfinished work as hidden to determine possible
integration problems and minimise the need for code branching [57, 58]. In addition,
Spotify employs a Limited Blast Radius technique to build an experimental friendly
culture and to minimise possible negative ripple effects when encountering release
failure [56, 69]. This Limited Blast Radius technique encourages squads to provide
frequent small releases. Also, this technique does experiments on a limited number of
end-users to get feedback and learn quickly, instead of wasting resources trying to predict
and control all possible risks in advance.

2.4 Agile Architecture

In the last two decades, the role of software architecture, in Agile software development,
has been perceived as a controversial issue [2, 16, 118]. While many advocates for giving
to architecture the importance in Agile software development it has in other development
approaches such as Big Design Up-Front, other opponents against that. These advocates
have doubts about the scalability of any software development approach that does not pay
sufficient attention to software architecture [2], especially for accomplishing required
quality objectives when developing large-scale software projects.

CHAPTER 2. LITERATURE REVIEW 17

Cockburn [21] argues about the unfeasibility of using Agile software development in
large-scale and life-critical software projects. This unfeasibility is because the benefits of
software architecture are missing in Agile methods and teams are completely dependant
on tacit knowledge. However, Falessi et al. [33] found that Agile practitioners realise
the software architecture as relevant based on some aspects, such as rationalisation of
previous design decisions, documentation of ranked requirements that demand flexibility,
and planning.

One of the principles behind the Agile Manifesto notes that “continuous attention to

technical excellence and good design enhances agility” [37]. This principle indicates
paying attention to the architecture makes Agile software development even working
better. The essence of agility is responsiveness, learning, and sufficiency [16]. Neglecting
certain architectural considerations even early in the development process can make
architectural refactoring to be costly [31]. What teams build is influenced and constrained
by how they build. Also, how teams build something is influenced and constrained
by utilised design and architecture [16]. By focusing on a simple question, “what

architectural issues block a team’s agility?”, Agile practitioners can work together to
achieve technical excellence, good design, and improve the agility of practitioners [16].
For instance, previous research [55] identified modular architecture and microservices as
prerequisites for applying Agile practices. If the architecture is monolithic and a large
part of it is built without modularisation, then applying Agile practices is considered as a
difficult task [55].

Previous research found an iterative and incremental way of architecture evolution can
reduce the Big Design Up-Front and keep the software project synchronised with the latest
changing conditions [15, 27, 61]. Hence, several researchers realised the ability to have
coexistence of software architectures and Agile development [2, 7, 15, 27, 31, 61]. Large-
scale agile methods and frameworks, such as DAD [103] and SAFe [67], emphasise
the necessity of architecture-agility combination and coexistence. This emphasis is
depicted in the employment of Architecture Owners in DAD [103] and Enterprise
Architects in DAD [103] and SAFe [67]. Each one of these roles has its identified
responsibilities [67, 103]. This coexistence resulted in utilisation of architecting activities
and approaches, as well as Agile architecting practices [118].

CHAPTER 2. LITERATURE REVIEW 18

Yang et al. [118] found that the architecting process is comprised of 11 architecting
activities, which cover the entire architectural lifecycle. These activities are Architectural
Description, Architectural Evaluation, Architectural Understanding, Architectural Main-
tenance and Evolution, Architectural Analysis, Architectural Refactoring, Architectural
Impact Analysis, Architectural Implementation, Architectural Synthesis, Architectural
Reuse, and Architectural Recovery. These activities received varying degrees of attention
in the architecture-agility combination. Most research effort has been put on Architec-
tural Description since architecture has to be described to a certain extent based on the
desires of Agile practitioners. Also, architectural understanding, analysis, and refactoring
are considered as the most beneficial activities used with Agile development.

Also, Yang et al. [118] identified 41 Agile practices used in the architecture-agility combi-
nation. However, only a few of these practices have been widely used (such as “Backlog”,
“Sprint”, “Iterative and Incremental Development”, “Just Enough Architectural Work”,
and “Continuous Integration”). While some practices, such as “Iterative and Incremental
Development”, are commonly employed by various Agile methods, others are highly
linked to specific Agile methods. Also, the employment of Agile practices is based on
practitioners experience and knowledge because of the lack of guidance on how to use
these practices should be combined in the architecture-agility combination.

Agile Architecture can be understood as patterns or tactics that enable a simultaneous
focus on Agile development and architecture [11]. Bellomo et al. identified Agile
architecture patterns that impact the employed resources (time and cost) to implement,
test, and deploy requested changes. These patterns and tactics include separate interfaces,
layer architecture, restrict dependencies and separate concerns. Also, Bellomo et al.
identified some patterns that improve software product scalability. These patterns include
encapsulation of algorithms, clustered architecture with load balancing and replicated
copies, and data caching. Moreover, Bellomo et al. identified some patterns that focus
on flexibility in deployment and controlling the cost and time for testing. These patterns
include standardised and configurable architecture (parameterisation and static and
dynamic binding), virtualisation (layering both the infrastructure and the application),
and executable (interface-driven code structure).

CHAPTER 2. LITERATURE REVIEW 19

An alignment of Agile architecture was proposed by providing an example of using
architectural tactics and aligning architecture, production infrastructure, and Agile devel-
opment teams [82]. Nord et al. explored architectural tactics that support scaled Agile
development and improve the alignment of architecture and software development. They
proposed an alignment approach that comprises a vertical and horizontal decomposition
of software architecture as well as a matrix augmented-role team structures by using
Scrum. They also proposed the employment of a catalogue of tactics mapped to Agile
software development, which can be collected from empirical research and literature.

Architect roles and architecture practices were utilised to develop and evaluate a frame-
work for Agile architecting embedded software products in large-scale organisations [73].
The identified Architect roles include Chief Architect, Governance Architect, and Team
Architect. By analysing the relationships among the architects, Martini and Bosch found
that most practices need such roles to coordinate and cooperate and hence mitigate
the challenges. Also, they identified different sorts of teams: Feature Team, Runway
Team, Architecture Team, and Governance Team. Feature Teams are steered by Product
Managers and consists of cross-functional software development teams. Each Feature
Team has a Team Architect who is responsible for the reference architecture and leading
architecture activities. Runway Teams are dedicated teams for some identified sprints to
focus on the architecture feature and hence to overcome architectural debt, which might
lead to possible crisis. Architecture Team, which comprises the Architect roles above,
work together to collaborate and coordinate as no single architect can have all the infor-
mation needed to support numerous teams within a large-scale organisation. Governance
Team consists of Governance Architects and Product Owners who are responsible for
risk assessment of architecture changes and prioritising the backlogs of the teams to
balance the short-term with the long-term objectives.

2.5 Agile Tailoring

Agile methods became increasingly attractive for many organisations of different con-
texts because of the realisation of successful implementation of projects using Agile

CHAPTER 2. LITERATURE REVIEW 20

methods [17, 26]. Nevertheless, software development methods have been initially intro-
duced for specific contexts with an assumption to be applicable for any kind of software
project [17]. Subsequently, however, organisations encountered failed projects, and
hence communities of Software Engineering started to research method tailoring to make
the development methods more adherent to the development context (i.e., organisation
or project level) [17, 18, 35]. Method tailoring is needed for either of organisation or
project context adequacy despite the selected development method or process [18, 54].
A long time ago, software method tailoring had been discussed and continued to be a
current need for the software industry [17, 35].

Software method tailoring is defined as “the adaptation of the method to the aspects,

culture, objectives, environment and reality of the organisation adopting it” [17]. In the
same way, Kalus and Kuhrmann [54] define software method tailoring as the adaptation
of the development method to the project requirements. The implementation of software
method tailoring requires strategies or approaches to execute the tailoring and might
use a criteria to decide on how best to select tailoring options defined by the tailoring
approaches [24].

2.5.1 Tailoring Approaches

The research work on Agile tailoring addresses different needs by using various ap-
proaches for tailoring. Previous research includes papers identifying most used prac-
tices [53, 62, 72], comparing identified Agile practices and quality levels [1], proposing
new methods for Agile practices adoption based on different criteria [6, 19, 32, 46],
considering maturity models to assess the adopted Agile methods and practices [3, 107],
proposing hybrids of Agile and plan-driven approaches in large-scale setups [38, 45, 52],
comparing different tailoring approaches [42], classifying the approaches used to perform
method tailoring have been used in previous research [17, 24, 35].

Literature was surveyed on the use of Agile in global software development and then
analysed to identify and listed the most referenced Agile practices [53]. Similarly, Kura-
pati et al. [62] surveyed the software development industry to understand which Agile

CHAPTER 2. LITERATURE REVIEW 21

practices are being used. For a similar purpose, however, an empirical study identified
common adopted Agile practices and listed practices that normally are used together to
satisfy customers, by conducting a survey [72]. Manyam and Kurapati also tried to iden-
tify how the adaptation of the identified practices has been conducted. The commonly
adopted practices that were identified include stand-up meetings, sprint/iteration, testing,
communication, short releases and continuous integration.

Factor analysis was applied to a set of 58 Agile practices and extracted 15 factors or
groups [1]. Abbas et al. claim that the identified factors and their associated practices
can guide Agile process improvement. The correlation between the factors showed that
using quality assurance, iterative and incremental practices increases the success rate.

The literature on situational method engineering was surveyed, and a synoptic evaluation
was presented in the context of formalising a conceptual framework [46]. Henderson-
Sellers and Ralyté proposed metamodels based on the surveyed results, which were
then used to build high-level process models for method construction. This work also
described method fragments/chunks by considering their identification and creation
(from existing methods, from scratch or from past usage). Henderson-Sellers and
Ralyté analysed method creation in terms of various processes for constructing a full
methodology from method fragments/chunks.

The Strategic Analysis for Agile Practices framework [32] was proposed to facilitate
the selection process for Agile practices adoption based on the business goals of the
organisation. This framework is built upon a knowledge base of experiences collected
from empirical studies, which extended the Situational Method Engineering concept and
used concepts from the Balanced Score Card.

A metamodel for Agile methods constructions based on the concepts of Situational
Method Engineering was designed [6]. Ayed et al. investigated how Agile methods can
be constructed in-house to address specific software development needs by examining
a case study, which focuses on the tailoring of XP and Scrum. This work focused
on the customisation of any Agile method and investigated an approach based on the
Situational Method Engineering paradigm, which includes measurement concepts for
creating context-specific Agile methodologies. Then, Ayed et al. designed an Agile

CHAPTER 2. LITERATURE REVIEW 22

metamodel to support the construction of new Agile methods. This metamodel relies
on measurements to guide the construction of new Agile methods and throughout the
development process. Also, this metamodel is based on assumptions originated from
software development tailoring criteria, such as the organisation’s business goals.

An approach for tailoring software development processes according to project needs
was proposed [19]. This approach is built for a software product line and based on
method engineering techniques. Thus, Casare et al. take into account the similarities and
differences of adopted/tailored processes, as well as reusable process fragments.

Sidky Agile Measurement Index [3] was proposed as an Agile maturity model to facilitate
the adoption of Agile practices. This model is a 5-step road map to guide teams based
on essential values to agility: enhancing communication and collaboration (level 1),
delivering software early and continuously (level 2), developing high quality, working
software in an efficient and integrated manner (level 3), respond to change through
multiple levels of feedback (level 4) and establishing an environment to sustain agility
(level 5). The Sidky Agile measurement index is not based on a specific Agile method
but instead uses Agile values and principles to define the path to agility.

An assessment framework was proposed to define which Agile practices and methods are
appropriate for an organisation [107]. This approach examines Agile methods based on
their adequacy, organisations capability to support the adopted principles and practices,
and the effectiveness of the adopted Agile method. To facilitate the assessment process,
Soundararajan et al. proposed the Objectives, Principles and Practices (OPP) Framework
to guide the assessment.

The Hybridisation of Agile and plan-driven approaches should be scalable where such
hybrids can provide better cost-benefit ratios [52]. Imani et al. conducted empirical
research by conducting two case studies and surveys. They found that such hybrids
are beneficial increases the likelihood of improving the cost-benefit ratio, compared to
purely plan-driven methods. To benefit from such hybrids, Hayata and Han proposed an
approach to project development and management by blending Scrum into traditional
plan-driven project development and management [45]. Hayata and Han discussed the
management activity involved in Scrum, investigated the team and meeting composing

CHAPTER 2. LITERATURE REVIEW 23

of Scrum, analysed the challenges and benefits of applying Scrum in traditional project
development and management, illustrated and discussed the blending structure, and
compared the iterative process with Scrum and planned process without Scrum.

The integration of agile and plan-driven development elements was addressed by devel-
oping a hybrid adaptive methodology reference architecture model using a qualitative
constructive empirical research approach [38]. Gill et al. conducted an iterative qualita-
tive constructive empirical research to identify the agility, abstraction, business value,
business policy, rules, legal, context and facility elements that have not been explicitly
modelled or discussed in International Standards such as the ISO/IEC 24744 metamodel.
Gill et al. claims that the elements of the hybrid adaptive methodology reference architec-
ture can be used as a checklist or vision-guiding reference architecture when constructing
various situation-specific agile and hybrid methodologies.

An empirical case study was conducted to compare Template-based and Automatic pro-
cess tailoring approaches [42]. Template-based tailoring refers to a series of predefined
processes for different project types and chooses the most appropriate one for each
project. Automatic tailoring refers to a model-driven engineering approach for defining
process models and adapting them to project contexts. González et al. applied both
strategies to software process lines of a small Chilean company and found that automatic
tailoring is always more productive, but this difference is mitigated when predefined
processes are more frequently applied in the organisation.

Approaches to perform software method tailoring have been identified, in literature [17,
24, 35], and classified into Contingency Factors (aka Template-based Tailoring [42])
and Method Engineering (aka Automatic Tailoring [42]). The Method Engineering

approach is based on meta-method processes and suggests the creation of new methods
based on existing method fragments to be applied in specific contexts [17, 24]. This
approach concentrates on all activities related to software development methods and
creates in-house methods – organisation or project-specific methods [17]. These methods
are more efficient to respond to challenges of real projects and their context instead of
relying on existing methods [17]. This approach brings flexibility to the organisation
but introduces challenges such as how to control method fragments or how to assemble

CHAPTER 2. LITERATURE REVIEW 24

the new method for specific context and situations [17, 46]. The Method Engineering
approach introduces other challenges because of the needs for (1) tools used for method
construction, (2) quality evaluation models for newly introduced methods, (3) knowledge
on how to handle specific situations – definition of fragments and specifying which
fragment would work best in a specific situation [17, 46].

The Contingency Factors approach addresses the tailoring by selecting multiple methods
to be available to the organisation and then performing method selection based on
the features of the project context such as organisational structure and uncertainty
level [35, 17]. This Contingency Factors approach assumes that there is no sufficient
development method for all cases an organisation can encounter [24]. Thus, the right
method should be selected from a portfolio of predefined methods based on the targeted
development context and by following predefined criteria for method selection by the
organisation [36]. The main challenge for adopting the contingency factors approach is
that team members should have a good understanding of a range of software development
methods and should be capable of executing them according to the contingencies needed
for the context [36].

2.5.2 Tailoring Criteria

The process of software method tailoring can be influenced by tailoring criteria [17,
54, 114]. These tailoring criteria can be used to select which software development
method or practices to be adopted by the organisations. Table 2.1 provides an overview
of the tailoring criteria categories, their description, and some examples for each category.

Kalus and Kuhrmann [54] conducted a systematic literature review and identified 4
software development tailoring criteria categories. These categories are team, external
environment, internal environment, and objectives. Campanelli and Parreiras [17] re-
searched the tailoring criteria, by conducting a systematic literature review, to identify
tailoring criteria used in Agile tailoring literature and hence expanded the categories
defined by Kalus and Kuhrmann [54]. Campanelli and Parreiras proposed two new
categories, called maturity levels and previous knowledge, and new attributes/items for

CHAPTER 2. LITERATURE REVIEW 25

Table 2.1: The identified tailoring criteria categories, description, and examples

Tailoring criterion Description and examples

Team

Represents aspects related to the development team
and how the team is composed and interact.
Examples: Size, distribution, turnover, domain,
previous/good cooperation, tool knowledge,
technology knowledge and process knowledge

Internal
environment

Represents aspects related to the organisational
operation and processes.
Examples: Clear project proposal, prototyping,
management availability and support, project budget,
project type, project role, project duration, financial
controlling, measurement, subcontractors, technical
support, programming language, operating system,
database, tool infrastructure, organisation size,
communication aspects, and culture.

External
environment

Reflects the aspects outside of the organisation
Examples: Legal aspects, number of Stakeholders,
stakeholder availability, stakeholder background,
requirements stability, client process and availability,
contract-type, user availability, user background.

Objectives

Represents the whole technological environment of the
organisation as well as business goals to be achieved.
Examples: Complexity, degree of innovation, domain,
conceptual solution, technical solution, legacy system,
legacy system documentation, safety and security,
hardware development, user interface,
system integration test, and business goals.

Maturity
levels

Is concerned about tailoring software methods
based on the maturity levels desired/needed by
the organisations.
Examples: Maturity levels to define which Agile
practices should be adopted.

Previous
knowledge

Considers the work done on previous projects
and the team members previous experiences
to drive the tailoring process

the remaining categories, which were identified by Kalus and Kuhrmann.

CHAPTER 2. LITERATURE REVIEW 26

Tripp and Armstrong [114] conducted a survey to explore and investigate the relationships
between the motives for adopting Agile method practices. The analysis of the drivers for
Agile practices adoption and tailoring was conducted and identified internal environment
and business objectives as the main factors affecting Agile tailoring [114]. Tripp and
Armstrong identified 3 motives for Agile adoption: a desire for increased software
quality, efficiency, or effectiveness, which are associated with different configurations
of project management. Also, Tripp and Armstrong [115] identified 12 commonly used
Agile development practices into a typology. This typology is based upon whether these
practices are primarily of project management or software development approach focus.
Besides, Tripp and Armstrong examined organisations’ motivations for adopting Agile
impact the adopted practices and hence causes Agile tailoring, which may lead (or not
lead) to differences in project performance.

2.6 Large-scale Agile

At the early stages of the Agile software development introduction, Agile methods have
been perceived to be the best fit for small collocated self-organising teams [30, 51]. Since
many organisations with small collocated teams have realised successful implementation
of projects utilising Agile methods, Agile methods became increasingly attractive for
many other organisations with large-scale projects of different natures [17, 26].

The term large-scale Agile has been used to describe Agile software development in
wide-ranging contexts. “Large-scale agile” is defined by Dingsøyr et al. [29] as “Agile

development efforts that involve a large number of actors, a large number of systems and

interdependencies, which have more than two teams”, which is in line with Rolland et al.
definition [90]. Whereas, a very large-scale – “Enterprise Agile” [9, 34] – is defined as

“the Agile development efforts with more than ten teams” [29]. In the same way, while
Large Scale Scrum (LeSS) is applied to up to 10 teams (of around 7 people for each
team), LeSS Huge is applied to a few thousand people working on one project [65].

Dingsøyr et al. [28] provided a taxonomy for scaling Agile software development. This

CHAPTER 2. LITERATURE REVIEW 27

taxonomy is comprised of: (1) small-scale (1 team), (2) large-scale (2-9 teams), and
(3) very large-scale (>9 teams). In this research, the term “large-scale project” refers to a
project that employs Agile development and involves a large number of interdependencies
and a large number of people including 2-9 collaborating teams of up to 100 members.

Many scaling Agile approaches exist in the literature, but only a few are found in the in-
dustry [77, 113]. These scaling Agile approaches include SAFe, LeSS, Scrum-of-Scrum,
Nexus, or internally created methods [77, 84, 113]. Theobald et al. [113] reported the
identified commonalities of existing scaling Agile approaches concerning their practices.
They found that the existence of practices that are common to most Agile approaches and
frameworks – like the scaled Scrum events, e.g., a scaled planning meeting or retrospec-
tive. Ozkan and Tarhan [84] conducted a review of scaling approaches to Agile software
development methods (such as Scrum at Scale, Nexus, LeSS, SAFe, Spotify, DAD, and
DSDM) and described how and to what extent these Agile methods provide scaling.

Large-scale projects are subject to challenges as several teams should work closely
together to release a single software product while multiple teams need to communicate,
collaborate and coordinate [23, 26, 79]. Moe et al. summarised some of the research
discussions on challenges in large-scale Agile development [79]. Also, Conboy and
Carroll identified some challenges associated with implementing SAFe, Scrum-at-Scale,
LeSS, and other customised Agile frameworks [23]. The identified challenges in large-
scale agile include maintaining teams autonomy [23] and aligning self-organising teams
through coordination [26, 79], knowledge sharing [79], technical consistency [26] and
other aspects [23, 26, 79].

2.6.1 Autonomous Teams

The concept of “Autonomous Teams” has different origins and definitions in the literature
since it was studied and described from various perspectives in the past [110]. Stray et
al. [110] found that the closest definition of autonomous teams as applied from outside
software engineering into Agile development comes from the knowledge-management
perspective. Stray et al. state that that the first introduction of autonomous teams
into software engineering was made by way of the Agile manifesto, which cited self-

CHAPTER 2. LITERATURE REVIEW 28

organising teams as the source of the best architectures, requirements, and designs. Other
researchers define autonomous teams in terms of informal self-organising roles [50].

The concept of self-organising was recognised as one of the key principles of Agile
software development since the introduction of Agile Manifesto [37]. Self-organisation
is identified as one of the Agile success factors [20, 26]. Highsmith [47] describes Agile
teams as self-organising teams, which are composed of “individuals [that] manage their

workload, shift work among themselves based on need and best fit, and participate in

team decision making”. Thus, autonomous teams should be composed of cross-functional
teams that can cover the full development cycle of a project [55]. These Agile teams
must have mutual trust, respect, common focus, and the ability to organise themselves
repeatedly to overcome challenges [22].

Agile teams must have common objectives and should be accountable to commit to work
and organise themselves to overcome encountered challenges [48, 55]. The autonomy of
teams has a direct influence on teams’ effectiveness since the authority of decision making
is moved to the operational level, which increases the development speed and accuracy of
problem-solving [76, 93]. Hoda [49] identified some practices of self-organising Agile
Teams. Also, Hoda [50] identified six informal and spontaneous roles that Agile team
members adopt, which are claimed to facilitate self-organisation and guide Agile coaches
in working with Agile teams.

Autonomous teams are not uncontrolled – leaderless – teams [112, 22]. The leadership in
self-organising teams is considered light and adaptive by providing feedback and subtle
direction to the team [112, 4]. Leaders in Agile software development are responsible for
building strategy, setting directions, obtaining resources, aligning people, and motivating
teams [4]. These leaders have job titles in Agile projects – such as Scrum Master in
Scrum, Coach in XP, and Squad leader in Spotify.

Previous research has identified some barriers to the autonomy of teams in large-scale
agile. For instance, Moe et al. [78] found that (1) Scrum emphasises self-organisation but
does not provide guidelines for how teams should be organised, (2) providing a conductive
environment to the self-organisation increases external autonomy, and (3) high individual
autonomy is considered as a barrier to self-organisation since members could prefer their

CHAPTER 2. LITERATURE REVIEW 29

own goals over team goals. Also, interfacing, coordination, knowledge sharing, and
alignment between teams are considered challenging [23, 26, 79]. Besides, organisations
should employ sufficient autonomous release processes that grant independence and
authority to teams [55]. This process helps individual teams to provide shapable new
products or features in isolation from other teams.

The Spotify model is an example of an Agile engineering culture, which is driven by
creating autonomous teams (i.e., squads) to facilitate software development for hundreds
of developers [57, 58]. This model employs autonomous squads to promote sustainable
creative development for a very-large-scale software development programme. The
Spotify model is driven by creating autonomous yet tightly aligned squads [57, 71].

Mankins and Garton [71] identified 3 challenges to getting the balance right between
individual autonomy and organisational goals when using the Spotify model. Firstly,
balancing autonomy and accountability for produced results, and for the actions and be-
haviours that deliver those results. Organisations should put squads’ strategy into practice
with measurable objectives toward organisations’ goals and specify clear expectations to
reach the goals. Thus, squads are held accountable for achieving their missions since they
have freedom in determining how to achieve their missions. Secondly, balancing freedom
to innovate versus following proven routines to get both outcomes – consistency and
innovation. In some software development areas, the speed of innovation is critical and
demands autonomy, small teams, and organisational agility. Other areas, however, may
benefit from standardised approaches of software development, which enforces routines.
Finally, balancing alignment with control to ensure that coordination and connectivity
happen among those squads without relying on controlling managers.

2.6.2 Inter-team Coordination

When teams grow in size, coordination becomes necessary to manage the dependencies
between multiple teams. Coordination helps in accomplishing the transparent participa-
tion of all stakeholders and contribute to set rules and standards that would overcome
possible difficulties that might hinder large-scale projects [28, 79]. Scaled Agile has been
a hot research topic in the Agile community for some years now [28, 104]. Inter-team

CHAPTER 2. LITERATURE REVIEW 30

coordination is one of the important topics that have been pointed out in large-scale agile
in XP2016 [79]. Dingsøyr et al. [28] identified a standard taxonomy of Agile software
development scale, which is connected to the coordination approaches. The small-scale
agile, which consists of 1 team, use Agile practices such as daily meetings, common
planning, review and retrospective meetings. The large-scale agile, which consists of 2-9
teams, achieves coordination in a new forum such as a Scrum-of-Scrums forum. The
very-large-scale agile, which consists of more than 10 teams, employs several forms of
coordination, such as multiple Scrum of Scrums.

In the last decade, large-scale software development has identified coordination chal-
lenges among teams. Hence, the team of the team’s setup has been used because of the
increasing dependencies, complexity and uncertainties [12, 59, 74, 101]. As projects grow
in size and complexity, the number of inter-team dependencies also tend to increase [74].
Hence, more coordination effort is needed to deal with these dependencies so that each
team’s goal is achieved, and the overall goal of the project is obtained [59, 64, 86, 101].
Also, as specifications of the requirements might change over time, where Agile software
development welcomes changing requirements even late in development, large-scale
projects come with more uncertainties that also affect coordination. These uncertain-
ties emerge because of the unpredictability of required tasks that team members shall
perform [59]. For instance, what should be prioritised first, which team should tackle
which tasks and how to do tasks, as different people might have different opinions. If
inter-team coordination is weak, this can contribute to integration failure. Furthermore,
with the team of the team’s setup, the project increases fast in complexity [12]. Thus,
large Agile projects do need coordination [26] to resolve the dependencies between
different sub-projects and between the teams [70].

A typical example of handling inter-team coordination is depicted in the Scrum-of-Scrums
approach [28, 101]. The team of team’s setup addresses the needs for coordination as
additional events that support cross-team coordination through; (1) inter-team Sprint
Planning meetings, (2) inter-team Daily Scrums, (3) inter-team Product Refinements
and (4) inter-team Sprint Reviews. These meetings are used as a way of keeping the
teams synchronised and coordinated instead of ending up being a status report meeting
for the management [64]. In these meetings, sending one representative of each team is

CHAPTER 2. LITERATURE REVIEW 31

considered a common way to have sufficient meetings. However, Paasivaara et al. [86]
emphasised the benefit of having smaller and focused inter-team meetings with only
participants of similar goals and interests.

2.7 Summary

At the time this research study started, in 2015, there was no scientific research on the
Spotify model. In 2017, however, Mankins and Garton [71] identified 3 challenges to
getting the balance right between individual autonomy and organisational goals when
using the Spotify model. Also, in 2019, Šmite et al. [106] has studied patterns for
knowledge sharing by cultivating Spotify guilds. The critical analysis of previous
research on the Spotify model has been limited to the grey literature [56, 57, 58, 69].
Also, there is no identified scientific research on the Spotify model across multiple
projects, organisations, and cultures. Hence, this literature review identified a lack of
scientific research into the Spotify model.

The Spotify model has become influential among Agile proponents. It formed the basis of
Agile methods used in numerous other organisations of different contexts. This influence,
in turn, led to the decision of exploring the Spotify model in other contexts than its
originated (i.e., other software industries, projects, organisations, and cultures).

At the beginning of this study, a minor literature review was conducted to understand
the basic facts and terminologies of the Spotify model and other research aspects to
converse with the participants during interviews. However, a detailed literature review
was conducted at later stages of this research on related aspects of the grounded findings
to facilitate the discussion. Hence, this chapter presents an overview of the Spotify
model and some related aspects to the findings such as well-known Agile methods,
Agile architecture, Agile method tailoring approaches and criteria, large-scale agile,
autonomous teams, and inter-team coordination.

Chapter 3

Research Design

3.1 Introduction

This chapter details the research approach of this study by following Creswell’s frame-
work [25]. Creswell’s framework considers a Research Approach as an overarching
framework that guides research studies from the philosophical assumptions behind an
inquiry, which are followed by procedures of inquiry (called Research Designs), to
detailed research methods for data collection, analysis, and interpretation. Research
approaches are plans and procedures for research that involves several decisions on how
to study a topic. The purpose of research approach selection is not only to guide the
researcher based on the nature of the research problem but also to enable the audience
to understand and evaluate the conducted research and its results. A research approach
involves the intersection of (1) research philosophy, (2) research design (i.e., strategy of
inquiry), and (3) specific research methods [25].

32

CHAPTER 3. RESEARCH DESIGN 33

3.2 Components Involved in a Research Approach

Creswell [25] introduced a framework for research (as illustrated in Fig. 3.1), which is an
interconnection between Philosophical Worldviews, Designs, and Research Methods. A
research approach is defined by Creswell as “the plan or proposal to conduct research,

involves the intersection of philosophy, research designs, and specific methods”.

Figure 3.1: Creswell’s framework for research [25]

Detailing an explicit followed research approach allows the researcher to situate the study
in a scientific context. Hence, the audience will be able to understand the underlying
philosophical assumptions and limitations, research objectives, and research results [25].
Creswell describes 3 framework components that involve a research approach:

• Philosophical worldviews are the assumptions about what constitutes knowledge
claims.

• Research Designs are the strategies of inquiry, which are the general procedures
of research.

• Research Methods are the detailed procedures of data collection, data analysis,
and interpretation.

CHAPTER 3. RESEARCH DESIGN 34

The following section describes the employed research approach by positioning these
components in this study.

3.3 The Employed Research Approach

This research utilises a qualitative design [25]. In essence, this is the process of conduct-
ing a longitudinal embedded case study and then an intervention embedded case study.
While the emphasis in this research is on the longitudinal embedded case study part, the
intervention part provides additional details in response to some identified challenges.
The outcome of this study is an analysis of the entire set of findings from both parts,
which is an interpretation of the findings. This section describes the aims and objectives,
philosophical worldview, research design, and research methods of the study.

3.3.1 Aims and Objectives

This research aims to (1) explore how Agile practitioners, from a FinTech organisation,
resolve the conflicting trade-offs between squads autonomy and alignment, and (2) de-
velop and evaluate new architectural governance practices, in a FinTech organisation
tailoring the Spotify model. Based on these aims, I have identified an initial set of
research objectives and questions at the beginning of this research study. However, the
initial research questions have been changed because of the exploratory nature of this
research study, which is concerned with theory generation. Thus, the initial research
questions were changed to accommodate the emerged theory. The research objectives
and questions are presented in their final state in Chapter 1 along to the detailed research
motivation.

This study approaches the research problem through the identification of a research
gap. This research gap was approached by identifying a lack of scientific research on
the Spotify model. The research gap did not specify a precise problem statement or
hypothesis. However, this study observed the existence of conflicting trade-offs between
alignment and autonomy, which lacks scientific exploration.

CHAPTER 3. RESEARCH DESIGN 35

The research problem area is approached with the assumption that software development
is a social activity that is influenced by the employed processes, methods, tools, and
hosted context (such as organisational culture and market). Hence, this research study is
of exploratory nature since it tends to increase the understanding of the phenomenon of
interest. The scope of this thesis is limited to theory generation, but theory testing in the
sense of performing statistical tests or statistical generalisation to a large population is
not the aim of this research study.

3.3.2 Philosophical Worldview

The philosophical worldview of research consists of claims about the nature of reality
as what knowledge is (ontology), how researchers gained knowledge (epistemology),
what values are related to knowledge (axiology), how knowledge is expressed (rhetoric),
and what processes are employed to study knowledge (methodology) [25]. To determine
how a phenomenon is approached, it is essential to have the ontological beliefs about
the nature of reality and the epistemic relationship between the knower and the known.
Addressing the ontologies and epistemologies inform the choice of methodology and
channel how the research is shaped to collect and analyse data. Creswell discusses
4 philosophical worldviews or schools of knowledge: postpositivism, constructivism,
transformative, and pragmatism.

This research study is situated in the field of empirical software engineering research.
The researcher identified a lack of scientific research on the Spotify model. Hence, this
research study aims to gain a thorough understanding of a phenomenon of interest within
a particular context. The researcher studies the external world by basing the research on
observation rather than relying on a purely analytical approach. However, a large part of
the described phenomena in this study is not observed immediately in the workplace. The
reasons behind observed outcomes exist in the mind of individuals. Hence, this thesis
emphasises on understanding shared meanings of individuals that rule the interpretation
of observed activities.

The lack of scientific research on the Spotify model prevented the researcher from
studying antecedent conditions. Also, an absence of up-front clear research problem or

CHAPTER 3. RESEARCH DESIGN 36

hypothesis, in this research study, dictated the employment of an inductive paradigm by
harnessing a constant comparison of collected data at increasing levels of abstraction [39,
40]. Moreover, this research study is concerned with understanding reality and focuses
on theory generation rather than verification. The worldview of this research study arises
from studying employed actions, situations, and consequences rather than antecedent
conditions. Therefore, the main contributions of this thesis can be situated as a Pragmatic

Worldview.

3.3.3 Research Design

Research Designs refers to the strategies of inquiry, which are general procedures of
research [25]. Research designs are considered as types of inquiry, within (1) quantitative,
(2) qualitative, and (3) mixed-methods approaches, that provide direction for the operating
procedures in a research study. The overall design for this research study is of qualitative

design. This qualitative design consists of a longitudinal embedded case study and an
intervention embedded case study.

A phenomenon needs exploration because it involves unstudied aspects or because it has
no conducted scientific research on it. By the time this research study started, there was
no scientific research on the Spotify model – to the best of my knowledge. Researchers
can explore a phenomenon by conducting qualitative research using a case study or a
grounded theory design [25].

Grounded theory is a design of inquiry in which the researcher derives an abstract theory
of a process or action grounded in the views of participants. This process involves using
multiple stages of data collection and analysis by harnessing a constant comparison of
data at increasing levels of abstraction during which refinement and interrelationship of
categories of information are derived [39, 40].

Grounded Theory helps in studying relatively new areas of research or when trying to
gain a new perspective on a well-known area of research [39, 40]. The absence of up-front
clear research problem or hypothesis in my research study demanded the employment
of an inductive research paradigm. Grounded Theory recommends refraining from

CHAPTER 3. RESEARCH DESIGN 37

formulating a research problem upfront [39]. Grounded Theory focuses on generating
theories, rather than verifying existing theories. Hence, the employed qualitative design
in this research study is of grounded theory.

3.3.4 Research Methods

Research methods are detailed procedures that involve the forms of data collection,
analysis, and interpretation [25]. Data collection methods have different degrees of
predetermined nature, such as the use of close-ended versus open-ended questioning.
This variation, in turn, leads to a focus on numeric versus non-numeric data analysis
methods. Creswell [25] and Oates [83] provide detailed descriptions of various research
methods such as case studies, survey, and grounded theory.

In this study, I adopt a qualitative design using an approach informed by the grounded
theory to facilitate the process of data collection and analysis. The following sections
describe the employed Grounded Theory methods and procedures in this study. Since
this research comprises two parts – longitudinal and intervention embedded case studies,
the research setting, as well as the employed Grounded Theory methods and procedures,
are described in the first part of this research study, which is Sect. 3.4.

3.3.5 Role of the Researcher

This research study carries out a Grounded Theory research, which employs an inter-
pretive research approach. Thus, understanding the role of the researcher is considered
essential to realise how the phenomenon under study is interpreted.

I completed a Bachelor of Science in Software Engineering from Al-Isra University,
Jordan in 2005. Thereafter, I worked in the Jordanian software industry for 4 years,
at Takarub for Telecom. Working as a developer in a customer-oriented organisation
has exposed me to the inner workings of software development teams, management,
and customers. During my job, I have experienced the move towards more Agile-like
projects, which in turn increased my curiosity about Agile software development.

CHAPTER 3. RESEARCH DESIGN 38

In 2009, I joined the Master program of Software Engineering at Chalmers University,
Sweden. At the first year of my Master’s degree, I was introduced to an Agile software
development course. I got further interested in this area and therefore made my Master’s
thesis about Agile process tailoring [92]. Based on my strong academic record and good
experience in the industry I was recruited at Volvo, in which I worked on embedded
software systems for 3 years and a half.

In 2014, I decided to apply for a part-time PhD programme at the University of Salford
because of my keen interest in conducting scientific research in Agile software develop-
ment. I was admitted to the research programme and at the same time was working in
the industry because of my passion for the practical experience in the industry. A few
months later, in 2015, I move to work in the FinTech industry in Stockholm.

My long professional experience worked to my advantage in accessing organisations
for participation in research. I was conscious at the same time, not to let this experience
cloud the research. Therefore, I carefully approached observations and interviews with
an open mind. In order to preserve consistency, I have personally conducted all data
collection and analysis, with frequent feedback from my supervisors, peers, and industry
practitioners.

3.4 Longitudinal Embedded Case Study

When I was admitted to the PhD programme in 2014, I was working at Volvo, which
was not utilising the Spotify model at that time. Therefore, I decided to move to another
organisation that employs the Spotify model to conduct my research study in while
working as a senior software engineer. In 2015, I moved to a FinTech organisation (i.e.,
FinTechOrg), which have tailored the Spotify model. FinTechOrg is considered a market
leader in the FinTech industry. Given the nature of my research aims and the decision to
undertake a case study, the FinTechOrg in which I work in was identified as a successful
candidate to conduct my research in since the targeted project was utilising the Spotify
model for around 2 years before starting my research study. Thus, I have identified

CHAPTER 3. RESEARCH DESIGN 39

and approached the managers or gatekeepers who have the expertise to recognise my
research proposal once Human Ethics Committee approval was received (Appendix A).
In result, the targeted organisation has agreed to conduct the case study, but after signing
a confidentiality agreement. Thus, I was able to observe ceremonies of different sorts,
had access to different kinds of artefacts and was able to search for participants by
reaching out to practitioners with different roles and from different squads.

In order to explore and have a deep understanding of how the Spotify model is being
used in other contexts than its originated, I have conducted a longitudinal embedded case
study. Longitudinal case study research is particularly appropriate for studying complex
and large-scale phenomena [91]. Also, longitudinal case study research is appropriate
when the researcher is interested in the success of some activity/process or the success of
a software project. Thus, I have observed different sorts of ceremonies over 21 months
and observed Agile processes and interactions within 3 different squads (i.e., teams).
Despite the benefits of longitudinal case study research, it is considered expensive and
time consuming for PhD students.

Being embedded in FinTechOrg was beneficial to understand the complex case of how
Agile practitioners balance squad alignment and autonomy. During this longitudinal
case study, I moved between 3 different squads. Researchers make a distinction between
holistic case studies, in which the case is studied as a whole and embedded case studies
where multiple units of data collection and analysis are studied within a case [91].
Holistic case studies take a broad perspective on the case and consequently may not be
able to examine sufficient detail in the case and may, therefore, miss important issues.
Also, holistic case studies are inappropriate for complex cases and for cases that need
investigation over an extended period of time. However, embedded case study design is
more appropriate under such situations since embedded design anticipates the need to
collect, analyse, and report on complex detail in the case.

Conducting embedded case studies allow researchers to collect more instances of each
of the embedded units of analysis, in contrast to the small number of holistic cases [91].
I have had access to different kinds of artefacts, such as documentation, product backlog,
tools, and used technologies since I was embedded in FinTechOrg. This triangulation

CHAPTER 3. RESEARCH DESIGN 40

in data collection and analysis has provided me with different angles towards the stud-
ied phenomenon and thus provided a broader picture. This, in turn, helped me as a
researcher to overcome the complexity in the studied case and provided me with a deep
understanding of the phenomena.

This longitudinal embedded case study lasted over a period of 21 month, from February
2017 to Mars 2019. The research findings related to this longitudinal embedded case
study part are described in Chapters 4-7.

3.4.1 Research Setting

This research study was undertaken in a multinational organisation of very large-scale,
which is a market leader in the FinTech industry. The headquarters located in Stockholm,
Sweden, in which around 200 staff members are working in its software development
organisation. The organisation employs approximately 650 staff members, including
support and management, and they are distributed into 60 markets. This FinTech organi-
sation provides in-store and online payment solutions as well as fraud protection tools.
The organisation processes around 60 billion e per year.

The focus of this study is only on one project that manages autonomous online payment
services. These autonomous software systems are a collection of payment solutions,
which operate under the control of one administrative online software project. This
project presents a standard and clearly defined management policy to the FinTech service.
A Business-to-Business (B2B) model is employed to provide other companies (i.e.,
customers) with a FinTech service to perform a business functionality that is outside
customers’ main business domain. Consequently, customers do not need to invest in
integrating their projects into hundreds of payment service providers (such as PayPal,
Trustly, Entercash, ApplePay, WorldPay, or Klarna) around the word but rather into
a single project that manages such complexity, which is the case study project. The
case study project has a product-line that facilitates integrating the project into external
payment APIs, which are provided by payment service providers.

CHAPTER 3. RESEARCH DESIGN 41

From the customers’ point of view, this project is classified as an offshore outsourced
project, based on the proposed terminology and taxonomy by Šmite et al. [105] for
global software development. The customers are distributed around the world in this
B2B environment. These customers rely on FinTechOrg to integrate the project into
many payment service providers’ APIs as well as providing state-of-art FinTech services
and features. Hence, FinTechOrg is located outside of customers’ national boundaries
(i.e., offshore) and allows customers to outsource the financial project as they do not have
the expertise and they do perform a business activity that is outside FinTech industry.

The case study project is considered of large-scale, based on the proposed taxonomy by
Dingsøyr’s et al. [28, 29] for Agile development scale. This is because the development
programme in FinTechOrg has 2-10 teams with less than 100 people. The software
development programme is co-located in the headquarter and has 6 squads (i.e., teams)
consisting of around 37 developers. Besides the developers, there are 1 test lead, 1
architect, 3 Key Account Managers, 5 Product Owners (2 of them are empowered with
Key Account Manager role), and 2 Agile Coaches.

The early stages of the case study project, FinTechOrg was using Lean. This software
development framework was powerful since this project contains a product-line. Some
Lean principles adopted by the organisation include Kanban board, continuous process
(Lean Thinking), documenting the development process (value stream mapping), and
automation whenever possible. In late 2014, however, the organisation realised the
needs for improving teams’ autonomy and hence improve innovation. Therefore, the
organisation decided to adopt the Spotify model, which was introduced by Kniberg and
Ivarsson [56, 57, 58].

3.4.2 Data Collection

Data were collected through face-to-face semi-structured open-ended interviews, direct
observations of Agile practices, documentation, and artefacts of different kinds – such as
product backlog, tools, and technology. Collecting data from multiple sources brought a
richness of data through triangulation [91]. Appendix A shows the ethical approval letter

CHAPTER 3. RESEARCH DESIGN 42

and Appendix B presents the interview guide for data collection.

An iterative process of data collection and analysis was adopted to conduct a constant
comparison of data. Performing constant comparison of collected data facilitated the
guidance of future interviews and the analysis of interviews while observations fed the
emerging results [40, 91]. As the data was analysed and new concepts and categories
emerged, the subsequent interview questions had minor updates to focus on the emerging
codes.

The observed ceremonies include backlog grooming, planning sessions, retrospectives,
daily stand-ups, POs synchronisation meetings, and meetings of the whole project teams.
The employment of direct observation provides researchers with a deep understanding
of the studied phenomenon and prevents suspected deviation between “semi-structured
interviews” view of matters and the “real” case [89].

The interviews targeted participants from different areas of software development (such
as development, support, management, and customer representatives) to determine their
perception of Agile tailoring when using the Spotify model. Thus, practitioners in
several different organisational roles were approached, such as Agile coach, senior
developer, Product Owner (PO), Key Account Manager (KAM), and Architect. The
interviewees were provided with the opportunity to raise other issues through an open-
ended guide [80]. The questions were revised after the second interview to adapt the
questions to focus on emerging concerns. Also, the questions were revised to choose
participants that can provide information on the emerging concerns. Each interview was
recorded (approximately 50 minutes) and then transcribed verbatim for detailed analysis
on a continuous basis.

In the longitudinal embedded case study part, the data were collected through multi-
ple sources, including interviews, observations, and artefacts. This researcher conducted
14 face-to-face semi-structured interviews. Table 3.1 depicts the distribution of the inter-
viewee’s roles. Also, the researcher observed around 225 ceremonies over 21 months.
Moreover, the researcher had access to different kinds of artefacts, such as documentation,
product backlog, tools, and used technologies.

CHAPTER 3. RESEARCH DESIGN 43

Table 3.1: The distribution of interviewee’s roles - longitudinal embedded case study

Roles Count
Agile Coach – Architect 1
Product Owner 3
Key Account Manager 2
Product Owner empowered with Key Account Manager role 2
Senior developer 5
Support manager 1

3.4.3 Data Analysis

This study analysed the collected data using an approach informed by the Grounded
Theory method (Glasserian approach) [39, 40]. The Grounded Theory method has a set of
principles and practices that constitute methods, which consist of systematic yet flexible
guidelines, for collecting and analysing qualitative data to generate theories. According
to Andrews et al. [5], the methods used in the Grounded Theory offer a “rigorous, orderly
guide for theory development”. The main features of the classic Grounded Theory
method, which are followed in this thesis, are iterative and constant comparative analysis,
open, selective and theoretical coding, memoing, and theoretical saturation [39, 40].

Why Grounded Theory (Glaserian approach)?

The Grounded Theory, which was initially established by Glaser and Strauss [13, 41], has
now different approaches because of the schism that occurred between the two founding
authors on how the methodology should be applied [13]. The main difference between
their approaches is associated with the emergence and forcing of categories [13]. While
the Glaserian approach promotes the identification of participants’ differing perspec-
tives at an abstract level and conceptualises them to find a latent pattern, the Straussian
approach encourages the development of categories under directions (conditions, con-
text, interaction strategies, literature or the researcher’s experience). However, both

CHAPTER 3. RESEARCH DESIGN 44

approaches emphasise the importance of constant comparison of concepts that will lead
to conceptualisation (Glaserian approach) or descriptions (Straussian approach).

The divergence away from the original classic Grounded Theory [41] has led to two
distinct schools of Grounded Theory; Classic Grounded Theory (Glaserian approach) [39,
40] and Straussian Grounded Theory (Straussian approach) [109]. Discussing the con-
flicting claims made by Glaser and Strauss about the different approaches or versions of
the grounded theory is outside the scope of this study. However, the critical engagement
with the philosophies behind the grounded theory is considered essential to understanding
the implications that arise from a researcher’s relationship to data collection and analysis.

The strength of grounded theory emerges from its ability to provide in-depth insight
into how meaning is navigated and integrated within a specific context [13, 41]. The
grounded theory facilitates the construction and sharing of the ontological belief about
a phenomenon. Also, employing the grounded theory facilitates the determination of
the influencing epistemic theories of knowledge. Moreover, Glasserian (i.e., classic) ap-
proach [40] emphasises the importance of iterative and constant comparison of concepts
that will lead to conceptualisation to find a latent pattern while having an absent up-front
clear research problem or hypothesis. Hence, the grounded theory (Glasserian approach)
was identified as an appropriate research methodology for this study.

Main Procedures of the Grounded Theory

The following procedures outline the specific methods that were implemented throughout
data analysis. While implementing these methods, the researcher adhered to the main
features of classic Grounded Theory (Glaserian approach) [39, 40]. The employed
research process is illustrated in Fig. 3.2.

Minor Literature Review: This minor literature review was conducted to understand
the basic facts and terminologies of the Spotify model, which is the research area of
interest, and other related aspects to converse with the participants during interviews.
Hence, a minor literature review was conducted at the beginning of the case study, as

CHAPTER 3. RESEARCH DESIGN 45

Li
te

ra
tu

re
 re

vie
w

Area of research interest

Data collection

Open coding Memoing

Constant comparison method

Core category

Sorting

Theoretical coding

Write up

Data collection

Selective
coding Memoing

Constant comparison method

Theoretical saturation

Minor

Major

Figure 3.2: Research methodology process. Adapted from [49]

recommended by Glaser [40]. Sect. 2.3.3 and Sect. 2.4 shows the outcome of the con-
ducted minor literature review about the Spotify model and Agile architecture. A deeper
understanding of the Spotify model came from the observation, and the participants since
the grey literature were the only source.

Open coding: As soon as some data have been collected, the data analysis can begin by
employing a Coding mechanism. To analyse the collected data in detail, an open coding
mechanism was used to break down the collected data analytically in detail [39, 40].
This mechanism begins by collating key points from each interview transcript. Then,
a code, which represents a phrase that summaries the key point in 2 or 3 words, is
assigned to each key point. A few questions were asked while conducting this open
coding, as suggested by Glaser to make effective coding without being overwhelmed by
the data [40].

CHAPTER 3. RESEARCH DESIGN 46

Constant comparison: A constant comparison method, which rigours the grounded
theory, is employed after conducting each interview [39, 40]. This method involves a
constant comparison of emerging codes from each interview against other codes from
the same interview as well as those from other interviews and observations. Using this
constant comparison method again facilitates the process of grouping emerged codes
into a higher level of abstraction, called concepts in Grounded Theory. Repeating this
method on the emerged concepts facilitates the creation of third level of abstraction,
called categories in Grounded Theory.

Fig. 3.3 illustrates a model that depicts the emerging levels of abstraction when using
the Grounded Theory. This model is used throughout this research study to present the
grounded findings, as illustrated in Fig. 4.2, Fig. 5.2, and Fig. 6.2. In this model, the
Categories are marked with bold text and located within the rectangle. Each Category
is associated with multiple Concepts, which are marked with italic text. Each Concept is
supported by multiple Codes, which are marked with plain text.

- Code 1
- Code 2
.
.

- Code 1
- Code 2
.
.

Concept 2

Concept 1

Category 1 Category 2

- Code 1
- Code 2
.
.

Concept 2

Concept 1

- Code 1
- Code 2
.
.

Figure 3.3: A model illustrates the levels of abstraction using the Grounded Theory

Core category and selective coding: The core category must be central and related
to several other categories and their properties where it frequently occurs in the data
and must account for most variations in data [39]. The constant comparison is repeated
every time a new category is found or modified, which leads the research to revisit
previously coded transcripts to check if they have a new property. When the core
category is identified (such as the “Adaptive structure”), the researcher ceased the open
coding process and moved into selective coding [39, 40]. Selective coding involves
selecting codes related to the core category by limiting the coding to those variables

CHAPTER 3. RESEARCH DESIGN 47

(concepts or categories) that relate to the core category in significant ways as to produce
a theory [39, 40].

Memoing: An ongoing process of writing memos is employed throughout the grounded
theory, called Memoing [39, 40]. The written down memos represent ideas about
emerging codes and their relationships. Memoing is considered as a powerful way
to pour out the emerging variables (codes, concepts, or categories). Also, memoing
facilitates the emergence of relationships (similarities or differences) between different
concepts and later between different categories. Moreover, continuous data collection
and analysis reflects on memos’ ideas and causes some modification.

Sorting: Sorting the theoretical memos can be initiated by the researchers when data
collection is almost finished, and coding is almost saturated. Sorting collected memos
(ideas) produces a theoretical outline, which puts the scattered data back together [39, 40].
This produced outline of the theory represents how the different categories relate to the
core-category.

Major Literature Review: The literature on the Spotify model as well as other related
aspects to the findings was reviewed extensively after the findings were sufficiently
grounded and developed. The primary purpose of having a major literature review after
the analysis is to (1) protect the emerging findings from preconceived notions and (2) to
discuss the research findings with relation to the literature [39, 40].

Theoretical Coding: Theoretical coding involves conceptualising the relationships
between the emerged categories and how these categories can be integrated into a
theory [39, 40]. For example, 3 main aspects related to the Spotify model were identified
in the first part of this research study. These aspects are (1) establishing and building
autonomous squads, (2) aligning autonomous squads, and (3) performing B2B product
development by tailoring the Spotify model. Revealing these aspects facilitated the
identification of a novel approach to Agile tailoring, called “Heterogeneous Tailoring

Approach”, by looking at Agile tailoring through the lens of the Spotify model.

Writing up: Following the Grounded Theory method has led to the generation of a
substantive grounded theory of Heterogeneous Tailoring approach. The final step in the

CHAPTER 3. RESEARCH DESIGN 48

Grounded Theory method is writing up the theory, which follows the theoretical outline
generated as a result of sorting and theoretical coding. The write up is presented in
Chapters 4-8.

3.5 Intervention Embedded Case Study (Action Research)

In the Software Engineering discipline, case studies often take an improvement approach,
similar to action research [91]. This part of my study has a flavour of action research
since it aims to intervene in order to resolve the challenge aligning and governing Agile
architecture across autonomous squads. Whether to label the enquiry an intervention

case study or action research is, to some extent, a matter of taste [91]. Throughout
this research study, I refer to the improvement approach or the action research as the
intervention embedded case study unless explicitly specified otherwise.

The most popular types of actions in action research in software engineering are Direct
Interventions and Indirect Intervention [108]. Direct Interventions introduce changes
to the company’s operations directly. Then, the practitioners change their ways of
working and collect the data to evaluate the change. In Indirect Interventions, researchers
influence practitioners to make the change themselves. The researchers present new
analysis results and solutions to practitioners who decide whether to adopt them or not.
Indirect Interventions is more specific to software engineering, where the researchers are
embedded in software development organisations. Hence, the direct interventions make
a change, whereas the indirect interventions cause the change to happen (or a reflection
to happen, sometimes the change is rejected). My intervention embedded case study is
of Indirect Intervention type since I have influenced the practitioners to make the change
by presenting my analysis results and highlighted on the encountered challenges.

The action research process can be defined as a number of research cycles, which are
illustrated in Fig. 3.4, consisting of phases that involve diagnosing, planning, taking,
evaluating the action, and learning [108]. The action research cycle starts with diagnosing,
which refers to the identification of problems and the possible underlying causes. Action

CHAPTER 3. RESEARCH DESIGN 49

planning specifies the anticipated acts that can solve the problems. Action taking refers
to the implementation of the planned actions. Evaluating is the assessment of the
intervention. Finally, learning is a reflection on employed activities and produced
outcome.

Diagnosing

Action
planning

Action
taking Evaluation

Learning

Figure 3.4: The action research cycles. Adapted from [108]

3.5.1 Diagnosing the Problem and the Underlying Causes

The findings of the longitudinal embedded case study part, which are presented in Chapter
4-7, identified two main challenges to the Heterogeneous Tailoring approach. These
identified challenges the underlying causes behind them are described in Sect. 7.4. Hence,
I decided to intervene and resolve one of the identified challenges, which is aligning and
governing Agile architecture across autonomous squads.

CHAPTER 3. RESEARCH DESIGN 50

3.5.2 Action Planning

In order to overcome the challenge of aligning and governing Agile architecture across
autonomous squads, I decided to develop an approach to architectural governance by
tailoring the FinTech Spotify model and evaluate it in FinTechOrg. Thus, I developed
an approach to architectural governance, which incorporates a structural change and an
architecture change management process.

3.5.3 Action Taking

The intervention embedded case study was conducted in the same research setting
in which I conducted the longitudinal embedded case study. The research setting is
described in Sect. 3.4.1. Initially, I presented the developed approach to architectural
governance to the Agile coaches of FinTechOrg. During this presentation, I clarified the
required changes to the organisational structure and the necessity of architecture change
management process, which I have developed.

The Agile coaches agreed to conduct an intervention in one squad and two chapters.
Thus, I presented my developed approach to the squad and then the squad started utilising
the introduced approach to architectural governanace. This intervention embedded
case study lasted 3 months, from November 2019 to March 2020. During this period,
some improvements were introduced by FinTechOrg into my approach to architectural
governance.

3.5.4 Evaluating

During this intervention, I conducted a direct observation of Agile practices during which
32 ceremonies were observed. To understand the reasons behind the occurred results, I
collected the personal experiences of the practitioners after the intervention. Hence, 8
semi-structured open-ended interviews were conducted. The distribution of interviewee’s

CHAPTER 3. RESEARCH DESIGN 51

roles for newly conducted interviews in this research part is presented in Table 3.2.

The collected data was analysed using an approach informed by the Grounded Theory,
as described in Sect. 3.4.3. The development team of FinTechOrg was positive towards
my approach for architectural governance, as described in Chapter 8.

Table 3.2: The distribution of interviewee’s roles - Intervention embedded case study

Roles Count
Agile Coach 1
Enterprise Architect 1
Product Owner 1
Senior developer 3
Chapter Leader (Architect Owner) 2

3.5.5 Learning

The research findings related to the intervention embedded case study part are described in
Chapter 8. I describe the benefits and challenges of the evaluated approach to architectural
governance. Also, I reflect on the Heterogeneous Tailoring approach by adapting it to
accommodate the evaluated approach to architectural governance.

3.6 Summary

This chapter presented the adopted research approach in this research study by following
Creswells’ framework for research [25]. Thus, the employed philosophical worldview,
research design, and research methods in this study were presented. Consequently,
this study utilised qualitative design. The philosophical worldview of this study was
situated as a Pragmatic. The employed qualitative design in this study utilised mainly the
Grounded Theory. The research design in this study comprises two parts: a longitudinal
embedded case study and an intervention embedded case study (action research).

CHAPTER 3. RESEARCH DESIGN 52

In both parts of this research study, data were collected through semi-structured open-
ended interviews and supplemented by direct observation and access to different kinds
of artefacts. In the longitudinal embedded case study, 225 ceremonies were observed
over 21 months, and 14 semi-structured open-ended interviews were conducted. In the
intervention embedded case study, 32 ceremonies were observed over 3 months and 8
semi-structured open-ended interviews were conducted. The collected data was analysed
using an approach informed by the Grounded Theory method (Glaserian approach).

Chapters 4-7 describe the outcome of the conducted longitudinal embedded case study.
Chapter 8 describes the outcome of the conducted embedded case study intervention.

Chapter 4

Spotify Tailoring for Establishing and
Building Autonomous Squads

4.1 Introduction

This chapter addresses the research question (RQ1.1): How do agile practitioners, from

a FinTech organisation, establish and build squad autonomy? To answer this research
question, a longitudinal embedded case study was conducted, as described in Sect. 3.4.

The findings described in this chapter identify factors for establishing and building
autonomous squads. The notion of establishing and building autonomous squads is
illustrated in Fig. 4.1, which represent the bottom side of the whole model illustrated
in Fig. 7.2. Fig. 4.1 shows the hierarchy of squads and how they tailor different agile
methods to improve their autonomy. This chapter is an expansion of a peer-reviewed
research paper [98].

53

CHAPTER 4. AUTONOMOUS SQUADS 54

C
ha

pt
er

s

F
ro

nt
-e

nd
B

ac
k-

en
d

PL Feature
Core

DevOps
Project-X

Squad/mission based tailored
methods

R
el

ea
se

s

- D
ec

ou
pl

ed
 R

el
ea

se
s

- F
ea

tu
re

s
w

it
h

to
gg

le
 o

n/
of

f A
ut

on
om

ou
s

sq
ua

ds

Squad

Squads

Scrum

Scrumban

Squad

Squad

Tailored
methods

Kanban

Squad

Sa
m

e
m

is
si

on

ScrumbanSquad

PL

Mission
(purpose)

Maintenance

PL

Project X

Complex
features

(exploratory)
Lean

Startup

Figure 4.1: Autonomous squads

4.2 Influential Factors on Establishing and Building Au-
tonomous Squads

The analysis of the collected data has grounded a synergy between the following cat-
egories and establishing and building autonomous squads. The emerged categories
are (1) Employing adaptive structure, (2) identifying and allocating squad or mission-
based strategy, and (3) employing squad or mission-based agile method tailoring. These
emerged categories represent factors than influence establishing and building autonomous
squads. Fig. 4.2 depicts these emerged categories along to their related concepts and
codes. This figure is built by following the model illustrated in Fig. 3.3, which presents
the emerging levels of abstraction when using the Grounded Theory.

CHAPTER 4. AUTONOMOUS SQUADS 55

Employing squad
or mission
based agile

method tailoring

- Low degree of uncertainty
- Product-line and automation
- Employing estimation and planning activities
- Methods (Scrumban)

Plan fulfilment
based missions

- Two dimensional structure (vertical and horizontal)
- Centralised vs decentralised architectural governance
- Utilising communities (Chapters and Squads)
- Guilds and Tribes are inapplicable

Employing
 adaptive structure

Innovation
based missions

- High degree of uncertainty
- Skipping detailed planning and
estimation
- Methods (Lean Startup or Kanban)

- Short-term goals and plans
- Create milestones (<year)
- Goals and plans are
quarterly renegotiated
- Focused squad activities

- Clear project vision
- Define scope and set of specifications
- Identify long-term goals and plans
- High management creates the strategy
- POs and KAMs maintain shared proj.
vision

Short-term
mission

Long-term
mission

Identifying and
allocating

squad or mission
based strategy

Squad
based tailoring

- Freedom in tailoring
- Eliminates inapplicable generic
practices and processes
- Improves creativity and productivity
- Difficulty in measuring the overall
quality, performance and productivity
- Squads of different missions: Maintenance,
Complex features, Core, Project X, PL, etc

Figure 4.2: Emergence of the categories that facilitate establishing and building au-
tonomous squads, which are dapted from [98]. The categories are in bold, the concepts
are in italic, and the codes are in plain text

The following subsections describe the emerged categories and their related concepts
and codes, which are depicted in Fig. 4.2. These categories represent influential factors
on establishing and building autonomous squads.

4.2.1 Employing Adaptive Structure

FinTechOrg utilises Spotify’s adaptive structure to establish autonomous squads, as
illustrated in Fig. 4.3. The analysis of collected data shows the employment of cross-
functional squads since each squad has members of different skill sets. Also, squad
members are located within Chapters based on their competency areas. “Each squad

CHAPTER 4. AUTONOMOUS SQUADS 56

has members of different skills where these members are distributed over Chapters based

on their competency area.”–P10, Product Owner. However, it was observed that some
members are located in more than a Chapter. A practitioner says: “I work as full-stack

developer and located in two Chapters”–P8, Senior Developer.
C

ha
pt

er
s

Fr
on

t-e
nd

Ba
ck

-e
nd

PL Feature

Core
DevOps

Project-X

Squads

Figure 4.3: Two dimensional structure

Chapters communities facilitate decision-making across squads. “The members of my

Chapter meet regularly, and whenever is needed to help in solving encountered issues

or make decisions on how to build things in a standardised way”–P4, Senior Developer.
Nevertheless, an architect role was employed because of the complexity of this case study
project. Practitioners say: “Deciding about which solution to adopt is time-consuming

for the developers despite the employment of Chapters communities ”–P1, Agile Coach
and Architect. Also, “we discuss newly requested features with the architect or those

developers who have experience in specific parts of the project to find the best solution”–
P10, Product Owner. Moreover, “I get in touch with our architect whenever is need

to discuss some user stories and to decide on which architectural change should be

employed”–P9, Senior Developer.

It was observed that Chapter leaders do not usually handle architectural based decisions
within their Chapters since architectural decisions are centralised and granted to the

CHAPTER 4. AUTONOMOUS SQUADS 57

Architect. Also, the findings show a lack of process that could be employed to facilitate
aligning and governing enterprise architectural decisions. A practitioner says: “We do

not have a process that aligns architectural decisions among the squads”–P3, Senior
Developer. This lack of process impacts negatively the autonomy of the squads. Also, it
impacts negatively the quality being produced while working towards achieving common
technical or business roadmap.

Tribes and Guilds communities were found to be inapplicable for FinTechOrg because of
the size of the development programme. While the software development programme
in Spotify itself is of very-large-scale (>300), the development programme in this
case study project is of large-scale (<100). A practitioner says: “While Tribes are

inapplicable, building Guilds causes a waste of time and resources since the size of the

development programme is smaller than Spotify’s”–P7, Product Owner and Key Account
Manager. Thus, FinTechOrg replaces Guilds by informal and on-demand knowledge
sharing. “Meetings are arranged through email or Slack to tackle interesting subjects in

different areas... Anyone interested in the subject can join”–P12, Product Owner. This
process, in turn, replaces Guilds communities with a sufficient process while preserving
the autonomy of squads.

4.2.2 Identifying and Allocating Squad or Mission Based Strategy

Squads work autonomously to accomplish the strategy and roadmap of the organisation.
The findings show that the strategy of FinTechOrg has emerged from its mission in the
FinTech industry, which demands having a clear vision. A practitioner says: “Fulfilling

our mission in this industry demands an establishment of a clear vision, which provides a

good description for what to be achieved”–P1, Agile Coach and Architect. Establishing
a clear vision, in turn, facilitates the creation of long-term goals for the organisational
strategy. These long-term goals can be broken down into short-term goals. Thus, each
squad in FinTechOrg has two types of missions that should be fulfilled: long-term mission
and short-term mission. A practitioner says: “The overall roadmap is represented in a

collection of actions, which are employed to achieve the long-term and short-term goals

of our squads”–P7, Product Owner and Key Account Manager. Hence, the employed

CHAPTER 4. AUTONOMOUS SQUADS 58

activities seek to fulfil the organisational mission and guide strategic decisions while
preserving squads autonomy.

Long-term missions are based on the organisational strategy, project vision, and long-
term goals. It was observed that the organisation establishes a clear project vision
to provide squads with clear directions and avoid confusion during the development.
Practitioners say: “Project vision is frequently communicated to make sure that all

squads are working toward achieving their long-term goals”–P12, Product Owner. Also,
“to establish clear project vision, the scope is defined, and a set of specifications are

provided to the squads”–P5, Product Owner. Hence, “each squad work toward achieving

identified long-term goals, which represent our overall organisational strategy and

vision”–P1, Agile Coach and Architect.

The findings show that maintaining a shared project vision and specifications demands
conducting regular meetings between Product Owners and Key Account Managers. In
these meeting, the stakeholders ensure (1) maintaining a shared project vision, (2) the
ownership of the project since the organisation provides a software service, and (3) that
all squads work toward achieving the long-term goals and strategy. Practitioners say:

“We make sure that product development does not deviate from our organisational vision...

The customers’ try to push software service development in their way. Therefore, we

ensure the ownership of the project itself”–P6, Product Owner and Key Account Manager.
Also, “in our regular meetings, we discuss the vision to ensure preserving the highlighted

trends and directions by the top management”–P13, Key Account Manager. Besides,
“resolving potentially conflicting priorities between the squads ensures squads’ alignment

over the organisational mission”–P10, Product Owner.

Short-term missions represent the conversion results of squads’ long-term missions and
goals into short-term goals and plans. It was found that the squads’ tactical objectives
(i.e., short-term goals and plans) represent the building blocks for squads’ long-term
goals and hence represent the organisational roadmap and strategy. A practitioner says:

“Utilising the determined milestones strengthens squads’ autonomy and provides us with

short-term motivation and guidance to develop valuable software features that would

satisfy our customers’ needs”–P5, Product Owner. These short-term missions might take

CHAPTER 4. AUTONOMOUS SQUADS 59

less than a year to be completed, and they are quarterly renegotiated. “We (i.e., POs)

meet every couple of months with the top management to review our milestones... We

highlight what is achieved to discuss and prioritise what remains”–P10, Product Owner.

The findings show that squads’ autonomy demands an awareness of the expected outcome
from each squad. Product Owners embrace long-term goals to create short-term goals and
plan to compete in the marketplace. A practitioner says: “Project vision, which provides

long-term directions, is broken down by POs into milestones that should be achieved by

the squads to compete in the market”–P6, Product Owner. Achieving the organisational
strategy is tightly linked with achieving squads’ strategy (short-term goals and plans).

“Accomplishing the milestones supports our walking toward achieving the roadmap”–P12,
Product Owner. Identifying what was accomplished facilitates the measurement of
success through the determination of which building blocks (i.e., short-term goals and
plans) have been achieved.

4.2.3 Employing Squad or Mission Based Agile Method Tailoring

The analysis of collected data reveals that FinTechOrg employs squad or mission-based
agile tailoring, as illustrated in Fig. 4.5. Each squad, in FinTechOrg, has the freedom to
independently tailor agile methods based on its mission while having required support
from agile coaches. Practitioners say that “our squad has the freedom to tailor agile

practices to fit our squad’s needs... This way, we have a development process that

suits our squad, and this consequently speeds up the development process”–P8, Senior
Developer. Also, “adapting squads’ processes based on their missions increases the

ability to incorporate squad or mission-based processes... This adaptation mitigates the

needs of handling general practices and processes that could be challenging for some

squads and their missions”–P1, Agile Coach and Architect. Hence, “squad-based agile

tailoring improves our productivity and creativity since we adapt our practices to be com-

patible with our mission and needs”– P12, Product Owner. Also, “adapting our squad’s

practices to conform with our mission eliminates the employment of inapplicable general

practices, speeds up our development process, and hence facilitates accomplishing our

own mission”–P3, Senior Developer. Thus, the employment of squad or mission-based

CHAPTER 4. AUTONOMOUS SQUADS 60

agile tailoring improves the creativity of some squads and the productivity of other
autonomous squads, preserves squad autonomy, and mitigates possible challenges of
handling generic practices and processes.

The findings show that missions are mainly classified into either innovation or plan
fulfilment nature based on the missions of squads. However, missions vary in their
degrees of innovation and plan fulfilment, as illustrated in Fig. 4.4. The squads in this
case study project have a variety of missions such as features, mini-projects, Product-Line
(PL) for provider integration, maintenance, DevOps, etc.

Plan fulfillment

In
no

va
tio

n

- Great value delivery
- Low predictability

- High predictability
- Low innovation

High

H
ig

h

Low

Figure 4.4: The nature of squads missions

It was observed that some missions value innovation more than plan fulfilment. Whereas,
other squads value plan fulfilment more than innovation. Thus, each squad performs
agile tailoring based on the nature of its mission, as illustrated in Fig. 4.5. The findings
show that squads with innovation-based missions do utilise a tailored process based on
(1) Kanban, (2) Lean startup or (3) skipping detailed planning and estimation activities.
Also, the findings show that squads with plan fulfilment based missions – PL – do utilise
a tailored process based on process automation and Scrumban.

CHAPTER 4. AUTONOMOUS SQUADS 61

Squad

Squads

Scrum

Scrumban

Squad

Squad

Tailored
methods

Kanban

Squad
Sa

m
e

m
iss

io
n

ScrumbanSquad

PL

Mission
(purpose)

Maintenance

PL

Project X

Complex
features

(exploratory)

Lean
Startup

Figure 4.5: Squad or mission based tailoring

Innovation-based missions: The analysis results show that squads tackling maintenance
based user stories, which are of adaptive or perfective nature, do employ Kanban. Practi-
tioners say: “maintaining the behaviour of already existing features can be challenging

because of the complexity of the software service... We use Kanban to manage our work

and balance customers’ demands with available capacity of resources”–P12, Product
Owner. Also, “providing our customers with online Kanban boards gives them sufficient

insight about the work progress”–P10, Product Owner. Hence, low coordination is
employed, and better management decisions are taken continuously at the right time.

Also, it was observed that squads working on newly requested features, which are char-
acterised with a high degree of uncertainty and complexity, do employ a tailored process
based on Lean Startup and Kanban. A practitioner says: “A hybrid process based on

Lean Startup and Kanban are employed to facilitate the development of new generic and

complex features”–P3, Senior Developer. Hence, such squads can continuously develop
and improve such features to reach the desired impact and hence satisfy customers.

Moreover, it was found that squads responsible for developing newly formed mini-

CHAPTER 4. AUTONOMOUS SQUADS 62

projects do employ a tailored process based on the Scrum method. Such mini-projects
require innovation and take 9-18 months of development to introduce newly developed
modules. Since such projects are characterised with a high level of uncertainty, estimation
process and planning activities are either tailored or eliminated to mitigate any possible
waste. Practitioners say that “we do not use story points to estimate the effort required

to deliver stories. Yet, we report the spent time”–P9, Senior Developer. Also, “the

burn-down chart is used to check remaining work in the sprint backlog... We focus on

providing valuable software product rather than planning”–P10, Product Owner.

In addition, Software development estimation is considered as a waste for innovation
based-missions. It was found that predictability of delivery is sacrificed for the sake
of achieving innovation. Practitioners say that “we sacrifice predictability of delivery

to provide valuable software features to our customers”–P6, Product Owner and Key
Account Manager. However,“customers request sometimes estimation before starting

the development... We provide a rough estimation and keep them involved in the process

to revise the plan accordingly”–P12, Product Owner.

Plan fulfilment based missions: The organisation utilises a PL architecture since the
case study project manages autonomous FinTech services. A practitioner says: “Since

our project manages autonomous financial services, a PL architecture is employed to

facilitate the process of integrating the project into external APIs”–P2, Senior Developer.
Thus, it was found that the organisation classifies these external FinTech services into
different categories using predefined specifications and requirements. This classification
facilitates the automation of software development processes. It was observed the
employment of predefined checklists to facilitate the development in the PL. “Predefined

checklists are employed in our PL to facilitate the process of integrating the project into

external APIs... these checklists cover many aspects such as code review, documentation,

estimation, security aspects, knowledge sharing, etc.”–P4, Senior Developer

Software development estimation is considered beneficial for those squads working
on the PL. The analysis revealed that the predictability of delivery is beneficial for PL
based tasks because such tasks are characterised with a low degree of uncertainty. A
practitioner says: “A detailed documentation is provided by third parties (financial

CHAPTER 4. AUTONOMOUS SQUADS 63

software service providers) to facilitate the process of integrating the project into the

targeted APIs”–P4, Senior Developer. It was observed that squads working on the PL
do utilise a tailored process from Lean and Scrumban. A practitioner says: “In the

planning meeting, we use bucket size, on-demand planning techniques, and average

lead/cycle time”–P5, Product Owner. Thus, it was found that Product Owners are more
confident in promising customers with predictable delivery deadlines because of being
able to obtain the average lead/cycle time for different kind of user stories within the
PL. “Calculating the average cycle time for different kind of API integrations within the

PL enables predicting the delivery and facilitates the planning... Consequently, we can

promise our customers with delivery deadlines”–P5, Product Owner.

4.3 Summary

This chapter has addressed the research question (RQ1.1): How do agile practitioners,

from a FinTech organisation, establish and build squad autonomy? A longitudinal
embedded case study was conducted to answer this research question. The data were col-
lected through observing 225 ceremonies over 21 months, conducting 14 semi-structured
open-ended interviews, and accessing different sorts of artefacts. The collected data were
analysed using an approach informed by the Grounded Theory method.

The analysis, in this chapter, identified influential factors on establishing and building
autonomous squads. These factors are (1) employing adaptive structure, (2) identifying
and allocating squad or mission-based strategy, (3) employing squad or mission-based
agile method tailoring. Those organisations wishing to build autonomous squads using
the Spotify model can benefits from these factors. To put it succinctly, organisations
should tailor the Spotify’s adaptive structure and create appropriate communities of
practice around this structure based on the development programme size. Those created
communities of practice should have identified strategy. Each autonomous squad has
a specific mission to accomplish, which comply with an identified strategy. However,
multiple squads can share the same mission. Based on the assigned strategy, squads can
tailor agile methods to fit their needs best and hence to accomplish their mission.

Chapter 5

Spotify Tailoring for Aligning
Autonomous Squads

5.1 Introduction

This chapter addresses the research question (RQ1.2): How do agile practitioners, from

a FinTech organisation, achieve and sustain the alignment of autonomous squads? To
answer this research question, a longitudinal embedded case study was conducted, as
described in Sect. 3.4.

The findings described in this chapter identify factors that influence the alignment of
autonomous squads. Fig. 5.1 illustrates the alignment notion among the squads, which
is depicted in the middle side of the whole model illustrated in Fig. 7.2. The alignment
represents an umbrella that defines a set of practices, which facilitates the alignment of
autonomous squads while progressing toward achieving their missions.

Investigating Spotify Tailoring, from a squad alignment perspective, identified new,
modified and previously introduced practices and attributes to the Spotify model. This
investigation facilitated the identification of the FinTech’s Spotify model, from squads

64

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 65

alignment perspective. Also, the investigation of Spotify tailoring has identified influ-
ential factors on aligning autonomous squads. Each identified factor is supported by
a set of practices and attributes that strengthens the alignment of autonomous squads.
The identified influential factors and their related practices can aid agile practitioners in
aligning autonomous squads.

PL Feature
Core

DevOps
Project-X

Autonomy

A
lig

nm
en

t

- Lost: does not know
 what to be done
- Can not fix it

- Knows what to do
- Can not fix it

- Knows what to do
- Can fix it

- Lost: does not know
 what to be done
- Can fix it

High

H
ig

h

Low

Alignment

A
lig

nm
en

t

Alignment repository
(practices and processes)

Squads

Figure 5.1: Aligning autonomous squads

This chapter is an expansion of two peer-reviewed papers [93, 94]. The first paper [93]
identified influential factors on aligning Spotify squads. The second paper [94], investi-
gates Spotify Tailoring, from squads alignment perspective, by identifying new, modified
and previously introduced practices and attributes to the Spotify model. Besides, the
second paper [94] identifies 3 new influential factors on aligning autonomous squads in
addition to those published in [93].

5.2 Spotify Tailoring for Aligning Autonomous Squads
– Practices and Attributes

This research study identifies practices and attributes that facilitate the alignment of
autonomous squads. These practices and attributes promote effectiveness in cross-
functional autonomous squads. The identified practices and attributes are tagged by α, β,

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 66

and γin Fig. 5.2. “α” represents practices and attributes that are previously introduced by
the Spotify model. “β” represents Spotify’s practices and attributes that were modified
by FinTechOrg. “γ” represents newly introduced practices and attributes by FinTechOrg.

In result, 31 tailored practices and attributes, from a squad alignment perspective, were
identified. These practices and attributes, which represent the emerged Codes in the
Grounded Theory, were classified into three main types, as follows:

1. Already exist: 14 practices and attributes, which are enumerated in Table 5.1, were
followed by FinTechOrg as previously introduced by the Spotify model. These
practices and attributes are tagged by α in Fig. 5.2.

Table 5.1: Already existing practices and attributes in the Spotify model, from a squad
alignment perspective

Already existing practices and attributes
Two dimensional structure and employing Chapters and Squads communities
Product-level alignment
Define roadmap, scope and specifications
Definition of Awesome
Chapter based decision-making
Routine squad-of-squads meeting
Routine demos
Postmortem Documentation
Peer code review on the squad level
Decoupled architecture
Decoupled releases
Frequent small releases
Limited Blast Radius
Release train

2. Modified: 5 adapted Spotify practices and attributes by FinTechOrg,, which are
enumerated in Table 5.2. These practices and attributes are tagged by β in Fig. 5.2.

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 67

Table 5.2: Adapted Spotify practices and attributes by FinTechOrg, from a squad
alignment perspective

Adapted practices and attributes
Guilds and Tribes are neglected
Overcome lack of knowledge and expertise – such as employing code
review and more structure around the ownership
Chapter based knowledge sharing
Limited Fail-friendly environment (fail-wall)
Shall not release unfinished code

3. New: 12 new practices and attributes, which are enumerated in Table 5.3, were in-
troduced by FinTechOrg. These practices and attributes are tagged by γ in Fig. 5.2.

Table 5.3: New practices and attributes introduced by FinTechOrg, from a squad align-
ment perspective

New practices and attributes
Cover the value chain
Cover the whole lifecycle
Prevent hands-off and improve confidence
Utilising product-line and standardisation (checklists)
Lean thinking
Management commitment
Stakeholders should possess good experience and domain knowledge
Informal and on-demand call for sharing or discussing subjects
POs routine meetings
Non-routine meetings to control the outcome of intercorrelated tasks
POs’ informal and on-demand meetings to resolve conflicted priorities
On-demand releases

5.3 Influential Factors on Aligning Spotify Squads

The analysis of the collected data grounded a synergy between the categories (i.e.,
factors), which are depicted in Fig. 5.2, and strengthening the alignment among the

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 68

squads. Fig. 5.2 depicts the emerged categories along to their related concepts and codes.
This figure is built by following the model illustrated in Fig. 3.3, which presents the
emerging levels of abstraction when using the Grounded Theory. This section ignores
the category of “adaptive structure with more focus on communities” since it has been
described already in Sect.4.2.1 and the literature [56, 57, 58].

The identified practices and attributes, which are presented in Sect. 5.2, are classified into
the 7 grounded influential factors on aligning autonomous squads. Table 5.4 presents
this classification. Also, Table 5.4 indicates the coverage of the adopted practices and
attributes by the Spotify model and FinTechOrg. Moreover, the table clarifies the extent
to which the Spotify model has been scaled in FinTechOrg (i.e., Spotify Tailoring).

Table 5.4: Spotify Tailoring for aligning autonomous squads

Factors Concepts Spotify Case
Study

Adaptive
structure

Two dimensional structure Yes Yes
Utilising Chapters and Squads Yes Yes
Utilising Guilds and Tribes Yes No

Collective
code
ownership

Alignment over the product-level Yes Yes
Adopting a reconciliation process Unknown Yes
Strengthening PL automation Unknown Yes

Decision-
making

Shared understanding of business
objectives ≈Yes Yes

Knowledge-based decision-making ≈Yes Yes
Inter-team
coordination

Formal inter-team coordination No Yes
Informal inter-team coordination Unknown Yes

Knowledge
sharing

Systematic knowledge sharing ≈Yes Yes
On-demand knowledge sharing ≈Yes Yes

Mission based
planning

Innovation missions embrace Lean
Startup ≈Yes Yes

PL missions embrace standardisation No Yes
Release
strategy

Speed up the release delivery Yes Yes
Accountability for release delivery Unknown Yes

≈Yes: partially covered, Yes: covered, No: not covered, Unknown: no
evidence

C
H

A
PT

E
R

5.
A

L
IG

N
IN

G
A

U
TO

N
O

M
O

U
S

SQ
U

A
D

S
69

- Overcome lack of
knowledge and expertise β
- Product-level alignment α
- Strengthening

- Cover the value chain γ
- Cover the whole life-cycle γ
- Prevent hands-off and
improve confidence γ
- Strengthening

- Utilising product-line γ
- Utilising standardised
tasks (checklists) γ
- Lean thinking γ
- Strengthening

- Good experience γ
- Domain knowledge γ
- Chapter based
decision-making α
- Strengthening

- Squad of Squads
routine meeting α
- POs routine meetings γ
- Strengthening

- Non-routine meetings
 to control the outcome
of intercorrelated tasks γ
- Resolve conflicted
priorities between POs γ
- Strengthening

Strengthening
alignment on the

product-level

Strengthening
reconciliation

process

Strengthening
PL automation

Strengthening
knowledge-based
decision-making

Strengthening
formal

coordination

Strengthening
informal

coordination

Collective code
ownership

Collective
decision-making

Knowledge sharing

Release/delivery
strategy - Informal call for sharing or

discussing subjects γ
- Limited Fail-friendly
environment (fail-wall) β
- Peer code review on the
squad level α
- Strengthening

Strengthening
on-demand

knowledge sharing- Decoupled architecture α
- Decoupled releases α
- Frequent small releases α
- Release trains α
- Speed up Speed up the

release delivery

- Do not release unfinished code β
- Release on-demand γ
- Backward compatible releases γ
- Limited Blast Radius α
- Strengthening

Strengthening
the accountability

for release delivery

- Two dimensional structure
(vertical and horizontal) α
- Utilising communities
 (Chapters and Squads) α
- Guilds and Tribes are
neglected β
- Strengthening

Adaptive structure
with more focus on

communities
AlignmentAutonomy

- Define roadmap, scope and
specifications α
- Continuous sharing of intent γ
- Definition of Awesome α
- Management commitment γ
- Strengthening

Strengthening
shared understanding
of business objectives

Strengthening
the systematic

knowledge
sharing

- Chapter based knowledge
sharing β
- Cross-pollination results in
standardisation α
- Routine squad-of-squads
 meeting α
- Routine demos α
- Postmortem Documentation α
- Strengthening

Inter-team
coordination

(α) Introduced
by Spotify
(β) Modified
(γ) New

Mission based
planning

- Lean Startup α
- Estimation is waste α
- On-demand
estimation γ
- Strengthening

Strengthening
innovation

Strengthening
PL

- Automation γ
- Standardisation γ
- Pre-checklists γ
- Estimation γ
- Strengthening

Figure 5.2: Emergence of the influential factors on aligning Spotify squads, which are dapted from [93, 94]. The categories
are in bold, the concepts are in italic, and the codes are in plain text

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 70

The following subsections describe the emerged categories and their related concepts
and codes, which are depicted in Fig. 5.2. These categories represent influential factors
on aligning autonomous squads.

5.3.1 Collective Code Ownership

Strengthening alignment on the product-level: The squads are empowered to do the
required software development on different associated software systems because of the
realisation of collective code ownership. However, the organisation has realised that
sharing products instead of owning them causes a waste of resources. This waste might
happen because of a lack of knowledge on the product-level or because of insufficient
ownership. Practitioners say: “Handling maintenance or improvement tasks associated

to the product-line by other squads are considered as time-consuming and will likely

require relearning to be able to take the right action”–P1, Agile Coach and Architect.
Also, “Encountering conflicting priorities between the squads may demand handling

some work items that are outside a squad’s expertise. Handling such work items requires

some learning to gain the needed knowledge to proceed in development”–P12, Product
Owner.

Having many working items of discrete nature, in which each user story requires one
developer to work on, impacts knowledge sharing and causes a waste of time and
resources. This impact on knowledge sharing, in turn, results in a need for employing a
relearning process. Practitioners say: “Maintenance tasks are of discrete nature since

only one developer is needed to work on each user story”–P6, Product Owner and
Key Account Manager. Thus,“peer code review on the squad level is important to

share knowledge and to ensure the successful development of user stories”–P8, Senior
Developer. Thereby, aligning the squads on the product-level supports collective code
ownership, and facilitates the process of knowledge sharing and mastering.

Strengthening reconciliation process: Sharing a software product among autonomous
squads requires a reconciliation process between the key associated parties, and before
employing the desired change at the software level. A practitioner says:“The squads

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 71

might need, sometimes, to discuss the proposed solution with their peers, management

team or architecture”–P3, Senior Developer. The main reason of this is either a lack
of expertise at the product-level or the realisation of the product as a service where the
organisation needs to be taken into account the complete value chain and the whole
lifecycle. Otherwise, “the task might get blocked, or a waste of resources might be a result

of implementing an inefficient solution or shortage in the commitment of management or

third parties”–P3, Senior Developer.

Despite the utilisation of Chapters and Squads communities, it was observed that develop-
ers, sometimes, tend to be unconfident when working on a shard product that is not within
their expertise. For instance, when encountering an incident where a hot-fix is requested,
the reviewers (who are either from other squads or the same squad) were hesitant to
handle the situation. This hesitation is mostly because of either being uninformed about
the low-level details or the high complexity of such tasks, which requires knowledge
transformation and relearning. A practitioner says: “A Hot-Fix is requested in case

of facing incident after a new release. If was not possible because of the absence of

the developer, the release is rolled-back. Mostly, the developer who owns this task is

requested to solve the issue with some support from the squad”–P6, Product Owner and
Key Account Manager.

Strengthening PL automation: Adopting a PL requires task standardisation to facilitate
the process of software development. This standardisation, in turn, aids other squads
working on related aspects. Since the organisation is providing a software service, which
manages autonomous offshore software systems, it adopts a PL to integrate the project
into external APIs. A practitioner says: “Employing a PL architecture facilitates and

speeds up the process of integrating our software system into external APIs”–P2, Senior
Developer. The lifecycle of the PL is illustrated in Fig. 5.3.

A task standardisation, which is a key principle in Lean Thinking (eliminating the waste),
was observed through the utilisation of predefined checklists. These predefined checklists
are utilised to facilitate requirement elicitation, technical details such as a security-related
checklist, planning, estimation, documentation, code review, and knowledge sharing.
Hence, these checklists help FinTechOrg in speeding up the process and eliminating

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 72

Figure 5.3: Product-line lifecycle [93]

possible waste. However, the employed checklists need to be enhanced further, and
other potential areas need to be covered. Practitioners say: “Technical related predefined

checklists (such as security and code review checklists) are missing some details...

Enhancing these checklists and creating new ones to cover other types of tasks would

improve PL development process”–P9, Senior Developer. Also, “code review is missing

important aspects due to the weakness of coverage in the current predefined checklist of

the PL. Enhancing the existing ones and creating new ones to cover other important task

types could be beneficial”–P2, Senior Developer.

Although employing the Spotify model results in a very little standardisation because of
having loosely coupled squads that are tightly aligned, it was observed that FinTechOrg
tends to be leaner because of the strong culture of cross-pollination besides being
transformed from Lean. Some Lean principles adopted by FinTechOrg include Kanban
board, continuous process (Lean Thinking), documenting the development process
(value stream mapping), and automation whenever possible. A practitioner says:“The

organisation tries to automate the processes whenever is possible by utilising DevOps

through continuous integration, delivery, deployment, testing and release”–P4, Senior
Developer. Also, Lean thinking is perceived through the adoption of continuous processes
such as continuous backlog grooming, monitoring, prioritisation, feedback, integration,
refactoring, verification and testing, deployment, delivery. A practitioner says: “We have

instructions to (1) set up the system for developers, (2) build unit tests, (3) access and

deploy, (4) fix release configuration, and (5) do a code implementation and validation

using a predefined checklist for the PL”–P9, Senior Developer.

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 73

5.3.2 Collective Decision-Making

Strengthening shared understanding of business objectives: Establishing an organi-
sational strategy, which draws the project’s borders and specifies long-term directions,
facilitates the identification of scope and specifications. Thus, FinTechOrg emphasises
frequently on sharing a common understanding of project scope and specifications, which
facilitates decision-making within squads and mitigates possible deficiencies among
them. A practitioner says: “Communicating the project vision and highlighting on the

specifications build a common understanding of the project objectives and strengthens

our autonomy”–P10, Product Owner. Further insight about how the organisational
strategy is undertaken to strengthen squads’ autonomy is provided in Sect. 4.2.2.

Continuously communicating and sharing intentions behind business objectives and
providing proper “Definition of Awesome” at different levels of the project facilitates
decision-making. Practitioners say:“We should be familiar with how the GOOD should

look like in all areas associated with the provided service!”–P6, Product Owner and
Key Account Manager. Also, “providing sufficient shared business goals and objectives

among the squads aids our people to think in the right direction... Too much shared

details might be destructive and wasteful for our resources”–P7, Product Owner and
Key Account Manager.

However, encountering obstacles to decision-making can increase hands-off or results in
a waste of resources because of implementing insufficient solutions. Thus, management
commitment and support can overcome encountered obstacles and facilitate decision-
making. A practitioner says:“The development of complex features, which require

providing dynamic and generic solutions that would be utilised by all customers, might

require some support from the management to take the right decision before proceeding

in the development”–P3, Senior Developer.

Strengthening knowledge-based decision-making: Aligning autonomous squads on
the product-level might result in a lack of required knowledge and expertise when
encountering conflicting priorities, which require working on other squads’ tasks. Thus,
developers, who are located at another squad and entitled to the desired knowledge

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 74

and expertise, should provide some support to those developers who lack the required
knowledge. A practitioner says:“Sometimes, we encounter conflicting priorities between

the squads. Hence, some developers from other squads could request some clarifications

regarding a specific component, which my squad is entitled to”–P8, Senior Developer.

FinTechOrg relies on a knowledge-based approach to facilitate decision-making. Instead
of relying on domain-independent approach (routine decisions), the organisation values
and relies on individuals’ knowledge and experience on the product-level and business
domain. A practitioner says: “Taking a decision about which solution to adopt is time-

consuming for the developers with insufficient knowledge in this domain and makes it hard

to work independently”–P1, Agile Coach and Architect. Therefore, FinTechOrg focuses
on strengthening knowledge sharing to facilitate decision-making and to strengthen
squads’ autonomy.

Chapters communities facilitate decision-making among autonomous squads. In these
Chapters, the individuals are organised based on their skills and competency area. The
communities of Chapters align individuals on the skill level. This alignment enables
the autonomy of squads and speeds up the decision-making. Practitioners say: “The

members of my Chapter meet regularly and whenever is needed to solve encountered

issues or make decisions on how to build things in a standardised way”–P4, Senior
Developer. Also, “Building cross-functional squads by employing Chapters help in

building self-organising squads that work autonomously and effectively”–P7, Product
Owner and Key Account Manager.

5.3.3 Knowledge Sharing

Strengthening the systematic knowledge sharing: The Spotify model employs the
communities of Chapters to enable the autonomy of squads by aligning them together.
In these chapters, members meet to help in solving problems within their competency
areas. However, it is unknown if the Spotify organisation itself emphasises on the
continuous sharing of knowledge within chapters. In FinTechOrg, Chapters conduct
continuously seminars to share knowledge and experience. A practitioner says: “sessions

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 75

are conducted to share knowledge and expertise within our chapters... At the end of each

session, we plan for the next session and its topic”–P8, Senior Developer.

Also, FinTechOrg employs some practices and processes to systematically share the
knowledge: (1) Squad-of-Squads meeting, (2) regular demos and (3) Postmortem Doc-
umentation. In Squad-of-Squads meeting, POs communicate encountered challenges,
which need to solve, and explain the reasons behind them. The squads are expected to
work together to find the best solution and implement it. A practitioner says: “Empha-

sising on encountered challenges in our squad-of-squads meetings provides insights on

what and why we should improve things. This process stimulates all squads to work

towards resolving the challenges”–P11, Key Account Manager. Conducting regular
demo sessions, for newly implemented features, which are of interest for other squads,
facilitates knowledge sharing. A practitioner says: “Conducting regular demos helps all

stakeholders to be up-to-date... We will also be able to communicate new features with

our customers”–P13, Key Account Manager. Employing Postmortem Documentation
process determines successful and unsuccessful processes on either the process-level or
product-level and helps in mitigating future obstacles. A practitioner says: “Continuously

investigating the process and the product after finalising an important milestone or small

project facilitates the continuous improvement and knowledge sharing ”–P3, Senior
Developer.

Strengthening on-demand knowledge sharing: The organisation utilises informal and
on-demand knowledge sharing instead of employing Guilds communities. Since the
software development programme of case study project is less than 100 member, the
organisation realised that Guilds poses challenges that can be mitigated by employing
informal on-demand knowledge sharing process. A practitioner says: “As the size of

our development programme is less than Spotify’s one, we replace the Guilds with a

call for meetings through Slack to invite those who are interested in the subject under

discussion”–P7, Product Owner and Key Account Manager.

On the contrary to the Spotify organisation, it was observed that FinTechOrg utilises
a limited fail-friendly culture since it provides a FinTech service. A practitioner says:

“Release failure could cause a loose of money and impact our reputation negatively”–

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 76

P5, Product Owner. To eliminate possible release failures, the organisation employs a
limited fail-friendly culture. Since failures can be encountered during the pilot launch
of newly implemented features, the responsible squad shall decide whether to switch
off newly release features or to roll back the whole release. A practitioner says: “In

case of encountering a bug, we either switch off newly implemented code if possible or

rollback the release... Then, we fix the code and increase the test coverage”–P8, Senior
Developer. These encountered failures are embraced to highlight learning lessons and
to improve the project and the process. A practitioner says: “Sharing the encountered

issues continuously in our squad-of-squads meetings provides the ability to take actions

to improve both product and the process”–P10, Product Owner.

The organisation utilises peer code review, either within the same squad or on the squads
level, to ensure the successful development of FinTech software service. Encountering
contradicted priorities between the squads sometimes causes the other squad, which
lacks the expertise and knowledge on the targeted product-level, to take over and handle
such work items. Thus, a peer code review on the squad level is required to secure the
development. A practitioner says: “Sometimes, we take over other squads’ tasks since

they do not have enough resources... Afterwards, code review and inspection is employed

on the squad level to ensure the continuity of handing in successful deliverables”–P9,
Senior Developer.

5.3.4 Inter-team Coordination

The Engineering Culture of Spotify does not employ inter-team coordination practices
and processes. This ignorance is because of the needs for speeding up the process
by having autonomous squads instead of relying on managers who should coordinate
among the squads. However, the existence of contradicted situations demands inter-team
coordination. It was observed that FinTechOrg emphasises on having sufficient inter-
team coordination to prevent excessive processes that could waste resources and hence
impact negatively the autonomy of squads. A practitioner says: “We do not want to have

too much coordination and alignment that might mitigate squads autonomy... We employ

just enough coordination to overcome the challenges”–P1, Agile Coach and Architect.

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 77

Strengthening formal coordination: Formal inter-team coordination is mostly depicted
through two main routine meetings: Squad-of-Squads meetings and POs meetings. In
Squad-of-Squads meeting, POs provide brief information about what their teams are
determined to do by sharing their intents and obstacles (if there were any) instead of
reporting the work progress status. A practitioner says: “I explain briefly in our Squad-

of-Squads meeting what my squad is intended to do in the upcoming period and the

encountered challenges”–P7, Product Owner and Key Account Manager.

In POs meeting, a synchronisation meeting is conducted to ensure (1) the alignment
between squads’ missions, (2) the ownership of the product itself, and (3) the alignment
for the overall road map of the organisation. Practitioners say: “Our POs always try

to emphasise on the ownership of the provided software service since the customers

often try to push product development in their own ways”–P2, Senior Developer. Also,
“We have regular meetings between the POs to tackle important tasks in the upcoming

iteration(s). Also, POs meet up to discuss and prioritise intersected tasks to aligned

between the squads”–P4, Senior Developer. Moreover, “In our POs meetings, we match

and distribute the backlog items based on squads missions to align squads over the

roadmap”–P5, Product Owner.

Strengthening informal coordination: Informal inter-team coordination was observed
in the employment of non-routine and on-demand meetings. This informal inter-team
coordination is utilised to resolve conflicting priorities between the squads and to control
the outcome of intercorrelated tasks.

On-demand informal inter-team coordination is conducted between the POs to resolve the
conflicting priorities between the squads. A practitioner says: “We encounter situations

where other squads, who is responsible for a specific part of the system, are not able to

handle specific work items. Therefore, the POs arrange between their squads whenever

is needed”–P3, Senior Developer.

Non-routine informal inter-team coordination process is employed between involved
squads’ members to control the outcome of some complex tasks. A practitioner says:

“Some work items require the involvement of multiple stakeholders from multiple squads

to decide on which solution to adopt since the uncertainty is high and due to the needs

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 78

for covering the full lifecycle of the project”–P5, Product Owner. Otherwise, time and
resources could be wasted.

5.3.5 Mission-Based Planning

The squads respond to customers’ needs at different velocities based on their missions
and their scaled agile methods. The findings show that the planning activity is affected
by the nature of squads’ missions. While innovation based missions neglect estimation
and embrace Lean Startup, the plan based missions embrace automation, standardisation,
and estimation. This section ignores “Strengthening PL” in which plan-based missions
embrace automation, standardisation, and estimation since it is described in detail in
Sect. 6.4.3 through strengthening product-line development and automation.

Strengthening innovation: The Spotify model encourages the utilisation of Lean
Startup to promote innovation, likewise FinTechOrg. Tasks of maintenance nature
(i.e., adaptive or perfective) and/or of newly requested features are characterised with a
high degree of uncertainty. A practitioner says: “Developing new features and adapting

or improving already existed ones impose challenges due to the high level of uncer-

tainty... providing dynamic and generic solutions increase the complexity”–P9, Senior
Developer. Such tasks require innovation to provide customers with the desired business
values. Hence, those squads tackling such tasks have missions that embrace Lean Startup
principles. A practitioner says: “We have hybrid process based on Lean Startup and

Kanban”–P10, Product Owner.

Software development estimation is considered as a waste for those squads with inno-
vation missions. Practitioners say: “We sacrifice the predictability of delivery for the

sake of providing our customers with valuable features”–P6, Product Owner and Key
Account Manager. However,“customers request sometimes an estimation before starting

the development... We provide a rough estimation and keep them involved in the process

to revise the plan accordingly”–P12, Product Owner.

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 79

5.3.6 Release/Delivery Strategy

Speed up the release delivery: The organisation employs a decoupled architecture as
suggested by the Spotify model to make a release train for each part of the software. A
practitioner says: “We utilise a decoupled architecture to (1) facilitate the alignment

of squads on the product-level, (2) mitigate possible dependencies between squads,

and (3) prevent impacting the whole system when a mistake is introduced”–P9, Senior
Developer. Since the squads are aligned on the product-level and a decoupled architecture
is utilises, each squad can have a different release train, as illustrated in Fig. 5.4. A
practitioner says: “The squads are aligned on the product-level since a decoupled

architecture is employed... each part of the software has its release train”–P4, Senior
Developer. This employed strategy would, in turn, strengthen squads autonomy and
facilitate the delivery of frequent small releases, which consequently will speed up the
process of delivery.

PL Feature
Core

DevOps
Project-X

Re
le

as
es

- D
ec

ou
pl

ed
 R

el
ea

se
s

- F
ea

tu
re

s
w

ith
 to

gg
le

 o
n/

off

Squads

Figure 5.4: The nature of squads missions

Strengthening the accountability for release delivery: Despite allowing the release
of unfinished code as hidden by the Spotify model, it was observed that FinTechOrg does
not do that in-spite of providing new features with a toggle on/off switch. Forbidding
releasing unfinished code aims to ensure (1) having clean code base that eliminates
possible inconsistencies between the squads since collective code ownership is adopted,
and (2) having stable working software features at the production platform since the
organisation provides a FinTech service. A practitioner says: “It is crucial to have

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 80

a clean code base that only has stable working features as the code is shared by all

squads”–P1, Agile Coach and Architect.

It is unknown if the Spotify model utilises on-demand releases in case of missing a
release train. FinTechOrg “employs DevOps to automate the process of release delivery

whenever is needed”–P4, Agile Coach and Architect. Also, the organisation releases
on-demand in case of encountering a situation where a squad missed a release train, and
a customer requested a release delivery. A practitioner says: “If we missed a release train

this week, we either wait for the next train or we can deliver the finished work whenever

is demanded by a customer”–P7, Product Owner and Key Account Manager.

To strengthen the release strategy, the organisation provides backwards compatible
releases in order to prevent any deviation in the behaviour of the software service from
the intended one in the old release and to strengthen squads’ autonomy. A practitioner
says: “We always make sure that old features, components, and integrated APIs as well

as their old configuration files working as expected... This is to satisfy customers’ needs

and to prevent possible conflicts of interests between the squads”–P4, Senior Developer.
Also, having backwards compatible releases is considered powerful to facilitate the
process of rolling back a release in case of encountering problems. A practitioner says:

“A key rule of thumb to always follow is to provide backwards compatible releases. This

process, in turn, facilitates the process of rolling back when facing problems”–P9, Senior
Developer.

The organisation mitigates possible release failures through the utilisation of Limited
Blast Radius technique. This technique facilitates the verification of software releases
over a limited number of customers and a limited number of end-users instead of rolling
it out directly for all customers and end-users. A practitioner says: “We utilise a limited

blast radius process and monitor new releases to verify the software behaviour for few

customers with limited number of end-users... In case of encountering a bug, we either

switch off newly implemented code if possible or rollback the release... If things were

successful, we roll it out to the rest of customers and end-users”–P8, Senior Developer.

CHAPTER 5. ALIGNING AUTONOMOUS SQUADS 81

5.4 Summary

This chapter addresses the research question (RQ1.2): How do agile practitioners, from

a FinTech organisation, achieve and sustain the alignment of autonomous squads? A
longitudinal embedded case study was conducted to answer this question. The data
were collected through observing 225 ceremonies over 21 months, conducting 14 semi-
structured open-ended interviews, and accessing different sorts of artefacts. The collected
data was analysed using an approach informed by the Grounded Theory method.

The analysis, in this chapter, has identified factors that influence the the alignment of
autonomous squads. Investigating Spotify Tailoring, from a squad alignment perspec-
tive, identified new, modified and previously introduced practices and attributes to the
Spotify model. This investigation facilitated the identification of the FinTech’s Spotify
model, from squads alignment perspective. In result, 31 tailored practices and attributes,
which facilitate the alignment of autonomous squads, were identified. Some identified
practices and attributes are previously introduced by the Spotify model, such as the
two-dimensional structure, Chapter based decision-making, and peer code review on
the squad level. Also, some identified practices and attributes were modified, such as
neglecting Guilds and Tribes communities, and not releasing unfinished code. Moreover,
other new practices and attributes were introduced, such as covering the full value chain
and whole lifecycle and management commitment.

Also, the analysis identified influential factors on aligning autonomous squads. These
influential factors are; (1) adaptive structure, (2) collective code ownership, (3) collective
decision-making, (4) knowledge sharing, (5) inter-team coordination, (6) mission-based
planning, and (7) delivery strategy. Each identified factor is supported by a set of
practices and attributes that strengthens the alignment of autonomous squads. The
identified influential factors and their related practices can aid agile practitioners in
aligning autonomous squads.

Chapter 6

Spotify Tailoring for B2B Product
Development

6.1 Introduction

This chapter addresses the research question (RQ1.3): How do agile practitioners, from

a FinTech organisation, tailor the Spotify model for B2B product development? A
longitudinal embedded case study was conducted, as described in Sect. 3.4.

The findings described in this chapter reveal 2 aspects related to product development.
Firstly, the impact of product development on squads autonomy and alignment was
identified. Secondly, performing B2B product development by tailoring the Spotify
model was identified. The investigation of Spotify Tailoring, from a B2B perspective,
identified new, modified and previously introduced practices and attributes to the Spotify
model. This investigation facilitated the identification of the FinTech’s Spotify model,
from a B2B product development perspective. Also, the investigation of Spotify tailoring
has identified influential factors on Spotify tailoring for B2B product development. Each
identified factor is supported by a set of practices and attributes that facilitate B2B
product development. The identified influential factors and their related practices can

82

CHAPTER 6. B2B PRODUCT DEVELOPMENT 83

aid agile practitioners in performing B2B product development by tailoring the Spotify
model. Fig. 6.1, which is depicted in the top side of the whole model illustrated in
Fig. 7.2, illustrates briefly the emergence of the project strategy and how the organisation
interacts with the customers.

Management

Business
owners

Architect
and engineers

Key Account
Managers

POs

BacklogK
an

b
an

Agile coachesP
ro

d
u

ct
 D

ev
el

op
m

en
t

Figure 6.1: B2B product development

This chapter is an expansion of a peer-reviewed research paper [95].

6.2 The impact of product development on squads au-
tonomy and alignment

The researcher has observed that the project strategy is shaped by the product steering
committee, which consists of a management team, Key Account Managers, POs, Agile
coaches, and architects. Hence, software product development is influenced by the
organisational strategy and its road map. This product development impacts squads
autonomy and alignment.

Product development impacts squads autonomy through identifying the strategy of squads
missions. The product steering committee draws the strategy of squads missions. This
identified strategy is used to facilitate tailoring agile practices for each squad to achieve
its mission ultimately. Hence, the identified strategy facilitates the process of establishing
and building autonomous squads. Practitioners say:“Our product steering committee

draws the strategy for each squad’s mission to enable self-governance”–P7, Product
Owner and Key Account Manager. Also, “identifying the strategy of squads missions

CHAPTER 6. B2B PRODUCT DEVELOPMENT 84

helps us in tailoring agile practices for each squad based on its own mission”–P1, Agile
Coach.

Product development impacts squads alignment. The product steering commite, through
POs, aligns product backlog items among autonomous squads. POs organise the product
backlog by prioritising the tasks and tickets and distribute them among the squads
according to their missions. A practitioner says:“We (POs) meet up regularly to prioritise

and align backlog tasks among squads”–P10, Product Owner.

6.3 Spotify Tailoring for B2B Product Development –
Practices and Attributes

This research study identifies practices and attributes that facilitate performing B2B
product development in an offshore outsourced FinTech project of large-scale. The
identified practices and attributes are tagged by α, β, and γin Fig. 6.2. “α” represents
practices and attributes that are previously introduced by the Spotify model. “β” repre-
sents Spotify’s practices and attributes that were modified by FinTechOrg. “γ” represents
newly introduced practices and attributes by FinTechOrg.

In result, 44 tailored practices and attributes, from a B2B perspective, were identified.
These practices and attributes, which represent the emerged Codes in the Grounded
Theory as presented in Fig. 6.2, are classified into three main types, as follows:

1. Already exist: 10 practices and attributes, which are enumerated in Table 6.1, were
followed by FinTechOrg as previously introduced by the Spotify model. These
practices and attributes are tagged by α in Fig. 6.2.

CHAPTER 6. B2B PRODUCT DEVELOPMENT 85

Table 6.1: Already existing practices and attributes in the Spotify model, from a
B2B perspective

Already existing practices in the Spotify model
Definition of Awesome
Limited blast radius
No estimation process for innovation based missions
Employing Lean Startup
Features with toggle switch
Squad autonomy
Horizontal alignment
Decoupled architecture
Decoupled releases
Squad or mission based frequent and small releases

2. Modified: 6 adapted Spotify practices and attributes by FinTechOrg, which are
enumerated in Table 6.2. These practices and attributes are tagged by β in Fig. 6.2.

Table 6.2: Adapted Spotify practices and attributes by FinTechOrg, from a B2B perspec-
tive

Adapted practices and attributes
Clear vision and roadmap
Defined project scope and specifications
Ownership of the product
Aligning the customers over road map and strategy
Postmortem Documentation on B2B level
Limited fail-friendly culture

3. New: 28 new practices and attributes, which are enumerated in Table 6.3, were
introduced by FinTechOrg. These practices and attributes are tagged by γ in
Fig. 6.2.

CHAPTER 6. B2B PRODUCT DEVELOPMENT 86

Table 6.3: New practices and attributes introduced by FinTechOrg, from a B2B
perspective

New practices and attributes
Defined milestones
Utilising globally accessible project management and issue tracker tools
Well defined and documented process for B2B product development
Involvement of relevant stakeholders
Routine and on-demand meetings
Risk and opportunity identification
Quick handling of continuous changes in customers’ business
Identification of key contact (1st line) in the both sides of B2B
Support squad works as the 2ed line of contact
Knowing customers’ business domain
Having good experience
Knowledge based decision-making
Developers hold Proxy-PO role
Transparency and mutual respect
Continuous sharing of intent
On-demand meetings to control the outcome of tasks
Routine meetings to draw path - Management support
Emphasising on the privacy and security of provided software system
Financial and legal stability
Proactive management style
Eliminate surprises for customers
Promise less but deliver more
Involve the customers
Utilising a product-line
Task standardisation for the product-line
Adopting Lean Thinking in the product-line squad
Adopting Scrumban in the product-line squad
Up-front estimation for the tasks of the product-line

6.4 Influential Factors on B2B Product Development

The analysis of the collected data has grounded a synergy between the following cat-
egories (i.e., factors), which are depicted in Fig. 6.2, and facilitating B2B product

CHAPTER 6. B2B PRODUCT DEVELOPMENT 87

development. Fig. 6.2 depicts the emerged categories along to their related concepts
and codes. This figure is built by following the model illustrated in Fig. 3.3, which
presents the emerging levels of abstraction when using the Grounded Theory. Spotify

Tailoring is presented in Table 6.4 to indicate the coverage of the adopted practices and
attributes, which are mentioned in the previous section (Sect. 6.3), by the Spotify model
and FinTechOrg. The influential factors, which represent the emerged Categories and
Concepts of the grounded theory were used as a pattern to present Spotify Tailoring from
a B2B perspective. Moreover, Table 6.4 clarifies the extent of which the Spotify model,
in terms of product development, has been scaled in the organisation. The following
sections present the influential factors on B2B FinTech product development.

Table 6.4: Influential factors on B2B product development

Factors Concepts Spotify Case Study

Project
visibility

Shared understanding of the
business objectives Yes Yes

Globally accessible project
management tools No Yes

Embracing offshore product
development processes No Yes

Employed
interactions

Collaboration and coordination No Yes
Communication of requirements
and organisation’s capabilities No Yes

Facilitating decision-making Yes Yes

B2B
relationships

Accountability for the
provided software service Yes Yes

Expectation management Unknown Yes
Relationships among stakeholders No Yes

Response
time

Proper delivery strategy Yes Yes
Facilitating innovation by
employing Lean Startup Yes Yes

PL development and automation
increase predictability No Yes

Yes: covered, ≈Yes: partially covered as depicted in Fig. 6.2, No: not covered,
Unknown: no evidence

C
H

A
PT

E
R

6.
B

2B
PR

O
D

U
C

T
D

E
V

E
L

O
PM

E
N

T
88

- Clear vision and roadmap β
- Defined scope and specs β
- Defined milestones γ
- Ownership of product β
- Aligning the customers
over roadmap and strategy β
- Strengthening
- Utilising globally accessible
project management tools γ
- Utilising globally
accessible issue tracker tools γ
- Strengthening

Strengthening a shared
 understanding of

the business
objectives

Strengthening
offshore B2B project

management

Satisfying customers
by responding at

different velocities

The interactions within B2B
product development

Building
successful

B2B relationships

Project visibility
for the customers

- Well defined process γ
- Documented processes γ
- Postmortem Documentation
on B2B level β
- Strengthening

Strengthening offshore
B2B software

development process

(α) Introduced
by Spotify
(β) Modified
(γ) New

- Decoupled architecture α
- Decoupled releases α
- Autonomous squads with
frequent small releases α
- Strengthening

- Utilising a product-line γ
- Task standardisation γ
- Adopting Lean Thinking γ
- Adopting Scrumban γ
- Up-front estimation γ
- Strengthening

- No estimation process α
- Employing Lean Startup α
- Features with toggle switch α
- High squads’ autonomy α
- Horizontal alignment α
- Strengthening

- Knowing Customers' business domain γ
- Developers hold Proxy-PO role γ
- Transparency and mutual respect γ
- Strengthening

- Continuous sharing of intent γ - Definition of
Awesome α - Having good experience γ
- Knowledge based decision γ - On-demand
meetings to control the outcome of tasks γ - Routine
meetings to draw path - Management support γ
- Strengthening

Strengthening
the delivery

strategy

Strengthening
PL development
and automation

Strengthening
innovation

(Lean Startup)

Strengthening the
accountability

- Financial and legal stability γ
- Privacy and security γ
- Software service reliability γ
- Limited blast radius α
- Limited fail-friendly β
- Strengthening

Strengthening
expectation

management

- Proactive management γ
- Eliminate the surprises γ
- Promise less but deliver
more γ
- Involve the customers γ
- Strengthening

Strengthening
relationships

among
stakeholders

- Human connections build
effective teams γ
- Employing behaviours that
boost morale γ
- Building trust γ
- POs and KAMs travel from
while to while γ
- Strengthening

Strengthening the communication
of requirements and

organisation’s capabilities

Strengthening
collaboration and

coordination

Strengthening B2B
decision-making

- Involvement of relevant stakeholders γ
- Routine and on-demand meetings γ
- Risk identification γ- Opportunities
identification γ - Quick handling of continuous
changes in customers' business γ - Identification
of key contacts γ- Support squad is the 2ed line γ
- Strengthening

Figure 6.2: Emergence of the influential factors on Spotify Tailoring, from a B2B product development perspective, which is
adapted from [95]. The categories are in bold, the concepts are in italic, and the codes are in plain text

CHAPTER 6. B2B PRODUCT DEVELOPMENT 89

The following subsections describe the emerged categories and their related concepts
and codes, which are depicted in Fig. 6.2. These categories represent influential factors
on performing B2B product development.

6.4.1 Project Visibility for the Customers

Strengthening a shared understanding of the business objectives: Establishing clear
project vision, by defining the scope and a set of specifications, provides customers with
directions to avoid confusion during the development process. Practitioners say:“project

vision is communicated frequently, but it changes quite often. This is mainly due to market

demands since it is volatile.”–P10, Product Owner. Also, “frequently communicating

clear targets and establishing milestones based on the defined specifications is considered

important for both of the squads and the customers”–P7, Product Owner and Key
Account Manager. To be able to maintain a shared project vision and specifications,
POs have a regular meeting to ensure of (1) the alignment of the product strategy and
the overall roadmap of the organisation, and (2) the ownership of the provided software
service itself. A practitioner says: “We have a weekly meetings between the POs to

prevent the deviation from product’s main purpose... the provided features should not only

cover the needs of a specific customer, but they should also be usable by all customers

within a specific domain”–P12, Product Owner.

Strengthening offshore B2B project management: FinTechOrg utilises globally ac-
cessible project management tools (e.g., Rally) and issue tracker tools (e.g., Jira) to
increase the visibility of this FinTech software project within this B2B environment.
Providing customers with shared online Kanban boards facilitates project management
through the utilisation of this mechanism, which has a low coordination overhead. A
practitioner says: “To align B2B product development, we provide our customers with

shared Kanban boards to facilitate the planning activities as customers can observe

the progress and take decisions accordingly.”–P11, Key Account Manager. Since the
organisation has a strong culture of cross-pollination, all squads employ Kanban to
utilise a standardised operational process that is controlled by employing the definition of
“DONE”. A practitioner says:“The definition of “DONE” ensures tasks’ completeness,

CHAPTER 6. B2B PRODUCT DEVELOPMENT 90

rules the overall process flow and satisfies customers’ needs”–P7, Product Owner and
Key Account Manager. Hence, the squads respond to customers’ needs in a highly
transparent and disciplined manner.

Strengthening offshore B2B software development process: FinTechOrg embraces
well-defined and documented processes to improve project and process visibility in this
B2B environment since the customers are scattered around the globe. A practitioner
says: “We share, continuously, with our customers feature instructions, release notes,

and highlight on software development processes to facilitate the business and software

development process”–P10, Product Owner. Also, Postmortem Documentation process is
utilised by FinTechOrg to document project-related aspects continuously and to improve
the development process. Therefore, “at the end of each small project, we get customer’s

feedback to improve the product and the process if needed”-P11, Key Account Manager.

6.4.2 The Interactions within B2B Product Development

Strengthening the collaboration and the coordination: Product development in the
case study project demands sufficient collaboration and coordination between the two
sides of B2B. Regular and on-demand involvement of multiple stakeholders from both
sides of B2B is required. This is to handle more complex issues, which are characterised
with a high level of uncertainty. A practitioner says: “Key players from both parties

meet up on a weekly basis to discuss the progress over an online Kanban board... we

also meet up whenever is needed.”–P11, Key Account Manager. Involving both sides
of B2B in the process of product development keeps all sides informed, enables the
identification of potential opportunities that both sides might invest in, and enables
the identification of possible risks that both sides might overlook. A practitioner says:

“The involvement of key stakeholders from both sides is considered crucial. Otherwise,

we may realise that things should have been handled differently. Thus, our priorities

come into focus or changing”–P7, Product Owner and Key Account Manager. This
continuous involvement helps in tackling the encountered obstacles, making decisions,
and highlighting on priorities.

CHAPTER 6. B2B PRODUCT DEVELOPMENT 91

Identifying key contact persons in the two sides of the B2B environment, for this case
study project, strengthens the interaction in business and product development. Also,
this identification facilitates a continuous communication flow between the two sides.
Practitioners say: “We (i.e., POs and KAMs) do highlight on external communication

hierarchy, internal structure, and squads’ missions to make sure that all parties are on

the same page”–P10, Product Owner. Also, “our support squad continuously helping

the customers, in a low Resolution-Time, with service configuration management, issues

investigation, requirements engineering, and continuously giving feedback to the POs

and KAMs”–P14, Support Manager. It was observed that this support squad represents
the second line of contact for the customers to strengthen collaboration and coordination.

Strengthening the communication of requirements and organisation’s capabilities:
In this B2B environment, the product development of the case study project is tightly
linked with (1) the continuous communication of requirements and (2) the continuous
communication of the organisation’s capabilities to the customers. Misunderstanding of
the project requirements or organisation’s capabilities within a specific period puts even
simple implementations at serious risk.

Understanding the business domain of the customers in this B2B environment facilitates
precise interpretation and elicitation of the requirements. “When customers request a

new feature as much information as possible should be provided by the customer to speed

up the support and the development processes”–P14, Support Manager. Since newly
requested features are usually characterised with high-level of uncertainty, developers
take the role of Proxy-POs to extract the requirements and to get the requested featured
matured enough before starting software development. A practitioner says: “Usually, I

get in touch with our customers to extract the requirements due to the vagueness of newly

requested features”–P9, Senior Developer. Employing an iterative way of development
and getting continuous feedback mitigates risks. A practitioner says: “We use live

meetings, Slack channels, or emails to extract the requirements iteratively and to approve

the changes... The requirements are listed in the work items of Kanban”–P5, Product
Owner.

Both sides (FinTechOrg and customers) of this B2B environment have different interests,

CHAPTER 6. B2B PRODUCT DEVELOPMENT 92

but they overlap. The customers utilise the provided software service to perform a
business functionality that is outside their main business domain. However, the provided
FinTech software project, by FinTechOrg, handles a crucial part of customers’ business.
A practitioner says: “A successful product development relies on fulfilling customers’

needs and maintaining respect for what we need to accomplish”–P10, Product Owner.
FinTechOrg has developed a culture based on mutual respect and transparency with the
customers. A practitioner says: “continuously communicating what capabilities (time

and resources) we can provide within the upcoming period”–P11, Key Account Manager.
This culture helps the customers in realising the capabilities that can be provided by
FinTechOrg in the upcoming period to streamline the process of product development at
the customers’ side.

Strengthening B2B decision-making: FinTechOrg emphasises a continuous sharing
of intentions at different levels of product development to facilitate decision-making.
A practitioner says:“As we are familiar with the intentions behind each component or

feature, we can make the right decisions quickly”–P6, Product Owner and Key Account
Manager. Also, FinTechOrg utilises the“Definition of Awesome” in each area of the
provided software product, which in turn facilitates decision-making for POs and Key
Account Manager. A practitioner says:“Possessing good knowledge about how the

GOOD should look like in all areas improves our product development”–P7, Product
Owner and Key Account Manager.

Decision-making in FinTechOrg is mostly shifted from a domain-based approach, which
is based on routine decisions, to a knowledge-based approach, which is based on expertise.
A practitioner says: “Our POs’ squad have long experience and knowledge in this

industry, which in turn facilitates our work”–P12, Product Owner. Nevertheless, on-
demand decision-making and regular meetings are conducted between the POs to control
the outcome of some tasks or to ensure the ownership of the project. A practitioner says:

“Whenever encountered tasks with high complexity and uncertainty, we investigate the

possible outcome such task... Also, we (POs) meet up regularly to ensure the ownership

of our project as customers are enthusiastic about using our software service in their

own way”–P11, Product Owner.

CHAPTER 6. B2B PRODUCT DEVELOPMENT 93

Sustainable management support facilitates collective decision-making and speeds up
product development. POs, in FinTechOrg, encounter situations in which the manage-
ment support is considered necessary despite the utilisation of regular and on-demand
meetings between the POs. A practitioner says:“We get back to the management in case

of encountering show stoppers, identifying possible risks... and when finding possible

opportunities to invest in”–P10, Product Owner. Hence, the management’s support
strengthens decision-making by eliminating hands-off, resolving potential risks, and
speeding up the process.

6.4.3 Building Successful B2B Relationships

Strengthening the accountability: Customers in this case study rely on the organisa-
tion’s accountability to provide reliable, stable, and secure financial software service,
which impacts the Return Of Investment (ROI). This reliance is because the case study
project offers customers’ end-users with a wide range of payment solutions. A prac-
titioner says:“if things go wrong with the provided software service, it will negatively

affect customers’ business, reputation, and revenues”–P11, Key Account Manager. This
FinTech project is mission-critical, which influences customers’ projects since the project
plays a vital role in the lifecycle of customers’ projects. Practitioners say:“end-users

assume that if a specific part of a customer’s product is bad, then the whole product is

bad too”–P13, Key Account Manager. Also, “the stability of the provided service is also

about the financial and legal stability of the provided software”–P1, Agile Coach and
Architect.

FinTechOrg emphasises on providing 24/7 stable software service constantly. Hence,
FinTechOrg emphasises on the employed practices to conform with the case study project
and to serve customers in their competitive advantage. For instance, instead of rolling out
newly implemented features to all customers at once, a “Limited Blast Radius technique is

utilised to perform experiments on a limited number of end-users”–P8, Senior Developer.
Consequently, the responsible squad decides whether to gradually roll out the new
feature or roll it back based on the monitoring results. Also, since a configuration-driven
development approach is employed in this case study project to control the behaviour of

CHAPTER 6. B2B PRODUCT DEVELOPMENT 94

the software system at the execution time, the organisation “usually makes backwards

compatible releases to be able to roll back in case of encountering issues”–P2, Senior
Developer.

FinTechOrg employs a limited fail-friendly culture because of providing a FinTech
software service. A practitioner says: “As we provide financial software services,

failure is not tolerated since it affects our reputation directly”–P1, Agile Coach and
Architect. However, failures are inevitable, sometimes, during the pilot launch of a
newly implemented code, which aims to improve and verify features’ behaviours. These
failures are utilised to learn and improve the process and the product. A practitioner says:

“In our squad-of-squads weekly meeting, we share the reasons behind encountered release

issues to improve the product and the process if needed”–P12, Product Owner.

Strengthening expectations management: Managing the expectations of the customers
proactively builds strong B2B relationships and satisfaction. A practitioner says: “a

deeper understanding of the customers, at company and business domain levels, is

considered important to provide customers with better solutions that would strengthen

their competitive advantage”–P13, Key Account Manager. FinTechOrg works on elim-
inating possible surprises when working on tasks with a high level of uncertainty and
complexity. For instance, “announcing the initiation of implementation for a task brings

customers’ excitement and builds expectations. Not being able to deliver on time causes

dissatisfaction and a loose of confidence in our ability to produce in the future.”–P7,
Key Account Manager. Also, “we (i.e., POs and KAMs) tend always promise less but

try to deliver even more–P5, Product Owner. To mitigate possible disappointment, POs
and KAMs continuously involve the customers in the process, which in turn eliminates
possible misunderstandings. A practitioner says: “When meeting customers, we try to

avoid possible pitfalls by having a conversation in which both sides openly discuss what

is expected from the other side to prevent possible misunderstandings”–P7, Product
Owner and Key Account Manager.

Strengthening relationships among stakeholders: B2B product development relies
on the relationships among stakeholders to overcome increasingly complex challenges.

“Maintaining proper communication and connections reinforces the notion of that sides

CHAPTER 6. B2B PRODUCT DEVELOPMENT 95

of B2B are all in the same boat”–P10, Product Owner. Thus, the two sides together
are truly one team working towards the same goal. Also, “the communication includes

things like congratulating the other part for an accomplishment, such as reaching a

milestone”–P11, KAM. Such behaviours boost morale between both sides and build
strong relationships. Since the organisation has developed an environment based on
transparency and mutual respect with the customers, trust is built by time. However, “to

gain the trust of new customers, we tend to travel sometimes to meet customers, carry out

on-site training sessions, show the customers our track record, state-of-the-art technology,

existing expertise and also showing the willing to understand their real needs”–P7, PO
and KAM.

6.4.4 Satisfying customers by responding at different velocities

FinTechOrg responds to customers’ needs at different velocities based on the employed
process in each squad, which is based on the mission of the squad. While some squads
missions value innovation more than plan fulfilment, other squads value plan fulfilment
more than innovation. In this section, strengthening the delivery strategy and strengthen-

ing innovation are ignored since they are covered by the Spotify model [57], and in Sect.
5.3.5–5.3.6.

Strengthening product-line development and automation: The utilisation of a soft-
ware product-line provokes task standardisation to facilitate the process of integrating
the case study project into external payment APIs (sub-systems). Since this project
manages autonomous software systems, “the project utilises a PL architecture, which

facilitates the process of integrating the project into external sub-systems”–P9, Senior
Developer. Eliminating waste using Lean Thinking is harnessed through the employment
of predefined checklists. A practitioner says: “checklists are utilised to facilitate require-

ment extraction, code review, planning, estimation, documentation, knowledge sharing,

etc.”–P8, Senior Developer. These checklists help FinTechOrg in automating the process
for those squads working on the PL and help in speeding up the development. Since PL
work items are characterised with a low degree of uncertainty, an up-front estimation
process is considered beneficial for the customers. PL based squads do utilise a tailored

CHAPTER 6. B2B PRODUCT DEVELOPMENT 96

process based on Lean and Scrumban. A practitioner says: “We employ some processes

from Lean and Scrumban... we use bucket size, on-demand planning techniques, and

average lead/cycle time”–P5, Product Owner. Hence, POs realised more confidence in
promising customers with predictable delivery deadlines.

6.5 Summary

This chapter has addressed the research question (RQ1.3): How do agile practitioners,

from a FinTech organisation, tailor the Spotify model for B2B product development?

A longitudinal embedded case study was conducted. The data were collected through
observing 225 ceremonies over 21 months, conducting 14 semi-structured open-ended
interviews, and accessing different sorts of artefacts. The collected data was analysed
using an approach informed by the Grounded Theory method.

The analysis, in this chapter, revealed 2 aspects related to product development. Firstly,
The impact of product development on squads autonomy and alignment was identified.
Since product development is influenced by the organisational strategy and its road
map in the industry, the product steering committee is responsible for drawing the
strategy of squads missions and aligns product backlog items among autonomous squads.
Identifying squads strategy, in turn, enables squads autonomy and align them to common
product development objectives.

Secondly, performing B2B product development by tailoring the Spotify model was
identified. The investigation of Spotify Tailoring, from a B2B perspective, identified
new, modified and previously introduced practices and attributes to the Spotify model.
This investigation facilitated the identification of the FinTech’s Spotify model, from a
B2B product development perspective. In result, 44 tailored practices and attributes,
which facilitate B2B product development, were identified. Some identified practices
and attributes were previously introduced by the Spotify model, such as the definition
of awesome, limited blast radius, and decoupled architecture. Also, some identified
practices and attributes were modified, such as the identification of clear vision and

CHAPTER 6. B2B PRODUCT DEVELOPMENT 97

roadmap, postmortem documentation on a B2B level, and limited fail-friendly culture.
Besides, other new practices and attributes were introduced to the Spotify model, such as
using globally accessible project management and issue tracking tools, developing good
knowledge about customers’ business domains, and proactive management style.

Also, the investigation of Spotify tailoring has identified influential factors on Spotify
tailoring for B2B product development. These factors are (1) project visibility, (2) em-
ployed interactions, (3) relationships, and (4) response time. Each identified factor is
supported by a set of practices and attributes that facilitate B2B product development.
The identified influential factors and their related practices can aid agile practitioners in
performing B2B product development by tailoring the Spotify model.

Chapter 7

Heterogeneous Tailoring Approach

7.1 Introduction

This chapter addresses the research question (RQ2): What is the approach taken to agile

tailoring, when using the Spotify model? To answer this research question, a longitudinal
embedded case study was conducted, as described in Sect. 3.4.

The findings described in this chapter reveal a novel approach to agile tailoring, called
“Heterogeneous Tailoring”. This approach was observed by looking at agile tailoring
through the lens of Spotify Tailoring. This chapter identifies the characteristics, benefits,
and challenges of the Heterogeneous Tailoring approach. The Heterogeneous Tailoring
approach is illustrated briefly in Fig. 7.1.

This tailoring approach comprises 3 key features, which are presented in Chapter 4,
Chapter 5, and Chapter 6. Chapter 4, which describes building and establishing au-
tonomous squads and how each autonomous squad is empowered to select and tailor
its development method, is illustrated in the bottom part of Fig. 7.1. Chapter 5, which
describes the alignment of autonomous squads, is illustrated in the middle part of Fig. 7.1.
Chapter 6, which describes performing B2B product development in FinTech’s Spotify
model and how the product steering committee draws the strategy of squads’ missions

98

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 99

and aligns the product backlog among squads, is illustrated in the top part of Fig. 7.1. In
Fig. 7.1, the used practices and processes by each autonomous squad and for aligning all
squads are collected into a repository that is managed by the Agile Coaches.

Squad Squad
Squad Squad

ScrumScrumban Kanban

Practices
and

processes
repository

Alignment repository
(practices and processes)

Tailoring on the squad/mission level

A
lig

nm
en

t
A

ut
on

om
ou

s
sq

ua
ds

Alignment
based

Squad/mission
based

Lean
Startup

Pr
od

uc
t

D
ev

el
op

m
en

t

Strategy Product backlog

Figure 7.1: A Heterogeneous Tailoring approach [98]

This chapter is an expansion of a peer-reviewed research paper [98].

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 100

7.2 Characteristics of the Heterogeneous Tailoring Ap-
proach

The Heterogeneous Tailoring approach is characterised by three key features. Firstly,
each autonomous squad is empowered to select and tailor its development method. This
key feature is described in detail in Chapter 4. Secondly, each squad is aligned with other
squads and to common product development goals and objectives. This key feature is
described in detail in Chapter 5. Thirdly, product steering committee draws the strategy
of squads’ missions and aligns the product backlog among squads. This key feature is
described in detail in Chapter 6.

This Heterogeneous Tailoring approach is illustrated in detail in Fig. 7.2, which depicts
the three main key features of this tailoring approach. The top side of the figure represents
product development and how it impacts the rest of the features of this approach. The
middle side of the figure depicts the alignment of the heterogeneous autonomous squads.
The bottom side of the figure illustrates the heterogeneity and autonomy of the squads.

The product steering committee draws the strategy of squads missions. Based on the
drawn strategy of squads missions, each autonomous squad can select and tailor its de-
velopment method while getting proper support from the Agile Coach. The identification
of squads mission, in turn, facilitates the process of creating autonomous squads. The
squads should be aligned with each other and to common product development objectives
to enable and strengthen their autonomy. Also, the product steering committee aligns
product backlog items among the autonomous squads based on their missions.

This Heterogeneous Tailoring approach is mainly concerned with creating autonomous
yet aligned squads. The alignment of squads works as an enabler for squads autonomy.
Also, product development enables both of the alignment and the autonomy of squads.

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 101

C
ha

pt
er

s

F
ro

nt
-e

nd
B

ac
k-

en
d

PL Feature
Core

DevOps
Project-X

Autonomy

A
lig

nm
en

t

- Lost: does not know
 what to be done
- Can not fix it

- Knows what to do
- Can not fix it

- Knows what to do
- Can fix it

- Lost: does not know
 what to be done
- Can fix it

High

H
ig

h

Low

Squad/mission based tailored
methods

R
el

ea
se

s

- D
ec

ou
pl

ed
 R

el
ea

se
s

- F
ea

tu
re

s
w

it
h

to
gg

le
 o

n/
of

f

Alignment

A
lig

nm
en

t
A

ut
on

om
ou

s
sq

ua
ds

Alignment repository
(practices and processes)

Squad

Squads

Scrum

Scrumban

Squad

Squad

Tailored
methods

Kanban

Squad

Sa
m

e
m

is
si

on

ScrumbanSquad

PL

Mission
(purpose)

Maintenance

PL

Project X

Complex
features

(exploratory)
Lean

Startup

Management

Business
owners

Architect
and engineers

Key Account
Managers

POs

BacklogK
an

ba
n

Agile coachesP
ro

du
ct

 D
ev

el
op

m
en

t

Product
backlog

Align work

Draw the strategy
 of squads missions

Figure 7.2: The Heterogeneous Tailoring Approach

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 102

7.3 Benefits of the Heterogeneous Tailoring Approach

The practitioners, in FinTechOrg, reported benefits of this Heterogeneous Tailoring
approach. These benefits include: (1) mitigating challenges of utilising agile practices
across squads that do not fit the needs of each squad, (2) improved creativity of some
squads and productivity for others, (3) and mitigated risks of divergence from shared
development objectives by employing alignment practices. These reported benefits, in
turn, facilitate strengthening the autonomy of squads.

The Heterogeneous Tailoring approach mitigates challenges of utilising agile practices
across squads that do not fit the needs of each squad. Each squad, in FinTechOrg, has
the freedom to independently tailor agile methods based on its mission while having
required support from agile coaches. Practitioners say that “our squad has the freedom

to adapt agile practices to fit our squad’s needs... This way, we have a development

process that suits our squad that consequently speeds up the development process”–P8,
Senior Developer. Also, “tailoring squads’ processes based on their missions increases

the ability to incorporate squad or mission-based processes... This tailoring mitigates

the needs of handling general practices and processes that could be challenging for some

squads and their missions”–P1, Agile Coach and Architect.

Also, the practitioners in FinTechOrg reported benefits of improved creativity for some
squads and the productivity for others by the ability to evolve their agile practices based
on their missions. Practitioners say: “employing agile practices that suites my squad

helps us in improving our productivity and creativity since we adapt our practices to

be compatible with our mission and needs... While some squads value productivity,

such those working on the product-line, other squads value more the creativity”– P12,
Product Owner. Also, “adapting our squad’s practices to conform with our mission

minimises the employment of inapplicable general practices... Customising our own

practices speeds up our development process and facilitates accomplishing our own

mission”–P3, Senior Developer. Hence, the employment of squad or mission-based agile
tailoring preserves the autonomy of squads and improves the creativity for some squads
and increases productivity for others.

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 103

In addition, the practitioners reported mitigated risks of divergence from shared devel-
opment objectives through alignment practices. The Spotify model creates alignment
on the product-level to facilitate the creation of expertise in specific areas. Also, the
Spotify model creates alignment by employing an adaptive structure, which is based on a
matrix of two dimensions, and by creating communities around the structure. However,
FinTechOrg tailors the Spotify model to fit the needs of their projects and contexts by
expanding the alignment of these heterogeneous autonomous squads to include other
factors. These factors, which are described in detail in Chapter 5, include; (1) adaptive
structure, (2) collective code ownership, (3) decision-making, (4) knowledge sharing,
(5) inter-team coordination, and (6) delivery strategy. Each factor represents a category
that has a set of practices, which facilitate the alignment of autonomous squads.

The alignment of squads works as enabler for squad autonomy since all squads share the
same project. Also, the alignment of autonomous squads is perceived as an umbrella that
has a set of practices that enables squad autonomy and mitigates risks of divergence from
shared development objectives, while progressing toward achieving squads missions.
Fig. 5.1 illustrates the alignment notion among autonomous squads. The findings, which
are described in detail in Chapter 5, show a tension between squads autonomy and
alignment. Too much alignment might hinder the autonomy of the squads, but at the
same time without alignment, the squads are autonomous but are ineffective.

7.4 Challenges to the Heterogeneous Tailoring Approach

The analysis has identified two main challenges to the Heterogeneous Tailoring approach.
Firstly, it is difficult to measure the overall code quality, performance, and productivity
across squads. Secondly, there is a need for new practices to align and govern enterprise
architectural decisions across autonomous squads.

The first challenge is the difficulty of measuring the overall code quality, performance,
and productivity for different squads. This challenge emerged because of employing
multiple autonomous squads that have different selected and tailored agile development

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 104

methods. In this heterogeneous environment, squads tend to tailor agile practices based on
their missions. While some squads missions value innovation more than plan fulfilment,
others value plan fulfilment more than innovation. A practitioner says: “Employing a

wide range of agile methods (such as Lean Startup, Scrum, Scrumban, Kanban, etc.) and

scaling them based the missions of the squads makes it difficult for the organisation to

measure the overall velocity of the squads”–P1, Agile Coach and Architect.

The second challenge is aligning and governing architectural based decisions across
autonomous squads. This challenge was a result of having a centralised architectural
based decision-making by having an architect. An architect role was employed because
of the complexity of this case study project. Practitioners say: “Deciding about which

solution to adopt is time-consuming for the developers despite the employment of Chap-

ters”–P1, Agile Coach and Architect. Also, “we discuss newly requested features with

the architect or those developers who have experience in specific parts of the project to

find the best solution”–P10, Product Owner. Moreover, “I get in touch with our architect

whenever is need to discuss some user stories and to decide on which architectural

change should be employed”–P9, Senior Developer. Hence, a centralised architectural
based decision-making was employed despite the utilisation of Chapters communities.

The findings show that Chapter leaders do not have ownership of the architecture. Most
of the stakeholders were referring to the architect directly. In addition, lacking a process
for governing architectural based decisions resulted in obstacles to making a generic
architectural decision and aligning them across the squads. A practitioner says: “We

lack a process that manages and aligns architectural decisions among the squads while

sharing the same product”–P3, Senior Developer. This lack of process, in turn, impacts
the quality being produced while working towards achieving common technical or
business roadmap.

CHAPTER 7. A HETEROGENEOUS TAILORING APPROACH 105

7.5 Summary

This chapter has addressed the research question (RQ2): What is the approach taken

to agile tailoring, when using the Spotify model? To answer this research question, A
longitudinal embedded case study was conducted. The data were collected through
observing 225 ceremonies over 21 months, conducting 14 semi-structured open-ended
interviews, and accessing different sorts of artefacts. The collected data was analysed
using an approach informed by the Grounded Theory method.

The analysis revealed a novel approach to agile tailoring, called Heterogeneous Tailoring,
by looking at agile tailoring through the lens of Spotify Tailoring. Three key features
characterise this approach. Firstly, each autonomous squad is empowered to select and
tailor its development method. Secondly, each squad is aligned with other squads and to
common product development goals and objectives. Thirdly, product steering committee
draws the strategy of squads’ missions and aligns the product backlog among autonomous
squads.

This chapter has identified some benefits and challenges for the Heterogeneous Tailoring
approach. The identified benefits include (1) mitigating challenges of utilising agile
practices across squads that do not fit the needs of each squad, (2) improved creativity
for some squads and productivity for others, (3) and mitigated risks of divergence from
shared development objectives by employing alignment practices. Also, this chapter
identified two main challenges to the Heterogeneous Tailoring approach. Firstly, it is
difficult to measure the overall code quality, performance and productivity across squads.
Secondly, aligning and governing enterprise architectural decisions across autonomous
squads requires new practices.

Chapter 8

Spotify Tailoring for Architectural
Governance

8.1 Introduction

One of the identified challenges to the Heterogeneous Tailoring approach and the Spotify
model is aligning and governing architectural decisions. This chapter addresses the
research question (RQ3): What new architectural governance practices can be introduced

for loosely coupled yet cooperating squads? To answer this research question, an
intervention embedded case-study was conducted, as described in Sect. 3.5. In this
intervention, I developed a novel approach to architectural governance and evaluated it in
FinTechOrg. This approach incorporates a structural change and an architecture change
management process.

The findings presented in this chapter, describe the characteristics of the introduced
approach to architectural governance, its benefits, and challenges. Also, this chapter iden-
tified the impact of the evaluated architectural governance approach on the Heterogeneous
Tailoring approach. This chapter describes how the Heterogeneous Tailoring approach
was adapted to accommodate the introduced approach to architectural governance.

106

CHAPTER 8. ARCHITECTURAL GOVERNANCE 107

This chapter is an expansion of two peer-reviewed research papers [96, 97].

8.2 An Approach to Architectural Governance

The introduced approach to architectural governance is driven by the context of the
Spotify Engineering Culture in a multinational FinTech organisation with a large-scale
project. The developed approach to architectural governance was evaluated in FinTe-
chOrg. During the intervention, direct observation of agile practices was conducted for 3
months. Also, 8 semi-structured open-ended interviews were conducted to understand
the reasons behind the occurred results and to collect practitioner perceptions.

This section presents the findings by describing the characteristics of the architectural
governance approach. This approach incorporates a structural change and an architecture
change management process.

8.2.1 Organisational Structural Change

This intervention introduced a change to the organisational structure. This change aims to
facilitate the alignment architectural decisions among squads and ultimately to strengthen
the autonomy of squads. The structural change is depicted in (1) empowering Chapter
Leaders and experienced developers with the role of Architecture Owners, (2) changing
the responsibilities of the architect to be of Enterprise Architectural focus, and (3) locating
all Architecture Owners in a virtual squad that is led by an Enterprise Architect. Fig. 8.1
illustrates the employed structural change.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 108

C
ha

pt
er

 L
ea

de
r

(A
rc

hi
te

ct
ur

e
O

w
ne

r)

Enterprise
Architect

Product
backlog

Agile architecting

POs

Iteration
planning
meeting

PL Feature
Core

DevOps
Project-X

Squads

Working architecture
(enablers) Working product Small release

Produce

Backlog

Produce

PO PO PO PO PO

Change impact
and architectural

models

Work

Relevant stakeholders

Management

Business owners

Key Account
Managers

Figure 8.1: Structural change for architectural governance, which is adapted from [96]

Before conducting this embedded case-study intervention, the organisation was utilising
an architect role because of the complexity of the FinTech project. The architect was
carrying out both of the Architecture Owners and the Enterprise Architect roles. A practi-
tioner says: “I was the main reference for all squads when it comes to any architectural

change in our project... I was taking into consideration the complete value chain and

the full lifecycle of the provided software service”–P19, Enterprise Architect. However,
the organisation had challenges in aligning and governing architectural decisions across

CHAPTER 8. ARCHITECTURAL GOVERNANCE 109

autonomous squads. “The size of the development team is now much larger than what it

was 3 years ago... I am overloaded with many responsibilities and tasks which in turn

causes a delay, sometimes, in taking decisions or minimises spreading such decisions

among other squads in a proper way”–P19, Enterprise Architect. After conducting this
intervention embedded case-study, the role and responsibilities of both the architect and
the Chapter Leaders were tailored.

Architecture Owner role and responsibilities

The role of Architecture Owner is assigned to Chapter Leaders and experienced develop-
ers. Since Chapters are created based on competency areas and Squads are aligned on the
product-level, the architecture owners should be aligned accordingly. A practitioner says:

“Breaking down the role of the architect into Architecture Owners roles and distributing

these roles among Chapter Leaders, based on their skills, move architecture decision-

making into the development level and align architectural based decisions”–P20, Agile
Coach. Hence, Chapter Leaders, who carry out the role of Architecture Owners, spend
most of their time working as developers and spend the rest of their time performing
architecture activities besides leading a specific Chapter. However, carrying out the
Architecture Owner responsibilities can increase the overhead on Chapter Leaders. A
practitioner says: “Giving me the role of Architecture Owner facilitates taking architec-

tural decisions within my Chapter...Though, this role increases the overhead on me since

I work also as a developer”–P15, Senior Developer and Chapter Leader.

The Architecture Owners’ awareness of the business and technical roadmaps is essential
for aligning architectural decisions within Chapter based communities and hence across
autonomous squads. Practitioners say: “Chapter Leaders should be aware of our

business and technical challenges to work on them along the journey”–P20, Agile Coach.
Also, “discussing architectural decisions within my Chapter facilitates building an

agreement among the squads about how to do stuff and when to do it”–P17, Senior
Developer and Chapter Leader.

Architecture Owners are responsible for bringing valuable architectural knowledge to
squads. A practitioner says: “Since our Chapter Leaders have technical and domain

knowledge, they can help their Chapters in taking architectural decisions within their

CHAPTER 8. ARCHITECTURAL GOVERNANCE 110

expertise”–P18, Product Owner. Architecture Owners create technical guidelines, such
as coding and security guidelines, and they mentor and coach the members of their
Chapters in architecture and design skills. A practitioner says: “Spreading technical and

architectural based knowledge within my Chapter is one of my responsibilities... I create

some coding guidelines, review code, and coach my Chapter whenever needed”–P15,
Senior Developer and Chapter Leader.

Architecture owners are responsible for resolving conflicted architectural decisions and
mitigating technical risks across squads. Developers, which are distributed among multi-
ple autonomous squads, might encounter conflicted architectural choices. A practitioner
says: “Many developers are smart and strong-willed where they do not always come to an

agreement... Someone should lead and facilitate the evolution of the architecture”–P15,
Senior Developer and Chapter Leader.

Architecture Owners are responsible for exploring challenging architectural tasks. Thus,
Architecture Owners might either explore such complex architectural work on their own
or could ask a Chapter member, who has encountered this challenge, to explore it. Then,
both sides can discuss the details. Practitioners say: “I use an architectural spike to

write just enough code to explore the benefits of a specific technology or technique that

other members of my Chapter are unfamiliar with–P17, Senior Developer and Chapter
Leader. Also, “sometimes, I do ask other members to explorations on their own... Yet,

we do discuss the results within our chapter before taking a final decision”–P15, Senior
Developer and Chapter Leader.

Architecture Owners should collaborate closely with the Enterprise Architect and other
Architecture Owners within the architecture squads. This collaboration facilitates getting
the best out of the Architecture Squad and creates better alignment across the organisation.
A practitioner says: “The main reason behind creating a virtual Architectural squad,

which consists of Chapters Leaders who have the Architecture Owner roles, is to have

proper technical and architectural based alignment through the organisation... Meeting

whenever needed is important to resolve encountered technical or architectural issues”–
P20, Agile Coach.

Enterprise Architect role and responsibilities

CHAPTER 8. ARCHITECTURAL GOVERNANCE 111

The role of Enterprise Architect is assigned to the Architect. Since the architect is
overloaded with many responsibilities, the architect’s responsibilities were changed to be
of enterprise nature. Practitioners say: “The architect has great knowledge about the

technical and the business roadmaps of our organisation... He should continue focusing

on the Enterprise architectural tasks”–P20, Agile Coach. Also, “our Architect has

a solid understanding of various approaches to software development”–P16, Senior
Developer. Leading the Architecture squad, by the Enterprise Architect, demands
providing Architecture Owners with the required support and strong commitment. A
practitioner says: “It is crucial to have the required help and support from our the

Enterprise Architect in taking enterprise architectural decisions such as integrating two

intercorrelated components or even resolving conflicted architectural decisions between

the squads”–P17, Senior Developer and Chapter Leader.

The Enterprise Architect works with solution management teams (i.e., Product Owners
and Key Account Managers) and close to the Architecture Owners. This close collab-
oration was observed to be vital for aligning architectural decisions over the roadmap
and solution intent. A practitioner says: “The Enterprise Architect spends much time

collaborating with senior stakeholders across the organisation to create proper technical

and architectural alignment across the squads”–P18, Product Owner. This close col-
laboration facilitates applying proper enterprise architectural decisions at the right time
according to the business values.

The Enterprise Architect focuses on creating architectural and technical alignment for
the full software project. In contrast, the Architecture Owners are responsible for specific
components within the project and concerned about specific technical competency areas.
Practitioners say: “I started focusing on architectural based tasks that are related to the

full solution to create technical and architectural alignment”–P19, Enterprise Architect.
Also, “Our Architect should be concerned only with Enterprise based architectural

decisions instead of wasting his time on small issues that can be tackled within our

Chapters”–P15, Senior Developer and Chapter Leader.

Enterprise Architect is responsible for promoting enterprise architectural practices and
driving architectural initiatives. The Enterprise Architect facilitates making enterprise

CHAPTER 8. ARCHITECTURAL GOVERNANCE 112

architectural decisions and aligning them across autonomous squads, instead of forc-
ing architecture creation. The Enterprise Architect advises reusing introduced ideas,
components, and aligning proven patterns across squads while collaboratively working
with squads to develop and evolve the architecture. Practitioners say: “The Enterprise

Architect creates architectural initiatives, promotes architectural practices among the

squads, and creates technical and architectural alignment on the enterprise level”–P20,
Agile Coach. Also, “our Enterprise Architect does not force us adopting a specific

architectural decision... Instead, he drives architectural initiatives and facilitates them

among us (i.e., Architecture Owners)”–P15, Senior Developer and Chapter Leader.

8.2.2 Architecture Change Management Process

An architecture change management process was developed before conducting the
embedded case-study intervention. This change management process was adapted
throughout the intervention case-study. The main objective of this change management
process is to guide whoever involved in architectural changes in governing and aligning
architectural based decisions. Fig. 8.2 presents the flow of these activities, which are
described as follows:

Activity 1: Find possible architectural change: When a developer finds a possible
architectural change, the developer should determine the impact of the change request.
Identifying the impact on architecture facilitates determining and discussing the change
and its impact. In order to initiate the analysis process, the developer involved should
create a Kanban card that describe the change request in more technical specifications
and visualise it as a WIP in the analysis phase.

Activity 2: Understand the change and its impact on the project and its architec-
ture: The architecture owner and the involved developers should understand the nature
of the change and determine its potential impact on the software project and its archi-
tecture. The Architecture Owner updates the Kanban card with more accurate technical
specifications. The outcome of this activity should provide plausible data about the
impacted parts of the project and its architecture.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 113

Developer Architecture Owner Enterprise Architect Product Owner

Change request

1. Found possible architectural
change

Possible impact on
architecture

Impacts enterprise
architecture?

Architectural
related?

4. Investigate the impacted
components to decide on the
required change

2. Understand the change and its
impact

3. Understand the change and
identify the impacted components

Change specifications

Refine change
specifications

Yes

No

Yes

No

Happy path Unpredicted Arch. changeRepeat a process

(a)

Figure 8.2: Change management process for architectural governance – part 1. Adapted
from [96, 97]

CHAPTER 8. ARCHITECTURAL GOVERNANCE 114

Developer Architecture Owner Enterprise Architect Product Owner

7. Change request
implementation

Discovered
unpredicted change

8. Run all related tests
(unit, integration,
acceptance test, etc.)

Failed test
cases?

9. Build and deploy

Done!

Refine change
specifications

Add or Derive
new user stories

5. Derive/Modify more user
stories

New user
stories and tasks

6. Plan the
implementation of
change

Yes

No

Yes

No

Yes

No

Happy path Unpredicted Arch. changeRepeat a process

(b)

Figure 8.2: Change management process for architectural governance – part 2. Adapted
from [96, 97]

CHAPTER 8. ARCHITECTURAL GOVERNANCE 115

If the suggested changes can impact the architecture, one of two possible actions should
be performed:

1. If the work requires an enterprise architectural change, the architecture owner
should discuss the necessary change with the enterprise architect and if needed
with the architecture squad– should follow Activity 3. Thus, the card is moved in
Kanban board as WIP in the enterprise analysis phase.

2. If the work does not require enterprise architectural change, the architecture owner
and the involved developers should determine whether the requested change could
affect the architecture or not.

(a) If the requested change could affect the architecture, the architecture owner
and the involved developers should investigate the impacted components and
decide on the necessary change, follow Activity 4.

(b) Otherwise, the task can be forwarded to the responsible squad for implemen-
tation – follow Activity 7).

Activity 3: Understand the change and its impact: In this activity, all involved stake-
holders – including the developer, Architecture Owner, and Enterprise Architect – should
discuss the received data about the impacted parts of the project and its architecture. If
the architectural change request impacts other parts of the project, those Architecture
Owners who work on the individual impacted part of the project are invited to this session.
In this activity, the architecture owner presents the provided data in the Kanban card,
which is the outcome of Activity 2. Then, an impact analysis is initiated.

Since it is unlikely that the outcome of this process can get precise impact analysis merely
by looking at the architecture design, an iteration-based impact analysis process can be
conducted. Hence, further investigation can be initiated later in this change management
process to gain sufficient confidence in the perceived impact of the architectural change
request.

This activity provides an in-depth data about the nature of requested change and its impact
on the architecture. The outcome includes the identification of the impacted components

CHAPTER 8. ARCHITECTURAL GOVERNANCE 116

and the specifications of newly introduced scenarios and requirements. Afterwards, the
stakeholders might decide whether to proceed to a low-level investigation (following
Activity 4) or to proceed in the change request implementation if an architectural change
is rejected and a new solution is introduced to replace the architectural change request
(following Activity 7).

Activity 4: Investigate the impacted components to decide the necessary change:
When the architecture based stakeholders (from Activity 3 or Activity 2) decide that an
architecture change is required, this activity is followed. During this activity, a meeting is
carried out in which architecture owner, together with the involved developers, investigate
the specifications of the architectural change request deeply. In this meeting, they break
down the specifications and requirements into scenarios and document the details into
tasks that can be planed. This activity might derive the possibility of identifying new
impacted components. Hence, the architecture owner might create new user stories for
unpredicted changes.

The architecture owner and the involved developers determine whether they can identify
newly impacted components. If it were possible, they follow Activity 5. Otherwise, the
Kanban card, which includes the user story and its tasks, should be moved into To-Do
state and forwarded to POs for planning, follow Activity 5.

Activity 5: Derive/modify more user stories: When the architecture owner and the
involved developers identify newly impacted components, the architecture owner will
create new user story about unpredicted changes. Then the architecture owner moves it
to WIP in the enterprise analysis phase, which is followed by Activity 3. Thus, a new
iteration of the analysis is initiated. In this case, an informal meeting is conducted where
such changes are discussed briefly.

Activity 6: Plan the implementation of change: If the change request receives approval
from the architecture squad, and the involved architecture owner and developers, the
Kanban card should be available for the planning and development. Since the story card
is available for planning, POs arrange between themselves to plan the implementation of
card tasks. Then, POs can forward the user story and its tasks to the relevant squads for
implementation, follow Activity 7.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 117

Activity 7: Change request implementation: In this activity, the implementation of
the change is carried out. The squads utilise a hybrid process of Behaviour Driven
Development (BDD) and Test Last Development (TLD). Since the user stories describe
the behaviour of the introduced scenarios and requirements, developers are expected to
implement the described behaviour in their TLD.

After implementing the required code to satisfy the user stories and the described sce-
narios, other existing test cases might get impacted by newly developed code. For those
test cases that are subject to modification, developers should find the related test cases
and modify them accordingly. Two cases could encounter the development team while
implementing the change request:

1. If the solution is to modify or add new requirements that would require an archi-
tectural change, developers should inform the PO and Architecture Owner about
the suggested changes to the requirements. In this case, the suggested changes by
developers should be declared as unexpected changes. Afterwards, architecture
owner and developers should arrange an on-the-fly (informal) meeting to investi-
gate the discovered unexpected changes, follow Activity 2. The meeting should
reveal (1) whether or not the suggested changes might introduce unreasonable
architectural change and (2) the size of work required to cope with the suggested
changes.

2. Otherwise, follow Activity 8.

Activity 8: Run all related tests: In this activity, developers should utilise the contin-
uous integration as a first step to avoid delays caused by integration problems. Subse-
quently, a continuous testing process should be initiated to obtain immediate feedback
on the possibility of violating architectural countermeasures to prevent unreasonable
risks associated with a software release. The scope of testing should be extended from a
bottom-up assessment (from test cases to behaviour requirements) to validate architec-
tural goals as well as software project behaviour. In case of any violation of requirements
after running the continuous testing, developers should check the implementation and
failed test cases, follow Activity 7. Otherwise, follow Activity 9.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 118

Activity 9: Build and deploy: This activity should be followed once the continuous
testing is completed successfully. A new release can be planned for deployment on
production.

8.3 Benefits and Challenges of the Architectural Gover-
nance Approach

This section identifies the benefits and challenges of the evaluated approach to architec-
tural alignment and governance.

8.3.1 Benefits
The evaluated approach to architectural governance has transformed architectural decision-
making from centralised into decentralised decision-making. This transformation is
mainly perceived in devolving architectural decision-making to the operational level
through the organisational structural change. A practitioner says: “I do not need to wait

for the architect anymore... Instead, I can get in touch directly with our Architecture

Owner”–P16, Senior Developer. However, enterprise architectural decisions might be
discussed within the architecture squad. A practitioner says: “Taking decisions about

how to integrate different components, or APIs might require a deep investigation by

multiple Architecture Owners and the Enterprise Architect”–P15, Senior Developer and
Chapter Leader.

Decentralising architectural decisions provided the Enterprise Architect with the op-
portunity to focus on creating enterprise architectural alignment for the full project. A
practitioner says: “I focus now on aligning the enterprise architectural direction with

the solution intent rather than being concerned for specific components”–P19, Enterprise
Architect. This alignment involves making sure that project vision and roadmap are
carried out across the architectural based working items. “The Enterprise Architect

ensures that all Architecture Owners support the desired architectural capabilities and

directions of the overall solution”–P15, Senior Developer and Chapter Leader. Thus,

CHAPTER 8. ARCHITECTURAL GOVERNANCE 119

the Architecture Squad utilises the evaluated change management process to have close
collaboration and align architectural decisions. A practitioner says: “The introduced

change management process facilitates the alignment of architectural decisions across

the whole organisation”–P17, Senior Developer and Chapter Leader

This approach has facilitated resolving conflicted architectural decisions and mitigating
key technical risks among autonomous squads. A practitioner says: “Many complex

technical and architectural aspects are left to evolve through iterative and incremental

development and learning”–P5, Senior Developer and Chapter Leader. Thus, complex
technical and architectural decisions are finalised later in the development as depicted in
the evaluated change management process. Also, squads are empowered to make local
architectural decisions on their own without waiting for the architect. A practitioner
says: “We are encouraged to make architectural decisions on our own with support of

our Architecture Owner without waiting for the architect where the technical details are

left to evolve”–P22, Senior Developer. Furthermore, Architecture Owners avoid dictating
specific architectural directions in favour of a collaborative team-based approach. A
practitioner says: “I try to encourage our the members of my Chapter to collaborate

and discuss architectural based decisions to make the right architectural decisions”–P5,
Senior Developer and Chapter Leader. Moreover, Architecture Owners work closely
with the Enterprise Architect to handle enterprise architectural decisions. The Enterprise
Architect says: “Our Architecture Owners get back to me when they encounter a

situation that requires making an enterprise based architectural decision... Sometimes

we discuss such enterprise architectural changes with other Architecture Owners if

needed”–P2, Enterprise Architect.

The architectural governance approach has facilitated sharing architectural knowledge
among autonomous squads. The Enterprise Architect works on transitioning architec-
tural skills and training Architecture Owners. A practitioner says: “Our Enterprise

Architect started arranging and conducting workshops to train and coach our squads in

architectural related aspects”–P15, Senior Developer and Chapter Leader. Also, Archi-
tecture Owners focus on creating architectural alignment and disseminating architecture
knowledge. Practitioners say: “we provide technical guidance around coding, security,

architectural based aspects, monitoring the work, and so on”–P17, Senior Developer and

CHAPTER 8. ARCHITECTURAL GOVERNANCE 120

Chapter Leader. Also, “Our Architecture Owner, arranges sometimes formal classes and

other times brown-bag lunch sessions... In such sessions, we discuss planned subjects of

interests which are related to our Chapter”–P16, Senior Developer.

The evaluated approach to architectural governance has improved software quality
and mitigated obstacles to aligning architectural decisions across autonomous squads.
FinTechOrg works on balancing the effort for architecting, by utilising the introduced
change management process while having a decentralised architectural based decision-
making. The architecting effort is distributed throughout the organisation (vertically
and horizontally) among the Enterprise Architect, Architecture Owners, and Chapters.
This balance of agile architecting effort, in turn, facilitates the creation of generic
software features, minimises wasted effort in architectural refactoring, and governs the
architecture while strengthening squads autonomy. Practitioners say: ‘Conducting proper

architectural analysis within our Chapter and then evaluating and discussing the results,

if needed, with the Enterprise Architect improves the quality of our produced work”–P15,
Senior Developer. However, “It was time-consuming to take a good architectural

decision that can be maintained easily in future without making much refactoring...

overlooking some aspects that can be considered at the time being can cause a lot of

waste because of the needs for refactoring”–P21, Senior Developer.

8.3.2 Challenges
The practitioners, in FinTechOrg, reported two main challenges of the evaluated approach
to architectural governance. Firstly, the planning activity is impacted negatively by priori-
tising user stories without considering the architectural aspects. The change management
process does not support screening the user stories by the Architecture Squad before or
during the planning activity. A practitioner says: “We do not go through the user stories,

in our Architecture Squad, before planning... Yet, sometimes we discuss them informally

upon POs request”–P17, Senior Developer and Chapter Leader. However, the change
management process handles such a situation by moving from activity 6 to activity
1. A practitioner says: “The architecture squad does not join our planning session...

We expect that our the squad members should initiate the process of investigation and

provide good input to either of the Architecture Owner or the Enterprise Architect”–P18,
Product Owner.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 121

Secondly, handling architectural spikes might require making provisional architectural
decisions or even multiple suggested decisions to explore. FinTechOrg considers an
architectural spike as an investment to explore what should be built and how to build it.
Practitioners say: “We allocate some resources for complicated work items, ahead of

the targeted delivery deadline, to find out what needs to be done... Such investments are

considered a necessity to solve architectural issues, which work as an enabler for the next

Sprint”–P18, Product Owner. Also, “sometimes when we discuss a user story with the

enterprise architect and the architecture owner, the outcome can be ambiguous as there

is no concrete decision that can be taken... We have to explore multiple solutions”–P22,
Senior Developer. Hence, Architecture Owners or senior developers can explore the
architectural change by writing enough code to investigate proposed solutions. This
exploration process can be expensive for complicated architectural spikes. A practitioner
says: “Architecture owners might pair with another developer to explore complicated

architectural spikes”–P19, Enterprise Architect. Hence, practitioners might need to
employ an iterative and incremental development to evolve the architecture by utilising
the introduced change management process. This process can be time-consuming and
yet powerful technique for risk-reduction.

8.4 Adapting the Heterogeneous Tailoring Approach for
Architectural Governance

This section presents how the Heterogeneous Tailoring approach was adapted to accom-
modate the evaluated approach to architectural governance. This adaptation has impacted
the key features of the Heterogeneous Tailoring approach. Fig. 8.3 illustrates the impact
of the architectural governance approach on the Heterogeneous Tailoring approach.

Product development, in the Heterogeneous Tailoring approach, is affected by the intro-
duced approach to architectural governance. This impact is perceived in the outcome of
the employed change management process, which produces new architectural based user
stories (i.e., enablers) in the backlog. These enablers should be prioritised and planned
along to the rest of the backlog items. A practitioner says: “This change management

CHAPTER 8. ARCHITECTURAL GOVERNANCE 122

process results in sometimes new architectural based tickets that need prioritisation and

planning”–P18, Product Owner.

Enterprise
Architect

PL FeatureCore
DevOps

Project-X

Squads

Produce

PO PO PO PO PO

Alignment

Alignment repository
(practices and processes)

A
lig

nm
en

t
A

ut
on

om
ou

s
Sq

ua
ds

Squad/mission based
tailored methods

Squad

Squads

Scrum

Scrumban

Squad

Squad

Tailored
methods

Kanban

Squad

Sa
m

e
m

is
si

on

ScrumbanSquad

PL

Mission
(purpose)

Maintenance

PL

Project X

Complex
features

(exploratory)
Lean

Startup

Autonomy

A
lig

nm
en

t

- Lost: does not know
 what to be done
- Can not fix it

- Knows what to do
- Can not fix it

- Knows what to do
- Can fix it

- Lost: does not know
 what to be done
- Can fix it

High

H
ig

h

Low

Product
backlog

K
an

ba
n

Agile architecting

Relevant stakeholders

POs

Iteration
planning
meeting

Produce
Architectural

Change

Iteration
backlog

Work

C
ha

pt
er

 L
ea

de
rs

 (A
rc

hi
te

ct
ur

e
O

w
ne

rs
)

Pr
od

uc
t d

ev
el

op
m

en
t

Product
backlog

Agile architecting

POs

Iteration planning
meeting

Management

Backlog

Produce

Align & Work

When
needed

Change impact
and working
architectural
(enablers)

Management

Architect
and engineers

KAM
POs

Agile coaches

Building strategy

Working
architecture
(enablers) Working

architecture
(enablers)

Working
product

Small releases

Produce

R
el

ea
se

 s
tr

at
eg

y

C
us

to
m

er
s

B
2B

Draw the strategy

Figure 8.3: Adapting the Heterogeneous Tailoring approach for architecture governance.
Adapted from [96]

The alignment of autonomous squads was improved by aligning architectural decisions.
This alignment is depicted in both of the structural change and the change manage-

CHAPTER 8. ARCHITECTURAL GOVERNANCE 123

ment process. The structural change has devolved architectural decision-making to the
operational-level through Chapters communities. A practitioner says: “Discussing

architectural based aspects with our Architecture Owner speeds up the process and puts

all members of our Chapter on the same page”–P21, Senior Developer. The introduced
change management process has aligned the agile architecture among the involved stake-
holders (developers, Architecture Owners, Enterprise Architect, and Product Owners)
to enable squads autonomy. Practitioners say: “Following this standardised process

across the squads helps all parties to organise the architectural work instead of being

dependant on some members from squads or even relying only on the architect”–P20,
Agile Coach. Also, “The nature of the backlog items requires responding quickly to our

customers... The process is now more disciplined and organised, which consequently

increased the speed of taking architectural decisions”–P22, Senior Developer.

The autonomy of the squads was improved, in FinTechOrg, by utilising this architectural
governance approach. The introduced approach has strengthened squads autonomy by
decentralising architectural based decision-making, which is depicted in the introduced
structural change. Also, an architecture change management process was introduced to
balance the agile and architecture based disciplinaries. Balancing these disciplinaries,
by employing a structural change and an architecture change management process, has
created a holistic approach that enables squads autonomy. A practitioner says: “The

employed rules in our architecting process balance the agile and architecture activities...

These rules along to the structural changes have mitigated the dependencies and in turn

improved the autonomy of the squads”–P20, Agile Coach.

Governing architectural decisions impact the employed release strategy in the Hetero-
geneous Tailoring approach. This impact is perceived in continuous delivery of both
architecture enablers and working product. A practitioner says: “We release developed

architectural based tickets whenever they are finished... Releasing such tasks enables the

upcoming sprints”–P21, Senior Developer.

CHAPTER 8. ARCHITECTURAL GOVERNANCE 124

8.5 Summary

This chapter has addressed the research question (RQ3): What new architectural gov-

ernance practices can be introduced for loosely coupled yet cooperating squads? An
intervention embedded case study was conducted to develop and evaluate a novel ap-
proach to architectural governance. The data were collected through observing 32
ceremonies over 3 months and by conducting 8 open-ended semi-structured interviews.
The collected data was analysed using an approach informed by the Grounded Theory.

This Chapter has presented the characteristics of the evaluated approach to architectural
governance in its final state after carrying out the embedded case study intervention.
This architectural governance approach incorporates an organisational structural change
and an architecture change management process. The structural change is depicted in
(1) empowering Chapter Leaders and developers with the role of Architecture Owners,
(2) changing the responsibilities of the architect to be of Enterprise Architectural focus,
and (3) locating all Architecture Owners in a virtual squad that is led by an Enterprise
Architect. The introduced change management process comprises a set of activities that
facilitates architectural governance and alignment among autonomous squads.

The practitioners, in FinTechOrg, have reported benefits of this introduced approach to
architectural governance. These benefits include: (1) devolving architectural decision-
making to the operational-level, which in turn transformed architectural decision-making
into decentralised based decision-making, (2) creating technical and enterprise archi-
tectural alignment for the full software project, (3) resolving conflicted architectural
decisions and mitigating key technical risks across autonomous squads, (4) sharing
architectural knowledge among the squads, (5) minimising wasted effort in architectural
refactoring, (6) balancing the effort for architectural quality facilitates the creation of
generic software features, and (7) improving software quality and mitigating obstacles to
aligning architectural decisions across autonomous squads. Consequently, the alignment
and governance of architectural decisions have improved the autonomy of squads.

However, the practitioners reported two challenges of the evaluated approach to architec-
tural governance. Firstly, the planning activity is impacted negatively by prioritising user

CHAPTER 8. ARCHITECTURAL GOVERNANCE 125

stories without considering the architectural aspects. Secondly, handling architectural
spikes might require making provisional architectural decisions or even suggest multiple
architectural decisions to be explored.

This Chapter, also, presented how the Heterogeneous Tailoring approach was adapted
to accommodate the evaluated approach to architectural governance. This adaptation
has impacted the key features of the Heterogeneous Tailoring approach. Establishing
autonomous squads was impacted by the introduced structural change. The alignment of
autonomous squads was impacted by governing agile architecture. Product development
was impacted by the needs for planning architecture based user stories. Also, the
adaptation of the Heterogeneous Tailoring approach has identified a new key feature,
called the release strategy, which is concerned with the continuous delivery of architecture
enablers.

Chapter 9

Discussion

This chapter answers the research questions, analyses and interprets the findings in the
light of related literature, and discusses the limitations of this research.

9.1 Research Questions & Answers

There is a conflicting trade-off between alignment and autonomy in the Spotify model.
Therefore, this research study has explored: RQ1: How do Agile practitioners, from a

FinTech organisation, describe approaches to the balance between squad alignment and

autonomy? Autonomy shifts the authority of decision making to the operational level to
improve the motivation and innovation of squads (i.e., teams) and consequently to speed
up the process of software delivery [57, 58, 76]. However, squads should be autonomous
but don’t sub-optimise. Thus, autonomous squads should be aligned with each other
and the overall product goals and plans. The alignment of autonomous squads works
as enabler for the autonomy of squads [57]. However, there is a conflicting trade-off
between autonomy and alignment. Too much alignment might hinder squad autonomy,
but at the same time without alignment, the squads can be autonomous yet not effective.

My research has discovered a tension between squads autonomy and alignment. The

126

CHAPTER 9. DISCUSSION 127

alignment of autonomous squads works as enabler for the autonomy of squads. There-
fore, Agile practitioners should get the balance right between squads autonomy and
alignment. This research has resolved the conflicting trade-offs between autonomy and
alignment by identifying influential factors on 3 different aspects of Spotify Tailoring
in a FinTech organisation. These aspects are (1) establishing and building autonomous
squads, (2) aligning autonomous squads, and (3) performing B2B product development
in a FinTech context.

RQ1.1: How do Agile practitioners, from a FinTech organisation, establish and build

squad autonomy? My research identified factors that facilitate building autonomous
squads. These influential factors are (1) tailoring the adaptive structure and creating
sufficient communities around it, (2) building squad or mission-based strategy, and
(3) tailoring Agile methods on the squad or mission level. Each factor is supported by a
set of practices and attributes that can improve squad autonomy. The identified factors
and their related practices can aid Agile practitioners in building autonomous squads.

RQ1.2: How do Agile practitioners, from a FinTech organisation, achieve and sustain

the alignment of autonomous squads? My investigation of Spotify Tailoring, from a
squad alignment perspective, has identified new, modified and previously introduced
practices and attributes to the Spotify model. Also, my research has identified influen-
tial factors on aligning autonomous squads. These influential factors are (1) adaptive
structure, (2) collective code ownership, (3) collective decision-making, (4) knowledge
sharing, (5) inter-team coordination, (6) mission-based planning, and (7) delivery strat-
egy. Each factor is supported by a set of practices that can strengthen the alignment of
autonomous squads. The identified influential factors and their related practices can aid
Agile practitioners in aligning autonomous squads.

RQ1.3: How do Agile practitioners, from a FinTech organisation, tailor the Spotify

model for B2B product development? Two main aspects related to product development
were revealed. Firstly, The impact of product development on squads autonomy and
alignment was identified. This impact is mainly realised in the identification of squads’
missions strategy and the alignment of product backlog items among autonomous squads.
Secondly, performing B2B product development, by tailoring the Spotify model, was

CHAPTER 9. DISCUSSION 128

identified. My investigation of Spotify Tailoring, from a B2B perspective, identified new,
modified and previously introduced practices and attributes to the Spotify model. Also,
my investigation has identified influential factors on Spotify tailoring for B2B product
development. These influential factors are (1) project visibility, (2) interactions within
product development, (3) building relationships, and (4) response time. Each identified
factor is supported by a set of practices and attributes that can facilitate B2B FinTech
product development. The identified factors and their related practices can aid Agile
practitioners in performing B2B product development by tailoring the Spotify model.

This research identified a lack of previous research on the Agile tailoring approach used
in the Spotify model. Thus, I have explored: RQ2: What is the approach taken to

Agile tailoring, when using the Spotify model? My analysis in this research revealed a
novel approach to Agile tailoring, called Heterogeneous Tailoring. Three key features
characterise this approach. Firstly, each autonomous squad is empowered to select and
tailor its development method. Secondly, each squad is aligned with other squads and to
common product development goals and objectives. Thirdly, product steering committee
draws the strategy of squads’ missions and aligns the product backlog among autonomous
squads.

Two main challenges to the Heterogeneous Tailoring approach were identified by this
research. Firstly, it is difficult to measure the overall code quality, performance and pro-
ductivity for different squads. Secondly, aligning and governing architectural decisions
across autonomous squads requires new practices.

Consequently, this study has addressed the second challenge to the Heterogeneous
Tailoring approach by answering: RQ3: What new architectural governance practices

can be introduced for loosely coupled yet cooperating squads? An embedded case study
intervention was conducted to facilitate architectural governance using the Spotify model.
In this intervention, I have developed and evaluated a novel approach to architectural
governance. This architectural governance approach incorporates an organisational
structural change and an architecture change management process. The structural change
(1) empowers Chapter Leaders and experienced developers with the role of Architecture
Owners, (2) changes the responsibilities of the Architect to be of Enterprise Architectural

CHAPTER 9. DISCUSSION 129

focus, and (3) locates all Architecture Owners in a virtual squad that is led by an
Enterprise Architect. The introduced change management process comprises a set of
activities that facilitates architectural governance and alignment among the stakeholders.
Based on the intervention results, I have adapted the Heterogeneous Tailoring approach
to accommodate the evaluated approach to architectural governance in FinTechOrg.

9.2 Discussing the Results

Large-scale agile software development is challenging since several teams need to
work closely together to release a single software product while multiple teams need
to communicate, collaborate and coordinate [23, 26]. Some identified challenges to
large-scale Agile development include maintaining teams autonomy [23], aligning self-
organising teams through coordination [26, 79], knowledge sharing [79], and other
aspects [23, 26, 79]. The Spotify model is an example of a large-scale Agile engineering
culture, which is driven by creating loosely coupled (i.e., autonomous squads), yet
tightly aligned squads [57, 58]. The Spotify model employs autonomous squads to have
motivated and innovative squads that can deliver quickly [57, 58]. Hence, the authority
of decision making is moved to the operational level. The alignment of autonomous
squads works as an enabler for the squad autonomy.

However, my research study observed a conflicting trade-off between squads autonomy
and alignment, which lacks a previous research and needs exploration. Too much align-
ment might hinder squad autonomy, but without alignment, the squads are autonomous
but are not effective. To this end, a longitudinal embedded case study was conducted,
in a multinational FinTech organisation using the Spotify model, to explore how the
conflicting trade-offs between alignment and autonomy is resolved.

I have discovered a tension between squad autonomy and alignment, based on my
observations and practitioner perceptions. For example, the practitioners reported that
collective code ownership requires an alignment over the product-level and demands a
sufficient reconciliation process among autonomous squads. Also, the automation of

CHAPTER 9. DISCUSSION 130

standardised tasks strengthens collective code ownership and hence strengthens squad
autonomy. Another example is the utilisation of sufficient inter-team coordination process
to prevent excessive processes that might waste resources and hence impact negatively
the autonomy of squads.

9.2.1 Resolving the Conflicting Trade-off Between Squads Auton-
omy and Alignment

Agile practitioners should get the balance right between squads autonomy and alignment.
My rigorous analysis has resolved the conflicting trade-offs between autonomy and align-
ment by identifying influential factors on 3 different aspects of Spotify Tailoring. These
aspects are (1) establishing and building autonomous squads, (2) aligning autonomous
squads, and (3) performing B2B product development by tailoring the Spotify model.

Building and maintaining teams autonomy is considered challenging in large-scale
agile [23], yet was identified as one of the Agile success factors [20, 26]. Autonomous
teams should be composed of cross-functional teams that can cover the full development
cycle of a project [55]. Previous research found that autonomous teams should be
accountable to committed work [48, 55]. More specifically, squads should be held
accountable for achieving their missions since the organisation has put squads’ strategy
into practice and specified clear expectations from each squad based on its mission [71].
Also, the squads have freedom in determining how to achieve their missions. My research
acknowledges the importance of building sufficient team autonomy and maintaining it to
utilise effective development. However, the Spotify model does not provide guidelines to
how squads should build their autonomy. Nevertheless, the Spotify model utilises a two
dimensional structure and creates communities around them [56, 57, 58].

My careful analysis of practitioners’ perceptions and my observation identified influential
factors on building autonomous squads. These factors are (1) tailoring the adaptive
structure and creating sufficient communities around it, (2) building squad or mission-
based strategy, and (3) tailoring Agile methods on the squad or mission level. Also, my
research found that Tribes communities are inapplicable and Guilds communities and

CHAPTER 9. DISCUSSION 131

their meetings pose a waste of resources in large-scale agile (<100 people distributed
over 2-9 squads). Guilds communities are replaced by demo sessions and non-routine
meetings, as stated by the practitioners. These meetings are announced through Slack
or Email, and those who are interested can join the meetings. Each squad should have
a precisely defined strategy, which can be the same for multiple squads of the same
mission. This strategy facilitates squads’ decisions for tailoring Agile practices based on
squads’ strategy and/or mission.

Aligning autonomous teams is considered challenging in large-scale agile [26, 79]. Ag-
ile teams must have common objectives and should be able to organise themselves to
overcome encountered challenges [48, 55]. Also, interfacing, coordination, knowledge
sharing, and alignment between teams are considered challenging in large-scale Agile de-
velopment [23, 26, 79]. Mankins and Garton [71] identified balancing squads’ autonomy
to innovate versus following proven routines to get both outcomes as a challenge when
using the Spotify model. Also, it is challenging to balance alignment with control to
ensure that coordination and connectivity happen among Spotify squads without relying
on controlling managers [71]. Despite Spotify’s awareness of the significant role of
alignment, it does not provide guidelines for aligning autonomous squads nor factors
influential on aligning autonomous [57, 58].

My careful analysis presented Spotify Tailoring, from squads alignment perspective, by
identifying new, modified and previously introduced practices to the Spotify model. Also,
my careful analysis identified influential factors on aligning autonomous squads. These
influential factors are (1) adaptive structure, (2) collective code ownership, (3) collective
decision-making, (4) knowledge sharing, (5) inter-team coordination, (6) mission-based
planning, and (7) delivery strategy. Each identified factor is supported by a set of
practices and attributes that can aid Agile practitioners in aligning autonomous squads.

In relation to my identified influential factors on aligning autonomous squads, previous
research found that collective code ownership can encourage all teams to contribute to
software development [81]. The autonomy of teams has a direct influence on teams’
effectiveness since the authority of decision making is moved to the operational level,
which in turn increases the development speed and accuracy of problem-solving [76].

CHAPTER 9. DISCUSSION 132

However, I found that utilising collective decision-making on the enterprise level works is
needed to align enterprise decision-making. The horizontal alignment through Chapters
communities facilitates knowledge sharing and removes the encountered impediments by
the squads [57, 58]. As projects grow in size and complexity, the number of inter-team
dependencies also tend to increase and hence inter-team coordination became inevitable
to resolve dependencies and prioritise work [26, 59, 74].

The Spotify organisation follows the B2C model since it provides music streaming service
to end-users and hence there is a provision of guidelines in the grey literature [56, 57, 58,
69]. The Spotify model encourages following Lean Startup for product development since
it values innovation [57, 58]. For large-scale FinTech projects with B2B environment,
however, there is no guidelines about how to perform product development in a global
context. B2B environment is deemed as complicated because of having conflicting
agendas, politics and different priorities between two or more organisations [100].

My analysis revealed two aspects related to product development. Firstly, I have identified
the impact of product development on squads autonomy and alignment. The autonomy of
squads is impacted by the product steering committee, who identify the strategy of each
squad and it mission. The alignment of squads is impacted by the alignment of product
backlog items among autonomous squads. Secondly, I have identified influential factors
on Spotify tailoring for B2B product development: (1) project visibility, (2) interactions
within product development, (3) building relationships, and (4) response time. Also, my
detailed analysis of Spotify Tailoring, from a B2B perspective, identified new, modified
and previously introduced practices and attributes to the Spotify model. Each identified
factor is supported by a set of practices and attributes that can aid Agile practitioners in
performing B2B product development by tailoring the Spotify model.

9.2.2 Heterogeneous Tailoring Approach

Researchers have long believed that approaches to Agile tailoring can fit into Template-
based and Automatic Tailoring [42], Contingency Factors or the Method Engineering
approach [17, 24, 35], or Hybrids of Agile and plan-driven approaches [38, 45, 52]. I

CHAPTER 9. DISCUSSION 133

found, through literature analysis, that Template-based and Contingency Factors are
similar since multiple methods or processes should be available in the organisation,
and then a selection is performed based on the features of the project context. Also,
Automatic Tailoring is similar to Method Engineering since the creation of new methods
is based on existing method fragments or meta-method processes that are applied in
specific project context or situation. Therefore, I map these pairs together in Table 9.1,
which describes the aims, advantages, and disadvantages of each identified approach.

Other identified approaches for method tailoring fall under either of Contingency Factors
or Method Engineering, according to my literature analysis. For example, the proposed
frameworks and metamodels for situational method engineering [6, 32, 46] fall under the
umbrella of Method Engineering approach. Also, the proposed approach, by Casare et
al. [19], for tailoring software development processes according to project needs is based
on Method Engineering techniques.

The proposed assessment approaches for adopting Agile methods and practices can fall
into either of Contingency Factors or the Method Engineering. For instance, Sidky Agile
Measurement Index [3] facilitates the adoption of Agile practices by considering an
Agile maturity model. This approach facilitates the creation of new Agile methods based
on the targeted maturity model and hence falls under the Method Engineering approach.
However, the assessment framework proposed, by Soundararajan et al. [107], falls under
the Contingency Factors approach since this framework examines the applicability of
various Agile methods for the organisation based on different factors.

My research study has identified a novel approach to Agile tailoring, which does not fit
into any previously identified tailoring approach. I have observed, in FinTechOrg, the
existence of multiple autonomous squads working on the same project and yet employing
different tailored Agile methods. My rigorous analysis of the collected data revealed a
novel approach to Agile tailoring, which does not fit into Contingency Factors, Method
Engineering, or Hybrid of Agile and plan-driven approach. I call this Agile tailoring
approach as Heterogeneous Tailoring.

C
H

A
PT

E
R

9.
D

ISC
U

SSIO
N

134

Table 9.1: Software method tailoring approaches

Approach Aims Advantages Disadvantages

Contingency
Factors
or
Template-based
Tailoring

Selects multiple methods to
be available in the organisation
and then performs the selection
based on the features of the
project context.

- Overcomes the limitations of Agile
methods as there is no sufficient method
for all cases.
- Follows predefined criteria for method
selection, from a portfolio of predefined
methods, based on the targeted
development context.

- Team members should have a good
understanding of a range of methods
to adopt this approach.
- Team members should be capable
of executing a range of method
according to the contingencies.

Method
Engineering
or
Automatic
Tailoring

Suggests the creation of new
methods based on existing
method fragments or
meta-method processes to be
applied in specific contexts.

- Concentrates on activities related to Agile
methods and creates in-house methods.
- Brings flexibility to the organisation
- Responds to challenges of real projects
and their context in an efficient way instead
of relying on existing methods.

- Method fragments need control to
assemble the new method.
- Tools are needed for method construction.
- Quality evaluation models are required
for newly introduced methods.
- Knowledge on how to handle specific
situations and how to define method
fragments are needed.

Hybrid
Tailoring

Blends agile methods into
traditional plan-driven project
development and management.

- Produces high-quality software.
- Reduces the risk of upfront ambiguities in
terms of the project goals and deliverables.
- Speeds up the iterative thinking process and
reduce the risk of rework and delay.

- Tailoring the process is difficult and
time consuming to change after
constructing the hybrid process.
- Keep project control from falling into
bureaucratic behaviours and contracts.

Heterogeneous
Tailoring

Separates the concerns of
each team in terms of Agile
tailoring. This approach
empowers teams to tailor
their Agile practice and yet
align teams to each other and
to common product
development goals.

- Improves teams’ autonomy by empowering
teams to tailor their agile practices.
- Improves the creativity or productivity of
autonomous teams by the ability to evolve
their own Agile practices.
- Mitigates the risk of being obliged to adopt
shared Agile practices that do not meet
the needs of a particular team.
- Mitigates the risks of being diverted from
shared development objectives.

- It is difficult to measure the overall
code quality, performance and productivity
across squads.

CHAPTER 9. DISCUSSION 135

This Heterogeneous Tailoring approach does not create new Agile methods based on
existing method fragments that can be applied to specific contexts, as in the Method
Engineering [24, 46]. Also, my approach does not select multiple methods to be available
and then perform method selection based on the features of the development context, as
in Contingency Factors [24, 35].

Moreover, the Heterogeneous Tailoring approach does not advocate the utilisation of
Agile practices across squads that do not fit the needs of each squad. On the contrary, this
Heterogeneous Tailoring approach separates the concerns of each squad in Agile tailoring
and yet align them to each other and to common product development goals. In this
Heterogeneous Tailoring approach, Agile Coaches use the tailoring criteria [17, 54, 114]
by considering the different categories, which are summarised in Table 2.1, based on the
identified mission for each squad.

9.2.3 An Architectural Governance Approach

Despite the reported benefits of the Heterogeneous Tailoring approach, my research iden-
tified a challenge in aligning and governing architectural decisions among autonomous
squads. Software architecture is perceived as a key factor to scale up Agile development
in a large-scale. The coexistence of software architecture and Agile development was
realised by previous research [2, 15, 27, 61]. This coexistence caused the emergence of
some Agile architecting practices [118]. However, there is a lack of guidance on how
Agile practitioners can use the combination of architecting in the architecture-agility
combination. The Spotify model is an example of an Agile model that lacks such
guidelines.

To overcome the challenge of architecture governance in the FinTech’s Spotify model, an
embedded case study intervention was conducted. In this intervention, I have developed
and evaluated a novel approach to architectural governance. This architecture governance
approach incorporates a structural change and an architecture change management pro-
cess. The structural change (1) empowers Chapter Leaders and experienced developers
with the role of Architecture Owners, (2) changes the responsibilities of the Architect

CHAPTER 9. DISCUSSION 136

to be of Enterprise Architectural focus, and (3) locates all Architecture Owners in a
virtual squad that is led by an Enterprise Architect. The introduced architecture change
management process comprises a set of activities and practices that facilitate architectural
governance.

Bellomo et al. [11] identified some Agile architecture patterns and tactics. However,
they do not provide a framework or an approach for Agile architectural governance and
alignment. In a more abstract level, Nord et al. [82] explored architectural tactics that can
improve the alignment of the architecture and the development. Nord et al. proposed an
Agile architecture alignment using vertical and horizontal decomposition of the software
architecture and matrix augmented-role team structures by conceptualising Scrum as an
example. However, the proposed alignment by Nord et al. is not supported by a scientific
investigation following a rigorous research process and only conceptualises the proposed
alignment using Scrum. My work does so by conducting an empirical investigation of
the proposed approach in a specific domain (i.e., FinTech) of large-scale, which tailors
the Spotify model.

Yang et al. [118] conducted a systematic mapping study on the combination of Agile
development and software architecture and hence identified 11 architecting activities
and 41 Agile practices that are used with software architecture. The Spotify model does
not provide guidelines for aligning Agile architecting across autonomous teams [98].
My architecture governance approach utilises some Agile activities identified by Yang
et al. in the introduced architecture change management process, and introduces new
roles within the organisation. The architecting activities used in my architecture change
management process are Architectural Analysis and Synthesis (Activity 1 and 2), Archi-
tectural Evaluation and Impact Analysis (Activity 3), Architectural Refactoring (Activity
6), Architectural Maintenance and Evolution (moving from Activity 6 back to Activity
1). However, the activities of Architectural Description and Understanding are used to
some extent at the enterprise architecture level. Also, Architectural Reuse is practised,
based on my observation, within the squads and encouraged by Architecture owners.

Martini and Bosch [73] identified 4 sorts of teams, 3 architect roles, and some architecture
practices, which are used to propose and evaluate a framework for Agile architecting

CHAPTER 9. DISCUSSION 137

embedded software projects. Their framework employs an Architect within each team,
which works closely to a Governance Architect who functions as a coordinator between
the Chief Architect and the Agile teams. Also, their framework does not consider
having a cross-functional team working on different parts of the software project, which
may employ different technologies and different architectures. Therefore, it is unlikely
that a single Team Architect (i.e., Architecture Owner) would possess the required
architectural knowledge in all technologies used in different parts of the same project and
in other industries than embedded software projects. Consequently, Martini and Bosch’s
framework does not consider aligning the teams horizontally, which is the case in my
approach, where it aligns the teams horizontally through Chapters.

Based on the intervention results, I have adapted the Heterogeneous Tailoring approach
to accommodate the evaluated approach to architectural governance. This adaptation
has impacted the key features of the Heterogeneous Tailoring approach. For example,
establishing autonomous squads was impacted by the introduced structural change. The
alignment of autonomous squads was impacted by governing Agile architecture. Product
development was impacted by the needs for planning architecture based user stories.
Also, the adaptation of the Heterogeneous Tailoring approach has identified a new key
feature, called the release strategy, which is concerned with the continuous delivery of
architecture enablers.

9.3 Limitations

The research limitations are discussed in this section by considering the criteria intro-
duced by Lincoln and Guba [68] for evaluating the trustworthiness of the findings in
qualitative research.

Credibility refers to the level of compatibility between the respondents’ opinions and
the researcher’s interpretation and presentation [68]. A longitudinal and intervention
embedded case studies were conducted to have in-depth insight into the Spotify model and
to overcome one of the identified challenges. Data were collected through semi-structured

CHAPTER 9. DISCUSSION 138

open-ended interviews and supplemented by direct observation, documentation, and
artefacts. The interview protocol was revised after conducting two pilot interviews.
The collected data was analysed using an approach informed by the Grounded Theory
(Glaserian approach) [39, 40]. This triangulation in data collection and analysis has
provided the researcher with different angles towards the studied phenomenon and
thus provided a broader picture. Also, this triangulation has increased the precision of
this empirical research and hence improved the construct validity. However, limited
description of the explored project was provided because of the confidentiality agreement
with FinTechOrg.

Dependability is concerned with the ability to replicate the conducted research [68].
This research was limited to a specific context, as described in Sect. 3.4.1, which is
dictated by the research destination of which the researcher works in as senior software
engineer. Also, the selection of participant interviewees was limited by their willingness
to participate in this research.

Incorrect data is a validity threat since this research study is empirical and data collected
from interviews is known to be prone to bias [87]. The presented data by the interviewees
to the researcher have 4 types. These types are (1) Baseline data, which represent the best
description a participant can provide, (2) Properline data, which represent a description of
what participant thinks it is proper to tell the researcher, (3) Interpreted, which represent
what is described by professional participants who aim to make sure that researchers
professionally see the data, and (4) Vaguing it out, which represent vague information
provided by participants that do not bother to provide information to the researcher [39].
Any researcher can encounter any of these types of collected data.

However, conducting semi-structured open-ended guide allows the researcher to let
the participants provide any detailed data and examples [80]. Also, semi-structured
interviews help researchers in asking the same question in multiple ways throughout the
interview protocol [80]. In this research study, each conducted interview was recorded
and then transcribed verbatim for detailed analysis in a systematic continuous basis.
Since most of the conducted interviews were carried out in Swedish, the quotations,
which support the findings of this research study, were translated carefully into English.

CHAPTER 9. DISCUSSION 139

Furthermore, this research encompasses conducting a longitudinal embedded case study,
which involves a repeated process of observation of the same variables for a long period –
around two years. This triangulation in data collection and analysis validates that derived
data from observations did not contradict, but rather supported, the interview data.

Transferability refers to the extent to which the findings from one context are applicable
to another while understanding the circumstances that affect the studied context [68]. A
limitation of this research study is being limited to the context of a single case study.
Case studies put more emphasis on recognising a contemporary phenomenon rather
than generalising the findings. Also, the Grounded Theory does not claim producing
a universally applicable theory, but it can be modified as new data from other contexts
are constantly compared with the theory [13, 40]. Nevertheless, the interviews were
conducted with different roles (such as Agile Coach, Product Owner, Key Account
Manager, Chapter Leader, Senior Developer, Support Manager, etc.) from different
squads to brace the external validity. Also, the findings of such qualitative research may
benefit other companies in similar contexts.

Confirmability examines the researcher’s objectivity in relation to the studies context [68].
In both of the longitudinal and intervention case studies, the interview protocols were
tested through two pilot interviews and subsequently revised. Also, this research study
adopted a grounded theory method, which is a systematic research methodology aims
to generate an abstract theory through methodical gathering and analysis of data on
a continuous basis [13]. Furthermore, a longitudinal and intervention embedded case
studies were conducted during which the same variables were observed repeatedly. This
triangulation, in turn, helped the researcher in finding any suspected deviation between
“semi-structured interviews” view of matters and the “real” case [89].

9.4 Summary

In this chapter, the findings were analysed and interpreted in light of related literature.
Also, this chapter has discussed the limitations of this research study.

CHAPTER 9. DISCUSSION 140

Firstly, this research investigated the conflicting trade-offs between alignment and auton-
omy. A tension between squads autonomy and alignment was identified. The conflicting
trade-offs are resolved by identifying influential factors on 3 different aspects of Spotify
Tailoring. These aspects are (1) establishing and building autonomous squads, (2) align-
ing autonomous squads, and (3) performing B2B product development by tailoring the
Spotify model. The discussion demonstrates that appropriate utilisation of these factors
and their related identified practices can aid Agile practitioners in getting the balance
right between squads autonomy and alignment.

Secondly, this research explored the tailoring approach used in FinTech’s Spotify model
and revealed a novel approach, called Heterogeneous Tailoring. The tailoring approaches
identified by previous research compared to the Heterogeneous Tailoring approach.
The analysis and interpretation show that the Heterogeneous Tailoring approach differs
from other identified tailoring approaches in previous literature. The discussion pre-
sented in this chapter compares the aims of each tailoring approach, its advantages and
disadvantages.

Thirdly, the exploration of Spotify tailoring in FinTechOrg identified a challenge in
governing architectural decisions across heterogeneous autonomous squads. Hence, this
research study introduced an approach to overcome this challenge. The proposed ap-
proach incorporates a structural change and an architecture change management process.
Based on the results of the intervention conducted, the Heterogeneous Tailoring approach
was adapted to accommodate the introduced approach to architectural governance. The
discussion presented in this chapter compares and discusses the introduced approach to
architecture governance to other approaches identified in previous literature.

This chapter has also presented and discussed the limitations of my research results. This
research has employed a qualitative research design by conducting a single case study,
which in turn affected the generalisability of this research study negatively. However, this
research study involves a longitudinal embedded case study, which puts more emphasis on
having an in-depth understanding of contemporary phenomenon than the generalisability
of the findings. This in-depth understanding is especially important since there was a
lack of scientific research on the Spotify model.

Chapter 10

Conclusion

10.1 Introduction

This research study was motivated by the existence of conflicting trade-offs between
alignment and autonomy in the Spotify model. This model initiates the creation of
autonomous yet aligned squads by employing an adaptive structure [58, 57]. Autonomy
is important to have motivated and innovative squads that can deliver the developed
software quickly to the customers [57, 58, 76]. The alignment of autonomous squads
works as enabler for squads autonomy [57, 58]. However, there is a conflicting trade-off
between autonomy and alignment. Too much alignment might hinder squad autonomy,
but without alignment, the squads are autonomous yet not effective.

Also, the Spotify model does not provide guidelines for building squads autonomy
nor for aligning autonomous squads. There is a lack of scientific research on the
Spotify model. At the time this research study started in 2015, there was no scientific
research on the Spotify model. Previous research on the Spotify model was limited
to the grey literature [56, 57, 58, 69]. In 2017, however, Mankins and Garton [71]
identified 3 challenges to getting the balance right between individual autonomy and
organisational goals when using the Spotify model. Also, in 2019, Šmite et al., [106]

141

CHAPTER 10. CONCLUSION 142

studied knowledge sharing in the Spotify organisation. Hence, this research aimed to
(1) explore how Agile practitioners, from a FinTech organisation, resolve the conflicting
trade-offs between squads autonomy and alignment, and (2) develop and evaluate new
architectural governance practices, in a FinTech organisation tailoring the Spotify model.

This research study has employed qualitative research design to begin to fill the lit-
erature gaps identified about Spotify Tailoring in the FinTech industry of large-scale
agile. In essence, the employed research design consists of a longitudinal embedded case
study and a practical intervention embedded case study. Data were collected through
semi-structured open-ended interviews and supplemented by direct observation, docu-
mentation, and artefacts. The collected data was analysed using an approach informed
by the Grounded Theory.

Five main contributions were presented in this thesis, which are summarised Sect. 10.3.
Fig. 1.1 illustrates the connections between the research questions, contributions, and
conducted scientific research by this study [93, 94, 95, 96, 97, 98, 99]. The contributions
of this research study are spread through Chapter 4-8.

This chapter consolidates all the previous chapters by providing an overview of all chap-
ters. This overview is followed by a summary of the contributions of this research study.
Then, a reflection on this research study, by discussing some encountered implications,
is provided. Finally, this chapter presents suggestions for future work through which this
research study can be extended.

10.2 Summary of the Thesis

The introduction chapter showed the importance of addressing the lack of scientific
research on the Spotify model. This research study aimed to resolve the conflicting trade-
offs between autonomy and alignment and to develop and evaluate new architectural
governance practices by adapting the Spotify model. The introduction chapter also
showed the connection between the research questions, contributions, and conducted
scientific research by this research.

CHAPTER 10. CONCLUSION 143

In Chapter 2, a literature review was conducted, which comprises a minor upfront
literature review and a detailed literature review. The minor literature review was
conducted to understand the basic facts and terminologies of the Spotify model and
the Agile architecture to converse with the participants during interviews. A detailed
literature review was conducted based on the grounded findings to facilitate the research
discussion. Thus, an overview of the Spotify model and some related aspects to the
findings were presented. For example, Chapter 2 presents some Agile methods (i.e.,
Lean and Scrum), Agile method tailoring approaches, large-scale agile, inter-team
coordination, autonomous teams, and Agile architecture.

In Chapter 3, the adopted research approach was described by following Creswells’
framework. This research utilises qualitative research design. This design comprises
a longitudinal embedded case study and embedded case study intervention. The lon-
gitudinal embedded case study lasted over 21 months, during which 225 ceremonies
were observed, 14 semi-structured open-ended interviews were conducted, and data were
collected from different sorts of artefacts. The collected data from the longitudinal part
was analysed using an approach informed by the Grounded Theory. The intervention
embedded case study lasted over 3 months, during which 32 ceremonies were observed
and 8 semi-structured open-ended interviews were conducted. The collected data was
analysed using an approach informed by the Grounded Theory.

Chapters 4-7 describe the outcome of the conducted longitudinal embedded case study.
This part is followed by an intervention embedded case study to tackle one of the
identified challenges. Chapter 8 describe the outcome of the intervention part and its
embedded case study.

In Chapter 4, the following research question was addressed: How do Agile practition-

ers, from a FinTech organisation, establish and build squad autonomy? This chapter
identified influential factors on establishing and building autonomous squads. These
factors are (1) tailoring the adaptive structure and creating sufficient communities around
it, (2) building squad or mission-based strategy, and (3) tailoring Agile methods on the
squad or mission level.

In Chapter 5, the following research question was addressed: How do Agile practition-

CHAPTER 10. CONCLUSION 144

ers, from a FinTech organisation, achieve and sustain the alignment of autonomous

squads? This research identified influential factors on aligning autonomous squads. The
investigation of Spotify Tailoring, from a squad alignment perspective, identified new,
modified and previously introduced practices and attributes to the Spotify model. Thus,
31 employed practices and attributes were identified. These practices and attributes were
classified into 5 modified, 12 new, and 14 previously introduced practices and attributes
in the Spotify model.

Also, Chapter 5 identified 7 influential factors on aligning autonomous squads. These
influential factors are; (1) adaptive structure, (2) collective code ownership, (3) collective
decision-making, (4) knowledge sharing, (5) inter-team coordination, (6) mission-based
planning, and (7) delivery strategy. Each factor is supported by a set of practices
and attributes that can strengthen the alignment of autonomous squads. The identified
influential factors and their related practices can aid Agile practitioners in aligning
autonomous squads.

In Chapter 6, the following research question was addressed: How do Agile practitioners,

from a FinTech organisation, tailor the Spotify model for B2B product development?

This chapter revealed two main aspects related to product development using the Spotify
model. Firstly, this chapter has identified the impact of product development on squads
autonomy and alignment. This impact is mainly realised in the identification of squads’
missions strategy and the alignment of product backlog items among autonomous squads.

Secondly, Chapter 6 identified aspects related to performing B2B product development
by tailoring the Spotify model. The investigation of Spotify Tailoring, from a B2B
perspective, identified new, modified and previously introduced practices and attributes
to the Spotify model. Thus, 44 tailored practices and attributes were identified. These
practices and attributes were classified into 6 modified, 28 new, and 10 previously intro-
duced practices and attributes in the Spotify model. Also, Chapter 6 identified influential
factors on Spotify tailoring for B2B product development. These influential factors are
(1) project visibility, (2) interactions within product development, (3) building relation-
ships, and (4) response time. Each identified factor is supported by a set of practices
and attributes that facilitate B2B product development. The identified factors and their

CHAPTER 10. CONCLUSION 145

related practices can aid Agile practitioners in performing B2B product development by
tailoring the Spotify model.

In Chapter 7, the following research question was addressed: What is the approach taken

to Agile tailoring, when using the Spotify model? This chapter revealed a novel approach
to Agile tailoring, called “Heterogeneous Tailoring”. Three key features characterise
the Heterogeneous Tailoring approach. Firstly, each autonomous squad is empowered
to select and tailor its development method. Secondly, each squad is aligned with other
squads and common product development goals. Thirdly, product steering committee
draws the strategy of squads missions and aligns the product backlog among autonomous
squads.

Also, Chapter 7 identified some benefits for the Heterogeneous Tailoring approach.
These benefits include: (1) mitigating challenges of utilising Agile practices across
squads that do not fit the needs of each squad, (2) improved creativity or productivity,
(3) and mitigated risks of divergence from shared development objectives by employing
alignment practices. However, this research identified two challenges to this approach.
Firstly, it is difficult to measure the overall code quality, performance and productivity
for different squads. Secondly, aligning and governing enterprise architectural decisions
across autonomous squads requires new practices

Chapter 8 addressed the following research question: What new architectural governance

practices can be introduced for loosely coupled yet cooperating squads? An intervention
embedded case study was conducted to minimise delays in architecture based decision
making, level up the quality of software being produced, and overcome obstacles to
aligning and governing architectural decisions across autonomous squads. This interven-
tion introduced a novel approach to architectural governance using the Spotify model,
which incorporates a structural change and an architecture change management process.
Chapter 8 presented the characteristics of the introduced approach to architectural gover-
nance, its benefits, and identify guidelines and challenges for those wishing to adopt it.
In addition, Chapter 8 presented how the Heterogeneous Tailoring approach was adapted
based on this intervention.

Chapter 9 discussed the findings from Chapters 4-8 based on the literature review in

CHAPTER 10. CONCLUSION 146

Chapter 2. Also, Chapter 9 discussed the limitations of the research study.

10.3 Contributions

The main contributions of this research are the following:

• Contribution 1: Influential factors on establishing and building autonomous
squads were identified. These factors consist of: (1) tailoring the adaptive structure
and creating communities around it, (2) building squad or mission-based strategy,
and (3) tailoring Agile methods on the squad or mission level.

• Contribution 2: Influential factors on aligning autonomous squads were identi-
fied. My investigation of Spotify Tailoring, from a squad alignment perspective,
identified new, modified and previously introduced practices and attributes to the
Spotify model. Also, my investigation has identified influential factors on aligning
autonomous squads. Each identified factor is supported by a set of practices and
attributes that can strengthen the alignment of autonomous squads. The identified
influential factors and their related practices can aid Agile practitioners in aligning
autonomous squads.

• Contribution 3: Two main aspects related to product development were identified.
Firstly, the impact of product development on squads autonomy and alignment was
identified. This impact is mainly realised in the identification of squads’ missions
strategy and the alignment of product backlog items among autonomous squads.
Secondly, performing B2B product development by tailoring the Spotify model
was identified. My investigation of Spotify Tailoring, from a B2B perspective,
identified new, modified and previously introduced practices and attributes to the
Spotify model. Also, my investigation has identified influential factors on Spotify
tailoring for B2B product development. Each identified factor is supported by a set
of practices and attributes that facilitate B2B FinTech product development. The
identified influential factors and their related practices facilitate performing B2B
product development using the Spotify model.

CHAPTER 10. CONCLUSION 147

Note: The Contributions 1-3 facilitate resolving the conflicting trade-offs between
autonomy and alignment. The autonomy of squads improves the motivation
and innovation, which in turn speeds up the release delivery process. Also, the
alignment of autonomous squads works as enable for squad autonomy. This
research has identified a tension between squads autonomy and alignment. Too
much alignment might hinder squad autonomy, but at the same time without
alignment, the squads can be autonomous yet not effective. Therefore, Agile
practitioners should get the balance right between squads autonomy and alignment.

• Contribution 4: A novel approach to Agile tailoring was revealed, called Hetero-
geneous Tailoring. Three key features characterise this approach. Firstly, each
autonomous squad is empowered to select and tailor its development method.
Secondly, each squad is aligned with other squads and to common product develop-
ment goals and objectives. Thirdly, product steering committee draws the strategy
of squads’ missions and aligns the product backlog among autonomous squads.

• Contribution 5: A novel approach to architectural governance, by tailoring the
Spotify model, was develop and evaluate. This architectural governance approach
incorporates an organisational structural change and an architecture change man-
agement process. The impact of the architectural governance approach on the
Heterogeneous Tailoring approach was identified. Also, the Heterogeneous Tai-
loring approach was adapted to accommodate the newly introduced approach to
architectural governance.

10.4 Reflection

Creating an initial research design, identifying valid research question, and aims and
objectives were the most significant challenges during this research. Initially, this research
aimed to introduce a holistic approach to Agile tailoring. To verify the approach to Agile
tailoring, a quantitative research design (i.e., survey) was proposed. This PhD proposal
was submitted and accepted.

CHAPTER 10. CONCLUSION 148

However, the researcher was struggling to employ the quantitative design to verify and
validate the proposed approach, which consists of a wide range of dimensions and
attributes. The huge scope of the initial research and the challenge of applying the
quantitative design to verify and validate the proposed approach made it difficult to
proceed in this direction. Also, the original supervisor moved to industry, in the middle
of this chaotic period, which resulted in a change of the supervisor and hence shifted the
focus of this research into its current state.

I needed to be self-motivated and develop an intense curiosity about the research problem.
Identifying a reasonable scope of a research study that can be conducted within a specific
time frame is vital. The process involved in the early stage of research, if planned and
done correctly, will help researchers to rethink their research aim and objectives, and
establish a foundation for rigour quite early in the PhD study.

Embedding the researcher in the case study added breadth and depth to data collection.
The collected data in this research study includes observations, interviews, documentation,
and artefacts of different kinds – such as product backlog, tools, and technology. Hence,
conducting an embedded case study brought a richness of data through triangulation [91].
This triangulation of data collection, in turn, ensured the authenticity of the data collected
through interviews and contributed to the validity of this research, where the interpretation
of the interview data was compared to the observations of the workplace and activities.
Despite the tremendous benefits of this triangulation process, it can be expensive and
time consuming for PhD students.

The Grounded Theory method does not claim to produce a universally applicable the-
ory [40]. The Grounded Theory can be modified by constant comparison to further
collected data from new contexts (i.e., other software industries, projects, organisations,
and cultures). To the best of my knowledge, the grounded theory of Heterogeneous
Tailoring is the first of its kind in the field of Software Engineering. Conducting multiple
case studies in software organisations using the Spotify model will help in theory testing
in the sense of performing statistical generalisation to a large population, which was not
the aim of my research.

The researcher had planned with the new supervisor to consider and think of the published

CHAPTER 10. CONCLUSION 149

scientific papers as a skeleton of the core chapters of the thesis. These publications
can then be expanded into sections or chapters in the final thesis. This strategy was
proved to be useful for me. However, this approach could introduce a potential risk
of underestimating the remaining work for thesis write-up. Re-writing and arranging
already published ideas into appropriate sections and chapters can be time-consuming.
Though, the researcher will not start the writing-up on blank pages since the ideas exist
and already published. This process increases the researcher’s preparation and confidence
to defend the research.

Being a part-time PhD student was challenging. I have chosen this mode of study because
of other essential responsibilities in my life, including family and job. Balancing different
roles in life resulted in a limited spent time at the university, mainly when the researcher
is located offshore. However, the constant commitment and support of the supervisor and
researcher’s ability to being resilient, motivated, passionate, enthusiastic, and organised
throughout this journey were crucial to complete this research.

10.5 Future work

This research has begun to fill the literature gaps identified about Spotify Tailoring in
FinTech organisations of large-scale. The researcher started approaching the identified
research gaps by exploring the conflicting trade-offs between squads autonomy and align-
ment identifying influential factors on different aspects related to the Spotify Tailoring.
Yet, this research can be extended by considering other settings (i.e., other software
industries, projects, organisations, and cultures). Exploring how Spotify Tailoring is
achieved in different contexts will enrich literature and improve the generalisability
of the identified influential factors on building autonomous squads and aligning them,
which can facilitate the identification of guidelines for building squads autonomy and
alignment.

Further research can also be conducted to investigate issues surrounding the Hetero-
geneous Tailoring approach. These issues include measuring the overall code quality,

CHAPTER 10. CONCLUSION 150

performance and productivity for different autonomous squads. In the Heterogeneous
Tailoring approach, each squad or a mission considers its way of measuring code quality,
progress, velocity, and success. Hence, each squad or mission has its key performance
indicators. These indicators are used to produce quantifiable measures to evaluate the
success of each squad. Integrating all used key performance indicators for all squads or
missions is challenging.

Agile practitioners should get the balance right between squads autonomy and alignment.
Hence, future research can provide key indicators to achieve a seemingly paradoxical
combination of squads autonomy and alignment and balance them. Such key indicators
can be employed in a maturity model or diagnostic tool to help organisations in under-
standing their current practices and work toward improving their agility. These maturity
models or diagnostic tools can guide organisations toward reaching different levels of
balance between squads autonomy and alignment.

References

[1] N. Abbas, A. M. Gravell, and G. B. Wills. Using factor analysis to generate
clusters of agile practices (a guide for agile process improvement). In 2010 Agile

Conference, pages 11–20, 2010.

[2] P. Abrahamsson, M. A. Babar, and P. Kruchten. Agility and architecture: Can
they coexist? IEEE Software, 27(2):16–22, March 2010.

[3] E. Ahmed and A. Sidky. 25 percent ahead of schedule and just at ”step 2 of the
sami. In Proceedings of the 2009 Agile Conference, AGILE 09, page 162169,
USA, 2009. IEEE Computer Society.

[4] C. Anderson and E. McMillan. Of ants and men: Self-organized teams in human
and insect organizations. Emergence: Complexity and Organization, 5(2):29–41,
2003.

[5] L. Andrews, A. Higgins, M. W. Andrews, and J. G. Lalor. Classic grounded theory
to analyse secondary data: Reality and reflections. Grounded Theory Review: An

International Journal, 11(1), 2012.

[6] H. Ayed, B. Vanderose, and N. Habra. A metamodel-based approach for customiz-
ing and assessing agile methods. In 2012 Eighth International Conference on the

Quality of Information and Communications Technology, pages 66–74, 2012.

[7] M. A. Babar and P. Abrahamsson. Architecture-centric methods and agile ap-
proaches. In Pekka Abrahamsson, Richard Baskerville, Kieran Conboy, Brian
Fitzgerald, Lorraine Morgan, and Xiaofeng Wang, editors, Agile Processes in Soft-

151

REFERENCES 152

ware Engineering and Extreme Programming, pages 242–243, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[8] J. M. Bass. Agile method tailoring in distributed enterprises: Product owner teams.
In 2013 IEEE 8th International Conference on Global Software Engineering,
pages 154–163, Aug 2013.

[9] J. M. Bass. How product owner teams scale agile methods to large distributed
enterprises. Empirical Software Engineering, 20(6):1525–1557, December 2015.

[10] J. M. Bass and A. Haxby. Tailoring product ownership in large-scale agile projects:
Managing scale, distance, and governance. IEEE Software, 36(2):58–63, March
2019.

[11] S. Bellomo, P. Kruchten, R. L. Nord, and I. Ozkaya. How to agilely architect an
agile architecture. Cutter IT Journal, 27(2):12–17, 2014.

[12] S. Bick, A. Scheerer, and K. Spohrer. Inter-team coordination in large agile soft-
ware development settings: Five ways of practicing agile at scale. In Proceedings

of the Scientific Workshop Proceedings of XP2016, XP ’16 Workshops, USA,
2016.

[13] D. F. Birks, W. Fernandez, N. Levina, and S. Nasirin. Grounded theory method in
information systems research: its nature, diversity and opportunities. European

Journal of Information Systems, 22(1):1–8, 2013.

[14] S. Blank. Why the lean start-up changes everything. Harvard business review, 91
(5):63–72, 2013.

[15] G. Booch. The defenestration of superfluous architectural accoutrements. IEEE

Software, 26(4):7–8, July 2009.

[16] F. Buschmann and K. Henney. Architecture and agility: Married, divorced, or just
good friends? IEEE Software, 30(2):80–82, March 2013.

[17] A. S. Campanelli and F. S. Parreiras. Agile methods tailoring a systematic
literature review. Journal of Systems and Software, 110:85 – 100, 2015.

REFERENCES 153

[18] A. S. Campanelli, R. D. Camilo, and F. S. Parreiras. The impact of tailoring
criteria on agile practices adoption: A survey with novice agile practitioners in
brazil. Journal of Systems and Software, 137:366 – 379, 2018.

[19] S. Casare, T. Ziadi, A. A. F. Brando, and Z. Guessoum. Meduse: An approach for
tailoring software development process. In 2016 21st International Conference on

Engineering of Complex Computer Systems (ICECCS), pages 197–200, 2016.

[20] T. Chow and D. Cao. A survey study of critical success factors in agile software
projects. Journal of Systems and Software, 81(6):961 – 971, 2008. Agile Product
Line Engineering.

[21] A. Cockburn. Agile software development: the cooperative game. Pearson
Education, 2006.

[22] A. Cockburn and J. Highsmith. Agile software development, the people factor.
Computer, 34(11):131–133, Nov 2001.

[23] K. Conboy and N. Carroll. Implementing large-scale agile frameworks: Challenges
and recommendations. IEEE Software, 36(2):44–50, March 2019.

[24] K. Conboy and B. Fitzgerald. Method and developer characteristics for effective
agile method tailoring: A study of xp expert opinion. ACM Trans. Softw. Eng.

Methodol., 20(1):2:1–2:30, July 2010.

[25] J. W. Creswell and J. D. Creswell. Research Design: Qualitative, Quantitative,

and Mixed Methods Approaches. Sage Publications Ltd., 5 edition, 2018.

[26] K. Dikert, M. Paasivaara, and C. Lassenius. Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal of

Systems and Software, 119:87 – 108, 2016.

[27] T. Dingsøyr, T. Dybå, and N. B. Moe. Agile Software Development: Current

Research and Future Directions. Springer Publishing Company, Incorporated, 1st
edition, 2010.

[28] T. Dingsøyr, T. E. Fægri, and J. Itkonen. What is large in large-scale? a tax-
onomy of scale for agile software development. In A. Jedlitschka, P. Kuvaja,

REFERENCES 154

M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen, editors, Product-

Focused Software Process Improvement, pages 273–276, Cham, 2014. Springer
International Publishing.

[29] T. Dingsøyr, N. B. Moe, T. E. Fægri, and E. A. Seim. Exploring software
development at the very large-scale: A revelatory case study and research agenda
for agile method adaptation. Empirical Software Engineering, 23(1):490–520,
February 2018.

[30] T. Dybå and T. Dingsøyr. Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9):833 – 859, 2008.

[31] H. Erdogmus. Architecture meets agility. IEEE Softw., 26(5):2–4, September
2009.

[32] H. C. Esfahani, S. Eric, and M. C. Annosi. Towards the strategic analysis of agile
practices. In CAiSE Forum, pages 155–162, 2011.

[33] D. Falessi, G. Cantone, S. A. Sarcia’, G. Calavaro, P. Subiaco, and C. D’Amore.
Peaceful coexistence: Agile developer perspectives on software architecture. IEEE

Software, 27(2):23–25, March 2010.

[34] B. Fitzgerald and K. Stol. Continuous software engineering: A roadmap and
agenda. The Journal of Systems & Software, 123:176–189, 2017.

[35] B. Fitzgerald, N. L. Russo, and T. O’Kane. An empirical study of system develop-
ment method tailoring in practice. In ECIS, 2000.

[36] B. Fitzgerald, N. L. Russo, and T. O’Kane. Software development method tailoring
at motorola. Commun. ACM, 46(4):64–70, April 2003.

[37] M. Fowler and J. Highsmith. The agile manifesto, 2001. URL http://www.

agilemanifesto.org/.

[38] A. Q. Gill, B. Henderson-Sellers, and M. Niazi. Scaling for agility: A refer-
ence model for hybrid traditional-agile software development methodologies.
Information Systems Frontiers, 20(2):315341, April 2018.

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/

REFERENCES 155

[39] B. G. Glaser. Theoretical sensitivity: advances in the methodology of grounded

theory / Barney G. Glaser. Sociology Press Mill Valley, Calif, 1978.

[40] B. G. Glaser. Doing grounded theory: Issues and discussions. Sociology Press,
1998.

[41] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies

for Qualitative Research. Aldine de Gruyter, New York, NY, 1967.

[42] F. González, L. Silvestre, M. C. Bastarrica, and M. Solari. Template-based vs.
automatic process tailoring. In 2014 33rd International Conference of the Chilean

Computer Science Society (SCCC), pages 124–127, 2014.

[43] P. Gregory and K. Taylor. Defining agile culture: A collaborative and practitioner-
led approach. In 2019 IEEE/ACM 12th International Workshop on Cooperative

and Human Aspects of Software Engineering (CHASE), pages 37–38, May 2019.

[44] M. A. Hart. The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses eric ries. Journal of Product Innovation

Management, 29(3):508–509, 2012.

[45] T. Hayata and J. Han. A hybrid model for it project with scrum. In Proceedings

of 2011 IEEE International Conference on Service Operations, Logistics and

Informatics, pages 285–290, 2011.

[46] B. Henderson-Sellers and J. Ralyté. Situational method engineering: State-of-the-
art review. Journal of Universal Computer Science, 16(3):424–478, 2010. cited
By 129.

[47] J. A. Highsmith. Agile project management : creating innovative products.
Addison-Wesley, 2004.

[48] R. Hoda, J. Noble, and S. Marshall. Organizing self-organizing teams. In Proceed-

ings of the 32Nd ACM/IEEE International Conference on Software Engineering -

Volume 1, ICSE ’10, pages 285–294, New York, NY, USA, 2010. ACM.

REFERENCES 156

[49] R. Hoda, J. Noble, and S. Marshall. Developing a grounded theory to explain the
practices of self-organizing agile teams. Empirical Software Engineering, 17(6):
609–639, Dec 2012.

[50] R. Hoda, J. Noble, and S. Marshall. Self-organizing roles on agile software
development teams. IEEE Transactions on Software Engineering, 39(3):422–444,
March 2013.

[51] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee. Systematic literature reviews in agile
software development: A tertiary study. Information and Software Technology,
85:60 – 70, 2017.

[52] T. Imani, M. Nakano, and V. Anantatmula. Does a hybrid approach of agile and
plan-driven methods work better for it system development projects? International

journal of engineering research and applications, 1(2):3, 2017.

[53] S. Jalali and C. Wohlin. Agile practices in global software engineering - a
systematic map. In 2010 5th IEEE International Conference on Global Software

Engineering, pages 45–54, 2010.

[54] G. Kalus and M. Kuhrmann. Criteria for software process tailoring: A systematic
review. In Proceedings of the 2013 International Conference on Software and

System Process, ICSSP 2013, pages 171–180, New York, NY, USA, 2013. ACM.

[55] E. Kilu, F. Milani, E. Scott, and D. Pfahl. Agile software process improvement
by learning from financial and fintech companies: Lhv bank case study. In
D. Winkler, S. Biffl, and J. Bergsmann, editors, Software Quality: The Complexity

and Challenges of Software Engineering and Software Quality in the Cloud, pages
57–69, Cham, 2019. Springer International Publishing.

[56] H. Kniberg. Spotify squad framework - part ii, April, 2014. URL
https://medium.com/project-management-learnings/

spotify-squad-framework-part-ii-c5d4b9398c30.

[57] H. Kniberg. Spotify squad framework - part i, January, 2014. URL
https://medium.com/project-management-learnings/

spotify-squad-framework-part-i-8f74bcfcd761.

https://medium.com/project-management-learnings/spotify-squad-framework-part-ii-c5d4b9398c30
https://medium.com/project-management-learnings/spotify-squad-framework-part-ii-c5d4b9398c30
https://medium.com/project-management-learnings/spotify-squad-framework-part-i-8f74bcfcd761
https://medium.com/project-management-learnings/spotify-squad-framework-part-i-8f74bcfcd761

REFERENCES 157

[58] H. Kniberg and A. Ivarsson. Scaling agile spotify with tribes, squads, chapters
& guilds, October, 2012. URL https://blog.crisp.se/wp-content/

uploads/2012/11/SpotifyScaling.pdf.

[59] R. E. Kraut and L. A. Streeter. Coordination in software development. Commun.

ACM, 38(3):69–81, March 1995.

[60] A. Krijnen. The toyota way: 14 management principles from the world’s greatest
manufacturer, 2007.

[61] P. Kruchten. Software architecture and agile software development: a clash of
two cultures? In 2010 ACM/IEEE 32nd International Conference on Software

Engineering, volume 2, pages 497–498, May 2010.

[62] N. Kurapati, V. S. C. Manyam, and K. Petersen. Agile software development
practice adoption survey. In C. Wohlin, editor, Agile Processes in Software

Engineering and Extreme Programming, pages 16–30, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[63] R. Kuusela and M. Koivuluoma. Lean transformation framework for software
intensive companies: Responding to challenges created by the cloud. In Soft-

ware Engineering and Advanced Applications (SEAA), 2011 37th EUROMICRO

Conference on, pages 378–382. IEEE, 2011.

[64] C. Larman and B. Vodde. Practices for Scaling Lean & Agile Development:

Large, Multisite, and Offshore Product Development with Large-Scale Scrum.
Addison-Wesley Professional, 1st edition, 2010.

[65] C. Larman and B. Vodde. Scaling agile development. CrossTalk, 9:8–12, 2013.

[66] D. Leffingwell. Scaling Software Agility: Best Practices for Large Enterprises

(The Agile Software Development Series). Addison-Wesley Professional, 2007.

[67] D. Leffingwell. SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean

Software and Systems Engineering. Addison-Wesley Professional, 1st edition,
2016.

[68] Y. S. Lincoln and E. G. Guba. Naturalistic inquiry (vol. 75), 1985.

https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

REFERENCES 158

[69] B. Linders. Don’t copy the spotify model, 2016. URL https://www.infoq.

com/news/2016/10/no-spotify-model.

[70] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D. Kiefer, J. May,
and T. Kahkonen. Agile software development in large organizations. Computer,
37(12):26–34, Dec 2004.

[71] M. Mankins and E. Garton. How spotify balances employee autonomy and
accountability. Harvard Business Review, 95(1), 2017.

[72] V. S. C. Manyam and N. Kurapati. Empirical investigation on adoption and
adaptation of agile practices. Master’s thesis, Blekinge Institute of Technology,
2012.

[73] A. Martini and J. Bosch. A multiple case study of continuous architecting in large
agile companies: Current gaps and the caffea framework. In 2016 13th Working

IEEE/IFIP Conference on Software Architecture (WICSA), pages 1–10, 2016.

[74] C. Melo, D. Cruzes, F. Kon, and R. Conradi. Interpretative case studies on agile
team productivity and management. Information and Software Technology, 2013.

[75] P. Middleton and J. Sutton. Lean software strategies: proven techniques for

managers and developers. CRC Press, 2005.

[76] N. B. Moe and T. Dingsøyr. Scrum and team effectiveness: Theory and practice.
In P. Abrahamsson, R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan, and
X. Wang, editors, Agile Processes in Software Engineering and Extreme Program-

ming, pages 11–20, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[77] N. B. Moe and T. Dingsøyr. Emerging research themes and updated research
agenda for large-scale agile development: A summary of the 5th international
workshop at xp2017. In Proceedings of the XP2017 Scientific Workshops, XP 17,
New York, NY, USA, 2017. Association for Computing Machinery.

[78] N. B. Moe, T. Dingsøyr, and T. Dybå. Understanding self-organizing teams in agile
software development. In 19th Australian Conference on Software Engineering

(aswec 2008), pages 76–85, March 2008.

https://www.infoq.com/news/2016/10/no-spotify-model
https://www.infoq.com/news/2016/10/no-spotify-model

REFERENCES 159

[79] N. B. Moe, H. H. Olsson, and T. Dingsøyr. Trends in large-scale agile development:
A summary of the 4th workshop at xp2016. In Proceedings of the Scientific

Workshop Proceedings of XP2016, page 1. ACM, 2016.

[80] M.D. Myers and M Newman. The qualitative interview in is research: Examining
the craft. Information and Organization, 17(1):2 – 26, 2007.

[81] S. Nerur. Acceptance of software process innovations the case of extreme pro-
gramming. European Journal of Information Systems, 18(4):344–354, 2009.

[82] R. L. Nord, I. Ozkaya, and P. Kruchten. Agile in distress: Architecture to the rescue.
In T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell, C. Gencel, and K. Petersen,
editors, Agile Methods. Large-Scale Development, Refactoring, Testing, and

Estimation, pages 43–57, Cham, 2014. Springer International Publishing.

[83] B. J. Oates. Researching Information Systems and Computing. Sage Publications
Ltd., 2006.

[84] N. Ozkan and A. Tarhan. A review of scaling approaches to agile software
development models. Software Quality Professional, 21(4):11–20, 09 2019. Name
- Spotify AB; Copyright - Copyright American Society for Quality Sep 2019; Last
updated - 2019-11-06; SubjectsTermNotLitGenreText - New York.

[85] M. Paasivaara, S. Durasiewicz, and C. Lassenius. Using scrum in a globally
distributed project: A case study. Softw. Process, 13(6):527–544, November 2008.
ISSN 1077-4866.

[86] M. Paasivaara, C. Lassenius, and V. T. Heikkilä. Inter-team coordination in
large-scale globally distributed scrum: Do scrum-of-scrums really work? In Pro-

ceedings of the 2012 ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, pages 235–238, Sept 2012.

[87] K. W. Parry. Grounded theory and social process: A new direction for leadership
research. The Leadership Quarterly, 9(1):85 – 105, 1998.

[88] J. Porter. Spotify is first to 100 million paid subscribers, 2019. URL https:

//www.theverge.com/2019/4/29/18522297/.

https://www.theverge.com/2019/4/29/18522297/
https://www.theverge.com/2019/4/29/18522297/

REFERENCES 160

[89] H. Robinson, J. Segal, and H. Sharp. Ethnographically-informed empirical studies
of software practice. Information and Software Technology, 49(6):540 – 551,
2007.

[90] K. H. Rolland, B. Fitzgerald, T. Dingsøyr, and K. Stol. Problematizing agile in
the large: alternative assumptions for large-scale agile development. In ICIS 2016

PROCEEDINGS : 37 International Conference on Information Systems, 2016.

[91] P. Runeson, M. Host, A. Rainer, and B. Regnell. Case Study Research in Software

Engineering: Guidelines and Examples. Wiley Publishing, 2012.

[92] A. Salameh. On process tailoring-an agile example. Master’s thesis, Chalmers
University of Technology, 2011.

[93] A. Salameh and J. M. Bass. Influential factors of aligning spotify squads in
mission-critical and offshore projects – a longitudinal embedded case study. In
M. Kuhrmann, K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig,
P. Tell, J. Klünder, and S. Küpper, editors, Product-Focused Software Process

Improvement, pages 199–215, Cham, 2018. Springer International Publishing.

[94] A. Salameh and J. M. Bass. Spotify tailoring for promoting effectiveness in cross-
functional autonomous squads. In R. Hoda, editor, Agile Processes in Software

Engineering and Extreme Programming – Workshops, pages 20–28, Cham, 2019.
Springer International Publishing.

[95] A. Salameh and J. M. Bass. Spotify tailoring for B2B product development.
In 2019 45th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), pages 61–65, Aug 2019.

[96] A. Salameh and J. M. Bass. An architectural governance approach by tailoring the
spotify model. AI & Society: Journal of Knowledge, Culture and Communication,
2020. Special issue on team autonomy in digital transformations. Submitted.

[97] A. Salameh and J. M. Bass. Spotify tailoring for architectural governance. In
Agile Processes in Software Engineering and Extreme Programming – Workshops,
Cham, 2020. Springer International Publishing. Accepted.

REFERENCES 161

[98] A. Salameh and J. M. Bass. Heterogeneous tailoring approach using the spotify
model. In Proceedings of the Evaluation and Assessment in Software Engineering,
EASE 20, page 293298, New York, NY, USA, 2020. Association for Computing
Machinery.

[99] A. Salameh and O. Jaradat. A safety-centric change management framework
by tailoring agile and v-model processes. In 36th International System Safety

Conference ISSC 2018, 13 Aug 2018, Phoenix, AZ, United States, 2018.

[100] T. Sauvola, L. E. Lwakatare, T. Karvonen, P. Kuvaja, H. H. Olsson, J. Bosch,
and M. Oivo. Towards customer-centric software development: A multiple-case
study. In 2015 41st Euromicro Conference on Software Engineering and Advanced

Applications, pages 9–17, Aug 2015.

[101] A. Scheerer, T. Hildenbrand, and T. Kude. Coordination in large-scale agile
software development: A multiteam systems perspective. In 2014 47th Hawaii

International Conference on System Sciences, pages 4780–4788, Jan 2014.

[102] K. Schwaber. Agile project management with Scrum. Microsoft Press, Redmond,
Wash., 2004.

[103] A. W. Scott and M. Lines. Disciplined Agile Delivery: A Practitioner’s Guide to

Agile Software Delivery in the Enterprise. IBM Press, 1st edition, 2012.

[104] P. Serrador and J. K. Pinto. Does agile work? - a quantitative analysis of agile
project success. International Journal of Project Management, 33(5):1040–1051,
2015.

[105] D. Šmite, C. Wohlin, Z. Galviņa, and R. Prikladnicki. An empirically based
terminology and taxonomy for global software engineering. Empirical Software

Engineering, 19(1):105–153, Feb 2014.

[106] D. Šmite, N. B. Moe, G. Levinta, and M. Floryan. Spotify guilds: How to succeed
with knowledge sharing in large-scale agile organizations. IEEE Software, 36(2):
51–57, March 2019.

[107] S. Soundararajan, J. D. Arthur, and O. Balci. A methodology for assessing agile
software development methods. In 2012 Agile Conference, pages 51–54, 2012.

REFERENCES 162

[108] M. Staron. Action Research in Software Engineering. Springer, 2020.

[109] A. Strauss and J. Corbin. Basics of Qualitative Research: Grounded Theory

Procedures and Techniques. Sage, Newbury Park, California, 1990.

[110] V. Stray, N. B. Moe, and R. Hoda. Autonomous agile teams: Challenges and
future directions for research. In Proceedings of the 19th International Conference

on Agile Software Development: Companion, XP ’18, pages 16:1–16:5, New York,
NY, USA, 2018. ACM.

[111] A. Sutharshan and S. P. Maj. An evaluation of agile software methodology
techniques. International Journal of Computer Science and Network Security, 10
(12), 2010.

[112] H. Takeuchi and I. Nonaka. The new newman product development game. Harvard

Business Review, 64(1):137–146, 1986.

[113] S. Theobald, A. Schmitt, and P. Diebold. Comparing scaling agile frameworks
based on underlying practices. In R. Hoda, editor, Agile Processes in Software

Engineering and Extreme Programming – Workshops, pages 88–96, Cham, 2019.
Springer International Publishing.

[114] J. F. Tripp and D. J. Armstrong. Exploring the relationship between organiza-
tional adoption motives and the tailoring of agile methods. In 2014 47th Hawaii

International Conference on System Sciences, pages 4799–4806, 2014.

[115] J. F. Tripp and D. J. Armstrong. Agile methodologies: Organizational adoption
motives, tailoring, and performance. Journal of Computer Information Systems,
58(2):170–179, 2018.

[116] D. Šmite, N. B. Moe, M. Floryan, G. Levinta, and P. Chatzipetrou. Spotify guilds.
Commun. ACM, 63(3):5661, February 2020.

[117] J. P. Womack, D. T. Jones, D. Roos, et al. The machine that changed the world:
The story of lean production. New York: Rawson Associates, 85, 1990.

REFERENCES 163

[118] C. Yang, P. Liang, and P. Avgeriou. A systematic mapping study on the combi-
nation of software architecture and agile development. Journal of Systems and

Software, 111:157 – 184, 2016.

Appendix A

Approved Ethical Application and
Documents

A.1 Ethical Approval Form

164

APPENDIX A. APPROVED ETHICAL APPLICATION AND DOCUMENTS 165

APPENDIX A. APPROVED ETHICAL APPLICATION AND DOCUMENTS 166

A.2 Consent for Participation in Research

Appendix B

Interview Guide

B.1 Longitudinal Embedded Case Study

The duration of this interview will be 45-60 minutes. We have divided the interview into
3 main sections based on the type of questions. Section 1 consists of short questions that
require direct answers. Section 2 consists of questions regarding the used methodology
in the organisation, section 3 consists of questions that require detail answers, as they
will determine the results for the research. The last section is about extracting other
details if there were any.

Section 1: Organisation

In this section, we will be asking questions regarding the organisation in order to have
a general overview of the experience of the organisation in agile methodology. As this
information will help us understand whether organisations of different experiences with
agile software development face similar problems with communication, coordination,
and planning among FinTech organisations or not.

1. What is the age of the company?

2. What is the project management structure? Describe it?

(a) How do you describe the management style?

167

APPENDIX B. INTERVIEW GUIDE 168

(b) How many people working on in the project?

(c) How many teams?

3. What is your organisation’s experience with Agile software development?

Section 2: Methodology

In this section, we will start by asking the following question in order to get information
about what methodology the organisation uses for developing the project(s).

4. What Agile software development methodology does your organisation use? Please
explain me how you use it (the full lifecycle)?

Based on the reply of the above question we will ask further questions such as the
following in order to understand how the organisation uses Agile and whether they
face any issue:

*** (IF there was offshore/distributed teams or customers)

(a) How does your organisation manage time difference between the teams?

(b) Do the offshore and onshore teams use the same development methodology?

i. How do you communicate and plan the work?
ii. What practices are you using to facilitate the development process?

Section 3: Research

In this section, we ask for detail description of the following questions in order to
understand if the organisation is facing or has faced planning, communication and
coordination issues while developing the software offshore and if they managed to
overcome it or not:

5. How do you do the sprint/iteration and release planning (explain it please)?

(a) How many sprints/iterations do you have for each release?

(b) What is an iteration/release length (week)?

i. If it was a short one or unstable size: Why?
ii. Is it stressful for the team?

*** Preparatory meeting

APPENDIX B. INTERVIEW GUIDE 169

(c) Is there a preparatory meeting or session prior to the Iteration Planning
Meeting where decisions are also made?

i. Can you describe the purpose of this meeting?
ii. What type of decisions are taken?

A. Who make them?
B. What challenges do you have?

6. How decision-making is conducted in your team?

(a) What kind of decisions are important to facilitate your work?

(b) Who makes such decisions? Why?

7. How efficient is the current methodology in handling the planning, communication
and coordination of work? Please explain.

*** Planning

(a) Is your burndown chart being ideal where you always on schedule?

(b) IF not:

i. What obstacles do you encounter?
ii. What are the reasons behind the delay?

iii. What is the employed process for handling a delay in the schedule?

(c) How do you describe the productivity results of your team(s) using the current
methodology?

(d) How do you describe the produced product quality?

i. What can be improved?
ii. How would you improve it?

*** Knowledge sharing
(e) How knowledge sharing is handled?

i. What would improve?

8. What difficulties or problems have you encountered in your development method-
ology during the project?

(a) Have you handled them? How?

(b) What remains to be resolved?

9. What adaptation/change would help you improve your work (challenges)?

(a) Explain why?

APPENDIX B. INTERVIEW GUIDE 170

(b) Explain how?

Section 4: Other comments

10. What else would you like to add or we didn’t talk about where you think that it is
important to mention?

B.2 Intervention Embedded Case Study

The duration of this interview will be around 30 minutes. We have divided the interview
into 3 main sections. Section 1 consists of questions about the organisational structural
changes. Section 2 consists of questions about the architecture change management
process. The last section is about extracting other details if there were any.

Section 1: Structural Change

In this section, we will be asking questions about the proposed changes to the organ-
isational structure to collect a general overview of the practitioner experience for this
change.

1. How the structural change achieved better governance and alignment of architec-
tural decisions?

(a) What are the responsibilities of Architecture Owner?

(b) What are the responsibilities of Enterprise Architect?
*** If the participant has Architecture Owner or Enterprise Architect
role:

(c) Do your new responsibilities increase the pressure (overhead) on you? Please
explain?

2. What did not work well with aligning and governing architectural decisions (chal-
lenges)? Why?

3. How would you improve aligning architectural decisions to be more effective?

4. What else would you like to add about the aligning architectural decisions?

APPENDIX B. INTERVIEW GUIDE 171

Section 2: Change Management Process

In this section, we will be asking questions to get feedback about the employed change
management process for aligning and governing architectural decisions.

5. What worked well with the change management process? Why?

*** If the participant has Architecture Owner role:

(a) How well Activity 2 (i.e., Understanding the change and its impact) worked?
Why?

(b) How well Activity 4 (i.e., Investigating the impacted components to decide
on the required change) worked? Why?

(c) How well Activity 5 (i.e., Deriving more user stories) worked? Why?
*** If the participant has Enterprise Architect role:

(d) How well Activity 3 (i.e., Understanding the change and identify the impacted
components) worked? Why?
*** If the participant has Enterprise PO role:

(e) How well Activity 6 (i.e., Planning implementation of change) process
worked? Why?
*** If the participant has a developer role:

(f) How well the processes of “implementation, testing, and delivery of the
change request” worked (Activity 7-9)? Why?

6. What did not work well with the proposed change management process (chal-
lenges)? Why?

7. How would you improve or tailor the process to be more effective?

8. What else would you like to add about the change management process?

Section 3: Other comments

9. What else would you like to add or we didn?t talk about where you think that it is
important to mention?

	Terms and Definitions
	Introduction
	Introduction
	Research Problem and Motivation
	Research Aims, Objectives, and Questions
	Aims
	Objectives
	Questions

	Research Design
	List of Publications
	Thesis Structure

	Literature review
	Introduction
	Agile Software Development
	Agile Methods
	Lean
	Scrum
	The Spotify Model

	Agile Architecture
	Agile Tailoring
	Tailoring Approaches
	Tailoring Criteria

	Large-scale Agile
	Autonomous Teams
	Inter-team Coordination

	Summary

	Research Design
	Introduction
	Components Involved in a Research Approach
	The Employed Research Approach
	Aims and Objectives
	Philosophical Worldview
	Research Design
	Research Methods
	Role of the Researcher

	Longitudinal Embedded Case Study
	Research Setting
	Data Collection
	Data Analysis

	Intervention Embedded Case Study (Action Research)
	Diagnosing the Problem and the Underlying Causes
	Action Planning
	Action Taking
	Evaluating
	Learning

	Summary

	Spotify Tailoring for Establishing and Building Autonomous Squads
	Introduction
	Influential Factors on Establishing and Building Autonomous Squads
	Employing Adaptive Structure
	Identifying and Allocating Squad or Mission Based Strategy
	Employing Squad or Mission Based Agile Method Tailoring

	Summary

	Spotify Tailoring for Aligning Autonomous Squads
	Introduction
	Spotify Tailoring for Aligning Autonomous Squads – Practices and Attributes
	Influential Factors on Aligning Spotify Squads
	Collective Code Ownership
	Collective Decision-Making
	Knowledge Sharing
	Inter-team Coordination
	Mission-Based Planning
	Release/Delivery Strategy

	Summary

	Spotify Tailoring for B2B Product Development
	Introduction
	The impact of product development on squads autonomy and alignment
	Spotify Tailoring for B2B Product Development – Practices and Attributes
	Influential Factors on B2B Product Development
	Project Visibility for the Customers
	The Interactions within B2B Product Development
	Building Successful B2B Relationships
	Satisfying customers by responding at different velocities

	Summary

	Heterogeneous Tailoring Approach
	Introduction
	Characteristics of the Heterogeneous Tailoring Approach
	Benefits of the Heterogeneous Tailoring Approach
	Challenges to the Heterogeneous Tailoring Approach
	Summary

	Spotify Tailoring for Architectural Governance
	Introduction
	An Approach to Architectural Governance
	Organisational Structural Change
	Architecture Change Management Process

	Benefits and Challenges of the Architectural Governance Approach
	Benefits
	Challenges

	Adapting the Heterogeneous Tailoring Approach for Architectural Governance
	Summary

	Discussion
	Research Questions & Answers
	Discussing the Results
	Resolving the Conflicting Trade-off Between Squads Autonomy and Alignment
	Heterogeneous Tailoring Approach
	An Architectural Governance Approach

	Limitations
	Summary

	Conclusion
	Introduction
	Summary of the Thesis
	Contributions
	Reflection
	Future work

	References
	Appendix
	Approved Ethical Application and Documents
	Ethical Approval Form
	Consent for Participation in Research

	Interview Guide
	Longitudinal Embedded Case Study
	Intervention Embedded Case Study

