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member - a ball, spool, or diaphragm – denoted by the signal at port S. One orifice is typically 

closed in these positions while the others two are fully open. Position I: the A-L orifice is 

maximally open and the H-A orifice is maximally closed. Position II: it is the reverse 

arrangement, with the H-A orifice being maximally open and the A-L orifice maximally closed. 

No physical connection exists between ports H and L and, therefore, no flow can develop 

across them. Image adapted from MATLAB R2016b, The MathWorks, Inc., Natick, MA, USA.
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(𝐽). The plot on the right shows the total energy loss as a percentage of the total eccentric 

work done by the prosthetic ankle......................................................................................... 187 
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plot on the left shows how the losses across pipes, DCVs and fittings accumulate over the 

whole gait cycle to give the total loss (𝐽). The plot on the right shows the total energy loss over 

the whole gait cycle as a percentage of the total eccentric work done by the prosthetic ankle.
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Nomenclature 
 

 

𝑎 
arbitrary constant defining the starting position of the follower in the 

vertical (𝑦-axis) direction (m) 

𝐴 ram bore area (oil side) (m2) 

A  projected pressure area of the O-ring (in2) 

𝐴𝑜𝑟𝑖𝑓 cross-sectional area of the orifice (m2) 

𝐴𝑝𝑖𝑝𝑒 cross-sectional area of the pipes (m2) 

𝐴𝑤  effective area of the accumulator (m2) 

𝑐 follower overhang (m) 

𝑐 parallel spring intercept (Nm) 

𝐶 centre of the roller of the follower 

𝐶𝑑 discharge coefficient (dimensionless) 

𝑑 piston rod diameter (m) 

𝑑𝑏𝑟𝑔 stud diameter (m) 

𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 follower diameter (m) 

𝑑𝑂−𝑟𝑖𝑛𝑔 O-ring cross sectional diameter (in) 

𝑑𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇  O-ring outside diameter (in) 

𝑑𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑎𝑑  piston head diameter (m) 

𝑑𝑟𝑜𝑙𝑙𝑒𝑟 roller diameter (m) 

𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  diameter of the ports of the valve (m) 

𝐷 hydraulic ram bore size (m) 

𝐷𝑚  O-ring mean diameter (in) 

𝐷𝑝𝑖𝑝𝑒 pipe inside diameter (m) 

𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 internal diameter of the valve (m) 
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𝑒 
offset given by the distance between the centre line of the follower and 

the centre line of the camshaft (m) 

𝐸 O-ring Young modulus (Pa) 

𝐸𝑔𝑎𝑠𝑎𝑐𝑐   energy stored in the accumulator gas (J) 

𝐸𝑜𝑖𝑙𝑎𝑐𝑐   strain energy in the accumulator oil due to oil compressibility (J) 

𝐸𝑜𝑖𝑙𝑐𝑦𝑙   
strain energy in the cylinder oil due to oil compressibility (J) 

𝐸𝑝𝑠  energy stored in the parallel spring (J) 

𝐸𝑟𝑠  energy stored in the return spring (J) 

𝐸𝑠𝑡𝑜𝑟𝑒𝑑  energy stored in a generic component of the system (J) 

𝑓 Darcy friction factor of the pipe (dimensionless) 

f𝐶   linear friction (lb/in) 

f𝐻  friction density (lb/in2) 

𝐹𝐶  friction component due to O-ring cross-sectional squeeze (lb) 

𝐹𝑓𝑟𝑐𝑦𝑙  friction force at the piston O-ring (N) 

𝐹𝑓𝑟𝑔𝑢𝑖𝑑𝑒  total friction at the follower guide (N) 

𝐹𝑓𝑟1, 𝐹𝑓𝑟2 upper and lower frictional forces at the follower guide (N) 

𝐹ℎ hydraulic ram force (N) 

𝐹𝐻 friction component due to differential pressure across the O-ring (lb) 

𝐹𝑛 normal force acting on cam profile (N) 

𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑  minimum desired value for the normal force between cam and roller (N) 

𝐹𝑛𝑁𝑂 𝑠𝑝𝑟𝑖𝑛𝑔   
normal force between cam and roller when the two return springs are 

not included in the system (N) 

𝐹𝑠 return-spring force (N) 

𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  required return-spring force (N) 

𝐹𝑡 tangential force acting on cam profile (N) 

𝐺𝑅 gearbox ratio (dimensionless) 
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ℎ𝑁2   convection heat transfer coefficient for nitrogen (
𝑊

𝑚2∙𝐾
) 

𝐻 

midpoint between the two lines of action of the two normal forces at 

the follower guide (𝑁1, 𝑁2), which lies on the axis of symmetry of the 

follower 

𝐻𝑆  O-ring shore hardness (°) 

𝐼𝑟𝑜𝑙 moment of inertia of the roller (kg∙m2) 

𝑘 polytropic index (dimensionless) 

𝑘 return spring slope (N/m)  

𝑘𝑔 coefficient for the gearbox efficiency (dimensionless) 

𝐾 loss coefficient for discrete components (dimensionless) 

𝐾𝑜𝑟𝑖𝑓 discharge coefficient for an orifice ((m7/kg)1/2) 

(𝑘𝑒)𝑓𝑜𝑙  kinetic energy of the follower (J) 

(𝑘𝑒)𝑟𝑜𝑙  kinetic energy of the roller (J) 

𝑙 
distance between the two lines of action of the two normal forces at the 

follower guide (𝑁1, 𝑁2) (m) 

𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟  follower length (m) 

𝐿𝑝𝑖𝑝𝑒 pipe length (m) 

𝐿0  O-ring rubbing length (in) 

𝑚 roller mass (kg) 

𝑚 parallel spring slope (Nm/rad)  

𝑚𝑁2 mass of nitrogen in the accumulator (g) 

𝑚𝑟𝑜𝑙 mass of the rotating outer part of the roller (kg) 

𝑀 follower mass (kg) 

𝑀𝑏𝑟𝑔 bearing friction moment (Nm) 

𝑀𝑁2  molecular weight of nitrogen (g/mol) 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 rolling resistance moment between cam and roller (Nm) 
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𝑛𝑁2  number of moles of nitrogen (mol) 

𝑁1, 𝑁2 upper and lower normal forces at the follower guide (N) 

(𝑝𝑒)𝑓𝑜𝑙  potential energy of the follower (J) 

(𝑝𝑒)𝑟𝑜𝑙  potential energy of the roller (J) 

𝑃 point of tangency between cam and roller 

𝑃 operating pressure (Pa) 

𝑃𝑎  actual power at the ankle (W) 

𝑃𝑎𝑐𝑐  accumulator pressure (Pa) 

𝑃𝑎𝑡𝑚 atmospheric pressure (Pa) 

𝑃𝑐𝑦𝑙 cylinder absolute pressure (Pa) 

𝑃𝑐𝑦𝑙𝑔𝑎𝑢𝑔𝑒  cylinder gauge pressure (Pa) 

𝑃𝑓𝑟𝑐𝑦𝑙  power lost due to the friction at the cylinder (W) 

𝑃𝑓𝑟𝑓𝑜𝑙  power lost due to the friction at the follower guide (W) 

𝑃𝑓𝑟𝑔𝑏 power lost due to the friction in the gearbox (W) 

𝑃𝑓𝑟𝑟𝑜𝑙 power lost due to the friction at the roller bearing (W) 

𝑃𝑓𝑟𝑟𝑜𝑙𝑟𝑒𝑠  power lost due to the friction at the rolling resistance element (W) 

𝑃𝑖𝑛 power in input (ankle side) to a generic component of the system (W) 

𝑃𝑖𝑛𝑎𝑐𝑐  power in input to the accumulator (W) 

𝑃𝑖𝑛𝑐𝑎𝑚  power in input (ankle side) to each cam (W) 

𝑃𝑖𝑛𝑐𝑦𝑙  power in input (ankle side) to each cylinder (W) 

𝑃𝑖𝑛𝑓𝑜𝑙  power in input (ankle side) to each follower (W) 

𝑃𝑖𝑛𝑔𝑏 power in input (ankle side) to the gearbox (W) 

𝑃𝑖𝑛𝑝𝑠 power in input (ankle side) to the parallel spring (W) 

𝑃𝑖𝑛𝑟𝑜𝑙  power in input (ankle side) to each roller (W) 

𝑃𝑖𝑛𝑟𝑜𝑙𝑟𝑒𝑠  power in input (ankle side) to the rolling resistance element (W) 
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𝑃𝑖𝑛𝑡𝑎𝑛𝑘  power in input to the tank (W) 

𝑃𝑙𝑜𝑠𝑠 power lost in a generic component of the system (W) 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠𝑐𝑦𝑙  power lost in each cylinder (W) 

𝑃𝑙𝑜𝑠𝑠𝐻𝐸𝐴𝑇  power lost in the accumulator because of heat transfer (W) 

𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑛𝑘   power lost in the tank (W) 

𝑃𝑚𝑎𝑥  maximum rated pressure in the accumulator (Pa) 

𝑃𝑚𝑖𝑛 minimum rated pressure in the accumulator (Pa) 

𝑃𝑜𝑢𝑡 power in output (accumulator side) from a generic component (W) 

𝑃𝑜𝑢𝑡𝑐𝑎𝑚  power in output (accumulator side) from each cam (W) 

𝑃𝑜𝑢𝑡𝑐𝑦𝑙  power in output (accumulator side) from each cylinder (W) 

𝑃𝑜𝑢𝑡𝑓𝑜𝑙  power in output (accumulator side) from each follower (W) 

𝑃𝑜𝑢𝑡𝑔𝑏  power in output (accumulator side) from the gearbox (W) 

𝑃𝑜𝑢𝑡𝑝𝑠  power in output (accumulator side) from the parallel spring (W) 

𝑃𝑜𝑢𝑡𝑟𝑜𝑙  power in output (accumulator side) from each roller (W) 

𝑃𝑜𝑢𝑡𝑟𝑜𝑙𝑟𝑒𝑠  
power in output (accumulator side) from each rolling resistance 

element (W) 

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 accumulator pre-charge pressure (Pa) 

𝑃𝑟𝑒𝑠 
pressure in the reservoir to which the cylinder is connected (either the 

accumulator or the tank) (Pa) 

𝑃𝑠𝑡𝑎𝑟𝑡 accumulator initial pressure (Pa) 

∆𝑃𝑟𝑒𝑠  
pressure drop between the cylinder and the reservoir to which it is 

connected (Pa) 

∆𝑃𝑡𝑜 𝑎𝑐𝑐 pressure drop between each cylinder and the accumulator (Pa) 

∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘 pressure drop between each cylinder and the tank (Pa) 

𝑄 volumetric flow rate (m3/s) 

𝑟 roller radius (m) 
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𝑅 gas constant (J/mol·K) 

𝑅𝑏 cam base circle radius (m) 

𝑅𝑐 instantaneous rolling radius of the cam surface (m) 

𝑅𝐻, 𝑅𝑉 
horizontal and vertical reactions between the roller and the follower 

stem (N)  

𝑅𝑟𝑒𝑙 relative rolling radius between cam and roller surface (m) 

Re Reynolds number (dimensionless) 

𝑠, 𝑢 
components of the vector defining the contact point 𝑃 between cam 

and roller on cam profile (m) 

𝑆𝑊  actual squeeze of the O-ring cross section (percentage) 

𝑇  gas temperature in the accumulator (K) 

𝑇𝑎 actual ankle torque (Nm) 

𝑇𝑎𝑟  required ankle torque (Nm) 

𝑇𝑐 actual torque at the camshaft (Nm) 

𝑇𝑐𝑃𝑂   push-off cam torque (Nm) 

𝑇𝑐𝑟  required torque at the camshaft (Nm) 

𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸  stance cam torque (Nm) 

𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 gearbox size (Nm) 

𝑇𝑒𝑛𝑣  environment temperature (K) 

𝑇𝑓 gearbox friction torque (Nm) 

𝑇𝑖𝑛𝑔𝑏  gearbox input (ankle side) torque (Nm) 

𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 temperature in the accumulator at pre-charge (K) 

𝑇𝑝𝑠 parallel spring torque (Nm) 

𝑇𝑠𝑡𝑎𝑟𝑡 temperature in the accumulator at the beginning of the gait cycle (K) 

𝑇𝑤 wall temperature (K) 

∆𝑇𝑝𝑜𝑙𝑦 change in temperature in the accumulator due to polytropic process (K) 
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∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 change in temperature in the accumulator due to heat transfer (K) 

∆𝑇𝑡𝑜𝑡𝑎𝑙 
total change in temperature in the accumulator for each piston 

displacement (K) 

𝑉 flow velocity across the pipe diameter (m/s) 

𝑉𝐴 accumulator volume (m3) 

𝑉𝑎𝑐𝑐 oil volume in the accumulator (m3) 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒  oil volume in the accumulator at pre-charge (m3) 

𝑉𝑎𝑐𝑐𝑠𝑡𝑎𝑟𝑡  oil volume in the accumulator at the beginning of the gait cycle (m3) 

𝑉𝑐𝑦𝑙 oil volume in the cylinder (m3) 

𝑉𝑔𝑎𝑠 gas volume in the accumulator (m3) 

𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒  gas volume in the accumulator at pre-charge (m3) 

𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡  gas volume in the accumulator at the beginning of the gait cycle (m3) 

𝑉𝑚𝑎𝑥 maximum accumulator volume (m3) 

𝑉𝑚𝑖𝑛 minimum accumulator volume (m3) 

∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 
change in oil volume in the accumulator over each simulation time step 

(m3) 

∆𝑉𝛽 total change in oil volume due to its compressibility (m3) 

∆𝑉𝛽𝑎𝑐𝑐
 change in accumulator oil volume due to the oil compressibility (m3) 

∆𝑉𝛽𝑐𝑦𝑙
 change in cylinder oil volume due to the oil compressibility (m3) 

𝑥𝑝𝑟𝑒 pre-compression of the return spring (m) 

(𝑥𝑃, 𝑦𝑃)  coordinates of the contact point 𝑃 between cam and roller (m) 

𝑦 piston linear displacement (m) 

�̇� piston linear velocity (m/s) 

�̈� piston linear acceleration (m/s2) 

𝑦0 return spring intercept (N) 

∆𝑦 piston incremental displacement (m) 
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𝑊  hydraulic ram work/cam work (J) 

𝛼 cam pressure angle (rad) 

𝛼𝑐 cam angular acceleration (rad/s2) 

𝛽 oil bulk modulus (Pa) 

𝛽 roller angle of rotation (rad) 

�̇� roller angular velocity (rad/s) 

�̈� roller angular acceleration (rad/s2) 

휀 O-ring squeeze ratio (dimensionless) 

𝜂𝑔 gearbox efficiency (percentage) 

𝜃𝑎 ankle angle of rotation (rad) 

𝜃𝑐  cam angle of rotation (rad) 

𝜇 fluid viscosity (Pa·s) 

𝜇𝑏𝑟𝑔 friction coefficient of the roller bearing (dimensionless) 

𝜇𝑓 
friction coefficient between the O-ring and the cylinder wall 

(dimensionless) 

𝜇𝑟𝑜𝑙𝑟𝑒𝑠 coefficient of rolling friction (dimensionless) 

𝜇𝑠𝑙  coefficient of sliding friction of the follower bearing (dimensionless) 

𝑣𝑓 fluid kinematic viscosity (m2/s) 

𝜌 fluid density (kg/m3) 

𝜌𝑁2  density of nitrogen (kg/m3) 

𝜏 thermal time constant (s) 

𝜔𝑎 ankle angular velocity (rad/s) 

𝜔𝑐 cam angular velocity (rad/s) 

𝜔𝑟𝑒𝑙 relative angular velocity between cam and roller (rad/s) 
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Abstract 
 

 

In an intact ankle, tendons crossing the joint store energy during the stance phase of walking 

prior to push-off and release it during push-off, providing forward propulsion. Most prosthetic 

feet currently on the market – both conventional and energy storage and return (ESR) feet – 

fail to replicate this energy-recycling behaviour. Specifically, they cannot plantarflex beyond 

their neutral ankle angle (i.e. a 90° angle between the foot and shank) while generating the 

plantarflexion moment required for normal push-off. This results in a metabolic cost of 

walking for lower-limb amputees higher than for anatomically intact subjects, combined with 

a reduced walking speed. 

 

Various research prototypes have been developed that mimic the energy storage and return 

seen in anatomically intact subjects. Many are unpowered clutch-and-spring devices that 

cannot provide biomimetic control of prosthetic ankle torque. Adding a battery and electric 

motor(s) may provide both the necessary push-off power and biomimetic ankle torque, but 

add to the size, weight and cost of the prosthesis. Miniature hydraulics is commonly used in 

commercial prostheses, not for energy storage purposes, but rather for damping and terrain 

adaptation. There are a few examples of research prototypes that use a hydraulic accumulator 

to store and return energy, but these turn out to be highly inefficient because they use 

proportional valves to control joint torque. Nevertheless, hydraulic actuation is ideally suited 

for miniaturisation and energy transfer between joints via pipes. 

 

Therefore, the primary aim of this PhD was to design a novel prosthetic ankle based on simple 

miniature hydraulics, including an accumulator for energy storage and return, to imitate the 

behaviour of an intact ankle. The design comprises a prosthetic ankle joint driving two cams, 

which in turn drive two miniature hydraulic rams. The “stance cam-ram system” captures the 

eccentric (negative) work done from foot flat until maximum dorsiflexion, by pumping oil into 

the accumulator, while the “push-off system” does concentric (positive) work to power push-

off through fluid flowing from the accumulator to the ram. By using cams with specific profiles, 

the new hydraulic ankle mimics intact ankle torque. Energy transfer between the knee and 

the ankle joints via pipes is also envisioned. 
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A comprehensive mathematical model of the system was defined, including all significant 

sources of energy loss, and used to create a MATLAB simulation model to simulate the 

operation of the new device over the whole gait cycle. A MATLAB design program was also 

implemented, which uses the simulation model to specify key components of the new design 

to minimise energy losses while keeping the device size acceptably small. 

 

The model’s performance was assessed to provide justification for physical prototyping in 

future work. Simulation results show that the new device almost perfectly replicates the 

torque of an intact ankle during the working phases of the two cam-ram systems. Specifically, 

78% of the total eccentric work done by the prosthetic ankle over the gait cycle is returned 

as concentric work, 14% is stored and carried forward for future gait cycles, and 8.21% is lost. 

A design sensitivity study revealed that it may be possible to reduce the energy lost to 5.83% 

of the total eccentric work. Finally, it has been shown that the main components of the system 

– cams, rams, and accumulator - could be physically realistic, matching the size and mass of 

the missing anatomy. 

 

 

 

 

 



 

 
 

1. Chapter 1: Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

Arnaldo Pomodoro (1990), Sphere 

 

 

 

 

 

 

 

 

 

“Call to mind from whence ye sprang: 

Ye were not form'd to live the life of brutes, 

But virtue to pursue and knowledge high” 

 

(Dante Alighieri (c. 1321), Divine Comedy, Inferno, Canto XXVI, vv. 118-120) 
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1.1 Background 
 

Lower-limb amputees using prosthetic feet currently on the market generally show a 

metabolic cost of walking higher than anatomically intact subjects, combined with a reduced 

walking speed. Higher energy expenditures and lower speeds are associated with higher 

amputation levels (Waters & Mulroy, 1999). 

 

A major reason for these deficits lies in one particular weakness of most prosthetic feet, both 

conventional and energy storage and return (ESR), currently on the market: they fail to 

replicate the energy recycling behaviour of an anatomically intact ankle, where the Achilles 

tendon stretches during stance prior to push-off and recoils during push-off, helping with 

forward propulsion and reducing the metabolic cost of walking (Ishikawa et al., 2005; Sawicki 

& Ferris, 2008). On the contrary, commercially available passive prosthetic feet, including ESR 

feet with flexible keels, store and return energy in an uncontrolled and untimely manner 

(Segal et al., 2012). This is because they are characterised by a neutral ankle angle, which is 

the relative position of the prosthetic foot and shank during standing and, when the foot 

moves away from neutral, it produces a restoring moment that acts to return it to neutral. 

Therefore, when the foot is plantarflexed, it will produce a dorsiflexion moment, rather than 

the plantarflexion moment required for normal push-off. In other words, the conventional and 

ESR feet currently on the market cannot actively plantarflex beyond their neutral angle, 

leading to an increase in the metabolic cost of walking compared with anatomically intact 

subjects (Caputo & Collins, 2014; Collins & Kuo, 2010; Huang et al., 2015). 

 

Different researchers have tried to address the limitations of unpowered (passive) prosthetic 

feet, both conventional and ESR, and thereby mimic the controlled storage and return of 

mechanical energy seen in anatomically intact subjects. Moreover, it is believed that 

prosthetic feet that mimic the slope of the ankle joint’s torque-versus-angle curve, which is 

referred to as “quasi-stiffness”, improve amputees’ gait (Hansen et al., 2004; Versluys et al., 

2009). However, what is often not mentioned is that this curve is not the same in the different 

phases of gait, implying that a single spring characteristic may not be suitable. 

 

One approach to restoring normal push-off is to power the prosthesis using a battery and 

electric motor(s). This has the potential to provide both the necessary push-off power and 
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biomimetic ankle torque. A well-known attempt to improve push-off at the end of stance is 

that of Hugh Herr and colleagues (Herr & Grabowski, 2012). The resulting commercial device 

(the Empower, ex-BiOM) relies on electrical power from a battery to produce active push-off. 

Although there is some elastic energy storage and return, this is similar in nature to that seen 

in commercial ESR prostheses, with uncontrolled energy return. This critique is supported by 

the fact that the reduction in metabolic cost for the amputee when using the BiOM, in 

comparison to using a passive ESR foot, is slightly less than the metabolic equivalent of the 

energy input from the electric motor, implying that there is no improvement in energy storage 

and return over commercial ESR prostheses (Herr & Grabowski, 2012). The disadvantages of 

powered designs are that batteries are poorly suited to the large numbers of charge-discharge 

cycles that occur in walking, they require charging at regular intervals, and, together with the 

electric motor(s), they increase the size, weight and cost of the prosthesis. Indeed, in a 

recently published review of robotic exoskeletons, the electrical power supply problem was 

highlighted as being “…one (if not the largest) issue…” (Young & Ferris, 2017). For these 

reasons, the focus in this thesis is to improve passive energy storage and return (ESR) so that 

it provides all or most of the push-off power, so that much smaller batteries are needed 

primarily for control, not propulsion. 

 

Whether incorporated in powered or unpowered prostheses, advanced ESR concepts for 

energy storage and return can be broadly classified as either: a) clutch-and-spring devices; or 

b) hydraulic devices. Clutch-and-spring devices have two major disadvantages. Firstly, the 

control is discrete rather than continuous, locking and releasing the spring, thus preventing 

smooth biomimetic control. Secondly, such an approach makes energy transfer between the 

knee and the ankle joints difficult, leading to complex, and often heavy, solutions involving 

the use of mechanical transmissions to inter-connect the joints. 

 

A hydraulic approach based on using an accumulator to store and return energy has several 

potential advantages. Because they typically operate at pressures of up to 200 𝑏𝑎𝑟, hydraulic 

systems have very high power densities and are therefore well suited to miniaturisation, an 

important requirement in prosthetics. For example, during normal walking, maximum ankle 

torque is around 100 𝑁𝑚, which would correspond to an actuator that displaces just 

5 𝑐𝑐/𝑟𝑎𝑑𝑖𝑎𝑛 at 200 𝑏𝑎𝑟. Short term energy storage is another important requirement for 
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which hydraulic accumulators are well suited. For the relatively small amounts of energy 

stored and returned over one gait cycle, a 0.05 𝑙 (= 50𝑐𝑐) pressurised gas accumulator would 

be adequate, operating between 190 and 200 𝑏𝑎𝑟. Finally, hydraulic actuation is ideally 

suited for transferring energy between joints because the transfer mechanism involves only 

pipes and fluid, rather than gears and linkages. This is of particular importance for higher level 

amputees who could benefit if the excess of eccentric work at the knee could be stored and 

used in a controlled manner at other joints. 

 

Whilst the application of miniature hydraulics is common in prosthetics (e.g. for knee/ankle 

damping), this very rarely involves using a hydraulic accumulator as an energy store. Further, 

hydraulic transfer of energy between prosthetic joints has not been demonstrated. With the 

exception of the work that led to this PhD (Gardiner et al., 2017), the few examples that have 

included an accumulator as an energy store use proportional valves (i.e. variable flow 

resistances) to control pressures and hence joint torques. This is an inherently dissipative 

approach that leads to high energy losses. For example, Richter et al. (2016) concludes “…the 

system is highly inefficient in an energetic sense...”. The approach adopted by Gardiner et al. 

(2017), and also in this thesis, avoids this problem by continuously controlling the torque 

through changes in fluid displacement per radian rather than pressure.  

 

Based on the arguments above, previous work at the University of Salford focussed on the 

development of a lower-limb prosthesis using miniature hydraulics. A concept design was 

developed based on a hydraulic accumulator and a variable displacement actuator (VDA) 

driven by the ankle joint (Gardiner et al., 2017). This provides continuous biomimetic control 

of the ankle torque throughout the gait cycle, mimicking the intact ankle, while storing all of 

the negative work done from heel strike until maximum dorsiflexion, which is then returned 

in a controlled and timely manner to power push-off. Furthermore, the accumulator could be 

used as a common energy store allowing the transfer of energy between the knee and the 

ankle joints via pipes. The simulation results were promising and suggested that, despite the 

significant energy losses involved, a hydraulic VDA-based prosthetic ankle could improve 

amputee gait by restoring normal push-off. However, for this approach to be a success, a new 

miniature, low-losses, lightweight VDA would be required that is half the displacement of the 

smallest commercially available device that could be found. A VDA is a highly specialised and 
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complex component and it would not be appropriate to develop a new VDA just for the 

prosthetics application.  

 

Therefore, in this PhD a new and simpler concept design has been investigated. 

 

 

1.2 Aim and Objectives 
 

The overarching aim of this work was to design a novel prosthetic ankle based on simple 

miniature hydraulic components, including an accumulator for energy storage and return, to 

imitate the behaviour of an intact ankle. To achieve this, two objectives were defined: 

1. Develop a concept design, using simple hydraulic components, that:  

a) Mimics intact ankle torque while storing the negative work done from heel strike to 

maximum dorsiflexion in the accumulator and returning it during push-off in a 

controlled way in terms of timing and amount of energy flow. 

b) Allows energy transfer between the knee and the ankle joints via pipes – for 

example, to store the eccentric work done at the knee and return it at the ankle to 

assist with forward propulsion during push-off. 

2. To demonstrate through simulations that the expected performance of the new design 

justifies physical prototyping in the future. 

 

 

1.3 Overview of Thesis 
 

The remainder of this thesis is separated into seven chapters (2-8). Chapter 2 is a literature 

review that provides a basis for this PhD work, including investigating current issues in lower-

limb amputees gait, weaknesses of commercially available passive prosthetic feet, and 

previous research attempts to mimic the energy recycling behaviour of an intact ankle.  

 

Chapter 3 builds on the literature review to define the primary aim and objectives of the PhD. 

This is followed by an explanation of the engineering design process including: the definition 

of design requirements and constraints; and the reasoning leading to the conceptual design. 



  Chapter 1: Introduction 

 

6 
 

The novel prosthetic ankle design is described in detail including the rationale behind the 

selection of each component.  

 

Chapter 4 describes in detail the mathematical model of the new hydraulic ankle, including 

the equations governing the operation of each component and all significant sources of energy 

loss, in order to obtain a realistic estimate of the energy efficiency of the new device. 

 

Chapter 5 explains the simulation model implemented in MATLAB, based on the mathematical 

model described in Chapter 4, which simulates the operation of the new device over the whole 

gait cycle, as it stores and returns energy at the ankle joint. A design program is also described, 

implemented in MATLAB, which uses the simulation model to specify key components of the 

new design.  

 

Chapter 6 explains the process followed for the preliminary design of the main components 

of the system. The design program described in Chapter 5 was used to specify the size of the 

key components based on two design objectives, namely to minimise the energy losses while 

keeping the device size acceptably small. 

 

Chapter 7 first considers the different sources of energy loss in the final design established in 

Chapter 6, to identify the most significant sources. Secondly, the results of a sensitivity study 

are presented, in which the values of the design parameters were varied over sensible ranges 

to establish where energy losses may be particularly sensitive to changes in the design 

parameters and, hence, strict constraints need to be imposed. 

 

Chapter 8 summarises the PhD work, drawing conclusions with respect to the initially stated 

aim and objectives, highlighting the novel contributions to the field, discussing limitations, and 

making proposals for future work.  

 

 



 

 
 

 

 

2. Chapter 2: Literature review 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo Da Vinci, Icosaedron elevatum vacuum 

 

 

 

 

 

 

 

"When you put together the Water Science, remember to put beneath each proposition  

its benefits, to what this science is not useless." 

 

 (Leonardo Da Vinci) 
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Lower limb amputees using a prosthetic foot generally show a higher metabolic cost of walking 

compared with anatomically intact subjects. The higher the level of amputation, the higher is 

the energy expenditure, measured as the oxygen cost per metre (Genin et al., 2008; Waters 

& Mulroy, 1999). In addition, this high energy consumption is combined with a decrease of 

walking speed, with lower speed associated with higher amputation level, as Waters and 

Mulroy (1999) showed in their study: walking speed for trans-femoral amputees was reported 

to be approximately 40% of anatomically intact controls. Conversely, Jarvis et al. (2017) found 

that walking speed of young military, unilateral transtibial and transfemoral amputees, after 

completing their rehabilitation program, is comparable with anatomically intact subjects, but 

this study cohort was not representative of the general amputee population. Both Jarvis and 

Perry found that energy expenditure is even greater in bilateral amputees (Jarvis et al., 2017; 

Perry et al., 2004). A major reason for these deficits lies in one weakness of the vast majority 

of the prosthetic feet currently on the market: they fail to replicate the energy recycling 

behaviour of an intact ankle, where the Achilles tendon plays a key role in reducing the 

metabolic cost of walking (Ishikawa et al., 2005; Sawicki & Ferris, 2008), stretching during 

stance prior to push-off and recoiling during push-off. Specifically, during walking, the Achilles 

tendon contributes almost 84% of the total ankle peak power at push-off, while the 

gastrocnemius muscle provides the remaining 16%. 

 

 

2.1 Current prosthetic feet 
 

The vast majority of prosthetic feet currently on the market are passive, and can be classified 

into one of two categories: conventional and energy storage and return (ESR) prosthetic feet. 

The former represents the first prostheses designed for lower limb amputees, the most 

common of which is the Solid Ankle Cushion Heel (SACH) foot. The SACH foot comprises a 

wooden keel embedded in a polymeric material and a polyurethane wedge at the heel, 

providing shock absorption and (pseudo) plantarflexion at heel strike. During walking, the 

energy absorbed during stance is mainly dissipated in the viscous material these conventional 

feet are made of, which likely contributes to a highly reduced peak power during push-off with 

respect to an intact ankle (see Figure 2.1(A)), and a consequent increase in the metabolic cost 

of walking (Segal et al., 2012).  
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ESR feet were developed with a view to addressing the observed high metabolic cost of 

amputee gait with conventional feet. The widely assumed design principle is that by using 

flexible keels, energy could be stored early in the gait cycle and returned later in the cycle. The 

Seattle Foot – one of the early ESR feet – was characterised by a keel made of Delrin, while 

the Flex-foot - the first “advanced” ESR foot – included carbon fibre laminates. The “advanced” 

prosthetic feet made of carbon fibre, currently widely used by lower limb amputees, are 

characterised by an increased push-off power with respect to conventional feet (Figure 2.1). 

Nevertheless, several studies have shown that they are not able to decrease significantly the 

metabolic cost of walking and gait asymmetries (Gardiner et al., 2016; Hsu et al., 2006; van 

der Linde et al., 2004; Versluys et al., 2009) and that they return energy in an uncontrolled 

and untimely manner (Segal et al., 2012): 

 The eccentric work stored during load acceptance (i.e. from heel strike up to foot flat, 

which is maximum plantarflexion (A0 in Figure 2.2 )) is completely returned during early 

mid-stance as the prosthetic ankle returns to its neutral angle (i.e. the angle defined by 

the relative position of the prosthetic foot and shank during the standing position as Figure 

2.3 shows). In this way, this returned energy produces unwanted propulsion early in mid-

stance and it is not available for push-off.  

 Then, the eccentric work stored from the neutral ankle angle up to maximum dorsiflexion 

is usually lower than the one stored in an intact ankle (negative area A1 in Figure 2.2 ), and 

it is returned during push-off and also too late in stance (i.e. too close to toe-off (Versluys 

et al., 2009)), but it cannot produce the plantarflexion moment required for a normal 

push-off, because the ankle cannot actively plantarflex beyond its neutral angle. Thus, the 

Figure 2.1 Power at the ankle joint in an anatomically intact subject (dotted lines, mean ± 1 SD) and in a 
transtibial amputee (solid lines) wearing (A) a SACH foot and (B) a Flex-foot. Graphs are plotted as a percentage 
of the stance phase. Image adapted from Gitter et al. (1991).  
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positive energy (A2 in Figure 2.2 ) will be lower in a prosthetic ankle than in an intact ankle 

(Segal et al., 2012; Takahashi et al., 2015), and it will be returned exactly at toe-off, 

therefore with a delay with respect to an intact ankle (Takahashi et al., 2015) (see peak P1 

Figure 2.4 (C) and Figure 2.5). 

 

A 

 

 

 

 

 

 

B 

Figure 2.2 (A) Dorsiflexion and plantarflexion at the ankle joint (image sourced from 
http://sprintfasterdubai.blogspot.com/2015/10/dorsiflexionunderrated.html). (B) Averaged ankle power over 
the full gait cycle in seven anatomically intact subjects walking at self-selected speed (input data from Bari (2013)). 
The grey areas delimited by the power curve constitute the ankle energy (work done). The negative areas – A0 
and A1 – represent the negative work, that is energy absorption, while the positive area – A2 – represents the 
positive work, that is energy generation. Muscles (gastrocnemius muscle in particular) and tendons (Achilles 
tendon specifically) crossing the ankle joint work together to produce a large portion of the mechanical work 
required for walking. The contribution given by muscles to the total power output is rather small, while tendons 
store and return a significant amount of mechanical energy (Sawicki & Ferris, 2008). The symbol (*) represents 
the “load acceptance” phase of the gait cycle. 

dorsiflexion 

plantarflexion 
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Figure 2.4 (A) Angle curve, (B) moment curve, and (C) power curve of the ankle joint during walking: the black 
line represents amputee’s data (a transfemoral amputee wearing a Seattle Lite foot with Endolite standard 
Multiflex ankle), while the grey area normative data (±1SD). Graphs are plotted as a percentage of the gait cycle, 
where 0% is heel strike and 100% is the subsequent heel strike. There is a significant reduction in plantarflexion 
during push-off (see (A)) and the corresponding energy generation is almost absent (see P1 in plot (C)). Figure 
adapted from Perry et al. (2004). 

Figure 2.3 Example of the neutral angle for a prosthetic foot, defined as the angle between the prosthetic foot 
and the prosthetic shank during standing position. Figure adapted from Medical EXPO (2018). 
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This finding is not surprising, given that ESR feet act as a spring: as they move away from their 

neutral angle, during plantarflexion and dorsiflexion, they store strain energy and return all of 

this energy as they move back to neutral. This also means that, at toe-off, all the stored energy 

is released as the ankle returns to the neutral angle. Finally, the foot will not produce the 

plantarflexion, and the associated moment and power burst late in stance as shown in Figure 

2.4 and Figure 2.5 (Gardiner et al., 2016).  
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In conclusion, commercial ESR prosthetic feet fail to provide the necessary net positive work 

during push-off in a timely manner, leading to an increase of the metabolic cost of walking 

with respect to anatomically intact subjects (Caputo & Collins, 2014; Collins & Kuo, 2010; 

Huang et al., 2015). 

 

 

2.2 Previous research attempts  
 

A number of novel designs have addressed the limitations with commercially available 

conventional and ESR prosthetic feet, typically by attempting to mimic the controlled storage 

and release of mechanical energy seen in anatomically intact participants. One of the early 

researchers to focus on the biomechanics of the ankle-foot mechanism was Hansen et al. 

(2004), who stressed the importance of the torque-angle profile for the ankle joint in the 

design of new prostheses. This relationship (see Figure 2.6), at any given point, may be 

Figure 2.5 Power curve of the ankle joint of the prosthetic-limb of a unilateral transtibial amputee wearing a 
passive prosthetic foot (i.e. Elation (Össur, Foothill Ranch, CA, USA)) during walking. The black line represents 
gait data for 11 healthy controls (±1 SD), while the red line represents amputee’s data, plotted as a percentage 
of the stance phase of the gait cycle, where 0% is heel strike and 100% is the toe-off. There is a significant 
reduction in magnitude and a delay in the energy released during push-off in the amputee (see peak P1). Figure 
adapted from Takahashi et al. (2015).  
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characterised by the slope of the curve, sometimes termed the “quasi-stiffness” of the ankle 

joint, where the prefix “quasi” refers to torque measurements not conducted at equilibrium. 

According to Hansen et al. (2004) and Versluys et al. (2009), prosthetic feet able to mimic the 

“quasi-stiffness” of the ankle joint are supposed to improve amputees gait. 

 

A number of prosthetic designs aimed at restoring the energy storage and return behaviour 

seen in anatomically intact participants have been developed in the last two decades, the 

majority of which have used power sources. The so-called active devices include a power 

source and an actuator, which may be pneumatic, electrical or hydraulic, to provide an active 

push-off or to only adjust the ankle angle to different terrains and slopes (i.e. providing 

stabilization). Active prosthetic feet are also often referred to as “bionic” feet and most of 

those currently on the market only assist with stabilization (Cherelle et al., 2014). 

 

 

 

 

 

 

 

 

 

 

The remainder of this chapter reviews the prosthetic designs developed to address the 

aforementioned limitations of conventional and ESR prosthetic feet. The research for this 

literature review was conducted during the first six months of this PhD project, from October 

2016 until March 2017. Devices including a pneumatic actuator were excluded: their 

drawbacks - mainly the large size and weight of the components required for autonomy, and 

the poor mechanical efficiencies - make them particularly unsuitable technologies for lower-

limb prostheses (Bari, 2013; Cherelle et al., 2014). Should the reader be interested, a complete 

review can be found both in Versluys et al. (2009) and in Cherelle et al. (2014). The review 

considered, instead, the designs as being either unpowered or powered devices, and classified 

according to their working mechanisms: either clutch-and-spring or hydraulic. The research 

Figure 2.6 Torque-versus-angle curve for an anatomically intact ankle joint: (A) represents the heel strike, (B) 
foot flat, (C) maximum dorsiflexion, (D) toe-off. Image source: Versluys et al. (2009). 
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attempts evaluated were analysed mainly in terms of their ability to: mimic the torque and 

power profiles of an anatomically intact ankle joint, restoring appropriate peak power during 

push-off; and decrease the metabolic cost of walking. In addition, the small number of 

transfemoral prostheses that attempt to mimic the energy recycling behaviour of an 

anatomically intact lower-limb, in which biarticular muscles (e.g. the gastrocnemius muscle 

(Matthys et al., 2012)) transfer energy between the joints, were included in the study.  

 

The first two subsections focus on prostheses which are based on clutch-and-spring 

mechanisms; section 2.2.1 focuses on the unpowered designs and section 2.2.2 on their 

powered counterparts. The third and fourth subsections (2.2.3 and 2.2.4) review the limited 

applications of hydraulics in lower-limb prostheses, while subsection 2.2.5 briefly reviews 

orthoses and exoskeletons based on hydraulics. The remainder of the chapter includes a 

discussion section (2.3) and, finally, an overview of the previous work at the University of 

Salford (section 2.4).  

 

 

2.2.1 Unpowered clutch-and-spring prostheses 
 

Collins and Kuo (2010) developed a microprocessor-controlled artificial foot (Figure 2.7), 

referred to as the Controlled Energy Storing and Returning foot (CESR foot), which aimed to 

restore ankle push-off to normal. During load acceptance, a spring is compressed storing the 

associated negative work; a clutch holds it deformed until push-off, when a second clutch, 

triggered by the forefoot loading, releases the spring to aid push-off. A microcontroller and 

two micro-motors release the energy-storing spring and reset the mechanism during swing 

for the next heel strike. As this design uses a microprocessor and associated battery only to 

control the clutching and reset the spring – and not to provide an active peak power during 

push-off, it can be categorised as “semi-active”. 
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Figure 2.7 The Collins and Kuo (2010) Controlled Energy Storing and Returning foot (CESR foot). (A) Prototype 
device. (B) Schematic design. (C) Behaviour of the new device: at heel strike, the spring is compressed by the 
rear-foot, and locked by a clutch to store energy until when the fore-foot is loaded. A force sensor detects this 
event and release a second clutch, allowing the spring to release energy during push-off. The device is reset 
during swing. Images source: Collins and Kuo (2010). (D) Lateral view of the prototype. Figure adapted from 
Segal et al. (2012). 

Figure 2.8 Average power at the ankle joint during stance for the amputees wearing the new CESR foot (dotted 
line), an early ESR foot – which they referred to as “conventional” foot - (solid line), and his personal prosthetic 
foot (dashed line). The coloured areas represents the energy released during push-off. Image sourced from Segal 
et al. (2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When tested on seven transtibial amputees and compared to the performance of one of the 

early ESR feet (a Seattle Lightfoot2), it stored more energy early in stance (0-20% of the 

stance), and showed increased peak of the push-off power (58%) (see Figure 2.8) and work 

(61%). 
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Nevertheless, the net metabolic cost of walking throughout stance with respect to the other 

foot showed no statistically significant changes, although the metabolic cost of walking with 

the CESR foot was 8.3% larger than with a conventional foot (Segal et al., 2012). The authors 

suggested that the weight (1.4kg) and size of the first prototype, not individualised for the 

tested subject, and the potential additional muscular work needed to stabilise the knee 

specially during load acceptance, may have explained the observed high metabolic cost of 

walking. The study demonstrated that a design offering controlled and timely store and 

release of energy improves the push-off power, but concluded that an additional optimization 

of the design was necessary to decrease the metabolic cost of walking of the amputee (Segal 

et al., 2012). The device was patented.  

 

One advantage of their approach is that it is a semi-active design, so the electrical power 

requirements are very low. The design’s main limitation is that it captures just the small 

amount of eccentric work (i.e. negative work) done during load acceptance, from heel strike 

to foot flat (i.e. A0 in Figure 2.2 ), failing to capture the negative work done at the ankle during 

mid and terminal stance (A1 in Figure 2.2 ), which corresponds to the majority of the energy 

stored during the gait cycle. Although no data are reported about the ankle torque, it is 

reasonable to assume that the use of a clutch-and-spring mechanism is unlikely to allow for 

the ankle torque to be controlled in a “smooth” manner.  

 

In contrast to the CESR foot, the device developed by Williams et al. (2009) can store the 

negative work done during mid and terminal stance (i.e. from foot-flat to maximum 

dorsiflexion, i.e. A1 in Figure 2.2 ). It consists of two “neutralising springs” and a locking 

mechanism (also referred to as “clutch mechanism”) engaging and disengaging a “Triceps 

Surae” (Achilles) spring (Figure 2.9). Since the two neutralising springs are configured so that 

the point of null ankle torque is when the ankle is neutral or slightly dorsiflexed, during the 

load acceptance phase one of them is compressed while the other is stretched. The Achilles 

spring is at its neutral length, while the clutch is free to move, varying its length or rotating in 

case a rotational component is chosen instead of a linear one (see Figure 2.9). At foot flat, the 

weight-activated clutch locks, determining the neutral length for the Achilles spring at the 

maximum plantarflexion angle. All the negative work done from foot-flat to maximum 

dorsiflexion is stored in the stretched Achilles spring, and then returned during push-off when 
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Figure 2.9 The Williams et al. foot. (A) Design concept: the NS springs allow the foot to return to neutral during 
swing, while the TS spring stores and releases energy between foot-flat and toe-off. A locking mechanism is 
used to engage the TS spring at foot flat and to disengage it at toe off. (B) The energy recycling sequence. The 
locking mechanism is represented in grey when locked and in white when unlocked. The figure is sourced from 
Williams et al. (2009). 
 

the ankle plantarflexes and the spring returns to its neutral length, which corresponds to the 

angle of maximum plantarflexion. When the foot is not loaded anymore, the clutch is 

unlocked, and the two neutralising springs allow the foot to recover the point of null ankle 

torque for ground clearance. By setting the neutral length for the Achilles spring at the angle 

of maximum plantarflexion, the mechanism can automatically adapt to different slopes, since 

the angle of foot-flat depends on the slope on which the amputee is walking (Williams et al., 

2009). This ability to provide slope adaptation for each step without any active control (i.e. 

without any microprocessor, motor, battery, etc.) is a major strength of the design. 
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Figure 2.11 Lateral view from CAD of the working principle of the cam mechanism: at foot-flat (B), the user’s 
weight leads the cam to engage the base (i.e. the arc with a grey shaded area at the bottom of the figure) and, 
thus, a stiff rubber bumper (not showed in the figure). In this way, the ankle-foot mechanism varies its 
impedance: from low (A) to high (B). The figure is sourced fromWilliams et al. (2009). 

Figure 2.10 Lateral view of the prototype by Williams et al. (2009).  

A prototype of the Williams et al. design, based on a cam mechanism engaging a high stiffness 

rubber bumper at foot flat, was manufactured (see Figure 2.10 and Figure 2.11), and patented. 

It was tested on three unilateral transtibial amputees, demonstrating that a slope-dependent 

shift of the ankle torque-angle curve is seen during stance. No results for ankle power or the 

metabolic cost of walking were reported. The authors reported that further design work was 

needed to address wear issues, reduce the weight, size and noise associated with the 

mechanisms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nickel et al. (2014) reported a revised version of Williams’ design, made of a foot plate and a 

cam clutch mechanism to engage and disengage the foot plate (see Figure 2.12). At foot flat, 

as the user loads the prosthesis, the clutch is locked, with the angle of maximum plantarflexion 

corresponding to the equilibrium angle of the foot plate with respect to the shank, allowing 

energy storage in the foot plate that flexes under the user’s weight during mid and terminal 
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Figure 2.12 Lateral view from CAD of the prototype by Nickel et al. (2014). 
 

stance. When the prosthesis is unloaded, the foot plate recovers its equilibrium angle. In this 

way, energy is returned until the foot is back in its plantarflexion position. During swing, the 

clutch is disengaged and the foot plate returns to its dorsiflexed position for ground clearance 

through a neutralising bumper. Testing on a unilateral transtibial amputee revealed that the 

device (1.49kg) provides slope adaptation and the user reported less fatigue, although 

metabolic cost data were not reported and it was not possible to understand the performance 

of the device in terms of ankle torque and power. Further work was still needed to improve 

the design in terms of weight, a better foot plate and a more robust clutch (Nickel et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

Both the designs reported by Williams et al. (2009) and Nickel et al. (2014) address a major 

limitation of the Collins and Kuo’s design by storing all the eccentric work done during mid 

and terminal stance. The designs also, by setting the neutral length of the Achilles spring at 

maximum plantarflexion, provides slope adaptation within the same gait cycle. However, in 

common with Collins and Kuo’s design, the use of springs, clutches and bumpers, suggest the 

ankle torque was not controlled in a smooth manner. 

 

Mitchell et al. (2013) modified an ESR foot (Talux foot by Ӧssur) (Figure 2.13) to exploit the 

advantages of a timely energy storage and return on gait efficiency. A cable connects the 

shank to the toes of the prosthetic foot: it is kept in tension during mid and terminal stance 

dorsiflexion by a spring acting via a clutch, so that elastic energy is stored by keeping the 

carbon fibre laminates of the foot under compression; it is, then, extended through an electric 

brake to allow plantarflexion and the foot to recover its equilibrium position after each step. 
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Figure 2.13 Prosthetic ankle design described in Mitchell et al. (2013). The Spectralon Fibers and the clutch are 
used to lock the foot once it reaches maximum dorsiflexion during stance. The electric brake is then used to 
delay or slow push-off plantarflexion. 

A microprocessor controls the rate and timing of the cable extension and, thus, of the energy 

release during push-off, at fixed intervals after heel strike, which is dissipated by the next step 

when the foot recovers its equilibrium configuration. However, if the brake is used just to 

delay plantarflexion allowing, then, an un-braked plantarflexion, the energy dissipated will be 

very low. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The new device was tested on two transtibial amputees: delays allow for an ankle angle range 

close to normal, while moments and power do not improve. Therefore, it seems that any 

improvement over the standard ESR foot is minimal, as the energy stored during stance is 

similar to with a standard foot. Anyway, the two subjects reported that the device with a 

specific push-off timing was more comfortable than an ESR foot, but no data were provided 

on whether the walking efficiency improved.  

 

Koopman and his team at the University of Twente developed an unpowered fully-passive 

clutch-and-spring transfemoral prosthesis (Unal, Carloni, et al., 2010) consisting of two linear 

springs responsible for the energy storage and release during gait at the knee and at the ankle 

joint, and for the transfer of energy from the knee to the ankle joint in order to assist ankle 

push-off (see Figure 2.14 and Figure 2.15). The primary aim of this integrated device was to 

mimic the energy flow at these two joints. The spring placed between the upper leg and the 

foot (𝐶2 in Figure 2.14 (A)) connects the knee and the ankle joints: it stores energy partially at 
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Figure 2.14 Design by Unal, Behrens, et al. (2010). (A) The two linear springs and (B) the change in the 
attachment point of the bottom extremity of the 𝐶2 linear spring, after push-off and at the end of the swing 
phase. 
 

Figure 2.15 Lateral view of the prototype by Unal, Behrens, et al. (2010). 

the ankle during stance, and mainly at the knee during swing, thanks to a temporary change 

in the attachment point of its bottom extremity from the heel to the forefoot (i.e. from 𝑃1 to 

𝑃2 in Figure 2.14 (B)), keeping its length constant to save the energy stored. The other spring 

(𝐶3 in Figure 2.14 (A)) connects the heel to the lower leg through a lever arm at the ankle joint. 

It stores energy during mid and terminal stance at the ankle joint. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the end of terminal stance, the two springs are loaded and ready to release energy at the 

ankle during push-off. Simulations showed that the device can store up to 64% of the total 

amount of energy that is possible to store during gait in an anatomically intact subject both at 

the ankle and at the knee joint, to be used to assist with push-off at the ankle joint. The rest 

of the push-off energy is provided by the amputee to the detriment of his metabolic energy 

(Unal, Carloni, et al., 2010). A prototype was built and tested in a test-bed used on a treadmill 

walking simulator: according to the authors, the prototype showed a walking pattern similar 
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Figure 2.16 (A) Revised design by Behrens et al. (2011), with the two gears and a pulley connecting the knee and 

ankle joint. (B) CAD and prototype of the WalkMECH by Unal et al. (2013). 
 

to the one of an anatomically intact subject (Unal, Behrens, et al., 2010), even though it is not 

possible to know if both kinematics and kinetics were mimicked. 

 

This design was further improved by Behrens et al. (2011), to better mimic the energy flow 

between the knee and ankle joints and, thus, to decrease the metabolic cost of walking. A 

third component was added: a proper linkage system connecting the knee and ankle joints, 

made of a pulley and two gears realising a kinematic chain between the two joints (see Figure 

2.16 (A)). This allows the ankle torque during push-off to be transmitted to the knee joint, and 

the energy at the knee to be transferred to the ankle during push-off. Simulation-based testing 

of this new device named “WalkMECH” (2.49kg, Figure 2.16 (B)) followed to justify 

prototyping: the device can release up to 76% of the energy required for forward propulsion 

during push-off, against the only 50% released by the concept design with just two springs 

(Unal et al., 2012). 

 

 

 

 

 

 

 

 

 

 

The design was further optimised (Figure 2.16 (B)) through simulation and testing with a 

unilateral amputee (Unal et al., 2013). Figure 2.17 shows as the device can release a large 

amount of energy at the ankle joint during push-off, even though the lack of a match with the 

anatomically intact ankle power suggests that further improvements are needed. The knee 

power profile (Figure 2.17) was also reported to be a poor match to that of an anatomically 

intact subject. 
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The joint torques from experimental test are not reported, while the ones from the simulation 

model show a poor match with the ones of an intact ankle and knee. The main reason for the 

former, according to the authors, is that the ankle spring becomes active for ankle angles 

larger than 0° (Unal et al., 2013). In common with the designs discussed above, the use of 

springs limits the ability to vary the ankle and knee torques in a natural way, following any 

desired profile over the gait cycle. 

 

The University of Twente design was optimised by Unal et al. (2014) for adaptation to different 

walking speed, and referred to as the “WalkMECHadapt”. It included the two linear springs 

together with a torsional spring at the knee joint to store energy during push-off and transfer 

it during swing to the linear spring connecting the upper leg and the foot (Unal, Carloni, et al., 

2010). They realised the adaptation of the device to different walking speeds and, thus, to 

different amounts of energy stored and released, through a change in the configuration of one 

of the linear springs. Specifically, by varying the attachment point and hence equilibrium 

position of the spring connecting the upper leg to the foot when the foot is not loaded, it was 

possible to vary its energy storage capacity, allowing speed adaptation. They tested the 

Figure 2.17 Knee power (top) and ankle power (bottom): comparison between an atomically intact subject (blue 
line) and an amputee wearing the WalkMECH (red line). The figure is adapted from Unal et al. (2013). 
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Figure 2.18 Prototype of the HEKTA. Image source: Matthys et al. (2012). 
 

WalkMECHadapt on an experimental set-up with an anatomically intact subject mainly to 

evaluate the control of the device. Results showed that the device successfully adapts to 

different speeds. Nevertheless, no testing was conducted with amputees, and no data were 

reported about the kinetics of the ankle joint. 

 

A similar attempt was made at the Vrije Universiteit Brussel (VUB) with the “Harvest Energy 

from the Knee and Transfer it to the Ankle (HEKTA)” (Matthys et al., 2012). The prototype, 

fully-passive transfemoral prosthesis, harvests the energy that would be otherwise dissipated 

at the knee during swing, and transfers it to the ankle through springs and mechanical linkages 

to provide active push off. By contrast to the University of Twente designs, it allows knee 

flexion during the stance phase. A prototype of the system, made of two springs and a cable, 

was built (see Figure 2.18) but not tested.  

 

 

 

 

 

 

 

 

 

 

The possibility of changing the equilibrium position of the foot spring was not included in this 

prototype. Even if no data are reported, this last feature and, in general, the use of springs 

and clutches at the knee do not allow the control of the knee and ankle torque profiles to suite 

different speeds and slopes. Despite the advantages of energy transfer between the knee and 

ankle, both the WalkMECH and the HEKTA use purely passive mechanical linkages and springs 

to realise this transfer, making the system complex and heavy (Cherelle et al., 2014). 

 

A last example of unpowered clutch-and-spring mechanism is the “CamWalk” by Rice and 

Schimmels (2014), the conceptual design of which is shown in Figure 2.19. It is characterized 

by four springs and a slider mechanism. Spring 𝑘1 acts as the primary shock absorber. Spring 
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Figure 2.19 Conceptual design of the CamWalk by Rice and Schimmels (2014). 

Figure 2.20 CamWalk during the gait cycle, from heel strike until toe-off. Springs drawn in dashed lines are not 
working in that specific instant of the gait. Image source:Rice and Schimmels (2015). 

𝑘3 is responsible for the ankle stiffness mainly from heel strike until foot flat, while spring 𝑘4 

for the ankle stiffness from foot flat until maximum dorsiflexion. Spring 𝑘2 provides partially 

shock-absorption and mainly the connection between the foot and the shank. At maximum 

dorsiflexion, the cam disengages the spring 𝑘1, so that the slider moves forward under the 

user’s weight. The link of the slider (in grey in Figure 2.19 and in red in Figure 2.20) becomes 

parallel to the slot where the slider is, locking in this way the spring 𝑘2 and compressing it. 

The energy stored in the spring will be released when the foot A rotates with respect to the 

body B during push-off. During swing the position of the link and slider is reset.  
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Different springs with different stiffness can be selected for each user, in order to match the 

individual torque-angle profile. After simulation, a prototype of 2.2kg and 17cm from ground 

to the pyramid adapter was built and tested with four transtibial amputees (Rice & Schimmels, 

2015). An important issue was reported: at heel off, the cam disengages the spring 𝑘1, 

suddenly increasing knee flexion – which was reported by the participants to be 

uncomfortable. Despite the work at the ankle being approximately 48% of the work done at 

the contralateral anatomically intact ankle per step, the authors reported that the sudden 

increase in knee flexion means the users were not able to benefit from the energy return 

during push-off (Rice & Schimmels, 2015). No data were reported for the experimental ankle 

torque with the new device, but simulation showed a poor match between the simulated 

ankle torque and the one for an anatomically intact subject (Rice & Schimmels, 2014).  

 

In summary, the research attempts described in this section are all either entirely passive or 

semi-active (i.e. CESR foot by Collins and Kuo (2010) and Mitchell’s design), requiring small 

amounts of power for the microprocessor: this means they are generally lighter and smaller 

than their active counterparts, which include batteries and motors. Nevertheless, even if data 

about the joints torque are missing in some studies, the use of clutch-and-spring mechanisms 

is unlikely to allow for the ankle torque and the knee torque to be controlled in a “smooth” 

manner. Springs, for instance, are characterised by a fixed mechanical stiffness, which has to 

be selected for specific tasks and users. For this reason, it is improbable that a device made of 

springs and locking mechanisms could mimic the quasi-stiffness behaviour of an intact ankle 

throughout the gait cycle (Figure 2.6). Moreover, as a further result of their design, and with 

the exception of the CESR foot and the WalkMECH, these prostheses are generally not able to 

replicate the anatomically intact power profile at the ankle joint. Likewise, speed and slope 

adaptation are provided only by the WalkMECHadapt by Unal et al. (2014), and by the 

Williams and Nickel’s designs, in which the possibility for setting the neutral length of the 

Achilles spring at maximum plantarflexion provides slope adaptation within the same gait 

cycle. Worthy of remark is the concept of fully-passive transfemoral prostheses (i.e. 

WalkMECH and WalkMECHadapt at the University of Twente, and HEKTA at the Vrije 

Universiteit Brussel), since they allow for energy transfer between the knee and the ankle 

joints: braking energy stored at the knee at the end of the swing phase, which is normally 
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dissipated, can assist with ankle push-off. However, the purely mechanical linkages which 

these devices are made of make them really complex and somewhat heavy.  

 

As a result of the limitations of these unpowered devices, several research groups have started 

to develop in the last two decades prostheses combining clutches and springs together with a 

power source (i.e. active prostheses), to better mimic the joint torque of anatomically intact 

subjects, including the quasi-stiffness of the ankle joint (Hansen et al., 2004) (Figure 2.6), and 

the power profile, in addition to adjusting the joint angle to different speeds and slopes. 

 

 

2.2.2 Powered clutch-and-spring prostheses 
 

In 1995 Pratt and Williamson developed a compliant actuator to be used for a humanoid 

robot. It was a series elastic actuator (SEA), made of a compliant element (i.e. the spring) 

placed in between the motor and the mechanical transmission block and the load. This 

configuration showed many advantages with respect to stiff actuators: the compliant element 

acts as shock absorber; it increases the force accuracy as the output force depends now on 

the spring displacement, which can be controlled more easily than force; it provides for some 

energy storage and release assisting walking (G. A. Pratt & Williamson, 1995). Given these 

advantages, the SEA has found broad use in prosthetic applications, specifically in powered 

lower-limb prostheses.  

 

By introducing a spring in series between the motor output and load, as the spring stores and 

returns energy and the work in output is the sum of the work generated by each component, 

the work required from the electric motor is lowered. Therefore, as the motor, the spring and 

the load are in series, while the required motor torque does not change, the motor speed may 

be lowered and, thus, the peak power that the motor should deliver. Consequently, since the 

peak power influences the motor size and weight, a smaller motor can be used (Everarts et 

al., 2012), matching the need for small components in prosthetic applications. Other, context-

specific, advantages of SEAs are: the possibility to store energy in the spring during mid and 

terminal stance to be released during push-off, helping with forward propulsion (Grimmer et 

al., 2014; J. Pratt et al., 2002);the elastic component provides for shock tolerance, preserving 

the motor (G. A. Pratt & Williamson, 1995; J. Pratt et al., 2002); low impedance; and, by being 
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a force controllable actuator through the control of the spring compression, a maximum value 

of the output force can be set so as not to harm the subject (Au et al., 2006). Last but not least, 

including an elastic component may help with stability on different terrains (Grimmer et al., 

2014). This and other similar configurations with variations – such as the motor in parallel with 

a spring or a series elastic actuator in parallel with a second spring - have been widely exploited 

in the design of prostheses, exoskeletons and robots. The use of a second spring in parallel 

with the SEA, for instance, can further increase the performance of the device: it decreases 

the peak torque and, thus the peak power that the motor should provide with a consequent 

increase of its efficiency (Holgate 2014). The powered prostheses, based on SEAs, are 

presented below. 

 

One well-known attempt of powered clutch-and-spring prosthesis driven by a SEA is the 

“Spring Ankle with Regenerative Kinetics” (SPARKy) project. The SPARKy 1 by Hitt et al. (2007) 

(see Figure 2.21) is based on a “Robotic Tendon (RT)” actuator (Hollander et al., 2006). This 

actuator, referred to as “Jack Spring™”, is made of a motor in series with a helical spring, 

whose stiffness is tuned by adjusting the number of active spring coils through a position 

controller driven by a low-energy motor (Hollander et al., 2005), to decrease the required 

peak power and the energy in output from the motor during push-off. During mid and terminal 

stance, as the shank rotates over the foot, the spring stretches storing energy, and additional 

energy is stored in it as the motor further stretches the spring. During push-off, all the energy 

stored in the spring is released.  

 

It was tested and it showed to be able to provide ankle angle, torque and power profiles which 

were closer to those of an anatomically intact ankle than those seen with an ESR foot, while 

no data are reported about the metabolic cost of walking (Hitt, Sugar, et al., 2010). It was able 

to store and release 16J per step (Bellman et al., 2008), whereas an anatomically intact subject 

(80kg) needs 36J per step (Hitt et al., 2007). Hitt et al. (2007), in the design objectives, 

envisioned the use of a battery allowing up to 8 hours of walking, but no further information 

are provided about the autonomy of the battery used in the prototype. A second prototype – 

the SPARKy 2 (see Figure 2.21) – was smaller, lighter (2kg vs 2.7kg) and with a more powerful 

motor, and was used for jogging when tested (Bellman et al., 2008). The main feature of a 

third prototype – the SPARKy 3 (see Figure 2.21)– was the 2 degrees of freedom biomimetic 
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Figure 2.21 From left to right: SPARKy 1, 2, and 3. Image source: Bellman et al. (2008). 

ankle offering controlled motion in both the sagittal and coronal planes. Despite the two joints 

and two motors, the design simulation showed it was smaller than the previous version, even 

if slightly heavier (2.1kg), and was reportedly potentially suitable for running and jumping. 

However, the design reportedly required control optimisation before a physical prototype was 

built (Bellman et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same research group developed also a mechanism characterised by one motor in parallel 

with one spring, connected to the ankle joint through a movable body (Holgate & Sugar, 2014), 

and referred to as the “Active Compliant Parallel Mechanism (ACPM)” (see Figure 2.22 for a 

comparison between the RT and the ACPM actuators). It offered all the previously mentioned 

advantages of a compliant element in parallel with a motor, in terms of torque and energy. 

The Odyssey ankle-foot prosthesis (see Figure 2.23), commercialised by SpringActive Inc. (an 

American company, whose some of the researchers included both in this and in the SPARKy 

project are part-owners of), includes the ACPM mechanism (Holgate & Sugar, 2014). 
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Figure 2.22 (A) Robotic Tendon actuator, which constitutes the working principle at the base of the SPARKy 
design: the linear motion of the motor and spring complex is converted in the rotary motion of the ankle joint 
through the fixed lever arm. (B) The new ACPM, with the spring in parallel with the motor and connected to the 
ankle joint through a movable arm. Figures adapted from Holgate and Sugar (2014). 

Figure 2.23 (A) Odyssey ankle-foot. Source: www.springactive.com. (B) Details of the ACPM contained in the 
Odyssey ankle-foot. Figure adapted from Holgate and Sugar (2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additional studies led to the development and testing of another ankle for walking and 

running, a first version in 2011 with two motors (Hitt, Merlo, et al., 2010), and a second one 

in 2012 (Grimmer et al., 2016) - named “Walk-Run” (see Figure 2.24). This last prototype (1.9kg 

without the battery and electronics) included one motor in series with a spring that stores 

energy during load acceptance and releases it during push-off. The motor generates 

trajectories given by reference torques and angles from anatomically intact subjects 

(reference motor trajectories used by the control system). The roller-screw and belt drive 

allow ankle plantarflexion and dorsiflexion. It was tested in an able-bodied subject wearing an 

ankle-foot orthosis and the device mounted in parallel to it. It showed a good match with the 

biomechanics of an intact ankle during walking in terms of angle, torque and peak power, 
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Figure 2.24 Walk-Run ankle-foot prosthesis. Image source: Grimmer et al. (2016). 

Figure 2.25 Ruggedized Odyssey ankle-foot prosthesis. Image source: Ward et al. (2015). 

while, during running, differences in the angle and torque profiles were seen (Grimmer et al., 

2016). At the time of this review, it still needed to be tested with amputees to investigate its 

performance. The Walk-Run was also commercialised by SpringActive Inc. and a ruggedized 

version (Grimmer et al., 2016) was commercialised under the name of “Ruggedized Odyssey” 

(see Figure 2.25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As an active device, it was rather heavy and large in size due to the power supply. Further, 

producing a peak power at the ankle during push-off that mimics anatomically intact gait, does 

not necessarily mean a reduction of the metabolic cost of walking and gait asymmetries. 

Hence, experimental data on amputees are necessary to draw further conclusions.  

 

A number of other designs, similar or with added compliant elements, have been reported, 

which are discussed below, grouped by the research team which led the work. 
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Université Catholique de Louvain 

A prosthesis based on a SEA was reported in 2011 (Cherelle et al., 2014; Everarts et al., 2011). 

Despite their advantages, SEAs have a main limitation: the spring stiffness is fixed, so that it 

may be optimised just for a specific user/activity. Therefore, there may be advantages to being 

able to vary the stiffness of the compliant element to adapt to different slopes and speeds, in 

order to minimise the energy that the motor should provide. This concept has led to the 

development of Variable Stiffness Actuators (VSAs), which allow the actuator stiffness to be 

changed within the same gait cycle, and requiring no additional energy (Everarts et al., 2012). 

The group developed a VSA made of a continuous variable transmission (CVT): it allows the 

stiffness of the actuator, and thus the amount of energy that can be stored in it, to be changed 

for different slopes, speeds and tasks, within the same gait cycle, without losing any of the 

stored potential energy in the elastic element (Everarts et al., 2012). They also introduced an 

infinitely variable transmission (IVT) able to vary the transmission ratio at rest, as well as 

during gait (Everarts et al., 2015), but further work was needed to reduce the device’s size 

before the design could be tested with amputees.  

 

Marquette University 

In this design the ankle rotation is driven by a SEA with a torsional spring through a four-bar 

mechanism (see Figure 2.26 (A)). Testing on an amputee on level walking revealed that the 

torque and power profiles are still far from those of an anatomically intact ankle, although 

improvements in both compared to a passive prosthetic foot. A limitation of the design was 

the inability to move back to a neutral angle during swing for ground clearance (Sun et al., 

2014). No further improvements were made to this design. 

 

Peking University 

The “Powered transtibial prosthesis with ANkle and TOE joints” (PANTOE) by Zhu et al. (2014) 

uses a SEA at the ankle joint and a second one at the toe-joint. A prototype of 1.47kg without 

the battery was built (see Figure 2.26 (B)), tested with an amputee, and found to improve 

some aspects of his gait with respect to a passive prosthesis: the vertical component of the 

GRF and the joint angles of the prosthetic and sound limb were symmetrical. However, just 

knee, ankle and toes angle and vertical GRF are reported and during level-ground walking. 
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Figure 2.26 (A) Ankle-foot prosthesis developed at Marquette University. Image source: Bergelin and Voglewede 
(2012). (B) CAD of the PANTOE by Zhu et al. (2014), with two SEAs: one for the ankle joint and another one for 
the toe joint.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Vanderbilt University 

A self-contained powered transfemoral prosthesis of 4.2kg was developed based on two ball 

screws driven by two motors for the two joints: the knee and the ankle (Sup et al., 2009a). At 

the ankle, a compression spring in parallel with the ball screw mechanism helps in providing 

the proper power output during push-off, reducing the required output torque the motor 

delivers (Sup et al., 2009a, 2009b). Although sometimes described in review papers as a 

system containing a SEA (Cherelle et al., 2014), the drive contains a spring in parallel with the 

motor. Testing on a unilateral transfemoral amputee showed that the device provides peak 

torque and power at the ankle during push-off similar to those of an anatomically intact 

subject, but both parameters are not well matched over the rest of the gait cycle. The device, 

although reported to be noisy, provides up to 1.8h of level ground walking at self-selected 

speed with a single charge, corresponding to nearly 4500 strides and 9km according to the 

author.  

 

Shultz et al. (2013) developed the “Vanderbilt Transtibial Prosthesis” (2.3kg, battery included) 

driven by a motor in parallel with a spring (see Figure 2.27).  
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Figure 2.27 (A) Self-contained powered transfemoral prosthesis by Sup et al. (2009a). (B) Vanderbilt Transtibial 
Prosthesis by Shultz et al. (2013). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing of the new device on an anatomically intact subject wearing an adapter connected to 

the prosthesis showed a good match with an anatomically intact ankle in terms of joint angle 

throughout the gait cycle, and estimates of peak power during push-off. However, the 

estimates of the ankle torque and power profiles during the rest of the gait cycle differ from 

those of an anatomically intact subject. This prosthesis was then integrated in the powered 

transfemoral prosthesis (approximately 5kg) reported by Lawson et al. (2014) (see Figure 

2.28), in which both the knee and ankle units include a motor. At the ankle, a parallel spring 

consisting of a carbon-fibre leaf spring is also included, assisting the motor in terms of torque 

and power output. It was tested on three amputees showing a match with the ankle joint 

kinematics of an anatomically intact subject during walking. However, both the ankle and knee 

torque and power profiles were lower than in the anatomically intact subject. Again, further 

work was needed to address these issues. No data were reported in terms of the metabolic 

cost of walking. 
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Figure 2.28 CAD of the powered transfemoral prosthesis developed at Vanderbilt University by Lawson et al. 
(2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Chinese University of Hong Kong 

Another attempt of powered ankle-foot prosthesis based on a parallel elastic actuator (PEA) 

was made by Gao et al. (2015), to reduce the required output torque from the motor, 

therefore the required power. Simulation results showed that the output torque differs from 

the one of an intact ankle, but the peak power during push-off seems to be close to the one 

for an intact ankle – thanks to the powered push-off typical of all these active prostheses. A 

prototype was supposed to be built in the future to investigate energy consumption. 

 

MIT ankle foot  

The “bionic ankle-foot prosthesis” (BiOM) by Herr and Grabowski (2012) represents one of the 

most well-known design of active prosthetic foot. The core design comprises a SEA with a 

second spring in parallel to the motor with a total mass of 2kg. The SEA consists of a motor, a 

ball-screw transmission and a compliant element - a carbon fibre leaf spring (Figure 2.29) (Herr 

& Grabowski, 2012). It allows for control of joint stiffness, and provides the required peak 

torque and power in output during push-off (Au et al., 2007). The transmission converts the 

motor’s rotary motion into linear motion, which causes the rotation of the ankle joint through 

the series spring (Au et al., 2007). The in-series leaf spring stores and returns some of the 
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Figure 2.29 The BiOM foot including a linear actuator with series and parallel springs, adapted from Herr and 
Grabowski (2012). 

energy generated by the motor, while a parallel spring provides a rotational ankle joint 

stiffness, compressing only for ankle angles less than 90° and storing energy.  

 

 

 

 

 

 

 

 

 

 

By moving the linear actuator when the ankle torque is low to change the neutral ankle angle 

(i.e. zero torque) for the series spring, this design could achieve slope and speed adaptation 

similar to that reported by Williams et al. (2009). The ankle-foot prosthesis generates positive 

work during push-off using a battery and taking advantage of the fact that the actuator and 

the series spring can extend simultaneously. The system was tested with eight unilateral 

transtibial amputees and eight matched control subjects during level ground walking. It 

demonstrated that the ankle power during stance in the prosthetic leg is similar to the one of 

a non-amputee, with peak power matching non-amputees data during push-off (Grabowski et 

al., 2011), and being 54% larger than the figure obtained with an ESR foot according to 

Mancinelli et al. (2011). The Mancinelli’s study, conducted on five unilateral transtibial 

amputees, showed that ankle angle, torque and power are closer to those of an anatomically 

intact ankle than those seen with an ESR foot, even though the peak of the ankle moment at 

maximum dorsiflexion was not significantly different between the BiOM and an ESR foot on 

level walking, and reported a decrease in oxygen consumption of about 8.4%, although this 

difference was not statistically significant. A last study on seven unilateral transtibial amputees 

and seven matched control subjects showed that the preferred walking speed with the BiOM 

was the same as non-amputees, and the metabolic cost of walking was within the range seen 

in anatomically intact participants, again 8% smaller than the one of amputees using passive-

elastic prosthesis (Herr & Grabowski, 2012). 



  Chapter 2: Literature review 

37 
 

Figure 2.30 (A) The BiOM foot in an earlier version (figure sourced from Mancinelli et al. (2011)). (B) Version 
currently commercialised by Ottobock with the name of “Empower” (image sourced from shop.ottobock.us). 

In the BiOM, the compliant element of the SEA is a carbon fibre leaf spring, and the whole 

mechanism is fixed to a carbon composite foot (see Figure 2.29), a typical ESR feet. This 

composite component allows some elastic energy storage and return, similar in nature to that 

seen in commercial ESR prostheses, with similar problems of uncontrolled and untimely 

energy return from the springs, although the actuator does allow ankle torque to be 

controlled. This critique is supported by the fact that the reduction in metabolic cost for the 

amputee when using the BiOM, in comparison with using a passive ESR foot, is slightly less 

than the metabolic equivalent of the energy input from the electric motor (both measured in 

𝐽

𝑁𝑚
) (Herr & Grabowski, 2012). This suggest that the advantages over commercial ESR 

prostheses come largely from the addition of an external power source, as the device does 

not take advantages of all the eccentric (negative) work made in an intact ankle during mid 

and terminal stance (Figure 2.2), and it only relies on the power provided by the battery to 

assist with forward propulsion during push-off. This analysis is supported by the study by 

Russell Esposito et al. (2015) on six unilateral transtibial amputees and six matched control 

subjects: despite the benefits over ESR feet in terms of metabolic rate on level ground, the 

BiOM performs as an ESR foot during slope walking. Ferris et al. (2012), in a study on eleven 

unilateral transtibial amputee and eleven matched control subjects, showed that the use of 

the BiOM does not allow a normative gait kinematics and kinetics: joint asymmetries (knee 

and hip) between the prosthetic and the contralateral anatomically intact leg still exist. 

Therefore, specific trainings may be useful to allow amputees to fully exploit the functionality 

of this active device. 

 

The BiOM (Figure 2.30 (A)) was firstly commercialised by iWalk (founded in 2007 by Hugh Herr) 

- which changed its name to BionX a few years later - and now it is distributed by Ottobock 

with the name of “Empower” (Figure 2.30 (B)). 
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Figure 2.31 The CYBERLEGs Alpha-Prosthesis. Image source: Geeroms et al. (2013) 

Nanjing Institute of Technology 

Another attempt of ankle prosthesis based on a SEA and a parallel spring is the one by Yali et 

al. (2013). Simulations showed that it can reproduce human walking, but a prototype was not 

built and tested. Moreover, the only paper found is entirely in Chinese, except for the abstract. 

 

Vrije University Brussels (VUB) 

Geeroms et al. (2013) and Flynn et al. (2014) presented the CYBERLEG α-Prosthesis for 

transfemoral amputees (Figure 2.31), the main components of which are an active ankle, a 

passive knee and an energy transfer system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this design, of mass 5kg without batteries, a variable stiffness actuator for the ankle (named 

MACCEPA) generates torque through a series spring, whose pre-tension can be adjusted to 

modify the output torque and, thus, it provides slope and speed adaptation. This mechanism 

also lowers the peak power required by the motor during push-off. A passive knee utilising 

two springs and locking mechanisms (a ratchet mechanism) to store braking energy from the 

knee (i.e. the negative work the knee performs at the end of swing which is normally 

dissipated) to be used at the ankle for powering push-off. The energy is transferred in the late 

stance phase from the knee to the ankle via a cable, further reducing the torque that the 

actuator at the ankle joint must produce. As a result, the ankle torque at maximum 



  Chapter 2: Literature review 

39 
 

dorsiflexion seems to be similar to that of an anatomically intact subject, but it differs during 

the rest of the gait. The use of springs and clutches at the knee does not allow for the knee 

torque profile to be adjusted to suit different speeds and slopes.  

 

Improvements to this design led to the CYBERLEG β-Prosthesis, whose primary difference with 

respect to the previous version lay in the active knee joint, which provides power for several 

activities (e.g. stairs climbing). The main actuator, made of a SEA, is supposed to provide only 

a minimum torque during level ground walking allowing the device to work mainly as a passive 

device, and positive energy only when needed: either when a change in the prosthesis 

behaviour is required during level ground walking or when activities that require more energy 

are performed. Testing of the new integrated prosthesis on two unilateral amputees showed 

that subjects could walk with the new device on level ground, but further improvements of 

the control for stairs climbing and investigations about the metabolic energy of the user and 

the energy consumption by the motors were still to be done (Flynn et al., 2015). No data were 

reported about the ankle torque and power.  

 

The same research group at the VUB developed another powered clutch-and-spring 

prosthesis: the Ankle Mimicking Prosthetic Foot (AMP-Foot). They started with a first semi-

active (power source only for the microcontroller) prosthetic foot tested on a transfemoral 

amputee, made of a planetary gearbox with a locking mechanism (ratchets) to vary the rest 

position of a spring that stores energy during mid and terminal stance and releases it during 

push-off (Brackx et al., 2013). Then, additional improvements to the design led to two versions 

of the AMP-Foot, culminating in the AMP-Foot 3 (Cherelle et al., 2016). It is based on a 

“Explosive Elastic Actuator (EEA)” made of a SEA actuator in series with a second spring and a 

locking mechanism. It can store energy and release it at a specific time of the gait cycle, i.e. 

during push-off for forward propulsion. Despite the required output torque being the same as 

the SEA, the power and the speed required for the motor are further decreased thanks to the 

added spring and locking system. A crank-slider mechanism transmits forces and torques from 

the actuator to the ankle joint (see Figure 2.32).  
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Figure 2.32 The AMP-Foot 3. Image source: Cherelle et al. (2016). 

 

 

 

 

 

 

 

 

 

 

 

A “plantarflexion spring” is mounted on the foot plate, and another spring, referred to as the 

“push-off spring”, is placed right after the motor-ball screw system. The plantarflexion spring 

stores energy during mid and terminal stance through the motion of the slider of the crank-

slider mechanism, while the push-off spring is compressed by the actuator independently 

from the rest of the ankle joint. During push-off, then, the energy stored both in the push-off 

spring and in the plantarflexion spring is released for propulsion, providing the required power 

and torque at the ankle joint. One clutch (“Locking mech. 1” in Figure 2.32) allows the design 

to maximise the energy stored in the plantarflexion spring during mid and terminal stance, as 

well as control the amount of energy stored in the plantarflexion spring by varying its 

equilibrium position at foot-flat. A second clutch (“Locking mech. 2” in Figure 2.32) 

disconnects the ankle joint from the electric actuator when this is loading the push-off spring. 

Thanks to the first clutch, it was possible to reduce the motor power to just 50W, which 

compares favourably to other active devices (Cherelle et al., 2016). When tested on a 75kg 

unilateral transfemoral amputee, the ankle power profile matches the one of an anatomically 

intact subject, with approximately 13J stored in the plantarflexion spring – the authors say 

“during early stance”, which should correspond to mid and terminal stance - and 26J released 

during push-off. However, the ankle torque poorly matches that of an anatomically intact 

subject, even though it reaches a peak at maximum dorsiflexion. The same authors affirmed 

that some optimisation is needed to decrease the weight of the prototype (3kg), and also to 

improve its control system and better exploit the second clutch to provide automatic speed 

and slope adaptation (Cherelle et al., 2016). 
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Figure 2.33 Ankle (A) angle, (B) torque (positive torque is a dorsiflexive torque) and (C) power; and knee (D) 
angle, (E) torque (positive torque is a flexion torque) and (F) power for three amputees using the powered 
transfemoral prosthesis by Lawson et al. (2014). 

In summary, in contrast to the unpowered clutch and spring devices, most of the powered 

clutch-and-spring devices are able to provide torque and peak power at maximum dorsiflexion 

close to those of an anatomically intact subject, in large part as a result of the external power 

source. Common feature of all the active devices of this section is the ability of generating a 

biomimetic ankle angle during level ground walking. The SPARKy, the Walk-Run and the BiOM, 

generate a torque profile which is closer to that of an anatomically intact ankle than typical 

ESR feet can do throughout the gait cycle, and the same devices together with the AMP-Foot 

3 are also able to match the power profile. Therefore, by being able to mimic the non-linear 

torque-angle relationship of an intact ankle as well as its power flow, these designs are better 

than the other active clutch-and-spring prostheses. Only the BiOM and the AMP-Foot 3, when 

tested, seem to provide slope and speed adaptation by varying the equilibrium position of the 

compliant element included in the actuator. The CYBERLEG α- and β-Prostheses should adjust 

too, but the latter was tested just on level walking, and no data are reported about speed and 

slope adjustment for all the other tested devices. 

 

Nevertheless, as the example in Figure 2.33 shows, the torque and power at the ankle joint, 

and at the knee joint for transfemoral prostheses, during the rest of the gait cycle is less well 

matched in most of these powered clutch-and-spring devices.  

    A)                                                            B)                                                            C) 
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As mentioned in the previous section, this inability to closely track the torque and power or 

mimic the quasi-stiffness of the ankle joint (Figure 2.6) profiles is likely due to the use of 

compliant elements and locking mechanisms. Therefore, active clutch-and-spring devices, 

with a few exceptions, do not outperform both their unpowered counterpart and ESR feet.  

 

A device with powered push-off, at the appropriate timing and the appropriate magnitude 

should contribute to a decrease of the metabolic cost of walking with respect to a passive 

conventional or ESR foot. Nevertheless, the use of springs, clutches and a power supply makes 

these active devices rather heavy and large in size, likely contributing to an increase in the 

metabolic cost and gait asymmetries (J. D. Smith & Martin, 2013), which may nullify the 

advantages of a powered push-off. In transfemoral prostheses this issue is amplified as 

mechanical linkages are used to transfer energy between the knee and the ankle joints. 

Likewise, the introduction of variable stiffness actuators as in the CYBERLEG α- and β-

Prostheses or explosive elastic actuators as in AMP-Foot 3 at the ankle joint adds further 

weight, volume and complexity to the system (Cherelle et al., 2014). Further evidence is 

necessary, then, to judge the real effectiveness of these new active devices. At the time of this 

review, there are few experimental studies investigating amputee’s metabolic cost of walking 

with active devices, all related to the well-known BiOM, with experimental data collected on 

small samples of amputees, and only four of them conducted with a matched control group. 

For this specific foot, for instance, while some studies demonstrated its superiority in terms 

of metabolic cost over ESR feet during level walking, data collected by Russell Esposito et al. 

(2015) showed no metabolic advantage over ESR feet on slope walking. Likewise, gait 

asymmetries between the prosthetic and the contralateral anatomically intact leg still exist in 

unilateral transtibial amputees wearing the BioM, leading to compensatory mechanism at the 

proximal joints of the prosthetic leg (Ferris et al., 2012). This finding led to assumptions that a 

specific training regime may help amputees with a moderate-to-active lifestyle to fully exploit 

the functionality of active devices (Ferris et al., 2012).  

 

These active clutch-and-spring devices were mainly designed to mimic the ankle quasi-

stiffness, and to exploit the electric actuation to provide a net positive ankle power during 

push-off to assist with forward propulsion. However, it appears that little effort was made to 

harness the energy that may be stored and released during the gait cycle. The BiOM foot 
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serves as an example: by relying only on the power provided by the battery during push-off, 

the device, in common with commercial ESR feet, seems not to take advantage of the eccentric 

(negative) work done during mid and terminal stance (Figure 2.2). Furthermore, replicating 

the ankle peak torque and power during push-off, for a 75kg subject, means that a torque of 

approximately 122Nm should be provided at the ankle joint, corresponding to a peak power 

between 250W and 350W (Winter, 1991). Although the use of SEAs allows the system to lower 

considerably the peak power (and also the peak torque in cases where compliant elements in 

parallel are also used) and, thus, the motor size and weight, the use of electric motors and 

batteries to supply power in prosthetic applications remains fundamentally difficult. The main 

issues are related to the use of batteries:  

- The duration of a single charge of the battery limits amputee’s autonomy. For instance, 

with a single charge, the battery (0.22kg) of the BiOM foot allows for approximately 4000 

- 5000 steps according to Herr and Grabowski (2012), while the self-contained 

transfemoral prosthesis by Sup et al. (2009a) at Vanderbilt University provides up to 1.8 

hours of level ground walking at self-selected speed (corresponding to about 4500 strides 

according to the authors). In both cases, these values exceed the approximate 3065 steps 

per day walked by a lower-limb amputee (Stepien et al., 2007), but they do not take into 

account the level of activity of the amputee and the frequent braking and accelerating 

required in everyday life, which require more energy than steady-state walking at self-

selected speed. This may lead to a battery discharging sooner than expected, with an 

associated dramatic reduction in the device performance during its use.  

- The frequent charge and discharge cycles will damage the battery over time (Han et al., 

2019).  

- The electronic and mechanical components may require frequent maintenance in highly 

specialised facilities. 

- Active devices currently on the market are very expensive, so only a small percentage of 

lower-limb amputees can afford them. The BiOM, for example, is about $80,000 according 

to Caputo et al. (2015).  

 

In conclusion, the active devices described in this section, despite the apparent advantage of 

a powered push-off, still have limitations which need to be overcome to make them really 

biomimetic, suitable in size, weight and complexity for a lower-limb prosthesis, and affordable 
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by a large number of amputee (of any activity level too). Springs and clutches seem not to be 

the most efficient way to mimic the joint torque and harvest mechanical energy during gait to 

be released with an appropriate timing, so alternative technologies should be explored, such 

as hydraulics, which can exploit the energy recycling behaviour characterising a human joint 

together with providing a continuous control of the joint torque. 

 

 

2.2.3 Hydraulics for damping and/or transmission  
 

The previous sections have reviewed designs based on mechanical linkages (i.e. clutches and 

springs), both with and without external power sources. This section and the following one 

focus on lower-limb prostheses based on hydraulics. Hydraulics technology has been used in 

prosthetics broadly for two main purposes: damping or actuation (i.e. electrically powered).  

 

In this section, those prostheses in which hydraulics is used for damping and/or stabilising the 

foot, for synchronisation between the knee and the ankle joints, and for actuation are briefly 

reviewed. 

 

Designs using hydraulics for damping and/or terrain adaptation 

Many hydraulic ankles have been commercialised in the last decades, containing hydraulic 

cylinders that provide for only shock absorption at heel strike, acting as dampers dissipating 

energy, or also terrain adaptation. The latter may include a microprocessor that varies the 

hydraulic resistance level (such as the Elan foot by Blatchford and the Raize foot by Fillauer) 

to automatically optimise foot stability when walking on slopes and uneven terrain, and also 

during standing. The same working principle has been used in a number of knee prostheses, 

like the C-Leg (Dedić & Dindo, 2011). 

 

Designs using hydraulics for damping and synchronisation between the knee and the ankle 

joints 

A few examples of knee-ankle prosthetic legs based on hydraulics exist. Some of them were 

developed in the second half of the 20th century and are still available today. In summary, 

these designs provide coordinated motion of the ankle and the knee joints to ensure ankle 

dorsiflexion for ground clearance (e.g. the HydraCadence (Wilson, 1968)), but without 
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providing any additional energy at the ankle joint for push-off (Flynn et al., 2014). The 

HydraCadence also provides for swing control in term of a hydraulic resistance at the knee 

joint through a hydraulic cylinder, likewise the Mauch SNS, which also provided for stance 

control (Wilson, 1968).  

 

Electrically-powered devices using hydraulic actuation 

Flowers and Mann (1977) developed a simulator of knee prostheses based on an 

electrohydraulic servo system, in which knee flexion and extension is allowed by a hydraulic 

cylinder driven by a power supply. By actively providing power at the knee joint, it is possible 

to perform activities such as walking on slope and stair climbing. Different studies investigated 

the use of an electrically powered hydraulic system for the actuation also of the ankle joint: 

for instance, the ankle-foot prosthesis by Woo et al. (2014), or the transfemoral prosthesis 

SmartLeg by Dedić and Dindo (2011), which incorporates one hydraulic actuator at the knee 

and a second one at the ankle, both electrically powered. The use of an actuator at the ankle 

joint allows, as for powered clutch-and-spring prostheses, to assist with forward propulsion 

during push-off through a peak torque and power similar to those ones of an anatomically 

intact subject, but with often no advantage in the rest of the gait cycle. 

 

 

2.2.4 Hydraulics for energy storage and release 
 

This section reviews the small number of designs in which hydraulics is used neither as a 

passive damper nor as an actuator with a power supply, but as a means of energy storage and 

release.  

 

A hydraulic prosthetic knee developed at the Cleveland State University by van den Bogert et 

al. (2012) and patented by Smith et al. (2014) uses a hydraulic accumulator for energy storage 

and return. The knee is composed of a rotary hydraulic actuator, which is a fixed displacement 

actuator; a spring-loaded hydraulic accumulator responsible for energy storage; and a low-

pressure accumulator that absorbs changes in volume without pressure change (Figure 2.34). 
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Figure 2.34 Hydraulic circuit diagram by van den Bogert et al. (2012) for a prosthetic knee joint with a rotary 
actuator, two valves and two accumulators. The rotor is attached to the socket, while the stator and the rest of 
the hydraulic circuit are attached to the shank. P is the pressure, v the flow rates, u indicates the valve control 
and ϕ the knee flexion angle. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two valves control the actuator: valve 1 allows flow to the high-pressure accumulator where 

energy is stored, while valve 2 bypasses the accumulator. During stance, valve 2 is closed while 

valve 1 is open to allow flow into the accumulator for energy storage, and out of the 

accumulator for energy return) During swing, valve 2 is open and valve 1 is closed to allow the 

leg to swing. This last configuration corresponds to a normal knee prosthesis providing 

controlled damping, like the C-Leg, as the high-pressure accumulator is not used. The joint 

torque can only be controlled by throttling the flow through the valves to adjust the pressure 

drop across them. This means introducing significant energy dissipation, and hence 

inefficiencies, into the system. The authors also noted that it may be necessary to partially 

close valve 1 during stance to allow some energy dissipation. Further, the authors assumed 

no leakages in the actuator, as well as small loss coefficients for the valves, so further work is 

needed to evaluate the system performance with commercially available valves. Simulation 

conducted using a computational model to derive the optimal control of the valves for 

different activities, such as walking, running and sitting-standing, showed that the device can 

replicate knee angles and torques (see Figure 2.35), which positions it favourably compared 

to most of the unpowered and powered clutch-and-spring transfemoral prostheses (see 

Figure 2.17 and Figure 2.33). Energy stored into the accumulator can be used for those 

activities requiring net positive work over many gait cycles. A sensor-based controller should 
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Figure 2.36 Hydraulic circuit of the prosthetic knee by Wilmot et al. (2013), with the hydraulic cylinder, and the 
high and low-pressure accumulators (u indicates the valve control).  
 

Figure 2.35 Outputs of the simulation of the hydraulic prosthetic knee by van den Bogert et al. (2012): knee  
angle (left) and torque (right) during walking with an optimal valves control. Dotted lines represent the desired 
profile from an anatomically intact subject, while the solid lines represent the simulated output of the knee 
prosthesis. 
 

be added to manage the valves opening and closing in view of a possible commercialisation 

(van den Bogert et al., 2012). 

 

 

 

 

 

 

 

 

 

The same research group developed another knee prosthesis able to harvest energy, replacing 

the rotary actuator with a linear one (i.e. a hydraulic cylinder) (Wilmot et al., 2013). Figure 

2.36 shows as the rest of the hydraulic circuit is basically the same as the previous design: a 

high-pressure accumulator (HPA), a low-pressure bladder accumulator (LPA) to keep the 

pressure constant and two valves. Also in this case, the authors only ran simulations of the 

new device, which showed a good tracking of the thigh and the knee angle (the former is 

better). Optimisation is still necessary before commercialisation.  
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Figure 2.37 Hydraulic knee prosthesis by Richter et al. (2016). 

A last study was conducted by Richter et al. (2016) based on the design developed by van den 

Bogert et al. (2012), replacing the rotary actuator with a linear one integrated in a crank-slider 

mechanism, often used in knee prostheses (see Figure 2.37).  

 

 

 

 

 

 

 

 

 

 

 

The working principles of the system are the same as the van der Bogert’s model. The design 

was tested using a robotic hip emulator that reproduces gait on a treadmill. Results showed 

that, despite the system being able to mimic knee kinematics, it is highly inefficient from the 

energetic point of view: the power at the accumulator is much smaller than the power 

transferred from the knee joint, and most of the input power is dissipated across the valves. 

Nevertheless, the authors speculated that the use of this device with the accumulator that 

stores and releases energy during walking could reduce the metabolic cost of walking of 

transfemoral amputees (Richter et al., 2016). 

 

In summary, all the devices designed at Cleveland State University are semi-active: power is 

required only to activate the valves and the controller. Therefore, the required capacity of the 

battery would be much smaller than those required for active prostheses. The key feature, 

the use of a hydraulic accumulator allows for the storage of energy that can be used when 

needed, either within the same gait cycle or during following cycles. These devices can 

generate a smooth profile for knee biomechanical parameters such as angle, torque and 

power, whereas all the other clutch-and-spring based designs cannot (see Figure 2.33 and 

Figure 2.35 for a comparison). Nevertheless, a common feature of the three Cleveland State 

designs discussed here, is that knee torque can only be controlled by using valves to throttle 
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the flow to adjust the pressure drop across them, hence dissipating energy and making the 

system inherently inefficient. This observation suggests that a similar biomimetic design could 

be used for the ankle joint to match the non-linear torque of an intact ankle, purely relying on 

the storage of eccentric work during gait in terms of pressurised fluid. 

 

Koganezawa et al. (1987) reported an unpowered transfemoral prosthesis (WLP-7R) with a 

hydraulic circuit integrated in the shank (2.4kg). The cylinder at the knee joint is connected to 

the one at the ankle joint, so that the two joints are counterbalanced (see Figure 2.38). When 

the ankle dorsiflexes during stance, port B is closed thanks to an upward motion of the ankle 

piston. This leads also to an upward motion of the knee piston during stance, preventing knee 

buckling during weight bearing. During this phase, energy is stored in the spring accumulator 

via the flow through port A. When the knee starts to bend at the end of the stance, both the 

knee and ankle piston move downward, opening port B. In this way, flow is allowed from the 

accumulator to the cylinder, releasing energy to assist with knee extension during swing 

(Figure 2.38). The prosthesis allowed knee-ankle coordination, a smooth transition from 

stance to swing phase and stairs walking, but it did not reach the market (Elliott, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.38 Transfemoral prosthesis (WLP-7R) by Koganezawa et al. (1987). 
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Figure 2.39 (A) Hydraulic transfemoral prosthesis developed by Sophyn and Koganezawa (2015) and (B) its 
hydraulic circuit.  

This design was resumed a few decades later by Sophyn and Koganezawa (2015): their 

prosthesis (1.9kg), despite still based on hydraulics to prevent knee buckling under user’s 

weight during stance and to generate knee extension, did not allow for energy storage and 

return to and from an accumulator (see Figure 2.39). 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.5 Orthoses and exoskeletons which use hydraulics to store and return energy  
 

Given the scarcity of prostheses based on hydraulics for energy storage purposes, the review 

was enlarged to include orthoses and exoskeletons. In most of these devices hydraulics is still 

used as an actuator. For instance, Durfee’s team at the University of Minnesota developed an 

active ankle-foot orthosis (AFO) driven by electrically-powered hydraulic actuators to assist 

with ankle dorsiflexion and plantarflexion. Hydraulics was preferred to pneumatics, given the 

higher force/torque and power density it provides (Neubauer et al., 2014). For the same 

reasons, it was preferred to electric actuation in some exoskeletons (Ansari et al., 2015; Kim 

et al., 2015; Otten et al., 2015; Young & Ferris, 2017), together with the possibility of placing 

the power supply (i.e. motor and hydraulic pump) distally and transfer pressurised fluid to the 

actuators placed at the different joints via hoses and valves, avoiding the need for one motor 

and actuator per joint – as in the case of electric actuation - and, thus, reducing the device size 

and weight (Huo et al., 2016; Otten et al., 2015). Consequently, hydraulic actuators tend to be 

used for military and manufacturing purposes, or whenever quick movements are required, 

while electric actuators are preferred for rehabilitation purposes (Huo et al., 2016; Kim et al., 
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Figure 2.40 Pneumatic circuit by Kangude et al. (2009). The same layout is used also when hydraulic cylinders 
are considered.  

2015). Nevertheless, drawbacks of hydraulic actuators with respect to their electric 

counterparts are: lower accuracy due to a poorer force control (Kim et al., 2015); an inherent 

inefficiency due to the pressure drops across valves; and possible safety issue due to the 

hydraulic pump (Veale & Xie, 2016). An accumulator is often included in those exoskeletons 

based on hydraulic actuation not as an energy store but as a damper to absorb volume 

variation and to decrease pulsation effects caused by valve switching (Kogler et al., 2010), 

keeping the pressure constant in the circuit (Cao et al., 2010). 

 

Only one attempt of using hydraulics for energy storage purpose was found: Kangude et al. 

(2009), working with Durfee’s team at the University of Minnesota, explored the combination 

of functional electrical stimulation (FES) with an orthosis which uses a hydraulic circuit to 

harvest and release energy in a controlled manner during gait. Specifically, through FES, the 

quadriceps are stimulated to generate knee extension, storing excess energy which can be 

transferred to the hip joint to assist with forward progression: one cylinder at the knee stores 

energy in the hoses, which work as an accumulator, and transfers it through hoses to the other 

cylinder placed at the hip joint, which acts as an actuator, to assist hip extension and, thus, 

forward propulsion (Figure 2.40).  

 

 

 

 

 

 

 

 

 

 

 

Simulations showed that, of the approximately 14 𝐽 from quadriceps work, 5.4 𝐽 (i.e. about 

39%) were stored in the accumulator (i.e. hoses), of which 5 𝐽 (i.e. about 92.60%) were lost 

at the proportional valves because of high friction losses, and just 0.4 𝐽 (i.e. the remaining 

7.40%) were available for hip extension. Thus, they decided to build a prototype using 
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pneumatic cylinders. Just a small battery was needed for the microprocessor to control valves 

opening and sensors, so that it may still be considered as an unpowered device.  

 

Finally, Chin et al. (2012) investigated the harvesting of mechanical energy from human 

motion in terms of fluid power, without the need for a power source. A bellow integrated in 

the shoe sole allows fluid flow, under the user’s weight, to a pneumatic or hydraulic cylinder 

external to the shoe, harvesting pneumatic or hydraulic power. In their study, the authors did 

not use the stored energy, but they speculated that this mechanism could be used to power 

orthoses.  

 

 

2.3 Discussion 
 

Although unpowered clutch-and-spring devices represent a cost-effective solution, the use of 

clutches and springs offers only discrete control, through spring locked and spring released, 

rather than continuous, preventing the adjustment of the ankle torque in a controlled and 

“smooth” manner (Richter et al., 2016). As a consequence of the fixed mechanical properties 

of these compliant components, most of these devices are not able to replicate the ankle 

torque, storing all the negative work done during the stance phase of walking (Figure 2.2): 

some of them just store the small amount of negative work at load acceptance- (e.g. the 

Collins and Kuo’s device), while others are able to store the eccentric work done during mid 

and terminal stance. With the exception of Williams and Nickel’s designs (Nickel et al., 2014; 

Williams et al., 2009), and the WalkMECHadapt (Unal et al., 2014), most of these designs 

cannot adapt the ankle torque profile to suit different speeds and slopes.  

 

The issues of the complexity and, in some cases, weight of clutch-and-spring based designs is 

particularly stark in the integrated transfemoral prostheses (e.g. the WalkMECH and the 

HEKTA), which allow energy transfer from the knee joint to the ankle joint using mechanical 

linkages, springs and cables. Despite the additional weight and complexity, transfemoral 

amputees would benefit from this transfer: for instance, the eccentric work done at the knee 

at the end of the swing phase, usually dissipated through damping systems in commercially 

available prosthetic knees, and approximately amounting to 13J in an 80kg person according 

to Geeroms et al. (2013), may be stored and released later on during push-off at the ankle 
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joint to assist with forward propulsion, when about 18J are needed in an 80kg person 

(Geeroms et al., 2013). Nonetheless, the stored energy is completely returned during push-

off, and the whole system is reset during swing in preparation for the next gait cycle, meaning 

any excess energy captured during a given gait cycle cannot be exploited in subsequent gait 

cycles. Hence, given the drawbacks of these integrated designs, alternative technologies 

should be investigated to realise an efficient energy transfer.  

 

The second group of devices uses a battery and electric motor in combination with clutch-and-

spring mechanisms. The electric actuator generally controls ankle angle throughout the gait 

cycle, and various designs have demonstrated peak torque and power during push-off close 

to those of an anatomically intact joint. Nevertheless, matching the quasi-stiffness of the ankle 

joint (Figure 2.6) throughout the gait cycle is still a distant goal for most of these devices: only 

the SPARKy, the Walk-Run and the BiOM foot show a biomimetic ankle torque, and these same 

devices together with the AMP-Foot 3 also match the power profile. Those devices able to 

vary the equilibrium position of the compliant element included in the actuator (such as the 

BiOM foot, the ankle component of the CYBERLEG α- and β-Prostheses, and the AMP-Foot 3) 

allow for slope and speed adaptation, which is clearly an advantage over passive devices. All 

the other devices cannot vary their mechanical properties to adapt to different tasks.  

 

However, the power supply further increases the weight and size of the device, leading likely 

to an increase of the metabolic cost and gait asymmetries (J. D. Smith & Martin, 2013). This 

issue is amplified in transfemoral prostheses where mechanical linkages are used for the 

energy transfer between the knee and the ankle joints (e.g. the CYBERLEG α- and β-

Prostheses), and when variable stiffness actuators or explosive elastic actuators are used, 

making the device also too complex for a prosthesis (Cherelle et al., 2014). Therefore, although 

an appropriate magnitude and timing of the energy return during push-off should contribute 

to a decrease of the metabolic cost of walking with respect to a passive conventional or ESR 

foot, added weight and volume may nullify this advantage. In addition, the number of studies 

investigating the real effectiveness of these new active devices on the metabolic cost of 

amputee’s walking is still small and with small samples. 

 



  Chapter 2: Literature review 

54 
 

Moreover, batteries introduce issues related to the duration of a single charge, which limits 

amputee’s autonomy, and limited battery life, in part due to frequent charge/discharge. 

Finally, the commercial devices are extremely expensive and need access to highly specialised 

facilities for repair because of their complexity.  

 

In conclusion, despite designed to mimic the ankle quasi-stiffness, most of these active clutch-

and-spring devices struggle in mimicking the non-linear quasi-stiffness of the ankle joint: they 

mainly provide a net positive peak power at the ankle joint during push-off to assist with 

forward propulsion, which does not necessarily lead to a reduction of the metabolic cost of 

walking (Russell Esposito et al., 2015) or gait asymmetries (Ferris et al., 2012). In addition to 

the device weight and size, training issues may further compound this apparent disconnect 

(Ferris et al., 2012). Springs included in these designs seems not to be the most effective 

technology to replicate the ankle torque, harnessing the energy that may be stored during the 

gait cycle and released later at the right instant for forward propulsion.  

 

The review, then, goes through prostheses based on hydraulics. In addition to those ones in 

which hydraulics is mainly used for damping and/or transmission (both powered and 

unpowered), unpowered prostheses in which hydraulics is used for energy storage purposes 

are investigated. The designs developed at Cleveland State University by Van den Bogert et al. 

(2012), Wilmot et al. (2013) and Richter et al. (2016) use a fixed displacement actuator. 

Therefore, the prosthetic joint torque can only be controlled by throttling the flow through 

the valves to adjust the pressure drop across them and, hence, dissipating energy. So, unless 

the valves are fully closed or fully open (no torque control), this is an inherently inefficient 

approach. The design by Kangude et al. (2009) confirmed the inefficiencies introduced by the 

use of proportional valves. This is a well-known issue of hydraulic actuation also in robotics 

applications, as Guglielmino et al. (2010) stated: “From an energetic point of view proportional 

control is dissipative and inefficient”. 

 

The hydraulics-based prosthesis designs, despite the energy losses due to proportional valves, 

showed that it is possible to continuously control the torque profile at a joint, storing and 

releasing energy in terms of pressurised fluid. In addition, by storing energy in a hydraulic 

accumulator, this energy can be returned also in subsequent gait cycles. These features 
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contrasts with all the powered and unpowered clutch-and-spring devices discussed above. 

The hydraulics-based orthoses and exoskeletons, although mainly using fluid for actuation 

rather than energy storage and return, highlighted some of the potential benefits: the power 

supply can be placed distally and pressurised fluid transferred to the actuators via hoses and 

valves. Finally, the design by Kangude et al. (2009) showed the potential for a simple, light and 

flexible solution based on hydraulic technology, demonstrating features of energy storage and 

release and transfer of energy via pressurised fluids.  

 

In conclusion, harvesting energy from human motion in prosthetic design has the potential to 

improve amputee mobility by reducing the metabolic cost of walking, and it has received more 

attention in recent years. However, electrical systems are not well suited to the rapid energy 

storage and return requirements of gait. Mechanical springs are better, but inflexible and not 

well suited to producing biomimetic ankle torque or transferring energy between prosthetic 

joints. This review has highlighted the potential advantages of using miniature hydraulics and, 

in particular, using an accumulator as an energy store and transferring energy between joints 

through simple fluid connections (i.e. pipes).  

 

 

2.4 Previous work at the University of Salford 
 

As a result of the drawbacks of the attempts described above and the advantages associated 

with the use of hydraulics, work at Salford has focussed on the feasibility of using miniature 

hydraulics to satisfy the following design requirements for a new advanced lower-limb 

prosthesis: 

 Allow control of ankle torque throughout the gait cycle to provide a natural gait and also 

slope adaptation. 

 Store all of the mainly negative work done from heel strike until the end of the terminal 

stance phase, corresponding to maximum dorsiflexion. 

 Release the stored energy during push-off. 

 Allow the transfer of energy between the knee and the ankle joints at any time during the 

gait cycle. 
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Figure 2.41 (A) Sketch and (B) hydraulic circuit of the second concept design developed by Bari (2013). 

The first concept design was studied by Bari (2013) during his PhD, based on a hydraulic 

accumulator, a low-pressure tank, and a variable hydraulic displacement actuator (VDA), 

which provides ankle torque driving the ankle joint via a gearbox to reduce the VDA size. The 

VDA stores energy from heel strike to maximum dorsiflexion, working as a pump that pumps 

oil from the tank to the accumulator, and energy is then returned during push-off through 

fluid flow from the accumulator to the tank, through the VDA working as a motor. Despite 

simulations showed improvements on conventional and ESR feet and designs based on clutch-

and-spring mechanisms in terms of peak power during push-off and ankle torque throughout 

the gait cycle, size and weight were incompatible with those of a lower-limb prosthesis. A 

second design addressed this issue by adding a parallel spring (a hydraulic cylinder) to reduce 

the torque load on the VDA and, thus, its size and weight (Bari, 2013). In this case, the 

hydraulic cylinder (Figure 2.41) is the major work provider: the foot rotation around the ankle 

joint causes piston motion inside the cylinder and, therefore, fluid flow from the cylinder to 

the accumulator. As no fluid flow between the cylinder and the tank exists, the VDA, which 

does not drive directly the ankle joint, provides the difference between the required work and 

the work done by the cylinder, working as a pump during the eccentric phase of stance, and 

as a motor during push-off. Moreover, the VDA rotation causes the cylinder rotation and, 

consequently, a linear motion of the sliding plate, varying the lever arm of the spring from the 

ankle joint and, thus, controlling the ankle torque. 

 

 

 

 

 

 

 

 

 

 

 

This last concept design proved to be feasible for a prosthesis in terms of size and weight, 

amounted to 2.9kg for the foot and the shank segment, which may be reduced using bespoke 



  Chapter 2: Literature review 

57 
 

Figure 2.42 (A) A multi-joint version of the Salford’s hydraulic VDA based design using a single accumulator and 
the VDAs at the two joints (knee and ankle). (B) Schematic of the concept design. The figure is sourced from 
Gardiner and Howard (2016). 

components. Simulations showed a continuous torque control and higher peak power than 

the first design on level and downhill walking , with smaller losses, while uphill walking is 

poorly matched, and a feasibility study demonstrated size and weight compatible with a 

prosthesis. According to Bari, this was the first study showing that a conceptual design of a 

lower-limb prosthesis, specifically an ankle joint, based on miniature hydraulics with 

performances equal to those of active devices is feasible: it can mimic the energy recycling 

behaviour of the ankle joint during gait while controlling its torque. Moreover, in the same 

study, the potential of hydraulic accumulators for an efficient energy storage and release is 

proved, given their inherent high-power density, which makes them well suited to 

miniaturisation, and ability to be charged and discharged over a huge number of life cycles. In 

addition, they can easily be used also to obtain energy transfer between joints. It is therefore 

unsurprising that others have explored this approach (see sections 2.2.5). Nevertheless, a 

prototype of Bari’s design was not realised. 

 

However, a third concept design was studied by Gardiner et al. (2017) at the University of 

Salford and it is shown in Figure 2.42: it was based on a hydraulic accumulator, a VDA driven 

by the ankle joint via a gearbox, with a parallel ankle joint spring to reduce the torque demand 

on the VDA. 

 

 

 

 

 

 

 

 

 

 

 

Its most important features are:  

 The VDA allows continuous control of ankle torque such that it can follow any desired 

profile over the gait cycle, but without the need for throttling losses across valves as is the 
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case for the designs discussed above which use fixed displacement actuators. However, 

the disadvantage is that leakage losses are greater in VDAs than in fixed displacement 

devices because of seal clearance.  

 It is a fully-passive device and, therefore, does not require an external power supply such 

as a battery. 

 Any eccentric (negative) ankle work done in stance prior to push-off is stored in the 

accumulator and returned whenever concentric (positive) work is required, mainly for 

push-off.  

 The accumulator can store and return energy over many gait cycles, which could be used 

to assist short periods of uphill walking. 

 Energy transfer between the knee and the ankle joints is allowed through the accumulator 

and pipes. A multi-joint version of the design uses a single accumulator and two VDAs at 

the knee and ankle joints to produce the required torques at any point in the gait cycle 

with no synchronisation problem between joints. 

 A parallel spring placed between the foot and the shank of the prosthesis, with a stiffening 

profile, minimises the torque required from the VDA and hence its size.  

 

In this new concept design, high energy losses are avoided through continuous control of the 

torque by adjusting fluid displacement per radian, rather than by adjusting pressure using 

throttling valves. This allowed the design to mimic intact ankle torque with an acceptable 

energy efficiency. Simulations showed that this design provides controlled and timely energy 

storage and release: in level walking, normal push-off is achieved and, per gait cycle, the 

energy stored in the accumulator increases by 22% of the requirements for normal push-off, 

which can be used to assist with short periods of uphill walking. Although the results are 

promising since energy losses amount to approximately 10% during stance, the feasibility 

study revealed some problems with the potential prototype. In particular, for this design to 

be a success, a new miniature, low-losses, lightweight VDA would be required characterised 

by half the displacement of the smallest commercially available device. As the application area 

is very small in industrial terms, it was highly unlikely that the fluid power industry would 

devote the major resources needed to attempt such a dramatic reduction in size. 

Nevertheless, this study confirmed the potential of hydraulics to recycle energy efficiently at 

the ankle joint over many gait cycles with a continuous control of the ankle torque, suggesting 
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further work is warranted. Hydraulic accumulators seem to be the best option to efficiently 

store and release energy, while the pipes represent the best choice to allow a lightweight and 

flexible energy transfer between the knee and the ankle joints, avoiding the use of complex 

mechanical linkages and gears. In this way, braking energy at the knee may be stored to be 

used at the ankle during push-off for forward propulsion (Bari, 2013; Gardiner et al., 2017). 

 

The review and the previous designs developed at the University of Salford informed the 

direction of this PhD project, as there is still an opportunity for a truly transformative research 

to innovate current ESR prostheses using miniature hydraulics.  

 



 

 
 

 

 

3. Chapter 3: Conceptual Design 
 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo Da Vinci, Mechanical hammer with eccentric cam 

 

 

 

 

 

 

 

 

 

 

 

" Study science first and then practice science born from it." 

 

(Leonardo Da Vinci) 
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3.1 Introduction 
 

Building on the potential of an accumulator-based system with energy transfer between joints 

via pipes, a novel concept design is presented in this chapter. Results of the previous work at 

Salford highlighted that complex hydraulic components beyond the expertise of prosthetic 

companies, like a VDA smaller than those existing on the market, are to be avoided. Thus, the 

primary aim of this PhD project was as follows: to design a novel prosthetic ankle using simple 

miniature hydraulic components, including an accumulator for energy storage and return, to 

imitate the behaviour of an intact ankle. Specifically, the following objectives were set: 

 

1. To develop a concept design of the ankle mechanism, using simple hydraulic components, 

to:  

• Mimic intact ankle torque, to store the mainly negative work done from heel 

strike to maximum dorsiflexion in the accumulator and release it during push-

off in a controlled way in terms of timing and amount of energy flow. 

• Allow energy transfer between the knee and the ankle joints via pipes – for 

example, storing the eccentric work done at the knee at the end of the swing 

phase to be used at the ankle to assist with forward propulsion during push-

off.  

 

2. To demonstrate through simulations that the expected performance of the new design 

justifies physical prototyping in the future. 

 

To achieve these ambitious objectives, a research programme was planned according to a 

typical engineering design process. Different models exist for the design process, and one of 

the most common was developed by Pahl and Beitz (Pahl et al., 2007), with the following main 

phases: definition of the requirements and constraints on the design; conceptual design to 

develop alternatives solutions to the same problem; embodiment design – or preliminary 

design – to engineer the best solution, defining the preliminary shape and materials; finally, 

detail design to specify all the details of the final design, producing the related technical 

drawings and documentation. Consistent with this model, the process of moving from 

requirements to testing of a design with amputees might be considered as follows: 
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1. Requirements and constraints definition. 

2. Conceptual design. 

3. Mathematical modelling of the new design. 

4. Implementation of the simulation model in MATLAB (R2018b, The MathWorks, Inc., 

Natick, MA, USA) and testing. 

5. Simulation based design. 

6. Simulation based performance assessment to justify continuing to the following stages. 

7. Design for prototype manufacture. 

8. Prototype manufacture by the industrial partners. 

9. Mechanical testing according to the ISO standards. 

10. Testing with a small cohort of amputees for initial proof of concept. 

 

This PhD was concerned primarily with stages one to six of the list. The remainder of this 

chapter focuses on requirements and constraints definition, conceptual design, and a 

description of the main components of the chosen concept design. The mathematical model 

of the new design is developed in Chapter 4, while Chapter 5 covers the explanation of the 

simulation model for the whole system, implemented in MATLAB. Chapter 6 focuses on the 

preliminary design, based on simulations, while a sensitivity study to assess the performance 

of the new system is described in Chapter 7. Chapter 8 sums up the whole PhD drawing the 

main conclusions.  

 

 

3.2 Requirements and constraints 
 

As the first step of the design process, a list of technical requirements and constraints was 

defined, which can be used to evaluate the design as it evolves. The technical requirements 

(i.e. demands the new device must necessarily meet) of the novel prosthetic ankle were: 

 

1. To mimic the torque of an intact ankle in order to store energy during the stance phase of 

walking, prior to push-off. 

2. To mimic the torque of an intact ankle during push-off to release the stored energy for 

forward propulsion. 

3. To allow energy transfer between joints, starting with the ankle joint and the knee joint. 
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The constraints were: 

 

1. To use a hydraulic accumulator for the energy storage and release process, and pipes for 

the energy transfer.  

2. To prioritise simplicity in the selection of other hydraulic components, such that they could 

be easily manufactured or sourced externally, by prosthetic companies. 

3. The prosthesis should match the shoe size and height of the missing anatomy, and weigh 

no more than the missing anatomy. The typical lower-leg length from the ground to the 

knee joint is 0.285 times the height of the subject, while the typical mass of the foot and 

shank segments is 0.061 times the mass of the subject (Winter, 2009). Considering a 70 𝑘𝑔 

subject, with a height of 175 𝑐𝑚 (Winter, 1984), this means a lower-leg length of 49.88 𝑐𝑚 

with a corresponding mass not more than 4.27 𝑘𝑔. The average stump length in transtibial 

amputees according to Isakov et al. (1996) is 15.1 ±  3.2 𝑐𝑚. Hence, an average distance 

from the ground to the distal connection with the socket is obtained by subtracting the 

average stump length from the lower-leg length: (49.88 − 15.1) 𝑐𝑚 = 34.78 𝑐𝑚. 

Furthermore, to be conservative, an upper value for the stump length may be calculated 

by adding 2 𝑆𝐷𝑠 to the mean, which then includes 97.72% of amputees: (15.1 + 3.2 ∗

2) 𝑐𝑚 = 21.5 𝑐𝑚. This leads to a smaller (more conservative) distance from the ground 

to the distal connection with the socket: (49.88 − 21.5) 𝑐𝑚 =  28.38 𝑐𝑚. This is the 

available height for the new prosthesis assembly and corresponds to a mass of 

approximately 2.43 𝑘𝑔 (an estimate based on the proportion of the lower-leg). 

 

 

3.3 Conceptual design 
 

The conceptual design process started with brainstorming involving the whole team, made up 

of the PhD student and supervisors, to explore a range of possible design concepts consistent 

with the design objectives, requirements and constraints, opting always in favour of the 

simplest solution, and finally selecting the solution to be implemented. 

 

By assuming an accumulator-based system for the novel hydraulic ankle, fluid flow to and 

from the accumulator must be allowed to respectively store and release hydraulic energy in 

it. Consequently, a continuous power conversion in a controlled and timely manner during the 
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gait cycle is necessary: conversion of mechanical power given by the rotation of the ankle joint 

to fluid power and vice versa. Hence, the first step is the selection of a hydraulic actuator to 

allow this power conversion and, thus, to provide torque. The remainder of this section covers 

this topic and the definition of the final layout of the new system.  

 

 

3.3.1 Power conversion 
 

The most common and simple design of hydraulic actuators to convert mechanical power to 

fluid power and vice versa is the hydraulic cylinder, which is a linear actuator. Developing 

miniature hydraulic components is challenging not only in terms of size and weight required, 

but above all in terms of efficiency, as Xia (2015) explained. Nevertheless, small-scale hydraulic 

cylinders are used in a number of assistive technologies such as surgical tools, prosthetic 

fingers, prosthetic hands and exoskeletons, and other non-medical applications, for instance 

robots (Neubauer, 2017). Therefore, they were chosen to store and return energy from the 

accumulator. 

 

Considering the design of a basic hydraulic circuit (Cundiff, 2002), it must include: 

 A prime mover that provides mechanical power input to the system. 

 A way to convert mechanical power to fluid power. 

 A way to convert fluid power to mechanical power.  

 Valves. 

 An accumulator and a tank. 

 Pipes. 

 

In this novel prosthetic ankle, the prime mover is the ankle joint: the rotation of the prosthetic 

shank relative to the prosthetic foot during the gait cycle causes rotation of the ankle shaft, 

corresponding thus to mechanical power input to the system (in terms of torque and angular 

velocity). This mechanical power has to be transmitted to the rest of the system, so that the 

hydraulic cylinder can convert it in fluid power to be stored in the accumulator. The same 

process needs to happen also in the opposite direction: the hydraulic cylinder must convert 

the fluid power into mechanical power to be transferred to the ankle joint. Therefore, a 

mechanical transmission and a system to convert the ankle joint rotation into the linear 
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motion of the piston inside the cylinder and vice versa was needed. A gearbox was included 

in the system, in the “transmission line” of the ankle rotation to the rest of the system. 

Depending on the gears’ configuration, it may cause either a reduction or an increase of the 

force transmitted from the ankle to the cylinder.  

 

Many ways exist, then, to realise the rotary-to-linear conversion. The most popular are:  

 slider-crank mechanisms; 

 ball screw mechanisms; 

 cams. 

 

Slider-crank mechanisms are widely used in many different applications, including endoscopic 

surgical tools (Yagi et al., 2006). They also find applications in prosthetic devices: a crank-slider 

mechanism is used, for instance, in the powered clutch-and-spring prosthesis AMP-Foot 3 by 

Cherelle et al. (2016), and in prosthetic knees (e.g. Sup et al. (2008), Warner et al. (2016)). Ball 

screw mechanisms find applications in prosthetic devices too: the powered ankle-foot 

prosthesis BiOM relies on a ball screw driven by an electric motor to generate the angular 

rotation of the ankle (Au et al., 2007). Lastly, cams are characterised by being able to produce 

and control any output motion – translational, rotational or oscillating (Zhang et al.), and they 

are widely used in engineering for reciprocating motion applications, for which they are 

considered the gold standard (MachineDesign, 2007). Moreover, they are well suited for 

miniaturisation; they tend to be cheaper than the other mechanisms; they show better 

dynamic properties and can transmit more power as they permit the highest speed and load 

function (Rothbart, 2004).  

 

The first two requirements of the new ankle mechanism are related to the mimicking of the 

torque of an intact ankle. A target behaviour for an ankle prosthesis during the stance phase 

of walking is known to be given by the quasi stiffness of the ankle joint, as previously 

mentioned (Au et al., 2007; Hansen et al., 2004), which is the non-linear torque-angle 

relationship depicted in Figure 3.1. 
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During swing the prosthesis should only recover its equilibrium position, which in general 

corresponds to a null ankle torque when the prosthesis recovers its neutral angle. For this 

reason, the new ankle mechanism is designed to generate a non-linear torque-angle curve 

similar to the one of an intact ankle mainly during stance. As a result, cams appeared to be 

best suited to this: the possibility of manufacturing cams with specific profiles allows to draw 

the appropriate profile to generate the required torque. In the proposed design, the ankle 

rotation is transmitted to the cam through the gearbox and the camshaft, to which the cam is 

fixed, and then, through cam rotation, is converted in the linear motion of the piston inside 

the cylinder (see Figure 3.2) and vice versa. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Schematic of the approximate layout of a cam and one hydraulic cylinder. 

Figure 3.1 Torque-versus-angle curve for an anatomically intact ankle joint during level walking. The slope of 
this curve during stance is commonly referred to as “quasi stiffness” (Au et al., 2007; Hansen et al., 2004). Load 
acceptance, stance, push-off and swing are displayed with different colours according to the legend. 
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3.3.2 System design 
 

Figure 3.1 shows the torque-angle curve of an intact ankle joint to be characterised by four 

distinct parts, the transition between each is defined by the events of the gait cycle (see Figure 

2.2): load acceptance (in blue); mid and terminal stance (in red); push-off (in yellow); and 

swing (in purple). Four cam-ram systems, in which the cams drive the hydraulic rams, would 

be necessary to exactly mimic the four distinct phases of the required ankle torque. 

 

Alternatively, the system could be simplified by accepting less than perfect replication of the 

four phases. The difference between the eccentric work in stance and the concentric work in 

push-off is the most significant. Therefore, complexity could be reduced if only this excess of 

eccentric work is stored and carried forward to assist during short periods of uphill walking. 

Thus, to simplify the design, just two cam-ram systems may be considered for the two periods 

during which the largest amount of energy is stored and returned - mid and terminal stance 

(in red), and push-off (in yellow) (see Figure 3.1). Therefore, two different cams were used: 

one with a profile that replicates the ankle torque during mid and terminal stance (i.e. ankle 

dorsiflexion), and a second one with a profile that matches the ankle torque during push-off 

(i.e. ankle plantarflexion). Then, since the prosthesis should only recover its equilibrium 

position during swing as previously explained, and because the design should be kept simple, 

just one spring in parallel to the two cam-ram systems may be included to mimic the ankle 

torque during load acceptance. A torsional spring could be used to store the small amount of 

eccentric work done during load acceptance (see also Figure 2.2). However, the use of the 

same spring to bring the ankle back to its neutral angle during the swing phase may introduce 

some drawbacks as, for instance, there may be more energy stored in it during plantarflexion 

at the end of push-off than is needed to return the foot to neutral during swing.  

 

It is worth noting that all of the components discussed to this point, the accumulator, the two 

hydraulic cylinders, the two cams, the spring and the gearbox, should be easy to manufacture, 

even at the small-scale. 

 

To make the hydraulic circuit complete, auxiliary components were added: pipes to connect 

mainly the cylinders and the accumulator; a tank; and valves. These last components are 

fundamental to either connect or disconnect the two cylinders to or from the accumulator in 
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a timely manner during gait, providing only on/off control and hence not dissipating energy, 

by contrast to proportional control valves that provides flow resistance. For this reason, 

directional control valves (DCVs) were included.  

 

By combining together all these components to fulfil the design requirements/constraints, the 

layout of the final design implemented for this novel prosthetic ankle was obtained. It includes 

(see Figure 3.3): 

 A torsional spring that provides for standing stability, load acceptance and swing with the 

two rams switched off. Its equilibrium point coincides with the neutral angle of the 

prosthesis during standing, so that, by being placed in parallel to the gearbox and the cam-

ram systems and driven by the ankle joint, it reduces the torque they need to supply at 

the ankle joint.  

 A gearbox, placed in parallel to the spring, is driven by the ankle shaft and drives the 

camshaft, possibly increasing the ankle angle and reducing the ankle torque transmitted 

to the cam. Its starting design includes a two-gears train and, depending on the gear ratio, 

idler gears may be added. 

 A ram and cam combination referred to as “stance cam-ram system”, which in its working 

phase – i.e. mid and terminal stance, from maximum plantarflexion at the end of load 

acceptance to maximum dorsiflexion - adds to the spring torque to provide the ankle 

torque required and stores the eccentric ankle work done. Please, note that here the word 

“stance” refers to mid and terminal stance, so it is not used with its standard definition.  

 A ram and cam combination referred to as “push-off cam-ram system”, which adds to the 

spring torque to provide the right ankle torque for plantarflexion during its working phase 

– i.e. push-off, which is the concentric phase after maximum dorsiflexion. 

 A gas-charged accumulator, which stores and releases energy by compressing the gas. 

 Directional control valves to connect the hydraulic rams both to the gas-charged 

accumulator and to the tank (DC valve 1 and DC valve 2).  

 A tank (i.e. a low-pressure accumulator) at atmospheric pressure (𝑃𝑎𝑡𝑚). 

 Pipes to connect the hydraulic rams to the gas-charged accumulator. 

 

Figure 3.3 shows that the rotation of the prosthetic shank relative to the prosthetic foot, in 

the sagittal plane during the gait cycle, causes rotation of the ankle shaft and, in turn, rotation 
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𝑇𝑔𝑏 𝑇𝑝𝑠 

of the camshaft through the gearbox. The two cams then convert the rotary motion of the 

ankle into linear motion of the pistons inside the two hydraulic rams. During mid and terminal 

stance, the stance ram is connected to the accumulator, via DC valve 1 that allows fluid flow 

between the stance ram and the accumulator, but not between the ram and the tank; its 

piston moves up, and, as a result, oil flows into the accumulator, storing energy. At the same 

time, the push-off ram is connected to the tank so that its ram force is negligible. Then, during 

push-off, the push-off ram is connected to the accumulator as DC valve 2 allows fluid flow only 

between the push-off ram and the accumulator, its piston moves down, and, as a result, oil 

flows out of the accumulator, releasing energy. At the same time, the stance ram is connected 

to the tank so that its ram force is negligible.  

 

A)     

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

The ground frame represents the shank, to which the spring is fixed on its left side and to 

which the cylinders and gearbox casing are also fixed. The ankle shaft is fixed to the foot and 

ankle 
torque 

& 

rotation 

Figure 3.3 (A) Ankle joint rotation in the sagittal plane: plantarflexion and dorsiflexion. (B) Schematic of the new 
concept design, with the parallel spring (𝑇𝑝𝑠) that reduces the torque demand on the two cam-ram systems, and 

the gearbox (𝑇𝑔𝑏), which possibly increases cam rotation and reduces the ankle torque transmitted to the cam. 
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drives the cam shaft via the gearbox. In other words, here the foot is seen as rotating relative 

to the shank. A solid model of the main components of this novel hydraulic ankle was 

developed during the final stage of this PhD project and is shown in Figure 8.1 and Figure 8.2 

of Chapter 8.  

 

The novel prosthesis for the ankle joint is primarily aimed at the transtibial amputee. However, 

as a modular component to be placed between the foot segment, which may be a simple 

carbon fibre laminate, and the shank segment of the prosthesis, it would be suitable for people 

with more proximal levels of amputations. Furthermore, energy transfer is envisioned in a 

multi-joint version of the design, in which a similar device is placed at the knee joint, a single 

hydraulic accumulator is used to store energy, and pipes transfer energy between the knee 

and ankle joints in terms of pressurised fluid. However, the work described in this thesis 

focuses on the ankle joint design, while the implementation of the energy transfer system is 

envisioned in future work. 

 

The literature review confirmed the originality of this PhD project, since there are no concept 

designs matching the one proposed. The remainder of this chapter gives more details about 

each component of the system and the rationale behind their selection. 

 

Note that, throughout the remainder of the thesis, “low-pressure accumulator” and “tank” 

will refer to the same components, as will “ram” and “cylinder”. 

 

 

3.4 System components 
 

3.4.1 Cam  
 

Cams are machine elements with a curved profile that, through their oscillation or rotation, 

transmit a specific motion to another element called the follower. The follower constraint may 

be realised: through gravity only; with a return spring; it may be “positive-driven” using a 

follower moving in a groove cut on the face of a closed cam; or through multiple conjugate 

cams in which every cam has its own roller, but they are mounted on the same reciprocating 

or oscillating follower. Different shapes exist also for the follower (Zhang et al.). The most 
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common are (see Figure 3.4): a knife-edge follower; a flat-faced follower; a roller follower; 

and a spherical-faced follower. 

 

(a)                           (b)                          (c)                           (d) 

 

 

 

 

 

 

 

Only configurations with a rotating cam and a translating follower are shown in Figure 3.4, as 

this is the is the input/output motion desired for this specific application. In all the 

configurations shown above (Figure 3.4), the follower centre line coincides with the camshaft 

centre line: this is referred to as an “in-line” follower. Otherwise, it is possible to have the 

same configurations with an “offset” follower, where the offset is the distance between the 

two aforementioned centre lines (see Figure 3.5 (b)) causing a reduction of the lateral thrust 

in the follower. 

 

(a)                      (b)  

 

 

 

 

 

 

 

In the design presented here, a disk cam was chosen, given its advantages over a closed cam, 

in which the follower moves in a groove in the cam face: less manufacturing precision is 

required; it is cheaper; there is no backlash if the follower is properly constrained to keep the 

contact between cam and follower. Possible disadvantages of a disk cam come with the 

introduction of a spring to avoid the follower lifting off: the spring force usually makes the 

Figure 3.4 Typical followers of a disk cam: (a) a knife-edge follower; (b) a flat-faced follower; (c) a roller follower; 
(d) and a spherical-faced follower. 

Figure 3.5 (a) “In-line” follower and (b) “offset” follower. 
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contact force between cam profile and follower greater than in an equivalent closed cam, 

potentially reducing the life of the cam and increasing, in turn, other forces on the frame of 

the device (MechDesigner, 2017). 

 

A roller-follower mainly consists of a pre-assembled stem supporting a needle or ball bearing, 

and it was chosen for the following advantages: its availability on the market as it is widely 

used; it rolls on cam profile generating less scuffing wear than a follower that slides 

(MechDesigner, 2017); and it is most likely to accurately implement the contact constraint 

with the cam profile (Rothbart, 2004). Finally, a cam-follower configuration with an offset was 

chosen as it can be associated with a decrease in the forces acting on the cam-follower system, 

specifically between cam and follower and at the follower guide. Figure 3.6 shows the final 

cam-follower mechanisms chosen for this application.  

 

 

3.4.2 Hydraulic ram 
 

Two single-acting hydraulic cylinders were chosen for the design. The linear displacement of 

the piston inside the cylinder is given by the linear displacement of the follower of the cam 

system, as a fixed joint connects these two components. Friction is an important issue in 

hydraulic components, particularly small-scale ones. O-ring seals are necessary at the piston 

head to avoid leaks, and they generate friction and the modelling of these is covered later in 

the thesis (see section 4.4). Friction at the follower was also considered, as this must be as low 

as possible to avoid jamming. A really simple solution is the use of a sleeve with lubricant, but 

coefficients of sliding friction could range between 0.1 and 0.25, depending on the sliding 

velocity and the specific applied loads (Staros & Murphy, 1964). A better solution is the use of 

Figure 3.6 Cam-follower configuration chosen for the present application: a disk cam with a roller follower 
with offset. 
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a linear ball bearing as a guiding mechanism that supports the translating follower: typical 

values for the coefficient of friction of lubricated linear ball bearings with non-contact seals 

range from 0.0015 for heavy loads to 0.005 for light loads; if there are seals, the coefficient of 

friction will be higher due to the added friction from the seals (SKF, 2011, p. 43). Finally, the 

use of two self-aligning linear ball bearings offers the advantage of dealing with misalignment 

of the shaft which may come with the moment of the force applied by the cam to the roller. 

These allow an angular adjustment of ± 30 minutes of arc (i.e. 0.5°) without affecting the 

dynamic load rating (SKF, 2011, p. 34). For these reasons, two self-aligning linear ball bearings 

were chosen. Friction at the follower guide bearings is evaluated in section 4.3.3.  

 

A return spring allows the piston to recover to its starting position, and is fundamental for the 

stance ram: during its working phase, the piston moves upwards inside the cylinder pumping 

oil into the accumulator, while, during its non-working phase, it moves downwards sucking oil 

down from the accumulator into the cylinder. In this last case, the cam rotates in the opposite 

direction with respect to the working phase. Consequently, to ensure the contact between 

the cam and the follower, the cam should work in tension, requiring either the use of a 

magnetic cam or a return spring. In this design, a linear return spring is chosen to help in 

holding the follower in contact with the cam, counteracting the follower inertia and all the 

friction terms. This is implemented via a preloaded compression spring, usually a helical coil, 

embodied within the single-acting cylinder: it may be fixed, for instance, at one end to the 

rod-side of the piston head and at the other to the rod-side inner cap of the hydraulic cylinder. 

As a result, the spring is stretched when the stance piston moves upwards (i.e. during mid and 

terminal stance), and it comes back when the piston moves downwards (i.e. during push-off). 

If the spring force is too small, it will allow the detachment of the follower from the cam; but 

an excessive spring force may be reflected throughout the system (e.g. more wear) (see 

section 5.2.2 for return spring sizing). 

 

 

3.4.3 Accumulator 
 

Hydraulic accumulators are generally classified by the way they store energy (MachineDesign, 

2002): spring-loaded, weight-loaded, and gas-loaded. Weight loaded accumulators were not 

appropriate for obvious reasons. Gas-loaded (or gas-charged) accumulators are the most 
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common type and were used in the previous design by Gardiner et al. (2017) and they are not 

subject to friction losses as is the case with spring-loaded accumulators. They store energy 

through the compression of a gas, usually nitrogen. Gas-charged accumulators are further 

divided into three different types: diaphragm, bladder and piston accumulators (see Figure 

3.7 for a comparison). For this application, small size and weight are critical requirements. A 

review of the literature on accumulators, including technical data sheets (e.g. HYDAC (2015); 

REXROTH (2013); Parker Hannifin ), confirmed that the best option for this application is a gas-

charged diaphragm accumulator because it is lighter and better suited to miniaturisation than 

the others (see also Gardiner et al. (2017)). It is characterised, indeed, by the smallest weight 

and dimensions (nominal volumes starting from 0.075l (Parker Hannifin)), and also the lowest 

price; and it is recommended for applications characterised by small fluid volumes and low 

flow rates (see also Figure 3.7). Moreover, diaphragm accumulators may be mounted in any 

orientation. 

 

As Figure 3.8 shows, in a diaphragm accumulator there are two compartments: one for the 

hydraulic fluid and another for the gas, separated by an elastomeric diaphragm. The fluid 

compartment is connected to the rest of the hydraulic circuit. When pressure increases, fluid 

enters the accumulator compressing the gas; likewise, when pressure decreases, the 

compressed gas expands and fluid flows out of accumulator. Diaphragm deformation is not 

Figure 3.7 Comparison of standard gas-charged accumulators. Image source: HYDAC (2015, p. 5). 
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an issue as, generally, the changes in shape of the diaphragm are very small due to the tiny 

changes in oil volume, given the small flows that usually characterize this type of accumulator.  

 

Hydraulic systems typically operate at pressures of up to 200 𝑏𝑎𝑟 (Gardiner et al., 2017). To 

be conservative, in this work a maximum accumulator pressure of 100 𝑏𝑎𝑟 was set. To allow 

excess eccentric work (i.e. eccentric minus concentric work) to be stored during level and 

downhill walking and then utilised during uphill walking, the accumulator should be as large 

as is practical given size and weight constraints. A nominal volume of 250 𝑐𝑐 was chosen as 

this was considered to be small enough to be integrated with the pylon of the prosthesis. A 

steel diaphragm accumulator of this volume would weigh around 1 𝑘𝑔 (Parker Hannifin). 

However, composite construction would reduce this by around 75% (Crompton Technology 

Group Ltd, 2020). Furthermore, the pylon and accumulator could share structural elements, 

reducing the increase in mass associated with the accumulator.  

 

For illustrative purpose only, assuming it operates between 80 and 100 𝑏𝑎𝑟 and assuming 

adiabatic changes in gas volume, a 250𝑐𝑐 accumulator stores approximately 220 𝐽, according 

to a rough estimate based on trapezoidal integration. Assuming no losses, over each gait cycle 

of level walking there is excess eccentric work at the ankle joint of about 2.2 𝐽 (based on gait 

data from Lay et al. (2006)) that can be carried forward to be used in uphill walking. This means 

that around one hundred gait cycles will fill the accumulator, increasing the pressure from 80 

to 100 𝑏𝑎𝑟. Downhill walking (−15° slope) involves more eccentric work at the ankle and 

there is an excess over each gait cycle of about 14.6 𝐽 (based on gait data from Lay et al. 

(2006)). Therefore, around fifteen gait cycles will fill the accumulator. Once the accumulator 

is full (at its maximum pressure of 100 𝑏𝑎𝑟), a pressure relief valve would dissipate eccentric 

work in the form of heat, thus continuing to provide the necessary braking during downhill 

walking. In uphill walking there is net energy expenditure. On a +15° slope, there is excess 

concentric ankle work of about 21.6 𝐽 (based on gait data from Lay et al. (2006)). This means 

that, with a full accumulator, the novel design could power approximately ten uphill gait 

cycles, during which the pressure would drop from 100 to 80 𝑏𝑎𝑟. 

 

 

 



  Chapter 3: Conceptual Design 

76 
 

Figure 3.8 How a diaphragm accumulator works. Image source: HYDRO LEDUC (2010, p. 1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Directional control valve (DCV) 
 

Two directional control valves (DCV) were included in the design to provide on/off control 

with low pressure drop between the two cylinders and the accumulator and the tank. Two 3/2 

DCV are used in this specific hydraulic circuit: they present three working ports (or ways) - 

inlet, outlet, and exhaust (or tank), and two working positions (or flow paths) (see Figure 3.9). 

The DCV is assumed to be mounted directly onto the ram to avoid further energy losses along 

additional hydraulic conduits in between the same ram and the accumulator and tank. The 

tank holds fluid at atmospheric pressure. In this design, it is designed to surround the DCV 

attached to the ram, assuming no pipes at all between ram and tank, minimising therefore 

energy losses between these two components. A pressure relief valve is also necessary to limit 

pressure in the hydraulic circuit.  
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a)       b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.5 Auxiliary components 
 

Two main types of hydraulic conduits exist: those ones with a rigid fixed geometry - e.g. 

manifolds and metal tubes - and others with a flexible geometry – e.g. elastomer hoses. In 

case of flexible hoses, the elastic stretch of the conduit represents a source of compliance in 

small-scale hydraulic actuation systems (Neubauer, 2017). To overcome this issue, rigid pipes 

can be used in the hydraulic circuit between the ram and the accumulator, even if their weight 

will be higher. No conduits exist between the ram and the tank in this concept design, as 

previously explained. Considering the compressibility issues, the bulk modulus of the fluid, a 

measure of a fluid’s resistance to being compressed, is the reciprocal of compressibility (see 

section 4.6.2). If air is entrained in the fluid, the bulk modulus is significantly reduced and 

system stability decreases. For this reason, high pressures are used in small-scale hydraulic 

systems, in which trapped air may significantly impact the dynamic performance (Neubauer, 

2017, p. 16). In this design, a reduction in the compressibility losses is achieved reducing the 

fluid volume between ram, tank and accumulator through a minimisation of the pipe length 

between these components, as explained above. 

Figure 3.9 (a) On the left, a typical 3/2DCV set-up and its symbol. The three ports connect a high-pressure 
accumulator (H), a low-pressure accumulator (L), and a single-acting actuator (A). (b) The valve shifts between 
two working positions through the displacement of a control member - a ball, spool, or diaphragm – denoted 
by the signal at port S. One orifice is typically closed in these positions while the others two are fully open. 
Position I: the A-L orifice is maximally open and the H-A orifice is maximally closed. Position II: it is the reverse 
arrangement, with the H-A orifice being maximally open and the A-L orifice maximally closed. No physical 
connection exists between ports H and L and, therefore, no flow can develop across them. Image adapted from 
MATLAB R2016b, The MathWorks, Inc., Natick, MA, USA. 
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3.5 Conclusions 
 

In this chapter, the aim of the PhD project and its objectives were defined: the design of a 

novel prosthetic ankle based on simple miniature hydraulics and a hydraulic accumulator to 

replicate the energy recycling behaviour of an intact ankle, while providing continuous control 

of the ankle torque. In addition, energy transfer between the knee and the ankle joint should 

be allowed through pipes. A typical engineering design process has been followed, whose first 

two stages have been described in this chapter: the definition of the requirements and 

constraints of the design, and the conceptual design process to reach a final concept design 

for the novel prosthesis. 

 

By assuming an accumulator-based system to store and release energy, the first step has been 

the selection of a simple miniature hydraulic cylinder for converting the mechanical power 

given by the ankle joint rotation to fluid power and vice versa. A mechanical transmission is 

then necessary to convert the ankle rotation into the linear motion of the piston inside the 

cylinder and vice versa. Cams represent the best solution, as they are the gold standard for 

reciprocating motion  applications: the ankle rotation is transmitted to the camshaft, to which 

the cam is fixed and then, through its rotation, the cam allows the linear motion of the piston 

inside the cylinder to store and release the required amount of energy in the accumulator in 

the different phases of gait. Moreover, if manufactured with a specific profile, through its 

rotation, the cam generates a specific torque in output. For this application, to allow 

biomimetic ankle kinematics and kinetics, two different cams need to be used: one with a 

profile mimicking the ankle torque during mid and terminal stance (ankle dorsiflexion), and a 

second one with a profile that matches the ankle torque during push-off (ankle plantarflexion). 

Therefore, two cam-ram systems are considered for the two periods involving the largest 

energy flow: a “stance cam-ram system” to store energy during mid and terminal stance, and 

a “push-off cam-ram system” to return energy during push-off. A torsional spring, in parallel 

to the two cam-ram systems, is also included to mimic the ankle torque during load 

acceptance: by being its equilibrium point defined during standing, it also bring the ankle back 

to its neutral angle during the swing phase, when the prosthesis should only recover its 

equilibrium position. In addition, by being placed in parallel to the cam-ram systems and 

driven by the ankle joint, it reduces the torque they need to supply at the ankle joint. Lastly, a 
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gearbox is also included in the “transmission line” of the ankle rotation to the two cam-ram 

systems, in parallel to the spring.  

 

Therefore, the final novel concept design defined in this chapter includes: a torsional spring; 

a gearbox; two cam-ram systems; a gas-charged accumulator; a tank; two directional control 

valves to connect the hydraulic rams both to the accumulator and to the tank; and pipes to 

connect the rams to the accumulator. All these components should be easy to manufacture, 

even at the small-scale. The next chapter illustrates in detail the mathematical equations 

governing the working of each component. 

 



 

 
 

 

 

4. Chapter 4: Mathematical modelling 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo Da Vinci (c. 1485), Toothed Gears and Hygrometer, Codex Atlanticus (folio 30v) 

 

 

 

 

 

 

 

 

 

“Mechanics is the paradise of mathematics because the fruits can be reaped here. There is no 

certainty in science if mathematics cannot be applied to it, or if it is not related to it anyway." 

 

(Leonardo Da Vinci) 
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Using free-body diagrams and applying the laws of kinematics, kinetics and hydraulics, a 

mathematical model of the new hydraulic ankle design was established. In the following 

sections the mathematical modelling of each component is described in a sequence beginning 

with the components that are directly coupled to the ankle (i.e. parallel spring and gearbox), 

then considering the two cam-roller-followers which are driven by the gearbox, and finally the 

hydraulic system made up of rams, valves, pipes and accumulator. Care was taken to include 

all significant sources of energy losses so that simulations based on the mathematical 

modelling are realistic with regard to energy efficiency and, hence, the stored energy available 

to power push-off.  

 

 

4.1 Parallel spring 
 

A torsional spring is placed in parallel with the two cam-ram systems. With the two rams 

switched off, it provides for standing, load acceptance, and swing. The spring characteristic is 

fitted to the relationship between ankle torque and ankle angle, usually referred to as the 

“quasi stiffness” of the ankle (Figure 4.1). Note that a positive ankle angle corresponds to a 

dorsiflexed ankle. Furthermore, a positive ankle torque is an external dorsiflexion torque (i.e. 

it acts to dorsiflex the ankle). Therefore, when both ankle angular velocity and ankle torque 

are positive, then work is being done on the ankle by the external forces and this should be 

absorbed and stored by the new ESR design. In other words, positive ankle power (𝑃𝑎 = 𝑇𝑎𝜔𝑎) 

corresponds to eccentric work (stored by the system) and negative ankle power corresponds 

to concentric work (returned by the system). Note that, although this engineering sign 

convention is adopted for the mathematical modelling, this is the opposite of the traditional 

biomechanics sign convention used elsewhere. 

 

During mid and terminal stance and push-off (i.e. the working phases of the two cam-ram 

systems), the required ankle torque is achieved through the two cam-ram systems. Therefore, 

the role of the spring is to provide good load acceptance and contribute to standing stability 

and swing. So the following spring characteristic was used and fitted just to load acceptance: 

 

 𝑇𝑝𝑠 = 𝑚𝜃𝑎 + 𝑐 (4.1) 
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Figure 4.1 Torque-versus-angle curve for an anatomically intact ankle joint for level walking. A positive angle 
corresponds to a dorsiflexed ankle and a positive ankle torque is an external dorsiflexion torque (i.e. it acts to 
dorsiflex the ankle). The linear spring function (solid black line) is fitted to the load acceptance phase (blue solid 
line) of gait only. Input data from Bari (2013). 

An “ordinary least square” regression fit to the ankle torque data was used to determine the 

best fit slope (𝑚) and intercept (𝑐) for the spring characteristic. Specifically, only the ankle 

torque data during load acceptance was used, and the resulting slope and intercept are 

58.40 𝑁𝑚/𝑟𝑎𝑑 and 0 𝑁𝑚 respectively. The spring torque acts to return the ankle to its 

neutral angle. Therefore, a positive 𝑇𝑝𝑠 acts to plantarflex the ankle, opposing a positive ankle 

torque. 
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4.2 Gearbox 
 

The gearbox is placed in parallel to the spring (both being driven by the ankle joint) and, in 

turn, it drives the two cam-ram systems. Note that this description applies when power flows 

are positive, meaning that eccentric work is stored by the system. When power flows are 

negative, which means that concentric work is returned by the system, the ankle joint is being 

driven by the new ESR ankle. In other words, the system transmits power in both directions: 

from the ankle to the two cam-ram systems and vice versa. 

 

For a given gearbox ratio (𝐺𝑅), the output angular displacement, velocity and acceleration are 

given by: 

 

 𝜃𝑐 = 𝜃𝑎𝐺𝑅 (4.2) 

 

 𝜔𝑐 = 𝜔𝑎𝐺𝑅 (4.3) 

 

 𝛼𝑐 = 𝛼𝑎𝐺𝑅 (4.4) 

 

with positive camshaft (i.e. gearbox output) angles corresponding to positive ankle (i.e. 

gearbox input) angles. 

 

Ankle torque overcomes the resistance provided by the parallel spring (𝑇𝑝𝑠) and the two cams 

via the gearbox (𝑇𝑖𝑛𝑔𝑏) as follows: 

 

 𝑇𝑎 = 𝑇𝑝𝑠 + 𝑇𝑖𝑛𝑔𝑏  (4.5) 

 

where positive spring and gearbox input torques act to oppose a positive ankle torque. The 

gearbox input torque (𝑇𝑖𝑛𝑔𝑏) overcomes the resistance provided by gearbox friction and the 

two cam torques as follows: 

 

 𝑇𝑖𝑛𝑔𝑏 = 𝑇𝑐 ∙ 𝐺𝑅 + 𝑇𝑓 (4.6) 
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where 𝑇𝑐 = 𝑇𝑐𝑃𝑂 + 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸 is the total camshaft torque, 𝑇𝑓 = 𝑠𝑖𝑔𝑛(𝜔𝑎)|𝑇𝑓| is the friction 

torque, and positive camshaft and friction torques act to oppose a positive gearbox input 

torque. The sign of the input angular velocity (𝑠𝑖𝑔𝑛(𝜔𝑎)) is used to ensure that the friction 

torque always opposes the direction of rotation. Although the gearbox input is defined as 

being the connection with the ankle, this does not imply that power always flows from the 

ankle. 

 

The magnitude of the friction torque is a function of the gearbox ratio (𝐺𝑅) and gearbox size 

(𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and is therefore a constant for a given gearbox. Using gearbox efficiency data from 

Bari (2013), sourced from manufacturers’ catalogues, the following model was found to be a 

good fit to the data: 

 

 |𝑇𝑓| = 𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(100 − 𝜂𝑔)

100
 (4.7) 

 

where 𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = max |𝑇𝑖𝑛𝑔𝑏| corresponds to the gearbox size, 𝜂𝑔 = 100 − (𝐺𝑅 − 1)𝑘𝑔  is 

the gearbox efficiency (percentage), and 𝑘𝑔 is a coefficient obtained by finding the least 

squares fit to the data. Gearbox size (𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) is assumed to be equal to the maximum value 

of the gearbox input torque. For a given gearbox, |𝑇𝑓| is evaluated just once, as it then remains 

constant. 

 

When the cam profiles are given, the equations above are used as they are presented. In 

particular, the total camshaft torque is an input which is used to calculate 𝑇𝑖𝑛𝑔𝑏  and hence 𝑇𝑎. 

When the cam profiles are being determined, the required ankle torque (𝑇𝑎𝑟) is the input and 

the torque equations are rearranged as follows to give the required camshaft torque (𝑇𝑐𝑟): 

 

 𝑇𝑖𝑛𝑔𝑏 = 𝑇𝑎𝑟 − 𝑇𝑝𝑠 (4.8) 

 

 𝑇𝑐𝑟 = (
𝑇𝑖𝑛𝑔𝑏 − 𝑇𝑓

𝐺𝑅
) (4.9) 
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4.3 Cam-Roller-Follower 
 

4.3.1 Cam profile  
 

In the proposed design, two cams are used to convert rotary motion of the ankle into linear 

motion of the pistons inside the two hydraulic cylinders. The two cam-ram systems serve 

different purposes: 

 The stance cam-ram pushes oil into the accumulator during stance prior to push-off to 

store eccentric ankle work. 

 The push-off cam-ram receives oil from the accumulator during push-off to return 

previously stored energy to the ankle, producing concentric ankle work. 

 

A cam is a machine element with a curved profile, which through its rotation gives a specified 

translational motion to another element called the follower. Given the required displacement 

of the follower as a function of cam angle, it is possible to calculate the cam profile using 

different methods described in the cam design literature. Alternative methods were 

implemented and tested in MATLAB (see Appendix B.2, (1)). Following a comparison of the 

alternatives, an approach based on mapping between coordinate frames was selected and 

this is described below. The cam profiles designed herein match the torque of an intact ankle 

for level walking. Slope adaptation should be investigated in future work.  

 

Referring to Figure 4.2, the coordinates of the contact point 𝑃 between cam and roller can be 

mapped between the fixed frame {𝑓𝑖𝑥} and the cam frame {𝑐𝑎𝑚}, both of which have their 

origins coincident with the centre of rotation of the cam. The cam frame is attached to the 

cam, so that it’s rotation relative to the fixed frame is 𝜃𝑐. 
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a)         b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the fixed frame, the coordinates of the contact point 𝑃 depend on the required follower 

translation 𝑦 and the pressure angle 𝛼, which in turn depends on 𝑦 and it’s derivative (see 

equation (4.31)). In this context, the pressure angle is the angle between the follower axis, 

corresponding to the 𝑦-axis of the fixed frame, and the normal to the cam surface at the 

contact point 𝑃. In particular, in the fixed frame, the coordinates of 𝑃 are (𝑥𝑃, 𝑦𝑃) = (𝑒 +

𝑟sin𝛼, (𝑎 + 𝑦) − 𝑟cos𝛼). Then the coordinates in the cam frame can be obtained using the 

2x2 rotation matrix 𝑅𝑓𝑖𝑥
𝑐𝑎𝑚  (Craig, 2005). This rotation matrix is formed from the two unit 

vectors describing the axes of the fixed frame written in the cam frame, which are 

𝑋𝑓𝑖�̂� = [
cos (𝜃𝑐)

−sin (𝜃𝑐)
]𝑐𝑎𝑚  and 𝑌𝑓𝑖�̂� =

𝑐𝑎𝑚 [
sin (𝜃𝑐)

cos (𝜃𝑐)
]. Stacking these two unit vectors together as 

the columns of the 2x2 rotation matrix leads to: 

 

 𝑅𝑓𝑖𝑥
𝑐𝑎𝑚 = [

cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] (4.10) 

 

Thus, the coordinates of 𝑃 in the cam frame are obtained as follows: 

 

Figure 4.2 (a) Mapping the contact point 𝑃(𝑥𝑃 , 𝑦𝑃) between two reference frames: cam frame (𝑋𝑐𝑎𝑚/𝑌𝑐𝑎𝑚) and 
fixed frame (𝑋𝑓𝑖𝑥/𝑌𝑓𝑖𝑥). (b) Zoom in on the roller-follower, with the roller radius 𝑟, the cam pressure angle 𝛼, 

the contact point 𝑃(𝑥𝑃 , 𝑦𝑃), the roller centre 𝐶(𝑥𝐶 , 𝑦𝐶). 
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 �⃗� 𝑐𝑎𝑚 = 𝑅𝑓𝑖𝑥
𝑐𝑎𝑚 �⃗� 𝑓𝑖𝑥 (4.11) 

 

Then by substituting: 

 

 [
𝑥𝑃
𝑦𝑃
]
𝑐𝑎𝑚

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑥𝑃
𝑦𝑃
]
𝑓𝑖𝑥

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑒 + 𝑟sin𝛼

(𝑎 + 𝑦) − 𝑟cos𝛼
] (4.12) 

 

Given 𝑦 as a function of 𝜃𝑐  and also calculating pressure angle 𝛼 from 𝑦 and it’s derivative (see 

equation (4.31)), a set of contact points can be evaluated in the cam frame, the union of which 

is the cam profile (see Appendix B.2, (2) and (3), for some geometry checks on cam profile 

generation).  
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4.3.2 Roller kinematics 
 

Referring to Figure 4.3, after careful consideration and for the sake of simplicity, the decision 

was made to work just in quadrant 𝐼 (see Appendix B.3 for checks on the roller kinematics). 

The main reason for this is that a positive (i.e. anticlockwise) rotation 𝜃𝑐  of the cam about the 

origin 𝑂 corresponds to ankle dorsiflexion, visualised as an anticlockwise rotation of the foot 

with respect to the shank. Therefore, a positive offset 𝑒 is appropriate for the stance cam-ram 

system as the piston should move up during dorsiflexion, and also for the push-off cam-ram 

system as the piston should move down during plantarflexion. Hence, with a positive offset 𝑒 

and by ensuring that the length (𝑎 + 𝑦) is always positive, only the first quadrant needs to be 

considered. In this context it should be noted that larger values of (𝑎 + 𝑦) are advantageous 

as they lead to smaller cam pressure angles (see equation (4.31)) and, hence, lower friction 

losses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In cases where a cam rotates continuously, the follower displacement is characterised by rise, 

dwell and return phases, in which case 𝑎 = √(𝑅𝑏 + 𝑟)2 − 𝑒2, where 𝑅𝑏 is the radius of the 

cam base circle. However, because the ankle does not rotate continuously, in this design there 

are only rise and a return phases and the cam operates as a non-linear lever. Therefore, 𝑎 is 

𝑋 

𝑌 

Figure 4.3 Roller-follower on cam surface in quadrant 𝐼 with the local reference frame (𝑥𝑦) rotated 
anticlockwise relative to the fixed frame (𝑋𝑌) by an angle equal to the pressure angle 𝛼. The components of 

the vector �⃗�  are in red and the sign convention is on the left.  
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simply an arbitrary constant that can be chosen to optimise the design, which defines the 

starting position of the follower in the vertical (𝑌-axis) direction.  

 

Figure 4.3 shows in red the two components 𝑠 and 𝑢 of the vector �⃗�  defining the contact point 

𝑃 with respect to the stationary cam centre 𝑂. In other words: 

 

 �⃗� 𝑙𝑜𝑐𝑎𝑙 = [
𝑠
𝑢
] (4.13) 

 

which is written in a local reference frame (𝑥𝑦), whose 𝑥-axis is parallel to the tangent 

between cam and roller at point 𝑃. This local frame is rotated anticlockwise relative to the 

fixed frame (𝑋𝑌) by an angle equal to the pressure angle 𝛼. Furthemore, the vector 𝐶  in both 

the local frame and the fixed frame is given by: 

 

 𝐶 𝑙𝑜𝑐𝑎𝑙 = [
𝑠

𝑢 + 𝑟
]       and       𝐶 𝑓𝑖𝑥 = [

𝑒
𝑎 + 𝑦] (4.14) 

 

These are related by the rotation matrix 𝑅𝑓𝑖𝑥
𝑙𝑜𝑐𝑎𝑙 , which is formed from the two unit vectors 

describing the axes of the fixed frame written in the local frame, which are 

𝑋𝑓𝑖�̂� = [
cos (𝛼)
−sin (𝛼)

]𝑙𝑜𝑐𝑎𝑙  and 𝑌𝑓𝑖�̂� =
𝑙𝑜𝑐𝑎𝑙 [

sin (𝛼)
cos (𝛼)

]. Thus, the coordinates of C in the fixed frame 

are obtained as follows: 

 

 𝐶 𝑙𝑜𝑐𝑎𝑙 = 𝑅𝑓𝑖𝑥
𝑙𝑜𝑐𝑎𝑙 𝐶 𝑓𝑖𝑥 (4.15) 

 

Then by substituting: 

 

 [
𝑠

𝑢 + 𝑟
] = [

cos𝛼 sin𝛼
−sin𝛼 cos𝛼

] [
𝑒

𝑎 + 𝑦] (4.16) 

 

Hence: 

 

 
𝑠 = 𝑒 cos 𝛼 + (𝑎 + 𝑦)sin𝛼 = [𝑒 + tan𝛼(𝑎 + 𝑦)] cos 𝛼 

𝑢 = −𝑒 sin 𝛼 + (𝑎 + 𝑦) cos 𝛼 − 𝑟 
(4.17) 
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To establish the acceleration relationships, the analysis begins with the following standard 

equation for the acceleration of a fixed point in a rotating body (Ruina & Pratap, 2019, p. 762): 

 

𝑎 = 𝑎𝑡𝑔⃗⃗⃗⃗⃗⃗ + 𝑎𝑛⃗⃗ ⃗⃗ = 𝛼 × 𝑟 + �⃗⃗� × (�⃗⃗� × 𝑟 ) (4.18) 

 

where �⃗⃗�  and 𝛼  are angular velocity and acceleration respectively and 𝑟  is the position of 

the fixed point relative to the centre of rotation. Because the system is 2-dimensional, this 

simplifies as follows: 

𝑎 = 𝛼 × 𝑟 − 𝜔2𝑟  (4.19) 

 

To evaluate roller angular acceleration, the linear acceleration of its centre 𝐶 was calculated 

as follows:  

 𝑎𝐶⃗⃗⃗⃗ = 𝑎𝑃⃗⃗ ⃗⃗ + 𝑎𝐶/𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (4.20) 

 

where 𝑎𝐶/𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the acceleration of the roller centre 𝐶 with respect to the contact point 𝑃: 

 

𝑎𝐶/𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑎𝑃/𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −(𝛼𝑟𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝑟 − 𝜔𝑟𝑜𝑙
2𝑟 ) = −([

0
0
�̈�
] × [

0
−𝑟
0
] − �̇�2 [

0
−𝑟
0
]) 

𝑎𝐶/𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = − [
𝑟�̈�

𝑟�̇�2

0

] 

(4.21) 

 

and 𝑎𝑃⃗⃗ ⃗⃗  the acceleration of the contact point 𝑃 with respect to the frame origin 𝑂: 

 

 𝑎𝑃⃗⃗ ⃗⃗ = 𝛼𝑐⃗⃗⃗⃗ × �⃗� − 𝜔𝑐
2�⃗� = [

0
0
𝛼𝑐

] × [
𝑠
𝑢
0
] − 𝜔𝑐

2 [
𝑠
𝑢
0
] = [

−𝑢𝛼𝑐 − 𝑠𝜔𝑐
2

𝑠𝛼𝑐 − 𝑢𝜔𝑐
2

0

] (4.22) 

 

Therefore, equation (4.20) becomes: 

 

 

[
�̈� sin 𝛼
�̈� cos 𝛼
0

] = [
−𝑢𝛼𝑐 − 𝑠𝜔𝑐

2

𝑠𝛼𝑐 − 𝑢𝜔𝑐
2

0

] + [
−𝑟�̈�

−𝑟�̇�2

0

] (4.23) 
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 From this expression, the angular acceleration of the roller is derived: 

 

�̈� =
1

𝑟
[−𝑢𝛼𝑐 − 𝑠𝜔𝑐

2 − �̈� sin 𝛼] 

 

 

(4.24) 

 

To evaluate roller angular velocity, the linear velocity of its centre C was calculated as follows:  

 

 𝑣𝐶⃗⃗⃗⃗ = 𝑣𝑃⃗⃗⃗⃗ + 𝑣𝐶/𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (4.25) 

 where 

𝑣𝐶 𝑃⁄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑣𝑃 𝐶⁄⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −(𝜔𝑟𝑜𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ × 𝑟 ) = −([
0
0
�̇�
] × [

0
−𝑟
0
]) = −[

𝑟�̇�
0
0

] 

 and 

 

(4.26) 

𝑣𝑃⃗⃗⃗⃗ = 𝜔𝑐⃗⃗ ⃗⃗  × �⃗� = [
0
0
𝜔𝑐

] × [
𝑠
𝑢
0
] = [

−𝑢𝜔𝑐
𝑠𝜔𝑐
0

] 

 

 As a result, equation (4.25) becomes: 

(4.27) 

 

[
�̇� sin 𝛼
�̇� cos 𝛼
0

] = [
−𝑢𝜔𝑐
𝑠𝜔𝑐
0

] − [
𝑟�̇�
0
0

] (4.28) 

 From this expression, the angular velocity of the roller is derived: 

 

�̇� =
1

𝑟
[−𝑢𝜔𝑐 − �̇� sin 𝛼] 

 

 

(4.29) 

 

 Starting from equation (4.28), cam pressure angle 𝛼 is also evaluated: 

 

 

�̇� cos 𝛼 = 𝑠𝜔𝑐 

𝑑𝑦

𝑑𝜃𝑐
=

𝑠

cos 𝛼
 

 

(4.30) 

 

Remembering that  𝑠 = [𝑒 + (𝑎 + 𝑦) tan 𝛼] cos 𝛼 (see equation (4.17)), it follows: 
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𝛼 = tan−1

𝑑𝑦
𝑑𝜃𝑐

− 𝑒

𝑎 + 𝑦
 

(4.31) 

 

It is clear that a larger (𝑎 + 𝑦) leads to a smaller pressure angle. In addition, considering 

equation (4.30), it follows that the component 𝑠 will be always positive as |𝛼| < 90° and 
𝑑𝑦

𝑑𝜃𝑐
 

is always positive, because positive rotation (dorsiflexion) corresponds to positive follower 

displacement.   
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4.3.3 Dynamic analysis of the roller-follower system 
 

To evaluate the force transmitted between cam and roller and the energy losses due to the 

different friction phenomena, a dynamic analysis has been conducted for the two 

components: the roller and the follower (see Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROLLER 

 

Figure 4.5 shows the free-body diagram for the roller with all the forces and moments acting 

on it. Note that all forces and moments are positive as shown in the diagram. When their 

magnitudes are negative, this corresponds to a reversal of direction. The forces and moments 

include: 

 

𝐹𝑡  –  the tangential cam contact force 

𝐹𝑛   –  the normal cam contact force 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 –  the rolling resistance moment 

𝑀𝑏𝑟𝑔   –  the bearing friction moment 

𝑚𝑔   –  the roller’s weight 

𝑅𝐻   –  the horizontal follower reaction  

𝑅𝑉   –  the vertical follower reaction 

𝑀 

𝑚 

roller 

follower 

cam 

Figure 4.4 The roller-follower system: 𝐶 is the roller centre and 𝑃 the contact point between cam and roller. 
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Considering the free-body diagram for the roller (Figure 4.5), and applying Newton’s 2nd law 

and Euler’s equation, yields: 

 

∑𝐹𝑥 = 𝑚�̈� = 0 𝐹𝑡 cos 𝛼 − 𝐹𝑛 sin 𝛼 + 𝑅𝐻 = 0 (4.32) 

∑𝐹𝑦 = 𝑚�̈� 𝐹𝑡 sin 𝛼 + 𝐹𝑛 cos 𝛼 − 𝑅𝑉 −𝑚𝑔 = 𝑚�̈� (4.33) 

∑𝑀𝐶 = 𝐼𝑟𝑜𝑙�̈� 𝐹𝑡𝑟 − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 −𝑀𝑏𝑟𝑔 = 𝐼𝑟𝑜𝑙�̈� (4.34) 

 

where 𝐼𝑟𝑜𝑙 is the moment of inertia of the rotating outer part of the roller-follower, and �̈� =

1

𝑟
[−𝑢𝛼𝑐 − 𝑠𝜔𝑐

2 − �̈� sin 𝛼] is the angular acceleration of the roller (see section 4.3.2). 

 

Figure 4.6 shows a typical roller, often referred to as a “cam follower”, which consists of a 

thick-walled outer ring, supported by a roller bearing which can accommodate high radial 

loads, and a solid threaded pin for attachment to other components (i.e. the follower in this 

case). Bearing friction (𝑀𝑏𝑟𝑔) is the result of rolling and sliding friction in the contact areas, 

between the rolling elements and raceways, cage and other guiding surfaces within the roller. 

Friction is also generated by lubricant drag and contact seals.  

 

 

 

Figure 4.5 Free-body diagram of the roller with all the forces and the moments acting on it (with 𝑟 roller radius). 

𝑥 

𝑦 
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The frictional moment 𝑀𝑏𝑟𝑔 can be estimated using the following expression (SKF, 2013, p. 

98): 

 𝑀𝑏𝑟𝑔 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑏𝑟𝑔 ∙  
𝑑𝑏𝑟𝑔

2
∙ |𝑃| (𝑁𝑚) (4.35) 

 

where 𝜇𝑏𝑟𝑔 is a constant coefficient of friction for the bearing, 𝑃 is the equivalent dynamic 

bearing load (𝑁), 𝑑𝑏𝑟𝑔 is the bearing bore diameter (𝑚), and the sign of the roller angular 

velocity ensures that the frictional moment at the bearing always opposes the direction of 

rotation of the roller. Here it is assumed that 𝑃 = 𝐹𝑛, the normal cam contact force. In 

Appendix A.1, it is shown that the error introduced by this approximation is negligible. 

 

The moment 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 is given by the following expression: 

 

 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙) ∙ 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ∙ |𝐹𝑛| ∙ 𝑟  (𝑁𝑚) (4.36) 

 

where 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 is the coefficient of rolling friction, and 𝜔𝑟𝑒𝑙 = �̇� − 𝜔𝑐 is the relative angular 

velocity between cam and roller. Here, the sign of the relative angular velocity ensures that 

the rolling resistance always opposes the roller’s direction of rotation relative to the cam. In 

other words, it takes account of the fact that the roller is rolling over a surface that is not 

stationary because the cam is rotating too. 

 

Because the roller is rolling over a curved surface, a complete expression for the rolling 

resistance between the two surfaces should include the evaluation of a relative rolling radius 

(𝑅𝑟𝑒𝑙), given the radii of the two surfaces (Ai et al., 2011): 

 

 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 =  𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙) ∙ 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ∙ |𝐹𝑛| ∙ 𝑅𝑟𝑒𝑙 (4.37) 

 

Figure 4.6 Typical cam follower (SKF, 2013, p. 1104). 
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where: 

 𝑅𝑟𝑒𝑙 =
𝑟𝑅𝑐
𝑟 + 𝑅𝑐

 (4.38) 

 

and 𝑟 is the roller radius and 𝑅𝑐 is the instantaneous rolling radius of the cam surface (Ai et 

al., 2011). It is reasonable to assume that 𝑅𝑐 = 𝑛𝑟 where 𝑛 > 1. Substituting leads to 𝑅𝑟𝑒𝑙 =

𝑛𝑟2

(𝑛+1)𝑟
=

𝑛

(𝑛+1)
𝑟 and, since 

𝑛

(𝑛+1)
< 1, this yields 𝑅𝑟𝑒𝑙 < 𝑟. Therefore, assuming a conservative 

approach, it is possible to assume 𝑅𝑟𝑒𝑙 = 𝑟, so that equation (4.36) can be used and the need 

to know 𝑅𝑐 is avoided. 

 

To ensure conservative simulation results that do not overestimate the energy efficiency of 

the system, the largest expected values for the friction coefficients have been used as follows: 

 𝜇𝑏𝑟𝑔 = 0.002 is the worst case coefficient of friction both for needle roller bearings and 

for cylindrical roller bearings (SKF, 2013, p. 98). 

 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.002  is a high value for rolling resistance coefficient for steel on steel. Based 

on an internet search, it is typically quoted as being between 0.001 and 0.002 for railroad 

steel wheels on steel rails (The Engineering Toolbox, 2008), and between 0.0002 and 

0.001 also for steel wheel on rail (Engineering-abc.com, n.d.). 

 

 

FOLLOWER 

 

Figure 4.7 shows the free-body diagram for the follower with all the forces and moments 

acting on it. Note that all forces and moments are positive as shown in the diagram. When 

their magnitudes are negative, this corresponds to a reversal of direction. The forces and 

moments include: 

 

𝐹𝑓𝑟1  –  upper guide friction force 

𝐹𝑓𝑟2 –  lower guide friction force 

𝐹ℎ  –  hydraulic ram force 

𝐹𝑠  –  follower return-spring force 

𝑀𝑏𝑟𝑔  –  the bearing friction moment (equal and opposite to that on the roller) 
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𝑀𝑔  –  the follower’s weight 

𝑁1  –  upper guide normal force 

𝑁2  –  lower guide normal force 

𝑅𝐻  –  the horizontal roller reaction (equal and opposite to that on the roller) 

𝑅𝑉  –  the vertical roller reaction (equal and opposite to that on the roller) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.7, 𝑙 is the distance between the lines of action of the two normal forces (𝑁1, 𝑁2) 

acting at the follower guides, which are two self-aligning linear ball bearings, chosen to avoid 

jamming of the follower; and 𝑐 represents the follower overhang. 

 

Considering the free-body diagram for the follower (Figure 4.7) and applying Newton’s 2nd law 

and Euler’s equation yields: 

 

∑𝐹𝑥 = 𝑀�̈� = 0 𝑁2 − 𝑅𝐻 − 𝑁1 = 0 (4.39) 

Figure 4.7 Free-body diagram for the follower system with all of the forces and moments acting on it. 

𝑥 

𝑦 

follower 

piston rod 

stationary 
spring support 

follower 
return spring 
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∑𝐹𝑦 = 𝑀�̈� 𝑅𝑉 − 𝐹ℎ −𝑀𝑔 − 𝐹𝑓𝑟1 − 𝐹𝑓𝑟2 − 𝐹𝑠 = 𝑀�̈� (4.40) 

∑𝑀𝐻 = 0 𝑀𝑏𝑟𝑔 − 𝑅𝐻 (𝑐 +
𝑙

2
) + 𝑁1

𝑙

2
+ 𝑁2

𝑙

2
− 𝑀𝑓𝑟1 +𝑀𝑓𝑟2 = 0 (4.41) 

 

The two sliding friction forces, 𝐹𝑓𝑟1and 𝐹𝑓𝑟2, acting at the upper and lower guides (i.e. at the 

two self-aligning linear ball bearings) (Figure 4.7) are defined as follows: 

 

𝐹𝑓𝑟1 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁1| (4.42) 

𝐹𝑓𝑟2 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁2| (4.43) 

 

The sign of the follower velocity in equations (4.42) and (4.43) ensures that guide friction 

always opposes the direction of motion. Typical values for the coefficient of friction of 

lubricated linear ball bearings range from 0.0015 for heavy loads to 0.005 for light loads (SKF, 

2011, p. 43), and 𝜇𝑠𝑙 = 0.003 is used here. 

 

The two moments 𝑀𝑓𝑟1 and 𝑀𝑓𝑟2 are due to the above-mentioned frictional forces, and they 

are defined as follows: 

 

𝑀𝑓𝑟1 = 𝑠𝑖𝑔𝑛(𝑁1) ∙
𝑑

2
𝐹𝑓𝑟1 (4.44) 

𝑀𝑓𝑟2 = 𝑠𝑖𝑔𝑛(𝑁2) ∙
𝑑

2
𝐹𝑓𝑟2 (4.45) 

 

The signs of the two forces 𝑁1and 𝑁2 in equations (4.44) and (4.45) are used because the 

direction of the two moments depends on which side of the follower 𝐹𝑓𝑟1and 𝐹𝑓𝑟2 act, which 

in turn depends on which side of the follower 𝑁1and 𝑁2 act and, hence, their signs. 

 

A linear return-spring characteristic is assumed and the pre-compression of the spring (𝑥𝑝𝑟𝑒) 

corresponds to a piston displacement of 𝑦 = 0. Therefore, the spring force is given by: 

 

𝐹𝑠 = 𝑘(𝑦 + 𝑥𝑝𝑟𝑒) = 𝐹0 + 𝑘𝑦 (4.46) 

 

where the preload 𝐹0 = 𝑘𝑥𝑝𝑟𝑒.  
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4.3.4 Cam torque evaluation 
 

The normal force (𝐹𝑛) and tangential force (𝐹𝑡) acting on the cam profile, as well as the rolling 

resistance acting on the cam (𝑀𝑟𝑜𝑙𝑟𝑒𝑠), together with the vector �⃗� , determine the cam torque 

(see Figure 4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cam torque generated by the two forces 𝐹𝑛 and 𝐹𝑡 acting on the cam profile equals: 

 

𝑇𝑐⃗⃗  ⃗ =  �⃗� × 𝐹 + 𝑀𝑟𝑜𝑙𝑟𝑒𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (4.47) 

where  

�⃗� = [
𝑠
𝑢
0
] (4.48) 

and 

𝐹 = [
−𝐹𝑡
−𝐹𝑛
0
] (4.49) 

 

The minus signs are a result of the fact that, when 𝐹𝑡 and 𝐹𝑛 are positive, they are acting in 

the directions shown in Figure 4.8, which means that the corresponding force vector 

components should be negative. Therefore, the torque applied to the cam by the roller is: 

Figure 4.8 Roller on cam surface in quadrant 𝐼 with fixed (𝑋𝑌𝑍) and local (𝑥𝑦𝑧) reference frames. The sign 

convention is on the left. Shown in red are the components of the vector �⃗� . The contact forces 𝐹𝑡  and 𝐹𝑛, and 
the rolling resistance 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 are shown as they act on the cam surface. 
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𝑇𝑐 = 𝑢 ∙ 𝐹𝑡 − 𝑠 ∙ 𝐹𝑛 +𝑀𝑟𝑜𝑙𝑟𝑒𝑠 (4.50) 

 

where the two components of �⃗�  are defined in equation (4.17) and 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 in equation (4.36). 
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Figure 4.9 Free-body diagram of the piston rod and head. 

4.4 Hydraulic ram 
 

For this application, single-acting cylinders were chosen for both the stance and push-off rams. 

Therefore, hydraulic fluid only occupies the volume on the rod-less side of the piston, while 

air at atmospheric pressure occupies the rod side, so the hydraulic pressure and/or the 

follower return springs push the pistons down against the cams. Furthermore, this means that 

only piston seals are necessary to avoid leaks; but not rod seals. Hence, in Figure 4.9, only the 

friction force at the piston O-ring (𝐹𝑓𝑟𝑐𝑦𝑙) is considered. Remember that the rod and follower 

are one and the same; so friction in the follower guide bearings has already been accounted 

for in the follower dynamics (see section 4.3.3). Similarly, the combined mass of the follower, 

rod and piston have also been accounted for in the follower dynamics. Therefore, the forces 

shown in the free-body diagram (Figure 4.9) are in equilibrium. 

 

 

 

 

 

 

 

 

 

From equilibrium, the hydraulic ram force (𝐹ℎ) that acts on the piston rod, which is equal and 

opposite to that acting on the follower, is given by: 

 

𝐹ℎ = 𝑃𝑐𝑦𝑙𝑔𝑎𝑢𝑔𝑒𝐴 + 𝐹𝑓𝑟𝑐𝑦𝑙  (4.51) 

 

where 𝑃𝑐𝑦𝑙𝑔𝑎𝑢𝑔𝑒 = 𝑃𝑐𝑦𝑙 − 𝑃𝑎𝑡𝑚 and 𝑃𝑎𝑡𝑚 = 101325 𝑃𝑎. Absolute values are used instead of 

gauge values to simplify the thermodynamics calculations for the accumulator. Because 𝑃𝑎𝑡𝑚 

is not taken into account in the free-bodies for the other components (e.g. follower), it is 

appropriate to use the full piston area (𝐴) in this term.  

 

𝑃𝑐𝑦𝑙𝐴 

𝐹ℎ 

𝐹𝑓𝑟𝑐𝑦𝑙  
𝑦 

𝑃𝑎𝑡𝑚𝐴 
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To calculate O-ring friction force, two alternative models of small hydraulic cylinder 

performance have been considered to increase confidence in the results and these are 

described in the following sub-sections.  

 

 

4.4.1 Xia and Durfee O-ring model 
 

Xia and Durfee (2011b) developed a simple mathematical model to describe O-ring friction, 

where the friction force is given by: 

 

𝐹𝑓𝑟𝑐𝑦𝑙 = 𝜋𝜇𝑓𝐷𝑑𝑂−𝑟𝑖𝑛𝑔𝐸휀√2휀 − 휀
2 (4.52) 

 

The O-ring squeeze ratio (휀) is defined as: 

 

휀 = 1 −
𝑑1 − 𝑑2
2𝑑𝑂−𝑟𝑖𝑛𝑔

 (4.53) 

 

where: 𝑑1 is the cylinder bore diameter (i.e. 𝐷); 𝑑2 is the piston groove diameter; and 𝑑𝑂−𝑟𝑖𝑛𝑔 

is the O-ring cross-sectional diameter. To perform well, a typical range for the O-ring squeeze 

ratio (휀) is between 7% − 15% (Campos & Durfee, 2015; Xia & Durfee, 2014), while a value 

over 15% is not recommended as the friction increases significantly and the O-ring can 

stretch. In this work, 휀 = 0.14 has been used. In validation studies of the O-ring model (Xia & 

Durfee, 2011b), 𝜇𝑓 = 0.3~0.5 was used, representing well machined and lubricated sealing 

surfaces. 

 

This model was implemented in a previous study at Salford, the simulation results compared 

with Xia & Durfee’s simulation results, and also with their experimental validation for small 

cylinders (Gardiner, 2017). Although the experimental validation is very encouraging, a doubt 

remains because their model does not include a pressure related term due to the difference 

in oil pressure between the rod-less side and the rod-side of the piston. In other words, the 

friction depends only upon the squeeze ratio and various constant properties, but does not 

vary with pressure. For this reason, the model described in the next sub-section was also 
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implemented even though there are no experimental validations specifically for small 

cylinders. 

 

 

4.4.2 Martini O-ring model 
 

This friction model is also referenced in O-ring catalogues such as Parker Hannifin (2007a, pp. 

5-7). The model includes two force terms, 𝐹𝐶  to account for O-ring cross-sectional squeeze, 

and 𝐹𝐻 to account for the differential pressure across the O-ring (Martini, 1984). Hence, the 

total O-ring friction force is given by: 

 

𝐹𝑓𝑟𝑐𝑦𝑙 = 𝐹𝐶 + 𝐹𝐻 (4.54) 

 

The pressure dependent term is given by:  

 

𝐹𝐻 = Af𝐻 (4.55) 

 

where: A = π𝐷𝑚𝑑𝑂−𝑟𝑖𝑛𝑔 is the O-ring projected pressure area; 𝑑𝑂−𝑟𝑖𝑛𝑔 is the original O-ring 

cross-sectional diameter; 𝐷𝑚 = (𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 − 𝑑𝑂−𝑟𝑖𝑛𝑔) is the mean diameter; 𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 

is the outside diameter of the O-ring; and f𝐻 = 0.545(∆𝑃)0.61 is the friction density.  

 

The cross-sectional squeeze dependent term is given by: 

 

𝐹𝐶 = 𝐿0f𝐶  (4.56) 

 

where: 𝐿0 = 𝜋(𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇) is the O-ring rubbing length; f𝐶 = (−0.884 + 0.0206𝐻𝑆 −

0.0001𝐻𝑆
2)𝑆𝑊 is the linear friction; 𝐻𝑆 is the shore hardness of the O-ring (𝐻𝑆 = 70°); and 

𝑆𝑊 the actual squeeze of the O-ring cross-section as a percentage (𝑆𝑊 = 100 ∗ 휀, 휀 = 0.14). 

Note that all of the values used by Martini (1984) are expressed in the British Imperial System 

of units. 
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Xia et al.’s friction model is compared with Martini’s friction model in Appendix A.3. Martini’s 

model turned out to be the most conservative (i.e. characterised by the highest friction losses) 

and it also properly accounts for the differential pressure across the O-ring. Therefore, in this 

work, Martini’s model has been used.  
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4.5 Flow losses 
 

Flow losses are classified as major losses, which are those due to friction in pipes and hoses, 

and minor losses, which are associated with discrete components such as inlets/exits, bends, 

valves and other fittings. For Reynolds numbers below 2300, corresponding to a laminar flow 

(see Appendix A.4), the pressure drop due to pipe friction is proportional to flow, whereas the 

pressure drop across discrete components is assumed to be proportional to flow squared. 

 

 

4.5.1 Pipe losses 
 

Referring to Appendix A.4, based on the assumed hydraulic oil properties, the maximum flow 

seen in the simulations, and a pipe diameter of 𝐷 = 0.005𝑚, the Reynolds number is Re ≅

24.35. This indicates fully developed laminar flow (𝑅𝑒 < 2300) and, therefore, the pressure 

drop due to friction in a smooth cylindrical pipe of uniform diameter 𝐷 is given by (Cundiff, 

2002): 

 

𝛥𝑃 = 𝑓
𝐿𝑝𝑖𝑝𝑒

𝐷𝑝𝑖𝑝𝑒
(
𝜌�̅�2

2
) = 𝑓

𝜌𝐿𝑝𝑖𝑝𝑒

2𝐷𝑝𝑖𝑝𝑒
(
𝑄

𝐴𝑝𝑖𝑝𝑒
)

2

 (4.57) 

 

where  𝑓 = Darcy friction factor of the pipe (dimensionless) 

𝐿𝑝𝑖𝑝𝑒 = length of the pipe (m) 

𝐷𝑝𝑖𝑝𝑒 = pipe inside diameter (i. e. hydraulic diameter, m)  

 𝜌 = fluid density (kg/m3) 

�̅� = mean flow velocity (m/s) across the pipe diameter measured as the volumetric 

flow rate 𝑄 per unit cross-sectional wetted area: �̅� =
 𝑄 

𝐴𝑝𝑖𝑝𝑒
=

4𝑄 

𝜋𝐷𝑝𝑖𝑝𝑒
2  

 

The Darcy friction factor f for laminar flow (Re < 2300) in a circular pipe is: 

 

𝑓 =
64

Re
 (4.58) 

 

Reynolds number for a circular pipe is given by: 
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Figure 4.10 Loss coefficients 𝐾 for some common fittings and geometries. (a) Image source: Durfee et al. (2015). 
(b) Image source: Cundiff (2002). 

𝑅𝑒 =
4𝑄

𝜋𝐷𝑝𝑖𝑝𝑒𝑣𝑓
 (4.59) 

 

where  𝑣𝑓 = fluid kinematic viscosity (m2/s); 

 𝑄  = volumetric flow rate (m3/s). 

 

This in turn leads to: 

𝛥𝑃 = 128 (
𝜌𝑣𝑓𝐿𝑝𝑖𝑝𝑒

𝜋𝐷𝑝𝑖𝑝𝑒
4 )𝑄 (4.60) 

 

 

4.5.2 Losses associated with discrete components 
 

The pressure drop associated with discrete components such as inlets/exits, bends and other 

fittings, also referred to as minor losses, is assumed to be proportional to flow squared and is 

given by (Cundiff, 2002; Durfee et al., 2015): 

 

𝛥𝑃 = 𝐾 (
𝜌�̅�2

2
) =

𝜌𝐾

2𝐴𝑝𝑖𝑝𝑒
2 𝑄2 (4.61) 

 

where 𝐾 is a dimensionless loss coefficient experimentally determined for each discrete 

element, with typical values shown in Figure 4.10. For the same component, different values 

for the dimensionless loss coefficient 𝐾 may be found in different sources (textbooks and 

catalogues), so it can be difficult to select an appropriate value. 

 

a)      b) 
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The pressure drop across valves is also proportional to flow squared. However, valves are 

treated slightly differently, with the orifice equation being adopted as follows (Cundiff, 2002; 

Durfee et al., 2015):  

 

𝑄 = 𝐾𝑜𝑟𝑖𝑓√𝛥𝑃 (4.62) 

 

Or by solving for 𝛥𝑃: 

𝛥𝑃 =
𝑄2

𝐾𝑜𝑟𝑖𝑓
2 (4.63) 

 

where 𝐾𝑜𝑟𝑖𝑓 = 𝐶𝑑𝐴𝑜𝑟𝑖𝑓√2/𝜌, 𝐶𝑑 is the discharge (or valve) coefficient, and 𝐴𝑜𝑟𝑖𝑓𝑖𝑐𝑒 is the 

cross-sectional area of the orifice. The first variable (𝐶𝑑) changes with valve position, but here 

a constant value of 0.62 is used (Durfee et al., 2015). For a directional control valve (DCV), 

which is either fully open or fully closed, 𝐴𝑜𝑟𝑖𝑓 does not change while it is open and the orifice 

area is given by 𝐴𝑜𝑟𝑖𝑓 = 𝜋𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 ("Lecture 21: FLOW AND FORCE 

ANALYSIS OF VALVES," 2017). The diameter of the valve ports (𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) is assumed to 

be equal to the pipe diameter, here assumed to be 0.005𝑚. Referring to DCV catalogues, the 

internal diameter of the valve (𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) is usually slightly larger than the diameter of 

the valve ports, and here 𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 1.4𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 is used. As a result 𝐴𝑜𝑟𝑖𝑓 = 𝜋 ∗

0.007𝑚 ∗ 0.005𝑚. 

 

 

4.5.3 Losses for the combined system 
 

For the system as described in Chapter 3, there are two flow resistances: one which applies 

when a ram is connected to the accumulator; and another when a ram is connected to the 

tank. As mentioned previously, the flow losses can be split into major losses, which in this case 

are proportional to flow and due to laminar pipe flow, and minor losses which are proportional 

to flow squared and associated with discrete components. Therefore, the general equation 

for pressure drop can be written as follows: 

 

𝛥𝑃 = 128(
𝜌𝑣𝑓𝐿𝑝𝑖𝑝𝑒

𝜋𝐷𝑝𝑖𝑝𝑒
4 )𝑄 + 𝑠𝑖𝑔𝑛(𝑄)𝐾𝑡𝑜𝑡𝑎𝑙𝑄

2 (4.64) 
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where 𝐾𝑡𝑜𝑡𝑎𝑙 =
𝜌𝐾

2𝐴𝑝𝑖𝑝𝑒
2 +

1

𝐾𝑜𝑟𝑖𝑓
2 and 𝑠𝑖𝑔𝑛(𝑄) ensures that the direction of the pressure drop 

corresponds to the direction of the flow. 

 

a)  Ram connected to accumulator 

 

In this case a pipe length of 𝐿𝑝𝑖𝑝𝑒 = 0.050𝑚 and pipe diameter of 𝐷𝑝𝑖𝑝𝑒 = 0.005𝑚 are 

assumed. The discrete components include: one contraction at the exit of the ram (𝐾𝑒𝑥𝑖𝑡 =

0.5 for sharp-edged exit (Durfee et al., 2015)); one expansion at the inlet of the accumulator 

(𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 1 for sharp-edged entrance (Durfee et al., 2015)); one 90° elbow (𝐾𝑒𝑙𝑏𝑜𝑤 = 0.9 

for a standard elbow (Cundiff, 2002)); and the DCV. Therefore, from equations (4.61) and 

(4.63), the combined flow resistance for the discrete components to be used in equation (4.64) 

is given by: 

𝐾𝑡𝑜𝑡𝑎𝑙 =
2.4𝜌

2𝐴𝑝𝑖𝑝𝑒
2 +

1

𝐾𝑜𝑟𝑖𝑓
2 (4.65) 

 

When the flow into the accumulator is positive, the pressure in the cylinder will be greater 

than the pressure in the accumulator. When the flow into the accumulator is negative, the 

pressure in the cylinder will be lower that the pressure in the accumulator. This yields: 

 

𝑃𝑐𝑦𝑙 = 𝑃𝑎𝑐𝑐 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐 (4.66) 

 

where ∆𝑃𝑡𝑜 𝑎𝑐𝑐 is the total pressure drop due to major and minor flow losses between each 

ram and the accumulator, evaluated using equation (4.64). 

 

b) Ram connected to tank 

 

In this case, to minimise losses, it is assumed that the DCV is mounted directly onto the ram 

and surrounded by the tank at atmospheric pressure. Therefore, there is no connecting pipe 

(𝐿𝑝𝑖𝑝𝑒 = 0𝑚) and, thus, there are no major flow losses. The discrete components include: one 

contraction at the exit of the ram (𝐾𝑒𝑥𝑖𝑡 = 0.5); one expansion at the inlet of the tank 

(𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 1); and the DCV. Therefore, from equations (4.61) and (4.63), the combined flow 

resistance for the discrete components to be used in equation (4.64) is given by: 
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𝐾𝑡𝑜𝑡𝑎𝑙 =
1.5𝜌

2𝐴𝑝𝑖𝑝𝑒
2 +

1

𝐾𝑜𝑟𝑖𝑓
2 (4.67) 

 

When the flow into the tank is positive, the pressure in the cylinder will be greater than the 

pressure in the tank. When the flow into the tank is negative, the pressure in the cylinder will 

be lower that the pressure in the tank. This yields: 

 

𝑃𝑐𝑦𝑙 = 𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘  (4.68) 

 

where ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘 is the total pressure drop between each ram and the tank due to minor flow 

losses, evaluated using equation (4.64). 

  



  Chapter 4: Mathematical modelling 

110 
 

4.6 Accumulator 
 

The model used here for the gas-charged diaphragm accumulator is based on the model 

developed in Bari (2013), but it has been further developed to include losses due to oil 

compressibility and heat transfer.  

 

 

4.6.1 Accumulator parameters 
 

Some of the main parameters defining the accumulator are as follows: 

- The maximum or nominal volume (𝑽𝑨) is the total volume of the accumulator including 

both the oil and gas within it. 𝑉𝐴 is 250𝑐𝑐 for the reasons explained in Chapter 3. 

- The maximum rated pressure (𝑷𝒎𝒂𝒙) is the maximum pressure the accumulator can hold 

during normal operation. At this pressure, there is the maximum volume of oil 𝑉𝑚𝑎𝑥 stored 

in the accumulator and the minimum volume of gas.  𝑃𝑚𝑎𝑥  equal to 100 𝑏𝑎𝑟 was chosen. 

- The minimum rated pressure (𝑷𝒎𝒊𝒏) is the minimum pressure the accumulator should 

hold during normal operation. At this pressure, there is the minimum volume of oil 𝑉𝑚𝑖𝑛 

stored in the accumulator and the maximum volume of gas.   
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
= 2 is recommended 

by some suppliers (HYDAC, 2015, p. 80), which gives 𝑃𝑚𝑖𝑛 = 50𝑏𝑎𝑟. 

- The pre-charge pressure (𝑷𝒑𝒓𝒆−𝒄𝒉𝒂𝒓𝒈𝒆) is the gas pressure in the accumulator at room 

temperature when it is not connected to the hydraulic circuit (REXROTH, 2013, p. 5), and 

so this corresponds to there being no fluid in the accumulator (𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0𝑚
3), 

which is therefore completely filled by the gas (effective gas volume at pre-charge 

corresponds to the nominal volume of the diaphragm accumulator, i.e. 𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 =

𝑉𝐴 = 250𝑐𝑐 (HYDAC, 2013, 2017)). When the accumulator is connected to the hydraulic 

circuit, hydraulic fluid will only enter the accumulator when the system pressure exceeds 

the pre-charge pressure. If the circuit pressure falls below 𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒, then a vacuum 

condition will follow as no more oil can leave the accumulator; so this must be avoided. 

When the accumulator is used for energy storage purposes, it is recommended that 

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0.90 ∗ 𝑃𝑚𝑖𝑛 = 45𝑏𝑎𝑟.  
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4.6.2 Oil flow into the accumulator 
 

The oil flow into and out of the accumulator depends on piston displacement and oil 

compressibility. No fluid is truly incompressible, even if they are often assumed to be 

incompressible. Because the energy efficiency of the proposed ESR ankle design is critical, in 

this case oil compression has been accounted for. In this design, compression losses due to 

the oil bulk modulus are experienced during valve transition events, which occur at specific 

moments in the gait cycle, and also at each simulation time step because of the incremental 

changes in pressure. 

 

The bulk modulus is a measure of a fluid’s resistance to being compressed and is the reciprocal 

of compressibility. It is defined as the pressure increase for a unit change of volumetric strain 

(i.e. increased compression): 

 

𝛽 = −𝑉
𝑑𝑃

𝑑𝑉
 (4.69) 

 

As explained in Appendix A.4, a bulk modulus of 𝛽 = 1.657𝑒 + 09 𝑃𝑎 has been used here. To 

calculate the change in accumulator oil volume due to the compressibility of the oil, including 

oil in the connecting pipe, equation (4.69) is rearranged to give the change in volume: 

 

∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐1

∆𝑃

𝛽
= −𝑉𝑎𝑐𝑐1

(𝑃𝑎𝑐𝑐2 − 𝑃𝑎𝑐𝑐1)

𝛽
 (4.70) 

 

where 𝑃𝑎𝑐𝑐1 and 𝑃𝑎𝑐𝑐2 are the accumulator pressure before and after a change respectively, 

and 𝑉𝑎𝑐𝑐1 is the oil volume in the accumulator before the change. 

 

Similarly, the change in oil volume in the cylinder is given by: 

 

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙1

(𝑃𝑐𝑦𝑙2 − 𝑃𝑐𝑦𝑙1)

𝛽
  

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙1

((𝑃𝑟𝑒𝑠2 + ∆𝑃𝑡𝑜 𝑟𝑒𝑠2) − (𝑃𝑟𝑒𝑠1 + ∆𝑃𝑡𝑜 𝑟𝑒𝑠1))

𝛽
 (4.71) 
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where 𝑃𝑟𝑒𝑠1 and ∆𝑃𝑡𝑜 𝑟𝑒𝑠1 are the pressure in the reservoir to which the cylinder is connected, 

and the pressure drop to it, before a change; 𝑃𝑟𝑒𝑠2 and ∆𝑃𝑡𝑜 𝑟𝑒𝑠2 are the same variables after 

the change; and 𝑉𝑐𝑦𝑙1 is the oil volume in the cylinder before the change. The reservoir is either 

the accumulator or the tank. 

 

The total volume change due to oil compressibility (expansion is positive) is given by: 

 

∆𝑉𝛽 = ∆𝑉𝛽𝑎𝑐𝑐
+ ∆𝑉𝛽𝑐𝑦𝑙

 (4.72) 

 

Hence, the change in oil volume in the accumulator over each simulation time step is given 

by: 

∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 = ∆𝑦𝐴 + ∆𝑉𝛽 (4.73) 

 

where ∆𝑦𝐴 is the change due to the incremental piston displacement ∆𝑦. 

 

 

4.6.3 Accumulator thermodynamics 
 

The gas in the accumulator is considered to be an ideal gas and subject to polytropic 

compression and expansion. In other words, the following equations apply: 

 

𝑃𝑉 = 𝑛𝑅𝑇 

𝑃𝑉𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

also written as 𝑃1𝑉1
𝑘 = 𝑃2𝑉2

𝑘 

 

(4.74) 

 

Also, by substituting the first equation into the second, pressure can be eliminated as follows: 

 

𝑛𝑅𝑇1
𝑉1

𝑉1
𝑘 =

𝑛𝑅𝑇2
𝑉2

𝑉2
𝑘 (4.75) 

𝑇1𝑉1
𝑘−1 = 𝑇2𝑉2

𝑘−1 (4.76) 

 

This yields: 
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𝑇2 = 𝑇1 (
𝑉1
𝑉2
)
𝑘−1

 (4.77) 

 

In the accumulator literature, gas volume changes are considered approximately isothermal 

(𝑘 = 1) if they take place over a long period of time, so that the temperature of the gas 

remains constant. Conversely, gas volume changes are considered approximately adiabatic 

(𝑘 = 1.4) when the changes occur quickly, so that there is very little time for heat transfer 

from the accumulator to the surrounding environment. Generally, isothermal conditions are 

assumed if the accumulator is used as a volume compensator, leakage compensator, pressure 

compensator or lubrication compensator. In all other cases, such as energy accumulation, 

pulsation damping, emergency power source, dynamic pressure compensator, shock 

absorber, hydraulic spring etc., adiabatic conditions are assumed ("Lecture 28: 

ACCUMULATORS," 2017). One accumulator manufacturer (Epe Italiana Srl, 2012, p. 51) uses 

an empirical rule to choose the appropriate value for the polytropic index 𝑘: 

- If the cycle duration is smaller than one minute, the change is adiabatic (𝑘 = 1.4). 

- If the cycle duration is larger than three minutes, the change is isothermal (𝑘 = 1). 

- If the cycle duration is between one and three minutes, there is some heat transfer during 

compression and expansion (1 < 𝑘 < 1.4) . 

 

Therefore, over the period of one gait cycle lasting approximately one second, it is reasonable 

to assume that charge and discharge of the accumulator is approximately adiabatic (𝑘 = 1.4). 

So the changes in pressure as a result of changes in gas volume during each gait cycle are 

calculated assuming 𝑘 = 1.4. However, over many gait cycles, there will be heat loss to the 

surroundings, resulting in a slow change in both temperature and pressure. This is modelled 

using the thermal time-constant described by Pourmovahed and Otis (1990), which is used to 

model the relaxation process of the gas after a rapid compression or expansion. The rate of 

change of the gas temperature 𝑇 is given by: 

 

𝑑𝑇

𝑑𝑡
=
(𝑇𝑤 − 𝑇)

𝜏 
 (4.78) 

 

where 𝑇𝑤 is the wall temperature, which is equal to the temperature of the surrounding 

environment (𝑇𝑒𝑛𝑣). The calculation of the time constant 𝜏 is described in Appendix A.5. 
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The solution of this differential equation leads to: 

𝑇(𝑡) = [ 𝑇(0) − 𝑇𝑤]𝑒
−
𝑡
𝜏 + 𝑇𝑤 (4.79) 

 

where 𝑇(0) is the temperature when 𝑡 = 0. 

 

 

4.6.4 Accumulator initialisation 
 

Initially, before the accumulator is installed in the hydraulic circuit of the new ankle design, 

the gas is at the pre-charge pressure. In this pre-charge condition, the gas pressure and volume 

follow the ideal gas law: 

 

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 =
𝑛𝑁2𝑅𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒
 (4.80) 

 

where 𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑇𝑒𝑛𝑣 = 293𝐾 (i.e. 20°𝐶, the environment temperature). From this 

equation, it is possible to calculate the number of moles of nitrogen in the accumulator: 

 

𝑛𝑁2 =
𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑅𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒
=
45𝑏𝑎𝑟 ∙ 250𝑒 − 06 𝑚3

8.314 
𝐽
𝑚𝑜𝑙 ∙ 𝐾⁄ ∙ 293𝐾

≅ 0.462 𝑚𝑜𝑙 (4.81) 

 

Given the molecular weight of 𝑁2 (𝑀𝑁2 = 28.014
𝑔

𝑚𝑜𝑙
), the corresponding mass of 𝑁2 in the 

accumulator when 𝑉𝐴 = 250𝑒 − 06 𝑚
3 is:  

 

𝑚𝑁2 = 𝑛𝑁2 ∙ 𝑀𝑁2 = 0.462𝑚𝑜𝑙 ∙ 28.014
𝑔
𝑚𝑜𝑙⁄  = 12.942𝑔 (4.82) 

 

With the accumulator installed in the hydraulic circuit, the desired initial pressure at the 

beginning of the gait cycle was set at 𝑃𝑠𝑡𝑎𝑟𝑡 = 0.90 ∗ 𝑃𝑚𝑎𝑥 = 90 𝑏𝑎𝑟. The initial charging 

process of the accumulator, before any cyclic working activity over the gait cycle, was assumed 

to be isothermal (i.e. 𝑇𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑒𝑛𝑣 = 293𝐾). Therefore, this can be modelled by the 

polytropic equation 𝑃𝑉𝑘 = 𝐶, with 𝑘 = 1 for an isothermal process. Hence, 𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡  is 

evaluated as follows: 
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𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑃𝑠𝑡𝑎𝑟𝑡𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡  

 
(4.83) 

𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡 = 𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 (
𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑠𝑡𝑎𝑟𝑡
) = 1.25𝑒 − 04 𝑚3 (4.84) 

 

Then the oil volume is obtained as follows: 

 

𝑉𝑎𝑐𝑐𝑠𝑡𝑎𝑟𝑡 = 𝑉𝐴 − 𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡 = 

= 250𝑒 − 06𝑚3 − 1.25𝑒 − 04 𝑚3 = 1.25𝑒 − 04𝑚3 
(4.85) 

 

Moreover, the initial values of gas pressure and volume should also follow the ideal gas law: 

 

𝑃𝑠𝑡𝑎𝑟𝑡 =
𝑛𝑁2𝑅𝑇𝑠𝑡𝑎𝑟𝑡

𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡
 (4.86) 

 

Therefore, as a check, the number of moles in the accumulator can be calculated and this is 

still the same as that calculated for the pre-charge condition, as it should be: 

 

𝑛𝑁2 =
𝑃𝑠𝑡𝑎𝑟𝑡𝑉𝑔𝑎𝑠𝑠𝑡𝑎𝑟𝑡
𝑅𝑇𝑠𝑡𝑎𝑟𝑡

=
90𝑏𝑎𝑟 ∙ 1.25𝑒 − 04𝑚3

8.314 
𝐽
𝑚𝑜𝑙 ∙ 𝐾⁄ ∙ 293𝐾

≅ 0.462𝑚𝑜𝑙 (4.87) 

 

 

4.6.5 Modelling valve transitions - sequence of calculation 
 

a) Connecting cylinder to accumulator 

 

Valve transition events occur at the beginning of each working phase, when the directional 

control valve connects the relevant cylinder to the accumulator. This involves a small drop in 

accumulator pressure and a large increase in cylinder pressure, which correspond to small oil 

volume changes, respectively an expansion and a compression. Based on the theory presented 

in section 4.6.2, the changes in the two oil volumes are evaluated as follows: 
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∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐1

(𝑃𝑎𝑐𝑐2 − 𝑃𝑎𝑐𝑐1)

𝛽
 (4.88) 

 

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙1

((𝑃𝑎𝑐𝑐2 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐) − (𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘))

𝛽
 (4.89) 

 

where 𝑉𝑎𝑐𝑐1 and 𝑉𝑐𝑦𝑙1 are the oil volumes in the accumulator and cylinder before connecting 

to the accumulator; 𝑃𝑎𝑐𝑐1 and 𝑃𝑎𝑐𝑐2 are the accumulator pressures before and after 

connecting; and (𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘) and (𝑃𝑎𝑐𝑐2 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐) are the cylinder pressures before 

and after connecting. The accumulator pressure after connecting (𝑃𝑎𝑐𝑐2) depends on these 

volume changes and, therefore, it is evaluated within an iteration loop (see Appendix C.3.8). 

The initial estimate used to begin the iterative solution is 𝑃𝑎𝑐𝑐2 = 𝑃𝑎𝑐𝑐1.  

 

Using equations (4.72) and (4.73), the oil flow into the accumulator and hence the change in 

gas volume are given by: 

 

∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 = ∆𝑉𝛽 = ∆𝑉𝛽𝑎𝑐𝑐
+ ∆𝑉𝛽𝑐𝑦𝑙

 (4.90) 

 

𝑉𝑔𝑎𝑠2 = 𝑉𝑔𝑎𝑠1 − ∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 (4.91) 

 

Then, based on the theory presented in section 4.6.3 and assuming no heat transfer 

because the valve transition is assumed to occur instantaneously, the gas temperature and 

pressure in the accumulator are given by: 

𝑇2 = 𝑇1 (
𝑉𝑔𝑎𝑠1

𝑉𝑔𝑎𝑠2
)

𝑘−1

 (4.92) 

𝑃𝑎𝑐𝑐2 = 𝑃𝑎𝑐𝑐1 (
𝑉𝑔𝑎𝑠1

𝑉𝑔𝑎𝑠2
)

𝑘

 (4.93) 

 

This new estimate for 𝑃𝑎𝑐𝑐2 is used in the next iteration to recalculate the changes in oil 

volumes, which in turn allow another new estimate for 𝑃𝑎𝑐𝑐2. Iterations stop when the 
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difference between two consecutive estimates of 𝑃𝑎𝑐𝑐2 is ≤ 1𝑃𝑎. Then the new oil volume in 

the accumulator after connecting is 𝑉𝑎𝑐𝑐2 = 𝑉𝐴 − 𝑉𝑔𝑎𝑠2. 

 

b) Connecting cylinder to tank 

Valve transition events also occur at the end of each working phase, when the directional 

control valve connects the cylinder to the tank. This involves a large drop in cylinder pressure 

and a corresponding small expansion of oil in the cylinder, some of which therefore flows into 

the tank. Nonetheless, it is not necessary to take this explicitly into account as its effect is seen 

when the cylinder is next connected to the accumulator, at which point there is a small oil 

flow from the accumulator into the cylinder because of oil compression as the cylinder is re-

pressurised.  

 

 

4.6.6 Modelling incremental accumulator changes - sequence of calculation 
 

a) Working phases 

 

Each incremental piston displacement at each time step of a working phase causes a change 

in accumulator oil volume and hence pressure. Based on the theory presented in section 4.6.2 

and in a similar manner to the valve transition calculations in the previous section, the oil 

volume changes and corresponding accumulator gas volume change are calculated as follows: 

 

∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐1

(𝑃𝑎𝑐𝑐2 − 𝑃𝑎𝑐𝑐1)

𝛽
 (4.94) 

 

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙1

((𝑃𝑎𝑐𝑐2 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐2) − (𝑃𝑎𝑐𝑐1 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐1))

𝛽
 (4.95) 

 

∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 = ∆𝑦𝐴 + ∆𝑉𝛽 = ∆𝑦𝐴 + (∆𝑉𝛽𝑎𝑐𝑐
+ ∆𝑉𝛽𝑐𝑦𝑙

) (4.96) 

 

𝑉𝑔𝑎𝑠2 = 𝑉𝑔𝑎𝑠1 − ∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤  (4.97) 
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Then, based on the theory presented in section 4.6.3 and, in this case, including heat transfer 

because the incremental changes occur over a finite time step, the new gas temperature and 

pressure in the accumulator are given by: 

 

∆𝑇𝑝𝑜𝑙𝑦 = 𝑇1 (
𝑉𝑔𝑎𝑠1

𝑉𝑔𝑎𝑠2
)

𝑘−1

− 𝑇1  (4.98) 

 

∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = [𝑇1 − 𝑇𝑒𝑛𝑣]𝑒
−
∆𝑡
𝜏 + 𝑇𝑒𝑛𝑣 − 𝑇1  (4.99) 

 

∆𝑇𝑡𝑜𝑡𝑎𝑙 = ∆𝑇𝑝𝑜𝑙𝑦 + ∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 

 

(4.100) 

 

𝑇2 = 𝑇1 + ∆𝑇𝑡𝑜𝑡𝑎𝑙 (4.101) 

 

𝑃𝑎𝑐𝑐2 = 𝑛𝑅
𝑇2

𝑉𝑔𝑎𝑠2 
 

(4.102) 

 

where ∆𝑇𝑝𝑜𝑙𝑦 is the change in temperature due to polytropic compression and ∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is 

the change in temperature due to heat transfer. Solving for the total change in temperature 

(∆𝑇𝑡𝑜𝑡𝑎𝑙) in this sequential manner is justified because the incremental changes are small. In 

other words, this is a numerical approximation. 

 

As for the valve transition events, the new accumulator pressure (𝑃𝑎𝑐𝑐2) depends on the 

volume changes and, therefore, it is evaluated within an iteration loop (see Appendix C.3.9). 

The initial estimate used to begin the iterative solution is 𝑃𝑎𝑐𝑐2 = 𝑃𝑎𝑐𝑐1. 

 

b) Non-working phases with accumulator isolated 

 

During load acceptance and swing, the accumulator is not connected to either cylinder. 

Nevertheless, there are still gas temperature and pressure changes as a result of heat transfer. 

Therefore, the calculation of the accumulator gas volume change is simplified as follows: 
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∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐1

(𝑃𝑎𝑐𝑐2 − 𝑃𝑎𝑐𝑐1)

𝛽
 (4.103) 

𝑉𝑔𝑎𝑠2 = 𝑉𝑔𝑎𝑠1 − ∆𝑉𝛽𝑎𝑐𝑐
 (4.104) 

 

Apart from this, the calculations for the new gas temperature and pressure in the accumulator 

are the same as those presented above (see equations (4.98) - (4.102)). 



 

 
 

 

 

5. Chapter 5: Simulation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo da Vinci, Studies of Turbulent Water, Royal Collection Trust 

 

 

 

 

 

 

 

 

"No human investigation can be a real science 

if it does not go through mathematical demonstrations” 

 

(Leonardo Da Vinci) 
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Based on the mathematical modelling described in Chapter 4, a simulation model of the whole 

system was implemented in MATLAB, including all of the components previously described. 

For a given engineering design, this simulates the new device working throughout the gait 

cycle, storing and releasing energy at the ankle joint. Secondly, a design program was created 

that uses the aforementioned simulation model to: 

a) Design the profiles of the two cams in such a way as to replicate the torque of an intact 

ankle; 

b) Specify the two follower return springs. 

 

The simulation model and design program are explained in the next two sections and in the 

corresponding high-level pseudo code (i.e. a simplified representation of the MATLAB code), 

which can be found in Appendix C. The final section describes a power-audit-based check that 

the simulation model has been correctly implemented. 

 

 

5.1 Simulation model 
 

Once the engineering design of the new device has been defined, the main input that drives 

the system is the ankle angle over the gait cycle, which is the only variable the amputee can 

control (experimental data collected by Bari (2013) was used). Conversely, the ankle torque 

depends on the torques applied by the two cam-ram systems, which in turn depend on the 

cam profiles – which are fixed – and on the changing pressure in the accumulator (see section 

4.3.4). Therefore, a simulation model was implemented in MATLAB to simulate a given 

engineering design (i.e. given all fixed parameters that are needed for mathematical 

modelling) over one gait cycle, driven by the input of ankle angle versus time obtained from 

experimental gait data. This calculates the changes in pressure and oil volume in the 

accumulator, and therefore the energy stored and released, and the total torque at the ankle 

joint as the output from the device, while considering the physical phenomena that may 

impair the efficiency of the new device. Table 5.1 illustrates the main stages of the MATLAB 

script, while Appendix C explains the MATLAB script in detail. In the sequence in which they 

occur, these calculation stages are as follows.  
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Stage 1 – Initialisation 

The properties of all components – cams, hydraulic rams, return springs, accumulator, pipes, 

directional control valves, fittings, and also the oil and the gas – are defined at the beginning 

of the code. Also the gas volume, pressure and temperature in the accumulator are initialised 

as explained in section 4.6.4 for the first gait cycle or to the final values at the end of the 

previous gait cycle for the second gait cycle onwards. 

 

Stage 2 – Array-based calculations for whole gait cycle 

Given ankle angle versus time as input to the model, the parallel spring torque and the 

kinematics of the gearbox and two cams are evaluated. As the two cams profiles are given, 

the ratio of piston incremental displacement to cam incremental angle is known for the two 

cam-ram systems. Therefore, given the cam rotation angles, the kinematics of the two pistons 

is evaluated (i.e. incremental displacements, total displacement, linear velocities and 

accelerations), together with the kinematics of the two rollers (angular velocities and 

accelerations). This, in turn, allows the calculation of the two return spring forces, fluid flows, 

major and minor flow losses, and the initial pressures and oil volumes in the two rams. 

 

Stage 3 – Time-stepping loop 

A time-stepping loop evaluates the states of the directional control valves (DCVs), including 

modelling valve transitions, solves the cam-ram dynamics, and models the filling and emptying 

of the accumulator. This is necessary because the solutions at each time instant of the gait 

cycle depend on the solutions at the previous time instant. The time-stepping loop includes 

three stages of calculation as follows. 

 

The first stage evaluates the states of the directional control valves (DCVs), including 

modelling valve transitions (see section 4.6.5). During the working phases of the stance and 

push-off cam-rams, these valves allow fluid flow from the stance ram to the accumulator and 

from the accumulator to the push-off ram respectively. Therefore, through a valve transition, 

a connection is made between ram and accumulator at the start of each working phase, and 

the change in gas volume and, hence, pressure and temperature in the accumulator due to oil 

compressibility is evaluated. This occurs at the first time instant of mid-stance and the first 

time instant of push-off. Conversely, during their non-working phases, the two valves connect 
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the rams to the tank. Consequently, for each cam-ram, the first time instant of the non-

working phase that immediately follows that cam-ram’s working phase is characterised by a 

small oil expansion in the corresponding cylinder, which need not be explicitly accounted for 

as explained at the end of section 4.6.5. 

 

The second stage of the time-stepping loop evaluates the friction losses in the two cylinders 

and, thus, calculates the two net hydraulic ram forces, given by the sum of hydraulic force and 

friction force, and runs the dynamic analysis to evaluate all forces and moments acting within 

the two cam-ram systems (see Appendix B.4). 

 

The third stage of the time-stepping loop models the fluid flow into and out of the accumulator 

for each time step of the working phases of the two cam-ram systems, caused by the 

incremental displacements of the pistons. The resulting gas volume, pressure and 

temperature in the accumulator are evaluated for each time instant in the two working phases 

by accounting for piston displacement, oil compressibility and heat transfer. During load 

acceptance and swing the accumulator is isolated (i.e. not connected to a ram) and the 

changes in gas volume, pressure and temperature only depend on heat transfer between the 

accumulator and the environment (see section 4.6.6). 

 

Stage 4 – Further array-based calculations for whole gait cycle 

Finally, the total torque at the camshaft throughout the gait cycle is obtained by adding the 

two cam torques (𝑇𝑐 = 𝑇𝑐𝑃𝑂 + 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸). Then, the ankle torque is the sum of the parallel 

spring torque and the gearbox input (ankle side) torque (see equations (4.5) and (4.6)). 
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Table 5.1 Overview of the simulation model. 

 Define fixed properties of all components. 

 Initialise gas volume, pressure & temperature in the accumulator. 

 Evaluate DCV states. 

 Model valve transitions. 

 Evaluate cylinder friction forces. 

 Evaluate hydraulic ram forces. 

 Solve dynamics for 2 cam-ram systems to obtain 2 cam torques. 

 Evaluate oil flow to accumulator and changes in gas volume, pressure 
& temperature. 

ankle angle versus time  
over the gait cycle 

 Evaluate total camshaft torque by adding 2 cam torques. 

 Evaluate ankle torque  
(sum of parallel spring torque and gearbox input torque). 

Stage 3 – Time-stepping loop 

 

 Evaluate parallel spring torque. 

 Evaluate kinematics of gearbox and cams. 

 Evaluate kinematics of pistons. 

 Evaluate kinematics of rollers. 

 Evaluate return spring forces, fluid flows, major and minor flow 
losses; and initial pressures & oil volumes in the rams. 

Stage 1 – Initialisation 

 

Stage 2 – Array-based calculations 
for whole gait cycle 

 

Stage 4 – Further array-based 
calculations for whole gait cycle 
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5.2 Design program 
 

A design program was implemented in MATLAB that uses the simulation model described 

above to: 

a) Design the profiles of the two cams in such a way as to replicate the torque of an intact 

ankle; 

b) Specify the two follower return springs. 

 

This MATLAB script is characterised by three nested loops. The two outer loops are for design 

purposes – one to size the return springs (explained in section 5.2.2) and a second one to 

determine the cam profiles (explained in section 5.2.1). The inner time-stepping loop is almost 

identical to the one in the simulation model described in the previous section, modelling the 

states of the directional control valves, the dynamics of the cam-rams and the filling and 

emptying of the accumulator. Other parts of the code are also adapted from that of the 

simulation model. Table 5.2 presents the main calculation stages of the MATLAB script, while 

the high-level pseudo-code can be found in Appendix C. 

 

 

5.2.1 Iterative calculation of cam profiles  
 

The second of the two outer loops converges iteratively to find two cam profiles that enable 

the system to produce ankle torque curves during the working phases of the two cam-rams 

that match the required curves, taken from in-vivo experimental data collected by Bari (2013). 

Given the required ankle torque, it is possible to use an inverse model of the parallel spring 

and gearbox to obtain the required camshaft torque, which corresponds to the sum of the 

two cam torques. In particular, from equations (4.8) and (4.9), the required camshaft torque 

(𝑇𝑐𝑟) is: 

 

 𝑇𝑐𝑟 = (
𝑇𝑖𝑛𝑔𝑏 − 𝑇𝑓

𝐺𝑅
) = (

(𝑇𝑎𝑟 − 𝑇𝑝𝑠) − 𝑇𝑓

𝐺𝑅
) (5.1) 

 

Thereafter, an iterative solution is necessary because the actual camshaft torque depends 

upon the dynamics of the two cam-ram systems, which includes velocity and acceleration 



  Chapter 5: Simulation 

126 
 

dependent terms that are determined by the cam profiles. In other words, simulation over the 

gait cycle requires a priori knowledge of the cam profiles. So, beginning with initial estimates 

of the two cam profiles, which are used as inputs, the design program runs the simulation 

model to calculate the corresponding camshaft torque curves in the two working phases. The 

error between the calculated (i.e. actual) and required torque curves is then used to update 

the cam profiles. This iteration loop is repeated numerous times until a solution is reached, 

such that the actual camshaft torque curves in the two working phases, as calculated by the 

simulation model, match the required ones derived from the required ankle torque curves 

within a small tolerance. 

 

a) Estimating an initial cam profile 

The purpose of each cam profile is to define the ratio of piston incremental displacement to 

cam incremental angle (
𝑑𝑦

𝑑𝜃𝑐
) as a function of cam rotation angle 𝜃𝑐. In other words, defining a 

cam profile is synonymous with defining 
𝑑𝑦

𝑑𝜃𝑐
 as a function of cam rotation angle 𝜃𝑐. The 

method of estimating an initial cam profile is the same for both cam-ram systems, so here it 

is explained for the stance cam-ram only. For the initial estimate only, all friction terms are 

neglected including the torque generated by the non-working cam-ram, which is connected 

to tank. Therefore, it can be assumed that, during its working phase, the stance cam torque 

𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑇𝑐𝑟  and the work done by the stance cam is equal to the work done by the piston 

on the hydraulic fluid. In other words: 

 

 𝑊 = 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑑𝜃𝑐 = 𝑇𝑐𝑟𝑑𝜃𝑐 = 𝐹ℎ𝑑𝑦 (5.2) 

 

Where, by neglecting piston O-ring friction, the hydraulic ram force is the product of gauge 

cylinder pressure and piston area (see Figure 4.9): 

 

 𝐹ℎ = (𝑃 − 𝑃𝑎𝑡𝑚)𝐴 (5.3) 

 

where 𝑃 = 𝑃𝑐𝑦𝑙 = 𝑃𝑎𝑐𝑐  because the pipe, fittings and valve friction between cylinder and 

accumulator is being neglected. Furthermore, for the initial estimate only, a constant 

accumulator pressure of 𝑃𝑎𝑐𝑐 = 0.90 ∗ 𝑃𝑚𝑎𝑥  was assumed. 
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Figure 5.1 Piston displacement during the working phase (black dots) and over the complete gait cycle (blue 
solid line) for the stance cam-ram (on the left) and the push-off cam-ram (on the right). During the non-working 
phases, the working phase cam surface is followed within its range of cam angles; outside this range the piston 
displacement is constant (flat sections of blue line). 

Therefore, by rearranging (5.2), the initial estimate for the ratio of piston incremental 

displacement to cam incremental angle during the cam’s working phase is given by: 

 

 
𝑑𝑦

𝑑𝜃𝑐
=
𝑇𝑐𝑟
𝐹ℎ

=
𝑇𝑐𝑟

(𝑃 − 𝑃𝑎𝑡𝑚)𝐴
 (5.4) 

 

This is used to calculate 
𝑑𝑦

𝑑𝜃𝑐
 as a function of cam rotation angle 𝜃𝑐  over the cam working phase. 

 

Since there is no clutch mechanism to disengage the cam-ram outside of its working phase, 

the cam profile will be followed over the complete gait cycle, including during its non-working 

phases when the ram is connected to tank. For cam angles outside the range of cam angles 

seen during the working phase, the ratio 
𝑑𝑦

𝑑𝜃𝑐
 is set to zero, so that there is no change in piston 

displacement, corresponding to a constant cam radius. For cam angles within the range of 

cam angles seen during the working phase, the ratio 
𝑑𝑦

𝑑𝜃𝑐
 in the non-working phase is 

determined by interpolation of the working phase results. Consequently, for all time steps 

within the gait cycle, the incremental changes in piston displacement (∆𝑦) are evaluated, 

together with the overall piston displacement (𝑦) by cumulatively summing the incremental 

changes, with the minimum value of 𝑦 set to zero (see Appendix C for the exact calculation). 

Figure 5.1 shows piston displacement over time for the two cam-ram systems. Piston 

displacement 𝑦 and the ratio 
𝑑𝑦

𝑑𝜃𝑐
 are used to calculate the cam profile (see equations (4.12) 

and (4.31)). 
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b) Iteratively updating the cam profile 

For the first iteration, the initial cam profile, specifically the initial ratio 
𝑑𝑦

𝑑𝜃𝑐
 as a function of 

cam rotation angle 𝜃𝑐, is used to drive the simulation model, taking full account of all friction 

terms and the torque generated by the non-working cam-ram. This provides an accurate 

calculation of the actual camshaft torque 𝑇𝑐, which is used to update  
𝑑𝑦

𝑑𝜃𝑐
 as a function of cam 

rotation angle 𝜃𝑐  over the working phase of the cam and, hence, the cam profile. This is done 

using a modified version of equation (5.4) as follows: 

 

 (
𝑑𝑦

𝑑𝜃𝑐
)
𝑛+1

=
𝑇𝑐𝑟𝑛+1
𝐹ℎ𝑛+1

≅
𝑇𝑐𝑟𝑛 + 𝑇𝑐𝑒𝑟𝑟𝑜𝑟

𝐹ℎ𝑛
= (

𝑑𝑦

𝑑𝜃𝑐
)
𝑛

+
𝑇𝑐𝑒𝑟𝑟𝑜𝑟
𝐹ℎ𝑛

 (5.5) 

 

Where 𝑇𝑐𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑐𝑟𝑛 − 𝑇𝑐𝑛  (i.e. required camshaft torque minus the actual torque), 𝐹ℎ𝑛  is the 

actual ram force including piston O-ring friction, and 𝑛 is the iteration index. In other words, 

𝑑𝑦

𝑑𝜃𝑐
 for iteration 𝑛 + 1 is equal to the previous 

𝑑𝑦

𝑑𝜃𝑐
 for iteration 𝑛 plus an adjustment which 

corresponds to adding the error in camshaft torque (𝑇𝑐𝑒𝑟𝑟𝑜𝑟) so that, in the absence of further 

changes to the cam-ram dynamics, the error would be zero in iteration 𝑛 + 1. 

 

For the second and subsequent iterations, the updated cam profile calculated using equation 

(5.5) is used to drive the simulation model, again taking full account of all friction terms and 

the torque generated by the non-working cam-ram. This process is repeated until a stable 

solution is reached. The residuals (𝑇𝑐𝑒𝑟𝑟𝑜𝑟) for the two working phases were observed to 

decrease as the number of iterations increased from one to five; after which they increased 

slightly up to the eighth iteration and then remained constant. Therefore, five iterations were 

used and the resulting maximum difference between the required torque 𝑇𝑐𝑟  and the actual 

one 𝑇𝑐 was just under 0.02𝑁𝑚 (see Figure 5.2 (b)). 
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Figure 5.2 (a) On the left, a comparison of the required camshaft torque (red solid line) and the actual torque 
(black solid line) throughout the gait cycle (load acceptance (1), mid-stance (2), terminal stance (3), push-off 
(4), and swing phase (6)). (b) On the right, the camshaft torque residuals (required torque minus actual torque) 
during the working phases of the two cam-ram systems after five iterations. 

Figure 5.3 Comparison of the required power at the ankle joint (red solid line) and the actual power (black solid 
line) throughout the gait cycle (load acceptance (1), mid-stance (2), terminal stance (3), push-off (4), and swing 
phase (6)). 

(5) (3) (4) (2) (1) 

(a)       (b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 shows the actual versus required ankle powers produced by the new system after 

the design program has converged on suitable cam profiles. This includes the effect of the 

parallel spring, which is not perfectly matched to load acceptance and swing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(5) (3) (4) (2) (1) 
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Table 5.2 Overview of the design program. 

 Evaluate kinematics of cams. 

 Initialise gas volume, pressure & temperature in the accumulator. 

 Initialise ram force, neglecting all friction terms. 

 Estimate initial cam profiles (i.e. the ratio of piston incremental displacement 
to cam incremental angle over the gait cycle). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 Evaluate the characteristics of the two return springs (slope and intercept), to 
be used in the 2nd iteration. 

 Evaluate kinematics of pistons. 

 Evaluate kinematics of the rollers. 

 Evaluate return spring forces, fluid flows, major and minor flow losses; 
and initial pressures & oil volumes in the rams 

 

 Evaluate DCV states. 

 Model valve transitions. 

 Evaluate cylinder friction forces. 

 Evaluate hydraulic ram forces. 

 Solve dynamics for 2 cam-ram systems to obtain 2 cam torques.  

 Evaluate oil flow to accumulator and changes in gas volume, 
pressure & temperature. 

 Evaluate total camshaft torque by adding 2 cam torques. 

 Update cam profiles (i.e. the ratio of piston incremental 
displacement to cam incremental angle over the gait cycle). 

 Define fixed properties of all components. 

 Set initial return spring characteristics (zero slope and intercept). 

 Evaluate the parallel spring torque. 

 Model the gearbox to evaluate the required camshaft torque. 

ankle angle & torque versus time 
over the gait cycle 

 Draw cam profiles. 

 Undertake power audit. 

Time-stepping loop 

UPDATED cam profiles  Iterative calculation of 
cam profiles (5 iterations) 

Return springs sizing (2 iterations) 

Initialisation 

UPDATED slope & intercept  
for the return springs characteristics 
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5.2.2 Follower return springs sizing 
 

The outer loop described in the previous section and the inner time-stepping loop are both 

nested within a second outer loop (see Table 5.2.), the purpose of which is to specify the two 

follower return springs. As explained in section 3.4.2, the linear return spring is part of the 

follower assembly and it ensures contact between the cam and the roller. In particular, cams 

must normally operate with only compressive (positive) normal forces between cam and roller 

(𝐹𝑛 in Figure 4.5). To guarantee this, a minimum positive value was chosen for the normal cam 

force of 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 20𝑁, and the two return springs specified in order to satisfy this 

constraint. 

 

To specify the follower return springs requires knowledge of the normal cam forces 𝐹𝑛 over 

the gait cycle, but to calculate 𝐹𝑛 requires a priori knowledge of the follower return spring 

parameters. Therefore, an iterative approach is necessary to converge upon suitable spring 

parameters. In practise an approach involving just two iterations proved sufficiently accurate, 

particularly given the fact that the minimum positive value chosen for 𝐹𝑛 was to some extent 

arbitrary. 

 

In the first iteration, the return springs were omitted and the simulation model run to evaluate 

the normal cam forces without return springs (𝐹𝑛𝑁𝑂 𝑠𝑝𝑟𝑖𝑛𝑔) over the whole gait cycle. This data 

was used to calculate the return spring force that would be required, at every time instant, to 

make 𝐹𝑛 equal to the chosen minimum of 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 20𝑁. Specifically, the required return 

spring force is given by: 

 

 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝐹𝑛𝑁𝑂 𝑠𝑝𝑟𝑖𝑛𝑔  (5.6) 

 

𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is plotted against piston displacement in Figure 5.4. These plots illustrate one-to-

many relationships because the pistons reciprocate as the cams rotate. During the working 

phases of the cam-ram systems, when the hydraulic ram is connected to the accumulator, the 

normal cam forces are large and, therefore, 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is negative with a large magnitude (see 

Figure 5.4, left hand side). This negative data is not relevant as it indicates that the minimum 

constraint on normal cam force has been met without the need for a return spring. Conversely, 
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when 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is positive, this indicates that 𝐹𝑛𝑁𝑂 𝑠𝑝𝑟𝑖𝑛𝑔  is less than 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 20𝑁 and a 

return spring is necessary (see Figure 5.4, right hand side, for the positive data only). 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 
Linear follower return springs were then specified such that the spring force always equals or 

exceeds 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (Figure 5.4, right hand side), with a slope larger than zero to be consistent 

with the physical meaning of spring stiffness, and which minimises the area included between 

itself and the upper 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 curve. In other words, the following mathematical constraints 

and objective function were imposed: 

 

 𝐹𝑠 = 𝑘𝑦 + 𝑦0 (5.7) 

𝐹𝑠 ≥ 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 at each time instant 

Figure 5.4 On the left, 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  plotted against piston displacement throughout the gait cycle. On the right, 

only the positive values are plotted. The two plots at the top (a) refer to the stance system; the two plots at the 
bottom (b) to the push-off system. 
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0 < 𝑘 < 500,000 𝑁/𝑚 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒∫(𝐹𝑠 −𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)𝑑𝑦 

 

The stiffness (i.e. slope) was constrained to be less than 500,000 𝑁/𝑚 to provide an upper 

bound for the search algorithm. To provide a lower bound for the intercept 𝑦0, it was 

constrained to be greater than or equal to 𝑚𝑎𝑥 (𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑) at zero piston displacement, which 

explicitly guarantees 𝐹𝑠 ≥ 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 at zero piston displacement. To provide an upper bound, 

the intercept 𝑦0 was constrained to be less than the peak value of the required spring force 

(𝑦0 < 𝑚𝑎𝑥 (𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)), which guarantees that a spring characteristic can be found which 

makes contact with the peak value of the 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 curve given 𝑘 > 0, thus minimising 

∫(𝐹𝑠 −𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)𝑑𝑦 . 

 

A search algorithm was implemented, which applies the bounds defined above and, for each 

value of the intercept 𝑦0, finds the smallest value of the slope 𝑘 that satisfies the constraint 

𝐹𝑠 ≥ 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 at each time instant. This is the value of 𝑘 which leads to the spring 

characteristic just making contact with the 𝑚𝑎𝑥 (𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑) curve. Then, from the resulting 

set of alternative springs (𝑘, 𝑦0), the one that minimises the objective function 

(∫(𝐹𝑠 −𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)𝑑𝑦) is selected. 

 

Using this algorithm, the best two follower return springs were found to be: 

a) Stance cam-ram: 𝑘𝑆𝑇𝐴𝑁𝐶𝐸 = 461.80 𝑁/𝑚 and 𝑦0𝑆𝑇𝐴𝑁𝐶𝐸 = 31.90 𝑁; 

b) Push-off cam-ram: 𝑘𝑃𝑂 = 66.50 𝑁/𝑚 and 𝑦0𝑃𝑂 = 31.61 𝑁. 

 

Figure 5.5 shows these spring characteristics (red solid line) superimposed on the 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

plots (blue solid line). 

 

In the second iteration, these follower return springs were included and the simulation model 

run to evaluate the normal cam forces over the whole gait cycle. Referring to Figure 5.6, the 

normal force 𝐹𝑛 is always larger than the chosen minimum value 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 20𝑁. The 

minimum value of 𝐹𝑛 was less than 22𝑁 and, given the fact that the chosen value of 20𝑁 was 
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to some extent arbitrary, it was not considered necessary to run more iterations to further 

reduce the objective function. 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.5 On the left, 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (blue solid line) and the actual spring force 𝐹𝑠 (red solid line) plotted against 

piston displacement throughout the gait cycle. On the right, only the positive values of 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  together with 

𝐹𝑠 are plotted. The two plots at the top (a) refer to the stance system; the two plots at the bottom (b) to the 
push-off system. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

  

Figure 5.6 On the left, plots of the normal force 𝐹𝑛 between cam and roller after the introduction of the return 
spring. On the right, only the smallest values are plotted to check that they are larger than 20𝑁. The two plots 
at the top (a) refer to the stance system; the two plots at the bottom (b) to the push-off system. 
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Figure 5.7 Power balance for each component of the system. Subscripts “in” and “out” refer to a power flow on 
the ankle side of the component and on the accumulator side respectively.  

5.3 Power audit 
 

A power audit was undertaken as a verification that the whole system has been modelled 

correctly, obeying the laws of physics, over the whole gait cycle. This was done because the 

mathematical modelling, upon which the simulation is based, used a Newton-Euler approach 

and, therefore, using an alternative energy approach provides a somewhat independent check 

that the underlying physics has been correctly modelled. The power balance was assessed for 

each component of the system, considering power input, power output, all losses, and the 

rate of change of energy stored in the component. All power terms are considered positive 

when power flows into the component so that the sum of all the power terms is equal to the 

rate of change of the stored energy (see equation (5.8) and Figure 5.7). Therefore, power 

losses are always negative as they involve energy flowing to the external environment in the 

form of heat. 

 

 

 

 

 

 

 

 

 

 

 

The subscripts “in” and “out” associated with the power terms in equation (5.8) have their 

normal meanings when power flows from the ankle towards the accumulator. In other words, 

“in” refers to a power flow on the ankle side of the component and “out” refers to a power 

flow on the accumulator side of the component, regardless of the actual power flow direction. 

In this way, the signs look after themselves in every phase of the gait cycle. 

 

 𝑃𝑜𝑢𝑡 + 𝑃𝑖𝑛 + 𝑃𝑙𝑜𝑠𝑠1 + 𝑃𝑙𝑜𝑠𝑠2 =
𝜕𝐸𝑠𝑡𝑜𝑟𝑒𝑑
𝜕𝑡

 (5.8) 

𝑃𝑖𝑛 

𝑃𝑜𝑢𝑡 

𝑃𝑙𝑜𝑠𝑠1 

𝑃𝑙𝑜𝑠𝑠2 

𝜕𝐸𝑠𝑡𝑜𝑟𝑒𝑑
𝜕𝑡
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The power audit equations for each component were derived by evaluating 𝑃𝑖𝑛 as defined 

below, and 𝑃𝑜𝑢𝑡 is obtained by rearranging equation (5.8) as follows: 

 

 

The power audit equations for each component, as they were implemented in MATLAB, are 

presented below. 

 

 

5.3.1 Ankle and Parallel spring 
 

 

 

5.3.2 Gearbox 
 

 

 

5.3.3 Camshaft and individual cams  
 

 

From this point on, the two cam-ram systems are dealt with separately. Therefore, the 

following equations apply: 

 

 𝑃𝑜𝑢𝑡 = −𝑃𝑖𝑛 − 𝑃𝑙𝑜𝑠𝑠1 − 𝑃𝑙𝑜𝑠𝑠2 +
𝜕𝐸𝑠𝑡𝑜𝑟𝑒𝑑
𝜕𝑡

 (5.9) 

𝑃𝑖𝑛𝑝𝑠 = 𝑇𝑎𝜔𝑎  (5.10) 

𝜕𝐸𝑝𝑠

𝜕𝑡
= 𝑇𝑝𝑠𝜔𝑎  (5.11) 

𝑃𝑜𝑢𝑡𝑝𝑠 = −𝑃𝑖𝑛𝑝𝑠 +
𝜕𝐸𝑝𝑠

𝜕𝑡
  (5.12) 

𝑃𝑖𝑛𝑔𝑏 = (𝑇𝑎 − 𝑇𝑝𝑠)𝜔𝑎  (5.13) 

𝑃𝑓𝑟𝑔𝑏 = − 𝑇𝑓𝜔𝑎  (5.14) 

𝑃𝑜𝑢𝑡𝑔𝑏 = −𝑃𝑖𝑛𝑔𝑏 − 𝑃𝑓𝑟𝑔𝑏  (5.15) 

𝑃𝑖𝑛𝑐𝑎𝑚 𝑠ℎ𝑎𝑓𝑡 = (𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸 + 𝑇𝑐𝑃𝑂)𝜔𝑐 (5.16) 
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where the torque applied to the cam (𝑇𝑐) by the camshaft has the opposite sign to the torque 

exerted on the cam profile by the roller (see equation (4.50)).  

 

 

5.3.4 Rolling resistance element 
 

 

This is not a real component, but a virtual one necessary to correctly describe the rolling 

resistance phenomenon between cam surface and roller (see Appendix A.2 for a complete 

explanation).  

 

 

5.3.5 Roller 
 

 

 

5.3.6 Follower 
 

𝑃𝑖𝑛𝑐𝑎𝑚 =  𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝜔𝑐         or        𝑃𝑖𝑛𝑐𝑎𝑚 =  𝑇𝑐𝑃𝑂𝜔𝑐 (5.17) 

𝑃𝑜𝑢𝑡𝑐𝑎𝑚 = − 𝑃𝑖𝑛𝑐𝑎𝑚   (5.18) 

𝑃𝑖𝑛𝑟𝑜𝑙𝑟𝑒𝑠  =  𝐹𝑛�̇� cos 𝛼 + 𝐹𝑡(�̇�𝑟 + �̇� sin 𝛼) − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠𝜔𝑐  (5.19) 

𝑃𝑓𝑟𝑟𝑜𝑙𝑟𝑒𝑠 = −𝑀𝑟𝑜𝑙𝑟𝑒𝑠𝜔𝑟𝑒𝑙 = −𝑀𝑟𝑜𝑙𝑟𝑒𝑠(�̇� − 𝜔𝑐)  (5.20) 

𝑃𝑜𝑢𝑡𝑟𝑜𝑙𝑟𝑒𝑠 = −𝑃𝑖𝑛𝑟𝑜𝑙𝑟𝑒𝑠 − 𝑃𝑓𝑟𝑟𝑜𝑙𝑟𝑒𝑠   (5.21) 

𝑃𝑖𝑛𝑟𝑜𝑙 =  𝐹𝑛�̇� cos 𝛼 + 𝐹𝑡(�̇�𝑟 + �̇� sin 𝛼) − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠�̇�  (5.22) 

𝑃𝑓𝑟𝑟𝑜𝑙 = −𝑀𝑏𝑟𝑔�̇�   (5.23) 

𝜕(𝑘𝑒)𝑟𝑜𝑙

𝜕𝑡
=

𝜕

𝜕𝑡
(
1

2
𝑚�̇�2 +

1

2
𝐼𝑟𝑜𝑙�̇�

2) = 𝑚�̇��̈� + 𝐼𝑟𝑜𝑙�̇��̈�  (5.24) 

𝜕(𝑝𝑒)𝑟𝑜𝑙

𝜕𝑡
=

𝜕

𝜕𝑡
(𝑚𝑔𝑦) = 𝑚𝑔�̇�  (5.25) 

𝑃𝑜𝑢𝑡𝑟𝑜𝑙 = − 𝑃𝑖𝑛𝑟𝑜𝑙 − 𝑃𝑓𝑟𝑟𝑜𝑙 +
𝜕(𝑘𝑒)𝑟𝑜𝑙

𝜕𝑡
+
𝜕(𝑝𝑒)𝑟𝑜𝑙

𝜕𝑡
  (5.26) 

𝑃𝑖𝑛𝑓𝑜𝑙 = 𝑅𝑉�̇�   (5.27) 
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where 𝐹𝑓𝑟𝑔𝑢𝑖𝑑𝑒 = 𝐹𝑓𝑟1 + 𝐹𝑓𝑟2 is the total friction at the follower guide, and 
𝜕𝐸𝑟𝑠

𝜕𝑡
 is the rate of 

change of energy stored in the follower return spring.  

 

 

5.3.7 Cylinder (including pipes and discrete components)  
 

𝑃𝑖𝑛𝑐𝑦𝑙 = (𝐹ℎ + 𝑃𝑎𝑡𝑚𝐴)�̇� (5.33) 

𝑃𝑓𝑟𝑐𝑦𝑙 = −𝐹𝑓𝑟𝑐𝑦𝑙�̇� (5.34) 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠𝑐𝑦𝑙 = −𝑄∆𝑃 =  

                  = −𝑄∆𝑃𝑡𝑜 𝑎𝑐𝑐    during working phases (WP) (5.35) 

                  = −𝑄∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘   during non-working phases (NWP) (5.36) 

𝜕𝐸𝑜𝑖𝑙𝑐𝑦𝑙
𝜕𝑡

= −𝑃𝑐𝑦𝑙�̇�𝛽𝑐𝑦𝑙 = 
 

             =

{
 
 

 
 

0

−(𝑃𝑐𝑦𝑙�̇�𝛽𝑐𝑦𝑙)𝑆𝑇𝐴𝑁𝐶𝐸

−(𝑃𝑐𝑦𝑙�̇�𝛽𝑐𝑦𝑙)𝑃𝑂
0

 

during load acceptance 

during WP of the stance system 

during WP of the push-off system 

during swing 

(5.37) 

𝑃𝑜𝑢𝑡𝑐𝑦𝑙 = −𝑃𝑖𝑛𝑐𝑦𝑙 − 𝑃𝑓𝑟𝑐𝑦𝑙 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠𝑐𝑦𝑙 + 
𝜕𝐸𝑜𝑖𝑙𝑐𝑦𝑙

𝜕𝑡
 

(5.38) 

 

where: 𝐹𝑓𝑟𝑐𝑦𝑙  is the piston O-ring friction; ∆𝑃 is the pressure drop due to fluid friction in valves, 

pipes and fittings; and 
𝜕𝐸𝑜𝑖𝑙𝑐𝑦𝑙

𝜕𝑡
 is the rate of change of strain energy in the cylinder oil due to 

oil compressibility. The minus sign in the 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 expression is necessary because the product 

(𝑄∆𝑃) is always positive, given the sign of ∆𝑃 (see equation (4.64)). The follower and piston 

are treated as a single body and, hence, their masses combined. For this reason, kinetic and 

𝑃𝑓𝑟𝑓𝑜𝑙 = −𝐹𝑓𝑟𝑔𝑢𝑖𝑑𝑒�̇�  (5.28) 

𝜕(𝑘𝑒)𝑓𝑜𝑙

𝜕𝑡
=

𝜕

𝜕𝑡
(
1

2
𝑀�̇�2) = 𝑀�̇��̈�  (5.29) 

𝜕(𝑝𝑒)𝑓𝑜𝑙

𝜕𝑡
=

𝜕

𝜕𝑡
(𝑀𝑔𝑦) = 𝑀𝑔�̇�  (5.30) 

𝜕𝐸𝑟𝑠

𝜕𝑡
= 𝐹𝑠�̇� = (𝑘𝑦 + 𝑦0)�̇�  (5.31) 

𝑃𝑜𝑢𝑡𝑓𝑜𝑙 = −𝑃𝑖𝑛𝑓𝑜𝑙 − 𝑃𝑓𝑟𝑓𝑜𝑙 +
𝜕(𝑘𝑒)𝑓𝑜𝑙

𝜕𝑡
+
𝜕(𝑝𝑒)𝑓𝑜𝑙

𝜕𝑡
+
𝜕𝐸𝑟𝑠

𝜕𝑡
   (5.32) 
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potential energy variations due to the piston translating inside the cylinder are taken into 

account in the follower power audit above.  

 

 

5.3.8 Accumulator 
 

𝑃𝑖𝑛𝑎𝑐𝑐 = (𝑄 + �̇�𝛽𝑐𝑦𝑙)𝑃𝑎𝑐𝑐 = 

       =

{
 
 

 
 0
(𝑄 + �̇�𝛽𝑐𝑦𝑙)𝑆𝑇𝐴𝑁𝐶𝐸𝑃𝑎𝑐𝑐

(𝑄 + �̇�𝛽𝑐𝑦𝑙)𝑃𝑂𝑃𝑎𝑐𝑐

0

 

during load acceptance 
during WP of the stance system 
during WP of the push-off system 
during swing 

(5.39) 

𝑃𝑙𝑜𝑠𝑠𝐻𝐸𝐴𝑇 = ℎ𝑁2𝐴𝑤(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑔𝑎𝑠) (5.40) 

𝜕𝐸𝑜𝑖𝑙𝑎𝑐𝑐
𝜕𝑡

= −𝑃𝑎𝑐𝑐�̇�𝛽𝑎𝑐𝑐  (5.41) 

𝜕𝐸𝑔𝑎𝑠𝑎𝑐𝑐
𝜕𝑡

=
5

2
𝑛𝑅

𝑑𝑇

𝑑𝑡
 (5.42) 

𝑃𝑖𝑛𝑎𝑐𝑐 + 𝑃𝑙𝑜𝑠𝑠𝐻𝐸𝐴𝑇 =
𝜕𝐸𝑜𝑖𝑙𝑎𝑐𝑐
𝜕𝑡

+
𝜕𝐸𝑔𝑎𝑠𝑎𝑐𝑐
𝜕𝑡

 (5.43) 

 

where: 𝑃𝑙𝑜𝑠𝑠𝐻𝐸𝐴𝑇  is the power lost due to heat transfer from the accumulator to the 

surrounding environment; ℎ𝑁2 is the convection heat transfer coefficient for nitrogen; 𝐴𝑊 the 

internal surface area of the accumulator exposed to gas for heat transfer (see Appendix A.5); 

𝜕𝐸𝑜𝑖𝑙𝑎𝑐𝑐
𝜕𝑡

 is the rate of change of strain energy in the accumulator oil due to oil compressibility; 

and 
5

2
𝑛𝑅𝑇 is the energy stored in a diatomic gas such as nitrogen. 

 

 

5.3.9 Tank 
 

𝑃𝑖𝑛𝑡𝑎𝑛𝑘 = 𝑄𝑃𝑎𝑡𝑚 =   

              = {

(𝑄𝑆𝑇𝐴𝑁𝐶𝐸 + 𝑄𝑃𝑂)𝑃𝑎𝑡𝑚
𝑄𝑃𝑂𝑃𝑎𝑡𝑚

𝑄𝑆𝑇𝐴𝑁𝐶𝐸𝑃𝑎𝑡𝑚
(𝑄𝑆𝑇𝐴𝑁𝐶𝐸 + 𝑄𝑃𝑂)𝑃𝑎𝑡𝑚

 

during load acceptance 
during WP of the stance system 
during WP of the push-off system 
during swing 

(5.44) 

𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑛𝑘 = −𝑃𝑖𝑛𝑡𝑎𝑛𝑘         when 𝑃𝑖𝑛𝑡𝑎𝑛𝑘 ≥ 0 (5.45) 

𝑃𝑙𝑜𝑠𝑠𝑡𝑎𝑛𝑘 = 0                     when 𝑃𝑖𝑛𝑡𝑎𝑛𝑘 < 0  
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5.3.10 Power residuals 
 

If the whole system has been modelled correctly, obeying the laws of physics, over the whole 

gait cycle, then the power output from one component is equal to the power input to the next 

component. Specifically, given the sign convention adopted here (see equation (5.8) and 

Figure 5.7): 

 𝑃𝑖𝑛𝑘 = −𝑃𝑜𝑢𝑡𝑘−1 (5.46) 

 

Or to calculate the residual that should be very small: 

 

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑃𝑖𝑛𝑘 + 𝑃𝑜𝑢𝑡𝑘−1 ≅ 0 (5.47) 

 

This leads to the following power residual equations for each component: 

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑝𝑠−𝑔𝑏 = 𝑃𝑖𝑛𝑔𝑏 + 𝑃𝑜𝑢𝑡𝑝𝑠   (5.48) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑔𝑏−𝑐𝑎𝑚 𝑠ℎ𝑎𝑓𝑡 = 𝑃𝑖𝑛𝑐𝑎𝑚 𝑠ℎ𝑎𝑓𝑡 + 𝑃𝑜𝑢𝑡𝑔𝑏   

where:       𝑃𝑖𝑛𝑐𝑎𝑚 𝑠ℎ𝑎𝑓𝑡 = (𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸 + 𝑇𝑐𝑃𝑂)𝜔𝑐 

(5.49) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑐𝑎𝑚−𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑃𝑖𝑛𝑟𝑜𝑙𝑟𝑒𝑠 + 𝑃𝑜𝑢𝑡𝑐𝑎𝑚   (5.50) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑟𝑜𝑙𝑟𝑒𝑠−𝑟𝑜𝑙 = 𝑃𝑖𝑛𝑟𝑜𝑙 + 𝑃𝑜𝑢𝑡𝑟𝑜𝑙𝑟𝑒𝑠   (5.51) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑟𝑜𝑙−𝑓𝑜𝑙 = 𝑃𝑖𝑛𝑓𝑜𝑙 + 𝑃𝑜𝑢𝑡𝑟𝑜𝑙   (5.52) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑓𝑜𝑙−𝑐𝑦𝑙 = 𝑃𝑖𝑛𝑐𝑦𝑙 − [(𝑃𝑎𝑡𝑚𝐴)�̇�] + 𝑃𝑜𝑢𝑡𝑓𝑜𝑙   (5.53) 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑐𝑦𝑙−𝑎𝑐𝑐 = 𝑃𝑖𝑛𝑎𝑐𝑐 + 𝑃𝑜𝑢𝑡𝑐𝑦𝑙  (5.54) 

where: 𝑃𝑜𝑢𝑡𝑐𝑦𝑙 =

{
 

 
0

𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸
𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑃𝑂

0

 

during load acceptance 

during WP of the stance system 

during WP of the push-off system 

during swing 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑐𝑦𝑙−𝑡𝑎𝑛𝑘 = 𝑃𝑖𝑛𝑡𝑎𝑛𝑘 + 𝑃𝑜𝑢𝑡𝑐𝑦𝑙   (5.55) 

where: 

𝑃𝑜𝑢𝑡𝑐𝑦𝑙 =

{
 
 

 
 
𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸

+ 𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑃𝑂
𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑃𝑂

𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸
𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸

+ 𝑃𝑜𝑢𝑡𝑐𝑦𝑙𝑃𝑂

 

during load acceptance 

during WP of the stance system 

during WP of the push-off system 

during swing 
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These residual equations and the individual power terms for each component were 

implemented in MATLAB. The cam-ram power equations in sections 5.3.3 to 5.3.7 and also 

equations (5.50) - (5.53) above were implemented twice for the stance and push-off systems. 

 

Figure 5.8 to Figure 5.13 show the results derived from the power residual equations. 

Referring to Figure 5.3, to put these in perspective, the push-off peak power is about 190W. 

Therefore, these results confirm that the entire system has been modelled correctly over the 

whole gait cycle as they all show an order of magnitude of 1𝑒 − 14, except for the one 

between the two cylinders and the accumulator, the order of magnitude of which is 1𝑒 − 6. 
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Figure 5.8 Power residuals between the parallel spring and the gearbox on the left, and between the gearbox 
and the camshaft on the right. Power in Watts. 

Figure 5.9 Power residuals between the cam and the rolling resistance element in the stance cam-ram system 
on the left, and in the push-off cam-ram system on the right. Power in Watts. 

Figure 5.10 Power residuals between the rolling resistance element and the roller in the stance cam-ram system 
on the left, and in the push-off cam-ram system on the right. Power in Watts. 
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Figure 5.11 Power residuals between the roller and the follower in the stance cam-ram system on the left, 
and in the push-off cam-ram system on the right. Power in Watts. 

Figure 5.12 Power residuals between the follower and the cylinder in the stance cam-ram system on the left, 
and in the push-off cam-ram system on the right. Power in Watts. 

Figure 5.13 Power residuals between the two cylinders and the accumulator on the left, and the two cylinders 
and the tank on the right. Power in Watts. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

6. Chapter 6: Cam-ram design 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo da Vinci (c. 1485), Parachute, Codex Atlanticus 

 

 

 

 

 

 

 

“No effect is in nature without reason; 

you understand the reason and you don't need experience.” 

 

(Leonardo Da Vinci) 
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In this chapter, the process followed for the preliminary design of the two cam-ram systems 

is illustrated. It was assumed that the cam-ram performances in their working phases would 

dominate the design decisions because the power flows are much greater than in their non-

working phases, when the cam-rams simply overcome frictional losses. Therefore, the two 

systems were designed to achieve good performances in their working phases only. In other 

words, the stance cam-ram system was designed for the stance phase prior to push-off (i.e. 

from foot flat to maximum dorsiflexion at the start of push-off), and the push-off cam-ram 

was designed for the push-off phase (i.e. from maximum dorsiflexion to toe-off prior to swing). 

 

An early stage simulation model was used that only modelled the friction losses directly 

associated with the two cam-rams during their working phases. This model neglected the cam-

ram losses in their non-working phases, major and minor flow losses, losses in the 

accumulator, and the two follower return springs, because it was assumed these would have 

little effect on the selected cam-ram design parameters. 

 

In order to conduct the preliminary design, firstly, all of the design parameters were classified 

to identify the primary and secondary independent design variables. The following two 

sections cover categorisation of the design parameters and the preliminary design process 

respectively.  

 

Note that, in this chapter, dimensions are shown in millimetres because of the qualitative 

nature of size related design decisions.  

 

 

6.1 Categorisation of the design parameters 
 

The various design parameters were divided into three categories: constants, independent 

variables, and dependent variables. The independent variables can be further split into 

“primary” and “secondary” independent variables. The primary ones are those which largely 

affect the magnitude of the forces acting on the cam-ram components, such as the cam, roller, 

follower, and the bearings associated with them, which in turn determines the selection of 

these components, and specifically their size, so that they can withstand those forces. 

Furthermore, because they determine the forces in the system, these primary independent 
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variables were also expected to have a major effect on the energy efficiency of the system. 

The secondary independent variables do not have a strong effect on the size of the cam-ram 

components, but were still expected to influence energy efficiency and, to a lesser extent, 

overall dimensions.  

 

Through a process of brainstorming and with the aim of minimising the number of primary 

independent variables, to simplify the design investigation, three primary independent 

variables that most directly influence the forces acting on the cam-ram components were 

identified: 

 Gearbox ratio. 

 Maximum hydraulic pressure in the accumulator. 

 Hydraulic ram bore. 

 

The gearbox is placed in between the ankle and the cam-shaft, in parallel to the spring. 

Therefore, it determines the cam-shaft torque and changing its ratio has a direct effect on the 

forces acting on the cam-ram components. Similarly, the maximum hydraulic pressure and the 

ram bore determine the hydraulic force acting on the piston and, in turn, the forces acting on 

the other cam-ram components.  

 

Possible values for these three variables were selected based on upper or lower limits that 

were thought to provide sensible constraints on the size of the components. A minimum 

gearbox ratio of one corresponds to having no gearbox in the system and, consequently, zero 

gearbox losses and a simpler design, which would be a significant advantage. Two higher ratios 

are included in case a ratio of one leads to forces and, hence, cam-ram component sizes that 

are too large. The ram bores were chosen to limit the size of the device, which should be part 

of a lower-limb prosthesis the size and weight of which is no more than an intact limb. 

Therefore, the maximum bore chosen was 20𝑚𝑚. The minimum bore of 5𝑚𝑚 was chosen to 

avoid the efficiency penalties associated with even smaller hydraulic rams (Durfee et al., 2011; 

Xia et al., 2011; Xia & Durfee, 2011a, 2011b, 2014). Neubauer et al. (2014) used a ram bore of 

approximately 13𝑚𝑚 in their hydraulic ankle-foot orthosis. They also used pressures around 

100𝑏𝑎𝑟 demonstrating that this is practically feasible. Furthermore, industrial hydraulic 

systems typically operate at pressures of up to 200𝑏𝑎𝑟. Hence, for this application, 100𝑏𝑎𝑟 
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was set as the upper limit with two smaller values of 20𝑏𝑎𝑟 and 50𝑏𝑎𝑟. These values are 

summarised in Table 6.1.  

 

𝒈𝒆𝒂𝒓𝒃𝒐𝒙 𝒓𝒂𝒕𝒊𝒐 𝑮𝑹 
𝒎𝒂𝒙 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 

𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓) 

𝒓𝒂𝒎 𝒃𝒐𝒓𝒆 

𝑫 (𝒎𝒎) 

1 20 5 

3 50 10 

5 100 20 

 
Table 6.1 The alternative values chosen for each of the three primary independent variables. 

 

Different combinations of these values of the three primary independent variables result in 

quite different configurations of the two cam-ram systems, which are investigated in detail in 

subsection 6.2.1. 

 

The secondary independent variables include: 

 Lowest position of the follower, 𝑎, as shown in Figure 4.3; 

 Follower offset, 𝑒, as shown in Figure 4.3; 

 Residual length = 5𝑚𝑚 (clearance) when the piston has completed its instroke; 

 Diameter, 𝐷𝑝𝑖𝑝𝑒 = 5𝑚𝑚, of the pipes connecting the hydraulic rams to the accumulator; 

 Length, 𝐿𝑝𝑖𝑝𝑒 = 50𝑚𝑚, of the pipes between the hydraulic rams and accumulator; 

 Accumulator volume, 𝑉𝐴 = 250𝑐𝑐. 

 

Residual length has been given an arbitrary but realistic value of 5𝑚𝑚 because it has no effect 

on system performance. Pipe diameter (5𝑚𝑚) and length (50𝑚𝑚) were considered realistic 

and it was also assumed that the flow losses would have a negligible effect on the working 

phase performances of the cam-rams, during which power flows are large. Therefore, their 

effect on performance over the whole gait cycle is studied in Chapter 7, where a sensitivity 

study for design parameters not considered here and physical constants is reported. The 

accumulator volume has been given an arbitrary but realistic value of 250𝑐𝑐 (as explained in 

section 3.4.3). This is relatively small with respect to the pylon, its envisaged location, and was 

thought to be a realistic level of miniaturisation. This is also large enough to store energy over 
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many gait cycles, for later use when climbing a slope, but this has not been studied in this 

thesis. 

 

Therefore, after reducing the number of possibilities for the primary variables (subsection 

6.2.1), the two remaining secondary independent variables, 𝑎 and 𝑒, that have an effect on 

the working phase performances of the two cam-rams, were investigated (subsection 6.2.3).  

 

Appendix D shows the complete table of constants, independent variables (primary and 

secondary), and dependent variables.  

 

 

6.2 Preliminary design investigation 
 

After categorising the design parameters, a preliminary design investigation was conducted, 

which included four main steps: 

1. Given the chosen set of values for the three primary independent variables (Table 6.1), 

a subset of feasible designs was identified by eliminating designs that are unrealistic in 

terms of size. 

2. For the feasible designs, roller diameters (i.e. a dependent variable) that can withstand 

the cam-roller contact forces were found.  

3. For the feasible designs, good values for the two secondary independent variables, 𝑎 

and 𝑒, were found. 

4. The feasible designs, with all independent variables determined, were compared in 

terms of their energy losses. 

 

The following design constraints were defined for variables involved in the preliminary design 

investigation, noting that these should not be too small to avoid pre-empting the results of 

the design study: 

 To limit the overall size of the cam-rams to fit within the length of the pylon, the total 

length of the hydraulic ram when the piston is at the end of its outstroke should be no 

more than 150𝑚𝑚. The total length is the sum of the ram length for zero stroke (i.e. the 

sum of the component lengths) and the piston stroke. Based on hydraulic cylinder 

catalogues (HYDAIRA (p. 13) for instance), a cylinder for pressures up to 100𝑏𝑎𝑟 has a zero 
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stroke length of approximately 100𝑚𝑚. Therefore, the maximum stroke was set to 

50𝑚𝑚.  

 To limit the overall size of the cam-rams, the upper limit both for the offset 𝑒 and the 

distance 𝑎 (see Figure 4.3) was set to 𝑎𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥 = 50𝑚𝑚 

 Given the above, it seemed reasonable to set a maximum roller diameter of 𝑑𝑟𝑜𝑙𝑙𝑒𝑟𝑚𝑎𝑥 =

30𝑚𝑚. 

 To avoid high lateral forces and, hence, high follower friction, cam design handbooks 

generally suggest limiting the pressure angle to 30°, although with a rigid follower, strong 

follower bearings, and a small follower overhang, the maximum pressure angle may be 

increased (Rothbart, 2004). Also Realmuto et al. (2015) used the same 30° limit in the 

design of their powered ankle prosthesis. Therefore, in this work, the same maximum cam 

pressure angle was used (|𝛼|𝑚𝑎𝑥 = 30°).  

 

 

6.2.1 Step 1 – Determine a subset of feasible designs (primary independent variables) 
 

The set of values for the three primary independent variables (Table 6.1) was used as starting 

point of the design investigation. Therefore, twenty-seven different combinations of the 

primary independent variables were possible. However, it seemed sensible to start with a 

gearbox ratio of 𝐺𝑅 = 1, corresponding to a system with no gearbox, to avoid energy losses 

due to gearbox friction and simplify the design. This reduced considerably the number of 

combinations to be analysed: from twenty-seven to nine.  

 

For each one of the nine combinations, the length of the piston stroke was estimated for both 

cam-ram systems to exclude those combinations with a stroke greater than the 50𝑚𝑚 upper 

limit. Neglecting all losses, the stroke length was estimated by considering the negative ankle 

work done during the working phase of the stance system and, hence, the corresponding 

energy to be stored in the accumulator; and also the positive ankle work done during the 

working phase of the push-off system and, hence, the corresponding energy to be released 

from the accumulator. The total work done by the hydraulic rams over their working phases 

is 𝑊 = 𝐹ℎ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ 𝑠𝑡𝑟𝑜𝑘𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑙. Rearranging for piston stroke gives: 
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𝑠𝑡𝑟𝑜𝑘𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =
𝑊

𝐹ℎ𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 (6.1) 

 

Where, assuming a constant accumulator pressure,  

𝐹ℎ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 𝑃𝑚𝑎𝑥 ∗ 𝐴 =  𝑃𝑚𝑎𝑥 ∗ 𝜋 (
𝐷

2
)
2

 (6.2) 

 

Firstly, considering the stance system in its working phase, the corresponding negative work 

done by an anatomically intact ankle (see Figure 2.2) was evaluated by numerically integrating 

ankle power based on the data collected by Bari (2013) for healthy level walking at a self-

selected speed, which was also used as input to the simulation model described in the 

previous chapter. The energy stored during the working phase of the stance system amounts 

to approximately 18.9𝐽, and substituting this in equation (6.1) together with the maximum 

hydraulic pressure (𝑃𝑚𝑎𝑥) and the ram bore (𝐷), from Table 6.1, the results shown in Table 6.2 

were obtained. 

 

 𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓) 

𝑫 (𝒎𝒎) 100 50 20 

20 𝟔 𝟏𝟐 𝟑𝟎 

10 𝟐𝟒 𝟒𝟖 120 

5 96 193 481 

 
Table 6.2 Nominal stroke length (𝑚𝑚) for the piston of the stance system. 

 

The same calculation was repeated for the push-off system. The energy released during the 

working phase of the push-off system amounts to approximately 11.9𝐽, and substituting this 

in equation (6.1) together with the maximum hydraulic pressure (𝑃𝑚𝑎𝑥) and the ram bore (𝐷), 

from Table 6.1, the results shown in Table 6.3 were obtained.  
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 𝑷𝒎𝒂𝒙 (𝒃𝒂𝒓) 

𝑫 (𝒎𝒎)  100 50 20 

20  𝟒 𝟖 𝟏𝟗 

10  𝟏𝟓 𝟑𝟎 76 

5  61 121 303 

 
Table 6.3 Nominal stroke length (𝑚𝑚) for the piston of the push-off system. 

 

The five bold values in Table 6.2 and Table 6.3 are those combinations with a stroke that is 

less than the maximum allowed (i.e. 50𝑚𝑚). These combinations of the primary independent 

variables were carried forward for the following analyses.  

 

 

6.2.2 Step 2 – Determine the roller diameters 
 

For each of the five selected combinations, the nominal (maximum) hydraulic force (𝐹ℎ𝑛𝑜𝑚𝑖𝑛𝑎𝑙) 

acting on the ram was calculated according to equation (6.2). It was then used as an input to 

the MATLAB simulation model described in Chapter 5 to obtain the corresponding maximum 

value of the normal force acting between the cam and the roller over the working phase 

(𝐹𝑛𝑛𝑜𝑚𝑖𝑛𝑎𝑙). Then, from catalogues SKF (2013) for rollers with a diameter bigger than 16𝑚𝑚; 

IKO (2016) and IKO (2017) for rollers with a diameter smaller than 16𝑚𝑚), the minimum roller 

diameter able to withstand that force was identified, based on the quoted maximum dynamic 

radial loads. So, in this context, it should be noted that roller diameter is a dependent design 

variable. 

 

To run the MATLAB simulation model for the first time (to get 𝐹𝑛𝑛𝑜𝑚𝑖𝑛𝑎𝑙), an initial roller 

diameter is required, which was set to 26𝑚𝑚 because that was the largest available (SKF, 

2013) that satisfied the constraint 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 ≤ 30𝑚𝑚. In addition, different stud diameters are 

offered for the same roller diameter and, therefore, the largest stud diameter was used to be 

conservative, because it generates the largest friction moment (see equation (4.35) in 

subsection 4.3.3). Also, arbitrary values for distance 𝑎 (40𝑚𝑚) and offset 𝑒 (15𝑚𝑚) were 

used at this stage. Moreover, to be conservative, the initial system pressure in these 

simulations was equal to the maximum pressure (𝑃𝑠𝑡𝑎𝑟𝑡 = 𝑃𝑚𝑎𝑥), instead of 𝑃𝑠𝑡𝑎𝑟𝑡 = 0.90 ∗

𝑃𝑚𝑎𝑥. 
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Given the maximum value of the normal force during the working phase (𝐹𝑛𝑛𝑜𝑚𝑖𝑛𝑎𝑙), the 

minimum roller diameter 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 able to withstand that force is identified. If this minimum 

roller diameter 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 exceeds the maximum available value (26 𝑚𝑚) that satisfies the 

constraint (𝑑𝑟𝑜𝑙𝑙𝑒𝑟 ≤ 30𝑚𝑚), then the hydraulic ram force producing it would need to be 

decreased by decreasing either the maximum pressure 𝑃𝑚𝑎𝑥  or the ram bore 𝐷 (see equation 

(6.2)), before increasing the gearbox ratio to reduce camshaft torque. Once a satisfactory 

minimum roller diameter was found, it was used as input to the MATLAB simulation model, 

replacing 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 = 26𝑚𝑚, to again evaluate 𝐹𝑛𝑛𝑜𝑚𝑖𝑛𝑎𝑙 acting between cam and roller over 

the working phase and, hence, check that the roller can withstand the recalculated load. 

 

Table 6.4 shows the results of this process for both cam-ram systems, for the initial simulations 

(unbolded) and for the final simulations (bolded). In all cases, the roller diameter was 

decreased from the initial value of 26𝑚𝑚 and the maximum normal force increased slightly, 

but this increase was not enough to require a change to the roller selection. There were 

negligible changes in the cam pressure angles and piston strokes, the latter being close to the 

approximate calculations in Table 6.2 and Table 6.3. All ten roller diameters are the same or 

smaller than the one used by Realmuto et al. (2015) for the cam-roller-follower system in their 

active ankle prosthesis: they used a roller with a diameter of 19𝑚𝑚. 
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  STANCE SYSTEM PUSH-OFF SYSTEM 

COMBINATIONS 
(primary indep. 

variables) 

𝑭𝒉𝒏𝒐𝒎𝒊𝒏𝒂𝒍  

(𝑵) 

𝑭𝒏𝒏𝒐𝒎𝒊𝒏𝒂𝒍  

(𝑵) 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø 
(𝒎𝒎) 

𝑭𝒏𝒏𝒐𝒎𝒊𝒏𝒂𝒍 

(𝑵) 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø 
(𝒎𝒎) 

1. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 =
100𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚  

3141.59 

3462.78 26 3373.79 26 

𝟑𝟓𝟎𝟔. 𝟖𝟐 𝟏𝟗 𝟑𝟒𝟎𝟗. 𝟔𝟐 𝟏𝟗 

2. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 =
100𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

785.40 

1735.32 26 1673.54 26 

𝟏𝟖𝟔𝟖. 𝟒𝟔 𝟏𝟔 𝟏𝟖𝟎𝟓. 𝟕𝟎 𝟏𝟔 

3. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 =
50𝑏𝑎𝑟,  
𝐷 = 20𝑚𝑚  

1570.80 

2301.52 26 2202.67 26 

𝟐𝟒𝟑𝟖. 𝟐𝟐 𝟏𝟔 𝟐𝟑𝟑𝟐. 𝟐𝟑 𝟏𝟔 

4. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 =
50𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

392.70 

1304.04 26 1260.70 26 

𝟏𝟑𝟗𝟏. 𝟓𝟏 𝟏𝟔 𝟏𝟑𝟒𝟒. 𝟓𝟎 𝟏𝟔 

5. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 =
20𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚  

628.32 

1624.37 26 1560.07 26 

𝟏𝟕𝟒𝟓. 𝟗𝟒 𝟏𝟔 𝟏𝟔𝟕𝟗. 𝟕𝟑 𝟏𝟔 

 
Table 6.4 Determining roller diameters. Those combinations having a stroke length smaller than 50𝑚𝑚 were 
analysed in terms of nominal hydraulic ram force and nominal normal force acting between the cam and the 
roller, and the roller diameter able to bear that force was found, both for the stance and the push-off system.  

 

 

6.2.3 Step 3 – Determine the two secondary independent variables, 𝒂 and 𝒆.  
 

In this third step of the preliminary design investigation, the five feasible designs identified in 

the previous subsections (𝑠𝑡𝑟𝑜𝑘𝑒 ≤ 50𝑚𝑚 and 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 ≤ 30𝑚𝑚) were further analysed to 

find good values for the two secondary independent variables, distance 𝑎 and offset 𝑒. The 

main effect of these two variables is to change the geometry shown in Figure 4.3 and, hence, 

the cam pressure angle 𝛼 (equation (4.31)). As stated at the beginning of this section, one of 

the design constraints is |𝛼|𝑚𝑎𝑥 = 30°. Therefore the aim was to find values of 𝑎 and 𝑒, with 

𝑎𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥 = 50𝑚𝑚, which keep the cam pressure angle below 30° during the two cam-

ram systems’ working phases, while also reducing their dimensions as far as possible. All 

simulations in this third step use the correct roller diameter from the previous step.  
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The process implemented in MATLAB to identify good values for the two secondary 

independent variables 𝑎 and 𝑒 is as follows:  

1. From the formula for cam pressure angle 𝛼 (equation (4.31)), and given that 𝑎 and 𝑦 are 

always positive, it can be seen that increasing 𝑎 has the effect of decreasing cam pressure 

angle 𝛼. Therefore, to minimise 𝛼 and hence follower friction, initially the distance 𝑎 was 

set to its upper limit (𝑎 = 𝑎𝑚𝑎𝑥 = 50𝑚𝑚). 

2. The offset 𝑒 was adjusted to further minimise 𝛼. The following range of values for the 

offset 𝑒 was considered: 

 

𝑒 = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] (𝑚𝑚) 

 

For each value of the offset 𝑒, the MATLAB simulation model was run to find the largest 

absolute value of the cam pressure angle, max (|𝛼|), during the working phase of the cam-

ram. Closely spaced values of 𝑒 were added near to the minimum for max (|𝛼|) to 

accurately determine the minimum and the corresponding optimum value of 𝑒. 

3. Depending on the minimum value of max (|𝛼|), there were three options: 

i. If min (max(|𝛼|)) ≥ 30°, that combination of the primary independent variables 

was eliminated.  

ii. If min (max(|𝛼|)) was close to 30° (25° ≤ min(max(|𝛼|)) < 30°), that 

combination was considered acceptable with the current value of 𝑎 and the 

optimum value of 𝑒. 

iii. If min (max(|𝛼|)) ≪ 30°, smaller values of the distance 𝑎 were tried to reduce the 

size of the cam-ram system. The MATLAB simulation model was run again with the 

new values of the distance 𝑎 and for different values of the offset 𝑒 to recalculate 

min (max(|𝛼|)) and the corresponding optimum value of 𝑒 (i.e. stage 2 above was 

repeated for each new value of 𝑎).  

 

STANCE SYSTEM 

 

The stance system results of the first pass of the second stage described above (i.e. varying 𝑒 

with 𝑎 = 𝑎𝑚𝑎𝑥 = 50𝑚𝑚) are shown in Table 6.5. The first two columns show the design 

parameters inherited from the first two steps of the design investigation (sections 6.2.1 and 
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6.2.2). Columns 3 to 5 show the values of the distance 𝑎 (always 50𝑚𝑚 at this stage), the 

optimum offset 𝑒 that minimises max(|𝛼|), and the corresponding minimum value of 

max(|𝛼|) respectively. The two rows with bold text (i.e. combinations 1 and 3) correspond to 

combinations of the primary independent variables that ensure max(|𝛼|) < 30°, while the 

others do not and, therefore, they were excluded according to stage 3, rule i, above. 

 

COMBINATION 
(primary indep. 

variables) 

𝒓𝒐𝒍𝒍𝒆𝒓 Ø 
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 
(𝒎𝒎) 

𝐦𝐢𝐧 (𝐦𝐚𝐱(|𝜶|)) 
 (°) 

1. 𝑮𝑹 = 𝟏, 
𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 
𝑫 = 𝟐𝟎𝒎𝒎  

𝟏𝟗 𝟓𝟎 𝟏𝟗 𝟏𝟕. 𝟑𝟓 

2. 𝐺𝑅 = 1 
𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

16 50 50 51.93 

3. 𝑮𝑹 = 𝟏, 
𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓,  
𝑫 = 𝟐𝟎𝒎𝒎  

𝟏𝟔 𝟓𝟎 𝟑𝟔 𝟐𝟗. 𝟕𝟐 

4. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 50𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

16 50 50 67.18 

5. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 20𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚  

16 50 50 55.97 

 
Table 6.5 Optimising offset 𝒆 – 1st pass. Stance system: those combinations having a stroke length smaller than 
50𝑚𝑚 were analysed with the correct roller diameter and for 𝒂 = 𝟓𝟎𝒎𝒎. The offset 𝒆 that minimises the 
maximum absolute cam pressure angle is shown (together with the pressure angle). 

 

Combination 3 satisfied step 3, rule ii, and was therefore accepted for carrying forward to the 

final step of the design investigation (section 6.2.4). The results for this combination are 

summarised in Table 6.6, and Figure 6.1 shows the max(|𝛼|) trend when the offset 𝑒 is varied, 

with the distance 𝑎 fixed (𝑎 = 𝑎𝑚𝑎𝑥 = 50𝑚𝑚). There is a clear minimum for max(|𝛼|) of 

29.72°, which is just below the upper limit of 30°.  
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Combination 3: 

 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø  
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 

(𝒎𝒎) 
𝐦𝐚𝐱(|𝜶|) 

(°) 

𝐺𝑅 = 1, 

𝑃𝑚𝑎𝑥 = 50𝑏𝑎𝑟, 

𝐷 = 20𝑚𝑚  

16 50 36 29.72 

 
Table 6.6 Combination 3 for the stance system. 

 

 

 

 

 

 

 

 

 

 

 

 

Combination 1 resulted in a minimum for max(|𝛼|) of 17.35° and, therefore, smaller values 

of the distance 𝑎 were tried to reduce the size of the cam-ram system as dictated by stage 3, 

rule iii. This process is illustrated in Figure 6.2, with the numerical data for the successive 

minima shown in Table 6.7. To be conservative, 𝑎 = 26𝑚𝑚 was eliminated and 𝑎 =

30𝑚𝑚, 40𝑚𝑚, 50𝑚𝑚 were all carried forward to the final step of the design investigation 

(section 6.2.4) to see if there was a trade-off between size, specifically the distance 𝑎, and 

energy losses.  

 

 

 

 

 

 

 

 

a) b) 

Figure 6.1 Combination 3 for the stance system: 𝐦𝐚𝐱(|𝜶|) for different values of the offset 𝒆 and for 𝒂 =
𝟓𝟎𝒎𝒎. 
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𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 

(𝒎𝒎) 
𝐦𝐚𝐱(|𝜶|) 

(°) 

25 18 30.78 

26 18 29.99 

30 19 26.74 

40 19 20.83 

50 19 17.35 

 
Table 6.7 Combination 1 for the stance system: how the offset 𝒆 and 𝐦𝐚𝐱(|𝜶|) vary when the distance 𝒂 
becomes smaller than 50𝑚𝑚.  

 

Interestingly, the results showed that the offset 𝑒 that minimises max(|𝛼|) is 𝑒 = 19𝑚𝑚, for 

𝑎 = 30𝑚𝑚, 40𝑚𝑚, 50𝑚𝑚. This trend is shown in the contour plot in Figure 6.3, with the 

Figure 6.2 Combination 1 for the stance system: 𝐦𝐚𝐱(|𝜶|)  for different values of the offset 𝒆 and for (a) 𝒂 =
𝟐𝟓𝒎𝒎, (b) 𝒂 = 𝟐𝟔𝒎𝒎, (c) 𝒂 = 𝟑𝟎𝒎𝒎, (d) 𝒂 = 𝟒𝟎𝒎𝒎, (e) 𝒂 = 𝟓𝟎𝒎𝒎. 

c) d) 

e) 
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Figure 6.3 Combination 1 for the stance system: contour plot illustrating how 𝐦𝐚𝐱(|𝜶|) varies when the offset 
𝒆 and the distance 𝒂 change. 

vertical band of dark blue illustrating that the optimum value for offset 𝑒 is almost constant 

and just under 20𝑚𝑚 for all values of distance 𝑎. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PUSH-OFF SYSTEM 

 

The push-off system results of the first pass of the second stage described above (i.e. varying 

𝑒 with 𝑎 = 𝑎𝑚𝑎𝑥 = 50𝑚𝑚) are shown in Table 6.8. The first two columns show the design 

parameters inherited from the first two steps of the design investigation (sections 6.2.1 and 

6.2.2). Columns 3 to 5 show the values of the distance 𝑎 (always 50𝑚𝑚 at this stage), the 

optimum offset 𝑒 that minimises max(|𝛼|), and the corresponding minimum value of 

max(|𝛼|) respectively. The two rows with bold text (i.e. combinations 1 and 3) correspond to 

combinations of the primary independent variables that ensure max(|𝛼|) < 30°, while the 

others do not and, therefore, they were excluded according to step 3, rule i, above. 
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COMBINATION 
(primary indep. 

variables) 

𝒓𝒐𝒍𝒍𝒆𝒓 Ø  
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 
(𝒎𝒎) 

𝐦𝐢𝐧(𝐦𝐚𝐱(|𝜶|)) 
(°) 

1. 𝑮𝑹 = 𝟏, 
𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 
𝑫 = 𝟐𝟎𝒎𝒎  

𝟏𝟗 𝟓𝟎 𝟏𝟗 𝟏𝟓. 𝟗𝟔 

2. 𝐺𝑅 = 1 
𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

16 50 50 52.78 

3. 𝑮𝑹 = 𝟏, 
𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓,  
𝑫 = 𝟐𝟎𝒎𝒎  

𝟏𝟔 𝟓𝟎 𝟑𝟕 𝟐𝟖. 𝟓𝟔 

4. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 50𝑏𝑎𝑟, 
𝐷 = 10𝑚𝑚  

16 50 50 69.98 

5. 𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 20𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚  

16 50 50 58.11 

 
Table 6.8 Optimising offset e – 1st pass. Push-off system: those combinations having a stroke length smaller than 
50𝑚𝑚 were analysed with the correct roller diameter and for distance 𝒂 = 𝟓𝟎𝒎𝒎. The offset 𝒆 that minimises 
the maximum absolute cam pressure angle is shown (together with the pressure angle). 

 

Combination 3 satisfied step 3, rule ii, and was therefore accepted for carrying forward to the 

final step of the design investigation (section 6.2.4). The results for this combination are 

summarised in Table 6.9, and Figure 6.4 shows the max(|𝛼|) trend when the offset 𝑒 is varied, 

with the distance 𝑎 fixed (𝑎 = 𝑎𝑚𝑎𝑥 = 50𝑚𝑚). There is a clear minimum for max(|𝛼|) of 

28.56°, which is just below the upper limit of 30°. 

 

Combination 3: 

 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø  
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 
(𝒎𝒎) 

|𝜶|𝒂𝒄𝒕𝒖𝒂𝒍 𝒎𝒂𝒙 
 (°) 

𝐺𝑅 = 1, 

𝑃𝑚𝑎𝑥 = 50𝑏𝑎𝑟,  

𝐷 = 20𝑚𝑚  

16 50 37 28.56 

 
Table 6.9 Combination 3 for the push-off system. 
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Combination 1 resulted in a minimum for max(|𝛼|) of 15.96° and, therefore, smaller values 

of the distance 𝑎 were tried to reduce the size of the cam-ram system as dictated by stage 3, 

rule iii. This process is illustrated in Figure 6.5, with the numerical data for the successive 

minima shown in Table 6.10. To be conservative, 𝑎 = 23𝑚𝑚, 24𝑚𝑚, 25𝑚𝑚 were eliminated 

and 𝑎 = 30𝑚𝑚, 40𝑚𝑚, 50𝑚𝑚 were all carried forward to the final step of the design 

investigation (section 6.2.4) to see if there was a trade-off between size, specifically the 

distance 𝑎, and energy losses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) a) 

Figure 6.4 Combination 3 for the push-off system: 𝐦𝐚𝐱(|𝜶|)  for different values of the offset 𝒆 and for 𝒂 =
𝟓𝟎𝒎𝒎. 
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𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 

(𝒎𝒎) 
|𝜶|𝒂𝒄𝒕𝒖𝒂𝒍 𝒎𝒂𝒙 

 (°) 

23 18 30.88 

24 18 30 

25 18 29.16 

30 19 25.27 

40 19 19.59 

50 19 15.96 

 
Table 6.10 Combination 1 for the push-off system: how the offset 𝒆 and 𝐦𝐚𝐱(|𝜶|) vary when the distance 𝒂 
becomes smaller than 50𝑚𝑚. 

 

As was the case for the stance cam-ram, the results showed that the offset 𝑒 that minimises 

max(|𝛼|) is 𝑒 = 19𝑚𝑚, for 𝑎 = 30𝑚𝑚, 40𝑚𝑚, 50𝑚𝑚. This trend is shown in the contour 

Figure 6.5 Combination 1 for the push-off system: 𝐦𝐚𝐱(|𝜶|)  for different values of the offset 𝒆 and for (a) 𝒂 =
𝟐𝟑𝒎𝒎, (b) 𝒂 = 𝟐𝟒𝒎𝒎, (c) 𝒂 = 𝟐𝟓𝒎𝒎, (d) 𝒂 = 𝟑𝟎𝒎𝒎, (e) 𝒂 = 𝟒𝟎𝒎𝒎, (f) 𝒂 = 𝟓𝟎𝒎𝒎. 
 

c) d) 

f) e) 
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Figure 6.6 Combination 1 for the push-off system: contour plot illustrating how 𝐦𝐚𝐱(|𝜶|) varies when the offset 
𝒆 and the distance 𝒂 change. 

plot in Figure 6.3, with the vertical band of dark blue illustrating that the optimum value for 

offset 𝑒 is almost constant and just under 20𝑚𝑚 for all values of distance 𝑎. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.4 Step 4 – Compare energy losses 
 

To summarise the results of this design investigation so far: 

Step 1 – For both cam-ram systems, the same five combinations of the primary independent 

variables were carried forward. 

Step 2 – All five of these combinations were carried forward with roller diameters that 

satisfied the design constraint (𝑑𝑟𝑜𝑙𝑙𝑒𝑟 ≤ 30𝑚𝑚). 

Step 3 – For both cam-ram systems, the same three combinations of the primary independent 

variables were eliminated because cam pressure angle was too large (i.e. min (max(|𝛼|)) ≥

30°). The two remaining combinations were carried forward with alternative values of 𝑎 and 

𝑒 as shown in Table 6.11 below. 
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COMBINATION 
(primary indep. 

variables) 

𝒓𝒐𝒍𝒍𝒆𝒓 Ø 
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂 
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆 
(𝒎𝒎) 

𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚 

19 50 19 

𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚 

19 40 19 

𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚 

19 30 19 

𝐺𝑅 = 1, 
𝑃𝑚𝑎𝑥 = 50𝑏𝑎𝑟, 
𝐷 = 20𝑚𝑚 

16 50 
36 

(37 for push-off) 

 
Table 6.11 Remaining design alternatives. The design parameters are the same for both cam-ram systems except 
for the offset 𝒆 for the 4th design alternative. 

 

In this final step of the design investigation, for each cam-ram system in turn, these four design 

alternatives were compared in terms of their energy losses. Power flows were calculated using 

the equations in section 5.3, and then the energy balance over the cam-ram’s working phase 

was obtained by integration. For each design alternative, four energy terms were considered: 

 The energy input – For the stance system, this is the energy input from the ankle. For the 

push-off system, this is the energy input from the accumulator. 

 The energy output – For the stance system, this is the energy stored in the accumulator. 

For the push-off system, this is the energy output to the ankle.  

 The energy lost because of friction in the cam rolling resistance element, in the roller, at 

the follower guide, and at the cylinder O-ring. Because the gearbox ratio is 𝐺𝑅 = 1, 

corresponding to no gearbox, in all cases the gearbox friction is zero. 

 The energy stored in the mechanical components of the system, including strain energy in 

the parallel spring, and the kinetic and potential energies of the roller and follower. 

 

As mentioned at the beginning of this chapter, the following terms were neglected: 

 Losses in the two cam-ram systems during their non-working phases. 

 Major and minor flow losses. 

 Losses in the accumulator because of heat transfer. 

 The two follower return springs.  
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STANCE SYSTEM 

 

Tables 6.12 to 6.15 and Figures 6.7 to 6.10 show the energy balance over the working phase 

of the stance cam-ram system (i.e. mid and terminal stance, from foot flat to maximum 

dorsiflexion) for the four design alternatives. 

 

1) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 50𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  18.91 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  18.21 96.30 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.30 1.60 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  0.40 2.10 

 
Table 6.12 Stance system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

 

 

 

 

 

 

 

 

 

 

2) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 40𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  18.91 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  18.23 96.43 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.28 1.47 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  0.40 2.10 

 
Table 6.13 Stance system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟒𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

ankle 
100% 

spring+ KE & PE  
for roller & follower 

2.10% 

accumulator 
96.30% 

losses 
1.60% 

Figure 6.7 Stance system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 
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ankle 
100% 

spring+ KE & PE  
for roller & follower 

2.10% 

accumulator 
96.43% 

losses 
1.47% 

ankle 
100% 

spring+ KE & PE  
for roller & follower 

2.10% 

accumulator 
96.53% 

losses 
1.37% 

 

 

 

 

 

 

 

 

 

 

 

3) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 30𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  18.91 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  18.25 96.53 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.26 1.37 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  0.40 2.10 

 
Table 6.14 Stance system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟑𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

 

 

 

 

 

 

 

 

 

 

 
  

Figure 6.8 Stance system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟒𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 

Figure 6.9 Stance system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟑𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 
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ankle 
100% 

spring+ KE & PE  
for roller & follower 

2.12% 

accumulator 
95.93% 

losses 
1.96% 

4) 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 50𝑚𝑚 and 𝑒 = 36𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  18.91 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  18.14 95.93 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.37 1.96 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  0.40 2.12 

 
Table 6.15 Stance system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 𝒆 = 𝟑𝟔𝒎𝒎. 

 

 

 

 

 

 

 

 

 

 

Given the results shown above, it is clear that the third design alternative has both the smallest 

energy losses (1.37%) and the smallest value of distance 𝑎 (30𝑚𝑚), which helps to minimise 

the size of the cam-ram system. Hence, the recommended design parameters for the stance 

cam-ram are as follows: 

 

 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø  
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂  
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆  

(𝒎𝒎) 
𝐺𝑅 = 1, 

𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 

𝐷 = 20𝑚𝑚  

19 30 19 

 
Table 6.16 Final layout for the stance cam-ram system. 

 

  

Figure 6.10 Stance system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 
𝒆 = 𝟑𝟔𝒎𝒎. 



  Chapter 6: Cam-ram design 

168 
 

PUSH-OFF SYSTEM 

 

Tables 6.17 to 6.20 and Figures 6.11 to 6.14 show the energy balance over the working phase 

of the push-off cam-ram system (i.e. push-off, from maximum dorsiflexion to toe-off) for the 

four design alternatives. 

 

1) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 50𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  14.81 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  11.88 80.23 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.36 2.45 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  2.56 17.31 

 
Table 6.17 Push-off system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

 

 

 

 

 

 

 

 

 

 

2) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 40𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  14.77 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  11.88 80.46 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.32 2.18 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  2.56 17.36 

 
Table 6.18 Push-off system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟒𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

ankle 
80.23% 

spring+ KE & PE  
for roller & follower 

17.31% 

accumulator 
100% 

losses 
2.45% 

Figure 6.11 Push-off system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 
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3) 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 30𝑚𝑚 and 𝑒 = 19𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  14.73 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  11.88 80.65 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.29 1.95 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  2.56 17.40 

 
Table 6.19 Push-off system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟑𝟎𝒎𝒎 and 𝒆 = 𝟏𝟗𝒎𝒎. 

 

 

 

 

 

 

 

 

 

  

ankle 
80.65% 

spring+ KE & PE  
for roller & follower 

17.40% 

accumulator 
100% 

losses 
1.95% 

ankle 
80.46% 

spring+ KE & PE  
for roller & follower 

17.36% 

accumulator 
100% 

losses 
2.18% 

Figure 6.13 Push-off system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟑𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 

 

Figure 6.12 Push-off system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟏𝟎𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟒𝟎𝒎𝒎 and 
𝒆 = 𝟏𝟗𝒎𝒎. 
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4) 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝑎 = 50𝑚𝑚 and 𝑒 = 37𝑚𝑚: 

 

 𝒆𝒏𝒆𝒓𝒈𝒚 (𝑱) 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 % 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒊𝒏𝒑𝒖𝒕  14.81 100 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒐𝒖𝒕𝒑𝒖𝒕  11.88 80.20 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒍𝒐𝒔𝒕  0.37 2.50 

𝑬𝒏𝒆𝒓𝒈𝒚 𝒔𝒕𝒐𝒓𝒆𝒅 𝒊𝒏 𝒔𝒚𝒔𝒕𝒆𝒎  2.56 17.29 

 
Table 6.20 Push-off system: energy balance for 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 𝒆 = 𝟑𝟕𝒎𝒎. 

 

 

 

 

 

 

 

 

 

 

 

As was the case for the stance cam-ram, it is clear that the third design alternative has both 

the smallest energy losses (1.95%) and the smallest value of distance 𝑎 (30𝑚𝑚), which helps 

to minimise the size of the cam-ram system. Hence, the recommended design parameters for 

the push-off cam-ram are as follows: 

 

 
𝒓𝒐𝒍𝒍𝒆𝒓 Ø  
(𝒎𝒎) 

𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒂  
(𝒎𝒎) 

𝒐𝒇𝒇𝒔𝒆𝒕 𝒆  

(𝒎𝒎) 
𝐺𝑅 = 1, 

𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟, 

𝐷 = 20𝑚𝑚  

19 30 19 

 
Table 6.21 Final layout for the push-off cam-ram system. 

 

  

ankle 
80.20% 

spring+ KE & PE  
for roller & follower 

17.29% 

accumulator 
100% 

losses 
2.50% 

Figure 6.14 Push-off system: energy balance (percentages) for 𝑷𝒎𝒂𝒙 = 𝟓𝟎𝒃𝒂𝒓, 𝑫 = 𝟐𝟎𝒎𝒎, 𝒂 = 𝟓𝟎𝒎𝒎 and 
𝒆 = 𝟑𝟕𝒎𝒎. 
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6.3 Conclusion  
 

The results of this preliminary design investigation show that, when the gearbox is not 

included, the best designs for the two cam-ram systems are the same. They achieve the best 

performance, with lower energy losses and smaller dimensions, by using the following primary 

independent variables: 

 Maximum hydraulic pressure 𝑃𝑚𝑎𝑥 = 100 𝑏𝑎𝑟; 

 Ram bore 𝐷 = 20𝑚𝑚. 

 

Furthermore, to withstand the radial cam forces, both cam-ram systems need rollers with 

minimum diameters of 19𝑚𝑚, which is the same as the diameter used by Realmuto et al. 

(2015) for the cam-roller-follower system in their active ankle prosthesis. 

 

Finally, to ensure the cam pressure angle does not exceed 30° and also to help minimise the 

size of both cam-ram systems, the values chosen for the secondary independent variables are: 

 Offset 𝑒 = 19𝑚𝑚; 

 Distance 𝑎 = 30𝑚𝑚. 

 

The energy balance results for this design alternative, during the working phases of the two 

cam-ram systems, are very promising. Specifically, the energy losses do not exceed 2% of the 

energy input to the system (i.e. from the ankle for the stance system and from the 

accumulator for the push-off system). However, an early stage simulation model was used for 

this design investigation, which only modelled the friction losses directly associated with the 

two cam-rams during their working phases. This model neglected the cam-ram losses in their 

non-working phases, major and minor flow losses, losses in the accumulator, and the two 

follower return springs, because it was assumed these would have little effect on the selected 

cam-ram design parameters. Therefore, the energy losses will certainly increase when all the 

significant sources of energy dissipation are considered and this is the subject of the next 

chapter, which investigates losses over the whole gait cycle, including those neglected here. 

 



 

 
 

 

 

7. Chapter 7: System performance 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leonardo Da Vinci (c.1500-05), Sketches, Codex Arundel (folio 41r), British Library, London 

 

 

 

 

 

 

 

 

"Those who fall in love with practice without science  

are like the helmsman, who enters the ship without the helm or the compass, 

and never knows where to go." 

 

(Leonardo Da Vinci) 
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In this chapter, all of the modelled energy losses over the whole gait cycle are investigated, 

including those neglected in the preliminary design investigation of Chapter 6, which used an 

early stage simulation model including only the frictional losses directly associated with the 

two cam-ram systems in their working phases. For the investigations conducted in this 

chapter, the complete simulation model described in Chapter 5 was used to simulate the final 

design, established in Chapter 6, operating over the whole gait cycle. This included all the 

sources of energy dissipation as follows: frictional losses in both cam-ram systems associated 

with rolling resistance between rollers and cams, roller bearings, follower bearings (i.e. self-

aligning linear ball bearings), and piston O-rings; flow losses in pipes and discrete components 

such as inlets, exits, bends and DCVs; and accumulator losses due to heat transfer. 

 

Firstly, the different sources of energy loss are considered for the final design established in 

Chapter 6 to identify the most significant sources. Secondly, the results of a sensitivity study 

are presented, in which the values of the design parameters were varied over sensible ranges 

to establish where energy losses may be particularly sensitive to changes in the design 

parameters and, hence, strict constraints need to be imposed. 

 

Note that, also in this chapter, dimensions are shown in millimetres.  

 

 

7.1 Energy losses in the current system 
 

In this section, the energy losses in the final design are broken down according to their 

sources. All design parameter values, including independent and dependant variables and 

constants, were those established in Chapters 4, 5 and 6. The energy losses were evaluated 

for each gait phase and over the whole gait cycle.  

 

The energy losses considered are due to the following effects, with the parameter associated 

with each loss and a section reference displayed in brackets:  

1. Rolling resistance between roller and cam for both cam-rams ( 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ; section 4.3.3); 

2. Friction in both roller bearings (𝜇𝑏𝑟𝑔 ; section 4.3.3); 

3. Sliding friction in both follower bearings (𝜇𝑠𝑙  ; section 4.3.3); 

4. Sliding friction at both piston O-rings (f𝐶  ; section 4.4.2); 
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5. Flow losses in the pipes connecting the two hydraulic rams and the accumulator (𝐷𝑝𝑖𝑝𝑒, 

𝐿𝑝𝑖𝑝𝑒 ; section 4.5.1); 

6. Flow losses in the discrete components connecting the two rams and the accumulator - 

one contraction at the exit of the ram (𝐾𝑒𝑥𝑖𝑡), one expansion at the inlet of the accumulator 

(𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒), one 90° elbow (𝐾𝑒𝑙𝑏𝑜𝑤), and one DCV (section 4.5.2); 

7. Flow losses in the discrete components connecting the two rams and the tank - one 

contraction at the exit of the ram (𝐾𝑒𝑥𝑖𝑡), one expansion at the inlet of the tank (𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒), 

and one DCV (section 4.5.2); 

8. Heat transfer from the accumulator to the external environment (ℎ𝑁2 ; section 5.3.8). 

 

The values of the energy loss parameters were chosen conservatively or, where this wasn’t 

appropriate, given sensible values. For example, when a typical range is given in the literature, 

the conservative end of the range was chosen, as explained in the corresponding modelling 

section. Flow losses in both pipes and discrete components depend on pipe diameter (𝐷𝑝𝑖𝑝𝑒), 

according to equations (4.59), (4.60) and (4.62) in section 4.5. A diameter of 5𝑚𝑚 was chosen 

as it seemed realistic and yet not small enough to result in high flow losses. This is confirmed 

by the results below. 

 

The values of the energy loss parameters are shown in Table 7.1, together with the 

corresponding energy loss in each phase (load acceptance, stance, push-off and swing) and 

over the whole gait cycle, evaluated by integration of the power losses (see equations in 

section 5.3). Moreover, the total energy lost over the whole gait cycle is also displayed as a 

percentage of the total eccentric work done by the prosthetic ankle throughout the gait cycle 

(almost 20.59 𝐽), which is the maximum amount of energy available to be stored in the system 

and returned. Although power losses have been defined as negative in earlier chapters, in this 

chapter the absolute values of the energy losses are shown. 
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𝑬𝒍𝒐𝒔𝒕@𝑳𝑨  

(𝑱) 

𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬  

(𝑱) 

𝑬𝒍𝒐𝒔𝒕@𝑷𝑶  

(𝑱) 

𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮  

(𝑱) 

𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳  

(𝑱) 

%eccentric 
work 

𝝁𝒓𝒐𝒍𝒓𝒆𝒔 = 𝟎. 𝟎𝟎𝟐  
rolling resistance 
between cam and roller 

0.0010 0.0819 0.1202 0.0022 0.2054 1 

𝝁𝒃𝒓𝒈 = 𝟎. 𝟎𝟎𝟐  

roller bearing friction 
0.0004 0.0339 0.0501 0.0009 0.0854 0.41 

𝝁𝒔𝒍 = 𝟎. 𝟎𝟎𝟑 
follower sliding friction 

0.0002 0.0256 0.0279 0.0005 0.0542 0.26 

𝐟𝑪 = 𝟎. 𝟗𝟓𝟐  
O-ring friction 

0.0243 0.4394 0.3875 0.0347 0.8859 4.30 

 
 
 
 
𝑫𝒑𝒊𝒑𝒆 = 

𝟓 𝒎𝒎 
flow 
losses 

𝒑𝒊𝒑𝒆𝒔 

𝑳 = 𝟓𝟎 𝒎𝒎 
0 0.0023 0.0047 0 0.0071 0.03 

𝑫𝑪𝑽 0.0063𝑒 − 03 0.0074𝑒 − 03 0.0001 0.0010𝑒 − 03 0.0001 0.49𝑒 − 03 

𝒇𝒊𝒕𝒕𝒊𝒏𝒈𝒔 

𝑲𝒆𝒏𝒕𝒓𝒂𝒏𝒄𝒆 = 𝟎. 𝟓 

𝑲𝒆𝒙𝒊𝒕 = 𝟏 

𝑲𝒆𝒍𝒃𝒐𝒘 = 𝟎. 𝟗 

0.1142𝑒 − 03 0.0002 0.0026 0.0181𝑒 − 03 0.0029 0.01 

𝒕𝒐𝒕𝒂𝒍 0.0001 0.0025 0.0074 0.0191𝑒 − 03 0.0101 0.05 

𝒉𝑵𝟐 = 𝟐𝟓
𝑾

𝒎𝟐 ∙ 𝑲
 

accumulator heat losses 

0 0.1904 0.0845 0.0537 0.3285 1.60 

𝒕𝒐𝒕𝒂𝒍 𝒐𝒗𝒆𝒓 𝒕𝒉𝒆 𝒘𝒉𝒐𝒍𝒆 𝒈𝒂𝒊𝒕 𝒄𝒚𝒄𝒍𝒆 1.57 7.62 

 
Table 7.1 Sources of energy dissipation for the final design. From left to right: energy loss parameter values; 
energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the total 
eccentric work done by the prosthetic ankle). 

 

The results of this breakdown of energy losses show that the largest energy loss is due to the 

O-ring friction in the two rams (4.3% of the total eccentric work), followed by heat transfer 

from the accumulator to the external environment (1.60% of the total eccentric work), and 

then losses associated with friction in the cam-roller-follower assemblies (rolling resistance 

1%; roller bearings 0.41%; and follower bearings 0.26% of the total eccentric work). 

Conversely, flow losses are tiny (0.05% of the total eccentric work). Therefore, for the 

assumed pipe diameter and length, and realistic parameter values for fittings and DCVs, the 

flow losses seem to have a negligible effect on the performances of the two cam-ram systems, 

even during their working phases when power flows are large. On the contrary, mechanical 

friction phenomena and heat losses from the accumulator should be minimised to increase 

the efficiency of the system. Indeed, significant improvements could be achieved by reducing 
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O-ring friction and heat loss from the accumulator. The effects of changing the values of the 

energy loss parameters are considered in the next section. 

 

In summary, Figure 7.1 and Table 7.2 show the energy flows in the new design, over the whole 

gait cycle, including: the eccentric work done, corresponding to the external energy input; the 

concentric work done, mainly during push-off; energy losses; and the net energy stored and 

carried forward for future gait cycles (e.g. for ascending slopes). Energy losses include all 

sources of energy dissipation that were modelled: those shown in Table 7.1 and also 

compressibility losses at valve transitions, which amount to no more than 0.6% of the total 

eccentric work. The latter were estimated based on the connections of the two rams to the 

tank at the end of their respective working phases, which is when the strain energy stored in 

the cylinder oil during the two working phases is lost. Trapezoidal integration was used for the 

estimate, neglecting major and minor losses. Therefore, the energy lost due to oil 

compressibility at valve transition at the end of the stance working phase is: 

 

 

∆𝐸𝛽𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 = ∆𝑉𝛽𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸
(𝑃𝑎𝑡𝑚𝑔𝑎𝑢𝑔𝑒

+ 𝑃𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸𝑔𝑎𝑢𝑔𝑒)

2
= 

= ∆𝑉𝛽𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸
((𝑃𝑎𝑡𝑚 − 𝑃𝑎𝑡𝑚) + (𝑃𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 − 𝑃𝑎𝑡𝑚))

2
= 

= ∆𝑉𝛽𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸
(𝑃𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 − 𝑃𝑎𝑡𝑚)

2
= 0.042𝐽 = 

= 0.2% 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐 𝑤𝑜𝑟𝑘 

(7.1) 

 

where ∆𝑉𝛽𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 = −𝑉𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸
(𝑃𝑎𝑡𝑚−𝑃𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸)

𝛽
= −𝑉𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸

(𝑃𝑎𝑡𝑚−𝑃𝑎𝑐𝑐)

𝛽
=

9.169𝑒 − 9 𝑚3, with 𝛽 = 1.657𝑒 + 09 𝑃𝑎, 𝑉𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 =  0.1671𝑒 − 05 𝑚
3, and 

𝑃𝑐𝑦𝑙 𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑃𝑎𝑐𝑐 = 9.194𝑒 + 06 𝑃𝑎 (data from MATLAB simulation model). The energy lost 

due to oil compressibility at valve transition at the end of the push-off working phase is: 

 

 
∆𝐸𝛽𝑐𝑦𝑙 𝑃𝑂 = ∆𝑉𝛽𝑐𝑦𝑙 𝑃𝑂

(𝑃𝑎𝑡𝑚𝑔𝑎𝑢𝑔𝑒
+ 𝑃𝑐𝑦𝑙 𝑃𝑂𝑔𝑎𝑢𝑔𝑒)

2
= 

= ∆𝑉𝛽𝑐𝑦𝑙 𝑃𝑂
((𝑃𝑎𝑡𝑚 − 𝑃𝑎𝑡𝑚) + (𝑃𝑐𝑦𝑙 𝑃𝑂 − 𝑃𝑎𝑡𝑚))

2
= 

(7.2) 
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= ∆𝑉𝛽𝑐𝑦𝑙 𝑃𝑂
(𝑃𝑐𝑦𝑙 𝑃𝑂 − 𝑃𝑎𝑡𝑚)

2
= 0.078𝐽 = 

= 0.4% 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐 𝑤𝑜𝑟𝑘 

 

where ∆𝑉𝛽𝑐𝑦𝑙 𝑃𝑂 = −𝑉𝑐𝑦𝑙 𝑃𝑂
(𝑃𝑎𝑡𝑚−𝑃𝑐𝑦𝑙 𝑃𝑂)

𝛽
= −𝑉𝑐𝑦𝑙 𝑃𝑂

(𝑃𝑎𝑡𝑚−𝑃𝑎𝑐𝑐)

𝛽
= 1.747𝑒 − 8 𝑚3, with 

𝑉𝑐𝑦𝑙 𝑃𝑂 =  0.3242𝑒 − 05 𝑚
3, and 𝑃𝑐𝑦𝑙 𝑃𝑂 = 𝑃𝑎𝑐𝑐 = 9.032𝑒 + 06 𝑃𝑎. 

 

The primary contribution to the net energy stored and carried forward is the change in energy 

stored in the accumulator, estimated from equation (5.43) rearranged for 
𝜕𝐸𝑔𝑎𝑠𝑎𝑐𝑐

𝜕𝑡
: the energy 

stored during mid and terminal stance in the accumulator amounts to approximately 17.29𝐽, 

while the energy released during push-off amounts to 14.32𝐽. Theoretically, for periodic ankle 

kinematics, the net changes over the whole gait cycle in strain energy stored in the parallel 

spring and the two follower return springs, and potential and kinetic energy of the rollers and 

followers, should be zero. Nevertheless, in the MATLAB simulations this change in stored 

energy turns out to be approximately 0.0025 𝐽, and is included in the net energy stored and 

carried forward (Figure 7.1 and Table 7.2). The sum of these energy flows for the whole system 

differs from zero: it is approximately −0.83% of the total eccentric work done, which 

represents the accuracy of the simulation model developed in this PhD work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concentric work 

𝟕𝟖. 𝟐% 

net stored/ 
carried forward 

𝟏𝟒. 𝟒𝟐% 

eccentric work 

𝟏𝟎𝟎% 

losses 

𝟖. 𝟐𝟏% 

Figure 7.1 Energy flows (percentages) in the new hydraulic ankle over the whole gait cycle. 
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 𝒂𝒃𝒔(𝒆𝒏𝒆𝒓𝒈𝒚) (𝑱) % 𝒆𝒄𝒄𝒆𝒏𝒕𝒓𝒊𝒄 𝒘𝒐𝒓𝒌 

eccentric work 20.59 100% 

concentric work 16.10 78.2% 

energy lost 1.69 8.21% 

energy stored and 
carried forward 

2.97 14.42% 

residual 
(simulation’s accuracy) 

−𝟎.𝟏𝟕 −𝟎.𝟖𝟑% 

 
Table 7.2 Energy flows in the new hydraulic ankle over the whole gait cycle (𝐽 and as a percentage of the total 
eccentric work done by the prosthetic ankle). 
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7.2 Sensitivity study 
 

A sensitivity study was undertaken to establish where energy losses may be particularly 

sensitive to changes in the design parameters and, hence, strict constraints need to be 

imposed. For each parameter associated with a source of energy loss (see Table 7.1), a range 

of values that goes beyond the typical ranges found in the literature was chosen to conduct 

this sensitivity study. To be consistent, this was done by multiplying the chosen values for the 

final design by 0.25, 0.5, 2 and 4. However, where this led to unrealistic values or it was useful 

to extend the range, an alternative range was chosen. 

 

The MATLAB code was further modified in order to re-run the design program for each 

parameter value from the chosen range. This meant adding a fourth for loop, which steps 

through the sequence of parameter values and, for each value, executes the three nested 

loops already making up the design program (see section 5.2). In this way, the cam profiles 

and return springs are re-evaluated for each parameter value. 

 

The following sub-sections show the changes in energy lost when a particular energy loss 

parameter is varied. Tables 7.3 – 7.9 and Figures 7.2 – 7.10 display the energy lost in each gait 

phase (𝐽) and the total energy lost over the whole the gait cycle (𝐽 and also as a percentage of 

the total eccentric work over the gait cycle). The highlighted rows in the tables correspond to 

the parameter values in the final design, that is the energy losses already listed in Table 7.1. 

 

  



  Chapter 7: System performance 

180 
 

7.2.1 Rolling resistance (𝝁𝒓𝒐𝒍𝒓𝒆𝒔) 
 

The moment describing the rolling resistance between cam and roller (𝑀𝑟𝑜𝑙𝑟𝑒𝑠) is given by 

equation (4.36). Typical values for the coefficient of rolling friction ( 𝜇𝑟𝑜𝑙𝑟𝑒𝑠) from the literature 

are between 0.001 and 0.002 (see section 4.3.3). For the final design, the chosen value of 

 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 is 0.002 (see Table 7.1), and the range chosen for the sensitivity study is shown in the 

first column of Table 7.3. The energy lost was evaluated by integration of the rolling resistance 

power (𝑃𝑓𝑟𝑟𝑜𝑙𝑟𝑒𝑠) (equation (5.20) in section 5.3) and is shown in Table 7.3 and Figure 7.2. 

 

𝝁𝒓𝒐𝒍𝒓𝒆𝒔 𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
% eccentric 

work 

0.002/4 0.0002 0.0205 0.0301 0.0006 0.0514 0.25 

0.002/2 0.0005 0.0410 0.0601 0.0011 0.1027 0.50 

0.002 0.0010 0.0819 0.1202 0.0022 0.2054 1 

0.002 ∗ 2 0.0020 0.1638 0.2404 0.0045 0.4106 1.99 

0.002 ∗ 4 0.0040 0.3274 0.4804 0.0089 0.8207 3.99 

 
Table 7.3 Sensitivity of energy lost because of rolling resistance to changes in  𝜇𝑟𝑜𝑙𝑟𝑒𝑠. From left to right: values 
of  𝜇𝑟𝑜𝑙𝑟𝑒𝑠; energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the 
total eccentric work done by the prosthetic ankle). 

 

 

The energy lost over the gait cycle increases almost linearly as the rolling friction coefficient 

increases. A coefficient of  𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ≤ 0.002 guarantees that the rolling resistance energy losses 

are no more than 1% of the total eccentric work. Given that this was chosen as a conservative 

value, it may be possible to achieve  𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.001 and, hence, reduce this energy loss to 

0.50% of the total eccentric work. 
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Figure 7.2 Sensitivity of energy lost because of rolling resistance to changes in  𝜇𝑟𝑜𝑙𝑟𝑒𝑠. The plot on the left shows 
how the phase losses accumulate to give the total loss over the whole gait cycle (𝐽). The plot on the right shows 
the total energy loss as a percentage of the total eccentric work done by the prosthetic ankle. 
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7.2.2 Roller bearing friction (𝝁𝒃𝒓𝒈) 

 

The moment describing friction at the roller bearing (𝑀𝑏𝑟𝑔) is given by equation (4.35). For 

the final design, the chosen value of  𝜇𝑏𝑟𝑔 is 0.002 (see Table 7.1), which is the worst case 

coefficient of friction found in the literature for both needle roller bearings and for cylindrical 

roller bearings (SKF, 2013). The lowest value reported in SKF (2013) is 𝜇𝑏𝑟𝑔 = 0.0011 for 

cylindrical roller bearings with a cage. These values apply when the force acting on the roller 

is only radial (the axial force is zero). The range chosen for the sensitivity study is shown in the 

first column of Table 7.4. The energy lost was evaluated by integration of the roller bearing 

friction power (𝑃𝑓𝑟𝑟𝑜𝑙) (equation (5.23) in section 5.3) and is shown in Table 7.4 and Figure 7.3. 

 

𝝁𝒃𝒓𝒈 𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
% eccentric 

work 

0.002/4 0.0001 0.0085 0.0125 0.0002 0.0214 0.10 

0.002/2 0.0002 0.0170 0.0251 0.0005 0.0427 0.21 

0.002 0.0004 0.0339 0.0501 0.0009 0.0854 0.41 

0.002 ∗ 2 0.0008 0.0679 0.1002 0.0019 0.1708 0.83 

0.002 ∗ 4 0.0017 0.1357 0.2004 0.0037 0.3415 1.66 

 
Table 7.4 Sensitivity of energy lost because of roller bearing friction to changes in 𝜇𝑏𝑟𝑔. From left to right: values 

of 𝜇𝑏𝑟𝑔; energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the 

total eccentric work done by the prosthetic ankle). 

 

 

The energy lost over the gait cycle increases almost linearly as the roller bearing coefficient of 

friction increases. A coefficient of  𝜇𝑏𝑟𝑔 ≤ ~0.006 guarantees the roller bearing energy losses 

are less than 1% of the total eccentric work. Given that  𝜇𝑏𝑟𝑔 = 0.002 was chosen as a 

conservative value, it may be possible to achieve  𝜇𝑏𝑟𝑔 = 0.001 and, hence, reduce this energy 

loss to 0.21% of the total eccentric work. 
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Figure 7.3 Sensitivity of energy lost because of roller bearing friction to changes in 𝜇𝑏𝑟𝑔. The plot on the left 

shows how the phase losses accumulate to give the total loss over the whole gait cycle (𝐽). The plot on the right 
shows the total energy loss as a percentage of the total eccentric work done by the prosthetic ankle. 
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7.2.3 Sliding friction at the follower (𝝁𝒔𝒍) 
 

The two sliding friction forces (𝐹𝑓𝑟1 and 𝐹𝑓𝑟2) at both follower bearings (each consisting of 2 

self-aligning linear ball bearings) are given by equations (4.42) and (4.43). Typical values from 

the literature for the coefficient of friction ( 𝜇𝑠𝑙) of lubricated linear ball bearings are between 

0,0015 for heavy loads and 0,005 for light loads. For the final design, the chosen value of  𝜇𝑠𝑙  

is 0.003 (see Table 7.1) because the energy lost is likely to be highest when the forces are high 

and, hence, it would be unrealistic to use the light load  𝜇𝑠𝑙. The range chosen for the 

sensitivity study is shown in the first column of Table 7.5. The energy lost was evaluated by 

integration of the sliding friction power (𝑃𝑓𝑟𝑓𝑜𝑙) (equation (5.28) in section 5.3) and shown in 

Table 7.5 and Figure 7.4. 

 

𝝁𝒔𝒍 𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
% eccentric 

work 

0.005/4 0.0001 0.0106 0.0116 0.0002 0.0226 0.11 

0.005/2 0.0002 0.0213 0.0233 0.0004 0.0452 0.22 

0.003 0.0002 0.0256 0.0279 0.0005 0.0542 0.26 

0.005 0.0003 0.0426 0.0465 0.0009 0.0903 0.44 

0.005 ∗ 2 0.0007 0.0855 0.0927 0.0017 0.1806 0.88 

0.005 ∗ 4 0.0014 0.1714 0.1844 0.0035 0.3607 1.75 

 
Table 7.5 Sensitivity of energy lost because of sliding friction to changes in 𝜇𝑠𝑙. From left to right: values of 𝜇𝑠𝑙; 
energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the total 
eccentric work done by the prosthetic ankle). 

 

 

The energy lost over the gait cycle increases almost linearly as the coefficient of sliding friction 

increases. A coefficient of  𝜇𝑠𝑙 ≤ 0.11 guarantees the sliding friction energy losses are less 

than 1% of the total eccentric work. The value chosen for the final design is  𝜇𝑠𝑙 = 0.003 and 

this already leads to relatively low sliding friction losses of 0.26% of the total eccentric work. 
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Figure 7.4 Sensitivity of energy lost because of sliding friction to changes in 𝜇𝑠𝑙. The plot on the left shows how 
the phase losses accumulate to give the total loss over the whole gait cycle (𝐽). The plot on the right shows the 
total energy loss as a percentage of the total eccentric work done by the prosthetic ankle. 
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7.2.4 O-ring friction (𝐟𝑪) 
 

The friction at the hydraulic cylinder O-ring (𝐹𝑓𝑟𝑐𝑦𝑙) is given by Martini’s O-ring model (see 

section 4.4.2). As equation (4.54) shows, the friction formula contains a pressure-dependent 

term and a cross-sectional squeeze dependent term. The first term only depends on given 

geometry and the pressure across the O-ring and, therefore, is not considered in the sensitivity 

study. The second term includes a friction parameter f𝐶  that depends on the rubber hardness 

and the squeeze ratio and, therefore, this is considered in the sensitivity study. For the final 

design, a specific O-ring with a given hardness was selected and a squeeze ratio of 휀 = 0.14 

was assumed, which led to f𝐶 = 0.952. The range chosen for the sensitivity study is shown in 

the first column of Table 7.6. The energy lost is evaluated by integration of the O-ring friction 

power (𝑃𝑓𝑟𝑐𝑦𝑙) (equation (5.34) in section 5.3) and shown in Table 7.6 and Figure 7.5. 

 

𝐟𝑪 𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
% eccentric 

work 

f𝐶
4⁄  0.0062 0.3634 0.3018 0.0087 0.6801 3.30 

f𝐶
2⁄  0.0122 0.3886 0.3302 0.0174 0.7485 3.64 

f𝐶  0.0243 0.4394 0.3875 0.0347 0.8859 4.30 

f𝐶 ∗ 2 0.0481 0.5388 0.4997 0.0688 1.1553 5.61 

f𝐶 ∗ 4 0.0947 0.7333 0.7197 0.1360 1.6837 8.18 

 
Table 7.6 Sensitivity of energy lost because of O-ring friction to changes in 𝑓𝐶. From left to right: values of 𝑓𝐶; 
energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the total 
eccentric work done by the prosthetic ankle). 

 

 

The energy lost over the gait cycle increases almost linearly as f𝐶  increases. Unfortunately, 

even the smallest coefficient tested (
f𝐶

4
=

0.952

4
= 0.238) generates energy losses of over 3% 

of the total eccentric work and is the largest source of energy loss in the system. Furthermore, 

with the selected O-ring of given hardness, the minimum value of f𝐶  consistent with a realistic 

but low squeeze ratio (for instance 휀 = 0.07 (Xia & Durfee, 2011b, 2014)) is f𝐶 = 0.476, which 

generates energy losses of over 3.64% of the total eccentric work. 
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Figure 7.5 Sensitivity of energy lost because of O-ring friction to changes in 𝑓𝐶. The plot on the left shows how 
the phase losses accumulate to give the total loss over the whole gait cycle (𝐽). The plot on the right shows the 
total energy loss as a percentage of the total eccentric work done by the prosthetic ankle. 
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7.2.5 Flow losses 
 

7.2.5.1 Varying pipe diameter (𝑫𝒑𝒊𝒑𝒆) 

 

Pipe diameter (𝐷𝑝𝑖𝑝𝑒) is a secondary independent variable whose value affects not only major 

flow losses in pipes, according to equation (4.60) (see section 4.5.1), but also minor flow losses 

in discrete components such as inlets, exits, bends and DCVs, as equations (4.61) and (4.63) 

show (see section 4.5.2). For the final design, the chosen value of 𝐷𝑝𝑖𝑝𝑒 is 5𝑚𝑚 (see Table 

7.1), and the range used for the sensitivity study is shown in the first column of Table 7.7. 

Specifically, the upper (10𝑚𝑚) and lower (2𝑚𝑚) limits of this range were considered to be 

realistic. Given that a change in 𝐷𝑝𝑖𝑝𝑒 leads to a change in the pressure drops across pipes and 

also discrete components, Table 7.7 displays the energy losses attributed to pipes, DCVs and 

“fittings” (i.e. inlets, exits and 90° elbows), and the total (sum of these three terms), when 

only 𝐷𝑝𝑖𝑝𝑒 varies. The energy lost (Table 7.7 and Figure 7.6) is evaluated by integration of the 

flow loss powers (equations (5.35) and (5.36) in section 5.3.7). 

 

𝑫𝒑𝒊𝒑𝒆 

(𝒎𝒎) 

𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
% eccentric 

work 

𝒑𝒊𝒑𝒆𝒔 𝑫𝑪𝑽𝒔 𝒇𝒊𝒕𝒕𝒊𝒏𝒈𝒔 𝒕𝒐𝒕𝒂𝒍 𝒕𝒐𝒕𝒂𝒍 

2 0.2782 0.0054 0.1117 0.3953 1.92 

3 0.0546 0.0011 0.0223 0.0780 0.38 

4 0.0173 0.0003 0.0071 0.0247 0.12 

5 0.0071 0.0001 0.0029 0.0101 0.05 

6 0.0034 0.0673𝑒 − 03 0.0014 0.0049 0.02 

7 0.0018 0.0364𝑒 − 03 0.0008 0.0026 0.01 

8 0.0011 0.0213𝑒 − 03 0.0004 0.0015 7𝑒 − 03 

9 0.0007 0.0133𝑒 − 03 0.0003 0.0010 5𝑒 − 03 

10 0.0004 0.0087𝑒 − 03 0.0002 0.0006 3𝑒 − 03 

 
Table 7.7 Sensitivity of energy lost across pipes, DCVs and fittings to changes in 𝐷𝑝𝑖𝑝𝑒 . From left to right: values 

of 𝐷𝑝𝑖𝑝𝑒; energy losses over the whole gait cycle across pipes, DCVs and fittings (𝐽); and total energy loss over 

the whole gait cycle (𝐽 and as a percentage of the total eccentric work done by the prosthetic ankle). 

 

 

Major and minor losses over the gait cycle increase as the pipe diameter decreases. 

Specifically, for very small values of 𝐷𝑝𝑖𝑝𝑒 (< 3𝑚𝑚), the total energy lost across pipes, inlets, 



  Chapter 7: System performance 

189 
 

Figure 7.6 Sensitivity of energy lost across pipes, DCVs and fittings to changes in 𝐷𝑝𝑖𝑝𝑒 . The plot on the left shows 

how the losses across pipes, DCVs and fittings accumulate over the whole gait cycle to give the total loss (𝐽). The 
plot on the right shows the total energy loss over the whole gait cycle as a percentage of the total eccentric 
work done by the prosthetic ankle. 

exits, 90° elbows and DCVs exceeds 1% of the total eccentric work, primarily because of the 

major flow losses across pipes. In particular, it can be seen from Figure 7.6 that the 

relationship is very non-linear and there are diminishing returns if the pipe diameter is 

increased above 5𝑚𝑚. So, by chance, the “realistic” pipe diameter selected for the final 

design is a good choice, leading to very small flow losses of 0.05% of the total eccentric work 

done by the prosthetic ankle. 
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7.2.5.2 Varying pipe length (𝑳𝒑𝒊𝒑𝒆) 

 

Unlike pipe diameter, pipe length (𝐿𝑝𝑖𝑝𝑒) is a secondary independent variable whose value 

affects only major flow losses in the pipes between the two rams and the accumulator (there 

are no pipes between the rams and tank), according to equation (4.60) (section 4.5.1). For the 

final design, the chosen value of 𝐿𝑝𝑖𝑝𝑒 is 50𝑚𝑚 (see Table 7.1), and the range chosen for the 

sensitivity study is shown in the first column of Table 7.8. Specifically, the upper (150𝑚𝑚) and 

lower (10𝑚𝑚) limits of this range were considered to be realistic. For 5𝑚𝑚 diameter pipes, 

Table 7.8 and Figure 7.7 display the energy losses across the pipes evaluated by integration of 

the flow loss power (equations (5.35) and (5.36) in section 5.3.7), but considering only the 

pressure drops across pipes. 

 

𝑳𝒑𝒊𝒑𝒆  

(𝒎𝒎) 
𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳  (𝑱) 

%eccentric 

work 

10 0 0.0005 0.0009 0 0.0014 6.80𝑒 − 03 

30 0 0.0014 0.0028 0 0.0042 0.02 

50 0 0.0023 0.0047 0 0.0071 0.03 

70 0 0.0033 0.0066 0 0.0099 0.05 

90 0 0.0042 0.0085 0 0.0127 0.06 

110 0 0.0052 0.0104 0 0.0155 0.08 

130 0 0.0061 0.0123 0 0.0184 0.09 

150 0 0.0070 0.0142 0 0.0212 0.10 

 
Table 7.8 Sensitivity of energy lost because of pipe flow losses to changes in 𝐿𝑝𝑖𝑝𝑒. From left to right: values of 

𝐿𝑝𝑖𝑝𝑒; energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the total 

eccentric work done by the prosthetic ankle). 

 

 

Pipe flow losses over the gait cycle increase almost linearly as the pipe length increases. For 

5𝑚𝑚 diameter pipes, the energy lost across the pipes is negligible: 0.1% of the total eccentric 

work for 𝐿𝑝𝑖𝑝𝑒 = 150𝑚𝑚.  
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Figure 7.7 Sensitivity of energy lost because of pipe flow losses to changes in 𝐿𝑝𝑖𝑝𝑒. The plot on the left shows 

how the phase losses accumulate to give the total loss over the whole gait cycle (𝐽), noting that the pipe flow 
losses are zero during load acceptance and swing because both rams are connected to tank. The plot on the 
right shows the total energy loss as a percentage of the total eccentric work done by the prosthetic ankle.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

The contour plot below (Figure 7.8) shows how pipe flow losses vary with both pipe length 

and diameter. As expected from equation (4.60) (section 4.5.1), a larger pipe diameter and 

shorter pipe length reduce the energy lost. Pipes longer than 40𝑚𝑚 combined with very small 

diameters (𝐷𝑝𝑖𝑝𝑒 ≤ 3𝑚𝑚), generate energy losses larger than 1% of the total eccentric work. 

In conclusion, the pipe diameter selected for the final design is a good choice, leading to very 

small flow losses even when the pipe length is 150𝑚𝑚 (i.e. 0.1% of the total eccentric work 

done by the prosthetic ankle). 
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Figure 7.8 Sensitivity of energy lost because of pipe flow losses to changes in 𝐿𝑝𝑖𝑝𝑒  and 𝐷𝑝𝑖𝑝𝑒 . The energy loss is 

displayed as a percentage of the total eccentric work done by the prosthetic ankle.  
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7.2.5.3 Varying discrete components parameters (𝑲𝒆𝒏𝒕𝒓𝒂𝒏𝒄𝒆, 𝑲𝒆𝒍𝒃𝒐𝒘) 

 

Minor flow losses across the discrete components (i.e. inlets, exits and 90° elbows) depend 

not only on 𝐷𝑝𝑖𝑝𝑒 (see section 7.2.5.1), but also on the dimensionless loss coefficients 𝐾 for 

each discrete component, as equation (4.60) (section 4.5.2) shows. Typical values of these loss 

coefficients found in the literature are: 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 varies between 0.05 for a rounded entrance 

and 0.5 for a sharp-edged entrance (Durfee et al., 2015), 𝐾𝑒𝑥𝑖𝑡 = 1 for both a sharp-edged 

and a rounded exit (Durfee et al., 2015), and 𝐾𝑒𝑙𝑏𝑜𝑤 varies between 0.2 (Durfee et al., 2015) 

and 0.9 (Cundiff, 2002). For the final design, the chosen values of 𝐾 (see Table 7.1) coincide 

with the conservative end of the ranges found in literature, generating the largest pressure 

drops (e.g. 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 0.5 is the maximum value for a sharp-edged entrance). The ranges 

considered for the sensitivity study are based on the values quoted in Figure 4.10: 𝐾𝑒𝑥𝑖𝑡 

remains equal to 1; 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 is varied between 0.05 and 1 in increments of 0.15; and 𝐾𝑒𝑙𝑏𝑜𝑤 

is varied between 0.2 and 1 in increments of 0.1. 

 

The MATLAB code used so far was revised to add a fifth for loop so that, for each value of 

𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒, 𝐾𝑒𝑙𝑏𝑜𝑤 is varied over the chosen range, and the cam profiles and return springs are 

re-evaluated for each combination of 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 and 𝐾𝑒𝑙𝑏𝑜𝑤. Figure 7.9 shows the total energy 

lost across inlets, exits and 90° elbows, evaluated using equations (5.35) and (5.36) (section 

5.3.7), but considering only the pressure drops across these three discrete components as 

follows: 

 

𝑃𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 = −𝑄∆𝑃𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 𝑡𝑜 𝑡𝑎𝑛𝑘  during non-working phases 

𝑃𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 = −𝑄∆𝑃𝑓𝑖𝑡𝑡𝑖𝑛𝑔𝑠 𝑡𝑜 𝑎𝑐𝑐  during working phases 

 

Referring to Figure 7.9, as expected, the total energy lost across inlets, exits and 90° elbows 

over the gait cycle increases as both of the loss coefficients increase. However, even when 

𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 𝐾𝑒𝑙𝑏𝑜𝑤 = 𝐾𝑒𝑥𝑖𝑡 = 1, the energy losses are very small (approximately 0.02% of 

the total eccentric work). In conclusion, the flow losses across the discrete components are 

unlikely to be an issue unless the hydraulic circuit becomes very tortuous with many changes 

of direction (i.e. elbows).  
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Figure 7.9 Sensitivity of energy lost because of flow losses in discrete components to changes in 𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒  and 
𝐾𝑒𝑙𝑏𝑜𝑤  (𝐾𝑒𝑥𝑖𝑡  always equals 1). The energy loss is displayed as a percentage of the total eccentric work done by 
the prosthetic ankle.  
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7.2.6 Heat losses from the accumulator 
 

Over the short duration of the gait cycle, the charge and discharge of the accumulator is 

assumed to be approximately adiabatic. However, over many gait cycles, heat losses from the 

gas to the surroundings through the accumulator wall (𝑇𝑤𝑎𝑙𝑙 = 𝑇𝑒𝑛𝑣 = 293𝐾) need to be 

taken into account, which is based on Newton’s law of cooling (see equation (5.40) in section 

5.3). These losses are modelled using the heat transfer model described by Pourmovahed and 

Otis (1990) based on the thermal time-constant (𝜏) (see equation (A.17) in Appendix A.5), so 

that the gas temperature changes are evaluated at each instant of the gait cycle using 

equation (4.79) (section 4.6.3). The thermal time constant includes the convection heat 

transfer coefficient (ℎ𝑁2), whose typical values for gases involved in a free convection process 

are between 2 
𝑊

𝑚2∙𝐾
 and 25 

𝑊

𝑚2∙𝐾
 (e.g. ℎ𝑎𝑖𝑟 = 10

𝑊

𝑚2∙𝐾
) (Bergman et al., 2011, p. 8). The 

conservative end of this range was chosen (ℎ𝑁2 = 25
𝑊

𝑚2∙𝐾
, see Table 7.1), and the range 

considered for the sensitivity study is shown in the first column of Table 7.9. The energy lost 

(Table 7.9 and Figure 7.10) is evaluated by integration of the heat transfer power (𝑃𝑙𝑜𝑠𝑠𝐻𝐸𝐴𝑇) 

(equation (5.40) in section 5.3). 

 

𝒉𝑵𝟐  

(
𝑾

𝒎𝟐∙𝑲
) 

𝑬𝒍𝒐𝒔𝒕@𝑳𝑨(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑻𝑨𝑵𝑪𝑬(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑷𝑶(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑺𝑾𝑰𝑵𝑮(𝑱) 𝑬𝒍𝒐𝒔𝒕@𝑻𝑶𝑻𝑨𝑳(𝑱) 
%eccentric 

work 

0.5 0 0.0038 0.0017 0.0011 0.0066 0.03 

1 0 0.0076 0.0034 0.0021 0.0131 0.06 

2 0 0.0152 0.0068 0.0043 0.0263 0.13 

4 0 0.0305 0.0135 0.0086 0.0526 0.26 

6.25 0 0.0476 0.0211 0.0134 0.0821 0.40 

8 0 0.0609 0.0270 0.0172 0.1051 0.51 

12.5 0 0.0952 0.0422 0.0268 0.1643 0.80 

25 0 0.1904 0.0845 0.0537 0.3285 1.60 

50 0 0.3808 0.1689 0.1073 0.6571 3.19 

100 0 0.7617 0.3379 0.2146 1.3142 6.38 

 
Table 7.9 Sensitivity of energy lost because of heat transfer to changes in ℎ𝑁2. From left to right: values of ℎ𝑁2; 

energy loss in each phase (𝐽); and energy loss over the whole gait cycle (𝐽 and as a percentage of the total 
eccentric work done by the prosthetic ankle). 
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The energy lost from the accumulator because of heat transfer over the gait cycle increases 

almost linearly as the convection heat transfer coefficient (ℎ𝑁2) increases. The value chosen 

for the final design (ℎ𝑁2 = 25
𝑊

𝑚2∙𝐾
) is at the conservative end of the typical range of heat 

transfer coefficients for gases involved in a free convection process. This generates an energy 

loss of 1.60% of the total eccentric work and, as a result, heat transfer is the second largest 

energy loss in the system. 

 

To reduce the heat losses, the accumulator could be insulated so that the inside surface of the 

accumulator wall is no longer at 𝑇𝑒𝑛𝑣 = 293𝐾. Indeed, in this case, it could be assumed the 

inside surface of the wall is at the gas temperature and heat transfer occurs through 

conduction, where the convective heat transfer coefficient (ℎ𝑁2) is replaced by 𝑘 𝑠⁄ , where 𝑘 

is the thermal conductivity of the wall material and 𝑠 is the wall thickness. For illustration only, 

for a composite wall with thermal conductivity of 0.045 
𝑊

𝑚∙𝐾
 (2020) and a wall thickness of 

Figure 7.10 Sensitivity of energy lost because of heat transfer to changes in ℎ𝑁2. The plot on the left shows how 

the phase losses accumulate to give the total loss over the whole gait cycle (𝐽). The plot on the right shows the 
total energy loss as a percentage of the total eccentric work done by the prosthetic ankle. 
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0.005𝑚, the convective heat transfer coefficient is replaced by 𝑘 𝑠⁄ = 9
𝑊

𝑚2∙𝐾
, which would 

reduce the heat losses to approximately 0.58% of the total eccentric work. 

 

 

7.3 Conclusions 
 

The energy losses in the final design are summarised in Figure 7.1 and Table 7.2. The total 

energy lost over the gait cycle is 8.21% of the total eccentric work. Compressibility losses at 

valve transitions are no more than 0.6% of the total eccentric work, but it would be sensible 

to continue to model them in case that figure increases in future designs. The sensitivity study 

reported in section 7.2 provides some insight into how these losses might be reduced and 

where strict design constraints are necessary to avoid higher losses.  

 

The largest source of energy loss in the final design is O-ring friction (4.30% of the total 

eccentric work). To reduce this, a lower O-ring squeeze ratio could be used. With the selected 

O-ring of given hardness, the minimum value of f𝐶  consistent with a realistic but low squeeze 

ratio (휀 = 0.07) is f𝐶 = 0.476, which generates energy losses of over 3.64% of the total 

eccentric work.  

 

The second largest source of energy loss in the final design is heat loss from the accumulator 

(1.60% of the total eccentric work). However, this is based on a convective model of heat 

transfer that assumes the accumulator wall provides no insulation. Conversely and for 

illustration only, if the accumulator is insulated, so that heat transfer occurs through 

conduction, using a composite accumulator wall of thickness 0.005𝑚 would reduce the heat 

losses to approximately 0.58% of the total eccentric work. 

 

The three sources of friction in the cam-roller-follower assemblies also result in significant 

energy losses in the final design. Rolling resistance between cam and roller contributes 1% of 

the total eccentric work, which was based on a conservative value for the coefficient of rolling 

resistance of  𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.002. It may be possible to achieve  𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.001 and, hence, 

reduce this energy loss to 0.50% of the total eccentric work. Similarly, if the roller bearing 

coefficient of friction (𝜇𝑏𝑟𝑔) could be reduced from 0.002 to 0.001, then roller bearing friction 
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losses could be reduced from 0.41% to 0.21% of the total eccentric work. The value chosen 

for the follower bearing coefficient of friction is  𝜇𝑠𝑙 = 0.003 and this already leads to 

relatively low sliding friction losses of 0.26% of the total eccentric work. 

 

The flow losses in the final design are negligible, being 0.05% of the total eccentric work. The 

sensitivity study confirmed that, as long as the pipe diameter is not reduced below 5𝑚𝑚, even 

with 𝐿𝑝𝑖𝑝𝑒 = 150𝑚𝑚 and 𝐾 = 1 for all fittings, they are unlikely to exceed 0.2% of the total 

eccentric work. 

 

In conclusion, if the changes suggested above could be implemented, then it may be possible 

to reduce the total energy losses over the gait cycle, associated with the parameters listed in 

Table 7.1, by almost a third to 5.83% of the total eccentric work.  
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Image from the “The Creation of Adam”,  

a fresco by Michelangelo Buonarroti (c. 1508-1512) 

in the Sistine Chapel (Rome) 

 

 

 

 

 

 

 

 

 

 

“Do not merely practice your art, 

but force your way into its secrets; 

it deserves that, for only art and science can exalt man to divinity” 

 

(Ludwig Van Beethoven (1812), Letter to Emilie) 
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The overarching aim of this work was to design a novel prosthetic ankle based on simple 

miniature hydraulic components, including an accumulator for energy storage and return, to 

imitate the behaviour of an intact ankle. To achieve this, two objectives were defined, namely 

to develop the concept design and to demonstrate through simulations that the expected 

performance of the new design justifies physical prototyping in the future. The work 

undertaken to achieve these two objectives and related conclusions are reviewed in the 

following two sections.  

 

 

8.1 The new design 
 

A concept design (Figure 3.3) has been developed for a new hydraulic prosthetic ankle. The 

ankle joint drives two cams, which in turn drive two hydraulic rams. A “stance cam-ram 

system” captures the eccentric (negative) work done from foot flat until maximum 

dorsiflexion, by pumping oil into the accumulator. A “push-off cam-ram system” returns 

concentric (positive) work during push-off to provide forward propulsion through fluid flowing 

from the accumulator to the ram. Each hydraulic ram is connected to the tank, so that its ram 

force is negligible, during the other ram’s working phase, load acceptance and swing. The 

torsional spring, which works in parallel to the two cam-ram systems, is an approximate fit to 

ankle torque during load acceptance, thereby providing good load acceptance, ground 

clearance during swing, and contributing to standing stability. 

 

The cams convert ankle rotation into linear motion of the hydraulic rams and vice versa. The 

cam profiles are designed to replicate an intact ankle’s torque-versus-angle curve over their 

working phases. Taking into account other sources of torque such as the torsional spring, the 

stance cam's profile ensures that the ankle torque during mid and terminal stance (i.e. ankle 

dorsiflexion) mimics that of an intact ankle. Similarly, the push-off cam’s profile ensures that 

the ankle torque during push-off (i.e. ankle plantarflexion) mimics that of an intact ankle. 

 

Using two cam-rams means it is possible to store and return different amounts of energy 

during their two working phases. In this way, during level and downhill walking, the energy 

stored can exceed the energy returned. In other words, the excess eccentric work associated 

with the torque-versus-angle hysteresis loop can be captured. This excess energy can then be 
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carried forward to assist with short periods of uphill walking. Furthermore, even when the 

accumulator is full and, thus, it has reached maximum pressure, the ankle joint will continue 

to provide the necessary braking during downhill walking by using a pressure relief valve to 

dissipate eccentric work in the form of heat. 

 

Although the work described in this thesis was limited to the design of the prosthetic ankle 

joint, the use of a single accumulator as a common energy store would allow a multi-joint 

version of the design to transfer energy between the knee and the ankle joints. For example, 

a cam-rams based device at the knee joint, similar to the one developed for this PhD work, 

could be connected to the same accumulator. In this way, it would be possible to store 

eccentric work done at the knee joint and return it at the ankle joint during push-off.  

 

To estimate the size, particularly the height, of the new device, a solid model of the main 

components affecting height has been created in SolidWorks (v. 2014; Dassault Systemes 

Solidworks Corp.). This also serves as an illustration of how the components might be 

physically assembled. As explained in Chapter 3, the available height for the new prosthesis 

assembly, from the ground to the distal connection with the socket, is 28.38 𝑐𝑚, 

corresponding to a missing anatomy mass of approximately 2.43 𝑘𝑔. Keeping within this 

height would ensure the device is suitable for over 97% of transtibial amputees. 

 

Referring to Figure 8.1, the new prosthetic ankle is envisioned as a modular component placed 

between a typical low-profile ESR foot, made of two carbon fibre laminates, and an integrated 

pylon-accumulator component not shown. The cams are part of the foot assembly, rotating 

with it relative to the shank, and the roller-follower-ram assembly is part of the shank. In this 

way, ankle joint rotation leads to the cams rotating relative to the roller-followers, converting 

ankle rotation into linear motion of the hydraulic rams and, hence, fluid flow between the 

rams and the accumulator or tank (Figure 8.2). The latter would be in the space surrounding 

the hydraulic rams. Components not shown include the parallel spring, the self-aligning linear 

ball bearings guiding the followers, DCVs, and other hydraulic components. The connection 

between the prosthetic ankle and the distal end of the pylon is realised through the male 

adapter on the top of the ankle unit, and the pipes connecting the rams to the accumulator 
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pass through the adapter. The proximal end of the pylon is then connected to the distal end 

of the socket through a male adapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Solid model of the main components of the novel hydraulic ankle prosthesis (cams, rollers, followers, 
rams) enclosed in an aesthetic cover and connected to a typical low-profile ESR foot (two carbon fibre laminates). 
Data for the two cam profiles (the two white components) were exported to Solidworks from the MATLAB design 
program and automatically fitted to splines. The 2D cam profiles are shown in Appendix B.1. 

typical  
low-profile 

ESR foot  

novel hydraulic 
ankle prosthesis 

with  
aesthetic cover 

male 
adapter 

Figure 8.2 Exploded view of the main components of the novel hydraulic ankle prosthesis: cams, rollers, followers, 
and hydraulic rams. 
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A rough estimate of the height of the whole prosthesis is obtained as follows: 

 Approximately 16 𝑐𝑚 from the ground to the base of the male adapter pyramid, 

corresponding to the distal end of the pylon, as shown in Figure 8.3 with the pistons in full 

outstroke. 

 The bespoke accumulator is envisioned as a cylinder with a base radius of approximately 

3 𝑐𝑚 and a height of 10 𝑐𝑚 (Appendix A.5). This is integrated with the prosthesis pylon, 

which will therefore have a 6 𝑐𝑚 internal diameter, whereas 3 𝑐𝑚 is a typical pylon 

internal diameter. The pylon height, including the two tubular adapters at its ends, needs 

to include the accumulator and to allow connection with the ankle unit and the distal end 

of the socket. Thus, a total pylon height of 12 𝑐𝑚 is estimated, from the base of the male 

adapter pyramid up to the distal end of the socket. 

 

Therefore, the estimated prosthesis height from the ground to the distal end of the socket is 

approximately 28 𝑐𝑚, which is within the available height of 28.38 𝑐𝑚 for the whole 

assembly. A rough estimate of the mass of the prosthesis is derived in Appendix E. Using 

conservative assumptions, the estimated mass is 2.35 𝑘𝑔, which is comparable with the 

missing anatomy mass of approximately 2.43 𝑘𝑔. 

 

In conclusion, it has been shown that the main components of the system – cams, rams, and 

accumulator - could be physically realistic, matching the size and the mass of the missing 

anatomy. 
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Figure 8.3 Lateral view of the prosthetic foot and novel hydraulic ankle (derived from the solid model in Figure 
8.1). The height of selected components and the total height are shown in 𝑚𝑚. 
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8.2 Simulated performance 
 

A mathematical model of the new hydraulic prosthetic ankle was defined (Chapter 4), 

including each of its components and considering all significant sources of energy loss, in order 

to obtain a realistic estimate of the performance of the new device and its efficiency. Based 

on this mathematical model, a simulation model of the whole system was implemented in 

MATLAB (Chapter 5), which simulates its operation over the whole gait cycle, as it stores and 

returns energy at the ankle joint. A design program, based upon the simulation model, was 

used to design the profiles of the two cams to replicate the intact ankle torque, and to specify 

the two follower return springs (Chapters 5 and 6). 

 

The two cam-ram systems were designed to achieve good performances in their working 

phases only (Chapter 6). Energy losses not directly associated with the two cam-rams in their 

working phases were neglected, because it was assumed these would have little effect on the 

selected cam-ram design parameters. Maximum hydraulic pressure, ram bore, and cam-

follower configuration were optimised based on the results of multiple MATLAB simulations 

to minimise energy losses while achieving realistic overall dimensions.  

 

Figure 8.4 shows that, with the input ankle angle curve being that of a particular intact ankle, 

the system almost perfectly replicates the torque and power curves of this intact ankle during 

the two working phases (i.e. from foot flat to toe-off). This differs from simulations and in-vivo 

testing results of unpowered and powered clutch-and-spring devices (see Figure 2.17 and 

Figure 2.33 for a comparison), while it confirms the good results that can be obtained using 

hydraulics (see Figure 2.35 for the simulation results of a hydraulic prosthetic knee developed 

at Cleveland State University by van den Bogert et al. (2012)). However, because the torsional 

spring is only an approximate fit to the ankle torque during load acceptance, the match is less 

good during load acceptance and swing. The disadvantage of using the same spring to bring 

the ankle back to neutral during swing is that, during push-off plantarflexion, the spring stores 

more energy than needed to return the foot to neutral during swing. This energy corresponds 

to the smaller peak in power straight after the push-off peak and is wasted (dissipated) during 

swing (Figure 8.4, black solid line in right hand plot). 
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Figure 8.4 Torque (on the left) and power (on the right) at the prosthetic ankle joint; providing a comparison 
between the required (red solid line) – from an anatomically intact subject - and the actual (black solid line) over 
the gait cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

In Chapter 7, firstly, the different sources of energy loss in the final design established in 

Chapter 6 are considered to identify the most significant sources. Chapter 7 then presents the 

results of a sensitivity study, in which the values of the design parameters were varied over 

sensible ranges to establish where energy losses may be particularly sensitive to changes in 

the design parameters and, hence, strict constraints need to be imposed. 

 

Figure 8.5 shows the energy flows in the new design, over the whole gait cycle, including: the 

eccentric work done, corresponding to the external energy input; the concentric work done, 

mainly during push-off; energy losses; and the net energy stored and carried forward for 

future gait cycles (e.g. for ascending slopes). The energy losses over the whole gait cycle are 

8.21% of the total eccentric work done by the prosthetic ankle.  

 

 

 

 

 

 

 

 

 

concentric work 

𝟕𝟖. 𝟐% 

net stored/carried 
forward 

𝟏𝟒. 𝟒𝟐% 

eccentric work 

𝟏𝟎𝟎% 
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𝟖. 𝟐𝟏% 

Figure 8.5 Energy flows (percentages) in the new hydraulic ankle over the whole gait cycle. 
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The largest source of energy loss in the final design is O-ring friction (4.30% of the total 

eccentric work), followed by heat loss from the accumulator (1.60%) and friction in the cam-

roller-follower assemblies (1.67% in total). The compressibility losses amount to 0.6% of the 

total eccentric work, while flow losses are negligible (0.05%) and, as long as the pipe diameter 

is not reduced below 5𝑚𝑚, they are unlikely to exceed 0.2%. With the changes suggested in 

Chapter 7, it may be possible to reduce the total energy lost over the gait cycle to 5.83% of 

the total eccentric work.  

 

This device, therefore, is far more efficient than, for instance, the hydraulic orthosis designed 

by Kangude et al. (2009) : the energy stored in the accumulator during mid and terminal stance 

amounts to approximately 17.29𝐽, corresponding to almost 84% of the total eccentric ankle 

work, and 14.32𝐽 are then released from the accumulator during push-off, of which 11.90𝐽 

are available at the ankle joint, corresponding to almost 69% of the total stored energy in the 

accumulator, as compared with only 7.40% in Kangude’s orthosis.  

 

 

8.3 Novel contributions 
 

The novel contributions of this PhD work fall into two groups, namely: those related to the 

novelty of the new design; and those related to the modelling, simulation and design methods. 

 

a) Novelty of the new design: 

 The use of cams enables biomimetic joint-torque curves to be reproduced. 

 By using two cam-rams, it is possible to follow different joint-torque versus joint-angle 

curves during different phases of the gait cycle, which is a feature of normal gait. In 

other words, hysteresis like curves can be followed. 

 By using two cam-rams, it is possible to store and return different amounts of energy 

during different phases of the gait cycle. In this way, during level and downhill walking, 

the energy stored can exceed the energy returned, and the excess energy can be 

carried forward to assist with short periods of uphill walking. 

 In multi-joint systems (e.g. trans-femoral prostheses and exoskeletons), the use of a 

single energy store (i.e. an accumulator) means that energy can be transferred 
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between joints. For example, higher level amputees would benefit if the excess of 

eccentric work at the knee could be stored and used in a controlled manner at the 

ankle for push-off. Hydraulic actuation is ideally suited for transferring energy between 

joints because the transfer mechanism involves only pipes and fluid, rather than gears 

and linkages. 

 The design could be combined with a battery-powered system to reduce the energy 

storage and recharge requirements. For example, an electrically driven pump could be 

used to recharge the accumulator. This could be useful for extended periods of uphill 

walking. Alternatively, a hand driven pump could be used to recharge the accumulator. 

 

b) Novelty of the modelling, simulation and design methods: 

 A comprehensive mathematical model, which includes all significant sources of energy 

loss, has been defined and, based upon it, a simulation model implemented in 

MATLAB.  

 A novel design program has been created, which uses the simulation model to design 

the profiles of the two cams to replicate the intact ankle torque, and to specify the two 

follower return springs. 

 Design and sensitivity studies have been undertaken to establish a set of design 

parameters that minimise energy losses while achieving realistic overall dimensions. 

 

 

8.4 Limitations and recommendations for future work 
 

a) The main inputs to the simulation-based design program are the ankle angle and torque 

over the gait cycle. Experimental averaged data from anatomically intact subjects walking 

at self-selected speed on level ground, from Bari (2013), were used. Although it is within 

the range of data seen in healthy gait, this input data is optimistic with respect to the 

amount of eccentric work done. Optimistic data were used because it is believed that 

amputees could benefit from walking in a manner that provides good push-off if it reduces 

their metabolic cost of walking. Therefore, the clinical feasibility of the new design will 

depend on whether the eccentric ankle work needed prior to push-off is justified by the 
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benefits of a more normal push-off, which can only be investigated by in-vivo testing with 

amputees (Gardiner et al., 2017). 

 

b) The cam profiles are specified according to the required ankle torque-versus-angle curve 

used as input to the design program. This means that cam profiles could be unique to the 

amputee, providing a personalised prosthesis. Indeed the cams could be manufactured in 

the prosthetics clinic using a rapid manufacturing technique such as 3D printing or CNC 

machining. To achieve this, methods could be developed for basing the required ankle 

torque-versus-angle curve for first prescription on the amputee’s anthropometric, health, 

fitness and activity characteristics. According to the principle of prioritising design 

simplicity, cams will be the only components that the prosthetist needs to manufacture in 

clinic, while all the other components will be standardised. 

 

c) The new device comprises two cam-ram systems designed for their respective working 

phases only, during which they are connected to the accumulator, and they are otherwise 

connected to the tank. The parallel spring is an approximate fit to the ankle torque during 

load acceptance only. The disadvantage is that, during push-off plantarflexion, the spring 

stores more energy than needed to return the foot to neutral during swing and this excess 

energy is lost (dissipated). Therefore, it may be worthwhile to consider design changes to 

reduce the energy lost in this way. This could potentially increase the stored energy carried 

forward by 2.6 𝐽 per gait cycle. 

 

The parallel spring is also designed to contribute to standing stability. However, according 

to the literature, the quasi-stiffness of the ankle joint during standing is much larger than 

during stance (Figure 8.6). It has been estimated that the prosthetic ankle stiffness for 

standing should be three times higher than for walking (Shepherd & Rouse, 2017), which 

is itself considerably higher than that needed for load acceptance. So it may also be useful 

to consider design changes to better support standing.  
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Figure 8.6 Torque-versus-angle curve for an anatomically intact ankle joint during normal walking, stair 
descent and standing. The coloured portions correspond to dorsiflexion during stance for normal walking, 
and to heel strike to toe-off for stair descent. Positive angles correspond to dorsiflexion and positive torque 
to an internal plantarflexion moment. Image source: Shepherd and Rouse (2017). 

 

 

 

 

 

 

 

 

 

 

 

In principle, the four phases of gait that are clearly visible in the ankle torque-versus-angle 

curve (i.e. load acceptance, foot flat to heel lift, push-off, and swing) and standing could 

all have a dedicated cam-ram system. However, this would require further miniaturisation 

and probably the inclusion of a gearbox to increase the rotation of the cam-shaft. 

 

d) The novel hydraulic ankle has been designed for level walking only. Therefore, future work 

should investigate the feasibility of including real-time adaptation to different slopes, 

stairs and walking speed, possibly through the use of 3D cams so that the effective 2D cam 

could be changed to suit the conditions.  

 

e) Two key assumptions made in the simulation model are that: a) the new prosthetic ankle 

operates with “perfect control”, meaning that valve transitions are instantaneous and 

occur at the ideal moments; and b) the cam profiles are ideal so that, in the two cam-ram 

working phases, the required ankle torque is achieved. Furthermore, the electrical power 

required by the control system has not been considered. Although this would be primarily 

for control, not for propulsion, the required battery size still needs to be established. 

 

Hence, future work should develop and test a control architecture for detecting gait 

events, driving valve transitions, and adjusting 3D cam-follower configuration for terrain 

and speed adaptation. Clearly, this is as big a challenge as the mechanical design. 



  Chapter 8: Conclusions 

211 
 

f) Once the mechanical and control issues described above have been satisfactorily resolved, 

the research should move on to design for manufacture, physical prototyping, and in-vivo 

testing with amputees. This will raise many practical issues that cannot be studied through 

modelling and simulation. 

 

As previously mentioned, the use of cams with subject-specific profiles will allow for a 

personalised lower-limb prosthesis. Cam profiles for first prescription would be 

manufactured based on ankle torque-versus-ankle angle curves for both level and slope 

walking and over a range of walking speeds averaged over a number of anatomically intact 

subjects with similar anthropometric, health, fitness and activity characteristics. 

 

Then in vivo-testing will disclose the ankle response for different walking conditions in 

terms of speed and slope. This will allow, in turn, further optimisation to accommodate 

variations in individual ankle response detected through gait analysis. Specifically, a 

second prescription with optimised 3D cam profiles will follow to match subject-specific 

ankle torque-versus-ankle angle curves for both level and slope walking averaged over a 

range of walking speeds. A second gait analysis will provide a check that the prosthesis 

ankle response is correct over different walking conditions, promoting lower-limbs walking 

symmetry and reducing compensatory mechanisms at the lower-limb joints.  

 

g) While this PhD work covers the design of a prosthetic ankle joint aimed mainly at 

transtibial amputees, a similar design for a prosthetic knee together with an energy 

transfer system between the knee and the ankle joints is envisioned in future work on a 

system for transfemoral amputees.  

 

The design of a hydraulic knee would be based on the knee’s torque-versus-angle curve 

(Figure 8.7). Specifically, two cam-ram systems could be used to replicate the large 

hysteresis loop associated with swing. These would produce biomimetic knee torques 

during swing and store the excess of eccentric work at the knee that is dissipated in 

commercially available devices. The steeper loop associated with stance could be achieved 

in the conventional way with a knee lock and a spring to provide stance phase knee flexion.  
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Figure 8.7 Torque-versus-angle curve for an anatomically intact knee joint during a complete gait cycle of 
level walking. Figure adapted from Saivimal et al. (2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfemoral amputees could benefit from energy transfer between the knee and the 

ankle joints, with a single accumulator and cam-ram based joints at the knee and ankle. 

The use of a single accumulator as a common energy store means that there is no need to 

explicitly provide for synchronisation between joints. In other words, apart from sharing 

the accumulator, the two joints can operate independently. In this way, eccentric work at 

both ankle and knee could be captured, increasing the stored energy carried forward to 

assist with short periods of uphill walking. This stored energy could be returned either at 

the ankle for push-off or at the knee for climbing stairs or slopes or for other demanding 

tasks, although the latter would need a system that could adapt to different terrains as 

mentioned above. Once the feasibility of a multi-joint system for transfemoral amputees 

has been demonstrated, future work could investigate the feasibility of using a similar 

approach for exoskeletons. 
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A.1 Roller radial load 

 

For the roller, the equivalent dynamic bearing load is equal to the radial load acting on the 

bearing: 𝑃 = 𝐹𝑟𝑎𝑑 (SKF, 2013, p. 1117). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applying Newton’s 2nd law in the direction normal to cam surface (considering the xy-plane in 

Figure A. 1), the radial load 𝐹𝑟𝑎𝑑 acting on the bearing is calculated as follows: 

 

∑𝐹𝑦 = 𝑚𝑟𝑜𝑙𝑎𝑟𝑎𝑑  𝐹𝑛 − 𝐹𝑟𝑎𝑑 −𝑚𝑟𝑜𝑙𝑔 cos 𝛼 = 𝑚𝑟𝑜𝑙𝑎𝑟𝑎𝑑  (A. 1) 

 

with 𝑎𝑟𝑎𝑑 = �̈� 𝑐𝑜𝑠 𝛼 (i.e. acceleration of the roller in the radial direction), and 𝑚𝑟𝑜𝑙 the mass 

of the rotating outer part of the roller. So, the complete expression for the radial load is: 

 

𝐹𝑟𝑎𝑑 = 𝐹𝑛 −𝑚𝑟𝑜𝑙 cos 𝛼 (𝑔 + �̈�) (A. 2) 

 

At this stage, it is important to understand how much 𝐹𝑟𝑎𝑑 might differ from the normal force 

𝐹𝑛 acting on cam profile, so as to consider a possible approximation of 𝐹𝑟𝑎𝑑 to 𝐹𝑛. To do this, 

the mass of the rotating outer part of the roller (𝑚𝑟𝑜𝑙) needs to be estimated. 

Y 

X 

x y 

Figure A. 1 Free-body diagram of the roller-follower, highlighting the presence of the bearing and considering 
the forces acting on it. 
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For the purpose of this estimation, a reasonable value for the roller-follower radius 𝑟 was 

used: 𝑟 =  
0.019

2
 𝑚. Starting from this, the other dimensions of the cam follower derived from 

SKF catalogue (SKF, 2013, pp. 1140-1141) (Figure A. 2): 

 

𝐵 = 0.032 𝑚;  

𝐵1 = 0.020 𝑚;  

𝐶 =  0.011 𝑚;  

𝑑1 = 0.015 𝑚;  

𝑑𝑏𝑟𝑔 = 0.011 𝑚 (bearing bore diameter);  

𝐷 =  0.019 𝑚;  

𝑚 = 0.032 𝑘𝑔 (average roller mass value);  

𝑚𝑟𝑜𝑙 = 𝜌𝑠𝑠𝑉𝑟𝑜𝑙 = 7700 
𝑘𝑔

𝑚3
∙ 𝜋 ∙ 6.6𝑒 − 07 𝑚3 ≅ 0.016 𝑘𝑔 (A. 3) 

 

 

 

 

 

 

 

 

Assuming that the whole cam follower is made of stainless steel, 𝜌𝑠𝑠 = 7700 
𝑘𝑔

𝑚3 (The Physics 

Factbook); and the approximate volume of the rotating outer part of the roller (𝑉𝑟𝑜𝑙) is 

calculated as follows: 

 

𝑉𝑟𝑜𝑙 = 𝐶𝜋 ((
𝐷

2
)2 − (

𝑑𝑏𝑟𝑔

2
)2) = 𝜋 ∙ 6.6𝑒 − 07 𝑚3 (A. 4) 

 

The previously calculated mass 𝑚𝑟𝑜𝑙 is close to the mass of a “support roller” - the most similar 

component to the rolling part of a cam follower from catalogue, which is included between 

Figure A. 2 Engineering drawing of a cam follower (SKF, 2013, p. 1140). 
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0.019 𝑘𝑔 and 0.021 𝑘𝑔 (SKF, 2013, p. 1134). This means that the estimation of the mass of 

the rotating outer part of the roller is correct. Therefore, the moment of inertia of the rotating 

outer part of the roller is evaluated as follows: 

 

𝐼𝑟𝑜𝑙 =
1

2
𝑚𝑟𝑜𝑙 ((

𝐷

2
)
2

+ (
𝑑𝑏𝑟𝑔

2
)

2

) = 9.62𝑒 − 07 𝑘𝑔 ∙ 𝑚2 (A. 5) 

 

Going back to equation (A. 2), the maximum percentage error between the two forces  𝐹𝑟𝑎𝑑 

and  𝐹𝑛 along the whole gait cycle is evaluated as follows: 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 = ‖
 𝐹𝑟𝑎𝑑 −  𝐹𝑛
 𝐹𝑟𝑎𝑑

‖ × 100 (A. 6) 

 

The maximum percentage error is approximately equal to 0.0053% during the working phase 

of the stance system and to 0.0057% during the working phase of the push-off system. This 

means that, from now on, it is reasonable to assume 𝐹𝑟𝑎𝑑 ≅ 𝐹𝑛, neglecting the other term in 

equation (A. 2). Thus, equation (4.35) becomes: 

 

𝑀𝑏𝑟𝑔 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑏𝑟𝑔 ∙  
𝑑𝑏𝑟𝑔

2
∙ |𝐹𝑛|  (𝑁𝑚) (A. 7) 
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A.2 Rolling resistance element in the power audit 

 

This appendix explains the reason for the introduction of a rolling resistance element between 

cam and roller in the power audit.  

 

The contact point 𝑃 on cam surface is the same as point 𝑃 on the roller, as well as the 

translation of point 𝑃 on cam is the same as the one of point 𝑃 on the roller. Therefore, there 

aren’t relative translations between 𝑃 on the cam and 𝑃 on the roller: they remain coincident. 

However, cam and roller have different angular velocities – respectively 𝜔𝐶  and �̇�, so that the 

angular velocity of the same point 𝑃 on the two surfaces is different. Consequently, the power 

generated by the cam and transmitted to the roller due to the translational velocity of 𝑃 is the 

same, whereas the power generated by the cam and transmitted to the roller due to the 

angular velocity of 𝑃 is different. For this reason, it is necessary to introduce a third mechanical 

component between cam and roller to model properly the contact region (schematic in Figure 

A. 3) and the power loss existing there because of the rolling resistance and the different 

angular velocities. It is possible to model the contact region as a damper (see Figure A. 4), 

since this is a well-known mechanical element to dissipate energy in a system. 

 

 

 

 

 

 

 

 

As Figure A. 4 shows, the rolling resistance 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 is acting on the roller in the opposite 

direction to the angular velocity �̇� – i.e. the clockwise direction; therefore, it will act on the 

cam in the opposite direction – i.e. anticlockwise, which is the same direction of the rotation 

of the cam. At the same time, it will act on the two sides of the rolling resistance element – 

cam side and roller side – with opposite directions to those of the two respective adjacent 

components. Moreover, each side of the rolling resistance element is characterised by the 

same angular velocity of the adjacent component. It follows that: 

𝑐𝑎𝑚  
𝑠𝑖𝑑𝑒 (𝜔𝐶) 

𝑟𝑜𝑙𝑙𝑒𝑟  

𝑠𝑖𝑑𝑒 (�̇�) 

𝐶𝐴𝑀 

𝑅𝑂𝐿𝐿𝐸𝑅 

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 
 𝑟𝑒𝑔𝑖𝑜𝑛 

𝑃 

Figure A. 3 Schematic of the contact region between cam and roller. 
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 The power generated by the cam is equal to the one transmitted to the next element - i.e. 

the rolling resistance element, the damper – and it is given by the sum of the positive 

power due to 𝐹𝑛 and 𝐹𝑡 and the negative term given by 𝑀𝑟𝑜𝑙𝑟𝑒𝑠. Here, 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 is multiplied 

by 𝜔𝐶  since this is the angular velocity characterising the next element, which is the cam 

side of the rolling resistance element. They have opposite direction, so that 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 

generates negative power into the damper. 

 The power generated by the damper is equal to the one transmitted to the roller and it is 

given by the sum of the positive power acting on the roller due to 𝐹𝑛 and 𝐹𝑡 and the 

negative term given by 𝑀𝑟𝑜𝑙𝑟𝑒𝑠. Here, 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 is multiplied by �̇� as this is the angular 

velocity characterising the next element, which is the roller. They have opposite direction, 

so that 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 generates negative power into the roller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference between the power transmitted to and generated by the damper represents, 

precisely, the power loss due to rolling resistance: 

 

𝑃𝑓𝑟𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑀𝑟𝑜𝑙𝑟𝑒𝑠𝜔𝑟𝑒𝑙 = 𝑀𝑟𝑜𝑙𝑟𝑒𝑠(�̇� − 𝜔𝐶) (A. 8) 

  

𝐹𝑡 

𝐶𝐴𝑀 

𝑅𝑂𝐿𝐿𝐸𝑅 

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 
𝑟𝑒𝑔𝑖𝑜𝑛 

𝐹𝑛 
𝐹𝑡 

𝐹𝑛 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 �̇� 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 𝜔𝐶  

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 

�̇� 

𝜔𝐶  

𝐹𝑡 

𝐹𝑛 
𝐹𝑡 

𝐹𝑛 

𝑅𝑂𝐿𝐿𝐸𝑅 

𝐶𝐴𝑀 

Figure A. 4 Schematic of the cam, the roller and the rolling resistance at the contact region modelled as a 
mechanical element – damper – to properly define energy dissipation between cam and roller. 

x 

y 
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A.3 Xia et al.’s friction model vs. Martini’s friction model 

 

The comparison between the two friction models was conducted considering a ram bore 

diameter equals to 20 𝑚𝑚. Specifically, looking at Parker ‘s O-ring catalogue (Parker Hannifin, 

2007b), the closest dimension for the bore diameter is 0.812 𝑖𝑛, equal to 20.62 𝑚𝑚, for an 

O-ring 2-207. The section below shows the calculations of the frictional forces at the piston O-

ring with the two models: Xia et al.’s friction model (Xia & Durfee, 2011b), and Martini’s 

friction model (Martini, 1984).  

 

Xia &Durfee’s model 

 

The total frictional force at the cylinder O-ring is defined as follows: 

 

𝐹𝑓𝑟𝑐𝑦𝑙 = 𝜋𝜇𝑓𝐷𝑑𝑂−𝑟𝑖𝑛𝑔𝐸휀√2휀 − 휀
2 = 

= 𝜋 ∙ 0.4 ∙ 0.02062 ∙
0.139

39.3701
∙ 107 ∙ 0.07144 ≅ 65.37𝑁 

(A. 9) 

 

where 𝐷 =
0.812in

39.3701
in

𝑚

≅ 0.02062𝑚 is the ram bore and 𝑑𝑂−𝑟𝑖𝑛𝑔 =
0.139in

39.3701
in

𝑚

≅ 0.00353𝑚 the 

O-ring cross-section diameter. 

 

 

Martini’s model 

 

The total dynamic frictional force is defined as 𝐹𝑓𝑟𝑐𝑦𝑙 = 𝐹𝐻 + 𝐹𝐶  where 𝐹𝐻 is the friction due 

to differential pressure across O-ring cross section, while 𝐹𝐶  is the friction due to O-ring cross-

sectional squeeze. All the values in Martini’s formulae are expressed according to the British 

Imperial system of units. According to what explained in section 4.4.2, the pressure dependent 

term of the frictional force is evaluated as follows:  

 

𝐹𝐻𝑐𝑦𝑙 = Af𝐻 = 0.299 ∙ 43.64 ≅ 13.05𝑙𝑏 ≅ 58.05𝑁 (A. 10) 

 

where 𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 = 0.824𝑖𝑛  
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𝑑𝑂−𝑟𝑖𝑛𝑔 = 0.139𝑖𝑛 

𝐷𝑚 = (𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 − 𝑑𝑂−𝑟𝑖𝑛𝑔) = 0.824 − 0.139 = 0.685𝑖𝑛 

A = π𝐷𝑚𝑑𝑂−𝑟𝑖𝑛𝑔 = 0.299𝑖𝑛
2 

f𝐻 = 0.545(∆𝑃)0.61 = 0.545(𝑃𝑐𝑦𝑙 − 𝑃𝑎𝑡𝑚)
0.61

= 

     = 0.545 ((92 ∙ 105𝑃𝑎 − 101325𝑃𝑎) ∙ 0.000145038
𝑝𝑠𝑖

𝑃𝑎
)

0.61

= 0.545(1319.65)0.61 = 43.64𝑝𝑠𝑖 

 

Considering the maximum pressure achievable in the accumulator (𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟), the 

cross-sectional squeeze dependent term of the frictional force is evaluated as follows: 

 

𝐹𝐶𝑐𝑦𝑙 = 𝐿0f𝐶 = 2.58 ∙ 0.952 = 2.46𝑙𝑏 ≅ 10.96𝑁 (A. 11) 

 

where 𝐿0 = 𝜋𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 = 2.58𝑖𝑛 

f𝐶 = (−0.884 + 0.0206𝐻𝑆 − 0.0001𝐻𝑆
2)𝑆𝑊 = 

     = (−0.884 + 0.0206 ∙ 70 − 0.0001 ∙ 702) ∙ (100 ∗ 휀) = 

     = (−0.884 + 0.0206 ∙ 70 − 0.0001 ∙ 702) ∙ (100 ∗ 0.14) = 0.952 

 

Therefore, the resulting total frictional force at the O-ring is: 

 

𝐹𝑓𝑟𝑐𝑦𝑙 = 𝐹𝐻𝑐𝑦𝑙 + 𝐹𝐶𝑐𝑦𝑙 = 13.05𝑙𝑏 + 2.46𝑙𝑏 = 15.51𝑙𝑏 ≅ 69𝑁 (A. 12) 

 

In conclusion, Martini’s model turned out to be the most conservative (i.e. characterised by 

the highest friction losses) and it also properly accounts for the differential pressure across 

the O-ring.  
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Figure A. 5 Selection chart of mineral-oil based fluids suitable for use with axial piston pumps and axial piston 
motors (Bosch Rexroth AG). 

A.4 Working fluid 

 

Neubauer (2017), in his PhD Thesis entitled “Principles of Small-Scale Hydraulic Systems for 

Human Assistive Machines”, defines mineral oil as the preferred working fluid for use in 

human assistive hydraulic machines. Water based fluids are generally used in applications with 

elevated working temperatures due to the risk of ignition. This is not the case of human 

assistive machines, where operating temperatures of the fluid along with the surface 

temperatures of the machinery must remain low as it directly interfaces the human body. 

Moreover, mineral oils are non-toxic, they have a low chemical reactivity and low density 

making the system lighter than a system where water based working fluid are used. 

 

Usually, the type of mineral oil to be used for a specific hydraulic application is given by the 

same manufacturers of hydraulic components. Looking at catalogues of hydraulic cylinders for 

big industrial application, they suggest using a mineral oil ISO VG 80-100, where VG specifies 

the “viscosity grade” of the oil, defined as the average viscosity in 
𝑚𝑚2

𝑠
 at 40°C (see Figure 

A.5). An oil ISO VG 80-100 may be appropriate for big hydraulic components, but it may be 

too viscous for miniaturised hydraulics and really small pipes with a working temperature of 

approximately 20°C.  
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Figure A. 6 Properties of a mineral oil ISO VG 32 (ESSO UNIVIS N32) from the library “Hydraulics Utilities” of 
Simscape Fluids (Simulink, MathWorks, Massachusetts, USA.): kinematic viscosity (𝑣), density (𝜌) and bulk 
modulus (𝛽). 

 

Looking at Bosch Rexroth AG (pp. 1-4) catalogue, 𝑣𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 =  16 − 100 
𝑚𝑚2

𝑠
 is defined as 

the viscosity range for use with 100% operating time and 𝑣𝑜𝑝𝑡𝑖𝑚𝑢𝑚 =  16 − 36 
𝑚𝑚2

𝑠
 as the 

viscosity range for optimum efficiency. Hence, an oil in between an ISO VG 32 – recommended 

for winter condition - and an ISO VG 46 – recommended for summer conditions or enclosed 

spaces- should be considered. The chart in Figure A. 6 shows that, as the temperature 

decreases from the 40°C of the viscosity grade definition to a normal operating temperature 

(20°C), the viscosity will increase reaching values in between 80 − 100
𝑚𝑚2

𝑠
.  
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A mineral oil ISO VG 32 was chosen. It is characterised by a kinematic viscosity 𝑣 =  32 
𝑚𝑚2

𝑠
 

at 40°C, which increases when temperature decreases. The average density of these oils is 

𝜌 = 870
𝑘𝑔

𝑚3 (Neubauer, 2017, p. 17) and the bulk modulus is 𝛽 = 1.9𝑒 + 09 𝑃𝑎. The library 

“Hydraulics Utilities” of Simscape Fluids (Simulink, The MathWorks Inc., Massachusetts, USA) 

contains the properties of different hydraulic fluids: for a mineral oil ISO VG 32 (ESSO UNIVIS 

N32) at 20°C, the density is equal to the above-mentioned one (𝜌 = 870
𝑘𝑔

𝑚3), the kinematic 

viscosity is equal to 𝑣 =  79.87 
𝑚𝑚2

𝑠
≅ 80

𝑚𝑚2

𝑠
, and the bulk modulus is 𝛽 = 1.657𝑒 + 09 𝑃𝑎 

(Figure A. 6). Fluid properties in Simscape Fluids comes from the Skydrol family of hydraulic 

fluids, obtained from literature provided by the manufacturer Eastman Chemical Company 

(The MathWorks Inc., 2018).  

 

In summary, the hydraulic fluid used for this specific application is characterised by: kinematic 

viscosity 𝑣 ≅ 80
𝑚𝑚2

𝑠
, density 𝜌 = 870

𝑘𝑔

𝑚3, 𝛽 = 1.657𝑒 + 09 𝑃𝑎 (ISO VG 32 mineral oils have, 

usually, a relatively high bulk modulus, but smaller than water), and the resulting dynamic 

viscosity 𝑢 =  𝑣 ∙ 𝜌 = 80
𝑚𝑚2

𝑠
∙ 870

𝑘𝑔

𝑚3 = 0.0696𝑃𝑎 ∙ 𝑠 ≅ 0.07𝑃𝑎 ∙ 𝑠.  

 

A check was done about the nature of the flow in pipes to appropriately estimate the pressure 

drop across them. To guarantee a laminar flow inside the pipes, the Reynolds’ number should 

be less than 2300: 

 

𝑅𝑒 =
4𝑄𝑚𝑎𝑥 

𝜋𝐷𝑣𝑓𝑚𝑖𝑛
≤ 2300 (A. 13) 

 

The maximum flow obtained from MATLAB simulations during the two working phases of the 

system is approximately 𝑄𝑚𝑎𝑥 = 7.50 ∙ 10−6
𝑚3

𝑠
 (considering the best designs for the two 

cam-ram systems from Chapter 6 with 𝑃𝑚𝑎𝑥 = 100 𝑏𝑎𝑟 and ram bore 𝐷 = 0.020𝑚). 

Considering also pipe diameter  𝐷𝑝𝑖𝑝𝑒 = 0.005 𝑚 (as showed in section 4.5), equation (A. 13) 

can be rearranged to get the minimum viscosity to guarantee a laminar flow: 
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𝑣𝑓𝑚𝑖𝑛
≥

4𝑄𝑚𝑎𝑥
2300𝜋𝐷𝑝𝑖𝑝𝑒

=
4 ∙ 7.50 ∙ 10−6

𝑚3

𝑠
2300𝜋 ∙ 0.005𝑚

= 8.30 ∙ 10−7
𝑚2

𝑠
 

𝑣𝑓𝑚𝑖𝑛
≥ 0.830

𝑚𝑚2

𝑠
= 0.830𝑐𝑆𝑡 

 

(A. 14) 

 

This is a tiny value for the kinematic viscosity of the fluid. This means that a mineral oil ISO VG 

32 satisfies the condition of a laminar flow.  

 

If pipe diameter decreases, for instance 𝐷𝑝𝑖𝑝𝑒 = 0.002 𝑚, it yields:  

 

𝑣𝑓𝑚𝑖𝑛
≥ 2.08

𝑚𝑚2

𝑠
= 2.08𝑐𝑆𝑡 (A. 15) 

 

which is still a very small value in comparison with the kinematic viscosity of the selected 

mineral oil ISO VG 32. 

 

Finally, considering the properties of the selected mineral oil, the maximum flow 𝑄𝑚𝑎𝑥 (from 

MATLAB), and 𝐷𝑝𝑖𝑝𝑒 = 0.005𝑚, Reynolds number was evaluated. 

 

Re =
4𝑄𝑚𝑎𝑥 

𝜋𝐷𝑝𝑖𝑝𝑒𝑣𝑓
=

4 ∙ 7.50 ∙ 10−6
𝑚3

𝑠  

𝜋 ∙ 0.005𝑚 ∙ 80 ∙ 10−6
𝑚2

𝑠

≅ 23.87 (A. 16) 

 

The Reynolds’ number is still smaller than 2300, so that the flow is laminar.  
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A.5 Thermal time constant calculation 

 

The thermal time-constant 𝜏 described by Pourmovahed and Otis (1990) and used to model 

the relaxation process of the gas after a rapid compression or expansion in a gas-charged 

accumulator is defined as follows: 

 

𝜏 =
𝑚𝑁2𝐶𝑉

ℎ𝑁2𝐴𝑊
 

(A. 17) 

 

where 𝐶𝑉 is the specific heat at constant volume, ℎ𝑁2  is the value of the convection heat 

transfer coefficient for nitrogen, and 𝐴𝑊 is the effective area of the accumulator for heat 

convection (i.e. the total internal surface area exposed to gas). The thermal time constant (𝜏) 

represents the time needed by the gas pressure (or gas temperature) to drop by 63.2%. It was 

experimentally determined looking at a constant-volume pressure relaxation in response to a 

change in the gas volume. The worst situation is the one with a quick temperature decay, so 

with a very small 𝜏. For this reason, to estimate the heat loss from the accumulator to the 

surroundings, conservative values of the parameters involved in equation (A. 17) were 

selected. 

 

For a diatomic gas such as 𝑁2, the specific heat at constant value is evaluated as follows: 

 

𝐶𝑉 =
5

2
𝑅 =

5

2
∙ 8.314

𝐽

𝑚𝑜𝑙 ∙ 𝐾
 

𝐶𝑉 =
5

2
∙ 8.314

𝐽

𝑚𝑜𝑙 ∙ 𝐾
∙

1

0.028014
𝑘𝑔

𝑚𝑜𝑙
⁄

≅ 741.95
𝐽

𝑘𝑔 ∙ 𝐾
 

(A. 18) 

 

Otherwise, directly from The Engineering ToolBox (2003): 𝐶𝑉 = 743
𝐽

𝑘𝑔∙𝐾
. To be conservative, 

the smallest value of 𝐶𝑉 (𝐶𝑉  ≅ 741.95
𝐽

𝑘𝑔∙𝐾
) was used.  

 

Likewise for 𝐴𝑤, according to a conservative approach, the total internal surface area exposed 

to gas in a diaphragm accumulator was considered to be equal to the total internal surface 

area of the accumulator. Considering  𝑉𝐴  = 250𝑒 − 06 𝑚3 and the accumulator as a cylinder, 
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the total internal surface was evaluated as follows: 𝐴𝑤 = 2𝜋𝑟ℎ𝑎𝑐𝑐 + 2 ∙ 𝜋𝑟
2 = 2𝜋𝑟(ℎ𝑎𝑐𝑐 +

𝑟), where 𝑟 is the radius of the base of the accumulator and ℎ𝑎𝑐𝑐  its height. Some trials were 

done to estimate reasonable values for 𝑟 and ℎ𝑎𝑐𝑐. Using the volume formula  𝑉𝐴 = 𝜋𝑟2ℎ𝑎𝑐𝑐 

and selecting different values of ℎ𝑎𝑐𝑐, the corresponding radii are: 

 

1) ℎ𝑎𝑐𝑐 = 0.050𝑚        𝑟 = √
 𝑉𝐴

𝜋ℎ𝑎𝑐𝑐
= √

250𝑒−06 𝑚3

𝜋0.050𝑚
≅ 0.040𝑚 

(A. 19) 

2) ℎ𝑎𝑐𝑐 = 0.080𝑚        𝑟 = √
 𝑉𝐴

𝜋ℎ𝑎𝑐𝑐
= √

250𝑒−06 𝑚3

𝜋0.080𝑚
≅ 0.031𝑚 

(A. 20) 

3) ℎ𝑎𝑐𝑐 = 0.100𝑚        𝑟 = √
 𝑉𝐴

𝜋ℎ𝑎𝑐𝑐
= √

250𝑒−06 𝑚3

𝜋0.100𝑚
≅ 0.028𝑚 

(A. 21) 

 

Given that the accumulator is envisioned to be integrated with the pylon of the prosthesis 

and, thus, reasonable sizes should be considered for its height and diameter, the third option 

was selected. Therefore, 𝐴𝑤 = 2𝜋𝑟(ℎ𝑎𝑐𝑐 + 𝑟) = 2𝜋 ∙ 0.028𝑚(0.100𝑚 + 0.028𝑚) =

0.0225𝑚2. 

 

It is not easy to find an accurate value for ℎ𝑁2, since most of the times it refers to liquid 

nitrogen. Typical values of ℎ𝑁2  for gases involved in a free convection process are included 

between 2 
𝑊

𝑚2∙𝐾
 and 25 

𝑊

𝑚2∙𝐾
 (Bergman et al., 2011, p. 8), and ℎ𝑁2 = 25

𝑊

𝑚2∙𝐾
 was chosen to 

be conservative.  

 

As a result, the time-constant 𝜏 is evaluated as follows: 

 

𝜏 =
𝑚𝑁2𝐶𝑉

ℎ𝑁2𝐴𝑊
=
0.012942 𝑘𝑔 ∙ 741.95

𝐽
𝑘𝑔 ∙ 𝐾

25𝑊 𝑚2 ∙ 𝐾⁄ ∙ 0.0225𝑚2
≅ 17.07𝑠 (A. 22) 

 

It is possible to evaluate the heat transfer between the gas and the surroundings (𝑄ℎ𝑒𝑎𝑡) using 

the Newton’s law of cooling as follows (Pourmovahed & Otis, 1990): 

 

𝑑𝑄ℎ𝑒𝑎𝑡
𝑑𝑡

= ℎ𝐴𝑤(𝑇𝑤 − 𝑇𝑔𝑎𝑠) 
(A. 23) 
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where 𝑇𝑤 is defined as the “spatially averaged wall temperature” (𝑇𝑤 = 𝑇𝑒𝑛𝑣 = 293𝐾), 𝑇𝑔𝑎𝑠 

as the bulk gas temperature, ℎ as “the overall heat transfer coefficient” from the gas to the 

surrounds, and 𝐴𝑤 as “the total internal surface area exposed to gas”. In the same paper, ℎ is 

defined also as the “convection heat transfer coefficient”, being (
𝑊

𝑚2∙𝐾
) its unit of 

measurement, so that ℎ = ℎ𝑁2. Pourmovahed and Otis (1990) specified that it is not a real 

constant since it varies during the cooling process of the gas, but in many cases it is possible 

to consider it as constant without decreasing the accuracy of the calculations. Nevertheless, 

given the uncertainties about the value of ℎ𝑁2, a sensitivity study is conducted in Chapter 7 

to check the sensitivity of the model - in terms of heat losses - with respect to changes in this 

design parameter. 
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Figure B. 1 Cam profile of the stance (top) and of the push-off (bottom) cam-ram system, drawn in Matlab using 
the mapping method and shown in the cam reference frame. 

B.1 Cam profiles 

 

Cam profile is designed in MATLAB using the mapping method described in section 4.3.1. 

Figure B. 1 shows the 2D profiles of the stance and the push-off cams.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the geometry, kinematic and dynamic checks below were conducted both for the stance 

and the push-off cam - ram system but, for the sake of simplicity, the results showed in the 

plots below refer just to the stance system. 

 

 

B.2 Geometry check: Cam design 

 

1. In addition to the mapping method, an alternative method commonly used in cam profile 

design is the one named “inversion”. For example, in a disk cam with a translating follower 

mechanism, the follower translates when the cam turns. This means that the relative 

motion between them is a combination of a relative turning motion and a relative 
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translating motion. Without changing this feature of their relative motion, the “inverted 

mechanism” is now considered: the cam remains fixed and the follower performs both the 

relative turning and translating motions. The follower is moving along cam profile to those 

positions corresponding to the angles of rotation of the cam, so it presents the same 

relative motion. Considering a roller-follower, the problem of designing cam profile 

becomes a problem of calculating the inner envelope of the roller profile as the follower 

is positioned around the cam. Figure B. 2 shows the fixed cam and the roller-follower 

turning and translating around it, in the inverted configuration. 

 

(a)       (b) 

 

 

 

 

 

 

 

 

 

The coordinates of the roller centre in the XY-plane, when the follower is vertical (that is 

its real position in the normal configuration), are: (𝑥𝐶 , 𝑦𝐶) = (𝑒, 𝑎 + 𝑦), where 𝑎 is an 

arbitrary constant. The rotation of the follower around the centre of the fixed cam in the 

clockwise direction (same angle of rotation 𝜃𝑐  but in the opposite direction with respect 

to cam rotation) can be represented by an anticlockwise rotation of the coordinate system 

through the same angle 𝜃𝑐. Hence, the coordinates of the centre of the roller in its new 

position (after rotation) can be computed as follows, considering the initial ones and 

applying the rotation matrix for an anticlockwise rotation of the coordinate system: 

 

[
𝑥𝐶′

𝑦𝐶′
] = [

cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑒

(𝑎 + 𝑦)] (B. 1) 

 

Therefore, looking at Figure B. 2 (b), the coordinates of the contact points are obtained 

from those of the roller centre: 

Figure B. 2 Cam system in the “inverted configuration” (a) and zoom in on the roller-follower (b). 
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𝑥𝑃 = 𝑥𝐶 ′ + 𝑟 sin 𝛽 = 𝑥𝐶 ′ + 𝑟 sin(𝛼 − 𝜃𝑐) 

𝑦𝑃 = 𝑦𝐶′ − 𝑟 cos 𝛽 = 𝑦𝐶 ′ − 𝑟 cos(𝛼 − 𝜃𝑐) 
(B. 2) 

 

since 𝛽 = (𝛼 − 𝜃𝑐) as Figure B. 2 (b) shows. 

 

2. The geometry of cam and roller-follower was checked in an early-stage simulation model 

(for this reason cam profiles in the plots below differ from the final ones showed in Figure 

B. 1). Given the positive anticlockwise rotation of the cam 𝜃𝐶 , to get the corresponding 

position of the follower in the inverted configuration, this component is turned around 

the centre of the cam in the reverse direction (clockwise) through the same angle 𝜃𝐶  as 

explained at point (2). The pressure angle (𝛼) is always defined, at any point, as the angle 

between the normal to cam profile and the instantaneous direction of the follower 

motion. The line passing through the roller centre 𝐶 and representing the instantaneous 

direction of the follower (line 1 in Figure B. 3) is defined as follows: 

 

𝑦 − 𝑦𝐶 = 𝑚(𝑥 − 𝑥𝐶) (B. 3) 

 

with 𝑚 = 𝑡𝑎𝑛(90° − 𝜃𝐶) = 𝑐𝑜𝑡(𝜃𝐶) =
1

𝑡𝑎𝑛 𝜃𝐶
. The line passing through the roller centre 𝐶 

and normal to cam profile at contact point 𝑃 (line 2 in Figure B. 3) is defined as follows: 

 

𝑦 − 𝑦𝐶 = 𝑛(𝑥 − 𝑥𝐶) (B. 4) 

 

with the slope 𝑛 = 𝑡𝑎𝑛(90° − 𝜃𝐶 + 𝛼) =  𝑡𝑎𝑛(90° − (𝜃𝐶 − 𝛼)) = 𝑐𝑜𝑡(𝜃𝐶 − 𝛼) =

1

𝑡𝑎𝑛(𝜃𝐶−𝛼)
. Implementing equations (B. 3) and (B. 4) in MATLAB, if cam pressure angle is 

correctly evaluated, line 2 drawn in accordance with equation (B. 4) should coincide with 

the one connecting the two points 𝑃 and 𝐶 and calculated as follows (equation of a line 

passing through two points): 

 

(𝑥 − 𝑥𝑃)

(𝑥𝐶 − 𝑥𝑃)
=
(𝑦 − 𝑦𝑃)

(𝑦𝐶 − 𝑦𝑃)
 (B. 5) 
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Figure B. 4 In the inverted configuration, the follower is moving along cam profile to those positions 
corresponding to a number of selected cam angles 𝜃𝐶  during the working phase of the stance cam-ram 
system. The blue line represents the instantaneous direction of the follower (line 1 in Figure B.2) 
characterised by a rotation around the centre of the cam in the reverse direction through the same angle 
𝜃𝐶. The green line, instead, represents the normal to cam profile at contact point 𝑃 (line 2 in Figure B.2). 
The angles between the normal to cam profile and the instantaneous direction of the follower motion – i.e. 
the ones labelled with red values –are cam pressure angles, while those angles labelled in blue corresponds 
to cam rotation 𝜃𝐶. 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 4 shows that results are consistent with theory: the green line obtained 

implementing equation (B. 5) coincides with the line connecting the roller centre 𝐶 to the 

contact point 𝑃.  
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Figure B. 3 Roller rolling on cam surface when the cam is fixed (inverted configuration”. Line 1 represents 
the instantaneous direction of the follower, while line 2 represents the normal to cam profile at contact 
point 𝑃. 
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Figure B. 5 Geometry check in Matlab when cam is fixed and the follower is moving along cam profile to those 
positions corresponding to a number of selected cam angles 𝜃𝐶, using the mapping method. The blue line connects 
the centre of the roller  𝐶 to the midpoint 𝐻 between the lines of action of the two constraining reactions (𝑁1, 𝑁2) 
at the follower guide and represents the instantaneous direction of the follower. The green line connects the 
centre of the roller  𝐶 and the contact point 𝑃, and represents the normal to cam profile at contact point 𝑃. Cam 
pressure angles are those between the normal to cam profile and the instantaneous direction of the follower 
motion –labelled with red values, while the angles of rotation of the cam 𝜃𝐶  are labelled in blue. 

The same geometry check was repeated using the rotation matrix. The follower direction 

is given by the line connecting the centre of the roller  𝐶 and the midpoint 𝐻 between the 

lines of action of the two constraining reactions at the follower guide (𝑁1, 𝑁2), while the 

normal to cam profile is given by the line passing through the centre of the roller  𝐶 and 

the contact point 𝑃. The coordinates of the three points 𝑃,  𝐶 and 𝐻 are evaluated by 

mapping them between the fixed frame and the cam frame, as done previously for the 

design of cam profile (see equation (4.10)(4.12)): 

[
𝑥𝐶
𝑦𝐶
]
𝑐𝑎𝑚

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑥𝐶
𝑦𝐶
]
𝑓𝑖𝑥

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑒

(𝑎 + 𝑦)] (B. 6) 

[
𝑥𝑃
𝑦𝑃
]
𝑐𝑎𝑚

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑥𝑃
𝑦𝑃
]
𝑓𝑖𝑥

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑒 + 𝑟sin𝛼

(𝑎 + 𝑦) − 𝑟cos𝛼
] (B. 7) 

[
𝑥𝐻
𝑦𝐻
]
𝑐𝑎𝑚

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [
𝑥𝐻
𝑦𝐻
]
𝑓𝑖𝑥

= [
cos𝜃𝑐 sin𝜃𝑐
−sin𝜃𝑐 cos𝜃𝑐

] [

𝑒

(𝑎 + 𝑦) + 𝑐 +
𝑙

2
] (B. 8) 

The coordinates of these three points in the cam frame are evaluated in MATLAB for some 

values of the cam angle of rotation 𝜃𝐶 , and the segment connecting point 𝐶 to point 𝐻, 

representing the follower, is plotted together with that one connecting point 𝐶 to point 𝑃, 

representing the normal to cam profile (Figure B. 5).  
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Figure B. 6 Geometry check in Matlab considering the stance cam-ram system in its working phase, when cam 
is rotating anticlockwise and the follower moves upward. The curvilinear part of each cam section represents 
cam profile for the working phase, while the two edges connect the first and the last point of cam profile to the 
centre of the cam (i.e. the origin (0, 0) of the fixed frame). The magenta section represents cam position at the 
beginning of the gait cycle (i.e. when 𝜃𝐶 ≃ 0). Asterisks represent the contact point 𝑃 between cam and roller 
for the selected cam angles of rotation 𝜃𝐶. 

3. The geometry was checked also considering the real scam-ram system, in which cam is 

rotating anticlockwise and the follower moves upward. A kind of animation was developed 

in MATLAB using the mapping method to show how the system works. Cam profile is 

turning about its centre – the origin 𝑂 of the fixed frame - through the angle 𝜃𝐶  in the 

anticlockwise direction during the working phase of the stance system, mimicking ankle 

dorsiflexion (defined as an anticlockwise rotation). Therefore, cam profile coordinates for 

each anticlockwise rotation are obtained mapping cam profile coordinates previously 

calculated from the cam frame to the fixed frame, which is exactly the opposite of what 

was done before to obtain cam profile (equation (4.12)). So, the following calculations 

were implemented in MATLAB for each cam angle 𝜃𝑐  in the stance working phases. 

[
𝑥𝑃
𝑦𝑃
]
𝑓𝑖𝑥

= [
cos𝜃𝑐 −sin𝜃𝑐
sin𝜃𝑐 cos𝜃𝑐

] [
𝑥𝑃
𝑦𝑃
]
𝑐𝑎𝑚

 (B. 9) 

Figure B. 6 shows the result of this check with the respective positions of cam and roller 

for a number of selected cam angles 𝜃𝐶 . 
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Figure B. 7 Relative positions between roller-follower and cam for nine angles of rotation 𝜃𝐶  during the working 
phase of the stance cam-ram system: cam rotates anticlockwise while the piston moves up. Cam angles 𝜃𝐶, 
representing the rotation of the cam from its initial position (magenta section), are labelled in blue. 

Figure B. 6 shows as the stance cam, at the beginning of the gait cycle, rotates clockwise 

with respect to its initial position (i.e. the magenta section, when 𝜃𝐶 ≃ 0), corresponding 

exactly to negative values of 𝜃𝐶  (i.e. initial plantarflexion). Then, as 𝜃𝐶  goes towards 

positive values (corresponding to dorsiflexion) during stance, cam rotates anticlockwise, 

pushing the piston upwards. The nine plots in Figure B. 7 show exactly the same relative 

positions between roller-follower and cam for nine angles of rotation 𝜃𝐶  of the working 

phase, while the piston moves up.  
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B.3 Kinematic check: Roller kinematics 

 

1. A check was conducted to ensure that the contact point 𝑃 between cam and roller rolls 

the same distance both on roller and on cam surface during the same time interval. 𝑆𝑟𝑜𝑙 

and 𝑆𝐶  are the displacements of the contact point 𝑃 respectively on roller and on cam 

surface. Following the sign convention used so far (i.e. angles positive if anticlockwise 

(ACW)), also cam length is assumed as positive when the rotation of the cam is ACW 

(working phase of the stance cam), and as negative when cam rotates CW (working phase 

of the push-off cam). Below, four cases were analysed corresponding to the four possible 

combinations for the stance cam and the push-off cam in their working phase, when cam 

is rotating in the first quadrant.  

 

STANCE cam-ram system 

 

 

 

 

 

 

 

 

 

 

 

 

𝜃𝐶 > 0  𝑆𝐶 > 0 

𝛼 > 0, 𝛽 < 0 (𝜑 = −𝛽) 

with 𝛼 < |𝜑| 

 

𝑆𝐶 = 𝑆𝑟𝑜𝑙 = (𝜑 + 𝛼)𝑟 = (−𝛽 + 𝛼)𝑟 

𝜷 = 𝜶 −
𝑺𝑪

𝒓
        (B. 10) 

𝜃𝐶 > 0  𝑆𝐶 > 0 

𝛼 < 0 (𝛿 = −𝛼), 𝛽 < 0 (𝜑 = −𝛽) 

with 𝜑 >  𝛿 

 

𝑆𝐶 = 𝑆𝑟𝑜𝑙 = (𝜑 − 𝛿)𝑟 = (−𝛽 + 𝛼)𝑟 

𝜷 = 𝜶 −
𝑺𝑪

𝒓
        (B. 11) 
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𝑂 
X 

Y 

𝛼 𝜑 

 

𝜃𝐶  
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𝑆𝑟𝑜𝑙  

 

Figure B. 8 Cam-roller configuration for the stance cam-ram system when 𝜃𝐶 > 0, while 𝛼 > 0 (on the left) 
and 𝛼 < 0 (on the right). 
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PUSH-OFF cam-ram system       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite there are four different equations for the four different cases, it is possible to 

consider just one equation to describe all the previous case: 

 

 𝑆𝐶 = −(𝛽 − 𝛼)𝑟 (B. 14) 

 

where the (−) sign highlights that 𝑆𝐶  is negative when 𝜃𝐶 < 0. Equation (B. 14) works for 

all the cases replacing the different values of angles in it. From this equation, it follows:  

 

 𝛽 = 𝛼 −
𝑆𝐶
𝑟

 (B. 15) 

 

For a small 𝑆𝐶, there are other two possible cases: 

𝜃𝐶 < 0  𝑆𝐶 < 0 

𝛼 > 0, 𝛽 > 0 

with 𝛽 >  𝛼 

 

𝑆𝐶 = 𝑆𝑟𝑜𝑙 = −(𝛽 − 𝛼)𝑟 

𝜷 = 𝜶 +
𝑺𝑪

𝒓
        (B. 12) 

𝜃𝐶 < 0  𝑆𝐶 < 0 

𝛼 < 0 (𝛿 = −𝛼), 𝛽 > 0 

with 𝛿 < |𝛽| 

 

𝑆𝐶 = 𝑆𝑟𝑜𝑙 = (𝛽 + 𝛿)𝑟 = (𝛽 − 𝛼)𝑟 

𝜷 = 𝜶 +
𝑺𝑪

𝒓
        (B. 13) 
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𝑃 

𝑂 
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𝛿 𝛽 

 

−𝜃𝐶  
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Figure B. 9 Cam-roller configuration for the push-off cam-ram system when 𝜃𝐶 < 0, while 𝛼 > 0 (on the 
left) and 𝛼 < 0 (on the right). 
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a) PUSH-OFF cam-ram system   b)   STANCE cam-ram system 

when   𝛼 < 0 (𝛿 = −𝛼),          when   𝛼 > 0  

𝛽 < 0 (𝜑 = −𝛽)           𝛽 > 0 

and 𝛿 > |𝛽|            and 𝛼 > |𝜑| 

 

 

 

 

 

 

 

 

 

 

 

 

Also in these two cases, equation (B. 14) works. To use the right value for each variable in 

equation (B. 14), it was chosen to consider all the variables on time intervals rather than 

on the time instants. For this reason, the following equation was used: 

 

∆𝑆𝐶 = −(∆𝛽 − ∆𝛼)𝑟 (B. 16) 

that yields 

∆𝛽 = ∆𝛼 −
∆𝑆𝐶
𝑟

 
(B. 17) 

 

with ∆𝑆𝐶 = (√𝑑𝑖𝑓𝑓(𝑥)2 + 𝑑𝑖𝑓𝑓(𝑦)2), being 𝑑𝑖𝑓𝑓(𝑥) and 𝑑𝑖𝑓𝑓(𝑦) the differences 

between adjacent coordinates 𝑥 and 𝑦 of cam profile, and ∆𝛼 = 𝑑𝑖𝑓𝑓(𝛼). This means, for 

instance, that ∆𝑆𝐶1is the distance between the first and the second point of cam profile, 

as well as ∆𝛼1 = 𝛼2 − 𝛼1 and ∆𝛽1 = 𝛽2 − 𝛽1. Then, the indices coincide. Implementing 

equation (B. 17) in MATLAB, ∆𝛽 was evaluated, 𝛽 obtained and then derived to get �̇� using 

“gradient” (preferred to “diff”, which is characterised by poor performance), and �̇� was 

compared to �̇� evaluated in equation (4.29). To be consistent with theory, a sign was 

𝐶 

𝑃 

𝑂 
X 

Y 

𝛿 

2𝜋 − 𝜑 

 

−𝜃𝐶  

 

𝑆𝐶  
𝑆𝑟𝑜𝑙  

 

𝐶 

𝑃 

𝑂 
X 

Y 

𝛼 

2𝜋 − 𝛽 

 

𝜃𝐶  

 

𝑆𝐶  
𝑆𝑟𝑜𝑙  

Figure B. 10 Cam-roller configuration for a small 𝑆𝐶 , for the push-off (a) and the stance (b) cam-ram system. 
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Figure B. 11 Comparison between �̇� evaluated in equation (4.29) (green line) and �̇� evaluated applying 
“gradient” to  𝛽 (blue line), both for the stance (a) and the push-off (b) cam-ram system. The angular velocity 
𝛽 is obtained by ∆𝛽 (equation B.17). 

Figure B. 12 Comparison between �̈� evaluated in equation (4.24) (green line) and �̈� evaluated from ∆𝛽 

applying “gradient” to  �̇�. 

 

assigned to cam length 𝑆𝐶  for stance cam and push-off cam in MATLAB. Figure B. 11 shows 

results of the angular velocity comparison. 

 

a)          b)  

 

 

 

 

 

 

 

 

 

 

 

The previously evaluated value of �̇� was derived again using “gradient” to obtain �̈� and to 

compare it with �̈� previously evaluated equation (4.24). Figure B. 12 shows results of the 

angular acceleration comparison. The difference existing at the last time instant of the 

working phase is due to a numerical error generated in MATLAB at the extremities of the 

interval considered for calculation. 

 

a)      b)  
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Figure B. 13 Roller on cam surface in case of positive (a) and negative slope (b). 
 

2. For the roller kinematics evaluation, just the first quadrant was considered for the reasons 

explained in section 4.3.2 and with a positive slope of cam surface. Nevertheless, the signs 

of calculations should take care of themselves both with a positive and a negative slope of 

cam surface. A check was conducted considering both cases to guarantee the correctness 

of previous calculations. 

 

A negative slope of cam surface corresponds to a negative cam pressure angle 𝛼 (see 

Figure B. 13 (b):  0° ≤ 𝛿 ≤ 90°, with 𝛿 = −𝛼 and −90° ≤ 𝛼 ≤ 0°). Everything respects 

the signs convention specified. 

 

a) 0° ≤ 𝛼 ≤ 90°      b)  0° ≤ 𝛿 ≤ 90°,  

           𝛿 = −𝛼 and −90° ≤ 𝛼 ≤ 0° 

 

 

 

 

 

 

 

 

 

 

 

 

The two vectors 𝑠  and �⃗�  are calculated in equation (4.17) looking at the geometry when 

cam surface presents a positive slope at the contact point. Here, the two vectors are 

evaluated also looking at the geometry when cam surface presents a negative slope at the 

contact point and 𝛿 is the pressure angle. 

X 

Y 
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𝑂𝑃⃗⃗⃗⃗  ⃗ = [
𝑠
𝑢
0
] 

𝑠 = [𝑒 + (𝑎 + 𝑦) tan𝛼] cos 𝛼 

𝑢 = (𝑎 + 𝑦) cos 𝛼 − 𝑟 −𝑒 sin 𝛼   (B. 18) 

𝑂𝑃⃗⃗⃗⃗  ⃗ = [
𝑠
𝑢
0
] 

𝑠 = [𝑒 − (𝑎 + 𝑦) tan 𝛿] cos 𝛿 

𝑢 = (𝑎 + 𝑦) cos 𝛿 − 𝑟 + 𝑒 sin 𝛿   (B. 19) 

 

Substituting 𝛿 = −𝛼 in the equations of 𝑠  and �⃗�  in case of negative slope, they result to 

be the same equations used for a positive slope, so that mathematics is identical in both 

cases.  

 

This guarantees that equation (4.17) is valid in both cases and, consequently, all the 

kinematics previously evaluated is correct. 
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B.4 Dynamic check: Dynamic analysis 

 

The six simultaneous non-linear equations coming from the dynamic analysis (equations (4.32) 

- (4.34) and (4.39) - (4.41)) were implemented and solved in MATLAB. This included, at the 

beginning, a study of how best to solve the six simultaneous non-linear equations. Using an 

early-stage simulation model, the issue was understanding the difference in computational 

speed between:  

a) the use of a MATLAB non-linear solver (i.e. “fsolve”); 

b) the evaluation of different systems of six linear equations, given by considering in turn 

positive or negative signs where absolute values and sign functions exist.  

 

In addition, the residuals of the six equations were evaluated throughout the gait cycle to 

validate the correctness of the dynamic model. They were calculated moving all the terms of 

each one of the six equations on the left of the equal, and normalising them by the hydraulic 

force at the start 𝐹ℎ|0 = 𝑃0 ∙ 𝐴 (where 𝑃0 is the pressure inside the cylinder at the beginning 

of the gait cycle). 

 

∑𝐹𝑥 = 𝑚�̈� = 0 𝐹𝑡 cos 𝛼 − 𝐹𝑛 sin 𝛼 + 𝑅𝐻 = 0  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1 = (𝐹𝑡 cos 𝛼 − 𝐹𝑛 sin 𝛼 + 𝑅𝐻)/𝐹ℎ|0 (B. 20) 

∑𝐹𝑦 = 𝑚�̈� 𝐹𝑡 sin 𝛼 + 𝐹𝑛 cos 𝛼 − 𝑅𝑉 −𝑚𝑔 = 𝑚�̈�  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2 = (𝐹𝑡 sin 𝛼 + 𝐹𝑛 cos 𝛼 − 𝑅𝑉 −𝑚𝑔 −𝑚�̈�)/𝐹ℎ|0 (B. 21) 

∑𝑀𝐶 = 𝐼𝑟𝑜𝑙�̈� 𝐹𝑡𝑟 − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 −𝑀𝑏𝑟𝑔 = 𝐼𝑟𝑜𝑙�̈�  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 3 = (𝐹𝑡𝑟 − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 −𝑀𝑏𝑟𝑔 − 𝐼𝑟𝑜𝑙�̈�)/𝐹ℎ|0 (B. 22) 

∑𝐹𝑥 = 𝑀�̈� = 0 𝑁2 − 𝑅𝐻 − 𝑁1 = 0  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 4 = (𝑁2 − 𝑅𝐻 − 𝑁1)/𝐹ℎ|0 (B. 23) 

∑𝐹𝑦 = 𝑀�̈� 𝑅𝑉 − 𝐹ℎ −𝑀𝑔 − 𝐹𝑓𝑟1 − 𝐹𝑓𝑟2 = 𝑀�̈�  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 5 = (𝑅𝑉 − 𝐹ℎ −𝑀𝑔 − 𝐹𝑓𝑟1 − 𝐹𝑓𝑟2 −𝑀�̈�)/𝐹ℎ|0  (B. 24) 

∑𝑀𝐻 = 0 𝑀𝑏𝑟𝑔 − 𝑅𝐻 (𝑐 +
𝑙

2
) + 𝑁1

𝑙

2
+ 𝑁2

𝑙

2
− 𝑀𝑓𝑟1 +𝑀𝑓𝑟2 = 0 
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 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 6 = (𝑀𝑏𝑟𝑔 − 𝑅𝐻 (𝑐 +
𝑙

2
) + 𝑁1

𝑙

2
+ 𝑁2

𝑙

2
−𝑀𝑓𝑟1 +

+𝑀𝑓𝑟2)/𝐹ℎ|0   
(B. 25) 

 

The force 𝐹𝑛 results to be positive during the working phase of the two cam-ram systems. 

Therefore, 𝑀𝑏𝑟𝑔 (equation (4.35)) and 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 (equation (4.36)) become:  

 

 

In MATLAB is possible to implement directly the six simultaneous equations according to the 

expression “𝐴 ∗ 𝑥 = 𝑏”, where “𝐴” is the coefficient matrix, “𝑥” is the vector of the unknowns, 

and “𝑏” is the vector of the constant terms. The matrix below derives from the six equations 

of the dynamic analysis, when all the absolute values are considered as positive (just to show 

how the equations should be sorted to be solved in MATLAB). Therefore, the unknowns can 

be evaluated using the specific MATLAB command to solve a system of linear equations “𝑥 =

𝐴\𝑏”. 

 

[
 
 
 
 
 
 
 

−sin 𝛼 cos 𝛼 0 0 0 1
cos 𝛼 sin 𝛼 0 0 −1 0

−(
𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 +

+𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟

) 𝑟 𝑟 0 0 0 0

0 0 −1 1 0 −1
0 0 −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙 −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙 1 0

𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔
𝑑𝑏𝑟𝑔

2
0 (

𝑙

2
− 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙)(

𝑙

2
+ 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙) 0 −(𝑐 +

𝑙

2
)]
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝐹𝑛
𝐹𝑡
𝑁1
𝑁2
𝑅𝑉
𝑅𝐻]
 
 
 
 
 

=  

   

                                                                              𝐴                                                                              ∙     𝑥  

𝑀𝑏𝑟𝑔 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑏𝑟𝑔 ∙  
𝑑𝑏𝑟𝑔

2
∙ 𝐹𝑛  (B. 26) 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙) ∙ 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ∙ 𝐹𝑛 ∙ 𝑟 (B. 27) 

so that 

𝑀𝑏𝑟𝑔 + 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 = (𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 + 𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟
) ∙ 𝑟 ∙ 𝐹𝑛  (B. 28) 
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=

[
 
 
 
 
 

0
𝑚𝑔 +𝑚�̈�

𝐼𝑟𝑜𝑙�̈�
0

𝑀𝑔 +𝑀�̈� + 𝐹ℎ + 𝐹𝑠
0 ]

 
 
 
 
 

 

 

                                                                 =                   𝑏 

 

In this case, with 𝐹𝑛 always positive, four cases exist according to the signs of 𝑁1 and 𝑁2. Table 

B. 1 Changes in the A matrix, when 𝐹𝑛 is positive, while 𝑁1 and 𝑁2 change their sign. For each 

instant of the gait cycle, only one valid solution of the six simultaneous equations exists, 

corresponding to one of the four matrices.Table B. 1 shows the changes in the 𝐴 matrix for 

the four cases, leading to four different matrices corresponding to four systems of linear 

equations. For each instant of the gait cycle, there is only one valid solution of the six 

simultaneous equations, corresponding to one of the four matrices. 

 

The other way to solve the six non-linear equations ((4.32) - (4.34) and (4.39) - (4.41) (i.e. 

equations (B. 20) - (B. 25))) in MATLAB is using directly the command “fsolve”.  

 

Despite the higher computational cost, the command “fsolve” was used since it takes care by 

itself of absolute values and sign functions. 

 

The residuals of the six equations were evaluated in MATLAB, substituting all the unknowns 

with the values previously obtained from solving the six equations. They result to be tiny, with 

an order of magnitude of 10e-16 (see Figure B. 14), corresponding to MATLAB floating-point 

relative accuracy. This means that everything that follows equations (4.32) - (4.34) and (4.39) 

- (4.41) is correct.  
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Figure B. 14 Sum of the residuals of the 6 equations, evaluated as shown previously (equations (B. 20) - (B. 25)): 
throughout the gait cycle (a) and just during the working phase of the stance cam-ram system (b). 
 

 

 

a)           b) 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

2
4

6 

 𝑵𝟏  𝑵𝟐  𝑭𝒇𝒓𝟏  𝑭𝒇𝒓𝟐  𝑴𝒇𝒓𝟏, 𝑴𝒇𝒓𝟐 

𝑰  

+𝒗𝒆  +𝒗𝒆  𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1  𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2  
𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1, 

𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2 

[
 
 
 
 
 
 
 
 

−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0 0 0 1
𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0 0 −1 0

−(
𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 +

+𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟

)𝑟 𝑟 0 0 0 0

0 0 −1 1 0 −1
0 0 −𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 −𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 1 0

𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔
𝑑𝑏𝑟𝑔

2
0 (

𝑙

2
− 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙)(

𝑙

2
+ 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙) 0 −(𝑐 +

𝑙

2
)]
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝐹𝑛
𝐹𝑡
𝑁1
𝑁2
𝑅𝑉
𝑅𝐻]
 
 
 
 
 

=

[
 
 
 
 
 

0
𝑚𝑔 +𝑚�̈�

𝐼𝑟𝑜𝑙�̈�
0

𝑀𝑔 +𝑀�̈� + 𝐹ℎ + 𝐹𝑠
0 ]

 
 
 
 
 

  

𝑰𝑰  

−𝒗𝒆  −𝒗𝒆  −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1  −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2  
𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1, 

𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2 

[
 
 
 
 
 
 
 
 

−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0 0 0 1
𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0 0 −1 0

−(
𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 +

+𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟

)𝑟 𝑟 0 0 0 0

0 0 −1 1 0 −1
0 0 𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 1 0

𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔
𝑑𝑏𝑟𝑔

2
0 (

𝑙

2
− 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙)(

𝑙

2
+ 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙) 0 −(𝑐 +

𝑙

2
)]
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝐹𝑛
𝐹𝑡
𝑁1
𝑁2
𝑅𝑉
𝑅𝐻]
 
 
 
 
 

=

[
 
 
 
 
 

0
𝑚𝑔 +𝑚�̈�

𝐼𝑟𝑜𝑙�̈�
0

𝑀𝑔 +𝑀�̈� + 𝐹ℎ + 𝐹𝑠
0 ]

 
 
 
 
 

  

𝑰𝑰𝑰  

+𝒗𝒆  −𝒗𝒆  𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1  −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2  
𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1, 

𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2  

[
 
 
 
 
 
 
 
 

−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0 0 0 1
𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0 0 −1 0

−(
𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 +

+𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟

)𝑟 𝑟 0 0 0 0

0 0 −1 1 0 −1
0 0 −𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 1 0

𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔
𝑑𝑏𝑟𝑔

2
0 (

𝑙

2
− 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙)(

𝑙

2
+ 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙) 0 −(𝑐 +

𝑙

2
)]
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝐹𝑛
𝐹𝑡
𝑁1
𝑁2
𝑅𝑉
𝑅𝐻]
 
 
 
 
 

=

[
 
 
 
 
 

0
𝑚𝑔 +𝑚�̈�

𝐼𝑟𝑜𝑙�̈�
0

𝑀𝑔 +𝑀�̈� + 𝐹ℎ + 𝐹𝑠
0 ]

 
 
 
 
 

  



 

 
 
 

2
4

7 

𝑰𝑽  

−𝒗𝒆  +𝒗𝒆  −𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1  𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2  
𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁1,  

𝑑

2
𝑠𝑖𝑔𝑛(�̇�)𝜇𝑠𝑙𝑁2 

[
 
 
 
 
 
 
 
 

−𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 0 0 0 1
𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 0 0 −1 0

−(
𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙)𝜇𝑟𝑜𝑙𝑟𝑒𝑠 +

+𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔 ∙
𝑑𝑏𝑟𝑔

2𝑟

)𝑟 𝑟 0 0 0 0

0 0 −1 1 0 −1
0 0 𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 −𝒔𝒊𝒈𝒏(�̇�)𝝁𝒔𝒍 1 0

𝑠𝑖𝑔𝑛(�̇�)𝜇𝑏𝑟𝑔
𝑑𝑏𝑟𝑔

2
0 (

𝑙

2
− 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙)(

𝑙

2
+ 𝑠𝑖𝑔𝑛(�̇�)

𝑑

2
𝜇𝑠𝑙) 0 −(𝑐 +

𝑙

2
)]
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
𝐹𝑛
𝐹𝑡
𝑁1
𝑁2
𝑅𝑉
𝑅𝐻]
 
 
 
 
 

=

[
 
 
 
 
 

0
𝑚𝑔 +𝑚�̈�

𝐼𝑟𝑜𝑙�̈�
0

𝑀𝑔 +𝑀�̈� + 𝐹ℎ ++𝐹𝑠
0 ]

 
 
 
 
 

  

 

Table B. 1 Changes in the A matrix, when 𝐹𝑛 is positive, while 𝑁1 and 𝑁2 change their sign. For each instant of the gait cycle, only one valid solution of the six simultaneous equations 

exists, corresponding to one of the four matrices. 
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C.1 Notes on MATLAB operations and variables calculations 
 

It is fundamental to remind the reader of this pseudo-code some simple rules about 

operations in MATLAB. While a unique way exists to solve additions and subtractions, in case 

of multiplications, divisions or powers, involving both arrays and matrices, it is possible to 

perform element-by-element operations (referred to as “array operations” and indicated by 

placing a dot before the corresponding operation symbol – respectively “.*”,”./”,”.^”) or 

according to the rules of matrix algebra (referred to as “matrix operations”). In the current 

pseudo-code, all the operations are supposed to be element-wise and they involve scalars and 

arrays. When a scalar operates on a vector, the scalar is always applied to each vector element. 

This is valid for multiplications and divisions, so that there are no needs to specify the type of 

operation with the corresponding specific operator. When multiplications and divisions 

involve two or more vectors, instead, and the element-wise operation needs to be performed, 

it is necessary to use the specific operators: respectively “.*” and “./”.When an array is raised 

to a power that is a scalar, MATLAB evaluates the element-wise power, and in this case the 

operator “.^” is needed.  

 

Therefore, if not explicitly specified, all the operations described in the “HIGH-LEVEL PSEUDO-

CODE” and in the “MATHEMATICAL PSEUDO-CODE” are element-wise operations (i.e. “array-

based calculations”), so that the previous directions need to be followed. Also, many “for 

loops” are defined in the “HIGH-LEVEL PSEUDO-CODE” and in the “MATHEMATICAL PSEUDO-

CODE”, which execute the same block of code a specific number of times, keeping track of 

each iteration with an incrementing index variable. All the calculations performed in these 

loops on arrays involve just that element of each array having that specific index (specified 

both in the “HIGH-LEVEL PSEUDO-CODE” and in the “MATHEMATICAL PSEUDO-CODE” with 

the subscript 𝑛 referred to the 𝑛𝑡ℎ -element of the array). Hence, they are all scalar values: 

the dot before multiplication or division operator is not needed. 
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C.2 HIGH-LEVEL PSEUDO-CODE 

 

C.2.1 Design program 

 

Some of the functions called in the script below are the same called also in the script “C.2.2 

Simulation model” because, as explained in Chapter 5, the inner time-stepping loop is almost 

identical in the simulation model and in the design program and other parts of the code are 

also adapted from that of the simulation model.  

 

1. Define a variable (“𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒”) and set it as equal to “𝑑𝑒𝑠𝑖𝑔𝑛” to recognise that some of 

the tasks included in the functions below are valid just when the same function is called in 

the below script for cam design (and not in “C.2.2 Simulation model”). 

2. Set the slope and intercept of the characteristics of the two return springs as equal to zero. 

3. RETURN SPRING SIZING - enter the FOR loop that runs the code two times: a first time to 

size the two return springs, and a second time to design cams profiles when the two sized 

springs are included in the system.  

 

FOR 𝒔𝒑𝒓𝒊𝒏𝒈 = 𝟏: 𝟐 

 

4. Import data (experimental data collected by (Bari, 2013) for healthy level walking at self-

selected speed) from Excel file: time instants for a full gait cycle and corresponding values 

of ankle angle and ankle torque (changing its sign to have positive ankle power in input to 

the device and negative ankle power in output from the device) 

5. Define the time interval ∆𝑡 between each instant of the gait cycle as the mean value of all 

the intervals coming from data (i.e. mean value of the vector resulting from applying the 

command “diff” to the time imported before). 

6. Calculate the ankle angular velocity at each instant of the gait cycle inside a for loop: 

 

𝜔𝑎𝑛 =
∆𝜃𝑎𝑛−1 + ∆𝜃𝑎𝑛

2∆𝑡
  

 

with 2 ≤ 𝑛 ≤ (𝑒𝑛𝑑 − 1). For 𝑛 = 1 and 𝑛 = 𝑒𝑛𝑑: 𝜔𝑎1 =
∆𝜃𝑎1
∆𝑡

 and 𝜔𝑎𝑒𝑛𝑑 =
∆𝜃𝑎(𝑒𝑛𝑑)

∆𝑡
. 
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7. Calculate the ankle angular acceleration at each instant of the gait cycle inside a for loop: 

 

𝛼𝑎𝑛 =
∆𝜔𝑎𝑛−1 + ∆𝜔𝑎𝑛

2∆𝑡
  

 

with 2 ≤ 𝑛 ≤ (𝑒𝑛𝑑 − 1). For 𝑛 = 1 and 𝑛 = 𝑒𝑛𝑑: 𝛼𝑎1 =
∆𝜔𝑎1
∆𝑡

 and 𝛼𝑎𝑒𝑛𝑑 =
∆𝜔𝑎(𝑒𝑛𝑑)

∆𝑡
. 

8. Identify important gait events:  

 Positive torque: the time instant right before that one at which the ankle torque 

becomes positive. 

 Maximum dorsiflexion: the time instant of the maximum ankle angle in the used 

convention. 

 Maximum plantarflexion: the time instant of the minimum ankle angle in the used 

convention.  

9. Identify four phases of the gait cycle and gather them in the structure “𝑔𝑎𝑖𝑡_𝑝ℎ𝑎𝑠𝑒”: 

 Load acceptance: despite the theoretical definition of this phase of the gait, in the 

actual code this name refers to the phase going from the initial contact of the foot with 

the ground at the beginning of the gait cycle to the instant right before that one of 

“Positive torque”. 

 Stance: from the time instant of “Positive torque” to the instant right before the one 

of maximum dorsiflexion. 

 Push-off: from the time instant of maximum dorsiflexion to the instant right before 

the one of maximum plantarflexion. 

 Swing: from the time instant of maximum plantarflexion to the end of the gait cycle. 

10. Pre-allocate the maximum amount of space required for all the arrays used in the code 

downstream to speed up the code execution time. In case of a loop, indeed, the size of 

arrays incrementally increases each time through the loop, and this can adversely affect 

performance and memory use. The variables need to be pre-allocated for both systems, 

and the space required for each variable is that one of a vector with a length equal to the 

number of time instants of the considered gait cycle. The arrays considered are those 

changing size in the inner for loop: 𝑄, 𝐹𝑓𝑟𝑐𝑦𝑙, 𝐹ℎ, 𝑇𝑔𝑎𝑠, 𝑃𝑎𝑐𝑐, 𝑉𝑎𝑐𝑐, 𝑉𝑔𝑎𝑠, 𝑇𝑐𝑎𝑐𝑡𝑢𝑎𝑙, ∆𝑃𝑡𝑜 𝑎𝑐𝑐, 

∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘. 

11. Define pressure and temperature of the surroundings: 𝑇𝑒𝑛𝑣 = 293𝐾, 𝑃𝑎𝑡𝑚 = 101325 𝑃𝑎. 



  Appendix C: Matlab pseudo-code 

252 
 

12. Call section “C.3.1 Accumulator, gas and oil properties” to get the properties of the 

diaphragm accumulator. 

13. Call section “C.3.2 Hydraulic cylinders properties” to get the properties of the two 

hydraulic cylinders of the stance and the push-off system. 

14. Call section “C.3.3 Major and minor losses properties”, where the properties of pipes, 

inlets/exits, fittings and DCVs for the two systems are defined. 

15. Call section “C.3.4 Geometry, masses, coefficients of friction” where the size of cam, roller 

and follower, and the masses of the two systems are defined, together with the 

coefficients of friction. 

16. Define accumulator P, V and T at the first time instant (𝑛 = 1) of the gait cycle: 

 

𝑃𝑎𝑐𝑐𝑛=1 = 0.90 ∗ 𝑃𝑚𝑎𝑥  

𝑉𝑎𝑐𝑐𝑛=1 = 𝑉𝐴 − (𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒) (
𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑎𝑐𝑐𝑛=1
); %oil volume - isothermal process 

𝑉𝑔𝑎𝑠𝑛=1
= 𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑛=1 % gas volume into the accumulator 

𝑇𝑔𝑎𝑠𝑛=1
= 𝑇𝑒𝑛𝑣  

 

17. Evaluate the working of the parallel spring: 

 Call function “C.3.5 Parallel linear spring” containing the spring model (with its 

constants) to calculate the torque provided by the parallel spring and the torque acting 

on the system. 

18. Evaluate the working of the gearbox: 

 Set the gearbox ratio. 

 Define the “capacity” of the gearbox (i.e. its size) as 𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = max |𝑇𝑖𝑛𝑔𝑏|, where 

𝑇𝑖𝑛𝑔𝑏  is the torque in input to the gearbox, which is the ankle torque minus the spring 

torque. 

 Call function “C.3.6 Gearbox” containing the gearbox model to calculate angle, velocity 

and acceleration of the cam, the losses due to the friction torque, and the output 

torque acting on the rest of the system as the gearbox ideal output torque minus 

friction. 

 

Get ready for the iteration loop 
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19. Set the number of main iterations to converge on a solution: 5 (see section 5.2). 

20. Call section “C.3.16 Variables initialisation” to define the variables needed to enter the 

main outer loop. 

21. ITERATIVE CALCULATION of CAM PROFILES (referred to as outer iteration loop): 

 

FOR each iteration 

 

 Call section “C.3.17 Kinematics” to evaluate all the kinematic variables of the two 

systems necessary to enter further on the inner for loop. 

 Calculate the two return spring forces (𝐹𝑠𝑆𝑇𝐴𝑁𝐶𝐸  and 𝐹𝑠𝑃𝑂) considering the displacement 

of the pistons from the previous bullet, and the slope and intercept of the two springs 

characteristics previously defined (see step (2) if “𝑠𝑝𝑟𝑖𝑛𝑔”=1 or step (22) if 

“𝑠𝑝𝑟𝑖𝑛𝑔”=2). 

 Calculate the flow in the two systems (𝑄𝑆𝑇𝐴𝑁𝐶𝐸, 𝑄𝑃𝑂) given by piston velocity times 

the ram bore area. 

 Call function “C.3.18 Major and minor losses evaluation” to evaluate the pressure 

drop in the pipework of the stance system - both from ram to accumulator 

(𝛥𝑃𝑡𝑜 𝑎𝑐𝑐𝑆𝑇𝐴𝑁𝐶𝐸) and from ram to tank ( 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸). 

 Call function “C.3.18 Major and minor losses evaluation” to evaluate the pressure 

drop in the pipework of the push-off system - both from ram to accumulator 

(𝛥𝑃𝑡𝑜 𝑎𝑐𝑐𝑃𝑂) and from ram to tank ( 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂). 

 Initialise the pressure in the two cylinders: 

𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑃𝑎𝑡𝑚 + 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸 

𝑃𝑐𝑦𝑙𝑃𝑂 = 𝑃𝑎𝑡𝑚 + 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂  

These values will be overwritten during the two working phases of the gait cycle. 

 Initialise the oil volume in the two cylinders: 

𝑉𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 =
𝜋𝐷𝑆𝑇𝐴𝑁𝐶𝐸

2

4
∙ (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ + (max(𝑦𝑆𝑇𝐴𝑁𝐶𝐸) − 𝑦𝑆𝑇𝐴𝑁𝐶𝐸)) 

𝑉𝑐𝑦𝑙𝑃𝑂 =
𝜋𝐷𝑃𝑂

2

4
∙ (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ + (max(𝑦𝑃𝑂) − 𝑦𝑃𝑂)) 

 Define the vector 𝑔𝑢𝑒𝑠𝑠 containing six initial guesses for the six unknowns of the 

dynamic analysis. The same values are used for both systems. 

 TIME STEPPING LOOP for each time instant of the gait cycle (referred to as inner loop). 
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FOR each time-instant 𝒏 of the ankle data 

 

1) Check the opening of the two DCVs and the possible changes in V, P and T in the 

accumulator due to oil compressibility: 

 

IF LOAD ACCEPTANCE  

 

 2 DCVs OPEN TO TANK. 

 

ELSE IF STANCE 

 

 STANCE DCV OPEN TO ACCUMULATOR: 

 

IF 𝑛 is time instant 1 of stance 

Call function “C.3.8 Connect to accumulator” to evaluate the 

changes in V, P and T in the accumulator due to oil compressibility, 

occurring when the DCV connects the stance ram to the 

accumulator. The values in input to the function are those referred 

to the STANCE system. 

END IF 

 

 PUSH-OFF DCV OPEN TO TANK. 

 

ELSE IF PUSH-OFF 

 

 STANCE DCV OPEN TO TANK: 

 

IF 𝑛 is time instant 1 of push-off 

𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸𝑛 = 𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸𝑛  

END IF 

 

 PUSH-OFF DCV OPEN TO ACCUMULATOR: 
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IF 𝑛 is time instant 1 of push-off 

Call function “C.3.8 Connect to accumulator” to evaluate the 

changes in V, P and T in the accumulator due to oil compressibility, 

occurring when the DCV connects the push-off ram to the 

accumulator. The values in input to the function are those referred 

to the PUSH-OFF system. 

END IF 

 

ELSE IF SWING 

 

 2 DCVs OPEN TO TANK: 

 

IF 𝑛 is time instant 1 of SWING 

𝑃𝑐𝑦𝑙𝑃𝑂𝑛 = 𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂𝑛  

END IF 

 

END IF 

 

2) STANCE CAM-RAM DYNAMIC ANALYSIS:  

 

 Call function “C.3.10 Friction at O-ring” to evaluate the friction force 

𝐹𝑓𝑟𝑐𝑦𝑙_𝑆𝑇𝐴𝑁𝐶𝐸𝑛  at the internal sealed element in the stance cylinder. 

 

 Evaluate the actual hydraulic ram force in the stance system: 

𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸𝑛  = (𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸𝑛 − 𝑃𝑎𝑡𝑚) 𝐴𝑆𝑇𝐴𝑁𝐶𝐸 + 𝐹𝑓𝑟𝑐𝑦𝑙_𝑆𝑇𝐴𝑁𝐶𝐸𝑛  

 

 Call function “C.3.11 Dynamic analysis”, which in turn calls “C.3.12 Dynamic 

analysis fsolve”, to run the dynamic analysis for the time instant 𝑛 in order to 

evaluate all the forces acting on the stance system and the resulting actual cam 

torque 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑛 . 

 



  Appendix C: Matlab pseudo-code 

256 
 

3) PUSH-OFF CAM-RAM DYNAMIC ANALYSIS:  

 

 Call function “C.3.10 Friction at O-ring” to evaluate the friction force 𝐹𝑓𝑟𝑐𝑦𝑙_𝑃𝑂𝑛  

at the internal sealed element in the push-off cylinder. 

 

 Evaluate the actual hydraulic ram force in the push-off system: 

 

𝐹ℎ𝑃𝑂𝑛  = (𝑃𝑐𝑦𝑙𝑃𝑂𝑛 − 𝑃𝑎𝑡𝑚)𝐴𝑃𝑂 + 𝐹𝑓𝑟𝑐𝑦𝑙_𝑃𝑂𝑛  

 

 Call function “C.3.11 Dynamic analysis”, which in turn calls “C.3.12 Dynamic 

analysis fsolve”, to run the dynamic analysis for the time instant 𝑛 in order to 

evaluate all the forces acting on the push-off system and the resulting actual 

cam torque 𝑇𝑐𝑃𝑂𝑛 . 

 

4) Evaluate the total torque in output from the two cams of the two systems: 

 

𝑇𝑐𝑇𝑂𝑇𝑛 = 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑛 + 𝑇𝑐𝑃𝑂𝑛  

 

5) Evaluate the values of V, P and T in the accumulator at the next time instant (𝑛 +

1), due to the fluid flow from the ram to the accumulator, and adjust the value of 

(
𝑑𝑦

𝑑𝜃𝑐
)
𝑛

 to be used in the next iteration. 

 

IF LOAD ACCEPTANCE or SWING 

 

 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is isolated, but heat transfer may still exist from the 

accumulator to the surroundings.  

 

ELSE IF STANCE 
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 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is connected to the stance ram. The function’s inputs 

referred to the cylinder are those of the stance cylinder. 

 Adjust (
𝑑𝑦

𝑑𝜃𝑐
)
𝑛

 for the stance system as the stance ram is connected to the 

accumulator. The new value of ((
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

)
𝑛

 (see equation (5.5) in 

section 5.2.1) will be used in the next iteration. 

((
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

)
𝑁𝐸𝑊𝑛

=

(𝑇𝑐𝑟𝑛 − 𝑇𝑐𝑇𝑂𝑇𝑛) + ((
𝑑𝑦
𝑑𝜃𝑐

)
𝑆𝑇𝐴𝑁𝐶𝐸

)
𝑛

𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸𝑛

𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸𝑛
 

 

ELSE IF PUSH-OFF 

 

 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is connected to the push-off ram. The function’s inputs 

referred to the cylinder are those of the push-off cylinder. 

 

 Adjust (
𝑑𝑦

𝑑𝜃𝑐
)
𝑛

 for the push-off system as the push-off ram is connected to 

the accumulator. The new value of ((
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂
)
𝑛

 (see equation (5.5) in 

section 5.2.1) will be used in the next iteration. 

((
𝑑𝑦

𝑑𝜃𝐶
)
𝑃𝑂

)
𝑁𝐸𝑊𝑛

=

(𝑇𝑐𝑟𝑛 − 𝑇𝑐𝑇𝑂𝑇𝑛) + ((
𝑑𝑦
𝑑𝜃𝑐

)
𝑃𝑂
)
𝑛

𝐹ℎ𝑃𝑂𝑛

𝐹ℎ𝑃𝑂𝑛
 

 

END IF  

 

END FOR (inner loop) 

 

 SET the initial ratio (
𝑑𝑦

𝑑𝜃𝑐
)
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 for the two systems (see step (20)) in the next iteration 

of the outer loop as equal to the new ones just evaluated: 
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(
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

= ((
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

)
𝑁𝐸𝑊

 

(
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙

= ((
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

)
𝑁𝐸𝑊

 

 

END FOR (outer loop) 

 

22. If the upstream code has been run just once (i.e. 𝑠𝑝𝑟𝑖𝑛𝑔 = 1), the normal force acting 

between cam and roller is known for both systems, so that it is used to size the two return 

springs: 

 

IF 𝑠𝑝𝑟𝑖𝑛𝑔 = 1  

 

 Defined a desired minimum value for the normal force between cam and roller 

of the two systems (𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑆𝑇𝐴𝑁𝐶𝐸 , 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑃𝑂). 

 Evaluate the corresponding required spring force for the two systems as the 

difference between the desired and the actual normal force (𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑆𝑇𝐴𝑁𝐶𝐸 =

𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑆𝑇𝐴𝑁𝐶𝐸 − 𝐹𝑛𝑆𝑇𝐴𝑁𝐶𝐸 , 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑃𝑂 = 𝐹𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑃𝑂 − 𝐹𝑛𝑃𝑂). 

 Call function “C.3.13 Return spring sizing” to get the slope and intercept of the 

stance spring characteristic. 

 Call function “C.3.13 Return spring sizing” to get the slope and intercept of the 

push-off spring characteristic. 

 Clear all the variables except the two slops and the two intercepts of the 

springs, the variable “𝑠𝑝𝑟𝑖𝑛𝑔” and the variable “𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒”. 

 

END IF 

 

END FOR (“spring” loop) 

 

23. Call function “C.3.7 Gearbox backwards” to evaluate the actual ankle torque as the sum 

of the parallel spring torque and the gearbox input (ankle side) torque. 
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24. Memorise the values of (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

 used during the last iteration of the outer 

iteration loop to converge to the solution: they guarantee that the cam profiles here 

defined are used then for the gait cycles simulation in the script “C.2.2 Simulation model”. 

Memorise also the gear ratio, the gearbox capacity, the characteristics of the two return 

springs, and the actual ankle torque to be used in the simulation of the first gait cycle (see 

“C.2.2 Simulation model”) to detect gait phases and events. They may be all memorised 

in a structure array in MATLAB and saved as a .mat file. 

25. Draw the two cam profiles running the script named “C.3.14 Cam profile”, which 

calculates the coordinates of the contact points between cam and roller throughout the 

gait cycle for the two systems, using as input piston displacement and cam angle of 

rotation from the last iteration of the iteration loop to converge to the solution.  

 Specifically, the function “C.3.15 Mapping fix to body” – called inside a for loop - maps 

the coordinates of the contact point for each time instant 𝑛 of the gait cycle from fixed 

frame to cam frame by applying a transformation matrix. 

 The obtained coordinates of the contact points for the two systems are then plotted: 

they constitute the two cam profiles (𝑦 coordinates against 𝑥 coordinates) in the cam 

frame. 

26. Run the post-model code “C.3.19 Power audit” to calculate the power in input/output/lost 

for each component of the system, and the power residuals between each component of 

the system and the following one, plotting the results. 
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C.2.2 Simulation model 

 

1. Set the variable (“𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒”) as equal to 1 to count the gait cycles. 

2. Define a variable (“𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔”) to stop the gait cycles simulations as the user 

requires. If set as equal to 1, it indicates that the simulation must continue to the next gait 

cycle. 

3. Import the variables memorised in a .mat file at step (24) of the script “C.2.1 Design 

program”: (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

, which define cams profiles; the gear ratio; the 

gearbox capacity; the characteristics of the two return springs; and the actual ankle torque 

to be used in the simulation of the first gait cycle below to detect gait phases and events. 

4. Enter the while loop to simulate as many gait cycles as the user requires: 

 

WHILE 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒏𝒈 == 𝟏 

 

Steps (5) to (15) of the below numbered list are the same as steps (5) to (15) in “C.2.1 

Design program”. 

 

5. Import data from Excel file: time instants for a full gait cycle and corresponding values of 

ankle angle.  

6. Define the time interval ∆𝑡 between each instant of the gait cycle as the mean value of all 

the intervals coming from data (i.e. mean value of the vector resulting from applying the 

command “diff” to the time imported before). 

7. Calculate the ankle angular velocity at each instant of the gait cycle inside a for loop: 

 

𝜔𝑎𝑛 =
∆𝜃𝑎𝑛−1 + ∆𝜃𝑎𝑛

2∆𝑡
  

 

with 2 ≤ 𝑛 ≤ (𝑒𝑛𝑑 − 1). For 𝑛 = 1 and 𝑛 = 𝑒𝑛𝑑: 𝜔𝑎1 =
∆𝜃𝑎1
∆𝑡

 and 𝜔𝑎𝑒𝑛𝑑 =
∆𝜃𝑎(𝑒𝑛𝑑−1)

∆𝑡
. 

8. Calculate the ankle angular acceleration at each instant of the gait cycle inside a for loop: 

 

𝛼𝑎𝑛 =
∆𝜔𝑎𝑛−1 + ∆𝜔𝑎𝑛

2∆𝑡
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with 2 ≤ 𝑛 ≤ (𝑒𝑛𝑑 − 1). For 𝑛 = 1 and 𝑛 = 𝑒𝑛𝑑: 𝛼𝑎1 =
∆𝜔𝑎1
∆𝑡

 and 𝛼𝑎𝑒𝑛𝑑 =
∆𝜔𝑎(𝑒𝑛𝑑)

∆𝑡
. 

9. Identify important gait events:  

 Positive torque: the time instant right before that one at which the ankle torque (the 

one imported at step (3) above, otherwise the one resulting from the previous gait 

cycle) becomes positive. 

 Maximum dorsiflexion: the time instant of the maximum ankle angle in the used 

convention. 

 Maximum plantarflexion: the time instant of the minimum ankle angle in the used 

convention.  

10. Identify four phases of the gait cycle and gather them in the structure “𝑔𝑎𝑖𝑡_𝑝ℎ𝑎𝑠𝑒”: 

 Load acceptance: despite the theoretical definition of this phase of the gait, in the 

actual code this name is referred to the phase going from the initial contact of the foot 

with the ground at the beginning of the gait cycle to the instant right before that one 

of “Positive torque”. 

 Stance: from the time instant of “Positive torque” to the instant right before the one 

of maximum dorsiflexion. 

 Push-off: from the time instant of maximum dorsiflexion to the instant right before 

the one of maximum plantarflexion. 

 Swing: from the time instant of maximum plantarflexion to the end of the gait cycle. 

11. Pre-allocate those variables used in the downstream code (𝑄, 𝐹𝑓𝑟𝑐𝑦𝑙 , 𝐹ℎ, 𝑇𝑔𝑎𝑠, 𝑃𝑎𝑐𝑐, 𝑉𝑎𝑐𝑐, 

𝑉𝑔𝑎𝑠, 𝑇𝑐𝑎𝑐𝑡𝑢𝑎𝑙, ∆𝑃𝑡𝑜 𝑎𝑐𝑐, ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘): they are arrays whose length is equal to the number of 

time instants of the gait cycle. 

12. Define pressure and temperature of the surroundings: 𝑇𝑒𝑛𝑣 = 293𝐾, 𝑃𝑎𝑡𝑚 = 101325 𝑃𝑎. 

13. Call section “C.3.1 Accumulator, gas and oil properties” to get the properties of the 

diaphragm accumulator. 

14. Call section “C.3.2 Hydraulic cylinders properties” to get the properties of the two 

hydraulic cylinders of respectively the stance and the push-off system. 

15. Call section “C.3.3 Major and minor losses properties”, where the properties of pipes, 

inlets/exits, fittings and DCVs for the two systems are defined. 
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16. Call section “C.3.4 Geometry, masses, coefficients of friction” where the size of cam, roller 

and follower, and the masses of the two systems are defined, together with the 

coefficients of friction. 

17. Define accumulator P, V and T at the first time instant (𝑛 = 1) of the gait cycle: 

 

IF 𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 == 1 

 

𝑃𝑎𝑐𝑐𝑛=1 = 0.90 ∗ 𝑃𝑚𝑎𝑥  

𝑉𝑎𝑐𝑐𝑛=1 = 𝑉𝐴 − (𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒) (
𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑎𝑐𝑐𝑛=1
); %oil volume - isothermal process 

𝑉𝑔𝑎𝑠𝑛=1
= 𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑛=1 % gas volume into the accumulator 

𝑇𝑔𝑎𝑠𝑛=1
= 𝑇𝑒𝑛𝑣; 

 

ELSE 

 

𝑃𝑎𝑐𝑐𝑛=1 = 𝑃𝑎𝑐𝑐@𝐸𝑁𝐷 𝑜𝑓 𝑆𝑊𝐼𝑁𝐺 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 

𝑉𝑎𝑐𝑐𝑛=1 = 𝑉𝑎𝑐𝑐 @𝐸𝑁𝐷 𝑜𝑓 𝑆𝑊𝐼𝑁𝐺 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 % accumulator oil volume 

𝑉𝑔𝑎𝑠𝑛=1
= 𝑉𝑔𝑎𝑠 @𝐸𝑁𝐷 𝑜𝑓 𝑆𝑊𝐼𝑁𝐺 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒 % accumulator gas volume 

𝑇𝑔𝑎𝑠𝑛=1
= 𝑇𝑔𝑎𝑠 @𝐸𝑁𝐷 𝑜𝑓 𝑆𝑊𝐼𝑁𝐺𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒  

 

END IF 

 

18. Call function “C.3.5 Parallel linear spring” containing the spring model to calculate the 

torque provided by the parallel spring. 

19. Call function “C.3.6 Gearbox” containing the gearbox model to calculate angle, velocity 

and acceleration of the cam. 

20. Call section “C.3.16 Variables initialisation” to define some of the variables needed 

further on. 

21. Call section “C.3.17 Kinematics” to evaluate all the kinematic variables of the two systems 

necessary to enter further on the for loop. 
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22. Calculate the two return spring forces (𝐹𝑠𝑆𝑇𝐴𝑁𝐶𝐸  and 𝐹𝑠𝑃𝑂) considering the displacement of 

the pistons from the previous step, and the slope and intercept of the two springs 

imported at step (3). 

23. Calculate the flow in the two systems (𝑄𝑆𝑇𝐴𝑁𝐶𝐸,  𝑄𝑃𝑂) given by piston velocity times ram 

bore area. 

24. Call function “C.3.18 Major and minor losses evaluation” to evaluate the total pressure 

drop in the pipework of the stance system - both from ram to accumulator (𝛥𝑃𝑡𝑜 𝑎𝑐𝑐𝑆𝑇𝐴𝑁𝐶𝐸) 

and from ram to tank ( 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸). 

25. Call function “C.3.18 Major and minor losses evaluation” to evaluate the total pressure 

drop in the pipework of the push-off system - both from ram to accumulator (𝛥𝑃𝑡𝑜 𝑎𝑐𝑐𝑃𝑂) 

and from ram to tank ( 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂). 

26. Initialise the pressure in the two cylinders (which will be overwritten during the two 

working phases): 

𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑃𝑎𝑡𝑚 + 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸 

𝑃𝑐𝑦𝑙𝑃𝑂 = 𝑃𝑎𝑡𝑚 + 𝛥𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂  

27. Initialise the volume of oil in the two cylinders: 

𝑉𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 =
𝜋𝐷2

4
∙ (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ + (max(𝑦𝑆𝑇𝐴𝑁𝐶𝐸) − 𝑦𝑆𝑇𝐴𝑁𝐶𝐸)) 

𝑉𝑐𝑦𝑙𝑃𝑂 =
𝜋𝐷2

4
∙ (𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ + (max(𝑦𝑃𝑂) − 𝑦𝑃𝑂)) 

28. Define the vector 𝑔𝑢𝑒𝑠𝑠 containing six initial guesses for the six unknowns of the dynamic 

analysis. The same is used for both systems. 

29. TIME STEPPING LOOP for each time instant of the gait cycle: 

 

FOR each time-instant 𝒏 of the ankle data 

 

1) Check the opening of the two DCVs and the possible changes in V, P and T in the 

accumulator due to oil compressibility: 

 

IF LOAD ACCEPTANCE  

 

 2 DCVs OPEN TO TANK. 
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ELSE IF STANCE 

 

 STANCE DCV OPEN TO ACCUMULATOR: 

 

IF 𝑛 time instant 1 of stance 

Call function “C.3.8 Connect to accumulator” to evaluate the 

changes in V, P and T in the accumulator due to oil compressibility, 

occurring when the DCV connects the stance ram to the 

accumulator. The values in input to the function are those referred 

to the STANCE system. 

END IF 

 

 PUSH-OFF DCV OPEN TO TANK. 

 

ELSE IF PUSH-OFF 

 

 STANCE DCV OPEN TO TANK: 

 

IF 𝑛 is time instant 1 of push-off 

𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸𝑛 = 𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑆𝑇𝐴𝑁𝐶𝐸𝑛  

END IF 

 

 PUSH-OFF DCV OPEN TO ACCUMULATOR: 

 

IF time instant 1 of push-off 

Call function “C.3.8 Connect to accumulator” to evaluate the 

changes in V, P and T in the accumulator due to oil compressibility, 

occurring when the DCV connects the push-off ram to the 

accumulator. The values in input to the function are those referred 

to the PUSH-OFF system. 

END IF 
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ELSE IF SWING 

 

 2 DCVs OPEN TO TANK: 

 

IF 𝑛 is time instant 1 of SWING 

𝑃𝑐𝑦𝑙𝑃𝑂𝑛 = 𝑃𝑎𝑡𝑚 + ∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘𝑃𝑂𝑛  

END IF 

 

END IF 

 

2) STANCE CAM-RAM DYNAMIC ANALYSIS:  

 

 Call function “C.3.10 Friction at O-ring” to evaluate the friction force 

𝐹𝑓𝑟𝑐𝑦𝑙_𝑆𝑇𝐴𝑁𝐶𝐸𝑛  at the internal sealed element in the stance cylinder. 

 

 Evaluate the actual hydraulic ram force in the stance system: 

𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸𝑛  = (𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸𝑛 − 𝑃𝑎𝑡𝑚) 𝐴 + 𝐹𝑓𝑟𝑐𝑦𝑙_𝑆𝑇𝐴𝑁𝐶𝐸𝑛  

 

 Call function “C.3.11 Dynamic analysis”, which in turn calls “C.3.12 Dynamic 

analysis fsolve”, to run the dynamic analysis for the time instant 𝑛 in order to 

evaluate all the forces acting on the stance system and the resulting actual cam 

torque 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑛 . 

 

3) PUSH-OFF CAM-RAM DYNAMIC ANALYSIS:  

 

 Call function “C.3.10 Friction at O-ring” to evaluate the friction force 𝐹𝑓𝑟𝑐𝑦𝑙_𝑃𝑂𝑛  

at the internal sealed element in the push-off cylinder. 

 

 Evaluate the actual hydraulic ram force in the push-off system: 

𝐹ℎ𝑃𝑂𝑛  = (𝑃𝑐𝑦𝑙𝑃𝑂𝑛 − 𝑃𝑎𝑡𝑚)𝐴 + 𝐹𝑓𝑟𝑐𝑦𝑙_𝑃𝑂𝑛  
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 Call function “C.3.11 Dynamic analysis”, which in turn calls “C.3.12 Dynamic 

analysis fsolve”, to run the dynamic analysis for the time instant 𝑛 in order to 

evaluate all the forces acting on the push-off system and the resulting actual 

cam torque 𝑇𝑐𝑃𝑂𝑛 . 

 

4) Evaluate the values of V, P and T in the accumulator for the next time instant (𝑛 +

1) due to the fluid flow from the ram to the accumulator. 

 

IF LOAD ACCEPTANCE or SWING 

 

 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is isolated but heat transfer may still exist from the 

accumulator to the surroundings.  

 

ELSE IF STANCE 

 

 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is connected to the stance ram. The function’s inputs 

referred to the cylinder are those of the stance cylinder. 

 

ELSE IF PUSH-OFF 

 

 Call function “C.3.9 Incremental accumulator changes”: the 

ACCUMULATOR is connected to the push-off ram. The function’s inputs 

referred to the cylinder are those of the push-off cylinder. 

 

END IF  

 

END FOR (TIME STEPPING LOOP) 

 

29. Evaluate the total torque in output from the two cams of the two systems: 
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𝑇𝑐𝑇𝑂𝑇𝑛 = 𝑇𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑛 + 𝑇𝑐𝑃𝑂𝑛  

 

30. Call function “C.3.7 Gearbox backwards” to evaluate the actual ankle torque as the sum 

of the parallel spring torque and the gearbox input (ankle side) torque. 

31. Delete the last final value of the following vectors: pressure (𝑃𝑎𝑐𝑐), oil volume (𝑉𝑎𝑐𝑐), 

temperature (𝑇𝑔𝑎𝑠) and gas volume (𝑉𝑔𝑎𝑠), inside the accumulator, as actually they 

corresponds to the time instant 251 that does not exist (they are the outputs of the 

function “C.3.9 Incremental accumulator changes” when called at the last instant of the 

swing phase). 

 

32. Ask the user if he/she wants to continue modelling another gait cycle: 

 

IF yes: 

 

a. Increase the variable that counts gait cycles (i.e. “𝑔𝑎𝑖𝑡 𝑐𝑦𝑐𝑙𝑒”). 

b. Memorise the values of pressure (𝑃𝑎𝑐𝑐), oil volume (𝑉𝑎𝑐𝑐), gas volume (𝑉𝑔𝑎𝑠), and 

temperature (𝑇𝑔𝑎𝑠) inside the accumulator at the last time instant of the gait cycle (see 

step (31)) to be used as initial values for the next gait cycle (see step (17) above).  

c. Clear all the variables except: the values memorised at the previous bullet; 

(
𝑑𝑦

𝑑𝜃𝐶
)
𝑆𝑇𝐴𝑁𝐶𝐸

and (
𝑑𝑦

𝑑𝜃𝐶
)
𝑃𝑂

 to guarantee that the cam profile is always the same 

throughout the simulation; the number of gait cycles run so far; the gear ratio; the 

gearbox capacity; the characteristics of the two return springs; and the actual ankle 

torque to be used in the next gait cycle to detect gait phases and events. 

 

ELSE 

 

Change the value of the variable that stops the gait cycles simulation: 

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑛𝑔 = 2. 

 

END IF 

 

END WHILE loop  
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C.3 MATHEMATICAL PSEUDO-CODE 

 

C.3.1 Accumulator, gas and oil properties 

 

 Set the maximum pressure and volume of the accumulator: 

𝑃𝑚𝑎𝑥 = 100𝑏𝑎𝑟 

𝑉𝐴 = 250𝑒 − 06 𝑚3 = 250𝑐𝑐 

𝐴𝑊 = 0.0225𝑚2  effective area of the accumulator for heat convection (i.e. the 

total internal surface area exposed to gas) with ℎ𝑎𝑐𝑐 = 0.100𝑚 

and 𝑟𝑎𝑐𝑐 = 0.028𝑚 (accumulator with cylindrical shape) 

 

 Evaluate minimum pressure, pre-charge pressure and volume: 

𝑃𝑚𝑖𝑛 = 0.50 ∗ 𝑃𝑚𝑎𝑥  

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0.90 ∗ 𝑃𝑚𝑖𝑛 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0𝑚3  oil volume at pre-charge pressure in the accumulator 

𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑉𝐴  gas volume at pre-charge pressure in the accumulator 

 

 Define the structure “𝑜𝑖𝑙” with the properties of the used oil (ISO VG 32): 

 

 

 

 Define the structure “𝑔𝑎𝑠” with the properties of the considered gas (𝑁2): 

𝑘 = 1.4     index of the polytropic equation 

𝑅 = 8.314
𝐽

𝑚𝑜𝑙⋅𝐾
   ideal gas constant 

𝐶𝑉𝑁2
= 741.95

𝐽

𝑘𝑔∙𝐾
   gas specific heat at constant volume for 𝑁2 

ℎ𝑁2 = 25 
𝑊

𝑚2∙𝐾
    overall heat transfer coefficient for 𝑁2 

𝑛𝑁2 =
𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝐺𝐴𝑆_𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

𝑅𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒
 required number of moles of 𝑁2 ( 𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑇𝑒𝑛𝑣) 

𝑚𝑁2 = 𝑛𝑁2 ∙ 𝑀𝑁2   required mass of 𝑁2 

𝜏 =
𝑚𝑁2𝐶𝑉𝑁2

ℎ𝑁2𝐴𝑊
   thermal time-constant   

𝜌 = 870
𝑘𝑔

𝑚3  
𝜇 = 0.07𝑃𝑎 ∙ 𝑠  

𝑣 = 80
𝑚𝑚2

𝑠
  𝛽 = 1.657𝑒 + 09 𝑃𝑎  
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C.3.2 Hydraulic cylinders properties 

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ = 0.005𝑚  distance between the inner head of the ram and the 

piston head, when the piston has completed its instroke 

휀 = 0.14    O-ring squeeze ratio 

𝐸 = 10𝑒 + 06𝑃𝑎    O-ring Young modulus  

𝐻 = 70     O-ring shore hardness (for Martini’s model) 

 

 Stance hydraulic cylinder: 

𝐷𝑆𝑇𝐴𝑁𝐶𝐸 = 0.02062𝑚  ram bore diameter  

𝐴𝑆𝑇𝐴𝑁𝐶𝐸 = 𝜋
𝐷𝑆𝑇𝐴𝑁𝐶𝐸

2

4
    ram bore area - oil side 

𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑆𝑇𝐴𝑁𝐶𝐸 = 0.006𝑚 

𝑑𝑂−𝑟𝑖𝑛𝑔𝑆𝑇𝐴𝑁𝐶𝐸 =
0.139in

39.3701
in

𝑚

≅ 0.00353𝑚 O-ring cross-sectional diameter 

𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇𝑆𝑇𝐴𝑁𝐶𝐸 =
0.824in

39.3701
in

𝑚

≅ 0.02093𝑚 O-ring outside diameter (just for Martini’s 

model) 

 

 Push-off hydraulic cylinder 

𝐷𝑃𝑂 = 0.02062𝑚    

𝐴𝑃𝑂 = 𝜋
𝐷𝑃𝑂

2

4
     

𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ𝑃𝑂 = 0.004𝑚 

𝑑𝑂−𝑟𝑖𝑛𝑔𝑃𝑂 =
0.139in

39.3701
in

𝑚

≅ 0.00353𝑚  

𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇𝑃𝑂 =
0.824in

39.3701
in

𝑚

≅ 0.0209𝑚  
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C.3.3 Major and minor losses properties 

 

 Define the structure “𝑝𝑖𝑝𝑒𝑠” with the parameters necessary to evaluate the pressure drop 

due to friction inside the pipework: 

𝐷𝑝𝑖𝑝𝑒 = 0.005𝑚  conduit internal diameter (hydraulic diameter)  

𝐿𝑝𝑖𝑝𝑒 = 0.050𝑚  max length of the conduit 

 

 Define the structure “𝑖𝑛𝑙𝑒𝑡𝑠_𝑒𝑥𝑖𝑡𝑠” with the parameters necessary to evaluate the 

pressure drop at inlets/exits: 

𝐾𝑒𝑥𝑖𝑡 = 1    loss coefficient for abrupt exit 

𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 = 0.5   loss coefficient for an entrance with a square-edged entrance 

 

 Define the structure “𝑓𝑖𝑡𝑡𝑖𝑛𝑔” with the parameters necessary to evaluate the pressure 

drop at the fittings: 

𝐾𝑒𝑙𝑏𝑜𝑤 = 0.9  loss coefficient for a standard elbow 

 

 Define the structure “𝐷𝐶𝑉” with the parameters necessary to evaluate the pressure drop 

at the DCV: 

𝐶𝑑 = 0.62      orifice discharge coefficient 

𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐷𝑝𝑖𝑝𝑒 = 0.005 𝑚   diameter of the ports of the valve 

𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 1.4𝑑𝑣𝑎𝑙𝑣𝑒𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0.007 𝑚 internal diameter of the valve 

𝐴𝑜𝑟𝑖𝑓𝑖𝑐𝑒 = 𝜋𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  orifice cross-section 

𝐾𝑒𝑞_𝐷𝐶𝑉 =
1

(𝐶𝑑𝐴𝑜𝑟𝑖𝑓𝑖𝑐𝑒√2/𝜌)
2    equivalent loss coefficient 
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C.3.4 Geometry, masses, coefficients of friction 

 

 Define the structure “𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦” containing the values of cam, roller and follower 

geometry for the stance system. 

𝑎 = 0.030 𝑚  independent variable included in cam pressure angle evaluation 

𝑒 = 0.019 𝑚   cam offset 

𝑟 =
0.019

2
 𝑚   roller radius 

𝑑𝑠𝑡𝑢𝑑 = 0.011 𝑚  diameter of the stud of the roller 

𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 0.5𝑑 𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑎𝑑𝑆𝑇𝐴𝑁𝐶𝐸  follower diameter (𝑑 𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑎𝑑𝑆𝑇𝐴𝑁𝐶𝐸 = 0.02055𝑚) 

𝑐 = 𝑟 + 𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 

initial follower overhang (𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑟

3
)  

𝑙 = 2𝑟 + 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛  length of the follower guide 

𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑐 + 𝑙   follower length 

𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝜋
𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2

4
∙ 𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟  follower volume 

 

 Define the structure “𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑠𝑠𝑒𝑠” containing the values of masses for the stance 

system. 

𝑚 = 0.032 𝑘𝑔  mass of roller 

𝑚𝑟𝑜𝑙 = 0.016 𝑘𝑔  mass of the outer rolling part of the roller 

𝑀 = 𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ∙ 𝜌𝑆𝑆 mass of the follower, with 𝜌𝑆𝑆 = 7700
𝑘𝑔

𝑚3 density of stainless 

steel   

 Define the structure “𝑝𝑢𝑠ℎ − 𝑜𝑓𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦” containing values of cam, roller and 

follower geometry for the push-off system. 

𝑎 = 0.030 𝑚 independent variable included in cam pressure angle evaluation 

𝑒 = 0.019 𝑚   cam offset 

𝑟 =
0.019

2
𝑚   roller radius 

𝑑𝑠𝑡𝑢𝑑 = 0.011 𝑚  diameter of the stud of the roller 

𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 0.5𝑑 𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑎𝑑𝑃𝑂       follower diameter (𝑑 𝑝𝑖𝑠𝑡𝑜𝑛 ℎ𝑒𝑎𝑑𝑃𝑂 = 0.02055𝑚) 

𝑐 = 𝑟 + 𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛  

initial follower overhang with 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝑟

3
  

𝑙 = 2𝑟 + 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛  length of the guide at the follower 
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𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑐 + 𝑙   length of the follower 

𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝜋
𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟

2

4
∙ 𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟  follower volume 

 

 Define the structure “𝑝𝑢𝑠ℎ − 𝑜𝑓𝑓 𝑚𝑎𝑠𝑠𝑒𝑠” containing the values of masses for the push-

off system. 

𝑚 = 0.032𝑘𝑔  mass of roller 

𝑚𝑟𝑜𝑙 = 0.016𝑘𝑔  mass of the outer rolling part of the roller 

𝑀 = 𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 ∙ 𝜌𝑆𝑆 mass of the follower, with 𝜌𝑆𝑆 = 7700
𝑘𝑔

𝑚3 density of stainless 

steel 

 

 Define the structure “c𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛” for both systems. 

𝜇𝑏𝑟𝑔 = 0.002 coefficient of friction associated to the bearing placed into the 

roller 

𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.002 coefficient of friction associated to the rolling between roller 

and cam surface 

𝜇𝑠𝑙 = 0.003 coefficient of friction associated to the sliding at the follower 

guide 
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C.3.5 Parallel linear spring 

 

To evaluate the torque of the torsional spring placed in parallel with the two cam-ram systems.  

 

Inputs: 

𝜃𝑎    ankle angle 

𝑚 = 58.4038 𝑁 ∙ 𝑚/𝑟𝑎𝑑 slope of the spring characteristic  

𝑐 = 0 𝑁 ∙ 𝑚   intercept of the spring characteristic  

𝑇𝑎    ankle torque  

 

Output: 

𝑇𝑝𝑠    torque provided by the parallel spring 

𝑇𝑜𝑢𝑡𝑝𝑠     torque acting on the system  

 

Method: 

 𝑇𝑝𝑠 = 𝑚𝜃𝑎 + 𝑐  

 𝑇𝑜𝑢𝑡𝑝𝑠 = 𝑇𝑎 − 𝑇𝑝𝑠  
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C.3.6 Gearbox 

 

To evaluate angle and velocity of the cam, the losses due to the friction torque, and the output 

torque acting on the rest of the system as the gearbox ideal output torque minus friction. The 

below function is used for each gait cycle with the only difference that, from the second gait 

cycle onward, just the kinematic input and output need to be considered. 

 

Inputs: 

𝐺𝑅   gearbox ratio 

𝑇𝑖𝑛𝑔𝑏 = 𝑇𝑜𝑢𝑡𝑝𝑠   torque in input to the gearbox 

𝜃𝑎   rotation angle of the ankle 

𝜔𝑎   angular velocity of the ankle  

𝛼𝑎   angular acceleration of the ankle  

𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  gearbox “size” 

 

Output: 

𝑇𝑓   frictional torque  

𝑇𝑐𝑟    total required camshaft torque  

𝜃𝑐    rotation angle of the cam 

𝜔𝑐   angular velocity of the cam 

𝛼𝑐   angular velocity of the cam 

 

Method: 

 𝜃𝑐 = 𝜃𝑎𝐺𝑅 

 𝜔𝑐 = 𝜔𝑎𝐺𝑅 

 𝛼𝑐 = 𝛼𝑎𝐺𝑅 

 𝜂𝑔 = 100 − (𝐺𝑅 − 1)𝑘𝑔   efficiency (i.e. a percentage), with  𝑘𝑔 a coefficient to fit 

data 

 𝑇𝑓 = 𝑠𝑖𝑔𝑛(𝜔𝑎) ∙ 𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(100−𝜂𝑔)

100
 

 𝑇𝑐𝑟 = (
𝑇𝑖𝑛𝑔𝑏−𝑇𝑓

𝐺𝑅
) 
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C.3.7 Gearbox backwards 

 

This function evaluates the gearbox input (ankle side) torque once the cam profiles are given. 

 

Inputs: 

𝐺𝑅   gearbox ratio 

𝑇𝑜𝑢𝑡𝑔𝑏 = 𝑇𝑐 gearbox output (accumulator side) torque, corresponding to the total 

actual camshaft torque  

𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  gearbox size 

 

Output: 

𝑇𝑓   frictional torque  

𝑇𝑖𝑛𝑔𝑏    gearbox input (ankle side) torque  

 

Method: 

 𝜂𝑔 = 100 − (𝐺𝑅 − 1)𝑘𝑔   

 𝑇𝑓 = 𝑠𝑖𝑔𝑛(𝜔𝑐) ∙ 𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
(100−𝜂𝑔)

100
 

 𝑇𝑖𝑛𝑔𝑏 = 𝑇𝑜𝑢𝑡𝑔𝑏 ∙ 𝐺𝑅 + 𝑇𝑓 
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C.3.8 Connect to accumulator 

 

To evaluate the changes in P, V and T in the accumulator occurring when the DCV connects 

the cylinder to the accumulator – i.e. initial oil compressibility at the first time instant of the 

working phase of the two systems. 

 

Inputs: 

𝑃𝑎𝑐𝑐𝑝𝑟𝑒 = 𝑃𝑎𝑐𝑐𝑛  accumulator pressure before connecting 

𝑇𝑔𝑎𝑠𝑝𝑟𝑒 = 𝑇𝑔𝑎𝑠𝑛  gas temperature before connecting 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒 = 𝑉𝑎𝑐𝑐𝑛   oil volume in the accumulator before connecting 

𝑃𝑐𝑦𝑙𝑝𝑟𝑒 = 𝑃𝑐𝑦𝑙𝑛   cylinder pressure before connecting 

𝑉𝑐𝑦𝑙𝑝𝑟𝑒 = 𝑉𝑐𝑦𝑙𝑛   oil volume in the cylinder before connecting  

𝑉𝑔𝑎𝑠𝑝𝑟𝑒 = 𝑉𝑔𝑎𝑠𝑛  gas volume before connecting  

∆𝑃𝑡𝑜 𝑎𝑐𝑐 = ∆𝑃𝑡𝑜 𝑎𝑐𝑐𝑛  total pressure drop between the cylinder and the accumulator  

𝑉𝐴   maximum accumulator volume 

𝑜𝑖𝑙   structure containing the properties of the oil 

𝑔𝑎𝑠   structure containing the properties of the gas 

 

Outputs: 

𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡   oil volume in accumulator after connecting 

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡   accumulator pressure after connecting 

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡   gas temperature after connecting 

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡   gas volume after connecting  

𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡   cylinder pressure after connecting 

 

All the “post” values, when they are returned from this function, they are used to update all 

the corresponding values for the same time instant 𝑛 (𝑉𝑎𝑐𝑐𝑛, 𝑃𝑎𝑐𝑐𝑛 , 𝑇𝑔𝑎𝑠𝑛, 𝑉𝑔𝑎𝑠𝑛, 𝑃𝑐𝑦𝑙𝑛). 

 

Method (if 1st time instant of the WP): 

 

residual = 10000;   initial value of residual to enter the while loop below (Pa) 
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𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑟𝑒   initial estimate of the accumulator pressure after connecting 

 

WHILE residual > 1Pa 

 

𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐 

∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐𝑝𝑟𝑒

(𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡−𝑃𝑎𝑐𝑐𝑝𝑟𝑒)

𝛽
  -ve if oil volume increases 

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙𝑝𝑟𝑒

(𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡−𝑃𝑐𝑦𝑙𝑝𝑟𝑒)

𝛽
   +ve if oil volume increases 

∆𝑉𝛽 = ∆𝑉𝛽𝑎𝑐𝑐
+ ∆𝑉𝛽𝑐𝑦𝑙

  

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑉𝑔𝑎𝑠𝑝𝑟𝑒 − ∆𝑉𝛽   

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑇𝑔𝑎𝑠𝑝𝑟𝑒 (
𝑉𝑔𝑎𝑠𝑝𝑟𝑒

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡
)

𝑘−1

  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑟𝑒 (
𝑉𝑔𝑎𝑠𝑝𝑟𝑒
𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡

)

𝑘

 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = |𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 − 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡|  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡   

 

END WHILE 

 

𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑉𝐴 − 𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡  
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C.3.9 Incremental accumulator changes 

 

To evaluate the changes in V, P and T in the accumulator for each incremental change in piston 

displacement (∆𝑦𝑛 = 𝑦𝑛+1 − 𝑦𝑛). 

 

Inputs: 

𝑛    time instant at which the present function is called 

𝑔𝑎𝑖𝑡_𝑝ℎ𝑎𝑠𝑒 structure containing the definition of the different gait phases 

for the currently simulated gait cycle 

∆𝑦 = ∆𝑦𝑛   incremental change in piston displacement 

∆𝑡 = ∆𝑡𝑛   time interval 

𝑃𝑎𝑐𝑐𝑝𝑟𝑒 = 𝑃𝑎𝑐𝑐𝑛   accumulator pressure before ∆𝑦𝑛 

𝑃𝑐𝑦𝑙𝑝𝑟𝑒 = 𝑃𝑐𝑦𝑙𝑛   cylinder pressure before ∆𝑦𝑛 

𝑇𝑔𝑎𝑠𝑝𝑟𝑒 = 𝑇𝑔𝑎𝑠𝑛   gas temperature before ∆𝑦𝑛 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒 = 𝑉𝑎𝑐𝑐𝑛    oil volume in accumulator before ∆𝑦𝑛 

𝑉𝑐𝑦𝑙𝑝𝑟𝑒 = 𝑉𝑐𝑦𝑙𝑛    oil volume in cylinder before ∆𝑦𝑛 

𝑉𝑔𝑎𝑠𝑝𝑟𝑒 = 𝑉𝑔𝑎𝑠𝑛   gas volume before ∆𝑦𝑛 

∆𝑃𝑡𝑜 𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = ∆𝑃𝑡𝑜 𝑎𝑐𝑐𝑛+1 pressure drop across DCV and pipework to accumulator after  

i.e. at time instant (𝑛 + 1) 

𝑉𝐴    maximum accumulator volume 

𝐴    ram bore area  

𝑜𝑖𝑙    structure containing the properties of the oil 

𝑔𝑎𝑠    structure containing the properties of the gas 

𝑇𝑒𝑛𝑣    temperature of the surroundings 

 

Outputs: 

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡    accumulator pressure after ∆𝑦𝑛 

𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡    cylinder pressure after ∆𝑦𝑛 

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡    gas temperature after ∆𝑦𝑛 

𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡    oil volume in accumulator after ∆𝑦𝑛 

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡    gas volume after ∆𝑦𝑛  
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All the “post” values, when returned from this function, are used to update all the 

corresponding values for the time instant (𝑛 + 1) (𝑃𝑎𝑐𝑐𝑛+1, 𝑃𝑐𝑦𝑙𝑛+1, 𝑇𝑔𝑎𝑠𝑛+1, 𝑉𝑎𝑐𝑐𝑛+1 , 𝑉𝑔𝑎𝑠𝑛+1). 

 

Method: 

 

residual = 10000;   initial value of residual to enter the while loop below (Pa) 

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑟𝑒   initial estimate of the accumulator pressure after ∆𝑦𝑛 

 

IF STANCE or PUSH-OFF (i.e. WP of the 2 SYSTEMS: the accumulator is connected 

respectively to the stance and the push-off ram) 

 

WHILE residual > 1Pa 

 

𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 + ∆𝑃𝑡𝑜 𝑎𝑐𝑐𝑝𝑜𝑠𝑡 

∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐𝑝𝑟𝑒

(𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡−𝑃𝑎𝑐𝑐𝑝𝑟𝑒)

𝛽
   

∆𝑉𝛽𝑐𝑦𝑙
= −𝑉𝑐𝑦𝑙_𝑝𝑟𝑒

(𝑃𝑐𝑦𝑙𝑝𝑜𝑠𝑡−𝑃𝑐𝑦𝑙𝑝𝑟𝑒)

𝛽
  

∆𝑉𝛽 = ∆𝑉𝛽𝑎𝑐𝑐
+ ∆𝑉𝛽𝑐𝑦𝑙

  

∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤 = ∆𝑦𝐴 + ∆𝑉𝛽   

𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑉𝑎𝑐𝑐𝑝𝑟𝑒 + ∆𝑉𝑜𝑖𝑙 𝑓𝑙𝑜𝑤  

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡   

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑝𝑜𝑙𝑦 = 𝑇𝑔𝑎𝑠𝑝𝑟𝑒 (
𝑉𝑔𝑎𝑠𝑝𝑟𝑒

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡
)

𝑘−1

  

∆𝑇𝑝𝑜𝑙𝑦 = 𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑝𝑜𝑙𝑦 − 𝑇𝑔𝑎𝑠𝑝𝑟𝑒   

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = [𝑇𝑔𝑎𝑠𝑝𝑟𝑒 − 𝑇𝑒𝑛𝑣] 𝑒
−
∆𝑡

𝜏 + 𝑇𝑒𝑛𝑣  

∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − 𝑇𝑔𝑎𝑠𝑝𝑟𝑒   

∆𝑇𝑡𝑜𝑡𝑎𝑙 = ∆𝑇𝑝𝑜𝑙𝑦 + ∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑇𝑔𝑎𝑠𝑝𝑟𝑒 + ∆𝑇𝑡𝑜𝑡𝑎𝑙  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑛𝑅
𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡  
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𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = |𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 − 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡|  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡   

 

END WHILE 

 

ELSE IF LOAD ACCEPTANCE or SWING (i.e. NWP for both the 2 SYSTEMS: the accumulator is 

isolated but there is still heat transfer)  

 

WHILE residual > 1Pa 

 

∆𝑉𝛽𝑎𝑐𝑐
= −𝑉𝑎𝑐𝑐𝑝𝑟𝑒

(𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡−𝑃𝑎𝑐𝑐𝑝𝑟𝑒)

𝛽
  

𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑉𝑎𝑐𝑐𝑝𝑟𝑒 + ∆𝑉𝛽𝑎𝑐𝑐
  

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑉𝐴 − 𝑉𝑎𝑐𝑐𝑝𝑜𝑠𝑡   

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑝𝑜𝑙𝑦 = 𝑇𝑔𝑎𝑠𝑝𝑟𝑒 (
𝑉𝑔𝑎𝑠𝑝𝑟𝑒

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡
)

𝑘−1

  

∆𝑇𝑝𝑜𝑙𝑦 = 𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑝𝑜𝑙𝑦 − 𝑇𝑔𝑎𝑠𝑝𝑟𝑒    

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = [𝑇𝑔𝑎𝑠𝑝𝑟𝑒 − 𝑇𝑒𝑛𝑣] 𝑒
−
∆𝑡

𝜏 + 𝑇𝑒𝑛𝑣  

∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − 𝑇𝑔𝑎𝑠𝑝𝑟𝑒   

∆𝑇𝑡𝑜𝑡𝑎𝑙 = ∆𝑇𝑝𝑜𝑙𝑦 + ∆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  

𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡 = 𝑇𝑔𝑎𝑠𝑝𝑟𝑒 + ∆𝑇𝑡𝑜𝑡𝑎𝑙  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡 = 𝑛𝑅
𝑇𝑔𝑎𝑠𝑝𝑜𝑠𝑡

𝑉𝑔𝑎𝑠𝑝𝑜𝑠𝑡  
  

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = |𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 − 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡|  

𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡_𝑒𝑠𝑡 = 𝑃𝑎𝑐𝑐𝑝𝑜𝑠𝑡   

 

 END WHILE 

 

END IF  
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C.3.10 Friction at O-ring 

 

To evaluate friction at the internal sealed element – the piston head - (with O-ring) in the 

cylinder. Martini’s model is used as it is more conservative than Xia’s model - i.e. characterised 

by the highest friction losses. Note that all the values used by Martini are expressed in the 

British Imperial system of units 

 

Inputs: 

�̇� = �̇�𝑛  piston velocity at time instant 𝑛 (before ∆𝑦𝑛) 

𝑃  pressure in the rod-less side of the piston 

𝑑𝑂−𝑟𝑖𝑛𝑔 O-ring cross-sectional diameter for both pistons 

𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 O-ring outside diameter for both pistons 

휀 = 0.14 O-ring squeeze ratio 

𝐻𝑆 = 70° O-ring shore hardness  

 

Output: 

𝐹𝑓𝑟𝑐𝑦𝑙   friction for O-ring sealed cylinder model at time instant 𝑛 

The values (𝐹𝑓𝑟𝑐𝑦𝑙𝑛
) returned in output from this function corresponds to the same time 

instant 𝑛 of the input. 

 

Method: 

 𝑃𝑎𝑡𝑚 = 101325𝑃𝑎 ∗ 0.000145038  to convert 𝑃𝑎𝑡𝑚 in 𝑝𝑠𝑖 

 𝑃𝑝𝑠𝑖 = 𝑃 ∗ 0.000145038    to convert the system pressure 𝑃 in 𝑝𝑠𝑖 

 ∆𝑃 = 𝑎𝑏𝑠(𝑃𝑝𝑠𝑖 − 𝑃𝑎𝑡𝑚) 

 𝐿0 = 𝜋𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 

 𝑆𝑊 = 100휀    actual squeeze of the O-ring cross section 

 f𝐶 = (−0.884 + 0.0206𝐻𝑆 − 0.0001𝐻𝑆
2)𝑆𝑊 

 𝐹𝐶 = 𝑠𝑖𝑔𝑛(�̇�)𝐿0f𝐶  

 𝐷𝑚 = 𝑑 𝑂−𝑟𝑖𝑛𝑔_𝑂𝑈𝑇 − 𝑑𝑂−𝑟𝑖𝑛𝑔  O-ring mean diameter 

 A = π𝐷𝑚𝑑𝑂−𝑟𝑖𝑛𝑔 

 f𝐻 = 0.545(∆𝑃)0.61 

 𝐹𝐻 = 𝑠𝑖𝑔𝑛(�̇�)Af𝐻 
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 Conversion back from the British Imperial System of unit to the International System of 

units: 

𝐹𝑓𝑟𝑐𝑦𝑙 =
𝐹𝐶 + 𝐹𝐻
0.2248
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C.3.11 Dynamic analysis 

 

To evaluate all the forces acting on the roller-follower and the follower system at each time 

instant 𝑛 of the gait cycle. The six simultaneous non-linear equations coming from the dynamic 

analysis are implemented and solved using the specific MATLAB command “fsolve”. 

 

Inputs: 

𝑛   time instant at which the present function is called 

𝐹ℎ = 𝐹ℎ𝑛  hydraulic ram force (including friction inside the ram) at time instant 𝑛 

𝐹𝑠 = 𝐹𝑠𝑛  return spring force at time instant 𝑛 

�̇� = �̇�𝑛   piston velocity at time instant 𝑛 

�̈� = �̈�𝑛   piston acceleration at time instant 𝑛 

𝑔𝑢𝑒𝑠𝑠  vector of initial guesses for the six unknowns of the dynamic analysis: 

the software starts from them to solve the non-linear system 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  structure containing the frictional coefficients for the whole 

system 

𝑚𝑎𝑠𝑠𝑒𝑠   structure containing the masses of all the components of the system 

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 structure containing the geometric parameters of cam, roller and 

follower 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑠  & �⃗�   vectors defining the position of the contact point between cam and 

roller with respect to cam centre for ∆𝑦𝑛 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 (𝛼) pressure angle of the cam at time instant 𝑛 

𝜔𝑐 = 𝜔𝑐𝑛  cam angular velocity at time instant 𝑛 

𝛼𝑐 = 𝛼𝑐𝑛  cam angular acceleration at time instant 𝑛 

�̇� = �̇�𝑛   roller angular velocity at time instant 𝑛 

�̈� = �̈�𝑛   angular acceleration at time instant 𝑛 

𝜔𝑟𝑒𝑙 = 𝜔𝑟𝑒𝑙𝑛  relative velocity between cam and roller at time instant 𝑛 

 

Outputs: 

𝐹𝑛  unknown I: normal force acting on cam profile at time instant 𝑛 

𝐹𝑡  unknown II: tangential force acting on cam profile at time instant 𝑛 

𝑁1  unknown III: constraining reaction at the follower guide at time instant 𝑛 
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𝑁2  unknown IV: constraining reaction at the follower guide at time instant 𝑛 

𝑅𝑉 unknown V: vertical constraining reaction between roller and follower at time 

instant 𝑛 

𝑅𝐻 unknown VI: horizontal constraining reaction between roller and follower at 

time instant 𝑛 

𝐹𝑓𝑟1  frictional force at the follower guide at time instant 𝑛 

𝐹𝑓𝑟2  frictional force at the follower guide at time instant 𝑛 

𝑀𝑏𝑟𝑔  frictional at the bearing placed into the roller at time instant 𝑛 

𝑀𝑟𝑜𝑙𝑟𝑒𝑠  rolling resistance between cam and roller at time instant 𝑛 

𝑇𝑐𝑎𝑐𝑡𝑢𝑎𝑙  actual cam torque at time instant 𝑛 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 residuals of the six equations at time instant 𝑛 

 

The values returned in output from this function are used for the same time instant 𝑛 of the 

input. 

 

Method: 

 𝑔 = 9.81
𝑚

𝑠2
 gravitational acceleration 

 𝐼𝑟𝑜𝑙 =
1

2
𝑚𝑟𝑜𝑙 (𝑟

2 + (
𝑑𝑏𝑟𝑔

2
)
2

) 

 𝑥 = 𝑓𝑠𝑜𝑙𝑣𝑒(“𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝒂𝒏𝒂𝒍𝒚𝒔𝒊𝒔 𝒇𝒔𝒐𝒍𝒗𝒆”, 𝑔𝑢𝑒𝑠𝑠, 𝑜𝑝𝑡𝑖𝑜𝑛𝑠)  

MATLAB command “𝑓𝑠𝑜𝑙𝑣𝑒” starts from the values specified in 𝑔𝑢𝑒𝑠𝑠 to solve the 

problem specified by 𝐹(𝑥)  =  0 for 𝑥, and it considers the optimization options specified 

in 𝑜𝑝𝑡𝑖𝑜𝑛𝑠. 

Command INPUT: the function “C.3.12 Dynamic analysis fsolve”, which contains the 

function 𝐹(𝑥), constituted by the six simultaneous equations. 

Command OUTPUT: 𝑥, which is the vector of the six unknowns. 

 𝑀𝑏𝑟𝑔 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑏𝑟𝑔 ∙  
𝑑𝑏𝑟𝑔

2
∙ |𝐹𝑛| 

 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙) ∙ 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ∙ |𝐹𝑛| ∙ 𝑟  

 𝐹𝑓𝑟1 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁1|  

 𝐹𝑓𝑟2 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁2|  

 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 evaluation: all the terms of each one of the six equations are moved on the left 

side of the equal and normalised by the hydraulic force at the start. 
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 𝑇𝑐𝑐𝑎𝑚𝑟𝑎𝑚 = 𝑠 ∙ 𝐹𝑛 −  𝑢 ∙ 𝐹𝑡 −𝑀𝑟𝑜𝑙𝑟𝑒𝑠  torque applied to the cam according to equation 

(4.50) in section 4.3.4, where the subscript “𝑐𝑎𝑚𝑟𝑎𝑚” stands for either the stance or the 

push-off ram. 
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C.3.12 Dynamic analysis fsolve 

 

It contains the six simultaneous equations in six unknowns that command “fsolve” solves in 

MATLAB. 

 

Inputs: 

𝑥 the vector of the six unknown which the command “fsolve” solves the 

problem specified by 𝐹(𝑥)  =  0 for 

𝑛   time instant at which the present function is called 

𝐹ℎ = 𝐹ℎ𝑛  hydraulic ram force (including friction inside the ram) at time instant 𝑛 

𝐹𝑠 = 𝐹𝑠𝑛  return spring force at time instant 𝑛 

�̇� = �̇�𝑛   piston velocity at time instant 𝑛 

�̈� = �̈�𝑛   piston acceleration at time instant 𝑛 

�̇� = �̇�𝑛   angular velocity of the roller-follower at time instant 𝑛 

�̈� = �̈�𝑛   angular acceleration of the roller-follower at time instant 𝑛 

𝜔𝑟𝑒𝑙 = 𝜔𝑟𝑒𝑙𝑛  relative angular velocity between cam and roller at time instant 𝑛 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  structure containing the frictional coefficients for all the system 

𝑚𝑎𝑠𝑠𝑒𝑠   structure containing the masses of all the components of the system 

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 structure containing the geometric parameters of cam, roller and 

follower.  

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 (𝛼)  pressure angle of the cam at time instant 𝑛 

𝑔   gravitational acceleration 

𝐼𝑟𝑜𝑙   moment of inertia of the rotating outer part of the roller-follower 

 

Outputs: 

𝐹(𝑥) function constituted by the six simultaneous equations at time instant 

𝑛 with 𝑥 = [𝐹𝑛, 𝐹𝑡 , 𝑁1, 𝑁2, 𝑅𝑉 , 𝑅𝐻]. 

 

Method: 

 As 𝐹 is a function of 𝑥, to continue to use the real name of the unknowns in the 

downstream calculations, the following step is necessary: 

𝐹𝑛 = 𝑥(1), 𝐹𝑡 = 𝑥(2), 𝑁1 = 𝑥(3), 𝑁2 = 𝑥(4), 𝑅𝑉 = 𝑥(5), 𝑅𝐻 = 𝑥(6) 
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 𝐹𝑓𝑟1 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁1|  

 𝐹𝑓𝑟2 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑠𝑙|𝑁2|  

 𝑀𝑓𝑟1 = 𝑠𝑖𝑔𝑛(𝑁1) ∙
𝑑

2
𝐹𝑓𝑟1 

 𝑀𝑓𝑟2 = 𝑠𝑖𝑔𝑛(𝑁2) ∙
𝑑

2
𝐹𝑓𝑟2 

 𝑀𝑏𝑟𝑔 = 𝑠𝑖𝑔𝑛(�̇�) ∙ 𝜇𝑏𝑟𝑔 ∙  
𝑑𝑏𝑟𝑔

2
∙ |𝐹𝑛| 

 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 = 𝑠𝑖𝑔𝑛(𝜔𝑟𝑒𝑙) ∙ 𝜇𝑟𝑜𝑙𝑟𝑒𝑠 ∙ |𝐹𝑛| ∙ 𝑟 

 

 𝐹 =

[
 
 
 
 
 
 

𝐹𝑡 cos 𝛼 − 𝐹𝑛 sin 𝛼 + 𝑅𝐻 = 0
𝐹𝑡 sin 𝛼 + 𝐹𝑛 cos 𝛼 − 𝑅𝑉 −𝑚𝑔 = 𝑚�̈�

𝐹𝑡𝑟 − 𝑀𝑟𝑜𝑙𝑟𝑒𝑠 −𝑀𝑏𝑟𝑔 = 𝐼𝑟𝑜𝑙�̈�

𝑁2 − 𝑅𝐻 −𝑁1 = 0
𝑅𝑉 − 𝐹ℎ −𝑀𝑔 − 𝐹𝑓𝑟1 − 𝐹𝑓𝑟2 − 𝐹𝑠 = 𝑀�̈�

𝑀𝑏𝑟𝑔 − 𝑅𝐻 (𝑐 +
𝑙

2
) + 𝑁1

𝑙

2
+ 𝑁2

𝑙

2
−𝑀𝑓𝑟1 +𝑀𝑓𝑟2 = 0]

 
 
 
 
 
 

 

 

All the values in input and in output from this function are referred to the same time instant 

𝑛, as this block of code is called inside the previous function (“C.3.11 Dynamic analysis”).  



  Appendix C: Matlab pseudo-code 

288 
 

C.3.13 Return spring sizing 

 

To size the return spring to make 𝐹𝑛 always positive (the roller-follower should always be in 

contact with the cam). 

 

Inputs:  

𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  required spring force: difference between the desired and the actual normal 

force 

𝑦  piston displacement throughout the gait cycle 

 

Outputs: 

𝑘  slope of the spring characteristic (𝑁/𝑚) 

𝑦0  intercept of the spring characteristic (𝑁) 

 

Method: 

1. Define the maximum slope allowable for the linear return spring (see section 5.2.2): 

𝑘𝑚𝑎𝑥 = 500,000
𝑁

𝑚
  

2. Find the minimum value of piston displacement. 

3. Find the corresponding indices of this minimum value in the array of the piston 

displacement. 

4. Identify the value/s of 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  corresponding to the minimum value of piston 

displacement. 

5. Find the maximum value of those identified at the previous bullet. 

6. Define a new array (𝐹𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) made of a range of values going from the value found at the 

previous bullet to the maximum value of 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (with 𝐹𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 < 𝑚𝑎𝑥 (𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)) with 

an increment of 0.1𝑁. 

7. Enter a FOR loop to identify all the pairs of slope (𝑘) and the intercept (𝑦0) that make the 

spring characteristic always larger than the required spring force: 

 

FOR 𝒊 = 𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝑭𝒔𝒔𝒆𝒍𝒆𝒄𝒕𝒆𝒅) 

 

 Set the value of the intercept: 𝑦0 = 𝐹𝑠𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝑖). 
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 Define a variable (“𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠”) that will contain the differences between the 

resulting spring characteristics and 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 .  It is initially set to an array of (-1), with a 

length equal to that of 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 . 

 Set the initial value of the slope: 𝑘 = 0.1
𝑁

𝑚
. 

 Set a while loop that, for each value of the intercept (𝑦0) defined at the first bullet, 

increases the value of the slope (𝑘) until the difference between each element of the 

resulting spring force array (𝐹𝑠) and the corresponding one of the required spring force 

array is positive (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝐹𝑠 − 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ≥ 0  𝐹𝑠 ≥ 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 at each time 

instant): 

 

WHILE 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔 < 𝟎 

 

 Evaluate the resulting spring force: 𝐹𝑠 = 𝑘𝑦 + 𝑦0. 

 Recalculate the array of the difference: 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = 𝐹𝑠 − 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 . 

 

 IF 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝒔 ≥ 𝟎 

 

Terminate the WHILE loop (“𝑏𝑟𝑒𝑎𝑘”). 

 

ELSE 

 

Increase the value of the slope of 0.1
𝑁

𝑚
  

 

IF the value of the slope is bigger than the maximum slope (see step (1) 

above) 

 

Terminate the WHILE loop (“𝑏𝑟𝑒𝑎𝑘”). 

 

END IF 

 

Set again 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 to an array of (-1). 
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END IF 

 

END WHILE 

 

 Define an array with all those values of slope (𝑘) that make the resulting spring 

characteristic (𝐹𝑠) always bigger than 𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ≥ 0). 

 Memorise the corresponding values of the intercept (𝑦0). 

 

END FOR 

 

8. FOR all the combinations (𝑘, 𝑦0) previously memorised: 

 

 Calculate the resulting spring characteristic: 𝐹𝑠 = 𝑘𝑦 + 𝑦0. 

 Calculate the corresponding integral of the spring characteristic (using MATLAB 

command “𝑡𝑟𝑎𝑝𝑧”): 𝑎𝑟𝑒𝑎 = 𝑡𝑟𝑎𝑝𝑧(𝑦, 𝐹𝑠). 

 

END FOR 

 

9. Identify the combination of 𝑘 and 𝑦0 of that spring characteristic with the minimum 

absolute value of the integral (i.e. that combination minimising ∫(𝐹𝑠 −𝐹𝑠𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)𝑑𝑦). 
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C.3.14 Cam profile 

 

To obtain the two cam profiles mapping the coordinates of the contact points 𝑃 between cam 

and roller from the fixed frame to the cam frame. 

 

 For each time instant 𝑛, the coordinates of the contact point 𝑃 between cam and roller 

are evaluated in the cam-based reference frame: 

 

FOR each time instant 𝑛 

 

 Call the Function “C.3.15 Mapping fix to body” 

 

END FOR  

 

 Plot the obtained coordinates of the cam profiles. 
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C.3.15 Mapping fix to body 

 

Inputs: 

𝑦 = 𝑦𝑛   piston displacement at time instant 𝑛 

𝜃𝑐 = 𝜃𝑐𝑛  cam angle of rotation at time instant 𝑛 

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 structure containing the geometric parameters of cam, roller and 

follower 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 (𝛼) pressure angle of the cam at time instant 𝑛 

 

Output: 

[
𝑥𝑃
𝑦𝑃
]
𝑐𝑎𝑚

 coordinates of the contact point 𝑃(𝑥𝑃, 𝑦𝑃) in the cam frame at time 

instant 𝑛 

 

Method: 

 𝑅𝑓𝑖𝑥
𝑐𝑎𝑚 = 𝑅𝑐𝑎𝑚

𝑓𝑖𝑥 𝑇 = [
𝑐𝑜𝑠𝜃𝑐 −𝑠𝑖𝑛𝜃𝑐
𝑠𝑖𝑛𝜃𝑐 𝑐𝑜𝑠𝜃𝑐

]
𝑇

= [
𝑐𝑜𝑠𝜃𝑐 𝑠𝑖𝑛𝜃𝑐
−𝑠𝑖𝑛𝜃𝑐 𝑐𝑜𝑠𝜃𝑐

] 

 [
𝑥𝑃
𝑦𝑃
]
𝑓𝑖𝑥

= [
𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦. 𝑐𝑎𝑚_𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦. 𝑟𝑜𝑙𝑙𝑒𝑟_𝑟𝑎𝑑𝑖𝑢𝑠 ∙ 𝑠𝑖𝑛(𝛼)

(𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦. 𝑎 + 𝑦) − 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦. 𝑟𝑜𝑙𝑙𝑒𝑟_𝑟𝑎𝑑𝑖𝑢𝑠 ∙ 𝑐𝑜𝑠(𝛼)
] 

 [
𝑥𝑃
𝑦𝑃
]
𝑐𝑎𝑚

= 𝑅𝑓𝑖𝑥
𝑐𝑎𝑚 [

𝑥𝑃
𝑦𝑃
]
𝑓𝑖𝑥

 Matrix operation according to matrix algebra to get the 

coordinates of the contact point 𝑃 mapped from the fixed to the cam frame. 
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C.3.16 Variables initialisation 

 

 ∆𝜃𝑐 = 𝑑𝑖𝑓𝑓(𝜃𝑐) incremental changes in cam angle 

 Evaluate the angle of the cam at the start and at the end of stance and push-off 

(𝜃𝑐𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑡𝑜𝑟𝑞𝑢𝑒 , 𝜃𝑐max𝐷𝐹 , 𝜃𝑐max𝑃𝐹  ) to evaluate further on 
𝑑𝑦

𝑑𝜃𝑐
 for full gait cycle through 

interpolation. 

  Pre-allocate the maximum amount of space required for all the forces (𝐹𝑛, 𝐹𝑡, 𝑁1, 𝑁2, 𝑅𝑉, 

𝑅𝐻, 𝐹𝑓𝑟1, 𝐹𝑓𝑟2) and moments (𝑀𝑏𝑟𝑔, 𝑀𝑟𝑜𝑙𝑟𝑒𝑠, 𝑇𝑐) in output from the dynamic analysis for 

both system in two structures called respectively “𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑠𝑡𝑎𝑛𝑐𝑒” and 

“𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑝𝑢𝑠ℎ − 𝑜𝑓𝑓”. Those variables are arrays with a length equal to the 

number of time instants of the considered gait cycle. 

 

 IF 𝒈𝒂𝒊𝒕 𝒄𝒚𝒄𝒍𝒆 == ”𝒅𝒆𝒔𝒊𝒈𝒏” 

 

- For both system, define an approximation of the hydraulic force – without friction and 

pressure drops- to start the simulation by multiplying the ram bore area by the 

difference between the starting cylinder pressure and the atmospheric pressure: 

(𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 − 𝑃𝑎𝑡𝑚)𝐴𝑆𝑇𝐴𝑁𝐶𝐸 and (𝑃𝑐𝑦𝑙𝑃𝑂 − 𝑃𝑎𝑡𝑚)𝐴𝑃𝑂. For this approximation, 

𝑃𝑐𝑦𝑙𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑃𝑐𝑦𝑙𝑃𝑂 = 𝑃𝑎𝑐𝑐𝑛=1  because the flow necessary to evaluate major and 

minor losses is still unknown.  

 

- Pre-allocate the amount of space required from the hydraulic ram forces in the two 

systems (𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸  and 𝐹ℎ𝑃𝑂) - arrays with a length equal to the number of time instants 

of the gait cycle, and initialise the two forces to the hydraulic forces evaluated at the 

previous bullet.  

 

- Initialise the ratio of the incremental changes in length of the piston to the incremental 

changes in cam angle (
𝑑𝑦

𝑑𝜃𝑐
)
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

to the ratio of the cam torque to the hydraulic force 

(see equation (5.4) in section 5.2) for the first iteration only: 
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(
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

=
𝑇𝑐𝑟

𝐹ℎ𝑆𝑇𝐴𝑁𝐶𝐸
 

(
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙

=
𝑇𝑐𝑟
𝐹ℎ𝑃𝑂

 

 

ENDIF  
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C.3.17 Kinematics 

 

 Pre-allocate the variables used in this block of code (∆𝑦𝑆𝑇𝐴𝑁𝐶𝐸 , ∆𝑦𝑃𝑂 , 𝑦𝑆𝑇𝐴𝑁𝐶𝐸 , 𝑦𝑃𝑂 ,

�̇�𝑆𝑇𝐴𝑁𝐶𝐸 , �̇�𝑃𝑂 , �̈�𝑆𝑇𝐴𝑁𝐶𝐸 , �̈�𝑃𝑂): ∆𝑦𝑆𝑇𝐴𝑁𝐶𝐸 and   ∆𝑦𝑃𝑂 are arrays with a length equal to the 

number of time intervals of the gait cycle, while all the other variables are arrays with a 

length equal to the number of time instants of the gait cycle. 

 

 IF 𝒈𝒂𝒊𝒕 𝒄𝒚𝒄𝒍𝒆 == ”𝒅𝒆𝒔𝒊𝒈𝒏” 

 

- Pre-allocate (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

 and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

 - arrays with a length equal to the number of 

time instants of the gait cycle. 

- Define (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

 and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

 over the whole gait cycle using interpolation based 

on the relationship between respectively (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 and cam 

angle (𝜃𝑐) during the two working phases. Specifically, the values of the ratio 
𝑑𝑦

𝑑𝜃𝑐
 

outside of the working phases are overwritten with corrected values based on the 

relationship between 
𝑑𝑦

𝑑𝜃𝑐
 and cam angle 𝜃𝑐  during the working phase (using MATLAB 

command for interpolation “interp1”, which also performs extrapolation). This allows 

not to have sudden changes in cam profile shape and, thus, discontinuities in the 

results of the simulation. 

 

FOR each time instant 𝑛 of the ankle data 

 

STANCE CAM-RAM system 

 

IF 𝜃𝑐𝑛  < angle of cam at start of stance (𝜃𝑐𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒_𝑡𝑜𝑟𝑞𝑢𝑒𝑛 ) THEN 

 

(
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑛

= 0 

 

ELSE 
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(
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑛

 is the result of the interpolation of (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

 based on the 

relationship between 𝜃𝑐  and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

|
𝑑𝑢𝑟𝑖𝑛𝑔 𝑆𝑇𝐴𝑁𝐶𝐸

, using MATLAB 

command “interp1”. 

 

END IF 

 

 

PUSH-OFF CAM-RAM system 

(
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂𝑛

is the result of the interpolation of (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

 based on the relationship 

between 𝜃𝑐  and (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙

|
𝑑𝑢𝑟𝑖𝑛𝑔 𝑃𝑂

, using MATLAB command “interp1”. 

 

END FOR 

 

END IF 

 

 Evaluate the incremental changes in displacements of the two pistons in a for loop: 

∆𝑦𝑆𝑇𝐴𝑁𝐶𝐸𝑛 =

((
𝑑𝑦
𝑑𝜃𝑐

)
𝑆𝑇𝐴𝑁𝐶𝐸𝑛

+ (
𝑑𝑦
𝑑𝜃𝑐

)
𝑆𝑇𝐴𝑁𝐶𝐸𝑛+1

)

2
∙ ∆𝜃𝑐𝑛  

∆𝑦𝑃𝑂𝑛 =

((
𝑑𝑦
𝑑𝜃𝑐

)
𝑃𝑂𝑛

+ (
𝑑𝑦
𝑑𝜃𝑐

)
𝑃𝑂𝑛+1

)

2
∙ ∆𝜃𝑐𝑛  

 

 Evaluate the overall displacement of the pistons throughout the gait cycle. 

 

- Set 𝑦𝑆𝑇𝐴𝑁𝐶𝐸𝑛=1  and 𝑦𝑃𝑂𝑛=1 as equal to 0. 

 

- FOR n=1 : length(∆𝑦𝑆𝑇𝐴𝑁𝐶𝐸) 
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𝑦𝑆𝑇𝐴𝑁𝐶𝐸𝑛+1 = 𝑦𝑆𝑇𝐴𝑁𝐶𝐸𝑛 + ∆𝑦𝑆𝑇𝐴𝑁𝐶𝐸𝑛  

END FOR 

 

- FOR n=1 : length(∆𝑦𝑃𝑂) 

 

𝑦𝑃𝑂𝑛+1 = 𝑦𝑃𝑂𝑛 + ∆𝑦𝑃𝑂𝑛 

END FOR 

 

 In case negative values of piston displacement exist, shift the whole piston displacement 

curve in the direction of positive displacements: 

 

IF min (𝑦𝑆𝑇𝐴𝑁𝐶𝐸) < 0 

𝑦𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑦𝑆𝑇𝐴𝑁𝐶𝐸 + |min (𝑦𝑆𝑇𝐴𝑁𝐶𝐸)| 

END IF 

IF min (𝑦𝑃𝑂) < 0 

𝑦𝑃𝑂 = 𝑦𝑃𝑂 + |min (𝑦𝑃𝑂)| 

END IF 

 

 Evaluate cam pressure angle (using equation (4.31) in section 4.3.2) for both systems 

throwing an error if it is either smaller or larger than 90°. 

 Evaluate the two vectors 𝑠 and 𝑢 for both systems (using equation (4.17) in section 4.3.2), 

throwing an error if 𝑢 vector is negative during the working phase. 

 Evaluate the velocity of the two pistons of the two systems follows: 

 

�̇�𝑆𝑇𝐴𝑁𝐶𝐸 = (
𝑑𝑦

𝑑𝜃𝑐
)
𝑆𝑇𝐴𝑁𝐶𝐸

𝜔𝑐 

�̇�𝑃𝑂 = (
𝑑𝑦

𝑑𝜃𝑐
)
𝑃𝑂

𝜔𝑐  

 

 Evaluate angular velocity of the roller �̇� according to equation (4.29) in section 4.3.2 

(�̇�=
1

𝑟
[−𝑢𝜔𝑐 − �̇� sin 𝛼]). 
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 Evaluate the acceleration of the two pistons (�̈�𝑆𝑇𝐴𝑁𝐶𝐸 and �̈�𝑃𝑂) according to equation 

(4.23) in section 4.3.2. 

 Evaluate the angular acceleration of the roller �̈� according to equation (4.24) in section 

4.3.2 (�̈� =
1

𝑟
[−𝑢𝛼𝑐 − 𝑠𝜔𝑐

2 − �̈� sin 𝛼]). 

 Evaluate the relative velocity between cam and roller (𝜔𝑟𝑒𝑙 = �̇� − 𝜔𝑐). 

 Update the length of the follower overhang for the two followers: 

𝑐𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑐𝑆𝑇𝐴𝑁𝐶𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑦𝑆𝑇𝐴𝑁𝐶𝐸 

𝑐𝑃𝑂 = 𝑐𝑃𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑦𝑃𝑂  
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C.3.18 Major and minor losses evaluation 

 

To calculate the pressure drops due to major and minor losses in the pipework both between 

the ram and the accumulator and between the ram and the tank. 

 

Inputs: 

𝑝𝑖𝑝𝑒𝑠   structure containing the parameters describing the pipes 

𝑖𝑛𝑙𝑒𝑡𝑠_𝑒𝑥𝑖𝑡𝑠  structure containing the parameters describing the inlets/exits 

𝑓𝑖𝑡𝑡𝑖𝑛𝑔 structure containing the parameters describing the fittings 

𝐷𝐶𝑉  structure containing the parameters describing the DCV 

𝑜𝑖𝑙  structure containing the properties of the used oil (ISO VG 32) 

𝑄  flow throughout the gait cycle 

 

Outputs: 

∆𝑃𝑡𝑜 𝑎𝑐𝑐 total pressure drop in the pipework between the ram and the accumulator 

∆𝑃𝑡𝑜 𝑡𝑎𝑛𝑘 total pressure drop in the pipework between the ram and the tank  

 

Method: 

 Evaluate pipe area: 

𝐴𝑝𝑖𝑝𝑒 = 𝜋
𝐷𝑝𝑖𝑝𝑒

2

4
 

 

 Using equation (4.63) in section 4.5.3, evaluate the pressure drop across the DCV. 

 Using equation (4.61) in section 4.5.3, evaluate the pressure drop across fittings between 

the ram and the accumulator (exit, entrance and one elbow). 

 Using equation (4.60) in section 4.5.1, evaluate the pressure drop across pipes. 

 Evaluate the total pressure drop in the pipework between the ram and the accumulator 

by summing up the three previous pressure drops. 

 

 Using the same equation (4.61) in section 4.5.3, evaluate the pressure drop across fittings 

between the ram and the tank (exit and entrance). 



  Appendix C: Matlab pseudo-code 

300 
 

 Evaluate the total pressure drop in the pipework between the ram and the tank by 

summing up the pressure drop calculated at the previous bullet and that one across the 

DCV.  

 

 

C.3.19 Power audit 

 

Equations (5.10) - (5.45) in section 5.3 are implemented in this script, together with equations 

(5.48) - (5.55) for power residuals. Specifically, the cam-ram power equations in sections 5.3.3 

to 5.3.7 and also equations (5.50) - (5.53) are implemented twice for the stance and push-off 

systems. 

 

 

 



 

 
 

 

 

Appendix D: 

Categorisation of the design parameters 

 

 

 

 

 

 

 

 

 



 
 

 
 

3
0

2 

Tables D. 1 – D. 7 below show all design parameters of the system divided into three categories: constants, independent variables (primary (in red) 

and secondary, as explained in section 6.1), and dependent variables. 

 

Gearbox 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝐺𝑅 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

gearbox ratio 
- 1, 3, 5 - - 

𝜂𝑔 (%)  

gearbox efficiency  
- - - 

𝜂𝑔 = 100 − (𝐺𝑅 − 1)
𝑘𝑔 

with 𝑘𝑔= coefficient to fit data 

(Gardiner et al., 2017) 

 

Table D. 1 Parameters defining the gearbox. 

 

Cam 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝑎 (𝑚)  

starting position of the follower 

in the vertical direction (see 

Figure 4.3) 

- - 

It can be varied to optimise 

the design (reducing the 

pressure angle 𝛼) 

𝑎𝑚𝑎𝑥 = 50𝑚𝑚 

- 



 
 

 
 

3
0

3 

𝑒 (𝑚)  

follower offset (or eccentricity) 

defining the distance between 

the centre line of the follower 

and the cam centre (see Figure 

4.3) 

- - 

It can be varied to optimise 

the design (reducing the 

pressure angle 𝛼) 

𝑒𝑚𝑎𝑥 = 50𝑚𝑚 

- 

𝛼 (°)  

cam pressure angle (see Figure 

4.3) 

- - - 

Calculated using equation (4.31) in 

section 4.3.2, and 

|𝛼| ≤ |𝛼|𝑚𝑎𝑥 = 30° 

 

Table D. 2 Parameters defining the cam. 

 

Roller 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝑑𝑟𝑜𝑙𝑙𝑒𝑟 (𝑚)  

roller diameter 
- - - 

It depends on the applied hydraulic 

ram force (𝐹ℎ𝑛𝑜𝑚𝑖𝑛𝑎𝑙) and, thus, on 

the generated 𝐹𝑛𝑛𝑜𝑚𝑖𝑛𝑎𝑙. It is 

selected from catalogues according to 

the maximum allowable dynamic load 

in the radial direction that a roller can 

withstand. 

𝑑𝑟𝑜𝑙𝑙𝑒𝑟 ≤ 30𝑚𝑚 

𝑟 (𝑚)  

roller radius 
- - - 𝑟 =

𝑑𝑟𝑜𝑙𝑙𝑒𝑟
2
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𝑚 (𝑘𝑔)  

roller mass  
- - - 

Depending on the selected 𝑑𝑟𝑜𝑙𝑙𝑒𝑟, it 

comes from catalogues 

𝑚𝑟𝑜𝑙  (𝑘𝑔)  

mass of the rotating outer part 

of the roller  

- - - 

𝑚𝑟𝑜𝑙 = 𝜌𝑟𝑜𝑙𝑙𝑒𝑟𝑉𝑟𝑜𝑙 

where 𝑉𝑟𝑜𝑙 is the volume of the outer 

rolling part of the roller (estimated 

from roller dimensions from 

catalogues). 

It mainly depends on 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 

𝑑𝑏𝑟𝑔 (𝑚)  

stud diameter  
- - - It depends on 𝑑𝑟𝑜𝑙𝑙𝑒𝑟 

𝜇𝑏𝑟𝑔 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

coefficient of friction of roller-

follower bearings 

𝜇𝑏𝑟𝑔 = 0.002 (SKF, 2013) 

for cylindrical roller 

bearings and needle 

roller bearings with cage 

- - - 

𝜇𝑟𝑜𝑙𝑟𝑒𝑠 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

coefficient of rolling friction 

𝜇𝑟𝑜𝑙𝑟𝑒𝑠 = 0.002  

(steel on steel) 

It depends on the 

selected material for cam 

and roller 

- - - 

 

Table D. 3 Parameters defining the roller. 

 

Follower 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 
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𝑀 (𝑘𝑔)  

follower mass  
- - - 

𝑀 = 𝜌𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 

with 𝑉𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟evaluated from follower 

dimensions and considering it like a 

cylinder 

𝑑𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 (𝑚)  

follower diameter 
- - - 

Same value of the diameter of the 

piston rod (𝑑), since they constitute 

one body 

𝑐 (𝑚)  

follower overhang 
- - - 

It should be kept small according to 

cam design suggestions (Rothbart, 

2004). It changes with piston 

displacement 𝑦. 

Its initial value (when 𝑦 = 0𝑚) 

is set as: 

𝑐 = 𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑟 +

𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛, with 

𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑟/3 and 

𝑠𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ estimated from 

theory. 

For each instant 𝑡 of the gait cycle, its 

value for the next time instant (𝑡 + 1) 

is evaluated as: 

𝑐𝑡+1 = 𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑦𝑡  

𝑙 (𝑚)  

distance between the 2 lines of 

action of the two normal 

forces at the follower guide 

(𝑁1, 𝑁2) 

- - - 
Assumed to be approximately 𝑙 =

2𝑟 + 𝑠𝑎𝑓𝑒𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 
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𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 (𝑚)  

follower length 
- - - 

It depends on the value of 𝑐  when 

the piston is at rest and on 𝑙: 

𝑙𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 = 𝑐 + 𝑙 

𝜇𝑠𝑙  (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

coefficient of friction of the 

bearings at the follower 

𝜇𝑠𝑙 = 0.003 (SKF, 2013) 

for self-aligning ball 

bearing 

- - - 

 

Table D. 4 Parameters defining the follower. 

 

Cylinder & hydraulic oil 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝐷 (𝑚)  

hydraulic ram bore 
- 0.020, 0.010, 0.005 - - 

𝑑 (𝑚)  

piston rod diameter 
- - - 

It depends on 𝐷. 

Analysing the relationship 𝑑/𝐷 for off-

the-shelf hydraulic cylinders from 

catalogues (HYDAIRA; Hydraulics, 

2018; RAMKO; STEERFORTH), 

generally 𝑑 = (0.44 − 0.66)𝐷. 

Hence, 𝑑 = 0.5𝐷 was chosen 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚)  

when the piston has completed 

its instroke, residual distance 

between piston head and the 

inner head of the ram 

- - 0.005 - 
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𝑑𝑂−𝑟𝑖𝑛𝑔 (𝑚)  

O-ring cross-sectional diameter 
- - - 

It depends on the chosen 𝐷 

(from O-ring catalogues (Parker 

Hannifin, 2007a)) 

𝐸 (𝑃𝑎)  

O-ring Young modulus 

𝐸 = 10𝑒06 

typical modulus for 

elastomeric seals (Xia & 

Durfee, 2011a) 

- - - 

휀 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

O-ring squeeze ratio  

휀 = 0.14 is the value 

used by Xia and Durfee 

(2014) to make sure 

friction was measurable 

in their experiments 

- - - 

𝜇𝑓 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

friction coefficient between the 

O-ring and the cylinder-wall 

𝜇𝑓 = 0.4 

for O-ring seals (𝜇𝑓 =

0.3 − 0.5 for well 

finished and sufficiently 

lubricated sealed 

surfaces (Xia & Durfee, 

2011b, 2014)) 

- - - 

𝛽 (𝑃𝑎)  

oil bulk modulus 

𝛽 = 1.657𝑒 + 09  

for an ISO VG 32 mineral 

oil (see Appendix A.4) 

- - - 

𝜌 (
𝑘𝑔

𝑚3)  

oil density 

𝜌 = 870 

for an ISO VG 32 mineral 

oil (see Appendix A.4) 

- - - 

𝑣 (
𝑚𝑚2

𝑠
)  

oil kinematic viscosity 

𝑣 = 80 

for an ISO VG 32 mineral 

oil (see Appendix A.4) 

- - - 
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𝜇 (𝑃𝑎 ∙ 𝑠)  

oil dynamic viscosity 

𝜇 = 0.07 

for an ISO VG 32 mineral 

oil (see Appendix A.4) 

- - - 

 

Table D. 5 Parameters defining the cylinder and the hydraulic oil. 

 

Pipes & discrete components 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝐷𝑝𝑖𝑝𝑒 (𝑚)  

pipe internal diameter 

(hydraulic diameter) 

- - 0.005𝑚 - 

𝐿𝑝𝑖𝑝𝑒 (𝑚)  

pipe length 
- - 

𝐿𝑝𝑖𝑝𝑒 = 0.050 𝑚 from ram 

to accumulator. 

𝐿𝑝𝑖𝑝𝑒 = 0 𝑚 from ram to 

tank, as the DCV is 

mounted directly onto the 

ram and surrounded by the 

tank at atmospheric 

pressure 

- 

𝐾𝑒𝑥𝑖𝑡  (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

loss coefficient for sharp-edged 

exit 

𝐾𝑒𝑥𝑝 = 1 

(Durfee et al., 2015) 
- - - 

𝐾𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

loss coefficient for sharp-edged 

entrance 

𝐾𝑐𝑜𝑛𝑡 = 0.5 

(Durfee et al., 2015) 
- - - 
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𝐾𝑒𝑙𝑏𝑜𝑤  (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

loss coefficient for a 90° elbow 

𝐾𝑒𝑙𝑏𝑜𝑤 = 0.9 

(Cundiff, 2002) 
- - - 

𝐶𝑑  (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  

orifice discharge coefficient 

𝐶𝑑 = 0.62 

(Durfee et al., 2015, p. 27) 
- - - 

𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (𝑚)  

diameter of the ports of the 

valve 

- - - 

It depends on pipe dimeter. It is 

assumed to be: 

𝑑𝑣𝑎𝑙𝑣𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐷𝑝𝑖𝑝𝑒 

𝐷𝑣𝑎𝑙𝑣𝑒_𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 (𝑚)  

internal diameter of the valve 
- - - 

It depends on 𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 and it is 

slightly bigger than that. It is assumed 

to be: 

𝐷𝑣𝑎𝑙𝑣𝑒𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 1.4𝑑𝑣𝑎𝑙𝑣𝑒_𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

𝐴𝑜𝑟𝑖𝑓  (𝑚
2)  

orifice cross-sectional area 
- - - 

𝐴𝑜𝑟𝑖𝑓 = 

= 𝜋𝐷𝑣𝑎𝑙𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑑𝑣𝑎𝑙𝑣𝑒 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 

𝐾𝑜𝑟𝑖𝑓   

orifice equivalent loss 

coefficient 

- - - 𝐾𝑜𝑟𝑖𝑓 = 𝐶𝑑𝐴𝑜𝑟𝑖𝑓√2/𝜌 

 

Table D. 6 Parameters defining pipes and discrete components. 

 

Accumulator & gas 

Design 

parameters 
Constants 

Primary 

independent 

variables 

Secondary 

independent 

variables 

Dependent 

variables 

𝑃𝑚𝑎𝑥 (𝑃𝑎)   

maximum hydraulic pressure in 

the accumulator 

- 

100 ∙ 105, 

50 ∙ 105, 

20 ∙ 105 

- - 
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𝑃𝑚𝑖𝑛 (𝑃𝑎)  

minimum rated pressure in the 

accumulator 

- - - 

𝑃𝑚𝑖𝑛 = 0.5 ∙ 𝑃𝑚𝑎𝑥 

given the compression ration 
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
=

2 (as recommended by some 

suppliers (HYDAC, 2015, p. 80)) 

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒(𝑃𝑎) accumulator 

pre-charge pressure 
- - - 

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0.90 ∙ 𝑃𝑚𝑖𝑛 

= 0.45 ∙ 𝑃𝑚𝑎𝑥 

𝑉𝐴 (𝑚
3)  

nominal volume of the 

accumulator 

- - 

𝑉𝐴 = 250𝑐𝑐 

This size was chosen for 

the reasons explained in 

section 3.4.3 

- 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒  (𝑚
3)  

oil volume at pre-charge in the 

accumulator 

𝑉𝑎𝑐𝑐𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 0𝑚
3 

There is no fluid in the 

accumulator at pre-

charge 

- - - 

𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒(𝑚
3)  

gas volume at pre-charge in the 

accumulator 

- - - 

𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑉𝐴 

It corresponds to the nominal volume 

of the diaphragm accumulator 

(HYDAC, 2013, 2017) 

𝑘 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)  
polytropic index 

𝑘 = 1.4 

for adiabatic process 
- - - 

𝑅 (
𝐽

𝑚𝑜𝑙⋅𝐾
)  

ideal gas constant 
𝑅 = 8.314 - - - 

𝐶𝑉𝑁2
(

𝐽

𝑘𝑔∙𝐾
)  

gas specific heat at constant 

volume for 𝑁2 

𝐶𝑉𝑁2
= 741.95 - - - 
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ℎ𝑁2 (
𝑊

𝑚2∙𝐾
)  

convection heat transfer 

coefficient for 𝑁2 

ℎ𝑁2 = 25 - - - 

𝑛𝑁2  (𝑚𝑜𝑙)  

required number of moles of 

𝑁2 in the accumulator  

- - - 
𝑛𝑁2 =

𝑃𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑔𝑎𝑠𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒
𝑅𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒

 

(with𝑇𝑝𝑟𝑒−𝑐ℎ𝑎𝑟𝑔𝑒 = 𝑇𝑒𝑛𝑣 = 293𝐾) 

𝑀𝑁2  (
𝑔

𝑚𝑜𝑙
)  

molecular weight of 𝑁2 
𝑀𝑁2 = 28.014 - - - 

) 

𝑚𝑁2  (𝑘𝑔) 

required mass of 𝑁2 

- - - 𝑚𝑁2 = 𝑛𝑁2 ∙ 𝑀𝑁2 

𝜏 (𝑠)  

thermal time-constant  
- - - 

𝜏 =
𝑚𝑁2𝐶𝑉𝑁2
ℎ𝑁2𝐴𝑊

 

with 𝐴𝑊 total internal surface area of 

the accumulator exposed to gas (see 

Appendix A.5) 

 

Table D. 7 Parameters defining the accumulator and the gas. 
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Novel prosthesis - mass estimate 
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Table E. 1 shows a rough estimate of the mass of the whole prosthesis. The material of each components was selected according to what is reported 

for off-the-shelf components when possible, otherwise a reasonable material was chosen. The exact mass of the components is reported, sourced 

directly from catalogues, or estimated based on the proportion of off-the-shelf components, or evaluated directly in Solidworks (once the material 

is selected). 

 

COMPONENT MATERIAL DENSITY (
𝒌𝒈

𝒎𝟑
) MASS (𝒌𝒈) SOURCE 

foot 
inferior laminate twill 

carbon fibre 
1520 

0.05874 material properties from Pace (2015), mass 

calculation in Solidworks superior laminate 0.09359 

ankle connection (between foot 

laminates and cams) 
stainless steel 7700 0.16311 

material properties and mass calculation in 

Solidworks 

cams 
stance 

stainless steel 7700 
0.03179 material properties and mass calculation in 

Solidworks push-off 0.03363 

roller: 19 𝑚𝑚 diameter, 11 𝑚𝑚 

height (to be considered twice) 
steel - 0.021 (2x) mass from catalogue (SKF, 2013, p. 1134) 

roller pin (to be considered twice) stainless steel 7700 0.00390 (2x) 
material properties and mass calculation in 

Solidworks 

two self-aligning linear ball 

bearings: 10 𝑚𝑚 height, 10 𝑚𝑚 

internal diameter, 16 𝑚𝑚 external 

diameter (to be considered twice) 

- - 
approximately 

2 x 0.0027 (2x) 

estimate based on the proportion of those ones 

with a plastic cage and steel raceway segments by 

SKF (2014, p. 13): 10 𝑚𝑚 height, 3 𝑚𝑚 internal 

diameter, 7 𝑚𝑚 external diameter, 0.0007 𝑘𝑔 

piston (to be 

considered twice) 

rod stainless steel 

1.4305 
7900 

0.03712 (2x) same material used for pistons in HYDAIRA (p. 5), 

mass calculation in Solidworks head 0.02654 (2x) 
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cylinder 

(to be considered twice) 

stainless steel 

1.4301 
7900 0.05540 (2x) 

same material used for cylinders in HYDAIRA (p. 5), 

mass calculation in Solidworks 

follower return spring 

(to be considered twice) 

stainless steel 

1.4310 
7900 0.00192 (2x) 

same material used for springs in LESJOFORS (p. 

12), mass calculation in Solidworks 

O-ring (to be considered twice) nitril (NBR) 1150 0.00040 (2x) 
same material used for O-rings in HYDAIRA (p. 12), 

mass calculation in Solidworks 

aesthetic cover 
aluminium alloy 

7075 
2810 0.24090 

material properties and mass calculation in 

Solidworks 

male adapter titanium alloy 4428,78 0.06481 
material properties form Pace (2015),  

mass calculation in Solidworks 

Total weight (excluding the pylon with the integrated accumulator) 0.98993 - 

Total weight (with the 0. 557 𝑘𝑔 pylon included) 𝟏. 𝟓𝟒𝟔𝟗𝟑 - 

 

Table E. 1 Estimate of the mass of the components included in the novel hydraulic ankle, together with the two carbon fibre laminates, the ankle connection, the aesthetic cover 

and the male adapter depicted in Figure 8.1 

 

The approximate mass of the pylon is 0.557 𝑘𝑔, as mentioned in Table E. 1, estimated as follows:  

 Approximately 0,077 𝑘𝑔 for a carbon fibre pylon with a 6 𝑐𝑚 internal diameter, 11 𝑐𝑚 length (12 𝑐𝑚 if the two tubular adapters at its ends are 

considered), and 2,5 𝑚𝑚 thickness (based on the proportion of a 50 𝑐𝑚 length, 3 𝑐𝑚 internal diameter, and 0.180 𝑘𝑔 pylon from 

http://www.roadrunnerfoot.com/eng/prodotti/tubi.html). 

http://www.roadrunnerfoot.com/eng/prodotti/tubi.html
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 Approximately 0.115 𝑘𝑔 for each one of the two aluminium alloy (7075) tubular adapters placed at the two pylon ends, with a 6 𝑐𝑚 internal 

diameter, a hypothesised 4 𝑐𝑚 height and 2 𝑚𝑚 thickness (based on the weight of a 3 𝑐𝑚 internal diameter and 0.075 𝑘𝑔 tubular adapter from 

http://www.roadrunnerfoot.com/eng/prodotti/attacchi.html). Thus 0.230 𝑘𝑔 in total. 

 Approximately 0.250 𝑘𝑔 for a 250 𝑐𝑐 carbon-composite accumulator (see section 3.4.3). 

 

For the other components missing, the mass is estimated as follows: 

 An approximate mass of 0.050 𝑘𝑔 for the parallel torsional spring and 0.400 𝑘𝑔 for two miniaturised DCVs (estimated from https://nem-

hydraulics.com/wp-content/uploads/2018/11/DT001GB001_IR02-Cartridge_CoverCatalogue.pdf). 

 An estimate of 0.152 𝑘𝑔 for a total oil volume in the system of 175 𝑐𝑐. The oil volume in the 0.25 𝑙 accumulator is estimated to be equal to 

125 𝑐𝑐 when the accumulator is installed in the hydraulic circuit with a desired initial pressure at the beginning of the gait cycle (𝑃𝑠𝑡𝑎𝑟𝑡 = 90 𝑏𝑎𝑟, 

section 4.6.4). A roughly 50 𝑐𝑐 are added for the oil in the rest of the system (i.e. in the tank and in the 1.96 𝑐𝑐 pipes between rams and the 

accumulator, with 𝐿𝑝𝑖𝑝𝑒 = 50𝑚𝑚 and 𝐷𝑝𝑖𝑝𝑒 = 5𝑚𝑚). The density of the selected mineral oil is 𝜌 = 870
𝑘𝑔

𝑚3 (see Appendix A.4). 

 A tank surrounding the hydraulic rams with a mass perhaps as low as 0.200 𝑘𝑔. A 0.5 𝑙 stainless steel low-pressure accumulator compatible 

with mineral oils weighs 1.2 𝑘𝑔 (Parker Hannifin, 2018, p. 35). However, the bespoke tank would be smaller (maybe 0.1 𝑙) and, thus, its mass 

reduced, also thanks to the use of composite materials (mass reduced by around 75% (Crompton Technology Group Ltd, 2020)). 

 

Therefore, the estimated total mass of the whole assembly is approximately 2.35 𝑘𝑔, which seems to match  the mass corresponding to the 

28.38 𝑐𝑚 distance from the ground to the distal connection with the socket (approximately 2.43 𝑘𝑔).  

 

http://www.roadrunnerfoot.com/eng/prodotti/attacchi.html)
https://nem-hydraulics.com/wp-content/uploads/2018/11/DT001GB001_IR02-Cartridge_CoverCatalogue.pdf
https://nem-hydraulics.com/wp-content/uploads/2018/11/DT001GB001_IR02-Cartridge_CoverCatalogue.pdf
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